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CHAPTER 1 
  

Introduction 

  

The Health Information Technology for Economic and Clinical Health (HITECH) Act passed in 

2009 incentivized U.S. hospitals to adopt electronic health record (EHR) systems.[1,2] Adoption 

of EHRs by U.S. hospitals increased from 72% in 2011 to 96% in 2017.[3] In the last decade, 

the amount of global EHR data available for biomedical research has grown at an exponential 

pace and will continue to accumulate in the future.[4,5] The build-up of EHR data coincides with 

decreases in genotyping costs,[6,7] thereby allowing investigators to connect big longitudinal 

EHR data with genomic data for use in improving healthcare delivery process, outcome studies, 

and biomedical research.[8]  

  

Investment in Genomic Medicine 

The convergence of big EHR data and decreases in high-throughput genotyping motivated 

public and private investment in genomic medicine. Examples of large-scale investments that 

leverage EHRs connected to DNA biobanks include the Electronic Medical Records and 

Genomics Network (eMERGE)[9,10] the UK Biobank (UKBB).[11] eMERGE was started in 2007 

with funding by the National Human Genome Research Institute (NHGRI). The main goal of 

eMERGE is to investigate methods of combining DNA biorepositories with EHR data for large 

scale, high-throughput genetic research. As of January 2020, there are 136,078 participants in 

the network cohort. Studies by the eMERGE network participants have demonstrated the 

feasibility of creating disease cohorts in the EHR using phenotyping algorithms for performing 

genome-wide association studies (GWAS). To date, 68 phenotyping algorithms have been 

developed through eMERGE.[12] With primary support from the Wellcome charity and the 
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Medical Research Council, the UKBB is a prospective longitudinal study with the aim of 

improving prevention, diagnosis, and treatment of human disease. Between 2006-2010, 

500,000 people were enrolled. The UKBB has genotyping data that are linked to phenotypic 

information from multiple resources such as questionnaires, EHRs, and physical 

measurements.[11]  

A primary goal of these programs is to improve the understanding of the genetic 

influences on human diseases through investigations like GWAS.[13] A GWAS typically begins 

with an investigator selecting a phenotype to study, followed by collection of data required for 

researchers to label study participants as phenotype cases (those with the phenotype) or 

controls (those without the phenotype).[14] For example, in one of the first type 2 diabetes (the 

phenotype) GWAS,[15] cases were individuals who met three requirements: 1) met one of the 

diagnostic criteria set by the American Diabetic Association (eg, had a fasting plasma glucose of 

>7.0 mmol/L); 2) had a first degree relative with diabetes; and 3) had a BMI < 30 kg/m². Type 2 

diabetes controls were individuals with normal fasting plasma glucose and had a BMI < 27 

kg/m². To obtain genotype data from study participants, investigators can use high-throughput 

methods,[16] like microarrays[17] and whole-genome sequencing.[18] With phenotype and 

genotype data, the investigator scans the genome to identify single nucleotide polymorphisms 

(SNPs) associated with the phenotype.  

In the late 2000s, though genetic data was relatively inexpensive to obtain due to 

decreases in cost of genotyping,[6,7] most genetic studies using ad hoc cohorts[15,19,20] were 

bottlenecked by limited phenotypic data.[21] For example, in 2007, the Wellcome Trust Case 

Control Consortium published a GWAS that involved >50 research groups in the UK.[20] The 

study’s main experiment comprised of 500,568 SNPs, but only 7 phenotypes. In general, 

developing accurate high-throughput portable phenotyping algorithms is monetarily expensive, 

takes a long time,[22] and is labor-intensive. To develop 13 validated phenotyping algorithms 

using EHR data involved the trans-institutional collaboration of biomedical informaticians, 
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domain experts, clinicians, geneticists, and others.[23] Thus, in contrast to the many assays 

available to investigators for interrogating the genome, researchers did not have a similar tool 

for obtaining accurate information across human diseases.[24,25]  

  

High-throughput Phenotyping in the EHR 

Accumulation of EHR data presented opportunities for investigators to decrease the cost of 

creating disease cohorts. For example, a 2007 study by Wilke et al. used a combination of 

diagnosis codes, laboratory data, and medication history to identify patients with diabetes.[26] 

Studies such as Wilke et al. decreased the cost of recruiting study participants, but were limited 

by the resources spent on informaticians to perform natural language processing (NLP) queries 

and manual chart reviews by clinicians to obtain a final phenotyping algorithm.[9,22,27–29] 

Other barriers to high-throughput phenotyping in the EHR included data fragmentation,[30] and 

data sparsity/irregularity.[31] 

To address the difficulties with phenotyping at a massive scale, Denny et al. introduced 

phecodes in 2010.[32] In the first phenome-wide association study (PheWAS), they developed 

phecodes as a custom-grouping of International Classification of Diseases, Ninth Revision, 

Clinical Modification (ICD-9-CM) codes. In contrast to GWAS, PheWAS starts with one SNP and 

look for associated phenotypes. They conducted the study at Vanderbilt University Medical 

Center, where they had access to one of the first de-identified electronic health records (EHRs) 

that were linked to a DNA biobank.[33] Phecodes offered investigators a single tool to collect 

phenotype data across human diseases. Further, using only ICD-9-CM diagnosis codes was 

easier to implement at other sites, given the widespread use of ICD-9-CM codes in billing.  

The 2010 PheWAS study replicated four of seven known SNP-disease associations.[32] 

In 2013, a systematic evaluation of PheWAS by the same research team replicated 66% of the 

associations in the GWAS catalog that were adequately powered.[34] In 2017, Wei et al. 

demonstrated that compared to alternative phenotyping methods using diagnostic billing codes, 
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phecodes replicated more known genotype-phenotype associations than ICD-9-CM and clinical 

classification software (CCS) codes.[35]  

Since 2010, the phenotypes represented in phecodes have increased in number and 

been refined. To increase the statistical power to find genotype-phenotype associations, the 

initial PheWAS study grouped >10,000 ICD-9-CM codes into 733 phecodes. In 2013, a second 

version of phecodes was released with 1358 unique phecodes,[34] followed by a third iteration 

with 1864 phecodes (version 1.1), and a fourth iteration with 1866 phecodes (version 1.2).[36] In 

2014, Carroll et al. released an R package[37] that has allowed investigators to easily conduct 

PheWAS at outside institutions.   

  

Motivation and Research Aims 

The studies presented in this thesis were motivated by the absence of a tool to translate ICD-10 

and ICD-10-CM codes to phecodes. ICD-10 codes have been used internationally for over 2 

decades, and ICD-10-CM codes have been used in the U.S. since 2015.[38] In this thesis, I 

describe the process used to develop new maps to allow investigators to convert ICD-10 and 

ICD-10-CM codes to phecodes. These resources will allow investigators to perform high-

throughput PheWAS in the EHR containing ICD-10-CM and ICD-10 codes.  

This thesis consists of four chapters. The first chapter describes the motivation for my 

research. The second chapter primarily focuses on the creation of the ICD-10/ICD-10-CM codes 

to phecode maps. The third chapter focuses on the evaluation of the ICD-10-CM to phecode 

map. I summarize this work In the last chapter with a discussion of the limitations and future 

directions. 
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CHAPTER 2 

 

Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and 

Initial Evaluation 

 

This manuscript was published in JMIR Medical Informatics as follows: 

Wu P, Gifford A, Meng X, Li X, Campbell H, Varley T, Zhao J, Carroll R, Bastarache L, Denny 

JC, Theodoratou E, Wei WQ 

Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial 

Evaluation 

JMIR Med Inform 2019;7(4):e14325 

URL: https://medinform.jmir.org/2019/4/e14325 

DOI: 10.2196/14325 

PMID: 31553307 

PMCID: 6911227 
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Abstract 

 

Background  

The phecode system was built upon the International Classification of Diseases, Ninth Revision, 

Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) in the 

electronic health record (EHR).  

  

Objectives 

We present our work on the development and evaluation of maps from ICD-10 and ICD-10-CM 

codes to phecodes.  

  

Methods 

We mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and 

resources, such as concept relationships and explicit mappings from the Centers for Medicare & 

Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences 

and Informatics, Systematized Nomenclature of Medicine - Clinical Terms, and the National 

Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt 

University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. 

We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM 

phecode map by investigating phenotype reproducibility and conducting a PheWAS. 

  

Results 

We mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes 

observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to 

phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute 



 
 

7 

disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and 

ICD-10-CM maps, we conducted a PheWAS with a lipoprotein(a) (LPA) genetic variant, 

rs10455872, which replicated two known genotype-phenotype associations with similar effect 

sizes: coronary atherosclerosis (ICD-9-CM: P=1.96E-15, odds ratio (OR) = 1.60, 95% 

confidence interval (CI): 1.43-1.80  vs. ICD-10-CM: P=8.63E-16, OR = 1.60, 95% CI: 1.43-1.80) 

and chronic ischemic heart disease (ICD-9-CM: P=4.18E-10, OR = 1.56, 95% CI: 1.35-1.79  vs. 

