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SUMMARY 

Membrane proteins are a challenging but important class of proteins, and computational 

methods for membrane proteins are lagging far behind those of soluble proteins. The overall 

focus of this dissertation was to improve computational approaches for membrane protein 

modeling and design. Herein, empirical data was used to understand and improve the process of 

computational modeling and design.  

In Chapter 1, computational structural biology is introduced along with Rosetta protocols 

pertinent to the studies in this dissertation. In a Rosetta review entitled “Protocols for Molecular 

Modeling with Rosetta3 and RosettaScripts” by Bender et al. in 2016, I described the protocols 

relevant to my dissertation, thus I have included sections for Rosetta Design, RosettaMembrane, 

and Rosetta Symmetry. This chapter also includes a brief explanation of homology modeling and 

RosettaCM. Finally, the significance of studying membrane proteins, in particular pseudo-

symmetry and biomedical relevance, is described along with how machine learnings can play a 

role in pushing the field forward. 

In Chapter 2, the Rosetta Design algorithm is benchmarked for membrane proteins 

through the use of the RosettaMembrane and Rosetta Symmetry. I establish an ideal strategy for 

preparing membrane protein structures for design calculations regardless of the resolution, and I 

demonstrate the strengths and shortcomings of the RosettaMembrane energy function. This 

chapter is almost an entire reproduction of the manuscript “Computational Design of Membrane 

Proteins using RosettaMembrane” by Duran and Meiler 2017.  I have provided additional 

commentary for figures published in the supplement. I have also added a number of figures not 

included in time for the publication. I developed these figures as a means of describing exactly 



 
 

xxi 

which native residues were changing to which designed residues and propose that these plots be 

used in design benchmarks in the future. 

In Chapter 3, several programs were evaluated for their ability to predict mutation-

induced stability changes in membrane proteins. Existing programs were trained on soluble data 

sets, so this was the first study to detail the need for a membrane protein specific program. This 

chapter is nearly a reproduction of the original publication of the article entitled “Documentation 

of an Imperative to Improve Methods for Predicting Membrane Protein Stability” by Kroncke et 

al. 2016.  I contributed a substantial amount of data and data analysis. We found that all 

programs poorly predicted experimental values. This was a call to the community to develop 

clever methods to circumvent the sparse amount of thermostability data, as well as stress the 

importance of continuing to produce thermostability data for membrane proteins.  

In Chapter 4, machine learning methods were used to refit the score terms in the 

RosettaMembrane energy function. Empirical data, specifically the   ΔΔG of unfolding from 

Chapter 3, was used to determine new coefficients towards accurate predictions of mutation-

induced stability changes, as well as which score terms were contributing to noise. A simplified 

energy function was created which outperformed RosettaMembrane. However, many caveats and 

cautions are also discussed.  

In Chapter 5, a model of the resting VSD, and closed pore of KCNQ1 is created using 

RosettaCM, RosettaMembrane, and Rosetta Symmetry. It describes the challenges of the model 

building process for state of a protein that is difficult to capture. Many of the sequences of 

templates proposed are near 20% sequence identity. To overcome a low homology, empirical 

data from the literature was utilized for model filtering and selection. Finally, complicated 
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relaxation studies are described in addition to model validation through the use of external 

servers including MolProbity, PDBSum/ProCheck, and PoreWalker. 

 In Chapter 6, the biological implications of pseudo-symmetry in membrane proteins is 

reviewed. This chapter is a complete reproduction of the article entitled “Inverted Topologies in 

Membrane Proteins: A Mini-Review” by Duran and Meiler in 2013. This mini-review proposes 

an evolutionary pathway for pseudo-symmetry seen in membrane proteins and focuses on the 

implications such symmetry has on function. This mini-review provides the necessary 

background to understand some of the motivation for the project described in Chapter 7. 

 In Chapter 7, a set of 13 aquaporins, pseudo-symmetric membrane proteins, are 

engineered to be symmetric in sequence and in structure. Computational techniques involve the 

strategy of circular permutation as well as repair, relaxation, and scoring of models in Rosetta. 

Genes were synthesized for the top 20 models and experimental studies have not identified 

expression for any of the engineered proteins. The experimental conditions tested for each 

construct are detailed in tables here. 

 Finally, in Chapter 8, the results of the experiments conducted in the previous chapters 

are summarized and discussed. Much cross-over is seen in the projects and these observations 

are discussed such as the use of RosettaMembrane. Many future directions are proposed relating 

to the further improvement of the RosettaMembrane energy function, most specifically, through 

leveraging additional empirical data. 

 Appendix A is the protocol capture that I created for past Rosetta Workshops relating to 

modeling membrane proteins, symmetric proteins, and design calculations. This protocol was 

included in the Rosetta review supplemental materials.  
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 Appendix B contains the tabular supplemental data for the “Computational design of 

Membrane Proteins using RosettaMembrane” publication in Chapter 2. 

 Appendix C contains the protocol capture for the membrane protein relaxation studies, 

membrane protein design studies, symmetric membrane protein studies as well as analysis from 

“Computational design of Membrane Proteins using RosettaMembrane” publication in Chapter 

2. This protocol capture is included in the supplemental materials provided with the publication. 

 Appendix D contains the protocol capture for Chapter 3. This was not included in the 

supplemental materials but is detailed for both the standard Rosetta ddg_monomer protocol as 

well as with RosettaMembrane. 

 Appendix E contains the dataset that was used to evaluated mutation-induced stability 

programs in Chapter 3 and was used to train and evaluate the machine learning algorithms in 

Chapter 4. 

 Appendix F contains the raw tables from the regression analyses performed in Chapter 4. 

Results from approaches including Ridge and Elastic Net regressions along with cross validation 

by protein backbone and leave-one-out are shown.  

Appendix G contains the protocol capture for Chapter 5 which involves the modeling of a 

resting VSD, closed pore KCNQ1 from multiple templates. This includes the sequence alignment 

of the multiple templates, the XML file that contains the detailed controls and order of templates 

used, as well as details for the complex relaxation protocol to restrict movement away from the 

cryo-EM structure of frog KCNQ1.  

 Appendix H contains the supplemental figures for Chapter 6.  Due to the large amount of 

symmetric backbones evaluated, not all figures are included in the main text. Individual 

energetic contribution to various numbers of mutation pairs are shown here.  
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 Appendix I contains the protocol capture for Chapter 6 and details the different types of 

relaxation and scoring strategies used. 

 Appendix J contains information on previous studies for the project in Chapter 6. Prior to 

the approach in Chapter 6, extensive computational and experimental studies were done for 

symmetric variants of the glyceroaquaporin, GlpF. 

 Appendix K contains information for a project in collaboration with a laboratory 

performing trafficking assays on the A2a receptor. This project involved computational design of 

six positions, specifically away from Cysteine. These proposed mutations were tested 

experimentally to evaluate Rosetta’s performance. An experimental screen of mutants revealed a 

few contenders and these were also modeled in Rosetta. This is a great example of the feedback 

between experimental and computational studies. 

 Appendix L contains the protocol capture for the computational experiments performed 

in Appendix K. The protocols span full sampling of design at several specific regions, modeling 

of single point mutations, and modeling of multiple mutations. This includes a description of the 

approach for modeling the wild-type protein in such a way that is comparable in proper energetic 

analysis. 
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CHAPTER 1 

 

INTRODUCTION 

Part of this chapter includes published work from. 

Bender*, Cisneros*, Duran*, Finn*, Fu*, Lokits*, Mueller*, Sangha*, Sauer*, Sevy*, Sliwoski, 

Sheehan, DiMaio, Meiler, and Moretti, 2016 (*Authors contributed equally) 

Author contributions: I was the sole contributor for sections of Rosetta Design, Rosetta 

Membrane, and Rosetta Symmetry for the publication entitled “Protocols for Molecular 

Modeling with Rosetta3 and RosettaScripts” in the Biochemistry Journal, published as an ACS 

AuthorChoice open access article (Bender et al., 2016). I also developed the protocol capture for 

the design of a symmetric membrane proteins using Rosetta, available in the supporting 

information, in its entirety.  

1.1 Introduction and implications for structural biology  

 Proteins have many different roles ranging from architectural, to signaling and response 

in organisms. Proteins are encoded by deoxyribonucleic acid (DNA) sequences, which are 

transcribed into messenger ribonucleic acid (mRNA), and eventually translated to an amino acid 

sequence. Protein structures are influenced by their sequence, and at the same time, protein 

structures have been optimized by nature for a particular function. Across species, proteins with 

a similar DNA sequence, thus amino acid sequence, tend to have related roles in their respective 

organisms. Understanding the relationship between protein sequence, structure, and function is 

essential to driving forward our knowledge of genetic diseases, drug discovery, and novel 

biomaterials. 
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 Recent technologies have enabled extensive genomic sequencing in an effort to 

understand the impacts of gene variants on patients. While sequencing can identify variants to 

help diagnose patients, there are thousands of gene variants with unknown clinical significance 

termed variants of unknown significance (VUS) (Kroncke, Vanoye, Meiler, George, & Sanders, 

2015). These gene variants are often different by just one base pair, referred to as single-

nucleotide polymorphisms (SNPs). Structural and functional studies of these proteins can help 

bridge the gap between genes and patients. This not only provides a much better understanding 

regarding the mechanism of disease and stability of proteins, but it provides opportunities for 

developing personalized treatments. 

1.2 Computational modeling of proteins  

 The number of known protein structures will always lag far behind that of known protein 

sequences. Structural modeling of proteins is crucial to filling in the gap of knowledge between 

protein sequence and structure. Computational structural biology methods rely heavily on 

experimental methods for developing and improving predictions regarding protein structure. 

Methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR), cryo-

election microscopy (cryo-EM), and electron paramagnetic resonance (EPR) provide valuable 

structural characterization of proteins. However, for proteins that are not amenable to these such 

approaches, even mutational data can provide insight that can aid computational methods. 

Therefore, continued experimental efforts act as an iterative feedback for improving 

computational methods. Additionally, computational predictions can provide feedback for which 

experimental approaches are worth seeking. By filling in the knowledge gap, computational 

methods are the best way to accelerate the understanding of the impact of sequence variation on 

protein structure and even protein function. 
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 For protein sequences with unknown structures, de novo modeling approaches involve 

libraries of fragments from known structures that are used along with perturbations and Monte 

Carlo based sampling to rapidly sample and calculate optimal physical interactions towards an 

energetically favorable state. Because of the large conformational space sampled during de novo 

modeling, these calculations are exhaustive of time and resources. Sparse experimental restraints 

can greatly reduce the conformational sampling space. However, proteins that have related 

proteins of known structure can leverage the backbone of the known structure as a template for 

modeling. This is called comparative modeling, or in the case of homologous proteins, homology 

modeling.  

 In comparative modeling, the sequence of the target protein is threaded onto the 

backbone of the protein of known structure through the use of a sequence alignment. In Rosetta, 

fragment libraries are used to sample the regions that are less certain such as flexible loops, 

unstructured regions, or regions of low sequence identity or coverage. These models are then 

clustered to identify the largest populations with high structural similarity. Because Rosetta uses 

a Monte Carlo approach, with enough sampling, the models that are energetically favorable and 

seen frequently are ideal.  

 Recently, Rosetta has enabled the use of multiple templates for comparative modeling. 

RosettaCM allows the user to input additional templates in an effort to increase the 

conformational search space beyond that which would exist from a single template alone. 

Additionally, the inclusion of multiple templates has been shown to generate more accurate loops 

(Song et al., 2013). Because previous methods of loop modeling involved two anchor points and 

increasing degrees of freedom with each addition of an amino acid (Combs et al., 2013), the use 
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of multiple loops from multiple templates could restrict the sampling space into a more 

reasonable range of conformations. 

1.3 Computational modeling of membrane proteins 

Membrane proteins represent nearly 30% of open reading frames; however, they are a 

particularly challenging class of proteins to study due to their complicated lipid environment, 

limited number of structures available, and, often, the low resolution of available structural 

models. Membrane proteins are particularly difficult to structurally characterize because of their 

inherent flexibility and resulting conformational dynamics requiring stabilization prior to 

structural characterization (J U Bowie, 2001). Additionally, other considerable challenges are 

that over-expression of membrane proteins can be toxic to cells (Wagner, Bader, Drew, & de 

Gier, 2006) and that membrane proteins require the use of membrane memetics. These pose 

challenges both experimentally as well as computationally due to the resulting limited structural 

knowledge-base for membrane proteins from which to derive accurate energy functions. 

Nevertheless, membrane proteins remain a very important class of proteins to study as they are 

approximately 60% of drug targets (Arinaminpathy, Khurana, Engelman, & Gerstein, 2009) and 

diseases such as Alzheimer’s disease, long-QT syndrome (Bokil, Baisden, Radford, & Summers, 

2010; J. Wu, Ding, & Horie, 2016), Charcot-Marie-Tooth disease, and cystic fibrosis  can be 

associated with membrane proteins (C R Sanders & Myers, 2004). 

 RosettaMembrane has been the method used to model helical transmembrane proteins for 

several years. RosettaMembrane consists of both low-resolution (Yarov-Yarovoy, Schonbrun, & 

Baker, 2006) and high-resolution (Barth, Schonbrun, & Baker, 2007) scoring functions that were 

developed to describe how the protein interacts with the membrane environment. In addition to 

score terms that describe the membrane environment, the RosettaMembrane energy function 
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contains the same score terms as Score12, the default soluble scoring function at the time of the 

study.  Recently, RosettaMP, a new framework for modeling membrane proteins in Rosetta, was 

developed to facilitate communication between model sampling and scoring (Alford et al., 

2015). Work is ongoing to adapt existing protocols to be compatible with RosettaMP. 

 The studies herein were completed using RosettaMembrane. RosettaMembrane implicitly 

models the membrane bilayer (Figure 1.1) meaning that instead of full atom representations of 

the atoms in the lipids, the energy function contains information regarding which amino acids are 

likely to interact with the lipid based on the hydrophobicity. This implicit modeling approach is 

ideal because it reduces the computational resources, including time and memory usage, required 

to perform such a simulation of a membrane protein in a native-like environment. However, it 

should also be noted that there are limitations for this approach. The most obvious of these 

limitations are the rigid definitions for the distances of the hydrophobic layers, thus the 

predefined thickness of the bilayer. The statistics for RosettaMembrane were derived with these 

definitions in mind; however, each structure in the dataset was not generated using lipids of the 

same length. Additionally, the native membrane that membrane proteins exist in can be very 

different, meaning membrane proteins have been designed for various membrane environments. 

For example, the lipid composition of bacteria versus humans is very different, and sometimes 

there are inner and outer membranes. Outer membrane proteins tend to have a narrower 

membrane than inner membrane proteins.  
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Figure 1.1. Hydrophobic layers defined by RosettaMembrane. The inner and outer hydrophobic 

regions span 24 Angstroms while the interface spans 6 Angstroms on either side, and the polar 

region spans 12 Angstroms on either side. Reprinted from, Proteins: Structure, Function and 

Bioinformatics, Vol 62, Vladimir Yarov-Yarovoy, Jack Schonbrun, and David Baker, Multipass 

membrane protein structure prediction using Rosetta, 4, 2005, with permission from John Wiley 

and Sons (Yarov-Yarovoy et al., 2006). 

 

 Many membrane proteins, such as ion channels, are homo-oligomeric. As the number of 

subunits increases, it becomes more computationally exhaustive of time and resources to model 

even the simplest of interactions because of the large size of the complex. Previously, Rosetta2 

was limited in its ability to model large symmetric complexes (André, Strauss, Kaplan, Bradley, 

& Baker, 2008). In 2011, DiMaio et al. introduced a new mode in Rosetta to model symmetric 

proteins called Rosetta Symmetry (Dimaio, Leaver-fay, Bradley, Baker, & Andre, 2011). This 

allowed protocols to sample and score large, symmetric complexes much more quickly and with 
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less memory usage as this approach samples only symmetric degrees of freedom, greatly 

reducing the search space. The underlying assumption, however, is that the interactions between 

all subunits are symmetric. The current implementation of Rosetta Symmetry can create complex 

symmetric assemblies through the use of a symmetry definition file for a symmetric or nearly 

symmetric structure from the PDB. In the case of de novo folding, a symmetry definition file 

must be generated from scratch. 

 Rosetta Symmetry works well for homo-oligomeric systems, and hetero-oligomeric 

systems can sometimes be models using Rosetta Symmetry if the correct asymmetric unit is 

identified. However, another type of symmetry exhibited in membrane proteins is internal 

symmetry. This is symmetry within the same chain of the protein that is likely the result of gene 

duplication, fusion, and diversification events (Duran & Meiler, 2013). Rosetta Symmetry does 

not handle internal symmetry; however, for design applications, the Favor Symmetric Sequence 

mover was developed to force constraints on N number of symmetric fragments within the 

sequence.  

1.4 Computational design of proteins  

 Computational protein design has the potential to contribute to various fields including 

protein-ligand design (Allison et al., 2014; Tinberg et al., 2013), protein therapeutics, and 

materials science (King et al., 2014; King & Lai, 2013; King et al., 2012). Protein design is a 

unique protocol in that instead of finding the optimal conformation of a particular sequence, it 

aims to determine an optimal sequence for a given conformation. For this reason, it is often 

termed the “inverse protein folding problem” (Kaufmann, Lemmon, Deluca, Sheehan, & Meiler, 

2010).  
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Protein scaffolds have been defined as a frame-work that can handle mutations to make 

variants with different functions (Binz, Amstutz, & Plückthun, 2005). Generally, there are two 

main design strategies utilizing a scaffold: design for stability and design for function. The 

stability protocol considers the entire protein for design, and the score terms of interest are 

generally focused on improved packing. The design for function protocol is usually a localized 

design, centered on a specific region, domain, pocket, etc., of a protein with a focused energy 

function that governs precise interactions, such as electrostatics or hydrogen bonding. 

Protein design involves iterative optimization of sequence and structure. During the fixed 

backbone side-chain optimization step, sequence space is sampled simultaneously with side-

chain conformational space using Monte Carlo-simulated annealing by exchanging all possible 

amino acids at user-specified designable positions while evaluating the predicted energy (Brian 

Kuhlman et al., 2003). This is followed by flexible backbone minimization to optimize the 

model. The first successful use of de novo Rosetta Design produced a sequence for a fold not 

seen in the PDB (Brian Kuhlman et al., 2003). The experimentally determined structure had an 

RMSD of 1.1 Å from the computationally design model. An example tutorial for protein design, 

protein_design, is provided in the Appendix A. 

Design for stability 

 Protein stability can be affected by a single-point mutation. Kellogg et al. evaluated 

several protocols with varying levels of flexibility and sampling and determined one method in 

particular to be useful for single-point mutations (Kellogg, Leaver-Fay, & Baker, 2011). This 

method was made into the application ddg_monomer. When ddg_monomer was tested on a set 

of 1210 single-point mutants from the ProTherm database, the correlation of predicted ddGs to 

experimental ddGs was 0.69 while the stability classification accuracy was 0.72. 



 
 

9 

While ddg_monomer is a tool for predicting how a single-point mutation affects the 

stability of a protein, RosettaVIP (void in packing) is a design strategy that has been developed 

to identify single-point mutations that could improve the stability of a protein (Borgo & 

Havranek, 2012). When Borgo et al. fully designed proteins, they found that the hydrophobic 

cores of the designed models were poorly packed when compared to their respective native 

proteins. RosettaVIP was able to identify packing deficiencies and sample a much smaller 

sequence space to fill the void in packing, resulting in a more stable design. 

Design for functionality 

 In addition to stabilizing monomeric proteins, Rosetta Design can be used to design 

interfaces between proteins. Fleishman et al. established a dock design protocol that optimizes 

the sequence of a protein to bind a surface patch of a target protein during design. Docking was 

used to optimize the positioning of the interacting proteins at the interface. Experimentally 

determined structures had an interface very similar to those of the designed models (Fleishman, 

Whitehead, Ekiert, Dreyfus, & Jacob, 2012). 

Other types of interfaces of interest for design applications are protein–small molecule 

interfaces. Tinberg et al. (Tinberg et al., 2013) provided a great example of using Rosetta Design 

to design for affinity as well as stability. First, RosettaMatch (Zanghellini et al., 2006) was used 

to find a stable scaffold for design for binding a particular small molecule. Next, Rosetta Design 

was used to maximize the binding affinity between the protein and small molecule. Finally, a 

second round of design was used to minimize destabilization due to mutagenesis in the first 

round. To ensure these mutations were meaningful, design was guided by a multiple-sequence 

alignment. The resulting most energetically favorable model was the highest-affinity binder in 

experimental studies and had a cocrystal structure that agreed with the computational model. 
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Most design algorithms in Rosetta are performed while considering a single fixed 

backbone structure. Recently, efforts to consider several structures during the design process 

have been undertaken to tackle more difficult design problems. A generalized multistate design 

protocol was introduced in 2011 (A. Leaver-Fay, Jacak, Stranges, & Kuhlman, 2011) to help in 

cases in which design should occur to satisfy multiple conformations or to design specificity 

toward one state and negative design against other states. Willis et al. showed that 

RosettaMultistateDesign was capable of predicting residues that were important for 

polyspecificity when designing the heavy-chain variable region of an antibody (Willis, Briney, 

DeLuca, Crowe, & Meiler, 2013). Sevy et al. introduced a new approach to multistate design that 

accelerates the process of multistate design by reducing the sequence search space (Sevy, Jacobs, 

Crowe, & Meiler, 2015), allowing more complex backbone movements to be incorporated into a 

design protocol. 

1.5 Machine learning methods to aid optimization of energy functions 

Rosetta uses a combination of terms based off statistics that physical interactions as well 

as internal energies associated with probabilities. As our knowledge of proteins continues to 

grow, these methods should be evaluated for continued accuracy. Empirical data can be 

leveraged to improve the performance of energy functions (Guerois, Nielsen, & Serrano, 2002). 

Furthermore, machine learning methods can aid in energy function optimization (Lise, 

Archambeau, Pontil, & Jones, 2009). Multiple linear regression (MLR), as the name implies, 

aims to determine a linear relationship between two or more variables and a continuous outcome. 

Variable selection in MLR should not be completed automatically, but rather manually in 

identifying the most pertinent predictors (Eberly, 2007). Ridge regression, however, uses L2-

regularization which means it aims to reduce the residual sum of squares from a linear 
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regression. It is considered to be a shrinkage method, but is not parsimonious (Zou & Hastie, 

2005) meaning that it does not simplify the model to only the relevant predictors (Eberly, 2007). 

Lasso (Tibshirani, 1996) is an approach that uses L1-regularization and acts similarly to 

penalized least squares. Like ridge regression, lasso is a shrinkage method; however, unlike ridge 

lasso does employ automatic variable selection to create a parsimonious model (Zou & Hastie, 

2005). Finally, elastic net regression (Zou & Hastie, 2005) is also a shrinkage method that 

employs automatic variable selection, but it is actually a regularization strategy that combines 

ridge and lasso regression penalties and can be tuned for the specific needs of the user. 
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CHAPTER 2 

 

COMPUTATIONAL DESIGN OF MEMBRANE PROTEINS USING 

ROSETTAMEMBRANE 

This chapter includes published work from: 

Duran and Meiler, 2017 

 “Computational Design of Membrane Proteins using RosettaMembrane” in the journal Protein 

Science (Duran and Meiler, 2017). Reprinted from, Protein Science, Vol 27, Amanda M. Duran 

and Jens Meiler, Computational Design of Membrane Proteins using RosettaMembrane, 1, 2017, 

with permission from John Wiley and Sons. Commentary and figures have been added in 

addition to the original full article and supplementary material.  

Author contributions: I contributed the vast majority of the text and designed experiments under 

the mentorship of Jens Meiler. I designed experiments and analysis, generated all of the data, 

designed and created all of the figures, as well as created all of the tables, and protocol captures.  

Abstract 

 Computational membrane protein design is challenging due to the small number of high-

resolution structures available to elucidate the physical basis of membrane protein structure, 

multiple functionally important conformational states, and a limited number of high-throughput 

biophysical assays to monitor function. However, structural determination of membrane proteins 

has made tremendous progress in the past years. Concurrently the field of soluble computational 

design has made impressive inroads. These developments allow us to tackle the formidable 

challenge of designing functional membrane proteins. Herein, Rosetta is benchmarked for 

membrane protein design. We evaluate strategies to cope with the, often, reduced quality of 
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experimental membrane protein structures. Further, we test the usage of symmetry in design 

protocols, which is particularly important as many membrane proteins exist as homo-oligomers. 

We compare a soluble scoring function with a scoring function optimized for membrane 

proteins, RosettaMembrane. Both scoring functions recovered around half of the native sequence 

when completely redesigning membrane proteins. However, RosettaMembrane recovered the 

most native-like amino acid property composition. While Leucine was overrepresented in the 

inner and outer-hydrophobic regions of RosettaMembrane designs, it resulted in a native-like 

surface hydrophobicity indicating that it is currently the best option for designing membrane 

proteins with Rosetta. 

2.1 Introduction 

 Membrane proteins comprise approximately 30% of all open reading frames of known 

genomes (Tan, Hwee, & Chung, 2008). However, in the Protein Data Bank (PDB) (Berman et 

al., 2000) membrane proteins continue to be underrepresented. Membrane proteins, many of 

which are alpha-helical, include classes of proteins that are responsible for functions such as 

channel and transporter proteins, or signal transduction in receptors. Additionally, more than 

60% of drugs target membrane proteins (Arinaminpathy et al., 2009), therefore insight to the 

structure and function of membrane proteins is valuable for the development of treatment 

strategies for diseases such as cancer (Jura et al., 2009; Mark A Lemmon & Schlessinger, 2010), 

cardiac arrhythmia (Moss & Kass, 2005; Q. Wang et al., 1996), schizophrenia (Conn, Lindsley, 

& Jones, 2008; Meisenzahl, Schmitt, Scheuerecker, & Möller, 2007), and many more. 

Membrane proteins are difficult to structurally characterize because over-expression of 

the protein is typically toxic to bacterial cells (Arinaminpathy et al., 2009; Wagner et al., 2006), 

resulting in low protein yields. Additionally, membrane proteins must be reconstituted into 
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micelles, bicelles, nanodisks, or liposomes to provide a native-like environment. Often an 

extensive screening for the optimal detergents and lipids is needed for maximal solubility and 

stability (Arinaminpathy et al., 2009). However, membrane mimetics can have a destabilizing 

effect on the structure of the membrane protein. Finally, membrane proteins have inherent 

conformational dynamics (J U Bowie, 2001), which often requires engineering of a 

thermodynamically stabilized mutant for structural studies. 

Challenges in membrane proteins structure determination have resulted in limited 

available structural information for membrane proteins. In the PDB less than 3% of structures are 

membrane proteins. Approximately 700 unique membrane proteins structures have been 

deposited in the PDB (Berman et al., 2000; White) to date, which is a vast improvement to the 

structural information that was available nearly a decade ago, but far away from complete 

coverage of membrane protein folds. Computational modeling by de novo and comparative 

modeling can provide structural insights to membrane proteins without experimentally 

determined structures. However, in order to obtain more accurate models of membrane proteins, 

more high-resolution structures are needed to understand the physical basis of membrane protein 

folding and derive more accurate scoring functions. 

The PDB is a depository of structure files which provides the knowledge-base for 

proteins of known structure to drive the development of accurate scoring functions and for 

rigorous testing of newly developed computational methods. As a result, methods for 

computational membrane protein structure prediction lag behind considerably, and 

computational design of function – an area of great success for soluble proteins in the past ten 

years – is largely absent for membrane proteins. However, the structures of many important 

membrane proteins have been determined at a stunning rate over the past ten years (Loll, 2003; 
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Charles R. Sanders & Sönnichsen, 2006; White, 2004; Wiener, 2004; H. Wu et al., 2014) 

increasing the knowledge-base for scoring function development, providing higher-resolution 

structures for benchmarking, and yielding templates of important membrane protein classes to 

begin engineering. 

Computational protein design is a difficult problem due to the large number of possible 

sequences for a particular protein backbone. Computational design tools aim to rapidly evaluate 

possible interactions between side-chains to determine likely sequences of low-energy. Some 

methods have an emphasis on calculations that evaluate electrostatics and solvation of a side-

chain in its environment (Marshall, Vizcarra, & Mayo, 2005; Pokala & Handel, 2004; Vizcarra et 

al., 2007). However the environment for membrane proteins is complicated and consideration for 

differences in membrane protein folding should be taken into account (Senes, 2011). 

Additionally, these methods fail to consider features that many membrane proteins have that are 

important for function and membrane solubility (Perez-aguilar & Saven, 2012). Tools have been 

developed empirically to overcome the shortcomings of these calculations for membrane 

proteins. Walters and co-workers developed idealized geometries and position-specific sequence 

propensities for helix-packing motifs most commonly seen in membrane proteins (Walters & 

Degrado, 2006). Senes and co-workers developed a potential based on the membrane depth 

dependent propensities of amino acids to predict if sequences would insert in the membrane 

(Senes et al., 2007). 

The Rosetta software suite for biomolecular modeling and design has an impressive track 

record in the design of soluble proteins including the design of a de novo protein fold (Brian 

Kuhlman et al., 2003), enzymes (Jiang et al., 2008; Korkegian, Black, Baker, & Stoddard, 2012; 

Röthlisberger et al., 2008; Siegel et al., 2010), protein-protein interactions (Fleishman et al., 
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2011; Joachimiak, Kortemme, Stoddard, & Baker, 2006; Kortemme et al., 2004; Strauch, 

Fleishman, & Baker, 2014), protein-small molecule interfaces (Tinberg et al., 2013), and self-

assembling materials (Eisenbeis et al., 2012; Fortenberry et al., 2011; King et al., 2014; King et 

al., 2012). The Monte-Carlo search strategy that allows changes to amino acid identities during 

sampling combined with a multi-scale knowledge-based scoring function that is optimized to 

capture structural features at the protein fold level as well as at atomic detail create a unique 

ability to engineer proteins that set Rosetta apart from other computational strategies. The 

scoring function and sampling methods used by Rosetta, however, are tailored for the needs of 

soluble-protein modelers; despite some progress in adapting it for membrane proteins, modeling 

abilities in membrane proteins lag behind those of soluble proteins. 

Rosetta’s knowledge-base has been derived in large part using statistical analysis of 

geometric arrangements within structures reported in the PDB. For protocols involving 

minimization, backbone torsion angles are randomly perturbed and rotational side-chain 

conformations are optimized for interactions including van der Waals, electrostatics, and 

hydrogen-bonding (Rohl, Strauss, Misura, & Baker, 2004; Schueler-furman, 2005). Interactions 

with the solvent are modeled implicitly by determining the likelihood of a certain amino acid 

type being in a particular burial state. Monte Carlo sampling combined with knowledge-based 

scoring functions are parameterized so that resulting models exhibit properties of proteins of 

known structure (Kaufmann et al., 2010). The membrane protein scoring function, 

RosettaMembrane, additionally considers the likelihood of an amino acid being in a particular 

membrane environment and burial state (Barth et al., 2007; Yarov-Yarovoy et al., 2006). 

Previously, Rosetta was used to completely redesign 108 soluble proteins. Designs 

recovered 51% of the native sequence in the protein core. The terms involving the Lennard-Jones 
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potential and Lazaridis solvation drove the scoring function to design sequences that were 

native-like (B. Kuhlman & Baker, 2000). In the current study, complete redesign of membrane 

proteins was benchmarked using RosettaMembrane, (Barth et al., 2007; Yarov-Yarovoy et al., 

2006) and for comparison, the Rosetta scoring function for soluble proteins “Talaris” (Andrew 

Leaver-Fay et al., 2013; O'Meara et al., 2015). Many membrane proteins like channels and 

transporters are functional homo-oligomers. In order to model membrane proteins in their native 

states and obtain correct representation of the surfaces and interfaces, one must consider how 

such a protein might symmetrically assemble. Therefore, homo-oligomeric membrane proteins 

were modeled with Rosetta Symmetry (Dimaio et al., 2011) which is able to sample and rapidly 

score these larger assemblies while considering interface interactions between subunits. 

One important application of membrane protein design is thermostabilization to facilitate 

structural characterization. Membrane proteins often require flexibility in order to perform their 

function (J U Bowie, 2001; K.-Y. M. Chen, Zhou, Fryszczyn, & Barth, 2012). By stabilizing a 

single conformation, one can reduce the flexibility, thus yielding a more ideal protein for 

experimental structure determination. Computational methods like Rosetta Design can propose 

an optimal sequence for a particular conformation by using information from known membrane 

protein structures. The proposed mutations in the optimized sequence could presumably lead to a 

thermostabilized membrane protein. 

  This study evaluates how well Rosetta recovers native sequences for membrane proteins 

when fully redesigned. We find that the methods for minimizing the structure prior to design 

play a role in native sequence recovery. Additionally, total sequence recovery was similar among 

different scoring functions; however, unsurprisingly, RosettaMembrane performed best in 

designing membrane proteins with native-like properties. 
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2.2 Results and discussion 

Initial energy minimization improves membrane protein design for low-resolution experimental 

structures. When benchmarking protein design algorithms, the question arises whether or not to 

minimize the starting experimental structure with the respective scoring function. The argument 

against minimization is that adjustment of backbone and side-chain coordinates to minimize 

energy will imprint a ‘memory’ for the correct amino acid into the backbone coordinates. The 

native amino acid will score better as the backbone is positioned in such a way that the native 

amino acid can be placed in an energy minimum for the scoring function used. As a result, 

artificially inflated sequence recovery values might be reported. The counter argument is that 

energetic frustrations such as clashes in the starting structures that could be relieved with energy 

minimization might cause the design algorithm to prefer smaller, non-native amino acids in these 

locations. This is a particular concern for membrane proteins where many structures of reduced 

resolution are deposited in the PDB. For soluble proteins the latter problem can be easily 

circumvented by benchmarking only on highest-quality protein structures with resolutions better 

than 2Å (B. Kuhlman & Baker, 2000). However, the sparseness of membrane proteins in the 

PDB requires usage of lower-quality structures. Accordingly, we developed a protocol that 

applies an initial moderate energy minimization to resolve frustrations but avoids an aggressive 

optimization that might result in inflated sequence recovery values. 

Without initial energy minimization, the sequence recovery of fully redesigned 

membrane proteins correlates with the resolution of the input structure such that low-resolution 

structures tend to have reduced sequence recovery (Fig. 2.1). For monomeric membrane proteins, 

the Pearson’s correlation coefficient is strongly negative at -0.75 (R2=0.56). For homo-

oligomeric membrane proteins, the Pearson’s correlation coefficient is -0.47 (R2=0.22). When 
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extrapolated, sequence recovery for a structure with 0 Å resolution is approximately 57% and 

45% for monomeric and homo-oligomeric membrane proteins, respectively. Upon energy 

minimization, the correlation is absent independent of the Rosetta minimization protocol 

employed (Fig. 2.1). At the same time, we observe that average sequence recovery for 

monomeric membrane proteins improves from 31% without backbone energy minimization to 

38%, 49%, 48%, and 54% with the four Rosetta minimization protocols minimization with 

constraints (MWC), constrained to start coordinate relax(CSC), FastRelax, and Dualspace. For 

homo-oligomeric membrane proteins average sequence recovery starts at 36% and results in 

35%, 48%, 48%, and 55%, respectively. 
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Figure 2.1. Sequence recovery for monomeric (A,C,E) and homo-oligomeric (B,D,F) sets. 

Various minimization methods were used to prepare crystal structures as input for Rosetta. When 

considering sequence recovery by resolution (A,B), pack-only and less stringent minimization 

(MWC) result in a correlation. CSC, FastRelax and Dualspace minimization resulted in a 

consistently high sequence recovery independent of the initial structure resolution. The 

normalized, average movement of minimized structures for each minimization protocol (C,D) 

showed that FastRelax and Dualspace tend to move the protein further away from the starting 

structure. When examining sequence recovery by average movement (E,F), we find that pack-

only and MWC had a larger range over low sequence recovery whereas protocols that allowed 

more movement during minimization, CSC, FastRelax, and Dualspace, yielded more consistently 

high sequence recovery rates. FastRelax and Dualspace in some cases moved the backbone 

further than 1 Å. 
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Our analysis indicates that both initial concerns have merit. A clear correlation between 

model resolution and sequence recovery is observed. Upon energy minimization this correlation 

vanishes. However, aggressive minimization protocols such as Dualspace, may inflate sequence 

recovery beyond what would be expected from the extrapolation to a membrane protein model 

with 0 Å resolution. Additionally, FastRelax and Dualspace move the protein beyond 1 Å 

RMSD100(Carugo & Pongor, 2008), whereas CSC attains similar average sequence recovery 

rates despite movement of less than 1 Å RMSD100 during minimization (Fig. 2.1 E,F). We 

conclude that CSC, the limited energy minimization with a constraint to starting coordinates, is a 

good compromise to avoid over- and under-reporting algorithm accuracy. 

Interestingly, for the highest resolution monomer, 2xov, the pack-only preparation 

resulted in an average sequence recovery of 42%, while MWC was 46%. Using the 

recommended CSC protocol, the average sequence recovery is 47% (Fig. 2.2A). This indicates 

that any major clashes that typically lessen sequence recovery were resolved prior to 

minimization. Additionally, for the lowest resolution monomer, 4a2n, the pack-only and MWC 

preparations resulted in sequence recoveries of 23% and 31%. However, after more flexible 

minimization strategies, CSC, FastRelax, and Dualspace, sequence recoveries increased to 53%, 

52%, and 60%, respectively, indicating that perhaps major clashes were resolved once more 

flexibility was introduced. 

For homo-oligomers, this analysis had a different finding. While most of the homo-

oligomeric structures were of high-resolution more stringent minimization-CSC, FastRelax, or 

Dualspace- was required in order to achieve higher sequence recovery percentages (Fig. 2.2B). 

This is likely due to an option used during symmetric relax which enables rigid body movement 

(see protocol capture in Appendix B). Whereas the pack-only preparation would only move side-
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chains while MWC might constrain the minimization without considering the placement of the 

rigid bodies with respect to each other. 

 

Figure 2.2. Percent sequence recovery of individual proteins and their respective minimization 

method. Monomeric proteins consistently had pack only as the lowest performance for sequence 

recovery (A). Oligomeric proteins sometimes had worse performance from MWC due to lack of 

rigid body movement (B). Sequence recoveries are plotted for each increase of minimization 

stringency for each individual monomer (C) and oligomer (D). 

 

Sequence recovery is highest in the core of the protein 

 To evaluate the performance of RosettaMembrane (Barth et al., 2007; Yarov-Yarovoy et 

al., 2006) redesigning membrane proteins, we compared the performance of the soluble scoring 

function Talaris (Andrew Leaver-Fay et al., 2013; O'Meara et al., 2015). The largest differences 

in score terms between RosettaMembrane and Talaris are the membrane-related terms that 

describe the membrane-specific environment (including burial state) and differences in 
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solubility. We used Talaris to test how well Rosetta can design native-like membrane proteins in 

the absence of these membrane protein specific terms. 

For both monomeric and homo-oligomeric sets, average core sequence recovery was 

higher with the Talaris scoring function when compared to RosettaMembrane (Fig. 2.3B). 

Talaris had an average core sequence recovery of 63% and 65% for monomeric and homo-

oligomeric datasets, respectively, compared to RosettaMembrane with 52% and 55%. A 

Wilcoxon signed rank test determined that the difference in percent core sequence recovery 

between RosettaMembrane and Talaris was significant for both monomers and homo-oligomers 

(z=2.49, p=0.013 ; z=3.04, p=0.002). Residues in the core are less influenced by the membrane 

environment than surface residues that are likely interacting with the lipid bilayer. Therefore, 

sampling and scoring in the core is driven by van der Waals packing interactions that are similar 

for membrane and soluble proteins. RosettaMembrane was derived from score12, the scoring 

function that preceded Talaris. Membrane specific scoring terms were added. Meanwhile, 

score12 evolved to Talaris through improvement of the electrostatic term, hydrogen bond terms, 

and reference energies (Andrew Leaver-Fay et al., 2013; O'Meara et al., 2015). These changes 

give rise to the improved core sequence recovery observed with the Talaris energy function (Fig. 

2.3) as amino acid interactions are modeled more precisely. 

Surface sequence recovery for monomers improved in designs using RosettaMembrane 

(40%) when compared with Talaris (34%, Fig. 2.3A). However for homo-oligomers, the average 

surface sequence recovery was 35% for both RosettaMembrane and Talaris. A Wilcoxon signed 

rank test determined that the difference in percent surface sequence recovery between 

RosettaMembrane and Talaris was significant for monomers (z=2, p=0.046), and not significant 

for homo-oligomers (z=0.69, p=0.492). RosettaMembrane models a membrane of fixed 



 
 

24 

thickness implicitly. The higher surface sequence recovery observed with RosettaMembrane is 

attributed to the membrane-specific score terms that adjust the polarity of the environment (Fig. 

2.3). However, the improvement in sequence recovery on the surface within RosettaMembrane 

when compared to Talaris is only moderate. We attribute this to the absence of specific 

interactions on the surface of the proteins that allow for the presence of only one specific amino 

acid.  

 

Figure 2.3. Percent of native sequence recovery for design of membrane proteins using various 

scoring functions. Boxplots show recovery of native sequence on the surface (A) and core (B) of 

the protein. RosettaMembrane (Membrane) designed monomeric proteins have a higher average 

surface recovery than Talaris. The total sequence recovery (C) shows that both scoring functions 

evaluated appear to have similar native sequence recovery percentages; however, core recovery 

is higher in Talaris which likely contributes to the total sequence recovery. When homo-

oligomers were modeled as monomers, the total average sequence recovery rate was 

approximately 5% lower than the sequence recovery rate for design considering homo-

oligomeric interfaces. 

 

Finally, when evaluating the total sequence recovery in monomers, RosettaMembrane 

had an average of 46% while Talaris had an average of 48%. In homo-oligomers, the average 

total sequence recovery was calculated to be 48% for RosettaMembrane and 53% for Talaris. A 

Wilcoxon signed rank test revealed that the difference in percent total sequence recovery 

between RosettaMembrane and Talaris was not significant for monomers (z=0.81,p=0.421) 

while it was significant for homo-oligomers (z=2.1, p=0.036). When homo-oligomers were 

designed as monomers, the average percent native sequence recovery for surface (Fig. 2.3 A) and 
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core (Fig. 2.3 B) were similar to that of homo-oligomers designed in a homo-oligomeric state. A 

Wilcoxon signed rank test confirmed there was no significant difference (z=1.24, p=0.217; 

z=0.33, p=0.739). However, the difference in percent total sequence recovery was found to be 

significant (z=2.77, p=0.006). This is likely due to a subset of residues not classified as either 

surface (less than or equal to16 neighbors within a c-beta distance of 10Å) or core residues (more 

than 24 neighbors within a c-beta distance of 10Å) contributing to the difference in percent total 

sequence recovery differences. 

Additionally, we calculated the sequence recovery based on secondary structure element. 

Over 4,000 residues were annotated as helical and over 1,000 residues were annotated as coil, 

while nearly 30 residues were annotated as strand (Fig 2.4). Talaris appeared to have a higher 

sequence recover in helical regions compared to membrane proteins. But this analysis of 

sequence recovery by secondary structural annotations is too crude of an assessment to draw 

conclusions. 

 

Figure 2.4. Percent sequence recovery reported by secondary structure element. Sequence 

positions were annotated as helix (A), strand (B), or coil (C). The average sequence recovery is 

reported for the appropriate members of the dataset. Because the datasets are of alpha helical 

proteins, the amount of residues considered for sequence recovery of helical regions is over 

4,000 for each dataset, while only approximately 30 residues represent strands. Therefore, 

significance of the difference in average sequence recoveries for strands cannot be determined. 

Coils are represented by over 1,000 residues for each dataset. 
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We selected top models as representatives to better understand which residues were 

designed by mapping those residues on the structure. For both scoring functions, designed 

residues tended to be on the surface where residues would be lipid-exposed (Fig. 2.5), in 

monomers (Fig. 2.6), and homo-oligomers (Fig. 2.7). Residues at the interface of subunits (Fig. 

2.5 C,E and Fig. 2.7 C,F) appear to be designed less frequently and result in core-like recovery 

indicating that design considers neighboring residues from different chains when using Rosetta 

Symmetry. 
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Figure 2.5. Designed residues mapped on models. Top models were selected as representative 

models for visualizing designed sites of 1u19(A), 2xov(B), 1fx8 (C-top down,D), and 3b9w (E-

top down,F). Red indicates sites that have been designed while gray represents sites that have 

maintained the wild-type residue. Surface residues that would be lipid-exposed have the 

tendency to be designed for both scoring functions. Residues at the interface of subunits (C,E) 

appear to be designed less frequently. 
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Figure 2.6. Designed residues mapped on models of monomers. Top models were selected as 

representative models for monomers visualizing the designed sites of 2c3e (A), 3gia (B), 3o0r 

(C), 3v5u (D), 4a2n I, and 4ikv (F). Red represents sites that have been designed while gray 

represents sites that have retained the native amino acid. Designed residues tend to be surface 

residues regardless of scoring function. 
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Figure 2.7. Designed residues mapped on models of oligomers. Top models were selected as 

representative models of assembled oligomers visualizing the designed sites of 1k4c(A), 

1m0l(B), 1ots(C), 2uui(D), 2vpzI, 3k3f(F), 3kly(G), 3m71(H), 3rlb(I), 3zoj(J). All images are top 

down. Red represents sites that have been designed while gray represents sites that have retained 

the native amino acid. Designed residues tend to be surface residues regardless of scoring 

function. In some cases such as C and F, core residues and residues at the interface of subunits 

are distinctly native. 

 

Amino acid properties are most native-like in proteins design using RosettaMembrane 

 Sequence recovery is a limited metric for design in that it only reports how much of the 

sequence changes from the native sequence. A more pronounced improvement is observed when 

comparing amino acid property composition between RosettaMembrane and Talaris (Fig. 2.8). 

The percent difference in sequence composition (design percent composition – native percent 

composition) was calculated to further detail how design sequences differed from native (Fig. 

2.8). A negative percent difference (red) indicates that Rosetta introduces that particular amino 

acid less frequently than is observed in the native proteins in our dataset, while a positive percent 

difference (blue) indicates Rosetta introduces it more frequently. The average absolute deviation 

from native sequence composition for monomers was ±3.4% for RosettaMembrane, and ±2.8% 

for Talaris. For homo-oligomers, a similar trend was seen with ±2.5% for RosettaMembrane, 

±1.6% for and Talaris. 
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Figure 2.8. Heatmaps for composition of sequence (4A-C) and amino acid properties (4D-F) by 

percent difference of wild-type from design. Datasets evaluated were monomers (4A,D), homo-

oligomers (4B,E), and homo-oligomers as monomers (4C,F). Both RosettaMembrane 

(Membrane) and Talaris scoring functions have strong and weak amino acid recovery for 

different amino acids in the monomeric set (4A,D). The homo-oligomeric set (4B,E) performs 

similarly to the monomeric set for each respective scoring function. Finally, when homo-

oligomers are designed as monomers using RosettaMembrane (4C,F), the design is less native-

like, but has a similar sequence composition as the homo-oligomeric design. 

 

For each amino acid, I have plotted the fraction recovered for the whole (Fig. 2.9), 

monomeric (Fig. 2.10), and homo-oligomeric (Fig. 2.11) datasets. Also plotted for each amino 

acid is the number of occurrences in all native, best-scoring RosettaMembrane designs, and best-

scoring Talaris designs with respect to their position in the membrane layer in the whole (Fig. 
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2.12), monomeric (Fig. 2.13), and homo-oligomeric (Fig. 2.14). Arginine was found more 

frequently in designs than in native membrane proteins. In figure 2.9, the fraction recovered 

drops in the inner hydrophobic layer for RosettaMembrane designs. In figure 2.12, it is clear that 

Talaris is solubilizing the designs as an increase in occurrence of Arginine is seen in the inner 

and outer hydrophobic regions. 

Table 2.1 Layers of the membrane represented by bins. Calculated distances from the membrane 

center have been binned to aid in visualization of data. Bins have been defined by the layers 

described by Yarov Yarovoy and co-workers(Yarov-Yarovoy, Schonbrun, and Baker 2006). A 

negative distance indicates it is on the intracellular side of the membrane whereas a positive 

distance indicates it is on the extracellular side. 

 

Bin Distance from the membrane center 

(Å) 

Hydrophobic layer 

1 -40 to -30 Water 

2 -30 to -24 Polar 

3 -24 to -18 Interface 

4 -18 to -12 Outer Hydrophobic 

5 -12 to 0 Inner Hydrophobic 

6 0 to 12 Inner Hydrophobic 

7 12 to 18 Outer Hydrophobic 

8 18 to 24 Interface 

9 24 to 30 Polar 

10  30 to 40 Water 
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Figure 2.9. Fraction of sequence recovery for each amino acid with respect to distance from the 

membrane center. Bars indicate the raw number of residues observed at a particular distance bin 

(see Table 2.1) from the membrane center. Dots indicate the fraction recovered at that particular 

distance bin and lines are not to infer a continuous dataset. The distance bins are discrete and the 

lines are only to aid the eye in following the trend between layers. The yellow box overlays bins 

of distance that would contain the inner and outer hydrophobic layers of the protein. 
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Figure 2.10. Fraction of sequence recovery for each amino acid with respect to distance from the 

membrane center for the monomeric dataset. Bars indicate the raw number of residues observed 

at a particular distance bin (see Table 2.1) from the membrane center. Dots indicate the fraction 

recovered at that particular distance bin and lines are not to infer a continuous dataset. The 

distance bins are discrete and the lines are only to aid the eye in following the trend between 

layers. The yellow box overlays bins of distance that would contain the inner and outer 

hydrophobic layers of the protein. 
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Figure 2.11. Fraction of sequence recovery for each amino acid with respect to distance from the 

membrane center for the homo-oligomeric dataset. Bars indicate the raw number of residues 

observed at a particular distance bin (see Table 2.1) from the membrane center. Dots indicate the 

fraction recovered at that particular distance bin and lines are not to infer a continuous dataset. 

The distance bins are discrete and the lines are only to aid the eye in following the trend between 

layers. The yellow box overlays bins of distance that would contain the inner and outer 

hydrophobic layers of the protein. 
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Figure 2.12. Frequency of occurrence for each amino acid by membrane layer. Bins are a range 

of distances from the membrane center (see Table 2.1). Dots indicate the frequency of 

occurrence of an amino acid seen at a particular distance from the membrane center, and lines 

are not to infer a continuous dataset. The distance bins are discrete and the lines are only to aid 

the eye in following the trend between layers. The yellow box overlays bins of distance that 

would contain the inner and outer hydrophobic layers of the protein. 
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Figure 2.13. Frequency of occurrence for each amino acid by membrane layer in the monomeric 

set. Bins are a range of distances from the membrane center (see Table 2.1). Dots indicate the 

frequency of occurrence of an amino acid seen at a particular distance from the membrane 

center, and lines are not to infer a continuous dataset. The distance bins are discrete and the lines 

are only to aid the eye in following the trend between layers. The yellow box overlays bins of 

distance that would contain the inner and outer hydrophobic layers of the protein. 
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Figure 2.14. Frequency of occurrence for each amino acid by membrane layer in the homo-

oligomeric set. Bins are a range of distances from the membrane center (see Table 2.1). Dots 

indicate the frequency of occurrence of residues of an amino acid seen at a particular distance 

from the membrane center, and lines are not to infer a continuous dataset. The distance bins are 

discrete and the lines are only to aid the eye in following the trend between layers. The yellow 

box overlays bins of distance that would contain the inner and outer hydrophobic layers of the 

protein. 

 

 

However, for RosettaMembrane, only the outer hydrophobic and interface regions have 

an increase of occurrence. Additionally, this is more pronounced in the monomeric dataset (Fig. 
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2.13), perhaps indicating that there is an additional cost of designing in a bulky residue at a 

protein-protein interface region (Fig. 2.14). Talaris adds charged residues such as Arginine, 

Aspartate, Glutamate, and Lysine on the surface and in the inner and outer hydrophobic regions, 

as expected, to solubilize the protein. 

The most striking difference for RosettaMembrane designs when compared with native 

membrane protein sequences was that the amino acid composition is shifted towards Leucine 

residues (Fig. 2.9) while other hydrophobic amino acids such as Phenylalanine, Valine and 

Alanine, have a lower than native probability. This indicates that RosettaMembrane has a bias 

towards Leucine at the cost of other hydrophobic amino acids. The fraction recovered for 

Leucine in the inner and outer hydrophobic regions ranged from 58% to 82% while Valine and 

Alanine had recoveries in the ranges of 20-24% and 23-37%, respectively (Fig. 2.9). When the 

number of occurrences of Leucine in native proteins and designed proteins was plotted with 

respect to their position in the membrane layer, Leucine was found to be overrepresented by 1.9 

fold in the inner and outer hydrophobic regions for RosettaMembrane designs (Fig. 2.12). An 

increase is also seen in both datasets with a 2.2 fold increase for monomers (Fig. 2.13), and a 1.6 

fold increase for homo-oligomers (Fig. 2.14). Additionally, RosettaMembrane designs Valine 

and Alanine less frequently than what is seen in native proteins in the inner and outer 

hydrophobic regions by 3.4 fold and 1.6 fold, respectively. This further supports that in the 

hydrophobic regions, Valine and Alanine are replaced by Leucine in RosettaMembrane designs. 

Sequence recovery may be too crude of an analysis to determine the extent of which designed 

proteins have changed. In addition to calculating recovery of native amino acid identities, we 

calculated the percent difference in the composition of amino acids grouped by properties such 

as polarity, charge, etc. (design percent composition – native percent composition). Here, the 
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average absolute deviation from native amino acid property composition in monomers was 3.9% 

for RosettaMembrane, and 7.4% for Talaris, while in homo-oligomers, it was 3.4% for 

RosettaMembrane, and 7.3% for Talaris. When considering the composition of all amino acid 

properties, RosettaMembrane resulted in proteins with more native-like properties in both 

monomeric and homo-oligomeric sets (Fig. 2.8 D, E). The differences in sequence composition 

between native and designed proteins is primarily caused by mutations on the protein surface as 

core sequence recovery is high for both, Talaris and RosettaMembrane. Recall that surface 

sequence recovery rates of monomers averaged at 40% for RosettaMembrane designs, whereas 

Talaris had lower averages of 34% and 38%, respectively (Fig. 2.3 A). However, when 

comparing the difference in amino acids that are aliphatic (Fig. 2.8 D,E), RosettaMembrane is 

near native with a percent difference of nearly -3% in monomers and -1% in homo-oligomers 

whereas Talaris had a percent difference near -10% for both monomers and homo-oligomers. 

 Additionally, I looked at the frequency of occurrence of each amino acid identity with 

respect to the distance from the central axis of the protein for the full (Fig. 2.15), monomeric 

(Fig. 2.16), and homo-oligomeric (Fig. 2.17) datasets. The distances are defined by Table 2.2. 

RosettaMembrane designed over 1.7 fold as many Leucines near the core than what is seen in 

native membrane proteins. Near the core of the protein, RosettaMembrane designs fewer Alanine 

and Valine than what is seen in native membrane proteins. This may be due to the small size of 

Alanine and Valine side-chains because the Rosetta energy function is driven by packing 

interactions  (B. Kuhlman & Baker, 2000).  
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Table 2.2. Bins for distance from central axis of the protein. These bins are used in visualization 

of sequence recovery by amino acid identity in Figures 2.15, 2.16, and 2.17. 

 

Bin Distance from central axis of protein (Å) 

1 0 < 5 

2 5 < 10 

3 10 < 15 

4 15 < 20 

5 20 < 30 

6 30 < 45 
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Figure 2.15. Frequency of occurrence of residues with respect to distance from the central axis of 

the protein for the entire dataset. Distances are binned (see Table 2.2) and non-directional. In 

RosettaMembrane designs, leucine and serine are designed more frequently than native near the 

central axis whereas alanine, phenylalanine and valine are designed less frequently near the 

central axis. 
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Figure 2.16. Frequency of occurrence of residues with respect to distance from the central axis of 

the protein for the monomeric dataset. Distances are binned (see Table 2.2) and non-directional. 

