
Algorithms for Large-Scale Adversarial Decision Problems

By

Swetasudha Panda

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

August 10, 2018

Nashville, Tennessee

Approved:

Yevgeniy Vorobeychik, Ph.D.

Jens Meiler, Ph.D.

Gautam Biswas, Ph.D.

Benoit Dawant, Ph.D.

Ivelin Georgiev, Ph.D.

Copyright © 2018 by Swetasudha Panda
All Rights Reserved

a

Dedicated to my parents, my brother and my grandparents.

ii

ACKNOWLEDGMENTS

Working on this dissertation has been an exhilarating experience and its completion

feels euphoric. First and foremost, I am very fortunate to have the supervision of Professor

Yevgeniy Vorobeychik, I thank him for being such a great and inspiring mentor, for his

invaluable advice, encouragement and all the research discussions and ideas that impact

the foundations of this dissertation. Thank you so much for making me a part of this

amazing research lab and for always creating such a positive and motivating atmosphere

for research. I am really grateful to have had this opportunity.

I also want to thank my thesis committee members, Professor Jens Meiler for the very

important research collaboration, for the research ideas and discussions, Professors Gautam

Biswas, Benoit Dawant and Ivelin Georgiev for all the important advice and suggestions

on this dissertation. I thank Professor Mark Ellingham for the valuable feedback on ideas

when this research was in the initial stages.

Next, I thank all my friends, colleagues, seniors and role models who have encouraged,

influenced and inspired me during this research. I thank our amazing lab members for the

wonderful company and the constant encouragement. I thank Bo Li for being such a great

friend and mentor, for all our research discussions, I am so very grateful that we met the

first day after I joined Vanderbilt. I thank Alex Sevy for being an awesome co-author and

collaborator, Haifeng Zhang for all the research discussions, for sharing knowledge on the

various projects that we worked on and Chen Hajaj, for the great professional advice and

valuable feedback, especially during the final stages of this dissertation. I also thank Jian

Lou, Liang Tong, Ayan Mukhopadhyay, Sixie Yu and Rajagopal Venkat; I will miss the

discussions ranging from science: research talks and paper reviews to history, sports and

ancient medicine. I thank Nidhi Haryani for being the most dependable friend, ever since

our IIT days, for our conversations on the graduate school experience (and every other

possible topic). I thank my seniors Deepti Vikram and Rachana Vidhi, for the words of

iii

support and encouragement throughout the progress of this dissertation.

Finally and most importantly, I thank my family: my parents and my brother Sub-

hadarshi, for the moral support, for always being there to share the phases of ecstasy and

also the challenging times. I am so grateful that you have always motivated me to put forth

the greatest effort. None of these accomplishments would have been possible without your

positive reinforcement and all the time-tested advice. I also thank my dear grandparents for

the priceless blessings, and for all the love and affection. Everything that I have achieved

(and will achieve in the future) is dedicated to my family.

iv

ABSTRACT

Decision making in the presence of uncertainty received a major focus of traditional

Artificial Intelligence (AI) research. In an adversarial environment with competing agents,

this challenge is compounded by interdependence: a combination of the agents’ strate-

gies determines their respective gains. Game theory provides a mathematical foundation

to reason about competing strategic agents each pursuing their own interests. Recently,

security games have seen tremendous success and actual deployment in homeland security,

especially the models of interaction between the defender and the attacker as a Stackelberg

(two player, one shot) game. This dissertation considers this conceptual idea of Stackelberg

games as a natural modeling paradigm in domains beyond physical security; in cybersecu-

rity and immunology, antibody design in particular. A key challenge is the enormous com-

binatorial search space corresponding to the strategy space of the players. This dissertation

presents major algorithmic contributions for highly scalable decision-making in adversarial

environments.

It begins with the framework of plan interdiction games, motivated by attack plan mod-

els of the adversary in cybersecurity domains. While interdiction of deterministic plans

is reasonably scalable, the approach scales poorly when modeling uncertainty with the at-

tacker as a markov decision process (MDP). This research presents scalable algorithms

using a) factored MDP solution approaches, b) value function approximation over Boolean

space with Fourier representation, c) constraint generation in linear programs and d) model-

free reinforcement learning. An interesting application of plan interdiction is in designing

treatment therapies (vaccines) against infectious diseases, where a virus (adversary) plans

to escape the antibody (defender) through a series of mutations. This dissertation presents

algorithms for robust antibody design, with combinatorial optimization in the enormous

protein sequence space, using data-driven graphical models of interaction and mixed inte-

ger linear programming approaches to solve the bi-level optimization problem correspond-

ing to the game.

v

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

ABSTRACT . v

LIST OF TABLES . xii

LIST OF FIGURES . xiii

Chapter . 1

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Research Challenges and Contributions 5

1.2.1 MDP Interdiction . 5

1.2.2 Applications in Antibody Design 8

1.3 Organization of the Dissertation . 11

2 BACKGROUND AND RELATED WORK . 13

2.1 Computational Game Theory . 13

2.1.1 Stackelberg Games . 15

2.1.2 Stackelberg Security Games . 16

2.2 Planning in Artificial Intelligence . 17

2.2.1 Classical Planning . 17

2.2.2 Planning with Uncertainty: Markov Decision Processes (MDPs) . . 18

2.2.2.1 Factored Representation 18

2.2.2.2 Linear Programming Methods for Solving MDPs 19

2.2.2.3 Factored MDPs and Approximate Linear Programming . . . 20

2.2.2.4 Representing and Computing the Optimal Policy 22

vi

2.3 Reinforcement Learning and Value Function Approximation 22

2.3.1 Temporal Difference Learning . 23

2.3.2 Deep Reinforcement Learning . 24

2.4 Plan Interdiction . 24

2.4.1 The Plan Interdiction Problem . 28

2.4.2 Interdiction of Deterministic Plans 28

2.5 Computational Protein Design and Drug Design 29

2.5.1 Antibody Design . 30

2.5.1.1 Multi-Specificity Design 32

2.5.2 Game-Theoretic Models of Vaccination Decisions 33

2.5.3 Combinatorial Drug Design . 33

2.5.4 Learning Protein-Protein Interactions from Data 34

I Plan Interdiction in Markov Decision Processes (MDPs) 36

3 MDP INTERDICTION . 37

3.1 The MDP Interdiction Problem . 38

3.1.1 Problem Definition . 38

3.1.2 General Approach . 39

3.1.3 Research Objectives . 40

4 SCALABLE FACTORED MDP INTERDICTION 41

4.1 Contributions . 41

4.2 Factored MDP Interdiction . 42

4.2.1 A Mixed-Integer Linear Programming Formulation for Factored MDP

Interdiction . 42

4.3 Constraint Generation for Factored MDP Interdiction 44

4.3.1 Constraint Generation with Basis Function Selection 44

4.3.1.1 Reducing the Number of Iterations of Constraint Generation 45

4.3.1.2 Fast Constraint Generation 46

vii

4.4 Basis Generation . 47

4.4.1 Fourier Basis Functions on Boolean Feature Space 47

4.4.2 Iterative Basis Function Selection 47

4.5 Greedy Interdiction . 50

4.6 Experiments . 50

4.6.1 Problem Domains . 50

4.6.2 Comparison with Exact MDP Interdiction 51

4.6.3 Scalability . 52

4.6.4 Effectiveness of Greedy Interdiction 54

4.7 Conclusions . 55

5 SCALABLE INITIAL STATE INTERDICTION IN FACTORED MDPS 57

5.1 Contributions . 57

5.2 MDP State Interdiction . 58

5.2.1 Problem Definition . 58

5.3 Integer Linear Program for Approximately Optimal Interdiction 59

5.4 Interdiction Using RL with Linear Action-Value Functions 61

5.4.1 Basis Generation . 61

5.4.2 Integer Linear Program for Interdiction 63

5.5 Interdiction with Non-Linear Function Approximation 65

5.5.1 Interdiction Using Greedy Local Search 65

5.5.2 Interdiction Using Local Linear Approximation 65

5.5.3 Stabilizing the Q-Network . 67

5.6 Bayesian Interdiction Problem . 68

5.7 Experiments . 69

5.7.1 MDP State Interdiction . 69

5.7.2 Bayesian Interdiction . 72

5.8 Conclusions . 73

viii

II Application of Plan Interdiction Games in Antibody Sequence Design . 74

6 THE ANTIBODY DESIGN PROBLEM . 75

6.1 Antibody Design as a Plan Interdiction Problem 76

6.2 Research Objectives . 76

7 MACHINE LEARNING AND LINEAR OPTIMIZATION FOR BROADLY BIND-

ING ANTIBODY DESIGN . 78

7.1 Contributions . 78

7.2 Experimental Workflow . 79

7.3 Sequence-based Linear Classification and Regression Models to predict

Binding and Stability . 79

7.4 Algorithm . 83

7.5 Results . 85

7.5.1 Redesign of VRC23 Improves Predicted Breadth 85

7.5.2 Designed Residues Recapitulate Known Binding Motifs 87

7.6 Discussions . 90

7.6.1 Summary of Results . 90

7.6.2 Backbone Optimization in Protein Design 92

7.6.3 Application to HIV Immunology 92

7.7 Materials and Methods . 93

7.7.1 Structural Modeling . 93

7.7.2 Training Set . 94

7.7.3 Linear Classification and Regression 94

7.7.4 Breadth Maximization Integer Program 96

7.7.5 RECON Multistate Design . 97

7.7.6 Sequence Validation . 98

7.7.7 Comparison to VRC01 Lineage Sequences 98

ix

8 ANTIBODY DESIGN AS A STACKELBERG GAME 99

8.1 Contributions . 99

8.2 Antibody Design as Stackelberg Game . 100

8.3 Rosetta Protocol . 103

8.4 Computing Minimal Virus Escape . 104

8.4.1 Greedy Local Search . 104

8.4.2 Speeding Up Search through Learning 105

8.5 Antibody Design . 108

8.5.1 Stochastic Local Search for Antibody Design 108

8.5.2 Speeding Up Antibody Search through Learning 110

8.6 Evaluation . 111

8.6.1 Computing Virus Escape . 111

8.6.2 Antibody Design . 113

8.6.3 The Best Antibody . 114

8.7 Discussions . 115

9 LEVERAGING PROBLEM STRUCTURE FOR GLOBALLY OPTIMAL SO-

LUTION IN THE ANTIBODY DESIGN GAME 118

9.1 Contributions . 118

9.2 A Game Theoretic Model of Antibody Design 118

9.3 Solution Approach . 121

9.3.1 A Bi-Linear Representation of Energy Scores 121

9.3.2 Integer Linear Program for Virus Escape 122

9.3.3 Mixed Integer Linear Program for Antibody Design 123

9.4 Experiments . 126

9.4.1 Bi-linear Z-score Model . 126

9.4.2 Comparison against BROAD . 127

9.4.3 Comparison against AAMAS2015 129

x

9.5 Conclusions . 130

10 CONCLUSIONS . 132

10.1 Summary of Contributions . 132

10.2 MDP Interdiction . 134

10.2.1 Factored Representation and Scalable Bi-Level Optimization 134

10.2.2 MDP Initial State Interdiction: Single-Level Optimization 135

10.2.3 Improving Scalability with Reinforcement Learning 136

10.2.4 Bayesian Interdiction . 136

10.3 Robust Antibody Design as an Interdiction Game 137

10.3.1 Broadly Binding Antibody: Single-Level Optimization 137

10.3.2 Game Theoretic Robust Antibody Optimization 138

10.3.3 Global Solution to the Bi-Level Optimization 139

10.4 Future Work . 140

10.4.1 Randomized Strategy Commitment 140

10.4.2 Partial Observability . 140

10.4.3 Multiple Defenders . 140

10.4.4 Repeated Games . 141

10.4.5 Challenges in the Antibody Design Application 141

BIBLIOGRAPHY . 144

xi

LIST OF TABLES

Table Page

7.1 ROSETTA relaxed models used in BROAD optimization were compared to

solved structures of gp120 viral variants and the root mean squared devia-

tion (RMSD) was computed over Cα atoms on gp120. The relax protocol

recapitulates the gp120 conformations with an average RMSD of 2.2 Å . . . 85

9.1 ROSETTA structure modeling results: breadth of binding (%). 129

xii

LIST OF FIGURES

Figure Page

2.1 Example of an attack graph. The boxes correspond to initial attacker capa-

bilities, ovals are attack actions, and diamonds are attack goals. An optimal

attack plan is highlighted in red. 25

2.2 Example of attack plan interdiction: blocked actions are colored blue and

the resulting alternative attack plan is highlighted in red. 26

4.1 Comparison of exact and approximate MDP interdiction in terms of runtime

(left) and attacker utility (right; lower is better for the defender). 52

4.2 Comparison between baseline (slow) and fast interdiction on the sysadmin

domain in terms of runtime (left) and utility (right). 53

4.3 Comparison between baseline (slow) and fast interdiction on the academic

advising domain in terms of runtime (left) and utility (right). 54

4.4 Comparison between baseline (slow) and fast interdiction on the wildfire

domain in terms of runtime (left) and utility (right). 54

4.5 Comparison between fast interdiction and greedy in terms of runtime (left)

and utility (right) on the sysadmin domain. 55

4.6 Comparison between fast interdiction and greedy in terms of runtime (left)

and utility (right) on the academic advising domain. 55

4.7 Comparison between fast interdiction and greedy in terms of runtime (left)

and utility (right) on the wildfire domain. 55

5.1 Comparison between the proposed interdiction approaches on the sysadmin

domain in terms of utility (from two different starting states, left and center)

and runtime (right). 70

xiii

5.2 Comparison between the proposed interdiction approaches on the academic

advising domain in terms of utility (different starting states, left and center)

and runtime (right). 71

5.3 Comparison between the proposed interdiction approaches on the wildfire

domain in terms of utility (different starting states, left and center) and run-

time (right). 71

5.4 Improvement in the defender’s utility using Bayesian interdiction in the sysad-

min domain (different starting states, left and center) and interdiction run-

time (right). 72

5.5 Improvement in the defender’s utility using Bayesian interdiction in the aca-

demic advising domain (different starting states, left and center) and inter-

diction runtime (right). 72

5.6 Improvement in the defender’s utility using Bayesian interdiction in the wild-

fire domain (different starting states, left and center) and interdiction runtime

(right). 73

7.1 Experimental workflow of the BROAD design method. The method uses

ROSETTA structural modeling to generate a large set of mutated antibodies,

support vector machines (SVM) to predict ROSETTA energy from amino

acid sequence, and integer linear programming to optimize breadth of bind-

ing across a set of viral proteins. 80

7.2 Binding site of VRC23 shown in context of the antibody-antigen complex.

The binding site encompasses FR2, CDR2, FR3 and CDR3 regions of the

antibody heavy chain. 81

7.3 Training results for the linear classification: (a) 10-fold cross validation re-

sults. (b) Correlation between predicted score and ROSETTA energy score

in linear regression. (c) Interaction strength of each pairwise interaction be-

tween antibody and virus binding positions. 83

xiv

7.4 Pseudocode describing the Integer Linear Program. 84

7.5 Pseudocode describing the BROAD algorithm for design of broadly binding

antibodies. 84

7.6 Redesign of VRC23 using integer linear programming increases predicted

breadth over HIV viral strains. A. Predicted breadth of 10 redesigned anti-

bodies generated either by BROAD or multistate design. Bars show mean

and standard deviation of 10 sequences. Dotted line shows the predicted

breadth of the native VRC23 antibody. B. Sequence logos of designed anti-

bodies generated by BROAD or multistate design. Amino acids are colored

based on chemical properties. The native VRC23 sequence is shown below. . 87

7.7 Score comparison of redesigned antibodies. The ROSETTA score (A) and

binding energy (DDG) (B) are shown for ten redesigned antibodies made

either by BROAD or multistate design, paired with 180 viruses. Bar plots

shown mean and standard deviation. Shown on the Y axis is difference be-

tween score/DDG between the redesigned antibody and wild-type. 88

7.8 BROAD design recapitulates structural motifs of known broadly neutralizing

antibodies. Residues that were mutated from the native VRC23 sequence

were compared to known antibodies. Proteins shown are VRC23 (PDB ID:

4j6r); VRC01 (3ngb); VRC-CH31 (4lsp); 3BNC117 (4jpv); and NIH45-46

(3u7y). 90

7.9 Sequences from BROAD design recapitulate sequences observed in the lin-

eage of broadly neutralizing antibody VRC01. For BROAD and MSD se-

quences a percentage similarity to the VRC01 lineage was computed (simi-

larity shown in parenthesis). Blue boxes highlight positions where BROAD

samples an amino acid that is present in the VRC01 lineage but was not

sampled by MSD. The VRC23 native sequence is shown below. 91

xv

8.1 Example greedy search to compute escape cost. Horizontal axes correspond

to point mutations in each virus sequence position, relative to the sequence

from previous iteration, and vertical axis is the corresponding binding score.

