Heme Homeostasis and Utilization in Clostridioides difficle Pathogenesis and Persistence

By

Reece Jeffrey Knippel

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Microbiology and Immunology

January 31, 2020

Nashville, Tennessee

Approved:

David M. Aronoff, M.D.

Maria Hadjifrangiskou, Ph.D.

Richard M. Peek, Jr, M.D.

Steven D. Townsend, Ph.D.

Eric P. Skaar, Ph.D., M.P.H.

ACKNOWLEDGMENTS

To my mentors, colleagues, and collaborators who provided the guidance, expertise, and support at Vanderbilt, this work would not have been possible without you. First and foremost, I would like to thank my dissertation mentor, Dr. Eric Skaar. He took a chance on a chemist from Idaho and with his guidance I have grown into the scientist I am now. He also took a risk by allowing me to become the second person in his lab to work on *C. difficile* where, under his watchful eye, I was able to develop the following dissertation from the ground up. This experience has allowed me to build confidence in myself and gain pride my work. Thank you for trusting me, being my scientific role model, and supporting me not only in the day to day but allowing me to showcase my work at conferences around the nation.

I would like to thank the Skaar lab family for providing answers to my questions, support in the face of any obstacle, and critical yet constructive feedback on my work. I have to specifically thank members of "team C. diff" including the original member Joe Zackular, my across the bay mate Chris Lopez, Maribeth Nicholson, and Aaron Wexler for serving as constant fountains of advice and soundboards for my work. I'd like to thank all my current and former science siblings that I had the pleasure to overlap with my time in the lab. A special thanks to Lauren Palmer, Zach Lonergan, and Clare Laut for providing years of friendship and comradery. I thank Andy Wiess for his help with the RNA-seq analysis in chapter II. I would also like to thank Nichole Lobdell and Nichole Maloney as well as all of the research assistants that are able to keep everything in the lab functioning and providing support for my work.

To my thesis committee members: Thank you for your insight and expansion of my scientific endeavors over the past few years. Thank you to Dr. Dave Aronoff for serving as my committee chair and always providing enthusiastic support while also critical and direct feedback. Also, thank you for providing the anaerobic chamber where the majority of the *in vitro* work was performed in this dissertation. Thank you Dr. Rick Peek for always reminding me to consider the application of my work to patients and providing the pilot funding for the *C. difficile* work. Thank you Dr. Maria Hadjifrangiskou for providing the insights of the intricate aspects of microbiology. Finally thank you to Steve Townsend for providing the perspective of a scientist not entrenched in the microbial dogma. You all have been instrumental in my graduate education.

I would like to thank all of my collaborators and cores who have helped me immensely on this work. I'd like to thank Drs. Jess Moore and Richard Caprioli for the imaging mass spectrometry. Thank you to Arianna Celis and Dr. Jennifer DuBois for the intracellular heme analysis. I am grateful to Dr. Kay Washington and the Tissue Pathology Shared Resource Core for blinded scoring and preparation of the pathology slides. Thank you to Dr. Valérie de Crécy-Lagard for the taxonomic analysis of HsmA. I also thank Dr. Seth Walk for providing *C. difficile* strain R20291 and Dr. Joe Sorg for providing the *Bacillus subtilis* mating strain, *C. difficile* plasmids, and guidance for the creation of the *C. difficile* mutant strains.

I am grateful for the financial support towards my research training and the career opportunities provided at Vanderbilt. Thank you to the Chemistry-Biology Interface training grant and Dr. Gary Sulikowski for providing training and support during my second and third year of graduate school. I would also like to thank the Molecular Microbial

iii

Pathogenesis training grant and Dr. Fernando Villalta for providing support during my last few years. I am also thankful to the grants and funding awarded to Dr. Eric Skaar that directly funded this working including: the National Institute of Allergy and Infectious Diseases grant R01AI073843, the National Institute of Diabetes and Digestive and Kidney Diseases grant P30DK058404, and the Ernest W. Goodpasture Chair in Pathology. I appreciate my director of graduate studies Dr. Chris Aiken and Lorie Franklin for their support. Thank you to the BRET office and Dr. Ashley Brady for the quality career advice and opportunities to train as a professional and identify scientific careers.

Finally, I would like to thank my friends and family who have and are currently supporting me through this seemingly endless pursuit of education. Thank you to my mother and father who despite everything have always supported my career goals. Immense gratitude to my friends who have not only been there in times of triumph but also for the support in times of trail. And to Nicole Putnam, my soon to be wife, thank you for providing endless support during this process, always keeping me in check, being my perfect counterpart, and being the person who makes me strive to be the absolute best version of myself I can be. We survived graduate school together and I know we can survive anything else. My time in Nashville has been transformative and I thank and love you all for helping me become who I am today.

TABLE OF CONTENTS

ACKNOWLEDGMENTSi		
LIST OF TABLES	vii	
LIST OF FIGURES	. viii	
LIST OF ABBREVIATIONS	X	
CHAPTER		
I. INTRODUCTION <i>Clostridioides difficile</i> <i>C. difficile</i> induced gastrointestinal inflammation The heme paradox: utilization and toxicity <i>C. difficile</i> and heme Conclusions	1 1 2 4 7 8	
II. HEME SENSING AND DETOXIFICATION BY HATRT CONTRIBUTES TO PATHOGENESIS DURING <i>CLOSTRIOIDES DIFFICILE</i> INFECTION Introduction Materials and methods Ethics statement Bacterial strains, growth conditions, and plasmids. RNA extraction and sequencing Quantitative RT-PCR Polyclonal antibody generation Immunoblotting analysis Protein expression and purification Absorption spectroscopy XylE reporter assays LC-MS heme quantification Mouse model of CDI. <i>C. difficile</i> toxin cytotoxicity determination	10 10 10 11 16 18 18 18 19 20 21 23 24	
C. algitude toxin cytotoxicity determination	24 25 25 25 25 25 29 rs 32 37 42	

HatT promotes pathogenicity in a mouse model of C. difficile infection	. 44
Discussion	. 46
III. CLOSTRIDIOIDES DIFFICILE HIJACKS HOST HEME FOR INCORPARTION	
INTO AN OXIDATIVE STRESS DEFENSE SYSTEM	. 50
Introduction	. 50
Materials and methods	. 51
Bacterial strains and plasmids	. 51
hsmR::CT and hsmA::CT strain generation	. 53
Complementation plasmids	. 53
Protein expression plasmids	. 54
Heme, paraquat, and antibiotic toxicity <i>C. difficile</i> growth assays	. 54 . 56
HsmR multiple sequence alignment	. 57
HsmA taxonomic distribution and physical clustering	. 57
Protein expression and purification	. 58
Solubilization of membrane fractions	. 59
Absorption spectroscopy	. 59
Heme and oxidative stress toxicity S. aureus growth assays	. 60
RNA-sequencing analysis	. 60
Relapse mouse model of CDI	. 61
Bacterial burden determination	. 61
Reactive oxygen species measurements	. 62
Results	. 62
Transcription of the <i>hsmRA</i> operon occurs rapidly in response to heme.	. 62
HsmR and HsmA reduce heme toxicity	. 65
HsmR and HsmA coordinate to reduce heme toxicity through	
sequestration	. 67
HSmR is a transcriptional activator of the <i>hsmRA</i> operon	. 73
HsmA employs exogenous heme to confer resistance to oxidative stress and antibiotics	. 76
HsmR and HsmA promote resistance to vancomycin during CDI	. 81
Discussion	. 88
IV SUMMARY AND FUTURE DIRECTIONS	03
Heme sensing utilization and detayification in <i>C</i> difficile	. 95
Defining anaerobic hame toxicity in <i>C</i> difficile	. 90
Structural and mechanistic investigation of HatRT and HsmRA	. 97
Further elucidation of the contribution of HatRT and HsmRA to <i>C. difficile</i>	· 90
patnogenicity	. 99
REFERENCES	103
APPENDIX	
A. Tables associated with chapter II	119
B. Tables associated with chapter III	133

LIST OF TABLES

Table	Page
1. Bacterial strains and plasmids used in chapter II	14
2. Oligonucleotides used in chapter II	
3. Bacterial strains and plasmids used in chapter III	
4. Oligonucleotides used in chapter III	

LIST OF FIGURES

Figu	Ire F	age
1.	C. difficile induced inflammation of the gastrointestinal epithelium	3
2.	Bacterial mechanisms to reduce heme toxicity	6
3.	Hemoglobin accumulates in the cecum during C. difficile infection	27
4. infec	Additional images of hemoglobin accumulation in the cecum during C. difficile ction	28
5.	C. difficile encodes machinery to detoxify heme	30
6.	The <i>hatRT</i> operon responds to and relieves heme toxicity	34
7.	Complementation of <i>hatR::CT</i> and <i>hatT::CT</i> heme sensitivity	36
8. bind	HatR transcriptional repression of the <i>hatRT</i> operon is released through direct he ling.	eme 39
9.	Purified recombinant HatR and HatR H99L	40
10.	Histidine residues within HatR that are not required for heme binding	41
11.	HatT reduces intracellular heme concentrations	43
12.	hatT::CT displays reduced pathogenicity in a mouse model of CDI	45
13.	hsmRA transcriptionally responds to and detoxifies heme	64
14.	Heme sensitivity in WT, hsmR::CT, hsmA::CT, and complemented strains	66
15. sequ	HsmR binds and senses heme and HsmA reduces heme toxicity through stration	69
16.	Purified recombinant HsmR and HsmR H50A	71
17. bind	Conserved histidine residues within HsmR that are not required for heme ling.	72
18.	HsmR acts as an activator of the <i>hsmRA</i> operon	74
19.	The regulon of HsmR is limited to the <i>hsmRA</i> operon	75

20.	<i>hsmR::CT</i> and <i>hsmA::CT</i> are sensitive to paraquat in the presence of heme	78
21.	HsmA reduces oxidative stress	79
22.	HsmA is not involved in protection against hydrogen peroxide	80
23. during	The <i>hsmRA</i> operon decreases sensitivity to vancomycin in the presence of heme g infection	83
24.	Protoporphyrin-IX does not rescue vancomycin toxicity	84
25.	HsmRA decreases sensitivity to metronidazole in the presence of heme	85
26.	HsmA is conserved among multiple bacterial species	87
27. HtrA	Physical clustering of genes encoding HsmA and the heme efflux proteins B	91
28.	Heme sensing, utilization, and detoxification in C. difficile	96

LIST OF ABBREVIATIONS

BHIS	Brain-heart-infusion broth supplemented with yeast extract	
CDI	Clostridioides difficile infection	
CDMM	C. difficile minimal media	
CFU	Colony forming units	
DHR-123	Dihydrorhodamine 123	
H&E	Hematoxylin and eosin	
HatR	Heme activated transporter regulator	
HatT	Heme activated transporter	
HrtAB	Heme-regulated transporter	
НО	Heme oxygenase	
HssRS	Heme sensing system regulator and sensor	
IPTG	Isopropyl-1-thiol-D-galactopyranoside	
Isd	Iron-regulated surface determinant	
Kat	Catalase	
LB	Lysogeny broth	
LC-MS	Liquid chromatography-mass spectrometry	
MALDI IMS	Matrix-assisted laser desorption ionization imaging mass	
	spectrometry	
OD	Optical density	
PBS	Phosphate buffer saline	
PPIX	Protoporphyrin IX	

qRT-PCR	Quantitative reverse transcription polymerase chain	
	reaction	
R20291	C. difficile R20291	
RNS	Reactive nitrogen species	
ROS	Reactive oxygen species	
RPKM	Reads per kilobase per million mapped reads	
rRNA	Ribosomal RNA	
RNA-seq	RNA sequencing	
SOD	Superoxide dismutase	
TBS	Tris-buffered saline	
TCCFA	Taurocholate cycloserine cefoxitin fructose agar	
TcdA	Clostridioides difficile toxin A	
TcdB	Clostridioides difficile toxin B	
TFA	Trifluoracetic acid	
TSA	Tryptic soy agar	
TSB	Tryptic soy broth	
WT	Wild-type	

CHAPTER I

INTRODUCTION

Clostridioides difficile

Clostridioides difficile (formerly Clostridium difficile) is a Gram-positive, spore forming obligate anaerobe that is an urgent threat to public health as it is the leading cause of nosocomial diarrhea in the United States with half a million infections resulting in 29,000 deaths per year [1]. In healthy individuals, the gastrointestinal microbiome provides colonization resistance against C. difficile infection (CDI) [2]. Ingestion of C. difficile spores following perturbation of the microbiome, commonly due to antibiotic therapy in a healthcare setting, results in germination into vegetative cells in the small intestine after sensing primary bile acids, such as taurocholate, and the amino acid glycine [2]. Vegetative C. difficile colonizes the colon, causing a wide range of diseases that vary from infectious diarrhea to pseudomembranous colitis [3]. However, in some cases the pathogen is cleared or asymptomatically carried [3]. The symptoms of disease result from the production of two potent toxins, toxin A (TcdA) and toxin B (TcdB), which function as glycosyltransferases that inactivate specific Ras and Rho GTPases leading to the disruption of host cell function [4]. Throughout infection, C. difficile continues the production of spores perpetuating the spread of disease [2]. The initial treatment for CDI consists of an antibiotic regimen of vancomycin, metronidazole, or fidoxamicin [5]. For reasons that remain unknown, 1 in 5 patients will suffer from recurrence requiring further antibiotic treatment [5]. Patients with serious cases of multiple recurrence may benefit from a fecal microbiota transfer [6]. Through either treatment option, the gastrointestinal microbiome recovers and restores

colonization resistance against CDI. Despite the extensive knowledge of *C. difficile* virulence, little is known regarding how this bacterium survives at the host-pathogen interface during infection.

C. difficile induced gastrointestinal inflammation

TcdA and TcdB cause severe damage to intestinal epithelial cells [7]. The resulting loss of epithelial integrity results in disrupted tight junctions, inflammation, and increased oxygenation ensuing a hostile environment at the host-pathogen interface [7-9]. Additionally, the toxinmediated perforations in the intestinal epithelial layer lead to bleeding in the gut and subsequent translocation of erythrocytes into the gastrointestinal lumen [10]. Hemolysis due to pathophysiological stress occurs, resulting in the release of hemoglobin-bound heme and free heme at the site of infection (Figure 1) [11]. Furthermore, the toxins stimulate the production of proinflammatory cytokines and chemokines by resident immune cells and intoxicated epithelial cells initiating the recruitment of circulating innate and adaptive immune cells. Recruited neutrophils, a key characteristic of the clinical pathophysiology of CDI, as well as other immune cells, produce antimicrobial peptides, reactive oxygen species (ROS), and reactive nitrogen species (RNS) at the site of infection in an attempt to restrict the proliferation of *C. difficile* [4, 12]. Despite these stressors, *C. difficile* is able to survive and thrive in the inflamed colon and disease manifestations can progress leading ultimately to death [3].

Figure 1 *C. difficile* induced inflammation of the gastrointestinal epithelium. *C. difficile* infects the colon and produces TcdA and TcdB which damage intestinal epithelium cells leading to inflammation, loosing of tight junctions, and immune cell recruitment. Erythrocytes translocate into the gastrointestinal lumen and subsequently lyse releasing a high concentration of hemoglobin bound and free heme at the site of infection.

The heme paradox: utilization and toxicity

Heme, an iron-containing porphyrin, is the most abundant source of iron in the human body and functions as a redox active cofactor of a multitude of enzymes. The functions of these enzymes range from shuttling electrons in the electron transport chain and those involved in respiration to oxidative stress reduction [13, 14]. Many bacteria satisfy the need of heme through regulated biosynthesis, however some bacteria such as *Enterococcus faecalis* and *Lactococcus lactis* strictly utilize exogenous heme as these species do not contain complete heme biosynthetic pathways [14, 15]. Many invading pathogens have evolved heme acquisition mechanisms ranging from surface receptors to secreted proteins to utilize this rich metabolic resource [16-20]. Thus, heme is a sought-after host factor that can be used as a nutritional source and metabolic cofactor in the host environment.

Owing to its reactive nature, heme is toxic to bacteria at high concentrations through a variety of mechanisms, including generation of ROS through Fenton chemistry and damaging membrane proteins and lipids due to the hydrophobic structure of heme. [21-24]. However, a complete understanding of heme-mediated toxicity has not been defined, particularly when extended to toxicity in an anaerobic environment [23]. To defend against the stresses of heme-mediated damage, bacteria encode systems for heme sensing and detoxification [25-31]. In the Gram-positive pathogens *Staphylococcus aureus* and *Bacillus anthracis*, the heme stress response is controlled by the heme sensing two-component system, HssRS, which regulates transcription of the ABC transporter HrtAB to reduce heme toxicity through efflux [25, 26, 32]. Reducing intracellular heme levels through export is a conserved microbial strategy as heme efflux systems have also been identified in *Lactococcus lactis, Streptococcus agalactiae,* and *Neisseria gonorrhoeae* [27, 28, 33]. In each example, inactivation of heme detoxification machinery

increases heme sensitivity and modulates virulence [25-28, 33]. Additionally, the reduction of free heme through protein utilization or sequestration is a strategy employed primarily by Gramnegative pathogens [30, 31, 34]. While the proteins in the conserved HemS family identified in *Yersinia Pestis, Yersinia enterocolitica, Pseudomonas aeruginosa, Escherichia coli,* and *Shigella dysenteriae* contain a variety of heme storage, transfer, or utilization properties, the reduction of free heme protects against toxicity. A final mechanism of heme detoxification consists of cleaving the porphyrin ring to release the reactive iron center by catabolic heme oxygenases, such as IsdI and IsdG in *S. aureus* [35, 36]. The diverse mechanisms of heme detoxification underscore the evolutionary importance of maintaining heme homeostasis in order for human pathogens to cause disease (Figure 2).

Figure 2 Bacterial mechanisms to reduce heme toxicity. Heme toxicity is alleviated through removal of heme through efflux, sequestration or utilization by heme binding proteins, or degrading heme to the cleaved porphyrin and free iron.

C. difficile and heme

The ability of *C. difficile* to utilize heme has not been defined. *C. difficile* lacks a complete heme biosynthesis pathway, specifically the enzymes required to produce the porphyrin precursor δ -aminolevulinic acid and the iron-inserting enzyme ferrochelatase [20]. However, *C. difficile* contains the biosynthetic enzymes for siroheme and a cobalt containing tetrapyrrole [37, 38]. While a recent study identified an oxygen independent heme degrading enzyme in *E. coli, C. difficile* does not appear to be able to degrade heme as it cannot use heme as a sole iron source [39]. Additionally, *C. difficile* does not respire and no enzymes that require heme as a cofactor such as catalase or other proteins involved in protection against oxidative stress have been identified. These data suggest *C. difficile* either contains evolutionary distinct heme utilization proteins or has evolved without the requirement for heme to survive.

Toxin-mediated release of heme from the gastrointestinal lumen may reach lethal concentrations at the site of CDI. Clostridial species are sensitive to heme toxicity in anaerobic environments despite the mechanism of toxicity remaining undefined [23]. It is also unknown if heme is toxic to *C. difficile* or if this bacterium encounters heme toxicity during infection. Notably, *C. difficile* does not contain orthologs of known heme detoxification systems. The inflamed gastrointestinal tract is a complex environment and *C. difficile* occupies different metabolic niches during infection [40]. This implies that this pathogen may have not evolved molecular mechanisms to reduce heme toxicity, rather it modifies its pathogenesis or physical location during infection to avoid areas of concentrated heme. Ultimately, an understanding of the interplay between *C. difficile* and heme at the host-pathogen interface is severely lacking.

Conclusions

C. difficile toxin-mediated inflammation of the gastrointestinal tract leads to a plethora of stressors that this bacterium must mitigate to maintain full pathogenicity [9]. My dissertation aims to reveal the threat of heme toxicity to C. difficile during infection and the mechanisms this pathogen utilizes to survive the harsh environment of the host. The overarching hypothesis of my work states that C. difficile encodes mechanisms to sense and persist in high heme concentrations at the site of infection to achieve full virulence. In the subsequent chapters, I visualize a high concentration of hemoglobin in the infected cecum of a mouse and therefore heme at the hostpathogen interface. I discover that heme is toxic to C. difficile and this bacterium can adapt to heme toxicity if pretreated with a low concentration of heme. I identify and name the heme activated transporter (*hatRT*) operon that encodes a molecular mechanism to sense and detoxify intracellular concentrations of heme through efflux. Strains that lack the HatT transporter have a reduction in pathogenicity in a toxin independent manner. I further identify and name the heme sensing membrane protein (hsmRA) operon that encodes proteins that detoxify heme through sequestration and utilize the bound heme to function as a shield against redox active molecules produced by the host. I reveal the complete transcriptional response in C. difficile to a brief exposure of heme to be limited to the *hatRT* and *hsmRA* operons. Strains lacking HsmR or HsmA displayed increased sensitivity to vancomycin and a delay in recovery in a relapse mouse model of infection. Collectively, the results herein describe two mechanisms of heme detoxification and utilization employed by C. difficile to survive and cause full disease in the host. These findings set the stage for the development of therapeutic interventions to target these bacterial-specific systems.

A version of the following section (*Chapter II*, HEME SENSING AND DETOXIFICATION BY HATRT CONTRIBUTES TO PATHOGENESIS DURING *CLOSTRIDIOIDES DIFFICLE* INFECTION) was originally published in *PLoS Pathogens* (December 2018).

Knippel, R. J.: Zackular, Z. P.: Moore, J. L.: Celis, A. I.: Weiss, A.: Washington, M. K.: DuBois,J. L.: Skaar, E. P. Heme Sensing and Detoxification by HatRT Contributes to Pathogenesisduring *Clostridium difficile* Infection. *PLoS Pathogens* 2018, *14*, *12*, e1007486.

doi: 10.1371/journal.ppat.1007486

CHAPTER II

HEME SENSING AND DETOXIFICATION BY HATRT CONTRIBUTES TO PATHOGENESIS DURING *CLOSTRIDIOIDES DIFFICLE* INFECTION

Introduction

The overall goal of this chapter was to investigate the occurrence of heme exposure to *C*. *difficile* within the gastrointestinal lumen during infection. Here, I visualize increased abundance of hemoglobin in the gastrointestinal lumen as a result of CDI using imaging mass spectrometry. A heme-inducible operon was identified that contains a TetR family transcriptional regulator and major-facilitator superfamily transporter. I have named these gene products HatRT for <u>heme</u> activated transporter (R=regulator, T=transporter). The transcriptional regulator HatR responds to intracellular heme concentrations through binding of heme leading to the de-repression and increased transcription of *hatRT*. Lack of the HatT transporter results in increased intracellular heme concentrations and a decrease in pathogenicity in a murine model of infection. Taken together, these results describe a mechanism by which *C. difficile* detoxifies heme and establishes a requirement for heme sensing and detoxification for full virulence during *C. difficile* infection.

Materials and methods

Ethics statement

All animal experiments under protocol M1700053 were reviewed and approved by the Institutional Animal Care and Use Committee of Vanderbilt University. Procedures were performed according to the institutional policies, Animal Welfare Act, NIH guidelines, and American Veterinary Medical Association guidelines on euthanasia.

Bacterial strains, growth conditions, and plasmids

Strains used in this study are listed in Table 1. *C. difficile* strains were grown at 37 °C in an anaerobic chamber (85% nitrogen, 10% hydrogen, 5% carbon dioxide, Coy Lab Products) in brain-heart-infusion broth (BD Life Sciences) supplemented with 0.5% yeast extract (BD Life Sciences) and 0.1% cysteine (Sigma-Aldrich) (BHIS) or in *C. difficile* minimal media (CDMM) described previously [41]. *Escherichia coli* strains were grown in lysogeny broth (LB) or agar (LBA), supplemented with 50 µg/mL kanamycin or 50 µg/mL carbenicillin when necessary [41]. *Bacillus subtilis* strains were grown on LBA or in BHI broth supplemented with 5 µg/mL tetracycline or 2.5 µg/mL chloramphenicol. All antibiotics were purchased from Sigma-Aldrich.

hatR::CT and hatT::CT strain generation. Gene inactivations were achieved using the ClosTron system as described previously [42]. Briefly, gBlocks containing specific modifications for insertion TargeTronics into the genome were generated using the algorithm (http://www.targetrons.com) and synthesized by Integrated DNA Technologies. The gBlocks were cloned into pCR-Blunt vector using the Zero Blunt PCR cloning kit (ThermoFisher Scientific) followed by restriction digest with BsrgI and HindIII (NEB) and ligation (NEB T4 ligase) into pJS107. Plasmids were transformed into the recA⁺ E. coli MG1655 through a standard heat shock protocol followed by transformation into B. subtilis JH2 using an established method [42]. B. subtilis strains containing the pJS107 hatR or pJS107 hatT plasmids were mated with C. difficile R20291 overnight at 37 °C by plating and mixing together 100 µL of each strain onto a BHIS plate in the anaerobic chamber. Plates were scraped and transferred into 2 mL of BHIS prior to plating

200 μ L onto BHIS plates containing 20 μ g/mL thiamphenicol and 50 μ g/mL kanamycin (BHIS_{thiamp20kan50}). Colonies from these plates were patched onto new BHIS_{thiamp20kan50} and BHIS plates containing 5 μ g/mL tetracycline (BHIS_{tet5}). Patched colonies that were tetracycline sensitive were patched again onto new BHIS_{thiamp20kan50} and BHIS_{tet5} plates. Colonies that remained tetracycline sensitive were streaked onto BHIS plates containing 20 μ g/mL lincomycin (BHIS_{linc20}). Inactivation of the *hatR* or *hatT* gene was confirmed by performing PCR to identify a 1.5 kbp shift in gene size using gDNA extracted as previously described on colonies that were lincomycin resistant [42].

xylE reporter and complementation plasmids. Reporter and complementation plasmids (Table 1) were created by GenScript using the pJS116 plasmid as a backbone for the synthesized intergenic region (236 bp) of *hatR* fused to the *xylE* reporter gene, the intergenic and full coding region of *hatR*, and intergenic region of *hatR* fused to the full coding region of *hatT*. *C. difficile* strains were transformed as described above with the removal of the lincomycin selection and were maintained on BHIS_{thiamp20} to ensure plasmid retention.

Protein expression plasmids. Protein expression plasmids for HatR were generated by amplifying *hatR* flanked by BamHI and XhoI and cloning into the multiple cloning site of pLM302 after restriction digest. Point mutant generation in pLM302_*hatR* was performed with NEB Q5 Site Directed Mutagenesis kit according to the manufacturer's instructions, using the primers listed in Table 2. Mutations to Ala or Leu were governed by the surrounding protein motifs and retention of spatial arrangement.

Heme toxicity growth assays. Freshly streaked bacterial colonies were used to inoculate 5 mL of BHIS or BHIS_{thiamp20} and grown for 16 h at 37 °C. Cultures were subcultured 1:50 into fresh BHIS or BHIS_{thiamp20} and grown for 6 h at 37 °C prior to 1:50 inoculation into CDMM or CDMM_{thiamp20}

containing heme at the indicated concentrations. All growth assays were performed in a 96-well plate in 200 μ L of media. Optical density at 600 nm (OD₆₀₀) served as measurement of growth and was measured every 30 min for the indicated total time in an EpochII microplate reader (BioTek).

Bacterial Strain or plasmid	Relevant Feature or	Reference
-	Genotype	
Clostridioides difficile		[43]
R20291		
Clostridioides difficile	Intron inserted into <i>hatR</i>	This chapter
Clostridioides difficile	Intron inserted into hatT	This chapter
hatT::CT		-
Bacillus subtilis JH BS2	Carries Tn196	[42]
<i>Escherichia coli</i> DH5α		[44]
Escherichia coli MG1655	RecA+	[45]
Escherichia coli BL21(DE3)		[46]
pJS107	ClosTron plasmid	[42]
pJS107_hatR	ClosTron plasmid with intron	This chapter
	targeted to <i>hatR</i>	
pJS107_hatT	ClosTron plasmid with intron	This chapter
	targeted to <i>hatT</i>	
pJS116	Stable C. difficile plasmid	[42]
pJS116_phatR-hatR	<i>hatR::CT</i> complementation	This chapter
	plasmid	
pJS116_phatR-hatT	<i>hatT::CT</i> complementation	This chapter
	plasmid	
pJS116_phatR-xylE	XylE reporter gene driven by	This chapter
	the promoter of <i>hatR</i>	
pLM302	Protein expression plasmid	Center for Structural Biology,
		Vanderbilt University
pLM302_hatR	HatR expression plasmid	This study
pLM302_hatR-H99L	HatR-H99L expression	This study
	plasmid	

Table 1 Bacterial strains and plasmids used in chapter II.

Name	Sequence (5' – 3')	Description
qRT_hatR_F	ggaaaatagctcaaaggtgtgg	qRT-PCR forward primer for <i>hatR</i>
qRT_ <i>hatR</i> _R	cgccttatcaataaatcccattc	qRT-PCR reverse primer for <i>hatR</i>
qRT_hatT_F	ttggaaagccctcaactcc	qRT-PCR forward primer for <i>hatT</i>
qRT_ <i>hatT</i> _R	ttttgccatttcagggtctg	qRT-PCR reverse primer for <i>hatT</i>
qRT_ <i>rpoB</i> _F	tgctgttgaaatggttcctg	qRT-PCR housekeeping gene forward primer
qRT_ <i>rpoB</i> _R	cggttggcatcatcattttc	qRT-PCR housekeeping gene reverse primer
R20291_ <i>hatR</i> _F	aggtgtggtataagtgcaggt	Forward primer to check for intron insertion into <i>hatR</i>
R20291_ <i>hatR</i> _R	agctgttcatgaaagtcgtc	Reverse primer to check for intron insertion into <i>hatR</i>
R20291_ <i>hatT</i> _F	gtggtgtttaccttgaatcataat	Forward primer to check for intron insertion into <i>hatT</i>
R20291_ <i>hatT</i> _R	cttgaacctaaaatattggcaatacc	Reverse primer to check for intron insertion into <i>hatT</i>
<i>hatR</i> _BamHI_F	ggggatccgggatgccaaagattttagaaaatg	Forward primer for cloning <i>hatR</i> into pLM302
hatR_XhoI_R	gggctcgaggggttaatgtattaatttttcaata	Reverse primer for cloning <i>hatR</i> into pLM302
hatR_H99L_F	gaaattttataaacaaagttcttaatatccaatacaatg	Forward primer for H99L point mutation in <i>hatR</i>
hatR_H99L_R	cattgtattggatattaagaactttgtttataaaatttc	Reverse primer for H99L point mutation in <i>hatR</i>

Table 2 Oligonucleotides used in chapter II.

RNA extraction and sequencing

C. difficile were grown anaerobically in triplicate in CDMM in 0 or 50 µM heme. Hemin (Sigma) was solubilized in 0.1 M NaOH. The cultures were grown at 37 °C to an OD₆₀₀ of 0.3 abs. Upon reaching this density, a 1:1 solution of acetone:ethanol was added to an equal volume of the culture. Samples were stored at -80 °C until used for RNA extraction. Samples were thawed on ice, pelleted, and resuspended in 750 µL of LETS buffer (1 M LiCl, 0.5 M EDTA, 1 M Tris pH7.4). Cells were transferred to tubes containing lysing matrix B beads (MP Biomedicals) and lysed by a FastPrep-24 (MP Biomedicals) bead beater for 45 s at 6 m/s. Lysed samples were heated for 5 min at 55 °C and pelleted by centrifugation for 10 min. The supernatant was transferred to a fresh tube and 1 mL TRIzol (Thermo Scientific) was added. Chloroform (200 µL) was added to each sample and vortexed prior to separation of the aqueous and organic layers by centrifugation for 15 min. The aqueous (upper) layer was transferred to a fresh tube and the RNA was precipitated through the addition of 1 mL isopropyl alcohol. Samples were incubated for 10 min and RNA was pelleted by centrifugation for 10 min. Supernatant was removed and the RNA pellet was washed with 200 µL of 70% ethanol. Samples were air dried for 1 min, then resuspended in 100 µL RNase free water. DNA contamination was removed through the addition of 8 µL RQ1 DNase, 12 µL 10x RQ1 buffer, and 2 µL RNase inhibitor (Promega) to the purified RNA. Samples were DNase treated for 2 h and purified using the RNeasy miniprep RNA cleanup kit (Qiagen). RNA concentration was determined using the Synergy 2 with Gen 5 software (BioTek).

RNA-seq library preparation and sequencing. RNA-seq library construction and sequencing was performed by HudsonAlpha. Concentration was determined using the Quant-iT RiboGreen RNA assay (Thermo Scientific) and integrity was visualized using an RNA 6000 nano chip (Agilent) on an Agilent 2100 Bioanalyzer (Applied Biosystems). RNA was normalized to 500 ng of total RNA

for each sample and the ribosomal RNA (rRNA) was removed using Ribo-Zero rRNA Removal Kit (Illumina). Directly after rRNA removal, the RNA was fragmented and primed for first strand synthesis using the NEBNext First Strand synthesis module (New England BioLabs Inc.) followed by second strand synthesis using NEBNext Ultra Directional Second Strand synthesis kit. Library preparation was achieved using NEBNext DNA Library Prep Master Mix set for Illumina with minor modifications. PolyA addition and custom adapter ligation was performed following end – repair. Post-ligated samples were individually barcoded with unique in-house Genomic Services Lab primers and amplified through 12 cycles of PCR. Library quantity was assessed by Qubit 2.0 Fluorometer (Invitrogen), and quality was determined using a DNA High Sense chip on a Caliper Gx (Perkin Elmer). Final quantification of the complete libraries for sequencing applications was measured using the qPCR-based KAPA Biosystems Library Quantification kit (Kapa Biosystems, Inc.). Libraries were diluted to 12.5 nM and pooled equimolar prior to clustering. Paired-End sequencing was performed on an Illumina HiSeq2500 sequencer (Illumina, Inc.). Raw sequence data are deposited on the NCBI Sequence Read Archive.

Processing of RNA-seq reads. RNA-seq analysis was performed by HudsonAlpha utilizing their unique in-house pipeline. Briefly, quality control was performed on raw sequence data from each sample using FastQC (Babraham Bioinformatics). Curated raw reads were imported into the data analysis platform, Avadis NGS (Strand Scientifics) and mapped to the reference *C. difficile* R20291 genome. Aligned reads were filtered on various criteria to ensure the highest read quality. Replicate samples were grouped and quantification of transcript performed using Trimmed Means of M-values as the normalization method. Differential expression of genes was calculated using fold change (using default cut-off $\geq \pm 2.0$) observed between conditions, and the p-value of the differentially expressed gene list was estimated by Z-score calculations using determined by

Benjamini Hochberg FDR correction of 0.05 [47]. The genome alignment figure (Fig 2A) was created using Circos with a max of 30,000 RPKM displayed.

Quantitative RT-PCR

RNA was extracted as described above and 2 μ g was reverse transcribed by M-MLV reverse transcriptase (Fisher Scientific) in the presence of RNase inhibitor (Promega) and random hexamers (Promega). Reactions lacking the reverse transcriptase were used to control for DNA contamination. Newly created cDNA was diluted 1:100 and was used in qRT-PCR using iQ SYBR green supermix (BIO-RAD) utilizing the primer pairs in Table 2. Amplification was achieved using a 3-step melt cure program on a CFX96 qPCR cycler (BIO-RAD). Transcript abundance was calculated using the $\Delta\Delta$ CT method normalized by the *rpoB* gene.

Polyclonal antibody generation

HatR was purified as described below and fresh protein was submitted to the Vanderbilt Antibody and Protein Resource core for generation of a rabbit polyclonal antibody against HatR. This antibody was affinity purified for increased HatR specificity. The α -HatR antibody was tested for specificity and reactivity in immunoblot analysis of purified HatR protein in addition to whole cell lysates from heme treated WT and *hatR::CT* strains.

Immunoblotting analysis

WT or *hatR::CT* strains were grown in 5 mL of BHIS overnight at 37 °C. Cultures were subcultured into fresh BHIS containing 0, 1, 5, 10 or 25 μ M heme and grown for 6 h. Cells were pelleted by centrifugation (4000 x g for 10 min), supernatant was removed and were resuspended

in 1 mL of 1 X PBS containing 2.5 mg/mL lysozyme (ThermoFisher Scientific). Samples were incubated for 1 h at 37 °C, pelleted by centrifugation (20,000 x g for 5 min), then resuspended in 1 X PBS followed by sonication using Ultrasonic dismembrator (ThermoFisher Scientific) to lyse the cells. Debris from the lysed cells was pelleted by centrifugation (20,000 x g for 5 min). Supernatant was used in immunoblotting analysis using rabbit polyclonal anti-HatR antibodies as previously described [48]. Detection was performed using a goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody with an Alexa Fluor 680 and imaged using a ChemiDoc MP imaging system (Bio-Rad).