ICD-10-CM: P=5.21E-05, OR = 1.47, 95% CI: 1.22-1.77). 

  

Conclusions  

This study introduces the “beta” versions of ICD-10 and ICD-10-CM to phecode maps that 

enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the 

EHR. The maps are available from https://phewascatalog.org and incorporated in the PheWAS 

R package, https://github.com/PheWAS/PheWAS. 

  

Keywords  

electronic health record; genome-wide association study; phenome-wide association study; 

phenotyping 
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Introduction 
Background 

Electronic health records (EHRs) have become a powerful resource for biomedical research in 

the last decade, and many studies based on EHR data have used International Classification of 

Diseases (ICD) codes.[22] When linked to DNA biobanks, healthcare information in EHRs is a 

tool to discover genetic associations using billing codes in phenotyping algorithms. The 

phenome-wide association study (PheWAS) paradigm was introduced in 2010 as an approach 

that scans across a range of phenotypes, similar to genome-wide association studies. Studies 

using PheWAS have replicated hundreds of known genotype-phenotype associations and 

discovered dozens of new ones.[39–49] The initial version of phecodes consisted of 733 custom 

groups of ICD Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes. The most 

recent iteration of phecodes consists of 1,866 hierarchical phenotype codes that map to 15,558 

ICD-9-CM codes.[36,37] However, many health systems and international groups use ICD-10 or 

ICD-10-CM codes,[38] therefore necessitating a new phecode map. 

  

Transition from ICD-9 to ICD-10 

In 1979, the World Health Organization (WHO) developed ICD-9 to track mortality and 

morbidity. To improve its application to clinical billing, the United States National Center for 

Health Statistics (NCHS) modified ICD-9 codes to create ICD-9-CM, whose end-of-life date was 

scheduled around the year 2000, but was delayed until October 2015.[38] In 1990, the WHO 

developed ICD-10,[50] which the NCHS used to create ICD-10-CM to replace ICD-9-CM.  

Moving from ICD-9-CM to ICD-10-CM led to major structural changes in the coding 

system. First, the structure moved from a broadly numeric-based system in ICD-9-CM (e.g. 

474.11 for “Hypertrophy of tonsils alone”) to an alphanumeric system in ICD-10-CM (e.g. J35.1 

for the same condition). Second, ICD-10-CM contains much more granular information than 
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ICD-9-CM, as seen with the approximately tenfold increase in the number of diabetes-related 

codes in ICD-10-CM. ICD-10-CM also differs from ICD-9-CM in terms of semantics and 

organization.[38,51] 

Compared to ICD-10, ICD-10-CM has more codes and granularity. While the 2018AA 

Unified Medical Language System (UMLS)[52] contains 94,201 unique ICD-10-CM codes, it has 

12,027 unique ICD-10 codes after exclusion of range codes (e.g. ICD-10-CM A00-A09). Further, 

there are ICD-10 codes that do not exist in ICD-10-CM, and vice versa, such as ICD-10 A16.9 

“Respiratory tuberculosis unspecified, without mention of bacteriological or histological 

confirmation”, which has no ICD-10-CM equivalent.  

  

Prior Work 

To develop the original phecode system, one or more related ICD-9-CM codes were combined 

into distinct diseases or traits. For example, three depression-related ICD-9-CM codes 311, 

296.31, and 296.2 are condensed to phecode 296.2 “Depression”. With the help of clinical 

experts in disparate domains, such as cardiology and oncology, we have iteratively updated the 

phecode groupings.[34] 

  The phecode scheme is unique because it has built-in exclusion criteria to prevent 

contamination by cases in the control cohort. This is an important feature, as case 

contamination of control groups decreases the statistical power to find genotype-phenotype 

associations.[35] For each disease phenotype, we defined exclusion criteria by using our clinical 

knowledge and by consulting physician specialists.  

An example for how users can use phecode exclusion criteria is illustrated by a type 2 

diabetes study in the EHR. To define cases of type 2 diabetes, users include patients with ICD 

codes that map to phecode 250.2 “Type 2 diabetes”. To create the control cohort, they include 

patients without phenotypes in the “DIABETES” group, which is comprised of phecodes in the 

range of 249-250.99. This prevents contamination of the control group by patients with diseases 
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such as “Type 1 diabetes” (phecode 250.1) and “Secondary diabetes mellitus” (phecode 249). 

Excluded patients also include those with signs and symptoms commonly associated with type 

2 diabetes, such as “Abnormal glucose” (phecode 250.4), which may indicate someone who has 

not yet been diagnosed with diabetes. 

Though the phecode system is effective at replicating and identifying novel genotype-

phenotype associations, PheWAS have largely been limited to using ICD-9-CM codes. A few 

studies have mapped ICD-10 codes to phecodes by converting ICD-10 to ICD-9-CM, and then 

mapping the converted ICD-9-CM codes to phecodes.[40,47] However, these studies limited 

their mappings to ICD-10 (non-CM) codes, did not provide a map to translate ICD-10-CM codes 

to phecodes, and did not evaluate the accuracy of these maps.  

  

Goal of this Study 

In this study, we developed and evaluated maps of ICD-10 and ICD-10-CM codes to phecodes. 

The primary aims of this study were to create an initial “beta” map to perform PheWAS using 

ICD-10 and ICD-10-CM codes and to focus the analyses on PheWAS-relevant codes. Our goal 

was to demonstrate that researchers should expect similar results from the ICD-10-CM phecode 

map compared to the gold-standard ICD-9-CM map. To accomplish this goal, we investigated 

phecode coverage, phenotype reproducibility, and the results from a PheWAS. 

 

Methods 
Databases 

In this study, we used data obtained from the Vanderbilt University Medical Center (VUMC) and 

UK Biobank (UKBB) databases. The VUMC EHR contains clinical information derived from the 

medical records of >3 million unique individuals. The UKBB is a prospective longitudinal cohort 

study designed to investigate the genetic and environmental determinants of diseases in UK 
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adults. Between 2006-2010, the study recruited >500,000 men and women aged 40-69 years. 

Participants consented to allow their data to be linked to their medical records. EHR records of 

UKBB were obtained under an approved data request application (ID:10775). 

At the time of this study, VUMC had >2.5 years of ICD-10-CM data (~2015-10-01 to 

2017-06-01), while the UKBB had >2 decades of ICD-10 data[53] (~1995-04-01 to 2015-03-31). 

VUMC includes codes for inpatient and outpatient encounters, whereas UKBB codes in this 

study are only inpatient codes. 

  

Mapping ICD-10-CM and ICD-10 Codes to Phecodes 

We extracted ICD-10-CM codes from the 2018AA release of the UMLS,[52] and used a number 

of automated methods to translate ICD-10-CM diagnosis codes to phecodes (Figure 1). We 

mapped 515 ICD-10-CM codes directly to phecodes by matching code descriptions regardless 

of capitalization, e.g. ICD-10-CM H52.4 “Presbyopia” to phecode 367.4 “Presbyopia”. We 

mapped 82,287 ICD-10-CM codes indirectly to phecodes using the existing ICD-9-CM phecode 

map.[36] To convert ICD-10-CM codes indirectly to phecodes, we used General Equivalence 

Mappings (GEMS) provided by the Centers for Medicare & Medicaid Services, that maps ICD-

10-CM to ICD-9-CM and vice versa.[54] We included both equivalent and non-equivalent GEMS 

mappings (i.e. where the "approximate" flag was either "0" or "1"). As an example of this indirect 

approach, to map ICD-10-CM E11.9 “Type 2 diabetes mellitus without complications” to 

phecode 250.2 “Type 2 diabetes”: ICD-10-CM E11.9 to ICD-9-CM 250.0 “Diabetes mellitus 

without mention of complication” to phecode 250.2.  

Since the GEMS do not provide mappings for all ICD-10-CM codes,[51] we 

complemented this approach with UMLS semantic mapping,[55] Observational Health Data 

Sciences and Informatics (OHDSI) concept relationships,[56,57] and National Library of 

Medicine (NLM) maps.[58] In this approach to indirect mapping, we first mapped ICD-10-CM 

codes to Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) through UMLS 
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Concept (CUI) equivalents, which were then converted to ICD-9-CM through either UMLS CUI 

equivalents,[52,55] OHDSI,[57] or NLM maps.[58] For example, ICD-10-CM L01.00 “Impetigo, 

unspecified” to CUI C0021099 to SNOMED CT 48277006 to OHDSI Concept ID 140480 to 

OHDSI Concept ID 44832600 to ICD-9-CM 684 to phecode 686.2 “Impetigo”. 