C,P,A,W,R,D,N correspond to the 7 amino acid classes that are candidate

mutations. 106

8.2 The native antibody, H and L, with the native virus, G (left) and antibody

with escape cost=7 (right). The arrows point at some significant differences. . 111

8.3 Comparison between baseline (A) and classifier-based greedy (B) algorithms

for computing virus escape in terms of the number of evaluations (top) and

computed escape time (bottom). (a) θ = 0, 75% of data for training; (b)

θ = 0, 50% of data for training; (c) θ = −15, 75% of data for training; (d)

θ =−15, 50% of data for training. Horizontal axes denote antibodies. 112

8.4 Antibody design algorithms comparison (θ = 0). 114

8.5 Antibody design algorithms comparison after 400 iterations averaged over

80 search sequences (θ = 0). 115

8.6 Evaluated antibodies for θ = 0, ranked by escape cost. The native antibody

escape cost is 1. 115

9.1 Comparison between STRONG and BROAD in terms of the z-score objec-

tive (lower is better): on the full 180 virus panel (left) and the 180 escaping

virus set (right). 128

9.2 Comparison between STRONG and AAMAS2015 in terms of the z-score

objective (lower is better): on the full 180 virus panel (left) and the 180

escaping virus set (right). 130

9.3 Comparison between STRONG and AAMAS2015 in terms of the z-score

objective against search iterations (lower is better): on the full 180 virus

panel (left) and the 180 escaping virus set (right). 130

xvi

Chapter 1

INTRODUCTION

1.1 Motivation

In recent years, Artificial Intelligence (AI) research has made remarkable progress in

addressing high impact problems in the society. AI algorithms play a pivotal role in im-

proving and revolutionalizing our day-to-day lives, health and well being as well as safety

and security. Many of these real-world problems involve strategic planning and decision

making with multiple agents interacting in an environment. These problems can be mod-

eled using the mathematical concepts in AI planning, decision theory and game theory.

A crucially important modeling criterion in such real-world problems is that of resilience,

i.e., identifying and detecting unexpected events and emergencies and accounting for those.

Indeed, resilience to the unexpected is an important theme in the area of autonomic com-

puting [1].

In most research in autonomic computing, resilience is incorporated in terms of pre-

viously observed and recorded adverse situations [2, 3, 4], with the assumption that such

situations will be encountered with a frequency consistent with past occurrences. How-

ever, events that are intentional attacks on the system, are not necessarily similar to other

general and non-malicious adversities, that can be reasonably predicted from past observa-

tions. Indeed, there is substantial evidence that real-world attackers in both the cyber and

the physical domains respond to deployed defensive measures [5, 6, 7] and often change

their behavior and patterns in order to circumvent the defensive measures and to simultane-

ously achieve their malicious goals [7, 8]. Therefore, if attackers are considered similarly

as typical adversities, the defender will function myopically and hence, will suffer from a

fundamental disadvantage. In this scenario, it is imperative that the defender proactively

reasons about the attacker’s strategies and anticipates the attacker’s reactions to any de-

1

ployed defense strategies.

The motivating domain we begin with is that of cybersecurity. In recent years, the cy-

ber space has grown with tremendous sophistication, and the complexity of cyber attacks

has evolved as well. Recent incidences of massive data breach incidents have resulted in a

loss of millions of dollars in addition to the loss of enormous critical data [9]. In previous

literature, game theory has been used to capture the fact that the attackers respond to de-

fensive measures, such as in intrusion detection systems [10, 11]. In cybersecurity, game

theoretic approaches typically make one of the following assumptions: a) the simultaneous

move assumption, i.e., the attacker acts without any knowledge of the deployed defensive

measures, b) the attacker’s utility function is accurately known, and c) the attacker and the

defender operate on a pair of strategies that are optimal against each other. However, there

are limitations since these assumptions do not necessarily hold in many situations. Many

of these limitations have been alleviated by the pivotal idea that the attacker responds after

observing the deployed defensive posture. These security game models [12] have achieved

real-world deployment, recognition and success in a broad array of physical security appli-

cations, e.g., assigning security resourecs and checkpoints in airports and TSA screenings,

securing the major ports and protecting wild-life from poachers [13, 14, 15].

The key modeling concept in these security games is the idea of a leader-follower inter-

action defined as a Stackelberg game. In a two player Stackelberg game, the leader moves

first, i.e., it commits to a strategy. The follower observes the leader’s strategy and responds

with its best response. This framework captures the agents’ interactions in security settings

because of the following reasons: a) the defender’s resources in a security setting are lim-

ited and b) the attacker observes any deployed defensive measures and then responds with

its best strategy. The conceptual insight of Stackelberg security games is that of proactive

defense. Ultimately, these games translate into adversarial optimization problems, incorpo-

rating the defender’s and the attacker’s objectives. In this dissertation, our research focus

is two-fold: a) to extend this concept of Stackelberg game interaction to solve adversar-

2

ial decision problems in domains beyond physical security (in particular, cybersecurity as

described above and also immunology which we will present subsequently), and b) to de-

velop scalable algorithms that address the combinatorial search space in the adversarial

optimization problems corresponding to these games.

We begin the dissertation with the framework of plan interdiction in the context of

cybersecurity. In particular, cyber attacks can be modeled as plans or sequential decisions

where the attacker starts with a certain configuration or set of capabilities and plans towards

a malicious goal through a series of actions. The defender’s goal then is to interdict such

a multi-stage attack plan. In order to execute optimal and proactive defense, the defender

must not only account for previous attacks but also consider possible alternative attack

plans. We denote the defender’s defensive measures as the mitigation strategies. Once

the mitigations are deployed, the attacker actively attempts to circumvent these mitigations

and simultaneously tries to accomplish its own objectives. We capture this interaction as

a Stackelberg game in which the defender is the leader and commits to a mitigation strat-

egy. The attacker is the follower that observes the defender’s mitigations and optimally

responds to those by constructing an optimal plan. Previous research has demonstrated al-

gorithms for plan interdiction with the attacker modeled as a deterministic planner. In this

dissertation, we consider the more general attacker model of planning under uncertainty,

using the Markov Decision Process (MDP) framework, denoted MDP interdiction. Solving

large-scale MDPs as such poses a critical challenge in terms of computational intractability.

Moreover, the attacker MDP solution only constructs the ‘inner loop’ (details follow in the

next section) of the bi-level optimization corresponding to the Stackelberg game. There-

fore, there are additional challenges corresponding to the defender’s combinatorial strategy

space in the ‘outer loop’. Consequently, there are a number of algorithmic challenges in

solving MDP interdiction at scale.

A completely different domain, critically important nevertheless, is that of immunology

and vaccine design. Vaccination therapies are important tools in the battle against infectious

3

diseases such as HIV and influenza. Infectious diseases that defy definitive treatment are a

major public health challenge. Millions of people worldwide are infected with HIV, many

of them expected to die from AIDS [16]. There is neither a vaccine nor a cure available to

date for HIV. With an incidence rate of around 2 million each year and 1.6 million deaths

in 2012, HIV infections continue to be a major global health issue. A vaccine stimulates

the immune system to produce antibodies that bind to the vaccine substance. Antibodies

and viruses are essentially protein sequences composed of chains of amino acids. In the

primary structure, each position in the sequence is occupied by one of the 20 possible amino

acids. Each protein has an active site called the binding positions at which it interacts and

bonds with other proteins to form energy minimized configurations or complexes. The

primary function of an antibody is to defend against external infections and pathogens e.g.,

the viruses. An antibody deactivates or kills a virus by binding at the binding positions. To

simplify terminology, we henceforth focus our discussion on viruses, although our methods

are general.

The primary goal in antibody design is that it binds the virus that it is designed to be

effective against. In most cases, there are a number of variants of such a virus sequence.

This gives rise to the idea of broadly binding antibodies that bind to many different known

strains of the same virus, for example, to many different influenza or HIV strains found ‘in

the wild’ [17]. Binding is usually specific and relatively small changes in structure can lead

to destabilization of binding. Antibodies stimulated no longer bind to the target pathogen

if it has mutated. Many viruses have the ability to exhibit diverse mutations to bring about

such change and destabilization, such that these can escape binding to the antibody. In

particular, some viruses e.g., HIV have alarmingly high mutation rates [18], making it ex-

tremely difficult to design effective vaccines / antibodies against the catastrophic disease.

For example, a single person infected with HIV carries more variations of the virus than all

the influenza strains isolated worldwide. The goal in vaccination is to ensure that the pro-

duced antibodies are subsequently capable of binding relevant strains of the live pathogen,

4

rapidly militating immune response against disease. To summarize, a core question in vac-

cination research is how to design or discover an antibody that is effective against a large

number of pathogens and continues to be effective in the presence of rapid mutations.

The modeling environment in vaccine design is undoubtedly completely different as

compared to our earlier discussion on cybersecurity. However, we identify a common

theme which is that of proactive defense. In this domain, the defense is against the external

infection or equivalently, attack by the viruses. Given this scenario, we make the following

observations. We posit that the ‘series of virus mutations until escape’ can be viewed as

a planning problem of the virus. The immune system / antibody is the defender and its

goal is to interdict such an escape plan. Therefore, the conceptual modeling frameworks in

plan interdiction have direct applications in antibody design. Consequently, we present the

first game theoretic model of molecular-level interaction between the immune system (an-

tibody) and the virus. Specifically, we formulate the interaction between an antibody and a

virus as a Stackelberg game in which the vaccine designer (drug designer, etc) stimulates

an antibody with particular binding characteristics (this is the binding site in the antibody

sequence) and the virus subsequently responds to the antibody by attempting to evade it

(i.e., escape binding to it) through a series of local mutations. So, the ‘designer’ chooses

an antibody, and the virus responds through the shortest sequence of mutations leading

to escape. We confront a number of technical and conceptual challenges in our algorith-

mic formulations for antibody design, a high-level overview of which follows in the next

section.

1.2 Research Challenges and Contributions

1.2.1 MDP Interdiction

A key research challenge in cybersecurity is to model the attacker’s multi-stage plan

with high resolution. In the previous research on plan interdiction (Letchford and Vorob-

5

eychik et al. [19]), such evasion has been modeled in a Stackelberg framework, both in

the context of deterministic (PDDL-based) planning, and planning with Markov decision

processes (MDPs). The Stackelberg leader removes a subset of attack actions, and the

adversary computes an optimal plan in the restricted action space. In solving the inter-

diction problem, the defender takes into account both the cost of mitigation strategies and

the benefit in terms of preventing the attacker from reaching a subset of goals. The model

is general-sum. The attacker’s decision problem involves planning costs. The defender’s

decision problem involves costs of mitigations.

While interdiction of deterministic plans has been demonstrated to be reasonably scal-

able, the approach does not scale when the attacker is modeled as an MDP. The central

challenge with MDP interdiction is the exponential size of the state space in the number

of state variables. This leads to intractability in representation as well as in computing the

optimal value function and the optimal policy. Moreover, as we have described earlier,

Stackelberg plan interdiction translates to a bi-level optimization problem. The defender’s

optimization forms the outer level and the attacker MDP solution is the inner level in the

optimization. Therefore, the computational challenge is compounded when we consider the

combinatorial search space of the defender. Finally, a major challenge in plan interdiction

is that the defender is typically not knowledgeable about the attacker’s planning problem,

such as the initial vulnerabilities and attacker’s access and capabilities. Such uncertainties

can be captured using a Bayesian Stackelberg game framework. However, the resulting

Bayesian Stackelberg game is infeasible for state of the art plan interdiction approaches for

even small problem instances.

To address the above challenges, we propose models for MDP interdiction and develop

several solution approaches. We formulate MDP interdiction with factored representa-

tion of states and present two alternative interdiction approaches in terms of the a) action

space and b) state space of the MDP. We develop scalable algorithms to solve the interdic-

tion problem on realistic MDP problem domains. Scalability in factored MDPs has been

6

achieved by two basic approaches: a) exploiting structure in the MDP transition model and

reward function and b) value function approximation. Factored MDPs represent the com-

plex state space using state variables and the transition model using a dynamic Bayesian

network. This representation allows an exponential reduction in the representation size of

structured MDPs. Moreover, efficient approximate solution algorithms have been proposed

that exploit structure in factored MDPs.

Leveraging factored representation, we now present a high-level sketch of our first MDP

interdiction approach. Starting with the approximation methods for factored MDPs, we de-

velop a mixed-integer programming approach for factored MDP interdiction. In doing so,

we face two challenges: 1) effective basis representation, and 2) a super-exponential set

of constraints corresponding to alternative evasion plans for the attacker. To address the

first challenge, we propose using a Fourier basis over a Boolean hypercube to represent the

value function over a binary factor space. While there always exists an exact Fourier basis

for functions over a Boolean space, the representation is exponential in size. We address

this challenge by developing iterative basis generation methods. Addressing the second

challenge of intractably large constraint space, we develop a novel constraint generation

algorithm using a combination of linear programming factored MDP solvers and novel

heuristics for attack plan generation. Our algorithms achieve dramatically improved scal-

ability while resulting in near-optimal interdiction decisions. Specifically, our algorithms

scale up to more than 260 state space sizes on realistic MDP problem domains from the

international planning competition compared to the exact interdiction baseline which does

not scale beyond toy problem sizes (about 28).

While our scalable algorithms achieve significant advancement in solving MDP inter-

diction problems, we continue to face limitations in scalability. For example, capturing

uncertainty about the attacker remains computationally expensive. Another major bottle-

neck is that the difficulty of solving the factored MDP grows exponentially in the number

of interdependencies among state variables. An alternative approach is to use model-free

7

reinforcement learning, which can scale significantly better when we use function approx-

imation to represent the action-value function. We propose a novel interdiction model in

which the defender modifies the initial state of the attacker. The attacker then computes an

optimal policy starting from the modified initial state. This is quite general: for example,

we can model prior interdiction approaches by adding action-specific preconditions as state

variables. However, we show that this change enables significantly simpler and far more

scalable interdiction techniques which rely on single-level integer linear programming, in

contrast to difficult bi-level problems faced in prior art. A very high-level overview of the

solution approach is the following. We learn a general value function for the attacker’s

initial state space, and then solve the interdiction problem in one step, without having to

iteratively solve the planning problem. Accordingly, we present interdiction algorithms

for both linear and non-linear value function approximation. Additionally, this interdiction

model with the associated scalability gains allows us to incorporate uncertainty about the

attacker by capturing uncertainty over a subset of initial state variables. With a linear value

function, by linearity of expectation, we transform the defender’s interdiction problem into

an integer linear program for Bayesian interdiction. We also demonstrate Bayesian inter-

diction in case of non-linear value function approximation.

1.2.2 Applications in Antibody Design

Our ultimate goal is to design or optimize antibody sequences that a) bind to a broad

array of diverse viruses and b) continue to bind in the face of the rapid virus mutations.

First, we consider the goal of designing a broadly binding antibody. When we say ‘design

an antibody’, our goal is to optimize the amino acid sequence at the binding positions of

the antibody. In our proposed algorithms, we begin with the native antibody (the one that

is generated by the immune system) and then, optimize the binding positions against a

set of target viruses that we denote as the virus panel. In doing so we face the following

challenges. First, typically the binding position has a length of about 30 or more amino

8

acid residues on each side, resulting in a combinatorial search space of ≥ 2060. Second,

it is difficult to quantify the criteria for binding and stability between the various antibody

and virus sequences. For this purpose, we leverage ROSETTA, a premier computational

protein modeling tool [20]. The major challenge is that ROSETTA evaluations are extremely

expensive computationally (which could take nearly an hour for a single antibody-virus

pair scoring evaluation, as it makes use of its own sophisticated amalgam of local search

techniques to simulate a binding complex). Finally, in previous literature, computational

protein design has been used successfully to design broadly binding proteins in general. In

the simplest case, protein design involves optimizing the amino acid sequence of a protein

to accommodate a desired 3-D conformation. This approach has been extended to related

tasks such as protein-protein interface design, de novo design of protein binding molecules,

design of self-assembling protein nano-cages, etc. However, the state of the art protein

design algorithms for broadly binding antibodies (defined as multi-specificity design and

decsribed in section 2.5.1.1) suffer from large energetic barriers that limit sampling in

sequence space, resulting in sub-optimal designs (Sevy et al. [21]). In addition, these

methods are severely limited in scale by the size and number of states that can be included.

Since these approaches rely on local search, these do not guarantee a global solution to the

sequence optimization problem.

To address the above mentioned challenges, we develop a method that integrates struc-

tural modeling with integer linear programming to enable a fast global search through large

ensembles of target states. The combination of these methods allows us to surpass protein

design limitations that have been seen up to this point. This algorithm increases the pre-

dicted breadth (fraction of viruses in a panel to which the antibody binds) of the naturally-

occurring anti-HIV antibody VRC23 to 100% against a panel of 180 divergent HIV viral

strains.

Having tackled the problem of broadly binding antibody design, we now move on to

the problem of robust antibody design against escaping virus sequences. Following the

9

adversarial modeling framework in plan interdiction, we model the interaction between the

antibody and the virus as a Stackelberg game. The designer-virus game poses two chal-

lenges: 1) enormous search space for both the designer and the virus (≥ 2060), and 2)

determining whether an arbitrary antibody-virus pair bind and form a stable complex. To

tackle the former challenge, we propose, and compare the performance of, several stochas-

tic local search heuristics, again using the native antibody as a ‘springboard’. Even for

computing virus escape alone, this approach scales poorly. The major bottleneck is the

second challenge: binding evaluation and as mentioned earlier, ROSETTA can be extremely

time consuming even for a single evaluation. To significantly speed up the search, we

use classification learning to predict whether or not an antibody-virus pair bind, limiting

ROSETTA evaluations only to cases in which the classifier predicts that they do not. While

this makes the virus escape search practical, the bi-level nature of the problem means that

antibody design is still quite time consuming. To address this, we make use of Poisson

regression to predict virus escape cost. Making use of the resulting predictions now makes

antibody design viable, with the ‘inner loop’ (virus escape) evaluations restricted to a small

set of candidate antibodies predicted to be difficult to escape. To quantify the difficulty

in escaping an antibody, we define escape cost as the minimum number of mutations that

the virus needs to execute in order to escape binding to the antibody. This game-theoretic

antibody design algorithm achieves a robust antibody that has a superior escape cost of 7

as compared to the native antibody that has an escape cost of 1.