Protein expression and purification

E. coli BL21 (DE3) pREL containing the pML302_*hatR* plasmids were grown overnight in 5 mL of LB_{kan50} at 37 °C. Cells were subcultured into Terrific broth (ThermoFisher Scientific) containing 50 μ g/mL kanamycin and grown to the mid-logarithmic phase of growth (0.5 abs measured at 600 nm) at 37 °C prior the addition of 1 mM isopropyl-1-thiol-D-galactopyranoside (IPTG). Growth was continued at 16 °C for 16 h. Cells were harvested by centrifugation (6000 x *g* for 10 min) and resuspended in 1 X PBS. Cells were lysed by passage through an EmulsiFlex homogenizer (Avestin) three times at 20,000 lb/in². The insoluble debris was removed by centrifugation at 40,000 x *g* for 1 h and the supernatant was filtered using a 0.22- μ M-pore sizer filter. Filtered lysate was added to amylose resin (New England Biolabs Inc.) and allowed to bind at 4 °C for 30 min prior to transfer to a gravity column. The column was washed with four column volumes of wash buffer (20 mM Tris-HCl, 500 mM NaCl, 1 mM EDTA, pH 7.5) three times followed by 2 column volumes of elution buffer (20 mM Tris-HCl, 500 mM NaCl, 1 mM EDTA, 10 mM maltose, pH 7.5) twice. The maltose-binding protein tag was cleaved using the Pierce HRV 3C Protease

Solution kit (ThermoFisher) by following the manufacturer's instructions. Cleaved tag and protease was removed by the addition of HisPur Cobalt Resin (ThermoFisher) and allowed to bind at 4 °C for 1 h with rotation. Beads were pelleted by centrifugation (2000 x g for 2 min) and the supernatant containing tagless protein was removed.

Absorption spectroscopy

Heme binding by HatR were determined by measuring the absorption spectrum of increasing amounts of hemin $(0 - 25 \,\mu\text{M})$ after addition to a cuvette containing 10 μ M recombinant HatR in 1 mL of Tris-buffered saline (TBS) and a reference standard containing 1 mL TBS on a Varian Cary 50BIO. Samples were mixed and allowed to incubate at room temperature in the dark for 5 min prior to collecting the spectrum between 300 – 800 nm with 10 nm increments. Binding ratio of heme to HatR was determined by plotting the change in absorbance at 413 nm between the reference standard and the HatR sample. A curve fit and ratio was obtained by performing the one-site binding model non-linear regression function on Graph Pad Prism 6.

XylE reporter assays

Bacteria harboring the reporter plasmid pJS116_*phatR-xylE* were grown overnight in BHIS_{thiamp20} and subcultured 1:50 into 10 mLs of fresh BHIS_{thiamp20} containing 0 or 10 μ M heme. Cultures were grown for 6 h at 37 °C prior to cytoplasmic fraction preparation and analysis of XylE activity as described previously [26]. Absolute XylE activities were determined spectrophotometrically by measuring the formation of 2-hydroxymoconic acid from catechol for *C. difficile* reporters due to lysozyme interference during protein quantification.

LC-MS heme quantification

Bacterial growth. C. difficile WT and *hatT::CT* strains were streaked onto BHIS and grown for 16 h at 37° C. Single colonies were used to inoculate 5 mL cultures in BHIS and grown for 16 h at 37° C. Seven hundred fifty μ L of these cultures were subcultured into 75 mL of BHIS and BHIS + 25 μ M heme in an Erlenmeyer flask and grown for 16 h at 37° C. Total CFU were determined by serial dilution and plating onto BHIS for enumeration, and cells were collected by centrifugation and flash frozen in liquid nitrogen before storage at -80 °C.

Preparation of standard curves. A 2 mM stock solution of a heme standard was prepared in DMSO. This stock was then diluted to make standards from 0.25-6 μ M in acetonitrile + 0.1% trifluoracetic acid (TFA).

Extraction of heme. C. difficile cell pellets were thawed on ice. 1 mL of 1M HCI:DMSO (1:1, v/v) was added and samples were vortexed. Samples were transferred to 2 mL FastPrep lysis B matrix tubes and the cells lysed by bead beating in a FastPep-24 5G instrument (6.0 m/sec, 40 s total, 2X). The cell lysate was centrifuged to pellet debris (10,000 rpm, 5 min, 4°C). Supernatants were collected and kept in the dark. The pellets were resuspended in 1 mL of 1M HCI:DMSO (1:1, v/v), vortexed vigorously, and centrifuged again as above. The supernatants were pooled and the resuspension/centrifugation cycle repeated one more time. The pooled supernatants were filtered using a 0.22 µm Millex-GS syringe filter (MF-Millipore) and subsequently diluted to 25 mL with ddH2O. Using a Sep-Pak Vac 3cc tC18 cartridge (Waters 036815), the extracts were concentrated and subsequently eluted with 2 mL of acetonitrile + 0.1% TFA then 2 mL of methanol. Extracted porphyrins were dried under N2 (g) and resuspended in 100 µL of acetonitrile + 0.1% TFA. All samples were immediately dispensed into vials for mass spec analysis.

LC-MS analysis. Samples were prepared by adding 25 μ L of ultrapure water to 75 μ L solutions of analytes in acetonitrile + 0.1% TFA. A PLRP-S column (Agilent) was equilibrated to an 85:15 ratio of solvent A (ultrapure water + 0.1% formic acid) to solvent B (acetonitrile + 0.1% formic acid). Liquid chromatography separations were achieved by linear gradient elution, transitioning from 15% to 95% solvent B over 6 min followed by a 2 min hold at 95% B. The column was re-equilibrated to 15% solvent B for 2 min in between injections of the same sample (two technical replicates run per sample, 2 μ L injection volume, 600 μ L/min flow rate, 50°C). Two blank runs were implemented between samples to ensure against column holdover of analytes. Electrospray ionization mass spectrometry analysis was carried out in positive mode with a capillary voltage of 2Hz (Agilent 6538 UHD Q-TOF).

Quantification of standards and analytes from LC-MS data. Data were analyzed using MassHunter Qualitative Analysis Software and MZmine 2 [49]. Extracted ion chromatograms (EICs) were derived for each individual standard on the basis of its mass per charge (m/z) in positive ion mode, which is equivalent to the exact mass of its positive ion $(M+H)^+$. Values for m/z were determined empirically for all standards. Peaks associated with each analyte were integrated. For the generation of standard curves, integrated peak areas were plotted versus concentration. Linear regression analysis (Kaleidagraph) was used to determine the correlation coefficient between integrated peak area and heme concentration (slope of standard curve, mporph). For the quantification of analytes from cells, values for the integrated peak intensities (measured in units of ion counts) were converted to units of concentration (μ mol/L injected) via: counts x (mporph)⁻¹. The concentration of each analyte in the injected volumes [A] was subsequently converted to units of nmol analyte per CFU in sample as: [A] x (volume used to resuspend dried sample) x

(CFUs in analyzed cell pellet)⁻¹. Reported values are averages of 3 biological samples and two technical replicates.

Mouse model of CDI

Adult (8 – 12 week old) age-matched male C57Bl/6 (Jackson Laboratories) were housed in groups of five and maintained at Vanderbilt University Medical Center Animal Facilities. Mice were subjected to a previously described model of CDI [50, 51]. Briefly, mice were treated with 0.5 mg/mL cefoperazone in their drinking water for 5 days. Mice were given a 2 day recovery period prior to administration of 10⁵ spores of WT, *hatR::CT*, or *hatT::CT C. difficile* strains in PBS via oral gavage. Prior to infection, mice were confirmed to be *C. difficile* negative. After infection, mice were monitored for signs of disease, including diarrhea and weight loss. Mice that displayed severe disease or weight loss greater than 20% were humanely euthanized.

Bacterial burden determination. C. difficile CFUs were quantified daily from fecal samples. Samples were diluted and homogenized in PBS and serial plated onto taurocholate cycloserine cefoxitin fructose agar (TCCFA) for enumeration as CFU per gram of feces.

Histological analysis. On the final day of infection and necropsy, ceca were harvested, fixed in a 10% formalin solution and embedded in paraffin. Cut sections were stained with hematoxylin and eosin (H&E). Stained sections were assigned a disease score in a blinded fashion by a pathologist based on previously established criteria [52]. Histological scores are presented as a sum of three independent criteria: epithelial damage, edema, and inflammation.

Imaging mass spectrometry. MALDI IMS was performed as previously described [53, 54]. Briefly, ceca were harvested after necropsy and flash frozen in liquid nitrogen in a 25% Optimal Cutting Temperature compound. Sections were sequentially washed to remove interfering lipids, salts, and

OCT using 70% ethanol for thirty seconds, 100% ethanol for thirty seconds, 6:2:1 ethanol:chloroform:acetic acid for 2 minutes, 70% ethanol for thirty seconds, and 100% ethanol for thirty seconds. Slides were dried in a desiccator before MALDI matrix was applied. Fifteen mg/mL 2,5-dihydroxyacetophenone was prepared in 90% acetonitrile with 0.2% TFA and crystals were dissolved by sonication for ten minutes. Matrix was applied six times using a TM-Sprayer (HTX Imaging) operated at 1100 mm/min and at a flow rate of 0.2 mL/min using 90% acetonitrile as a pushing solvent. The spray nozzle was heated to 80 °C with the track spacing set to 2 mm. Coating was rehydrated using 1 mL of 50 mM acetic acid in a sealed hydration chamber for 3 min at 85 °C. IMS was performed using a rapifleX MALDI Tissuetyper (Bruker Daltonics) operated in linear positive ion mode. The laser was operated at 10,000 hertz in single mode and pixels were set to be 50 by 50 µm. A total of five-hundred laser shots were captured per pixel with fifty laser shots at each position within the pixel. Data were processed using fleXimaging version 4.1. Data were further analyzed using SCiLS Lab 2015b version 3.02.7774 (Bruker Daltonics). Spectra were normalized to total ion count and baseline subtracted using a top hat algorithm. The images display the ion map of the m/z value of 14,995 without denoising but with interpolation turned on.

C. difficile toxin cytotoxicity determination

Green African monkey kidney epithelial (Vero) cell-rounding cytotoxicity assays were performed as previously described [51]. Cells were grown to confluence in Dulbecco modified Eagle medium (Gibco Laboratories) with 1% penicillin-streptomycin (Gibco Laboratories) and 10% fetal bovine serum (Gibco Laboratories) prior to plating at a total cell density of 10⁵ cells per well in a 96-well plate. Fresh fecal samples were normalized to weight, diluted and homogenized in sterile PBS. Fecal debris was pelleted by centrifugation (13,000 g) and tenfold serial dilutions of supernatants were added to the wells of Vero cells. Complete cell-rounding for each dilution was assessed after overnight incubation at 37 °C with 5% CO₂. Confirmation of *C. difficile* toxin A and toxin B were achieved by neutralization of cell rounding with a combined antitoxin antisera (Techlab). Cell rounding cytotoxicity titers are presented as the log_{10} of the reciprocal value of the highest dilution with complete rounding of cells.

Statistical Analysis

All data analysis and statistical tests were performed in GraphPad Prism 8 software. Specific statistical tests, replicate numbers, calculated errors and other information for each experiment are reported in the figure legends.

Results

C. difficile infection increases hemoglobin abundance in the gastrointestinal lumen.

To identify host proteins that increase in abundance during *C. difficile* infection (CDI), I applied matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) to a murine model that induces susceptibility to infection through administration of cefoperazone (0.5 mg/mL) [50, 51, 53, 54]. Ceca of mice infected with *C. difficile* R20291 presented with high levels of epithelial damage, edema, and inflammation on day 4 of the infection (Figure 3A). This inflammatory response correlated with a high abundance of the alpha chain of hemoglobin at the sites of pathology and in the luminal space (Figure 3B and 4). In contrast, mouse ceca mock infected with PBS did not exhibit pathology (Figure 3A) and displayed a low abundance of hemoglobin alpha concentrated at the periphery of the intestinal epithelial villi (Figure 3B and 4).
These data demonstrate that CDI leads to high concentrations of hemoglobin at this host-pathogen interface, and considering each hemoglobin protein contains four molecules of heme, support a model whereby *C. difficile* experiences heme stress during infection.

Figure 3 Hemoglobin accumulates in the cecum during *C. difficile* infection. (A) Representative H&E images of mock-infected and *C. difficile* strain R20291 infected C57BL/6 mice. (B) Abundance of hemoglobin subunit alpha in serial sections of the same ceca determine by MALDI IMS. Each image is a representative of 5 independent ceca. Scale bars, 5 mm.

Figure 4 Additional images of hemoglobin accumulation in the cecum during C. difficile infection. (A) H&E images of *C. difficile* strain R20291 infected C57BL/6 mice. (B) Abundance of hemoglobin subunit alpha in serial sections of the same ceca determined by MALDI IMS. Scale bars, 5 mm. Each image pair is an independent cecum from a distinct mouse.

The transcriptional response of *C. difficile* to heme exposure.

Considering the high concentration of hemoglobin in the infected lumen and the reactive nature of heme, we investigated the sensitivity of *C. difficile* to heme toxicity [23]. When *C. difficile* was grown over time in increasing concentrations of heme $(0 - 200 \,\mu\text{M})$, a dose-dependent increase in toxicity was observed with a complete inhibition of growth at the highest concentration (Figure 5A). To determine if *C. difficile* can adapt to heme exposure, the growth of *C. difficile* cells pre-exposed to a low concentration of heme $(1 \,\mu\text{M})$ was measured following sub-culturing into media containing varying concentrations of heme $(0 - 200 \,\mu\text{M})$; Figure 5B). Heme pre-exposure corrected the growth defects of *C. difficile* cultures not pre-exposed to heme (Figure 5A–B), suggesting that *C. difficile* has an inducible mechanism for heme detoxification.

In order to identify the genes that encode proteins responsible for heme adaption, I performed an RNA-sequencing experiment comparing the total relative mRNA transcript abundance of early exponential phase ($OD_{600} = 0.3$) untreated cultures of *C. difficile* to cultures grown in 50 µM heme. Heme induced the transcription of 245 genes and decreased the transcription of 146 genes (Figure 5C, Appendix A Table 1 and 2). This dataset was curated by grouping significantly upregulated genes that could function as a mechanism of heme sensing and detoxification. Within this group an operon of two genes encoding a TetR family transcriptional regulator (CDR20291_1227) and a major facilitator super family (MFS) transporter (CDR20291_1226) were identified as candidates for further investigation (Figure 6A). These results demonstrate that *C. difficile* has heme responsive genes that may account for its ability to resist and adapt to heme toxicity.

Figure 5 *C. difficile* encodes machinery to detoxify heme. (A) Growth of *C. difficile* R20291 in CDMM containing increasing concentrations of heme. (B). Growth of overnight heme treated (1 μ M) *C. difficile* in CDMM containing the exact concentrations of heme as in A. For A and B, the data are the average of means from at least three independent experiments each in biological

triplicate with standard error of the mean shown. (C) RNA-sequencing analysis comparing RNA from heme treated (50 μ M, total transcript abundance shown in red peaks inside circle where dark red peaks are significantly changed genes) *C. difficile* to an untreated control (total transcript abundance shown in blue peaks middle circle where dark blue peaks are significantly changed genes). Fold change differences are shown in the circle between the control and heme treated samples with a 5-fold cut off depicted according to the indicated heap map. Outside two rims represent genes in the *C. difficile* R20291 genome (outside is coded in the forward direction, inside is coded in the reverse direction, orange denotes *hatRT* operon).

The *hatRT* operon increases expression in response to heme and confers heme resistance.

To confirm that CDR20291_1227 and CDR20291_1226 are heme responsive, cultures were grown in equimolar concentrations of NaOH (vehicle), protoporphyrin IX (porphyrin ring without iron), iron sulfate, or heme prior to harvesting RNA at the early exponential phase of growth ($OD_{600} = 0.3$). Quantitative reverse transcription PCR (qRT-PCR) was performed on cDNA generated from these samples using primers specific for the genes within this operon. Transcription of both genes were minimally increased in the samples treated with NaOH, protoporphyrin IX, and iron sulfate in contrast to a 2-3 log increase in transcript abundance of the heme treated samples compared to the untreated control (Figure 6B). Due to this considerable transcriptional response to heme, as well as data described below, we named CDR20291_1227 heme activated transporter regulator (*hatR*) and CDR20291_1226 heme activated transporter (*hatT*).

To investigate the heme responsive abundance of HatR, polyclonal antiserum was generated against recombinant HatR and immunoblot analyses were performed on whole cell lysates grown in increasing concentrations of heme. The increase in HatR protein abundance correlated with the increase in concentration of heme, further supporting the observation that *hatRT* is up-regulated upon heme exposure (Figure 6C). To demonstrate the specificity of this antisera, we generated a strain of *C. difficile* inactivated for *hatR* (*hatR::CT*) using the ClosTron system [55]. In this strain, HatR is no longer produced in response to heme (Fig 3C). The lack of *hatR* renders the bacteria more sensitive to heme toxicity, as growth over time in the presence of 50 μ M heme is delayed in the mutant compared to wild-type (WT, Figure 6D). A more significant growth delay is observed when *hatT* is inactivated (*hatT::CT*) using the ClosTron system and exposed to the same concentration of heme (Figure 6D). The growth of *hatR::CT* and *hatT::CT* strains are restored to WT levels by expressing *hatR* or *hatT*, respectively, *in trans* under the

control of the intergenic region upstream of *hatR* (Figure 7). Together these data suggest that HatR and HatT coordinate to sense, respond to, and alleviate heme toxicity.

Figure 6 The *hatRT* **operon responds to and relieves heme toxicity.** (A) Schematic of the *hatRT* operon. (B) *hatR* and *hatT* transcription determined by qRT-PCR. cDNA was reverse transcribed from RNA harvested from *C. difficile* R20291 grown in the presence of sodium hydroxide (NaOH, 500 μ M), protoporphyrin IX (PPIX, 50 μ M), iron sulfate (50 μ M) or heme (50 μ M). Transcription is graphed as the fold change relative to an untreated control. The data are a representative of three independent experiments each in biological triplicate with standard deviation shown. Statistical significance was determined using the multiple comparison one-way ANOVA test comparing the means of each group to one another * denotes *p* < 0.001 (C) Immunoblot for HatR from *C. difficile* WT and *hatR::CT* whole cell lysates grown in the presence of increasing concentrations of heme (0 – 25 μ M). Blots are representative of three independent experiments. (D) Growth of WT, *hatR::CT*, and *hatT::CT* strains in the presence or absence of heme (50 μ M). The data are a representative from three independent experiments each in biological triplicate with standard error of the mean.

Figure 7 Complementation of *hatR::CT* and *hatT::CT* heme sensitivity. Growth of *C. difficile* WT pJS116 (empty vector), *hatR::CT* pJS116, *hatR::CT* pJS116_*phatR-hatR*, *hatT::CT* pJS116, *and hatT::CT* pJS116_*phatR-hatT* strains in CDMM in the presence or absence of heme (50 μ M). The data are a representative from three independent experiments each in biological triplicate with standard error of the mean. μ M refers to concentration of heme.

HatR functions as a transcriptional repressor of the *hatRT* operon.

As most members of the TetR family of transcriptional regulators directly bind their effector molecules, I examined the ability of HatR to bind heme [56]. Recombinant HatR (10 μ M) was incubated with heme (0 – 25 μ M), resulting in the appearance of a Soret peak at 413 nm (Figure 8A), indicative of HatR-heme complex formation [57]. Differential absorption spectroscopy at 413 nm over a range of heme concentrations was used to determine that HatR binds heme at a 1:1 ratio using a single site binding model ($k_d = 9.2 \pm 1.8 \mu$ M; Figure 8A insert). To identify the residues responsible for heme binding by HatR, each histidine within HatR was individually mutated. Histidine residues were chosen for substitution due to histidines commonly serving as axial ligands that bind heme [27]. Recombinant proteins containing each individual histidine substitution were purified and heme binding was measured. Substitution of histidine 99 to leucine (H99L) was sufficient to abrogate heme binding (Figure 8B and 9). The substitutions of the remaining four histidines to alanine or leucine (H121A, H126L, H165A, and H180A; Figure 10) did not significantly alter heme binding. These data specify histidine 99 as a critical residue in the formation of the HatR-heme complex.

An examination into the regulation of the *hatRT* operon was performed by creating a plasmid containing a fusion of the intergenic region prior to *hatR* to the reporter gene *xylE*, and transforming this plasmid into WT *C. difficile* [32]. Exposure of this reporter strain to 10 μ M heme led to a significant increase in XylE activity as compared to an untreated control (Figure 8C), indicating that heme treatment induces the transcription of the *hatRT* operon in the WT strain. However, upon transformation of the reporter plasmid into the *hatR::CT* strain, there was no significant difference in XylE activity between the untreated or heme exposed samples (Figure 8C). Moreover, the level of XylE activity of the untreated *hatR::CT* strain was significantly higher

than the heme-exposed WT strain, suggesting constitutive expression of *xylE* in the absence of HatR. Taken together, these data suggest that HatR functions as a transcriptional repressor of the *hatRT* operon and that de-repression is achieved through the formation of a HatR-heme complex.

Figure 8 HatR transcriptional repression of the *hatRT* operon is released through direct heme binding. (A) Absorption spectra of heme binding to recombinant HatR. Increasing concentrations of heme (2.5 to 25 μ M) were added to 10 μ M protein. The spectrum corresponding to 25 μ M heme is shown as a dashed red line. HatR with increasing concentrations of heme are shown as gray lines. The inset displays change in absorbance at 413 nm for HatR bound to heme minus the corresponding heme alone peak. (B) Absorption spectra of 10 μ M heme binding to HatR and HatR H99L. (C) XylE catechol oxidase activity was measured in *C. difficile* WT and *hatR::CT* strains harboring a *hatR* promoter XylE reporter plasmid after growth in vehicle or 10 μ M heme. The data are an average from three independent experiments each in biological triplicate with standard deviation. Statistical significance was determined using the multiple comparison one-way ANOVA test with the Tukey correction for multiple comparisons comparing the means of each group to one another * denotes p < 0.001, n.s. denotes not significant.

Figure 9 Purified recombinant HatR and HatR H99L. Coomassie stained SDS-PAGE of purified recombinant HatR and HatR H99L. 1 = protein ladder. 2 = HatR (22 kDa). 3 = HatR H99L (22 kDa).

Figure 10 Histidine residues within HatR that are not required for heme binding. Histidine residues within HatR that are not required for heme binding. Absorption spectra of 10 μ M heme binding to 10 μ M HatR, HatR H121A (A), HatR H126L (B), HatR H165A (C), and H180A (D).

HatT reduces intracellular heme concentrations.

One strategy for microbial heme detoxification involves the reduction of intracellular heme concentrations through efflux [25-28, 33]. To investigate if heme efflux is responsible for HatT-dependent resistance to heme toxicity, I grew the WT and *hatT::CT* strains in the presence or absence of heme (25 μ M) for 16 h and measured intracellular heme concentrations utilizing LC-MS analysis. The WT strain treated with heme exhibited a two-log increase in intracellular heme levels when compared to untreated WT cells (Fig 5). In contrast, a more dramatic trend was observed in the *hatT::CT* strain, which exhibited a three-log increase in intracellular heme concentration when compared to the *hatT::CT* untreated culture (Figure 11). The intracellular heme sensitivity of the *MatT::CT* strain, suggest that the function of HatT is to reduce intracellular heme concentrations to relieve heme toxicity.

Figure 11 HatT reduces intracellular heme concentrations. WT and *hatT::CT* strains were grown to saturation in either BHIS or BHIS supplemented with 25 μ M heme and harvested. Cells were analyzed for their heme content by high resolution MS. Peak areas from extracted-ion chromatograms of heme that accrued above baseline were compared to a standard curve and used to obtain nmoles per CFU. The data are the average of a single experiment performed in biological triplicate with standard deviation. Statistical significance was determined using a multiple comparison one-way ANOVA test with the Tukey correction for multiple comparisons comparing the means of each group to one another. * denotes *p* < 0.0001.

HatT promotes pathogenicity in a mouse model of CDI.

The abundance of heme in the lumen during infection combined with the observed functions of HatR and HatT to sense and reduce heme concentrations, suggest that strains lacking these proteins may have reduced pathogenicity during CDI. To test this, mice were infected with WT, hatR::CT, or hatT::CT spores and disease was monitored for 4 days. All strains were able to fully colonize the mice as exhibited by $\sim 10^8$ colony-forming units (CFU) per gram of stool (Figure 12A). Mice infected with the *hatT::CT* strain lost significantly less weight than the mice infected with the WT or *hatR::CT* strains on days 3 and 4 of the infection (Figure 12B), indicating that the mice infected with the *hatT::CT* strain were partially protected despite similar colonization levels. Furthermore, cecal pathology was significantly reduced in mice infected with the *hatT::CT* strain compared to mice infected with WT or *hatR::CT* strains (Figure 12C). To determine whether the reduced virulence of the *hatT::CT* strain is due to a reduction in toxins TcdA or TcdB, we assessed toxin production in the WT, *hatR::CT*, and *hatT::CT* strains using a cell-rounding cytotoxicity assay. These data revealed toxin levels to be equivalent between all tested strains on day 4 of the infection (Figure 12D), suggesting that the reduced virulence of the hatT::CT strain in vivo is independent of C. difficile toxins. Taken together, these data suggest that the hatRT operon senses and detoxifies intracellular heme in C. difficile and is required for full pathogenicity during infection.

Figure 12 hatT::CT displays reduced pathogenicity in a mouse model of CDI. CFU analysis (A) and weights (B) of mice infected with C. difficile R20291 WT, hatR::CT, and hatT::CT strains with standard error on the mean (n = 10/group). (C) Blinded histology scoring of ceca and (D) C. difficile toxin titer per gram of feces was measured on day 4 of the infection. All of the data are represented as median or mean with standard error of the mean. Statistical significance was determined using the multiple comparison Kruskal-Wallis test with the Dunn's correction for multiple comparisons comparing the means of each group to one another. * denotes p < 0.05.

Discussion

C. difficile infection of the colon causes severe epithelial cell damage, inflammation, and edema, which leads to the hallmarks of C. difficile-colitis. Importantly, this damage and subsequent inflammatory response also creates a hostile environment for bacteria within the gut [2, 4, 7, 58]. Highly reactive heme molecules that can be toxic to bacteria are released into the lumen through erythrocyte lysis and necrotic epithelial cell death [8, 11]. Despite the hazard of heme toxicity, C. *difficile* thrives in the colon and survives in the presence of high heme levels. Prior to this work, the mechanism by which C. difficile resists heme toxicity were unknown. Herein, I visualized the high abundance of hemoglobin during infection, serving as a proxy for heme, in the murine ceca during CDI. I identified a molecular mechanism encoded by the hatRT operon to sense and detoxify heme in C. difficile. HatR functions as a transcriptional repressor of the hatRT operon and responds to heme concentrations through direct binding of heme. HatR-heme complexes derepress the hatRT operon, leading to the HatT-mediated reduction in intracellular heme concentrations, presumably through efflux. In support of these data, strains with inactivated hatR or hatT exhibited delayed growth in the presence of heme and the hatT::CT strain conferred reduced pathology in a toxin-independent manner in a mouse model of CDI.

While heme sensing and detoxification through efflux is a conserved strategy in multiple Gram-positive organisms, this report is the first to describe an obligate anaerobic pathogen containing such a system [26-28, 59]. TetR-family transcriptional regulators that bind heme have been identified, including HrtR in *Lactococcus lactis*, whereby HrtR regulates heme efflux through a system orthologous to HrtAB [27, 60]. However, HatR shares limited sequence homology (38% amino acid identity) with HrtR. Additionally, the heme binding motifs (single histidine versus two histidines) and the heme-complex disassociation constant (HatR $k_d = 9.2 \pm 1.8 \mu$ M, HrtR $k_d = 0.4$

 \pm 0.2 µM) differ between HatR and HrtR [27]. The significant overexpression of the *hatRT* operon in the presence of heme but not protoporphyrin IX or iron suggests the formation of the heme-HatR complex involves direct binding to the coordinated iron center of heme. The increased heme sensitivity in the *hatR::CT* strain despite the constitutive expression of *hatT*, suggests HatR may also function to reduce heme toxicity through sequestration. The eventual *in vitro* growth observed when the *hatT::CT* strain is exposed to high heme suggests the existence of other mechanisms of heme detoxification in *C. difficile* or the occurrence of suppressor mutations to relieve intracellular heme concentrations through a different transport system. A bioinformatics comparison of HatT with *S. aureus* HrtAB and the dual *S. agalactiae* efflux system PefAB/CD, suggests that these systems arose through convergent evolution as there is little homology between these transporters despite their important role in heme detoxification [28, 59].

The mechanisms of heme toxicity in bacteria are not completely understood. In an anaerobic environment, heme toxicity has been attributed to membrane disruption and DNA damage due to the hydrophobic structure of heme [22-24, 61]. Bilirubin, the terminal metabolite in heme catabolism in mammals is present in high concentrations in the gastrointestinal tract, and destabilizes the membrane of Gram-positive bacteria, suggesting that heme degradation products may also contribute to toxicity [62]. In *C. difficile*, heme enters the intracellular compartment through an unknown mechanism. It is also not known if *C. difficile* utilizes heme as a cofactor or metabolite. Bioinformatic analyses do not reveal heme degradation enzymes of the IsdG or HO enzyme families in *C. difficile* [35, 63, 64]. Additionally, it appears as if *C. difficile* cannot use heme as a sole iron source [39]. In this chapter, we demonstrated that heme accumulates in the cytoplasm of *C. difficile* and is subsequently detoxified through removal by HatT.

Results reported in this chapter demonstrate the importance of heme detoxification in CDI as the hatT::CT strain was less pathogenic in a mouse model of infection. The colonization of the WT, hatR::CT, and hatT::CT strains are at similar levels, supporting a model in which resistance to heme toxicity is important for the end stages of acute infection after serious injury to the intestinal epithelium has occurred. This observation is further supported by the reduction in disease that was only observed on days 3 and 4 following infection in the hatT::CT infected mice. The lack of phenotype of in the hatR::CT strain suggests that continual expression of hatT in the absence of HatR in this strain is sufficient to cause full disease. Surprisingly, there were no differences in bacterial burdens at these days or differences in toxin production despite less overall pathology in the *hatT::CT* infected mice. This suggests C. *difficile* utilizes either additional heme detoxification operons or compensatory mechanisms to relieve intracellular heme stress outside of HatRT and reveals the importance of toxin-independent mechanisms of virulence. Alternatively, as C. difficile has been shown to occupy different nutritional niches during infection, and heme is heterogeneously distributed throughout the infected ceca, the heme sensitive strains may be able to maintain WT levels of colonization due to occupying niches of reduced heme concentrations at a cost of pathogenicity [40]. These results provide a molecular insight into how C. difficile adapts to the harsh environment of the inflamed gut. Further studies must be performed to elucidate additional mechanisms of protection that C. difficile utilizes to survive during infection.

A version of the following section (*Chapter III, CLOSTRIDIOIDES DIFFICILE* SENSES AND HIJACKS HOST HEME FOR INCOPROATION INTO AN OXIDATIVE STRESS DEFENSE SYSTEM) is currently under review at *Cell Host & Microbe* (December 2019).

Knippel, R. J.: de Crécy-Lagard, V. P.: Skaar, E. P. *Clostridioides difficile* Senses and Hijacks Host Heme for Incorporation into an Oxidative Stress Defense System. *Cell Host & Microbe*. Under Review.

CHAPTER III

CLOSTRIDIOIDES DIFFICILE SENSES AND HIJACKS HOST HEME FOR INCORPORATION INTO AN OXIDATIVE STRESS DEFENSE SYSTEM

Introduction

The mechanisms *C. difficile* utilizes to survive in the inflamed colon are largely unknown. In chapter II, I detected a high concentration of hemoglobin from lysed erythrocytes in the gastrointestinal lumen during CDI [65]. Heme, the iron-containing protoporphyrin cofactor of hemoglobin, functions as a redox active cofactor for a number of enzymes, including those involved in respiration and protection against oxidative stress. However, its reactivity causes heme to be toxic, including to *C. difficile*. To cope with heme toxicity, *C. difficile* encodes the HatRT system that senses excess heme and detoxifies the molecule through efflux [65]. HatRT is required for full pathogenicity in a murine model of CDI, underscoring the importance of this process during infection. However, strains inactivated for *hatRT* are not defective in colonization or persistence, suggesting *C. difficile* contains additional mechanisms to survive excess heme encountered during inflammation.

In this chapter, I discovered a *C. difficile* system that senses heme, and utilizes this molecule to provide resistance to oxidative stress. A heme-inducible operon was identified that contains a MarR family transcriptional regulator and a putative membrane protein. I have named these gene products HsmRA for <u>heme sensing membrane protein</u> (R = regulator, A = membrane protein). The total transcriptional response of *C. difficile* to a brief exposure of heme is restricted to the *hsmRA* and *hatRT* operons, and this effect is mediated exclusively by HsmR and HatR. HsmA reduces heme toxicity through sequestration, and heme-bound HsmA provides increased

resistance to compounds that generate oxidative stress, including vancomycin and metronidazole. Lack of HsmA results in reduced colonization persistence in a murine model of relapse infection. Taken together, these results describe a mechanism by which *C. difficile* senses and utilizes heme liberated within the inflamed gastrointestinal tract to provide a protective defense against immune effectors and antibiotic therapy, enabling this organism to thrive at the host-pathogen interface during infection. The conservation of HsmA orthologues across diverse bacterial species suggests that this may be a broadly relevant microbial strategy to survival environmental stress.

Materials and methods

Bacterial strains and plasmids

Bacterial strains used in this study are listed in Table 3. *C. difficile* strains were grown at 37 °C in an anaerobic chamber (85% nitrogen, 10% hydrogen, 5% carbon dioxide, Coy Lab Products) in brain-heart-infusion broth (BD Life Sciences) supplemented with 0.5% yeast extract (BD Life Sciences) and 0.1% cysteine (Sigma-Aldrich) (BHIS) or in *C. difficile* minimal media (CDMM) as described previously [41]. *Escherichia coli* strains were grown in lysogeny broth (LB) or agar (LBA), supplemented with 50 µg/mL kanamycin or 50 µg/mL carbenicillin when necessary. *Bacillus subtilis* strains were grown on LBA or in BHI broth supplemented with 5 µg/mL tetracycline and/or 2.5 µg/mL chloramphenicol. *Staphylococcus aureus* strains were grown on tryptic soy agar (TSA) or in broth (TSB) supplemented with 10 µg/mL chloramphenicol when needed. All antibiotics were purchased from Sigma-Aldrich.

Bacterial Strain or plasmid	Relevant Feature or Genotype	Reference
Clostridioides difficile R20291		[43]
Clostridioides difficile hsmR::CT	hsmR::CT Intron inserted into hsmR	
Clostridioides difficile hsmA::CT	Intron inserted into <i>hsmA</i>	This chapter
Bacillus subtilis JH BS2	Carries Tn196	[42]
<i>Escherichia coli</i> DH5α		[44]
Escherichia coli MG1655	RecA+	[45]
Escherichia coli BL21(DE3)		[46]
Staphylococcus aureus RN4220		[66]
Staphylococcus aureus Newman		[67]
Staphylococcus aureus $\Delta hrt B$	Deletion of <i>hrtB</i>	[68]
Staphylococcus aureus $\Delta\Delta$ sod	Deletion of <i>sodA</i> and <i>sodM</i>	[69]
Staphylococcus aureus $\Delta katA$	Deletion of <i>katA</i>	[70]
pJS107	ClosTron plasmid	[42]
pJS107_hsmR	ClosTron plasmid with intron targeted to <i>hsmR</i>	This chapter
pJS107_hsmT	ClosTron plasmid with intron targeted to <i>hsmA</i>	This chapter
pJS116	Stable C. difficile plasmid	[42]
pJS116_phsmR-hsmR	<i>hsmR::CT</i> complementation plasmid	This chapter
pJS116_phsmR-hsmA	<i>hsmA::CT</i> complementation plasmid	This chapter
pOS1	S. aureus lgt (constitutive) promoter	[71]
pOS1_hsmA	S. aureus hsmA expressing plasmid	This chapter
pET15b	Protein expression plasmid	Center for
		Structural
		Biology,
		Vanderbilt
		University
pET15b_hsmR	HsmR expression plasmid	This chapter
pET15b_hsmR-H50A	HsmR-H50A expression plasmid	This chapter
pET15b_hsmR-K33A	HsmR-K33A expression plasmid This chapter	
pET15b_hsmR-K46A	HsmR-H50A expression plasmid This chapter	
pET15b_hsmR-Y96A	HsmR-H50A expression plasmid	This chapter
pET15b_hsmA	HsmA expression plasmid This chapter	

Table 3 Bacterial strains and plasmids used in chapter III.

hsmR::CT and hsmA::CT strain generation

Gene inactivations were achieved using the ClosTron system, as described previously [42]. Briefly, gBlocks containing specific modifications for insertion into the genome were generated using the TargeTronics algorithm (http://www.targetrons.com) and synthesized by Integrated DNA Technologies. The gBlocks were cloned into pCR-Blunt vector using the Zero Blunt PCR cloning kit (ThermoFisher Scientific) followed by restriction digest with BsrgI and HindIII (NEB) and ligation (NEB T4 ligase) into pJS107. Plasmids were transformed into the $recA^+$ E. coli MG1655 through a standard heat shock protocol followed by transformation into B. subtilis JH2 using an established method [42]. B. subtilis strains containing the pJS107 hsmR or pJS107 hsmA plasmids were mated with C. difficile R20291 overnight at 37 °C by plating and mixing together 100 µL of each strain onto a BHIS plate in the anaerobic chamber. Plates were scraped and transferred into 2 mL of BHIS prior to plating 200 µL onto BHIS plates containing 20 µg/mL thiamphenicol and 50 µg/mL kanamycin (BHISthiamp20kan50). Colonies from these plates were patched onto new BHISthiamp20kan50 and BHIS plates containing 5 µg/mL tetracycline (BHIStet5). Patched colonies that were tetracycline sensitive were patched again onto new BHISthiamp20kan50 and BHIS_{tet5} plates. Colonies that remained tetracycline sensitive were streaked onto BHIS plates containing 20 µg/mL lincomycin (BHIS_{linc20}). Inactivation of the hsmR or hsmA gene was confirmed by performing PCR to identify a 1.5 kbp shift in size using gDNA extracted as previously described on colonies that were lincomycin resistant [42].