There were two general instances when an ICD-10-CM code mapped to more than one 

phecode. First, some ICD-10-CM codes mapped to a parent phecode and one if its child 

phecodes that was lower in the hierarchy. To maintain the granular meanings of ICD-10-CM 

codes, we only kept the mappings to child phecodes, a decision that we could make due to the 

hierarchical structure of phecodes. For example, ICD-10-CM I10 “Essential (primary) 

hypertension” was mapped to phecodes 401 “Hypertension” and 401.1 “Essential hypertension”, 

but we only kept the mapping to phecode 401.1. Second, we kept all the mappings for ICD-10-

CM codes that were translated to phecodes that were not in the same family. This can be seen 

in the mapping of ICD-10-CM D57.812 “Other sickle-cell disorders with splenic sequestration” to 

phecodes 282.5 “Sickle cell anemia” and 289.5 “Diseases of spleen”. This latter association 

created a polyhierarchical nature to phecodes that did not previously exist. To map ICD-10 

(non-CM) codes to phecodes, we used ICD-10 codes also from the 2018AA UMLS.[52] ICD-10 

codes were mapped to phecodes in a similar manner to ICD-10-CM, but since a GEMS to 

translate ICD-10 to ICD-9-CM was not available, we used only string matching and previously 

manually-reviewed resources from the UMLS,[55] NLM,[58] and OHDSI.[56,57] 
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Figure 1. Mapping strategy for ICD-10 (non-CM) and ICD-10-CM diagnosis codes to phecodes. 
We mapped ICD-10-CM codes directly by matching code descriptions (path A) or indirectly to 
phecodes, using a number of manually-validated mapping resources (paths B, C, D, E, and F). 
In path D, we used NLM’s SNOMED CT to ICD-9-CM one-to-one and many-to-one maps.[58] 
To map ICD-9-CM codes to phecodes, we applied Phecode Map 1.2 with ICD-9 Codes (ICD-9-
CM phecode map).[36] Boxes with solid lines indicate clinical terminologies, and those with 
dashed lines describe the resources and mapping methods used. ICD-10-CM: International 
Classification of Diseases, Tenth Revision, Clinical Modification. SNOMED CT: Systematized 
Nomenclature of Medicine Clinical Terms. GEMS: General Equivalence Mappings. UMLS: 
Unified Medical Language System. OHDSI: Observational Health Data Sciences and 
Informatics. CUI: Concept Unique Identifier. NLM: National Library of Medicine. 
  

Evaluation of Phecode Coverage of ICD-10 and ICD-10-CM in UKBB and VUMC 

To evaluate the phecode coverage of ICD-10 and ICD-10-CM source codes in UKBB and 

VUMC, respectively, we calculated the number of source codes in the 2018AA UMLS, number 
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of source codes mapped to phecodes, and number of mapped and unmapped source codes 

that were used in the two EHRs (Figure 2). To identify potential limitations of our automated 

mapping approach, two authors with clinical training (P.W., W.Q.W.) manually reviewed all the 

unmapped ICD-10 and ICD-10-CM codes that were used at UKBB and VUMC, respectively. 

 

Comparison of Phenotypes Generated from the ICD-10-CM Phecode Map  

We aimed to provide evidence that the ICD-10-CM phecode map resulted in phenotypes similar 

to those sourced from the ICD-9-CM phecode map. First, we selected 357,728 patients in the 

VUMC EHR who had ≥1 ICD-9-CM and ≥1 ICD-10-CM codes in two 18-month windows. We 

selected windows to occur prior to and after VUMC’s transition to ICD-10-CM. To reduce 

potential confounders, we left a six-month buffer after ICD-9-CM was replaced with ICD-10-CM. 

Further, the ICD-10-CM observation window ended before VUMC switched from its locally 

developed EHR[59] to the Epic system. This created two windows ranging from 2014-01-01 to 

2015-06-30 for ICD-9-CM, and 2016-01-01 to 2017-06-30 for ICD-10-CM (Figure 3). The final 

cohort consisted of 55.10% female with mean (standard deviation, SD) 45 (25) years old. From 

the two observation periods, we extracted all ICD-9-CM and ICD-10-CM codes for each patient. 

We then mapped these codes to phecodes using the ICD-9-CM phecode[36] and ICD-10-CM 

phecode maps.  

We used the patient cohort to test our hypothesis that the ICD-10-CM phecode map 

created phenotype definitions that were comparable to those generated using the gold-standard 

ICD-9-CM phecode map. For this analysis, we used four common chronic diseases 

(Hypertension, Hyperlipidemia, Type 1 Diabetes, and Type 2 Diabetes) and chose one acute 

disease (Intestinal infection) as a negative control. We expected that a large majority of the 

chronic disease patients and small minority of the acute disease patients from the ICD-9-CM era 

would reproduce the same phenotypes during the ICD-10-CM era. We defined the phenotype 

cases as follows: Hypertension with phecodes 401.* ( “*” means one or more digits or a period); 
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Hyperlipidemia, phecodes 272.*; Type 1 diabetes, phecodes 250.1*; Type 2 diabetes, phecodes 

250.2*; Intestinal infection, phecodes 008.*. 

For each phenotype, we reported the number of ICD-9-CM cases and the number of 

those individuals who were also ICD-10-CM cases. To identify the possible reasons for 

individuals who were not identified as phenotype cases in the ICD-10-CM period, two authors 

with clinical training (P.W., W.Q.W.) manually reviewed the EHRs of ten randomly selected 

patients from each chronic disease group, except Type 1 diabetes, for a total of thirty patients. 
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Figure 2.  Counts of distinct ICD-10-CM source codes at VUMC and ICD-10 (non-CM) source 
codes in UKBB. (A) Number of unique ICD-10-CM codes in each category. For example, there 
were 34,793 unique codes (grey section) that were in the official ICD-10-CM system, observed 
in the VUMC dataset, and mapped to phecodes. (B) Number of unique ICD-10 codes in each 
category. For example, there were 5,823 unique codes (off-white section) that were in the 
official ICD-10 system, observed in the UKBB dataset, and mapped to phecodes. VUMC: 
Vanderbilt University Medical Center. UKBB: UK Biobank. 
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Figure 3. Timeline of the two 18-month periods from which ICD-9-CM and ICD-10-CM codes 
from VUMC were analyzed. The cohort of 357,728 patients had at least one ICD-9-CM and one 
ICD-10-CM code in the respective 18-month windows.  
  

Comparative PheWAS Analysis of Lipoprotein(a) (LPA) Single-nucleotide polymorphism (SNP) 

To evaluate the accuracy of the ICD-10-CM phecode map, we performed two PheWAS on an 

LPA genetic variant (rs10455872) using mapped phecodes from ICD-9-CM and ICD-10-CM. 

The LPA SNP is associated with increased risks of developing hyperlipidemia and 

cardiovascular diseases.[60–62] 

We used data from BioVU, the de-identified DNA biobank at VUMC to conduct the 

PheWAS.[33] We identified 13,900 adults (56.90 % female with mean (standard deviation, SD) 

59 (15) years old in 2014), who had rs10455872 genotyped, and at least one ICD-9-CM and 

ICD-10-CM code in their respective time windows. For rs10455872, we observed 86.7% AA, 

12.8% AG, and 0.5% GG. We used 1,632 phecodes that overlapped in the time windows for 

PheWAS using the R PheWAS package[37] with binary logistic regression, adjusting for age, 

sex, and race. 

 

Results 
Phecode Coverage of ICD-10-CM and ICD-10 in VUMC and UKBB 

Of all possible ICD-10-CM codes,[52] 82,303 (87.37%) mapped to at least one phecode, with 

7,881 (8.37%) mapping to >1 phecode. For example, ICD-10-CM I25.708 “Atherosclerosis of 

coronary artery bypass graft(s), unspecified, with other forms of angina pectoris” mapped to 

phecodes 411.3 “Angina pectoris” and 411.4 “Coronary atherosclerosis”. Of all possible ICD-10 
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codes, 9,060 (75.33%) mapped to at least one phecode, and 289 (2.40%) mapped to >1 

phecode. For example, ICD-10 code B21.1 “HIV disease resulting in Burkitt lymphoma” maps to 

phecodes 071.1 “HIV infection, symptomatic” and 202.2 “Non-Hodgkins lymphoma”. 