In RosettaMembrane designs, leucine and serine are designed more frequently than native near 

the central axis whereas alanine, phenylalanine and valine are designed less frequently near the 

central axis. 
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Figure 2.17. Frequency of occurrence of residues with respect to distance from the central axis of 

the protein for the homo-oligomeric dataset. Distances are binned (see Table 2.2) and non-

directional. In RosettaMembrane designs, leucine and serine are designed more frequently than 

native near the central axis whereas alanine, phenylalanine and valine are designed less 

frequently near the central axis. 

 

To further investigate which amino acid mutations would be tolerated by evolution, 

Position Specific Scoring Matrix (PSSM) Recovery (Deluca, Dorr, & Meiler, 2011) was 

calculated using the uniref50membrane database. Because PSSM recovery is considering all 
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tolerated amino acids that have been seen in known sequences, PSSM recovery will be higher 

than sequence recovery alone (Allison et al., 2014). In monomers, RosettaMembrane had an 

average PSSM recovery of 73% while Talaris had a recovery of 72% (Fig. 2.18 A). In homo-

oligomers, RosettaMembrane had an average PSSM recovery of 69% while Talaris was at 70% 

(Fig. 2.18 B). Despite using a membrane specific database, the PSSM recovery did not favor 

RosettaMembrane designs. 

 

Figure 2.18. Heatmaps for position specific scoring matrix (PSSM) recovery for the monomeric 

set (A) and homo-oligomeric set (B). The PSSM recovery for each scoring function is similar 

when comparing the monomeric set to the homo-oligomeric set. RosettaMembrane (Membrane) 

has limitations for recovering Histidine and Proline, but shows improved recovery for Isoleucine, 

Leucine, Valine, and Phenylalanine. 

 

RosettaMembrane designs a native-like hydrophobicity gradient and predicted ∆Gtransfer 

 The HotPatch server (Pettit, Bare, Tsai, & Bowie, 2007) was used to visualize the relative 

hydrophobicity on the surface of proteins (Fig. 2.18). For Talaris, despite having a similar 

sequence composition as native structures (Fig. 2.8 A,B), the resulting designs had a noticeably 

different surface composition. This is supported by the sequence recovery analysis where core 

sequence recovery is typically much higher than the surface sequence recovery (Fig. 2.3 A,B). 

Representative design models selected for monomers show that both scoring functions resulted 

in a large amount of surface residues being redesigned (Fig. 2.5 A,B). Design models of 
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assembled homo-oligomers highlight a similar feature; however, design at the interface of 

subunits is typically more restricted and thus more core-like (Fig. 2.5 C-F). For Talaris, the 

surfaces of the majority of the protein designs were covered in hydrophilic residues (Fig. 2.19) as 

the scoring function attempted to solubilize the surface of the protein. However, 

RosettaMembrane resulted in a designed protein with a native-like hydrophobicity gradient on 

the surface. These models had more strongly hydrophobic and hydrophilic areas whereas native 

surfaces had moderate hydrophobic and hydrophilic regions. 

 

Figure 2.19. Surface hydrophobicity of proteins designed by various scoring functions in 

Rosetta. The native protein (1u19) has a clear hydrophobic region where the membrane is 

present. Overall, the surface has a hydrophobic gradient so that it is more hydrophobic in the 

middle and extends to be polar on the edges. When designed, the RosettaMembrane optimized 

the sequence so that the surface closely resembles, and even idealizes the hydrophobic gradient. 

The predicted ΔGtransfer is close to that of the native protein. However, when designed with the 

soluble scoring function, Talaris, the surface is mostly covered in polar, hydrophilic residues 

which gives a ΔGtransfer that has decreased significantly. 
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The OPM server (A. L. Lomize, Pogozheva, Lomize, & Mosberg, 2006; M. a. Lomize, 

Pogozheva, Joo, Mosberg, & Lomize, 2012) was used to predict the ∆Gtransfer for both 

monomeric and homo-oligomeric sets (Fig. 2.20). The server tends to predict that integral 

membrane proteins and peptides have a ∆Gtransfer between -400 and -10 kcal/mol (M. a. Lomize 

et al., 2012). For our datasets, the native proteins were in the range of -44 to -164. Designs by the 

RosettaMembrane scoring function were near and above native in a range of -71 to -275 whereas 

designs by Talaris were near zero indicating that the designed protein would not be membrane 

soluble. 

 

Figure 2.20. Predicted ΔGtransfer for designs from membrane and soluble scoring functions. For 

both monomeric (A) and homo-oligomeric (B) sets, the membrane scoring function resulted in 

more native-like ΔGtransfer values in comparison to the soluble scoring functions. For the soluble 

scoring function, the value was nearly zero indicating it would likely not partition into the 

membrane. Finally, the homo-oligomeric design took into account surfaces when assembled as 

an homo-oligomer, resulting in more native-like values. 

 

RosettaMembrane replaces other hydrophobics with Leucine 

 RosettaMembrane chooses Leucine over other hydrophobic amino acids. Although 

Leucine may be ideal for the particular membrane environment modeled in Rosetta, this may not 

be ideal biologically as it does not account for asymmetry and heterogeneity of the membrane. A 
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previous study showed Leucine to be the most frequent amino acid in the inner hydrophobic and 

outer hydrophobic layers of the membrane (Yarov-Yarovoy et al., 2006). Because Leucine has 

such a high frequency compared to other amino acids, it scores quite favorably in 

RosettaMembrane and is overrepresented in designs often replacing native, hydrophobic amino 

acids (Fig. 2.8 A, Fig. 2.12). 

To further investigate how Leucine might replace hydrophobic amino acids like Alanine, 

Valine and Phenylalanine, we mapped their occurrences onto the structures to understand where 

each scoring function would typically place them compared to where they are found on the 

native membrane protein. For both monomers and homo-oligomers, native membrane proteins 

have Alanine in the core as well as on the surface (Fig. 2.21). Both scoring functions typically 

placed Alanine in the core of the protein and RosettaMembrane had a lower Alanine sequence 

composition than native membrane proteins. In homo-oligomers, very few Alanine occur on the 

surface of the protein that would be lipid-exposed, and very few are seen in the interface between 

subunits, likely due to Alanine’s small size. 

Designs from both scoring functions resulted in fewer Valine and Phenylalanine. Both 

residues are hydrophobic and, in the case of RosettaMembrane, were likely replaced by Leucine. 

Valine was typically designed in the core of the protein regardless of scoring function; however, 

in homo-oligomers, Talaris does place Valine in the core-like interface between sub-units more 

frequently than RosettaMembrane (Fig. 2.22). Despite Phenylalanine typically occurring in the 

interface and inner and outer hydrophobic layers, fewer Phenylalanines are seen on the surface of 

designs from both scoring functions (Fig. 2.23). This suggests that Leucine’s abundance in these 

layers overshadows the presence of Phenylalanine in native membrane proteins. As a 

comparison, Arginine, was also highlighted onto structures (Fig. 2.24). Although the percent 
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difference in composition was like that of Leucine, the number of occurrences (Fig. 2.9) was 

much lower, so the effect was pronounced. 
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Figure 2.21. Visualization of Alanine on models. Top models were selected to visualize where 

Alanines occur in monomers 1u19 (A), 2xov(B) and in oligomers 1fx8 (C-top down,D) and 

3b9w (E-top down,F). Native structures (left) were compared to representative models of 

proteins designed using RosettaMembrane and Talaris. RosettaMembrane designs in fewer 

Alanines as compared to native membrane proteins. Both scoring functions tend to place 

Alanines in the core of the protein. Oligomers show very few Alanines on the lipid-facing, 

surface of the protein as well as few in the interface between subunits likely due to Alanine being 

small. 
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Figure 2.22. Visualization of Valine on models. Top models were selected to visualize where 

Valines occur in monomers 1u19 (A), 2xov (B) and in oligomers 1fx8 (C-top down,D) and 3b9w 

(E-top down,F). Native structures (left) were compared to representative models of proteins 

designed using RosettaMembrane and Talaris. Both scoring functions, most noticeably 

RosettaMembrane, design in fewer Valines as compared to native membrane proteins. Both 

scoring functions tend to place Valine in the core, and designed oligomers show very few 

Valines on the lipid-facing, surface of the protein. However, Talaris place Valines in the 

interface between subunits more frequently than RosettaMembrane. 
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Figure 2.23. Visualization of Phenylalanine on models. Top models were selected to visualize 

where Phenylalanines occur in monomers 1u19 (A), 2xov (B) and in oligomers 1fx8 (C-top 

down,D) and 3b9w (E-top down,F). Native structures (left) were compared to representative 

models of proteins designed using RosettaMembrane and Talaris. Phenylalanine can be seen in 

native proteins in the inner hydrophobic, outer hydrophobic, and interface regions. Both scoring 

functions result in designs with fewer Pheylalanines than native, especially on the surface. 
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Figure 2.24. Visualization of Arginine on models. Top models were selected to visualize where 

Arginines occur in monomers 1u19 (A), 2xov (B) and in oligomers 1fx8 (C-top down,D) and 

3b9w (E-top down,F). Native structures (left) were compared to representative models of 

proteins designed using RosettaMembrane and Talaris. For native membrane proteins, Arginine 

can usually be found outside of the hydrophobic layers near the interface, polar, and solvent 

exposed environments. RosettaMembrane tends to design Arginines in these layers. Talaris 

places Arginines on the surface along helices as an attempt to help solubilize the protein. 

 

 To visualize which native identities were designed to Leucine, I created a correlation plot 

that shows a percentage of native residues that were designed to all other residue identities. 

Figure 2.25 shows the native sequence recovery on the diagonal for the whole dataset while 

Figures 2.26 and 2.27 show the monomeric and homo-oligomer datasets, respectively. 

Additionally, it appears that all 20 native residue identities have some percentage that were 

designed to Leucine. This indicates that the cost of designing in a Leucine is low compared to all 

residues. In Rosetta, reference energies are used to represent the costs of designing in residues of 

a particular energy. Reference energies are usually given a weight of 1 in a scoring function and 

are only used during design. They are supposed to represent the energy of the unfolded state but 

have been tuned over time to optimize native sequence recovery in design experiments (Andrew 

Leaver-Fay et al., 2013).  
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Figure 2.25. Correlation plot of residues designed in the place of native residues for the full 

dataset. Each column adds up to 100%, the diagonal represents when the residue is recovered 

during design. Leucine constitutes X percent of each native residue count. Alanine is often 

replaced by leucine and serine whereas valine is replaced by isoleucine, leucine, serine, and 

threonine. 
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Figure 2.26. Correlation plot of residues designed in the place of native residues for the 

monomeric dataset. Each column adds up to 100%, the diagonal represents when the residue is 

recovered during design. Leucine constitutes X percent of each native residue count. Alanine is 

often replaced by leucine and serine whereas valine is replaced by isoleucine, leucine, serine, and 

threonine. 



 
 

62 

 

Figure 2.27. Correlation plot of residues designed in the place of native residues for the homo-

oligomeric dataset. Each column adds up to 100%, the diagonal represents when the residue is 

recovered during design. Leucine constitutes X percent of each native residue count. Alanine is 

often replaced by leucine and serine whereas valine is replaced by isoleucine, leucine, serine, and 

threonine. 

 

 Bonuses and penalties can also be utilized by the Rosetta Design algorithm to favor or 

disfavor particular residues. A favor native residue bonus, as the name implies, is often used in 

design experiments to give a favorable energy to the native residue identity. This minimizes the 

amount of sequence variation from the native sequence to show the positions that are most likely 

to benefit from sequence optimization. Figures 2.28, 2.29, 2.30, and 2.31 show the same design 

experiment with favor native residue bonuses of 0.5,1,1.5, and 2, respectively. Although a higher 



 
 

63 

favor native residue bonus lowered the usage of Leucine in the inner and outer hydrophobic 

regions, all differences improved uniformly, as would be expected from this such experiment.  

 

Figure 2.28. Frequency of occurrence of amino acids with respect to the distance from the 

membrane center for designs with a favor native residue bonus of 0.5.  Dots indicate the 

frequency of occurrence of an amino acid seen at a particular distance from the membrane 

center, and lines are not to infer a continuous dataset. The distance bins are discrete and the lines 

are only to aid the eye in following the trend between layers. The yellow box overlays bins of 

distance that would contain the inner and outer hydrophobic layers of the protein. A bonus of 0.5 
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results in very little change relative to the frequency of occurrence for vanilla RosettaMembrane 

design. 

 
Figure 2.29. Frequency of occurrence of amino acids with respect to the distance from the 

membrane center for designs with a favor native residue bonus of 1.  Dots indicate the frequency 

of occurrence of an amino acid seen at a particular distance from the membrane center, and lines 

are not to infer a continuous dataset. The distance bins are discrete and the lines are only to aid 

the eye in following the trend between layers. The yellow box overlays bins of distance that 

would contain the inner and outer hydrophobic layers of the protein. A bonus of 1 results in little 

change relative to the frequency of occurrence for vanilla RosettaMembrane design. 
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Figure 2.30. Frequency of occurrence of amino acids with respect to the distance from the 

membrane center for designs with a favor native residue bonus of 1.5.  Dots indicate the 

frequency of occurrence of an amino acid seen at a particular distance from the membrane 

center, and lines are not to infer a continuous dataset. The distance bins are discrete and the lines 

are only to aid the eye in following the trend between layers. The yellow box overlays bins of 

distance that would contain the inner and outer hydrophobic layers of the protein. A bonus of 1.5 

results in a closure in the gap between the frequency of occurrence for vanilla RosettaMembrane 

design and native membrane proteins. RosettaMembrane design with a 1.5 favor native residue 

bonus results in near native frequency of occurrence. 
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Figure 2.31. Frequency of occurrence of amino acids with respect to the distance from the 

membrane center for designs with a favor native residue bonus of 2.  Dots indicate the frequency 

of occurrence of an amino acid seen at a particular distance from the membrane center, and lines 

are not to infer a continuous dataset. The distance bins are discrete and the lines are only to aid 

the eye in following the trend between layers. The yellow box overlays bins of distance that 

would contain the inner and outer hydrophobic layers of the protein. A bonus of 2 results in a 

complete closure in the gap between the frequency of occurrence for vanilla RosettaMembrane 

design and native membrane proteins. 

 

 While the favor native residue bonus did affect the energy of the individual amino acids 

by biasing the native identities, this did not change the energy function itself. As a proof of 
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principal, I increased the energetic cost of designing in a Leucine from -0.1 to 0.2. The result was 

a dramatic decrease in the amount of Leucine designed in the inner and outer hydrophobic 

regions. The development of energy functions requires extensive testing and optimization. While 

it is clear that the cost of designing in a Leucine residue is too low in the current energy function, 

increasing the cost of residue only allowed for Isoleucine to be favored even more as indicated in 

Figure 2.32. This indicates that all reference energies in the membrane protein scoring function 

of Rosetta should be optimized to recapitulate native sequences. 
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Figure 2.32. Frequency of occurrence of amino acids with respect to the distance from the 

membrane center for designs with an increased leucine reference energy. Dots indicate the 

frequency of occurrence of an amino acid seen at a particular distance from the membrane 

center, and lines are not to infer a continuous dataset. The distance bins are discrete and the lines 

are only to aid the eye in following the trend between layers. The yellow box overlays bins of 

distance that would contain the inner and outer hydrophobic layers of the protein. The increase of 

the leucine reference energy from -0.1 to 0.2 resulted in a reduction of occurrence of leucine, but 

an increase in isoleucine. 
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A closer look at trends seen in designs 

 Core residues have a better chance of recovering the native amino acid. For example, the 

core of 2xov has several residues surrounding Asparagine 64 that remain the same for both 

scoring functions (Fig. 2.33 A-C). The native core is likely well-packed with favorable 

hydrophobicity. The largest differences among designs are expected at the surface of the protein. 

While RosettaMembrane is designing towards an optimal hydrophobicity gradient so that the 

protein can partition in the membrane, Talaris is designing towards a soluble protein (Fig. 2.33 

D-F). For this reason, many of the surface residues that were designed by Talaris are charged 

when the native protein would likely not tolerate multiple charged residues embedded in the 

membrane. As previously noted, an interesting finding was the abundance of Leucine on the 

surface of proteins designed using RosettaMembrane. In many cases, native hydrophobic 

residues, such as Phenylalanine at position 45 and Methionine 49 (Fig. 2.33 D-F), were replaced 

by Leucine. In homo-oligomers, the surface and core are similar to that in monomers; however, 

the homo-oligomers have interface regions between the sub-units. The interface regions should 

be designed similarly to the core in that they are surrounded by neighboring residues, provided 

that distance is close enough to be considered buried, despite those residues residing on a 

different chain. As expected, these regions, when well packed, will remain the native amino acid 

for both scoring functions (Fig. 2.33 G-I). 
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Figure 2.33. Atomic detail of designs compared to wild-type. A closer look at typical interactions 

at the core (A-C), surface (D-F), and homo-oligomeric interface (G-I). Representative cases were 

selected from 2xov (A-C), 1u19 (D-F), and 1fx8 (G-I). Green represents respective minimized 

native, aquamarine is RosettaMembrane, and light orange is Talaris. 

 

RosettaMembrane designs membrane proteins that capture native-like properties. We 

have reported in-silico sequence redesign experiments using two different Rosetta scoring 

functions. Despite having similar sequence recoveries (Fig. 2.3), Talaris did not, as expected, 

appropriately design the surface. RosettaMembrane was developed to implicitly model an 
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appropriate hydrophobic gradient that is often seen in native membrane proteins (Barth et al., 

2007). RosettaMembrane designed a hydrophobic gradient that was native-like (Fig. 2.19). 

However, an artifact of designing in RosettaMembrane was the over-use of Leucine because of 

their high frequency at various layers in the membrane (Fig. 2.12, Fig. 2.34). 

Also indicative of a native-like surface, the ΔGtransfer was above or near native for 

RosettaMembrane designs, whereas Talaris designs were near zero (Fig. 2.18, 2.20). 

Interestingly, although both scoring functions resulted in a similar amino acid composition (Fig. 

2.8 A,B), the difference in composition of amino acid properties made it evident that 

RosettaMembrane designed in amino acids that were aliphatic, charged, or long and flexible 

more realistically (Fig. 2.8 D-F). Additionally, when evaluating position-specific scoring matrix 

recovery (PSSM), RosettaMembrane’s strength was recovering hydrophobic residues like 

Isoleucine, Leucine, Valine, and Phenylalanine (Fig. 2.12). Despite both of the scoring functions 

resulting in similar amino acid composition, design using RosettaMembrane results in membrane 

protein designs with more native-like properties. 
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Figure 2.34. Visualization of Leucine on models. Top models were selected to visualize where 

Leucines occur in monomers 1u19 (A), 2xov(B) and in homo-oligomers 1fx8 (C-top down,D) 

and 3b9w (E-top down,F). Native structures (left) were compared to representative models of 

proteins designed using RosettaMembrane and Talaris. RosettaMembrane designs proteins with 

an abundance of Leucine at multiple layers of the membrane and surface residues. In homo-

oligomers, Leucine is also seen in regions that are buried at the interface between subunits and in 

the core of the protein. 

 

RosettaMembrane and Rosetta Symmetry can be used in conjunction to model obligate 

homo-oligomeric membrane proteins 

 Because many membrane proteins are functional as homo-oligomers, it is important the 

Rosetta Design algorithm works well with Rosetta Symmetry so that both the internal energy of 

all subunits and interface interactions are taken into account during the design process. Rosetta 

Symmetry is ideal for larger, symmetric systems because the subunits in homo-oligomers are 

moved in the same way, which enables the sampling process to rapidly occur. The homo-

oligomeric set performed similarly to the monomeric set in amino acid composition and slightly 

better in recovering native-like properties. To ensure this comparison was not an artifact of the 

sets of proteins, the homo-oligomeric set was modeled as monomers in a separate design 

experiment. This revealed that although the patterns for amino acid composition were similar, 

the monomeric representation deviated further from the native (Fig. 2.8 B,C) indicating that 

homo-oligomeric modeling result in more native-like designs. 

2.3 Conclusions 

 This study illustrates that with minimized structures, membrane proteins have core 

sequence recovery rates of 52-63% for monomeric membrane proteins and 53-65% for homo-

oligomeric membrane proteins. These rates are similar to the 51% core sequence recovery rates 

calculated from a large soluble protein set (B. Kuhlman & Baker, 2000). The chance of 

designing a position with the correct amino acid identity is roughly 5% (selecting the correct 



 
 

74 

amino acid out of 20), so a recovery of approximately 50% indicates the algorithm is working 

well. Increasing sequence recovery even further would involve extensive backbone minimization 

and/or an improved scoring function. We find that PSSM recovery (here averaging around 70%) 

is a more reliable metric because the recovery tolerates mutations that have been seen in 

evolution. Additionally, to avoid minimizing structures that imprint the native sequence, we 

recommend using CSC to prepare structures for design as this reduces backbone RMSD from 

native during minimization and still achieves moderately high sequence recovery for a range of 

starting resolutions. 

While RosettaMembrane designs native-like surface hydrophobicity, it is important to 

note that RosettaMembrane has a tendency to favor Leucine over other hydrophobic residues at 

these positions. This may be due to high occurrence of Leucine for proteins in the original 

training set. An updated RosettaMembrane scoring function with a larger, more diverse, and 

higher resolution membrane protein knowledge-base may help dampen this bias. Finally, as 

membrane protein structures have varying membrane thicknesses, an accurate depiction of the 

hydrophobicity gradient during modeling and design of membrane proteins in Rosetta could 

improve the quality of native-like designs even further. 

 

Table 2.3. Membrane Protein Benchmark Set. The bioassembly used for the duration of the 

modeling process, unless otherwise noted, is stated in the assembly column. Residues selected 

are listed by the chain ID and range of residue numbers; homo-oligomeric assemblies were 

created by applying symmetry to the chain listed. Solvent and ions were excluded for the 

duration of this study. 

 
PDB 

ID 

Protein Name Resolution 

in 

Angstroms 

Assembly Residues 

from 

PDB 

Chain 

Length 

Protein 

Length 

# TM 

Spans 

Percent of 

Residues 

in 

Membrane 
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1FX8 Glycerol Facilitator 2.2 Tetramer  A 6-259 254 1016 24+8 

half 

61.9 

1K4C KcsA Potassium 

Channel, H+ with Fab 

2.0 Tetramer C 22-124 103 412 8 47.6 

1M0L Bacteriorhodopsin 1.5 Trimer A 5-231  222 666 21 59.9 

1OTS H+/Cl- exchange 

transporter 

2.5 Dimer A 17-

460 

444 888  70.1 

1U19 Rhodopsin (bovine 

outer segment) 

2.2 Monomer  A 1-348 348 348 7 47.7 

2C3E Mitochondrial 

ADP/ATP Carrier 

2.8 Monomer  A 1-293 293 293 6 60.6 

2UUI (Apo) Leukotriene 

Synthase 

2.0 Trimer A -5-149 155 465 12 46.8 

2VPZ Polysulfide Reductase 2.4 Dimer C2-251 250 500 16 72.7 

2XOV Rhomboid-Family 

intramembrane 

protease 

1.7 Monomer A91-271 181 181 6 77.9 

3B9W Rh50 protein 1.3 Trimer A8-369 362 1086 33 64.6 

3GIA (Apo) ApcT Na+-

independent Amino 

Acid Transporter 

2.4 Monomer  A3-435 433 433 12 65.5 

3K3F Urea Transporter 2.3 Trimer A-1-334 332 996 30 72.4 

3KLY FocA formate 

transporter w/o 

formate 

2.1  Pentamer A22-278 257 1285 30 64.3 

3M71 SLAC1 anion channel 

TehA homolog 

1.2 Trimer A6-313 308 924 30 68.2 
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3O0R Nitric Oxide 

Reductase subunit B 

2.7 Monomer  B10-458 449 449 12 61.3 

3RLB ThiT, S component of 

the Thiamin 

Transporter 

2.0 Dimer A7-182 176 352 12 70.3 

3V5U Sodium Calcium 

Exchanger (MCX) 

1.9 Monomer  A1-304 297 297 10 67.8 

3ZOJ AQY1 Yeast 

Aquaporin 

0.88 Tetramer A11-273 263 1052 24+8 

half 

59.9 

4A2N Isoprenylcysteine 

carboxyl 

methyltransferase 

3.4 Monomer  B1-192 192 192 5 57.7 

4IKV Proton-dependent 

oligopeptide 

transporter 

1.9 Monomer A2-493 492 492 14 60.2 

 

2.4 Methods 

 A set of 20 membrane proteins with resolutions ranging from 0.88-3.4 Å was compiled. 

Twelve of these membrane proteins are modeled as homo-oligomers (Table 2.3). All of the 

coordinates were obtained from the PDB. Solvent and ions were excluded for the duration of this 

study. Span files that specify the trans-membrane spanning region were created using 

information obtained from PDBTM (Kozma, Simon, & Tusnády, 2013). The symmetry 

definition files were created using the non-crystallographic symmetry mode in the 

make_symmdef_file.pl script provided in Rosetta. This mode calculates the point symmetries 

using the homo-oligomers present in the PDB file, or from symmetry mates generated in Pymol 

from the original PDB file. The RosettaScripts XML scripting language framework (Fleishman 
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et al., 2011) from the Rosetta week 52 build was used for all of the protocols tested. The Rosetta 

software suite is publicly accessible and free for non-commercial use. 

Pre-minimization trials 

 Five minimization protocols were tested on this benchmark set: pack-only where the 

backbone is not perturbed and only the side-chains conformations are optimized; minimize with 

constraints (MWC) where harmonic constraints are used to minimize both the backbone and 

side-chains to within nine Å of the starting structure (used to prepare structures for 

thermostability calculations (Kellogg et al., 2011); FastRelax with an added constraint to the start 

coordinates (CSC) which only allows minimal deviations from the initial backbone; FastRelax, 

the standard minimization protocol ; and DualSpace relax (Conway, Tyka, DiMaio, Konerding, 

& Baker, 2014) which uses a combination of internal and Cartesian minimization. Three of these 

protocols, CSC, FastRelax, and Dualspace, were set up using the FastRelax mover in Rosetta 

Scripts and can also be set up using the relax application by including commandline options 

appropriate for each protocol. For pack-only and MWC, the appropriate applications and options 

were used (please see a complete, detailed protocol capture in the Appendix B) 

Full redesign to assess pre-minimized structures 

 Full redesign, where all canonical amino acids identities are allowed to be sampled at 

each position, was performed on the pre-minimized membrane protein sets. For each 

minimization protocol, two to three top models by score and RMSD for each membrane protein 

were chosen as the input models for full design to introduce backbone diversity. Full design was 

set up using PackRotamersMover and the SymPackRotamersMover, where appropriate, to 

generate design models of each minimized model. The top ten percent models by score were 

chosen for sequence recovery analysis (protocol capture, Appendix B). 
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Full redesign using various scoring functions 

 Full redesign was performed on the top three models by score and RMSD from the CSC 

protocol. The scoring functions tested were the RosettaMembrane full atom smoothed potential 

(membrane_highres_Menv_smooth.wts) and Talaris (talaris2013.wts). Full design was set up 

using PackRotamersMover and SymPackRotamersMover, where appropriate, to generate design 

models from each selected minimized model. The top scoring ten percent models were used to 

calculate sequence recovery of the native protein sequence (protocol capture, supplementary 

materials parts 2a, 2b). 

Sequence analysis of redesigned proteins 

The top ten percent of designs by score were analyzed. Native sequence recovery was 

calculated for the full protein, core residues (a residue with at least 24 contacts within a C-β 

distance of ten Å), and surface residues (a residue with at most 16 contacts within a C-β distance 

of ten Å) using the Sequence Recovery application in Rosetta. Additionally, we determined 

whether the scoring functions reproduced native-like amino acid composition. 
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CHAPTER 3 

 

COMPUTATIONAL PREDICTIONS FOR MUTATION-INDUCED STABILITY 

CHANGES IN MEMBRANE PROTEINS 

This chapter includes published work from: 

Kroncke, Duran, Mendenhall, Blume, and Meiler, 2017  

Author contribution: I contributed a substantial amount of data and data analysis to the 

manuscript entitled “Documentation of an Imperative to Improve Methods for Predicting 

Membrane Protein Stability” published in Biochemistry as an ACS AuthorChoice open access 

article (Kroncke et al., 2016). I calculated the thermostabilizing effects of these mutations using 

the Rosetta ddg_monomer in high-resolution and low-resolution modes. Both of these methods 

are analyzed through the entirety of the manuscript. I was active throughout the entire process of 

data analysis. I also developed a way to use ddg_monomer in concert with RosettaMembrane in 

a high-resolution mode, and used the existing RosettaMP protocol for evaluating the low-

resolution protocol. Table 1 was also of my creation. 

 

Abstract 

 There is a compelling and growing need to accurately predict the impact of amino acid 

mutations on protein stability for problems in personalized medicine and other applications. Here 

the ability of 10 computational tools to accurately predict mutation-induced perturbation of 

folding stability (ΔΔG) for membrane proteins of known structure was assessed. All methods for 

predicting ΔΔG values performed significantly worse when applied to membrane proteins than 

when applied to soluble proteins, yielding estimated concordance, Pearson, and Spearman 

correlation coefficients of <0.4 for membrane proteins. Rosetta and PROVEAN showed a 
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modest ability to classify mutations as destabilizing (ΔΔG < −0.5 kcal/mol), with a 7 in 10 

chance of correctly discriminating a randomly chosen destabilizing variant from a randomly 

chosen stabilizing variant. However, even this performance is significantly worse than for 

soluble proteins. This study highlights the need for further development of reliable and 

reproducible methods for predicting thermodynamic folding stability in membrane proteins. 

 3.1 Introduction  

 Each individual’s genome has, on average, 10000−20000 nonsynonymous single-

nucleotide polymorphisms (nsSNPs) (Kroncke et al., 2015). Deleterious, loss-of-function 

nsSNPs constitute the most common cause of monogenic disorders (Stenson et al., 2012; Z. 

Wang & Moult, 2001; Yue, Li, & Moult, 2005). Substantial evidence suggests a majority of 

disease-promoting nsSNPs act, at least in part, by destabilizing the folded conformation of the 

encoded protein (Casadio, Vassura, Tiwari, Fariselli, & Luigi Martelli, 2011; Shi & Moult, 2011; 

Stefl, Nishi, Petukh, Panchenko, & Alexov, 2013; Z. Wang & Moult, 2001; Yue et al., 2005). 

The resulting loss of thermodynamic stability leads to a reduced population of functional protein 

available to cells, which in some cases is compounded by the toxicity of the misfolded protein 

(Calamini & Morimoto, 2012; Knowles, Vendruscolo, & Dobson, 2014; Valastyan & Lindquist, 

2014). The more accurately mutation-induced changes in protein stability can be determined, the 

more accurately and specifically we can predict loss-of-function phenotypes for previously 

uncharacterized point mutations, a growing concern as more genomes are sequenced to unveil 

variants of unknown significance (Kroncke et al., 2015). There are many algorithms that predict 

changes in folded protein stability caused by single- or multiple-amino acid mutations. Some 

approaches rely on known protein structures using functions that predict the energetic 

perturbation introduced by the mutation (Guerois et al., 2002). Other methods train machine 
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learning methods on large data sets to combine selected physical, statistical, and empirical 

features for stability predictions (Berliner, Teyra, Çolak, Lopez, & Kim, 2014; Yang, Chen, Tan, 

Vihinen, & Shen, 2013). For water-soluble proteins, several algorithms are able to predict 

mutation-induced change in stability with a Pearson correlation coefficient near or above 0.7 

(Table 3.1; Figure 3.1); however, the performance of these methods on membrane proteins is an 

open question. Membrane proteins fold and reside in a heterogeneous environment – a lipid 

bilayer bounded on both sides by water – with distinct forces driving folding and unfolding 

compared to soluble proteins, and therefore may require treatment separate from that of soluble 

proteins (Cymer, von Heijne, & White, 2015; Hong, Park, Flores Jimenez, Rinehart, & Tamm, 

2007; Neumann, Klein, Otzen, & Schneider, 2014; Popot & Engelman, 2000). 

Membrane protein structures comprise only ∼1% of the protein structure database 

(http://www.rcsb.org/pdb/home/ and http://blanco.biomol.uci.edu/mpstruc/), and thermodynamic 

stability measurements of membrane proteins are grossly underrepresented. This paucity of data 

dictates that all currently available ΔΔG calculators have been trained and refined from data sets 

strongly biased toward soluble proteins. Here we evaluate the ability of current methods to 

predict amino acid mutation-induced free energy changes in membrane protein stability in cases 

both for which an atomic-resolution structure is available and for which stabilities of wild-type 

and mutant forms have been measured. 
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Table 3.1. Reported performance of programs evaluated.  

Method Reported 

Correlation 

Coefficient 

Rosetta High 0.69 

Rosetta Low 0.68 

iMutant3 0.69 

FoldX 0.8 

Mcsm 0.824 

Sdm 0.58 

Duet 0.71 

Ddgm8 0.65 

Ddgm47 0.82 

Proveana 0.74 

Elaspic 0.77 

Easemm 0.56 
a indicates that the value is derived from an activity assay 

3.2 Methods  

 We used all available (as of January 2016) experimental ΔΔG data sets for mutant forms 

of membrane proteins of known structure. The relevant Protein Data Bank (PDB) codes are as 

follows: 1PY6 for bacteriorhodopsin (Faham et al., 2004), 1AFO for glycophorin A (MacKenzie, 

Prestegard, & Engleman, 1997), 2XOV for the Escherichia coli rhomboid protease (GlpG) 

(Vinothkumar et al., 2010), 2K73 for disulfide formation protein B (DsbB) (Y. Zhou et al., 

2008), 1QD6 for outer membrane phospholipase A1 (OmpLA) (Snijder et al., 1999), 1QJP for 

outer membrane protein A (OmpA) (Pautsch & Schulz, 2000), and 3GP6 for the lipid A 

palmitoyltransferase (PagP) (Cuesta-Seijo et al., 2010). The 224 rigorously determined ΔΔG 

measurements originated from the following studies: bacteriorhodopsin (Cao, Schlebach, Park, 

& Bowie, 2012; Faham et al., 2004; N. H. Joh et al., 2008; N H Joh, Oberai, Yang, Whitelegge, 

& Bowie, 2009; Schlebach, Woodall, Bowie, & Park, 2014; Yohannan et al., 2004), glycophorin 

A (Fleming, Ackerman, & Engelman, 1997; Fleming & Engleman, 2001), GlpG (Baker & 
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Urban, 2012; Paslawski et al., 2015), DsbB (Otzen, 2011), OmpLA (Moon & Fleming, 2011), 

OmpA (Hong et al., 2007), and PagP (Huysmans, Baldwin, Brockwell, & Radford, 2010) (Table 

3.2). We ensured that each of the studies reported ΔΔG values and did not extrapolate these 

values from thermal unfolding experiments. The type of experiment that the ΔΔG value was 

derived from can be found in table 3.2. Additionally, the ΔΔG values were collected so that a 

negative ΔΔG indicates that it is the result of a destabilizing mutation. 

 

Table 3.2. Summary of the dataset  

Protein name PDB Code Type Method Number of 

mutations in 

dataset 

Bacteriorhodopsin 1PY6 Helical SDS titration 67 

Glpg 2XOV Helical SDS titration 71 

DsbB 2K73 Helical SDS titration 12 

Glycophorin 1AFO Helical Dimerization AUC 12 

OMPA 1QJP Barrel Urea titration 12 

OMPLA 1QD6 Barrel Urea titration 31 

PagP 3GP6 Barrel Urea titration 19 

  Total     224 

 

 3.3 Results and discussion 

 We tested available methods for which servers or software were available online and 

functional as of January 2014 or for which the authors of published algorithms were responsive 

to our request for software (Table 3.3).  

Protein stability programs 

The following programs were used to predict ΔΔG values for each membrane protein 

mutation in the experimental database mentioned above: Rosetta (revision 58019) with both low-

resolution (Rosetta-low) and high-resolution (Rosetta-high) protocols (Kellogg et al., 2011), I 
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Mutant (3.0; http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi) 

(Capriotti, Fariselli, & Casadio, 2005), FoldX (3.0, beta 6.1) (Guerois et al., 2002), mCSM 

(Pires, Ascher, & Blundell, 2014b), SDM (Worth, Preissner, & Blundell, 2011), DUET 

(http://bleoberis.bioc.cam.ac.uk/duet/stability) (Pires, Ascher, & Blundell, 2014a), PPSC 

(Prediction of Protein Stability, version 1.0) with the 8 (M8) and 47 (M47) feature sets (Yang et 

al., 2013), PROVEAN (http://provean.jcvi.org/seq_submit.php) (Y. Choi, Sims, Murphy, Miller, 

& Chan, 2012), ELASPIC (http://elaspic.kimlab.org/) (Berliner et al., 2014), and EASE-MM 

(Folkman, Stantic, Sattar, & Zhou, 2016). We also tested the standard Rosetta ddg_monomer 

application replacing the minimization score function score12 with 

membrane_highres_Menv_smooth (RosettaMembrane). In addition, we tested the RosettaMP 

ΔΔG calculating framework, RosettaMPddG. Both attempts failed to improve performance 

(Figure 3.2). The membrane protein scoring functions as they add nothing in accuracy and 

discrimination for calculating ΔΔG values in Rosetta.  
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Figure 3.1. Boxplot of experimental (reference) and predicted value distributions. The middle 

line in the box is the median, and upper and lower bounds to the boxes are the upper and lower 

quartiles, respectively. Nonoutlier extrema are bracketed with dashed lines above and below the 

upper and lower quartiles, respectively. Dots are outliers beyond 1.5 times the upper or lower 

quartile. 
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Table 3.3. Summary of Methods Evaluated 

Name Brief Description Methoda Calibratedb Sequence Pearsonc Stability Data Setd 

Rosetta Structure knowledge-based potential. 

Score terms considered: van der 

Waals, electrostatics, solvation, 

hydrogen bond, rotamer probability. 

ddG_monomer application 

N/A 
  

0.69 (high) 

0.68 (low) 

ProTherm (test set) 

I Mutant 3.0 Support vector machine (SVM)-based 

predictor; can use sequence 

information and structure information 

to predict destabilizing, neutral, and 

stabilized 

SVM X X 0.69 Thermodynamic 

Database for Proteins 

and Mutants 

ProTherm 

(September 2005) 

FoldX Empirical force field calibrated with 

experimental ddG values. Score terms 

considered: van der Waals, solvation, 

hydrogen bonding, water bridges, 

electrostatic, entropy of backbone and 

side chain, and atomic clashes 

grid 

search 

X 
 

0.8 Derived from 

ProTherm 

mCSM Graph-based structural signatures: 

distance patterns between atoms to 

represent the environment. Also 

considers pharmacophore changes 

and experimental conditions. 

Supervised learning machine learning 

methods trained on regression and 

classification 

ANN X 
 

0.82 Derived from 

ProTherm 

SDM Statistical potential energy function 

(structure): evaluates amino acid 

structural propensities in homologous 

protein families 

N/A 
 

X 0.58 Derived from 

ProTherm 

DUET SVM that combines mCSM and 

SDM methods 

SVM X X 0.71 ProTherm (low-

redundancy set) 
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PPSC (M8) SVM with eight attributes: 

hydropathy, isotropic surface area, 

electronic charge, volume, contact 

energy 

SVM 

 

 

 

X 
 

0.65 Derived from 

ProTherm 

PPSC (M47) SVM trained with 8 + 40 additional 

protein features from (I Mutant 2) 

SVM X 
 

0.82 Derived from 

ProTherm 

PROVEAN Pairwise sequence alignment scores 

to predict effects of a mutation, 

including deletions, insertions, and 

multiple substitutions 

N/A 
 

X 0.71e Derived from 

UniProtKB and 

Swiss-Prot databases 

ELASPIC Machine learning approach that 

combines semiempirical force fields, 

sequence conservation scores, and 

structural information through 

stochastic gradient boosting of 

decision trees 

SGBT-

DT 

X X 0.77 ProTherm 

EASE-MM Sequence-based SVM model that 

evaluates the predicted secondary 

structure and accessible surface area 

of the region of interest 

SVM X X 0.56 Derived from 

ProTherm 

 

aType of machine learning method used: artificial neural network (ANN), support vector machine (SVM), and stochastic gradient 

boosting of decision trees (SGBT-DT). bThe predictive method is calibrated to experimental ΔΔG values. cReported Pearson 

correlation coefficient. dUsed to derive both training and testing sets unless otherwise noted. eActivity correlation 
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Figure 3.2. Comparison of Concordance, Pearson, and Spearman correlation coefficients for 

Rosetta based prediction methods that include membrane-specific score terms, ddg_monomer 

high-resolution protocol using RosettaMembrane, and low-resolution RosettaMPddG. As 

expected, this resulted in very similar correlations for RosettaMembrane (CC: 0.103, PC: 0.307, 

SC: 0.342) and Rosetta-High (CC: 0.11, PC: 0.28, SC: 0.37) as well as for RosettaMPddG (CC: 

0.00, PC: 0.19, SC: 0.23) and Rosetta-Low (CC: 0.01, PC: 0.18, SC: 0.32). 

 

To compare the performance of each ΔΔG calculation method with what could be 

obtained from sequence information alone, we calculated two parameters. First, the likelihood of 

a specified amino acid mutation being observed among the wild-type (WT) sequences 

comprising a particular protein family was assessed according to the position-specific 

iterative basic local alignment search tool-derived position specific scoring matrix (PSI-BLAST 

PSSM). PSI-BLAST PSSM values were calculated, as follows. The PSI-BLAST position 
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specific scoring matrix value for a given mutant residue amino acid type was subtracted from the 

value for the native residue (PSI-BLAST employed the UniRef50, nonredundant sequence 

database, 5-iterations, e-value cutoff of 0.01). This metric gives an estimation of the evolutionary 

penalty for substituting the WT residue with the specified mutant amino acid. Second, the 

Shannon (or “sequence entropy”) entropy was determined from PSI-BLAST results. Sequence 

entropy is a description of how often the identity of a particular residue in a protein changes from 

family member to family member. Shannon/sequence entropy is the PSSM value for amino acids 

located at a particular position. This parameter is agnostic with regard to the amino acid type of 

both the mutated-in and native residue. Instead, the Shannon/sequence entropy reports the 

likelihood that a change in residue identity is evolutionarily tolerated. All numbers were 

formatted so that negative values indicate destabilization. 

 For each predictive method, the experimental versus predicted ΔΔG data were processed 

using an in-house R script to calculate correlation coefficients and area-under-the-curve (AUC) 

values. To analyze the collected data set on the basis of several features, we parsed out and 

evaluated separately point mutations according to the following classifications: those impacting 

α-helical versus β-barrel proteins, those with a point mutation site in the aqueous phase, in the 

aliphatic phase, or at the water−membrane interface, and mutations at positions that were either 

buried within the protein or exposed to solvent or lipid (Figures 3.5-3.13). We analyzed the set of 

predictions for each protein separately and also parsed out point mutations involving proline or 

glycine (Figures 3.14-3.20). Concordance, Pearson, and Spearman correlations were computed, 

along with ROC curves (and their AUC values) for predicting a negative ΔΔG of less than −0.5 

(see Table 3.4). The concordance correlation is the proper statistic for assessing agreement 

among continuous measurements, though the Pearson correlation is more common in the 
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literature. The Spearman correlation is a rank-based correlation analogue of Pearson that is less 

reliant on linear assumptions. We used a nonparametric bootstrap (500 replications) to obtain 

estimates of standard errors and bias-corrected 95% confidence intervals (Cis) for estimates. We 

used scatter plots with nonparametric trend lines to examine the data. Bland−Altman plots were 

used to visually examine the agreement between predictions and actual values. 

As a control for our processing, we also computed correlation coefficients using previous Rosetta 

ΔΔG prediction results from a large data set containing almost exclusively soluble proteins 

(Kellogg et al., 2011). 

Table 3.4. Summary of statistical methods used to evaluate predictive methods 

Method Description 

Concordance 

CC 

The concordance correlation coefficient measures the degree to which the 

predicted ΔΔG value equals the actual experimental value (0 indicates no 

agreement and 1 perfect agreement). 

Pearson CC The Pearson correlation coefficient measures the degree to which a uniform 

linear transformation of the predicted ΔΔG values (i.e., a shift and scale 

change) would yield the actual experimental values (0 indicates no agreement 

after transformation, 1 perfect agreement, and −1 perfect inverse agreement). 

Spearman 

rank CC 

The Spearman rank correlation coefficient measures the degree to which the 

rank ordering of the predicted ΔΔG values matches the rank ordering of the 

actual experimental values (0 indicates no agreement after transformation, 1 

perfect agreement, and −1 perfect inverse agreement). 

ROC and 

AUC 

The area-under-the-receiver operating characteristic (ROC) curve tests 

several cutoff values for binning mutations as neutral or destabilizing between 

the most negative calculated ΔΔG value and the most positive calculated 

ΔΔG value, with true positive rates (sensitivity) calculated at each point. As 

the true positive rate is calculated, the classifier is moved to less extreme 

values; this yields the ROC curve. The AUC curve is a summary statistic that 

approximates how well the predictor actually discriminates between the two 

classifications. 

 

We collected all available experimental ΔΔG data sets for structurally diverse membrane 

proteins of known structure (which constitutes the vast majority of all ΔΔG measurements made 

to date for membrane proteins). We acknowledge differences in the cellular folding landscapes 
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of α-helical and β-barrel proteins; however, given the limited number of membrane proteins with 

known structure and thermodynamic stability measurements, we combined all proteins for 

analysis and subsequently parsed potentially relevant subsets to evaluate the effect of each. As of 

early 2016, there were 223 single-amino acid ΔΔG destabilization measurements available for 

these proteins, with mutated side chains in the following categories: water-exposed, 6% (14); 

lipid hydrocarbon-exposed, 25% (55); exposed interfacial, 18% (41); or protein-buried, 52% 

(117). The distribution of experimental ΔΔG values is consistent with a random sampling of 

residue point mutation stabilities (Figure 3.1): 65% of point mutations resulted in ΔΔG values of 

less than −0.5 kcal/mol, considered destabilizing; 24% between −0.5 and 0.5 kcal/mol, 

considered neutral; and 11% greater than 0.5 kcal/mol, considered stabilizing, as suggested 

previously (Y Zhou & Bowie, 2000). All programs except Rosetta, PROVEAN, SDM, and 

FoldX have a narrow, slightly negative distribution of predicted ΔΔG values (Figures 3.1 and 

3.3). The PSI-BLAST PSSM scores were also more dispersed than results for the majority of the 

programs tested. Interestingly, SDM tended to classify nearly as many mutations as stabilizing as 

destabilizing, which perhaps is a consequence of restricting mutant classification to neutral or 

destabilizing only if |ΔΔG| > 2 kcal/mol. Most methods tended to underestimate ΔΔG for 

destabilizing mutations and overestimate ΔΔG for neutral to stabilizing mutations. 



 
 

92 

 

Figure 3.3. Reference (experimental) ΔΔG values vs calculated ddG values (x-axis) from each 

method tested (see also Table AE.1 in Appendix E). Red lines are simple linear regressions from 

which Pearson correlations are derived; blue lines are flexible nonparametric trend lines. For the 

Rosetta and FoldX plots, a few predicted points were outliers that fall outside of the plotted 

window. The dashed line is the y = x line measuring perfect agreement between the predicted 

ΔΔG and the experimental values and is plotted for methods constructed to make direct 

predictions. 
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Existing methods predict ΔΔG values that are poorly correlated to experimental ΔΔG 

values 

 To evaluate the predictive ability of each method tested, we compared concordance, 

Pearson, and Spearman rank correlation coefficients (Figure 3.3A; a glossary for statistical 

parameters is provided in Table 3.4). Note that we distinguish methods that were calibrated to 

predict ΔΔG values from methods that compute metrics that are expected to linearly correlate 

with ΔΔG values, such as ROSETTA. This distinction is important, as for optimal performance 

in the former group we expect a regression line that passes through the coordinate origin and has 

a slope of 1. In such a case, concordance, Pearson, and Spearman correlation coefficients would 

be equal to 1. In the latter group, for optimal performance, Pearson and Spearman correlation 

coefficients, but not the concordance, would be equal to 1. None of the programs tested 

performed well in calculating ΔΔG values for membrane proteins compared to their performance 

in previous studies of soluble protein data sets (Figure 3.4A). The concordance correlation 

coefficients for the various methods are all relatively low, the highest being ∼0.2 [EASE-MM, 

FoldX, and PPSC (M8)]. This is compared to a concordance correlation coefficient in the range 

of 0.6 for the Rosetta-based method applied to an almost exclusively water-soluble protein data 

set. The performance of the different methods at predicting the rank order is improved compared 

to their ability to predict absolute ΔΔG values (Figure 3.4A), but all Spearman correlation 

coefficients are below 0.4, compared to 0.7 for the Rosetta-based method applied to a largely 

water-soluble protein data set. This means the majority of predicted rankings are still incorrect. 

Rosetta (high and low) and PROVEAN have the highest Spearman rank order correlation 

coefficients overall (0.37, 0.32, and 0.29, respectively) but still significantly underperform 

compared to results for soluble proteins. The general failure of these methods to reliably rank 
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order the impact of membrane protein point mutations on stability is disappointing, as one of the 

anticipated applications for these methods is to aid researchers in identifying the most 

or least destabilizing mutations out of a hypothetical set, which then would be experimentally 

tested for the purpose of protein engineering. 
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Figure 3.4. (A) Performance of each evaluated method in predicting true ΔΔG values 

(concordance correlation coefficient), linearly correlated ddG values (Pearson correlation 

coefficient), and rank order (Spearman rank order correlation coefficient). The hash marks in the 

upper portions of this plot indicate the published results for each method. We also evaluated the 
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concordance, Pearson, and Spearman correlation coefficients using the calculated and 

experimental data previously reported37 for a mostly water-soluble protein data set to control for 

processing differences, shown as triangles. (B) Receiver operating characteristic curves of the 

classification of variants that are more destabilized or less destabilized than 0.5 kcal/mol. We 

generated the black bold trace using data from a previous ΔΔG calculation effort37 involving 

mostly soluble proteins. 

 

Stability classification of predicted values 

 Another application that can be envisioned is predicting the stability class for a given 

variant. For example, one might seek to identify mutants that have a ΔΔG value above or below 

−0.5 kcal (−0.5 is the typical uncertainty in experimentally determined stabilities (Khatun, 

Khare, & Dokholyan, 2004)). To compare the discriminating power of these methods, we plotted 

receiver operating characteristic curves [ROC (Figure 3.4B)], which show the ability to correctly 

classify point mutations as destabilizing (ΔΔG < −0.5) or neutral/stabilizing (ΔΔG > −0.5). ROC 

curves that are skewed toward a higher true positive rate (sensitivity) classify mutations more 

accurately, as quantified by AUC (ranging between 1.0 and 0.5 for perfect and chance 

classification, respectively). Rosetta and PROVEAN had the largest areas under the curve (95% 

Cis of 0.65−0.79 and 0.61−0.76, respectively). This is surprising because neither method was 

constructed or calibrated to predict ΔΔG values but is consistent with their better Spearman 

correlation performance. PROVEAN is designed to estimate the probability that a variant will be 

functionally compromised without accounting for structure, while Rosetta is optimized to 

incorporate protein structural features. The AUC of ∼0.8 for the soluble protein set calculated 

here, similar to previously reported values for these methods, further emphasizes the conclusion 

that the unique properties of membrane proteins require separate treatments in constructing 

stability prediction methods. A priori, there are several potential explanations for the observed 

disparity in calculating ΔΔG values for soluble versus membrane proteins. One confounding 

factor could be the persistence of α-helical structure in the unfolded states of helical membrane 
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proteins, which is typically not the case for unfolded states of soluble proteins. In an effort to test 

this hypothesis, we separately evaluated β-barrels, expected to have no persistent secondary 

structure in the unfolded state, and α-helical membrane proteins. The correlation coefficients for 

the β-barrel protein set have considerably larger 95% confidence intervals but suggest that 

several programs perform somewhat better for β-barrel proteins (Spearman correlation 

coefficient of 0.29) than for α-helical membrane proteins (average Spearman correlation 

coefficient of 0.22) (Figures 3.5 and 3.6), although the poor performance for both groups of 

proteins proves no method is reliable at this task. Interestingly, differences in correlation and 

ranking ability were not uniform between the methods evaluated: FoldX performed better on α-

helical proteins (second-highest Spearman correlation coefficient) than on β-barrels (lowest 

Spearman correlation coefficient), with estimated Spearman correlations of 0.35 and 0.01, 

respectively. We also evaluated the effect of parsing out the secondary structure-disrupting 

residues, glycine and proline. 

Further analysis of the data by parsing out classes 

 Surprisingly, even removing proline and glycine residues did not improve Spearman 

correlation coefficients appreciably; 95% confidence intervals narrowed, and estimated values 

increased from 0.23 to 0.29 (Figure 3.4A and Figure 3.7). Another potential cause of the 

disparity between soluble and membrane proteins may be the unique solvent environment of the 

membrane. We parsed ΔΔG values based on residue position: water-exposed (Figure 3.9), at the 

membrane interface (Figure 3.10), membrane-exposed (Figure 3.11), solvent-facing (Figure 

3.12), or buried in the protein (Figure 3.13). Given the small number of water-exposed variants 

assessed, the 95% confidence interval is extremely wide, precluding any real assessment. In any 

case, no parsing of residue position yielded significant improvements in Spearman correlations. 
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Indeed, to our surprise, all methods tended toward worse predictive ranking for protein-buried 

residues (average Spearman correlation coefficient of 0.19) than for solvent-exposed residues 

(Spearman correlation coefficient of 0.25). Finally, it should be acknowledged that the methods 

used for experimentally measuring membrane protein ddG values are not yet highly 

standardized, reflecting use of denaturants as different as sodium dodecyl sulfate and urea, as 

well as model membranes as different as micelles and bilayer vesicles. The degree to which the 

stability of a single membrane protein is similar when measured using different methods has yet 

to be extensively tested. An open question is whether more computationally intensive strategies, 

such as molecular dynamics-based approaches, will improve predictive power for membrane 

proteins. We did not investigate this kind of approach here because of the limiting throughput 

that can be achieved at present. 

In this study, a series of diverse statistical criteria are in uniform agreement that current 

methods for predicting ΔΔG values of point mutations in membrane proteins will need to be 

improved or superseded to be reliable and useful. According to our evaluation, the predictive 

ability of the 10 methods assessed was not greatly improved from that of the PSI-BLAST PSSM 

and sequence entropy scores, i.e., what one could infer on the basis of mutated site evolutionary 

sequence conservation. We did not find any method to be robust at predicting either the rank 

order of mutations or absolute ΔΔG values. This study highlights the need to separately evaluate 

the performance of ΔΔG calculators on membrane proteins in the future, as well as the need for a 

much larger training database of experimentally measured stabilities for wild-type and mutant 

membrane proteins.  
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Figure 3.5. Comparison of Concordance, Pearson, and Spearman correlation coefficients for 

βbarrel proteins. Dashes represent a bias-corrected 95% confidence interval. 
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Figure 3.6. Comparison of Concordance, Pearson, and Spearman correlation coefficients for 

αhelical proteins. Dashes represent a bias-corrected 95% confidence interval. 
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Figure 3.7. Comparison of Concordance, Pearson, and Spearman correlation coefficients of point 

mutations that involve a proline or glycine. Dashes represent a bias-corrected 95% confidence 

interval. 
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Figure 3.8. Comparison of Concordance, Pearson, and Spearman correlation coefficients of point 

mutations that do not involve a proline or glycine. Dashes represent a bias-corrected 95% 

confidence interval. 
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Figure 3.9. Comparison of Concordance, Pearson, and Spearman correlation coefficients for 

residues in the aqueous phase. Dashes represent a bias-corrected 95% confidence interval. 