Complementation plasmids

Complementation plasmids (Table 3) were created by GenScript using the pJS116 plasmid as a backbone for the synthesized intergenic (271 bp) and full coding region of *hsmR*, and intergenic

region of *hsmR* fused to the full coding region of *hsmA*. *C. difficile* strains were transformed as described above with the removal of the lincomycin selection and were maintained on BHIS_{thiamp20} to ensure plasmid retention.

Protein expression plasmids

Protein expression plasmids for HsmR and HsmA (Table 3) were generated by amplifying *hsmR* flanked by BamHI and NdeI or *hsmA* flanked by XhoI and NedI (Table 4) and cloning into the multiple cloning site of pET-15B after restriction digest. Point mutant generation in pET-15B_*hsmR* was performed with NEB Q5 Site Directed Mutagenesis kit according to the manufacturer's instructions, using the primers listed in Table 4.

Heme, paraquat, and antibiotic toxicity C. difficile growth assays

Freshly streaked *C. difficile* colonies were used to inoculate 5 mL of BHIS or BHIS_{thiamp20} and grown for 16 h at 37 °C. Cultures were subcultured 1:50 into fresh BHIS or BHIS_{thiamp20} and grown for 6 h at 37 °C prior to 1:50 inoculation into BHIS, CDMM or CDMM_{thiamp20} containing heme, PPIX, paraquat, vancomycin, or metronidazole at the indicated concentrations. All growth assays were performed in a 96-well plate in 200 μ L of media at 37 °C. Optical density at 600 nm (OD₆₀₀) served as a measurement of growth and was measured every 30 min for the indicated total time in an EpochII microplate reader (BioTek).

Name	Sequence (5' – 3')	Description
qRT hsmR F	cggtttcaggcataatcagc	gRT-PCR forward primer for <i>hatR</i>
qRT hsmR R	tggcaaattcaaatcctgttg	gRT-PCR reverse primer for <i>hatR</i>
gRT hsmA F	gccaacagccatacttttgaag	gRT-PCR forward primer for <i>hatR</i>
qRT hsmA R	gcccaacttgcatgaaaaag	gRT-PCR reverse primer for <i>hatR</i>
gRT hatR F	ggaaaatagctcaaaggtgtgg	gRT-PCR forward primer for <i>hatR</i>
qRT hatR R	cgccttatcaataaatcccattc	gRT-PCR reverse primer for <i>hatR</i>
gRT hatT F	ttggaaagccctcaactcc	gRT-PCR forward primer for <i>hatT</i>
gRT hatT R	ttttgccatttcagggtctg	gRT-PCR reverse primer for <i>hatT</i>
gRT rpoB F	tgctgttgaaatggttcctg	qRT-PCR housekeeping gene forward primer
qRT rpoB R	cggttggcatcatcattttc	qRT-PCR housekeeping gene reverse primer
R20291 <i>hsmR</i> F	cggtttcaggcataatcagc	Forward primer to check for intron insertion
		into hsmR
R20291 hsmR R	tgtggcaaattcaaatcctg	Reverse primer to check for intron insertion
		into hsmR
R20291 hsmA F	ttatgctttttcatgcaagttg	Forward primer to check for intron insertion
		into hsmA
R20291 hsmA R	gtaaaagtgtgaaagaaggatgtag	Reverse primer to check for intron insertion
		into hsmA
hsmR NedI F	ggggcatatggggatgattttattgaaaagtaa	Forward primer for cloning <i>hsmR</i> into
		pET15b
<i>hsmR</i> _BamHI_R	ggggatccttatctctctttacttttgcc	Reverse primer for cloning <i>hsmR</i> into
		pET15b
hsmR_H50A_F	aaaactggtagctgctaatcaagaac	Forward primer for H50A point mutation in
		hsmR
hsmR_H50A_R	aaaactggtagctgctaatcaagaac	Reverse primer for H50A point mutation in
		hsmR
hsmR_K33A_F	gaagaaaattttgcagaaaatggattaac	Forward primer for K33A point mutation in
		hsmR
hsmR_K33A_R	gttaatccattttctgcaaaattttcttc	Reverse primer for K33A point mutation in
		hsmR
hsmR_K46A_F	gattatagttatagcactggtagctcataatc	Forward primer for K46A point mutation in
		hsmR
hsmR_K46A_R	gattatgagctaccagtgctataactataatc	Reverse primer for K46A point mutation in
		hsmR
hsmR_Y96A_F	gataaaagaaatacagccgttaagtttac	Forward primer for Y96A point mutation in
		hsmR
hsmR_Y96A_R	gtaaacttaacggctgtatttcttttatc	Reverse primer for Y96A point mutation in
		hsmR
<i>hsmA</i> _Nedl_F	gcccatatgaattataaattaatacttgc	Forward primer for cloning <i>hatR</i> into
		pE115b and pUS1
hsmA_BamHI_R	ctatecaaceataceggatee	Reverse primer for cloning <i>hatR</i> into pET15b
		and pOSI

Table 4 Oligonucleotides used in chapter III.

qRT-PCR

C. difficile were grown anaerobically in triplicate in CDMM at 37 °C to an OD₆₀₀ of 0.3 abs. Hemin (Sigma) was solubilized in 0.1 M NaOH and added to 50 µM or the indicated concentration. After 5 or 30 min, a 1:1 solution of acetone:ethanol was added to an equal volume of the culture. For activation analysis, C. difficile were grown in CDMM containing the indicated concentrations of NaOH, protoporphyrin-IX, iron (II) sulfate, or heme to an OD_{600} of 0.3 abs prior to addition of acetone:ethanol. Samples were stored at -80 °C until used for RNA extraction. Samples were thawed on ice, pelleted, and resuspended in 750 µL of LETS buffer (1 M LiCl, 0.5 M EDTA, 1 M Tris pH 7.4). Cells were transferred to tubes containing lysing matrix B beads (MP Biomedicals) and lysed by a FastPrep-24 (MP Biomedicals) bead beater for 45 s at 6 m/s. Lysed samples were heated for 5 min at 55 °C and pelleted by centrifugation for 10 min. The supernatant was transferred to a fresh tube and 1 mL TRIzol (Thermo Scientific) was added. Chloroform (200 µL) was added to each sample and vortexed prior to separation of the aqueous and organic layers by centrifugation for 15 min. The aqueous (upper) layer was transferred to a fresh tube and the RNA was precipitated through the addition of 1 mL isopropyl alcohol. Samples were incubated for 10 min and RNA was pelleted by centrifugation for 10 min. Supernatant was removed and the RNA pellet was washed with 200 µL of 70% ethanol. Samples were air dried for 1 min, then resuspended in 100 µL RNase free water. DNA contamination was removed through the addition of 8 µL RQ1 DNase, 12 µL 10x RQ1 buffer, and 2 µL RNase inhibitor (Promega) to the purified RNA. Samples were DNase treated for 2 h and purified using the RNeasy miniprep RNA cleanup kit (Qiagen). RNA concentration was determined using the Synergy 2 with Gen 5 software (BioTek) and 2 µg was reverse transcribed by M-MLV reverse transcriptase (Fisher Scientific) in the presence of RNase inhibitor (Promega) and random hexamers (Promega). Reactions lacking

the reverse transcriptase were used to control for DNA contamination. Newly created cDNA was diluted 1:100 and was used in qRT-PCR using iQ SYBR green supermix (BIO-RAD) utilizing the primer pairs in Supplementary Table 2. Amplification was achieved using a 3-step melt cure program on a CFX96 qPCR cycler (BIO-RAD). Transcript abundance was calculated using the $\Delta\Delta$ CT method normalized by the *rpoB* gene.

HsmR multiple sequence alignment

HsmR multiple sequence alignment was performed using Clustal Omega (http://www.clustal.org/omega [accessed August 2019]) using *Clostridioides difficile* R20291 (NCBI accession no. CBE02826.1), *Clostridium perfringens* ATCC 13124 (NCBI accession no. ABG82197.1), *Clostridium botulinum* A str. Hall (NCBI accession no. YP_001388019.1) and *Clostridium novyi* (NCBI accession no. WP 011722139.1).

HsmA taxonomic distribution and physical clustering

HsmA (CDR20291_0781) is part of the Interprofamily IPR023813 that contains 750 proteins with only ~ 100 from *Clostridioides* or *Clostridium* derivatives. To visualize the genetic spread of the family the corresponding protein sequence was used as input to search all representative and reference genomes using the internal BlastP search tool in the Patric database version 3.5.43 [72]. One hundred eighty one proteins with alignment scores > 55 were extracted and were confirmed for membership to the IPR023813 family. Forty-two of these were found in organisms with complete genome sequences. This group of 42 bacteria was merged to the group of 120 reference genomes present in the Patric database and these 157 genomes (5 were found in the two groups) were used to build a species phylogeny using the internal Patric CodonTree tool. The output file

in newick format was used as input in Itol v4 with added HsmA homolog presence/absence data [73]. Physical clustering analysis was performed using the gene neighborhood tool of PubSEED and can be visualized in the CD0851 SubSystem (http://pubseed.theseed.org//SubsysEditor.cgi?page=ShowSpreadsheet&subsystem=CD0851) [74].

Protein expression and purification

E. coli BL21 (DE3) pREL containing the pET-15b hsmR plasmids were grown overnight in 5 mL of LB_{carb50} at 37 °C. Cells were subcultured into Terrific broth (ThermoFisher Scientific) containing 50 µg/mL carbenicillin and grown to the mid-logarithmic phase of growth (0.5 abs measured at 600 nm) at 37 °C prior the addition of 1 mM isopropyl-1-thiol-D-galactopyranoside (IPTG). Growth was continued at 16 °C for 16 h. Cells were harvested by centrifugation (6000 x g for 10 min) and resuspended in 1 X PBS. Cells were lysed by passage through an EmulsiFlex homogenizer (Avestin) three times at 20,000 lb/in². The insoluble debris was removed by centrifugation at 40,000 x g for 1 h and the supernatant was filtered using a 0.22-µM-pore sizer filter. Filtered lysate was added to HisPur cobalt resin (ThermoFisher Scientific) and allowed to bind at 4 °C for 30 min prior to transfer to a gravity column. The column was washed with four column volumes of wash buffer (100 mM HEPES, 500 mM NaCl, pH 7.8) three times followed by 2 column volumes of elution buffer (100 mM HEPES, 500 mM NaCl, 200 mM imidazole, pH 7.8) twice. The hexahistidine tag was cleaved using the Thrombin Cleancleave kit (Sigma-Aldrich) by following the manufacturer's instructions. After cleavage, buffer was exchanged utilizing overnight dialysis at 4 °C in 4 L of wash buffer (100 mM HEPES, 500 mM NaCl, pH 7.8).

Solubilization of membrane fractions

E. coli BL21 (DE3) pREL containing the pET-15b_*hsmA* plasmids were grown overnight in 5 mL of LB_{carb50} at 37 °C. Cells were subcultured into 25 mLs of fresh LB_{carb50} and grown to the mid-logarithmic phase of growth (0.5 abs measured at 600 nm) at 37 °C prior to the addition of 1 mM IPTG and/or 10 μ M heme. Growth was continued at 16 °C for 16 h. Cells were harvested by centrifugation (6000 x g for 10 min), photographed using a dual 12-megapixel camera (Apple) and resuspended in 1 X PBS. Membranes were solubilized for 1 h at 4 °C by adding octyl- β -glucoside to a final concentration of 1.5% with gentle rocking. Insoluble fraction was pelleted by centrifugation (20,000 x g for 3 min) and soluble membrane fraction was removed.

Absorption spectroscopy

Heme binding by HsmR was determined by measuring the absorption spectrum of increasing amounts of hemin $(0 - 30 \,\mu\text{M})$ after addition to a cuvette containing 10 μ M recombinant HsmR in 1 mL of Tris-buffered saline (TBS) and a reference standard containing 1 mL TBS on a Varian Cary 50BIO. Samples were mixed and allowed to incubate at room temperature in the dark for 5 min prior to collecting the spectrum between 300 - 800 nm with 10 nm increments. Binding ratio of heme to HsmR was determined by plotting the change in absorbance at 413 nm between the reference standard and the HsmR sample. A curve fit and ratio was obtained by performing the one-site binding model non-linear regression function on Graph Pad Prism 8.2. Heme binding by HsmA was performed on 1 mL of solubilized membrane fractions isolated as described above collecting the spectrum between 300 - 800 nm with 10 nm increments.

Heme and oxidative stress toxicity S. aureus growth assays

Freshly streaked *S. aureus* colonies were used to inoculate 5 mL of TSB or TSB_{cm10} in 15 mL round-bottom polypropylene tubes with aeration lids and grown for 16 h at 37 °C at a 45° angle in an Innova 44 incubator shaking at 180 rpm. Cultures were subcultured 1:50 into fresh TSB or TSB_{cm10} and grown for 6 h at 37 °C prior to 1:50 inoculation into TSB or TSB_{cm10} containing heme, paraquat, or hydrogen peroxide at the indicated concentrations. All growth assays were performed in a 96-well plate in 200 µL of media shaking linearly at 567 cpm (3 mm) at 37 °C. Optical density at 600 nm (OD₆₀₀) served as measurement of growth and was measured every 30 min for the indicated total time in an EpochII microplate reader (BioTek).

RNA-sequencing analysis

RNA was isolated and purified as described above. RNA sequencing was performed by the Vanderbilt Technologies for Advanced Genomics (VANTAGE) core using the Illumina HiSeq 3000 platform (Illumina). The integrity and concentration of total RNA were determined using an Agilent 2100 Bioanalyzer system in combination with an RNA 6000 Nano kit (Agilent). rRNA was depleted using the Ribo-Zero rRNA removal kit (for bacteria) (Epicentre) and paired-end cDNA libraries were prepared with a TruSeq RNA library prep kit v2 (Illumina). Data analysis for sequencing experiments was performed on the CLC Genomics workbench (version 11.0.1; Qiagen) using the reference *C. difficile* R20291 genome. Prior to analysis, rRNA reads were removed in order to account for variations in rRNA depletion procedure among samples. Standard settings were used for adapter and quality trimming, as well as transcriptome sequencing (RNA-seq) analysis. Expression values were calculated as RPKM (reads per kilobase per million mapped

reads) [47], and a lower cutoff of 5 RPKM was introduced for subsequent analysis. Raw sequence data are deposited on the NCBI Sequence Read Archive (accession code: PRJNA576216).

Relapse mouse model of CDI

All animal experiments under protocol M1700053 were reviewed and approved by the Institutional Animal Care and Use Committee of Vanderbilt University. Procedures were performed according to the institutional policies, Animal Welfare Act, NIH guidelines, and American Veterinary Medical Association guidelines on euthanasia. Adult (6 – 8 week old) age-matched male C57Bl/6 (Jackson Laboratories) mice were housed in groups of five and maintained at Vanderbilt University Medical Center Animal Facilities. Mice were subjected to a previously described model of CDI [75]. Briefly, mice were treated with 0.5 mg/mL cefoperazone in their drinking water for 5 days. Mice were given a 2 day recovery period prior to administration of 10⁵ spores of WT, *hsmR::CT*, or *hsmA::CT C. difficile* strains in PBS via oral gavage. Prior to infection, mice were confirmed to be *C. difficile* negative. After infection, mice were treated with 0.2 mg/mL vancomycin in their drinking water for 5 days. Mice were treated with 0.2 mg/mL vancomycin. On the final day of infection and necropsy, cecal contents were harvested. Mice that displayed severe disease or weight loss greater than 20% were humanely euthanized.

Bacterial burden determination

C. difficile CFUs were quantified daily from fecal or cecal samples. Samples were diluted and homogenized in PBS and serial plated onto taurocholate cycloserine cefoxitin fructose agar (TCCFA) for enumeration as CFU per gram of feces.

Reactive oxygen species measurements

Freshly streaked *C. difficile* colonies were used to inoculate 5 mL of BHIS grown for 16 h at 37 °C. Cultures were subcultured 1:50 into fresh BHIS and grown for 6 h at 37 °C prior to the addition of heme and dihydrorhodamine 123 (Invitrogen) for 30 min at the indicated concentrations. Two hundred μ L of culture was transferred to a 96-well plate and sealed with a Breathe-Easy gas permeable membrane (Diversified Biotech). Sealed plates were removed from the chamber and OD₆₀₀ and fluorescence (excitation = 507 nm; emission = 529 nm) was measured at 10 min intervals on a Cytation 5 (BioTek) shaking in a double orbital at 567 cpm (3 mm) at 37 °C in atmospheric oxygen.

S. aureus pOS1 and pOS1_*hsmA* were diluted 1:50 into 200 μ L TSB or TSB_{cm10} containing paraquat and dihydrorhodamine 123 (Invitrogen) at the indicated concentrations. OD₆₀₀ and fluorescence (excitation = 507 nm; emission = 529 nm) were measured at 10 min intervals on a Cytation 5 (BioTek) shaking linearly at 567 cpm (3 mm) at 37 °C. The data displayed are background corrected for the wells with all components except cells and normalized to OD₆₀₀.

Results

Transcription of the *hsmRA* operon occurs rapidly in response to heme.

Analysis of RNA-sequencing of transcripts from *C. difficile* R20291 exposed to a sublethal concentration of heme revealed two uncharacterized genes as being highly responsive to heme exposure [65]. More specifically, two genes in a candidate operon encoding for a MarR family transcriptional regulator (CDR20291_0782) and a putative membrane protein with homology to a
cytochrome b561 (CDR20291 0781) exhibited the most significant changes in transcript abundance in this data set (Figure 13A). To confirm CDR20291 0782 and CDR20291 0781 are heme responsive, quantitative reverse transcription PCR (qRT-PCR) was performed utilizing RNA harvested at the early exponential phase of growth ($OD_{600} = 0.3$) from cultures grown in equimolar concentrations of sodium hydroxide (NaOH, vehicle), protoporphyrin IX (PPIX, porphyrin ring without iron), iron (II) sulfate, or heme. Transcription of each gene was minimally altered in the samples treated with NaOH or iron (II) sulfate, in contrast to a 1-log increase in transcript abundance following protoporphyrin IX exposure, and 2 - 2.5-log increase in transcript abundance following heme exposure (Figure 13B). To examine the responsiveness of the *hsmRA* and *hatRT* operons to heme, qRT-PCR was performed on RNA harvested from cultures grown to an early exponential phase of growth ($OD_{600} = 0.3$) and exposed to a range of low concentrations of heme $(0.25 - 1 \mu M)$ for 5 min. There was no significant difference in the transcription of these four genes at 0.25 and 0.5 µM heme (Figure 13C). At 0.75 and 1 µM heme, transcription of CDR20291 0782 and CDR20291 0781 was 1 - 2-log higher than an untreated control. This transcriptional response was more rapid and intense than that of the previous characterized heme efflux system *hatRT*, [65] as this operon displayed minimal transcriptional change at 0.75 μ M and a 1-log transcriptional increase at 1 µM heme compared to an untreated control (Figure 13C). Based on these data, as well as data described below, I have named CDR20291 0782 heme sensing membrane protein regulator (hsmR) and CDR20291 0781 heme sensing membrane protein (hsmA).

(A) Schematic of the *hsmRA* operon. (B) *hsmR* and *hsmA* transcription determined by qRT-PCR. cDNA was reverse transcribed from RNA harvested from *C. difficile* R20291 grown in the presence of sodium hydroxide (NaOH, 500 μ M), protoporphyrin IX (PPIX, 50 μ M), iron sulfate (50 μ M) or heme (50 μ M). (C) *hsmR*, *hsmA*, *hatR*, and *hatT* transcription determined by qRT-PCR of cDNA reverse transcribed from RNA harvested from *C. difficile* grown in the presence of a low concentration range of heme (0.25 – 1 μ M). Transcription is graphed as the fold change relative to an untreated control. The data are a representative of three independent experiments each in biological triplicate with standard deviation shown. Statistical significance was determined using the multiple comparison one-way ANOVA test comparing the means of each group to one another * denotes p < 0.05. (D) Growth of WT, *hsmR::CT*, and *hsmA::CT* strains in the presence or absence of heme (25 μ M). The data are a representative from three independent experiments each in biological triplicate with standard deviation shown.

HsmR and HsmA reduce heme toxicity.

To investigate the contribution of the *hsmRA* operon to heme detoxification, two strains of *C. difficile* were generated that are inactivated for *hsmR* (*hsmR::CT*) or *hsmA* (*hsmA::*CT). The lack of either *hsmR* or *hsmA* renders the bacteria sensitive to heme toxicity, as growth over time in the presence of 25 μ M heme is delayed in the mutant strains compared to wild-type (WT, Figure 13D). The growth of *hsmR::CT* and *hsmA::CT* returned to WT levels by expressing the relevant gene *in trans* under the control of their native promoters (Figure 14). Taken together, these data suggest that HsmR and HsmA coordinate to function as an acutely sensitive mechanism of heme sensing and detoxification in *C. difficile*.

Figure 14 Heme sensitivity in WT, *hsmR::CT*, *hsmA::CT*, and complemented strains. Growth of *C. difficile* WT pJS116 (empty vector), *hsmR::CT* pJS116, *hsmR::CT* pJS116_*phsmR-hsmA*, *hsmA::CT* pJS116, and *hsmA::CT* pJS116_*phsmR-hsmA* strains in CDMM in the presence or absence of heme (25 μ M). The data are a representative from three independent experiments each in biological triplicate with standard error of the mean.

HsmR and HsmA coordinate to reduce heme toxicity through sequestration.

Orthologs of *hsmR* were identified utilizing the SEED database in other clostridial species that are pathogenic to vertebrates and therefore may experience heme stress during infection (Figure 15A) [76]. Considering the responsiveness of *hsmRA* to both heme and PPIX, and the candidate assignment of HsmR as a transcriptional regulator, I examined the ability of HsmR to bind heme. Recombinant HsmR (10 μ M) was incubated with heme (1 – 30 μ M), resulting in the appearance of a Soret peak at 413 nm (Figure 15B), indicative of HsmR-heme complex formation [57]. Differential absorption spectroscopy at 413 nm over a range of heme concentrations was used to determine that HsmR binds heme at a 1:1 ratio using a single site binding model ($k_d = 6.6 \pm 1.1 \mu$ M; Fig. 2b insert). The conserved histidine residue at position 50 was identified as a potential axial ligand to bind heme (Figure 15A red box). Purified recombinant HsmR containing the substitution of histidine 50 to alanine (H50A) exhibited a reduced ability to bind heme (Figure 15C and Figure 16). Alanine substitutions of other conserved residues with the potential to bind heme (K33A, K46A, and Y86A) did not significantly alter heme binding (Figure 17).

Based on the homology between HsmA and heme-containing cytochromes, I investigated the ability of HsmA to bind heme. Attempts to purify HsmA were unsuccessful; therefore, we developed a whole cell assay to measure HsmA heme binding. HsmA expression was induced by IPTG in an expression strain of *E. coli* (*E. coli* pET15b_*hsmA*), and this strain was treated with excess heme. The presence of excess heme in HsmA expressing strains resulted in a dark red cell pellet, indicative of bound heme, and this color change is not observed in *E. coli* lacking the HsmA expression vector upon heme exposure, or in the un-induced *E. coli* pET15b_*hsmA* strain (Figure 15D). Absorption spectroscopy of the solubilized membranes from these cells resulted in a unique

peak at ~405 nm that was only present in the *E. coli* pET15b_*hsmA* strain treated with both heme and IPTG (Figure 15E). These data suggest that HsmR and HsmA bind heme.

The ability of HsmA to bind heme could reduce toxic free heme concentrations through sequestration, as has been observed in other heme detoxification systems [20]. To test this, a *Staphylococcus aureus* strain lacking the *hrtB* ($\Delta hrtB$) heme efflux pump was transformed with a plasmid containing a constitutively expressed *hsmA* ($\Delta hrtB$ pOS1_*hsmA*). *S. aureus* $\Delta hrtB$ was utilized for these experiments due to this strain's high sensitivity to heme [22, 25]. The *S. aureus* $\Delta hrtB$ pOS1_*hsmA* displayed increased resistance to heme toxicity when compared to the $\Delta hrtB$ strain harboring empty vector (Figure 15F). Together these data suggest that HsmR and HsmA coordinate to reduce heme toxicity through direct binding to HsmA.

Figure 15 HsmR binds and senses heme and HsmA reduces heme toxicity through sequestration.

(A) Alignment of HsmR homologues in other pathogenic clostridial species. Red box denotes conserved histidine residue. (B) Absorption spectra of heme binding to recombinant HsmR. Increasing concentrations of heme (1 to 30 μ M) were added to 10 μ M protein. The spectrum corresponding to 10 μ M heme is shown as a dashed red line. HsmR with increasing concentrations

of heme are shown as gray lines. The inset displays change in absorbance at 413 nm for HsmR bound to heme minus the corresponding heme alone peak. (C) Absorption spectra of 10 μ M heme binding to HsmR or HsmR H50A. (D) *E. coli* pET15b_*hsmA* cell pellets in the presence or absence of heme (10 μ M) and IPTG (1 mM). (E) Absorption spectra of solubilized membrane fractions of the cell pellets from D. (F) Growth of *S. aureus* $\Delta hrtB$ pOS1 and pOS1_*hsmA* strains in the presence or absence of heme (10 μ M). The data are a representative from three independent experiments each in biological triplicate with standard error of the mean.

Figure 16 Purified recombinant HsmR and HsmR H50A.

Coomassie stained SDS-PAGE of purified recombinant HsmR and HsmR H50A. 1 = protein ladder. 2 = HsmR (17 kDa). 3 = HsmR H50A (17 kDa).

Figure 17 Conserved histidine residues within HsmR that are not required for heme binding. Absorption spectra of 10 μ M heme binding to 10 μ M HsmR and HsmR K33A (A), HsmR K46A (B), and HsmR Y86A (C).

HsmR is a transcriptional activator of the *hsmRA* operon.

Members of the MarR family of transcriptional regulators can function as repressors or activators of genes [77]. I investigated the regulation of the *hsmRA* operon by HsmR utilizing qRT-PCR of WT and *hsmR::CT* grown to early exponential phase ($OD_{600} = 0.3$) and exposed to 50 μ M heme for 30 min. Heme-treated WT exhibit a 1 – 1.5-log activation of *hsmRA*, and this is entirely dependent on a functional HsmR, as *hsmRA* transcription was unaffected by heme in *hsmR::CT* (Figure 18A). These data suggest HsmR acts as an activator of the *hsmRA* operon.

To identify additional genes regulated by HsmR, I performed an RNA-sequencing experiment comparing the total relative mRNA transcript abundance of WT and *hsmR::CT* grown to early exponential phase ($OD_{600} = 0.3$) and exposed to 50 µM heme for 30 min. In WT *C. difficile, hsmR, hsmA, hatR,* and *hatT* were the only four genes that displayed a significant induction above log₂ of 2 following exposure to heme (Figure 18B, Appendix B Table 1). The comparison between heme-exposed *hsmR::CT* and the untreated *hsmR::CT* control replicated the observation that HsmR acts as an activator of the *hsmRA* operon. Upregulation of *hsmR* and *hsmA* transcripts were not observed in the *hsmR::CT* strain in response to heme (Figure 18C, Appendix B Table 2), whereas *hatR* and *hatT* retained significant transcriptional induction in this strain. Additional comparisons between untreated and heme treated WT and *hsmR::CT* samples further revealed the absence of significant heme induced transcriptional changes outside of the *hatRT* and *hsmRA* operons (Figure 19, Appendix B Tables 3 and 4). Taken together, these data demonstrate that the heme responsive regulon of HsmR is solely comprised of *hsmRA*. Moreover, these studies show that the transcriptional response of *C. difficile* to heme is limited to the *hsmRA* and *hatRT* operons.

Figure 18 HsmR acts as an activator of the *hsmRA* operon.

(A) *hsmR* and *hsmA* transcription determined by qRT-PCR. cDNA was reverse transcribed from RNA harvested WT or *hsmR::CT* grown to early exponential phase (0.3 abs) and exposed to heme (50 μ M) for 30 min. (B) RNA-sequencing analysis comparing RNA from heme treated (25 μ M for 30 min) WT to an untreated WT control. (C) RNA-sequencing analysis comparing RNA from heme treated (25 μ M for 30 min) *hsmR::CT* to an untreated *hsmR::CT* control. Dashed lines represent genes of fold change > 2. Samples with *p*-value > 1 x 10⁻⁵ are represented as 5 on the graph. Solid black line denotes *p* < 0.05. Statistical significance was determined using the multiple comparison two-way ANOVA test with the Sidak correction for multiple comparisons comparing the means of each group to one another The data are a representative from three independent experiments each in biological triplicate with standard error of the mean. * denotes *p*-value < 0.05, n.s. denotes not significant.

(A) RNA-sequencing analysis comparing RNA from heme treated (25 μ M for 30 min) *hsmR::CT* to heme treated (25 μ M for 30 min) WT. (B) RNA-sequencing analysis comparing RNA from untreated *hsmR::CT* to untreated WT. Dashed lines represent genes of fold change > Log₂(2). Samples with *p*-value > 1 x 10⁻⁵ are represented as 5 on the graph. Solid black line denotes *p* < 0.05. Statistical significance was determined using the multiple comparison one-way ANOVA test with the Tukey correction for multiple comparisons comparing the means of each group to one another. The data are a representative from three independent experiments each in biological triplicate with standard error of the mean.

HsmA employs exogenous heme to confer resistance to oxidative stress and antibiotics.

HsmA contains homology to the cytochrome b561 family, but *C. difficile* does not respire [78]. Therefore, I investigated other functions of cytochromes to determine the functional role of this protein. One function of cytochromes is to detoxify redox molecules by shuttling electrons through bound heme cofactors [79]. I investigated whether HsmA may function to diminish damage caused by redox active molecules [80]. To test this, WT, *hsmR::CT*, and *hsmA::CT* cultures were treated with the ROS-generating molecule paraquat in the presence or absence of heme [81]. No toxicity was observed when *C. difficile* was treated with paraquat alone (2 mM; Figure 20), whereas a delay in growth occurred in heme and paraquat treated *hsmR::CT* and *hsmA::CT*, but not WT (Figure 20).

Considering *C. difficile* is an obligate anaerobe, and HsmA protects this organism against superoxide stress, I sought to investigate the contribution of HsmA to survival in the presence of atmospheric oxygen. WT and *hsmA::CT* were grown for 6 hours prior to treatment with heme (25 μ M) for 30 min. Samples were exposed to atmospheric oxygen, and the heme treated WT samples displayed a 2.5-log decrease in cellular ROS compared to the untreated WT strain (Figure 21A). By contrast, heme-treated *hsmA::CT* displayed a 2.5 log increase in cellular ROS compared to the untreated *hsmA::CT* strain (Figure 21A). There were no statistically significant differences in cellular ROS between the untreated WT and *hsmA::CT* strains (Figure 21A). To decouple the ability of HsmA to reduce oxidative stress from other oxidative stress reducing proteins in *C. difficile*, a *S. aureus* strain lacking both genes encoding for superoxide dismutase enzymes ($\Delta\Delta sod$) was transformed with a plasmid containing a constitutively expressed *hsmA* ($\Delta\Delta sod$ pOS1_*hsmA*) or with an empty vector control plasmid ($\Delta\Delta sod$ pOS1). *S. aureus* $\Delta\Delta sod$ is acutely sensitive to superoxide stress [82]. The $\Delta\Delta sod$ pOS1_*hsmA* strain displayed a recovery in aerobic growth over

time in 2 mM paraquat when compared to the $\Delta\Delta sod$ pOS1 strain (Figure 21B). Measuring the cellular ROS generated at 6 h displayed a 3-fold decrease in $\Delta\Delta sod$ pOS1_*hsmA* strain compared to the $\Delta\Delta sod$ pOS1 strain (Figure 21C). To determine if the protective effect is specific to superoxide, a *S. aureus* strain lacking catalase ($\Delta katA$) was transformed with a plasmid containing a constitutively expressed *hsmA* ($\Delta katA$ pOS1_*hsmA*) or empty vector control ($\Delta katA$ pOS1) [83]. The expression of HsmA did not confer resistance to hydrogen peroxide (Figure 22). Taken together, these data suggest HsmA, in addition to detoxifying heme, provides protection against atmospheric and chemically generated superoxide stress.

Figure 20 *hsmR::CT* and *hsmA::CT* are sensitive to paraquat in the presence of heme. Growth of *C. difficile* WT, *hsmR::CT*, and *hsmA::CT* in BHIS in the presence or absence of paraquat (2 mM) and heme (25 μ M). The data are a representative from three independent experiments each in biological triplicate with standard error of the mean.

(A) *C. difficile* WT and *hsmA::CT* strains were grown for 6 hours followed by treatment with or without heme (25 μ M) for 30 min. Samples were exposed to atmospheric oxygen and oxidative stress generation was determined by measuring fluorescence of dihydrorhodamine 123 (ex. 507 nm, em. 529). (B) Growth of *S. aureus* $\Delta\Delta$ *sod* pOS1 and pOS1_*hsmA* strains in the presence or absence of paraquat (2 mM) and dihydrorhodamine 123. (C) Oxidative stress generation was quantified by measuring fluorescence of dihydrorhodamine 123 (ex. 507 nm, em. 529). The data are a representative from three independent experiments each in biological quintuplicate with standard error of the mean. Statistical significance was determined using the multiple comparison two-way ANOVA test with the Sidak correction for multiple comparisons comparing the means of each group to one another. * denotes *p*-value < 0.05

Figure 22 HsmA is not involved in protection against hydrogen peroxide.

Growth of *S. aureus* Δkat pOS1 and pOS1_*hsmA* strains in the presence or absence of H₂O₂ (44 μ M). The data are a representative from three independent experiments each in biological triplicate with standard error of the mean.

HsmR and HsmA promote resistance to vancomycin during CDI.

The ability of HsmA to reduce oxidative stress could protect against antibiotic toxicity, as it has previously been suggested that bactericidal antibiotics generate considerable oxidative stress resulting from hyper-induced metabolism [84]. To investigate the protective effects of the *hsmRA* operon against antibiotics, we determined the sensitivities of WT, *hsmR::CT*, and *hsmA::CT* to vancomycin as measured by growth over time. All three strains were equally sensitive to vancomycin treatment alone (Figure 23A-B). When heme was added in combination with vancomycin, the WT strain displayed a significant growth recovery, while the *hsmR::CT* strain exhibited a significant delay in growth and the *hsmA::CT* strain did not grow (Figure 23A-B). This growth recovery is specific to heme as PPIX did not rescue growth in the WT strain (Figure 24). Heme treatment additionally rescued growth of the WT strain but not *hsmR::CT* and *hsmA::CT* in the presence of metronidazole (Figure 25). These results demonstrate that HsmA reduces toxicity against redox damage produced directly or indirectly by clinically relevant glycopeptide and nitroimidazole antibiotics[84, 85].

C. difficile infection leads to a significant accumulation of heme in the lumen of the gut [65]. To investigate the involvement of the *hsmRA* operon in persistence during infection, mice were infected with a 1:1 ratio of WT and *hsmR::CT* or WT and *hsmA::CT* spores. Disease was monitored for 4 days, followed by a 5-day treatment of vancomycin (0.2 mg/mL), after which mice were monitored for relapse. During the acute phase of infection, all strains colonized the mice, as exhibited by the ~10⁸ colony-forming units (CFU) of the WT strain recovered per gram of stool and the ~10⁶-10⁷ CFU of the *hsmR::CT* and *hsmA::CT* strains recovered per gram of stool (Figure 23C-D). During vancomycin treatment, *hsmR::CT* and *hsmA::CT* colonization levels were below the limit of detection for the length of the antibiotic treatment in contrast to the temporal reduction

 $(\sim 10^6 \text{ to } \sim 10^2)$ in WT CFUs per gram of stool (Figure 23C-D). Upon removal of vancomycin, *hsmR::CT* and *hsmA::CT* exhibited a 2 – 3-log defect in recovery compared to the WT in the first day of relapse. On the final day of infection, the mutant strains displayed a 0.5 – 2-log reduction of CFUs per gram of cecal contents compared to WT (Figure 23C-D). These results demonstrate the *hsmRA* operon provides protection against vancomycin treatment in addition to being required for full relapse during CDI colonization. Taken together, these data establish HsmR as a sensor of host heme that induces the production of HsmA which binds heme and prevents toxicity associated with heme accumulation, while also providing protection against antibiotics and oxidative stress. Combined, these activities contribute to the ability of *C. difficile* to persist during infection despite the oxidative burst of phagocytes or antimicrobial treatment.