Our game theoretic approach is promising for designing robust antibodies. However it

suffers from a fundamental problem: it relies on local search algorithms and therefore, fails

to compute the globally optimal antibody sequence. Moreover, all computations consider

binding energy. However, stability energy of the complex is very important to determine

the feasibility of a designed antibody sequence (stability scores can also be computed using

ROSETTA modeling). To address these challenges, we formulate the bi-level optimization

problem (corresponding to the antibody design game) in terms of the combined binding and

10

stability score (denoted as z-score). We leverage problem structure in terms of a pairwise

amino acids interaction model to formulate the problem as a mixed integer linear program.

Typically, it is extremely challenging to compute an optimal solution to such bi-level prob-

lems with integer variables. We present a compact single-level mixed integer program for-

mulation by relaxing the integrality constraints and then obtaining the dual linear program.

We demonstrate with a proof that our compact formulation computes the optimal (integer)

global solution despite the relaxation and duality transformations. In addition, it allows us

to incorporate a panel of escaping viruses into the optimization problem. Through a series

of simulation experiments, we demonstrate the efficacy of our proposed antibody design

algorithm.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In the following chapter 2,

we present an overview of the background and the related work. Subsequently, the disser-

tation is divided into two parts. Part 1 focuses on MDP interdiction. We introduce the MDP

interdiction problem in chapter 3. In chapter 4, we present scalable algorithms for interdic-

tion in factored MDPs where the defender manipulates the action space of the attacker. This

research has been published in the Conference on Uncertainty in Artificial Intelligence

(UAI) 2017. In chapter 5, we present our alternative initial state interdiction approach in

factored MDPs. We present scalable algorithms for state interdiction with factored repre-

sentation, value function approximation and reinforcement learning. This research has been

published in the International Joint Conference on Artificial Intelligence (IJCAI) 2018.

Part 2 focuses on the modeling concepts in plan interdiction applied to the antibody design

problem. In chapter 6, we summarize the major goals in antibody design. In chapter 7,

we present our first algorithm for broadly binding antibody design. This research has been

published in the PLOS Computational Biology (2018) journal. In chapter 8, we formu-

late antibody design as a Stackelberg game and present solution approaches using machine

11

learning guided stochastic local search. This research has been published in the Confer-

ence on Autonomous Agents and Multi-Agent Systems (AAMAS) and Association for

the Advancement of Artificial Intelligence (AAAI) Conference 2015. In chapter 9, we

present algorithms that leverage the structure in antibody-virus binding interactions to for-

mulate the antibody design game as a mixed integer program. Subsequently, we present the

compact optimization framework for computing a globally optimal solution. This research

is under review in a conference. We conclude and discuss future work in chapter 10.

12

Chapter 2

BACKGROUND AND RELATED WORK

In this section, we present several core concepts which constitute the preliminary and

background material for this dissertation. We also outline the previous literature that is

relevant to our research.

2.1 Computational Game Theory

As we have declared previously, a major goal of this dissertation is to extend the con-

ceptual idea of Stackelberg games to various adversarial decision problems. In this section,

we begin with a very high-level overview of some of the key terminology in computational

game theory, followed by a very short introduction to Stackelberg games. For detailed ref-

erence, we redirect the reader to the comprehensive texts [22, 23]. Finally, we summarize

some of the recent literature on Stackelberg security games.

Game theory provides a structured framework to study interactive decision-making in

multi-agent settings, to analyze how different entities (the players) make decisions by tak-

ing some form of strategic interdependence into account. It is is the study of optimal

decision-making under competition when one individual’s decisions affect the outcome of

a situation for all other individuals involved. Formally, game theory is defined as the study

of mathematical models of conflict and cooperation between intelligent rational decision-

makers. A game is a formal definition of a strategic situation. and has three major com-

ponents: the players (the agents that make the decisions in the game), the strategies for

each player, and the payoffs that estimate the costs and benefits to the players based on the

potential outcomes of the game. The players can move simultaneously (e.g., rock-paper-

scissors) or sequentially (e.g., chess). The payoff is a scalar quantity, that reflects the utility

or desirability of an outcome to a player. When the outcome is random, payoffs are usually

13

weighted with their probabilities. The expected payoff incorporates the player’s attitude

towards risk. A player’s payoff depends not only on its own actions (or strategies), but also

on the actions of other players in the game. A player is said to be rational if it seeks to play

in a manner which maximizes its own payoff. A strategy is one of the given possible ac-

tions of a player. A mixed strategy is an active randomization, with given probabilities, that

determines the player’s decision. As a special case, a mixed strategy can be the determin-

istic choice of one of the given pure strategies. A player’s strategy is (strictly) dominant if,

for any combination of actions by other players, it gives that player a strictly higher payoff

than its other strategies. A player’s strategy is (strictly) dominated if there exists another

strategy giving that player a strictly higher payoff for all combinations of actions by other

players.

A cooperative game (or coalitional game) is a game with competition between groups of

players (‘coalitions’) due to the possibility of external enforcement of cooperative behavior.

A non-cooperative game is a game with competition between individual players in which

only self-enforcing alliances (or competition between groups of players) are possible due to

the absence of external means to enforce cooperative behavior, as opposed to cooperative

games. The strategic form (also called normal form) is the basic type of game studied

in noncooperative game theory. A game in strategic form lists each player’s strategies

and the outcomes that result from each possible combination of choices. An outcome is

represented by a separate payoff for each player, which is a number (also called utility)

that measures how much the player likes the outcome. The extensive form, also called a

game tree, is more detailed than the strategic form of a game. It is a complete description

of how the game is played over time. This includes the order in which players take actions,

the information that players have at the time they must take those actions, and the times

at which any uncertainty in the situation is resolved. A game in extensive form may be

analyzed directly or can be converted into an equivalent strategic form. A game is said to

be zero-sum if for any outcome, the sum of the payoffs to all players is zero. In a two-player

14

zero-sum game, one player’s gain is the other player’s loss. A game has perfect information

if each player, when making any decision, is perfectly informed of all the events that have

previously occurred, including the ‘initialization event’ of the game.

A solution concept is a formal rule for predicting how a game will be played. These

predictions called solutions describe which strategies will be adopted by the players and,

therefore, predict the result of the game. In the traditional solution concept called Nash

equilibrium, no player has an incentive to deviate from its chosen strategy, while the strate-

gies of the other players remain unchanged. A game in strategic form does not always have

a Nash equilibrium in which each player deterministically chooses one of his strategies.

However, players may instead randomly select from among these pure strategies with cer-

tain probabilities. Any finite strategic-form game has an equilibrium if mixed strategies are

allowed.

2.1.1 Stackelberg Games

The Stackelberg model [24] was originally introduced to capture market competition

between a leader (e.g., a leading firm in some area) and a follower (e.g., an emerging

start-up). In a Stackelberg (two-stage, one-shot) game, the leader commits to a strategy

first, and the follower, selfishly optimizes its own reward, considering the action chosen

by the leader. The two players i.e., the leader and the follower in a Stackelberg game

need not represent individuals, but could also be groups that cooperate to execute a joint

strategy, such as a police force or a terrorist organization. Each player has a set of possible

pure strategies, or equivalently, the actions. A mixed strategy allows a player to play a

probability distribution over pure strategies. Payoffs for each player are defined over all

possible pure-strategy outcomes for both the players. The payoff functions are extended

to mixed strategies by taking the expectation over pure-strategy outcomes. The follower

observes the leader’s strategy first, and then acts to optimize its own payoffs. The typical

solution concept applied to these games is Strong Stackelberg Equilibrium (SSE) [25],

15

which assumes that the leader will choose an optimal mixed (randomized) strategy based on

the assumption that the follower will observe this strategy and choose an optimal response.

2.1.2 Stackelberg Security Games

The Stackelberg leader-follower paradigm fits many real-world security situations. As

we have discussed earlier, Stackelberg game models have recently seen tremendous success

in security applications, with the defender as the leader, and the attacker as the follower.

Commonly in such models of Stackelberg Security Games (SSGs) [12] the defender (e.g.,

the security forces) acts first by committing to a patrolling or inspection strategy, and the

attacker chooses where to attack after observing the defenders choice. The key conceptual

insight is that defense needs to be proactive, optimally accounting for attacker’s response to

a defensive posture. These models span game-theoretic approaches to security at airports,

ports, transportation, shipping and other infrastructure [26, 27, 28, 29, 30, 31]. The de-

ployed applications include ARMOR at the Los Angeles Airport (LAX) deployed in 2007

(Pita et al. [13]) to randomize checkpoints on the roadways entering the airport; IRIS (Tsai

et al. [32]), a game-theoretic scheduler for randomized deployment of the U.S. Federal

Air Marshal Service (FAMS) that has been deployed since 2009; and PROTECT (Shieh et

al. [33]) which is deployed for generating randomized patrol schedules for the U.S. Coast

Guard in Boston, New York, Los Angeles, and other ports around the United States. Green

security games (Fang et al. [15, 34]) focus on defending against environmental crimes.

These problems exhibit a spatial and temporal aspect and behavioral adversary models

play an important role. An example is PAWS which is a wildlife protection assistant sys-

tem that has been extensively evaluated in Malaysia and the Queen Elizabeth National Park

in Uganda. Stackelberg games models have also been applied to protection against urban

crime (Zhang et al. [35]). Such models have been evaluated for deterring fare evasion

within the Los Angeles Metro System (Yin et al. [36], TRUSTS) and for crime prevention

at the University of Southern California.

16

2.2 Planning in Artificial Intelligence

As we have discussed earlier, in this dissertation, we study the plan interdiction problem

in which the attacker solves a planning problem. Ability to accomplish desired goals de-

spite uncertainty is a well-established area of research in artificial Intelligence, a testament

to which is the rich literature on solving Markov Decision Processes [37, 38], as well as re-

lated efforts that aspire to compute robust plans [39]. Moreover, in reinforcement learning

[40] (which we elaborate in the next section), the planning problem additionally involves

learning about the environment based on observations. In this section, we formalize the

concept of planning as studied in artificial intelligence. We start with classical planning in

deterministic domains and then consider generalizations to capture uncertainty.

2.2.1 Classical Planning

Formally, a classical (deterministic) planning problem [41] is a tuple X ,A,x0,G,R,c,

where X is the set of literals (binary variables) which represent the state of the world rel-

evant for the planning problem, A is the set of actions, x0 is the set of literals which are

initially true (i.e., the initial state of the world), and G is the set of goals. A plan action

a ∈ A is characterized by a set of preconditions, i.e., the set of literals that must be true

in the current state for the action to be applicable, and a set of effects, which either add

literals from current state, or delete these, thereby determining transition from one state to

another. A reward function Rl assigns a value (utility) to each goal literal l ∈ G (assuming

that the total utility is additive). Finally, ca is the cost of taking an action a. A solution to

this planning problem is a plan π , which is a sequence of actions. A number of effective

approaches exist for solving such planning problems at scale [42].

17

2.2.2 Planning with Uncertainty: Markov Decision Processes (MDPs)

Our work builds on solution approaches for discounted infinite-horizon MDPs, and

particularly for factored MDPs, which we now introduce.

Formally, a discounted infinite-horizon MDP [37] is defined as a tuple D =(X,A,R,P,γ)

where X is a finite set of |X| = N states; A is a finite set of actions; R is a reward function

R : X×A 7→ R, in which R(x,a) is the reward obtained by the agent in state x after taking

action a; P is a Markovian transition model where P(x′|x,a) is the probability of moving

from state x to x′, after taking action a; and γ ∈ [0,1) is the discount factor which exponen-

tially discounts future rewards. It is well-known that such MDPs always admit an optimal

stationary deterministic policy, which is a mapping π : X 7→ A, where π(x) is the action the

agent takes at state x [43].

Each policy can be associated with a value function Vπ ∈ RN , where Vπ(x) is the dis-

counted cumulative value obtained by starting at state x and following policy π . Formally,

Vπ(x) = Eπ

[
∞

∑
t=0

γ
tR(Xt ,π(Xt))

∣∣x(0) = x
]
,

where X(t) is a random variable representing the state of the system after t steps.

2.2.2.1 Factored Representation

Factored MDPs (Guestrin et al. [44]) exploit problem structure to compactly represent

MDPs. The set of states is described by a set of random state variables X = {X1, . . . ,Xn}.

Let Dom(Xi) be the domain of values for Xi. A state x defines a value xi ∈ Dom(Xi) for

each variable Xi. Throughout, we assume that all variables are Boolean. The transition

model for each action a is compactly represented as the product of local factors by us-

ing a DBN. Let Xi denote the variable Xi at the current time and X ′i the same variable at

the next time step. For a given action a, each node X ′i is associated with a conditional

probability distribution (CPD) Pa(X ′i |Parentsa(X ′i)). The transition probability is given by

18

Pa(x′|x) =∏i Pa(x′i|x[Parentsa(X ′i)]), where x[Parentsa(X ′i)] is the value in x to the variables

in Parentsa(X ′i). The complexity of this representation is linear in the number of state vari-

ables and exponential in the number of variables in the largest factor. The reward function

is represented as the sum of a set of localized reward functions. Let Ra
1, . . . ,R

a
r be a set of

functions, where the scope of each Ra
i is restricted to the variable cluster Wa

i ⊂{X1, . . . ,Xn}.

The reward for taking action a at state x is then Ra(x) =
r
∑

i=1
Ra

i (W
a
i) ∈ R.

2.2.2.2 Linear Programming Methods for Solving MDPs

A common method for computing an optimal policy of an MDP is by using the follow-

ing linear program (LP):

min∑
x

α(x)V (x) (2.1a)

s.t.: ∀x,a,V (x)≥ R(x,a)+ γ ∑
x′

P(x′|x,a)V (x′). (2.1b)

where the variables V (x) represent the value function V (x), starting at state x. The state

relevance weights αs are such that α(x)> 0 and ∑
x

α(x) = 1. The optimal policy π∗ can be

computed as the greedy policy with respect to V ∗, π∗= argmaxa[R(x,a)+γ ∑
x′

P(x′|x,a)V (x′)].

The dual of this LP (dual LP) maximizes the total expected reward for all actions:

max∑
x

∑
a

φa(x)R(x,a) (2.2a)

s.t.: ∀x,a, φa(x)≥ 0 (2.2b)

∀x,∑
a

φa(x) = α(x)+ γ ∑
a

∑
x′

P(x|x′,a)φa(x′). (2.2c)

where φa(x) called the visitation frequency for state x and action a is the (discounted)

expected number of times that state x will be visited and action a will be executed in this

state. There is a one-to-one corresponedence between policies in the MDP and feasible

solutions to the dual LP.

19

2.2.2.3 Factored MDPs and Approximate Linear Programming

In the case of factored MDPs, there is no guarantee that the structure extends to the

value function [45] and linear value function approximation is a common approach. A

factored (linear) value function V is a linear function over a set of basis functions H =

{h1, . . . ,hk}, such that V (x) =∑
k
j=1 w jh j(x) for some coefficients w= (w1, . . . ,wk)

′, where

the scope of each hi is restricted to some subset of variables Ci. The approximate LP

corresponding to (2.1) is given by Guestrin et al. [44]:

min∑
i

αiwi (2.3a)

s.t.: ∀a,maxx{Ra(x)+∑
i

wi[γga
i (x)−hi(x)]} ≤ 0. (2.3b)

where for basis hi, αi =∑
x

α(x)hi(x) is the factored equivalent of α and ga
i (x)=∑

x′
P(x′|x,a)hi(x′)

is the factored representation of expected future value. The non-linear constraint in LP (2.3)

can be represented by a set of linear constraints using approaches similar to variable elim-

ination in cost networks. The factored dual approximation LP [46] is defined on a set

of variable clusters B ⊇ BFMDP where BFMDP = {Wa
1, . . . ,W

a
r : ∀a} ∪ {C1, . . . ,Ck} ∪

{Γa(C1), . . . ,Γa(Ck) : ∀a}, Γa(C) = ∪Xi∈CPARENTSa(Xi) = Scope[g] is the set of parent

state variables of variables in C (Scope[h]) in the DBN for action a. This factored dual LP

20

is given by:

max ∑
a

r

∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)R

a
j(w

a
j)

s.t.:

∀i = 1, . . . ,k :

∑
c∈Dom[Ci]

µ(c)hi(c) = ∑
c∈Dom[Ci]

α(c)hi(c)

+ γ ∑
a

∑
y∈Dom[a(C

′
i)]

µa(y)ga
i (y) (2.4a)

∀Bi,B j ∈B,∀y ∈ Dom[Bi∩B j],∀a :

∑
bi∼[y]

µa(bi) = ∑
b j∼[y]

µa(b j) (2.4b)

∀B ∈B,∀b ∈ Dom[B],∀a,µa(b)≥ 0 (2.4c)

µ(b) = ∑
a′

µa′ (b), (2.4d)

∑
b′∈Dom[B]

µ(b
′
) =

1
1− γ

(2.4e)

where µa(b) = ∑x∼[b]φa(x),∀b ∈Dom[B] is the marginal visitation frequency for a subset

of state variables B ⊂ X (b ∈ Dom[B] represents enumeration of the variables in B and

x∼ [b] are the assignments of x that are consistent with b), and µ(b) = ∑a µa(b). The con-

straints ensure that these µa variables are consistent across variable subsets. The factored

dual approximation is guaranteed to be equivalent to the dual LP-based approximation [46]

if the factored MDP cluster set B forms a junction tree. Triangulation Tr(BFMDP) con-

structs a junction tree by adding cluster sets to B if needed. Approximate triangulation

T̂r(B) returns some cluster set B′ such that B ⊆B′. The constant basis function h0—

i.e., with scope as the empty set { /0}—is always included in H for feasibility of the above

factored LPs [46].