 



 
 

104 

 
Figure 3.10. Comparison of Concordance, Pearson, and Spearman correlation coefficients for 

residues at the interface between membrane and aqueous phases. Dashes represent a bias-

corrected 95% confidence interval. 
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Figure 3.11. Comparison of Concordance, Pearson, and Spearman correlation coefficients 

residues in the aliphatic phase of the membrane. Dashes represent a bias-corrected 95% 

confidence interval. 
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Figure 3.12. Comparison of Concordance, Pearson, and Spearman correlation coefficients for 

solvent exposed residues. Dashes represent a bias-corrected 95% confidence interval. 
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Figure 3.13. Comparison of Concordance, Pearson, and Spearman correlation coefficients for 

buried residues. Dashes represent a bias-corrected 95% confidence interval. 
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Figure 3.14. Comparison of Concordance, Pearson, and Spearman correlation coefficients for the 

bacterial proton pump, bacteriorhodopsin. Dashes represent a bias-corrected 95% confidence 

interval. 
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Figure 3.15. Comparison of Concordance, Pearson, and Spearman correlation coefficients for 

glycophorin A. Dashes represent a bias-corrected 95% confidence interval. 
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Figure 3.16. Comparison of Concordance, Pearson, and Spearman correlation coefficients for the 

E. coli rhomboid protease, GlpG. Dashes represent a bias-corrected 95% confidence interval. 
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Figure 3.17. Comparison of Concordance, Pearson, and Spearman correlation coefficients for the 

disulfide formation protein B, DsbB. Dashes represent a bias-corrected 95% confidence interval. 
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Figure 3.18. Comparison of Concordance, Pearson, and Spearman correlation coefficients for the 

outer membrane phospholipase A1, OmpLA. Dashes represent a bias-corrected 95% confidence 

interval. 
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Figure 3.19. Comparison of Concordance, Pearson, and Spearman correlation coefficients for the 

outer membrane protein A, OmpA. Dashes represent a bias-corrected 95% confidence interval. 
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Figure 3.20. Comparison of Concordance, Pearson, and Spearman correlation coefficients for the 

lipid A palmitoyltransferase, PagP. Dashes represent a bias-corrected 95% confidence interval. 
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CHAPTER 4 

 

AN IMPROVED ROSETTA ENERGY FUNCTION FOR PREDICTION OF 

MUTATION-INDUCED STABILITY CHANGES IN MEMBRANE PROTEINS  

This chapter contains unpublished work from: 

Duran and Meiler 2018 

Author contribution: For this chapter, I designed experiments under the direction of Jens Meiler. 

I generated all data, analyses, and all figures and tables. 

4.1 Introduction  

Clinical genetic testing has become standard with the increase in information from human 

genetic analysis. Genome sequencing has generated extensive information for rare and common 

variants that predispose patients to diseases; however, many of genetic variants still have 

unknown clinical significance (VUS). Some genetic variants that are linked to diseases such as 

long-QT syndrome, Alzheimers, cancer, and cystic fibrosis (C R Sanders & Myers, 2004) are 

membrane proteins. Membrane proteins are a class of proteins that include channels and 

transporters, and they are often difficult to structurally characterize. Many times, single-

nucleotide variants that predispose disease result in loss of function by means of protein 

destabilization. To experimentally screen the stability of VUSs, especially those that are 

membrane proteins, would be exhaustive for both time and resources.  

Computational methods have the potential to accelerate the process to predict whether 

VUS have destabilizing effects. Current methods to predict the stabilizing effects of mutations 

include physical, statistical, and empirical approaches. Physical methods utilize atomic force 

fields to calculate interactions in the protein. Statistical methods use knowledge from protein 
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structures, such as propensities of amino acids in a particular environment or ideal atom pair 

distances, to predict the energetic effect of interactions in the protein. Empirical methods make 

use of known experimental data that characterize interactions to create an energy function from 

machine learning methods. Additionally, methods have been created using unique combinations 

of these approaches. 

Rosetta is a molecular modeling suite that enables rapid sampling of side-chains and 

computes energy by calculating score terms such as ones that describe van der Waals 

interactions, electrostatic interactions, rotamer probability, solvation and hydrogen bonding. 

Moreover, Rosetta has an energy function that is used to model membrane proteins, which makes 

it ideal for creating a structure-based approach to predict the stabilizing effect of membrane 

protein VUSs. 

Previously, we reported the performance of multiple programs that predict the mutation-

induced perturbation of folding stability (ΔΔG) for a set of membrane proteins (Kroncke et al., 

2016). The existing programs had been trained using soluble protein thermostability data. The 

Pearson’s R, Spearman rank R, and Concordance correlations between predicted and 

experimentally determined ΔΔGs were below 0.4 for all programs. The Rosetta method, 

ddg_monomer, had been optimized and benchmarked using soluble proteins. We tested the 

performance of ddg_monomer using the RosettaMembrane energy function and found that the 

correlations were no different than ddg_monomer using the standard soluble energy function. 

Herein we evaluate various regression analyses to approximate experimentally determined ΔΔGs 

from the energy contributions of RosettaMembrane score terms, and propose a new 

RosettaMembrane weight set for ΔΔG calculations using ddg_monomer. 
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4.2 Methods 

Generating dataset for machine learning 

 The same set of 224 single point mutations were used to generate a dataset that consisted 

of score term contributions for the purposes of refitting a new membrane protein specific scoring 

function for the ddg_monomer application for high resolution proteins. For simplicity, the “soft-

rep” energy function for the first stage of minimization was used because a soft repulsive energy 

function does not exist for membrane proteins. For the second stage, the RosettaMembrane high 

resolution energy function was used in place of the score12 energy function. The full dataset was 

run through ddg_monomer five times. The total Rosetta energy score for the mutant was 

subtracted from the total energy score for the wild-type protein model to obtain the ΔΔG. This 

calculation is consistent with the direction in the thermodynamic cycle (Figure 4.1), so that a 

negative score indicates destabilizing. For each run, the top three ΔΔG scores for each mutation 

were averaged and compiled into a dataset for a total of five scores representing each mutation. 

The individual score term scores were un-weighted in order to optimize the score term 

coefficients based on the raw energy contribution. For each mutation, the raw energy 

contributions of each score term were placed in a table next to their respective experimental ΔΔG 

values.  

 



 
 

118 

 

Figure 4.1 Thermodynamic cycle. This illustrates that ΔΔG = ΔG3 – ΔG2 = ΔG1 – ΔG4. 

Reprinted from, Biophysical Journal, Vol 98, Daniel Seeliger and Bert L. de Groot, Protein 

Thermostability Calculations Using Alchemical Free Energy Simulations, 2310, 2010, with 

permission from Elsevier. 

 

Refitting the score term weights 

Several machine learning approaches were used to refit the weights of the score terms for 

an optimized RosettaMembrane high resolution energy function for predicting ΔΔG of single-

point mutations. The statistical analysis program, R (3.2.5), was used to perform various machine 

learning methods in order to approximate the experimental ΔΔG values with a linear 

combination of the given terms of determined weights. These machine learning methods 

included: multiple linear regression (MLR), non-negative least squares (NNLS), ridge 

regression, lasso regression, and elastic net regression. MLR resulted in negative coefficients for 

some of the score terms, which was problematic as Rosetta does not support having negative 

weights for score terms. Therefore, I continued the analysis with NNLS. While this approach 

forced the coefficients to be positive, the residue sum of squares was large indicating that the fit 

of the line was poor. Additionally, the performance of ddg_monomer while using the resulting 
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weights was inconsistent and poor (Table 4.1). I continued the regression analysis with ridge, 

lasso, and elastic net regressions. 

4.3 Results and discussion 

Table 4.1 Summary of performance of weights derived from various regression analysis. These 

values represent the metrics that resulted from using the respective weights in the ddg_monomer 

application. 

 

 Regression analysis used to determine weight set 

Performance Metric RosettaMembrane Ridge Lasso Elastic Net 

Pearson R 0.31 0.46 0.5 0.45 

Spearman R 0.34 0.49 0.5 0.43 

AUC 0.68 0.75 0.74 0.73 

 

An approach using a combination of multiple linear regression and non-negative least squares 

MLR was not used as a method alone because it produced negative score term weights. 

Instead, NNLS was used as an initial study to optimize the RosettaMembrane energy function for 

predicting ΔΔG values. First, I used the full dataset to perform NNLS using the package nnls and 

the function nnls. This resulted in a residual sum of squares of 2117. Several score terms were 

set to zero, and it resulted in a Pearson’s R correlation of 0.51. Then, I removed the score terms 

that were given a coefficient of zero and performed NNLS again on the same dataset to ensure 

these score terms did not contribute to accurate predictions. The residual sum of squares and the 

Pearson’s R correlation remained the same.  

Next, I removed score terms that I suspected would contribute to noise. The dataset 

contains very few mutations that affect interactions involved in disulfide bonds, therefore, the 

information available to train this particular interaction is incredibly sparse. As a result, all score 
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terms involving disulfide bonds were removed, despite knowing that this would limit the 

predictive power of mutations involving disulfide bonds. The residual sum of squares was 2118 

while the Pearson’s R correlation remained at 0.51. Finally, I tried to find the minimal 

combination of score terms that resulted in the same performance. I systematically removed the 

score terms that had very little weight at this point. I determined that score terms omega, fa_dun, 

and Menv_smooth could be removed and the resulting energy function performed with a 

Pearson’s R correlation of 0.51; however, it resulted in a residual sum of squares of 2179 

indicating it was less of a fit than the previous linear combination of terms. 

Finally, I used cross-validation to determine the first final weight set. Rather than a 

traditional, randomized approach such as k-fold cross-validation, I created training and test sets 

based on the protein. This is to avoid biasing the weight set by testing the performance of the 

weight set on a protein backbone that the program has already used to train for predicted ΔΔG 

values. I provided each training set with the combination of score terms that excluded the 

reference and disulfide energies as well as the score terms that had a coefficient as zero. Because 

the size of the dataset varied for each training and test set, I computed a normalized residual sum 

of squares as the residual sum of squares per data point. The Pearson’s R correlation coefficient 

ranged from -0.05 to 0.36 while the Concordance correlation coefficients ranged from -0.03 to 

0.31. The area under the curve was also calculated for the prediction of stabilizing effect and this 

ranged from 0.53 to 0.74. Unfortunately, the variability in the resulting correlation coefficients 

indicated that the proposed energy function may be overfit for a particular protein of the dataset. 

The next approach combining MLR and NNLS involved first a regression analysis that 

did not constrain the coefficients to only be positive. I prepared datasets that were separated by 

protein, and all original RosettaMembrane score terms were used for MLR. MLR was performed 



 
 

121 

using the lm function. I then examined the sign of the coefficients for each score term. If the 

various datasets resulted in both negative and positive coefficients, I assumed this to mean the 

score term introduced noise to the energy function, and removed it. I then performed MLR again 

on the datasets this time with the reduced score terms. This resulted in Pearson’s R correlations 

in the range of 0.49 to 0.57 and AUCs in the range of 0.71 to 0.75. This was a much more narrow 

range compared to the previous approach. Because Rosetta does not handle score terms with 

negative weights, I then ran an experiment using the same datasets where I removed the score 

terms with negative coefficients to determine how much they contribute to accurate predictions. 

This resulted in a Pearson’s R of range 0.46 to 0.53, and AUCs in the range of 0.71 to 0.75. 

While the Pearson’s R correlation suffered a minor decrease due to the removal of score terms 

with negative coefficients, the AUC remained the same. With the remaining score terms from the 

MLR analysis, I performed NNLS to compare the coefficients found from each analysis. 

Because score terms with little influence as well as score terms with negative coefficients were 

removed, it was predicted that these coefficients would be very similar in value to those 

determined from MLR. From NNLS, I performed cross-validation where training and test sets 

were divided such that mutations from the same protein remained in the same set. Again, the 

performance was variable with a Pearson’s R of range -0.09 to 0.37 and an AUC range of 0.51 to 

0.74.  

Finally, I decided to take a different approach to cross-validation. I broke the dataset into 

four randomly assigned, equally populated pieces to construct a series of training and test sets. 

Our previous concern was that the training set might be biased if we test the same protein fold; 

however, the Rosetta ddg_monomer high resolution protocol focuses on changes in conformation 

at a local level. Additionally, thermostability data for the various proteins in the dataset are not 
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equally distributed as some proteins only have 9 data points and others up to 71, meaning that the 

size of the training and test sets are highly variable when constructed this way which may have 

led to the highly variable Pearson R and AUC values. The new cross-validation approach 

resulted in a Pearson’s R of range 0.38 to 0.55 and an AUC range of 0.65 to 0.81. I then 

averaged the coefficients determined for each score term during cross-validation to construct the 

weights file for the new scoring function. I rounded the averages where appropriate and 

consulted the previous cross-validation coefficients when needed to create the MLR/NNLS 

derived weights file (Table 4.2). 

Table 4.2 Selected score terms and weights derived from a combination of MLR and NNLS 

regression analyses 

 

Score term Weight 

fa_atr 0.17 

fa_rep 0.08 

fa_pair 0.5 

fa_dun 0.07 

fa_mbenv 0.14 

fa_mbsolv 0.17 

hbond_bb_sc 0.37 

hbond_sc 0.39 

 

Although these coefficients are predicted to more accurately score mutation-induced 

stability changes, this does not determine the affect the new weights file would have on Rosetta’s 

sampling. Rosetta ddg_monomer is not a deterministic algorithm, so upon creating the new 

RosettaMembrane weights file determined from MLR and NNLS, I had to regenerate predicted 

ΔΔG values to determine where the sampling would be negatively affected. Unfortunately, the 

MLR/NNLs determined RosettaMembrane weights file resulted in a much worse metrics than 

the original RosettaMembrane weights file with a Pearson’s R of 0.12, Spearman’s R of 0.24, 

and an AUC of 0.6. (Table 4.1) 
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I used Ridge regression to try to approximate the experimentally derived ΔΔG s from the 

RosettaMembrane score terms values. While ridge cannot do feature selection on its own, I 

manually removed coefficients that were nearly zero as well as coefficients that were negative. I 

used the MASS package in R (version 3.2.5) and the function lm.ridge. First, I used a cross-

validation approach where I separated the datasets by protein in order to avoid training on 

backbones seen in the test set. This resulted in a wide range of values as the proposed 

coefficients for each of the score terms. Additionally, the issue of having inconsistently sized 

training and tests set likely contributed to this variance. I then used a more randomized approach 

where I split the data into five random sets but kept five replicates of each mutation in the same 

set. I averaged the weights that resulted from each training set and developed the weight set in 

Table 4.3. 

Table 4.3. Selected score terms and weights derived from a combination of Ridge regression 

analysis 

Score term Weight 

fa_atr 0.18 

fa_rep 0.08 

fa_pair 0.57 

fa_dun 0.07 

fa_mbenv 0.17 

fa_mbsolv 0.23 

hbond_bb_sc 0.45 

hbond_sc 0.43 

omega 0.09 

 

In all of the previous methods, I have done manual selection of features. Lasso is unique 

in that the approach uses feature selection by setting coefficients to zero. However, it still results 

in coefficients that are negative, so I manually removed these features and retrained on the 

reduced feature set. I used the glmnet and cv.glmnet functions from the glmnet package in R 

(version 3.2.5). It should be noted that the cv.glmnet function has an internal cross-validation 
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with a fold set to ten. For the development of the weight set, I used a cross-validation approach 

that separated datasets by protein. However, this resulted in high variance of performance 

metrics between datasets for reasons described above. I used the same five randomized groups as 

described above. I averaged the weights that resulted from each training set and developed the 

weight set in Table 4.4. 

Table 4.4. Selected score terms and weights derived from LASSO regression analysis 

 

Score term Weight 

fa_atr 0.18 

fa_rep 0.06 

fa_pair 0.57 

fa_dun 0.06 

fa_mbenv 0.17 

fa_mbsolv 0.23 

hbond_bb_sc 0.45 

hbond_sc 0.42 

omega 0.09 

 

 I used Elastic Net as the final regression approach. Elastic Net still results in coefficients 

that are negative, so I manually removed these features and retrained on the reduced feature set. I 

used the glmnet and cv.glmnet functions from the glmnet package in R (version 3.2.5). It should 

be noted that the cv.glmnet function has an internal cross-validation with a fold set to ten. For the 

development of the weight set (Table 4.5), I used a cross-validation approach that separated 

datasets by protein. I varied the alpha parameter from 0 to 1 at 0.1 increments to calculate the 

correlation and AUC resulting from this series of tests. For the Elastic Net weight set, I used 

averages from the coefficients determined at an alpha value of 0.1. 

 

Table 4.5. Selected score terms and weights derived from a combination of Elastic Net 

regression analysis. 
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Score term Weight 

fa_atr 0.12 

fa_rep 0.05 

fa_pair 0.4 

fa_dun 0.06 

fa_mbenv 0.07 

fa_mbsolv 0.07 

hbond_bb_sc 0.3 

hbond_sc 0.24 

omega 0.1 

 

 Although the regression approaches approximated the experimentally derived ΔΔG s 

from the RosettaMembrane score terms values calculated from the ddg_monomer application, 

Rosetta is by no means a deterministic algorithm. Rather than developing an energy function that 

is applied at the end of the ddg_monomer analysis to only impact the final score, I decided to test 

what affect the proposed energy function has on sampling and ultimately scoring of 

ddg_monomer. For the first stage, I kept the “soft_rep_design” energy function. For the second 

stage, the appropriate new energy function was specified. Then the standard ddg_protocol was 

implemented to create 50 models of each mutant and wildtype proteins. For each mutant, I 

selected the top three models by score and subtracted this number from the average of the top 

three models by score of the wildtype to obtain the predicted ΔΔG. I then compared the 

compared the predicted ΔΔGs to the experimentally determined ΔΔGs using Pearson’s R, 

Spearman’s rank R, and AUC (Table 4.1). 

 The new proposed energy functions derived from Ridge, Lasso, and Elastic Net 

regressions improved the Pearson and Spearman’s R correlation coefficients to nearly 0.5. This 

is an improvement from the RosettaMembrane correlation coefficients of 0.31 and 0.34 for 

Pearson’s R and Spearman’s rank R, respectively. When generating a ROC curve based on 

binomial classification of either destabilizing or neutral/stabilizing, the AUC improved to nearly 
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0.75 from 0.68. While Ridge, Lasso, and Elastic Net had similar improvements in these metrics, 

Ridge and Lasso were the best at improving both Pearson’s and Spearman’s rank R as well as 

AUC. Interestingly, when comparing the score contribution of the various score terms to the total 

score, it is apparent that the ridge and lasso derived energy functions rely heavily on the 

membrane related score terms fa_memenv and fa_memsol whereas for RosettaMembrane, the 

score contribution of these terms is minimal (Figure 4.3). This suggests that fa_memenv and 

fa_memsol score terms contribute to more accurate predictions. 
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Figure 4.2. ROC curves generated from weights files derived from various regression analyses. 

RMem is the implementation of ddg_monomer with the original RosettaMembrane energy 

function. AUCs are provided in Table 4.1. 

 

 

Figure 4.3. The energy contribution of score terms to total energy for RosettaMembrane (left) 

and Ridge regression derived energy function (right). Membrane specific score terms 

(bracketed), contribute only 2% to the total energy score for RosettaMembrane and 17% to the 

total energy score for the Ridge regression derived energy function. 

 

 Overall, the regression approaches reduced the number of score terms required for more 

accurate predictions and reweighted the remaining terms to improve predictions for mutation-

induced stability changes in membrane proteins. The dataset consisted of 224 mutations from 

seven proteins. Four of these proteins are alpha-helical membrane proteins while three of these 

proteins are beta-barrel outer membrane proteins. Ideally, energy functions for alpha-helical and 

beta-barrel membrane proteins would be different; however, the available data for 

experimentally derived ΔΔGs is limited, thus the dataset is small. Additionally, score terms that 

describe interactions involved in disulfide bonds were excluded in the final weight set as they 

either had a zero or negative coefficient. This is because there is very little representation of 
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mutations involved or near disulfide bonds in the dataset. Therefore, use of the ridge or lasso 

derived weights with mutations near sites with disulfide bonds should be cautioned. While this is 

a case where a specific interaction is not represented in the dataset, it raises the question of 

whether there are other cases where score terms could contribute to accurate predictions if these 

interactions were to exist in the training set. Also underrepresented are mutations from small to 

large amino acids. Large to small mutations are often in abundance due to alanine-scanning 

mutagenesis. As a result, score terms that describe packing conditions such as fa_atr and fa_rep 

may be biased such that fa_rep has a lower than expected contribution to the scoring function as 

the models in the training set have small side chains in the place of larger side chains. Whereas a 

penalty by fa_rep is seen less frequently because this can be expected to occur in mutations 

where a large side chain takes the place of small side chain. At present, it is unclear how to 

weight these particular score terms until more experimentally determined ΔΔGs are available. 

 Another observation regarding the score terms that remained in the ridge and lasso 

weight sets is that the hydrogen bond terms that specify interactions between side chains 

remained while the hydrogen bond terms that describe interactions in the backbone were 

removed. This could be an artefact from the sampling strategy of ddg_monomer. Recall that the 

input protein model is minimized with contraints prior to ddg_monomer. The high-resolution 

protocol first employs an all-residue sidechain repacking (no backbone minimization) while the 

mutated residue is introduced. The second stage does include backbone and sidechain 

minimization, however there are uniform constraints on the proteins such that only energetically 

favorable moves that do not involve movements further than 0.5 Angstroms are allowed. This 

effectively reduces the conformational search space and limits the backbone movements allowed 

during minimization. Because the ΔΔG calculation involves a subtraction of the mutant energy 
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from the wildtype energy, these few, small, global backbone movements likely result in very 

little differences in energy for predicted ΔΔGs. Additionally, the hydrogen bond terms for 

backbone atoms tend to describe interactions pertinent to secondary structural elements. It is 

unlikely that these interactions would be disrupted due to the nature of the computational 

protocol. However, accounting for these interactions in other aspects of membrane protein 

modeling is important, especially in the cases of comparative and de novo modeling. Therefore, 

the proposed ridge and lasso energy functions should be used specifically for the ddg_monomer 

protocol in the second stage. 

 Another challenge to address is the experimental error involved with the methods to 

obtain experimentally determined ΔΔGs. The dataset contains values that were determined from 

SDS titrations, Urea titrations, and dimerization analytical ultracentrifugation. However, at times 

the error involved with these reported values can be upwards of 0.7 kcal/mol. This is particularly 

a concern because many of these reported values and attributed error overlapped between the 

destabilized and neutral/stabilized ranges, which in turn can complicate the classification stage. 

To simplify this, we performed regression analysis on the reported values alone and did not 

consider the experimental error. In recent years, a lot of progress has been made on methods for 

calculating thermostability that result in low error. These methods include atomic force 

microscopy and steric trapping (Edwards & Perkins, 2017; Jefferson, Min, Corin, Wang, & 

Bowie, 2017).  

In the future, regression analysis with an ideal training dataset would be from a set of 

diverse membrane proteins; include more mutations of small to large amino acids; and derived 

from experimental methods with low error. Regression analysis with this ideal set would likely 

improve correlation coefficients to well over 0.5 and improve classification predictions that 



 
 

130 

match the soluble reference set at an AUC beyond 0.8. Ideally, energy functions would also be 

derived for alpha helical membrane proteins and beta barrel membrane proteins separately. 

However, at this time, the implicit membrane representation in RosettaMembrane is limited to a 

fixed dimension which was derived from alpha helical proteins. Additionally, experimentally 

derived ΔΔGs for beta barrel proteins are sparse.  
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CHAPTER 5 

 

COMPARATIVE MODELING OF THE RESTING VSD, CLOSED PORE STATE OF 

KCNQ1 FROM MULTIPLE TEMPLATES 

This chapter contains unpublished content. 

Author contribution: The manuscript as it is in this state only includes text, tables, figures and 

data entirely from A Duran. This chapter will be combined with additional studies in the future 

as a manuscript investigating the modulation of KCNQ1 by KCNE1. 

 

5.1 Introduction 

 Ion channels are membrane proteins that facilitate the passage of ions across the 

membrane. For this reason, they are important in regulation and signal transduction in the cell, 

and, in particular voltage-gated ion channels, are commonly found in neurons, as well as cardiac 

and smooth muscle cells (Fosmo & Skraastad, 2017). In the human genome, it is estimated that 

approximately 350 genes encode some type of ion channel (Blin et al., 2016; Schmidt & 

Peyronnet, 2018). Ion channels were found to be the second largest drug target (Alexander, 

Mathie, & Peters, 2011; Overington, Al-Lazikani, & Hopkins, 2006), which can likely be 

attributed to their role in signaling as well as pore gating mechanisms seen in many ion channels. 

Additionally, genetic variants of ion channels that affect the structure and function of the ion 

channel complex can lead to serious complications (Heijman & Dobrev, 2017). KCNQ1 is a 

voltage-gated potassium channel that is associated with Long-QT syndrome, a potentially fatal 

cardiac arrhythmia that can arise from genetic variants of KVLQT1 (Q. Wang et al., 1996).  

The voltage-gated ion channel superfamily is largely responsible for signal transduction 

in cells and includes voltage-gated sodium channels, voltage-gated calcium channels, and 
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voltage-gated potassium channels (Yu, Yarov-Yarovoy, Gutman, & Catterall, 2005). Members 

of this superfamily can be characterized as a six transmembrane protein that is comprised of a 

four transmembrane (S1-S4 helices) voltage-sensing domain (VSD) and a two transmembrane 

(S5-S6) pore-forming domain. While both voltage-gated sodium and calcium channel tetramers 

are constructed from four homologous subunits, voltage-gated potassium channels are 

homotetrameric. It is believed that voltage-gated ion channels all have a common two 

transmembrane spanning ancestral protein, similar to that of the inwardly rectifying potassium 

channels, that evolved to accommodate various functions through the addition of domains like 

that of the voltage-sensing domains that are seen today. As such, other homotetrameric ion 

channels that resemble the architecture of voltage-gated potassium channels include calcium-

activated potassium channels, cyclic nucleotide-gated (CNG) , hyperpolarization-activated cyclic 

nucleotide-modulated (HCN), and transient receptor potential (TRP) channels (Yu et al., 2005).  

 Voltage-dependent gating consists of three stages: voltage sensor activation, VSD 

coupling to the pore gating domain (PGD), and pore opening (Cui, 2016).  In voltage-gated ion 

channels, the S4 helix of the VSD has a number of cationic residues that are believed to be the 

main voltage sensing component. For KCNQ1, these residues are R228 (R1), R231 (R2), Q234 

(R3), R237 (R4), H240 (H5), and R243 (R6). The S2 helix contains two anionic residues, E160 

(E1) and E170 (E2), that interact with cationic residues in S4 (D. Wu et al., 2010). These specific 

residue pairings are key for distinguishing between active and resting states.  

KCNQ1 with the charged residue pairing of E1 and R1 has been observed as a VSD in 

the resting state and a closed pore. The pairing of E1 and R4 is indicative of an active VSD and 

and presumably an open pore. These end result of the functional states are unaffected by the 

presence of KCNE1. However, the residue pairing of E1 and R2 is believed to be an intermediate 
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state of the VSD where isolated KCNQ1 has an open pore while this same pairing in the 

presence of KCNE1 results in a closed pore (Cui, 2016; D. Wu et al., 2010). It is proposed that 

this is due to the two-phase VSD activation of KCNQ1 in the presence of KCNE1. These phases 

consist of a fast movement in each of the S4 helices from the resting to activated state in negative 

voltages which displaces most of the gating charge which is followed by a slow continuation of 

the displacement of the remaining gating charge through the S4 movement that is coupled to the 

pore opening during positive voltages (Barro-Soria et al., 2014).  

 The coupling between the VSD and PGD is also influenced by an interaction between the 

S4-S5 linker and the S6 helix on the cytosolic side. Interestingly, mutational studies revealed that 

mutations to either V254 in the S4-S5 linker or the S6 helix at position L353 resulted in a 

partially constitutively open pore, in particular V254A, V254L, V254E and L353A. However, a 

double mutant containing V254L/L353A recovered the ability of the pore to close likely due to 

recovering the contact between these two residues with side-chains of similar size (Cui, 2016; 

Labro et al., 2011). Additionally, VSD-PGD coupling of an activated VSD and an open PGD 

was shown to require the presence of phosphatidylinositol 4,5-bisphosphate (PIP2), a lipid that 

exists in the inner leaflet of the membrane (Zaydman et al., 2013). However, it should be 

distinguished that studies that involved the depletion of PIP2 revealed that PIP2 was not required 

for VSD activation directly (Zaydman & Cui, 2014; Zaydman et al., 2013). 

 Recently, the structure of KCNQ1 from frog (Xenopus laevis) was determined in 

complex with calmodulin (CaM) by cryoelectron microscopy (cryo-EM) (Sun & MacKinnon, 

2017). The structure was determined in in the absence of PIP2, therefore it is representative of an 

uncoupled state where the voltage sensors are activated and the pore is closed. While studies 

have been able to determine which residues are interacting in the resting state of the VSD, this 
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has never been structurally resolved for voltage-gated potassium channels. Previous structural 

models of KCNQ1 with the VSD in the resting state have been created (Smith, Vanoye, George, 

Meiler, & Sanders, 2007); however, this was before many of the recent studies that identified the 

pairing of charged residues in active and resting states for the VSD.  

The sequence identity of frog KCNQ1 to human KCNQ1 is 78% (Sun & MacKinnon, 

2017), which makes the frog KCNQ1 structure an ideal template for homology modeling of 

human KCNQ1. Herein, Rosetta, a molecular modeling software suite, is used to create a model 

of KCNQ1 with resting VSD and a closed pore. The obvious challenge is the lack of available 

templates for the resting VSD of KCNQ1. However, RosettaCM (Song et al., 2013) enables the 

use of multiple templates in addition to fragment insertion during the modeling process. While 

there are currently no available structures of voltage-gated potassium ion resting VSDs, I was 

able to use existing models of the voltage-gated Shaker C3 VSD in the resting state (Henrion et 

al., 2012), the crystal structure of the resting state of a voltage-sensitive phosphatase VSD from 

Ciona intestinalis (Ci-VSP) (Li et al., 2014), and the main voltage-sensitive domain (VSD2) in 

the inactive state from the crystal structure of two-pore channel (TPC1) from Arabidopsis 

thaliana (Kintzer & Stroud, 2016).  

5.2 Methods 

RosettaCM in Rosetta release 3.6 was used in combination with RosettaMembrane (Barth 

et al., 2007; Yarov-Yarovoy et al., 2006), and Rosetta Symmetry (Dimaio et al., 2011) to 

approach modeling the resting/closed state of KCNQ1. The first step of RosettaCM required a 

structural alignment by MUSTANG. The templates (Table 5.1) for the resting state of the voltage 

sensor, Ci-VSP, TPC1, and Shaker, were structurally aligned to chain A of the frog KCNQ1 

structure. The multiple sequence alignment generated by MUSTANG (Konagurthu, Whisstock, 
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Stuckey, & Lesk, 2006) was input to the Clustal OMEGA server (Goujon et al., 2010; Sievers et 

al., 2011). Several manual adjustments were made such that there were no gaps in the secondary 

structural elements (see Appendix G, Figure AG.1). Additionally, the alignment of conserved 

residues involved in the charged interactions between S2 and S4 was enforced. Alignments were 

converted into the grishin format. Aligned structures and sequence alignments were input into 

the partial threading application (see Appendix G for command line).  

Exhaustive tests were performed to determine the optimal combination of templates. 

Details of these trials can be found in Appendix G. Because the frog KCNQ1 structure contains 

an active VSD, the voltage sensor from chain A of the frog KCNQ1 structure was replaced with 

the Ci-VSP structure. The Ci-VSP structure does not contain structured regions for the S0 helix 

and intracellular loop between S2 and S3. Fragments from the frog KCNQ1 activated voltage 

sensor were swapped in for these regions on the initial Ci-VSP VSD- frog KCNQ1 PD hybrid 

template. The Ci-VSP-frog KCNQ1 hybrid was used as the initial template for RosettaCM 

hybridization. In addition, within the RosettaCM hybridization mover, detailed protocols was 

employed to enforce only template sampling for residues in the S0 helix and intracellcular loop 

between S2 and S3. It was determined that in addition to the Ci-VSP structure, sampling of the 

VSDs from the TPC1 structure and Shaker models resulted in good-quality models. 

Approximately 1000 models were built at the hybridization phase which includes an internal 

minimization. The distance between residues E1 and R1 were calculated, and the 50 models by 

the shortest E1-R1 distance were selected for further minimization studies. These 50 models will 

be referred to as parent models.  

 Several minimization studies were tested to determine the optimal order of protocols. 

More details can be seen in Appendix G. The final protocol included first a dualspace relax with 
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the constrained to start coordinates option. Each model was minimized 25 times for a total of 

approximately 1,250 models. The top 100 models were then selected based first on lowest 

Rosetta energy score (REU), shortest E1-R1 distance, and lowest backbone transmembrane root-

mean-square deviation (RMSD) to templates Ci-VSP, frog KCNQ1, and Shaker. These top 

models were minimized 25 times, a total of 2,500 models, using dualspace relax and a constrain 

to start coordinates option with the ramp_constraints option set to false. The top ten models were 

then selected based on lowest REU, and shortest E1-R1 distance (Figure 5.1). These ten 

belonged to the S20 parent model. In an effort to represent more conformational diversity, a 

second set of 10 models was selected from a second parent model, S12, whose minimized child 

models had the next lowest REU and shortest E1-R1 distance after minimized models from S20.   

Table 5.1 Annotation of appropriate templates available for constructing a closed pore, resting 

VSD model of KCNQ1. Not all of the templates in this table were used in the final protocol (see 

protocol capture in Appendix G for details). 

 

Domain Template Sequence 

Identity 

Sequence 

Coverage 

Type Reasons to use as a 

template 

Pore Frog 

KCNQ1a 

93% 100% Cryo-EM Closed pore of high 

sequence identity and 

coverage 

Voltage 

Sensor 

Ci-VSPb 20% 91% X-ray 

crystal 

High sequence coverage, 

resting VSD structure 

Voltage 

Sensor 

Shaker 

(C3)c 

18% 61% Model Shows proposed E1-R1 

interaction 

Voltage 

Sensor 

KCNQ1d 100% 85% Model Original closed-state model 

Voltage 

Sensor 

TPC1e 20% 74% X-ray 

crystal 

Inactive VSD2 structure 

Voltage 

Sensor 

Kv1.2-2.1f 23% 66% Model Increase conformational 

diversity 

Voltage 

Sensor 

MLotiKg 40% 76% X-ray 

crystal 

High sequence identity 

Voltage 

Sensor 

Frog 

KCNQ1a 

83% 92% Cryo-EM Orientation of domains; 

secondary structure for S0, 

S2S3 linker  
a (Sun & MacKinnon, 2017); b (Li et al., 2014); c (Henrion et al., 2012); d (Smith et al., 2007); e (Kintzer & Stroud, 2016); f (Jensen et al., 

2012); g (Clayton, Altieri, Heginbotham, Unger, & Morais-Cabral, 2008) 
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Figure 5.1. Flowchart of RosettaCM protocol developed for modelling the resting VSD, closed 

pore state of KCNQ1. RosettaCM also employed RosettaMembrane and Rosetta Symmetry at 

the hybridization and dualspace relax stages. Full protocol capture can be found in Appendix G. 

 

5.3 Results and Discussion 

 An ensemble of KCNQ1 models with a resting VSD and closed pore were created using 

RosettaCM. While the frog KCNQ1 structure has high sequence identity and sequence coverage, 

the VSD is in an active state. The literature shows that there is strong evidence that the residues 

E1 and R1 of the VSD are interacting in the resting state (Cui, 2016; D. Wu et al., 2010). The 

distance between E1 and R1 was calculated during the model building process to filter out 
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models that did not contain a possible E1-R1 interaction. The E1-R1 distance was also calculated 

for the final top 20 models for analysis (Table 5.2). All final models have a distance of 3.7 

Angstroms or less. It is believed that E2 interacts with R2, however, this is less clear. Distances 

between E2-R2 and E2-R3 were also reported. 

Table 5.2. Distances, in Angstroms, of charged residues in voltage sensor helices S2 and S4 for 

the final top 20 models of resting state KCNQ1. Residues E1 and E2 are on the S2 helix, while 

R1, R2, and R3 are on the S4 helix. Distance between residue pairs E1R1, E2R2, and E2R3 are 

reported. 

 

Model E1R1 E2R2 E2R3 

S20_1 3.4 3.5 10.3 

S20_2 3.4 3.7 10.7 

S20_3 3.4 3.7 10.6 

S20_4 3.4 3.6 10 

S20_5 3.4 3.6 10.2 

S20_6 3.4 3.6 10.3 

S20_7 3.4 3.8 11.3 

S20_8 3.4 4 10.8 

S20_9 3.4 3.8 10.5 

S20_10 3.4 3.8 10.6 

S12_1 3.6 3.4 15.3 

S12_2 3.6 3.4 15.3 

S12_3 3.6 3.5 15.2 

S12_4 3.6 3.5 15.5 

S12_5 3.4 3.4 15 

S12_6 3.7 3.5 15.3 

S12_7 3.6 3.5 15.5 

S12_8 3.6 3.4 15 

S12_9 3.5 3.5 15.3 

S12_10 3.6 3.4 15.2 

 

 The transmembrane backbone RMSD was calculated throughout the model building 

process for model comparisons to frog KCNQ1, Ci-VSP, TPC1, and the Shaker model. Models 

with lower RMSDs after hybridization were considered to be more favorable. For the final top 20 
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models, the transmembrane backbone RMSD was calculated for comparisons to the old KCNQ1 

model (Smith et al., 2007), Kv1.2-2.1 model (Jensen et al., 2012), MLotiK (Clayton et al., 2008), 

and the frog KCNQ1 VSD (active state) in addition to templates frog KCNQ1 pore, Ci-VSP, 

TPC1, and the Shaker model (Figure 5.2). 

 Interestingly, VSDs for models had the lowest transmembrane backbone RMSD to 

MLotiK and Kv1.2-2.1. MLotiK was exclude from the model building process because it is not a 

true voltage sensor but rather an S1-S4 domain (Clayton et al., 2008). Kv1.2-2.1 was excluded 

from the model building process because all four chains had different conformations with chain 

B appearing to be decoupled (Jensen et al., 2012). Chain C was used for RMSD calculations. The 

frog KCNQ1 VSD had the next lowest RMSD for both series. While this represents the active 

state, it is believed that the S4 helix contributes to the majority of the difference in conformation 

between active and resting, so a low RMSD here was not surprising. Both the old KCNQ1 model 

and Shaker model had the next lowest RMSDs when compared to the final models. This was also 

not surprising considering the homology models in these studies were build using Rosetta, albeit 

different versions. Interestingly, the Shaker model, Ci-VSP, and TPC1 had the highest RMSDs 

of all model comparisons to VSDs. Finally, the comparison of the pore domain from final 

models to the frog KCNQ1 template resulted in a transmembrane backbone RMSD of under 1 

Angstrom for all final models. 
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Figure 5.2. Heatmap of transmembrane backbone RMSD for resting VSD and closed pore 

models of KCNQ1 to VSD and pore templates. Each column has its own color scale with green 

for the lowest RMSD and red for the highest RMSD. It should be noted that in many cases, the 

difference in RMSD within the column is negligible, such as in the Kv1.2-2.1 column. Only Ci-

VSP, Shaker, and TPC1 were used for modeling building. 

 

 While the transmembrane backbone RMSD for the resting VSD models compared to the 

frog KCNQ1 active VSD showed a moderately low RMSD, it does not provide an appropriate 

measure for how different the two states are from each other. The movement of S4 from the 

resting to active state is thought to be the largest conformational change. The S1-S3 helices from 

each of the top 20 models were structurally aligned to the S1-S3 helices in the VSD of the frog 

KCNQ1 structure. The RMSD was calculated between fragments covering the same sequence of 

the S4 helix in each of the top 20 models and frog KCNQ1 (Table 5.3). The S20 series S4 helix 
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was calculated to have moved approximately 8 Angstroms while the S12 series S4 helix was 

calculated to have moved approximately 11 Angstroms. 

 

Table 5.3. Calculated movement of the S4 helix. Helices S1-S3 from the top 20 models were 

aligned to the S1-S3 helices in the frog KCNQ1 structure and movement of the S4 helix alone is 

reported.  

Model S4 

Movement 

S20_1 8.31 

S20_2 8.16 

S20_3 8.16 

S20_4 8.32 

S20_5 8.14 

S20_6 8.16 

S20_7 8.67 

S20_8 8.22 

S20_9 8.49 

S20_10 8.39 

S12_1 10.93 

S12_2 10.76 

S12_3 10.73 

S12_4 10.98 

S12_5 10.74 

S12_6 10.85 

S12_7 10.82 

S12_8 10.9 

S12_9 10.75 

S12_10 10.7 

 

 The top 20 models were selected in part by the lowest Rosetta energy score. To ensure 

the selection of models was not biased by the Rosetta energy function, I validated the quality of 

the models using external servers Molprobity (V. Chen et al., 2010; Davis et al., 2007) and 

PDBsum (de Beer, Berka, Thornton, & Laskowski, 2014) (ProCheck). The S20 series scored 
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nearly 100 Rosetta energy units (REU) lower than the S12 series indicated that the S20 series is 

more energetically favorable. The overall Molprobity scores and Molprobity clash scores were 

reported (Figure 5.3) and lower scores are more favorable as indicated by green coloring. 

PDBsum (ProCheck) scores were reported for the percentage of rotamers in various regions of 

acceptance. Nearly all S20 models and a few S12 models had approximately 94% of rotamers in 

favored regions as colored by green and yellow. Additionally, G-factors for properties relating to 

torsion angles (PC-dihedral), covalent bond geometry (PC-main chain covalent), and overall G-

factors are also reported where positive numbers further from zero indicate a higher probability 

(green) of favorable properties.  

 

 

Figure 5.3. Heatmap of external model validation. Final models in the S20 and S12 series of 

KCNQ1 with a resting VSD and closed pore are compared by metrics from Rosetta, Molprobity, 

and ProCheck (PC). Each column has its own color scale where green indicates the better values 
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within a column and red represents the worst values within a column. Metrics for the Frog 

KCNQ1 structure are provided as a reference. 

 

 The S20 ensemble was superimposed on the frog KCNQ1 structure (Figure 5.4, A-C) and 

the S12 ensemble was superimposed on the frog KCNQ1 structure (Figure 5.4, D-F). Visual 

inspection of the models in both series verified that the S5 and S6 helices as well as the central 

pore, are very similar to the frog KCNQ1 structure, which has a closed pore. Additionally, it 

appears that the S20 series ensemble is more variable in the region of the voltage sensor than the 

S12 series ensemble. However, the calculated transmembrane backbone RMSD values of the 

S20 models to the frog KCNQ1 VSD were in a relatively narrow range (Figure 5.2), indicating 

that while the models appear to be different from each other, the amount of which they are 

different from the frog KCNQ1 active VSD is similar.  

The variability in the superimposed structures for the S20 series may be attributed to two 

possible events. The models were build using an initial template that consisted of a pore from 

one template, frog KCNQ1, and a voltage sensor from Ci-VSP. I trimmed the Ci-VSP template 

on the c-terminus and the frog KCNQ1 pore template on the n-terminus to create a gap in the 

structure of the template, rather than introduce clashes immediately into the structure. The 

hybridization protocol allowed only fragment insertion in this short region so that the connection 

could be built with each template as an anchor. In the S20 series, this region is unstructured 

which means that perturbations in this loop could create a leaver-arm effect such that the 

orientation of the voltage sensor to the S4-S5 linker is different with each outcome. All 

minimization protocols employed in this pipeline added a constrain to start coordinates, so the 

global changes were not so drastic as to move the VSD out of the plane of the PD. However, this 
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would also indicate that the perturbations were occurring in the unstructured region frequently 

perhaps because this was not energetically favorable. 

While the S12 series does not show this variability in the positioning of the voltage 

sensor, one concern is the distortion of the S4-S5 linker. Although in this model, the S4 helix has 

an additional turn of a helix compared to models in the S20 series, the causes the S4-S5 linker to 

unravel and bend downwards, away from the additional density imposed by the structured end of 

the S4 helix. The S4-S5 linker region has not been structurally resolved, so it is difficult to refute 

this distortion. However, the main concern of the S12 series are the lower Rosetta and 

Molprobity scores (Figure 5.3). For this reason, I have continued analysis with only the S20 

series. 
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Figure 5.4. Ensemble of S20 and S12 series compared to frog KCNQ1. The top ten models by 

score of the S20 series (cyan) are superimposed on the frog KCNQ1 structure (green) (A-C). The 

top ten models by score of the S12 series (cyan) are superimposed on the frog KCNQ1 structure 

(green) (D-F). A top down view shows a clear view of the central pore (A,D). Views of chain A 

from the side (B-C,E-F) displays the differences seen in the S4-S5 linker. 

 

 The VSD of the S20 series was superimposed on each of the available VSD templates. 

Because of the aforementioned variability of the VSD in the ensemble, the top three models by 

score were selected for visualization and are shown in light cyan (Figure 5.5). Interestingly, from 

a top-down, global perspective, the major differences between the frog KCNQ1 VSD and the top 

three VSDs are in helices S2 and S3 (Figure 5.5, A). The frog KCNQ1 VSD represents an active 

state, so it would be predicted that the S4 helix would be the most different; however, it is 

unclear from this viewpoint if the S4 helix sequence aligns as well as the structure. The Ci-VSP 

aligns well with the S1-S3 helices of the top models; however, the S4 helix is in a noticeably 

different conformation (Figure 5.5, B). The TPC1 structure shares a similar conformation in 

helices S1-S2; however, S3 and S4 helices are quite different (Figure 5.5, C), which is expected 

because the linker for TPC1 is in a much different orientation because TPC1 is a heterotetramer 

whereas KCNQ1 is a homotetramer. Finally, the Shaker model shares the feature in the 

extracellular loop between S1 and S2 as well as a similar conformation of the S1 helix (Figure 

5.5, D). 

 Interestingly, the templates that were not used in model building showed striking 

resemblance to the top models. The old KCNQ1 model from Smith et al. superimposes well with 

the S2 and S3 helices of the top models (Figure 5.5, E). Whereas, the Kv1.2-2.1 model aligns 

well with the top models in all regions except for the extracellular ends of helix S3 and S4 

(Figure 5.5, F). Finally, the MlotiK structure aligns well in regions covering S1, S2, S4 and even 

the S4-S5 linker (Figure 5.5, G). These observations agree with Figure 5.2 where it was shown 
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that templates not used in model building had lower transmembrane backbone RMSDs than 

templates used in the model building process. I propose two possible reasons for this. As 

mentioned previously, the Shaker model, old KCNQ1 model, and Kv1.2-2.1 model were all 

initially homology modeled using Rosetta. While the version of Rosetta used to build the top 

models is much more recent than others, it could be that Rosetta still scores these conformations 

favorably resulting in a bias toward the templates that are Rosetta models when comparing to all 

templates. Lastly, the MLotiK structure has the highest sequence identity of all of the available 

templates (Table 5.1). It was excluded from the model building process because it does not have 

a true voltage-sensor; however, it is validating that the final models closely resemble the 

template with the highest sequence identity when that template was excluded from the model 

building process. 

  

 

Figure 5.5. The VSD of the top three models by score from the S20 series (light cyan) 

superimposed with frog KCNQ1 (A), Ci-VSP (B), TPC1 (C), Shaker model (D), old KCNQ1 

model (E), Kv1.2-2.1 model (F), MLotiK (G). Templates for model building (A-D) and 

templates not use in model building (E-G) were compared to the ensemble of the top three 

models. 
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 To better visualize the differences between the active and resting states, the top three 

models were superimposed on the frog KCNQ1 structure. Residues involved in gating charges 

were highlighted as sticks to emphasize the change in register (Figure 5.6). From the active to 

resting state the R1 residue shifts approximately 1.5 turns of a helix. This shift propagates down 

the helix and offsets R2 and R3 in similar amounts. 

 

 

Figure 5.6. Interactions between gating charges in the active and resting state of the KCNQ1 

VSD. Active is represented by the frog KCNQ1 structure (green), while resting is represented by 

the top three models of the S20 series (cyan). Residues involved in gating charges are shown in 

sticks and are labeled for active (green), resting (cyan), and both (gray). 

 

 One of the concerns with modeling membrane proteins with a pore in Rosetta is the 

collapse of the pore. The attractive and repulsive terms best represent the Leonard Jones 
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potential which is the driving force of the Rosetta energy function. This means that Rosetta 

favorably scores conformations where residues make the most contact with surrounding residues 

without creating clashes. Typically in Rosetta, membrane proteins are modeled in the absence of 

water molecules. Without the water molecules present to take up density, models of pores are 

more likely to collapse in an effort to fill the empty space in the core of the protein. To overcome 

this, each minimization step contains a constrain to start coordinates where the protein backbone 

is not allowed to be perturbed beyond 0.5 Angstroms. 

 In order to verify that the central pore was not changed during modeling in such a way 

that distorts it from the shape of the closed pore template, I used the server PoreWalker 

(Pellegrini-Calace, Maiwald, & Thornton, 2009). PoreWalker calculates the diameter of the pore 

along 1 Angstroms steps in the x axis and creates a pore profile (Figure 5.7). The frog KCNQ1 

closed pore was used as a reference for the representative model of resting VSD, closed pore 

KCNQ1. It is expected that the profile of the pore between these two would be similar. The frog 

KCNQ1 structure has a pore diameter of 2 Angstroms at an x coordinate of 40 near the opening 

of the selectivity filter. Near the internal pore at an x coordinate of 10 the pore diameter is also 2 

Angstroms indicating that it is likely representative of a closed pore (Figure 5.7, A-B). The top 

scoring model of the S20 series was used as a representative model of the S20 series. The S20 

closed pore model has a pore diameter of 2 Angstroms at an x coordinate of 20 near the opening 

of the selectivity filter. The internal pore for this model is near an x coordinate of -10 where 

there is a pore diameter of 2 Angstroms (Figure 5.7, C-D). This indicates that the pore profile for 

the frog KCNQ1 structure and the S20 model are similar and that both are likely representative 

of a closed pore. 
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KCNQ1 with an active VSD and an open pore was modeled (modeling not included 

here), and was used to compare the open pore profile to the closed pore profiles. For the open 

pore model of KCNQ1, the opening of the selectivity filter is near an x coordinate of 15 and has 

a pore diameter of 2 Angstroms. However, the internal pore is located near an x coordinate of 

approximately -18 where the pore diameter changes from 3 Angstroms to 4 Angstroms 

indicating it is an open pore (Figure 5.7, E-F).  

Next, I calculated distances between residues near the opening of the selectivity filter 

(Ts) and near the internal pore (S339). The calculated distance between the S339s in frog 

KCNQ1 was 4.3 Angstroms (Figure 5.8, B). For the representative S20 model, the distance 

between the S339s was 3.9 Angstroms (Figure 5.8, D), only 0.4 Angstroms closer than the frog 

KCNQ1 structure. The open pore model of KCNQ1 had a distance of 12.7 Angstroms between 

the S339s (Figure 5.8, F), which is substantially higher than the distances between S339s in the 

closed pore conformations. 

In conclusion, I have created a set of models, S20 series, of KCNQ1 with a resting VSD 

and closed pore using RosettaCM. Model building utilized several templates simultaneously, and 

transmembrane backbone RMSD calculations verify that the final models are not biased by the 

conformation of any one of the templates (Figure 5.2). External servers for MolProbity and 

ProCheck were used to evaluate the quality of the models (Figure 5.3). The overall MolProbity 

scores of the models were comparable to the score of the frog KCNQ1 structure. PDBSum found 

that the models all had above 93% of residues in the most favored regions, and above 5.5% of 

residues in the allowed regions. The server PoreWalker verified that the pore profile of the 

models reflected that of the pore profile from a structure of the frog KCNQ1 closed pore (Figure 

5.7). Models all contained a distance between E1 and R1 of 3.4 Angstroms (Figure 5.3) 
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supporting experimental evidence of an interaction between the two residues involved in gating 

charges.  

In the future, this model will be used to conduct docking studies of KCNE to KCNQ1 in 

order to gain insight on the modulation of KCNE to KCNQ1. Previous models of KCNQ1 failed 

to include the interaction between E1 and R1 as only recently the interaction has been elucidated 

experimentally. Additionally, the recent structure of frog KCNQ1 provided an excellent template 

for the closed pore as well as the S0 helix and the intracellular loop between S2 and S3. For these 

reasons, the models presented herein are the best models to move forward with in future studies 

until additional experimental evidence is reported. 
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Figure 5.7. Profile of the central pore from PoreWalker. Frog KCNQ1 (A-B), a representative 

resting/closed state model of KCNQ1 (C-D), and a representative active/open state mode of 

KCNQ1 (E-F) were analyzed using the server PoreWalker. The gray sphere is at the x coordinate 

of zero. Each sphere above the gray sphere is in a +10 interval, and each sphere below is in a -10 

interval.  
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Figure 5.8. Top-down view of TX residues in frog KCNQ1 closed pore (A), representative 

model of KCNQ1 closed pore (C), and a representative model of KCNQ1 open state (E). 

Bottom-up view of SX reisdues in frog KCNQ1 (B), representative model of KCNQ1 closed 

pore (D), and a representative model of KCNQ1 open state (F). 
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CHAPTER 6 

 

INVERTED TOPOLOGIES IN MEMBRANE PROTEINS 

This chapter contains published content from: 

Duran and Meiler, 2013.  

Author contribution: I created all of the figures and tables for the manuscript entitled “Inverted 

Topologies in Membrane Proteins”, an open access article in the journal Computational and 

Structural Biotechnology Journal (Duran & Meiler, 2013). I also wrote the manuscript under the 

mentorship of Jens Meiler. 

Author note: This review has been included as a chapter in order provide the background 

necessary for Chapter 7. 

6.1 Pseudo-symmetry in proteins 

 Helical membrane proteins such as transporters, receptors, or channels often exhibit 

structural symmetry. Symmetry is perfect in homo-oligomers consisting of two or more copies of 

the same protein chain. Intriguingly, in single chain membrane proteins, often internal pseudo-

symmetry is observed, in particular in transporters and channels. In several cases single chain 

proteins with pseudo-symmetry exist, that share the fold with homo-oligomers suggesting 

evolutionary pathways that involve gene duplication and fusion. It has been hypothesized that 

such evolutionary pathways allow for the rapid development of large proteins with novel 

functionality. At the same time symmetry can be leveraged to recognize highly symmetric 

substrates such as ions. For helical transporter proteins with an inverted two-fold pseudo-

symmetry, the symmetry axis lies in the membrane plane. As a result, the putative ancestral 

monomeric protein would insert in both directions into the membrane and its open-to-the-inside 
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and open-to-the-outside conformations would be structurally identical and iso-energetic, giving a 

possible evolutionary pathway to create a transporter protein that needs to flip between the two 

states. 

Pseudo-symmetry in soluble proteins 

 In the realm of soluble proteins, ten folds are over-represented and dominate the 

structures determined so far experimentally in the Protein Data Bank (PDB)(Berman et al., 

2000). Such common ‘superfolds’ in proteins likely exist because nature evolved existent protein 

folds as opposed to generating new folds (Brych et al., 2004). Six of these ten superfolds display 

pseudo-symmetry, i.e. can be seen as a repeat of usually two or more copies of nearly identical 

structural subunits. These folds are: Ferredoxin fold, β-trefoil, up-down bundle, immunoglobulin 

fold, jelly-roll, and the TIM-barrel fold (Söding & Lupas, 2003).  

The TIM-barrel fold is a repeat of eight β- strand-α-helix units where the eight β-strands 

form an inner barrel surrounded by the eight α-helices. Close inspection of the hydrogen bonding 

pattern in the barrel reveals that the fold is a 4-fold symmetric arrangement of β-strand-α-helix-

β-strand-α-helix units (Söding & Lupas, 2003). Many enzymes share this (βαβα)4 fold some 

recognizing pseudo-symmetric substrates. Similarly, four-helix bundles with C2 and C4 

symmetry are commonly seen as homo-dimers and homo-tetramers (Söding & Lupas, 2003).  

It has been postulated that symmetry at the fold level evolved via gene duplication and 

fusion events from homo-oligomeric proteins (McLachlan, 1972; Rapp, Granseth, Seppälä, & 

von Heijne, 2006) (Figure 6.1). Fusion of monomer units into a single domain increases 

thermodynamic stability and kinetic foldability (Wolynes, 1996). Gene duplication is thought to 

relieve selective pressure which allows for diversification of the subunits on the sequence level 

before and/or after the fusion event (Figure 6.1) to achieve more complex biological functions 
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(Söding & Lupas, 2003). As different mutations occur in the two copies of the gene, the evidence 

of symmetry is masked at the level of the primary sequence. It is assumed that this strategy is 

one route to evolve large proteins with complex functions rapidly in nature. At the same time 

symmetry is explored as an avenue for rational or computational design of large protein domains 

(Blaber, Lee, & Longo, 2012; Gerlt, 2000). 