Among the 36,858 ICD-10-CM codes used at VUMC, 34,793 (94.40%) codes were 

mapped to phecodes. In the UKBB, 5,823 (93.24%) of the ICD-10 codes mapped to phecodes 

(Table 1, Figure 2). Considering all the instances of ICD-10-CM and ICD-10 codes used at each 

site, we generated a total count of unique codes grouped by patient and date, and those codes 

that mapped to phecodes (Table 1). Among the total number of codes used, 89.72% of ICD-10-

CM and 83.68% of ICD-10 codes were mapped to phecodes.  

 

Table 1. ICD-10-CM and ICD-10 codes data summary. 

 ICD-10-CM (No.) 
(VUMC) 

ICD-10 (No.) 
(UKBB) 

Official classification systems   

Unique codes 94,201 12,027 

Unique codes mapped 82,303 (87.37%) 9,060 (75.33%) 

Official codes used in cohorts   

Unique codes   36,858 6,245 

Unique codes mapped 34,793 (94.40%) 5,823 (93.24%) 

Total patients (with ICD-10-CM or ICD-10 
codes) 651,649 391,181 

Total instances of all ICD codes 19,682,697 5,114,363 

Instances mapped to phecodes  17,658,470 
(89.72%) 

4,279,544 
(83.68%) 

 

Analysis of Unmapped ICD-10 and ICD-10-CM Codes 

Majority of the unmapped ICD-10 codes used in the UKBB dataset represented medical 

concepts related to personal (i.e. past medical history) or family history of disease. For ICD-10-
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CM, removing codes used at VUMC that we expected to be unmapped (i.e. local or 

supplementary classification codes) left 2,065 ICD-10-CM codes that did not map to a phecode. 

After excluding X, Y, and Z codes (1,395 codes), 670 codes remained, majority of which 

represented either “external causes of morbidity” or “factors influencing health status and 

contact with health services”. All of the remaining unmapped ICD-10-CM codes in this cohort 

had <200 unique individuals (i.e. <.1% of the cohort), and majority of the ICD-10-CM codes with 

>10 unique individuals were phenotypes that are most likely due to non-genetic factors. For 

example, 287 (59.2%) of the unmapped ICD-10-CM codes represented external causes of 

morbidity, such as assault and injuries due to motor vehicle accidents. 

 
Reproducibility Analysis of the ICD-10-CM Phecode map 

In the defined 18-month time windows, a cohort 357,728 patients had both ICD-9-CM and ICD-

10-CM codes (Figure 3). For the chronic diseases, 70-75% of individuals with the relevant 

phecodes in the ICD-9-CM observation period also had the same phecodes of interest during 

the ICD-10-CM period. On the contrary, for the reproducibility analysis with an acute disease, 

we observed that <10% of individuals who had phecodes 008.* (Intestinal infection) in the ICD-

9-CM period also had the same phecodes in the ICD-10-CM period (Table 2). 
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Table 2. ICD-10-CM phecode map reproducibility analysis. 

Phenotype Phecodesa No. ICD-9-CM 
cases  

No. Individuals (%),  
(ICD-10-CM case | ICD-9-CM 
case)b 

Hypertension 401.* 65,216 49,468 (75.85%) 

Hyperlipidemia 272.* 51,187 36,187 (70.70%) 

Type 1 diabetes 250.1* 5,782 4,412 (76.31%) 

Type 2 diabetes 250.2* 25,077 19,066 (76.03%) 

Intestinal 
infection 

008.* 3,410 273 (8.01%) 

aIn the phecode column, “*” means ≥1 digits or a period, e.g. phecode 401.* = phecodes 401, 
401.1, 401.3, 401.22, 401.21, 401.2. 
bIn the last column, “ICD-10-CM case | ICD-9-CM case” indicates patients who were cases for 
the phenotype of interest during the ICD-9-CM period who were also ICD-10-CM cases.  
  

To identify the reasons that may explain why some patients were not identified as cases 

for the phenotype of interest during the ICD-10-CM period, we manually reviewed their medical 

records. Thirty patients were selected for review, ten each from the Hypertension, 

Hyperlipidemia, and Type 2 diabetes cohorts (Table 3). We found that none of the patients had 

a relevant ICD-10-CM code for the phenotype being studied in the 18-month observation period. 

Reasons for patients not being ICD-10-CM cases include: patients were labeled with the 

relevant ICD-10-CM code(s) outside of the short ICD-10-CM observation window (8 patients), 

patients had <2 visits at VUMC during the ICD-10-CM period and/or were only seen by 

physician specialists (10 patients; e.g. patient with hypertension was only seen by their 

neurologist during the ICD-10-CM period), and patients were inconsistently diagnosed (2 

people; e.g. patient with Type 1 diabetes given Type 2 diabetes ICD-9-CM code). No cases 

were missed due to errors in the ICD-10-CM phecode map.  
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Table 3. ICD-10-CM reproducibility analysis, manual chart review results. 

Phenotype Group Number of People 

Hypertension absence of ICD-10-CM only 2 

Hyperlipidemia absence of ICD-10-CM only 4 

Type 2 diabetes absence of ICD-10-CM only 4 

Hypertension short observation window 1 

Hyperlipidemia short observation window 4 

Type 2 diabetes short observation window 3 

Hypertension limited number of visits/specialist 7 

Hyperlipidemia limited number of visits/specialist 2 

Type 2 diabetes limited number of visits/specialist 1 

Hypertension inconsistent diagnosis 0 

Hyperlipidemia inconsistent diagnosis 0 

Type 2 diabetes inconsistent diagnosis 2 
  

Comparative PheWAS Analysis of LPA SNP, rs10455872 

To further evaluate the ICD-10-CM phecode map, we performed and compared the results of 

PheWAS analyses for rs10455872. One PheWAS was conducted using the ICD-9-CM map and 

another was conducted using the ICD-10-CM map. Both analyses replicated previous findings 

with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P=1.96E-15, odds ratio (OR) = 

1.60, 95% confidence interval (CI): 1.43-1.80  vs. ICD-10-CM: P=8.63E-16, OR = 1.60, 95% CI: 

1.43-1.80) and chronic ischemic heart disease (ICD-9-CM: P=4.18E-10, OR = 1.56, 95% CI: 

1.35-1.79  vs. ICD-10-CM: P=5.21E-05, OR = 1.47, 95% CI: 1.22-1.77) (Figure 4). 
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Figure 4. Comparative PheWAS of lipoprotein(a) (LPA) genetic variant, rs10455872. “Coronary 
atherosclerosis” (phecode 411.4) and “Other chronic ischemic heart disease” (phecode 411.8) 
were top hits associated with rs10455872 in a PheWAS analysis conducted using ICD-9-CM 
(top) and ICD-10-CM (bottom) phecode maps. Analyses were adjusted for age, sex, and race. 
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Discussion 
Main Findings: Maps of ICD-10 and ICD-10-CM Codes to Phecodes have High Coverage and 

Yield Similar Results as the ICD-9-CM Phecode Map.  

In this study, we described the process of mapping ICD-10 and ICD-10-CM codes to phecodes, 

and evaluated the results of the new maps in two databases. These results show that the 

majority of the ICD-10 and ICD-10-CM codes used in EHRs were mapped to phecodes. Our 

analyses suggest that researchers can expect that phenotypes sourced using the ICD-10-CM 

phecode map will be similar to those sourced from the gold-standard ICD-9-CM phecode map. 

As the use of ICD-10 and ICD-10-CM codes increases, so does the need for convenient and 

reliable methods of aggregating codes to represent clinically meaningful phenotypes.  

Since the introduction of phecodes, many studies have demonstrated the value of aggregating 

ICD-9-CM codes for genetic association studies. These maps will allow biomedical researchers 

to leverage clinical data represented by ICD-10 and ICD-10-CM codes for their large-scale 

PheWAS in the EHR. They will also allow researchers to combine phenotypes as phecodes 

mapped from ICD-9 and ICD-10 based coding systems, thereby increasing the size of their 

patient cohorts and statistical power of their studies. The maps are available from the PheWAS 

Resources page[36] and are incorporated in the PheWAS R package, version 0.99.5-2.[37,63] 

 

ICD-10 and ICD-10-CM Codes not Mapped to Phecodes    

Analysis of the unmapped ICD-10 codes demonstrates a possible area of expansion for 

phecodes. The ICD-10 phecode map did not include medical concepts representing personal 

history or family history of disease. 