21

2.2.2.4 Representing and Computing the Optimal Policy

Policies in factored MDPs can be compactly represented assuming the default action

model [47]. Different actions often have very similar transition dynamics, only differ-

ing in their effect on a small subset of variables. In factored MDPs that follow a default

transition model for each action a, E f f ects[a] ⊂ X′ are the variables in the next state

whose local probability model is different from the model for the default action d, i.e.,

Pa(X ′i |Parentsa(X ′i)) 6= Pd(X ′i |Parentsd(X ′i)) [47]. Similarly, in the default reward model,

there is a set of reward functions for the default action d. The extra reward of any action

a has scope restricted to Wa
i . With the above assumptions, the greedy policy relative to a

factored value function can be represented as a decision list [44].

However, this default action model is often not applicable in many real world examples.

In such cases, we solve the approximate factored dual LP and monitor the values of the µa

variables as a proxy to determine if a certain action appears in the computed policy. More

precisely, if φa is a feasible solution to the exact dual LP, then in a state x, φa(x) > 0 if

a = π(x) and φa(x) = 0 for all other actions. In the approximate solution with a subset of

basis functions, all φa variables may not be represented by the set of µa variables. However,

we can approximately determine the set of actions in a policy by removing those actions a

from the set of allowed actions, for which µa(b) = 0 ∀b ∈ Dom[B],∀B ∈B.

2.3 Reinforcement Learning and Value Function Approximation

Reinforcement learning (RL) is an area of machine learning concerned with how soft-

ware agents ought to take actions in an environment so as to maximize some notion of

cumulative reward. [40, 38, 48, 49]. The problems of interest in reinforcement learning

have also been studied in the theory of optimal control. In machine learning, the environ-

ment is typically formulated as a Markov Decision Process (MDP), as many reinforcement

learning algorithms for this context utilize dynamic programming techniques. The main

22

difference between the classical dynamic programming methods and reinforcement learn-

ing algorithms is that the latter do not assume knowledge of an exact mathematical model

of the MDP and they target large MDPs where exact methods become infeasible [50]. Re-

inforcement learning differs from standard supervised learning in that correct input / output

pairs need not be presented, and sub-optimal actions need not be explicitly corrected. In-

stead the focus is on performance, which involves finding a balance between exploration

(of uncharted territory) and exploitation (of current knowledge).

We now introduce some notations albeit, very briefly. At each time step t, the RL agent

lands a state xt in the state space and selects an action at from the action space, following

a policy π(at |xt). It receives a scalar reward rt , and then transitions to the next state xt+1,

according to the reward function R(x,a) and the state transition probability P(xt+1|xt ,at)

respectively. In an episodic problem, this process continues until the agent reaches a ter-

minal state. The cumulative discounted reward with discount factor γ ∈ (0,1] is given by

Rt = ∑
∞
k=0 γkrt+k. The agent’s goal is to maximize the expected discounted reward.

2.3.1 Temporal Difference Learning

Temporal difference learning is a combination of Monte Carlo ideas and dynamic pro-

gramming ideas, the most prominent being SARSA and Q-learning [51, 40]. The value

function V (x) is learned directly from experience in a model-free, online, and incremental

manner. The update rule is given by V (x) =V (x)+α[rt + γV (x‘)−V (x)], where α is the

learning rate.

SARSA, represents state, action, reward, (next) state and (next) action. It is an on-

policy control method to find the optimal policy. Q-learning is an off-policy control method

to find the optimal policy. The action-value Q function is directly approximated using

the Bellman equation as an iterative update Q′(xt ,a) = E[rt + γmaxa′Q(xt+1,a′)|x,a]. To

incorporate generalization, linear and non-linear function approximation are commonly

used [40]. Combination of off-policy learning, function approximation, and bootstrapping

23

may result in instability and divergence [52].

2.3.2 Deep Reinforcement Learning

Recently, reinforcement learning with deep neural networks algorithms has gained

much popularity. The conceptual idea in these algorithms is to store the agent’s data in

memory and sample random batches for learning, denoted as experience replay. This core

technique effectively alleviates the problems associated with correlated data, non-stationary

distributions, and convergence issues in learning with neural networks [53, 54, 55, 56].

2.4 Plan Interdiction

Now that we have presented the concepts in computational game theory and artificial

intelligence planning, we are in a position to introduce plan interdiction. We begin with an

informal sketch of the core conceptual idea. At first glance, interdiction appears to be an

adversarial activity. For example, an attacker may interdict the power flow on an electric

power grid, resulting in widespread blackouts [57], or interdict a transportation or a supply

network [58, 59]. However, in cybersecurity, interdiction manifests with good intentions

since it is the defender that interdicts an attack plan. Cyber attacks can be considered as

plans, or sequential decision processes by the attackers. Specifically, a plan is a sequence

of actions that begins with an initial state and upon complete execution, achieves a goal. In

plan interdiction, the attacker is such a planner that constructs an optimal plan to achieve its

objectives. The initial state for the attacker includes the initial vulnerabilities of the target

network, as well as any relevant capabilities and information. An attack is a series of actions

to accomplish a malicious goal or multiple goals with different values to the attacker. The

defender is the interdictor and attempts to prevent the attacker from achieving its objectives.

In most of the work in cyberdefense, the defender is myopic and attempts to only interdict

any past attacks. However, a proactive defender should ideally also take into account the

alternative attack plans in making a decision on the optimal interdiction.

24

Given this overview of plan interdiction, we illustrate the concept with a specific ex-

ample of an attack plan. The initial state includes the initial attacker capabilities, such as

having a boot disk and port scanning utilities. Actions include physical actions (breaking

and entering and booting a machine from disk) as well as cyber actions, such as performing

a port scan to find vulnerabilities. Figure 2.1 shows an attack graph (with attack actions as

nodes) for this situation (the actual attack plan is highlighted in red).

Figure 2.1: Example of an attack graph. The boxes correspond to initial attacker capabil-
ities, ovals are attack actions, and diamonds are attack goals. An optimal attack plan is
highlighted in red.

An example of interdiction is shown in Figure 2.2 in which a subset of attack actions

are interdicted (for example, by patching specific vulnerabilities, or changing the network

architecture). The attacker is now constrained to follow an alternative sequence of actions

to achieve a suboptimal goal (in this example, it is expensive to interdict every possibility

compared to any loss from a successfully executed attack).

There is a long chain of previous research that comprises graph, planning, and game

theoretic approaches to cybersecurity and attacker modeling. We outline some of the most

relevant previous research. The first involves graph and planning-based approaches to at-

25

Figure 2.2: Example of attack plan interdiction: blocked actions are colored blue and the
resulting alternative attack plan is highlighted in red.

tacker modeling in the form of attack trees or graphs. The main limitation of the attack

graph representation is that the state space, and, thus, the graph grows exponentially in the

number of state variables. Although it is common practice to construct attack graphs by

hand (by experts), there are a number of efforts to automate their construction [60, 61].

To address the scalability limitations of constructing complete attack graphs, a line of re-

search focuses only on generating specific sequences of attack steps (e.g., attack plans) that

achieve a desired goal [62, 63, 64, 65, 66]. In most of the literature on attack graph analysis,

mitigation is only considered as a secondary problem. Some discuss heuristic approaches,

such as computing a minimum set of attacks that must be prevented to ensure that the at-

tacker does not achieve its goals [61, 64]. Also, except for the important exception [67],

uncertainty has typically not been considered in such research.

There are a number of explicit game-theoretic approaches to attacker-defender inter-

actions in the attack graph framework [68, 69]. However, these approaches require a full

specification of the attack graph, and do not scale beyond very small instances. There are

26

several lines of research in game theoretic security games e.g., the literature on network

interdiction [58, 59, 70, 57], in which the attacker typically plays the role of the interdic-

tor (or, the defender may interdict drug traffic or border penetration). In most cases, the

problem is formulated as a zero-sum game, which is then cast as a bi-level mathematical

program at the core of which is some variant of a network flow problem. One impor-

tant exception relevant to plan interdiction is Brown et al. [71], which offers a bi-level

programming formulation for a nuclear weapons project interdiction. However, this ap-

proach is focused narrowly on maximally extending the project length, and assumes that

task dependencies are given. In the plan interdiction model, attack goals are much more

generic, the game admits arbitrary payoffs for the defender and attacker, and task depen-

dencies are computed dynamically as a part of the attackers planning problem. Finally,

plan interdiction is connected to the literature on computing Strong Stackelberg equilibria

in leader-follower security games [30, 72]. Plan interdicton can be viewed as an approach

to model circumvention games [72] where the attacker is a planning agent. This allows

us to reason explicitly about attacker circumvention space, rather than abstracting it into

a single circumvention action. Finally, we very briefly outline the literature relevant to

planning in adversarial environments in which it is the defender that constructs a plan in

the presence of an adversary. In these planning problems, the planner first commits to a

plan, and the adversary subsequently attempts to interdict this plan to prevent the planner

from achieving its goals. This structure arises in cyber-warfare missions, or battle planning,

adversarial patrolling [73, 74, 75], intrusion detection etc. There is extensive research in

the context of large zero-sum games, such as Chess and Go [76, 77], and recent literature

explores Stochastic games [78].

In the next section, we formally present the plan interdiction problem.

27

2.4.1 The Plan Interdiction Problem

The goal in plan interdiction is to compute an optimal defender strategy to interdict

the attacker’s plan. In plan interdiction games, this interaction is modeled as a Stackel-

berg game in which the defender moves first and deploys a set of mitigations. The attacker

responds by executing an optimal attack plan in the resulting mitigated environment. For-

mally, the plan interdiction problem is defined by {M ,Cm,RD,P}, where M is the set

of defender’s mitigations, Cm is the cost of a mitigation M ∈M , RD(x) = ∑ j R j(x j) is

the defenders reward function, additive over state variables, and P the attacker’s planning

problem. A mitigation M can have the following two impacts: a) it can modify the current

(initial) state x0, and b) it can remove a subset of the attacker’s actions. Consequently,

if M is a subset of mitigations deployed by the defender, the attacker’s planning problem

P is modified into P(M). Let the resulting optimal plan for the attacker be denoted as

π(M). In the plan interdiction problem, the defender’s goal is to choose the optimal set of

mitigations M, taking into account the defenders utility (total discounted reward) and the

cost of mitigations. Let the defender’s utility be denoted as V D(M,π(M)) and the cost of

mitigations is c(M) = ∑m∈M Cm. The defender’s goal is then given by the following:

max
M⊆M

V D(M,π(M))− c(M), (2.5)

where π(M) is the attackers best response, i.e., the attacker’s optimal plan in the re-

stricted planning environment with the mitigations deployed P(M).

2.4.2 Interdiction of Deterministic Plans

In the context of deterministic (PDDL-based) planning, let G be the set of goal literals,

and Rl be the reward to the attacker for achieving a goal literal l ∈G. Let the corresponding

reward for the defender be RD
l (for example, it can be the negative of the attacker’s rewards).

28

The plan interdiction problem is then given by the following:

max
M∈M ∑

l∈G
sl(π(M))RD

l − c(M), (2.6)

where sl is a binary indicator of whether the goal literal l is achieved by the attacker and

c(M) = ∑m∈M Cm is the cost of mitigations. This bi-level optimization problem can be

solved using a combination of mixed-integer linear programming and constraint genera-

tion as demonstrated in Letchford and Vorobeychik et al. [19]. The constraints represent

possible attack plans, and are iteratively added in constraint generation by computing ap-

proximately optimal plans using state of the art heuristic planning software, such as SGPlan

[42].

2.5 Computational Protein Design and Drug Design

In this section, we transition to the domain of immunology and antibody design. Addi-

tionally, we outline the previous literature that is relevant to our research.

Vaccination is the administration of antigenic material (a vaccine) to stimulate an indi-

vidual’s immune system to develop adaptive immunity to a pathogen. Vaccination is his-

torically one of the most important medical interventions for the prevention of infectious

disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or

attenuated causative agents. However, over the last 10 to 20 years, several important tech-

nological and computational advances have enabled major progress in the discovery and

design of highly effective vaccines. Three key breakthrough approaches have potentiated

structural and computational vaccine design. Firstly, genomic sciences have enabled the

rapid computational identification of potential vaccine antigens. Secondly, major advances

in structural biology, experimental epitope (part of the antigen that is recognized by the

immune system) mapping, and computational epitope prediction have yielded major in-

sights into the determinants defining effectiveness of vaccines, enabling their optimization.

29

Finally and most recently, computational approaches have been used to convert this wealth

of structural and immunological information into the design of improved vaccines. The

main objective of a rational vaccine strategy is to design novel vaccines that are capable

of inducing long-term protective immunity. Computational tools have played increasingly

important roles in rational vaccine design in recent years. Some computational techniques

developed for protein structure prediction and antibody analysis are discussed in [79].

2.5.1 Antibody Design

An antibody is a large, Y-shaped protein that is used by the immune system to identify

and neutralize pathogens such as bacteria and viruses. The antibody recognizes a unique

molecule of the harmful agent, called an antigen, via its variable region. Each tip of the ”Y”

of an antibody contains a paratope (analogous to a lock) that is specific for one particular

epitope (similarly analogous to a key) on an antigen, allowing these two structures to bind

together with precision. Using this binding mechanism, an antibody can tag a microbe or

an infected cell for attack by other parts of the immune system, or can neutralize its target

directly (for example, by blocking a part of a microbe that is essential for its invasion and

survival).

It is not surprising that over the years, there have been extensive efforts geared toward

designing antibodies and libraries thereof. A number of experimental techniques have been

developed and successfully applied to design antibodies that bind to desired antigens or to

improve the binding characteristics of an existing antibody. Computational design has

been used successfully by protein engineers for many years to alter the physicochemical

properties of proteins [80, 81]. In the simplest case, protein design involves optimizing

the amino acid sequence of a protein to accommodate a desired 3-D conformation. This

approach has been extended to related tasks such as protein-protein interface design, de

novo design of protein binding molecules, design of self-assembling protein nano-cages,

etc. [82, 83, 84, 85]. Our growing understanding of sequence and structure relationships in

30

antibodies, and advances in computational protein modeling has enabled progress towards

computational methods that can assist in re-designing antibodies for higher binding affin-

ity or other desired modifications [86, 87, 88]. Further, efficient experimental platforms

exist to test predicted antibody structure or designed antibody function, thereby leading to

an iterative feedback loop between computation and experiment. Recently, an important

proof-of-principle experiment for computer-aided epitope-focused vaccine design was re-

ported [89]. In Sevy et al. [90], the authors discuss computational prediction of antibody

structure and design of function. Although much focus has been directed at engineering an-

tibodies with desired properties, recent work has targeted the opposite side of the problem:

engineering an antigen that can elicit a desired antibody in an effective and reproducible

manner. This comes with the ultimate goal of the rational design of antigens to be used in

vaccination that can elicit the antibodies.

We note that substantial work in antibody design is towards predicting structure. An-

tibodies are basically protein sequences. Protein sequences have four different levels of

structure. The primary structure is a sequence of a chain of amino acids. In the secondary

structure, the amino acids are linked by hydrogen bonds. In the tertiary strcture, attrac-

tions are present between alpha helices and pleated sheets. Quarternary structure consists

of more than one amino acid chain. We focus on primary sequence representation in our

work. However, determining the amino acids in the primary sequence is only the first step

of antibody design. Comparative modeling of protein, refers to constructing an atomic-

resolution model of the target protein from its amino acid sequence and an experimental

three-dimensional structure of a related homologous protein (the template). It is also worth-

while to briefly mention dead-end elimination algorithms [91] that have been developed

and applied mainly to the problems of predicting and designing the structures of proteins.

In general, the dead-end elimination algorithm minimizes a function over a discrete set

of independent variables. It identifies ‘dead ends’, i.e., combinations of variables that are

not necessary to define a global minimum, such that the combination can be replaced by

31

a better or equally good combination. These criteria are applied repeatedly until conver-

gence such that no more eliminations can be performed. This algorithm is guaranteed to

find an optimal (global) solution and significantly outperforms several alternatives derived

from genetic algorithms and Monte Carlo methods, although it can be relatively slow to

converge.

2.5.1.1 Multi-Specificity Design

Advancements in computational protein design have enabled the design of better an-

tibodies. The above protein design approaches involve the straightforward application

of design methodologies to a single, static protein conformation. However, there is a

need to extend protein design to apply to several conformations simultaneously. These

approaches, referred to as multistate design (MSD), can be used to modulate protein speci-

ficity, model protein flexibility, and engineer proteins to undergo conformational changes

[92, 93, 94, 95, 96, 97, 98]. Multistate design [99] considers the impact that a sequence has

on multiple structures (states) simultaneously to rule one sequence more favorable (fit) for

a particular purpose than another sequence. This can be explained as follows. Some pro-

tein design tasks cannot be modeled by the traditional single state design strategy of finding

a sequence that is optimal for a single fixed backbone. Such cases require multistate de-

sign, where a single sequence is threaded onto multiple backbones (states) and evaluated

for its strengths and weaknesses on each backbone. For example, to design a protein that

can switch between two specific conformations, it is necessary to find a sequence that is

compatible with both backbone conformations. Multistate design is the most appropriate

approach in such cases.