 

Figure 6.1 Proposed evolutionary pathway for membrane proteins with inverted symmetry 

involving the gene duplication and fusion hypothesis. Step 1. Prior to a gene duplication event, 

gene A exists as a singular gene. Step 2. The translation product of the gene, protein A, has an 

odd number of trans-membrane spans, and has a preferred orientation (no dual topology, 2a) or is 

attracted to itself and exhibits dual-topology (2b). Step 3. A gene duplication event occurs to 

produce sequence identical genes A and B, which are composed of the same sequence (3ab). 

Step 4. Both gene A and B acquire mutations independently of each other resulting in genes A’ 

and B’. For path a, mutations cause a switched in protein’s B bias to insert into the membrane 

resulting in proteins of opposite topology. For path b, this means mutations have stabilized each 

protein in its respective topology. Step 5. Related genes A’ and B’ undergo a gene fusion event 

and are connected by a loop (green). Step 6. Additional mutations cause further sequence 

divergence resulting in a protein with homologous subunits A’’ and B’’. 
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6.2 Self-attraction and self-association of protomers 

 For gene duplication and fusion as a viable strategy to create large protein domains, 

interaction of a protein with itself, self-attraction, is a prerequisite. And indeed, homo-oligomers 

are abundant in the Protein Data Bank (PDB). Homo-oligomers are more stable and therefore 

more prevalent, as they tend to have a lower energy than their hetero-oligmeric counterparts 

(André et al., 2008). There are two basic ways in which a protein can be attracted to itself. The 

first type of self-association is where the same faces of the protein are attracted to each other and 

form the dimerization interface. The remaining faces are left and can interact with similar 

remaining faces to form larger oligomers. The second, less common form of self-association 

occurs when two different faces are attracted to each other. This creates a cyclic oligomeric 

structure (Figure 6.2) (Levy, Boeri Erba, Robinson, & Teichmann, 2008). 

Interestingly, the majority of homo-dimeric complexes in the PDB exhibit a symmetric 

arrangement of the two protomer units. In this arrangement all interactions between the two 

protomers are duplicated which halves the total number of unique interactions that are possible. 

This causes a bias towards very-low-energy symmetric homo-dimeric complexes. With one 

patch of the protein interacting with the same patch of another copy, such arrangements are 

evolutionarily stuck in dimeric symmetry as continued evolution into homo-oligomers with 

higher-order cyclic symmetry requires interaction of two distinct patches (Figure 6.2). 

Nevertheless, cyclic symmetry while less frequent is still observed on the homo-

oligomeric level. Starting from these cyclic homo-oligomeric proteins internal cyclic symmetry 

can evolve via gene duplication and fusion. The TIM-barrel and β-propeller superfolds are 

prominent examples (Söding & Lupas, 2003). However, applying the gene duplication and 
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fusion hypotheses to the study of membrane protein evolution has proven difficult due to 

sparseness of membrane protein structures. 

 

Figure 6.2. Assembly of protomers into oligomers. Assembly can be organized in a cyclic or 

dihedral manner. Symmetry axes are represented by the dotted lines where two-fold are labeled 

with ellipses and four-fold are labeled with squares. Cyclic arrangement allows for face-to-back 

contacts between protomers while dihedral arrangement allows for additional interface contacts 

between protomers (2a). Cyclic assembly is the overall most common type of arrangement; 

however, dihedral is common in tetramers (2b). Reprinted by permission from Macmillan 

Publishers Ltd: Nature, advance online publication, 18 June 2008 (doi: 10.1038/sj.Nature.06942) 

 

6.3 Sparseness of membrane protein structures complicate determination of evolutionary 

pathways 

 One of the biggest limiting factors in studying membrane protein topology and symmetry 

is the small number of membrane protein structures that have been determined (Shimizu, 

Mitsuke, Noto, & Arai, 2004). Currently, only 289 unique helical membrane protein structures 

are available (White). These represent only about 120 distinct folds i.e. structurally distinct 

arrangements of two or more trans-membrane helices. On the other hand, analysis of sequence 

databases reveals 1,200 families of proteins with more than one predicted trans-membrane helix. 

These families are distinct in the sense that no inter-family homology can be detected on the 

sequence level (Hopf et al., 2012). While some of these families might turn out to share a fold on 

the structural level, this result also implies that many membrane proteins of unknown topology 
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remain to be determined. During the past five years between five and ten novel membrane 

protein topologies have been determined per year. However, many more structures will need to 

be determined before the evolutionary pathways are better supported and understood. 

6.4 Internal repeat symmetry in monomeric membrane proteins 

 Symmetry in proteins can improve stability and aids in overcoming energy hurdles in 

conformational change pathways (Hoang, Trovato, Seno, Banavar, & Maritan, 2004; Wolynes, 

1996). In some cases, internal repeat symmetry (IRS) can be detected by sequence analysis. 

However, because the sequence of membrane proteins evolves quickly, IRS is often only 

confirmed after the structure of the protein has been determined (S. Choi, Jeon, Yang, & Kim, 

2008; Khafizov, Staritzbichler, Stamm, & Forrest, 2010). IRS is hypothesized to originate from 

gene duplication events or by fusion of similar subunits (S. Choi et al., 2008). In a 2008 study by 

Choi and coworkers, it was found that almost half of known α-helical membrane proteins have 

internal repeat symmetry. Types of symmetry include n-fold rotational or cyclic symmetry and 

inverted symmetry. As the symmetry is only present at the structural level but not at the 

sequence level it is often referred to as pseudo-symmetry (Forrest et al., 2008). 

6.5 The lipid environment restricts the fold space for membrane proteins 

 For membrane proteins, the lipid environment restricts conformation (J U Bowie, 2001). 

Along with symmetry, and self-association, these observations have a number of important 

consequences for membrane protein topology: homo-dimeric proteins with a symmetric 

arrangement of the two protomer units can align their symmetry axis either parallel or orthogonal 

to the membrane normal (Granseth, 2010) (Figure 6.3). Higher-order (larger than two) homo-

oligomers with cyclic symmetry can only embed into the membrane with the symmetry axis 

parallel to the membrane normal, i.e. orthogonal to the two-fold symmetry axis of the membrane 
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in the membrane plane. Any other arrangement would break the symmetry in the homo-

oligomer. In consequence, we observe two major classes of homo-oligomeric membrane proteins 

and resulting pseudo-symmetric membrane proteins when considering alignment with respect to 

the membrane. 

 

Figure 6.3. Symmetry axes for membrane proteins. The rotational symmetry axis can either be 

parallel to the membrane normal and orthogonal to the membrane plane (3a). The axis can also 

be orthogonal to the membrane normal and parallel to the membrane plane. When rotated 180° 

along this axis, the resulting structure will resemble the starting structure. 

 

Symmetry axis parallel to membrane normal and orthogonal to membrane plane 

 Proteins embedded in the outer membrane often form β-barrels. These can be seen as 

cyclic repeats typically consisting of 3-10 ββ-hairpins with the pseudo-symmetry axis parallel to 

the membrane normal (Remmert, Biegert, Linke, Lupas, & Söding, 2010). β-barrel monomers 

are also known to assemble into higher order oligomers. For example, cholesterol-dependent 

cytolysins are capable of forming aqueous pores that consist of up to fifty monomers 

(Ramachandran, Tweten, & Johnson, 2004). However, approximately 70% of the unique 

membrane protein structures are α-helical including receptors, transporters, and channels 

(White). A variety of homo-oligomeric and pseudo-symmetric proteins are observed with the 
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symmetry axis parallel to the membrane normal. For example, the single trans-membrane span 

glycophorin (M a Lemmon et al., 1992) forms a homo-dimer, diacylglycerol kinase 

(Vinogradova, Badola, Czerski, Sönnichsen, & Sanders, 1997) forms a homo-trimer, voltage-

gated potassium channel (Doyle, 1998) forms a homo-tetramer, and several eukaryotic ABC 

transporters such as TM287/288 (Hohl, Briand, Grütter, & Seeger, 2012) form a hetero-dimer. 

Note, that all N- and C-termini of the protomers will always assemble on the same side of the 

membrane, i.e. the protomers insert into the membrane in the same direction. These homo-

oligomers typically follow the positive-inside rule which states that positively charged residues 

Arginine and Lysine tend to face towards the inner leaflet of the membrane (G von Heijne & 

Gavel, 1988). Most membrane proteins have such a well-defined orientation based on the 

distribution of positively charged residues. Resulting homo-oligomers have C2, C3, or C4 

symmetry with the rotational axis of symmetry parallel to the membrane normal (Blaber et al., 

2012; Granseth, 2010). For example, single chain voltage gated sodium channels exist in humans 

that resemble the homo-tetrameric structure of the bacterial voltage-gated sodium channel 

NavAB (Payandeh, Scheuer, Zheng, & Catterall, 2011). For these proteins to evolve into a single 

chain, monomeric membrane proteins require an even number of trans-membrane spans to 

satisfy the gene duplication and fusion hypothesis. 

Symmetry axis orthogonal to membrane normal and parallel to membrane plane 

 In the inverted symmetry scenario, protomers insert into the membrane in opposite 

directions (Granseth, 2010). This arrangement is only feasible for homo-dimers as for higher-

order oligomers the symmetry would be broken by the 2-fold symmetry of the membrane when 

ignoring the differences between inner and outer leaflet in natural membranes. N- and C-termini 

of the protomers are on opposite sides of the membrane, respectively. Examples of proteins with 
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inverted pseudo-symmetry are the glycerol facilitator channel (James U Bowie, 2006; S. Choi et 

al., 2008; D. Fu, 2000), the leucine transporter (Yamashita, Singh, Kawate, Jin, & Gouaux, 

2005), and the urea transporter (Levin, Quick, & Zhou, 2009). They contain an odd number of 

helices in the symmetric unit. In some cases, half helices or re-entrance loops are observed which 

will meet with its symmetric counterpart at the middle of the membrane. An odd number of 

trans-membrane spans is required for the gene duplication and fusion hypothesis to be a possible 

evolutionary route to pseudo-symmetric monomeric proteins. 

6.6 Effect of inverted symmetry on transporter proteins with open-to-the-inside and -

outside conformations 

 Sequence conserved regions of proteins are referred to as internal repeat cores (IRC) and 

are typically found at the symmetric interface. It has been proposed that this region is the most 

conserved because of the self-attractive interactions needed in stabilizing the two symmetric 

subunits and the role it has in the two-state conformational switch for the inactive and active 

transport of molecules (S. Choi et al., 2008). Interestingly, inverted pseudo-symmetry is 

particularly frequent in transporter proteins which can be explained with the necessity of having 

at least an open-to-the-inside and an open-to-the-outside conformation in an alternate access 

mechanism of transport. For example, LeuT has an inverted internal repeat of five trans-

membrane helices. The inverted structural symmetry inherently creates a channel with a 

symmetric pathway across the membrane because the structurally symmetric units are placed 

opposite of each other. The perfectly symmetric structure can be leveraged to create structurally 

identical and iso-energetic inward and outward facing conformations so that no major energy 

barriers would need to be overcome to transport substrate across the membrane. As a transporter, 

the symmetric pathway helps form inward and outward conformations (Forrest & Rudnick, 
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2009). With core functional residues conserved, chemically similar residues and structures are on 

either side of the membrane, enabling bidirectional transport of molecules across the membrane 

(S. Choi et al., 2008). 

6.7 Sparseness of membrane protein homo-dimers with inverted symmetry 

 Despite the abundance of membrane proteins with inverted two-fold pseudo-symmetry, 

homo-dimers with inverted symmetry seem to be rare. Formation of these requires “dual 

topology”, i.e. the ability for a single subunit to exist in both orientations in the same membrane 

and environmental conditions (Granseth, 2010; Gunnar von Heijne, 2006). The existence of 

proteins capable of dual topology is heavily debated, with one of the best studied examples being 

the homo-dimeric efflux-multidrug transporter from Escherichia coli (E. coli), EmrE (Granseth, 

2010). A recent NMR study suggests that EmrE is able to exist in either orientation as both states 

are energetically similar (Morrison et al., 2012). EmrE with an even number of trans-membrane 

spans cannot readily undergo gene duplication and fusion, i.e. it is evolutionarily frustrated. 

In 2006, Rapp et al. proposed five proteins that have potential as proteins capable of dual 

topology. These proteins are small, composed of four trans-membrane spanning helices, and 

have very little positive charge bias (Rapp et al., 2006). It makes sense that a protein with dual 

topology would be small to act as a unit of symmetry and have very little positive charge bias to 

readily be placed in either orientation in the membrane without disobeying the positive-inside 

rule (G von Heijne & Gavel, 1988).  

Additionally, an overall neutral charge causes both topologies to be similar in energy 

(Crisman, Qu, Kanner, & Forrest, 2009; Forrest et al., 2008). To further understand the 

significance of a negligible positive charge bias in dual topology, membrane proteins with a 

positive charge bias of nearly zero were engineered to have a distinct bias. The engineered bias 
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caused a flip in orientation for these proteins (Rapp et al., 2006). In an evolutionary route over 

time, mutations to a fused dual-topology protein could essentially lock in a particular topology 

while maintaining functionally important residues. 

6.8 Dual topology is not required for evolution of membrane proteins with inverted two-

fold pseudo-symmetry 

 The apparent sparseness of homo-dimers with inverted symmetry seems to be at odds 

with the abundance of membrane proteins with inverted two-fold pseudo-symmetry. However, it 

is important to note that a homo-dimer with inverted symmetry is not a prerequisite for the 

evolution of a membrane protein with inverted two-fold pseudo-symmetry. Consider the 

following putative evolutionary pathway (Figure 6.1): a membrane protein gene with preferred 

orientation in the membrane gets duplicated. In one copy mutations occur that change the 

preferred orientation within the membrane. An interaction between the two proteins evolves that 

because of their similarity is still likely to be pseudo-symmetric. At this time the protein 

develops its transport functionality. A gene fusion event creates the inverted two-fold pseudo-

symmetric protein. 

In this context a 2006 study by Rapp et al. used E. coli membrane proteins and anti-

parallel hetero-dimer pair YdgE and YdgF as examples of homologous proteins with different 

positive charge biases and opposite orientations. E. coli proteins YdgE and YdgF are overlapping 

genes on the chromosome, but are expressed separately (Rapp et al., 2006). YdgE is known to 

consist of four trans-membrane spans whereas YdgF is predicted to consist of four (Drew et al., 

2002). YdgQ and YdgL are another example of a homologous gene pair in E. coli that results in 

proteins with opposite orientations. For both of these pairs of proteins, each protein has a 

positive charge bias favoring its respective orientation (Rapp et al., 2006). Because of the 
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opposing orientations, each homologous pair is able to form an anti-parallel hetero-dimer. These 

anti-parallel hetero-dimers are likely the result of gene duplication and topology evolution events 

(Lolkema, Dobrowolski, & Slotboom, 2008). 

Rapp et al. suggested five dual topology possibilities (Table 6.1). Two pairs of 

homologous hetero-dimers which form anti-parallel topologies are also included in this table. 

Positive charge bias was calculated similarly to Rapp et al. where counts of K and R in the even 

loops are subtracted from the odd loops, where the N-terminal loop is loop 1. 

Table 6.1 Dual topology and anti-parallel hetero-dimer candidates. 

Protein Predicted Topology TM Spans Positive Charge Bias  

EmrE Dual 4 −2  

SugE Dual 4 −1  

CrcB Dual 4 0  

YdgC Dual 3 1  

YnfA Dual 4 0  

YdgE Anti-parallel hetero-dimer 4 7  

YdgF Anti-parallel hetero-dimer 4 6  

YdgQ Anti-parallel hetero-dimer 05–06 −6  

YdgL Anti-parallel hetero-dimer 4 −7  
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6.9 Gene duplication and fusion as it applies to monomeric membrane proteins 

 In a 2008 study, Lolkema et al. studied the DUF606 family to get clues for the possible 

order of evolutionary events. In the DUF606 family, there exist homo-dimeric proteins, hetero-

dimeric proteins, and two-domain fusion proteins which are proposed to be indicative of single 

gene dual topology proteins, homologues of opposite orientations, and fused genes creating an 

anti-parallel topology, respectively (Lolkema et al., 2008). They found no existing fused homo-

dimeric protein in the DUF606 family as evidence for direct fusion of duplicated genes. The 

evolutionary pathway that was proposed as a result of this study involved a gene duplication 

event followed by sequence divergence and finally a gene fusion event between the homologues. 

Previously, it has been suggested that one of the likely evolutionary routes begins with gene 

duplication shortly followed by gene fusion. Following fusion, divergence further stabilizes the 

energetics, anti-parallel topology, and function (Granseth, 2010). However, evidence of any 

fused homo-dimer have not yet been found (Lolkema et al., 2008). Yet, extensive divergence 

prior to a fusion event would seem to affect the self-attraction between the two domains. 

Therefore, in Figure 6.1, we propose a slightly modified version of the alternative evolutionary 

route for inverted membrane protein topologies. First, the gene capable of dual topology is 

duplicated by the appropriate evolutionary mechanism, a gene duplication event. Next, the 

domains of the homo-dimers are stabilized into opposite orientations by mutations which 

stabilize the overall anti-parallel topology. Then, the similar domains undergo fusion followed by 

even further sequence divergence to stabilize structure and improve function. However, there is 

currently insufficient evidence to support one route over the other. 
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Major Facilitator Superfamily 

 The major facilitator superfamily (MFS) transporters have been extensively studied for 

their symmetry. Proteins in the MFS transporter family are composed of 12 trans-membrane 

spans. The sequence homology between other members of this family is weak; however, proteins 

in this family are structurally similar (Reddy, Shlykov, Castillo, Sun, & Saier, 2012). There have 

been differences in opinion for the breakdown in symmetry. In 2012, a review proposed that the 

smallest symmetric unit is a two trans-membrane spanning domain (Reddy et al., 2012). This 

would mean that there is three-fold symmetry within the six helix bundles and then an additional 

two-fold inverted symmetry for the six helix bundles. However, previous studies have supported 

the idea of a three trans-membrane spanning structural motif resulting in two-fold symmetry in 

the six helix bundle (Hirai, Heymann, Maloney, & Subramaniam, 2003). Recently in 2013, 

Madej et al. conducted an experiment where the symmetry motifs in MFS protein L-fucose H+ 

symport protein FucP were rearranged (Madej, Dang, Yan, & Kaback, 2013). The result was a 

structure strikingly similar to LacY, another member of the MFS. The conclusion was that FucP 

and LacY likely evolved from the same primordial helix triplets, but the order of assembly of 

these structural motifs into larger proteins differed which created an avenue for diversity in 

function (Madej et al., 2013). 

Neurotransmitter Sodium Symporters 

 Neurotransmitter sodium symporters are also a type of transporter proteins which display 

internal symmetry. The most well-known examples display two-fold pseudo-symmetry and 

include the glutamate transporter (GltPh), the sodium and proton antiporter (NhaA), and the 

leucine transporter (LeuT) (Krishnamurthy, Piscitelli, & Gouaux, 2009). A rocker switch 

mechanism of transport favors the internal two-fold symmetry because the conformation is easily 
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exchanged (Forrest & Rudnick, 2009; Krishnamurthy et al., 2009). In LeuT, the trans-membrane 

spans 1-5 are symmetric to 6-10. LeuT can be considered an occluded state that can convert into 

outward and inward facing conformations due to the internal symmetry. Furthermore, the 

addition of non-symmetric helices act as hinges to promote conformational change during 

transport (Forrest & Rudnick, 2009; Forrest et al., 2008). 

Aquaporins 

 The aquaporins are another type of membrane protein that exhibit pseudo-symmetry. In 

fact, the very first high resolution example of inverted topology was from E. coli’s 

aquaglyceroporin the glycerol facilitator protein (GlpF) (James U Bowie, 2013). Aquaporins are 

a great example of symmetry observed on a single polypeptide chain. They are made up of six 

trans-membrane spanning helices and two half-spanning helices with the symmetric unit being 

three and a half helices. The α carbon root mean square deviation between the two halves of 

GlpF is 1.8 Angstroms (S. Choi et al., 2008). Channel proteins’ primary function is the transport 

of water and small molecules across the membrane. Inverted symmetry is advantageous for the 

formation of a symmetric pathway across the channel (Forrest & Rudnick, 2009). However, 

because transport through the channel is permeation instead of a two-switch conformational 

change, the advantage of inverted symmetry is largely for stability of the protein. For this reason, 

channels are sometimes referred to as broken transporters (Forrest & Rudnick, 2009). GlpF and 

other aquaporins have an aspartic acid-proline-alanine motif seen in both halves at the symmetric 

interface (S. Choi et al., 2008; D. Fu, 2000; Stroud et al., 2003). In this example, stability is 

improved because of the interaction between the proline rings on either half (Daxiong Fu et al., 

2000). 
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Chloride Channel 

 Another type of channel protein that exhibits symmetry is the ClC chloride channel 

(James U Bowie, 2013; Dutzler, Campbell, Cadene, Chait, & MacKinnon, 2002). A single 

subunit in the homo-dimeric complex is made up of 18 helices. Eight helices on the N-terminal 

half display striking inverted two-fold pseudo-symmetry with the C-terminal half. Like the 

aquaporins, the anti-parallel structure is useful for this channel protein because the symmetric 

polar ends of helices are able to face the outside of the membrane. This is energetically favorable 

in that the polar ends are not buried in the membrane (Dutzler et al., 2002). Interestingly, another 

ion channel, the potassium channel, does not take advantage of anti-parallel topology. The 

potassium channel works very differently in that the cavity widens near the center of the 

membrane. The helix dipoles are also positioned very differently, in a parallel fashion, to help 

overcome the dielectric barrier which is the nature of the membrane. However, in this anion 

channel, the anti-parallel topology creates a selectivity filter for chloride ions. It is predicted that 

the reason for this vast difference in topology is because hydrophobic anions partition into 

membranes much more readily than hydrophobic cations, so channels transporting cations would 

need a much larger cavity to stabilize the cation (Dutzler et al., 2002). 

6.10 Effect of lipid composition on membrane protein topology 

 A factor largely ignored in this review is lipid composition and differences between inner 

and outer leaflet of the membrane (Vitrac, Bogdanov, & Dowhan, 2013). In 2013, Vitrac and 

colleagues found that when the composition of phosphatidylethanolamine (PE) was varied in a 

lipid environment, proteins were capable of complete inverted topology. Native and inverted 

conformations of lactose permease (LacY) from E. coli were found to exist in the membrane at 

the same time. Thermodynamically, dual topology is partially determined based off of the 
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inherent properties of the protein interaction with the lipids in the membrane. Studies both in 

vitro (Bogdanov, Xie, Heacock, & Dowhan, 2008; Vitrac et al., 2013) and in vivo (Bogdanov & 

Dowhan, 2012) show that through the manipulation of protein domain charge or lipid 

composition, dual topological arrangements of a protein can co-exist in the same membrane. It is 

important to keep in mind that membrane proteins not only evolve with time but in concert with 

lipid environments that can also affect topology between homologous proteins. 

6.11 Overcoming insufficient structural information 

 Many cases of internal repeat symmetry in membrane protein have been difficult to 

recognize until after structure determination (S. Choi et al., 2008; Khafizov et al., 2010). Often 

times, as shown in many of the aforementioned cases, the sequence identity is low because of 

such extensive sequence divergence despite maintaining structural symmetry. Because it is not 

feasible to determine the structure for all proteins of interest in order to detect symmetry, other 

physical properties have been employed to provide additional information towards the prediction 

of internal symmetry. In particular, hydropathy profiles have recently been used to detect internal 

symmetry of transporters (Khafizov et al., 2010). Instead of looking at raw sequence similarity, 

AlignMe (Khafizov et al., 2010; Stamm, Staritzbichler, Khafizov, & Forrest, 2013) takes into 

consideration the hydrophobicities of amino acids as a tool for alignment. The advantage is that 

physical properties like hydrophobicites will be more conserved over time and will match 

proteins that resemble each other chemically. This can improve the ability to detect internal 

symmetries where structural information is unavailable. 

The most obvious limiting factor in understanding more about membrane protein 

evolution and pseudo-symmetry is the limited number of known membrane protein structures. 

Table 6.2 displays proteins with detected internal symmetry in Choi et al (S. Choi et al., 2008). 
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Additional, selected membrane protein structures determined since 2007 were added, when 

symmetry was obvious. For these, we calculated Cα RMSD for the trans-membrane spanning 

helices using PyMol (The PyMol Molecular Graphics System) software. The OCTOPUS 

(Viklund & Elofsson, 2008) server was used to determine the location of the loops with respect 

to the membrane. Here, positive charge bias was calculated by the number of “inside” K and R 

residues minus the number of “outside” K and R residues. In Figure 6.4, six of these structures 

were chosen to visualize the symmetry from both side and top views with corresponding trans-

membrane helices colored accordingly. 

Table 6.2. Internal Symmetry in select membrane protein structures. 

Protein Name 

PDB 

ID 

#TM 

spans 

per unit 

% 

Identity 

Cα 

RMSD 

Symmetry 

Type 

Membrane 

Symmetry 

Axis 

Positive 

Charge 

Bias 

Cytochrome C 

Oxidase 

1OCCa 4 15.6 3 C3 Normal 6 

Formate 

dehydrogenase-N 

1KQFa 2 18.1 3.8 C2 Normal 21 

Mitochondrial 

ADP/ATP carrier 

10KCa 2 23.5 1.8 C3 Normal 16 

Rotor of V-type 

Na ATPase 

2BL2a 2 28.9 1.2 C2 Normal 5 

Spinach 

photosystem II 

1RWTa 1 23.1 3.3 C2 Normal 6 

BtuCD vit B13 

transporter 

1L7Va 2.5 21.5 3.4 Inverted 

C2 

Plane 7 

Bovine rhodopsin 1U19a 3 17.1 4.7 C2 Normal 11 

Archaerhodopsin-

2 

1VGOa 3 9.2 4.4 C2 Normal 7 

AQP1 water 

channel 

1J4Na 3.5 17.6 2.5 Inverted 

C2 

Plane 10 

http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
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Protein Name 

PDB 

ID 

#TM 

spans 

per unit 

% 

Identity 

Cα 

RMSD 

Symmetry 

Type 

Membrane 

Symmetry 

Axis 

Positive 

Charge 

Bias 

Glycerol 

Facilitator 

channel 

1FX8a 3.5 18.5 1.8 Inverted 

C2 

Plane 5 

H/Cl exchange 

transporter 

1KPKa 5 17.9 2.7 Inverted 

C2 

Plane 23 

Amt-I ammonia 

transporter 

2B2Fa 4.5 11.8 2.3 Inverted 

C2 

Plane 12 

LeuTAa leucine 

transporter 

2A65a 2.5 17.8 4.5 Inverted 

C2 

Plane 9 

AcrB bacterial 

multi-drug efflux 

transporter 

1IWGa 5 16.4 2.1 C2 Normal 16 

Nha Na/H 

antiporter 

1ZCDa 3 19.5 3.3 Inverted 

C2 

Normal 11 

CusA transporter 3K0I 5 21.9 (360 

Residues) 

3.46 C2 Normal 12 

AcrB bacterial 

multi-drug efflux 

transporter 

2HQF 3 17.9 (218 

Residues) 

3.679 C2 Normal 15 

Phosphate 

Transporter 

4J05 6 21.4 (131 

Residues) 

3.794 C2 Normal 2 

Formate Channel 3KCU 3.5 34.6 (122 

Residues) 

5.611 Inverted 

C2 

Plane 5 

Urea Transporter 4EZC 5.5 27.9 (147 

Residues) 

1.926 Inverted 

C2 

Plane 8 

a Membrane proteins from Choi et al 2007 

 

http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science/article/pii/S2001037014600167?via%3Dihub#tbl2fn1
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Figure 6.4. Superimposition of pseudo-symmetric halves. Five symmetric membrane proteins 

since 2007 are shown on the left as a monomer. The middle shows a view of the symmetry from 

the top. On the right, the pseudo-symmetric halves are superimposed to show the striking 

structural similarity. Cα RMSD for these proteins can be found in Table 6.2. 

 

 

In summary, inverted topology in membrane proteins could have evolved via multiple 

evolutionary routes. While symmetric self-association is known as a stabilizing factor for protein 

structure, inverted topology within membrane proteins adds an interesting twist to the puzzle as 

it implies dual topology membrane proteins, i.e. proteins that can insert into the membrane in 

both directions. However, it is also possible that attraction between the two protomers only 

evolved after gene duplication and after one copy of the gene underwent mutations that inverted 

its topology. Such symmetric interactions between almost identical proteins would still be 

energetically favorable as many residues in the interface would adhere to the symmetry 

condition. With insufficient evidence to prefer one route over the other, efforts continue to 

understand how inverted symmetry in membrane proteins evolved. 

 



 
 

174 

CHAPTER 7 

 

TOWARDS THE COMPUTATIONAL ENGINEERING AND DESIGN OF A STABLE, 

SYMMETRIC MEMBRANE PROTEIN 

This chapter contains unpublished content from A.M. Duran and J. Meiler. 

Author contribution: I designed experiments and analyses under the direction of Jens Meiler. I 

created scripts to generate engineered proteins by in silico circular permutation. I generated all of 

the computational models, data, and figures in this chapter. Xuan Zhang was trained by me for 

medium throughput expression screens for membrane protein. The expression tests in this 

chapter, Tables 7.5, 7.6 and 7.7 were performed by Xuan under my direction. 

7.1 Introduction 

Most proteins have fundamental folds that classify as one of the ten major superfolds 

(Thornton, Orengo, Todd, & Pearl, 1999). The existence of so few superfolds is likely due to the 

thermodynamic stability exhibited in these folds (Brych et al., 2004) despite the large amount of 

degrees of freedom involved in folding a protein. Common superfolds in proteins likely exist 

because nature chose to evolve the existing folded proteins as opposed to generating completely 

new folds (Andrade, Perez-iratxeta, & Ponting, 2001; Brych et al., 2004). Interestingly, six of the 

ten superfolds exhibit structural symmetry (Blaber et al., 2012; Brych et al., 2004).  

Symmetry in proteins aids in overcoming energy hurdles in conformational change 

pathways and can improve stability (Hoang et al., 2004; Wolynes, 1996). Structurally symmetric 

proteins are thought to be the result of gene duplication (Brych et al., 2004). In microorganisms 

alone, nearly 50% of genes are hypothesized to be the result of gene duplication events 

(Eisenbeis & Höcker, 2010). Although often times silenced (Lynch, 2000), gene duplicates are 
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thought to relieve selective pressure for its intended function and enables diversification for 

novel function (Söding & Lupas, 2003). The fusion event following duplication restricts 

translational and side chain entropy, which ultimately stabilizes the resulting protein (Eisenbeis 

& Höcker, 2010). Over time, sequence divergence diversifies the sequence for additional protein 

functions while maintaining the overall architecture of the protein through key residue contacts. 

Because of sequence divergence, it is often difficult to immediately detect proteins that have 

undergone gene duplication and fusion events. Motifs called internal repeats cores (IRC) help to 

identify possible duplicated genes. IRCs often are found at the interface of the symmetric units 

(S. Choi et al., 2008). Proteins that exhibit structural symmetry despite divergent amino acid 

sequences are proposed to be the result of gene duplication, fusion, and diversification events. 

 Membrane proteins often have IRCs at the interface between two halves. A study in 2008 

found that nearly half of known α-helical membrane proteins were detected to have internal 

repeat symmetry (S. Choi et al., 2008). Types of structural symmetry include n-fold rotational or 

cyclic symmetry and inverted symmetry. Despite the abundance of membrane proteins with 

inverted two-fold pseudo-symmetry, homo-dimers with inverted symmetry seem to be rare. For 

this to occur, it would require dual topology which is a property where the membrane protein can 

exist in both orientations in the same membrane and environmental conditions (Crisman et al., 

2009; Granseth, 2010).  

The dual topology phenomenon is highly controversial. The homo-dimeric efflux-

multidrug transporter from Escherichia coli (E. coli), EmrE has been studied extensively for dual 

topology (Granseth, 2010). One nuclear magnetic resonance study suggested that EmrE is 

capable of existing in either orientation because they are energetically similar (Morrison et al., 

2012). Because EmrE has four trans-membrane spans, it would not readily create an inverted, 
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symmetric topology. Small membrane proteins with an odd number of helices and little positive 

charge bias make ideal candidates for dual topology (Rapp et al., 2006) as they can be oriented in 

the membrane without disobeying the positive-inside rule, and because the topologies have 

similar energies (Crisman et al., 2009; Forrest et al., 2008). The positive-inside rule is described 

where positively charged amino acids, Lysine and Arginine, tend to be positioned towards the 

inside of the cell versus in the membrane and outside of the cell (G von Heijne & Gavel, 1988). 

To examine this, one study engineered a protein with a charge bias of nearly zero to be charged 

which resulted in a flip in the orientation of the protein in the membrane (Rapp, Seppälä, 

Granseth, & von Heijne, 2007). In evolution, it is possible that a small amount of mutations 

could create a preferred topology for these dual topology proteins (Duran & Meiler, 2013) giving 

rise to the symmetric, inverted topologies we see today (Schuldiner, 2009). 

 Pseudo-symmetry has been described as a protein architecture that is mostly symmetric in 

structure, but asymmetric in sequence (Forrest et al., 2008). Recent advances in structural 

techniques have revealed that many membrane protein structures exhibit inverted pseudo-

symmetry. If gene duplication and fusion was an evolutionary route for inverted topologies, then 

monomers are presumed to have inserted into the membrane in both orientations and assembled 

in an anti-parallel manner, implicating a possible dual-topology.  

Aquaporins are a type of membrane proteins that have been shown to exhibit pseudo-

symmetry (Duran & Meiler, 2013). Aquaporins are channel proteins whose primary function is 

the transport of water and small molecules, such as glycerol in the case of glyceroaquaporins, 

across the membrane. Inverted symmetry is advantageous for the formation of a symmetric 

pathway across the channel (Forrest & Rudnick, 2009). However, because transport through the 

channel is permeation instead of a two-switch conformational change, the advantage of inverted 
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symmetry is largely for stability of the protein. Additionally, aquaporins are a great example of 

symmetry observed on a single polypeptide chain. They are made up of six trans-membrane 

spanning helices and two half-spanning helices with the symmetric unit being three and a half 

helices. E. coli’s aquaglyceroporin the glycerol facilitator protein (GlpF) (Daxiong Fu et al., 

2000) was the first high resolution example of inverted topology (James U Bowie, 2013). For 

GlpF, the α carbon root mean square deviation between the two halves of the single chain is 1.8 

Angstroms and the amino acid sequence identity of the symmetric halves was calculated to be 

18.2% (S. Choi et al., 2008). 

Protein design that utilizes symmetry and symmetric assembly of proteins is appealing 

for the design of larger, symmetric complexes. Previously, our lab successfully designed a 

sequence symmetric variant of a TIM-barrel protein (Fortenberry et al., 2011).  The resulting 

symmetric protein was name FLR. The X-ray crystallographic structure of FLR was within 0.87 

Å of the computationally predicted model. The computational approach involved modeling 

sequence symmetric variants of the imidazole glycerol phosphate synthase (HisF) protein in the 

molecular modeling software Rosetta and selecting models with the lowest Rosetta energy score. 

This approach can easily be applied to membrane protein systems because Rosetta has an energy 

function specifically for modeling membrane proteins (Barth et al., 2007; Yarov-Yarovoy et al., 

2006). Because of their high degree of structural pseudosymmetry, aquaporins are an ideal 

protein with which to engineer sequence and structure symmetric membrane protein variants.  

 I took several approaches at computationally engineering and designing GlpF using 

feedback from experimental studies involving the expression and purification of symmetric 

variants. Details of these approaches can be found in Appendix H. Herein, I used the backbone 

and sequences from 13 unique aquaporin structures, including a sub-angstrom structure 
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(Eriksson et al., 2013), to engineer and model thousands of symmetric variants from multiple 

backbones.  

 The protein engineered in this study will give insight for whether a membrane protein is 

capable of dual topology. Additionally, the asymmetric unit of the engineered protein will also 

be expressed which can test self-attraction and assembly of multiple symmetric membrane 

protein units (in this case, two units). If the asymmetric unit is seen in both orientations, it would 

argue against the current proposed mechanisms for insertion and folding of membrane proteins 

into the membrane. 

7.2 Methods 

For preparation of structural alignment between the inverted halves, the asymmetric units 

were created from 12 aquaporin backbones (Table 7.1). To determine where in the sequence to 

halve each protein, the start and end of each transmembrane (TM) helix were determined (Table 

7.2). Two asymmetric units were created for each protein by cutting at a position between TM4 

and TM5. For each protein, the two symmetric units were input into the MAMMOTH structural 

alignment program (Ortiz & Strauss, 2002) to superimpose the asymmetric units in order to 

acquire the coordinates necessary to create an inverted version of the original protein. The c-

alpha RMSD calculated between the two asymmetric units was reported (Table 7.3). 
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Table 7.1. Aquaporin sequences and backbones used in the construction of engineered proteins. 

PDB Name Species Resolution 

1FQY AQP1 red blood cell aquaporin water 

channel 

Homo sapiens 3.8 

1FX8 Glycerol facilitator channel Escherichia coli 2.2 

1J4N AQP1 aquaporin red blood cell water 

channel 

Bos taurus 2.2 

1RC2 AqpZ aquaporin water channel Escherichia coli 2.5 

1YMG AQP0 aquaporin water channel Bos taurus 2.24 

2B6P AQP0 aquaporin sheep lens junction Ovis aries 1.9 

2D57 AQP4 aquaporin rat glial cell water channel Rattus norvegicus 3.2 

2F2B AqpM aquaporin water channel Methanothermobacter 

marburgensis 

1.68 

3C02 PfAQP aquaglyceroporin Plasmodium falciparum 2.05 

3D9S AQP5 aquaporin water channel Homo sapiens 2.0 

3GD8 AQP4 aquaporin water channel Homo sapiens 1.8 

3ZOJ Aqy1 yeast aquaporin Pischia pastoris 0.88 

4NEF AQP2 Aquaporin from kidney Homo sapiens 2.75 

 

Table 7.2. Transmembrane helix starting and ending residues for each backbone. TM3 and TM7 

span only half of the membrane. 

 

PDB TM1 TM2 TM3 TM4 TM5 TM6 TM7 TM8 

1FQY 5-26 44-59 70-77 87-108 130-151 160-175 186-193 202-223 

1FX8 3-27 37-52 63-72 82-103 139-163 175-190 199-208 228-249 

1J4N 12-32 54-72 79-88 96-118 139-159 170-188 195-204 211-233 

1RC2 5-25 38-57 64-71 81-104 131-151 161-180 189-196 202-225 

1YMG 5-26 38-56 63-72 80-99 122-143 154-172 179-188 195-214 

2B6P 9-30 42-61 67-76 84-103 126-147 158-177 183-192 199-218 

2D57 5-26 43-58 68-77 86-104 126-147 159-174 184-193 201-219 

2F2B 4-27 57-74 83-92 97-122 143-166 174-191 200-209 219-244 

3C02 2-24 36-53 64-73 81-103 127-149 159-176 187-196 213-235 

3D9S 10-32 45-64 70-79 87-108 128-150 161-180 187-196 203-224 

3GD8 3-25 41-60 67-76 84-105 125-147 158-177 183-192 199-220 

3ZOJ 11-33 52-73 79-88 95-116 134-156 163-184 190-199 207-228 

4NEF 8-30 42-62 68-77 84-106 126-148 158-178 184-193 200-222 
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Table 7.3. Results of MAMMOTH structural alignment of asymmetric units for each backbone. 

The residues around the cutpoint for creating asymmetric units is reported along with the 

resulting c-alpha RMSD, in angstroms, and the number of residues aligned. 

 

PDB Asymmetric 

cutpoint 

Mammoth 

align 

(Å) 

Residues 

aligned 

1FQY 120-121 3.95 174 

1FX8 131-132 3.98 158 

1J4N 127-128 3.74 162 

1RC2 117-118 3.91 180 

1YMG 111-112 3.09 179 

2B6P 118-119 3.4 178 

2D57 117-118 3.62 200 

2F2B 134-135 3.25 153 

3C02 118-119 3.75 199 

3D9S 119-120 3.58 193 

3GD8 116-117 2.82 190 

3ZOJ 127-128 3.72 139 

4NEF 118-119 3.8 191 

 

The coordinates from the native protein and the inverted protein were then used to 

construct symmetric variants. Symmetric variants were engineered using an approach similar to 

circular permutation. Each helix on the N-terminal side of the protein had a helix on the C-

terminal side with which they were superimposed when aligning native to inverted protein. 

These helix partners will be referred to as symmetric counterparts. The alignments of the 

symmetric counterparts were trimmed so that the TMs in each pair were of the same length. 

These residue pairs were used to create a list of all possible cutpoints for creating a symmetric 

backbone from the native and inverted backbones for each protein. To ensure exhaustive 

sampling of backbone and allow additional flexibility with the residue pairs, two additional sets 

of residue pairs were created for plus one and minus one sequence positions to overcome any 

poor structural alignments.  
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 Cutpoints for assembling the engineered protein from native and inverted structures are 

best selected when residue pairs are close in space to avoid offsetting the backbone. The c-alpha 

distance between all determined residue pairs were calculated. Several c-alpha distance values 

were used as a threshold to determine how many symmetric variants would result from each 

cutoff. The final threshold for allowing the construction of symmetric variants from residue pairs 

was 3.5 angstroms (Table 7.4). 

Table 7.4. Threshold values for c-alpha distance between residue pairs considered as cutpoints. 

The resulting number of symmetric variants that would result from all 13 backbones was 

reported. 

Threshold Number of structures 

1 172 

1.5 370 

2 570 

2.5 763 

3 1006 

3.5 1302 

4 1673 

 The 1302 symmetric backbones were constructed by concatenating the appropriate 

fragments from native and inverted coordinates (Figure 7.1) using Python. Dualspace relax 

(Conway et al., 2014) along with RosettaMembrane was used to idealize bond lengths in the gap 

regions between fragments 20 times for each symmetric backbone. RosettaMembrane and the 

score_jd2 application were then used to determine the energies of each symmetric variant model. 

The total Rosetta energy was normalized for comparison across symmetric variants of varying 

lengths. These energies were compared to the normalized Rosetta energy of their respective 

native protein. Additionally, the symmetric energy of the native protein was calculated by the 

sole inclusion of the energy of relevant fragments from the native protein structure that were 

used to construct the protein. Then the normalized Rosetta symmetric energy of the native 

protein was subtracted from the normalized total Rosetta energy from the symmetric variant. 
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Figure 7.1 Construction of symmetric backbones from native and inverted native structure 

coordinates. For an engineered GlpF protein with cutpoints at 97 and 243, the start and end of the 

asymmetric unit are at residue positions 97 and 243, respectively. In order to have a complete 

helix from a continuous fragment, the new asymmetric unit becomes residues 138-243, 97-137. 

This asymmetric unit is duplicated to create a symmetric variant backbone. 

 

 Normalized total and symmetric energy differences from native were plotted for each 

symmetric variant. Variants with negative values for both calculations were considered further as 

candidates for experimental validation. The normalized score for all score terms were plotted to 

evaluate the driving force behind the negative scores. For backbones based on 1FX8, the 

Menv_smooth term, a term added to smooth the potential rather than represent physical features, 

was the driving force. It was determined that the best way to identify ideal candidate symmetric 

variants was to use a weighted sum of the normalized total and normalized symmetric energy 

differences. The normalized symmetric energy differences were given a weight of 0.75 while the 

normalized total energy differences were given a weight 0.25. The symmetric variants with the 

lowest weighted sum of normalized energy differences were consider as candidates for further 

analysis. 
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 Favor Native Residue and Favor Symmetric Sequence bonuses were used to explore the 

sequence space of the mutations. Favor Native Residue bonuses of 0.5, 0.75, 1, 1.25, and 1.5 

were used along with a constant Favor Symmetric Sequence bonus of 1 were used to redesign all 

symmetric variant candidates. The sequence recovery rate was calculated for the best and worse 

scoring designs, and the sequence recovery rate of the worst was subtracted from the sequence 

recovery rate of the worst best design for each backbone. Backbones with a difference in 

sequence recovery rates that were positive across the various bonuses were selected as 

candidates for experimental studies.  

 The individual backbones were analyzed by the number of mutations and the resulting 

change in energy between the symmetric backbone and the symmetrically mutated symmetric 

backbone. The single symmetric mutations were analyzed to determine the degree of their energy 

contribution. Those with little to no improvement in energy compared to the original symmetric 

backbone were selected as candidate for symmetric variants. 

 With the top 20 symmetric variants identified from the studies above, the amino acid 

sequences of the asymmetric unit for each backbone was extracted. The DNA sequence for the 

asymmetric unit was optimized for E.coli expression on GenScript’s website. The asymmetric 

genes were ordered from GenScript in the pUC19 vector. The asymmetric gene was assembled 

as a dimer into the pBG100 vector using SLIC (CITE). SLIC primers were designed manually 

and the analyzed using clonemanager. The assembled genes in pBG100 were sequence verified. 

The pBG100 with assembled symmetric genes were transformed into BL21 (DE3), BL21 

(DE3) STAR, BL21 (DE3) pLysS, Rosetta (DE3), Rosetta2 (DE3) pLysS, C-41 (DE3), and C-41 

(DE3) pLysS host strains. Expression tests were performed using a medium-throughput approach 

that involves 10 mL glass test tubes containing 5 mL of LB broth and 10 µL of an overnight 
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starter culture in LB grown at 37C. Cultures were grown in 37C for several hours until it reached 

an OD600 of between 0.5 and 0.7 at which point cultures were induced with 1 mM IPTG. Post-

induced, cultures were grown either in 37C for 4 hours, or 25C for 12 hours. At the point of 

harvesting, the OD600 was recorded. The samples were normalized based on recorded OD600 

and run on a 12% gel. Western blot was conducted using an anti-his antibody for detection of 

his-tagged proteins in pre-induction and post-induction whole cell lysates. Protein identification 

by mass spectrometry of trypsin-cleaved samples was performed by the Vanderbilt Mass 

Spectrometry Core. 

7.3 Results and discussion 

 From 13 aquaporin sequences and backbones, 1302 symmetric backbones were created 

with cutpoints where symmetric counterparts were no further than a distance of 3.5 Angstroms. 

The Rosetta score in Rosetta energy units (REU) was normalized by protein length to determine 

the change in REU per amino acid by subtracting the REU per amino acid of the native protein 

minus the REU per amino acid of the symmetric backbone. These values were plotted for each 

original 13 protein backbones with the symmetric backbones ordered such that cutpoints were in 

sequence order (Figure 7.2). 
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Figure 7.2. Energetic analysis of all symmetric backbones. Symmetric variants are grouped by 

native protein and ordered by cut point in the sequence. The units showed are normalized Rosetta 

energy (REU/amino acid). For each protein, oscillations are visible for regions in the protein that 

are ideal cut points (lower energy) versus regions that are not ideal. 

 

 Of the 1302 symmetric backbones, only 77 resulted in relaxed models that score better 

than the native protein from which they were based (Figure 7.3). Only seven of the original 13 

backbones, 1FX8, 1YMG, 2D57, 3C02, 3D9S, 3GB8, and 3ZOJ have symmetric variants that 

resulted in an improved Rosetta score. In many cases, the standard deviation of the change in 

REU per amino acid would be in a reach close to zero. When a threshold was set for the average 
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of the change of REU per amino acids to below -0.1, only 21 symmetric variants remained from 

three of the original backbones, 1FX8, 3C02, and 3ZOJ. (Figure 7.4). 

 

Figure 7.3. The normalized change in Rosetta energy (ΔREU/Amino Acid) was calculated for all 

symmetric backbones and native proteins. Only symmetric backbones that showed an improved 

score compared to the native protein are plotted here. Bars represent the standard deviation 

between the calculated values for the top 10 percent of relaxed models for each symmetric 

variant.  

 

 

Figure 7.4. The normalized change in Rosetta energy (ΔREU/Amino Acid) for symmetric 

backbones that showed an improved score of 0.1 or more when compared to the native protein 

are plotted here. Bars represent the standard deviation between the calculated values for the top 

10 percent of relaxed models for each symmetric variant. 
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 However, the native protein energy may not be sufficient to determine whether the 

symmetric variant is an improvement. As shown in Figure 7.1, not all fragments of the native 

protein are used for the construction of each symmetric variant. Therefore, the native proteins 

were rescored such that only the fragments used in the respective symmetric construction 

contributed to the normalized score. The normalized difference in symmetric score was plotted 

with the standard normalized difference in score to determine if there was a correlation (Figure 

7.5). Only symmetric backbones with scores that were improved from the native using the 

standard normalized difference in score were used for this analysis. Models that fell into 

quadrant III were considered to be ideal candidates as the values for both were negative 

indicating that the symmetric variant is more stable than the native protein as it is as well as the 

fragments used from the native protein for symmetric construction. 

 Interestingly, 2D57 symmetric variants were in quadrant III and were near the diagonal, 

indicating that 2D57 symmetrically calculated normalized difference in score correlated well 

with the standard normalized difference in score values. Symmetric variants for 3ZOJ were 

clearly scored better using the standard normalized difference in score as all variants for this 

protein fell above the diagonal. Symmetric variants for 1FX8 were split into two groups where 

one group was above the diagonal in quadrant II and the other group was below the diagonal in 

quadrant III. However, both of these groups had their own positive correlation between the 

calculated differences in energy. Symmetric variants for 3C02 also split into two groups, 

however, these groups did not show a strong correlation in this manner. 
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Figure 7.5. Correlation plot of the normalized difference in the calculated symmetric score and 

standard Rosetta score. Potential candidates can be identified in quadrant III. 

 

 The symmetric variants from quadrant III in Figure 7.5 were extracted and the score 

differences for normalized standard Rosetta score and normalized symmetric score were plotted. 

A few 1FX8 symmetric variants constructed an N-terminal asymmetric unit had negative scores 

for both normalized standard Rosetta and normalized symmetric scores; however, the symmetric 

scores were much closer to zero than the normalized standard Rosetta scores. For 2D57, the 

symmetric variants constructed from an N-terminal asymmetric unit had much better normalized 

symmetric scores than normalized standard Rosetta scores, while the symmetric variants that 
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were constructed from a C-terminal asymmetric unit had similar normalized Rosetta scores and 

normalized symmetric scores. 

 

 
Figure 7.6. Difference in score between symmetric variants in quadrant III and the respective 

native proteins using the normalized standard Rosetta score and normalized symmetric score.  

 

 The normalized standard Rosetta score of the native protein was subtracted from the 

normalized symmetric score calculated for the native protein based on fragments used to 

construct the symmetric variant. Therefore, values above the x-axis are when the normalized 

standard Rosetta score for the native protein is better than the normalized symmetric score, 

whereas values below the x-axis indicate that the normalized symmetric score is better than the 

normalized standard Rosetta score (Figure 7.7). Interestingly, for symmetric variants of 1FX8 

constructed from an asymmetric unit on the N-terminal side, the normalized symmetric score is 

better than the normalized standard Rosetta score; however, for variants of 1FX8 constructed 

from an asymmetric unit on the C-terminal side, the normalized standard Rosetta score was 

better than the normalized symmetric score. The N-terminal side of 1FX8 has an additional 

structured region in the loop which could account for this change in direction.  

All of the 3ZOJ native scores are below the x-axis, so this could explain why the 

symmetric score of the symmetric variants was not able to overcome a much better native score 

whereas 1FX8 symmetric variants constructed from a C-terminal region had more ideal 

candidates from the normalized symmetric score because the symmetric versions of the native 
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1FX8 scored worse than the standard Rosetta native score (Figure 7.5). Additionally, the 

difference between the native scores for 2D57 are close to zero in all cases which supports the 

strong correlation on the diagonal in Figure 7.5 for the comparison of normalized symmetric and 

normalized standard Rosetta score for symmetric variants. 

 

 
 

Figure 7.7. Calculated difference in REU per amino acid for native proteins. Symmetric scores 

were calculated from the native proteins based on fragments used in construction of the 

symmetric backbones and normalized by size of the protein. The normalized standard Rosetta 

score is subtracted from the normalized symmetric score to obtain the values plotted here. Values 

above the x-axis indicate that the normalized standard Rosetta score is better than the normalized 

symmetric score, whereas values below the x-axis indicate that the normalized symmetric score 

is better than the normalized standard Rosetta score. 

 

 Although the plot above showed a nice correlation between normalized symmetric and 

normalized Rosetta scores (Figure 7.5), it may have been an artifact of insufficient relaxation 

because of the observed clustering of similar models in the same energy space. Models were then 

relaxed an additional 25 times. This resulted in a correlation plot that still had clusters of the 

same native proteins, but the correlation was unsuspiciously absent (Figure 7.8). Quadrant III 

contained symmetric variants from 3ZOJ, 1FX8, 2D57, and 3GD8. Although more spread out, 
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there were still clear correlations on the diagonal including scores from symmetric variants of 

1FX8 and 2D57. Symmetric variants for 3ZOJ appeared to be positively correlated but above the 

diagonal meaning that the normalized standard Rosetta score was better than the normalized 

symmetric score. 

 

 
Figure 7.8. Correlation plot of the normalized difference in the calculated normalized symmetric 

score and normalized standard Rosetta score. Positive correlations can be seen in 1FX8 and 

3ZOJ. Potential candidates can be identified in quadrant III. 

 

 With the additional relaxation trials, native proteins were also relaxed to have a fair 

energy comparison. While this created more diversity in the models which is apparent through 
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the scattered scores in Figure 7.8, it shifted many of the symmetric backbones over the y-axis 

leaving few candidates for experimental testing. However, the aggressive relaxation approach 

may have also created additional noise in the dataset. The normalized standard Rosetta scores 

resulting in comparison to residues in an even more optimal conformation, many of which were 

not representative of the symmetric variants. It is likely that the normalized symmetric scores are 

more reliable than the normalized standard Rosetta scores. To account for this, the normalized 

symmetric score was weighted by 0.75 while the normalized standard Rosetta score was 

weighted by 0.25 (Figure 7.9). 

 Down weighting the normalized standard Rosetta score collapsed the range of scores and 

causes nearly every symmetric backbone to have a normalized standard Rosetta score of close to 

zero. However, this graph does show that despite the significant down weighting, at normalized 

symmetric scores above 0.1, the normalized standard Rosetta score is also positive, indicating a 

poor choice as a candidate for experimental studies. Good candidates are still likely to be in 

quadrant III; however, because of the down weighting of the normalized standard Rosetta score, 

candidates just over the y-axis can be considered with little penalty. Additionally, any very low 

weighted, normalized standard Rosetta scores with a normalized symmetric score of near zero 

could be considered as a candidate. The weighted scores were combined to create a weighted 

sum of scores where 75% of the score comes from the normalized symmetric score while 25% of 

the score comes from the normalized standard Rosetta score. From the weighted sum analysis, 18 

candidates were identified (Figure 7.10). 
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Figure 7.9. Weighted normalized symmetric and standard Rosetta scores. Symmetric scores had 

a weight of 0.75 while the standard Rosetta score had a weight of 0.25. Below the diagonal are 

the symmetric backbones of interest with either a negative symmetric score and near zero 

standard Rosetta score or a near zero symmetric score and a negative standard Rosetta score. 

 

 Symmetric backbones that are in the ranges to qualify as ideal candidates include 

symmetric variants of 1FX8, 2D57, 3C02, 3GD8, and 3ZOJ. A total of 45 symmetric backbones 

had a weighted sum of normalized scores of nearly zero or less than zero (Figure 7.10). A 

mixture of symmetric variants of 1FX8 that were constructed from both N-terminal and C-
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terminal asymmetric units had a weighted sum of normalized change in scores of less than -0.06. 

Of only two symmetric variants of 2D57 constructed from an N-terminal asymmetric unit, one, 

9_130, had a weighted sum of nearly zero whereas 46_162 had a weighted sum of less than -

0.06. Interestingly, there were three variants with starting cutpoints in the range of 76-78. The 

2D57 76_191 variant had a weighted sum of less than -0.02; the 2D57 77_193 variant had a 

weighted sum of nearly -0.12; and the 2D57 78_194 variant had a weighted sum of nearly zero. 

This is a good example of how a shift in the frame for an asymmetric unit by only one residue 

can result in a vastly different engineered protein energetically. The only symmetric variant for 

3C02 and the variants of 3GD8 had a weighted sum of nearly zero. Only variants constructed 

from the N-terminal half of 3ZOJ had a weighted sum less than zero and the range of weighted 

sums for these ranged from nearly zero to -0.08.  