We observed that a majority of the unmapped ICD-10-CM codes represented concepts 

that we did not expect to have phecode equivalents. Majority of the codes were from ICD-10-

CM chapters 20 “External causes of morbidity” and 21 “Factors influencing health status and 

contact with health services”. Codes from chapter 19 “Injury, poisoning, and certain other 
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consequences of external causes” also made up a large proportion of unmapped codes, such 

as ICD-10-CM T38.3X6A “Underdosing of insulin and oral hypoglycemic [antidiabetic] drugs, 

initial encounter”. We did not expect ICD-10-CM T38.3X6A to map to a phecode, as it is an 

encounter code that is not relevant to PheWAS. Three-digit codes that are not frequently used 

for reimbursement purposes, such as ICD-10-CM I67 “Other cerebrovascular diseases”, also 

made up a large number of unmapped codes. A few potential clinically meaningful phenotypes, 

such as ICD-10-CM O04.6 “Delayed or excessive hemorrhage following [induced] termination of 

pregnancy”, were unmapped and represent areas of potential expansion for phecodes. 

 

ICD-10-CM Phecode Map Phenotype Reproducibility Analysis   

In general, our analysis suggests that in the majority of the cases in which phenotypes are not 

reproduced in the ICD-10-CM observation period are not due to errors in the ICD-10-CM 

phecode map. This study’s reproducibility analysis (Table 2) demonstrates that the vast majority 

of patients (70-75%) with phecodes of four chronic diseases sourced from ICD-9-CM codes 

were also phenotype cases in the ICD-10-CM era. In comparison, when the same experiment is 

repeated for an acute disease (Intestinal infection), a minority (<10%) of patients had the same 

phenotype in the ICD-10-CM period.  

Using the ICD-9-CM and ICD-10-CM maps, PheWAS found significant genetic 

associations with similar effect sizes for coronary atherosclerosis and chronic ischemic heart 

disease (Figure 4). Results of this analysis provide additional support for the accuracy of the 

ICD-10-CM map when compared to the gold-standard ICD-9-CM phecode map.  

 

PheWAS Using ICD-10 Phecode Map 

Two published studies have used the ICD-10 phecode map to identify genotype-phenotype 

associations using UKBB data. Zhou et al. used the map to demonstrate a method that adjusts 
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for case-control imbalances in a large genome-wide PheWAS.[64] Li et al. used the same map 

to estimate the causal effects of elevated serum uric acid across the phenome.[65] 

 

Utilization of Phecodes Outside of PheWAS 

In addition to being employed for PheWAS, phecodes have been used to answer a range of 

questions in biomedicine. Phecodes have been used to identify features in radiographic images 

that are associated with disease phenotypes,[66] and used in machine learning models to 

improve cardiovascular disease prediction.[67] In a recent study to understand public opinion 

about diseases, Huang et al. identified articles about diseases and mapped them to 

phecodes.[68] Motivated by the difficulties in automatically translating diagnosis codes in the 

EHR, Shi et al. used phecodes to map ICD-9-CM diagnosis codes from one health system to 

another.[69] Phecodes have also been applied to identify conditions for aggregation in 

“phenotype risk scores”, much as SNPs are aggregated as a genetic risk score, to identify 

Mendelian diseases and determine pathogenicity of genetic variants.[70] 

 

Related Work 

The Clinical Classification Software (CCS) is another maintained system for aggregating ICD 

codes into clinically meaningful phenotypes. CCS was originally developed by the Agency for 

Healthcare Research and Quality (AHRQ) to cluster ICD-9-CM diagnosis and procedure codes 

to a smaller number of clinically meaningful categories.[71] CCS has been used for many 

purposes, such as to measure outcomes[72] and to predict future health care usage.[73] In a 

previous study, we showed that phecodes better aligned with diseases mentioned in clinical 

practice and that are relevant to genomic studies, than CCS for ICD-9-CM (CCS9) codes.[35] 

We found that phecodes outperform CCS9 codes, in part because CCS9 was not as granular as 

phecodes. Since CCS for ICD-10-CM (CCS10) is of similar granularity as CCS9 (283 vs. 285 
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disease groups),[71] we believe that the phecode map would likely still better represent clinically 

meaningful phenotypes in genetic research. 

 
Limitations 

This study has limitations. First, only 84.14% (1570/1866) of phecodes are mapped to at least 

one ICD-10 code. This may be due in part to the automated strategy that we used to map ICD-

10 to ICD-9-CM. Second, the VUMC data are from a single site, thereby making it difficult to 

generalize the results of our accuracy studies (e.g. phenotype reproducibility analysis and LPA 

SNP PheWAS) to patient cohorts in other EHRs. Third, we have not yet manually reviewed all of 

the mappings in these “beta” phecode maps, and our assumptions that the manually-reviewed 

resources (e.g. NLM and OHDSI) are highly accurate could have affected the accuracy of the 

new phecode maps. For example, in the 2009 ICD-10-CM to ICD-9-CM GEMS, >90% of the 

mappings were “approximate” (i.e. non-equivalent).[38] For this study’s purposes, we aimed to 

maximize phecode coverage of ICD source codes, and thus included both equivalent and non-

equivalent 2018 GEMS translations, which could have decreased mapping performance.  

Fourth, our automated approach to map >80,000 ICD-10-CM and >9,000 ICD-10 codes 

to phecodes with minimal human-engineering could have decreased the accuracy of the final 

maps. Hripcsak et al.[74] recently evaluated the effects of translating ICD-9-CM codes to 

SNOMED CT codes on the creation of patient cohorts. In general, they found that mapping 

source billing codes to a standard clinical vocabulary (e.g. ICD-9-CM to SNOMED CT) did not 

greatly affect cohort selection. Their findings suggested that optimized domain knowledge-

engineered mappings outperformed simple automated translations between clinical 

vocabularies. Using four phenotype concept sets, they showed that automated mappings 

resulted in errors of up to 10% and that domain-knowledge engineered mappings to have errors 

of <.5%. Other studies have also found that mapping performance is generally better with 

smaller value sets.[51] To create a more comprehensive and accurate map between ICD-9-CM 
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and ICD-10-CM, future mapping studies could consider using an iterative forward and backward 

mapping approach using GEMS.[51]  

 

Future Directions 

Currently, if an ICD-10 or ICD-10-CM code maps to ≥2 codes unlinked phecodes, we keep all of 

the mappings. In subsequent studies, it will be important to further scrutinize these mappings to 

ensure accuracy through manual review. As new ICD-10-CM codes are released, we plan to 

assess their relevance to clinical practice and genetic research, and decide whether we should 

translate them to phecodes. We intend to address the unmapped source codes (e.g. ICD-10-

CM E78.41 “Elevated Lipoprotein(a)”) by potentially expanding the phecode system, and to 

systematically evaluate the mappings with input from users.  

 

Conclusions 

In this paper, we introduced our work on mapping ICD-10 and ICD-10-CM codes to phecodes. 

We provide initial “beta” maps with high coverage of EHR data in two large databases. Results 

from this study suggested that the ICD-10-CM phecode map created phenotypes similar to 

those generated by the ICD-9-CM phecode map. These mappings will enable researchers to 

leverage accumulated ICD-10 and ICD-10-CM data in the EHR for large PheWAS. 

 

Abbreviations 
PheWAS: phenome-wide association studies 

EHR: electronic health record 

ICD: International Classification of Diseases 

AHRQ: Agency for Healthcare Research and Quality 

CM: Clinical Modification 

WHO: World Health Organization 
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UMLS: Unified Medical Language System 

GEMS: General Equivalence Mappings 

SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms 

CUI: Concept Unique Identifier 

OHDSI: Observational Health Data Sciences and Informatics 

NLM: National Library of Medicine 

VUMC: Vanderbilt University Medical Center 

UKBB: UK Biobank 
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OR: odds ratio 
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SNP: single nucleotide polymorphism 
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CHAPTER 3 

 

Impact of Vocabulary Mapping on High-throughput PheWAS 

 

Introduction 
In the past decade, many genetic studies have transitioned from traditional purpose-built 

cohorts to using data collected in the electronic health record (EHR). For example, national 

programs such as the UK Biobank (UKBB),[53] and Million Veterans Program (MVP)[75] are 

longitudinal cohort studies that have collected health-related information, including genetic and 

EHR phenotype data, to better understand human health and disease. Recently, NIH started a 

similar project called the All of Us Research Program (AoU; formerly known as the Precision 

Medicine Initiative Cohort Program) with the goal of creating an ethnically diverse cohort of 1 

million or more individuals.[76] 

One of the main goals of these national programs is to discover genetic correlates of 

disease to enable genome medicine.[76] Genetic information from participants (ie, genotyping) 

is collected using modern high-throughput tools, like sequencing and microarrays.[11] Though 

there are some challenges in genotype calling,[77,78] it is relatively easy to map the raw signals 

from these platforms to discrete locations and classify base identities, as DNA nucleotides are 

generally located in the same physical location on a chromosome. For example, rs10455872, 

lipoprotein(a) single-nucleotide polymorphism (SNP) is mapped to position 160589086 on 

chromosome 6 in Genome Reference Consortium Human Build 38. Thus, mapping genetic 

information from disparate sources to a reference build is relatively straightforward.  