Figure 23 The *hsmRA* operon decreases sensitivity to vancomycin in the presence of heme during infection.

Growth of (A) WT, (B) hsmR::CT and (B) hsmA::CT in the presence or absence of vancomycin (100 µg/mL) and heme (10 µM). CFU analysis of mice co-infected with (C) WT and hsmR::CT or (D) WT and hsmA::CT strains with standard error on the mean (n = 10/group). Vancomycin treatment (0.4 mg/mL) was administered on days 5 – 10 (denoted by gray shading) and removed on day 11. The data are a representative from three independent experiments each in biological triplicate with standard error of the mean. Statistical significance was determined using the multiple comparison two-way ANOVA test with the Bonferroni correction for multiple comparisons comparing the means of each group to one another. * denotes *p*-value < 0.05

Figure 24 Protoporphyrin-IX does not rescue vancomycin toxicity.

Growth of WT in the presence or absence of vancomycin (100 g/mL) and PPIX (50 μ M). The data are a representative from three independent experiments each in biological triplicate with standard error of the mean.

Figure 25 HsmRA decreases sensitivity to metronidazole in the presence of heme. Growth of (A) WT, (B) hsmR::CT and (B) hsmA::CT in the presence or absence of metronidazole (2 mg/mL) and heme (10 μ M). The data are a representative from three independent experiments each in biological triplicate with standard error of the mean.

To predict the generalizability of HsmA-mediated protection against oxidative stress across the Bacterial kingdom, we investigated the conservation of HsmA across species. A phylogenetic tree was created using HsmA from *C. difficile* as a seed. This analysis revealed that HsmA is widespread in *Clostridia* and candidate HsmA orthologues can be found in multiple genera including *Bacteroides*, *Bacillus*, *Lactobacillus*, *Enterococcus*, and *Geobacter* (Figure 26, Appendix B Table 5), suggesting that HsmA may represent a conserved strategy for dealing with environmental oxidants across numerous organisms.

Figure 26 HsmA is conserved among multiple bacterial species.

Distribution of HsmA homologues represented by solid blue dots among 120 reference bacteria with an added 37 representative bacteria with complete genomes. The phylogenetic tree was generated using the phylogenetic tree tool of the Patric database as described in the methods section and visualized in iTol.

Discussion

C. difficile thrives in the colon during infection despite creating a hostile inflammatory environment through toxin-mediated damage of the gastrointestinal epithelium [7, 8, 86]. Robust inflammation leads to high levels of heme at the host-pathogen interface during CDI (Figure 1) [65]. Herein, I identified an acutely heme responsive transcription factor HsmR which activates expression of the membrane protein HsmA that incorporates the reactivity of heme to defend against redox stress while simultaneously detoxifying excess heme through sequestration.

In chapter II I identified the HatRT system in *C. difficile* that senses and detoxifies excess intracellular heme through efflux [65]. The results herein further refine my current model of heme homeostasis in *C. difficile*. HsmR senses low concentrations of heme and activates expression of the *hsmRA* operon which leads to the integration of heme into HsmA. Heme-bound HsmA within the membrane shields the bacterium against redox active molecules. After intracellular heme reaches a certain threshold that can no longer be utilized by HsmA, HatR binds heme, derepressing the *hatRT* operon, leading to subsequent efflux of heme through HatT, resulting in a relief from heme toxicity. Together these systems function to maintain an optimal concentration of intracellular heme for *C. difficile* to protect itself against the stressors of the host and achieve full pathogenicity.

The inflamed gut contains a plethora of environmental, microbiota, and host mediated stressors [9, 87, 88]. In addition to heme toxicity at the host pathogen interface, *C. difficile* as an obligate anaerobe encounters oxidative stress in various forms ranging from oxygenation of the colonic epithelium due to inflammation and ROS produced by host immune cells (Figure 1) [9, 89]. The HsmA-dependent decrease of oxidative stress may be the result of a serendipitous evolutionary event, as heme toxicity and oxidative stress coincide temporally. The mechanism by

which HsmA protects against oxidative stress remains unknown. HsmA may function to enzymatically convert a radical species into a harmless form or it may shuttle electrons through the bound heme to act as an electron sink, consistent with its homology to cytochrome b561. The ability of heme-bound HsmA to protect against different classes of antibiotics may be due to the elicitation of oxidative stress by bactericidal antibiotics [84, 90]. While *C. difficile* does not aerobically respire, the altered metabolism induced by antibiotics, as observed in other bacterial species, might generate oxidants that eventually lead to death [91]. This accumulation of oxidants is countered by heme-HsmA complexes, which reduce their concentrations below lethal limits. In total, coating of the membrane with heme-HsmA complexes provides a shield against redox damage produced in the inflamed gastrointestinal tract during infection.

A bioinformatic analysis of the *C. difficile* genome reveals an incomplete heme biosynthesis pathway, as there are no identified ferrochelatase or δ -amino-levulinic acid synthesis genes despite the presence of genes required for siroheme and cobalamin synthesis [37, 38]. These data indicate that *C. difficile* acquires heme exogenously during infection, presumably from the host due to toxin-mediated damage of the gastrointestinal epithelial layer. Additionally, as *C. difficile* cannot use heme as a sole iron source, the limited transcriptional response of *C. difficile* to heme exposure and lack of identified heme cofactor proteins suggests HsmA as the primary protein to utilize heme in this organism [39]. However, the mechanism by which heme enters *C. difficile* remains unknown. The phenomenon of exogenous heme utilization by bacteria that cannot synthesize endogenous heme has been observed [13]. In *Enterococcus faecalis*, exogenous heme induces the production of a heme containing catalase [14]. Numerous lactic acid bacteria, such as *Lactococcus lactis*, acquire exogenous heme to establish aerobic respiratory chains [15]. In this chapter, I demonstrate *C. difficile* uses exogenous heme from the host as a cofactor for HsmA, which provides resistance against antimicrobial stressors.

Heme sequestration to reduce heme toxicity is a conserved strategy in multiple pathogenic organisms [20]. Most sequestration proteins have been described in Gram-negative pathogens and consist of intracellular heme binding proteins such as the HemS family in *Yersinia enterocolitica, Shigella dysenteriae, Pseudomonas aeruginosa,* and *E. coli* [31, 92-94]. These proteins often have additional functions dependent upon the organism such as storage, trafficking, or degradation but all contribute to heme detoxification [20]. HsmA is widespread in the Clostridial species, but it is not limited to this genus nor to anaerobes as orthologs are present in Bacteroidetes and Bacilli as well as the Proteobacteria (Figure 26). In several *Bacillus cereus* species, a physical clustering exists between genes encoding an ortholog of HsmA and the heme efflux pump HrtAB suggesting evolutionary pressure to genetically cluster heme detoxification systems in certain species (Figure 27) [25]. The heme detoxification proteins encoded by *hsmRA* represent a unique mechanism of sequestration that appears to be wide spread among bacteria that interact with vertebrate blood or environmental heme during their lifecycle.

Figure 27 Physical clustering of genes encoding HsmA and the heme efflux proteins HtrAB. *Bacillus cereus* Rock3-44 *hsmA*, (NCBI protein accession number ZP_04216402.1) Abbreviations: *ccdC*, cytochrome c biogenesis protein CcdC; *hrtA*, Heme efflux system ATPase HrtA; *hrtB*, Heme efflux system permease HrtB.

Together, these results demonstrate that *C. difficile* HsmRA capitalizes on the toxininduced inflammation of the gastrointestinal tract to seize heme from the host to protect against antibiotic therapy and immune cell mediated oxidative stress produced at the host-pathogen interface (Figure 1). The primary treatment of CDI in patients is a vancomycin regimen where 20% of patients have recurrent infection resulting in additional antibiotic treatment or, ultimately, a fecal microbiota transfer [6]. In a murine model of relapse CDI, the *hsmR::CT* and *hsmA::CT* mutant strains were significantly more sensitive to vancomycin treatment. These data provide support for the development of a drug targeting HsmR or HsmA as a therapy for CDI that can be used in combination with these antibiotics. Further studies will elucidate the biochemical mechanisms of HsmA induced protection against oxidative stress in *C. difficile* and potentially other organisms.

CHAPTER IV

SUMMARY AND FUTURE DIRECTIONS

Heme sensing, utilization, and detoxification in C. difficile

C. difficile is a formidable gastrointestinal pathogen that has evolved an arsenal of mechanisms to thrive in the host during infection [4, 9]. Upon colonization of the colon, *C. difficile* causes severe damage to the gastrointestinal epithelium through the production of the toxins TcdA and TcdB [4]. The resulting damage causes perforations in the gut leading to fluid secretion, translocation of erythrocytes into the lumen, and neutrophil recruitment to the site of infection [9]. Despite the antimicrobial molecules and stressors produced at the host-pathogen interface, *C. difficile* disease can progress ultimately leading to death [3]. Understanding the mechanisms *C. difficile* utilizes to survive the harsh environment of the host may prove to be critical to the development of future therapies towards this urgent public health threat.

A primary focus of my dissertation was to demonstrate *C. difficile* encounters heme stress during infection and identify the molecular mechanisms this pathogen utilizes to maintain heme homeostasis. In chapter II, I employed MALDI-IMS to visualize a high concentration of hemoglobin and therefore heme at sites of inflammation and damage in the murine cecum as a result of *C. difficile* infection. I further identified heme is toxic to *C. difficile* and *C. difficile* adapts to heme toxicity if exposed to a non-lethal heme concentration prior to exposure to higher concentrations. To reveal the genes encoding for proteins involved in this adaptation, I performed an RNA-seq comparing *C. difficile* treated with a sub-toxic concentration of heme to an untreated control. These data led to the identification and naming of the *hatRT* operon. This operon encodes for a TetR-family transcriptional regulator (HatR) and a major facilitator superfamily transporter

(HatT). The gene products encoded by this operon sense heme by HatR binding and detoxify excess intracellular heme by HatT mediated efflux. To my knowledge this is the first identified heme efflux system described in an obligate anaerobe. A strain with *hatT* inactivated was further identified to have a toxin-independent reduction in pathogenicity in a mouse model of CDI establishing the importance of heme detoxification during infection. Despite this reduction in pathogenicity with the absence of *hatT*, *C. difficile* strains fully colonize the mice which led to the hypothesis that *C. difficile* contains additional mechanisms of heme detoxification.

In chapter III, I returned to the RNA-seq performed in chapter II to identify other candidate genes involved in heme homeostasis. I identified and named the two most transcriptionally increased genes the hsmRA operon. This operon encodes for a MarR-family transcriptional regulator (HsmR) and a membrane protein with homology to a cytochrome b561 (HsmA). I discovered HsmR senses heme through binding which activates the expression of the hsmRA operon where HsmA reduces heme toxicity through sequestration. Furthermore, I revealed the transcriptional response of C. difficile to a brief exposure of heme limited to the hsmRA and hatRT operons. Given the homology of HsmA to cytochromes, I hypothesized that HsmA uses heme as a cofactor for other important functions. As C. difficile does not respire and cannot use heme as a sole iron source, I investigated if heme-bound HsmA protects against redox active molecules. I discovered when the WT strain was treated with heme there was a protective effect against ROS whereas strains lacking either hsmR or hsmA displayed an increased sensitive to redox stress in the presence of heme. Expressing HsmA in a strain of S. aureus lacking both SOD enzymes revealed a reduction in detected oxidative stress when treated with the superoxide generating molecule paraquat. With the theory that many antibiotics kill bacteria through the generation of ROS, I investigated if HsmA provided protection against the clinically relevant antibiotics vancomycin

and metronidazole. I discovered that in the presence of heme *C. difficile* is more resistant to both antibiotics and this protection is mediated by HsmA. The protection provided by HsmA extended to a murine model of relapse infection as strains with *hsmR* or *hsmA* inactivated have increased sensitivity to vancomycin treatment and reduced colonization persistence. My results define a mechanism exploited by *C. difficile* to repurpose toxic heme liberated within the inflamed gastrointestinal tract as a shield against antimicrobial compounds encountered at the host-pathogen interface.

With the results herein I developed our current model of heme homeostasis in *C. difficile*. HsmR senses low concentrations of heme and activates expression of the *hsmRA* operon which leads to the integration of heme into HsmA. Heme bound HsmA within the membrane shields the bacterium against redox active molecules. After intracellular heme reaches a certain threshold that can no longer be utilized by HsmA, HatR binds heme depressing the *hatRT* operon leading to subsequent efflux of heme through HatT resulting in a relief from heme toxicity. Together these systems function to maintain an optimal concentration of intracellular heme for *C. difficile* to protect itself against the stressors of the host and achieve full pathogenicity (Figure 28). My results set the stage for the development of therapeutic interventions to target these bacterial-specific systems.

Figure 28 Heme sensing, utilization, and detoxification in *C. difficile.* Host heme is sensed by HsmR and incorporated into HsmA, providing protection against oxidative stress produced by host immune cells and environment. Upon reaching toxic intracellular concentrations, HatR binds heme depressing the *hatRT* operon and leading to subsequent efflux of heme by HatT.

Defining anaerobic heme toxicity in C. difficile

Many aspects of heme entry and toxicity remain unknown in C. difficile. My work presented in this dissertation demonstrated the ability of heme to enter the cytoplasm of C. difficile but did not identify a dedicated mechanism of import. The sole genes upregulated to a brief exposure of heme were the *hsmRA* and *hatRT* operons suggesting if a dedicated mechanism of transport exists, it may be through a non-specific transporter or does not display increased transcription in the presence of heme. In order to test whether the accumulation of heme within the cytoplasm is due to passive diffusion of heme through the membrane or through a protein mediated mechanism, a transposon sequencing experiment utilizing a heme sensitive screening should be employed. If the mechanism is passive diffusion through the membrane, these data may suggest a primary mediator of toxicity would result from membrane damage and disruption. Furthermore, an understanding of heme toxicity in an anaerobic environment is far from complete and could be gained from additional investigation into the transcriptional response of C. difficile to heme. In chapters II and III, I provided data from two RNA-seq experiments differing in the amount of time C. difficile was exposed to heme. A brief exposure of heme solely increased the transcription of 4 genes compared to the 245 transcriptionally increased genes when constantly exposed to heme throughout growth. This lends to the identification of secondary pathways that are activated in response to persistent heme exposure. Additional RNA-seq experiments or targeted transcriptional analysis of intermediate time points of exposure could reveal secondary responsive genes as well as identify mechanisms of anaerobic heme toxicity.

Structural and mechanistic investigation of HatRT and HsmRA

In this work I have assigned functions of heme sensing, utilization, and detoxification to the HatRT and HsmRA protein systems however, the enzymatic and biochemical mechanisms of these functions are not fully defined. Further investigation is required to understand how HatR and HsmR coordinate heme and the resulting modification in structure after binding that allows for alteration in DNA-binding affinity. Additionally, investigations into the fates of these regulators after binding heme may reveal other roles outside of regulation such as heme trafficking to either HatT or HsmA.

As with most heme efflux transporters, it is not known if HatT transports heme or some derivative thereof. The heme could be contained in a protein, trapped within the membrane, or free in the cytoplasm. Furthermore, the mechanism of heme efflux of HatT is unknown. HatT is a member of the major facilitator superfamily of transporters, which primarily utilize a rocker-switch mechanism to facilitate the transfer of a molecule from one side of a membrane to another which is dependent on specific residues in the binding cavity [95]. Investigations into the involved residues would elucidate the specificity and reveal the mechanism of efflux. The generation of a crystal or Cryo-EM structure in the presence and absence of heme would provide an understand of how this transporter functions and provide the basis for additional investigations in other potential interacting proteins.

The ability of HsmA to reduce oxidative stress provides a potential paradigm of a heme utilizing protein that protect against oxidative stress in bacteria. The mechanism of protection has not been defined. I demonstrated in chapter III that HsmA binds heme however, how the bound heme interacts with oxidative species was not determined. Specific analytical assays involving electrochemical probes and artificial membranes could be utilized with the purified recombinant
HsmA to reveal the flow of electrons and if enzymatic products are produced. Furthermore, identifying the specific residues involved with heme binding and potential enzymatic activity would mechanistically reveal how HsmA protects against redox active molecules. These studies could be expanded to other clostridial and bacterial species that contain HsmA orthologs to demonstrate this protein as a conserved mechanism to reduce oxidative stress. Taken together, gaining a greater understanding of how HatRT and HsmRA function at a structural and molecular level could provide ideal targets for therapeutic design.

Further elucidation of the contribution of HatRT and HsmRA to C. difficile pathogenicity

The investigation of heme sensing, utilization, and detoxification in *C. difficile* pathogenicity presented in this work demonstrated the importance of these systems during infection. However, I was unable to fully define the contribution of both HatRT and HsmRA systems to *C. difficile* pathogenicity as I was unsuccessful at creating a strain with HatT and HsmA inactivated due to the limited ability of current genetic tools for *C. difficile*. Advanced genetic tools are currently under development that may lead to the generation of a *hatT* and *hsmR* double mutant strain. I hypothesize that this strain would be severely defective in persistence and display significantly reduced pathogenicity in the inflamed gastrointestinal tract in the acute murine model of CDI. Moreover, the strain lacking *hsmA* displays increased sensitivity to vancomycin therefore I hypothesize that a double mutant would be unable to recover after antibiotic treatment in the relapse murine model of CDI. An investigation into different models of infection, such as the golden Syrian hamster model, could reveal additional contributions of HatT and HsmA to infection.

A strain lacking HatT was able to fully colonize the inflamed gastrointestinal tract at a cost of reduced pathogenicity without a reduction in toxin titer. This observation suggests that either C. difficile directly alters its pathogenicity to compensate for the inability to fully detoxify heme or that the inability to efflux heme changes the environment or the microbiota during infection. To investigate the hypothesis that C. difficile directly modifies pathogenicity, a NanoString assay with a specific probes to investigate virulence, motility, and stress response proteins on infected cecal contents comparing *hatT::CT* to the WT strain would reveal transcriptional modifications during infection. Furthermore, the physical location of C. difficile specifically regarding the proximity to the gastrointestinal epithelial cells has not previously been defined. Investigations of the physical space that *hatT::CT* occupies utilizing fluorescent microscopy of infected mouse ceca with probes specific for *C. difficile* could demonstrate *C. difficile* reduces the potential exposure to heme by distancing itself from the sites of damage. This may also account for the reduction in observed pathology despite the consistent level of toxin being produced. Alternatively, heme is a soughtafter resource of many different bacterial species and if HatT transports intact heme, I hypothesize the inability to efflux heme would shape the structure of the microbiota. A 16s sequencing experiment of mice infected with the *hatT::CT* strain compared to mice infected with the WT strain may reveal significantly different distributions of the microbiota. As the composition of the microbiota often directly correlates to disease state, the reduction of this valuable resource may prevent harmful members of the microbiota from blooming and increasing inflammation. Another hypothesis is the host is reacting to the free heme that is transported by HatT and induces additional inflammation. Luminex or other analysis of cytokines and chemokines produced in the hatT::CT mouse cecum compared to mice infected with the WT strain would identify a differential host response that is a cause of altered pathology.

In chapter III I demonstrated the ability of HsmA to reduce oxidative stress in the presence of heme. Previous studies have shown that the strain used in this work, R20291, is more sensitive to oxygen concentrations than other C. difficile strains such as 630 [96]. However, none of these studies investigated this sensitivity after the bacteria had been exposed to heme. A hypothesis is that the observed strain to strain differences after exposure to oxygen is dependent on the presence of heme and HsmA. To test this, multiple strains of C. difficile would be treated with heme prior to exposure of atmospheric oxygen and their survival and cellular oxidative stress measured. This assay could be expanded to use strains obtained from patients at Vanderbilt to understand if this utilization of heme to protect against oxidative stress is a universal phenomenon in C. difficile. Additionally, if there are variations between different patient isolates these data could be linked to the severity of infection observed in the patients. During C. difficile infection the oxygen levels in the gastrointestinal tract increase with the severity of inflammation. In chapter III, I tested the ability of HsmA to reduce redox active molecules in an anaerobic environment as well as in reduced media exposed to atmospheric oxygen. Considering C. difficile would experience high concentrations of heme after toxin mediated inflammation has begun to oxygenate the gut, I hypothesize that HsmA has evolved to optimally function at a certain concentration of oxygen. To test this, I would measure survival and cellular oxidative stress of C. difficile treated with heme at varying concentrations of oxygen in a hypoxia chamber. Furthermore, I would perform these assays in the presence of antibiotics and other redox generating molecules to elucidate the maximal protection provided by HsmA. In chapter III, I discuss how HsmA may additionally provide protection against immune mediators during infection. This ability was not directly investigated in this work. However, neutrophil killing assays have not been successfully designed for R20291 due to the high sensitivity of this strain to oxygen. If the observed protection of oxidative stress by

HsmA extends to more aerotolerant strains, I hypothesize treating *C. difficile* with heme would increase the resistance to killing by neutrophils. These data would provide a facet of the ability of *C. difficile* to maintain high bacterial densities in the inflamed colon despite the attempt of pathogen clearance by innate immune cells. Taken together, further defining the contribution of HatRT and HsmRA to *C. difficile* pathogenesis may reveal critical aspects of infection and an overall understanding of how *C. difficile* survives in the inflamed gastrointestinal tract during infection.

References

 Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of *Clostridium difficile* infection in the United States. N Engl J Med. 2015;372(9):825-34. doi: 10.1056/NEJMoa1408913. PubMed PMID: 25714160.

2. Abt MC, McKenney PT, Pamer EG. *Clostridium difficile* colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016. doi: 10.1038/nrmicro.2016.108. PubMed PMID: 27573580.

3. Rupnik M, Wilcox MH, Gerding DN. *Clostridium difficile* infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;7(7):526-36. doi:

10.1038/nrmicro2164. PubMed PMID: 19528959.

4. Shen A. *Clostridium difficile* toxins: mediators of inflammation. J Innate Immun.
2012;4(2):149-58. Epub 2012/01/10. doi: 10.1159/000332946. PubMed PMID: 22237401;
PubMed Central PMCID: PMCPMC3388264.

Guery B, Galperine T, Barbut F. *Clostridioides difficile*: diagnosis and treatments. BMJ.
 2019;366:14609. Epub 2019/08/20. doi: 10.1136/bmj.14609. PubMed PMID: 31431428.

Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of *Clostridium difficile* infection: a systematic review. J Clin Gastroenterol. 2014;48(8):693-702.
doi: 10.1097/MCG.0000000000046. PubMed PMID: 24440934.

7. Carter GP, Chakravorty A, Pham Nguyen TA, Mileto S, Schreiber F, Li L, et al. Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during *Clostridium difficile* Infections. MBio. 2015;6(3):e00551. doi: 10.1128/mBio.00551-15. PubMed PMID: 26037121; PubMed Central PMCID:

PMCPMC4453007.

8. Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Haslam DB, Haslam D, et al. *Clostridium difficile* Toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism. PLoS Pathog. 2012;8(12):e1003072. doi:

10.1371/journal.ppat.1003072. PubMed PMID: 23236283; PubMed Central PMCID: PMCPMC3516567.

9. Péchiné S, Collignon A. Immune responses induced by *Clostridium difficile*. Anaerobe.
 2016;41:68-78. Epub 2016/04/21. doi: 10.1016/j.anaerobe.2016.04.014. PubMed PMID:
 27108093.

 Ahlquist DA, McGill DB, Schwartz S, Taylor WF, Owen RA. Fecal blood levels in health and disease. A study using HemoQuant. N Engl J Med. 1985;312(22):1422-8. doi: 10.1056/NEJM198505303122204. PubMed PMID: 3873009.

11. Aich A, Freundlich M, Vekilov PG. The free heme concentration in healthy human erythrocytes. Blood Cells Mol Dis. 2015;55(4):402-9. Epub 2015/09/21. doi:

10.1016/j.bcmd.2015.09.003. PubMed PMID: 26460266; PubMed Central PMCID: PMCPMC4860002.

Ng LG, Ostuni R, Hidalgo A. Heterogeneity of neutrophils. Nat Rev Immunol.
 2019;19(4):255-65. doi: 10.1038/s41577-019-0141-8. PubMed PMID: 30816340.

13. Yamamoto Y, Poyart C, Trieu-Cuot P, Lamberet G, Gruss A, Gaudu P. Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence. Mol Microbiol. 2005;56(2):525-34. doi: 10.1111/j.1365-2958.2005.04555.x. PubMed PMID: 15813741.

Frankenberg L, Brugna M, Hederstedt L. *Enterococcus faecalis* heme-dependent
catalase. J Bacteriol. 2002;184(22):6351-6. doi: 10.1128/jb.184.22.6351-6356.2002. PubMed
PMID: 12399505; PubMed Central PMCID: PMCPMC151946.

Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, et al.
 Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotechnol. 2011;22(2):143-9.
 Epub 2011/01/04. doi: 10.1016/j.copbio.2010.12.001. PubMed PMID: 21211959.

Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, et al.
 Passage of heme-iron across the envelope of *Staphylococcus aureus*. Science.

2003;299(5608):906-9. doi: 10.1126/science.1081147. PubMed PMID: 12574635.

17. Maresso AW, Garufi G, Schneewind O. *Bacillus anthracis* secretes proteins that mediate heme acquisition from hemoglobin. PLoS Pathog. 2008;4(8):e1000132. doi:

10.1371/journal.ppat.1000132. PubMed PMID: 18725935; PubMed Central PMCID: PMCPMC2515342.

 Létoffé S, Nato F, Goldberg ME, Wandersman C. Interactions of HasA, a bacterial haemophore, with haemoglobin and with its outer membrane receptor HasR. Mol Microbiol. 1999;33(3):546-55. PubMed PMID: 10417645.

 Lewis LA, Gray E, Wang YP, Roe BA, Dyer DW. Molecular characterization of *hpuAB*, the haemoglobin-haptoglobin-utilization operon of *Neisseria meningitidis*. Mol Microbiol. 1997;23(4):737-49. PubMed PMID: 9157245.

Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol.
 2016. doi: 10.1016/j.jmb.2016.03.018. PubMed PMID: 27019298.

Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the
 Fenton reaction in vivo and in vitro. Science. 1988;240(4852):640-2. PubMed PMID: 2834821.

 Wakeman CA, Hammer ND, Stauff DL, Attia AS, Anzaldi LL, Dikalov SI, et al. Menaquinone biosynthesis potentiates haem toxicity in *Staphylococcus aureus*. Mol Microbiol. 2012;86(6):1376-92. Epub 2012/10/24. doi: 10.1111/mmi.12063. PubMed PMID: 23043465; PubMed Central PMCID: PMCPMC3524387.

23. Nitzan Y, Wexler HM, Finegold SM. Inactivation of anaerobic bacteria by various photosensitized porphyrins or by hemin. Curr Microbiol. 1994;29(3):125-31. PubMed PMID: 7765091.

24. Nir U, Ladan H, Malik Z, Nitzan Y. In vivo effects of porphyrins on bacterial DNA. J Photochem Photobiol B. 1991;11(3-4):295-306. PubMed PMID: 1816365.

25. Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE, Iturregui J, et al. A *Staphylococcus aureus* regulatory system that responds to host heme and modulates virulence.
Cell Host Microbe. 2007;1(2):109-19. doi: 10.1016/j.chom.2007.03.001. PubMed PMID: 18005689; PubMed Central PMCID: PMCPMC2083280.

Stauff DL, Skaar EP. *Bacillus anthracis* HssRS signalling to HrtAB regulates haem
 resistance during infection. Mol Microbiol. 2009;72(3):763-78. doi: 10.1111/j.1365 2958.2009.06684.x. PubMed PMID: 19400785; PubMed Central PMCID: PMCPMC2891670.

27. Lechardeur D, Cesselin B, Liebl U, Vos MH, Fernandez A, Brun C, et al. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in *Lactococcus lactis*. J Biol Chem. 2012;287(7):4752-8. doi:

10.1074/jbc.M111.297531. PubMed PMID: 22084241; PubMed Central PMCID: PMCPMC3281666.

28. Fernandez A, Lechardeur D, Derré-Bobillot A, Couvé E, Gaudu P, Gruss A. Two coregulated efflux transporters modulate intracellular heme and protoporphyrin IX availability in

Streptococcus agalactiae. PLoS Pathog. 2010;6(4):e1000860. doi:

10.1371/journal.ppat.1000860. PubMed PMID: 20421944; PubMed Central PMCID: PMCPMC2858704.

Maharshak N, Ryu HS, Fan TJ, Onyiah JC, Schulz S, Otterbein SL, et al. *Escherichia coli* heme oxygenase modulates host innate immune responses. Microbiol Immunol.
 2015;59(8):452-65. doi: 10.1111/1348-0421.12282. PubMed PMID: 26146866; PubMed Central PMCID: PMCPMC4582649.

30. Lansky IB, Lukat-Rodgers GS, Block D, Rodgers KR, Ratliff M, Wilks A. The cytoplasmic heme-binding protein (PhuS) from the heme uptake system of *Pseudomonas aeruginosa* is an intracellular heme-trafficking protein to the delta-regioselective heme oxygenase. J Biol Chem. 2006;281(19):13652-62. doi: 10.1074/jbc.M600824200. PubMed PMID: 16533806.

 Wyckoff EE, Lopreato GF, Tipton KA, Payne SM. *Shigella dysenteriae* ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol.
 2005;187(16):5658-64. doi: 10.1128/JB.187.16.5658-5664.2005. PubMed PMID: 16077111; PubMed Central PMCID: PMCPMC1196095.

32. Stauff DL, Torres VJ, Skaar EP. Signaling and DNA-binding activities of the *Staphylococcus aureus* HssR-HssS two-component system required for heme sensing. J Biol Chem. 2007;282(36):26111-21. doi: 10.1074/jbc.M703797200. PubMed PMID: 17635909.

33. Hagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM. Resistance of *Neisseria gonorrhoeae* to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology. 1995;141 (Pt 3):611-22. doi: 10.1099/13500872-141-3-611. PubMed PMID: 7711899.

34. Thompson JM, Jones HA, Perry RD. Molecular characterization of the hemin uptake locus (*hmu*) from *Yersinia pestis* and analysis of *hmu* mutants for hemin and hemoprotein utilization. Infect Immun. 1999;67(8):3879-92. PubMed PMID: 10417152; PubMed Central PMCID: PMCPMC96668.

35. Skaar EP, Gaspar AH, Schneewind O. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of *Staphylococcus aureus*. J Biol Chem. 2004;279(1):436-43. doi:

10.1074/jbc.M307952200. PubMed PMID: 14570922.

 LaMattina JW, Nix DB, Lanzilotta WN. Radical new paradigm for heme degradation in *Escherichia coli* O157:H7. Proc Natl Acad Sci U S A. 2016;113(43):12138-43. Epub
 2016/10/10. doi: 10.1073/pnas.1603209113. PubMed PMID: 27791000; PubMed Central
 PMCID: PMCPMC5087033.

37. Moore SJ, Warren MJ. The anaerobic biosynthesis of vitamin B12. Biochem Soc Trans.
2012;40(3):581-6. doi: 10.1042/BST20120066. PubMed PMID: 22616870.

 Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, et al. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev. 2017;81(1). Epub 2017/01/25. doi: 10.1128/MMBR.00048-16. PubMed PMID: 28123057; PubMed Central PMCID: PMCPMC5312243.

39. Cernat RC, Scott KP. Evaluation of novel assays to assess the influence of different iron sources on the growth of *Clostridium difficile*. Anaerobe. 2012;18(3):298-304. doi:

10.1016/j.anaerobe.2012.04.007. PubMed PMID: 22554901.

40. Jenior ML, Leslie JL, Young VB, Schloss PD. *Clostridium difficile* Colonizes Alternative Nutrient Niches during Infection across Distinct Murine Gut Microbiomes. mSystems.

2017;2(4). Epub 2017/07/25. doi: 10.1128/mSystems.00063-17. PubMed PMID: 28761936; PubMed Central PMCID: PMCPMC5527303.

 Cartman ST, Minton NP. A mariner-based transposon system for in vivo random mutagenesis of *Clostridium difficile*. Appl Environ Microbiol. 2010;76(4):1103-9. Epub 2009/12/18. doi: 10.1128/AEM.02525-09. PubMed PMID: 20023081; PubMed Central PMCID: PMCPMC2820977.

42. Francis MB, Allen CA, Shrestha R, Sorg JA. Bile acid recognition by the *Clostridium difficile* germinant receptor, CspC, is important for establishing infection. PLoS Pathog.
2013;9(5):e1003356. doi: 10.1371/journal.ppat.1003356. PubMed PMID: 23675301; PubMed Central PMCID: PMCPMC3649964.

43. Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, et al. Comparative genome and phenotypic analysis of *Clostridium difficile* 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 2009;10(9):R102. doi: 10.1186/gb-2009-10-9-r102. PubMed PMID: 19781061; PubMed Central PMCID: PMCPMC2768977.

44. Hanahan D. Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol.
1983;166(4):557-80. PubMed PMID: 6345791.

45. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome sequence of *Escherichia coli* K-12. Science. 1997;277(5331):1453-62. PubMed PMID: 9278503.

46. Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH, et al. Genome sequences of *Escherichia coli* B strains REL606 and BL21(DE3). J Mol Biol. 2009;394(4):644-52. Epub 2009/09/26. doi: 10.1016/j.jmb.2009.09.052. PubMed PMID: 19786035.

47. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289-300.

48. Nairn BL, Lonergan ZR, Wang J, Braymer JJ, Zhang Y, Calcutt MW, et al. The Response of *Acinetobacter baumannii* to Zinc Starvation. Cell Host Microbe. 2016;19(6):826-36. doi: 10.1016/j.chom.2016.05.007. PubMed PMID: 27281572; PubMed Central PMCID: PMCPMC4901392.

49. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395. Epub 2010/07/23. doi: 10.1186/1471-2105-11-395. PubMed PMID: 20650010; PubMed Central PMCID: PMCPMC2918584.

50. Winston JA, Thanissery R, Montgomery SA, Theriot CM. Cefoperazone-treated Mouse Model of Clinically-relevant *Clostridium difficile* Strain R20291. J Vis Exp. 2016;(118). Epub 2016/12/10. doi: 10.3791/54850. PubMed PMID: 28060346; PubMed Central PMCID: PMCPMC5226375.

51. Zackular JP, Moore JL, Jordan AT, Juttukonda LJ, Noto MJ, Nicholson MR, et al.
Dietary zinc alters the microbiota and decreases resistance to *Clostridium difficile* infection. Nat
Med. 2016. doi: 10.1038/nm.4174. PubMed PMID: 27668938.

52. Theriot CM, Koumpouras CC, Carlson PE, Bergin II, Aronoff DM, Young VB.
Cefoperazone-treated mice as an experimental platform to assess differential virulence of *Clostridium difficile* strains. Gut Microbes. 2011;2(6):326-34. Epub 2011/11/01. doi: 10.4161/gmic.19142. PubMed PMID: 22198617; PubMed Central PMCID: PMCPMC3337121.

53. Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69(23):4751-60. PubMed PMID: 9406525.

54. Moore JL, Caprioli RM, Skaar EP. Advanced mass spectrometry technologies for the study of microbial pathogenesis. Curr Opin Microbiol. 2014;19:45-51. doi:

10.1016/j.mib.2014.05.023. PubMed PMID: 24997399; PubMed Central PMCID:

PMCPMC4125470.

55. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP. The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods. 2007;70(3):452-64. doi: 10.1016/j.mimet.2007.05.021. PubMed PMID: 17658189.

56. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev. 2005;69(2):326-56. doi: 10.1128/MMBR.69.2.326-356.2005. PubMed PMID: 15944459; PubMed Central PMCID: PMCPMC1197418.

57. Stryer L. A conformation-dependent Cotton effect in the Soret band of hemin:poly-Llysine. Biochim Biophys Acta. 1961;54:395-7. PubMed PMID: 13917913.

58. Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. *Clostridium difficile* virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes. 2014;5(5):579-93. doi: 10.4161/19490976.2014.969632. PubMed PMID: 25483328; PubMed Central PMCID: PMCPMC4615314.

59. Stauff DL, Bagaley D, Torres VJ, Joyce R, Anderson KL, Kuechenmeister L, et al. *Staphylococcus aureus* HrtA is an ATPase required for protection against heme toxicity and

prevention of a transcriptional heme stress response. J Bacteriol. 2008;190(10):3588-96. doi: 10.1128/JB.01921-07. PubMed PMID: 18326576; PubMed Central PMCID: PMCPMC2395006.

 Sawai H, Yamanaka M, Sugimoto H, Shiro Y, Aono S. Structural basis for the transcriptional regulation of heme homeostasis in *Lactococcus lactis*. J Biol Chem.
 2012;287(36):30755-68. doi: 10.1074/jbc.M112.370916. PubMed PMID: 22798069; PubMed Central PMCID: PMCPMC3436319.

61. Wakeman CA, Stauff DL, Zhang Y, Skaar EP. Differential activation of *Staphylococcus aureus* heme detoxification machinery by heme analogues. J Bacteriol. 2014;196(7):1335-42.
doi: 10.1128/JB.01067-13. PubMed PMID: 24443529; PubMed Central PMCID: PMCPMC3993332.