While existing experimental and computational antibody design methods have made

key contributions, there is still a need for a general computational method that can rapidly

design libraries of antibodies to bind to rapidly mutating virus sequences. Several methods

have been developed to enable computationally expensive multistate design [21, 99]. How-

32

ever, these methods all suffer from large energetic barriers that limit sampling in sequence

space, resulting in sub-optimal designs [21]. Recently, algorithms have been proposed for

multi-specificity design, which extend general protein design by creating a sequence that

has low energy with multiple binding partners [21]. Our research aims to address these

significant limitations in sampling by developing global solution approaches for broadly

binding antibody (and equivalently, protein sequence) design.

2.5.2 Game-Theoretic Models of Vaccination Decisions

Our work bears superficial similarity to game theoretic models of vaccination deci-

sions [100, 101, 102]. However, this line of work aspires to model human decisions

about being vaccinated, relative to socially optimal choices, whereas our model involves

molecular-level interactions between immunity and pathogen; the two models therefore

have virtually nothing in common. A somewhat more similar model by Huang et al. [103]

considers, at a very high level, the symbiotic-pathogenic spectrum of microbial-host rela-

tionship through the lens of several simple game models (pure cooperation, zero-sum, and

prisoners’ dilemma). Another model (Archetti et al. [104]), uses a high-level public goods

model and evolutionary game theory to capture population-level evolution of cancer cells,

with implications for resistance to therapies targeting growth factor production. However,

our work, to our knowledge, is the first game theoretic model of molecular-level interaction

between infectious disease treatment and disease.

2.5.3 Combinatorial Drug Design

Previous work most similar to ours was in combinatorial drug design, which involved

the design of rule-based expert systems to recommend individualized treatment strategies

for patients, based on individual mutation history [105]. Rules are applied to infer mutation

pattern and this rule-directed search finds possible mutations. The corresponding optimal

drug combination is found by solving a triply nested combinatorial optimization problem

33

[106]. The primary drawback of this approach (common to all approaches using broad

immunity as a criterion) is that any unseen mutations are assumed non-existent. Moreover,

the search space is limited to the possible combination of a few drugs, and is thus very

small (can be searched exhaustively). In addition, domain expertise is required to formu-

late the rules. Decision is made only based on frequently observed mutations. Another set

of research focuses on understanding the dynamics of appearance of mutations using dy-

namic probabilistic graphical models to predict viral evolution [107]. Richter et al. [108]

use descriptive mining methods to understand correlations and associations in mutations.

In these cases, mutation process is studied in the context of a specific environment (e.g.,

drugs) using available data. Our investigation requires a model of the mutation process for

arbitrary antibodies (or drugs), and therefore cannot make direct use of such approaches.

In Ferugson et al. [109], computational models have been used to develop an approach

to translate available viral sequence data into quantitative landscapes of viral fitness as

a function of the amino acid sequences of its constituent proteins. Predictions emerging

from these computationally defined landscapes for the proteins of HIV are positively tested

against new in vitro fitness measurements and were consistent with previously defined in

vitro measurements and clinical observations. These landscapes chart the peaks and valleys

of viral fitness as protein sequences change and inform the design of vaccines and therapies

that can target regions of the virus most vulnerable to selection pressure.

2.5.4 Learning Protein-Protein Interactions from Data

A core technical challenge in our research is to learn a prediction model of binding

and stability energy scores, from data generated with ROSETTA. In studying the strength

and specificity of interaction between members of two protein families, key questions cen-

ter on which pairs of possible partners actually interact, how well they interact, and why

they interact while others do not. The advent of large-scale experimental studies of in-

teractions between members of a target family and a diverse set of possible interaction

34

partners offers the opportunity to address these questions. Sequence-based graphical mod-

els of protein families have been used to capture amino acid interactions in order to pre-

dict protein structure [110, 111, 112] and function [113, 114] and to design new proteins

[115, 116]. Sequence-based models of interacting protein families for binary prediction

of interaction have been discussed in Thomas et al. [117]. The focus is on co-evolution

of residues in interacting protein families. The cross-coupled residues are first identified

by metrics like correlation and mutual information between amino acid types at a pair of

positions. These can be used as predictors of interaction on the assumption that correlated

mutations occur in case of interacting proteins. A number of approaches have considered

the identification of binding sites given neutralization information, using sequence and/or

structure information [118, 119, 120]. In Wang et al. [121], a computational method based

on probabilistic relational model attempts to address this task using high-throughput pro-

tein interaction data and a set of short sequence motifs. The model is learned using the

expectation-maximization (EM) algorithm, with a branch-and-bound algorithm as an ap-

proximate inference for the E-step. Feldmann et al. [120] use kernel SVMs with string

kernels to infer interactions between amino acids and predict neutralization. The bi-linear

energy score prediction model in our research is inspired from Kamisetty et al. [122], in

which a data-driven graphical model is used to explicitly represent the pairwise amino acid

interactions.

35

Part I

Plan Interdiction in Markov Decision

Processes (MDPs)

36

Chapter 3

MDP INTERDICTION

Stackelberg game approaches to security have received considerable attention in recent

years, both in theoretical investigation and practical use [123, 124, 30]. Examples include

physical security (such as air marshall assignment and coast guard patrols), sustainability

(such as security measures to prevent poaching), and computer network security. Com-

monly in such models the defender assigns security resources to targets, and the attacker

chooses which target(s) to attack. However, in many settings the attacker performs a se-

ries of activities to accomplish their malicious goal. For example, in physical security

these may involve reconnaissance, the choice of equipment to bring, and the path to take

to targets which is taken. A general way to capture such multi-stage attacks is planning

[65, 66, 64, 125, 126]. The defensive actions in such a scenario can then be viewed as plan

interdiction [19], whereby a defender deploys protective measures to compromise the abil-

ity of the attacker to successfully execute its plan. A major challenge in such approaches

is high-resolution modeling of adversarial evasion of defensive measures. Letchford and

Vorobeychik proposed modeling such evasion in a Stackelberg framework of plan inter-

diction [19], where the Stackelberg leader eliminates a subset of attack actions, and the

adversary computes an optimal plan in the restricted action space. This approach was de-

veloped both in the context of deterministic (PDDL-based) planning, and planning with

markov decision processes (MDPs).

As discussed in the related work section, interdiction of deterministic plans has the

advantage that the problems are highly structured and therefore, scalable approaches can be

developed. However, there is a major limitation as deterministic planning fails to capture

uncertainty in the attacker’s planning problem. To address this, the previous research in

Letchford and Vorobeychik et al. [19] models the attacker’s planning problem as an MDP.

37

In this chapter, we formally introduce the MDP interdiction problem in which the attacker

solves a discounted reward MDP.

We emphasize that the discounted reward MDP is a natural model for security, since

it captures the fact that attackers prefer to achieve their goals (positive rewards) earlier,

and incur costs (negative rewards) later. Additionally, it captures an element of deterrence:

the attack which takes too many steps has far more opportunities to fail in practice. Thus,

minor (low-reward) goals may be preferred over major (high-reward) goals if they can be

achieved much more quickly.

3.1 The MDP Interdiction Problem

3.1.1 Problem Definition

We model MDP interdiction as a Stackelberg (two-stage, one-shot) game with two play-

ers: defender and attacker. The defender, who is the Stackelberg leader, commits to a set

of mitigations, and the attacker, who is the follower, computes an MDP policy which opti-

mally responds to (e.g., evades) these mitigations.

Formally, the MDP interdiction problem (MDPI) is defined by a tuple {M ,Cm,RD,RA,

X,A,P,γ}, where M is the set of mitigation strategies available to the defender, RD and

RA are the reward functions for the defender and the attacker respectively, Cm is the cost

of a mitigation m ∈M to the defender, and X,A,P,γ are the state space, action space,

transition function, and discount factor of an infinite-horizon discounted MDPs which the

attacker is solving in response to mitigations deployed by the defender. The semantics of a

mitigation m ∈M is that it removes (protects against) a subset of attack actions from the

original attacker action space A.1 For a given set of mitigations M ⊆M deployed by the

defender, we can define an attacker’s resulting MDP, τ(M) = [X,A(M),RA,P,γ] over the

restricted action space A(M) which includes only the actions which are not removed by any

1This is quite general; for example, we can model mitigations which modify the initial state by including
actions with no preconditions and effects which represent initial state, and allow interdiction of these actions.

38

mitigation m ∈M. In the MDPI Stackelberg game, the defender first chooses M ⊆M , and

the attacker subsequently chooses a policy π in the resulting restricted MDP τ(M). Since

the attacker is effectively facing a decision problem, it will suffice to restrict attention to

optimal attacker policies which are deterministic and stationary. Let Π∗(M) be the set of

optimal deterministic stationary policies of τ(M). Define V A(x,π) to be the attacker’s

value function for a policy π starting at state x in MDP τ(M), and let V D(x,π) be the

defender’s value function (i.e., using the defender’s reward function RD). Let x0 be the

initial state of the MDP. We seek a strong Stackelberg equilibrium (SSE) of MDPI, in which

the defender solves

max
M⊆M

V D(x0,π
∗(M))− ∑

m∈M
Cm,

where π∗(M) ∈ argmaxπ∈Π∗(M)V
A(x0,π), and the attacker breaks ties in the defender’s

favor.

3.1.2 General Approach

Letchford and Vorobeychik proposed a general approach for MDP interdiction [19]

based on a mixed-integer linear programming (MILP). If we define variables Dm which are

1 iff the defender chooses a mitigation m, the defender’s objective becomes the following:

max∑
x

∑
a

φa(x)RD(x,a)− ∑
m∈M

DmCm, where φa(x) are the dual variables of the MDP linear

program as before. The attacker’s objective is then given by max∑
x

∑
a

φa(x)RA(x,a). To ac-

count for the attacker’s best response, a set of constraints was introduced for the defender

so that a) the optimal attacker policy chosen by the MILP is feasible given the set of de-

fender mitigations, and b) the attacker’s utility corresponding to this computed policy is

better than that of any other feasible policy.

39

3.1.3 Research Objectives

The central challenge with MDP interdiction is the exponential size of the state space

in the number of state variables. Since the general approach relies on the exact represen-

tation of the state space, it does not scale beyond toy-size problem instances (less than 10

state variables and 210 state space size in the MDP when we consider binary state vari-

ables). The problem is intractability in representation as well as in computing an optimal

value function and an optimal policy. Moreover, as we have described earlier, Stackelberg

plan interdiction translates to bi-level optimization problems. The defender’s optimization

forms the outer level and the attacker MDP solution is the inner level in the optimization.

Therefore, the computational challenge is compounded when we consider the combina-

torial search space of the defender. Finally, a major challenge in plan interdiction is that

the defender is typically not knowledgeable about the attackers planning problem, such as

the initial vulnerabilities and attackers access and capabilities. Such uncertainties can be

captured using a Bayesian Stackelberg game framework. However, the resulting Bayesian

Stackelberg game is infeasible for state of the art plan interdiction approaches for even

small problem instances. In the following chapters, we introduce our novel interdiction

models which leverage factored representation of MDPs combined with an array of algo-

rithmic techniques to achieve improved scalability and can handle practical-size problem

instances.

40

Chapter 4

SCALABLE FACTORED MDP INTERDICTION

4.1 Contributions

In this chapter, we aim to address the problem of MDP interdiction at scale by lever-

aging approximation techniques developed for factored MDPs. Scalability in factored

MDPs has been achieved by two basic approaches: a) exploiting structure in the MDP

transition model and reward function [127, 128, 45], and b) value function approximation

[38, 45, 47, 129, 130, 131]. Factored MDPs [44] represent the complex state space using

state variables and the transition model using a dynamic Bayesian network. This repre-

sentation allows an exponential reduction in the representation size of structured MDPs.

Moreover, efficient approximate solution algorithms have been proposed that exploit struc-

ture in factored MDPs.

Starting with the approximation methods for factored MDPs, we develop a mixed-

integer linear programming approach for factored MDP interdiction. In doing so, we face

two challenges: 1) effective basis representation, and 2) a super-exponential set of con-

straints corresponding to alternative evasion plans for the attacker. To address the first

challenge, we propose using a Fourier (parity function) basis over a Boolean hypercube

to represent the value function over a binary factor space. While there always exists an

exact Fourier basis for functions over a Boolean space, the representation is exponential

in size. We address this challenge by developing iterative basis generation methods. Ad-

dressing the second challenge of an intractably large constraint space, we develop a novel

constraint generation algorithm using a combination of linear programming factored MDP

solvers and novel heuristics for attack plan generation. We demonstrate the effectiveness of

the proposed approaches on realistic examples from the international planning competition

(IPC). In particular, we show that our approach offers dramatically improved scalability

41

without significantly compromising solution quality.

4.2 Factored MDP Interdiction

4.2.1 A Mixed-Integer Linear Programming Formulation for Factored MDP Interdiction

We first exhibit the defender and attacker objectives using a factored representation of

states. Given a set of basis functions H and the variable cluster set BFMDP the defender’s

utility is given by

∑
a

r

∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)R

Da
j (wa

j)− ∑
m∈M

DmCm,

where the expected sum of rewards is represented by the µa variables, the factored version

of the visitation frequencies with scope restricted to that of the local reward functions. The

first term is to minimize the attacker’s value of the initial state (we set RD = −RA in our

experiments) and the second term represents mitigation costs. The attacker’s objective, in

turn, is

∑
a

r

∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)R

Aa
j (wa

j).

For each mitigation m ∈ M, let Am,a = 1 iff m removes action a. To ensure that the

computed policy is feasible, we add the constraints 2.4a-2.4e in the approximate factored

dual LP. Let δπ = 1 if and only if the policy π is interdicted, i.e., there is a deployed

mitigation m that removes at least one action from π . We denote the following MILP

42

formulation for MDPI by MDPI MILP:

max ∑
a

r

∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)R

Da
j (wa

j)−∑
m

DmCm

s.t.:

∀a,m,DmAm,a ≤ Da ≤∑
m′

Dm′Am′,a (4.1a)

∀a,∀B ∈B,∀b ∈ Dom[B],

µa(b)≤ Z(1−Da) (4.1b)

∀π,a ∈ π,Da ≤ δπ ≤ ∑
a′∈π

Da′ (4.1c)

∀π,∑
a

r

∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)R

Aa
j (wa

j)

≥ V A(x0,π)−Zδπ (4.1d)

constraints 2.4a−2.4e

where Z is a large number and B = Tr(BFMDP). (We use T̂r(B) = B so that B =

BFMDP). The constraints 4.1a compute a variable Da such that Da = 1 iff there is a mitiga-

tion m that interdicts action a. Constraint 4.1b ensures that if an action is interdicted, the

corresponding visitation frequencies are 0. Constraints 4.1c compute δπ . Constraints 4.1d

represents the condition that the policy generated for the attacker is its best response to the

defender’s choce of mitigations.

If H, the set of basis functions considered is general enough to include the full value

function space, the solution to this MILP yields the optimal interdiction decision for the

defender. The key challenge, however, is (a) what basis function space we should consider,

and (b) given that capturing arbitrary value functions in the basis space is likely intractable,

how can we best approximate a value function basis in this space. Finally, the set of con-

straints captures all possible attack policies, thereby rendering the MILP too large to be

tractable even with a compact set of bases. We address these challenges next, starting with

43

the issue of iteratively generating constraints to avoid complete enumeration of the pol-

icy space (Section 4.3), and proceeding to address the basis selection problem thereafter

(Section 4.4).

4.3 Constraint Generation for Factored MDP Interdiction

The MDP interdiction algorithm requires the addition of policies and the correspond-

ing utilities as constraints (captured by Constraint 4.1d). To compute the attacker’s best

response, we solve the approximate primal LP 2.3 for a given basis set H (we deal with

the basis selection problem in Section 4.4). We can then compute the attacker’s policy as

discussed in Section 2.2.2.

4.3.1 Constraint Generation with Basis Function Selection

We define the master problem MDPI MASTER(P̂) as a relaxed version of the MILP

with the constraints 4.1a-4.1d corresponding to a subset P̂ of all possible policies. For

now, suppose that we have a method for selecting a subset of “important” basis functions

(Section 4.4).

The constraint generation procedure (Algorithm 1) works as follows. In any iteration,

P̂ contains a small set of attack policies generated thus far. We solve the master problem

with P̂ to obtain a set of mitigations M̂ ⊆M , along with a policy π̂ ∈ P̂ with a utility of

V̂ = V A(x0, π̂) which is the attacker’s best decision from the feasible subset of policies in

P̂ . Now there are two possibilities: either π̂ is the actual best response of the attacker, in

the presence of the deployed mitigations, or the actual attacker best response is not in P̂ .

To confirm, we can compute the best response for the attacker by solving a factored MDP

(LP 2.3), removing actions which are blocked by the mitigations M̂. At this point, we also

improve our basis function set, as described in Section 4.4 (GENERATEBASIS(AM̂,H)).

The resulting solution will either have a utility of V̂ to the attacker, confirming M̂ as the

optimal set of mitigations, or will be a strict improvement on V̂ , in which case we add

44

the resulting policy (computed as described in Section 2.2.2), and its utility, to the master

program, and repeat.

Algorithm 1 Constraint Generation with Basis Selection

function CONSTRAINTGENERATION(P̂,H)
V = ∞

V̂ = 0
while V̂ <V do

(M̂,Da,V̂) =MDPI MASTER(P̂,H)
AM̂ = /0
for a ∈ A do

if Da = 0 then
AM̂ = AM̂ ∪a

(π,V, Ĥ) = GENERATEBASIS(AM̂,H)
if V > V̂ then

P̂ = P̂ ∪π

H = Ĥ

This constraint generation procedure suffers from two important bottlenecks: the num-

ber of iterations can be large, and each iteration can be computationally costly. Next we

improve upon the baseline procedure above by alleviating both of these issues.