On the contrary, there are many ways to define a phenotype, which results in many 

difficulties in creating a patient cohort for many diseases using just one tool. For example, 

creating a cohort to study hypertension using EHR data can be done through multiple methods. 
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One can identify cases of hypertension as individuals with systolic pressures over 120 mmHg or 

diastolic pressures over 80 mmHg. One can also define cases as patients with hypertension 

ICD code(s) or who have ever been exposed to medications used to lower blood pressure. 

Research has shown the best method uses a combination of approaches.[79] 

One commonly used high-throughput phenotyping method is to map ICD codes to 

phecodes. Phecodes were created to largely represent phenotypes that were affected by 

variations in the genome. When phecodes were first introduced, there was only a map to 

translate ICD-9-CM billing codes, but a beta version to map ICD-10 and ICD-10-CM codes to 

phecodes was recently released.[80] Since the UKBB contains many ICD-10 codes and the 

U.S. health system recently transitioned to the ICD-10-CM system, leading to more and more 

phenotype data contained in ICD-10-CM codes, these maps allow researchers to translate ICD-

10/ICD-10-CM data to phecodes. 

A few studies have used the ICD-10 phecode map to conduct PheWAS, primarily using 

UKBB data.[64,65] In the paper where we described the development and initial demonstration 

of the ICD-10/ICD-10-CM phecode maps, we applied the ICD-10-CM phecode map to replicate 

known associations between a lipoprotein(a) genetic variant (rs10455872) and increased 

likelihood of developing coronary heart disease.  However, a more comprehensive evaluation of 

the ICD-10-CM phecode map has not been evaluated for use in identifying genotype-phenotype 

associations.  

In this study, we evaluate the performance of the ICD-10-CM phecode map using 

PheWAS with 5 genetic variants that were studied in the paper demonstrating the potential of 

PheWAS using ICD-9-CM diagnostic codes. 

 

Methods 
Study setting 
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We used data from the Synthetic Derivative, Vanderbilt University Medical Center’s (VUMC's) 

de-identified EHR, which has clinical data from >3 million unique patients[33]. ICD-9-CM codes 

in this study were from inpatient and outpatient visits between October 1987-November 2017. 

ICD-10-CM codes in this study were from inpatient and outpatient visits between April 2014-

November 2017.  

  

Cohort selection 

In this study, we used a case-control study design. All individuals had ≥1 ICD-9-CM and ≥1 ICD-

10-CM codes. Cases were defined as individuals who had relevant ICD-9-CM/ICD-10-CM code 

on at least two distinct days. Controls were individuals with no ICD-9-CM/ICD-10-CM code in 

the corresponding range. For each phenotype, patients were excluded from the analysis if they 

had a phecode that was included in the exclusion criteria.  

  

Phenome-wide association analysis (PheWAS) 

Using the `Phecode v1.2 ICD-10-CM code map beta 1`, we conducted PheWAS for 5 SNPs that 

were included in the original PheWAS paper[32]: rs3135388, rs17234657, rs2200733, 

rs1333049, and rs6457620. For each SNP, we calculated the association with 1,856 unique 

phenotypes. We conducted the PheWAS using the R PheWAS package[37] with binary logistic 

regression assuming an additive genetic model, adjusting for age at the start of 2019, sex, and 

race. 

  

GWAS catalog reproducibility analysis 

We determined the proportion of known genotype-phenotype associations on GWAS 

catalog[81] that were reproduced. This evaluation only considered phenotypes on GWAS 
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catalog that overlapped with PheWAS phenotypes. Only associations with odds ratios (ORs) in 

the expected direction and p-value <0.05 were considered reproduced.  

  

PheWAS discovery analysis 

For genotype-phenotype associations not found in the GWAS catalog as of December 19, 2019, 

and had a p-value less than the Bonferroni corrected threshold (0.05/1817=2.8x10-5), we 

considered as potentially novel associations. 

  

Evaluation of ICD-10-CM phecode map PheWAS performance 

To evaluate the ICD-10-CM phecode map, we compared the PheWAS ORs for phecodes 

mapped ICD-9-CM, ICD-10-CM, and Combined (ICD-9-CM+ICD-10-CM). In addition to 

comparing ORs for all tests, we also compared only the genotype-associations associations 

with p<0.05 in both PheWAS analyses being compared. The output of the comparisons were 

Pearson correlation coefficient (R) and p-value. We used a Bonferroni corrected P-value 

(p<0.05/6 = 0.008) to determine significance for the Pearson measurements. 

  

Statistical analysis 

Analyses in python (version 3.6.7), were conducted using these software packages: pandas 

(version 0.23.4),[82] numpy (version 1.16.0),[83] statsmodels (version 0.9.0),[84] scipy (version 

1.2.0),[85] and jupyter notebook (version 5.7.4)[86]. Analyses in R (version 3.5.1) were 

conducted using these software packages: PheWAS (version 0.99.5-3)[63], readr (version 

1.3.1), ggplot2 (version 3.2.1), and tidyverse (version 1.2.1). 

 

Results 
Genotype selection and population characteristics 
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Individuals were genotyped using the Infinium® Expanded Multi-Ethnic Genotyping Array 

(MEGAEX). Starting from a cohort of 96,921 unique individuals in the MEGA genotyped cohort, 

we studied 56,929 multi-ethnic individuals who had ≥1 ICD-9-CM and ≥1 ICD-10-CM code, in 

this PheWAS. Demographics of the study cohort are in Table 1. The average age was 49.9 

years, 58.3% were female, and 76.1% were of European descent. Subjects had a mean follow-

up of 10.4 (SD=5.9) years.  

 

Table 1. Population characteristics 
Description Value, or mean (SD) 

Patients (n) 56,929 

Age (years) 49.9 (22.3) 

Female (%) 58.3 

European (%) 76.1 

Total ICD-9-CM codes/person 187 (249) 

Unique ICD-9-CM codes/person 60 (53) 

Total ICD-10-CM codes/person 111 (195) 

Unique ICD-10-CM codes/person 26 (32) 

EHR follow-up (years) 10.4 (5.9) 
-Age is age at start of 2019 
 

 
GWAS catalog reproducibility analysis 

For the 5 SNPs and 1,856 phenotypes analyzed in this study, a total of 6 genotype-phenotype 

associations were listed in the GWAS catalog at the time of analysis. Using the ICD-9-CM 

phecode map, we replicated 5/6 (83.33%) known phenotype associations from the GWAS 

catalog for the SNPs tested (Table 2). Using the ICD-10-CM phecode map, we replicated the 

same 5/6 phenotype associations (Table 2). We obtained the same results for the combined 

(ICD-9-CM+ICD-10-CM) PheWAS (Table 2). 
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Evaluation of ICD-10-CM phecode map PheWAS performance 

For each SNP, we made a total 6 of comparisons of PheWAS ORs: ICD-9-CM vs. ICD-10-CM, 

ICD-9-CM vs. Combined, and ICD-10-CM vs. Combined (Table 3, Figure 7). The 6 analyses 

were comprised of comparing ORs of all tests performed (3 comparisons) and only comparing 

ORs where the association p-value <0.05 in both PheWAS (3 comparisons). Among the same 

PheWAS analysis, the Pearson correlation coefficients were higher when only comparing ORs 

with association p-values <0.05. For example, for the ICD-9-CM vs. ICD-10-CM PheWAS 

comparison, the Pearson correlation coefficient was mean (SD) 0.38 (0.06) when all ORs were 

compared and 0.95 (0.03) when only comparing ORs with p<0.05. The correlations between the 

all Combined PheWAS ORs (ICD-9-CM vs. Combined = 0.85 (0.01); ICD-10-CM vs. Combined 

= 0.73 (0.03)) were also larger than that of ICD-9-CM vs. ICD-10-CM. All Pearson correlations 

had p<0.008. 