Nobles CL, Green SI, Maresso AW. A product of heme catabolism modulates bacterial function and survival. PLoS Pathog. 2013;9(7):e1003507. Epub 2013/07/25. doi:
10.1371/journal.ppat.1003507. PubMed PMID: 23935485; PubMed Central PMCID:
PMCPMC3723568.

63. Wilks A, Schmitt MP. Expression and characterization of a heme oxygenase (Hmu O) from *Corynebacterium diphtheriae*. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem. 1998;273(2):837-41. PubMed PMID: 9422739.

64. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968;61(2):748-55. PubMed PMID: 4386763; PubMed Central PMCID: PMCPMC225223.

65. Knippel RJ, Zackular JP, Moore JL, Celis AI, Weiss A, Washington MK, et al. Heme sensing and detoxification by HatRT contributes to pathogenesis during *Clostridium difficile* infection. PLoS Pathog. 2018;14(12):e1007486. Epub 2018/12/21. doi:

10.1371/journal.ppat.1007486. PubMed PMID: 30576368; PubMed Central PMCID: PMCPMC6303022.

Kreiswirth BN, Löfdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, et al.
The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage.
Nature. 1983;305(5936):709-12. doi: 10.1038/305709a0. PubMed PMID: 6226876.

67. Duthie ES, Lorenz LL. Staphylococcal coagulase; mode of action and antigenicity. J Gen Microbiol. 1952;6(1-2):95-107. doi: 10.1099/00221287-6-1-2-95. PubMed PMID: 14927856.

68. Attia AS, Benson MA, Stauff DL, Torres VJ, Skaar EP. Membrane damage elicits an immunomodulatory program in *Staphylococcus aureus*. PLoS Pathog. 2010;6(3):e1000802.
Epub 2010/03/12. doi: 10.1371/journal.ppat.1000802. PubMed PMID: 20300601; PubMed Central PMCID: PMCPMC2837406.

69. Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, et al. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of *Staphylococcus aureus*. Cell Host Microbe. 2011;10(2):158-64. doi:

10.1016/j.chom.2011.07.004. PubMed PMID: 21843872; PubMed Central PMCID: PMCPMC3157011.

Choby JE, Grunenwald CM, Celis AI, Gerdes SY, DuBois JL, Skaar EP. HemX
 Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis. MBio.
 2018;9(1). Epub 2018/02/06. doi: 10.1128/mBio.02287-17. PubMed PMID: 29437922; PubMed
 Central PMCID: PMCPMC5801465.

71. Schneewind O, Model P, Fischetti VA. Sorting of protein A to the staphylococcal cell wall. Cell. 1992;70(2):267-81. doi: 10.1016/0092-8674(92)90101-h. PubMed PMID: 1638631.

Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to
PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids
Res. 2017;45(D1):D535-D42. Epub 2016/11/29. doi: 10.1093/nar/gkw1017. PubMed PMID:
27899627; PubMed Central PMCID: PMCPMC5210524.

73. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256-W9. doi: 10.1093/nar/gkz239. PubMed PMID: 30931475; PubMed Central PMCID: PMCPMC6602468.

74. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42(Database issue):D206-14. Epub 2013/11/29. doi: 10.1093/nar/gkt1226. PubMed PMID: 24293654; PubMed Central PMCID: PMCPMC3965101.

75. Seekatz AM, Theriot CM, Molloy CT, Wozniak KL, Bergin IL, Young VB. Fecal Microbiota Transplantation Eliminates *Clostridium difficile* in a Murine Model of Relapsing Disease. Infect Immun. 2015;83(10):3838-46. Epub 2015/07/13. doi: 10.1128/IAI.00459-15. PubMed PMID: 26169276; PubMed Central PMCID: PMCPMC4567621.

76. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33(17):5691-702. Epub 2005/10/07. doi: 10.1093/nar/gki866. PubMed PMID: 16214803; PubMed Central PMCID: PMCPMC1251668.

77. Grove A. MarR family transcription factors. Curr Biol. 2013;23(4):R142-3. doi:
10.1016/j.cub.2013.01.013. PubMed PMID: 23428319.

 Bérczi A, Zimányi L. The trans-membrane cytochrome b561 proteins: structural information and biological function. Curr Protein Pept Sci. 2014;15(8):745-60. PubMed PMID: 25163754.

79. Asard H, Barbaro R, Trost P, Bérczi A. Cytochromes b561: ascorbate-mediated transmembrane electron transport. Antioxid Redox Signal. 2013;19(9):1026-35. doi:
10.1089/ars.2012.5065. PubMed PMID: 23249217; PubMed Central PMCID:

PMCPMC3763232.

Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915-28. Epub 2018/04/18.
doi: 10.1083/jcb.201708007. PubMed PMID: 29669742; PubMed Central PMCID: PMCPMC5987716.

81. Wu Y, Vulić M, Keren I, Lewis K. Role of oxidative stress in persister tolerance.
Antimicrob Agents Chemother. 2012;56(9):4922-6. Epub 2012/07/09. doi: 10.1128/AAC.0092112. PubMed PMID: 22777047; PubMed Central PMCID: PMCPMC3421885.

 Karavolos MH, Horsburgh MJ, Ingham E, Foster SJ. Role and regulation of the superoxide dismutases of *Staphylococcus aureus*. Microbiology. 2003;149(Pt 10):2749-58. doi: 10.1099/mic.0.26353-0. PubMed PMID: 14523108.

Painter KL, Strange E, Parkhill J, Bamford KB, Armstrong-James D, Edwards AM. *Staphylococcus aureus* adapts to oxidative stress by producing H2O2-resistant small-colony variants via the SOS response. Infect Immun. 2015;83(5):1830-44. Epub 2015/02/17. doi: 10.1128/IAI.03016-14. PubMed PMID: 25690100; PubMed Central PMCID: PMCPMC4399076.

Van Acker H, Coenye T. The Role of Reactive Oxygen Species in Antibiotic-Mediated
Killing of Bacteria. Trends Microbiol. 2017;25(6):456-66. Epub 2017/01/12. doi:
10.1016/j.tim.2016.12.008. PubMed PMID: 28089288.

 Edwards DI. Nitroimidazole drugs--action and resistance mechanisms. II. Mechanisms of resistance. J Antimicrob Chemother. 1993;31(2):201-10. doi: 10.1093/jac/31.2.201. PubMed
 PMID: 8463167.

86. Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP. Importance of toxin A, toxin B, and CDT in virulence of an epidemic *Clostridium difficile* strain. J Infect Dis. 2014;209(1):83-6. doi: 10.1093/infdis/jit426. PubMed PMID: 23935202; PubMed Central PMCID: PMCPMC3864386.

87. Rivera-Chávez F, Lopez CA, Bäumler AJ. Oxygen as a driver of gut dysbiosis. Free
Radic Biol Med. 2017;105:93-101. Epub 2016/09/24. doi: 10.1016/j.freeradbiomed.2016.09.022.
PubMed PMID: 27677568.

Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee IK, Yun BS, et al. Bile Acid 7α-Dehydroxylating Gut Bacteria Secrete Antibiotics that Inhibit *Clostridium difficile*: Role of Secondary Bile Acids. Cell Chem Biol. 2019;26(1):27-34.e4. Epub 2018/10/25. doi: 10.1016/j.chembiol.2018.10.003. PubMed PMID: 30482679; PubMed Central PMCID: PMCPMC6338514.

89. Hill DR, Huang S, Nagy MS, Yadagiri VK, Fields C, Mukherjee D, et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. Elife. 2017;6. Epub 2017/11/07. doi: 10.7554/eLife.29132. PubMed PMID: 29110754; PubMed Central PMCID: PMCPMC5711377.

Lopatkin AJ, Stokes JM, Zheng EJ, Yang JH, Takahashi MK, You L, et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat Microbiol. 2019. Epub 2019/08/26. doi: 10.1038/s41564-019-0536-0. PubMed PMID: 31451773.

91. Pericone CD, Park S, Imlay JA, Weiser JN. Factors contributing to hydrogen peroxide resistance in *Streptococcus pneumoniae* include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the fenton reaction. J Bacteriol. 2003;185(23):6815-25. doi:

10.1128/jb.185.23.6815-6825.2003. PubMed PMID: 14617646; PubMed Central PMCID: PMCPMC262707.

92. Suits MD, Pal GP, Nakatsu K, Matte A, Cygler M, Jia Z. Identification of an *Escherichia coli* O157:H7 heme oxygenase with tandem functional repeats. Proc Natl Acad Sci U S A.
2005;102(47):16955-60. Epub 2005/11/07. doi: 10.1073/pnas.0504289102. PubMed PMID: 16275907; PubMed Central PMCID: PMCPMC1287972.

93. Stojiljkovic I, Hantke K. Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in *Yersinia enterocolitica*. Mol Microbiol. 1994;13(4):719-32. PubMed PMID: 7997183.

94. Marvig RL, Damkiær S, Khademi SM, Markussen TM, Molin S, Jelsbak L. Within-host evolution of *Pseudomonas aeruginosa* reveals adaptation toward iron acquisition from hemoglobin. MBio. 2014;5(3):e00966-14. Epub 2014/05/06. doi: 10.1128/mBio.00966-14.
PubMed PMID: 24803516; PubMed Central PMCID: PMCPMC4010824.

95. Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily. Microbiol Mol Biol Rev.
1998;62(1):1-34. PubMed PMID: 9529885; PubMed Central PMCID: PMCPMC98904.

96. Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and Stress Resistances of *Clostridium difficile*. Front Microbiol. 2016;7:1698. Epub 2016/10/26.

doi: 10.3389/fmicb.2016.01698. PubMed PMID: 27833595; PubMed Central PMCID: PMCPMC5080291.

APPENDIX A

Tables associated with Chapter II

Appendix A Table 1 *C. difficile* R20291 genes transcriptionally upregulated in the presence of heme.

	Fold-change Heme	
	Treated vs Untreated	
Gene Symbol	Media Control	Description
CDR20291_0781	31.78261	putative membrane protein
		MarR-family transcriptional
CDR20291_0782	26.463398	regulator
CDR20291_1227		TetR-family transcriptional
(hatR)	11.18395	regulator
CDR20291_2306	6.155928	conserved hypothetical protein
CDR20291_1226		
(hatT)	5.054025	putative transporter
tcdD	4.6314363	putative transcriptional regulator
		butyrate-acetoacetate CoA-
ctfA	4.446509	transferase subunit A
		putative sugar-phosphate
CDR20291_0433	4.170941	dehydrogenase
		putative oxidoreductase ferredoxin
CDR20291_2321	3.9144623	subunit
CDR20291_1223	3.6944113	putative phage regulatory protein
		D-ornithine aminomutase S
oraS	3.594828	component
11/0	2 402510	putative acetyl-CoA
thIA2	3.492519	acetyltransferase
CDR20291_2801	3.4535594	putative membrane protein
CDR20291_0163	3.4244125	hypothetical protein
CDR20291_0284	3.4145832	conserved hypothetical protein
CDR20291_3277	3.3464322	putative exported protein
CDR20291_1726	3.3368134	hypothetical protein
CDR20291_0391	3.3224375	putative amino acid racemase
acpP	3.1869857	acyl carrier protein
CDR20291 1554	3.136697	putative membrane protein
CDR20291 3464	3.0761995	conjugative transposon protein
CDR20291 1445	3.0670178	hypothetical phage protein
CDR20291_0033	3.0560584	putative membrane protein
		putative cell wall teichoic acid
CDR20291 2677	3.034006	glycosylation protein
CDR20291 0347	3.0311313	hypothetical protein
		stage iii sporulation protein ag
spoIIIAG	3.0204601	flags: precursor
CDR20291 3191	3.0179818	conserved hypothetical protein
CDR20291 0738	2.9525864	hypothetical protein
CDR20291 0739	2.9086928	putative membrane protein
CDR20291_0433 CDR20291_2321 CDR20291_1223 oraS thlA2 CDR20291_2801 CDR20291_0163 CDR20291_0284 CDR20291_3277 CDR20291_0284 CDR20291_0391 acpP CDR20291_1554 CDR20291_1554 CDR20291_1445 CDR20291_0033 CDR20291_0347 spoIIIAG CDR20291_0738 CDR20291_0739	4.170941 3.9144623 3.6944113 3.594828 3.492519 3.4535594 3.4535594 3.4244125 3.3464322 3.3368134 3.3224375 3.1869857 3.136697 3.0761995 3.0670178 3.0560584 3.034006 3.0311313 3.0204601 3.0179818 2.9525864 2.9086928	putative sugar phosphatedehydrogenaseputative oxidoreductase ferredoxinsubunitputative phage regulatory proteinD-ornithine aminomutase Scomponentputative acetyl-CoAacetyltransferaseputative membrane proteinhypothetical proteinconserved hypothetical proteinputative exported proteinputative amino acid racemaseacyl carrier proteinputative membrane proteinhypothetical phage proteinputative cell wall teichoic acidglycosylation proteinhypothetical proteinstage iii sporulation protein agflags: precursorconserved hypothetical proteinhypothetical protein

CDR20291_1810	2.8909168	hypothetical protein
CDR20291_0291	2.8904557	PTS system, IIc component
		putative membrane protein
CDR20291_2194	2.8736017	precursor
CDR20291_0141	2.850998	putative RNA-binding protein
		spermidine/putrescine ABC
_		transporter, substrate-binding
potD	2.8405726	lipoprotein
CDR20291_2335	2.8380623	conserved hypothetical protein
CDR20291_2575	2.8209536	hypothetical protein
ul	2.8027954	putative regulatory protein
CDR20291_1667	2.77625	hypothetical protein
CDR20291_1393	2.7436821	hypothetical protein
CDR20291_0398	2.7361345	putative membrane protein
CDR20291_3511	2.7244775	putative peptidase
		putative hydroxymethylglutaryl-
CDR20291_0728	2.7207413	CoA lyase
CDR20291_0214	2.7207377	putative nitroreductase
CDR20291_2039	2.7174134	conserved hypothetical protein
CDR20291_2727	2.6998487	putative peptidase
CDR20291_2190	2.6926663	putative regulatory protein
CDR20291_2517	2.6859193	putative transcriptional regulator
CDR20291_3465	2.6800773	conjugative transposon protein
CDR20291_1866	2.6749303	conserved hypothetical protein
CDR20291_1658	2.6748435	putative membrane protein
		putative component of D-ornithine
CDR20291_0390	2.6627486	aminomutase
CDR20291_3094	2.6538692	hypothetical protein
CDR20291_2698	2.6518354	conserved hypothetical protein
		putative lipoprotein signal
CDR20291_1823	2.6514072	peptidase
CDD20201 2452	2 (10020	putative collagen-binding surface
CDR20291_3453	2.649938	protein
CDR20291_1078	2.6334527	hypothetical protein
CDR20291_3460	2.6278205	conjugative transposon protein
CDR20291_1073	2.6088905	hypothetical protein
CDR20291_2728	2.6057155	putative membrane protein
CDR20291_3466	2.5999343	putative cell wall hydrolase
CDR20291_0587	2.592949	hypothetical protein
pgmB	2.5752125	beta-phosphoglucomutase
CDR20291_2189	2.5734594	putative repressor
		NAD-dependent shikimate 5-
ydiB	2.5728512	dehydrogenase

CDR20291 0288	2.5664334	PTS system, IIb component
CDR20291 3140	2.555809	PTS system, IIb component
CDR20291 1971	2.5507545	hypothetical protein
CDR20291 0294	2.5414681	putative peptidase
rpmH	2.5404537	50S ribosomal protein L34
CDR20291 1083	2.5396543	putative membrane protein
CDR20291 3153	2.529364	putative membrane protein
CDR20291 1319	2.5218627	putative phage shock protein
CDR20291 3463	2.5192652	conjugative tranposon protein
fdxA	2.517662	ferredoxin
CDR20291_3132	2.504153	hypothetical protein
CDR20291_0409	2.501609	putative hydrolase
CDR20291_1688	2.4785788	putative membrane protein
		putative glutamine
CDR20291_1026	2.4770615	amidotransferase
CDR20291_2775	2.476111	hypothetical protein
CDR20291_1820	2.4603844	hypothetical protein
CDR20291_3053	2.4462643	putative phage-related protein
rpsO	2.431163	30S ribosomal protein S15
		putative lantibiotic ABC
CDR20291_1192	2.419036	transporter, permease protein
CDR20291_0203	2.4166424	conserved hypothetical protein
CDR20291_3113	2.415126	two-component response regulator
CDR20291_2019	2.412923	hypothetical protein
CDR20291_1222	2.409677	putative phage regulatory protein
CDR20291_1430	2.4094286	hypothetical protein
CDR20291_1863	2.4049656	putative membrane protein
CDR20291_1156	2.4041753	hypothetical protein
spoVG	2.4039543	stage V sporulation protein G
CDR20291_1618	2.4028168	conserved hypothetical protein
		putative translation inhibitor
CDR20291_2405	2.4002483	endoribonuclease
CDR20291_1576	2.3943622	hypothetical protein (pseudogene)
C	2 202406	putative subunit of preprotein
secG	2.393480	Cat D family transprintional
CDR20291 3505	2 3905718	regulator
$\frac{\text{CDR20291}_{3303}}{\text{CDR20291}_{2807}}$	2.3903718	hypothetical protein
	2.3003000	nutative phosphonoacetate
phnA	2.3848896	hydrolase
CDR20291 2953	2.384776	putative membrane protein
CDR20291 1949	2.3762958	putative uncharacterized protein

CDR20291_3187A	2.3746626	autoinducer prepeptide
		putative D-alanyl-D-alanine
CDR20291_2396	2.372154	carboxypeptidase
sat	2.36493	streptogramin A acetyltransferase
rpmE	2.359248	50S ribosomal protein L31
CDR20291_1126	2.3415961	conserved hypothetical protein
CDR20291_3110	2.3412015	conserved hypothetical protein
CDR20291 3387	2.336615	conserved hypothetical protein
		putative conjugative transposon
CDR20291_3458	2.3194883	FtsK_SpoIIIE-related protein
		putative oxidoreductase,
CDR20291_2106	2.315871	ferredoxin subunit
cspA	2.3125906	cold shock protein
CDR20291_1336	2.3109813	hypothetical protein
CDR20291_2709	2.3093321	transposase
		putative uncharacterized protein
CDR20291_3285	2.3065357	flags: precursor
CDR20291_3108	2.304577	conserved hypothetical protein
CDR20291_1672	2.2980769	putative arsenate reductase
CDR20291_3448	2.293609	hypothetical protein
		phosphosugar-binding
CDR20291_2916	2.2925122	transcriptional regulator
		putative lantibiotic ABC
CDR20291_1191	2.2901857	transporter, ATP-binding protein
CDR20291_0418	2.289149	hypothetical protein
CDR20291_2712	2.2884893	putative peptidase
CDR20291_2361	2.2881973	putative exported protein
		putative membrane-associated
CDR20291_0155	2.286317	CAAX amino terminal protease
d1	2.2808263	conserved hypothetical protein
CDR20291_3293	2.2803311	putative exported protein
GDD00001 1000	0.0541.000	GntR-family transcriptional
CDR20291_1229	2.2/41683	regulator
CDR20291_2375	2.2706938	putative lipoprotein
CDR20291_3462	2.2694504	conjugative transposon protein
CDR20291_2977	2.2647276	transcription antiterminator
CDR20291_0665	2.2631786	putative exported protein
		D-ornithine aminomutase E
oraE	2.2565958	component
CDR20291_0511	2.253925	conserved hypothetical protein
CDR20291_0775	2.2506297	putative nuclease
glvC	2.2502027	PTS system, IIbc component
CDR20291_3400	2.2420852	putative spore cortex-lytic enzyme

CDR20291_1928	2.2351036	putative membrane protein
		MarR-family transcriptional
CDR20291_1176	2.2335684	regulator
CDR20291_1481	2.2287	conserved hypothetical protein
CDR20291_2499	2.2240226	hypothetical protein
CDR20291_2651	2.2223415	putative lipoprotein
CDR20291_3467	2.2171688	conjugative transposon protein
sspB	2.2168262	small acid-soluble spore protein B
CDR20291_1142	2.2137163	hypothetical protein
		putative phosphateABC
CDR20291_3120	2.21356	transporter, permease protein
spoIIIAA	2.2119963	stage III sporulation protein AA
		conserved hypothetical protein
CDR20291_2808	2.2068152	(fragment)
CDR20291_3504	2.204511	PTS system, IIc component
CDR20291_0543	2.2003973	conserved hypothetical protein
CDR20291_1461	2.19731	holin
CDR20291_3417	2.193156	conserved hypothetical protein
		phosphosugar-binding
glvR	2.1895297	transcriptional regulator
CDR20291_1527	2.1887293	putative membrane protein
CDR20291_0956	2.1862566	hypothetical protein
srlB	2.179912	PTS system, IIa component
		putative two-component system
CDR20291_1707	2.1784844	response regulator
fur	2.1756976	ferric uptake regulation protein
1. 77	0 1745040	putative transcription
	2.1745243	antiterminator
CDR20291_2490	2.1732683	putative response regulator
CDR20291_0560	2.1706605	hypothetical protein
CDR20291_0697	2.1640105	transposase-like protein b
CDD20201 1(20	2 1 (2000 0	putative terrous iron transport
CDR20291_1039	2.1629908	protein A
CDR20201 2087	2 1621017	bydrolase
$CDR20291_2007$	2.1021017	conserved hypothetical protein
$CDR20291_1039$	2.1507782	hypothetical protein
CDI(20271_1714	2.1330003	ribose ABC transporter ATP-
rbsA	2,1556127	binding protein
CDR20291 2917	2 1528287	putative membrane protein
CDR20291 3064	2.1512	putative membrane protein
CDR20291 2182	2 1462066	hypothetical protein
$CDR20291_2102$	2.1102000	hypothetical protein
CDR20291_0312	2.144090	nypoincilear protein

CDR20291_3009	2.1413686	hypothetical protein
CDR20291_1225	2.1394012	putative phage regulatory protein
CDR20291_0859	2.1387832	conserved hypothetical protein
CDR20291_1447	2.1384666	putative uncharacterized protein
CDR20291_0796	2.1379225	putative membrane protein
		putative membrane protein
CDR20291_2281	2.1370592	precursor
CDR20291_0571	2.13593	putative peptidase
CDR20291_2320	2.1343033	putative oxidoreductase subunit
spoIIR	2.1340494	stage II sporulation protein
CDR20291_1323	2.133574	putative ruberythrin
		probable polysaccharide
CDR20291_3106	2.1280892	deacetylase
CDR20291_1496	2.1274724	putative endonuclease
	0.1050000	chloramphenicol o-
CDR20291_3461	2.1273339	acetyltransferase
CDR20291_3408	2.1271412	hypothetical protein
CDR20291_0207	2.123493	PTS system, IIa component
CDD20201 2070	2 122(45)	putative sugar-bisphosphate
CDR20291_29/9	2.1226456	
CDR20291_2286	2.122154	conserved hypothetical protein
CDR20291_0340	2.1204524	hypothetical protein
CDR20291_1610	2.120411	conserved hypothetical protein
CDD20201 2226	2 120107	putative sigma 54 modulation
CDR20291_2330	2.120107	protein
Veg	2.11/0819	kymothetical protein
$\frac{\text{CDR20291}_{3134}}{\text{CDR20201}_{3444}}$	2.113420	forredevin
CDR20291_3444	2.1119018	
	2.1084027	PTS system_slugital/sorbital
srl 1	2 1078258	specific IIc2 component
5/121	2.1070250	PTS system Ilbc component nts
CDR20291 2939	2.1050506	system, jibc component precursor
CDR20291 0209	2.0995953	PTS system, IIb component
CDR20291 0614	2.099349	conserved hypothetical protein
		putative transcription
CDR20291_0029	2.0985513	antiterminator
CDR20291 1738	2.0930097	conserved hypothetical protein
		putative N-acetylmuramoyl-L-
CDR20291_2649	2.0913396	alanine amidase
CDR20291_2192	2.0892425	transposase (fragment)
CDR20291_0184	2.086086	putative cell wall hydrolase
CDR20291_2256	2.0859647	conserved hypothetical protein

		putative two-component response
CDR20291_0158	2.0842288	regulator
CDR20291_3350	2.081579	pilin
CDR20291_2952	2.0789118	putative amidohydrolase
		putative protein translocase
CDR20291_2690	2.0775318	subunit
CDR20291_2856	2.0749261	conserved hypothetical protein
		ribose ABC transporter, permease
rbsC	2.070177	protein
CDR20291_0942	2.06901	PTS system, IIb component
CDR20291_1813	2.0665524	putative regulatory protein
CDR20291_2285	2.0649927	putative membrane protein
CDR20291_2066	2.0603025	putative membrane protein
CDR20291_2233	2.058511	putative membrane protein
CDR20291_0344	2.0582306	two-component response regulator
CDR20291_0760	2.0540824	putative membrane protein
CDR20291_3214	2.049898	hypothetical protein
CDR20291_0928	2.048106	putative phosphatTse
CDR20291 0287	2.0476503	PTS system, IIa component
CDR20291 2372	2.0469162	conserved hypothetical protein
CDR20291 0022	2.044626	putative beta-xylosidase
		LysR-family transcriptional
CDR20291_3498	2.0391083	regulator
		putative aminobenzoyl-glutamate
abgT	2.0381641	transport protein
	• • • • • • • •	TetR-family transscriptional
CDR20291_2498	2.0380943	regulator
	2 02(0042	putative ethanolamine/propanediol
eutin	2.0369942	utilization protein
CDR20291_0171	2 0355306	transcriptional repressor
$CDR20291_0171$	2.0335500	conserved hypothetical protein
$CDR20291_1238$	2.033765	conserved hypothetical protein
$\frac{\text{CDR20291}_{1023}}{\text{CDR20201}_{2256}}$	2.033703	putative experted protein
CDR20291_5550	2.0323838	transposase_like protein b
CDR20291_0514	2 0303247	nseudogene
CDR20291_0314	2.0303247	thioredoxin
$CDR20291_2000$	2.0201112	conserved hypothetical protein
$CDR20291_0075$	2.0207230	putative transcriptional regulator
$\frac{CDR20291}{CDR20201} \frac{1019}{0021}$	2.0245510	putative transcriptional regulator
$\frac{CDR20291}{CDD20201} \frac{0021}{1120}$	2.0230392	opported hypothetical protein
<u>cDK20291_1138</u>	2.021314	
sied	2.0209548	putative spore-cortex-lytic protein

		putative transcription
CDR20291_0133	2.0206575	antiterminator
cspD	2.0195987	cold shock protein
		RNA polymerase sigma factor
rpoD2	2.0195546	rpoD
CDR20291_1472	2.0193841	putative exported protein
CDR20291_3480	2.0188391	conserved hypothetical protein
spoIIIAC	2.0182188	stage III sporulation protein AC
spoVT	2.015846	stage V sporulation protein T
CDR20291_0385	2.0120325	putative oxidoreductase
CDR20291_2798	2.0021243	conserved hypothetical protein
CDR20291_2545	2.0008383	putative membrane protein
CDR20291_1241	2.0001361	putative membrane protein

Appendix A Table 2 *C. difficile* R20291 genes transcriptional downregulated in the presence of heme.

	Fold-change Heme	
	Treated vs Untreated	
Gene Symbol	Media Control	Description
cotJB1	-8.493219	putative spore-coat protein
CDR20291_0521	-5.746132	hypothetical protein
cotJC1	-3.9827776	putative spore-coat protein
rpsE	-3.8330042	30S ribosomal protein S5
rplV	-3.7833204	50S ribosomal protein L22
CDR20291_3239	-3.7300813	ABC transporter, ATP-binding protein
CDR20291_3046	-3.705808	MerR-family transcriptional regulator
rplP	-3.7040238	50S ribosomal protein L16
rpsH	-3.6383638	30S ribosomal protein S8
rpsS	-3.6113067	30S ribosomal protein S19
rplR	-3.604462	50S ribosomal protein L18
rpsQ	-3.5911934	30S ribosomal protein S17
rpsN	-3.5626237	30S ribosomal protein S14
rplN	-3.5618937	50S ribosomal protein L14
cotJB2	-3.5552454	putative spore-coat protein
feoB1	-3.4932115	ferrous iron transport protein B
CDR20291_1075	-3.434818	putative exported protein
rplX	-3.4215739	50S ribosomal protein L24
rpsC	-3.3353822	30S ribosomal protein S3
rplE	-3.283783	50S ribosomal protein L5
rplD	-3.1962414	50S ribosomal protein L4
rpmD	-3.1648352	50S ribosomal protein L30
rplW	-3.136498	50S ribosomal protein L23
rplF	-3.1316626	50S ribosomal protein L6
rpmC	-3.102201	50S ribosomal protein L29
rplB	-3.0742095	50S ribosomal protein L2
CDR20291_3237	-3.0330143	ABC transporter, permease protein
rplC	-3.0299876	50S ribosomal protein L3
		putative ABC transporter, permease
CDR20291_1648	-2.9830742	protein
		putative ferrichrome ABC transporter,
fhuG	-2.8928006	permease protein
CDR20291_0926	-2.8338807	hypothetical protein
adk	-2.8257287	adenylate kinase
rpsK	-2.818008	30S ribosomal protein S11
CDR20291_1150	-2.7863884	putative ribosomal protein
CDR20291_1210	-2.765053	putative phage protein

CDR20291_1149	-2.7456932	conserved hypothetical protein
ribA	-2.7125893	riboflavin biosynthesis protein
CDR20291_3099	-2.6862726	conserved hypothetical protein
infB	-2.6825497	translation initiation factor IF-2
sodA	-2.6655688	putative superoxide dismutase [Mn]
CDR20291 0922	-2.635544	hypothetical protein
		putative teichuronic acid biosynthesis
tuaG	-2.6347167	glycosyl transferase
CDR20291_0516	-2.6060565	putative cation transporting ATPase
CDR20291_3238	-2.6003761	ABC transporter, permease protein
CDR20291_1212	-2.585924	putative phage cell wall hydrolase
CDR20291_2449	-2.5827234	conserved hypothetical protein
CDR20291_0996	-2.5810926	conserved hypothetical protein
		putative ferrichrome ABC transporter,
fhuC	-2.5564084	ATP-binding protein
dapA2	-2.5528688	dihydrodipicolinate synthase
		putative ferrichrome ABC transporter,
fhuB	-2.5447285	permease protein
CDR20291_1647	-2.542131	ABC transporter, ATP-binding protein
sigH	-2.5233936	RNA polymerase sigma-H factor
CDR20291_3100	-2.5013387	conserved hypothetical protein
CDR20291_2138	-2.492333	putative sodium:solute symporter
flgG	-2.4588897	flagellar basal-body rod protein FlgG
CDR20291_2289	-2.437157	hypothetical protein
		chorismate synthase (5-
G	0 100/00	enolpyruvylshikimate-3-phosphate
aroC	-2.420682	phospholyase)
rpsM	-2.4126081	30S ribosomal protein S13
CDR20291_3022	-2.409462	conserved hypothetical protein
CDR20291_1329	-2.384/8/	putative exported protein
CDR20291_1538	-2.3766038	conserved hypothetical protein
CDR20291_1581	-2.371138	putative membrane protein
1.12	0 2 (0 7 4 0 5	4-methyl-5-beta-hydroxyethylthiazole
thiK	-2.369/405	kinase hydroxyethylthiazole kinase
CDR20291_1214	-2.3692572	phage protein
CDD20201 1640	2 2212602	putative ABC transporter, permease
$CDR20291_1049$	-2.5512005	nhaga protain
$\frac{CDR20291}{CDR20201} \frac{1210}{2441}$	-2.327000	phage protein
CDR20291_2001	-2.3280101	putative beta-grycosyltransierase
CDK20291_1211	-2.3240927	putative phage protein
CDK20291_0346	-2.3085475	Conserved hypothetical protein
matN	2 2022602	D-methionine ABC transporter, AIP-
metiN	-2.2932603	binding protein

CDR20291_2770	-2.2888985	putative drug/sodium antiporter
rpsD	-2.2606547	30S ribosomal protein S4
flgE	-2.2575037	flagellar hook protein
		methenyltetrahydrofolate
fchA	-2.246807	cyclohydrolase
obg	-2.246415	Spo0B-associated GTP-binding protein
csrA	-2.2385561	carbon storage regulator
rpmJ	-2.233	50S ribosomal protein L36
CDR20291_3006	-2.2250257	putative phage protein
dapB1	-2.2225766	dihydrodipicolinate reductase
CDR20291_0746	-2.2034466	probable transporter
CDR20291_0043	-2.197775	thymidylate synthase
		3-oxoacyl-[acyl-carrier protein]
fabG	-2.1970513	reductase
		PTS system, glucitol/sorbitol-specific
gutA	-2.196997	IIc2 component
CDR20291_0273	-2.1895223	putative flagellar basal-body rod protein
flgL	-2.1887264	flagellar hook-associated protein
D	0 105 4010	acetoin:2,6-dichlorophenolindophenol
acoB	-2.18/4819	oxidoreductase beta subunit
CDR20291_0228	-2.1758933	conserved hypothetical protein
asd	-2.1721008	aspartate-semialdehyde dehydrogenase
CDR20291_2814	-2.1702242	conserved hypothetical protein
rpsJ	-2.16123	30S ribosomal protein S10
hisS	-2.1584945	putative histidyl-tRNA synthetase
CDR20291_0045	-2.146511	putative uncharacterized protein
CDR20291_0047	-2.1418478	putative thymidylate synthase
	0 1 40 40 00	putative teichuronic acid biosynthesis
CDR20291_2662	-2.1404283	glycosyl transferase
CDR20291_1217	-2.1344755	putative phage tail fiber protein
uvrB	-2.1312566	excinuclease ABC subunit B
in a II	2 1200596	inosine-uridine preferring nucleoside
иипп Сррадора 1551	-2.1290380	
CDR20291_1551	-2.1245148	
rplO	-2.1228526	50S ribosomal protein L15
CDK20291_1125	-2.1123612	putative holliday junction resolvase
CDK20291_0804	-2.1063/93	ABC transporter, permease protein
feoAl	-2.1019013	putative ferrous iron transport protein A
cheC	-2.0987973	chemotaxis protein CheC
sip2	-2.0981913	singal peptidase I
nusA	-2.0957475	transcription elongation protein
CDR20291_0995	-2.0921319	radical SAM-superfamily protein

		subunit of oxygen-sensitive 2-
hadB	-2.0901814	hydroxyisocaproyl-CoA dehydratase
tpi	-2.0859563	triosephosphate isomerase
CDR20291_0648	-2.0853581	conserved hypothetical protein
CDR20291_1218	-2.085296	putative phage protein
CDR20291_3102	-2.0845835	hypothetical protein
rnfE	-2.0844994	electron transport complex protein
rnfA	-2.0843024	electron transport complex protein
fleN	-2.0812418	flagellar number regulator
CDR20291_2884	-2.0809321	putative PTS system, IIb component
CDR20291_2346	-2.0776253	conserved hypothetical protein
folD	-2.0760767	putative FolD bifunctional protein
prlA	-2.0753083	preprotein translocase SecY subunit
CDR20291_1213	-2.0732968	hypothetical protein
CDR20291_0065	-2.0723321	elongation factor TU
CDR20291_0985	-2.0693574	putative penicillin-binding protein
CDR20291_0044	-2.061752	dihydrofolate reductase region
fliS1	-2.0603256	flagellar protein FliS
CDR20291_2349	-2.0602372	ABC transporter, ATP-binding protein
		putative mannose-1-phosphate
manC	-2.0563254	guanylyltransferase
CDR20291_2526	-2.0555916	two-component response regulator
CDR20291_0049	-2.0538368	conserved hypothetical protein
		putative
2	0.05222.45	phosphomannomutase/phosphoglycerate
<i>pgm2</i>	-2.0533345	mutase
CDR20291_1103	-2.0531716	putative FMN-dependent dehydrogenase
mapl	-2.0526085	methionine aminopeptidase
CDR20291_2825	-2.0481207	ABC transporter, ATP-binding protein
CDR20291_0227	-2.0478148	putative transglycosylase
rpiB1	-2.0455568	ribose-5-phosphate isomerase 1
cheD	-2.0426855	chemotaxis protein
1 17	0.00.000	activator of 2-hydroxyisocaproyl-CoA
hadl	-2.034394	dehydratase
muno C	2 020621	putative rod shape-determining protein
mret CDD20201 1615	-2.029051	
CDR20291_1015	-2.02/108/	probable permease
nheT	-2 023367	chain
pile 1	-2.023301	putative ABC transporter permease
CDR20291 1107	-2.0229175	protein
thiI	-2.0227945	putative thiamine biosynthesis protein

		restriction modification system dna	
CDR20291_2911	-2.0177546	specificity domain	
		putative methyl accpeting chemotaxis	
CDR20291_0463	-2.0165677	protein	
feoB3	-2.0153618	putative ferrous iron transport protein B	
aspS	-2.010659	putative aspartyl-tRNA synthetase	
rpe	-2.0086982	putative ribulose-phosphate 3-epimerase	
		putative basal-body rod modification	
flgD	-2.00112	protein	

APPENDIX B

Tables associated with Chapter III

Appendix B Table 1 *C. difficile* R20291 genes in the presence of heme (fold change greater or lesser than 2)