4.3.1.1 Reducing the Number of Iterations of Constraint Generation

A natural way to begin the constraint generation process is with an empty subset of

attack policies P̂ . However, this results in a large number of iterations of the constraint

generation procedure building up enough attack policies to prevent trivial mitigation so-

lutions, which mitigate no actions, or a single action sufficient to make all policies in P̂

infeasible. To address this, we start by selecting a subset of (possibly all) attacker actions

â ∈ A. For each â, we solve the attacker’s best response with the single action â, using the

approximate primal LP 2.3. The corresponding attack policies have only a single action.

We then define the initial subset P̂ using these sets of attacker policies and the corre-

sponding utilities, allowing us to warm start the constraint iteration procedure and saving a

considerable amount of computation time in the process.

45

4.3.1.2 Fast Constraint Generation

While warm starting considerably reduces the number of iterations of the constraint

generation procedure, each iteration still involves a costly set of computational operations

even to evaluate whether new policies need to be added. However, we observe that to make

progress in constraint generation, we only need to find some policy which yields a better

utility for the attacker than the optimal policy computed in the master program.

A major part of the overhead is the size of the basis set. To speed up computation, we

propose to attempt generating an improved policy (ATTACKERPOLICY(A,H)) first using

only a small subset of the basis function (e.g., H1 with each basis using a single state

variable, as discussed in Section 4.4). If the attacker’s utility computed in the subproblem

is greater than the best response computed by the master program, we add this policy to

the set of constraints. Otherwise, we fall back on the full combined basis selection and

factored MDP solution approach. This approach may need more iterations to converge, but

each iteration will be much faster. Algorithm 2 is a formalization of these ideas.

Algorithm 2 Fast Constraint Generation

function CONSTRAINTGENERATION(P̂,H1)
V = ∞

V̂ = 0
while V̂ <V do

(M̂,Da,V̂)=MDPI MASTER(P̂,H1)
AM̂ = /0
for a ∈ A do

if Da = 0 then
AM̂ = AM̂ ∪a

(π,V) = ATTACKERPOLICY(AM̂,H1)
if V > V̂ then

P̂ = P̂ ∪π

else
(π,V, Ĥ) = GENERATEBASIS(AM̂,H1)

46

4.4 Basis Generation

In this section we address the issue of selecting a basis function space for linear value

function approximation and, subsequently, the incremental generation of the “important”

set of basis functions H.

4.4.1 Fourier Basis Functions on Boolean Feature Space

We start by making use of the assumption that all variables are Boolean. In this case,

the Fourier (parity) basis for Boolean function is a natural basis choice: every function

f : {0,1}n→ R can be uniquely represented as f (x) = ∑S⊆{1,...,n} f̂ (S)hS(x) [132], where

hS is a parity function over the subset S of the variables:

hS(x) = ∏
i∈S

(−1)xi =


+1, if ∑i∈S xi mod 2 = 0.

−1, if ∑i∈S xi mod 2 = 1.
(4.2)

While the full Fourier representation of the value function is therefore linear, and exact,

it has 2n bases. Consequently, it is crucial to intelligently select a small subset which yields

a sufficiently good approximation of the value function for the purposes of computing an

approximately optimal set of mitigations. We do this by an iterative basis function selection

process described below.

4.4.2 Iterative Basis Function Selection

The attacker solves the approximate LP (2.3) to compute the best response to the im-

posed mitigations. Observe that the basis functions correspond to variables in this LP.

Column generation can be used to generate only those variables which have the potential

to improve the objective function. Thus, basis functions can be iteratively generated while

computing the attacker’s policy. However, since the variables w corresponding to the basis

47

functions are unconstrained, the concept of reduced cost is not well-defined. In this case,

we compute the magnitude of the constraint violation in the dual LP instead.

Recall that the non-linear constraint in the LP (2.3) maxx{Ra(x)+∑
i

wi[γga
i (x)−hi(x)]}≤

0 is represented as a set of linear constraints using variable elimination [44]. Instead of

enumerating the entire state space, one variable is eliminated at a time. There is one set of

factored LP constraints for each action a. Let X j be the variable being eliminated. If X j

appears in any set C∪Γa(C), (C = Scope[h]), and/or Wa (the scope of any local reward

function) these set of state variables are “relevant” while eliminating X j. Denote this set of

relevant variables by Za
j . Only these variables are enumerated while maximizing over X j.

For each enumeration, the linear constraint is of the form umax ≥ uR +∑i wiuγgi−hi , where

umax is the variable introduced after elimination, uR is the relevant factored reward term

and uγgi−hi represents γgi−hi for a relevant hi. After all state variables are eliminated, the

remaining elimination-introduced variables have empty scope and the final maximization

constraint is added. The number of constraints in this LP grows exponentially in the in-

duced width of the cost network, the undirected graph defined over the variables X1, . . . ,Xn,

with an edge between Xl and Xm if they appear together in Za
j . Given this construction, we

describe our basis function selection approach as follows.

We begin with a subset of basis functions H0 and solve the above factored LP. It is

necessary to include h0 = /0 in H0 to ensure feasibility of the LP. Next, we need to determine

whether a new basis function will improve the current LP objective. We consider the dual

LP
max
λk≥0

∑
k

uR
k λk

s.t.: ∑
k

uγgi−hi
k λk = αi,∀i,

(4.3)

where λk is the dual variable corresponding to a factored linear constraint k in the primal

LP, and uR
k and uγgi−hi

k are the reward function and basis function terms respectively in

constraint k. If a new basis hl is added, it generates a new column in the primal LP, and

thus, a new constraint in the dual LP. If the new constraint is not satisfied given the current

48

λ , the objective can be improved by adding this basis. More precisely, if the new constraint

is violated given the current λ , the amount of violation β = |∑k uγgl−hl
k λk −αl| can be

used to decide whether to include the new basis. We compute the magnitude of constraint

violation for a possible new basis and choose the basis which maximizes this violation.

We add this basis to the primal LP and repeat. Finally, we return the updated set of basis

functions. The corresponding LP objective is the attacker’s utility, given a set of actions A.

We outline this procedure formally in Algorithm 3.

Algorithm 3 Iterative Basis Function Selection
function GENERATEBASIS(A,H)

λ ,V ′ =ATTACKERPOLICY(A,H)
for s ∈ {1, . . . ,smax} do

while Hs 6= /0 do
β = 0
for hl ∈ Hs and hl /∈ H do

if |∑k uγgl−hl
k λk−αl|> β then

β = |∑k uγgl−hl
k λk−αl|

ĥl = hl

H = H ∪ ĥl
(λ ,V) =ATTACKERPOLICY(A,H)
if |V −V ′|< θ then return V ′,H
Hs = Hs \ ĥl
V ′ =V

In Algorithm 3, ATTACKERPOLICY(A,H) solves the LP (2.3) and Hs is the set of parity

basis functions over s state variables. To maintain smaller cost networks, we consider all

bases of a particular size before moving to the next size until s = smax, for some smax ≤ n.

Within a particular size, we consider those variable clusters that are also connected in the

underlying DBN of the factored MDP (i.e., one variable is the parent node of the other

variable). We observe that many dual variables λk will be 0 so that we can restrict all

computations to the set of active constraints {k,λk > 0}. Finally, using the parity basis

functions allows two simplifications. First, we consider the ga variable corresponding to

a basis h: ga(y) = ∑
c∈C

∏i|Xi∈C Pa(c[Xi]|y)h(c), for each assignment y ∈ Γa(C), where C

is the scope of h and the sum is over Dom[C], the enumeration of variables in C. In

49

our case, using the parity basis, this sum of products can be reorganized as a product of

sums: ga(y) = ∏i|Xi∈C P(xi = 0|y,a)−P(xi = 1|y,a). These terms can be precomputed for

each state variable allowing efficient computation. Second, we consider α = ∑
x

α(x)h(x) =

∑
c∈C

α(c)h(c), where α(c) is the marginal of α over Dom[C]. In the case of parity basis

functions, αl = 0,∀l 6= 0 and β = |∑k uγgl−hl
k λk|.

4.5 Greedy Interdiction

In this section, we propose a greedy heuristic for factored MDP interdiction which

requires the generation of attacker policies in response to specific mitigations. Specifically,

we start with a mitigation strategy by randomly choosing an action to block. The attacker

then computes a policy with utility V using the restricted set of actions. Next, we evaluate

actions in the available set of actions Aav, at random, choosing an action to block if it

decreases the sum of the attacker utility and total mitigation cost. Here we assume that

each mitigation blocks exactly one action. The algorithm proceeds until no action can

be found to be blocked so as to improve the defender’s utility. This greedy algorithm is

outlined as Algorithm 4.

We speed up greedy interdiction similar to fast constraint generation in Section 4.3.1.2

by computing policies with a small subset of basis functions (e.g., H1). At the very end,

we make further additions to the set of basis functions to compute the attacker’s policy in

response to the greedily computed mitigation strategy to check whether the attacker can

indeed improve on the approximate best response computed over the restricted space.

4.6 Experiments

4.6.1 Problem Domains

We evaluate our MDP interdiction algorithms on several instances of three problem

domains from the international planning competition (IPC 2014): a) sysadmin b) academic

50

Algorithm 4 Greedy Factored MDP Interdiction
Aav = A
Am = /0
An = Aav
V̂ = ∞

while An 6= /0 do
a =CHOOSERANDOM(Aav)
V = ATTACKERPOLICY(Aav \a,H)
if V A < V̂ then

Am = Am∪a
V̂ =V
Aav = Aav \a
An = Aav
if Aav = /0 then

break
else

An = An \a
return V = GENERATEBASIS(A\Am,H)

advising and c) wildfire. While these have little direct connection to security, they provide

the most meaningful evaluation of our approaches in terms of effectiveness and scalability:

prior security-related domains which consider multi-stage attacks use toy examples which

would not provide a meaningful evaluation.

For all experiments, each defender mitigation m ∈M blocks exactly one action a. We

also let RA(x,a) = −RD(x,a)−Ca, where Ca is the cost of action a, which we set to 0 for

the default (no-op) action and to 0.5 for all other actions.. We set the cost of imposing a

mitigation Cm = 1 for all m. We use the discount factor of γ = 0.9. The experiments are run

on a 2.4GHz hyperthreaded 8-core Ubuntu Linux machine with 16 GB RAM, with CPLEX

version 12.51 used to solve MILP instances.

4.6.2 Comparison with Exact MDP Interdiction

First, we compare the performance of the constraint generation with basis selection al-

gorithm to the state-of-the-art optimal solution in MDP interdiction proposed by Letchford

and Vorobeychik [19]. We consider the sysadmin domain with n = 2− 10 state variables

51

2 3 4 5 6 7 8 9 10
Number of state variables

0.0

0.5

1.0

1.5

2.0

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

1e6
optimal

s=4

s=3

s=2

s=1

2 3 4 5 6 7 8 9 10
Number of state variables

5

10

15

20

25

30

35

40

45

U
ti

lit
y

optimal

s=4

s=3

s=2

s=1

Figure 4.1: Comparison of exact and approximate MDP interdiction in terms of runtime
(left) and attacker utility (right; lower is better for the defender).

(2n states) and 10 actions. We evaluate our approach with s = 1,2,3 and 4, where s is the

maximum number of state variables in the scope of any basis.

As expected, the runtime of the exact MDPI is dominated by our approach for suffi-

ciently many state variables (Figure 4.1(a)); more significantly, the exact approach runs out

of memory for larger problem sizes.

From Figure 4.1(b) we can see that while the utility of approximate interdiction im-

proves significantly as s increases from 1 to 2, it already becomes close to optimal when

s = 2, with little added value from increasing it further. The results are similar for other

IPC domains. Consequently, our experiments below use s = 2.

4.6.3 Scalability

We evaluate the constraint generation approach on larger problem sizes on the sysadmin

domain (up to 60 state variables and 60 actions). Even with constraint generation with only

a subset of basis functions, our baseline algorithm (marked as “slow bilevel”) scales poorly

for n > 30. On the other hand, the use of fast constraint generation (Algorithm 2, marked

as “fast bilevel”), significantly improves scalability (Figure 5.1 left). Indeed, the baseline

(slow bilevel) becomes intractable for n≥ 50, whereas we can successfully solve these with

the “fast” approach. Since we compute the utility of the final attacker policy using basis

52

generation, the solution accuracy is not compromised (Figure 5.1 right).

10 20 30 40 50 60
Number of state variables

101

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

slow bilevel

fast_bilevel

10 15 20 25 30 35 40 45
Number of state variables

20

40

60

80

100

120

U
ti

lit
y

slow bilevel

fast_bilevel

Figure 4.2: Comparison between baseline (slow) and fast interdiction on the sysadmin
domain in terms of runtime (left) and utility (right).

In the second set of scalability experiments, we evaluate our approaches on 10 problem

instances of the academic advising domain. The problem size increases with problem num-

ber from 10 to 30 courses (20 to 60 state variables and 10 to 30 actions). For each problem

size, there are two instances, corresponding to different program requirements and course

prerequisites. The first (odd numbered) problem instance is somewhat simpler (fewer pre-

requisites per course). The second (even numbered) instance is more complicated, with a

larger number of prerequisites per course (larger number of connections in the underlying

DBN). Problem 10 has the largest problem size with 30 courses, 11 program requirements,

3 prerequisites for most courses and 4 prerequisites for 8 courses. As demonstrated in

Figure 5.2, we observe a similar trend as before: the fast constraint generation approach

significantly outperforms baseline without compromising much solution quality. The base-

line is intractable for problems 7 to 10 (n≥ 50).

In the third set of experiments, we evaluate on 6 problem instances of the wildfire

domain. The grid size increases with problem number from m = 3 to 5 (n = 2×m2 = 18

to 50 state variables, and 36 to 100 actions). For each grid size, there are two instances,

corresponding to different neighbourhood configurations and targets (cells on the grid that

need to be protected). The first (odd numbered) problem instance has fewer targets than

the second (even numbered) instance. The results are shown in Figure 5.3. The baseline is

53

1 2 3 4 5 6 7 8 9 10
Problem number

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

slow bilevel

fast_bilevel

1 2 3 4 5 6
Problem number

−280

−260

−240

−220

−200

−180

−160

−140

−120

−100

U
ti

lit
y

slow bilevel

fast_bilevel

Figure 4.3: Comparison between baseline (slow) and fast interdiction on the academic
advising domain in terms of runtime (left) and utility (right).

again intractable on problems 5 and 6 (n = 50) which can be solved by fast bilevel.

1 2 3 4 5 6
Problem number

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

slow bilevel

fast bilevel

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Problem number

−12000

−10000

−8000

−6000

−4000

−2000

0

U
ti

lit
y

slow bilevel

fast bilevel

Figure 4.4: Comparison between baseline (slow) and fast interdiction on the wildfire do-
main in terms of runtime (left) and utility (right).

4.6.4 Effectiveness of Greedy Interdiction

Finally, we compare the greedy interdiction algorithm to fast constraint generation. As

shown in Figures 4.5-4.7, the greedy algorithm is faster for larger problem sizes, saving up

to an order of magnitude of computation time, without significantly compromising solution

quality.

54

10 20 30 40 50 60
Number of state variables

101

102

103

104

105

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

greedy

fast_bilevel

10 20 30 40 50 60
Number of state variables

20

40

60

80

100

120

140

160

U
ti

lit
y

greedy

fast_bilevel

Figure 4.5: Comparison between fast interdiction and greedy in terms of runtime (left) and
utility (right) on the sysadmin domain.

1 2 3 4 5 6 7 8 9 10
Problem number

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

greedy

fast_bilevel

1 2 3 4 5 6 7 8 9 10
Problem number

−300

−250

−200

−150

−100

U
ti

lit
y

fast_bilevel

greedy

Figure 4.6: Comparison between fast interdiction and greedy in terms of runtime (left) and
utility (right) on the academic advising domain.

1 2 3 4 5 6
Problem number

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

greedy

fast bilevel

1 2 3 4 5 6
Problem number

−18000

−16000

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

U
ti

lit
y

greedy

fast bilevel

Figure 4.7: Comparison between fast interdiction and greedy in terms of runtime (left) and
utility (right) on the wildfire domain.

4.7 Conclusions

We presented a MILP approach for factored MDP interdiction, using a parity basis

for linear value function approximation over binary state variables. We offered an itera-

55

tive basis generation approach to select the most effective set of basis functions, and pre-

sented several variations of constraint generation, combined with basis selection, to solve

the MILP. We evaluated our approaches on several realistic problem instances and demon-

strated significantly increased scalability while achieving near-optimal solutions. Finally,

we proposed a greedy algorithm for MDP interdiction and showed that it can further im-

prove scalability.

In this paper, we only model deterministic mitigation strategies. Related research on

Stackelberg games for security often considers randomized defensive resource allocation,

which in our case would translate to randomized mitigations that can yield considerably

higher utility to the defender. Within our framework, such an extension is quite non-trivial,

and remains an important question for future research.

56

Chapter 5

SCALABLE INITIAL STATE INTERDICTION IN FACTORED MDPS

5.1 Contributions

While our MDP interdiction algorithm in the previous chapter achieves superior scal-

ability compared to prior art, it continues to face significant computational challenges and

scalability limitations, particularly in capturing uncertainty about the attacker.

In this chapter, we propose a novel interdiction model in which the defender modifies

the initial state of the attacker. This is quite general: for example, we can model prior in-

terdiction approaches by adding action-specific preconditions as state variables. However,

we show that this change enables significantly simpler and far more scalable interdiction

techniques which rely on single-level integer linear programming, in contrast to difficult

bi-level problems faced in prior art. We further improve scalability by using model-free

reinforcement learning techniques with linear and non-linear action-value function approx-

imators. In the former, we make use of a Fourier basis approximation for Boolean func-

tions, develop methods for iteratively constructing a small subset of basis functions, and

formulate an integer linear program for optimal interdiction. For the latter, we propose

two iterative local search methods, the first optimizing one variable at a time, and the sec-

ond using iterative linear approximations. Finally, we present a natural extension of our

interdiction framework to Bayesian interdiction, in which the defender is uncertain about

parameters of the attacker’s planning problem.