 
Figure 7.10. Weight sum of normalized symmetric and standard Rosetta scores. The weighted 

sum was calculated for symmetric variants where symmetric scores had a weight of 0.75 while 

the standard Rosetta score had a weight of 0.25. Symmetric variants with a weighted sum of 

nearly zero or less are presented here.  

 

 The top 20 symmetric variants were selected by the lowest weighted sum of normalized 

symmetric and standard Rosetta scores. The sequence space of the symmetric variants was 

explored using Rosetta fixed backbone design with a scoring bonus that favors the native, in this 

case original residue from symmetric variant, residue (Favor Native Residue, FNR) along with a 

scoring penalty that disfavors internal asymmetric sequences (Favor Symmetric Sequence, FSS). 
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In separate design experiments, FNR was varied at bonuses of 0.5, 0.75, 1, 1.25, and 1.5 while 

the FSS penalty was set at 1. For each symmetric backbone and varied FNR bonus, the top and 

bottom designs by Rosetta score were selected and analyzed using sequence recovery. The 

difference in sequence recovery between favorably scoring and poorly scoring designs was 

calculated for each of the top 20 symmetric backbones (Figure 7.11). 

 Positive scores for the difference in sequence recovery indicate that the design models 

that scored best in Rosetta resulted in a sequence closer to the original symmetric backbone. This 

suggests that the sequence from the original symmetric backbone is relatively optimal, and that 

the Rosetta score discriminates well between good and poor quality designs. For 1FX8, 

symmetric variants constructed from C-terminal asymmetric units had positive scores for all 

FNR bonuses indicating that the designed sequences from the best scoring models were closer to 

the original sequence than design models that scored poorly. Interestingly, the symmetric 

variants constructed from N-terminal asymmetric units had negative or nearly zero difference in 

sequence recovery. For symmetric variants of 2D57, the three with the closest cutpoints, 87_201, 

87_202, and 91_205, had positive values calculated for difference in sequence recovery. This 

could indicate that this region of 2D57 is optimal for creating asymmetric units. Finally, 3ZOJ 

had a mix of positive, near zero, and negative values for calculated differences in sequence 

recovery. While all variants were constructed from an N-terminal asymmetric unit, the two 

closest to the N-terminus had mostly positively values. 
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Figure 7.11. Exploring the sequence space of the top 20 symmetric variants by lowest weighted 

sum of normalized scores. Each symmetric backbone underwent fixed backbone design with a 

penalty for internal asymmetric mutations and varying bonuses for favoring the original 

sequence (FNR). An FNR of 0.5 indicates it is favoring the original sequence the least whereas a 

bonus of 1.5 favors the original sequence the most. The resulting best and worst models by 

Rosetta score were selected for each trial, and the sequence recovery was calculated. The 

sequence recovery of the worst scoring designed model was subtracted from the sequence 

recovery of the best scoring designed model. 

 

 Variants tested were identified on the original correlation plot for weighted normalized 

symmetric and standard Rosetta scores. The variants that had a positive difference in sequence 

recovery, therefore optimal sequences, are shown mostly in quadrants III and IV. 
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Figure 7.12. Location of symmetric variants in weighted normalized symmetric and standard 

Rosetta score correlation plot. Symmetric variants that were identified to have relatively optimal 

sequences from sequence recovery experiments are shown as positive. Those with nearly zero 

difference in sequence recovery between good and poorly scoring models are labeled as Near 

zero, while poorly scoring models with better sequence recovery than good scoring models are 

labeled as negative. Symmetric variants that did not undergo design experiments are labeled as 

not tested.  

 

 The energy contribution of each pair of symmetric mutations was calculated. The energy 

contribution was determined by the normalized change in REU between the symmetric backbone 

and designed symmetric backbone. As a pair of symmetric mutations is added, the energetic 

contribution of the mutations increased by lowering the energy of the design protein, as 
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expected. However, this analysis was to identify whether a single pair of symmetric mutations is 

worth the energetic cost alone, as well as to determine how many symmetric pairs of mutations 

are required to reduce the energy consistently (Figure 7.13). This was also plotted for all of the 

top 20 symmetric backbones individually (Appendix H). For nearly all symmetric backbones, 12 

symmetric mutations, a total of 24 mutations, were sufficient to consistently lower the energy of 

the designs beyond that of the symmetric backbone. As seen in the first stages of design, the 

initial 10 symmetric mutations came at a cost on their own, but with each addition of a 

symmetric mutation, the mutations overcame the cost of the barrier to effectively lower the 

energy of the designed protein.  
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Figure 7.13. The normalized energy contribution for the number of mutations exhibited in 

designs of symmetric backbones in 1FX8 (top), 2D57 (middle), 3ZOJ (bottom). The number of  

mutations are stepwise by two because each mutation happened twice, once in each half.  

 

From these studies, the top 20 symmetric variants were selected using a weighted sum of 

normalized symmetric energy and standard Rosetta score. The top 20 symmetric variants were 

designed while maintaining sequence symmetry. The best scoring versus worst scoring sequence 

recoveries was calculated and the difference was attributed to how discriminating the Rosetta 

score was for each backbone as well as how favorably Rosetta scored the original backbone 

sequence. Of the top 20, eleven had both relatively optimal sequences and discriminatory power 

between best and worst scoring designs. An additional six had nearly zero differences between 

best and worst scoring designs. The top 20 were then analyzed to determine the energetic cost of 

designs with respect to the number of symmetric designs. It was determined that the energetic 

cost of up to 10 symmetric mutations, 20 total mutations, was not sufficient to lower the 

normalized Rosetta score of symmetric backbones. However, 12 and up to 30 symmetric 

mutations lower the energy compared to the original symmetric backbone. This is the case for all 

of the top 20 symmetric backbones, as such, all were tested experimentally. 

 Expression tests were done on all 20 symmetric assembled genes under a number of 

different expression conditions that varied the host strain, induction temperature, and in a few 

cases the expression vector (Table 7.5). Ultimately, Western blotting for a his-tag verified an 

induction band for six constructs. Expression conditions were further optimized for these six 

constructs for variables including induction temperature, amount of IPTG at induction, OD600 at 

induction, and induction time (Table 7.6). From this expression screen, Western blotting revealed 

the optimal conditions for each of the six constructs (Table 7.7).  Unfortunately, mass 

spectrometry did not identify our proteins of interest in any of the bands.  
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Table 7.5. Conditions tested for the 20 symmetric backbone constructs. Constructs with lower 

energy models were prioritized for extensive testing. Variables include host strain, induction 

temperature (Ind. Temp), and expression vectors. 

 

Construct Host strain Ind. 

Temp. 

C 

Expression 

Vector 

Comments on the best 

expression condition 

1FX8_99_245 BL21,BL21_Plyss, 

Rosetta_Plyss, 

C41_PLyss 

25, 37 PBG100 PBG100_BL21_Plyss, 

Rosetta_Plyss@25°C 

induction show induced bands 

2D57_100_214 BL21,BL21_Plyss, 

Rosetta_Plyss, 

C41_PLyss 

25, 37 PBG100, 

pET21b 

PBG100_BL21_Plyss@ 25°C 

induction show induced bands 

2D57_77_193 BL21,BL21_Plyss, 

Rosetta_Plyss, 

C41_PLyss 

25, 37 PBG100, 

pET21b 

PBG100_BL21_Plyss, 

Rosetta_Plyss@25°C 

induction show induced bands 

3ZOJ_13_137 BL21,BL21_Plyss, 

Rosetta_Plyss, 

C41_PLyss 

25, 37 PBG100, 

pET21b 

PBG100_BL21_Plyss, 

Rosetta_Plyss@25°C 

induction show induced bands 

1FX8_102_248 BL21_Plyss, 

C41_Plyss, 

Rosetta_Plyss, C43 

25 PBG100 PBG100_C41_Plyss@ 25°C 

induction show induced bands 

1FX8_102_249 BL21_Plyss, 

C41_Plyss, 

Rosetta_Plyss, C43 

25 PBG100 PBG100_C41_Plyss, C43@ 

25°C induction show induced 

bands 

1FX8_6_143 BL21_Plyss, 

C41_Plyss, 

Rosetta_Plyss, C43 

25 PBG100 PBG100_C43 @25°C 

induction show induced bands 

1FX8_7_142 BL21_Plyss, 

C41_Plyss, 

Rosetta_Plyss, C43 

25 PBG100 None 

1FX8_95_241 BL21_Plyss, 

C41_Plyss, 

Rosetta_Plyss 

25 PBG100 None 

1FX8_98_245 BL21_Plyss, 

C41_Plyss, 

Rosetta_Plyss 

25 PBG100 None 

2D57_46_162 BL21_Plyss, 

C41_Plyss, 

Rosetta_Plyss 

25 PBG100 None 

2D57_87_201 BL21_Plyss, 

C41_Plyss, 

Rosetta_Plyss 

25 PBG100 None 

2D57_87_202 BL21_Plyss, 

C41_Plyss 

25 PBG100 None 
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2D57_91_205 BL21_Plyss, 

C41_Plyss 

25 PBG100 None 

3ZOJ_16_140 BL21_Plyss, 

C41_Plyss 

25 PBG100 None 

3ZOJ_19_143 BL21_Plyss, 

C41_Plyss 

25 PBG100 None 

3ZOJ_21_144 BL21_Plyss 25 PBG100 None 

3ZOJ_24_147 BL21_Plyss 25 PBG100 None 

3ZOJ_28_151 BL21_Plyss 25 PBG100 PBG100_BL21_Plyss@ 25°C 

induction show induced bands 

3ZOJ_29_152 BL21_Plyss 25 PBG100 None 

 

Table 7.6. The six best constructs identified by Western blotting were further optimized for 

expression. The expression conditions screened included induction temperature, the OD600 at 

induction, concentration of IPTG, and the length of the induction period. 

 

Construct Host strain Expression 

Vector 

Induction 

Temp. C 

Induction  

OD600 

IPTG 

Conc 

(mM)) 

Post-

induction 

time (h) 

1FX8_102_248 C41_Plyss PBG100 25, 30, 

37,16 

0.2, 0.4, 

0.6, 0.8 

0.2, 

0.4, 

0.6, 

0.8, 

1.0 

2, 4, 6, 

O/N 

1FX8_102_249 C43 PBG100 25, 30, 

37,16 

0.2, 0.4, 

0.6, 0.8 

0.2, 

0.4, 

0.6, 

0.8, 

1.0 

2, 4, 6, 

O/N 

1FX8_6_143 C43 PBG100 25, 30, 

37,16 

0.7 0.6, 

1.0 

4, O/N 

1FX8_99_245 Rosetta_Plyss PBG100 25, 37 0.2, 0.4, 

0.6, 0.8 

0.8 2, 4, 6, 

O/N 

2D57_77_193 Rosetta_Plyss PBG100 25, 30, 37 0.8 0.6, 

1.0 

4, O/N 

3ZOJ_28_151 BL21_Plyss PBG100 25, 30, 

37,16 

0.2, 0.4, 

0.6, 0.8 

0.2, 

0.4, 

0.6, 

0.8, 

1.0 

2, 4, 6, 

O/N 
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Table 7.7. Optimized expression conditions for the six best constructs. The final optimized 

conditions from screening in Tables 7.5 and 7.6 resulted in identifying the following conditions 

as optimal. 

 

  1FX8 

102_248 

1FX8 

102_249 

1FX8 

6_143 

1FX8 

99_245 

2D57 

77_193 

3ZOJ 

28_151 

Induction 

Temp. C 

25 30 30 37 30 37 

Induction 

Timing 

(OD600) 

0.6 0.6 0.7 0.8 0.8 0.6 

IPTG 

Conc 

(mM) 

0.8 1 1 0.8 1 0.2 

Post-

induction 

time (hr) 

O/N O/N O/N O/N O/N O/N 

 

 Moving forward, a more thorough screen of vectors is needed. Previous studies 

(Appendix J) show that one specific expression condition worked for the four symmetric designs 

evaluated. Many of the amino acid sequences that were used to construct symmetric backbones 

were from species other than E.coli (Table 7.1). When ordering genes, the company, GenScript, 

provides a gene optimization software that prepares synthesized genes with DNA sequences that 

are optimal for expression in E.coli. However, 1FX8, the glycerol facilitator protein, is native to 

E.coli. It would be an interesting experiment to use the exact nucleotide sequences from the 

fragments used by the respective backbone, as long as the construction of the symmetric gene 

from fragments does not introduce restriction enzyme cleavage sites. Studies have shown that for 

membrane proteins especially, silent mutations can have a drastic effect on protein expression 

levels (Norholm et al., 2012).  
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CHAPTER 8 

 DISCUSSION AND FUTURE DIRECTIONS  

8.1 Summary  

 Progress in structural biology of membrane proteins lags far behind that of soluble 

proteins because the study of membrane proteins is a formidable challenge. Difficulties in 

structural characterization of membrane proteins is due their complex environment and inherent 

flexibility. However, membrane proteins are a key class of proteins that are relevant in many 

diseases and are often times targets for drugs. This has really been the driving force in the 

community for elucidating structural information and understanding the mechanisms of 

membrane proteins.  

Although soluble proteins have seen much success in protein design, it continues to be a 

difficult task for membrane proteins. This is especially true for computational protein design of 

membrane proteins and is due to the limited amount of information known about the structure of 

membrane proteins stemming from the aforementioned challenges that arise from studying 

membrane proteins experimentally. This work aims to leverage the experimental information 

known regarding structure and stability of membrane proteins to improve existing modeling 

approaches. 

Previous studies established energy functions for membrane proteins in Rosetta; 

however, a thorough evaluation of the performance of the energy function during design had 

been lacking. One study did evaluate design but it was unclear which proteins were tested and 

whether this included homo-oligomeric proteins. In Chapter 2, Rosetta design was benchmarked 

on a diverse set of high-resolution monomeric and homo-oligomeric proteins. First, a set of 

minimization experiments were performed to evaluate how different types of minimization in 
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Rosetta play a role in the design outcome. Sequence recovery of the top scoring designs was 

used as a metric to asses which minimization strategy relieved defects in the input backbone 

without moving the backbone far from the input, and without the risk of over-constraining the 

protein to its native sequence. It was found that for both monomeric and homo-oligomeric 

membrane proteins, the constraint to start coordinates option along with FastRelax is the best 

strategy for preparing membrane protein structures.  

Next, the design algorithm was evaluated using the default soluble energy function and 

the membrane protein specific energy function RosettaMembrane. While sequence recovery in 

the core of the protein was found to be higher using the soluble energy function, the surface 

sequence recovery for monomeric membrane proteins was higher in RosettaMembrane. For 

homo-oligomeric membrane proteins the energy functions performed similarly for surface 

recovery; however, design of the symmetric complex did result in a significantly higher sequence 

recovery than homo-oligomers designed as monomers. This was the first study that we know of 

that demonstrated that Rosetta Symmetry is advantageous to use in concert with 

RosettaMembrane.  

Finally, this study concluded by showing that Leucine was selected by Rosetta design as 

a more energetically favorable residue much more frequently than what is seen in native amino 

acid compositions. Further analysis showed that this most frequently occurred in the inner and 

outer hydrophobic regions of the protein. This study ultimately determined that 

RosettaMembrane has a bias towards Leucine at the cost of other hydrophobic amino acids 

The RosettaMembrane energy function was originally created based on 28 high-

resolution membrane proteins (Yarov-Yarovoy et al., 2006). Since then, there has been 

tremendous progress with various types of membrane protein structures including the burgeoning 
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fields of G-protein coupled receptors and Beta barrels. Chapter 2 revealed that there is still 

progress to be made in creating a Rosetta energy function that recapitulates a native-like 

sequence composition.  

There are many computational programs that have tackled the difficult task of predicting 

mutation-induced stability changes from either sequence or structure-based approaches. Many of 

these programs use machine learning algorithms to calibrate values to match that of 

experimentally determined ΔΔG of unfolding. Rosetta contains an application, ddg_monomer, 

that was previously optimized from a sampling standpoint to accurately predict the energetic 

effect of a mutation with a correlation of 0.69. However, none of the current available methods 

have been trained specifically for membrane proteins. 

 In Chapter 3, ten existing programs were evaluated for their ability to predict mutation-

induced stability changes for a membrane protein dataset of over 200 mutations. Concordance, 

Pearson, and Spearman correlations between the predicted energy and experimentally 

determined ΔΔG of unfolding did not reach 0.4 in all cases, indicating that these methods are 

poor predictors for membrane proteins. In addition to testing the correlation of the predicted 

energies with the experimentally derived energies, a program should be able to provide results 

for predicting the stabilizing effect the mutation would have on the protein i.e. whether it is 

destabilizing or stabilizing. Using ROC curve analysis, the AUC was determined to be 0.7 or 

lower with the original implementation of Rosetta ddg_monomer having the best AUC.  

Rosetta was an ideal program for predicting mutation-induced stability changes in 

membrane proteins because of the existence of the membrane protein specific energy function. 

The RosettaMembrane energy function was used in place of the high-resolution energy function 

used during calculations in ddg_monomer. The same dataset of membrane protein mutations was 
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used and ultimately the ddg_monomer implementation using the RosettaMembrane energy 

function performed similarly to the original implementation of ddg_monomer using the soluble 

energy function. 

 Chapters 2 and 3 provide an evaluation of the RosettaMembrane energy function from a 

sequence and structure perspective, respectively. However, both approaches stem from the same 

set of score terms that approximate physical forces and internal energetic costs based on 

Bayesian probabilities. In Chapter 2, it was revealed that the cost of designing in Leucine is a 

much lower energetic cost than other residues, in particular other hydrophobic residues. In 

Chapter 3, the RosettaMembrane energy function performed similarly to the soluble energy 

function when using the application ddg_monomer to predict mutation-induced stability changes 

in membrane proteins.  

While experimental validation is an ideal form of validation for computational designs, it 

is highly unlikely that membrane proteins fully redesigned by RosettaMembrane could be 

experimentally structurally characterized in order to derive some sort of value to improve the 

energy function. It would involve working with mutants of a class of proteins that is already 

difficult to characterize, and the effects of multiple mutations simultaneously would be difficult, 

if not impossible, to disentangle. Therefore, the logical step forward to improving the energy 

function is to leverage existing membrane protein thermostability data from single-point 

mutations. 

In Chapter 4, machine learning methods were employed to re-fit the weights of the score 

terms in the RosettaMembrane energy function to approximate the experimentally determined 

ΔΔG of unfolding for the dataset of single-point mutant membrane proteins from Chapter 3. 

Ridge, Lasso, and Elastic Net regressions resulted in near zero, in the case of Lasso, zero 
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coefficients for terms that did not contribute to accurate predictions of ΔΔG of unfolding. These 

approaches were cross-validated and determined new weights for score terms in 

RosettaMembrane as well as removed score terms that introduced noise into the calculation. The 

newly weighted energy functions were used to sample and calculate the membrane protein 

single-point mutation dataset and resulted in a correlation of nearly 0.5 and an AUC of up to 

0.75. Perhaps the most interesting finding from this study was the drastic increase in the 

contribution of the membrane protein relevant score terms to the energy function. While this 

exercise was an incremental improvement in performance metrics, it was informative and a 

powerful proof of principle that empirical data can be used to improve the RosettaMembrane 

energy function and effectively improve membrane protein modeling and design. 

 An improved RosettaMembrane energy function like that described in Chapter 4 would 

not only have applications for thermostability and design calculations on proteins of known 

structure, but also for proteins of unknown structure. Many variants of unknown significance 

implicated in disease are from proteins of unknown structure. In the case of Long-QT Syndrome, 

some variants of KCNQ1 have been linked to loss of function; however, many variants of 

unknown significance remain. It is believed that variants of disease-linked proteins act by 

destabilizing the protein. Prediction of the destabilizing effect of mutations, like that seen in 

Chapter 4, could provide valuable insight for treatment of patients with these variants; however, 

the structure of KCNQ1 is unknown. In Chapter 5, a model of the resting, closed state of 

KCNQ1 is developed to ultimately test predictions of the stabilizing effects of variants of 

unknown significance.  

 Chapter 5 details the development of a protocol to create a model of KCNQ1 from 

multiple templates of low sequence identity using RosettaCM. While RosettaCM enables an 
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increase in conformational space due to the inclusion of multiple templates, the templates have 

very different structural features in the areas of interest, in particular, the gating charges. I was 

able to leverage existing mutational data to create filters that resulted in the selection of models 

that fit experimental criteria and were characteristic of the field’s understanding of the resting 

state of the VSD. These filters were used throughout the minimization process and ultimately for 

the final selection of models. Final models also low energy Rosetta scores and scored well with 

external servers MolProbity and PDBSum. Additionally, an external software, PoreWalker, was 

used to create a profile of the pore’s diameter to confirm the pore was closed. Supplementing 

multiple template comparative modeling with experimentally derived information as well as 

external model validation are key components to creating a high-quality model. The mutation-

induced stability change prediction method described in Chapter 4 relies on high-quality models 

or structures in addition to an accurate energy function. 

  In Chapter 6, the relevant evolutionary pathways and biological implications for pseudo-

symmetric membrane proteins are reviewed. This sets up the relevant background for my project 

that involved the engineering of a symmetric membrane protein in Chapter 7. This was truly the 

inspiration for Chapters 2, 3 and 4 where the RosettaMembrane energy function was evaluated 

for shortcomings. In Chapter 7, the backbones of 13 aquaporin proteins were used to construct 

sequence and structure symmetric variants of the native proteins. The engineering strategy, 

circular permutation, is an exhaustive search of all possibilities. Prior to this study, I used one 

glyceroaquaporin, GlpF, to construct symmetric variants. After several rounds of design (see 

Appendix J), I was unable to stabilize the symmetric variants in experimental studies. By 

increasing the amount of backbones used in the engineering strategy in Chapter 7, we hoped to 

identify symmetric variant candidates that were even more stable than those constructed in 
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previous trials. Symmetric variants were energetically minimized and evaluated using 

RosettaMembrane. Ultimately, after extensive expression screens, we were unable to confirm the 

expression of any of the top 20 scoring symmetric variants. 

 The experiments conducted in Chapter 7 and Appendix J were performed prior to the 

development of the improved RosettaMembrane energy function in Chapter 5. While it is unclear 

at this point in time why expression screens failed for all of the top 20 of symmetric variants by 

Rosetta score, the inaccuracy of the current RosettaMembrane energy function is likely a 

contributing factor. Studies in Chapters 2 and 3 revealed shortcomings of the RosettaMembrane 

energy function and display the improvements that are required to continue pushing the field of 

membrane proteins further. 

Membrane proteins require a translocon to assist their insertion into the membrane 

bilayer. The composition of the translocon varies for each type of organism, but their role as 

protein-conducting channels remains the same. In order to be recognized by the translocon, 

membrane proteins contain signal sequences, also known as signal peptides, on the N-terminal 

side of the protein sequence. Most membrane proteins are inserted into the membrane during 

translation as opposed to post-translation (Cymer et al, 2015; Rapoport, 2007).  

 Membrane proteins are able to overcome the energetic cost of partitioning into the 

membrane interface due to the Hydrogen bonds in the backbone and hydrophobic side chains in 

trans-membrane helices. The energetic cost for dehydrating the backbone is much higher than the 

cost of dehydrating non-polar side chains. Thus, formation of secondary structural elements is 

more favorable than an unfolded protein in the trans-membrane region. The significance of 

Hydrogen bonds in membrane protein structures can also be shown through denaturation studies 

where the resulting unfolded states maintain some alpha-helical structure (Cymer et al., 2015; 
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Wimley, Hristova, Ladokhin, Silvestro, Axelsen & White, 1998; Ladokhin and White, 1999). 

For multi-spanning membrane proteins and homo-oligomeric complexes, the interactions 

between trans-membrane spanning helices play a large role in protein folding and stability.  

 Membrane proteins are proposed to be equilibrium structures and have been found to fold 

into the correct protein regardless of the assembly pathway. If this is true, then membrane 

proteins should be able to fold into their native structures independently of the translocon, 

assuming they are in the lipid bilayer. Several experiments have taken both alpha helical and beta 

barrel proteins fragments and found that the protein was able to assemble and was 

indistinguishable from the continuous wild-type protein. This included the use of freeze thaw 

cycles to disrupt and reform the membrane mimetic. These experiments showed the importance 

of helix-helix interactions in structures with multiple trans-membrane spanning helices.  

 Recently, a cell-free system has become popularized for the expression of toxic proteins. 

The cell-free system consists of only the components that are necessary for protein expression. 

For membrane proteins, this would mean including membrane mimetics in the cell-free system. 

However, due to the abundance of membrane mimetics in this particular setup, membrane 

proteins folding should still be successful without the translocon.  

 The symmetric variants of aquaporins that were created in Chapter 7 would only contain 

a signal sequence if the N-terminus was included in the construction of the asymmetric unit. This 

would indicate that without the inclusion of the signal sequence, symmetric variants would likely 

not be recognized by the translocon for insertion into the membrane. While it is possible that 

intact symmetric variant proteins could have been refolded into detergents or lipids, protein 

degradation, indicated by laddering seen in Western blots, remained as an issue. Another 

advantage of the cell-free expression system is the exclusion of components unnecessary for 
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protein synthesis. If proteases are indeed the culprits, then expression of the symmetric variants 

in a cell-free system would be ideal as the proteases would most likely be removed. Finally, one 

of the native proteins that symmetric variants are based on is a protein native to E. coli. While we 

are curious about the symmetric architecture of these variants, we do not expect the variants to 

be functional. Thus, we did not knock-out the endogenous glycerol facilitator protein during the 

expression of the symmetric variant as it would more than likely result in cell-death. However, 

the cell-free system does not require the transport of glycerol to continue functioning, therefore it 

is again ideal for the synthesis of the symmetric variants. Additionally, membrane protein 

overexpression can be toxic to cells, leading to cell death (Wagner et al., 2007), so the use of a 

cell-free system is again appealing for the expression of engineered membrane proteins.  

8.2 Implications 

 Ultimately, the work described herein was aimed towards one major goal: improvement 

in membrane protein structural modeling and design. The implications range from a deeper 

understanding of the current state of methods to structural insights into mutations linked to 

diseases. First, the evaluations of RosettaMembrane for design and prediction of mutation-

induced stability changes provide a baseline for the current performance of the membrane 

specific energy function in Rosetta on these specific approaches.  

These studies uncovered the strengths and limitations of RosettaMembrane which is 

important for the development of more accurate methods as well as experimental applications 

involving mutations and design in addition. For example, in Appendix K, I predicted a number of 

stabilizing mutations for a membrane protein. In trafficking assays, it was found that the 

mutation to Asparagine did not traffick to the membrane. Reflecting on findings from Chapter 2, 

Rosetta designs of membrane proteins had a much higher composition of Arginine as compared 
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to native, indicating that the proposition of Arginine as a mutation may have been the result of a 

bias towards Arginine in the existing membrane protein energy function. Experimental validation 

such as this is essential for the continued development and improvement of computational 

structural biology methods.  

 Membrane proteins are typically structurally characterized at a lower resolution than that 

of soluble proteins. Therefore, Chapter 2 evaluated the performance of Rosetta Design on 

membrane proteins of various resolutions and determined an ideal way to prepare membrane 

protein structures for design calculations regardless of the resolution of the input structure. 

Additionally, Chapter 2 sought to establish an ideal protocol for preparing homo-oligomeric 

membrane proteins for design. These findings were used in application projects that involved the 

modeling of various membrane proteins (Appendix K), and may continue to be used until higher 

resolution protein structures are produced, and beyond.  

 Iterative feedback between computational and experimental methods is key for improving 

our understanding of membrane proteins. It is difficult to attain high accuracy prediction 

methods with very little data. In Chapter 1 of my work, I tied a membrane protein energy 

function based on statistics from known structures along with a design algorithm to predict 

sequences that have been optimized for its structure. The resulting sequences were compared to 

sequence compositions of known proteins and pointed to shortcomings in the energy function. 

For the second part of my work, I used experimentally determined thermostability measurements 

to test the existing sampling strategy and membrane protein energy function for mutation-

induced stability predictions and found a very clear disconnect between biophysical 

measurements and computational predictions of thermostability. In Chapter 3, I leveraged the 

existing thermostability calculations to detect which score terms in the membrane protein energy 
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function were contributing to accurate predictions, as well as which terms created noise. This 

resulted in a preliminary improved energy function, but the energy function only performs as 

well as the extend that we know of membrane proteins, so much more additional data is required 

in order to further improve the energy function beyond what is shown in Chapter 4. 

 The implications for improved predictions of mutation-induced stability changes are far 

and wide. The prediction of stabilizing mutations in membrane proteins can be a powerful tool 

for experimental structural characterization studies. Membrane proteins have inherent flexibility; 

therefore, stabilization of these flexible regions could enable structural studies such as X-ray 

crystallization. In turn, an increase in membrane protein structures can aid in future 

computational predictions. Many membrane proteins have had the addition of proteins such as 

T4 lysozyme to aid in structural characterization. Stabilizing mutations are arguably less 

detrimental to the overall structure of the protein when compared to the addition of a water-

soluble domain. 

Moreover, many programs that act to classify variants of unknown significance use 

sequence-based approaches. Structure-based predictions of changes in energy can aid these 

purely sequence-based predictions by bridging the gap between sequence and functional 

outcomes. Structure-based predictions can also help gain some insight regarding the process by 

which the changes in sequence affect the overall structural integrity of the protein due to the gain 

or loss of interactions. With the increase of interest in human genome sequence and personalized 

medicine, rapid and accurate structure-based modeling and predictions are likely to be a key tool 

in understanding the effects of mutations, as well as a means of screening possible candidates for 

drugs to overcome the structural defects and treat patients with these variants. 
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To this matter, the model of the resting VSD, closed pore state of KCNQ1 in Chapter 5 

has related insight and implications. KCNQ1 is associated with diseases such as Long-QT 

syndrome, and is a protein of interest due to the many variants associated with characterized loss 

or gain-of function. By creating an accurate model of KCNQ1, we can begin to understand what 

structural effects these mutations have on the protein, thereby altering its function. This 

information can supplement sequence-based models like that seen in Li et al. and further 

improve the understanding and characterization of variants of unknown significance. 

 Finally, the potential implications of the work described in Chapter 7 encompass 

proposed evolutionary routes as well as protein engineering strategies. First, because the work 

aims to study specifically inverted topologies in membrane proteins, it could provide evidence of 

dual-topology and further support the hypothesis that membrane proteins with internal repeats 

were created through the evolutionary mechanisms of gene duplication, fusion, and 

diversification. Second, had the study produced a stable unit capable of self-assembling into 

symmetric complexes, this could provide an approach for creating large stable proteins from 

smaller, symmetric units, whether as a unit for material science interests or as a stable scaffold 

for the design of novel therapeutics. 

8.3 Future directions 

With the rapid increase in the amount and diversity of membrane protein structures in 

recent years, it follows naturally that the best way to move forward is to leverage this new 

information to improve existing methods even further. I demonstrated in Chapter 4 that 

computational predictions can be improved through the use of empirical data and machine 

learning methods. However, one of the biggest limitations with this study was the deficiency of 
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membrane protein thermostability data. Of the thermostability data available, we selected data 

points that were representative of the ΔΔG of unfolding, which reduced the dataset to 224 points. 

Of the mutations represented, very few involved or were near disulfide bonds. As a 

result, the four score terms that approximate the energy involved in disulfide bonds were given 

coefficients of zero or 100 fold larger than other coefficients as most mutations had zero energy 

attributed with these score terms. Because this interaction was not represented well in the dataset, 

the machine learning algorithms had very little to learn regarding these score terms. The score 

terms were removed from the improved energy functions which poses a concern about how these 

interactions will be accounted for in the event that mutations are near or at the mutation site. Of 

course, additional thermostability studies involving disulfide bonds in membrane proteins is 

needed to properly weigh this in the membrane protein energy function; however, because only 

three such measurements exist currently, it is unlikely that enough measurements will be made in 

the coming years. To overcome this for the present time, information may be gleaned from 

thermostability measurements of soluble proteins involving disulfide bonds to provide a means 

of calculating such an interaction until additional measurements can be made in membrane 

proteins. 

Moreover, since the creation of the RosettaMembrane energy function, a coulombic score 

term, fa_elec, has replaced the pair potential, which was a crude estimate for electrostatic 

interactions in proteins. It was proposed in Chapter 2 that the added accuracy from the coulombic 

score term helped to put the newer default soluble energy function at an advantage for core 

sequence recoveries when compared to RosettaMembrane. In future studies, the same approach 

as what was seen in Chapter 4 should be used to generate the dataset with the updated term 

representing electrostatics, fa_elec. In line with this, a new disulfide score term has been created 
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to encompass the previous four disulfide relevant score terms. In addition to generating weights 

for representing disulfides using soluble proteins, the updated implementation of a single term 

should be used.  

In addition to the dataset for membrane protein thermostability measurements being 

sparse, it is further complicated by the fact that it consists of both alpha-helical and beta-barrel 

membrane proteins. It is proposed that there are differences between the unfolding of these two 

classes of proteins due to the differences in secondary structure. Although in Chapter 3, parsing 

of these two types of membrane proteins did not improve correlations, it would be interesting to 

do machine learning approaches, like those described in Chapter 4, on datasets for alpha-helical 

and beta-barrel proteins. One could compare the different coefficients resulting from such an 

experiment as well as which score terms resulted in coefficients of zero. This would give a sense 

of whether it is necessary at this time to have separate energy functions, or if one energy function 

for membrane proteins describes interactions broadly enough to produce accurate predictions. 

Furthermore, the dataset consisted of ΔΔGs derived from SDS or urea titrations and 

analytical ultracentrifugation in the case of glycophorin A. Analytical ultracentrifugation is a 

technique that measures the domain oligomer stability (Hong, Joh, Bowie, & Tamm, 2009). 

While it is a reversible process, it more so measures the stability of a protein-protein interaction 

(Fleming, 2016), so perhaps it should be excluded from this study. SDS and urea titration are 

reversible and as such are the best sources of experimental values of mutation-induced stability 

changes at this point of time. However, extrapolation from unfolding curves is debated as error 

prone. The error associated with measurements made from these techniques range from 0.1 to 

0.7 kcal/mol. While many measurements of Gibbs free energy ΔG exist for membrane proteins 

from thermal denaturation experiments, these measurements are performed irreversibly (Hong et 
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al., 2009). For this reason, these data were excluded from the training and test sets in Chapters 3 

and 4. However, perhaps in the future they may be utilized as either a Spearman rank correlation 

or binary classification. In recent years, atomic force microscopy and steric trapping have shown 

promise in producing accurate and precise measurements within this same range (Edwards & 

Perkins, 2017; Jefferson et al., 2017). These additional techniques could provide rapid generation 

of data that is consistent and reliable and therefore better for training by machine learning 

algorithms.   

A membrane protein energy function that is improved through the use of plentiful and 

diverse empirical data could drastically aid in the accuracy of computational modeling of 

membrane proteins. From improvements like those described above, the energy function could 

then be applied to the computational design of membrane proteins. The experimentally derived 

stability data could be harnessed to predict realistically stabilizing mutations for membrane 

proteins. This could be done either through the machine learning methods described above or 

through the development of an additional membrane protein score term that characterizes the 

findings from experimental stability data in the form bonuses or penalties based on a look up 

matrix of interactions that have been seen. However, one must be cautioned that the available 

experimental stability data has a much larger amount of large to small side chains of amino acid 

mutations compared to small to large mutations. This is in large part due to the success of 

Alanine scanning studies. Additionally, while sampling possible mutations, Rosetta design 

utilizes reference energies which are energies that describe the cost of designing in a residue. If 

the data for a matrix of interactions is too sparse, reference energies could be re-fit to better 

match what is shown experimentally. 
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 Finally, in addition to harnessing and leveraging available empirical data regarding the 

structure and stability of membrane proteins, information from sequence can provide insights 

into design. Evolutionary information, in the form of direct coupling analysis (DCA), identifies 

sequence positions in evolution from deep sequence alignments that have co-evolved. These 

positions often times of amino acid identities that are strongly coupled due to compensatory 

mutations. In other words, a favorable mutation seen in nature is often aided by the mutation of 

another residue that compensates for the loss or gain of an interaction by the gain or loss of a 

second interaction in an effort to maintain the overall structural integrity of the protein. This type 

of evolutionary information could reduce the sequence space of design calculations into a range 

that is already used by nature, thereby providing predictions that are more native-like and have a 

higher probability of being successful in experimental settings.  

 In addition to aiding computational design of membrane proteins in a general sense, DCA 

would be an ideal approach to finding mutations that could stabilize symmetric backbones of 

membrane proteins from Chapter 7. While in previous rounds of design, sequences were used to 

in an attempt to stabilized the engineered proteins (Appendix J), it was through the use of a 

residue mutation file in Rosetta which allows Rosetta to sample only what is allowed based on 

sequences rather than favoring mutations seen in sequences. Additionally, these mutations were 

selected by determining the symmetric counterpart residues in sequences and only allows these 

during design. An approach using DCA would not only be more elegant, but it would provide a 

much deeper sequence alignment than what can be done by one person manually. Moreover, the 

depth of the sequence alignment is key to identifying residues that have been shown to be 

important throughout evolution in order for the protein to maintain key residue contacts to 
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maintain structural integrity. Thus, this is the most logical step to improving the prediction of 

stabilizing mutations in membrane proteins. 

 Future studies should include the expression of symmetric variants from Chapter 7 in the 

cell-free expression system. Expression of the intact duplicated protein will allow for additional 

structural studies to understand the relationship between the symmetric sequence and resulting 

structure. Additionally, these proteins would be placed into liposomes to observe the osmotic 

function and compare with studies from the wild-type protein. Finally, asymmetric mutations 

would be done to rescue the function. Whereas expression of the asymmetric unit of the 

symmetric variants could answer questions about how the protein may have assembled prior to 

the fusion event. The use of freeze-thaw cycles to disrupt and reassemble lipids could provide 

clues as to whether the halves are attracted to each other in the inverted topology seen today. 

All of the protocols described herein involve the use of RosettaMembrane. In recent 

years, a new framework for membrane proteins in Rosetta has been developed called RosettaMP. 

RosettaMP aims to tie the implicit membrane object with the membrane protein model during 

conformational sampling rather than setting an implicit membrane in cartesian space only to 

have the protein move out of the membrane during conformational sampling. Currently, the use 

of the constrain to backbone coordinates option is also used to overcome this issue of having the 

protein move outside of the membrane when perturbed in a loop region through a lever-arm 

effect. In the future, creating protocols for RosettaMP from the existing RosettaMembrane 

protocols will be important for evolving membrane protein modeling in Rosetta. However, 

RosettaMP is not yet able to work in concert with Rosetta Symmetry, therefore the 

implementation of both of these modes needs to be reconciled before moving forward because 
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membrane proteins often have homo-oligomeric states that are essential for modeling and 

predictions. 

 Recent developments in Rosetta are primarily done using the XML interface (Bender et 

al., 2016; Fleishman et al., 2011). Rosetta XML scripts provide the user with much more control 

over the development of the protocol, as was shown in Chapter 6. The community is moving 

towards the use of Rosetta XML scripts almost exclusively, so protocols are often presented in 

this format so as to keep up with development. Rosetta ddg_monomer is an application that was 

exhaustively evaluated and set with optimal sampling conditions, and therefore is difficult to 

evolve to accommodate new approaches or information. Therefore, a protocol that mirrors the 

ddg_monomer sampling strategy should be developed in the RosettaScripts format to easily 

accommodate new developments such as RosettaMP. The performance of such a protocol can 

then be benchmarked against the performance of the ddg_monomer application to determine if it 

matches or exceeds the ddg_monomer application so as to establish it as the new standard 

protocol for mutation-induced stability changes. 

  Lastly, one of the major limitations of RosettaMembrane is the discrete range of distances 

that define hydrophobic layers. While this implementation was clever for the time of the initial 

study, it has been clear that there is a now a need for a flexible membrane bilayer representation. 

This is for a number of reasons: First, alpha-helical membrane proteins and outer membrane 

proteins have very different environments, as the membrane spanning region of outer membrane 

proteins is much smaller than that of alpha-helical membrane proteins. Second, membrane 

protein structures are characterized in various membrane mimetics of varying thicknesses. The 

danger in ignoring this is that all structures may be computationally evaluated with the same 
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membrane thickness, but the layers may be very different depending on the protein and the type 

of membrane mimetics used.  

In conclusion, the studies described herein reveal the current state of computational 

membrane protein modeling for applications of protein design, thermostability calculations, and 

homology modeling. The relevance of these projects spans from establishing a baseline for 

further development of computational design methods for membrane proteins and the 

development and optimization of protocols to classifying stabilizing effect of mutations for 

diseases. I have established an ideal protocol for preparing membrane protein structures for 

computational design; evaluated the current membrane protein energy function; improved the 

membrane protein energy function for mutation-induced stability changes using empirical data; 

and proposed a computational approach at engineering pseudo-symmetric membrane proteins to 

be symmetric.  

The conclusions drawn from these experiments have demonstrated how to approach 

modeling such complicated systems of low resolution structures, sparse empirical datasets, low 

sequence homology, and homo-oligomeric as well as internal pseudo-symmetric structures. The 

findings have been made possible through the collaboration and feedback of computational and 

experimental studies. These studies have defined limitations of computational membrane protein 

structural modeling and predictions and will aid in the careful development of computational 

membrane protein protocols in the future. 
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APPENDIX A 

PROTOCOL CAPTURE FOR CHAPTER 1 

(Rosetta Design workshop protocol) 

This protocol capture was included in the supplemental materials for the publication.  

Bender*, Cisneros*, Duran*, Finn*, Fu*, Lokits*, Mueller*, Sangha*, Sauer*, Sevy*, Sliwoski, 

Sheehan, DiMaio, Meiler, and Moretti, 2016 (*Authors contributed equally) 

Contribution: I developed the entire protocol capture for Protein Design that included cross-over 

with RosettaMembrane and Rosetta Symmetry in an XML environment. Additionally, I have 

included a modified protocol that uses RosettaMP.  

Protein Design Protocol Capture 

fixed width text means you should type the command into your terminal 

If you want to try making files that already exist (e.g., input files), write them to a different 

directory! (mkdir my_dir) (NOTE: For many of the commands you will be using for this tutorial, 

remove 's before hitting enter. Otherwise you will get an error.) 

Objective: In this exercise, we will examine the Rosetta design features by mutating user-

specified residues. The membrane protein we will be using is a homo-dimer, so we will employ 

RosettaMembrane and Rosetta Symmetry to model the dimer during design. RosettaScripts will 

be used to combine the two applications. In the additional notes at the end, you will find an 

adaptation of the design protocol from Step 3 using RosettaMP. 

Rosetta Applications: RosettaDesign, RosettaMembrane, RosettaMP, Rosetta Symmetry, 

RosettaScripts 

Input and Analysis Scripts: clean_pdb.py, get_fasta_from_pdb.py 

Tutorial  

Preparation: Locate the necessary input PDB file. 

    cd ~/rosetta_workshop/tutorials/protein_design 
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Included in this folder is a PDB file downloaded from the Protein Data Bank 

(www.rcsb.org ID:3UKM). Open this in pymol to familiarize yourself with the structure: 

    pymol 3UKM.pdb          

You should notice that this file shows two homo-dimers. We will focus on the dimer made from 

Chains A and B (lower dimer when loaded). This will be important when setting up the 

symmetry definition file in the next step. Close pymol and proceed to step 1. 

1. Setting up the symmetric PDB 

1. Rosetta Symmetry. In this step, we will create the proper symmetry definition file 

for this particular protein structure. We will need the input structure from the 

preparation step. 

2. cd Step1_symm 

3.  

cp ../3UKM.pdb . 

(this copies the pdb file to the Step1 directory) 

Next, we will use a perl script in Rosetta to generate a symmetry file from the 

input crystal structure. First, if you'd like to display the available options for this 

script, simply enter: 

~/rosetta_workshop/rosetta/main/source/src/apps/public/symmetry/m

ake_symmdef_file.pl 

Next, we will use non-crystallographic mode (NCS), Chain A as the reference, 

Chain B as an interacting chain, and include the input structure. The output will 

be redirected, using the greater than sign, into a new file called 3UKM.symm. 

~/rosetta_workshop/rosetta/main/source/src/apps/public/symmetry/m

ake_symmdef_file.pl \ 

-m NCS -a A -i B -p 3UKM.pdb > 3UKM.symm 

The perl script will generate a couple of outputs: 

▪ 3UKM_INPUT.pdb = chain A 

▪ 3UKM.kin 

▪ 3UKM_model_AB.pdb = model generated to show subunit interactions 

with the input 

▪ 3UKM_symm.pdb = model generated to show the full point group 

symmetry 

▪ 3UKM.symm = symmetry definition file that you just created 

Examine symmetry file equation. gedit 3UKM.symm 
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4. Next, we will use clean_pdb.py to prepare the input protomer for setting up 

symmetry. 

~/rosetta_workshop/rosetta/tools/protein_tools/scripts/clean_pdb.

py 3UKM A 

clean_pdb.py strips PDB code that Rosetta can not parse such as comments, 

anisotropic atom positions, unnatural amino acid types, and waters. The first 

argument in the script is the 4-letter PDB code and the second argument is a string 

containing the chains to return, in this case, only chain A. 

5. Now, we will use the clean input structure to test the symmetry definition file. We 

will accomplish this through a very basic use of RosettaScripts. While still in the 

same directory: 

gedit setup_symm.xml 

And look at the contents of the file, which should look like this: 

<ROSETTASCRIPTS> 

    <SCOREFXNS> 

    </SCOREFXNS> 

    <TASKOPERATIONS> 

    </TASKOPERATIONS> 

    <FILTERS> 

    </FILTERS> 

    <MOVERS> 

      <SetupForSymmetry name="setup_symm" definition="3UKM.symm" 

/> 

    </MOVERS> 

    <APPLY_TO_POSE> 

    </APPLY_TO_POSE> 

    <PROTOCOLS> 

      <Add mover_name="setup_symm" /> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

Next, run this protocol using RosettaScripts. We applied the setup_symm protocol 

to the input structure, 3UKM_A.pdb. 

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.defaul

t.linuxgccrelease \ 

-parser:protocol setup_symm.xml -s 3UKM_A.pdb -out:prefix 

setupsymm_  

When Rosetta is finished, examine the output structure using pymol: 

pymol setupsymm_3UKM_A_0001.pdb 
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Does the resulting structure look as you would expect? Sometimes you have to 

make manual adjustments to the symmetry definition file by paying careful 

attention to the jumps. In this case, it looks great. Before we move forward, 

examine the score file generated from setting up symmetry: 

gedit setupsymm_score.sc 

The total energy score of the protein is the first number. For this protein, you will 

probably see a number in the positive 6000s. We know that this is not a good 

Rosetta score for a protein. Before moving on to an application such as design, it 

is recommended to energetically minimize the structure in some way to improve 

the imperfections in the crystal structure. 

Additionally, this score is based on the default Rosetta scoring function. We will 

need to create a span file and add the membrane high resolution scoring function 

into our XML script. 

6. We need to create a span file which will tell Rosetta where the membrane-

spanning region is on our protein. Step 1.2 outputs a fasta file.  

cat 3UKM_A.fasta 

In a web browser, go to octopus.cbr.su.se and paste the fasta sequence into the 

form. Then click "Submit OCTOPUS" (There is also an option to use 

SPOCTOPUS which considers signal peptide sequences). 

When it's done running, near the top it will say "A text version of the topology 

prediction can be found in the OCTOPUS topology file (txt)" click on that link. 

Select all of the text and copy. 

gedit 3UKM.topo paste the text into this file and save. 

A script in Rosetta will take this topo file named 3UKM.topo and create a span 

file named 3UKM.span: 

~/rosetta_workshop/rosetta/main/source/src/apps/public/membrane_a

binitio/octopus2span.pl \ 

3UKM.topo > 3UKM.span 

2. Energy minimization of the input structure 

Relax is a common protocol used in Rosetta to minimize protein structures. Typically, 

100 relax models is sufficient to find a low-energy structure as an input model. 
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I have provided output for this step in the Step2_relax directory. I have also described 

the approaches to use for analysis of relaxed structures. 

Please make sure you are in the Step2_relax directory. You can create relaxed 

structures in a similar way that we set up symmetry, using RosettaScripts. View this by 

opening symm_relax.xml: 

 <ROSETTASCRIPTS> 

 <SCOREFXNS> 

   <mem_highres weights="membrane_highres_Menv_smooth.wts" symmetric=1 

/> 

 </SCOREFXNS> 

 <TASKOPERATIONS> 

   <InitializeFromCommandline name=ifcl/> 

   <RestrictToRepacking name=rtr /> 

 </TASKOPERATIONS> 

 <FILTERS> 

 </FILTERS> 

 <MOVERS> 

   <SetupForSymmetry name=setup_symm definition=3UKM.symm /> 

   <FastRelax name=fast_rlx scorefxn=mem_highres repeats=8 

task_operations=ifcl,rtr /> 

 </MOVERS> 

 <APPLY_TO_POSE> 

 </APPLY_TO_POSE> 

 <PROTOCOLS> 

   <Add mover_name=setup_symm /> 

   <Add mover_name=fast_rlx /> 

 </PROTOCOLS> 

 </ROSETTASCRIPTS> 

Then, run using the command-line: 

        

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linu

xgccrelease \ 

        -parser:protocol symm_relax.xml -s 3UKM_A.pdb \ 

        -in:file:spanfile 3UKM.span -membrane:no_interpolate_Mpair \ 

        -membrane:Membed_init -membrane:Menv_penalties \ 

        -score:weights membrane_highres_Menv_smooth.wts \ 

        -restore_pre_talaris_2013_behavior \ 

        -extra_res_fa 

~/rosetta_workshop/rosetta/main/database/chemical/residue_type_sets/fa_

standard/residue_types/rosetta_specific/INV_VRT.params 

Analyze the output. There are a few ways of going about this. Some may look at just the 

best scoring models. Others calculate the RMSD of the relaxed models to the input 

structure and plot the Score vs. RMSD to find the best (lowest) scoring model that is 

most similar to the input structure. 
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Ideally, the lowest scoring model would also have the lowest RMSD. This model should 

be used in all subsequent steps in redesign. Generally in design, we use an ensemble of 

structures accounting for the lowest cluster of RMSD's and scores. 

3. Prepare files for protein design at user-specified residues. 

1. With an energy minimized input structure, we are almost ready to design our 

protein! In this step, we will first combine SetupForSymmetry and 

SymPackRotamers movers in another RosettaScripts protocol. 

2. cd ../Step3_design 

ls 

You should see several input files ready for you to use. Here you will find the 

symmetry definition file, an energy minimized input structure 

named Best_rlx_3UKM_A.pdb, and an XML file. 

gedit symm_design.xml 

Here I have provided the required XML file to complete this task: 

<ROSETTASCRIPTS> 

    <SCOREFXNS> 

      <mem_highres weights="membrane_highres_Menv_smooth.wts" 

symmetric="1" /> 

    </SCOREFXNS> 

    <TASKOPERATIONS> 

      <InitializeFromCommandline name="ifcl"/> 

    </TASKOPERATIONS> 

    <FILTERS> 

    </FILTERS> 

    <MOVERS> 

      <SetupForSymmetry name="setup_symm" definition="3UKM.symm" 

/> 

      <SymPackRotamersMover name="sym_pack" 

scorefxn="mem_highres" task_operations="ifcl"/> 

    </MOVERS> 

    <APPLY_TO_POSE> 

    </APPLY_TO_POSE> 

    <PROTOCOLS> 

      <Add mover_name="setup_symm" /> 

      <Add mover_name="sym_pack" /> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

Notice under SCOREFXN, the membrane high-resolution weights are specified. 

Read the XML and see if you understand the different sections. Reference the 

lecture slides if you need to. Exit out of the file when you are done. Notice the 

command-line below has additional options  

-restore_pre_talaris_2013_behavior and -extra_res_fa along 
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with a path. These are required because we are using RosettaMembrane which 

uses a scoring function based on pre-talaris score terms and weights. Modeling 

membrane proteins in Rosetta is currently in flux, so some protocols work best 

with RosettaMembrane, while others have transitioned to RosettaMP (see 

additional notes). Now run design. This step should take about 30 minutes. 

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.defaul

t.linuxgccrelease \ 

-parser:protocol symm_design.xml -s Best_rlx_3UKM_A.pdb -

in:file:spanfile 3UKM.span \ 

-membrane:no_interpolate_Mpair -membrane:Membed_init \ 

-membrane:Menv_penalties -score:weights 

membrane_highres_Menv_smooth.wts \ 

-restore_pre_talaris_2013_behavior \ 

-extra_res_fa 

~/rosetta_workshop/rosetta/main/database/chemical/residue_type_se

ts/fa_standard/residue_types/rosetta_specific/INV_VRT.params \ 

-out:prefix full_design_ -nstruct 1 

In the interest of time, we will only do one full design of the protein. In the output 

folder, I have included 20 output structures. 

3. Now we will run design again, but this time we will guide design with a resfile. A 

resfile is a file that is read by RosettaScripts during design. The file specifies a 

residue number, chain ID, and a command associated with the particular residue. 

This command alerts the packer with how to deal with the residue. (see slides on 

resfile for more examples) 

Design is done on a fixed backbone. Today we will use a hypothetical situation 

where a number of residues will be simply re-packed (minimized side-chains) by 

the command NATAA. A small number of residues will have a specific group of 

amino acids to choose from during design, and two residues will consider all 

amino acid rotamers during design. 

gedit 3UKM.resfile 

The resfile should resemble this: 

NATAA 

start 

 

29 A ALLAA 

30 A PIKAA P 

31 A ALLAA 

39 A PIKAA LIY 

46 A PIKAA FL    

52 A PIKAA C  

58 A PIKAA LKIY 
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61 A PIKAA FLI 

62 A APOLAR  

65 A PIKAA VI 

66 A PIKAA LVS 

67 A POLAR 

68 A PIKAA A 

69 A APOLAR   

70 A PIKAA NRGK 

72 A PIKAA AGV 

80 A ALLAA 

84 A ALLAA 

85 A ALLAA 

86 A APOLAR 

87 A APOLAR 

88 A PIKAA AGVIL 

94 A PIKAA TIV 

95 A PIKAA TIV 

96 A PIKAA AGV  

97 A PIKAA YFLI 

98 A PIKAA AGV 

99 A PIKAA HNYD 

100 A ALLAA 

Based on sequence alignments from homologous proteins, we know that these 

positions prefer a certain type of amino acid. We are going to use a resfile to 

guide Rosetta during design. Look at your lecture slides and understand which 

amino acid rotamers will be allowed at each position. When you are comfortable 

with the format, exit the file.  

Now, we will create an XML file that will read in the resfile. First, copy the 

current XML file and rename it symm_res_design.xml, then open the file 

cp symm_design.xml symm_res_design.xml 

gedit symm_res_design.xml 

Next, find the section labeled TASKOPERATIONS. Insert this task operation 

underneath the <TASKOPERATION> line and before 

the </TASKOPERATIONS> line so that it is in line with the: 

 <ReadResfile name="rrf" filename= "3UKM.resfile" /> 

Notice, we gave this task the name "rrf". Find the SymPackRotamersMover under 

and add "rrf" after the task operations tag so it resembles this: 

<SymPackRotamersMover name="sym_pack" scorefxn="mem_highres" 

task_operations="ifcl,rrf"/> 
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4. Design the protein at user-specified residues. We have a relaxed input structure, a 

symmetry definition file, a resfile to direct design, and an XML protocol to setup 

symmetry, and design according to a resfile. We are now ready to move forward 

with design! Run this command: 

5. ~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.defaul

t.linuxgccrelease \ 

6. -parser:protocol symm_res_design.xml -s Best_rlx_3UKM_A.pdb -

in:file:spanfile 3UKM.span \ 

7. -membrane:no_interpolate_Mpair -membrane:Membed_init \ 

8. -membrane:Menv_penalties -score:weights 

membrane_highres_Menv_smooth.wts \ 

9. -restore_pre_talaris_2013_behavior \ 

10. -extra_res_fa 
~/rosetta_workshop/rosetta/main/database/chemical/residue_type_se

ts/fa_standard/residue_types/rosetta_specific/INV_VRT.params \ 

-out:prefix resfile_design_ -nstruct 2 

Again, many, many more structures than just 2 should be made for production 

runs. In the interest of time, we will just run 2 for today. This should take about 2 

minutes. This step will simply ensure that you can successfully run Rosetta 

Symmetry and Design. Use the output structures provided in the 

Step3_design/output folder for the analysis step. Note that this folder contains 

only 20 models. In your own experiments, you will likely want to make more than 

just 20 models. 