	Fold-change Heme	
	Treated vs Untreated	
Gene Symbol	Media Control	Description
CDR20291_0782		
(hsmR)	6.64856	putative membrane protein
CDR20291_0781		MarR-family transcriptional
(hsmA)	5.63898	regulator
		heme sensing transcriptional
hatR	4.35365	regulator
hatT	4.20734	heme detoxification transporter
hcp	-2.02141	hydroxylamine reductase
Appendix B Table 2 *C. difficile hsmR::CT* genes in the presence of heme (fold change greater or lesser than 2)

Gene Symbol	Fold-change Heme Treated vs Untreated Media Control	Description
		heme sensing transcriptional
hatR	5.767794	regulator
hatT	5.436752	heme detoxification transporter

Appendix Table 3 *C. difficile* WT and *hsmR::CT* genes in the absence of heme (fold change greater or lesser than 2)

	Fold-change WT vs	
Gene Symbol	hsmR::CT	Description
		macrolide transport system ATP-
CDR20291_2480	2.836956	binding/permease protein
CDR20291_0782		MarR-family transcriptional regulator
(hsmR)	2.52901	· · · · · · · · ·
hatR	4.35365	heme sensing transcriptional regulator
hatT	4.20734	heme detoxification transporter
hcp	-2.02141	hydroxylamine reductase
CDR20291_0226	-2.00855	dDTP-glucose 4,6-dehydratase
flgD	-2.02181	basal-body rod modification protein
CDR20291_0225	-2.03484	dDTP-4-dehydrorhamnose reductase
motA	-2.05794	chemotaxis protein
		glucose-1-phosphate
CDR20291_0224	-2.06797	thymidylyltransferase
fliQ	-2.10368	flagellar biosynthetic protein
fliG	-2.15122	Flagellar motor switch protein
CDR20291_0227	-2.16968	putative transglycosylase
fliF	-2.18226	M-ring protein
CDR20291_0228	-2.19314	conserved hypothetical protein
CDR20291_0241	-2.23863	putative glycosyltransferase
fliJ	-2.23974	flagellar protein
fliL	-2.26158	flagellar basal body-associated protein
flgB	-2.26292	basal-body rod protein
CDR20291 0263	-2.33069	putative flagellar protein
flgC	-2.3508	flagellar basal-body rod protein
CDR20291 0259	-2.35087	putative flagellar protein
fliN	-2.3789	flagellar motor switch protein
fliE	-2.40667	hook-basal body complex protein
flgL	-2,41864	flagellar hook-associated protein
fliD	-2,44488	flagellar cap protein
flgK	-2 45269	flagellar hook-associated protein
fliSl	-2 4758	flagellar protein
floM	_2 49579	negative regulator of flagellin synthesis
fliS?	-2 52948	flagellar protein
CDR20291 0239	-2 57365	conserved hypothetical protein
csr4	_2.57505	carbon storage regulator
CDR20201 0224	_2.37003	conserved hypothetical protein
$\frac{CDR20271_0234}{CDP20201_0221}$	-2.01301	nutative flagellar biosynthesis protein
<i>A:C</i>	-2.03190	flagellin subunit
Juc	-2.00102	nagenin subunit

Appendix B Table 4 *C. difficile* WT and *hsmR::CT* genes in the presence of heme (fold change greater or lesser than 2)

	Fold-change WT vs	
Gene Symbol	hsmR::CT	Description
		macrolide transport system ATP-
CDR20291_2480	2.444228	binding/permease protein
CDR20291_0782		MarR-family transcriptional
(hsmR)	2.52901	regulator
CDR20291_0226	-2.00855	dDTP-glucose 4,6-dehydratase
flhF	-2.00144	flagellar biosynthesis protein
		putative carbamoyl-phosphate-
CDR20291_0245	-2.01568	synthetase
		flagellar basal body-associated
fliL	-2.03461	protein
CDR20291_0273	-2.07945	putative flagellar basal-rod protein
		RNA polymerase sigma factor for
fliA	-2.07994	flagellar operon
flgE	-2.08606	flagellar hook protein
CDR20291_0228	-2.09306	conserved hypothetical protein
fliJ	-2.10666	flagellar protein
CDR20291_0242	-2.10746	glucosyl transferase
CDR20291 0243	-2.10907	glucosyl transferase
		flagellar basal body-associated
fliI	-2.12922	protein
motA	-2.14247	chemotaxis protein
		glucose-1-phosphate
CDR20291_0224	-2.14944	thymidylyltransferase
fliG	-2.16719	Flagellar motor switch protein
CDR20291_0263	-2.19204	putative flagellar protein
flgC	-2.19752	flagellar basal-body rod protein
motB	-2.24352	chemotaxis protein
flgD	-2.28087	basal-body rod modification protein
CDR20291 0226	-2.29491	dTDP-glucose 4,6-dehydratase
csrA	-2.3151	carbon storage regulator
fliH	-2 33304	flagellar assembly protein
<i>J</i> ¹		putative flagellar biosynthesis
CDR20291 0231	-2.33866	protein
fliF	-2.34363	M-ring protein
CDR20291 0225	-2.34945	dDTP-4-dehydrorhamnose reductase
fliK	-2 3646	hook-length control protein
fliC	-2 37099	flagellin subunit
fliE	-2 42845	hook-basal body complex protein
flaR	_2.12013	hasal-body rod protein
JISD	-2.44/17	

fliS2	-2.4692	flagellar protein
		negative regulator of flagellin
flgM	-2.50214	synthesis
fliD	-2.55771	flagellar cap protein
CDR20291_0234	-2.55999	conserved hypothetical protein
CDR20291_0241	-2.56217	putative glycosyltransferase
flgL	-2.57338	flagellar hook-associated protein
flgK	-2.58972	flagellar hook-associated protein
CDR20291_0239	-2.67364	conserved hypothetical protein
fliS1	-2.69584	flagellar protein
CDR20291_0782		MarR-family transcriptional
(hsmR)	-4.30498	regulator
CDR20291_0781		putative membrane protein
(hsmA)	-5.47692	

	•			RefSeg
Genome	Genome ID	Accession	PATRIC ID	Locus Tag
Acetanaerobacterium				
elongatum strain CGMCC		FNID0100001	fig 258515.18.peg.67	SAMN051925
1.5012	258515.18	3	2	85 1132
Acetobacterium sp KB-1	2184575 3	CP030040	4	DOZ58 03405
	2101070.0	MILIY010000	fig 1899015 3 peg 92	
Acetobacterium sp. MES1	1899015 3	13	4	BI182 02220
	1077010.5	MIUY010000	fig 1899015 4 peg 92	01101011110
Acetobacterium sp. MES1	18990154	13	4	BI182 02220
Acetobacterium woodii	10,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10	fig 931626 3 peg 164	
DSM 1030	9316263	NC 016894	9	Awo c15450
Actinobacteria bacterium	<u> </u>	L GEV010000	fig 1635289.5 peg 19	
66 15	1635289 5	13	1	XD74 0548
Actinobacteria bacterium	1055207.5	MELI0100005	fig 1797195 3 peg 71	
GWC2 53 9	1707105 3	1	2	A 2074 02735
Actinobactoria bactorium	177175.5	PHEA010000		A2074_02733
HGW-Actinobacteria-10	2013645 3	1/1	fig/2013645 3 peg 65	CVT60 02245
Actinobactoria bactorium	2013043.3	PHEU01000	fig 2013651 3 peg 22	C V 100_022+3
HGW Actinobacteria 6	2012651.2	21	ng 2013031.3.peg.22	CVT66 07775
Actinobactoria bactorium	2013031.3	21 DHET010000	fig 2012652.2 pag. 47	CV100_07773
HGW Actinobactoria 7	2012652.2	PHE1010000	11g/2015052.5.peg.47	CVT67 04560
Actinobacteria bacterium	2013032.5	DDC0010002	5 fia 1992 127 117 mag	CV10/_04300
Actinobacteria bacterium	1002/27 117	DPGQ010002	11g 1003427.117.peg.	DE026 00620
Acting bactoria bactorium	1003427.117	12 DMDID01000	029 fig 1992427 106 pag	DE030_09030
Actinobacteria bacterium	1002427 106	DWINK01000	11g 1885427.100.peg.	DC004 09745
Active survey of heaving strain	1883427.100		/14	$DCQ04_08743$
Actinomyces bovis strain	1659.2	UAPQ010000	$f_{ral} = 1659.2 max 2050$	NCICII555_0
NCICII535	1038.3	10	11g 1058.5.peg.2059	1894 NCTC12072_0
Actinomyces Israetti strain	1650 4	ID124257	$f_{ra} = 1650.4 max 2102$	NCICI29/2_0
NCTC12972	1659.4	LK13435/	ng 1659.4.peg.2192	2198
	1012705.2	CD017012	fig 1912/95.3.peg.35	DV016 01655
Actinomyces sp. VUL4_3	1912/95.3	CP01/812	3	BK816_01655
	1001001.0	FOZD010000	fig 1881031.3.peg.14	SAMN054289
Agromyces sp. CF514	1881031.3	01	99	/0_01/6
Anaerocolumna jejuensis		FRAC010000	fig 1121322.3.peg.11	SAMN027451
DSM 15929	1121322.3	18	63	36_03470
Anaerofustis				
stercorihominis DSM		NZ_DS56001	fig 445971.6.peg.124	ANASTE_013
17244	445971.6	9	7	35
Anaerofustis				
stercorihominis strain		QUSM010000		
AM25-6	214853.3	02	fig 214853.3.peg.595	DW687_02905
Anaerolineaceae bacterium		NBMA01000	fig 1971725.3.peg.24	
4572_5.2 strain 4572_5.2	1971725.3	100	7	B6243_05835
Anaerolineaceae bacterium		PABI0100007	fig 2024896.3.peg.26	
strain NAT123	2024896.3	6	96	CL608_12265

Appendix B Table 5 Bacterial species containing HsmA orthologs

Anaerolineae bacterium				
CG03_land_8_20_14_0_80		PEUL010004	fig 1973905.3.peg.62	
_58_20	1973905.3	03	4	COS37_06875
Anaerolineae bacterium		MNUH01000	fig 1805002.3.peg.17	
CG1_02_58_13	1805002.3	400	16	AUJ21_11165
Anaerolineales bacterium		PQAL010000	fig 2073117.4.peg.13	
strain FeB_25	2073117.4	13	28	C3F13_06355
Andreesenia angusta strain		MKIE010000		
DSM 1989	39480.4	09	fig 39480.4.peg.1967	EUAN_20010
Aneurinibacillus soli strain			fig 1500254.3.peg.27	
CB4	1500254.3	AP017312	73	CB4_02761
Arthrobacter alpinus strain			fig 656366.4.peg.287	
ERGS4:06	656366.4	CP013200	9	AS189 13375
		QMKQ01000	fig 2184581.3.peg.33	
Arthrobacter sp. AQ5-05	2184581.3	021	44	DQ353 15850
Arthrobacter sp.		QAIQ010005	fig 2056849.3.peg.40	
HMWF013	2056849.3	34	48	DBR22 18455
<i>Atopobium</i> sp. oral taxon		AWSK010000	fig 1321773.3.peg.41	HMPREF9069
810 str. F0209	1321773.3	13	4	00469
Bacillus badius strain DSM		LVTO010000		
5610	1455.7	18	fig 1455.7.peg.2533	A3781 16875
		AHEA010000	fig 1053206.3.peg.25	_
Bacillus cereus HuA4-10	1053206.3	21	75	IGC 02524
		NZ CM00073	fig 526986.3.peg.420	bcere0022 759
Bacillus cereus Rock3-44	526986.3	3	1	0
Bacillus cereus strain		NTZF010000	fig 1396.1405.peg.33	
AFS002368	1396.1405	04	40	CN491 04140
Bacillus cereus strain		NTYD010000	fig 1396.1417.peg.28	_
AFS005615	1396.1417	46	80	CN476 21740
Bacillus cereus strain		NTWE010000	fig 1396.1496.peg.32	_
AFS010695	1396.1496	31	43	CN425 17710
Bacillus cereus strain		NTUE010001		
AFS016962	1396.1476	01	fig 1396.1476.peg.29	CN382 30750
Bacillus cereus strain		NTRE010000	fig 1396.1455.peg.34	_
AFS024089	1396.1455	40	42	CN285 16210
Bacillus cereus strain		NTSZ010000	fig 1396.1430.peg.64	_
AFS028441	1396.1430	13	7	CN354 05365
Bacillus cereus strain		NUOT010000	fig 1396.1828.peg.50	_
AFS031783	1396.1828	08	41	COE15 02105
Bacillus cereus strain		NUNH010000	fig 1396.1805.peg.46	_
AFS036423	1396.1805	58	25	COD94 21615
Bacillus cereus strain		NUIL0100005	fig 1396.1758.peg.47	_
AFS050027	1396.1758	6	75	CN984 27295
Bacillus cereus strain		NUZN010000	fig 1396.1617.peg.14	_
AFS074395	1396.1617	21	39	COJ77 10215
Bacillus cereus strain		NVLK010000	fig 1396.1348.peg.48	
AFS096845	1396.1348	72	95	COM96 25675
		AHEX010000	fig 1053229.3.peg.21	_
Bacillus cereus VD107	1053229.3	16	33	IIM 02099

		AHFC010000	fig 1053234.3.peg.41	
Bacillus cereus VD136	1053234.3	58	99	IIW_02469
		AHFT010000	fig 1085379.3.peg.42	
Bacillus cereus VDM006	1085379.3	62	58	KOW_04145
		AHFU010000	fig 1085386.3.peg.43	
Bacillus cereus VDM021	1085386.3	80	03	KOY_00793
		JMQC010000		
Bacillus mycoides BHP	1405.8	08	fig 1405.8.peg.299	DJ93_137
		NZ_CM00074	fig 526998.3.peg.163	bmyco0002_29
Bacillus mycoides Rock1-4	526998.3	3	3	140
Bacillus mycoides strain		RXPJ0100002	fig 1405.146.peg.309	
QHF158	1405.146	0	4	EKA14_26385
Bacillus mycoides strain		MRZX010000		
SB4	1405.23	31	fig 1405.23.peg.3222	BTH41_03181
Bacillus pseudomycoides		NUDY010000	fig 64104.31.peg.427	
strain AFS008599	64104.31	49	7	CN641_19300
Bacillus pseudomycoides		NUDP010001	fig 64104.27.peg.602	
strain AFS009893	64104.27	22	1	CN613_26100
Bacillus pseudomycoides		NUTT010000	fig 64104.104.peg.40	
strain AFS035137	64104.104	51	25	COF72_12235
Bacillus pseudomycoides		NUQE010000	fig 64104.95.peg.385	
strain AFS041167	64104.95	91	2	COE51_20900
Bacillus pseudomycoides		NUQW01000	fig 64104.85.peg.347	
strain AFS054612	64104.85	010	9	COE85_03320
Bacillus pseudomycoides		NUQM01000	fig 64104.82.peg.519	
strain AFS056801	64104.82	067	6	COE73_21425
Bacillus pseudomycoides	C 110 1 C0	NVGB010001	fig 64104.60.peg.112	
strain AFS080374	64104.60	42	3	COL60_26660
Bacillus pseudomycoides	(4104.10	NVOY010000	G ((4104.10 05	001/4 00005
strain AFS090198	64104.10		fig 64104.10.peg.25	CON64_08925
Bacillus pseudomycoides	64104.15	NVOR010000	f1g 64104.15.peg.460	CON(5, 01400
strain AFS092012	64104.15		5	CON65_01490
Bacillus pseudomycoides	C4104 4	MWPX01000	£ - 1 (1 1 0 1 1 m 2 9 2 2	DW425 22070
strain FSL K6-0042	64104.4		fig 64104.4.peg.3823	BW425_22870
D	17(1751.2	FPAF0100000	ng 1/61/51.3.peg.42	SAMIN044881
Bacillus sp. 103ml	1/01/51.5		94 fiel17(1752 2 mer 12	45_106171
Draillus an 166 amfras	1761752 2	FNQA010000	ng 1/01/55.5.peg.15	SAMIN044881
Bacillus sp. 166amitsu	1/01/53.5		48 fiel17(1755 2 mer 22	50_101145
Brailler an 401mf	1761755 2	FOL V010000	ng 1/01/55.5.peg.25	SAMIN044881
Bacillus sp. 491ml	1/01/33.3		10 f. 12022407.2	08_12012
Pacillus on AES015906	2022487.2	NTUO010000	11g 2033487.3.peg.28	CN402 15800
<i>Buculus</i> sp. AFS013890	2033467.3	43 NTTM010000	09	CIN402_13890
Pacillus on AES019417	2022401.2	NTTM010000	11g 2033491.3.peg.08	CN1226 08255
Buchlus sp. AFS018417	2033491.3		5 fiel2024270 2 mag 48	CIN320_08233
Racillus on AES010442	2024270.2	NUAA010000	11g 2034279.3.peg.46	CN524_05105
Бисшиз эр. АГЗО19443	2034219.3		fig/2022/02 2 mag 42	CINJ24_03193
Racillus on AES022182	2033402 3		ng 2033492.3.peg.43	CN288 04745
Бисшиз эр. АГ 5025162	2033472.3	NUGV010000	fig/2022506.2 nog 10	U11200_04/43
Racillus on AES054042	2022506.2	72	ng/2055500.5.peg.48	CN021 21400
<i>Ducinus</i> sp. AF 5034943	2033300.3	13	03	CIN731_21400

		NVPR010000	fig 2033868.3.peg.14	
Bacillus sp. AFS098217	2033868.3	16	44	COO03 04105
Bacillus sp. CDB3 strain		ALBR010000	fig 360310.3.peg.197	_
CDB3	360310.3	27	4	CDB3 09530
		LGIF0100000	fig 1679167 3 peg 59	
Bacillus sp FIAT-27238	1679167 3	1	75	AC624 28195
<i>Ductitus</i> 59.19111 27230	1079107.5	I MR 1010000	fig 1736211 3 peg 47	110021_20195
Bacillus sp. Leaf13	1736211.3	43	25	ASG65 26585
Ductitus sp. Leat15	1750211.5	CVRB010000	fig 1/00688 3 peg 26	10005_20505
Racillus on IE1	1/00688 3	02	16	BN000 02443
Buchlus sp. LI I	1499000.3		10 fig 1629206.2 mag 57	DIN000_02443
Drailler an IVO	1629206.2	LDUK010000	11g 1026200.5.peg.57	VIV00 27045
Bacillus sp. LK2	1028200.3		00	VK90_27045
	10((21(2	MAO1010000	fig 1866316.3.peg.33	DALIO 00075
Bacillus sp. NH24A2	1866316.3	/9	68	BAU28_009/5
		LMTA010000	f1g 1/36405.3.peg.52	
Bacillus sp. Soil768D1	1736405.3	55	53	ASG99_26960
Bacillus thuringiensis				
serovar navarrensis strain		NFDG010000	fig 339658.3.peg.265	
BGSC 4BM1	339658.3	99	3	BK732_12770
Bacillus				
weihenstephanensis strain		FMAK010000	fig 86662.44.peg.536	BWGO95 032
SDA GO95	86662.44	37	7	70 _
		QWVT01000	fig 1917180.3.peg.20	
<i>Bacillus zeae</i> strain JJ-247	1917180.3	021	58	D1970 12835
		BDSW010001	fig 2005712.3.peg.16	BMS3Abin04
bacterium BMS3Abin04	2005712.3	60	79	01491 -
Bacteroidales bacterium		MNOI010000	fig 1897038.3.peg.31	
43 36	1897038 3	44	82	BHV67 14415
<i>Bacteroidales</i> bacterium	103702012	DMBV01000	fig/2030927 33 neg 4	
strain UBA12170	2030927 33	110	95	DCG69_07290
Bacteroidales bacterium	2030921.33	DMBU01000	fig/2030927 34 peg 6	07290
strain UBA 12171	2030927 34	006	07	DCG75_00390
Bastonoidales hostorium	2030727.34	DMOD01000	fig 2020027 40 mag 2	DCG75_00570
atrain UDA 8200	2020027 40	DWOR01000	11g 2030927.40.peg.2	DCO21 02010
Strain OBA0399	2030927.40	CZDI 010000	140	$DCQ31_02910$
Duritourillen ander	17(70 5	CZBL010000	field7(70 5 mer (11	ER5852558_00
Bacterolaes caccae	4/6/8.5		ng 4/6/8.5.peg.611	58/ DACCAC 021
Bacteroides caccae ATCC	411001 7	NZ_AAVM02	f1g 411901./.peg.204	BACCAC_021
43185	411901.7	000004	8	82
Bacteroides caccae			fig 1263037.3.peg.36	
CAG:21	1263037.3	HF997479	08	BN535_03338
Bacteroides caccae		AGXF010000	fig 997873.3.peg.118	HMPREF1061
CL03T12C61	997873.3	06	4	_01109
Bacteroides caccae strain		QRUO010000	fig 47678.165.peg.13	DWY26_1580
AF24-29LB	47678.165	16	35	0
Bacteroides caccae strain		QRNA010000	fig 47678.173.peg.46	
AF46-5GN	47678.173	07	71	DW080 03345
Bacteroides caccae strain		OSJD0100000	fig 47678,170.peg.13	
AM31-16AC	47678,170	2	01	DW794 01250
		1 =	-	

Bacteroides				
<i>faecichinchillae</i> strain		FQVD010000	fig 871325.5.peg.388	SAMN054443
DSM 26883	871325.5	34	2	49_13415
		FNNN010000	fig 1077285.5.peg.33	SAMN054444
Bacteroides faecis MAJ27	1077285.5	06	35	00_10679
Bacteroides faecis strain		QSVL010000	fig 674529.16.peg.27	
OM02-29	674529.16	26	24	DXB21_19540
			fig 862962.3.peg.313	
Bacteroides fragilis 638R	862962.3	FQ312004	8	BF638R_3051
Bacteroides fragilis			fig 1263046.3.peg.30	
CAG:47	1263046.3	FR894333	79	BN669_02834
Bacteroides fragilis			fig 1263047.3.peg.30	
CAG:558	1263047.3	HF995768	26	BN707_02713
Bacteroides fragilis		AGXP010000	fig 997881.3.peg.255	HMPREF1080
CL05T12C13	997881.3	26	4	_02433
Bacteroides fragilis		AGXN010000	fig 997883.3.peg.401	HMPREF1056
CL07T12C05	997883.3	22	5	_03800
Bacteroides fragilis HMW		AGXR010000	fig 1073387.4.peg.21	HMPREF1204
615	1073387.4	17	47	_02021
Bacteroides fragilis NCTC			fig 272559.17.peg.32	
9343 strain ATCC 25285	272559.17	NC_003228	50	BF3205
Bacteroides fragilis str.		JGEB0100008	fig 1339337.3.peg.37	
1007-1-F #3	1339337.3	1	19	M146_3524
Bacteroides fragilis str. 2-		JGDM010000	fig 1339280.3.peg.30	
F-2# 4	1339280.3	75	17	M076_3156
Bacteroides fragilis str.		JNHH010000	fig 1339286.3.peg.15	
3725 D9 11	1339286.3	11	84	M082_1648
Bacteroides fragilis str.		JGCR0100028	fig 1339308.3.peg.33	
3774 113	1339308.3	7	63	M117_2924
Bacteroides fragilis str.	1220210.2	JGEU0100004	fig 1339310.3.peg.34	1110 0104
3783N1-6	1339310.3	0	62	M119_3184
Bacteroides fragilis str.	1220214.2	JGDS0100005	fig 1339314.3.peg.33	14102 2004
39/618	1339314.3	9	64	M123_3204
Bacteroides fragilis str.	1220200.2	JGCW010002	f1g 1339289.3.peg.24	N005 2712
3986 N(B) 19	1339289.3	99 ICD 4 010002	8/	M085_2/13
Bacteroides fragilis str.	1220202 2	JGDA010002	fig 1339283.3.peg.36	M070 2170
3990 N(B) 0	1559285.5	32 ICDT0100007	51 Fal1220225.2 mag 20	M0/9_31/0
E 2 #6	1220225.2	JGD1010000/	ng 1339335.3.peg.29	M144 2075
F-2 #0	1559555.5	0	$\frac{12}{5}$	M144_3073
DS 208	1220276 2	JGDE0100011	11g 1559270.5.peg.28	M072 2047
DS-208 Restausidas fugailis str. I	1559270.5	9	00	M0/2_294/
1A2 A	1220271.2	JODH010000 70	11g 1559271.5.peg.29	M067 3067
145-4 Ractaroidas fragilis str	1559271.5	73 IGDW010000	47 fig 1220260.2 pag 27	W1007_3007
Korea 110	1330260 3	JGD W010000	11g 1559209.5.peg.57	M065 3882
Ractoroidas fragilis str	1557209.5	7.5 IHEE0100003	fig 1330320 3 pag 28	111003_3002
S23I 17	1339329 3	7	115/1559529.5.peg.20	M138 2085
Bacteroides fragilis str	1337347.3	/ IGDI0100024	fig 1330327 3 pag 36	11130_2703
S36I 11	1339327 3	6	16 1557527.3.peg.30	M136 3103
0000011	1000041.0	0		11130_3103

S6L5 1339318.3 02 20 M127_314 Bacteroides fragilis strain PDCW010000 12905 817.252 33 fig 817.252.peg.3908 CQW34_0	9 3611 9411
Bacteroides fragilis strain PDCW010000 12905 817.252 33 fig 817.252.peg.3908 CQW34_0	3611 411
12905 817.252 33 fig 817.252.peg.3908 CQW34_0	3611 411
	411
Bacteroides fragilis strain QRZH010000 DWW08_(
AF14-26 817.340 02 fig 817.340.peg.2182 0	
Bacteroides fragilis strain QSWE010000	
OF05-11AC 817.333 05 fig 817.333.peg.3580 DXA78_10	515
Bacteroides fragilis strain	~ ~ ~
Q1F2 817.278 CP018937 fig 817.278.peg.2506 BUN20_1	905
Bacteroides fragilis	
YCH46 295405.11 NC_006347 73 BF3205	0.00
Bacteroides nordii AGXS010000 fig 99/884.3.peg.182 HMPREF1	068
CL02112C05 997884.3 15 6 01792	
Bacteroides nordii strain QSGO010000 fig[291645.7.peg.100	205
AM40-30BH 291645.7 14 3 DW888 13	385
Bacteroides ovatus ATCC NZ_DS26456 fig 411476.11.peg.11 BACOVA	012
8483 4114/6.11 0 48 6/	
Bacteroides ovatus	2/7
CAG:22 1263050.3 FR885819 32 BN541_03	267
Bacteroides ovatus AGX1010000 fig 99/885.3.peg.1/4 HMPREFI	069
CL02112C04 997885.5 09 201682	
Bacteroides ovatus SD NZ_ADMO01 fig/02443.3.peg.338	
CMC 31 /02443.3 000099 5 CUY_3992	
Bacteroides ovatus str. JNHF0100013 [19]1339346.3.peg.29	n
3/25 D1 IV 1539340.5 9 41 IVI088_158 Protective des current station OP ID 0100000 Excl29116_100 mos 54	9
$\begin{bmatrix} Bacieroiaes ovalus strain \\ AM17.48 \\ 20116.190.peg.54 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 2$	605
AWI1/-48 28110.190 8 29 Dw200_1 Restancides sustas strain OSIV0100002 fig/28116_188 pag 21	093
$\begin{bmatrix} Dacterotaes ovatus strain \\ AM22 14LD \\ DW202 1 \\ DW$	205
AWIS2-14LB 20110.100 2 10 D W 005_10 Practoroidae overtus strain fig/29116_10 pag 452 HMDD EEC	527
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	332
KLE1030 20110.10 KQ908400 9 _04320 Practoroidae ovatus stroip ENDO010000 fig/28116_1048 pag 2 SAMN051	025
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	923
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	680
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	009
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	071
CL 02T12C01 997887 3 30 6 02383	071
NZ GG77470 HMPREFC	007
Racteroides sn 1 1 14 469585 3 3 fig/469585 3 neg 815 01122	007
ADCL010000 figl457387 3 peg 290 HMPREF(127
Bacteroides sp 1 1 30 457387 3 58 7 02871	12,
NZ GG70517 figl469588 3 peg 256 HMPREF(102
Bacteroides sp 2 1 22 4695883 5 3 02455	102
NZ GG70514 HMPREF	103
Bacteroides sp. 2 1 33B 469589.3 9 figl469589.3.peg.549 0902	
NZ EO97335 figl469590.5.neg.101	
Bacteroides sp. 2 2 4 469590.5 6 7 BSCG 008	74
fig 457389.4.peg.424 HMPREF9	009
Bacteroides sp. 3 1 13 457389.4 KQ236956 4 04055	

		NZ GG77476	fig/169592 / peg 175	HMPR FF0104
Ractaroidas sp. 3, 1, 10	160502 1		6	01752
Ducterolides sp. 5_1_19	409392.4		0 Sel457200 2 mer 102	$\frac{01732}{1000000000000000000000000000000000000$
	455200.2	NZ_GG7/494	fig 45/390.3.peg.102	HMPREF9010
Bacteroides sp. 3_1_23	45/390.3	9	/	_01842
		MNQM01000	fig 1896973.3.peg.37	
Bacteroides sp. 41_26	1896973.3	001	4	BHV71_00785
		MNQN01000	fig 1897051.3.peg.24	
Bacteroides sp. 43 46	1897051.3	014	94	BHV72 00490
		OUHA010000	fig 2292192 3 neg 32	DWW69 1938
Bacteroides sp AF16-19	22921923	45	16	0
Bucterolites sp. Al 10-47	2272172.5		fiel2202102.2 mag 20	DWW71 1054
	2202102.2	QK15010000	11g 2292195.5.peg.50	DW1/1_1934
Bacteroides sp. AF26-/BH	2292193.3	34	1/	5
		QRTK010000	fig 2292194.3.peg.35	DWY87_2248
Bacteroides sp. AF27-33	2292194.3	34	63	5
		QVLZ010000	fig 2302925.3.peg.90	
<i>Bacteroides</i> sp. AF32-8BH	2302925.3	13	4	DWZ47 11100
		OTLK010000	fig/2292938 3 neg 21	
Pastonoidas on AM16 12	2202028 2	01	0	DW172 01000
Bucterolides sp. Alv110-13	2292936.5		0 <u> <u> <u> </u> <u> </u></u></u>	DW1/5_01000
		QILF010000	fig 2292942.3.peg.18	
Bacteroides sp. AM23-12	2292942.3	02	29	DW640_03810
		QTNF010000	fig 2292951.3.peg.42	
Bacteroides sp. AM37-9	2292951.3	05	06	DW862 05185
•		OTMZ010000	fig 2292955.3.peg.21	
Bacteroides sp AM54-2NS	2292955 3	21	58	DXA05 14355
Ductor offices sp. 11110 1 2110	22)2)33.3	OVMA01000	$f_{12} = 202026 + 2 p_{22} + 48$	D/1100_11000
Bustansidar an AM56 10aa	2202026.2	QVINIA01000	11g/2302920.3.peg.48	DVA11 10200
Bacterolaes sp. AM36-10ce	2302920.5	058	32	DAAI1_18280
Bacteroides sp. CAG:144	1262736.3	HF999659	fig 1262736.3.peg.57	BN496_00041
			fig 1262737.3.peg.11	
Bacteroides sp CAG ¹⁸⁹	1262737 3	HF991029	49	BN523 01048
	1202/07/10	111 >> 10_>	fig 1262750 3 neg 33	21.020_01010
Ractaroidas en CAG:754	1262750.3	ED 881775	62	DN772 02148
Bucterolides sp. CAO. 754	1202730.3	$\frac{\Gamma K001773}{00000}$	02 <u> <u> <u> <u> </u> </u></u></u>	DIN//2_03146
		QIMY010000	fig 2292956.3.peg.39	
Bacteroides sp. CF01-10NS	2292956.3	48	96	DXA24_12835
		NZ_EQ97324		
<i>Bacteroides</i> sp. D1	556258.5	7	fig 556258.5.peg.995	BSAG 01028
•		NZ GG77482	fig 585544.3.peg.427	HMPREF0106
Bacteroides sp D22	585544 3	2	0	04218
Bacteroides sp. D22	505511.5	2	fig 1730208 3 peg 30	
LIMSCO67D02	1720208 2	VV004410	11g 1759298.5.pcg.59	10255
HMSC007B03	1/39298.3	K V 804410	00	
Bacteroides sp.			fig 1/39517.3.peg.44	HMPREF3015
HMSC073E02	1739517.3	KV819961	5	_02095
		AGEU010000	fig 1078089.3.peg.38	HMPREF1214
Bacteroides sp. HPS0048	1078089.3	57	79	03939
Bacteroides sp KCTC		BHWB01000	fig 2447885 3 peg 20	KGMB02408
15687	2447885 3	004	35	18340
Bactoroidos en OEO2	211/003.5		fig 2202057 2 mag 54	10010
11DU	2202057 2		ng 2292937.3.peg.34	DVA54 00100
	2292931.3	008	<u>U4</u>	DAA34_08180
Bacteroides sp. OM05-		QSUR010000	t1g 2292282.3.peg.34	
10AA	2292282.3	36	90	DXB58_22125

		QSUN010000	fig 2292283.3.peg.16	
<i>Bacteroides</i> sp. OM05-12	2292283.3	22	93	DXB63 14165
Bacteroides		CZBI0100000		ERS852557 01
thetaiotaomicron	818.28	1	fig 818.28.peg.1061	027 -
Bacteroides			fig 1263054.3.peg.25	
thetaiotaomicron CAG:40	1263054.3	FR901283	69	BN644 02357
Bacteroides		ASSM010000	fig 1235785.3.peg.18	_
<i>thetaiotaomicron</i> dnLKV9	1235785 3	08	01	C799 01804
Bacteroides				
thetaiotaomicron strain		OROV010000		
AF37-12	818 297	04	fig 818 297 peg 3771	DW011_05150
Racteroides rylanisolvens	010.237	AGXE010000	fig 997892 3 neg 108	HMPRFF1074
CI 03T12C04	997892 3	06	1	01053
Bacteroides xvlanisolvens	JJ10J2.5	CBXG010000	fig/702447.11 peg.44	_01055
SD CC 1b	702447 11	049	27	BN890 44450
Bacteroides rylanisolyens	/02447.11	ORVV010000	fig 371601 58 peg 35	DWW25_0301
strain $\Delta F1/27$	371601 58	05	11g 571001.50.pcg.55	0
Bactoroidos rylanisolyons	571001.50	OROO010000	fig 371601 63 peg 18	0
strain AE28 2	371601 63	02	71	DW027 02505
Rastanoidas mlanisolvans	571001.05	02 OPOC010000	f_{1}	D W 027_02303
$\Delta E_{20}^{20} 6 \Lambda C$	271601 62	10	ng 5/1001.02.peg.22	DW042 00170
Rastanoidas mlanisolvans	571001.02	10 NEL V010000	$\frac{4}{\text{fig}^271601.19 \text{ mag} 24}$	DW042_09170
strain An107	371601 18	04	57	B5E50 05320
Bastonoidos mlanischuong	5/1001.18	U4 EQUM010000	57 fig 271601 202 mag 2	B3E30_03320
stroip NLAE 71 C202	271601 202	FOUMUT0000	11g 5/1001.592.peg.2	SAMIN032102
Brotowaider milanischeme	5/1001.592	U4 ENID D010000	130 fiel271(01.200 mag 1	$50_{1041/6}$
stroip NLAE 71 C220	271601 200	FINKP010000	11g 5/1001.590.peg.1	SAMIN044879
Strain NLAE-2I-0539	3/1001.390	09	619 fiel(57200 4 mer 217	24_109123
Bacterolaes xylanisolvens	(57200 4	ED020022	ng 65/309.4.peg.31/	DVV 41920
	65/309.4	FP929033	2	BXY_41820
Bacteroides xylanolyticus	2046264	P1JA0100001	fig 384636.4.peg.442	DXX41 11425
strain DSM 3808	384636.4	4	2	BXY41_11435
Bacteroidetes bacterium	1505240.2	MEOL010000	fig 1/9/348.3.peg.13	101105 01 (05
GWF2_41_31	1797348.3	23	33	A2W85_01605
Bacteroidetes bacterium	0010 (010	PHDN010000	f1g 2013684.3.peg.33	
HGW-Bacteroidetes-16	2013684.3	06	72	CV199_04845
Bacteroidetes bacterium		DPLS0100020	fig 1898104.116.peg.	
strain UBA11986	1898104.116	6	1650	DGH68_05710
Bacteroidetes bacterium		DOWV01000	fig 1898104.106.peg.	
strain UBA9647	1898104.106	131	3514	DEP53_06440
Bacteroidetes/Chlorobi				
group bacterium		RCNQ010002	fig 2382230.3.peg.24	
ChocPot_Mid	2382230.3	36	20	D9V86_09360
Blautia coccoides strain		UFVT010000		NCTC11035_0
NCTC11035	1532.9	01	fig 1532.9.peg.3038	2878
Blautia hansenii DSM		NZ_GG69859	fig 537007.6.peg.224	BLAHAN_060
20583	537007.6	0	0	95
Blautia producta strain		PQGB010004	fig 33035.17.peg.387	
DSM 3507	33035.17	20	5	C3R19_23710
			fig 1796616.4.peg.46	
Blautia sp. YL58	1796616.4	CP015405	09	A4V09_20705