We demonstrate the effectiveness and scalability of our proposed approaches compared

to baseline alternatives on realistic examples from the international planning competition.

57

5.2 MDP State Interdiction

5.2.1 Problem Definition

We model MDP interdiction as a Stackelberg (two-stage, one-shot) game with two play-

ers: defender and attacker. The defender is the Stackelberg leader, choosing an optimal

interdiction policy. In our model, and unlike prior work, the defender transforms a given

initial state of the MDP, x0 (which represents an initial or default configuration) into a new

start state, x′0 of the attacker’s MDP. Note that this model is quite general. For example, we

can capture removing an action by adding to it a binary precondition such that the action

is not applicable when this precondition is false; removing this action is then equivalent to

negating this precondition in x′0

The attacker is the follower, and computes an MDP policy beginning with the start

state x′0 chosen by the defender. In many settings of interest, such as cybersecurity, the

state variable domains are finite and relatively small (indeed, prior work has modeled it

using deterministic planning [65]), and we can therefore represent the associated planning

problems as MDPs with binary variables. Consequently, we henceforth assume that the

state space is comprised of a collection of binary variables.

Formally, the MDP state interdiction problem (MDPSI) is defined by an MDP M =

{X,A,R(x,a),γ}, where X,A,R(x,a),γ are the state space, action space, reward function,

and the discount factor of an infinite-horizon discounted MDP which the attacker is solv-

ing, as well as the defender’s reward function RD(x,a) and interdiction costs ρ(x′0,x0) =

∑i ρi|x′i0− xi0| of modifying an initial state x0 into x′0, where ρi is the cost of modifying

variable i. Note that this cost can also capture inability to modify specific state variables

(the corresponding cost is then infinite).

We assume that the game is zero-sum (modulo interdiction costs), so that RD(x,a) =

−R(x,a). Define V (x0,π) as the attacker’s value function for a policy π starting at state x0

in MDP M . Let Π be the set of deterministic stationary policies of the MDP. The defender

58

then solves

min
x′0∈X

V (x′0,π
∗)+ρ(x′0,x0),

where π∗ ∈ argmaxπ∈Π V (x0,π) is the optimal policy of M . The key bottleneck is the

exponential state space in the attacker MDP. We propose reasonable approximations for

the attacker’s value function and scalable algorithms to compute it using a) factored MDP

solution approaches and b) reinforcement learning. The key observation is that the optimal

policy is independent of the interdiction decision, since the solution to an MDP is a function

of an arbitrary state; to put it differently, the attacker’s optimal policy is already a function

of the defender’s choice of the start state, by virtue of it solving an MDP. This is a key to

significantly cleaner optimization problems for MDP interdiction below compared to prior

art, as well as associated scalability gains.

5.3 Integer Linear Program for Approximately Optimal Interdiction

As a first approach, we use a linear approximation of the attacker’s value function, and

leverage a linear programming approach for approximate planning in factored MDPs. In

addition, we make use of a Fourier representation of functions over a Boolean hypercube

as the basis. In particular, any function f : {0,1}m → R can be uniquely represented as

f (x) = ∑ j:S j⊆{1,...,m} f̂ (S j)φ j(x), where φ j is a parity function over the subset S j of vari-

ables [132]:

φ j(x) = ∏
i∈S j

(−1)xi =


+1, if ∑i∈S j xi mod 2 = 0.

−1, if ∑i∈S j xi mod 2 = 1.
(5.1)

We define a factored value function over a set B = {φ1, . . . ,φ|B|} of Fourier boolean basis

functions: V (x) = ∑
|B|
j w jφ j(x). The exact Fourier representation has 2m bases where m

is the number of state variables. However, prior work has developed an approach to select

a small subset of these for a sufficiently good value function approximation [133].

Since the optimal policy, as well as the associated value function, is independent of

interdiction strategy, we can pre-compute the approximate value function with an associ-

59

ated basis using techniques from prior art (e.g., [44, 133]). In the interdiction problem, the

weights w j in the value function are then fixed, and the goal is to optimize over the initial

state x0 and, consequently, the associated basis function values φ j(x0). We now develop an

integer linear program (ILP) for computing the optimal choice of the initial state x0 given

a value function V (x) = ∑
|B|
j w jφ j(x) over a pre-computed Fourier basis B.

Let b j denote a binary vector of length m, indicating the variables included in basis φ j.

Then, for a given x0, ∑
i

bi jxi0 = ∑i∈S j xi0 in the Fourier representation (5.1), which is an

integer. Then, for some positive integer h j and a binary k j, ∑
i

bi jxi0 = 2h j + k j, and is odd

if k j = 1 and even otherwise. If this sum is even, the corresponding basis value φ j = +1,

and φ j =−1 otherwise, which we can calculate by φ j = 1−2k j.

We introduce binary variables ci1 and ci2 for each state variable xi to compute the inter-

diction cost ρ(x′0,x0). Putting everything together, we obtain the following ILP to compute

the optimal interdiction:

minimize
x′0∈X,φ ,k,h,c

|B|

∑
j=1

w jφ j +∑
i

ρi(ci1 + ci2)

subject to ∑
i

bi jx′i0 = 2h j + k j,∀ j (5.2a)

φ j = 1−2k j,∀ j (5.2b)

ci1− ci2 = x′i0− xi0,∀i (5.2c)

x′i0,k j,ci1,ci2 ∈ {0,1},h j ∈ Z+

Thus, the full interdiction approach involves two steps:

1. [B,w] =approxMDP(M),

2. Solve ILP (5.2) given the approximate optimal value function V (x) = ∑
|B|
j w jφ j(x).

The key bottleneck in this approach is Step 1, where the difficulty of solving the factored

MDP grows exponentially in the number of interdependencies among state variables. An

60

alternative approach is to use model-free reinforcement learning, which can scale signifi-

cantly better when we use function approximation to represent the action-value function.

However, this introduces new technical challenges, which we describe and address next.

5.4 Interdiction Using RL with Linear Action-Value Functions

In this section, we propose an alternative approach in which the attacker directly learns

the action-value Q-function given states and actions, using a variation of the traditional

Q-learning algorithm [40]. Just as we used a Fourier approximation of the value function

earlier, we now use this basis to approximate the optimal Q-function:

Q(x,a;w) =
|B|

∑
j=1

wa
jφ j(x). (5.3)

In order to perform interdiction, we now face two new technical challenges: first, since

the Fourier basis is exponential, we need to adapt the learning algorithm to iteratively con-

struct an effective small basis representation, and second, we need to adapt the interdiction

approach to work with the Q-function, rather than the value function.

We begin with the adapted Q-learning algorithm that embeds an iterative Fourier basis

construction, which proceeds as follows. The attacker starts at a random state and chooses

an action a using an ε-greedy strategy. The ε parameter decays each iteration enabling

more exploitation with time. The observation {xt ,at ,rt ,xt+1} at each iteration is stored in a

set D . For computational speed and higher data efficiency, we use a batch gradient descent

update over a randomly sampled subset D̂ ⊂ D collected over past iterations (similar to

experience replay in [53]).

5.4.1 Basis Generation

Unlike the baseline approach, addition of any new basis function is equally computa-

tionally expensive, irrespective of the interdependencies between variables in the particular

61

basis function. We incorporate basis function selection in learning as follows. We start

with an initial set B = B0 of basis functions (e.g., all single-variable bases and the con-

stant basis). During the learning iterations, we add a new basis function to the set B if

it significantly reduces the squared error objective over the samples s = (x,a,r,x′) ∈ D̂ ,

(Q′(x,a;w)−Q(x,a;w))2, compared to the current basis set, where Q′(x,a;w) = r +

γmaxaQ(x′,a;w).

For any basis φ j in the current basis set, the gradient descent weight update with learn-

ing rate η for the weight wa
j of this basis (over a single observation) is:

wa
j ← wa

j +η(r+ γmaxaQ(x′,a;w)−
|B|

∑
j=1

wa
jφ j(x))φ j(x).

Now, consider a basis φn not present in the current approximation. In this case, the current

weight wa
n = 0 and the gradient update summed over the samples s ∈ D̂ is then

I = η ∑
s∈D̂

(Q′(x,a;w)−Q(x,a;w))φn(x).

Our goal is to find a basis φn(x) to add to B that maximizes |I |, which measures the

relative impact on the quality of the Q-function approximation. We then add this basis

if |I | is above a predefined threshold. The following MILP computes the Boolean basis

vector b corresponding to the new basis function with the largest marginal impact |I | on

62

Q-function approximation, given samples s j : (x j,a j,r j,x j+1) ∈ D̂ :

maximize
b,h,k,φ ,q,δ

δ1 +δ2

subject to δ1−δ2 = ∑
s j∈D̂

(Q′(x j,a j;w)−Q(x j,a j;w))φ j (5.4a)

0≤ δ1 ≤ Lq (5.4b)

0≤ δ2 ≤ L(1−q) (5.4c)

∑
i

bix
j
i = 2h j + k j,∀x j ∈ D̂ (5.4d)

φ j = 1−2k j,∀x j ∈ D̂ (5.4e)

∑
i

bi ≥ 1 (5.4f)

bi,k j,q ∈ {0,1},h j ∈ Z+,δ1,δ2 ≥ 0.

δ1 and δ2 compute the linearized objective |I | (L is a large number). Constraints (5.4d)

and (5.4e) compute the φ j values as in ILP (5.2). Constraint (5.4f) ensures that the ILP does

not select the constant basis function. To keep the basis set from becoming too large, we

periodically monitor the weights and remove any basis functions with normalized weights

below a predefined threshold.

5.4.2 Integer Linear Program for Interdiction

Given this approximation, we can now extend the interdiction LP 5.2 for the defender’s

optimal initial state x′0 to the following mixed integer program (recall that V (x)=maxaQ(x,a;w)):

63

minimize
x′0∈X,v,φ ,k,h,c

v+∑
i

ρi(ci1 + ci2)

subject to v≥
|B|

∑
j=1

wa
jφ j,∀a (5.5a)

∑
i

bi jx′i0 = 2h j + k j,∀ j (5.5b)

φ j = 1−2k j,∀ j (5.5c)

ci1− ci2 = x′i0− xi0,∀i (5.5d)

x′i0,k j,ci1,ci2 ∈ {0,1},h j ∈ Z+

The full algorithm is outlined in Algorithm 5.

Algorithm 5 Interdiction using Linear Action-Value Function Learning
Initialize weights w to 0, randomly initialize state, ε = ε0
for iterations t in 1, . . . ,T do

Select ε-greedy action at

Store st = (xt ,at ,rt ,xt+1) in D
for each s j in a random sampled D̂ ⊂D do

Features: [φ1(x j), . . . ,φ|B|(x j)]

Target: r j + γmaxa′Q(x j+1,a′;w)

Gradient descent and w update on D̂ , ε = ε0e−t

Every t̂ iterations solve MILP (5.4), update basis set B

Solve interdiction MILP (5.5) using basis set B and weights w return x′0

While this approach allows direct model-free learning and significantly more scalable

interdiction (see the experiments section), the performance still relies on the subset of basis

functions chosen for the approximation. We next extend the framework to allow for non-

linear Q-function approximation.

64

5.5 Interdiction with Non-Linear Function Approximation

We now generalize the model-free interdiction framework to incorporate non-linear Q-

function approximation, such as using neural network-based Q-functions. Let Q(x,a;θ)

denote the corresponding approximate Q-function, with parameters θ (e.g., corresponding

to neural network weights).

For interdiction with a non-linear Q-function, we can no longer directly use the ILP

approaches above. We instead propose two local search methods.

5.5.1 Interdiction Using Greedy Local Search

Our first approach is a greedy local search in the state space (Algorithm 6). The intuition

behind the approach is to change one variable at a time, and accepting the change only

if it improves the defender’s utility. The process continues either for a fixed number of

iterations, or until convergence.

Algorithm 6 Non-Linear Value Function Learning and Greedy Local Search

Start at a randomly chosen state x′0
Compute U = maxa′Q(x′0,a

′;θ)+ρ(x′0,x0)
for iterations in 1, . . . ,T do

Change one state variable at random to get x̄
if maxa′Q(x̄,a′;θ)+ρ(x̄,x0)<U then

U = maxa′Q(x̄,a′;θ)+ρ(x̄,x0)
x′0 = x̄

return x′0

5.5.2 Interdiction Using Local Linear Approximation

We observe that the above local search method can be slow for a large state space. To

improve efficiency of state space exploration, we propose an alternative local search ap-

proach which iteratively linearizes the Q-function using a Taylor series approximation, and

solves an ILP similar to that in previous sections using the linearized function. Specifically,

65

we start the search with a random modification of the initial state, and obtain a linear ap-

proximation of the Q-function in the vicinity of this state. The attacker’s objective is now

a linear function of the state. We then formulate an ILP to compute a state that minimizes

this objective. The search then continues by updating the linear approximation around this

local solution.

To illustrate, we derive the algorithm in the context of a neural network with a single

fully connected hidden layer, and a separate output for each action. The input , hidden

and output layers have m, |H| and |A| units respectively. The hidden layer uses a rectified

linear unit activation function. The output layer has a linear activation (since it predicts the

action-value function which is basically unconstrained). Let θ h and θ o denote the weights

associated with the hidden and the output layer respectively. With the above network ar-

chitecture, the decision function is given by:

Q(x,a) =
|H|

∑
j

max
[

0,
m

∑
i

θ
h
i jxi

]
θ

o
ja (5.6)

The first order Taylor series approximation of a multi-variable scalar-valued function is

given by f (x + δx) = f (x) + ∑i
∂ f (x)

∂xi
δxi. The linear approximation of the Q-function

around x based on our neural network architecture

Q̂(x′0,a) = Q(x,a)+

∑
i

∑
j


θ h

i jθ
o
ja(x
′
i0− xi) if ∑i θ h

i jxi ≥ 0

0 if ∑i θ h
i jxi < 0

(5.7)

Given this local linear approximation, we can compute the optimal interdiction using the

66

following ILP:

minimize
x′0∈X,v,c

v+∑
i

ρi(ci1 + ci2)

subject to v≥ Q̂(x′0,a),∀a (5.8a)

ci1− ci2 = x′i0− xi0,∀i (5.8b)

x′i0,ci1,ci2 ∈ {0,1} (5.8c)

The full search algorithm is outlined in Algorithm 7.

Algorithm 7 Interdiction with Local Linear Approximation

Start at a randomly chosen state x′0
for iterations in 1, . . . ,T do

Compute the linear approximation as in Equation (5.7)
Solve the ILP 5.8 to update x′0

return x′0

5.5.3 Stabilizing the Q-Network

Finally, we describe two additional techniques that we used to stabilize the learning

algorithm. First, at every step of training, the weights θ are updated. These constantly

changing weights are used as targets in future iterations. The value estimations can thus,

easily spiral out of control and destabilize learning. To alleviate this problem we use a

second network to generate the target Q values and update its weights (to the primary

network’s weights) relatively less frequently [134]. Second, if the mean square error is

relatively large for a sample, it can cause large changes to the network and destabilize it

(the loss function is used in back-propagation for updating the weights). We use the Huber

loss function to constrain this error [56].

67

5.6 Bayesian Interdiction Problem

Thus far, we had assumed that the interdiction game has complete information: both

the defender and attacker know one another’s utility functions and actions, as well as the

initial state x0 that is being modified by the defender. Of course, in reality the defender

is not privy to much of this information. We very generically model this uncertainty by

partitioning the state variables X in the MDP into three groups: X = (XD,XA,XR) where

XD is the set of design variables that the defender can modify, XA is the set of variables

known only to the attacker (but not the defender), and XR is the rest of the state variables

(known to both players, but not modifiable by the defender). In particular, this uncertainty

about the part of the initial state XA may capture relevant access that the attacker possesses,

or which actions are available to them (for example, by having these state variables model

preconditions of relevant actions).

Let X A be the set of all possible attacker types (i.e., initial attack states). The interdic-

tion problem can be directly extended, with the defender solving the following minimiza-

tion problem:

min xD
[
ExA∈X A

(
V (xD,xA,xR)

)
+ρ(xD,x0)

]
(5.9)

We can approximate this problem by replacing the expectation over a large set X A with a

sample average over a collection of samples of xA according to the probability distribution

over attacker types.

An important observation here is that the value function can be learned as a function

of the full initial state, whether or not observed by the defender. Consequently, the pro-

posed interdiction approaches discussed earlier can be extended directly to solve the above

problem by introducing the variables and constraints specific to the sampled attacker types.

In the case of neural networks, we can also extend the local search algorithms 6 and 7 by

averaging over the attacker types at each search step.