11. Analysis of Designs. Now that we have a few design structures, we want to 

examine one of the regions we designed. First, we must sort the top five structures 

by score. You should still be in the Step3_design directory. 

cd ./output/resfile_design 

ls 

 

grep pose resfile_design*.pdb | sort -nk 23 | head 

This shows you the top 10 structures by best score. We can use awk to store the 

list of the top 10. 

grep pose resfile_design*.pdb | sort -nk 23 | head | \ 

awk '{print(substr($1,1,length($1)-5))}' > best.list 

Next, we will use awk to automate generating fastas for each of our top models. 

(NOTE: Make this all one line and remove \'s before hitting enter for this 

command!) 

cat best.list | awk '{system( \ 
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"python2.7 

~/rosetta_workshop/rosetta/tools/protein_tools/scripts/get_fasta_

from_pdb.py \ 

"$1" A "substr($1,1,length($1)-3)"fasta")}'  

Now we can cat all of the fastas and use WebLogo to generate a figure to show 

our designed residues. 

cat *.fasta > all_fasta.txt  

 

cat all_fasta.txt 

(If you are running out of time, you can cd into ../Step4_analysis where the fastas 

of the top 10 models for each design experiment are included) 

Now, copy and paste the text into the WebLogo 

server weblogo.berkeley.edu/logo.cgi 

Under advanced logo options, choose Logo Range to be 80-100. Now Click 

Create Logo at the Bottom. 

If you need to, you can re-open the resfile you used in the design step to see if 

Rosetta Design did what you expected. 

For example: Residue 94 should be T, I, or V, and residue 86 could be any apolar 

residue. 

Since we have restricted design a lot, we expect to see single identities for these 

positions in this sequence logo. 

If you have enough time, you can go back and make a sequence logo over this 

same range for the full design output. Compare the logos. You should see quite a 

bit more variation in the full design sequence logo. 

Additional notes: 

Protein Design Analysis. A script named Deep_Analysis is available as an alternative to the 

WebLogo server. It is in  

~/rosetta_workshop/rosetta/tools/protein_tools/scripts/deep_analysis. There are 

many options such as using fastas or pdbs as your input. You can also pass a resfile to specify 

which regions you want to appear on the logo (instead of a single range). 

Rosetta Design using the Rosetta Membrane Framework. The steps to setup Rosetta to use the 

Membrane Framework are slightly different than Membrane Mode. To properly use span 

information throughout the protocol, one must use the appropriate 
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movers <AddMembraneMover> and <MembranePositionFromTopologyMover> befo

re setting up <PackRotamersMover>. For simplicity, we will treat the protein as monomeric. 

In the future, symmetry and the membrane framework will be more compatible. 

From the main protein_design directory change directories into mpframework_design 

cd ./mpframework_design 

Then open the file mpf_design.xml 

 <ROSETTASCRIPTS> 

 <SCOREFXNS> 

   <memb_hires weights="mpframework_smooth_fa_2012.wts" /> 

 </SCOREFXNS> 

 <TASKOPERATIONS> 

   <InitializeFromCommandline name=ifcl/> 

 </TASKOPERATIONS> 

 <FILTERS> 

 </FILTERS> 

 <MOVERS> 

   <AddMembraneMover name=add_memb /> 

   <MembranePositionFromTopologyMover name=init_pose /> 

   <PackRotamersMover name=pack scorefxn=memb_hires task_operations=ifcl />    

 </MOVERS> 

 <PROTOCOLS> 

   <Add mover=add_memb /> 

   <Add mover=init_pose /> 

   <Add mover=pack /> 

 </PROTOCOLS> 

 </ROSETTASCRIPTS> 

To run, use the following command-line: 

    

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccre

lease \ 

    -parser:protocol mpf_design.xml -s 3UKM_A.pdb \ 

    -mp:setup:spanfiles 3UKM.span -mp:scoring:hbond -nstruct 1 \ 

    -in:ignore_unrecognized_res -packing:pack_missing_sidechains false \ 

    -score:weights mpframework_smooth_fa_2012.wts 
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APPENDIX B 

SUPPLEMENTAL INFORMATION FOR CHAPTER 2 

Table AB.1. Raw counts of amino acids in RosettaMembrane design for the monomeric set. Tabular data to support main text 

Figure 2.3. Total counts of amino acids represented at the surface, core, and total protein are reported for all native and selected 

RosettaMembrane designs analyzed from the monomeric set. 

 

 

 
Counts Percentages 

Surface Core Total Surface Core Total 

Correct Native  Design Correct Native Design Correct Native Design Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

ALA 32 525 35 417 1108 764 651 2394 1151 6.1 91.4 37.6 54.6 27.2 56.6 

CYS 0 29 0 0 81 0 0 162 0 0.0 0.0 0.0 0.0 0.0 0.0 

ASP 149 328 304 20 61 57 241 540 529 45.4 49.0 32.8 35.1 44.6 45.6 

GLU 90 308 127 25 176 38 203 783 288 29.2 70.9 14.2 65.8 25.9 70.5 

PHE 60 381 65 255 535 326 616 1836 860 15.7 92.3 47.7 78.2 33.6 71.6 

GLY 288 407 358 727 1107 756 1360 2223 1481 70.8 80.4 65.7 96.2 61.2 91.8 

HIS 11 77 40 50 108 187 139 351 382 14.3 27.5 46.3 26.7 39.6 36.4 

ILE 269 682 502 336 630 509 1131 2223 2065 39.4 53.6 53.3 66.0 50.9 54.8 

LYS 309 541 550 2 65 2 453 981 726 57.1 56.2 3.1 100.0 46.2 62.4 

LEU 417 531 2173 503 751 849 2155 2826 5970 78.5 19.2 67.0 59.2 76.3 36.1 

MET 1 141 24 195 422 366 272 882 841 0.7 4.2 46.2 53.3 30.8 32.3 

ASN 145 293 223 148 246 605 433 837 1153 49.5 65.0 60.2 24.5 51.7 37.6 

PRO 212 354 245 79 226 79 416 873 449 59.9 86.5 35.0 100.0 47.7 92.7 

GLN 49 170 109 72 135 323 208 531 655 28.8 45.0 53.3 22.3 39.2 31.8 

ARG 202 278 601 97 145 201 536 756 1475 72.7 33.6 66.9 48.3 70.9 36.3 

SER 138 291 382 423 603 1414 753 1260 2368 47.4 36.1 70.1 29.9 59.8 31.8 

THR 112 220 338 182 358 601 546 1035 1598 50.9 33.1 50.8 30.3 52.8 34.2 

VAL 23 455 30 181 589 220 414 2079 516 5.1 76.7 30.7 82.3 19.9 80.2 

TRP 44 160 171 74 112 263 266 576 1157 27.5 25.7 66.1 28.1 46.2 23.0 

TYR 17 132 26 159 337 235 370 999 483 12.9 65.4 47.2 67.7 37.0 76.6 
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Table AB.2. Raw counts of amino acids in Talaris designs for the monomeric set. Tabular data to support main text Figure 2.3. 

Total counts of amino acids represented at the surface, core, and total protein are reported for all native and selected Talaris designs 

analyzed from the monomeric set. 
 

Counts Percentages 

Surface Core Total Surface Core Total 

Correct Native Design Correct Native  Design Correct Native Design Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

ALA 93 533 213 898 1104 1860 1297 2394 2788 17.4 43.7 81.3 48.3 54.2 46.5 

CYS 0 27 11 1 86 5 1 162 29 0.0 0.0 1.2 0.0 0.6 0.0 

ASP 102 337 518 28 58 116 209 540 962 30.3 19.7 48.3 24.1 38.7 21.7 

GLU 149 313 756 55 168 244 347 783 2027 47.6 19.7 32.7 22.5 44.3 17.1 

PHE 90 383 96 337 524 526 789 1836 1132 23.5 93.8 64.3 64.1 43.0 69.7 

GLY 290 405 480 817 1100 858 1511 2223 1792 71.6 60.4 74.3 95.2 68.0 84.3 

HIS 23 76 78 60 123 144 153 351 411 30.3 29.5 48.8 41.7 43.6 37.2 

ILE 197 717 315 503 648 676 1082 2223 1647 27.5 62.5 77.6 74.4 48.7 65.7 

LYS 199 542 1144 17 68 71 374 981 1986 36.7 17.4 25.0 23.9 38.1 18.8 

LEU 184 524 405 534 762 814 1514 2826 2388 35.1 45.4 70.1 65.6 53.6 63.4 

MET 12 148 66 198 427 288 293 882 605 8.1 18.2 46.4 68.8 33.2 48.4 

ASN 113 304 366 108 257 182 323 837 761 37.2 30.9 42.0 59.3 38.6 42.4 

PRO 329 366 435 221 229 224 819 873 966 89.9 75.6 96.5 98.7 93.8 84.8 

GLN 48 179 212 59 144 137 222 531 728 26.8 22.6 41.0 43.1 41.8 30.5 

ARG 85 293 333 85 149 272 345 756 1410 29.0 25.5 57.0 31.3 45.6 24.5 

SER 111 308 268 165 604 283 430 1260 864 36.0 41.4 27.3 58.3 34.1 49.8 

THR 79 203 311 165 389 275 418 1035 910 38.9 25.4 42.4 60.0 40.4 45.9 

VAL 65 467 126 359 598 454 786 2079 1028 13.9 51.6 60.0 79.1 37.8 76.5 

TRP 39 193 114 90 114 172 252 576 658 20.2 34.2 78.9 52.3 43.8 38.3 

TYR 37 134 205 149 321 272 450 999 1055 27.6 18.0 46.4 54.8 45.0 42.7 
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Table AB.3. Raw counts of amino acids in RosettaMembrane designs for the homo-oligomeric set. Tabular data to support main 

text Figure 2.3. Total counts of amino acids represented at the surface, core, and total protein are reported for all native and selected 

RosettaMembrane designs analyzed from the homo-oligomeric set. 
 

Counts Percentages 

Surface Core Total Surface Core Total 

Correct Native  Design Correct Native Design Correct Native Design Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

ALA 59 1004 67 2121 4283 3608 2681 7182 4519 5.9 88.1 49.5 58.8 37.3 59.3 

CYS 0 57 0 0 408 0 0 570 0 0.0 0.0 0.0 0.0 0.0 0.0 

ASP 96 312 254 78 243 108 254 1014 531 30.8 37.8 32.1 72.2 25.0 47.8 

GLU 150 618 226 148 472 171 527 1614 698 24.3 66.4 31.4 86.5 32.7 75.5 

PHE 105 654 190 831 2039 1077 1306 4134 2029 16.1 55.3 40.8 77.2 31.6 64.4 

GLY 697 1041 859 2669 3827 2765 3982 6102 4322 67.0 81.1 69.7 96.5 65.3 92.1 

HIS 59 360 88 37 216 193 204 1044 530 16.4 67.0 17.1 19.2 19.5 38.5 

ILE 261 570 886 1335 2101 2171 2446 4116 5334 45.8 29.5 63.5 61.5 59.4 45.9 

LYS 316 717 871 0 228 3 412 1290 1048 44.1 36.3 0.0 0.0 31.9 39.3 

LEU 738 1083 4102 2597 3698 3809 6058 8220 14127 68.1 18.0 70.2 68.2 73.7 42.9 

MET 20 168 146 496 996 1346 623 1632 2311 11.9 13.7 49.8 36.8 38.2 27.0 

ASN 132 416 253 554 668 1906 921 1650 2804 31.7 52.2 82.9 29.1 55.8 32.8 

PRO 425 832 473 485 876 489 1181 2436 1233 51.1 89.9 55.4 99.2 48.5 95.8 

GLN 51 289 150 203 402 642 492 1356 1306 17.6 34.0 50.5 31.6 36.3 37.7 

ARG 395 668 1089 276 384 492 1296 1914 2900 59.1 36.3 71.9 56.1 67.7 44.7 

SER 165 531 539 800 1464 4125 1291 2640 5636 31.1 30.6 54.6 19.4 48.9 22.9 

THR 117 533 338 1080 1809 2643 1612 3126 4011 22.0 34.6 59.7 40.9 51.6 40.2 

VAL 30 623 53 945 2292 1161 1271 4656 1627 4.8 56.6 41.2 81.4 27.3 78.1 

TRP 77 298 513 227 476 545 615 1398 2232 25.8 15.0 47.7 41.7 44.0 27.6 

TYR 14 354 31 448 975 603 593 1920 816 4.0 45.2 45.9 74.3 30.9 72.7 
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Table AB.4. Raw counts of amino acids in Talaris designs for the homo-oligomeric set. Tabular data to support main text Figure 

2.3. Tabular Total counts of amino acids represented at the surface, core, and total protein are reported for all native and selected 

Talaris designs analyzed from the homo-oligomeric set. 
 

Counts Percentages 

Surface Core Total Surface Core Total 

Correct Native  Design Correct Native Design Correct Native Design Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

ALA 53 1014 162 3554 4285 6358 4428 7182 7849 5.2 32.7 82.9 55.9 61.7 56.4 

CYS 0 60 25 19 408 56 19 570 116 0.0 0.0 4.7 33.9 3.3 16.4 

ASP 175 306 1118 137 243 414 451 1014 2200 57.2 15.7 56.4 33.1 44.5 20.5 

GLU 215 618 1488 273 448 824 839 1614 4472 34.8 14.4 60.9 33.1 52.0 18.8 

PHE 170 648 188 1248 2050 1677 2034 4134 2778 26.2 90.4 60.9 74.4 49.2 73.2 

GLY 772 1036 1014 3107 3825 3285 4623 6102 5144 74.5 76.1 81.2 94.6 75.8 89.9 

HIS 70 360 103 109 210 312 346 1044 861 19.4 68.0 51.9 34.9 33.1 40.2 

ILE 151 567 332 1536 2076 2187 2337 4116 3609 26.6 45.5 74.0 70.2 56.8 64.8 

LYS 191 717 1520 74 233 304 453 1290 2937 26.6 12.6 31.8 24.3 35.1 15.4 

LEU 354 1105 669 2593 3704 3279 4774 8220 6446 32.0 52.9 70.0 79.1 58.1 74.1 

MET 7 174 26 553 990 849 626 1632 1196 4.0 26.9 55.9 65.1 38.4 52.3 

ASN 126 416 685 404 654 803 804 1650 2103 30.3 18.4 61.8 50.3 48.7 38.2 

PRO 750 828 987 790 870 833 2198 2436 2536 90.6 76.0 90.8 94.8 90.2 86.7 

GLN 88 305 371 210 402 522 653 1356 1721 28.9 23.7 52.2 40.2 48.2 37.9 

ARG 166 700 537 168 378 723 738 1914 3057 23.7 30.9 44.4 23.2 38.6 24.1 

SER 171 523 595 378 1459 896 887 2640 2115 32.7 28.7 25.9 42.2 33.6 41.9 

THR 127 508 561 817 1809 1205 1413 3126 2538 25.0 22.6 45.2 67.8 45.2 55.7 

VAL 57 602 176 1534 2289 1847 2192 4656 2856 9.5 32.4 67.0 83.1 47.1 76.8 

TRP 91 298 198 302 460 490 675 1398 1334 30.5 46.0 65.7 61.6 48.3 50.6 

TYR 114 348 378 550 970 899 948 1920 2146 32.8 30.2 56.7 61.2 49.4 44.2 
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Table AB.5. Raw counts of amino acids in RosettaMembrane designs for the oligomeric set modeled as monomers. Tabular data 

to support main text Figure 2.3. Total counts of amino acids represented at the surface, core, and total protein are reported for all 

native and selected RosettaMembrane monomeric designs analyzed from the homo-oligomeric set. 
 

Counts Percentages 

Surface Core Total Surface Core Total 

Correct Native  Design Correct Native Design Correct Native Design Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

Correct/ 

Native 

Correct/ 

Design 

ALA 30 506 34 497 1087 843 724 2334 1153 5.9 88.2 45.7 59.0 31.0 62.8 

CYS 0 18 0 0 114 0 0 168 0 0.0 0.0 0.0 0.0 0.0 0.0 

ASP 37 168 116 12 55 24 64 324 178 22.0 31.9 21.8 50.0 19.8 36.0 

GLU 43 246 75 35 120 43 146 534 206 17.5 57.3 29.2 81.4 27.3 70.9 

PHE 47 294 95 187 470 241 363 1326 604 16.0 49.5 39.8 77.6 27.4 60.1 

GLY 276 463 319 829 1135 862 1261 1986 1357 59.6 86.5 73.0 96.2 63.5 92.9 

HIS 6 180 8 12 65 49 44 336 123 3.3 75.0 18.5 24.5 13.1 35.8 

ILE 132 290 420 218 399 378 702 1326 1763 45.5 31.4 54.6 57.7 52.9 39.8 

LYS 123 278 430 1 30 1 134 408 456 44.2 28.6 3.3 100.0 32.8 29.4 

LEU 454 627 2158 506 805 737 2015 2802 5441 72.4 21.0 62.9 68.7 71.9 37.0 

MET 0 85 88 98 216 318 144 510 685 0.0 0.0 45.4 30.8 28.2 21.0 

ASN 32 175 93 131 162 482 217 510 752 18.3 34.4 80.9 27.2 42.5 28.9 

PRO 178 383 202 116 227 119 361 804 388 46.5 88.1 51.1 97.5 44.9 93.0 

GLN 22 169 53 33 66 180 134 438 378 13.0 41.5 50.0 18.3 30.6 35.4 

ARG 170 306 552 75 107 131 420 648 1120 55.6 30.8 70.1 57.3 64.8 37.5 

SER 66 247 214 224 360 1079 398 834 1638 26.7 30.8 62.2 20.8 47.7 24.3 

THR 66 250 199 266 440 627 474 1002 1143 26.4 33.2 60.5 42.4 47.3 41.5 

VAL 22 300 35 197 509 255 317 1452 413 7.3 62.9 38.7 77.3 21.8 76.8 

TRP 37 140 199 45 102 151 174 456 772 26.4 18.6 44.1 29.8 38.2 22.5 

TYR 15 185 20 95 206 155 156 612 240 8.1 75.0 46.1 61.3 25.5 65.0 
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Table AB.6. Tabular representation of percent difference in sequence composition for 

designs. Each dataset was designed using RosetttaMembrane and Talaris scoring functions. 

Support for figure 2.8 
 

Monomers Homo-oligomers Homo-oligomers as 

Monomers 

Membrane Talaris Membrane Talaris Membrane 

ALA -4.65 1.64 -4.69 0.79 -6.63 

ARG 15.50 22.13 1.97 2.02 12.18 

ASN 1.34 -0.29 1.87 0.91 1.21 

ASP -0.22 1.67 -0.65 2.07 -0.68 

CYS -0.74 -0.59 -0.90 -0.70 -0.90 

GLN 0.41 0.77 -0.02 0.67 -0.42 

GLU -1.99 5.35 -1.51 5.46 -1.69 

GLY -3.03 -1.71 -3.06 -1.65 -3.27 

HIS 0.09 0.30 -0.84 -0.41 -1.28 

ILE -0.64 -2.49 2.38 -0.80 2.86 

LEU 13.81 -2.04 9.76 -3.94 15.07 

LYS -1.33 4.17 -0.18 3.33 0.45 

MET -0.29 -1.34 1.44 -0.47 1.11 

PHE -4.08 -2.98 -3.41 -2.20 -3.52 

PRO -2.55 -1.53 -2.03 0.16 -3.18 

SER 3.86 -1.57 4.62 -0.78 3.58 

THR 2.24 -0.36 1.39 -1.20 0.58 

TRP 2.44 0.24 1.23 -0.28 1.18 

TYR -2.11 0.42 -2.08 0.31 -2.16 

VAL -6.32 -4.26 -5.28 -3.32 -5.83 

Average 

absolute 

deviation 

±3.4 ±2.8 ±2.5 ±1.6 ±3.4 
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Table AB.7. Tabular representation of percent difference in amino acid property recovery. 

Support for figure 2.8 
 

Monomers Homo-oligomers Homo-oligomers as 

Monomers 

Property Membrane Talaris Membrane Talaris Membrane 

ALIPHATIC -2.83 -9.85 -1.52 -9.25 1.16 

AROMATIC -3.66 -2.04 -5.13 -2.60 -5.81 

BETA-BRANCHED 9.73 -6.66 5.86 -8.47 9.83 

CHARGED -0.58 13.94 -0.35 12.92 0.57 

LONG-FLEXIBLE -0.30 11.66 1.70 11.03 1.92 

NEGATIVE -2.22 7.03 -2.16 7.54 -2.36 

POLAR&CHARGED 6.59 12.17 5.78 11.42 3.35 

POLAR 7.18 -1.77 6.15 -1.48 2.80 

POSITIVE 1.62 6.91 1.79 5.37 2.93 

SMALL -3.84 -1.67 -3.14 -1.63 -6.34 

Average absolute 

deviation 

±3.9 ±7.4 ±3.4 ±7.3 ±3.7 
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APPENDIX C 

PROTOCOL CAPTURE FOR CHAPTER 2 

The protocol capture provides the generalized steps that were necessary to carry out the 

benchmark experiments described Duran and Meiler, 2017, and was included in the 

supplemental materials. The Rosetta software suite is free for academic users. 

Part 1a: The effects of various modes of relax on the sequence recovery for membrane 

protein design (monomers) 

Step 1 - Set up files for monomeric proteins 

A. Spanfiles- an input file that describe the start and ends of transmembrane spans. The 

structure based approach used in this protocol was to obtain span information from 

the PDBTM XML file specific to each PDBID. XMLs were parsed for the start and 

end of transmembrane regions and spanfiles were created using the standard Rosetta 

spanfile format. 

B. Option file-an input file with common options: 

-in:file:fullatom  

-in:file:s myprot.pdb  

-in:file:spanfile myfile.span   

-membrane:no_interpolate_Mpair  

-membrane:Membed_init  

-membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts  

-ex1  

-ex2  

-ex2aro  

-use_input_sc  

-out:file:fullatom  

-out:path:pdb  

-database /path/to/Rosetta/main/database/ 

Step 2- Various relaxation strategies to prepare for membrane protein design 

Steps A-E are the different approaches to prepare structural models for design 

A. Repack only: Only side-chains are minimized (no backbone minimization). Repack 

uses a resfile to restrict to repacking only. 

Input resfile:  
NATAA 

start 

To repack using a RosettaScripts XML set-up: 
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/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease  

@myoptions -parser:protocol myrpkprotocol.xml 

 

Input XML “myrpkprotocol.xml” : 

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

         <mem_hres weights="membrane_highres_Menv_smooth.wts"/> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

         <InitializeFromCommandline name=”ifcl”/> 

        </TASKOPERATIONS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

          <PackRotamersMover name=”pack” scorefxn=”mem_hres” 

task_operations=”ifcl” /> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

          <Add mover_name=”pack”/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

To repack using the design application: 
/path/to/rosetta/fixbb.linuxgcc.release @myoptions  

–resfile my.resfile 

B. Constrained to start coordinates: constrained relax using option available in 

combination with FastRelax 

/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease 

@myoptions -parser:protocol myrlxprotocol.xml  

-relax:constrain_relax_to_start_coords true 

Input XML “myrlxprotocol.xml”: 

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

          <mem_hres weights="membrane_highres_Menv_smooth.wts"/> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

          <InitializeFromCommandline name="ifcl"/> 

          <IncludeCurrent name="ic" /> 

          <RestrictToRepacking name="rtr" /> 

        </TASKOPERATIONS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

          <FastRelax name="relax" scorefxn="mem_hres" 

task_operations="ifcl,ic,rtr" /> 
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        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

          <Add mover_name="relax"/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

To relax using the relax application: 
/path/to/rosetta/main/source/bin/relax.default.linuxgccrelease 

@myoptions  

-relax:constrain_relax_to_start_coords true 

C. FastRelax: This is the standard minimization protocol in Rosetta. 
/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease 

@myoptions 

-parser:protocol myprotocol.xml 

Input XML: Same as Part1a: Step 2B  

Generated 250-300 models of each protein  

To relax using the relax application: 
/path/to/rosetta/main/source/bin/relax.default.linuxgccrelease 

@myoptions 

D. Dualspace: This is a protocol that combines internal coordinate relax and Cartesian 

coordinate relax focusing on ideal bond lengths 
/path/to/Rosetta/main/source/bin/rosetta_script.linuxgccrelease 

@myoptions -parser:protocol myprotocol.xml -relax:dualspace  

-relax:minimize_bond_angles -set_weights cart_bonded 0.5 pro_close 

0 -default_max_cycles 200  

Input XML: Same as Part1a: Step 2B 

 

To perform dualspace relax using the relax application: 
/path/to/rosetta/main/source/bin/relax.default.linuxgccrelease 

@myoptions -relax:dualspace -relax:minimize_bond_angles -set_weights 
cart_bonded 0.5 pro_close 0 -default_max_cycles 200 

E. Minimize with constraints: This protocol is the first step of the standard 

ddg_monomer protocol  

/path/to/Rosetta/main/source/bin/minimize_with_cst.linuxgccrelease  

-in:file:l mypdbs.list -in:file:fullatom -ignore_unrecognized_res  

-fa_max_dis 9.0 -database /path/to/Rosetta/main/database/  

-ddg::harmonic_ca_tether 0.5  

-score:weights membrane_highres_Menv_smooth.wts  

-membrane:no_interpolate_Mpair -membrane:Membed_init  

-membrane:Menv_penalties -ddg::constraint_weight 1.0  

-ddg::out_pdb_prefix min_cst_0.5 -ddg::sc_min_only false 
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Skip step 3- only one model to start from 

Step 3 - Selecting models for design 

To select the best relaxed models for design, evaluate the total score and full atom RMSD to 

starting structure 

Calculate the RMSD with respect to the starting structure by using a script available in Rosetta: 

/path/to/rosetta/tools/protein_tools/scripts/score_vs_rmsd.py  

--native=mynative.pdb --table=mytable.txt my*.pdbs 

where the wildcard represents all models in a location 

For each protein, the three models with the lowest total score and lowest RMSD were selected as 

templates for design. Approximately 300 models were generated for each protein. Three models 

were chosen to generate designs on multiple possible conformation of each protein. 

Step 4 - Full design of monomeric proteins 

The top relaxed models from step 3 are used as input to replace pdbs in the options file: 
-in:file:pdb myrlxprot.pdb 

/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease @myoptions  

-parser:protocol myrlxprotocol.xml -linmem_ig 10  

Input XML “mydesprotocol”:  

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

          <mem_hres weights="membrane_highres_Menv_smooth.wts"/> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

          <InitializeFromCommandline name=”ifcl”/> 

        </TASKOPERATIONS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

          <PackRotamersMover name=”pack” scorefxn=”mem_hres” 

task_operations=”ifcl” /> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

          <Add mover_name=”pack”/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

To design using the design application:  
/path/to/rosetta/main/source/bin/fixbb.default.linuxgccrelease @myoptions 

Step 5 - Selecting design models for analysis 
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Select top 10% by score as the backbone is fixed during design 

grep pose *.pdb | sort -nk 23 | head -n   

 

Where n is 1/10th of the total number of designs generated for a protein (approximately 75 

designs generated for each protein) 

Step 6 – Calculating sequence recovery 

Calculating the ability of the top 10% of models by score to recover the native sequence 

I made a file containing a list of the top 10% of models by score for each protein. 

/path/to/rosetta/main/source/bin/sequencerecovery.linuxgccrelease 

-native_pdb_list mynatives.list -redesign_pdb_list designs.list  

-ignore_unrecognized_res 

Calculated the average and standard deviation for the top 10% of models 

 

Protocol for part 1b: The effects of various modes of relax on the sequence recovery for 

membrane protein design (homo-oligomers) 

Step 1 – Setting up files for oligomeric membrane proteins 

A. Create spanfile – see Part 1a; note that this will contain starts and ends of 

transmembrane helices for a single protomer 

B. Option file-an input file with common options: note that the input pdb file is of a 

single protomer 

-in:file:fullatom  

-in:file:s myprot.pdb  

-in:file:spanfile myfile.span   

-membrane:no_interpolate_Mpair  

-membrane:Membed_init  

-membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts  

-ex1  

-ex2  

-ex2aro  

-use_input_sc  

-out:file:fullatom  

-out:path:pdb  

-database /path/to/Rosetta/main/database/ 

C. Symmetry definition file  

Structures of the oligomeric complex were downloaded from PDBTM. These full 

structures were used to generate the symmetry definition file.  
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/path/to/rosetta/main/source/apps/public/symmetry/ 

make_symmdef_file.pl -m NCS -a A -i B -p myprotein.pdb > myfile.sym 

Note: parameters for generating symfiles vary for oligomeric assembly and chainids 

Step 2- Various relaxation strategies to prepare for symmetric membrane protein design 

A. Repack only: Only side-chains are minimized (no backbone minimization). Repack 

uses a resfile to restrict to repacking only. 

Input resfile:  
NATAA 

start 

To repack using a RosettaScripts XML set-up: 

/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease  

@myoptions -parser:protocol myrpkprotocol.xml 

Input XML “mysymrpkprotocol.xml” : 

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

<mem_hres weights="membrane_highres_Menv_smooth.wts" 

symmetric="1" /> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

          <InitializeFromCommandline name="ifcl" /> 

   <ReadResfile name=”rrf” /> 

        </TASKOPERATIONS> 

        <MOVERS> 

   <SetupForSymmetry name="setup_symm" definition=myfile.sym 

/> 

   <SymPackRotamersMover name="sym_pack" scorefxn="mem_hres"   

task_operations="ifcl,rrf” /> 

        </MOVERS> 

        <PROTOCOLS> 

          <Add mover="setup_symm" /> 

          <Add mover="sym_pack" /> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

To repack using the design application: 
/path/to/rosetta/fixbb.linuxgcc.release @myoptions  

–resfile my.resfile –symmetry –symmetry_definition myfile.sym 

B.  Constrained to start coordinates: constrained relax using option available in 

combination with FastRelax 

/path/to/rosetta/main/source/bin/rosetta_scripts.linuxgccrelease  

-parser:protocol mysymrlxprotocol.xml  

-relax:constrain_relax_to_start_coords true  
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-relax:jump_move true   

 

Input XML ‘mysymrlxprotocol.xml’:  

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

          <mem_hres_sym 

weights="membrane_highres_Menv_smooth.wts" symmetric="1" /> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

          <InitializeFromCommandline name="ifcl"/> 

          <RestrictToRepacking name="rtr" /> 

          <IncludeCurrent name="ic" /> 

        </TASKOPERATIONS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

          <SetupForSymmetry name="setup_symm" 

definition="myfile.sym" /> 

          <FastRelax name="relax" scorefxn="mem_hres_sym" 

repeats="1" task_operations="ifcl,rtr,ic" /> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

          <Add mover_name="setup_symm" /> 

          <Add mover_name="relax" /> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

To relax using the relax application: 
/path/to/rosetta/main/source/bin/relax.default.linuxgccrelease 

@myoptions -relax:constrain_relax_to_start_coords true  

–symmetry –symmetry_definition myfile.sym -relax:jump_move 

C. FastRelax: This is the standard minimization protocol in Rosetta. 
/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease 

@myoptions -parser:protocol myprotocol.xml -relax:jump_move true 

Note that instead of the standard eight (at the time) rounds of relax, one round 

resulted in decently scored models and required much less time resources 

To relax using the relax application: 
/path/to/rosetta/main/source/bin/relax.default.linuxgccrelease 

@myoptions –symmetry –symmetry_definition myfile.sym  

-relax:jump_move 

 

D. Dualspace: This is a protocol that combines internal coordinate relax and Cartesian 

coordinate relax focusing on ideal bond lengths 
/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease  
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-parser:protocol myprotocol.xml -relax:dualspace  

-relax:minimize_bond_angles -set_weights cart_bonded 0.5 pro_close 

0 -default_max_cycles 200  

 

Input XML: Same as Part1b: Step 2b  

 

To perform dualspace relax using the relax application: 
/path/to/rosetta/main/source/bin/relax.default.linuxgccrelease 

@myoptions -relax:dualspace -relax:minimize_bond_angles -
set_weights cart_bonded 0.5 pro_close 0 -default_max_cycles 200 –

symmetry –symmetry_definition myfile.sym 

E.  Minimize with constraints: This protocol is the first step of the standard 

ddg_monomer protocol  

/path/to/rosetta/main/source/bin/ 

minimize_with_cst.linuxgccrelease -in:file:l mypdbs.list  

-in:file:fullatom -ignore_unrecognized_res -fa_max_dis 9.0  

-database /path/to/Rosetta/main/database/  

-ddg::harmonic_ca_tether 0.5  

-score:weights membrane_highres_Menv_smooth.wts  

-membrane:no_interpolate_Mpair -membrane:Membed_init  

-membrane:Menv_penalties -ddg::constraint_weight 1.0  

-ddg::out_pdb_prefix min_cst_0.5 -ddg::sc_min_only false 

Note that this minimizes only in the context of the single protomer 

Skip step 3- only one model to start from 

Step 3 - Selecting models for design 

To select the best relaxed models for design, evaluate the total score and full atom RMSD to 

starting structure 

Calculate the RMSD with respect to the starting structure by using a script available in Rosetta: 

/path/to/rosetta/tools/protein_tools/scripts/score_vs_rmsd.py  

--native=mynative.pdb --table=mytable.txt my*.pdbs 

Where the wildcard represents all models in a location 

Note that the input native should be the symmetric assembly of the starting conformation 

For each protein, the three models with the lowest total score and lowest RMSD were selected as 

templates for design. Three models were chosen to generate designs on multiple possible 

conformation of each protein. 

Step 4 - Full design of oligomeric proteins 
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Chain A of the top relaxed models from step 3 are used as input to replace pdbs in the options 

file: 
-in:file:pdb myrlxprot.pdb 

However, one must align the relaxed models to the coordinates of the input structure in order to 

use the same symmetry definition file in the design protocol 

/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease @myoptions  

-parser:protocol myrlxprotocol.xml -linmem_ig 10  

Input XML “mysymdesprotocol”:  

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

   <mem_hres weights="membrane_highres_Menv_smooth.wts" symmetric="1" /> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

          <InitializeFromCommandline name="ifcl" /> 

        </TASKOPERATIONS> 

        <MOVERS> 

          <SetupForSymmetry name="setup_symm" definition=myfile.sym /> 

          <SymPackRotamersMover name="sym_pack" scorefxn="mem_hres” 

task_operations="ifcl" /> 

        </MOVERS> 

        <PROTOCOLS> 

          <Add mover="setup_symm" /> 

          <Add mover="sym_pack" /> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

To design using the design application:  
/path/to/rosetta/main/source/bin/fixbb.default.linuxgccrelease @myoptions  

-linmem_ig 10 –symmetry –symmetry_definition myfile.sym  

Step 5 - Selecting design models for analysis 

See Part1a: Step 5 

Step 6 - Sequence Recovery 

See Part1a: Step 6 

Protocol for part 2a: The effects of various scoring functions on the sequence recovery and 

composition for membrane protein design (monomers) 

Step 1 – Preparation of files necessary for design 

A. Minimization of starting structure- selected the top three models of each protein by score 

and RMSD of relaxed structures from the constrained to start coordinates relax protocol 

from Part 1a: Step 2b 

B. Option file-an input file with common options: 
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-in:file:fullatom  

-in:file:s myprot.pdb  

-ex1  

-ex2  

-ex2aro  

-use_input_sc  

-linmem_ig 10 

-out:file:fullatom  

-out:path:pdb  

-database /path/to/Rosetta/main/database/ 

Step 2 – Full Design of Monomers  

A. Design of monomers using RosettaMembrane 

/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease  

@myoptions -parser:protocol memdes.xml  

-in:file:spanfile myfile.span -membrane:no_interpolate_Mpair  

-membrane:Membed_init -membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts  

Input XML ‘memdes.xml’:  

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

          <mem_highres weights="membrane_highres_Menv_smooth.wts"/> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

          <InitializeFromCommandline name=ifcl/> 

        </TASKOPERATIONS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

                 <PackRotamersMover name=pack scorefxn=mem_highres 

task_operations=ifcl/> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

          <Add mover_name=pack/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

 To perform full design using the design application: 

 /path/to/rosetta/main/source/bin/fixbb.default.linuxgccrelease 
@myoptions -in:file:spanfile myfile.span  

-membrane:no_interpolate_Mpair -membrane:Membed_init  

-membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts  

B. Design of monomers using soluble scoring function Talaris 
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/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease  

@myoptions -parser:protocol taldes.xml  

Input XML taldes.xml:  

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

         <talaris weights="talaris2013.wts"/> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

         <InitializeFromCommandline name=ifcl/> 

        </TASKOPERATIONS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

<PackRotamersMover name=pack scorefxn=talaris    

task_operations=ifcl /> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

           <Add mover_name=pack/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

To perform full design using the design application: 
 /path/to/rosetta/main/source/bin/fixbb.default.linuxgccrelease 
@myoptions -score:weights talaris2013.wts 

Step 3 - Selecting design models for analysis 

See Part1a: Step 5 

Step 4 – Calculating Sequence Recovery 

The sequence recovery application can give information for total sequence recovery (focus in 

Part 1); however the Rosetta Sequence Recovery Application gives sequence recovery for 

subgroups core >= 24 neighbors within c-beta distance of 10 Angstroms; surface <= 16 

neighbors within c-beta distance of 10 Angstroms; and overall sequence recovery 

/path/to/Rosetta/main/source/bin/sequencerecovery.linuxgccrelease  

-native_pdb_list mynatives.list -redesign_pdb_list designs.list  

-ignore_unrecognized_res 

Inputs: designs.list = top10% of the respective protein  

Two outputs sequencerecovery.txt and a submatrix.txt are produced. Only sequencerecovery.txt 

was used for analysis where numbers for core, overall, and surface recovery were extracted and 

converted into percentages 

Step 5 – Calculating Sequence Composition 
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An in-house script was used that calculates the percentage of each amino acid identity in the 

protein as well as properties such as polar&charged, polar, charged, aromatic, aliphatic, positive, 

negative, small, beta branched, long flexible. 

For a comparison, the amino acid composition of the native structures was calculated. Then the 

top 10% of designs by score were analyzed for amino acid composition.   

The composition of both amino acid identities and properties were analyzed.  

Step 6 - Hotpatch Analysis-Hotpatch server 

Submitted representative models for each structure and submitted for lipid-interacting hotpatch 

analysis 

Step 7 - OPM Analysis-Orientation of Proteins in the Membrane server 

http://opm.phar.umich.edu/server.php 

The output gives information about the thickness of the protein well as the tilt angle, transfer 

energy of the protein from water to lipid bilayer, and membrane embedded residues along with a 

pdb of the protein in the bilayer; however, only transfer energy was a metric for analysis 

Protocol for part 2b: The effects of various scoring functions on the sequence recovery and 

composition for membrane protein design (homo-oligomers) 

Step 1 – Preparation of files necessary for symmetric design 

A. Minimization of starting structure- selected the top three models of each protein by score 

and RMSD of relaxed structures from the constrained to start coordinates relax protocol 

from Part 1b: Step 2b 

B. Option file-an input file with common options: 

-in:file:fullatom  

-in:file:s myprot.pdb  

-ex1  

-ex2  

-ex2aro  

-use_input_sc  

-linmem_ig 10 

-out:file:fullatom  

-out:path:pdb  

-database /path/to/Rosetta/main/database/ 

Step 2-Full design of homo-oligomers 

A.  Design of homo-oligomers : RosettaMembrane 

Use RosettaMembrane to fully design the protein as an oligomer 
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/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease  

-parser:protocol symmemdes.xml -membrane:no_interpolate_Mpair   

-membrane:Membed_init -membrane:Menv_penalties   

-score:weights membrane_highres_Menv_smooth.wts   

 

Input XML symmemdes.xml:  

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

          <mem_hres weights="membrane_highres_Menv_smooth.wts" 

symmetric=1 /> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

          <InitializeFromCommandline name=ifcl/> 

        </TASKOPERATIONS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

          <SetupForSymmetry name=setup_symm definition= myfile.sym /> 

          <SymPackRotamersMover name=sym_pack scorefxn=mem_hres 

task_operations=ifcl /> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

          <Add mover_name=setup_symm /> 

          <Add mover_name=sym_pack/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 
 

 

To perform full design using the design application: 
 /path/to/rosetta/main/source/bin/fixbb.default.linuxgccrelease 
@myoptions -in:file:spanfile myfile.span  

-membrane:no_interpolate_Mpair -membrane:Membed_init  

-membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts -symmetry   

-symmetry_definition myfile.sym 

B. Design of homo-oligomers using soluble scoring function Talaris 

/path/to/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease  

-parser:protocol symtaldes.xml –symmetry  

–symmetry_definition myfile.sym 

Input XML ‘symtaldes.xml’:  
<ROSETTASCRIPTS> 

        <SCOREFXNS> 

          <talaris weights="talaris2013.wts" symmetric=1 /> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

          <InitializeFromCommandline name=ifcl/> 
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        </TASKOPERATIONS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

          <SetupForSymmetry name=setup_symm definition= myfile.sym /> 

          <SymPackRotamersMover name=sym_pack scorefxn=talaris 

task_operations=ifcl /> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

          <Add mover_name=setup_symm /> 

          <Add mover_name=sym_pack/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

To perform full design using the design application: 
 /path/to/rosetta/main/source/bin/fixbb.default.linuxgccrelease @myoptions  
-score:weights talaris2013.wts -symmetry  -symmetry_definition myfile.sym 

Step 3 - Selecting design models for analysis 

See Part1a: Step 5 

Step 4 – Calculating Sequence Recovery  

See Part2a:Step4 

Step 5 - Calculating Sequence Composition 

See Part2a:Step5 

Step 6 - Hotpatch Analysis – Hotpatch Server 

See Part2a:Step6 

Step 7 - OPM Analysis-Orientation of Proteins in the Membrane Server 

See Part2a:Step7 

Step 3: Design of homo-oligomers as monomers 

From the single chain input for Part 1b: Step 2b, run through the monomeric version of the 

protocol at Part1a:Step 2b, then continue through the rest of the protocol using the monomeric 

versions in Part1a and Part 2a. 
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APPENDIX D 

PROTOCOL CAPTURES FOR CHAPTER 3 

The implementation for soluble proteins (high-resolution) 

Step 1. Generate Constraints File 

To run this application, you have to input a list (not a path to a single file). So if you have one 

pdb, create a 'list' with a single row. 

~myrosetta/main/source/bin/minimize_with_cst.linuxgccrelease -in:file:l pdb.list -

in:file:fullatom -ignore_unrecognized_res -fa_max_dis 9.0 -ddg::harmonic_ca_tether 0.5 -

score:weights score12.wts -ddg::constraint_weight 1.0 -ddg::out_pdb_prefix min_cst_0.5 -

ddg::sc_min_only false > mincst.log 

and then use: 

~myrosetta/main/source/src/apps/public/ddg/convert_to_cst_file.sh 

Step 2. Run the application 

To run the application, you must include a number of options (shown below) 

\~myrosetta/main/source/bin/ddg_monomer.linuxgccrelease @ddG_monomer.options \-s 

mystruct.pdb \-resfile mymut.resfile 
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-ddg:weight_file soft_rep_design # Use soft-repulsive weights for the 

initial sidechain optimization stage 

-ddg:minimization_scorefunction score12 # optional -- the weights file to 

use, if not given, then "score12" will be used (score12 = standard.wts + 

score12.wts_patch) 

-restore_pre_talaris_2013_behavior # essential for versions of Rosetta 2013 

and beyond 

#-ddg::minimization_patch <weights patch file > # optional -- the weight-

patch file to apply to the weight file; does not have to be given 

-database /path/to/rosetta/main/database #the full oath to the database is 

required 

-fa_max_dis 9.0 # optional -- if not given, the default value of 9.0 

Angstroms is used. 

-ddg::iterations 50 # 50 is the recommended number of iterations 

-ddg::dump_pdbs true # write out PDB files for the structures, one for the 

wildtype and one for the pointmutant for each iteration 

-ignore_unrecognized_res # optional -- if there are residues in the input 

PDB file that Rosetta cannot recognize, ignore them instead of quitting with 

an error message 

-ddg::local_opt_only false # recommended: local optimization restricts the 

sidechain optimization to only the 8 A neighborhood of the mutation 

(equivalent to row 13) 

-ddg::min_cst true # use distance restraints (aka constraints) during the 

backbone minimization phase 

-constraints::cst_file 1py6.cst # the set of constraints to use during 

minimization which should reflect distances in the original (non-pre-

relaxed) structure 

-ddg::suppress_checkpointing true # don't checkpoint  
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-in::file::fullatom # read the input PDB file as a fullatom structure 

-ddg::mean true # do not report the mean energy 

-ddg::min true # report the minimum energy 

-ddg::sc_min_only false # do not minimize only the backbone during the 

backbone minimization phase 

-ddg::ramp_repulsive true # perform three rounds of minimization (and not 

just the default 1 round) where the weight on the repulsive term is 

increased from 10% to 33% to 100% 

-mute all # optional -- silence all of the log-file / stdout output 

generated by this protocol 

-unmute core.optimization.LineMinimizer # optional -- unsilence a particular 

tracer 

-ddg::output_silent true # write output to a silent file 

 

For the membrane protein high-resolution protocol: 

Step 1. Generate Constraints File 

To run this application, you have to input a list (not a path to a single file). So if you have one 

pdb, create a 'list' with a single row. 

~myrosetta/main/source/bin/minimize_with_cst.linuxgccrelease -in:file:l pdb.list -

in:file:fullatom -ignore_unrecognized_res -fa_max_dis 9.0 -ddg::harmonic_ca_tether 0.5 -

score:weights membrane_highres_Menv_smooth.wts -ddg::constraint_weight 1.0 -

ddg::out_pdb_prefix min_cst_0.5 -ddg::sc_min_only false -membrane:no_interpolate_Mpair -

membrane:Membed_init -membrane:Menv_penalties -in:file:spanfile myspan.span > 

mincst.log 

and then use: 
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~myrosetta/main/source/src/apps/public/ddg/convert_to_cst_file.sh 

Step 2. Run the application 

To run the application, you must include a number of options (shown below) 

\~myrosetta/main/source/bin/ddg_monomer.linuxgccrelease @ddG_monomer.options \-s 

mystruct.pdb \-resfile mymut.resfile 

Note: since there are no 'soft rep' weights for rosetta membrane, rather than cutting and pasting 

parts of each scorefunction into a soft rep for membrane, I used the original soft_rep_design as 

the part for repacking, while using the membrane_highres_Menv_smooth.wts for minimization. 

It's not a great way, but I feel like it is better than pasting together a soft rep membrane weights 

file that hasn't been trained 

-ddg:weight_file soft_rep_design # Use soft-repulsive weights for the 

initial sidechain optimization stage 

-ddg:minimization_scorefunction membrane_highres_Menv_smooth.wts # optional 

-- the weights file to use, if not given, then "score12" will be used 

(score12 = standard.wts + score12.wts_patch) 

-restore_pre_talaris_2013_behavior 

#-ddg::minimization_patch <weights patch file > # optional -- the weight-

patch file to apply to the weight file; does not have to be given 

-database /path/to/rosetta/main/database #the full oath to the database is 

required 

-fa_max_dis 9.0 # optional -- if not given, the default value of 9.0 

Angstroms is used. 

-ddg::iterations 50 # 50 is the recommended number of iterations 

-ddg::dump_pdbs true # write out PDB files for the structures, one for the 

wildtype and one for the pointmutant for each iteration 



280 

 

-ignore_unrecognized_res # optional -- if there are residues in the input 

PDB file that Rosetta cannot recognize, ignore them instead of quitting with 

an error message 

-ddg::local_opt_only false # recommended: local optimization restricts the 

sidechain optimization to only the 8 A neighborhood of the mutation 

(equivalent to row 13) 

-ddg::min_cst true # use distance restraints (aka constraints) during the 

backbone minimization phase 

-constraints::cst_file 1py6.cst # the set of constraints to use during 

minimization which should reflect distances in the original (non-pre-

relaxed) structure 

-ddg::suppress_checkpointing true # don't checkpoint  

-in::file::fullatom # read the input PDB file as a fullatom structure 

-ddg::mean true # do not report the mean energy 

-ddg::min true # report the minimum energy 

-ddg::sc_min_only false # do not minimize only the backbone during the 

backbone minimization phase 

-ddg::ramp_repulsive true # perform three rounds of minimization (and not 

just the default 1 round) where the weight on the repulsive term is 

increased from 10% to 33% to 100% 

-mute all # optional -- silence all of the log-file / stdout output 

generated by this protocol 

-unmute core.optimization.LineMinimizer # optional -- unsilence a particular 

tracer 

-ddg::output_silent true # write output to a silent file 

-membrane:no_interpolate_Mpair  

-membrane:Membed_init  

-membrane:Menv_penalties 
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APPENDIX E 

DATASET FROM CHAPTERS 3 AND 4 

Table AE.1 Complete dataset from Chapters 3 and 4 of experimentally derived and predicted mutation stabilities for membrane 

proteins. Entries contain the wild-type amino acid identity, residue number, mutation amino acid identity, and thermostability 

predictions from various programs. 
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nt 
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ddgm4
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provea
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expo 

state pdb prot type BLAST SHAN 

E 9 A -0.1 -0.05 -2.828 -0.81 -3.64677 -0.912 0.66 -0.937 -0.609 -1.054 -0.822 -0.88198 -0.3768 INT BUR 1PY6 BR AH 0.59 0.578078 

L 13 A -1.8 -4.781 -4.312 -2.44 -2.62844 -3.079 -2.34 -3.409 -3.842 -3.179 -1.536 -1.77341 -1.2538 INT BUR 1PY6 BR AH 3.03 0.415865 

A 39 P -0.6 -7.406 -53.695 -0.98 -3.98559 0.099 -4.55 -0.144 -1.03 -1.816 -1.659 -0.25733 -0.3017 INT BUR 1PY6 BR AH -1 1.25584 

F 42 A -2 -5.05 -5.515 -2.02 -3.7489 -3.149 -2.6 -3.386 -4.976 -2.174 -2.701 -1.85417 -2.4333 INT BUR 1PY6 BR AH 4.79 0.485153 

Y 43 A -2.1 -3.315 -4.469 -2.44 -3.14197 -3.179 -0.94 -3.321 -3.704 -2.492 -3.981 -0.8211 -2.5306 INT BUR 1PY6 BR AH 6.02 1.76937 

Y 43 F -1.7 0.844 0.445 -1.05 0.840668 -1.324 1.79 -1.277 -1.085 -1.018 -1.439 0.260715 -0.5496 INT BUR 1PY6 BR AH 6.02 1.76937 

Y 43 P 0.1 -11.273 
-
311.519 -1.78 -7.40469 -2.342 -2.76 -2.572 -0.817 -2.23 -4.637 -1.77421 -1.2835 INT BUR 1PY6 BR AH 6.02 1.76937 

M 60 A -1 -3.332 -2.876 -1.4 -2.95278 -2.289 -2.33 -2.406 -2.833 -2.119 -3.416 -1.3509 -2.1913 INT BUR 1PY6 BR AH 9 2.77871 

Y 79 F -0.1 -0.845 -1.687 -0.62 -2.20774 -1.251 0.41 -1.209 -1.078 -0.822 -1.281 0.017982 -0.2625 INT BUR 1PY6 BR AH 3.24 0.980699 

Y 83 A -1.7 -5.851 -6.68 -1.79 -3.11418 -2.63 -0.8 -2.67 -4.241 -1.695 -6.341 -1.28492 -2.803 INT BUR 1PY6 BR AH 9.14 3.6986 

Y 83 F -1 0.525 -0.26 -0.82 -0.00156 -0.778 1.62 -0.185 -1.2 -0.832 -2.818 -0.65566 -0.7002 INT BUR 1PY6 BR AH 9.14 3.6986 

L 100 A -3.2 -4.28 -3.875 -2.86 -3.46776 -2.554 -2.34 -2.87 -3.186 -1.692 -4.061 -1.81036 -2.0536 INT BUR 1PY6 BR AH 3.23 0.31928 

T 170 A -0.9 -0.633 -0.512 -1.98 0.006492 -1.216 2.34 -1.063 -1.238 -1.322 -2.017 -0.20936 -0.3074 INT BUR 1PY6 BR AH 0 -0.04189 

W 189 F 1 -3.356 -3.227 -1.09 -2.29241 -1.621 -1.6 -1.8 -1.217 -1.225 -9.51 -1.09945 -1.7769 INT BUR 1PY6 BR AH 9.73 3.60209 

S 193 A 0.1 0.207 0.155 -1.1 -0.61281 -0.706 1.37 -0.849 -1.586 -1.111 -0.522 -0.06511 -0.7632 INT BUR 1PY6 BR AH 0.23 -0.01375 

E 204 A -1.85 2.032 0.97 -1.62 2.13103 -2.346 0.96 -2.2 -2.382 -1.501 -3.966 0.860896 -0.7345 INT BUR 1PY6 BR AH 4.51 0.144358 
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S 226 A -0.9 0.604 -0.488 -0.67 -0.50007 -0.649 1.18 -0.674 -1.518 -0.418 -0.554 0.297906 -0.06 INT BUR 1PY6 BR AH 1.09 -0.07189 

T 97 A -2.05 -1.352 -1.465 -1.28 -1.3821 -1.151 1.65 -1.03 -1.624 -1.152 -4.93 NA -0.9522 INT BUR 2XOV GLPG AH 7.49 1.59288 

M 111 A -0.68 -3.344 -3.19 -1.27 -2.85398 -2.002 -2.3 -2.102 -2.624 -1.911 -4.02 -2.94741 -1.0837 INT BUR 2XOV GLPG AH 5.09 1.00544 

Q 112 A -0.81 -0.527 -1.407 -0.27 -0.58268 -0.66 0.5 -0.474 -0.149 -0.097 -2.804 -0.57452 -0.4095 INT BUR 2XOV GLPG AH 1.2 0.448319 

M 120 A -0.47 -2.206 -2.266 -0.69 -2.3283 -2.603 -1.03 -2.603 -0.42 -1.152 -3.7 -1.52395 -1.6077 INT BUR 2XOV GLPG AH 2 0.205404 

R 137 A -0.88 -5.051 -5.152 -0.42 -4.59401 -1.971 -0.63 -2.156 -0.155 -0.636 -5.986 -0.56947 -2.3884 INT BUR 2XOV GLPG AH 8.02 2.01486 

H 141 A -1.12 -2.448 -2.155 -0.87 -0.8004 -1.836 -1.96 -2.19 -1.219 -1.1 -5.003 -1.4529 -1.3266 INT BUR 2XOV GLPG AH 2.12 1.14554 

L 143 A -0.14 -3.621 -3.123 -2.07 -2.13838 -2.393 -2.34 -2.676 0.683 -2.457 -4 -1.5085 -2.6615 INT BUR 2XOV GLPG AH 0.36 3.67207 

M 144 A -0.42 -4.088 -3.633 -1.21 -3.64952 -3.022 -2.61 -3.228 -2.742 -1.407 -3.416 -2.36853 -2.05 INT BUR 2XOV GLPG AH 3.33 0.639248 

H 145 A -1.71 -6.731 -5.706 -0.91 -1.71689 -2.128 -0.95 -2.35 -1.38 -1.125 -9.743 0.674099 -2.2558 INT BUR 2XOV GLPG AH 11.71 7.79326 

H 150 A -0.8 -4.075 -2.15 -0.38 0.631722 -2.042 -0.79 -2.113 -0.986 -0.912 -9.043 0.360235 -1.516 INT BUR 2XOV GLPG AH 11.64 7.51144 

E 166 A -5.46 -3.903 -6.905 -1.01 -5.90595 -0.491 0.96 -0.491 -0.361 -1.022 -5.998 0.313757 -0.6514 INT BUR 2XOV GLPG AH 8.11 2.03573 

L 169 A -1.08 -1.744 1.001 -2.62 -3.24802 -1.822 -1.45 -1.967 0.747 -2.911 -4.17 -2.19087 -1.0248 INT BUR 2XOV GLPG AH 3.51 1.06039 

G 170 A -0.75 -8.56 -8.156 -1.33 -3.24081 -0.673 -2.21 -0.646 -0.453 -2.034 -5.882 -0.46648 -0.8988 INT BUR 2XOV GLPG AH 7.72 1.68637 