Borrelia turicatae 91E135	314724.4	NC_008710	fig 314724.4.peg.168	BT0175
Brachybacterium				
nesterenkovii strain		FWFG010000		
CIP104813	47847.3	35	fig 47847.3.peg.426	FM110_03950
Brevibacillus agri strain	- 1101 (RHHN010000		ED000 14005
NRRL NRS 1219	51101.6	39	fig 51101.6.peg.2637	EB820_14085
Brevibacillus brevis strain	1000 5	MXAR01000	C 11202 5 5222	
ATCC 35690	1393.7	050	fig 1393.7.peg.5222	B5G50_28710
Brevibacillus brevis strain	1000.01	1 D 10 1000	C 11202.01 1220	NCTC2611_01
NCIC2611	1393.21	LR134338	fig 1393.21.peg.1338	348
Brevibacillus choshinensis	54011.2	LJJB0100000	C 154011.2 (101	1210(2,00015
strain DSM 8552	54911.3	7	fig 54911.3.peg.6181	AN963_09815
Brevibacillus fluminis	511407 5	RHHQ010000	fig 511487.5.peg.319	
strain JCM 15/16	511487.5	25	0	EDM56_27550
Brevibacillus formosus				
strain NF2	54913.5	CP018145	fig 54913.5.peg.4088	BP422_18630
Brevibacillus parabrevis		RHHV010000		
strain NRRL NRS 605	54914.7	10	fig 54914.7.peg.492	EDM60_14490
Brevibacillus reuszeri		LGIQ0100001		
strain DSM 9887	54915.3	1	fig 54915.3.peg.4749	ADS79_27780
		AKIX010001	fig 1144308.3.peg.59	
Brevibacillus sp. BC25	1144308.3	30	05	PMI05_06040
		AKKB010001	fig 1144311.3.peg.34	
Brevibacillus sp. CF112	1144311.3	01	27	PMI08_03431
Brevibacillus sp. NRRL		PXZM010000	fig 2126352.3.peg.50	
NRS-1210	2126352.3	47	85	C7R93_26020
<i>Brevibacillus</i> sp. NRRL		PXZN010000	fig 2126351.3.peg.49	
NRS-603	2126351.3	49	83	C7R94_26505
Brevibacillus sp. strain		DOTK010000	fig 1882945.5.peg.21	
UBA11289	1882945.5	44	43	DEP07_12830
Brevibacterium luteolum		PNFZ0100000	fig 199591.5.peg.161	
strain UMB0680	199591.5	3	7	CJ198_06640
Brevibacterium mcbrellneri		NZ_ADNU01	fig 585530.3.peg.179	HMPREF0183
ATCC 49030	585530.3	000049	6	_1839
Brevibacterium				
paucivorans strain		PNHK010000	fig 170994.3.peg.217	
UMB1301	170994.3	03	8	CJ199_09005
Brevibacterium				
ravenspurgense strain		PKGO010000	fig 479117.10.peg.20	
UMB0426	479117.10	08	41	CYJ40_08715
Brevibacterium sp.			fig 1739261.3.peg.14	HMPREF2757
HMSC063G07	1739261.3	KV802360	11	_06965
Brevibacterium sp.			fig 1581055.3.peg.68	HMPREF3087
HMSC22B09	1581055.3	KV786006	0	_03435
Brevibacterium sp.			fig 1581060.5.peg.13	HMPREF3092
HMSC24B04	1581060.5	KV786093	77	_06870
Butyribacterium				
methylotrophicum strain		MIMZ010000		
DSM 3468	1487.3	17	fig 1487.3.peg.2855	BUME 26630

Butyricicoccus		AQOB010000	fig 1203606.4.peg.25	HMPREF1526
pullicaecorum 1.2	1203606.4	12	64	02600
Butyricicoccus		NFKL010000	fig 501571.10.peg.19	
<i>pullicaecorum</i> strain An179	501571.10	28	80	B5F15_14990
Butyricicoccus		NFKK010000	fig 501571.9.peg.155	
pullicaecorum strain An180	501571.9	23	2	B5F17_13260
Butyricicoccus sp. BB10		NHOC010000	fig 1945634.3.peg.18	
strain BB10	1945634.3	05	33	CBW42_06170
			fig 2093856.3.peg.36	
Butyricimonas sp. H184	2093856.3	CP032819	17	D8S85_17095
Butyricimonas synergistica		MNQW01000		
strain 43_13	544644.3	040	fig 544644.3.peg.729	BHV81_15225
Butyricimonas virosa strain		QSCR010000	fig 544645.7.peg.173	
OF02-7	544645.7	25	0	DXA50_13185
Caldilineae bacterium		RFKH010006	fig 2420332.5.peg.28	
strain J123	2420332.5	16	19	D6796_09660
Caloranaerobacter		FQXO010000	fig 1121264.4.peg.99	SAMN027451
azorensis DSM 13643	1121264.4	30	4	35 01318
Caloranaerobacter		AZTB010000	fig 1156417.3.peg.13	
azorensis H53214	1156417.3	29	38	Y919 06780
candidate division				
Zixibacteria bacterium				
strain SURF 9 strain not		QZKQ010001	fig 2053527.7.peg.21	
applicable	2053527.7	34	38	C4524 14775
Candidatus Kerfeldbacteria				
bacterium				
CG08 land 8 20 14 0 20		PEXV010000	fig 2014245.3.peg.30	
42 7	2014245.3	84	1	COT25 02420
Candidatus				_
Komeilibacteria bacterium				
CG 4 10 14 0 2 um filt		PFPO0100002	fig 1974470.3.peg.88	
er $\overline{37}$ 10	1974470.3	1	8	COX77 01125
Candidatus Parcubacteria				
bacterium strain SURF 31		QZJU0100000	fig 2053309.7.peg.38	
strain not applicable	2053309.7	6	2	C4546_00855
Candidatus				
Schekmanbacteria		MGDD01000	fig 1817878.3.peg.40	
bacterium RBG_13_48_7	1817878.3	264	21	A2161_21545
Candidatus				
Schekmanbacteria				
bacterium				
RIFCSPLOWO2 12 FUL		MGDI010000	fig 1817883.3.peg.21	
L_38_15	1817883.3	31	21	A3G31_11505
Candidatus Thorarchaeota		LRSM010001	fig 1706443.6.peg.18	
archaeon SMTZ-45	1706443.6	48	70	AM326_03465
Catabacter hongkongensis		LAYJ0100011	fig 270498.26.peg.29	
strain HKU16	270498.26	1	82	CHK_2030
Chloroflexi bacterium		MGNK01000	fig 1797643.3.peg.45	
RBG_16_50_9	1797643.3	025	5	A2144_01580

Chloroflexi bacterium				
RBG_19FT_COMBO_47_		MGOG01000	fig 1797665.3.peg.67	
9	1797665.3	055	3	A2029_07660
Chloroflexi bacterium		QMOK01000	fig 2026724.249.peg.	
strain B10_G9	2026724.249	015	474	DRI56_02140
Chloroflexi bacterium		QMOH01000	fig 2026724.246.peg.	
strain B27_G4	2026724.246	025	1178	DRI46_05495
Chloroflexi bacterium		QMNZ010006	fig 2026724.242.peg.	
strain B4_G1	2026724.242	02	3998	DRI81_17705
Chloroflexi bacterium				
strain		PDQY010000	fig 2026724.107.peg.	
DOLZORAL124 50 6	2026724.107	15	1339	CSB13 01525
Chloroflexi bacterium		RPRE010005	fig 2026724.297.peg.	
strain metabat2.725	2026724.297	55	1437	EHM81 10345
Chloroflexi bacterium		DOTA010002	fig 2026724.215.peg.	
strain UBA11857	2026724.215	01	2143	DEH25 06780
Chromatiales bacterium		NZCC010000	fig 2026725.3.peg.12	_
strain ARS1279	2026725.3	41	84	CL797 06150
<i>Clostridiaceae</i> bacterium			fig 2082193 3 peg 22	
14\$0207	2082193 3	CP026600	4	C3495 01185
<i>Clostridiales</i> bacterium 38-	200217010	MKTL010000	fig 1895746 3 neg 11	
18	1895746 3	05	94	BGO41 01065
<i>Clostridiales</i> bacterium 38-	10,0,10.0	MKTL010000	fig 1895746 3 neg 13	<u></u> 01000
18	1895746 3	06	85	BGO41 12155
<u>Clostridiales</u> bacterium oral	10/07/10.0	AWSZ010000	fig 1321778 3 peg 18	HMPR FF 1982
taxon 876 str E0540	1321778 3	36	45	01871
Clostridiales bacterium oral	1521770.5	AWSZ010000	fig 1321778 3 peg 29	<u></u> HMPREF1982
taxon 876 str. E0540	1321778 3	58	11g 1521770.5.pcg.25	02060
Clostridioidas difficila	1521770.5	MPE0010000	fig 1/06 2185 peg 33	_02707
strain 6636 R/ST/8	1406 2185	35	11g 1490.2105.pcg.55	BGU81 16405
Clostridioidas difficila	1490.2105	55	fig 1/06/2550 pag 20	BU1005 4800
stroip 7032080	1406 3550	1 1 1 1 2 3 1 6 0	11g 1490.5550.pcg.50	BIN1095_4600
Clastridicidas difficila	1490.3330		12 fig 1406 4102 mag 26	0J
closifiatolaes alfficile	1406 4102	CAADDZ010	11g 1490.4103.peg.30	SAMEA1/105
Clastridicidar difficile	1490.4105	UUUU32	40	14_{03039}
closirialoides difficile	1406 2055	FJUHU100001	ng 1490.3933.peg.99	CDFC105_010
Charter discident difficile	1490.3933		9 fiel1406 2000 mee 27	04 SAMEA 10224
	1406 2000	CAACZQ010	ng 1496.3990.peg.27	SAMEA10224
strain Lei028	1496.3990	000015	58	3/_02/94
Clostridioides difficile	1406 4001	CAADAA010	f1g 1496.4001.peg.35	SAMEA14023
strain Ish12	1496.4001	000023	84	58_03637
	1100000	GD 00000 (fig 1128398.3.peg.19	G : 10000
Clostridium acidurici 9a	1128398.3	CP003326	96	Curi_c19390
			tig 1128398.3.peg.84	
Clostridium acidurici 9a	1128398.3	CP003326	7	Cur1_c07960
Clostridium algidicarnis		PTIS0100000	tig 1121295.3.peg.13	
DSM 15099	1121295.3	8	96	BD821_10826
Clostridium				
algidixylanolyticum strain		MCIA010000	fig 94868.12.peg.108	
SPL73	94868.12	06	8	BET01 14130

		CZBO010000		ERS852568 01
Clostridium baratii	1561.29	03	fig 1561.29.peg.1846	865 -
		CZBO010000		ERS852568 02
Clostridium baratii	1561.29	03	fig 1561.29.peg.2019	048 -
Clostridium baratii strain		JZTY0100000		
771-14	1561.27	2	fig 1561.27.peg.1164	UC77 01605
Clostridium baratii strain		JZTY0100001		_
771-14	1561.27	0	fig 1561.27.peg.278	UC77 08260
Clostridium bifermentans		AVNB010000	fig 1233170.3.peg.12	
ATCC 19299	1233170.3	15	00	C671 1242
Clostridium bifermentans		AVNC010000	fig 1233171.3.peg.13	
ATCC 638	1233171.3	15	52	C672 1458
Clostridium botulinum A			fig 413999.7.peg.222	
str. ATCC 3502	413999.7	NC_009495	0	CBO2251
Clostridium botulinum A2			fig 536232.3.peg.232	
str. Kyoto	536232.3	NC_012563	4	CLM_2458
Clostridium botulinum A3			fig 498214.7.peg.260	
str. Loch Maree	498214.7	NC 010520	8	CLK 1693
Clostridium botulinum B			fig 508765.6.peg.338	
str. Eklund 17B	508765.6	NC 010674	8	CLL A3525
Clostridium botulinum B1			fig 498213.7.peg.235	
str. Okra	498213.7	NC_010516	0	CLD_2324
Clostridium botulinum B2		JXSU0100000	fig 1379739.3.peg.26	
450	1379739.3	7	61	N495_11435
Clostridium botulinum Ba4			fig 515621.3.peg.266	
str. 657	515621.3	NC_012658	5	CLJ_B2462
		NZ_ABDP01	fig 445336.4.peg.260	
Clostridium botulinum Bf	445336.4	000014	7	CBB_2494
Clostridium botulinum C		NZ_ABDQ01		
str. Eklund	445337.5	000003	fig 445337.5.peg.951	CBC_A0601
Clostridium botulinum C/D		JENP0100002	fig 1443125.3.peg.18	
str. BKT12695	1443125.3	8	76	Z962_06120
Clostridium botulinum C/D		JDRY010000	fig 1443128.3.peg.17	
str. DC5	1443128.3	39	24	Z955_08805
Clostridium botulinum C/D		JENO0100004	fig 1443126.3.peg.20	
str. It1	1443126.3	9	61	Z963_08920
Clostridium botulinum D		NZ_ACSJ010	fig 592027.3.peg.113	
str. 1873	592027.3	00007	5	CLG_B0976
Clostridium botulinum E1		NZ_ACSC010		
str. 'BoNT E Beluga'	536233.3	00002	fig 536233.3.peg.17	CLO_0030
Clostridium botulinum F			fig 441772.13.peg.22	
str. Langeland	441772.13	NC_009699	12	CLI_2301
Clostridium botulinum		LGVT010000	fig 1491.430.peg.268	
strain 12LNR13-CD	1491.430	08	8	ADU76_00485
Clostridium botulinum			fig 1491.958.peg.239	
strain AM1195	1491.958	CP013701	6	RSJ11_13240
Clostridium botulinum			fig 1491.669.peg.237	
strain AM282	1491.669	CP013683	7	RSJ10_2343
Clostridium botulinum		LHUM010000	fig 1491.446.peg.362	
strain ATCC 17786	1491.446	07	6	ADT22_01570

Clostridium botulinum		LGIK0100001		
strain ATCC 17862	1491.444	2	fig 1491.444.peg.46	ACP52 01625
Clostridium botulinum		LGII0100001		_
strain ATCC 23387	1491.442	3	fig 1491.442.peg.94	ACP50 00625
Clostridium botulinum			fig 1491.664.peg.368	
strain CDC 1632	1491.664	CP013243	7	NPD5 3675
Clostridium botulinum				
strain CDC 67071	1491.733	CP013242	fig 1491.733.peg.776	NPD7 760
Clostridium botulinum			0	
strain CDC 67071	1491.736	CP013242	fig 1491.736.peg.776	NPD7 760
Clostridium botulinum		OVOC010001	fig 1491 1060 peg 47	
strain CDC66008	1491.1060	85	75	DZC34 06765
Clostridium butvricum		AGYK010000	fig 997898.4.peg.210	HMPREF1084
60E.3	997898.4	06	7	02088
Clostridium butvricum		AZLX010001	fig 1403941.3.peg.18	O607 CBUC0
DORA 1	1403941.3	76	96	0176G0036
Clostridium butvricum E4		NZ ACOM01	fig 632245.3.peg.161	
str. BoNT E BL5262	632245.3	000005	4	CLP 1039
Clostridium butvricum		LRDH010001	fig 1492 150 peg 192	AWN73 1300
strain 300064	1492 150	03	6	5
Clostridium hutvricum	1.02.100	LIDW010000		
strain SU1	1492.46	03	fig 1492.46.peg.799	AK964 03095
<i>Clostridium carnis</i> strain	1.02.10	UYIN010000	<u> </u>	NCTC10913_0
NCTC10913	1530.3	19	fig 1530 3 peg 1704	3317
Clostridium cavendishii	1000.0	FOZB010000	fig 1121302 3 neg 40	SAMN027451
DSM 21758	1121302.3	13	37	63 03233
Clostridium celerecrescens	112100210	PGET010000	fig 1286362 3 peg 80	
18A	1286362.3	01	8	H171 0773
Clostridium	1200302.5	01		111/1_0//5
chromiireducens strain		MZGT010000	fig 225345 3 neg 142	
DSM 23318	225345 3	15	4	CLCHR 14120
Clostridium colicanis		AGYT010000		HMPREF1092
209318	9994114	07	fig 999411 4 neg 236	00253
Clostridium	<i>yyy</i> 111.1	07	ing / / / / / / / / / / / / / / / / / / /	_00233
collagenovorans DSM		FOXP010000	fig 1121306 4 peg 16	SAMN027451
3089	1121306 4	07	53	96 02090
Clostridium		LFVU010000	fig 1121307 3 peg 18	CLCY 4c0206
cvlindrosporum DSM 605	1121307.3	24	62	0
		AVHW01000	fig 1151292 4 peg 14	
<i>Clostridium difficile</i> CD160	1151292 4	040	76	OEW 1275
Clostridium difficila CD106	645462.3	NC 012215	fig/6/5/62 2 pag 826	CD106_0800
Clostriaium difficile	043402.3	NZ_CC77071	fig 043402.3.pcg.830	$\frac{\text{CD190}_{0800}}{\text{LIMDREE}0220}$
NA DOS	525250 2	NZ_00//0/1	11g 323239.3.peg.188	ПИРКЕГ0220 0665
NAFUO	525259.5	2	1	-0003
P20201	615162 2	NC 012216	fig/6/5/62 2 pag 8/0	<u>CDK20291_0/</u> 81
K40271	043403.3	AVI 10100042	fig 1151201 / pag 20	01
Clostridium difficila V201	1151201 4	AVLJU100043	11g 1151591.4.peg.59	006 1021
Clostridium fallow stroir	1131391.4	2 EOV/M010000	50	<u>QQU_1051</u> SAMN054426
DSM 2621	1522.2		fig 1522.2 mag 694	SAIVIINU34430
DSIVI 2031	1333.3	02	ng 1000.0004	38_10222

Clostridium fallax strain		FQVM010000		SAMN054436
DSM 2631	1533.3	21	fig 1533.3.peg.1123	38 12111
Clostridium felsineum		LZYT010000	fig 1121310.4.peg.14	
DSM 794 strain DSM 794	1121310.4	05	50	CLFE 14320
Clostridium frigidicarnis		FOKI0100000		SAMN044885
strain DSM 12271	84698.3	5	fig 84698.3.peg.1881	28 1005156
Clostridium gasigenes		FNJM010000	fig 94869.18.peg.253	SAMN044885
strain DSM 12272	94869.18	01	2	29 101120
Clostridium grantii DSM		FQXM010000	fig 1121316.4.peg.24	SAMN027452
8605	1121316.4	05	64	07 01232
Clostridium haemolyticum		JDSA0100012	fig 1443115.3.peg.11	
NCTC 8350	1443115.3	6	03	Z961 05920
Clostridium				
homopropionicum DSM		LHUR010000	fig 1121318.3.peg.95	CLHOM 0951
5847	1121318.3	12	5	0
Clostridium hungatei strain		MZGX010000		CLHUN 1725
DSM 14427	48256.3	09	fig 48256.3.peg.1857	0 -
Clostridium intestinale		FQXU010000	fig 1121320.3.peg.43	SAMN027459
DSM 6191	1121320.3	17	82	41 04100
Clostridium intestinale		APJA0100001	fig 1294142.3.peg.11	CINTURNW
URNW	1294142.3	2	89	1185 -
<i>Clostridium liquoris</i> strain		PVXO010000	fig 1289519.3.peg.17	
DSM 100320	1289519.3	47	97	CLLI 17780
Clostridium neonatale		PDCJ0100000	fig 137838.6.peg.311	
strain LCDC99A005	137838.6	2	2	CQ394 14905
<i>Clostridium novyi</i> A str.		JENJ0100007	fig 1444289.3.peg.23	
4552	1444289.3	3	91	Z968_11750
<i>Clostridium novyi</i> A str.		JDRX010000	fig 1444290.3.peg.21	
4570	1444290.3	56	69	Z969_10815
<i>Clostridium novyi</i> B str.		JENV0100001	fig 1443122.3.peg.92	
NCTC 9691	1443122.3	6	6	Z958_02960
			fig 386415.7.peg.117	
<i>Clostridium novyi</i> NT	386415.7	NC_008593	2	NT01CX_2068
Clostridium novyi strain				
150557	1542.10	CP029458	fig 1542.10.peg.1750	DFH04_08985
Clostridium oryzae strain		MZGV010000	fig 1450648.3.peg.29	CLORY_0283
DSM 28571	1450648.3	02	5	0
Clostridium perfringens			fig 195103.10.peg.28	
ATCC 13124	195103.10	NC_008261	08	CPF_2928
Clostridium perfringens			fig 195103.10.peg.29	
ATCC 13124	195103.10	NC_008261	1	CPF_0311
Clostridium perfringens B		NZ_ABDV01	fig 451754.5.peg.122	
str. ATCC 3626	451754.5	000007	9	AC1_3181
Clostridium perfringens B		NZ_ABDV01	fig 451754.5.peg.180	
str. ATCC 3626	451754.5	000014	0	AC1_0337
Clostridium perfringens D		NZ_ABOO01		
str. JGS1721	488537.5	000006	fig 488537.5.peg.672	CJD_0377
Clostridium perfringens D		NZ_ABOO01	fig 488537.5.peg.270	
str. JGS1721	488537.5	000039	2	CJD_3250

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>Clostridium perfringens</i> E		NZ ABDW01	fig 451755.5.peg.301	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	str. JGS1987	451755.5	000034	9	AC3 0447
str. JGS1987 451755.5 000042 4 AC3_3257 Clostridium perfringens 289380.15 NC_008262 32 CPR_2611 Clostridium perfringens 289380.15 NC_008262 32 CPR_0306 SM101 289380.15 NC_008262 32 CPR_0306 Clostridium perfringens 289380.15 NC_008262 8 CPR_0306 Clostridium perfringens str. 195102.6 NC_003366 2 CPE2601 Clostridium perfringens 195102.6 NC_003366 1915102.6.peg.370 CPE0314 Clostridium perfringens 1502.480 04 4 DWZ20_05345 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.450 CYK96_02415 Clostridium perfringens 1502.460 CP025501 fig 1502.177.peg.314 Strain EHE-NE18 strain EHE-NE18 1502.460 CP025501 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.177 CP010994 6 JFP838_01775 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perf	<i>Clostridium perfringens</i> E		NZ ABDW01	fig 451755.5.peg.328	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	str. JGS1987	451755.5	000042	4	AC3 3257
SM101 289380.15 NC_008262 32 P.C CPR_2611 Clostridium perfringens 289380.15 NC_008262 8 CPR_0306 Clostridium perfringens str. 195102.6 NC_003366 2 CPE2601 13 195102.6 NC_003366 1 CPE2601 CPE2601 Clostridium perfringens str. 1 195102.6 NC_003366 1 CPE2601 Clostridium perfringens 195102.6 NC_003366 1 CPE2601 CPE2601 Clostridium perfringens 1 195102.6 NC_003366 1 DWZ20_05345 Clostridium perfringens 1502.480 04 4 DWZ20_05345 Clostridium perfringens 1502.460 CP025501 1 1 1 DWZ20_05345 CYK96_02415 Clostridium perfringens 1502.460 CP025501 1 1 1 DWZ20_05345 CYK96_02415 Clostridium perfringens 1502.177 CP010994 6 JFP838_15665 Clostridium perfringens 1 1 1	Clostridium perfringens			fig 289380.15.peg.25	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SM101	289380.15	NC 008262	32	CPR 2611
SM101 289380.15 NC_008262 8 CPR_0306 Clostridium perfringens str. 195102.6 NC_003366 2 CPE2601 Clostridium perfringens str. 195102.6 NC_003366 fig 195102.6.peg.370 CPE0314 Clostridium perfringens 195102.6 NC_003366 fig 195102.6.peg.370 CPE0314 Clostridium perfringens 1502.480 04 4 DWZ20_05345 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.450 CYK96 02415 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.860 CYK96 04600 Clostridium perfringens 1502.460 CP025501 fig 1502.177.peg.314 JFP838 15665 Clostridium perfringens 1502.177 CP010994 6 JFP838 01775 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838 01775 Clostridium perfringens 1502.174 KQ956171 fig 1502.174.peg.613 00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 2692	Clostridium perfringens			fig 289380.15.peg.28	_
Clostridium perfringens str. fig 195102.6.peg.267 CPE2601 13 195102.6 NC_003366 2 CPE2601 Clostridium perfringens str. 13 195102.6 NC_003366 fig 195102.6.peg.370 CPE0314 Clostridium perfringens 195102.6 NC_003366 fig 1502.480.peg.232 DWZ20_05345 Clostridium perfringens 1502.480 04 4 DWZ20_05345 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.450 CYK96_02415 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.860 CYK96_04600 Clostridium perfringens 1502.177 CP010994 6 JFP838_15665 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH0100000 <td>SM101</td> <td>289380.15</td> <td>NC 008262</td> <td>8</td> <td>CPR 0306</td>	SM101	289380.15	NC 008262	8	CPR 0306
13 195102.6 NC_003366 2 CPE2601 Clostridium perfringens str. 195102.6 NC_003366 fig 195102.6.peg.370 CPE0314 Clostridium perfringens QRQT010000 fig 1502.480.peg.232 DWZ20 05345 Clostridium perfringens 1502.480 04 4 DWZ20 05345 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.450 CYK96 02415 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.860 CYK96 04600 Clostridium perfringens 1502.460 CP025501 fig 1502.177.peg.314 FP838 15665 Clostridium perfringens 1502.177 CP010994 6 JFP838 15665 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 _2692 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens <td><i>Clostridium perfringens</i> str.</td> <td></td> <td></td> <td>fig 195102.6.peg.267</td> <td>_</td>	<i>Clostridium perfringens</i> str.			fig 195102.6.peg.267	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	195102.6	NC 003366	2	CPE2601
13 195102.6 NC_003366 fig 195102.6.peg.370 CPE0314 Clostridium perfringens QRQT010000 fig 1502.480.peg.232 DWZ20_05345 Strain AF30-3 1502.480 04 4 DWZ20_05345 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.450 CYK96_02415 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.860 CYK96_04600 Clostridium perfringens 1502.460 CP025501 fig 1502.177.peg.314 Strain JP838 1502.177 CP010994 6 JFP838_15665 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Strain JP838 1502.177 CP010994 fig 1502.174.peg.613 00611 Clostridium perfringens 1502.174 KQ956171 fig 1502.174.peg.613 00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 32692 Clostridium perfringens 1502.490 02 5 2692 0339	<i>Clostridium perfringens</i> str.				
Clostridium perfringens QRQT010000 fig 1502.480.peg.232 DWZ20_05345 strain AF30-3 1502.480 04 4 DWZ20_05345 Clostridium perfringens strain EHE-NE18 1502.460 CP025501 fig 1502.460.peg.450 CYK96_02415 Clostridium perfringens strain EHE-NE18 1502.460 CP025501 fig 1502.460.peg.860 CYK96_04600 Clostridium perfringens strain JP838 1502.177 CP010994 6 JFP838_15665 Clostridium perfringens strain JP838 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens strain JP838 1502.177 CP010994 fig 1502.174.peg.613 _00611 Clostridium perfringens 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens 1502.174 KQ956171 fig 1502.490.peg.262 NCTC10240_0 strain NJR7757A 1502.490 02 5 2692 02692 Clostridium perfringens UFXH010000 fig 1502.490.peg.354 0339 0339	13	195102.6	NC 003366	fig 195102.6.peg.370	CPE0314
strain AF30-3 1502.480 04 4 DWZ20_05345 Clostridium perfringens strain EHE-NE18 1502.460 CP025501 fig 1502.460.peg.450 CYK96_02415 Clostridium perfringens strain EHE-NE18 1502.460 CP025501 fig 1502.460.peg.860 CYK96_04600 Clostridium perfringens strain EHE-NE18 1502.460 CP025501 fig 1502.177.peg.314 CYK96_04600 Clostridium perfringens strain JP838 1502.177 CP010994 6 JFP838_15665 Clostridium perfringens strain JP838 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens strain MJR7757A 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 _02 5 2692 Clostridium perfringens UFXH010000 fig 1502.490.peg.354 0339 039 _02 02 1502.490.peg.354 0339	Clostridium perfringens		QRQT010000	fig 1502.480.peg.232	
Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.450 CYK96_02415 Clostridium perfringens strain EHE-NE18 1502.460 CP025501 fig 1502.460.peg.860 CYK96_04600 Clostridium perfringens strain EHE-NE18 1502.460 CP025501 fig 1502.460.peg.860 CYK96_04600 Clostridium perfringens strain JP838 1502.177 CP010994 6 JFP838_15665 Clostridium perfringens strain JP838 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens strain MJR7757A 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 2692 strain NCTC10240 1502.490 02 5 2692 NCTC10240_0 399	strain AF30-3	1502.480	04	4	DWZ20 05345
strain EHE-NE18 1502.460 CP025501 fig 1502.460.peg.450 CYK96_02415 Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.860 CYK96_04600 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.314 FP838_15665 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH010000 fig 1502.490.peg.354 0339	Clostridium perfringens				
Clostridium perfringens 1502.460 CP025501 fig 1502.460.peg.860 CYK96_04600 Clostridium perfringens fig 1502.177 CP010994 fig 1502.177.peg.314 JFP838_15665 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_15665 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.177 CP010994 fig 1502.174.peg.613 _00611 Clostridium perfringens 1502.174 KQ956171 fig 1502.490.peg.262 NCTC10240_0 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH010000 fig 1502.490.peg.354 0339	strain EHE-NE18	1502.460	CP025501	fig 1502.460.peg.450	CYK96 02415
strain EHE-NE18 1502.460 CP025501 fig 1502.460.peg.860 CYK96_04600 Clostridium perfringens fig 1502.177.peg.314 fig 1502.177.peg.314 fig 1502.177.peg.314 fig 1502.177.peg.314 fig 1502.177.peg.314 fig 1502.177.peg.314 fig 1502.177.peg.334 JFP838_15665 Clostridium perfringens fig 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.177 CP010994 fig 1502.174.peg.613 _00611 Clostridium perfringens 1502.174 KQ956171 fig 1502.490.peg.262 NCTC10240_0 strain NJR7757A 1502.490 02 5 2692 Clostridium perfringens UFXH010000 fig 1502.490.peg.354 NCTC10240_0 strain NCTC10240 1502.490 02 fig 1502.490.peg.354 0339	Clostridium perfringens				_
Clostridium perfringens fig 1502.177.peg.314 strain JP838 1502.177 CP010994 6 JFP838_15665 Clostridium perfringens strain JP838 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH010000 fig 1502.490.peg.354 0339	strain EHE-NE18	1502.460	CP025501	fig 1502.460.peg.860	CYK96 04600
strain JP838 1502.177 CP010994 6 JFP838_15665 Clostridium perfringens 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Strain JP838 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens 1502.177 CP010994 fig 1502.174.peg.613 _00611 Clostridium perfringens 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH010000 NCTC10240_0 NCTC10240_0 strain NCTC10240 1502.490 02 fig 1502.490.peg.354 0339	Clostridium perfringens			fig 1502.177.peg.314	_
Clostridium perfringens strain JP838 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens strain MJR7757A 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens strain NCTC10240 1502.490 02 fig 1502.490.peg.354 0339	strain JP838	1502.177	CP010994	6	JFP838 15665
strain JP838 1502.177 CP010994 fig 1502.177.peg.334 JFP838_01775 Clostridium perfringens strain MJR7757A 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens strain NJR7757A 1502.490 02 5 2692 Clostridium perfringens uFXH010000 fig 1502.490.peg.354 NCTC10240_0 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH010000 fig 1502.490.peg.354 0339	Clostridium perfringens				_
Clostridium perfringens HMPREF3222 strain MJR7757A 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH010000 fig 1502.490.peg.354 NCTC10240_0 strain NCTC10240 1502.490 02 fig 1502.490.peg.354 0339	strain JP838	1502.177	CP010994	fig 1502.177.peg.334	JFP838 01775
strain MJR7757A 1502.174 KQ956171 fig 1502.174.peg.613 _00611 Clostridium perfringens UFXH010000 fig 1502.490.peg.262 NCTC10240_0 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH010000 NCTC10240_0 NCTC10240_0 strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH010000 NCTC10240_0 0339	Clostridium perfringens				HMPREF3222
Clostridium perfringens strain NCTC10240 UFXH010000 1502.490 fig 1502.490.peg.262 02 NCTC10240_0 2692 Clostridium perfringens strain NCTC10240 1502.490 02 5 2692 Olympication UFXH010000 02 5 0202 0202 Clostridium perfringens UFXH010000 NCTC10240_0 0202	strain MJR7757A	1502.174	KO956171	fig 1502.174.peg.613	00611
strain NCTC10240 1502.490 02 5 2692 Clostridium perfringens UFXH010000 NCTC10240_0 strain NCTC10240 1502.490 02 fig 1502.490.peg.354 0339	Clostridium perfringens		UFXH010000	fig 1502.490.peg.262	
Clostridium perfringens strain NCTC10240 UFXH010000 1502.490 NCTC10240_0 02 NCTC10240_0 fig 1502.490.peg.354	strain NCTC10240	1502.490	02	5	2692
strain NCTC10240 1502.490 02 fig 1502.490.peg.354 0339	Clostridium perfringens		UFXH010000		NCTC10240 0
	strain NCTC10240	1502.490	02	fig 1502.490.peg.354	0339 -
Clostridium perfringens PJST0100000 fig 1502.441.peg.321	Clostridium perfringens		PJST0100000	fig 1502.441.peg.321	
strain PBD1 1502.441 3 8 CYK66 11035	strain PBD1	1502.441	3	8	CYK66 11035
Clostridium perfringens PJSS0100000 fig 1502.456.peg.318	Clostridium perfringens		PJSS0100000	fig 1502.456.peg.318	_
strain PBS5 1502.456 2 3 CYK67 11480	strain PBS5	1502.456	2	3	CYK67 11480
Clostridium puniceum LZZM010000	Clostridium puniceum		LZZM010000		_
strain DSM 2619 29367.3 73 fig 29367.3.peg.1223 CLPUN 11740	strain DSM 2619	29367.3	73	fig 29367.3.peg.1223	CLPUN 11740
Clostridium roseum strain LZYV010000	Clostridium roseum strain		LZYV010000		_
DSM 7320 84029.9 38 fig 84029.9.peg.833 CROST 08240	DSM 7320	84029.9	38	fig 84029.9.peg.833	CROST 08240
Clostridium fig 610130.3.peg.285	Clostridium			fig 610130.3.peg.285	_
saccharolyticum WM1 610130.3 NC 014376 0 Closa 2625	saccharolyticum WM1	610130.3	NC 014376	0	Closa 2625
Clostridium septicum strain	<i>Clostridium septicum</i> strain		_		_
DSM 7534 1504.35 CP023671 fig 1504.35.peg.2436 CP523 12225	DSM 7534	1504.35	CP023671	fig 1504.35.peg.2436	CP523 12225
Clostridium sordellii APWR010000 fig 1292036.3.peg.22	Clostridium sordellii		APWR010000	fig 1292036.3.peg.22	_
ATCC 9714 1292036.3 93 29 H477 1499	ATCC 9714	1292036.3	93	29	H477 1499
Clostridium sordellii APWR010000 fig 1292036.3.peg.28	Clostridium sordellii		APWR010000	fig 1292036.3.peg.28	_
ATCC 9714 1292036.3 93 75 H477 2156	ATCC 9714	1292036.3	93	75	H477 2156
Clostridium sordellii strain JGS6382 1216	Clostridium sordellii strain				JGS6382 1216
JGS6382 1505.7 LN681234 fig 1505.7.peg.1236 1	JGS6382	1505.7	LN681234	fig 1505.7.peg.1236	1
Clostridium sordellii strain JGS6382_0826	Clostridium sordellii strain		_		JGS6382 0826
JGS6382 1505.7 LN681234 fig 1505.7.peg.840 1	JGS6382	1505.7	LN681234	fig 1505.7.peg.840	1
Clostridium sordellii strain CEKZ010000	Clostridium sordellii strain		CEKZ010000		
R28058 1505.16 03 fig 1505.16.peg.1047 R28058 09531	R28058	1505.16	03	fig 1505.16.peg.1047	R28058 09531