 
 
Table 3. Evaluation of ICD-10-CM phecode map PheWAS performance 
SNP 9 

vs.10 
9 
vs.10, 
siga 

9 vs. 
Combined 

9 vs. 
Combined, 
siga 

10 vs. 
Combined 

10 vs. 
Combined, 
siga 

rs3135388 0.43 0.98 0.86 0.99 0.75 0.92 

rs17234657  0.40 0.91 0.86 0.98 0.75 0.94 

rs2200733 0.28 0.97 0.83 0.97 0.70 0.94 

rs6457620 0.43 0.97 0.86 0.98 0.75 0.97 

rs1333049 0.35 0.94 0.86 0.99 0.70 0.96 
-Values are Pearson correlation (R)  
-All Pearson correlations have p<0.008 
aPearson correlation (R) for PheWAS associations with p<0.05 
 
 
PheWAS Discovery Analysis 

We observed that 4/5 SNPs tested had genotype-phenotype associations that were not listed in 

the GWAS catalog (Bonferroni corrected p-value, Table 4). The exception was rs2200733, for 



 
 

36 

which all significant phenotype associations were present in the GWAS catalog. Many 

phenotype associations were found for rs3135388, like thyroid-related diseases, such as 

phecode 244 “Hypothyroidism” (ICD-9-CM OR = 0.84). Other potential novel phenotype 

associations include negative correlations of rs3135388 with phecode 250.1 “Type 1 diabetes” 

(Combined OR=0.5), 250.2 “Type 2 diabetes” (ICD-9-CM OR = 0.83), and 272.1 

“Hyperlipidemia” (ICD-9-CM OR = 0.88) (Figure 1, Table 4). For rs17234657, potential novel 

phenotype associations include phecode 280.1 “Iron deficiency anemias, unspecified or not due 

to blood loss” (ICD-9-CM OR = 1.19) and phecode 379.5 “Disorders of iris and ciliary body” 

(ICD-9-CM OR = 2.00) (Figure 2, Table 4). For rs1333049, potential novel phenotypic 

associations include phecode 282.5 “Sickle cell anemia” (ICD-10-CM OR = 0.59) and phecode 

440.22 “Atherosclerosis of native arteries of the extremities with intermittent claudication” (ICD-

10-CM OR = 1.63) (Figure 4, Table 4). For rs6457620, potential novel associations include 

phecode 335 “Multiple sclerosis” (ICD-10-CM OR = 0.61), phecode 557.1 “Celiac disease” 

(Combined OR = 0.56), and phecode 575.1 “Cholangitis” (ICD-9-CM OR = 0.65) (Figure 5, 

Table 4).  
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Table 4. PheWAS Associations with Significant p-values post-Bonferroni Correction 
SNP PheWAS Phenotype Phecode Map: # cases, OR, p-value 

rs3135388 Neuroendocrine tumors 209 ICD-10-CM: 45, 2.66, 2.43E-05 

rs3135388 Hypothyroidism 244 ICD-9-CM: 5817, 0.84, 2.85E-08 
ICD-10-CM: 4937, 0.85, 8.39E-07 
combined: 6689, 0.85, 5.07E-08 

rs3135388 Hypothyroidism NOS 244.4 ICD-9-CM: 5347, 0.80, 5.13E-11 
ICD-10-CM: 4447, 0.82, 5.90E-08 
combined: 6198, 0.82, 1.67E-10 

rs3135388 Thyroiditis 245 ICD-10-CM: 517, 0.61, 9.47E-06 
combined: 938, 0.68, 1.25E-06 

rs3135388 Chronic thyroiditis 245.2 ICD-10-CM: 473, 0.58, 3.93E-06 
combined: 645, 0.62, 1.02E-06 

rs3135388 Chronic lymphocytic 
thyroiditis 

245.21 ICD-10-CM: 464, 0.58, 5.57E-06 
combined: 636, 0.62, 1.43E-06 

rs3135388 Diabetes mellitus 250 ICD-9-CM: 7656, 0.79, 1.07E-15 
ICD-10-CM: 7000, 0.81, 7.27E-12 
combined: 8674, 0.81, 2.29E-13 

rs3135388 Type 1 diabetes 250.1 ICD-9-CM: 1797, 0.47, 9.40E-28 
ICD-10-CM: 1075, 0.31, 6.03E-28 
combined: 1924, 0.50, 1.18E-26 

rs3135388 Type 1 diabetes with 
ketoacidosis 

250.11 ICD-9-CM: 236, 0.07, 5.62E-08 
combined: 289, 0.08, 7.58E-10 

rs3135388 Type 1 diabetes with renal 
manifestations 

250.12 ICD-9-CM: 239, 0.28, 1.06E-07 
ICD-10-CM: 192, 0.36, 2.26E-05 
combined: 300, 0.32, 1.74E-08 

rs3135388 Type 1 diabetes with 
ophthalmic manifestations 

250.13 ICD-9-CM: 197, 0.19, 8.47E-08 
ICD-10-CM: 138, 0.16, 7.44E-06 
combined: 252, 0.19, 1.60E-09 

rs3135388 Type 1 diabetes with 
neurological manifestations 

250.14 ICD-9-CM: 368, 0.42, 4.23 
ICD-10-CM: 214, 0.30, 6.42E-07 
combined: 445, 0.43, 3.10E-09 

rs3135388 Type 2 diabetes 250.2 ICD-9-CM: 7260, 0.83, 5.40E-10 
combined: 8292, 0.84, 3.60E-09 

rs3135388 Insulin pump user 250.3 ICD-9-CM: 1845, 0.65, 1.13E-12 
ICD-10-CM: 1735, 0.65, 5.61E-12 
combined: 2491, 0.66, 1.94E-15 
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Table 4. Continued 
SNP PheWAS Phenotype Phecode Map: # cases, OR, p-value 

rs3135388 Hypoglycemia 251.1 ICD-9-CM: 419, 0.56, 1.77E-05 

rs3135388 Disorders of lipoid 
metabolism 

272 ICD-9-CM: 14679, 0.88, 2.20E-07 
combined: 16506, 0.88, 2.83E-07 

rs3135388 Hyperlipidemia 272.1 ICD-9-CM: 14638, 0.88, 2.41E-07 
combined: 16491, 0.88, 2.86E-07 

rs3135388 Mixed hyperlipidemia 272.13 ICD-9-CM: 7702, 0.85, 3.64E-07 
combined: 8998, 0.86, 7.66E-07 

rs3135388 Rheumatoid arthritis and 
other inflammatory 
polyarthropathies 

714 ICD-9-CM: 1951, 0.79, 1.86E-05 
combined: 2271, 0.78, 1.17E-06 

rs17234657 Iron deficiency anemias, 
unspecified or not due to 
blood loss 

280.1 ICD-9-CM: 2375, 1.19, 2.17E-05 

rs17234657 Disorders of iris and ciliary 
body 

379.5 ICD-9-CM: 124, 2.00, 2.94E-06 

rs1333049 Sickle cell anemia 282.5 ICD-9-CM: 261, 0.64, 1.19E-05 
ICD-10-CM: 254, 0.59, 1E-06 
combined: 321, 0.64, 1.61E-06 

rs1333049 Atherosclerosis of native 
arteries of the extremities 
with intermittent 
claudication 

440.22 ICD-10-CM: 152, 1.63, 2.86E-05 

rs6457620a Hypothyroidism NOS 244.4 ICD-9-CM: 5345, 0.91, 1.94E-05 

rs6457620a Multiple sclerosis 335 ICD-9-CM: 1059, 1.59, 1.01E-24 
ICD-10-CM: 935, 1.65, 4.14E-25 
combined: 1081, 1.59, 3.28E-25 

rs6457620a Other demyelinating 
diseases of central nervous 
system 

341 ICD-9-CM: 503, 1.40, 1.15e-07 
combined: 521, 1.40E-08 

rs6457620a Abnormal movement 350 ICD-9-CM: 3262, 1.15, 5.56E-08 
combined: 4177, 1.11, 3.75E-06 

rs6457620a Lack of coordination 350.3 ICD-9-CM: 1169, 1.21, 4.27E-06 
ICD-10-CM: 770, 1.30, 3.01E-07 
combined: 1279, 1.22, 5.56E-07 
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Table 4. Continued 
SNP PheWAS Phenotype Phecode Map: # cases, OR, p-value 

rs6457620a Celiac disease 557.1 ICD-9-CM: 268, 1.80, 8.36E-11 
ICD-10-CM: 208, 1.93, 2.50E-10 
combined: 304, 1.77, 2.01E-11 

rs6457620a Cholangitis 575.1 ICD-9-CM: 197, 1.54, 2.82E-05 
-Table excludes those associations in GWAS catalog or those related to the phenotype, i.e. 
same phecode family or is a treatment for the disease. 
ars6457620 minor allele = C 
 

Discussion 
In this study, we showed that using the ICD-10-CM phecode map, we replicated a majority of 

the known phenotype associations for 5 SNPs in the GWAS catalog. Further, we demonstrated 

that PheWAS phenotypes mapped from ICD-10-CM codes were similar to those mapped from 

ICD-9-CM codes. For most of the SNPs that we evaluated, we observed novel phenotype 

associations that were not listed in the GWAS catalog. 