S 171 A 0.1 -1.015 -0.478 -0.11 -0.36648 -0.727 2.45 -0.507 -0.637 -0.339 -1.056 0.161168 -0.5549 INT BUR 2XOV GLPG AH 2.98 0.799608 

K 173 A -0.76 -0.535 -0.877 -1.45 -1.6414 -1.079 0.96 -1.069 -0.178 -1.407 -4.765 -0.07561 -0.3115 INT BUR 2XOV GLPG AH 3.05 0.763084 

L 174 A -1.88 -4.875 -4.354 -2.71 -3.59217 -2.395 -2.34 -2.705 -3.24 -2.977 -4.865 -2.5175 -0.9183 INT BUR 2XOV GLPG AH 1.71 2.55451 

G 194 V -1.2 -19.262 
-
123.735 -0.26 -5.22042 -0.374 -0.17 -0.226 -0.442 -0.347 -8.431 -2.06291 -1.0002 INT BUR 2XOV GLPG AH 2.47 0.448202 

F 197 A -0.93 -6.586 -8.427 -1.11 -3.77177 -3.191 -3.82 -3.442 -4.805 -1.458 -7.998 -1.8904 -2.6406 INT BUR 2XOV GLPG AH 3.58 0.3658 

G 198 V -0.64 -5.801 
-
110.911 0 -11.0418 0.095 2 0.343 -0.132 -0.82 -8.997 -1.58175 0.2437 INT BUR 2XOV GLPG AH 2.02 0.276188 

G 199 V -1.2 -28.632 -197.59 -0.08 -14.5222 -0.387 -1.02 -0.472 -0.313 -0.976 -8.997 0.715402 0.3104 INT BUR 2XOV GLPG AH 7.85 2.044 

G 199 A -1.65 -8.434 -9.655 -0.47 -4.84136 -1.024 -2.19 -1.239 -0.652 -1.05 -5.998 -1.34649 -0.5188 INT BUR 2XOV GLPG AH 7.85 2.044 
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R 214 A -0.07 -0.431 1.121 -1.49 -2.6945 -1.531 0.99 -1.581 -0.723 -1.407 -1.29 -2.04949 -1.8914 INT BUR 2XOV GLPG AH -0.44 0.662798 

G 215 V -0.8 -7.661 

-

252.105 -0.53 -6.67194 -0.851 2.72 -0.222 -0.342 -1.675 -8.51 -1.82131 0.0027 INT BUR 2XOV GLPG AH 1.89 0.062846 

D 218 A -1.42 0.316 -1.388 -1.09 -0.3578 -0.279 0.51 -0.401 -2.818 -3.005 -0.546 -0.63337 -0.2326 INT BUR 2XOV GLPG AH 0.2 0.40706 

W 241 A -0.88 -1.76 -2.42 -0.64 -1.56166 -2.022 0.45 -1.772 -2.632 -1.54 -4.655 -1.15392 -1.9197 INT BUR 2XOV GLPG AH 2.15 0.720551 

M 247 A -0.19 -3.942 -2.389 -0.84 -2.4663 -2.699 -3.16 -2.913 -2.29 -1.323 -3.243 -1.60968 -0.5791 INT BUR 2XOV GLPG AH -1.03 0.420906 

A 253 V -1.43 -10.54 -31.141 -0.04 -5.43618 -0.491 -0.18 -0.362 -1.039 -0.046 -3.897 -1.10838 -0.3846 INT BUR 2XOV GLPG AH 6.47 1.04775 

S 269 V -1.41 -1.583 -14.054 0.09 0.107241 -0.277 2.94 0.329 0.481 -0.055 -2.243 -0.63473 -0.4547 INT BUR 2XOV GLPG AH 0.99 0.121279 

L 75 A -1.3 -1.504 -0.781 -1.09 -1.04807 -1.547 1.13 -1.245 -2.035 -2.473 -4 -0.06106 -2.1201 INT BUR 1AFO GLYA AH 1.43 -0.21112 

I 76 A -1.8 -1.1543 -0.841 -0.57 -1.90674 -2.389 1.2 -2.171 -0.668 -0.339 -5 -0.67316 -1.6811 INT BUR 1AFO GLYA AH 5.73 0.448366 

G 79 A -1.7 1.58 1.268 -0.72 0.618656 -1.141 4.34 -0.628 -0.314 -1.013 -2.688 -0.30954 0.417 INT BUR 1AFO GLYA AH 4.97 0.061509 

V 80 A -0.4 -0.3663 
-
0.30867 -0.72 1.94038 -1.438 1.57 -1.098 0.25 -0.349 -3.769 0.504461 -0.5081 INT BUR 1AFO GLYA AH 5.28 0.197526 

D 24 N -0.6 2.959 1.717 -0.66 -0.31891 -1.25 -0.22 -1.154 -0.034 -0.814 -4.811 -0.84255 0.146 INT BUR 3GP6 PAGP BB 4.31 0.548193 

S 58 A -1.2 -0.419 -1.213 -0.78 0.263235 -2.106 1.85 -2.116 -0.685 -0.786 -2.912 -0.41841 -0.545 INT BUR 3GP6 PAGP BB 1.87 0.156614 

E 90 A -0.7 0.394 -1.315 -0.5 -1.86516 -3.403 1.52 -3.135 0.564 -0.917 -5.574 0.145003 -0.2512 INT BUR 3GP6 PAGP BB 1.96 0.177297 

R 94 A -1.5 -1.246 0.852 -0.18 -1.82855 -0.801 0.45 -0.978 -0.659 -0.106 -4.4 0.00139 -1.0818 INT BUR 3GP6 PAGP BB 1.01 0.094195 

K 30 M 0.3 1.46 1.098 0.22 0.337787 -0.326 1.92 -0.36 1.496 -0.349 -0.506 0.524433 0.3342 INT EXP 1PY6 BR AH -1.04 1.1385 

K 40 A -0.3 -0.043 -0.164 -0.34 -1.04477 -0.863 0.96 -0.733 0.119 -0.426 -1.953 -0.3714 -1.3626 INT EXP 1PY6 BR AH 3.04 1.28817 

K 40 P -1 -20.169 

-

262.387 -0.33 -6.39931 -0.175 -1.64 -0.256 -1.048 -1.328 -2.354 -1.04875 -1.0942 INT EXP 1PY6 BR AH 3.04 1.28817 

K 41 A -1.4 -0.363 -1.009 -0.32 -1.50099 -0.777 1.46 -0.566 0.03 -0.629 -1.223 -0.33748 -1.107 INT EXP 1PY6 BR AH -0.19 0.161854 

K 41 P -0.6 -12.212 

-

200.973 -0.3 -5.25026 -0.059 -1.1 -0.013 -0.786 -1.239 -1.767 -1.16114 -1.1208 INT EXP 1PY6 BR AH -0.19 0.161854 

L 58 A 0.3 -2.141 -2.911 -1.52 -2.65041 -1.889 -0.71 -1.904 -1.189 -2.58 -1.744 -0.44781 -2.1872 INT EXP 1PY6 BR AH 2.3 1.2341 
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S 59 A -0.1 1.056 1.079 -0.17 0.829447 -0.822 2.3 -0.616 -1.618 -1.013 0.258 0.401934 0.2583 INT EXP 1PY6 BR AH 0.94 0.110075 

L 61 A 0.7 -0.551 -1.494 -1.5 -1.55472 -1.743 -0.71 -1.744 -1.697 -2.588 0.937 -0.95892 -1.2857 INT EXP 1PY6 BR AH -1.22 0.638659 

L 62 A 0.5 -1.779 -1.478 -1.32 -3.02636 -1.649 -0.28 -1.595 -0.898 -3.148 -0.266 0.21736 -0.9735 INT EXP 1PY6 BR AH 1.01 -0.10796 

A 62 G -1.3 -1.138 -1.721 -1.11 -0.77373 -0.899 -2.4 -1.172 -0.727 -1.28 -2.693 -0.50931 -1.605 INT EXP 2K73 DSBB AH 1.96 0.671679 

P 95 A -0.49 -0.142 -0.889 -0.69 -1.56944 -0.738 2.21 -0.327 -1.012 -0.922 -7.977 NA 0.1259 INT EXP 2XOV GLPG AH 5.83 1.86678 

E 134 A -0.4 -0.15 -1.481 -0.21 -0.84826 0.512 0.63 0.481 -1.709 -0.903 -4.23 -0.87803 -0.7376 INT EXP 2XOV GLPG AH 5.67 1.10225 

W 136 A -0.51 -2.446 -2.358 -0.59 -2.29546 -2.544 0.67 -2.247 -2.534 -1.243 
-
13.928 0.467498 -4.0956 INT EXP 2XOV GLPG AH 12.35 7.66927 

Y 138 F -2.07 -0.818 -0.665 -0.19 -0.67328 -0.531 0.72 -0.311 0.484 -0.686 -1.49 -0.64244 -0.4298 INT EXP 2XOV GLPG AH 0.57 0.95745 

F 146 A -0.59 -4.715 -3.832 -1.11 -2.15454 -2.278 -0.34 -2.334 -1.778 -1.45 -7.981 -1.55666 -2.1513 INT EXP 2XOV GLPG AH 4.17 0.278983 

S 147 A -1.2 -0.067 -0.794 -0.34 -1.44422 -0.521 -0.72 -0.526 -0.939 -0.607 -2.873 -0.95767 -0.6013 INT EXP 2XOV GLPG AH 2.81 0.68463 

R 168 A 0.85 -0.803 1.125 -0.91 -1.51479 -0.458 0.35 -0.371 -0.843 -0.532 -3.247 -1.36601 0.0186 INT EXP 2XOV GLPG AH 1.65 0.0425 

Q 190 A -0.17 1.532 0.331 -0.02 -0.769 -0.859 2.81 -0.655 -1.464 -0.38 0.558 0.494176 -0.0647 INT EXP 2XOV GLPG AH -2.86 0.803091 

P 219 A 0.46 -1.5 -2.199 -1.22 -2.10626 -0.447 2.21 -0.03 -0.891 -1.389 -7.996 -1.46481 -0.8103 INT EXP 2XOV GLPG AH 3.62 1.16513 

S 221 A -0.69 -0.717 -0.687 -1.02 -0.22563 -0.61 3.09 -0.399 -1.016 -1.232 -0.456 -0.56495 -0.7578 INT EXP 2XOV GLPG AH -0.06 0.229632 

Q 226 A -0.25 -0.187 -0.283 -0.09 -0.24012 -0.457 0.76 -0.403 -0.004 0.078 -0.677 -0.03163 -0.2544 INT EXP 2XOV GLPG AH 0.48 0.141805 

D 243 A -0.51 0.651 -0.185 0.44 -0.06883 -0.343 -0.03 -0.275 -0.854 0.077 -4.727 -0.35111 0.0306 INT EXP 2XOV GLPG AH 0.35 0.101607 

D 268 A -1.1 0.019 0.081 -1.59 -1.80475 0.229 2.18 0.481 -2.426 -2.98 -7.615 0.130846 -0.5171 INT EXP 2XOV GLPG AH -0.66 1.02971 

I 77 A -0.1 -2.2853 -1.042 -0.98 -0.34364 -1.625 -0.26 -1.481 -0.842 -0.945 -4.923 -0.342 -1.5816 INT EXP 1AFO GLYA AH 4.81 0.274534 

F 78 A 0.1 0.3507 -1.457 -1.12 -0.80652 -1.577 -0.86 -1.525 -2.663 -1.123 -4.94 -0.50368 -1.6037 INT EXP 1AFO GLYA AH 6.08 1.03481 

W 7 A -3.6 -3.244 -6.192 -0.58 -1.73668 -2.061 0.44 -1.816 -0.896 -0.725 -9.46 -1.91537 -3.5398 INT EXP 1QJP OMPA BB 7.48 2.91973 

W 15 A -2 -0.374 -3.234 -0.77 -2.18887 -2.253 -0.25 -2.122 -0.964 -1.375 -11.82 -1.32924 -3.2831 INT EXP 1QJP OMPA BB 4.75 1.67298 

Y 43 A -3.8 -3.992 -6.205 -0.98 -3.00761 -2.36 -1.2 -2.62 -0.325 -0.858 -8.163 -1.92287 -2.5719 INT EXP 1QJP OMPA BB 9.61 3.68364 
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W 57 A -2 -4.157 -5.996 -0.95 -2.00093 -2.56 -0.25 -2.395 -0.979 -1.598 -7.505 -2.04251 -3.2328 INT EXP 1QJP OMPA BB 5.42 1.55394 

F 123 A -2.1 -2.609 -6.269 -0.93 -2.60065 -2.495 -1.92 -2.784 -0.784 -1.125 -0.668 -1.04852 -1.963 INT EXP 1QJP OMPA BB 2.25 0.686893 

Y 129 A -2.7 -2.771 -5.041 -1.17 -2.14551 -1.967 -1.43 -2.085 -0.126 -0.763 -8.71 -2.28002 -2.3268 INT EXP 1QJP OMPA BB 8.86 3.31672 

Y 141 A -3.3 -2.752 -6.053 -0.9 -2.29389 -2.109 -0.91 -2.152 -0.087 -1.312 -8.734 -2.57521 -2.5331 INT EXP 1QJP OMPA BB 9.39 4.20551 

W 143 A -3.1 -6.193 -5.754 -0.69 -3.06563 -2.495 -0.25 -2.338 -0.965 -1.087 

-

11.039 -2.84753 -3.4715 INT EXP 1QJP OMPA BB 2.16 2.59991 

Y 168 A -0.2 -3.072 -6.272 -0.62 -2.75947 -1.987 -1.43 -2.107 -0.129 -0.094 -8.528 -2.08809 -2.3658 INT EXP 1QJP OMPA BB 9.55 4.29754 

F 170 A -2.4 -1.669 -4.975 -0.94 -1.10341 -1.772 -1.06 -1.824 -0.753 -0.558 -7.715 -1.32334 -2.2804 INT EXP 1QJP OMPA BB 9.78 5.20867 

Y 214 A -2.4 -4.533 -4.409 -1 1.56585 -1.959 -1.43 -2.066 -3.492 -0.986 -5.364 -1.42968 -1.9024 INT EXP 1QD6 OMPLA BB 2.79 0.766949 

Y 214 L 1.2 -2.459 -2.801 -0.02 -0.04169 -1.064 -0.62 -1.03 0.129 -0.409 -4.583 -0.55606 -0.5698 INT EXP 1QD6 OMPLA BB 2.79 0.766949 

Y 214 R -0.6 -3.461 -4.231 -0.36 0.95489 -0.395 -1.2 -0.356 -0.914 -0.955 -4.73 -0.52236 -0.817 INT EXP 1QD6 OMPLA BB 2.79 0.766949 

W 17 A -1 -0.194 -0.45 -0.79 0.342552 -1.603 0.87 -1.358 -1.091 -1.82 
-
13.788 -0.40647 -3.7881 INT EXP 3GP6 PAGP BB 9.64 3.41313 

Y 23 A -0.9 -3.156 -2.377 -1.06 -1.83179 -1.915 -1.2 -2.128 -0.718 -1.765 -4.622 -0.61106 -1.8353 INT EXP 3GP6 PAGP BB 3.11 1.85142 

W 51 A -0.4 -1.016 -0.521 -0.4 -0.6627 -1.095 0.48 -0.848 -0.997 -0.669 
-
13.504 -0.21259 -3.9838 INT EXP 3GP6 PAGP BB 9.29 3.25137 

Y 153 A -0.6 -5.168 -5.98 -1.16 -2.8321 -2.501 -1.43 -2.703 -0.737 -1.376 -5.427 -0.21259 -1.866 INT EXP 3GP6 PAGP BB 1.1 -0.0234 

M 20 A -2.8 -2.339 -2.001 -1.62 -3.10244 -2.149 -2.33 -2.26 -3.194 -1.99 -1.884 -1.78721 -1.1776 MID BUR 1PY6 BR AH 8.51 2.75225 

T 24 A 0.6 0.628 0.271 -0.93 0.577373 -1.381 2.29 -1.237 -1.455 -0.667 -1.094 0.118989 -0.2299 MID BUR 1PY6 BR AH 3.43 0.153928 

T 24 S -0.2 -0.895 -1.265 -0.48 -0.83707 -1.419 -0.15 -1.383 -0.842 -0.588 -1.315 -0.04158 -0.6573 MID BUR 1PY6 BR AH 3.43 0.153928 

T 24 V 0.3 -0.989 -9.692 0.09 0.555354 -0.802 2.13 -0.608 1.055 0.107 -0.623 0.621022 0.2634 MID BUR 1PY6 BR AH 3.43 0.153928 

F 27 A -2.1 -5.707 -6.35 -1.85 -3.90452 -2.86 -2.6 -3.113 -4.814 -2.132 -4.281 -1.92578 -1.7097 MID BUR 1PY6 BR AH 7.84 1.98627 

T 46 A -2.2 0.198 0.087 -1.12 -0.29372 -1.491 1.65 -1.379 -1.303 -1.06 -2.223 -0.53416 -0.9121 MID BUR 1PY6 BR AH 2.52 0.109583 

T 46 P -1.1 -15.209 

-

124.423 -0.85 -4.30328 -0.652 -1.74 -0.918 -0.828 -1.094 -2.824 -1.36443 -0.6476 MID BUR 1PY6 BR AH 2.52 0.109583 
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T 46 S -0.1 -0.817 -0.831 -0.81 -0.20398 -1.582 -1.21 -1.742 -1.5 -0.857 -1.812 -0.65796 -1.4476 MID BUR 1PY6 BR AH 2.52 0.109583 

T 47 A -1.1 0.612 -0.401 -1.17 -0.90532 -1.589 2.29 -1.466 -1.342 -1.085 -0.657 -0.40993 -0.5891 MID BUR 1PY6 BR AH 0.64 0.358364 

T 47 P -0.9 -5.922 
-
307.676 -0.76 -5.53322 -0.968 -0.28 -1.02 -1.095 -1.387 -2.051 -1.26146 -0.5106 MID BUR 1PY6 BR AH 0.64 0.358364 

V 49 A -0.3 -2.414 -2.75 -1.21 -2.36722 -2.253 -1.53 -2.499 -1.948 -1.548 -2.602 0.02032 -1.8325 MID BUR 1PY6 BR AH 4.71 0.549385 

P 50 A 0.6 0.057 -2.793 -0.88 -1.34234 -2.408 2.74 -2.26 -1.369 -1.13 -2.166 0.288419 -0.9665 MID BUR 1PY6 BR AH 2.27 0.864056 

Y 57 A -3.7 -3.871 -3.795 -1.75 -3.69287 -3.778 -0.94 -3.885 -3.898 -1.789 -5.918 -2.1885 -2.7688 MID BUR 1PY6 BR AH 9.39 3.65032 

T 90 A -1.3 0.432 0.435 -1.61 0.134111 -0.937 1.65 1.65 -1.234 -1.457 -4.316 0.766321 -1.0957 MID BUR 1PY6 BR AH 4.88 1.88375 

L 94 A -3.1 -4.369 -3.941 -1.84 -3.73194 -2.85 -2.34 -3.179 -3.675 -1.967 -4.588 -1.36395 -2.5967 MID BUR 1PY6 BR AH 4.29 0.425871 

D 96 A -1.5 3.844 3.776 -0.79 1.34407 2.349 2.29 2.348 -2.25 -1.003 -3.485 1.43065 -0.0484 MID BUR 1PY6 BR AH 1.12 0.072252 

L 97 A -2.9 -5.071 -4.811 -2.27 -3.47551 -2.522 -2.34 -2.839 -3.886 -1.964 -4.424 -1.98634 -2.8043 MID BUR 1PY6 BR AH 5.57 0.595715 

L 111 A -1.7 -3.532 -4.087 -2.13 -4.03529 -2.389 -2.34 -2.693 -3.791 -2.958 -2.991 -1.81036 -2.1197 MID BUR 1PY6 BR AH 3.33 -0.0754 

D 115 A 0.5 5.061 4.842 -0.07 2.99274 -0.877 2.29 -0.41 -2.255 -0.454 -7.347 1.8039 -0.0227 MID BUR 1PY6 BR AH 4.39 0.331542 

I 148 A -2.3 -5.237 -5.041 -2.13 -3.53554 -2.685 -2.25 -3.006 -3.645 -2.205 -3.395 -1.36622 -1.0292 MID BUR 1PY6 BR AH 3.44 0.056015 

I 148 V -0.2 -2.205 -2.056 -0.58 -0.87824 -1.462 -0.98 -1.596 -1.156 -0.94 -0.088 -0.48356 -0.5838 MID BUR 1PY6 BR AH 3.44 0.056015 

L 152 A -1.9 -4.448 -3.021 -2.87 -3.86642 -2.567 -2.34 -2.887 -4.068 -2.413 -4.576 -1.59037 -1.2206 MID BUR 1PY6 BR AH 4.22 0.490358 

F 171 A -1.1 -6.372 -6.845 -2.28 -3.92959 -3.315 -2.6 -3.552 -4.808 -2.371 -6.302 -1.09659 -2.9789 MID BUR 1PY6 BR AH 5.83 1.99131 

L 174 A -1.8 -5.598 -5.295 -2.94 -4.2928 -2.462 -2.34 -2.776 -4.068 -1.972 -4.458 -1.7667 -2.6417 MID BUR 1PY6 BR AH 4.15 0.399443 

Y 185 A -4.2 -3.137 -4.971 -2.28 -4.25098 -0.462 1.79 -0.158 -4.35 -1.809 -8.948 -1.22082 -2.6555 MID BUR 1PY6 BR AH 8.79 2.84939 

Y 185 F -0.4 0.014 -0.874 -1.01 -0.49256 -0.462 1.79 -0.158 -0.567 -0.973 -3.951 0.565192 -0.5816 MID BUR 1PY6 BR AH 8.79 2.84939 

P 186 A -0.9 -0.933 -2.116 -0.97 -3.09477 -1.353 2.74 -1.103 -0.787 -1.116 -7.987 -0.12288 -1.2163 MID BUR 1PY6 BR AH 1.49 0.013079 

D 212 A -1.2 0.429 -1.745 -1.06 -2.91971 0.764 2.29 1.247 -2.133 -1.116 -7.442 0.210193 -0.7508 MID BUR 1PY6 BR AH 8.41 2.49604 

A 19 G 0.4 -2.414 -1.989 -1.11 -1.49573 -1.204 -3.48 -1.439 -0.804 -0.891 -2.64 -1.09652 -1.6761 MID BUR 2K73 DSBB AH 2.17 0.943208 
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E 26 L 2.3 4.837 3.312 0.74 1.81949 0.044 0.18 0.091 -0.047 0.667 -6.901 2.53069 0.2966 MID BUR 2K73 DSBB AH 0.38 0.090519 

A 29 G 0.4 -2.208 -1.746 -1.25 -0.60918 -0.939 -3.54 -1.056 -0.315 -1.436 -3.439 -0.33592 -1.5893 MID BUR 2K73 DSBB AH 5.66 0.201734 

A 57 G -0.7 -3.153 0.565 -1.26 -0.36225 -0.903 -4.24 -1.195 -1.021 -1.555 -3.583 -1.10924 -2.1296 MID BUR 2K73 DSBB AH 0.97 0.148829 

A 157 G 1.1 -1.151 -2.164 -1.9 -1.81567 -1.064 -4.24 -1.361 -0.937 -2.25 -1.481 -1.07299 -1.0985 MID BUR 2K73 DSBB AH 2.1 0.365544 

M 100 A -1.67 -2.286 -1.79 -1.76 -3.05308 -2.779 -2.3 -2.91 0.399 -1.934 -1.7 -1.67456 -0.8574 MID BUR 2XOV GLPG AH 1.16 1.02854 

C 104 A -0.93 0.088 -1.361 -1.17 -0.20833 -1.904 -2.04 -2.12 -1.269 -1.37 -7.999 -0.88949 -0.1284 MID BUR 2XOV GLPG AH 7.27 2.97312 

C 104 V -0.89 2.646 0.22 -0.36 1.40725 -1.206 0.23 -1.113 -0.001 -0.941 -6.721 0.535398 -1.1013 MID BUR 2XOV GLPG AH 7.27 2.97312 

N 154 A -1.5 -2.36 -1.96 -0.61 -0.75476 -1.859 2.73 -1.744 -1.374 -1.108 -7.981 0.339105 -1.2673 MID BUR 2XOV GLPG AH 9.32 3.90977 

L 155 A -1.03 -4.987 -4.33 -2.14 -3.07127 -2.688 -1.45 -2.918 -1.353 -2.062 -4.722 -2.06768 -1.0756 MID BUR 2XOV GLPG AH 1.14 3.84093 

W 158 F -0.02 -2.065 -2.861 -0.83 -1.64257 -2.221 -1.69 -2.469 -1.411 -0.848 -9.581 -1.93696 -0.9502 MID BUR 2XOV GLPG AH 4.91 1.28589 

G 162 V -3.07 -13.835 -46.571 -0.36 -5.88372 0.545 2.82 0.896 -0.228 -0.908 -7.366 0.715402 0.2543 MID BUR 2XOV GLPG AH 7.52 1.4351 

I 177 A -2.17 -5.718 -4.373 -1.77 -3.90319 -2.786 -2.25 -3.111 -2.765 -1.958 -4.131 -2.61936 -0.8263 MID BUR 2XOV GLPG AH 4.74 0.707237 

T 178 A -0.95 -0.408 -0.246 -1.21 -0.45828 -0.836 1.65 -0.866 -1.159 -0.665 -1.418 -0.65941 -0.5167 MID BUR 2XOV GLPG AH -1.76 3.65551 

L 200 A -0.83 -6.171 -6.143 -1.78 -4.01096 -2.737 -2.77 -3.215 -3.331 -1.407 -4.932 -2.6618 -2.3889 MID BUR 2XOV GLPG AH 0.32 0.55758 

S 201 A -0.27 -0.236 -0.247 -0.29 0.019565 -0.547 2.85 -0.339 -1.197 -0.859 -2.898 -0.18387 -0.6078 MID BUR 2XOV GLPG AH 7.66 1.47001 

G 202 A -0.73 -0.808 -15.307 -0.12 -1.10093 -0.847 2.72 -0.172 -0.063 -0.81 -5.998 -0.83231 0.0796 MID BUR 2XOV GLPG AH 7.37 1.31781 

V 203 A -1.55 -3.929 -2.542 -1.05 -2.12148 -2.037 -1.53 -2.265 -2.002 -1.379 -3.821 -1.54225 -1.5965 MID BUR 2XOV GLPG AH 2.13 0.352724 

Y 205 A -0.58 -2.802 -3.26 -1.16 -3.23556 -2.46 -0.94 -2.613 -1.597 -1.277 -8.597 -2.53327 -2.5374 MID BUR 2XOV GLPG AH 5.76 2.50673 

A 206 G -1.05 -3.49 -2.508 -1.38 -1.769 -2.184 -4.24 -2.591 -1.345 -1.653 -3.899 -1.2774 -1.6149 MID BUR 2XOV GLPG AH 2.23 1.17171 

L 207 A -0.92 -6.914 -5.033 -1.75 -3.48723 -2.817 -2.34 -3.148 -3.182 -1.753 -4.465 -2.70335 -2.8191 MID BUR 2XOV GLPG AH 5.16 0.711694 

G 209 V -0.57 -9.637 -76.864 -0.29 -4.34245 -0.542 2.72 -0.231 -0.446 -0.484 -8.181 -0.75352 0.4212 MID BUR 2XOV GLPG AH 7.07 0.797192 

Y 210 F -1.65 -0.323 -0.996 -1.02 -1.19076 -1.505 1.79 -1.29 -1.077 -0.764 -3.999 -0.45914 -0.5159 MID BUR 2XOV GLPG AH 3.22 0.492314 
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W 236 G -0.46 -9.684 -9.753 -1.35 -6.62841 -2.161 -5.46 -2.161 -1.829 -1.5 
-
12.322 -3.05154 -2.4533 MID BUR 2XOV GLPG AH 8.4 2.63503 

G 257 V -2.49 -21.589 

-

396.853 -0.02 -9.49234 -0.599 2.82 -0.289 -0.145 -0.561 -8.992 0.824236 0.2608 MID BUR 2XOV GLPG AH 7.95 2.88688 

G 261 V -4.68 -36.175 -835.01 -0.35 -16.2964 -0.36 2.82 -0.034 -0.242 -0.665 -8.992 0.96582 0.2574 MID BUR 2XOV GLPG AH 8.04 3.09784 

G 83 A -3.2 1.3267 0.944 -0.75 -2.00278 -0.968 3.88 -0.374 0.032 -1.573 -5.269 0.393422 0.162 MID BUR 1AFO GLYA AH 5.38 0.025808 

V 84 A -1 -0.5433 -0.416 -0.97 -1.03898 -1.408 0.38 -1.164 0.037 -1.353 -3.809 0.184811 -0.4959 MID BUR 1AFO GLYA AH 3.21 0.255775 

T 87 A -0.9 0.2424 0.01 -1.02 1.03008 -1.121 2.21 -0.823 -1.13 -0.333 -3.538 0.304209 -0.107 MID BUR 1AFO GLYA AH 4.14 0.092334 

Y 87 F -1.4 -0.492 -0.657 -0.29 -0.46217 -0.746 1.01 -0.49 -0.39 0.094 -3.909 -0.2457 -0.6863 MID BUR 3GP6 PAGP BB 6.85 1.04334 

A 44 P -0.5 -9.15 

-

269.912 -0.51 -3.4298 -0.414 -2.22 -0.199 -1.885 -1.474 -1.546 -0.58931 -0.6761 MID EXP 1PY6 BR AH 0.58 0.689062 

I 45 A -1.9 -2.609 -2.489 -1.63 -1.7936 -2.239 -1.07 -2.4 -1.469 -1.294 -0.823 -0.40913 -2.1408 MID EXP 1PY6 BR AH 3.25 0.328107 

L 48 A -0.1 -1.344 -1.176 -1.53 -0.81949 -1.62 -0.71 -1.466 -3.049 -1.817 -1.876 -0.57879 -2.1983 MID EXP 1PY6 BR AH 2.43 0.30973 

A 51 P -2.4 -32.895 

-

217.741 -0.31 -6.01279 -0.329 -3.24 -0.366 -0.808 -1.442 -1.835 -0.17236 -0.9428 MID EXP 1PY6 BR AH 1.28 -0.04798 

I 52 A -1.5 -3.662 -3.97 -1.71 -1.64766 -2.219 -0.26 -2.263 -0.871 -1.715 -3.027 -1.46487 -2.1269 MID EXP 1PY6 BR AH 4.82 1.05321 

F 54 A -0.4 -2.522 -3.605 -1.46 -2.87125 -2.581 -0.86 -2.655 -3.373 -2.042 0.188 -0.67756 -1.803 MID EXP 1PY6 BR AH 3.39 0.568897 

T 55 A -0.1 0.691 -0.035 -0.58 -0.34088 -0.956 2.73 -0.653 -2.076 -0.595 -0.017 -0.09193 -0.3402 MID EXP 1PY6 BR AH 0 0.597079 

M 56 A 1.6 -1.206 -0.931 -1.38 -0.9327 -1.262 -0.38 -1.05 -0.378 -2.281 0.938 -0.6817 -1.2435 MID EXP 1PY6 BR AH 0.44 0.438823 

P 91 A -1.3 -0.009 -1.576 -1 -2.29059 -1.865 2.28 -1.666 -0.793 -1.111 -7.153 1.34378 -1.6209 MID EXP 1PY6 BR AH 8.43 2.31823 

F 82 A -1.9 2.895 -0.565 -1.2 -0.82157 -1.176 1.01 -0.971 -0.885 -2.369 -2.946 -0.28509 -1.3783 MID EXP 2K73 DSBB AH 1.12 0.179947 

R 83 A -1 0.385 0.488 -0.2 -0.02065 -0.655 0.79 -0.422 -0.768 -0.987 -2.803 -0.33368 -0.2061 MID EXP 2K73 DSBB AH -1.82 0.319151 

Y 89 A 1.3 -0.482 -0.602 -0.69 -0.52896 -1.029 1.03 -0.787 -0.209 -1.48 -2.679 -0.60467 -1.3288 MID EXP 2K73 DSBB AH 0.52 0.196719 

G 148 A -0.2 0.921 1.459 -0.38 -0.02869 -0.176 4.34 0.34 0.376 -0.297 -0.275 0.343948 0.8243 MID EXP 2K73 DSBB AH -2.12 0.312067 

A 152 G 0 -1.654 -1.551 -1.6 -1.00596 -0.669 -3.88 -0.684 0.006 -2.155 -1.811 -0.38507 -1.2174 MID EXP 2K73 DSBB AH 1.64 0.213919 
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F 139 A -1.12 -4.386 -4.519 -1.41 -3.46594 -2.318 -0.86 -2.386 -2.162 -2.14 -5.244 -2.38461 -2.9732 MID EXP 2XOV GLPG AH 4.1 0.885554 

T 140 A 

-

0.615 -0.489 -0.618 -0.7 -0.30758 -0.926 1.65 -0.784 -1.271 -0.805 -2.554 0.592648 -1.4052 MID EXP 2XOV GLPG AH 7.55 1.46167 

F 153 A 
-
0.682 -1.808 -2.162 -1.03 -2.2802 -2.28 -1.26 -2.443 -2.041 -1.669 -7.514 -2.07771 -1.4495 MID EXP 2XOV GLPG AH 6.6 1.35198 

Y 160 F -0.54 -0.778 -0.007 -0.17 0.353031 -0.704 2.11 -0.392 0.733 -0.424 -3.499 -0.02169 -0.0068 MID EXP 2XOV GLPG AH 2.53 0.541518 

L 179 A -0.37 -3.185 -1.73 -2.14 -1.204 -1.528 -0.71 -1.393 -1.053 -3.37 -3.971 -1.31004 -1.1371 MID EXP 2XOV GLPG AH 4.68 0.713875 

I 180 A -0.43 -2.475 -1.64 -1.59 -1.31705 -1.509 -0.26 -1.333 -0.719 -2.568 -3.649 -1.24929 -0.8028 MID EXP 2XOV GLPG AH 2.87 0.217636 

L 184 A 0.41 -2.49 -1.475 -1.49 -1.71096 -1.689 -0.71 -1.559 -0.527 -2.213 -3.235 -1.35843 -1.1636 MID EXP 2XOV GLPG AH 0.27 0.316792 

L 229 A 0.2 -2.581 -2.378 -2.03 -1.48717 -1.785 -1.45 -1.954 0.974 -3.685 -3.94 -2.36507 -1.1845 MID EXP 2XOV GLPG AH 2.72 0.010317 

M 81 A 0.2 -0.3613 -0.761 -0.65 -1.16247 -1.143 0.21 -0.715 -3.049 -0.956 -5.971 -0.46672 -0.7949 MID EXP 1AFO GLYA AH 6.74 1.14724 

I 85 A 0.4 -1.2056 -0.741 -1.15 -1.23335 -0.932 1.2 -0.588 -2.271 -2.212 -4.846 -0.59136 -0.819 MID EXP 1AFO GLYA AH 4.49 0.208342 

G 86 A 0.1 1.5117 1.318 -0.88 0.752139 -0.44 4.34 0.093 -0.853 -2.072 -5.308 0.517997 0.2816 MID EXP 1AFO GLYA AH 5.98 0.102439 

F 51 A -1.2 -1.753 -3.159 -1.09 -2.35883 -2.115 -1.96 -2.348 -0.791 -1.572 -2.897 -1.7261 -2.1667 MID EXP 1QJP OMPA BB 0.5 0.591185 

Y 55 A -2.5 -2.107 -5.115 -0.67 -2.31728 -1.508 -1.43 -1.7 -0.26 -1.095 -7.482 -1.74505 -2.5737 MID EXP 1QJP OMPA BB 7.6 1.87744 

L 120 A 2.2 -3.918 -2.383 -2.21 2.71066 -1.692 -1.69 -1.749 -3.731 -2.402 -3.342 -1.8172 -2.4846 MID EXP 1QD6 OMPLA BB 2.44 0.929372 

L 120 R -2.4 -3.743 -2.646 -1.36 1.53336 -0.927 -0.63 -0.674 -1.006 -1.755 -4.563 -0.88535 -2.0069 MID EXP 1QD6 OMPLA BB 2.44 0.929372 

A 164 L 1.2 -0.481 0 -0.19 -2.32023 -0.007 1.69 0.276 0.593 -0.304 -1.308 1.30216 0.3019 MID EXP 1QD6 OMPLA BB 0.69 1.79905 

A 164 R -0.8 0.034 -0.269 -0.52 -1.21824 -1.241 1.36 -0.925 -0.95 -0.781 -2.158 0.344995 -0.8499 MID EXP 1QD6 OMPLA BB 0.69 1.79905 

A 210 C -0.5 -1.438 0.256 -0.64 -0.35713 -0.873 0.33 -0.66 -2.033 -1.01 -1.161 0.185007 0.3262 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 D -3 -2.018 -2.589 -0.8 0.86337 -0.472 -1.47 -0.221 -0.875 -0.875 -3.024 -0.41689 -1.607 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 E -1.6 -2.016 -0.464 -0.65 -0.45145 -0.543 0.02 -0.155 -0.948 -0.91 -2.297 0.255094 -1.3907 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 F 2.2 0.112 0.596 -0.18 -2.34466 -0.891 1.97 -0.726 -0.07 -0.581 -0.464 1.3018 0.5628 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 G -1.7 -2.341 -1.806 -1.19 1.22987 -0.873 -1.64 -0.797 -2.692 -0.83 -2.467 -0.55555 -1.6618 MID EXP 1QD6 OMPLA BB 1.99 0.183404 
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A 210 H -4.8 -0.752 -0.267 -0.83 -0.41622 -0.982 -0.87 -0.841 -1.652 -1.08 -2.403 0.299952 -0.1788 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 I 1.6 -0.304 -0.308 0.14 -1.81841 -0.281 2.23 0.121 0.835 -0.533 0.57 1.6301 0.7194 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 K -5.4 0.228 0.441 -0.7 -1.34381 -0.889 -0.54 -0.522 -1.658 -0.573 -1.825 0.598039 -0.5267 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 L 1.8 0.874 0.049 -0.06 -1.68256 -0.281 1.69 0.096 0.593 -0.304 1.097 1.58062 0.5073 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 M 0.8 -0.374 0.259 -0.07 -2.12617 -0.29 0.93 -0.116 -0.53 -0.359 0.825 1.3761 0.2188 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 N -3.5 -0.477 -0.873 -0.8 -0.2909 -0.548 -1.79 -0.334 -0.875 -1.617 -2.192 -0.15397 -0.8139 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 P 1.5 -7.506 -186.46 -0.41 2.87929 -0.369 -2.27 -0.285 -1.86 -1.033 -2.401 -1.04221 -0.1028 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 Q -3 -0.813 0.53 -0.52 -0.58435 -0.73 0.67 -0.34 -0.941 -0.926 -1.698 0.260014 -1.1102 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 R -3.7 -0.861 -0.493 -0.36 -1.07447 -0.579 0.97 -0.223 -0.95 -0.781 -1.774 0.586816 -0.3238 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 S -1.8 -0.756 0.017 -0.66 -0.02916 -0.951 -0.8 -0.634 -1.187 -1.047 -1.14 -0.14613 -0.9549 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 T -1.8 -2.623 -1.278 -0.56 -0.52205 -0.92 0.17 -0.562 -1.538 -0.844 -0.573 0.230315 -0.1369 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 V 0.8 -0.871 -0.403 0.33 -1.1425 -0.369 1.99 0.016 -0.139 -0.266 0.618 0.62513 0.6407 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 W 0.4 3.235 2.715 -0.17 -2.68044 -1.137 0.25 -1.002 -1.189 -0.486 -2.044 0.344373 0.2636 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 210 Y 1.1 0.416 0.743 -0.25 -1.85424 -0.749 1.44 -0.589 -2.082 -0.807 -1.201 0.480749 0.1272 MID EXP 1QD6 OMPLA BB 1.99 0.183404 

A 223 L 1.8 1.254 1.579 0.15 -1.62926 -0.359 1.69 0.039 0.593 -0.304 -1.283 -0.00474 0.4269 MID EXP 1QD6 OMPLA BB 0.07 0.109011 

A 223 R -2.1 -0.722 -0.309 -0.14 -1.05495 -0.399 0.52 -0.047 -0.95 -0.781 -3.257 0.240482 -0.3984 MID EXP 1QD6 OMPLA BB 0.07 0.109011 

F 55 A -1 -0.915 -1.846 -0.98 -1.63834 -2.054 -2.21 -2.252 -2.021 -1.69 -4.618 -0.43958 -2.6556 MID EXP 3GP6 PAGP BB 3.3 0.431507 

A 85 G -0.9 -1.842 -1.457 -1.08 -0.47481 -0.651 -2.07 -0.731 0.452 -1.223 1.847 -0.46868 -1.2555 MID EXP 3GP6 PAGP BB 3.44 -0.04167 

L 105 A -0.8 -1.324 -1.106 -0.84 -0.73295 -0.972 -1.69 -0.925 -2.447 -1.477 -3.058 -0.43958 -1.8131 MID EXP 3GP6 PAGP BB 2.04 -0.20961 

M 157 A -0.8 -2.312 -1.654 -0.94 -2.11672 -2.298 -0.93 -2.218 0.489 -1.413 -2.25 -0.07447 -1.5348 MID EXP 3GP6 PAGP BB 2.09 -0.08888 

M 72 A -0.3 -3.854 -3.825 -0.95 -3.56948 -1.967 -2.75 -2.092 -1.292 -1.471 -5.733 0.210493 -2.3319 SOL BUR 3GP6 PAGP BB 5.08 0.554691 

T 108 A -0.4 -0.218 -2.136 -0.83 -2.02631 -1.074 0.77 -1.008 -0.359 -0.453 -4.41 -0.2457 -1.3591 SOL BUR 3GP6 PAGP BB 3.98 0.220512 
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wt id mt 

Exp 

ddG 

Rosetta 

high 

Rosetta 

low 

Imuta

nt 

3 foldx mcsm sdm duet ddgm8 

ddgm4

7 

provea

n elaspic easemm locat 

expo 

state pdb prot type BLAST SHAN 

S 130 A -2.1 -0.536 -0.842 0 -0.27711 -0.27 1.85 -0.283 -0.37 -0.627 -2.856 -0.46868 -0.4184 SOL BUR 3GP6 PAGP BB 4.06 0.057511 

T 137 A -0.5 -0.758 0.729 -0.74 -0.08341 -1.048 0.77 -0.85 -0.571 -0.284 -3.146 -0.43958 -1 SOL BUR 3GP6 PAGP BB 1.17 -0.04511 

Q 139 A -1 -2.577 -3.478 -0.38 -3.94389 -1.719 -0.85 -1.899 0.492 -1.004 -5.779 -0.04888 -1.2518 SOL BUR 3GP6 PAGP BB 2.67 0.672341 

Q 160 A 0.2 -1.442 0.187 -0.61 -0.65472 -0.314 -0.67 -0.337 -0.472 -0.582 -3.954 0.639614 -0.6037 SOL BUR 3GP6 PAGP BB 3.52 0.315637 

S 35 A -0.3 -0.362 -0.23 -0.17 -0.08517 -0.183 0.16 0.051 -0.607 -0.421 -0.032 -0.09293 -0.4294 SOL EXP 1PY6 BR AH 1.23 0.19119 

D 36 A -0.9 0.605 -1.527 -0.71 -3.48369 -0.548 1.45 -0.589 -1.803 -1.612 -2.288 -0.75981 -0.2095 SOL EXP 1PY6 BR AH 1.44 0.048988 

P 37 A -0.2 0.018 -1.082 -0.9 -0.832 -0.786 2.21 -0.359 -1.222 -0.872 -1.83 -0.27013 0.0885 SOL EXP 1PY6 BR AH 4.63 0.476736 

D 38 A -0.5 1.923 0.138 -0.34 0.926906 -0.51 2.55 -0.233 -1.417 -0.795 -1.219 0.464045 -0.1009 SOL EXP 1PY6 BR AH -0.66 -0.01885 

P 40 A -1 -0.743 -2.669 -1.57 -1.19132 -1.033 0.22 -1.015 -1.253 -1.867 -7.716 -0.418 -1.7124 SOL EXP 2K73 DSBB AH 8.75 2.85538 

G 212 A 0.6 1.339 1.4 -1.35 0.109814 -0.755 1.65 -0.505 -1.352 -1.792 -1.523 -0.42583 -0.2111 SOL EXP 1QD6 OMPLA BB 0.67 0.009111 

G 212 L 2.6 1.431 2.674 -0.3 -0.89847 -0.275 2.17 0.091 0.354 -1.353 -2.792 0.202924 0.2779 SOL EXP 1QD6 OMPLA BB 0.67 0.009111 

G 212 R -3.1 -0.15 0.633 -0.68 -0.94531 -1.078 0.78 -0.75 -1.038 -1.684 -3.1 0.054348 0.3998 SOL EXP 1QD6 OMPLA BB 0.67 0.009111 
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APPENDIX F 

RAW TABLES FROM CHAPTER 4 REGRESSION ANALYSES 

Table AF.1. Weights for all terms in the RosettaMembrane energy function obtained from Ridge regression and cross validation by 

protein backbone 
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Table AF.2. Weights for the selected terms in the RosettaMembrane energy function obtained after Ridge regression using cross 

validation by protein backbone. First score terms that were contributing noise to the calculation were identified and removed. Ridge 

regression was performed again using the limited weight set. 

Pearson Spearman AUC fa_atr fa_rep fa_mbenv fa_mbsolv fa_pair hbond_bb_sc hbond_sc omega fa_dun 

0.21 0.12 0.52 0.18 0.06 0.15 0.20 0.53 0.42 0.43 0.04 0.08 

0.36 0.41 0.73 0.16 0.07 0.15 0.21 0.81 0.31 0.38 0.08 0.07 
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0.31 0.31 0.74 0.14 0.08 0.05 0.07 0.21 0.36 0.24 0.02 0.00 

-0.05 -0.04 0.59 0.16 0.06 0.14 0.19 0.41 0.43 0.51 0.05 0.09 

0.23 0.21 0.54 0.17 0.06 0.14 0.19 0.57 0.40 0.42 0.08 0.08 

0.33 0.25 0.58 0.19 0.03 0.16 0.21 0.51 0.36 0.32 0.18 0.06 

-0.07 -0.21 0.64 0.15 0.07 0.18 0.12 0.49 0.41 0.43 0.07 0.06 

 

Table AF.3. Weights for the selected terms in the RosettaMembrane energy function obtained after Elastic Net regression using cross 

validation by protein backbone. First score terms that were contributing noise to the calculation were identified and removed. Elastic 

Net regression was performed again using the limited weight set. 

Missing Alpha Pearson Spearman AUC fa_atr fa_rep fa_mbenv fa_mbsolv fa_pair hbond_bb_sc hbond_sc omega fa_dun 

none 0 0.45 0.45 0.72 0.12 0.04 0.08 0.09 0.45 0.36 0.28 0.09 0.07 

none 0.1 0.48 0.48 0.73 0.14 0.05 0.11 0.13 0.48 0.38 0.32 0.09 0.07 

none 0.2 0.47 0.47 0.73 0.13 0.05 0.10 0.12 0.47 0.36 0.30 0.09 0.07 

none 0.3 0.48 0.48 0.73 0.14 0.05 0.11 0.14 0.48 0.37 0.32 0.09 0.06 

none 0.4 0.49 0.49 0.73 0.15 0.05 0.12 0.16 0.50 0.38 0.34 0.09 0.06 

none 0.5 0.48 0.48 0.73 0.14 0.05 0.11 0.13 0.48 0.35 0.30 0.08 0.06 

none 0.6 0.48 0.48 0.73 0.14 0.05 0.11 0.14 0.48 0.34 0.30 0.08 0.06 

none 0.7 0.47 0.47 0.73 0.13 0.05 0.10 0.12 0.46 0.32 0.28 0.08 0.06 

none 0.8 0.47 0.47 0.73 0.13 0.05 0.10 0.12 0.46 0.31 0.28 0.07 0.06 

none 0.9 0.49 0.49 0.73 0.15 0.05 0.12 0.16 0.50 0.36 0.33 0.08 0.06 

none 1 0.49 0.49 0.73 0.15 0.05 0.12 0.15 0.49 0.34 0.31 0.08 0.06 

1AFO 0 0.51 0.17 0.54 0.11 0.04 0.04 0.04 0.37 0.29 0.21 0.08 0.06 

1AFO 0.1 0.38 0.18 0.53 0.14 0.05 0.07 0.09 0.42 0.32 0.28 0.06 0.07 

1AFO 0.2 0.38 0.18 0.53 0.14 0.05 0.07 0.09 0.42 0.31 0.27 0.06 0.07 

1AFO 0.3 0.36 0.19 0.53 0.14 0.05 0.08 0.10 0.42 0.32 0.28 0.06 0.07 

1AFO 0.4 0.39 0.18 0.53 0.13 0.05 0.07 0.08 0.40 0.29 0.24 0.06 0.07 

1AFO 0.5 0.37 0.19 0.53 0.14 0.05 0.07 0.09 0.41 0.29 0.25 0.05 0.07 
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Missing Alpha Pearson Spearman AUC fa_atr fa_rep fa_mbenv fa_mbsolv fa_pair hbond_bb_sc hbond_sc omega fa_dun 

1AFO 0.6 0.38 0.18 0.53 0.13 0.05 0.07 0.08 0.40 0.27 0.23 0.05 0.06 

1AFO 0.7 0.32 0.19 0.53 0.15 0.05 0.09 0.11 0.43 0.31 0.29 0.05 0.07 

1AFO 0.8 0.35 0.19 0.53 0.14 0.05 0.08 0.10 0.41 0.29 0.26 0.05 0.07 

1AFO 0.9 0.33 0.19 0.53 0.14 0.05 0.08 0.10 0.42 0.29 0.27 0.05 0.07 

1AFO 1 0.34 0.19 0.53 0.14 0.05 0.08 0.10 0.41 0.28 0.26 0.04 0.06 

1PY6 0 0.26 0.34 0.71 0.08 0.04 0.02 0.03 0.60 0.24 0.13 0.10 0.05 

1PY6 0.1 0.32 0.40 0.73 0.11 0.06 0.07 0.09 0.69 0.25 0.21 0.08 0.06 

1PY6 0.2 0.32 0.40 0.73 0.11 0.06 0.07 0.09 0.69 0.24 0.20 0.08 0.06 

1PY6 0.3 0.33 0.40 0.73 0.12 0.06 0.08 0.11 0.71 0.24 0.23 0.08 0.06 

1PY6 0.4 0.31 0.39 0.73 0.11 0.06 0.06 0.08 0.68 0.21 0.18 0.07 0.06 

1PY6 0.5 0.33 0.40 0.73 0.12 0.06 0.08 0.12 0.72 0.23 0.23 0.07 0.06 

1PY6 0.6 0.32 0.40 0.73 0.11 0.06 0.07 0.10 0.70 0.21 0.20 0.07 0.06 

1PY6 0.7 0.32 0.39 0.73 0.11 0.06 0.07 0.09 0.69 0.20 0.18 0.07 0.05 

1PY6 0.8 0.33 0.40 0.73 0.12 0.06 0.08 0.11 0.71 0.21 0.20 0.07 0.06 

1PY6 0.9 0.33 0.40 0.73 0.12 0.06 0.08 0.10 0.71 0.20 0.20 0.07 0.05 

1PY6 1 0.33 0.40 0.73 0.12 0.06 0.07 0.10 0.71 0.19 0.19 0.06 0.05 

1QD5 0 0.00 -0.01 0.54 0.08 0.04 0.00 -0.01 0.16 0.28 0.14 0.09 -0.01 

1QD5 0.1 0.02 0.01 0.55 0.09 0.04 0.00 0.00 0.14 0.26 0.12 0.08 0.00 

1QD5 0.2 0.02 0.02 0.55 0.09 0.05 0.00 0.00 0.12 0.23 0.10 0.07 0.00 

1QD5 0.3 0.02 0.02 0.55 0.10 0.05 0.00 0.00 0.10 0.22 0.09 0.06 0.00 

1QD5 0.4 0.02 0.02 0.56 0.09 0.05 0.00 0.00 0.08 0.18 0.07 0.05 0.00 

1QD5 0.5 0.03 0.02 0.56 0.10 0.05 0.00 0.00 0.07 0.17 0.07 0.04 0.00 

1QD5 0.6 0.03 0.03 0.56 0.09 0.05 0.00 0.00 0.03 0.12 0.03 0.02 0.00 

1QD5 0.7 0.03 0.03 0.56 0.10 0.05 0.00 0.00 0.03 0.13 0.04 0.01 0.00 

1QD5 0.8 0.03 0.02 0.56 0.11 0.06 0.00 0.00 0.04 0.14 0.05 0.01 0.00 

1QD5 0.9 0.03 0.02 0.56 0.11 0.06 0.00 0.00 0.02 0.11 0.03 0.00 0.00 

1QD5 1 0.03 0.03 0.56 0.10 0.06 0.00 0.00 0.00 0.07 0.01 0.00 0.00 
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Missing Alpha Pearson Spearman AUC fa_atr fa_rep fa_mbenv fa_mbsolv fa_pair hbond_bb_sc hbond_sc omega fa_dun 

1QJP 0 0.03 0.08 0.69 0.10 0.04 0.04 0.04 0.22 0.29 0.28 0.09 0.08 

1QJP 0.1 0.01 0.04 0.67 0.11 0.04 0.05 0.06 0.24 0.31 0.32 0.07 0.08 

1QJP 0.2 0.00 0.03 0.65 0.12 0.05 0.06 0.08 0.25 0.31 0.34 0.07 0.08 

1QJP 0.3 -0.01 0.02 0.64 0.13 0.05 0.07 0.09 0.27 0.33 0.36 0.06 0.09 

1QJP 0.4 -0.01 0.02 0.63 0.13 0.05 0.07 0.09 0.26 0.32 0.35 0.06 0.08 

1QJP 0.5 -0.02 0.01 0.63 0.13 0.05 0.08 0.10 0.28 0.33 0.36 0.06 0.08 

1QJP 0.6 -0.02 0.00 0.62 0.13 0.05 0.08 0.11 0.29 0.33 0.38 0.06 0.08 

1QJP 0.7 -0.02 0.00 0.62 0.13 0.05 0.08 0.11 0.29 0.33 0.38 0.06 0.08 

1QJP 0.8 0.00 0.03 0.64 0.12 0.05 0.06 0.08 0.24 0.29 0.32 0.06 0.08 

1QJP 0.9 -0.01 0.02 0.63 0.13 0.05 0.07 0.09 0.26 0.30 0.34 0.06 0.08 

1QJP 1 0.00 0.03 0.64 0.12 0.05 0.06 0.08 0.24 0.28 0.32 0.05 0.08 

2K73 0 0.00 -0.05 0.55 0.10 0.04 0.03 0.03 0.39 0.27 0.19 0.11 0.05 

2K73 0.1 0.11 0.01 0.53 0.12 0.05 0.05 0.06 0.43 0.29 0.23 0.09 0.06 

2K73 0.2 0.14 0.04 0.52 0.13 0.05 0.06 0.08 0.45 0.30 0.25 0.09 0.07 

2K73 0.3 0.13 0.03 0.52 0.12 0.05 0.05 0.06 0.42 0.27 0.22 0.09 0.06 

2K73 0.4 0.13 0.02 0.52 0.12 0.05 0.05 0.06 0.42 0.26 0.21 0.08 0.06 

2K73 0.5 0.19 0.08 0.51 0.14 0.05 0.08 0.11 0.47 0.31 0.29 0.08 0.07 

2K73 0.6 0.18 0.07 0.50 0.13 0.05 0.07 0.09 0.45 0.29 0.25 0.08 0.06 

2K73 0.7 0.18 0.06 0.50 0.13 0.05 0.07 0.09 0.45 0.28 0.25 0.08 0.06 

2K73 0.8 0.19 0.08 0.50 0.14 0.05 0.07 0.09 0.46 0.29 0.26 0.08 0.06 

2K73 0.9 0.19 0.07 0.50 0.14 0.05 0.07 0.09 0.45 0.28 0.26 0.08 0.06 

2K73 1 0.19 0.08 0.51 0.13 0.05 0.07 0.09 0.45 0.27 0.25 0.07 0.06 

2XOV 0 0.22 0.12 0.52 0.11 0.01 0.03 0.02 0.35 0.22 0.11 0.16 0.03 

2XOV 0.1 0.26 0.17 0.54 0.15 0.02 0.07 0.09 0.40 0.28 0.17 0.18 0.06 

2XOV 0.2 0.23 0.14 0.53 0.14 0.02 0.06 0.07 0.38 0.25 0.13 0.18 0.05 

2XOV 0.3 0.24 0.15 0.54 0.15 0.02 0.07 0.08 0.39 0.25 0.15 0.18 0.05 

2XOV 0.4 0.24 0.16 0.54 0.15 0.02 0.08 0.09 0.40 0.25 0.16 0.18 0.05 
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Missing Alpha Pearson Spearman AUC fa_atr fa_rep fa_mbenv fa_mbsolv fa_pair hbond_bb_sc hbond_sc omega fa_dun 

2XOV 0.5 0.23 0.15 0.53 0.15 0.02 0.07 0.09 0.40 0.24 0.15 0.18 0.05 

2XOV 0.6 0.25 0.18 0.55 0.16 0.02 0.09 0.12 0.42 0.27 0.19 0.18 0.05 

2XOV 0.7 0.23 0.16 0.54 0.15 0.02 0.08 0.10 0.40 0.24 0.16 0.18 0.05 

2XOV 0.8 0.20 0.13 0.52 0.15 0.02 0.07 0.08 0.38 0.21 0.13 0.18 0.04 

2XOV 0.9 0.23 0.16 0.54 0.16 0.02 0.09 0.11 0.41 0.24 0.17 0.18 0.04 

2XOV 1 0.24 0.16 0.54 0.16 0.02 0.09 0.12 0.41 0.24 0.17 0.18 0.04 

3GP6 0 -0.04 -0.15 0.63 0.09 0.05 0.12 0.00 0.38 0.33 0.27 0.11 0.03 

3GP6 0.1 -0.04 -0.17 0.63 0.09 0.05 0.12 0.00 0.37 0.31 0.26 0.10 0.03 

3GP6 0.2 -0.04 -0.18 0.63 0.09 0.05 0.12 0.00 0.36 0.27 0.22 0.09 0.02 

3GP6 0.3 -0.04 -0.19 0.63 0.09 0.05 0.11 0.00 0.35 0.25 0.21 0.09 0.02 

3GP6 0.4 -0.04 -0.19 0.64 0.10 0.06 0.14 0.02 0.38 0.30 0.27 0.08 0.03 

3GP6 0.5 -0.04 -0.20 0.64 0.09 0.06 0.12 0.00 0.36 0.25 0.22 0.08 0.02 

3GP6 0.6 -0.04 -0.20 0.64 0.10 0.06 0.13 0.00 0.36 0.27 0.23 0.07 0.02 

3GP6 0.7 -0.04 -0.21 0.64 0.11 0.07 0.14 0.02 0.39 0.30 0.28 0.07 0.03 

3GP6 0.8 -0.04 -0.21 0.63 0.09 0.06 0.12 0.00 0.35 0.22 0.20 0.07 0.01 

3GP6 0.9 -0.04 -0.21 0.64 0.10 0.07 0.13 0.00 0.36 0.26 0.23 0.06 0.02 

3GP6 1 -0.04 -0.21 0.63 0.10 0.07 0.13 0.00 0.36 0.23 0.21 0.06 0.01 
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Table AF.4. Weights for all terms in the RosettaMembrane energy function obtained from Elastic net regression and leave one out 

cross validation. 