<i>Clostridium</i> sp.		NZ EQ99977	fig 457396.3.peg.266	
7_2_43FAA	457396.3	3	5	CSBG_02653
		JFBV0100000	fig 1304866.3.peg.44	K413DRAFT_
Clostridium sp. ASBs410	1304866.3	1	33	4415
		AUPA010001	fig 1354301.3.peg.30	
Clostridium sp. BL8	1354301.3	96	95	M918_09740
			fig 2320868.3.peg.20	
Clostridium sp. CT4	2320868.3	CP025746	93	C1I91_10210
		NZ_GL87082	fig 556261.3.peg.436	HMPREF0240
Clostridium sp. D5	556261.3	0	6	_04017
Clostridium sp.			fig 1581148.4.peg.13	HMPREF3070
HMSC19A10	1581148.4	KV823330	36	_06480
Clostridium sp.			fig 1581182.3.peg.17	HMPREF3074
HMSC19B10	1581182.3	KV785024	98	_08765
				ClosIBUN125
		JZWF010000	fig 1523154.3.peg.19	C_CONTIG16
Clostridium sp. IBUN125C	1523154.3	08	6	g01020
				ClosIBUN13A
		JZWG010001	fig 1523156.3.peg.25	_CONTIG227g
Clostridium sp. IBUN13A	1523156.3	43	91	03543
				ClosIBUN22A
		JZWE010001	fig 1523155.3.peg.28	_CONTIG3g00
Clostridium sp. IBUN22A	1523155.3	31	62	081
		LBBT010001	fig 1629550.3.peg.52	
Clostridium sp. JC272	1629550.3	20	3	VN21_05235
			fig 2507159.3.peg.87	
Clostridium sp. JN-9	2507159.3	CP035280	9	EQM05_04385
		JENU0100001	fig 1443109.3.peg.44	
Clostridium sp. K25	1443109.3	4	3	Z957_01435
<i>Clostridium</i> sp. Maddingley		ALXI0100005	fig 1196322.3.peg.15	
MBC34-26	1196322.3	7	94	A370_01633
		JQHY010000	fig 1538552.3.peg.16	
Clostridium sp. NCR	1538552.3	03	87	KD33_08460
Clostridium sp. strain		DNSF010000		
UBA9406	1506.54	57	fig 1506.54.peg.292	DDX68_02400
Clostridium sporogenes		NZ_DS98151	fig 471871.7.peg.131	CLOSPO_0268
ATCC 15579	471871.7	7	4	1
Clostridium taeniosporum			fig 394958.4.peg.286	
strain 1/k	394958.4	CP017253	7	BGI42_14260
Clostridium tagluense		BHYK010000		
strain A121	360422.5	04	fig 360422.5.peg.923	Ctaglu_08860
Clostridium tagluense		BHYK010000	fig 360422.5.peg.232	
strain A121	360422.5	11	3	Ctaglu_22430
Clostridium tepidiprofundi		LTBA010000	fig 1121338.3.peg.76	
DSM 19306	1121338.3	04	1	CLTEP_07480
Clostridium termitidis		AORV010000	fig 1195236.3.peg.52	
CT1112	1195236.3	68	76	CTER_5081
Clostridium				
thermobutyricum DSM		LTAY010000	fig 1121339.3.peg.19	
4928 strain DSM 4928	1121339.3	48	03	CLTHE_19160

Clostridium uliginosum		FOMG010000		SAMN054218
strain DSM 12992	119641.3	26	fig 119641.3.peg.729	42 12641
Colwellia marinimaniae		BDQM01000	fig 1513592.3.peg.26	MTCD1 0249
strain MTCD1	1513592.3	020	08	0 -
Colwellia sp. MT41	58049.4	CP013145	fig 58049.4.peg.262	CMT41_01280
Coprobacillus sp.		ACWL010000	fig 665941.3.peg.336	HMPREF1021
3_3_56FAA	665941.3	72	6	_03361
Coprobacter sp. strain		QAMD01000	fig 1941478.3.peg.67	
CIM:MAG 570	1941478.3	012	7	DBY16_04550
Coriobacteriaceae		AWUP010000	fig 1111135.3.peg.12	HMPREF1248
bacterium BV3Ac1	1111135.3	17	80	0104
Coriobacteriia bacterium		DMLB010000	fig 2052159.8.peg.34	
strain UBA/930	2052159.8	41	2	DCP20_03680
<i>Culturomica</i> sp. strain	102((52.2	DOED010000	fig 1926652.3.peg.87	DD(57 00220
UBA11491	1926652.3		9 5-11942715 4 mar 10	DD657_00330
Dehalobaster op ToCP1	1942715 4	MCHF010000	ng 1843/15.4.peg.10	A 7D22 08260
Dehalococcoidia bacterium	1645/15.4	10 I ITX0100001	14 fig 1703304 / peg 15	A/D25_08500
SG8 51 3	1703394 /	LJ1X0100001 7	11g 1703394.4.peg.13	AMI70_01620
Deinococcus sp. K2S05-	1703374.4	OYU1010000	fig 2320857 3 peg 38	ANJ /0_01020
167	2320857 3	14	4	D3875_05845
Dermatophilus congolensis	2020007.0		•	SAMEA44756
strain NCTC13039	1863.3	LT906453	fig 1863.3.peg.1077	96 01042
Dermatophilus congolensis		UFYA010000		NCTC7915 00
strain NCTC7915	1863.4	01	fig 1863.4.peg.442	413 -
Desulfosporosinus sp. Tol-		JQID0100020	fig 1536651.3.peg.29	
Μ	1536651.3	3	58	JT05_14330
Desulfotomaculum				
guttoideum strain DSM		FOIP0100000		SAMN054432
4024	58134.4	1	fig 58134.4.peg.5736	70_3378
Desulfuromonadales		RHLS010000	fig 2099678.6.peg.89	
bacterium strain GT-UBC1	2099678.6	06	2	ED859_04680
Dethiosulfatibacter		FQZL010000	fig 1121476.3.peg.14	SAMN027457
aminovorans DSM 17477	1121476.3	22	59	51_02688
	1005500.0	ASTD010000	fig 1235798.3.peg.12	
Dorea sp. 5-2	1235798.3	24	95	C817_01216
Emergencia timonensis	177(204.4	QRMS010000	fig 17/6384.4.peg.15	DW000 06505
Strain AM07-24	1//0384.4		$\frac{21}{5}$	DW099_06585
Enterococcus asini ATCC	1159606 2	AJAP0100001	ng 1158606.3.peg.18	UAS 01017
Futana an any francium	1138000.5	9 EVI T010000	01 fig 1252 2620 mag 40	$\frac{\text{UAS}_{\text{UI91}}}{\text{DTDUA}_{14020}}$
strain Isolate 3	1352 3630	FKL1010000	11g 1552.5059.peg.49	85
Enterococcus pallons	1332.3037	50	55	0.0
$\Delta TCC B \Delta \Delta_{251}$		A I A OO 10000	fig 1158607 3 pag 62	
IPR INA2026771	1158607 3	01	7	UAU 00633
Enterococcus	1150007.5	V1	/	0110_00033
nhoeniculicola ATCC		AIAT0100001	fig 1158610 3 neg 33	
BAA-412 [PRINA202680]	11586103	8	02	UC3 03311
		1 -		

Enterococcus raffinosus				
ATCC 49464		AJAL0100001	fig 1158602 3 peg 24	
[PRJNA202673]	1158602.3	2	82	UAK 02481
Enterococcus rivorum		MIEK010000	fig 762845.3.peg.356	
strain LMG 25899	762845.3	78	0	BCR26 06435
Enterococcus thailandicus	,		fig 417368.9.peg.169	
strain a523	417368.9	CP023074	9	CK496 08255
Enterococcus thailandicus		LWMN01000	-	
strain F0711D 46	417368.5	001	fig 417368.5.peg.227	A6E74 01120
Ervsipelatoclostridium		OUSJ0100001		
ramosum strain AM21-17	1547.15	4	fig 1547.15.peg.970	DW242 12010
Eubacterium aggregans		FNRK010000		SAMN045156
strain SR12	81409 3	23	fig 81409 3 peg 1880	56 12317
Eubacterium angustum	01109.5	MKIE010000	115 01109.19 0 5.1000	00_12017
strain DSM 1989	39480 3	09	fig 39480 3 peg 1971	EUAN 20010
<i>Eubacterium barkeri</i> strain		FNOU010000	118 00 10010 p • 8.10 / 1	SAMN044885
VPI 5359	1528 7	05	fig 1528 7 neg 1786	79 10568
Fuhacterium callanderi	1020.7	FOWI010000	11 <u>B</u> 10 <u>2</u> 0.7. p 0 <u>B</u> .1700	SAMN044878
strain NLAE-zl-G225	53442 3	06	fig 53442 3 neg 1609	88 106131
Fuhacterium combesii	55112.5	PEIK0100000	iig 55112.5.peg.1009	00_100151
strain DSM 20696	39481 3	7	fig 39481 3 neg 3117	CS538 10030
	59101.5	CYZU010000	11g/59/101.5.pcg.5117	ERS852491_04
Fubacterium contortum	39482 3	57	fig 39482 3 neg 4633	276
Fubacterium contortum	59102.5	CYZU010000	iig 59102.5.peg.1055	FRS852491_04
strain 2789STDY5834876	39482.4	57	fig 39482 4 neg 4634	276
Fuhacterium limosum	59102.1	57	fig 903814 3 peg 106	210
KIST612	903814 3	NC 014624	2	FLI 1157
Fubacterium limosum	705011.5	OGUD010000	2	
strain 8486cho	1736 15	11	fig 1736-15 neg 3640	C7955 11192
Fubacterium limosum	1750.15	11	11g 1750.15.pcg.5010	
strain SA11	1736.8	CP011914	fig 1736.8 neg 900	ACH52 0856
	1750.0	OUDF010000	fig 2292043 3 peg 13	1101152_0050
Fubacterium sp. AM05-23	2292043 3	16	61	DW091 18115
	2272013.3	NXNI 010000	fig/20/10/14/3 neg 15	<u>DW091</u> 10115
Fubacterium sp. VI	2041044 3	05	5	CP725 15875
<i>Firmicutes</i> bacterium	2011011.5	PHAA010000	fig/2013776 3 peg 96	
HGW-Firmicutes-15	20137763	08	2	CV1190_05060
<i>Firmicutes</i> bacterium	2013770.3	PGZR010000	fig 2013785 3 peg 23	00000
HGW-Firmicutes-4	2013785 3	06	10	CVU99_01900
Flavohacteriaceae	2013703.3	DNYW01000	fig 1871037-131 neg	01/00
bacterium strain UBA7949	1871037 131	209	1142	DDZ39_06835
Flavohacteriaceae	10/105/1151	DNYW01000	fig 1871037 131 peg	
bacterium strain UBA7949	1871037 131	291	1379	DDZ39 09820
<i>Fusobacteria</i> bacterium	10/100/1101	ONYN010000	fig 2060921 4 peg 62	
strain MAG 22	20609214	75	8	DSY38 01970
Gammaproteobacteria		ONFD010003	fig 1913989 499 neg	
bacterium strain B25 G4	1913989 499	71	2937	DR059 13725
Gammaproteobacteria	.,,,,,	NVVP010000	fig 1913989-13 neg 1	211207_10720
bacterium strain NORP60	1913989 13	23	000	COA90_06085
	-/ -0/ 0/.10			

Gammaproteobacteria		NVVP010000	fig 1913989.13.peg.1	
bacterium strain NORP60	1913989.13	23	011	COA90_06130
Gammaproteobacteria		DOIT0100033	fig 1913989.398.peg.	
bacterium strain UBA7956	1913989.398	0	1359	DD827_09815
		LJNM010003	fig 1703355.3.peg.20	
<i>Gemmatimonas</i> sp. SG8_17	1703355.3	28	47	AMS18_14140
		LJNQ0100003	fig 1703357.3.peg.25	
<i>Gemmatimonas</i> sp. SG8_28	1703357.3	1	15	AMS20_02830
<i>Gemmiger</i> sp. An194 strain		NFKA010000	fig 1965582.3.peg.19	
An194	1965582.3	03	62	B5F28_03140
Gemmiger sp. An50 strain		NFID0100000	fig 1965639.3.peg.30	
An50	1965639.3	5	38	B5G03_06750
Gemmiger sp. An87 strain		NFHD010000	fig 1965662.3.peg.12	
An87	1965662.3	02	11	B5G38_01815
Geobacter bemidjiensis			fig 404380.4.peg.339	
Bem	404380.4	NC_011146	1	Gbem_3468
			fig 316067.3.peg.191	
Geobacter daltonii FRC-32	316067.3	NC_011979	2	Geob_1856
Geobacter metallireducens			fig 269799.8.peg.241	
GS-15	269799.8	NC_007517	8	Gmet_2380
Geobacter pelophilus strain		BDQG010000		GPEL0_01f536
Drf2	60036.3	01	fig 60036.3.peg.3663	5
Geobacter sp. DSM 9736			fig 1277350.3.peg.39	SAMN062693
strain DSM 9736	1277350.3	LT896716	4	01_0377
		JXBL0100000	fig 1510391.3.peg.22	
Geobacter sp. GSS01	1510391.3	1	15	SE37_09025
Geobacter sp. M18	443143.4	NC_014973	fig 443143.4.peg.597	GM18_0606
Î			fig 443144.3.peg.346	
Geobacter sp. M21	443144.3	NC 012918	4	GM21 3545
-		BAZF010000	fig 1266765.3.peg.29	
Geobacter sp. OR-1	1266765.3	01	5	OR1_00280
		PJFC0100001	fig 46610.14.peg.101	
Geobacter sp. strain H2geo	46610.14	0	3	CXR31 15280
		PJFB0100000		
Geobacter sp. strain L1geo	46610.15	1	fig 46610.15.peg.142	CXR30 00665
Geobacter sp. strain		DNJC010001	fig 46610.11.peg.135	
UBA9964	46610.11	15	8	DCZ75 15295
Geobacter sp. strain		DNJC010001	fig 46610.11.peg.136	
UBA9964	46610.11	15	4	DCZ75 15325
Geobacter sp. strain		DNRQ010001	fig 46610.12.peg.240	
UBA9976	46610.12	64	2	DDY22 16205
Geobacter sp. strain		DNRQ010001	fig 46610.12.peg.241	
UBA9976	46610.12	64	7	DDY22 16265
Geobacter sulfurreducens			fig 243231.5.peg.119	
PCA	243231.5	NC_002939	1	GSU1196
Geobacter sulfurreducens				
strain AM-1	35554.4	CP010430	fig 35554.4.peg.3217	RW64_15680
Geobacter sulfurreducens			fig 35554.10.peg.118	
strain YM18	35554.10	AP017912	8	YM18_1177

Geobacter uraniireducens			fig 351605.6.peg.351	
Rf4	351605.6	NC_009483	6	Gura_3294
<i>Geobacteraceae</i> bacterium GWC2 48 7	1798315.3	MGZI010000 53	fig 1798315.3.peg.63	A2079 06935
Geobacteraceae bacterium		MGZL010000	fig 1798318.3.peg.36	
GWC2_58_44	1798318.3	98	80	A2075_22065
Geobacteraceae bacterium		MGZL010000	fig 1798318.3.peg.36	
GWC2_58_44	1798318.3	98	94	A2075_22125
Hungatella hathewayi		QVIA010000	fig 154046.44.peg.29	DWX41_0397
strain AF19-21	154046.44	03	50	5
Ignavibacteria bacterium		MNYQ01000	fig 1805221.3.peg.32	
CG2_30_36_16	1805221.3	041	74	AUK34_02635
Ignavibacteria bacterium	1700 422 2	MHAE010000	fig 1798432.3.peg.11	
RBG_13_36_8	1798432.3	69 DVTE0100001	67	A2V66_01435
Ignavibacteria bacterium	2052206.2	PK1F0100001	fig 2053306.3.peg.10	00000 00000
strain BM516	2053306.3	0 DDDD010000	59 5-12040429 7 19	<u>C0600_00500</u>
Ignavibacteriales bacterium	2040429 7	DPKR010000	fig 2049428./.peg.18	DIN/29 06210
Strain UBA8501	2049428.7		31 f = 1429774 2 m = 71	DHV28_06210
CHS 70	1/2077/ 2		ng 1438//4.3.peg./1	AE26 00700
CIIS /0 Vtodonobaotonalos	1436/74.3	02 DIES0100000	0 fig/2014972.2 pag 96	AF20_00709
hacterium Uno11	201/1872 3	DIF S0100000	11g/2014072.5.peg.80	KDK 76910
	2014072.5	2	95 fig 1750710 3 peg 27	<u>KDK_70910</u>
Kurthia sp. 11kri321	1750719.3	CP013217	34	ASO14_2774
Lachnoclostridium sp.		DPAR010003	fig 2028282.7.peg.40	
strain UBA11633	2028282.7	71	09	DEQ64_19060
Lachnoclostridium sp.		DNNH010001	fig 2028282.4.peg.28	
strain UBA11745	2028282.4	49	89	DC053_12975
Lachnospiraceae bacterium	(NZ_ACTV01	fig 658083.3.peg.133	HMPREF0992
<u>6 1 63FAA</u>	658083.3	000015	3	_01315
Lachnospiraceae bacterium	2202072.2	QVHF010000	fig 2302972.3.peg.74	DW(04 11155
AM25-39	2302972.3	14	9	DW684_11155
Lachnospiraceae bacterium	1262092 4	ED 999142	11g 1262983.4.peg.13	DN627 01225
Lachacaming acage hostorium	1202985.4	FK888145	50 fig 1909202 25 mag 0	DIN027_01255
strain LIBA 0840	1808203 25	DNILD010000	11g 1898205.25.peg.9	DCP06 00340
I actobacillus huchneri	1898203.23	07	fig 1071400.2 pag 42	L RUCD034.0
CD034	1071400 3	CP003043	11g 10/1400.3.pcg.42	431
Lactobacillus diolivorans	10/1400.5	AZEX010000	fig 1423739 3 peg 13	FC85 GL0013
DSM 14421	14237393	98	95	32
Lactobacillus kefiri DSM	1123739.3	AYYV010000	fig 1423764 5 peg 11	FC95 GL0011
20587 = JCM 5818	1423764.5	31	80	61
Lactobacillus kefiri strain		NCWS010000		
OG2	33962.5	09	fig 33962.5.peg.2687	B8W85 03910
Lactobacillus otakiensis		BASH010000	fig 1291737.4.peg.77	_
JCM 15040	1291737.4	02	4	LOT_0779
Lactobacillus				
parafarraginis DSM 18390		AZFZ010000	fig 1423786.4.peg.29	FD47_GL0027
= JCM 14109	1423786.4	08	01	57

Lactobacillus		AGEY010001	fig 797515 3 peg 171	HMPREF9103
parafarraginis F0439	797515.3	05	6	01861
Lactobacillus parakefiri		AZEN010000	fig 1423787.3.peg.37	FD08 GL0035
DSM 10551	1423787.3	52	51	20 -
Lactobacillus rapi DSM		AZEI0100007	fig 1423795.5.peg.68	FD12 GL0006
19907 = JCM 15042	1423795.5	6	3	71 -
Lactobacillus sp. strain		QOUP010000		
LAC4	1591.25	02	fig 1591.25.peg.526	DUD34_02555
Lactobacillus sunkii DSM		AZEA010000	fig 1423808.3.peg.43	FD17_GL0004
19904	1423808.3	10	8	32
Leifsonia pindariensis		MPZN010000	fig 478010.4.peg.245	
strain PON 10	478010.4	41	4	GY24_12030
<i>Leifsonia</i> sp. strain		PABQ010000	fig 1870902.3.peg.22	
NAT116	1870902.3	44	13	CMF56_11870
		PBTR010000	fig 1870902.4.peg.19	
Leifsonia sp. strain NP56	1870902.4	83	15	CMF57_09425
Longilinea arvoryzae strain			fig 360412.5.peg.408	
KOME-1	360412.5	DF967973	1	LARV_03911
		JPUW010000	fig 1473546.3.peg.12	
Lysinibacillus sp. BF-4	1473546.3	13	40	CH76_06305
Lysinibacillus sp. FJAT-		LITM0100000	fig 1704289.4.peg.47	
14745	1704289.4	8	79	AMS59_15245
			fig 1145276.3.peg.32	
Lysinibacillus sp. GY32	1145276.3	CP006837	89	T479_16725
Lysinibacillus sphaericus		PGLV010000		
strain A1	1421.61	01	fig 1421.61.peg.251	LYSIN_00247
Lysinibacillus sphaericus				LS41612_0697
strain DSM 28	1421.62	CP019980	fig 1421.62.peg.1376	5
Maribacter polysiphoniae		QGGQ010000	fig 429344.6.peg.207	
strain DSM 23514	429344.6	03	4	LX92_01946
Maribacter sp. strain		PDPR010000	fig 1897614.3.peg.16	
DOLZORAL124_41_26	1897614.3	14	26	CR994_06820
Marinilabiliales bacterium		PKTC010000	fig 2053303.3.peg.15	
strain BM718	2053303.3	62	75	<u>C0597_02245</u>
Melissococcus sp. OM08-		QTZC010000	fig 2293110.3.peg.18	
11BH	2293110.3	06	41	DXC12_08680
<i>Methylophaga</i> sp. strain		NVVW01000	fig 2024840.12.peg.2	GO 102 0 (105
NORP53	2024840.12	012	302	COA83_06495
<i>Methylophaga</i> sp. strain	202404011	NVVK010000	f1g 2024840.11.peg.1	
NORP65	2024840.11	02	05	COA95_01670
<i>Methylophaga</i> sp. strain	202404011	NVVK010000	fig 2024840.11.peg.1	00.405.01(75
NORP65	2024840.11	02	06	COA95_016/5
Microbacterium aurum	26905 5	CD0107(2	S-12(905 5 12(0	
strain KACC 15219	36805.5	CP018/62	fig 36805.5.peg.1269	BOH66_05925
Microbacterium hominis	162426 5	CD025200	ng 162426.5.peg.243	CVD24 11000
strain SJ1G1	102420.3	CP025299	ð f 1905792 2 11	CAK34_11990
Minuch actanium on (7.17	1005702.2	MIK I KU10000	11g 1895/82.3.peg.11	DC047 0(005
Microbacterium sp. 6/-1/	1893/82.3	14 DDW/Z010000	03	BGU4/_06985
	2192005 2	KBWZ010000	11g 2183995.3.peg.14	DEU27 1610
<i>Microbacterium</i> sp. AG/90	2183993.3	08	00	DEU3/_1619

			fig 2014534.3.peg.13	
Microbacterium sp. PM5	2014534.3	CP022162	35	CEP17_06675
<i>Microbacterium</i> sp. strain		NZTV010001		
EAC103	51671.11	12	fig 51671.11.peg.479	CMH34_13625
		PHUH010000	fig 2035245.3.peg.30	
Microcella sp. HL-107	2035245.3	01	9	CLT70_0310
Microlunatus phosphovorus			fig 1032480.4.peg.43	
NM-1	1032480.4	NC_015635	81	MLP_44290
Micropruina glycogenica				
strain 1	75385.5	LT985188	fig 75385.5.peg.3326	MPLG2_3418
Microterricola viridarii			fig 412690.4.peg.208	SAMN044898
strain DSM 21772	412690.4	LT629742	5	34_2083
Microterricola viridarii			fig 412690.6.peg.127	AWU67_0624
strain ERGS5:02	412690.6	CP014145	5	0
Mobilicoccus pelagius		BAFE010000		MOPEL_001_
NBRC 104925	1089455.3	01	fig 1089455.3.peg.63	00640
Mycobacterium europaeum		CTEC010000	fig 761804.3.peg.249	
strain CSUR P1344	761804.3	01	5	BN000_02443
Oceanithermus profundus				
DSM 14977	670487.3	NC_014761	fig 670487.3.peg.213	Ocepr_0095
			fig 1262909.3.peg.77	
Odoribacter sp. CAG:788	1262909.3	HF993872	8	BN783_00704
Odoribacter sp. OF09-		QUMF010000	fig 2293112.3.peg.29	
27XD	2293112.3	48	22	DXA95_13925
Odoribacter splanchnicus			fig 1263090.3.peg.88	
CAG:14	1263090.3	FR882811	2	BN493_00808
Odoribacter splanchnicus			fig 709991.3.peg.180	
DSM 220712	709991.3	NC_015160	2	Odosp_1738
Odoribacter splanchnicus		QRYW01000	fig 28118.35.peg.251	DWW24_1477
strain AF14-6AC	28118.35	034	0	5
Paenibacillus sp. 11 strain		FXAZ010000	fig 1852522.3.peg.23	SAMN062959
11	1852522.3	02	60	60_2175
Paeniclostridium sordellii		AJXR020000	fig 1172204.5.peg.14	
8483	1172204.5	29	21	WS9_008635
Paeniclostridium sordellii		CDLK010000		
strain UMC2	1505.67	02	fig 1505.67.peg.1533	UMC2_13681
Parabacteroides distasonis			fig 435591.13.peg.96	DDI 000 7
ATCC 8503	435591.13	NC_009615	8	BDI_0985
Parabacteroides distasonis		JNHL0100011	fig 1339341.3.peg.27	
str. 3776 Po2 1	1339341.3	3	07	M090_4100
Parabacteroides distasonis	10000110	JNHP0100015	fig 1339344.3.peg.35	
str. 3999B T(B) 4	1339344.3	8	54	M095_3836
Parabacteroides distasonis		QRPA010000		
strain AF36-3	823.236	01	f1g 823.236.peg.131	DW002_00640
Parabacteroides distasonis		QRKE010000		DU100 11040
strain AM16-4	823.233	08	tig 823.233.peg.4624	DW188_11940
Parabacteroides distasonis		NFJX0100000	C 1022 04 1207	D/D22 10015
strain An199	823.84	8	t1g 823.84.peg.4285	B5F32_10945
Parabacteroides distasonis		NNCA010000		
strain CBA7138	823.214	03	t1g 823.214.peg.4244	CF162_20325

Parabacteroides distasonis		QSCD010000		
strain OF04-11BH	823.221	17	fig 823.221.peg.1267	DXA71 10320
Parabacteroides distasonis		DOCE010000		
strain UBA11942	823.239	81	fig 823.239.peg.1569	DD441_05445
Parabacteroides gordonii			fig 1203610.3.peg.45	HMPREF1536
MS-1	1203610.3	KQ033920	66	04479
Parabacteroides sp. 20 3		QSQY010000		
strain TF09-4	469591.9	11	fig 469591.9.peg.783	DXC95 12800
Parabacteroides sp. AF19-		QTMJ010000	fig 2293114.3.peg.86	DWX33 1365
14	2293114.3	13	5	0 -
Parabacteroides sp. AF27-		QTLZ010000	fig 2293116.3.peg.12	DWY79 1590
14	2293116.3	17	64	5 –
Parabacteroides sp. AF39-		QTLP010000		
10AC	2293117.3	01	fig 2293117.3.peg.15	DW033 00065
Parabacteroides sp. AM44-		QTNC010000	fig 2293122.3.peg.42	_
16	2293122.3	05	06	DW945 06705
Parabacteroides sp. CH2-		RAYG010000	fig 2320086.3.peg.33	_
D42-20	2320086.3	05	74	D7V92 04775
			fig 2025876.3.peg.17	_
Parabacteroides sp. CT06	2025876.3	CP022754	77	CI960 08640
•		NZ GG69873	fig 563193.3.peg.163	HMPREF0619
Parabacteroides sp. D13	563193.3	9	5	01632
Parabacteroides sp.			fig 1078087.3.peg.19	HMPREF1212
HGS0025	1078087.3	KQ033902	66	01946
Parabacteroides sp. OF01-		OTMX010000	fig 2293123.3.peg.37	
14	2293123.3	01	0	DXA29 01835
Parabacteroides sp. OF04-		QTMV010000	fig 2293124.3.peg.45	_
13BH	2293124.3	08	29	DXA72 08805
Paraclostridium				_
bifermentans strain		MWJI010000		
SU1074NT	1490.6	01	fig 1490.6.peg.403	B2H97 01970
Pelolinea submarina strain		QUMS010000	fig 913107.6.peg.321	
DSM 23923	913107.6	06	2	DFR64 3140
		AKVJ010000	fig 1149862.3.peg.42	_
Pelosinus fermentans B4	1149862.3	76	29	FB4 1206
Pelosinus propionicus		FOTS0100000	fig 1123291.3.peg.14	SAMN044903
DSM 13327	1123291.3	7	19	55 100791
Peptoclostridium difficile			fig 1121308.8.peg.91	CDIF1296T 0
ATCC 9689 = DSM 1296	1121308.8	CP011968	8	1018 -
Peptoclostridium difficile		JPPA0100003		
strain RA09 70	1496.848	6	fig 1496.848.peg.941	IM33 04070
Peptostreptococcus		FODF010000	fig 215200.11.peg.95	SAMN052164
russellii strain Calf135	215200.11	02	3	54_10259
Porphyromonadaceae				
bacterium strain		DPQM010000	fig 2049046.39.peg.2	
UBA11471	2049046.39	25	270	DHU85_06745
Porphyromonadaceae				
bacterium strain		DLYT010000	fig 2049046.4.peg.22	
UBA12018	2049046.4	12	16	DCF91_01495

		ACUD010000	fig 658663.3.peg.114	HMPREF1002
<i>Porphyromonas</i> sp. 31_2	658663.3	02	3	_01095
Propionibacteriaceae		NMVQ01000	fig 2016507.3.peg.48	
bacterium NML 130396	2016507.3	001	2	CGZ93_02330
Propionibacteriaceae				
bacterium strain		DORN010000	fig 2021380.10.peg.2	
UBA11038	2021380.10	71	536	DEG88_04695
Propionibacteriaceae				
bacterium strain		DORN010001	fig 2021380.10.peg.3	
UBA11038	2021380.10	57	599	DEG88_10435
Propionibacteriaceae		DMIX010000	fig 2021380.8.peg.12	
bacterium strain UBA8946	2021380.8	93	69	DCM67 02850
Propionicimonas				
<i>paludicola</i> strain DSM		PDJC0100000	fig 185243.3.peg.100	
15597	185243.3	1	2	ATK74 1001
Proteobacteria bacterium				_
strain		PDPG010000	fig 1977087.21.peg.1	
DOLZORAL124 48 12	1977087.21	68	805	CSB47 11335
Pseudoalteromonas sp.		NOMR01000	fig 2025950.3.peg.36	_
NBT06-2	2025950.3	004	21	CJF42 01080
Pseudonocardia				
ammonioxydans strain		FOUY010000	fig 260086 4 peg 139	SAMN052162
CGMCC 4 1877	260086.4	34	8	07 103423
Rhodococcus agalutinans	200000.1	RKI P010000	fig 1644129 3 peg 36	07_105125
strain CCTCC AB2014297	16441293	05	67	FGT67 11075
Rhodococcus sp 1163	1011129.5	MKKX01000	fig 1905289 3 peg 30	2010/_110/2
strain 1163	1905289 3	033	14	BID99 11470
Strain 1105	1705207.5	000 00AT010000	fig/2183006 3 peg 11	DEU38 11011
Rhodococcus sp AG1013	2183006 3	10	11g/2103990.3.pcg.44	5
Rhouococcus sp. A01015	2105770.5	1)	fig/205/002 3 peg 55	5
Rhodococcus sp AO5 07	2054002.3	K7815637	ng 2034902.3.pcg.33	CVN56 26850
Rhouococcus sp. AQ5-07	2034902.3	OPDI 010000	f_{12}	$CVN30_{20030}$
Phodococcus on OV270	10020142	08010000	11g 1002014.5.peg.15	SANIN034470
Knouococcus sp. OK270	1002014.5		$\frac{20}{\text{fm}^{100}}$	04_10691
Rhodososus an OV202	1997760 2	NPJZ0100000	11g 1882/09.5.peg.41	DDD12 4060
<i>Khodococcus</i> sp. OK 302	1882/09.3		$\frac{19}{5}$	BDB13_4009
Dhadaaaaa an DD(2	2600264	CVQP010000	ng 200936.4.peg.236	KHCKD62_30
Rhodococcus sp. RD6.2	260936.4) 5 1 (007(2 - 210	240
Rhodococcus tukisamuensis	1.0005.00	FNAB010000	fig 1682/6.3.peg.319	SAMN054445
strain JCM 11308	1682/6.3	03	5	80_103361
Rikenella microfusus strain		UGVL010000	G 100100 0 1000	NCTC11190_0
NCTC11190	28139.3	01	fig 28139.3.peg.1920	1633
Robiginitomaculum sp.		NVXK010000	fig 2030823.12.peg.1	
strain NORP13	2030823.12	09	772	COA43_07640
Robiginitomaculum sp.		NVRS010000	fig 2030823.4.peg.65	
strain NORP161	2030823.4	02	0	COB92_00945
Robiginitomaculum sp.		NVRH010000	fig 2030823.3.peg.55	
strain NORP172	2030823.3	12	0	COC03_05195
Robiginitomaculum sp.		NVWK01000	fig 2030823.9.peg.27	
strain NORP39	2030823.9	004	23	COA69_06610

		JNGB010000	fig 1504536.19.peg.3	
<i>Robinsoniella</i> sp. RHS	1504536.19	24	398	RHS 2825
Romboutsia lituseburensis		FNGW010000	fig 1121325.3.peg.14	SAMN045156
DSM 797	1121325.3	10	65	77 1107
<i>Romboutsia</i> sp. Frifi strain			fig 1507512.3.peg.35	
FRIFI	1507512.3	LN650648	4	FRIFI 0356
Salinibacterium				
amurskvense strain DSM		PGFH010000		
16400	205941 3	01	fig 205941 3 neg 4	CLV85_0004
Salinibacterium sp	2007 11.0		fig 2508880 3 neg 22	
UTAS2018	2508880 3	CP035375	46	ESZ53 11085
Snirochaeta sp. strain	2500000.5	DMKD01000	10	1000
	28185 /	256	fig/28185 / peg 1617	DC079_09630
Spirochastas bacterium	20105.4	230 PGYR010001	fig/2013830 3 peg 28	DC077_07050
HGW Spirochastas 7	2012820.2	06	11g/2013039.3.pcg.20	CVV51 12280
Spino chaotog haotorium	2013639.5	70 MIA 0010001	54 fig 1902176.2 mag 14	CVVJ1_12380
Spirochaeles bacierium	1902176.2	MIAQ010001	11g 18021/0.5.peg.14	A 23/28 00005
<u>GwB1_39_3</u>	18021/0.5		54 5 1 1 2 2 2 9 (A2138_09095
Sporomusa acidovorans	1100006.0	LSLL0100005	fig 1123286.3.peg.28	
DSM 3132	1123286.3	5	60	SPACI_266/0
Sporomusa malonica strain		FWX1010000	fig 112901.3.peg.449	SAMN044885
DSM 5090	112901.3	04	9	00_10474
Sporomusa silvacetica		LSLK010000	fig 1123289.3.peg.12	
DSM 10669	1123289.3	57	63	SPSIL_11490
Sporomusa sp. An4 strain				
Sporomusa ovata strain		CTRP010000	fig 411922.4.peg.331	SpAn4DRAFT
An4	411922.4	12	4	_2385
		PDYN010000	fig 2048262.4.peg.16	
Sporosarcina sp. P16a	2048262.4	03	82	CSV78_04365
		PDYN010000	fig 2048262.4.peg.16	
Sporosarcina sp. P16a	2048262.4	03	44	CSV78_04185
Staphylococcus		AMSQ010000	fig 1229783.3.peg.54	
massiliensis S46	1229783.3	03	3	C273 02678
Syntrophomonas sp. strain		DOIG010000	fig 2053627.5.peg.27	
ÚBA11028	2053627.5	70	6	DD791 07695
Terrisporobacter glycolicus		FORW010000	fig 36841.13.peg.249	SAMN029103
strain KPPR-9	36841.13	01	1	55 2517
Terrisporobacter glycolicus		DNVD010000		
strain UBA8115	36841 11	92	fig 36841 11 peg 816	DDY58_06875
Terrisporobacter sp 08-		IWHR010000	fig 1577792 3 neg 12	
306576	1577792 3	64	23	OX51_05965
Tassaracoccus sp	1377792.3	ROV7010000	fig/2/01050 3 peg 17	QA31_03703
OHAA6A COT 32A	2/01050 3	04	03	EII42 03605
ungultured Clostridium sp	24/1037.5	EMEC010000	JJ fig/50620 10 pag 150	SAMEA25452
strain 2780STDV5224250	59620-19	100000	115/020.17.pcg.109	25 02527
strain 278951D13834839	39020.19	UU EMCD010000	4 fiel50620.26 mag 226	<u>23_02327</u> SAMEA25454
atrain 2780STDV5824051	50620 26		ng 39020.30.peg.230	SAIVIEA33434
suain 2/8951DY 3834951	39020.30		0	14_01183
uncultured Clostridium sp.	50(20.20	FMGK010000	11g 39020.36.peg.214	SAMEA33434
strain 2/8981DY 5834951	59620.36		4	14_00955
uncultured <i>Clostridium</i> sp.	5 0 (0 0 0 0	FMG1010000	G 150 (00 00 05 1	SAMEA35454
strain 27898TDY 5834953	59620.38	38	ng 59620.38.peg.256	16_06137

uncultured <i>Eubacterium</i> sp.		FMHH010000	fig 165185.11.peg.28	SAMEA35453
strain 2789STDY5834905	165185.11	07	14	68_03453
Vagococcus fessus strain		NGJY010000		
CCUG 41755	120370.3	01	fig 120370.3.peg.803	CBF31_04020
Vagococcus humatus strain		PXZH010000	fig 1889241.3.peg.15	
JCM 31581	1889241.3	04	64	C7P63_07960
		AYSH010000	fig 1408226.3.peg.14	
Vagococcus lutrae LBD1	1408226.3	19	89	T233_01534
Vagococcus lutrae strain		NGJW010000		
CCUG 39187	81947.4	01	fig 81947.4.peg.269	CBF33_01340
Vagococcus salmoninarum		NGJU010000		
strain NCFB 2777	2739.3	30	fig 2739.3.peg.2049	CBF35_14240
Vagococcus sp. D7T301		MVAB01000	fig 1768210.4.peg.12	
strain D7T301	1768210.4	001	45	BW731_06255
		NGJT0100001	fig 1977868.3.peg.50	
Vagococcus sp. SS1994	1977868.3	3	0	CBF36_07830