In the GWAS catalog replication study, we did not replicate the association between 

rs2200733 and EFO_0000712 “stroke”. The original study,[87] found an association with 

ischemic stroke (OR = 1.26, p=2.18x10-10) in patients from a registry of Icelandic patients with 

1,661 cases and 10,851 controls. In this registry, stroke was confirmed clinically by neurologists 

and supported by imaging. This positive correlation between rs2200733 and ischemic stroke 

was replicated in two external datasets. In contrast, this study did not find a statistically 

significant association between rs2200733 and stroke, either using phenotypes mapped from 

ICD-9-CM or ICD-10-CM codes. Further, many of the tests had enough cases to trust the 

association statistic, like phecode 433.21 “Occlusion of cerebral arteries” with 1,075 cases 

identified using ICD-9-CM (OR = 0.93, p=0.29), which one could confidently infer as having an 

opposite effect compared to the original study and in subsequent studies (OR = 1.39, p=6.5x10-

32).[88] 
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There was a statistically significant linear positive correlation between the PheWAS ORs 

for phenotypes mapped from ICD-9-CM and ICD-10-CM codes. Further, when comparing 

associations that had p<0.05, the positive correlation strengthened. The stronger correlation 

between ORs in the associations with p<0.05 was also observed in the other comparative 

analyses (ie, ICD-9-CM vs. Combined and ICD-10-CM vs. Combined). The correlation between 

PheWAS ORs between phenotypes mapped from both ICD-9-CM and ICD-10-CM codes was 

larger than ICD-9-CM vs. ICD-10-CM alone. For example, rs3135388 ICD-9-CM vs. ICD-10-CM 

Pearson correlation (R) = 0.43 vs rs3135388 ICD-9-CM vs. combined Pearson correlation (R) = 

0.86 (Table 4, Figure 1). We expected this result as the combined analysis has contributions 

from both ICD-9-CM and ICD-10-CM codes.  

We examined genotype-phenotype associations that were not listed in the GWAS 

catalog. We found that many of these associations were found in other databases. For example, 

the negative correlations between (rs3135388 and Type 1 diabetes) and (rs6457620 and Celiac 

disease) have been observed in a preliminary GWAS using UKBB data.[89] Thus, it may be 

worth expanding the associations included in the GWAS catalog, as it is commonly used as a 

reference for human genetic studies.[81]  

The associations between rs3135388 and thyroid-related phenotypes are particularly 

interesting, as these associations, to our knowledge, has only been observed in the UKBB 

dataset.[89] The causal genotype-phenotype association driving the other associations could 

originate from a lymphocytic thyroiditis, resulting in destruction of the thyroid gland and 

hypothyroidism in the affected patient. This conjecture is supported by the mapped gene for 

rs3135388 in HLA-DRA that encodes MHC Class II receptor. Further, the negative correlation 

with Type 1 diabetes (ICD-10-CM OR = 0.31, p-value = 6.03x10-28) for rs3135388 supports the 

negative correlation with phecode 245.21 “Chronic lymphocytic thyroiditis” (Combined PheWAS 

OR=0.62, p-value = 1.43x10-6) (i.e. Hashimoto’s thyroiditis). On the other hand, rs3135388 has 
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a positive association with phecode 335 “Multiple sclerosis” (Combined OR=2.48, p-

value=1.03x10-71) which is unexpected as both diseases are considered autoimmune disorders.  

The main limitation of this study is that we only evaluated the performance of the ICD-

10-CM phecode map for five SNPs and did not do so for all the SNPs available on the MEGA 

platform. In a follow-up analysis with more SNPs, it will be interesting to see whether the 

associations captured by ICD-10-CM are still largely similar to that of PheWAS performed using 

phenotypes mapped from ICD-9-CM codes. Another limitation of this study is that the regression 

equations were adjusted using patient race as reported in the EHR and not with principal 

components (PCs). The lack of PC adjustment in the regression equation could explain the 

unexpected association between Sickle cell anemia (phecode 282.5) and rs1333049, as many 

studies have demonstrated the correlation between admixture and Sickle cell disease.[90] 

  

Conclusion 
In conclusion, the results of this study demonstrate that researchers can be confident in the 

phenotypes generated from the beta ICD-10-CM v1.2 phecode map for their PheWAS analyses 

in the EHR. 
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Figure 1. PheWAS manhattan plots for rs3135388. 
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Figure 2. PheWAS manhattan plots for rs17234657. 
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Figure 3. PheWAS manhattan plots for rs2200733. 
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Figure 4. PheWAS manhattan plots for rs1333049. 
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Figure 5. PheWAS manhattan plots for rs6457620. 
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Figure 6. Correlation scatter plots plot for rs3135388 PheWAS 
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Figure 7. Pearson correlation coefficients for PheWAS OR comparisons 
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CHAPTER 4 
  

Summary 
  

In this thesis, I described how we mapped ICD-10 and ICD-10-CM codes to phecodes and 

evaluated the performance of the maps by looking at phecode coverage of all ICD codes in the 

UMLS (70-75% coverage) and the subset of codes used in the UKBB dataset and at VUMC 

(>90% coverage).  I also show that a majority of patients with chronic diseases identified using 

the ICD-9-CM phecode map were also identified as having the same disease using the ICD-10-

CM phecode map. Using PheWAS for 6 SNPs, I replicated a majority of the known genotype-

phenotype associations in the GWAS catalog. Further an extensive comparison of the PheWAS 

effect sizes showed that ICD-10-CM sourced PheWAS phenotypes were similar to phenotypes 

sourced from the ICD-9-CM phecode map. 

  

Limitations 
There are limitations in this study. First, we used manually validated maps from the UMLS, 

CMS, and OHDSI to automate the mapping of ICD-10 and ICD-10-CM codes to phecodes. But, 

not all of the conversions provided by these maps are one-to-one, as some mappings are 

approximate (eg, one ICD-9-CM code maps to >1 ICD-10-CM code). We are currently in the 

process of spot checking and correcting potential mapping errors. Second, in Chapter 3, ICD-9-

CM codes that were recorded after October 1, 2015 (deadline for transition to ICD-10-CM) and 

ICD-10-CM codes that were recorded before the same date were used to map to PheWAS 

phenotypes. It will be necessary to evaluate whether the dates associated with these ICD codes 

are true, or an artifact due date shifting in the Synthetic Derivative. Third, this study did not 
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evaluate the effect of a shorter ICD-10-CM observation window vs. longer ICD-9-CM 

observation window, on identifying true associations. 

  

Future Directions 

Given the adoption of SNOMED CT as one of the standard vocabularies in UMLS and OHDSI, it 

may be worthwhile to create a map to translate SNOMED CT concepts to phecodes. This work 

is partially completed through the mapping of ICD-10-CM and ICD-10 codes to phecodes, but to 

create accurate maps, a more thorough review of mappings may be necessary. It may also be 

of interest to develop a framework to look at the temporal relationship between phenotypes, like 

varying observation windows to better understand the causal phenotype driving the other 

observed phenotypes/traits, such as development of Atrial fibrillation (phecode 427.21) leading 

to exposure to anticoagulant drugs (phecode 286.2). Quantifying the correlation between 

phenotypes may also help the researcher to better understand and interpret the genotype-

phenotype associations, such as is done with region plots in GWAS.[91] Last, it may be 

worthwhile to discuss whether providing synonyms for some of the PheWAS phenotype 

descriptions would be helpful, to better match disease names that are more familiar to clinicians 

and biomedical researchers (e.g. phecode 555.1 “regional enteritis” → “Crohn’s disease”).  

In 2019, the WHO adopted ICD-11.[92] ICD-11 contains more than >55k unique codes, 

compared to <15k codes in ICD-10. ICD-11 has more chapters than ICD-10 (27 vs. 22). The 

five new chapters in ICD-11 are “Diseases of the immune system”, “Diseases of the blood or 

blood-forming organs”, “Sleep-wake disorders”, “Conditions related to sexual health”, and 

“Traditional medicine”. With the release of ICD-11, the WHO provided a map to convert ICD-10 

codes to ICD-11. The U.S. will most likely adopt ICD-11 for tracking morbidity and mortality data 

after 2023.[93] Results from this thesis shows that using validated translation tools in an 

automated pipeline is feasible to map ICD-11 codes to phecodes. 
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Conclusion 

In this thesis, I describe the process of creating a map to allow translation of ICD-10-CM and 

ICD-10 (non-CM) codes to phecodes that will allow researchers to perform PheWAS in the 

EHR. With the recent adoption of EHRs and ICD-10-CM in the U.S. and initiatives to create Big 

Data resources (i.e. AoU and OHDSI), these maps will be a valuable resource for investigators 

aiming to conduct genetic studies using EHR data. The initial evaluation of the ICD-10-CM 

phecode map for PheWAS provides evidence for using validated vocabulary mappings in an 

automated pipeline to translate future versions of ICD codes to phecodes. 
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