α Pea
rso

n 

Spe
arm

an 

AU
C 

fa_
atr 

fa_ 
rep 

 fa_ 
intra

_rep 

fa_
mbe

nv 

fa_
mbs

olv 

pro
_clo

se 

fa_
pai

r 

hbon
d_sr_

bb 

hbon
d_lr_

bb 

hbon
d_bb

_sc 

hbo
nd_s

c 

dslf
_ss_

dst 

dslf
_cs_

ang 

dslf
_ss_

dih 

dslf
_ca_

dih 

ra
ma 

om
ega 

fa_
dun 

p_aa
_pp 

ref Menv
_smo

oth 

0 0.5
0 

0.4
8 

0.7
3 

0.0
8 

0.04 -0.04 0.03 0.03 -
0.50 

0.4
6 

0.06 -0.20 0.35 0.31
5 

82 -469 -92 -87 0.0
3 

0.1
1 

0.0
8 

-
0.15 

-
0.2

7 

0.17 

0.1 0.5

2 

0.5

0 

0.7

4 

0.1

1 

0.06 -0.04 0.07 0.08 -

0.61 

0.5

1 

0.02 -0.15 0.39 0.36

7 

72 -488 -110 -29 0.0

2 

0.1

0 

0.1

0 

-

0.15 

-

0.1
8 

0.16 

0.2 0.5

2 

0.5

0 

0.7

4 

0.1

1 

0.06 -0.04 0.06 0.08 -

0.57 

0.5

0 

0.00 -0.12 0.37 0.35

7 

48 -441 -94 -30 0.0

1 

0.1

0 

0.0

9 

-

0.14 

-

0.1
8 

0.16 

0.3 0.5

2 

0.5

0 

0.7

4 

0.1

1 

0.06 -0.04 0.07 0.08 -

0.56 

0.5

0 

0.00 -0.10 0.37 0.35

5 

33 -413 -83 -33 0.0

1 

0.0

9 

0.0

9 

-

0.13 

-

0.1

8 

0.15 

0.4 0.5

2 

0.5

0 

0.7

4 

0.1

1 

0.06 -0.04 0.07 0.09 -

0.56 

0.5

1 

0.00 -0.08 0.37 0.36

0 

27 -408 -81 -28 0.0

1 

0.0

9 

0.0

9 

-

0.12 

-

0.1

6 

0.14 

0.5 0.5
2 

0.5
0 

0.7
4 

0.1
1 

0.06 -0.03 0.07 0.09 -
0.54 

0.5
0 

0.00 -0.06 0.36 0.35
4 

12 -378 -69 -36 0.0
0 

0.0
9 

0.0
9 

-
0.11 

-
0.1

6 

0.14 

0.6 0.5
2 

0.5
0 

0.7
4 

0.1
1 

0.06 -0.03 0.07 0.09 -
0.54 

0.5
1 

0.00 -0.04 0.36 0.35
3 

4 -364 -64 -38 0.0
0 

0.0
9 

0.0
8 

-
0.10 

-
0.1

5 

0.14 

0.7 0.5

2 

0.5

0 

0.7

4 

0.1

1 

0.06 -0.03 0.07 0.09 -

0.53 

0.5

0 

0.00 -0.03 0.35 0.35

0 

0 -346 -56 -32 0.0

0 

0.0

8 

0.0

8 

-

0.10 

-

0.1
5 

0.14 

0.8 0.5

2 

0.5

0 

0.7

4 

0.1

2 

0.06 -0.03 0.08 0.10 -

0.53 

0.5

1 

0.00 -0.02 0.36 0.35

5 

0 -349 -57 -21 0.0

0 

0.0

8 

0.0

8 

-

0.10 

-

0.1
4 

0.13 

0.9 0.5

2 

0.5

0 

0.7

4 

0.1

2 

0.06 -0.03 0.08 0.09 -

0.52 

0.5

1 

0.00 -0.01 0.35 0.34

9 

0 -328 -48 -16 0.0

0 

0.0

8 

0.0

8 

-

0.10 

-

0.1
4 

0.14 

1 0.5

2 

0.5

0 

0.7

4 

0.1

2 

0.06 -0.03 0.08 0.10 -

0.52 

0.5

1 

0.00 0.00 0.35 0.35

3 

0 -331 -49 -7 0.0

0 

0.0

8 

0.0

8 

-

0.10 

-

0.1

3 

0.13 

 

 

 



298 

 

Table AF.5.  Weights for the selected terms in the RosettaMembrane energy function obtained after Elastic Net regression using leave 

one out cross validation. First score terms that were contributing noise to the calculation were identified and removed. Elastic Net 

regression was performed again using the limited weight set. 

Alpha Pearson Spearman AUC fa_atr fa_rep fa_mbenv fa_mbsolv fa_pair hbond_bb_sc hbond_sc omega fa_dun 

0 0.44 0.44 0.72 0.12 0.04 0.07 0.09 0.45 0.36 0.28 0.10 0.07 

0.1 0.48 0.48 0.73 0.14 0.05 0.11 0.13 0.48 0.38 0.32 0.09 0.07 

0.2 0.48 0.47 0.73 0.14 0.05 0.11 0.13 0.48 0.37 0.31 0.09 0.07 

0.3 0.48 0.48 0.73 0.14 0.05 0.11 0.14 0.48 0.37 0.32 0.09 0.06 

0.4 0.48 0.48 0.73 0.14 0.05 0.11 0.13 0.48 0.35 0.31 0.08 0.06 

0.5 0.48 0.48 0.73 0.14 0.05 0.11 0.13 0.48 0.35 0.30 0.08 0.06 

0.6 0.48 0.48 0.73 0.14 0.05 0.11 0.14 0.48 0.34 0.30 0.08 0.06 

0.7 0.48 0.48 0.73 0.14 0.05 0.11 0.14 0.48 0.34 0.30 0.08 0.06 

0.8 0.48 0.48 0.73 0.14 0.05 0.11 0.14 0.48 0.33 0.30 0.08 0.06 

0.9 0.48 0.48 0.73 0.14 0.05 0.11 0.14 0.48 0.33 0.30 0.07 0.06 

1 0.48 0.48 0.73 0.14 0.05 0.11 0.14 0.47 0.32 0.29 0.07 0.05 
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Table AF.6. Weights for all terms in the RosettaMembrane energy function obtained from Ridge regression and 5-fold cross-

validation. Training was done on 80% of the data and testing on 20% of the data. Replicates were in the same group. This shows the 

metrics obtained from consistently sized groups; however, this also means that in some cases, backbones were seen in both the 

training and test sets. 
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APPENDIX G 

PROTOCOL CAPTURE FOR CHAPTER 5 

Mustang structural alignment: 

When running mustang, the first pdb listed will be the coordinate frame to what all of the other 

template pdbs will be aligned. In the final protocol, I used the Frog KCNQ1 structure as the 

initial template. 

mustang -i frog-kcnq1.pdb other.pdbs -F fasta 

Sequence alignment: 

The fasta multiple sequence alignment output from mustang was used as the input for the server 

Clustal Omega. The output alignment was then manually adjusted so that gaps in secondary 

structured regions were removed, starts and ends of helices were of relatively similar length, 

conserved residues were aligned and on the same face of the helix. The resulting alignment can 

be found in Figure AG.1 

 

Figure AG.1 Manually adjusted structure-based sequence alignment of templates and target 

(bold). Residues that are key for distinguishing VSD states are highlighted in red. The only pore 

domain template input for the final model generation was from Frog KCNQ1. 

 

Partial threading: 

For each alignment and template, the follow command was run to create a threaded template 
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/dors/meilerlab/apps/rosetta/rosetta-3.6/main/source/bin/ 

partial_thread.default.linuxgccrelease -in:file:fasta target_sequence.fasta  

-in:file:alignment my_template.aln -in:file:template_pdb my_template.pdb  

-ignore_zero_occupancy false 

 

Each alignment file was in the Grishin format 

 

Hybridization: 
/dors/meilerlab/apps/rosetta/rosetta-3.6/main/source/bin/ 

rosetta_scripts.default.linuxgccrelease @my.options -parser:protocol 

rosetta_cm.xml 

 

The hybridization mover was employed with the following options (my.options): 

 
# i/o 

-in:file:fasta /dors/sanderslab/data/kchannels/duranam/kcnq1-closed/add-

frog/target_sequence.fasta 

#-parser:protocol pore.xml  

-out:pdb  

#-out:file:silent_struct_type binary 

#-in:detect_disulf true 

  

# relax options 

-relax:minimize_bond_angles 

-relax:minimize_bond_lengths 

-relax:jump_move true 

-default_max_cycles 200 

-relax:min_type lbfgs_armijo_nonmonotone 

-relax:constrain_relax_to_start_coords true 

-score:weights stage3_rlx_membrane.wts 

-use_bicubic_interpolation 

-hybridize:stage1_probability 1.0 

-sog_upper_bound 15 

  

# membrane options 

-membrane 

-in:file:spanfile kcnq1.span 

#-in:file:lipofile ../t.lips4 

-membrane:no_interpolate_Mpair 

-membrane:Menv_penalties 

-rg_reweight .1 

  

# reduce memory footprint 

-chemical:exclude_patches LowerDNA  UpperDNA Cterm_amidation SpecialRotamer 

VirtualBB ShoveBB VirtualDNAPhosphate VirtualNTerm CTermConnect sc_orbitals 

pro_hydroxylated_case1 pro_hydroxylated_case2 ser_phosphorylated 

thr_phosphorylated  tyr_phosphorylated tyr_sulfated lys_dimethylated 

lys_monomethylated  lys_trimethylated lys_acetylated glu_carboxylated 

cys_acetylated tyr_diiodinated N_acetylated C_methylamidated 

MethylatedProteinCterm 
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The XML file for hybridization (rosetta_cm.xml): 

 
<ROSETTASCRIPTS> 

    <TASKOPERATIONS> 

    </TASKOPERATIONS> 

    <SCOREFXNS> 

        <stage1 weights=stage1_membrane symmetric=1> 

            <Reweight scoretype=atom_pair_constraint weight=1/> 

        </stage1> 

        <stage2 weights=stage2_membrane symmetric=1> 

            <Reweight scoretype=atom_pair_constraint weight=0.5/> 

        </stage2> 

        <fullatom weights=stage3_rlx_membrane symmetric=1> 

            <Reweight scoretype=atom_pair_constraint weight=0.5/> 

        </fullatom> 

    </SCOREFXNS> 

    <MOVERS> 

 <Hybridize name=hybridize stage1_scorefxn=stage1 stage2_scorefxn=stage2 fa_scorefxn=fullatom 

batch=1 stage1_increase_cycles=1.0 stage2_increase_cycles=1.0 linmin_only=1 realign_domains=0> 

     <DetailedControls start_res="7" stop_res="15" sample_template="1" sample_abinitio="0"/> 

     <DetailedControls start_res="88" stop_res="96" sample_template="1" sample_abinitio="0"/> 

            <Fragments 3mers="kcnq1_frags.200.3mers" 9mers="kcnq1_frags.200.9mers"/> 

            <Template pdb="Ci-VSP-frogKCNQ1-hybrid.pdb.pdb" cst_file="AUTO" weight=   1.000 

symmdef="/dors/meilerlab/apps/rosetta/rosetta-3.6/main/database/symmetry/cyclic/C4_Z.sym"/> 

            <Template pdb="TPC1-IIB-vs.pdb.pdb" cst_file="AUTO" weight=   0 

symmdef="/dors/meilerlab/apps/rosetta/rosetta-3.6/main/database/symmetry/cyclic/C4_Z.sym"/> 

            <Template pdb=”Shaker-c3-closed-vs.pdb.pdb" cst_file="AUTO" weight=   0 

symmdef="/dors/meilerlab/apps/rosetta/rosetta-3.6/main/database/symmetry/cyclic/C4_Z.sym"/> 

        </Hybridize> 

    </MOVERS> 

    <APPLY_TO_POSE> 

    </APPLY_TO_POSE> 

    <PROTOCOLS> 

        <Add mover=hybridize/> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 
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Then I relaxed using dualspace and constraint to start coordinates using this command: 
 
/dors/meilerlab/apps/rosetta/rosetta-3.6/main/source/bin/ 

relax.linuxgccrelease @cds.options -nstruct 25 -s my.pdb 

 

Options file (cds.options) contents: 
-in:file:silent_struct_type binary 

-out:file:silent_struct_type binary 

-out:prefix cds_ 

-relax:dualspace 

-relax:minimize_bond_angles 

-relax:jump_move true 

-relax:constrain_relax_to_start_coords true 

-relax:ramp_constraints false 

-set_weights cart_bonded .5 pro_close 0 

-default_max_cycles 200 

-flip_HNQ 

-no_optH false 

-symmetry 

-symmetry_definition /dors/meilerlab/apps/rosetta/rosetta-3.6/main/database/ 

symmetry/cyclic/C4_Z.sym 

-in:file:spanfile kcnq1.span 

-membrane:no_interpolate_Mpair 

-membrane:Menv_penalties 

-score:weights membrane_highres_Menv_smooth.wts 

 

 

Then I relaxed a final time using dualspace and constrain to start coordinates with the ramping of 

repulsive terms turned off using this command: 

 
/dors/meilerlab/apps/rosetta/rosetta-3.6/main/source/bin/ 

relax.linuxgccrelease @ds.options -nstruct 25 -s my.pdb 

 

Option file (ds.options) contents: 

 
-in:file:silent_struct_type binary 

-out:file:silent_struct_type binary 

-out:prefix ds_ 

-relax:dualspace 

-relax:minimize_bond_angles 

-relax:jump_move true 

-relax:constrain_relax_to_start_coords true 

-set_weights cart_bonded .5 pro_close 0 

-default_max_cycles 200 

-flip_HNQ 

-no_optH false 

-symmetry 

-symmetry_definition /dors/meilerlab/apps/rosetta/rosetta-3.6/main/database/ 

symmetry/cyclic/C4_Z.sym 

-in:file:spanfile kcnq1.span 

-membrane:no_interpolate_Mpair 

-membrane:Menv_penalties 
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Notes on other approaches: 

 

Initially, the approach was taken to model the voltage sensor and pore domain separately and 

then tack them together using the S4-S5 linker from Smith. However, this consistently left 

frustrations in the helix and resulted in subunits being oriented at multiple interfaces. With no 

experimental restraints to specify which orientation was favored over others, I used the old 

KCNQ1 model from Smith et al. as my template for the orientation of domains. However, after 

the frog structure was realized, we noticed that the orientation of the subunits was like that of the 

orientation of the MLotiK1 protein structure – not a true voltage sensor, but a S1-S4 domain with 

the pore in the closed state. This was sufficient evidence to move forward with this approach. 
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APPENDIX H 

SUPPLEMENTAL INFORMATION FOR CHAPTER 7 

For Figure 7.13 in the main text, these are individual plots for each of the 20 symmetric 

backbones designed. Backbones were designed symmetrically and the number of mutations is 

plotted along with the normalized energy contribution (ΔREU/amino acid, here REU is Rosetta 

energy units) from these pairs of mutations. Please note that axis are not the same scale. 

For 1FX8: 

 

Figure AH.1 Individual plots for symmetric variants of 1FX8 of the number of mutations and 

their normalized energy contribution (ΔREU/amino acid). Note that panel G only has mutants for 

2 and 4 mutations. The general trend tends to be that with each stepwise increase in mutations, 

the energy is lowered. 
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For 2D57: 

 

Figure AH.2 Individual plots for symmetric variants of 2D57 of the number of mutations and 

their normalized energy contribution. Note that panel C only has mutants for 2, 4, 6 and 8 

mutations. The general trend tends to be that with each stepwise increase in mutations, the 

energy is lowered. 
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For 3ZOJ: 

 

Figure AH.3 Individual plots for symmetric variants of 3ZOJ of the number of mutations and 

their normalized energy contribution. The general trend tends to be that with each stepwise 

increase in mutations, the energy is lowered. 

 

From these plots of mutations and energetic contributions, I was able to identify 

symmetric variant backbones that were more stable by which backbones did not acquire many 

mutations for a large drop in energy. I looked for backbones that required several mutations in 

order to see a lowered energy. Then I selected the final symmetric variant backbones. The pI was 

calculated using the software ExPasy to determine whether this would be an issue during 

expression, in particular for the nickel affinity column. 
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Table AH.1. The calculated pI determined from the sequence of the protein symmetric variants. 

Symmetric Variant pI 

1FX8 99_245 5 

2D57 77_193 9.36 

1FX8 102_249 5.8 

2D57 100_214 6.4 

3ZOJ 13_137 9.93 

1FX8 95_241 5 

2D57 91_205 6.4 

1FX8 6_143 6.1 

2D57 46_162 8.56 

1FX8 102_248 5.8 

3ZOJ 28_151 8.9 

3ZOJ 16_140 9.93 

3ZOJ 19_143 9.93 

2D57 87_202 6.4 

1FX8 98_245 5 

2D57 87_201 6.4 

3ZOJ 24_147 9.93 

1FX8 7_142 6.01 

3ZOJ 21_144 9.93 

3ZOJ 29_152 8.9 
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APPENDIX I 

PROTOCOL CAPTURE FOR CHAPTER 7 

Rosetta revision number 57232 was used for this protocol. 

I created a python script that calculated distances between symmetric counterparts on the 

wildtype and inverted structures. The user may input a threshold and if the c-alpha distance is 

lower than the threshold, the pair of residues is printed as a cut-point. I also accounted for the 

possibility that an error in the placement of the backbone or structural alignment may result in 

fewer cut-points by also sampling each residue before and after a proposed cut-point.  

With the fragment start and end points, I was able to create a python script that 

constructed a symmetric backbone in a similar way to the protein engineering strategy circular 

permutation. Because the symmetric backbones were pasted in cartesian space as fragments, I 

utilized the dualspace relaxation protocol in Rosetta. Dualspace allows for both cartesian and 

internal coordinate relaxation. The first relax protocol below enables dualspace relax. 

Protocols for various relaxations: 

These were all run through the relax application using this command and the appropriate options 

files listed below: 

~myrosetta/main/source/bin/relax.default.linuxgcc.release @my.options 

-in:file:spanfile my.span 

first relax: 

-relax:dualspace 

-relax:minimize_bond_angles #setting used with dualspace relax (from 

Amanda's protocol) 
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-set_weights cart_bonded .5 pro_close 0 #setting used with dualspace 

relax (from Amanda's protocol) 

-default_max_cycles 200 

-out:file:fullatom #output file will be fullatom 

-out:pdb 

-out:prefix rlx_  

-membrane:no_interpolate_Mpair # membrane scoring specification 

-membrane:Menv_penalties # turn on membrane penalty scores 

-score:weights membrane_highres_Menv_smooth.wts 

 

To obtain a consistent score for evaluation purposes: 

-out:file:fullatom #output file will be fullatom 

-out:pdb 

-out:prefix sc_mc_ 

-membrane:no_interpolate_Mpair # membrane scoring specification 

-membrane:Menv_penalties # turn on membrane penalty scores 

-center_search true 

-center_max_delta 1 

-score:weights membrane_highres_Menv_smooth.wts 

-hbond_bb_per_residue_energy 

 

Second relax (to create more conformational diversity): (40x) 

-out:file:fullatom #output file will be fullatom 

-out:pdb 

-out:prefix rlx_  

-constrain_relax_to_start_coords true 

-membrane:no_interpolate_Mpair # membrane scoring specification 

-membrane:Menv_penalties # turn on membrane penalty scores 

-score:weights membrane_highres_Menv_smooth.wts 
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Approaches for redesign of symmetric variants: 

 All approaches for sampling mutations involved the FavorSymmetricSequence mover 

(FSS). The moved can be used in RosettaScripts with the following syntax: 

<FavorSymmetricSequence penalty="(&real)" name="sym_csts" symmetric_units="(&size)"/>  

Where the penalty is the unit of REU added to each residue when the symmetric counterpart does 

not match the mutation tested, and the size is the how many internal symmetric units are in a 

single chain. For the purposes of this protocol, I chose the symmetric units to be 2. I tested a 

combination of FSS penalties along with Favor Native Residue (FNR) bonuses to see the effect 

on sequence recovery for both the monomeric and tetrameric model of the symmetric variants. 

Table AI.1. The percent native sequence recovery resulting from FNR bonuses and FSS penalties 

applied to design experiments. The monomeric and tetrameric versions of symmetric variants 

were modeled and various bonuses and penalties were evaluated.  

 

FNR Monomer Tetramer 

0.5 40.1 45.4 

1 63.3 67.7 

1.25 78.6 81.4 

1.5 90 90 

FSS Monomer Tetramer 

0.5 37 n/a 

1 38.7 n/a 

2 39.8 n/a 

5 24.1 n/a 
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Table AI.2. The percent native sequence recovery from combinations of a FSS penalty and a 

FNR bonus applied to design experiments.  

 

FSS FNR Monomer Tetramer 

0.5 1 67.7 n/a 

1 1 69.6 63 

1 1.5 90.5 86.4 

 

Ideally, fewer mutations is better. The combination of an FSS penalty of 1 and an FNR 

bonus of 1.5 performs where there would only be a few mutations. An FSS penalty of higher 

numbers, while forcing symmetry, appears to constrain it in such a way that skews the relevance 

of mutations. The first attempt to redesign focused on creating symmetric space-filling 

mutations. I used FSS along with FNR to identify positions that would benefit from mutations.   

I analyzed each half of the protein to identify mutations seen most frequently regardless 

of half. I noticed 4 pairs of consensus mutations that showed up in 100% of models. I list them as 

original residue, symmetric pair position, mutation. A13_160I; V17_164L; C109_256V; 

A112_259F. I redesigned using only these residues and evaluated the energy differences between 

the original symmetric backbone, 97_243, and the mutations (Figure AI.1) 
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Figure AI.1. Rosetta energy unit contribution of each consensus mutation. The mutations seen in 

all designs were modeled as four pairs of consensus mutations only and compared energetically 

to the original symmetric backbone 97_243. 

 

Next, I mapped these positions onto the structure to better understand the reason for the 

improved energies. However, all mutations appear on the surface (Figure AI.2) and it appears to 

be driven by reference energies and fa_mbenv.  

 



314 

 

 

Figure A.I.2. Consensus mutations mapped onto the symmetric variant in the tetrameric form. 

The mutations seen in all design experiments (red) were mapped onto the model of the 

symmetric variants of  97_243.  

 

These mutations appear on the surface of the protein, likely interacting with the lipid 

bilayer. Next, from the analysis of symmetric mutations, I identified several additional possible 

mutations that were favored most of the time (Table AI.3).  

Table AI.3. Additional possible mutations from FSS and FNR experiments. The percent 

preference for each side of the protein is reported. 

 

'native' 

AA  

'A' 

position  

% 

pref: 

AA  

'B' 

position  

% 

pref:AA  

L  25  90:F  172  100:L  

T  30  100:T  177  100:V  

D  32  100:A  179  100:D  

I  50  70:V  197  70:I  

M  57  98:M  204  100:T  

L  100  100:I  247  100:L  

G  116  100:G  263  70:G  
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From this, I chose to force asymmetric mutations L25_172F and M57_204T to be 

symmetric. Because the consensus mutations were all on the surface of the protein, these were an 

interesting pair of mutations because they occur at the interface of the homo-tetrameric assembly 

(Figure AI.3).  

 

 

Figure AI.3. Forced mutations are at an interface for the homo-tetrameric assembly. The 

proposed mutations for L25_172F (left) and M57_204T (right) are shown at the interface. 

Positions of mutations are in red while the subunits are represented as different colors.  

 

Next, I then performed some relaxation studies where I ultimately sorted the energies of 

resulting models from a relax protocol to visualize the range of sampling. I relaxed the original 

symmetric backbone 97_243, each forced symmetric mutations, and both forced symmetric 

mutations (Figure AI.4).  
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Figure AI.4.  Sorted total energies of relaxed models of symmetric variant designs. While most 

of the models for both mutations have a worse score than the others, the lowest scoring model is 

one with both mutations.  

 

Finally, my last design approach was to take the two halves of each aquaporin and create 

a resfile with a list of positions with both the native amino acid identity at that position and its 

counterpart identity. Because I restricted design to only identities seen in evolution at that 

position of the backbone, I refer to these as the AQP proteins.  I compared the energies of the 

original symmetric variant to the calculated energies of each of the aforementioned designed 

proteins from the several rounds of design. The comparison showed a huge improvement in the 

sampling from the AQP design (Figure AI.5). Unfortunately, attempts to express any of these 

variants failed for unknown reasons. 
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Figure AI.5. Energy evaluation of designs with evolutionary information. A shows normalized 

per residue energy for all models. B calculates the difference between the designs and their 

respective wild-type models. The engineered symmetric backbone (97_243) was initially 

redesigned using symmetric counterpart mutations. These mutations (consensus, L25F, M57T) 

did not improve energy. However, design guided by an AQP sequence alignment predicts 

symmetric mutations for 97_243 that result in a much lower energy than both designs and wild 

type.
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APPENDIX J 

PREVIOUS STUDIES ON SYMMETRIC VARIANTS OF GLPF 

 

Figure AJ.1 The average, normalized REU was plotted for each symmetric variant. Symmetric 

variants constructed from the C-terminal side of 1FX8 tend to have a much lower energy than 

compared to the N-terminal side. 

 

The first approach for symmetric designs focused on the symmetric variant 1FX8 

100_243. I extracted GlpF genomic DNA and optimized the expression conditions using 

protocols based on the Stroud lab’s protocols. Those are seen below. Before I tried expression 

the symmetric variants, I had to be sure that the native protein would express in in our CSB 

vector pBG100. 

Sequences of Wild Type and Designed Half of GlpF 

Nucleotide sequence of Wild Type GlpF from E. coli BL21 (DE3) (K12 Derivative) 

atgAGTCAAACATCAACCTTGAAAGGCCAGTGCATTGCTGAATTCCTCGGTACCGGGTTGTTG 

ATTTTCTTCGGTGTGGGTTGCGTTGCAGCACTAAAAGTCGCTGGTGCGTCTTTTGGTCAGTG 

GGAAATCAGTGTCATTTGGGGACTGGGGGTGGCAATGGCCATCTACCTGACCGCAGGGGTT 

TCCGGCGCGCATCTTAATCCCGCTGTTACCATTGCATTGTGGCTGTTTGCCTGTTTCGACAAG 

CGCAAAGTTATTCCTTTTATCGTTTCACAAGTTGCCGGCGCTTTCTGCGCTGCGGCTTTAGTTT 

ACGGGCTTTACTACAATTTATTTTTCGACTTCGAGCAGACTCATCACATTGTTCGCGGCAGCGT 
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TGAAAGTGTTGATCTGGCTGGCACTTTCTCTACTTACCCTAATCCTCATATCAATTTTGTGCAGG 

CTTTCGCAGTTGAGATGGTGATTACCGCTATTCTGATGGGGCTGATCCTGGCGTTAACGGACG 

ATGGCAACGGTGTACCACGCGGCCCTTTGGCTCCCTTGCTGATTGGTCTACTGATTGCGGTC 

ATTGGCGCATCTATGGGCCCATTGACGGGTTTTGCCATGAACCCAGCGCGTGACTTCGGTCC 

GAAAGTCTTTGCCTGGCTGGCGGGCTGGGGCAATGTCGCCTTTACCGGCGGCAGAGACATT 

CCTTACTTCCTGGTGCCGCTTTTTGGCCCTATCGTTGGCGCGATTGTAGGTGCATTTGCCTACC 

GCAAACTGATTGGTCGCCATTTGCCTTGCGATATCTGTGTTGTGGAAGAAAAGGAAACCACAA 

CTCCTTCAGAACAAAAAGCTTCGCTGtaa 

Amino Acid Sequence of Wild Type GlpF from E. coli BL21 (DE3) (K12 Derivative) 

MSQTSTLKGQ CIAEFLGTGL LIFFGVGCVA ALKVAGASFG QWEISVIWGL GVAMAIYLTA 

GVSGAHLNPA VTIALWLFAC FDKRKVIPFI VSQVAGAFCA AALVYGLYYN LFFDFEQTHH 

IVRGSVESVD LAGTFSTYPN PHINFVQAFA VEMVITAILM GLILALTDDG NGVPRGPLAP 

LLIGLLIAVI GASMGPLTGF AMNPARDFGP KVFAWLAGWG NVAFTGGRDI PYFLVPLFGP 

IVGAIVGAFA YRKLIGRHLP CDICVVEEKE TTTPSEQKAS L 

Nucleotide sequence of Designed Half GlpF 

TATCCGAATCCGCATATTAACTTTGTTCAAGCGTTTGCCGTGGAAATGGTTATTACCGCAATCCT 

GATGGGTCTGATCCTGGCTCTGACCGATGACGGCAACGGTGTGCCGCGTGGTCCGCTGGC 

ACCGCTGCTGATTGGTCTGCTGATTGCCGTTATCGGCGCAAGTATGGGTCCGCTGACCGGCT 

TTGCTATGAACCCGGCGCGTGATTTTGGTCCGAAAGTTTTCGCTTGGCTGGCGGGCTGGGGT 

AATGTCGCCTTCACGGGCGGTCGCGACATTCCGTATTTTCTGGTCCCGCTGTTCGGTCCGATT 

GTCGGCGCAATCGTGGCGGCCGCACTGGTTTACGGCCTGTATTACAACCTGTTTTTCGATTTTG 

AACAGACGCATCACATCGTGCGCGGTAGCGTGGAAAGCGTGGACCTGGCGGGCACCTTCAGCACGTAA 

Amino Acid Sequence of Designed Half GlpF 

YPNPHINFVQAFAVEMVITAILMGLILALTDDGNGVPRGPLAPLLIGLLIAVIGASMGPLTGFAMNPARDFGPKVFA

WLAGWGNVAFTGGRDIPYFLVPLFGPIVGAIVAAALVYGLYYNLFFDFEQTHHIVRGSVESVDLAGTFST 

wt GlpF MW: 30 kD 
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Designed GlpF MW: 31 kD 

Primer Sequences 

Primers used to target and extract wild type glycerol facilitator protein from E. coli BL21 (DE3) 

genomic DNA: 

FWD: TCCCGTAGTCATATTACAGCGAAGC 

REV: TCAGGATCCGATTATGAGTCAAACA 

Primers used to SLIC clone wild type GlpF into a Bam I Not I double cut pBG100: 

FWD: ctggaagttctgttccaggggcccGGATCCatgagtcaaacatcaaccttg 

REV: gctagcccgtttgatctcgagtGCGGCCGCttacagcgaagctttttgttc 

Primers used to SLIC clone and assemble designed half into Bam 1 Not 1 double cut 

pBG100: 

P1: tggaagttctgttccaggggcccGGATCCTATCCGAATCCGCATATTAAC 

P2: atatgcggattcggatacgtgctgaaggtgcccgccaggt 

P3: acctggcgggcaccttcagcacgtatccgaatccgcatat 

P4: gctagcccgtttgatctcgagtGCGGCCGCttaCGTGCTGAAGGTGCCCG 
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Purification Protocol for E. coli BL21(DE3) GlpF (wt) 

 Adapted from: Biochemistry 2008, 47, 3513-3524 

See Amanda Duran Lab Notebook 1 

 Transform pBG100*+GlpF in to BL21 (DE3) pLysS 

 O/N culture of single transformant (~10 mL/L) (37C, 235 RPM) 

 Inoculate Terrific Broth w/ starter; 37C, 235 RPM 

Induce @ OD600 0.6-0.7 (up to 1 ended up fine see Lab Notebook: Amanda Duran 1), 1 mM 

IPTG (final) (still 37C, 235RPM) 

2 hrs induction, harvest 

(can store pellet in -80C until proceed) 

 Resuspend pellet: Buffer “A”=25 mM Phosphate, 200 mMNaCl, 2 mM BME, (Lysozyme, 

DNase, RNase and Magnesium Acetate) 

 Sonicate @40%, 5 sec on; 5 sec off for 5 min (total time 10 min; process for 5) 

Centrifuge down cells @ 20K, 20 min, 4C 

Supernatant ultra-centrifuged (30K using Ti45, 60 min, 4C) 

 Solubilize resulting membrane pellet in: 

25 mM Phosphate 

200 mM NaCl 

2 mM BME 

20 mM LMPC (or 30 mM DDM) 
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 Use glass homogenizer to fully solubilize 

 Equilibrate Ni-NTA (~2-5 mL resin if 1 g) with 10 CV of EB. 

Equilibration Buffer:  

25 mM Phosphate 

200 mM NaCl 

2 mM BME 

2 mM LMPC  (or 3 mM DDM) 

pH=7.5 

 

Wash 1: (until A 280 is <0.01 ~ 50 mL for 4 mL Resin) 

Equilibration buffer + 50 mM imidazole 

 Eluted with (~20mL depending on starting amount) 

Equilibration buffer + 250 mM imidazole 

 Additional constructs 97_245, 94_240 and 90_236 were subjected to extensive expression 

screens which included the following conditions: 

 

Figure AJ.2. Results of the expression screen for constructs. Conditions included varying host 

strain, induction temperature, and induction time. Only Rosetta2(DE3)pLysS at 25C overnight 

induction expressed proteins of interest sufficiently. 

Then, the protein expressed from the one expression condition above was purified and screened 

for detergent extraction 
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Figure AJ.3. Results of the detergent screen for constructs. The engineered proteins tended to go 

to the membrane, so extraction from the membrane was ideal. 

 

 

Figure AJ.4. Representative western blot of the expression and purification of a HIS-tagged 

symmetric variant of GlpF. This particular variant is from the symmetric counterpart mutations 

in 97_243.  

  

Mass spectrometry was used to sequence in order to verify its identity. While GlpF was 

identified in the spectra, it was at a lower concentration than other proteins in the same band. 

However, the top band was analyzed separately from the bottom bands and GlpF was not found 

in the bottom band, so this indicates it was not degradation. Unfortunately, no trypsin cuts sites 

were in our construct in the first 60 residues, so we could not identify whether it was the intact 
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symmetric protein or not. Table AJ.1 shows the results in order of the most significant. A score 

of above 70 is significant (p<0.05) 

Table AJ.1. Results of the mass spectrometry results for identification of a symmetric variant of 

GlpF. The top band from expression and purification studies was extracted for analysis. The 

band appears to be a mixture of proteins. 

 

Table AJ.2. Origin of fragments identified by mass spectrometry as GlpF. The sequences of all 

of the identified fragments are aligned to the sequence of the organism. 
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Table AJ.3. Results of the mass spectrometry results for identification of a symmetric variant of 

GlpF. The lower band from expression and purification studies was extracted for analysis. It 

appears to be a homogenous sample of a ribosomal factor. 
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APPENDIX K 

COMPUTATIONAL AND EXPERIMENTAL FEEDBACK FROM A2A RECEPTOR 

TRAFFICKING 

This appendix is based on a paper entitled “Engineering the adenosine A2a receptor for site-

directed interrogation of structure and dynamics: transmembrane cysteines are not required for 

stability and function” in preparation by: 

Nikki Schonenbach and Amanda Duran 

In this study, I contributed computational design and modeling of mutants of the A2a receptor. 

Our collaborators performed the trafficking and FACS experiments. Of the figures presented 

here, I contributed data in Figures AK.1, AK.2, AK.3 A-B, AK.4, AK.5, and AK. 6. 

Abstract 

 Membrane proteins are responsible for many functions that involve large conformational 

changes. Using traditional methods, such as X-ray crystallography, for structure determination 

often require homogenous samples and are a static snapshot for may be expected to happen 

biologically. Electron paramagnetic resonance (EPR) is one technique that can provide insight 

regarding structural dynamics. EPR requires tagged of a single position in a protein using a 

paramagnetic label. Typically, this involves attaching a nitroxide spin label to a particular 

cysteine-which should be the only cysteine exposed to the solvent. G protein coupled receptors 

(GPCRs) are structures that often have several cysteines in their sequence, many of which can be 

freely accessible to the solvent. GPCRS often have several accessible cysteines and usually 

involve mutagenesis by trial-and-error or variants containing unnatural amino acids. This study 

used a strategy to combine the high-throughput screening power of a fluorescence-activated cell 
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sorting (FACS) ligand binding assay with Rosetta, a macromolecular modeling suite, to engineer 

a properly folded adenosine A2a receptor variant produced from canonical amino acids and void 

of solvent exposed free cysteine. 

Statement of Significance 

 Overall, the methods developed and the subsequent findings in this study offer two 

advances to the GPCR community. The methods examine the combined power of computational 

modeling and high throughput screening of a GPCR variant library toward engineering a specific 

construct ideal for EPR experiments. Specifically, the effort was directed at identifying A2a 

receptor variants void of all non-critical free cysteines that express well in yeast Saccharomyces 

cerevisiae suitable for biophysical characterization by site-directed spin labeling. Additionally, 

the results provide insight into the role of transmembrane cysteines on the structure and function 

of the adenosine A2a receptor through computational modeling and membrane trafficking 

assays. 

 The results presented in this appendix are centered around the computational studies. 

These studies involved both the prediction of possible mutants of the A2a receptor using Rosetta 

Design and the energetic evaluation of mutants proposed from FACS library screening through 

modeling of mutations.  

Rosetta was used to propose a number of mutations away from cysteine. Design allowing 

all amino acid identities, except for cysteine, to be sampled was performed at six positions of 

interests on multiple backbones for A2a (2YDO, 2YDV, 3EML, 3PWH, 3REY, 3RFM, 4EIY). 

The top 10 percent of models were analyzed for the favored mutations at each position. Figure 

AK.1 shows sequence logos that show the mutations seen in the top 10 percent for each 
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backbone. Then mutations seen frequently in the sequence logos were modeled on multiple 

backbones for A2a (2YDO, 2YDV, 3EML, 3PWH, 3REY, 3RFM, 4EIY) and the total energy of 

the wild-type protein was subtracted from the energy of the mutant protein to assess the stability 

of the individual mutations. Then consensus models were created for combinations of the 

mutations based on the overall consensus of the sequence profile.  

 

Figure AK.1. Sequence logos of the top models from single state design of the A2a receptor. The 

top ten percent of models by score were selected for each PDBID for analysis. Logos cover 

designed residues in the place of six of the native cysteines. Letters that make up most of the bits 

score for each position are seen the most frequently. 
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 Experiments that sampled either Alanine and Serine at the six positions were also 

performed in parallel to the design experiments that sampled all amino acids except for cysteine. 

These experiments sampled all six positions at the same time. The most frequently seen 

mutations for each position were then modeled individually. The motivation is that the mutations 

seen most frequently are tolerated in a variety of combined mutants, thus are the most likely to 

be stabile independent of the identities of the other five positions. The energy differences 

between the proposed single-point mutants and wild-type proteins are shown in Figure AK.2. 

The error bar shows the range of energy differences seen among the seven different backbones. 

The positions of cysteines to be redesigned are denoted as C1-C6. From the sequence logos and 

energetic analysis, I proposed C1A, C1I, C1M, C2A, C2N, C3A, C4A, C4N, C5M, C5S, C5T, 

C6A, and C6M. 

 

Figure AK.2. Evaluation of Rosetta energy score and whether the mutant trafficked to the 

membrane. Proposed mutations were gathered from experiments that design all six positions in 
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parallel. Single mutations were modeled in Rosetta and the difference in energy between the 

wild-type and mutants was calculated and normalized (Rosetta Energy Units / Amino Acid). The 

stars represent the mutants that trafficked best. For C6, both C6A and C6M trafficked well. 

 

 Hexamutants were proposed based on the results from the single point mutation design 

experiments. The INANTM hexamutant was created from non-Alanine and non-Serine 

mutations, when available. Whereas AAAASA was created from a combination of only Alanine 

and Serine mutations. Unforunately, despite having an improved Rosetta energy compared to 

wile-type for all seven backbones, these hexamutants did not traffick to the membrane (Figure 

AK.3). 

 

Figure AK.3. Rosetta proposed hexamutants did not traffick to the membrane. A shows the 

energy of the mutants compared to the normalized improvement in Rosetta energy units. B 

shows the respective models with green as wild-type, yellow as INANTM, and pink as 

AAAASA. C shows that these hexamutants did not traffick to the membrane.  
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 While the hexamutants proposed did not traffick well despite improved Rosetta energies, 

the single point mutants did fair quite well in trafficking experiments. To show a measure of this 

success, mutants that trafficked well were treated as true positive while mutants that did not 

traffick well were false positives. A receiver operating characteristic (ROC) curve was generated 

with an area under the curve (AUC) of 0.73 (Figure AK. 4). 

 

 

Figure AK.4. ROC curve generated for A2a mutants predicted to be stable by Rosetta and their ability to 

traffick to the membrane. For each single point mutants from the first part of the study, a mutant 

that trafficked to the membrane was deemed successful and treated as a true positive, whereas 



332 

 

proposed mutants that did not traffick to the membrane were given a false positive rate. The area 

under the curve was 0.73. 

 

 FACS was used to screen a library of mutants as possible candidates. The sequences of 

the mutants were then used to create models in Rosetta. The energies of the mutant models were 

compared to the wild-type models to determine whether Rosetta would have predicted these 

mutants as successful. Figure AK.5 shows the correlation of the normalized change in Rosetta 

energy units and the percent of wild-type gating. The correlations showed a negative correlation 

which is expected as because a lower REU/AA is desired along with a higher percentage of wild-

type gating. The Pearson R correlation was -0.49 and the Spearman R was -0.53. 
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Figure AK.5. Correlation of the normalized changed in Rosetta energy units for mutant proteins 

to the percentage of gating in flow cytometry experiments. There is a negative Pearson R of -

0.49 and a negative Spearman R of -0.53. In this case negative is good because the desired effect 

is a lower REU/AA and higher percent of gating. 

 

 The performance of Rosetta energy predictions was evaluated using the percentage of 

wild-type gating metric obtained from FACS experiments. I classified good from bad mutants by 

using a threshold of 80% for the percentage of wild-type gating. Mutants that were calculated by 

Rosetta to have an improved energy and were seen to have met the 80% threshold were treated 

as true positives. Mutants that were calculated to have an improved Rosetta energy and were 

classified as bad binders were treated as false positives. Mutants that were calculated to have a 

worse Rosetta energy and classified as good binders were treated as false positives. Mutants that 

were calculated to have a worse Rosetta energy and were classified as bad binders were treated 

as true positives.   
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Figure AK.6. ROC curve generated for A2a mutants selected from FACS library screen. The 

mutants were analyzed based on the percentage of wild-type ligand binding. A threshold of 80% 

of wild-type ligand binding was used to classify mutants as good. The mutants that met this 

threshold and had an improved Rosetta energy were treated as true positives. 
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APPENDIX L 

PROTOCOL CAPTURE FOR APPENDIX K 

For these particular protocols mentioned in this Appendix, I used Rosetta revision 

number 57698. In brief, I used two approaches to sample possible mutations at six positions in 

the A2a receptor. The first was ensemble design where all seven backbones were taken into the 

protocol to hopefully suggest mutations for six positions that were agreeable with all seven 

backbones. The second was single state design of all seven backbones independent of each other. 

The top scoring models were then analyzed for suggested mutations that were seen in most of the 

backbones.  I found that relying on the ensemble design protocol to converge on mutations at 

these six positions was too restricting. I moved forward with the single state design approach that 

uses the top models by score to suggest mutations that are seen in most of the models across all 

seven backbones.  

Suggestions for hexamutants were created based on a combination of the favored 

mutations seen from the single state design experiments. To create models of these hexamutants, 

I used the protocol for modeling defined mutations. Upon FACS sorting of a library, our 

collaborators suggested mutants to model in Rosetta. These were also modeled using the protocol 

for modeling defined mutations. 

Sampling possible mutations using an ensemble design protocol: 

First, input structures were prepared by minimization using the relax application. Ten models 

were generated for each PDBID (2YDO, 2YDV, 3EML, 3PWH, 3REY, 3RFM, 4EIY) and the 

top model was selected for further analysis.  
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/path/to/Rosetta/main/source/bin/relax.default.linuxgccrelease  

-s myfile.pdb -in:file:spanfile myfile.span -out:file:fullatom -out:pdb  

-out:prefix rlx_ -membrane:no_interpolate_Mpair -membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts -nstruct 10 

 

The top model of each was then used for the setup of ensemble design. Ensemble design was run 

using the following XML file , command, and options: 

 

Contents of hybrid_min.xml: 
 
<ROSETTASCRIPTS> 

 <SCOREFXNS> 

  <mem_highres weights=membrane_highres_Menv_smooth.wts > 

   <Reweight scoretype=res_type_constraint weight=1.0 /> 

  </mem_highres> 

 </SCOREFXNS> 

 <TASKOPERATIONS> 

  <InitializeFromCommandline name=ifcl /> 

  <RestrictToRepacking name=rtr /> 

 </TASKOPERATIONS> 

 <MOVERS> 

  <PackRotamersMover name=design scorefxn=mem_highres 

task_operations=ifcl /> 

  <MSDMover name=msd1 design_mover=design constraint_weight=0.5 

resfiles=%%resfiles%% /> 

  <MSDMover name=msd2 design_mover=design constraint_weight=1 

resfiles=%%resfiles%% /> 

  <MSDMover name=msd3 design_mover=design constraint_weight=1.5 

resfiles=%%resfiles%% /> 

  <MSDMover name=msd4 design_mover=design constraint_weight=2 

resfiles=%%resfiles%% />  

  <FindConsensusSequence name=finish scorefxn=mem_highres 

resfiles=%%resfiles%% /> 

  <PackRotamersMover name=repack scorefxn=mem_highres 

task_operations=ifcl,rtr /> 

  <TaskAwareMinMover name=min tolerance=0.001 task_operations=ifcl 

type=lbfgs_armijo_nonmonotone chi=1 bb=1 jump=1 scorefxn=mem_highres /> 

  <FastRelax name=relax scorefxn=mem_highres 

task_operations=ifcl,rtr repeats=1 /> 

 </MOVERS> 

 <FILTERS> 

 </FILTERS> 

 <APPLY_TO_POSE> 

 </APPLY_TO_POSE> 

 <PROTOCOLS> 

  <Add mover=msd1 /> 

  <Add mover=min /> 

  <Add mover=msd2 /> 

  <Add mover=min /> 

  <Add mover=msd3 /> 

  <Add mover=min /> 

  <Add mover=msd4 /> 

  <Add mover=min /> 

  <Add mover=finish /> 

  <Add mover=relax /> 

 </PROTOCOLS> 
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</ROSETTASCRIPTS> 

 
/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease 

@ensemble_design.options -parser:protocol hybrid_min.xml -in:file:spanfile 

2YDV.span -parser:script_vars 

resfiles=2YDO.resfile,2YDV.resfile,3EML.resfile,3PWH.resfile,3REY.resfile,3RF

M.resfile,4EIY.resfile -s rlx_al_2YDO_A1_0005.pdb rlx_al_2YDV_A2_0006.pdb 

rlx_al_3EML_rtrim3_0003.pdb rlx_al_3PWH_A4_0010.pdb rlx_al_3REY_A5_0003.pdb 

rlx_al_3RFM_A6_0004.pdb rlx_al_4EIY_rtrim7_0009.pdb -out:path:pdb ./randomize 

-nstruct 10 -out:prefix mem_hybridmin_ -run:msd_randomize 

 

Contents of ensemble_design.options: 

-in:file:fullatom 

-out:file:fullatom 

-linmem_ig 10 

-ex1 

-ex2 

-run:msd_job_dist 

-score:weights membrane_highres_Menv_smooth.wts 

-membrane:no_interpolate_Mpair 

-membrane:Menv_penalties 

-fixed_membrane true 

-membrane_center -22.751  16.194 -28.472 

-membrane_normal -0.708  -0.691   0.145 

 

Sampling possible mutations at multiple positions using RosettaMembrane and Rosetta 

Design: 

First, input structures were prepared by minimization using the relax application. Ten models 

were generated for each PDBID (2YDO, 2YDV, 3EML, 3PWH, 3REY, 3RFM, 4EIY) and the 

top model was selected for further analysis.  

/path/to/Rosetta/main/source/bin/relax.default.linuxgccrelease  

-s myfile.pdb -in:file:spanfile myfile.span -out:file:fullatom -out:pdb  

-out:prefix rlx_ -membrane:no_interpolate_Mpair -membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts -nstruct 10 

 

The top model by score of each backbone was then used to setup modeling the mutant. The 

mutations must be made using a resfile where the points of mutation are allowed to be sampled 

and sidechains are repacked.  
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/path/to/Rosetta/main/source/bin/fixbb.default.linuxgccrelease  
-s rlx_myfile.pdb -in:file:spanfile myfile.span -out:file:fullatom -out:pdb  

-out:prefix des_ -membrane:no_interpolate_Mpair -membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts -nstruct 10 -resfile 

myfile.resfile 

 

Example of a resfile: (NATAA = repack; ALLAAxC = sample all amino acids except cysteine) 
 

NATAA 

start 

23 A ALLAAxC 

77 A ALLAAXC 

123 A ALLAAxC 

180 A ALLAAxC 

230 A ALLAAxC 

239 A ALLAAxC 

 

100 mutation models are created and the top 10 models by score for each PDBID is used for 

analysis of possible mutations and combinations of mutations at these sites. The sequences were 

extracted and a sequence logo of the six designed positions for each PDBID was created to 

visualize which mutations were generally tolerated among the difference starting backbones. 

These mutants were then modeled using the next protocol.  

Modeling defined mutations using RosettaMembrane: 

 

First, input structures were prepared by minimization using the relax application. Ten models 

were generated for each PDBID (2YDO, 2YDV, 3EML, 3PWH, 3REY, 3RFM, 4EIY) and the 

top model was selected for further analysis.  

/path/to/Rosetta/main/source/bin/relax.default.linuxgccrelease  

-s myfile.pdb -in:file:spanfile myfile.span -out:file:fullatom -out:pdb  

-out:prefix rlx_ -membrane:no_interpolate_Mpair -membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts -nstruct 10 

 

The top model by score of each backbone was then used to setup modeling the mutant. The 

mutations must be made using a resfile where the points of mutation are allowed to be sampled 

and sidechains are repacked.  
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/path/to/Rosetta/main/source/bin/fixbb.default.linuxgccrelease  
-s rlx_myfile.pdb -in:file:spanfile myfile.span -out:file:fullatom -out:pdb  

-out:prefix des_ -membrane:no_interpolate_Mpair -membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts -nstruct 10 -resfile 

myfile.resfile 

 

Example of a resfile: (NATAA = repack; PIKAA = sample only the specified amino acid) 
 

NATAA 

start 

23 A PIKAA A 

77 A PIKAA T 

123 A PIKAA C 

180 A PIKAA G 

230 A PIKAA C 

239 A PIKAA C 

 

Ten models were created for each PDBID backbone. The top model by score was selected for the 

final minimization step using the relax application. 
 
/path/to/Rosetta/main/source/bin/relax.default.linuxgccrelease  

-s des_rlx_myfile.pdb -in:file:spanfile myfile.span -out:file:fullatom  

-out:pdb -out:prefix csc_rlx_ -membrane:no_interpolate_Mpair  

-membrane:Menv_penalties -score:weights membrane_highres_Menv_smooth.wts 

-constrain_relax_to_start_coords true 

 

For each PDBID, 100 relaxed models were created from the mutant. The top ten models by score 

were then used for Rosetta energy analysis. Rosetta energy of the mutant models was compared 

to the wild-type models. The next section covers the protocol for the correct way to model wild-

type in parallel with the previous models. 

Creating wild-type models in parallel for comparison of energies: 

First, input structures were prepared by minimization using the relax application. The same 

models that were generated from the initial relax step towards building mutant models can be 

used for the sake of consistency.  

The top model by score of each backbone from the relaxation step was then used to setup 

modeling the wild-type at the ‘mutation’ stage. Since some sampling is performed during the 

mutation stage for modeling the mutant, we create a resfile that simply repacks all residues and 

create the same number of models.  
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/path/to/Rosetta/main/source/bin/fixbb.default.linuxgccrelease  
-s rlx_myfile.pdb -in:file:spanfile myfile.span -out:file:fullatom -out:pdb  

-out:prefix rpk_ -membrane:no_interpolate_Mpair -membrane:Menv_penalties  

-score:weights membrane_highres_Menv_smooth.wts -nstruct 10 -resfile 

myfile.resfile 

 

Example of a resfile for modeling wild-type: (NATAA = repack; PIKAA = sample only the 

specified amino acid) 
 

NATAA 

start 

 

Ten models were created for each PDBID backbone. The top model by score was selected for the 

final minimization step using the relax application. 
 
/path/to/Rosetta/main/source/bin/relax.default.linuxgccrelease  

-s des_rlx_myfile.pdb -in:file:spanfile myfile.span -out:file:fullatom  

-out:pdb -out:prefix csc_rlx_ -membrane:no_interpolate_Mpair  

-membrane:Menv_penalties -score:weights membrane_highres_Menv_smooth.wts 

-constrain_relax_to_start_coords true 

 

For each PDBID, 100 relaxed models were created from the mutant. The top ten models by score 

were then used for Rosetta energy analysis. Rosetta energy of the wild-type models can now be 

compared to the mutant models. 

 

 
 