68

5.7 Experiments

We evaluate our MDP interdiction algorithms on several instances of three problem do-

mains from the international planning competition (IPC 2014): a) sysadmin b) academic

advising and c) wildfire. While these examples have limited connection to security, they

provide the most meaningful evaluation in terms of effectiveness and scalability. Previ-

ous work in security-related multi-stage attacks consider toy examples which would not

provide appropriate evaluation. The most relevant prior work is [133], and offers a state-

of-the-art solution to the problem. However, it considers action interdiction, rather than

state interdiction. More significantly, we demonstrate that our baseline approach, which is

closest to this work, has comparable running time on larger MDP instances (actually, tends

to be faster). We use discount factor γ = 0.9 and set all interdiction costs ρi = 1. We denote

the factored MDP interdiction as baseline (BI), and the linear and the non-linear interdic-

tion approaches as LI, NLI1 and NLI2 respectively. We train the learning algorithms with

ε0 = 1,η = 0.01 and the RMSProp optimizer for the neural networks. The batch size |D̂ |

increases from 40 to 400 with problem size. The experiments were run on a 2.4GHz hy-

perthreaded 8-core Ubuntu Linux machine with 16 GB RAM, with CPLEX version 12.51

for MILP instances and TensorFlow for learning algorithms [135].

5.7.1 MDP State Interdiction

First, we compare our interdiction approaches (optimized independently) on the sysad-

min domain with m = 10− 60 state variables and 11 to 61 actions. Each state variable

corresponds to a machine and indicates whether it is working or has failed. We consider

two possibilities for the initial state x0: a) all machines work and b) alternate machines

work. In addition, we compare against the following cases, a) no interdiction (NI): when

the initial state x0 is not modified, and b) random interdiction (RI): when the defender mod-

ifies the initial state randomly to x′0. The runtime and utility (defender’s gains - interdiction

69

costs) comparisons shown in (Figure 5.1) demonstrate that the proposed interdiction ap-

proaches significantly improve the defender’s utility compared to the baselines (recall that

lower is better). The defender utility is similar for BI,LI,NLI1,NLI2 in the experiments

(for a given MDP domain). The utility differs significantly in case of NI and RI because

these do not perform any optimization for interdiction and merely serve as baselines. In

addition, we observe that the value function learning approaches scale much better than

the baseline approach without compromising solution quality, and NLI2 tends to have the

best scalability. This is primarily because these do not explicitly solve the MDP. In case of

MDPs with higher order interdependencies in the transition model, scalability becomes a

major bottleneck even with the approximate solution approaches with a limited number of

basis functions.

10 20 30 40 50 60
Number of state variables

100

200

300

400

De
fe

nd
er

 U
til

ity

NI
RI
BI
LI
NLI1
NLI2

10 20 30 40 50 60
Number of state variables

50

100

150

200

250

300

De
fe

nd
er

 U
til

ity

NI
RI
BI
LI
NLI1
NLI2

10 20 30 40 50 60
Number of state variables

103

104

Ru
nt

im
e

in
 se

co
nd

s BI
LI
NLI1
NLI2

Figure 5.1: Comparison between the proposed interdiction approaches on the sysadmin
domain in terms of utility (from two different starting states, left and center) and runtime
(right).

Next, we evaluate our approaches on 10 problem instances of the academic advising

domain. The problem size increases with problem number from 10 to 30 courses (m = 20

to 60 state variables, 10 to 30 actions). For each problem size, there are two instances,

corresponding to different program requirements and course prerequisites. The first (odd

numbered) problem instance is simpler (fewer prerequisites per course). The second (even

numbered) instance is more complicated, with a larger number of prerequisites per course

(larger number of connections in the underlying DBN). Problem 10 has the largest problem

size with 30 courses, 11 program requirements, 3 prerequisites for most courses and 4 pre-

requisites for 8 courses. The two initial states correspond to selection of a) all courses and

70

b) alternate courses. As demonstrated in Figure 5.2, we observe a similar trend as before:

effectiveness of optimized interdiction and superior scalability in case of the learning-based

approaches.

2 4 6 8 10
Problem Number

−300

−250

−200

−150

−100

De
fe

nd
er

 U
til

ity

NI
RI
BI
LI
NLI1
NLI2

2 4 6 8 10
Problem Number

−250

−200

−150

−100

De
fe

nd
er

 U
til

ity

NI
RI
BI
LI
NLI1
NLI2

2 4 6 8 10
Problem Number

103

104

105

Ru
nt

im
e

in
 se

co
nd

s BI
LI
NLI1
NLI2

Figure 5.2: Comparison between the proposed interdiction approaches on the academic
advising domain in terms of utility (different starting states, left and center) and runtime
(right).

Finally, we evaluate on 6 problem instances of the wildfire domain. The problem is

defined on a grid and the size increases with problem number from n= 3 to 5 (m= 2×n2 =

18 to 50 state variables, 36 to 100 actions). For each grid size, there are two instances,

corresponding to different neighbourhood configurations and targets (cells on the grid that

need to be protected). The first (odd numbered) problem instance has fewer targets than

the second (even numbered) instance. In this case, we scale down the original rewards by

a factor of 100 to ensure better convergence of the learning algorithms. The results are

shown in Figure 5.3, and are broadly consistent with previous observations.

1 2 3 4 5 6
Problem Number

−250

−200

−150

−100

−50

0

De
fe

nd
er

 U
til

ity

NI
RI
BI
LI
NLI1
NLI2

1 2 3 4 5 6
Problem Number

−250

−200

−150

−100

−50

De
fe

nd
er

 U
til

ity

NI
RI
BI
LI
NLI1
NLI2

1 2 3 4 5 6
Problem Number

103

104

105

Ru
nt

im
e

in
 se

co
nd

s BI
LI
NLI1
NLI2

Figure 5.3: Comparison between the proposed interdiction approaches on the wildfire do-
main in terms of utility (different starting states, left and center) and runtime (right).

71

5.7.2 Bayesian Interdiction

Our final set of experiments deals with Bayesian interdiction. As a baseline, we con-

sider interdiction of a worst-case attack. We obtain the initial state corresponding to this

attacker by maximizing the approximate value function. The defender’s problem is then

given by min xD[maxV (xD,xA,xR)+ρ(xD,x0)].

In each of the domain examples considered, we divide the state variables as X =

(XD,XA,XR), with 40%, 40% and 20% relative proportions. We randomly sample 500

assignments to the attacker’s variables, with equal probability. In each case, we plot the

difference in the defender’s utility, between the baseline and the Bayesian cases. The re-

sults in the Figures 5.4, 5.5 and 5.6 exhibit a large decrease in utility (of the attacker),

that is, a large benefit to the defender from considering Bayesian, rather than baseline, in-

terdiction. While the runtime does increase somewhat, this increase is small compared to

the time it takes to solve the MDP.

10 20 30 40 50 60
Number of state variables

10

20

30

40

50

De
cr

ea
se

 in
 U

til
ity

BI
LI
NLI1
NLI2

10 20 30 40 50 60
Number of state variables

20

40

60

80

De
cr

ea
se

 in
 U

til
ity

BI
LI
NLI1
NLI2

10 20 30 40 50 60
Number of state variables

103

104
Ru

nt
im

e
in

 se
co

nd
s BI

LI
NLI1
NLI2

Figure 5.4: Improvement in the defender’s utility using Bayesian interdiction in the sysad-
min domain (different starting states, left and center) and interdiction runtime (right).

2 4 6 8 10
Problem Number

32

34

36

38

40

42

44

De
cr

ea
se

 in
 U

til
ity

BI
LI
NLI1
NLI2

2 4 6 8 10
Problem Number

30

35

40

45

De
cr

ea
se

 in
 U

til
ity

BI
LI
NLI1
NLI2

2 4 6 8 10
Problem Number

103

104

105

Ru
nt

im
e

in
 se

co
nd

s BI
LI
NLI1
NLI2

Figure 5.5: Improvement in the defender’s utility using Bayesian interdiction in the aca-
demic advising domain (different starting states, left and center) and interdiction runtime
(right).

72

1 2 3 4 5 6
Problem Number

30

40

50

60

70

80

90

De
cr

ea
se

 in
 U

til
ity

BI
LI
NLI1
NLI2

1 2 3 4 5 6
Problem Number

40

60

80

100

De
cr

ea
se

 in
 U

til
ity

BI
LI
NLI1
NLI2

1 2 3 4 5 6
Problem Number

103

104

105

Ru
nt

im
e

in
 se

co
nd

s BI
LI
NLI1
NLI2

Figure 5.6: Improvement in the defender’s utility using Bayesian interdiction in the wildfire
domain (different starting states, left and center) and interdiction runtime (right).

5.8 Conclusions

We presented a novel interdiction model in which the defender constrains the initial

state of the attacker. We proposed scalable interdiction techniques with single-level in-

teger linear programming, compared to difficult bi-level problems discussed in previous

work. We further improved scalability by using model-free reinforcement learning tech-

niques with linear and non-linear action-value function approximators. We extended the

interdiction framework to Bayesian interdiction. Finally, we evaluated the effectiveness of

our proposed approaches on several realistic MDP problem instances.

73

Part II

Application of Plan Interdiction Games

in Antibody Sequence Design

74

Chapter 6

THE ANTIBODY DESIGN PROBLEM

In this chapter, we transition to the immunology domain and recapitulate the vaccine

design problem that we presented in the introduction of the dissertation. Infectious diseases

pose a major threat to public health. In 2016, about 36.7 million people were living with

HIV, and it resulted in 1 million deaths [136]. From the time AIDS was identified, it has

caused an estimated 35 million deaths worldwide [137]. A recent Ebola outbreak in Africa

killed thousands [138], and annual influenza outbreaks affect millions, with hundreds of

thousands hospitalized, and thousands dying from the influenza or its side-effects [139].

Vaccination therapies are among the most important methods for combating infectious

diseases. Vaccines are external substances that stimulate the immune system to produce an-

tibodies that bind to the vaccine substance. As antibodies develop in response to a vaccine

against a particular pathogen, they remain in the individual’s bloodstream and rapidly neu-

tralize and clear the pathogen if the individual is ever infected, thereby preventing illness.

Traditional vaccine design involves laborious and costly lab work aimed at finding just the

right substance which would successfully and reliably elicit antibodies binding the target

pathogen. Recently, a promising approach has been taking shape in which vaccines are

designed computationally, making use of modern computational protein modeling tools,

such as ROSETTA [140]. One of the common approaches involves two steps: first, find-

ing an antibody with desired neutralization characteristics, and second, finding a vaccine

which binds tightly to the desired antibody, thereby eliciting the associated target immune

response. We focus on the first step of computational antibody design.

The central goal in computational antibody design is to find an antibody protein se-

quence which neutralizes the target pathogen. In order for the antibody to neutralize a

pathogen, it needs to bind to it; the specific position at which the two typically bind is called

75

the binding site. When two proteins (such as an antibody and viral proteins) bind, they

form a complex, which is a configuration minimizing the total energy of the two molecules.

Binding is typically highly specific: a small change in the sequence can destabilize binding.

However, binding a single fixed antigen (portion of the pathogen which typically inter-

acts with the antibody) is often insufficient: for example, viruses such as HIV and flu have

many strains, and an antibody which neutralizes one will often fail to neutralize another.

An area of active research in antibody design (computational and otherwise), therefore,

is to develop and characterize broadly binding antibodies, that is, antibodies which effec-

tively bind to (and, ideally, neutralize) many variants of the pathogen [17]. Nevertheless,

as a pathogen evolves, it may well still escape neutralization; for example, HIV has an

extremely high mutation rate [18].

6.1 Antibody Design as a Plan Interdiction Problem

We observe that the virus escape problem is a version of a planning problem in which

the virus sequence seeks to optimize a series of mutations in order to escape binding to

the antibody while maintaining important criteria for survival etc. This is analogous to

an attack plan in case of plan interdiction. Given this scenario, the antibody’s goal is to

interdict the virus attack plan, or equivalently, the series of mutations until escape. This

insight enables us to directly map the conceptual ideas in plan interdiction to the antibody

design problem. Specifically, antibody design can be modeled as a Stackelberg game in

which the antibody is the defender (leader) and the virus sequence is the attacker (follower).

The virus observes the antibody sequence in action and computes a sequence of mutations

to evade it.

6.2 Research Objectives

To summarize, an optimal antibody should have the following capabilities. First, it

should achieve broad binding on a diverse set of virus sequences, i.e., the designed anti-

76

body should be able to bind to a diverse set of virus sequences. Second, it should be robust

to virus escape mutations, i.e., the designed antibody should continue to bind as these virus

sequences make mutations to escape. Finally, it should comply with energy stability con-

siderations, i.e., the designed antibody should be stable in a complex (energy minimized

configuration) with the virus. In the following chapters, we propose algorithms for anti-

body design which optimize the sequence space of the antibody primary sequence, in order

to achieve the above objectives. However, we face significant conceptual and technical

challenges.

The primary challenge is the enormous combinatorial search space on the antibody and

target virus sequence space (the binding sites on the antibody and the virus side typically

consist of 30 positions each and there are 20 possible amino acids resulting in a search

space of≥ 2060). The second challenge is determining whether an arbitrary antibody-virus

pair bind. For this purpose, we make use of ROSETTA, a premier computational protein

modeling tool [20]. However, ROSETTA can be extremely time consuming even for a

single evaluation (which could take nearly an hour, as it makes use of its own sophisticated

amalgam of local search techniques to simulate a binding complex). The third challenge is

capturing the appropriate energy scores to reflect binding and stability. In addition to the

ROSETTA antibody-virus binding energy score, we need to compute the overall energy of

the antibody-virus complex to determine stability and viability of the designed antibodies.

In the following chapters, we dive deeper into the research goals and develop efficient

algorithms for broadly binding as well as robust antibody design.

77

Chapter 7

MACHINE LEARNING AND LINEAR OPTIMIZATION FOR BROADLY BINDING

ANTIBODY DESIGN

7.1 Contributions

In this chapter, we develop efficient algorithms for broadly binding antibody design.

Computational design has been used successfully by protein engineers for many years to al-

ter the physicochemical properties of proteins [80, 81]. In the simplest case, protein design

involves optimizing the amino acid sequence of a protein to accommodate a desired 3-D

conformation. This approach has been extended to related tasks such as protein-protein in-

terface design, de novo design of protein binding molecules, design of self-assembling pro-

tein nano-cages, etc. [82, 83, 84, 85]. Each of these examples involves the straightforward

application of design methodologies to a single, static protein conformation. However,

there is a need to extend protein design to apply to several conformations simultaneously.

These approaches, referred to as multistate design (MSD), can be used to modulate pro-

tein specificity, model protein flexibility, and engineer proteins to undergo conformational

changes [92, 93, 94, 95, 96, 97, 98]. Several methods have been developed to enable com-

putationally expensive multistate design [21, 99]. However, these methods all suffer from

large energetic barriers that limit sampling in sequence space, resulting in sub-optimal de-

signs [21] . In addition, these methods are severely limited in scale by the size and number

of states that can be included. To address these limitations, we develop a method that in-

tegrates structural modeling with integer linear programming to enable a fast global search

through large ensembles of target states.

This work has been performed in collaboration with Alexander Sevy, Center for Struc-

tural Biology, Vanderbilt University, who contributed in terms of data generation, compar-

ison to MSD and ROSETTA evaluations.

78

7.2 Experimental Workflow

Our design algorithm, which we call BROAD (BReadth Optimization for Antibody De-

sign) incorporates ROSETTA-based structural modeling with integer linear programming to

more easily traverse boundaries in the energy function (Figure 7.1). The experimental

workflow involves generating a large training set of randomly mutated proteins, fitting a

linear model (described below) to predict binding, and using integer linear programming to

find an optimal antibody sequence balancing stability and binding with respect to a collec-

tion of target virus epitopes. We applied this method to the problem of designing broadly

binding anti-HIV antibodies. We modeled anti-HIV antibody VRC23 [141] against a set

of 180 diverse viral proteins, creating antibody variants that were mutated randomly in the

paratope region. The viral panel used was derived from Chuang G-Y, et al [118]. Based on

known binding patterns of VRC23 we calculated the predicted binding energy that corre-

sponds to observable binding, and searched antibody space using integer linear program-

ming to optimize stability of the unbound antibody while achieving predicted 100% binding

breadth to the 180 target viral proteins. We then used a non-linear Support Vector Machine

classifier, trained on the entire dataset produced by ROSETTA, to identify top sequences.

Finally, we entered the top scoring sequences back into ROSETTA structural modeling to

measure the predicted breadth of antibody variants.

7.3 Sequence-based Linear Classification and Regression Models to predict Binding and

Stability

Our end goal is to design broadly binding and stable antibodies by searching the se-

quence space, i.e., to optimize the amino acids at each binding position of the antibody.

The key challenge for this approach is that an exhaustive search in the combinatorial se-

quence space is intractable. To address this issue, we first propose to learn sequence-based

linear classification and regression models to predict binding and stability from data. Build-

79

Virus panel Antibody variants

ROSETTA Structure Modeling

Training set

Linear SVM to classify

binding/nonbinding

Non-linear SVM to classify

binding/nonbinding

Integer Linear Program

to optimize breadth

Breadth optimized

antibodies

Best antibodies

Evaluate optimized

antibodies

Re-evaluate breadth

Figure 7.1: Experimental workflow of the BROAD design method. The method uses
ROSETTA structural modeling to generate a large set of mutated antibodies, support vec-
tor machines (SVM) to predict ROSETTA energy from amino acid sequence, and integer
linear programming to optimize breadth of binding across a set of viral proteins.

ing on these models, we formulate an integer program to accomplish global search in the

antibody sequence space. To generate our training set, we determined three contiguous

stretches on the antibody that are in contact with the viral protein. These positions were

determined to be residues 46-62, spanning FR2-CDR2-FR3; residues 71-74 in FR3; and

residues 98-100b in CDR3 (Figure 7.2). We then created randomly mutated antibody vari-

ants, modeled their binding poses using ROSETTA, and used this data to train a binding

classifier to predict ROSETTA score and binding energy from amino acid composition.

The binding classifier is based on the assumption that the amino acids at the binding

positions of the antibody interact with those on the binding positions of the virus. In partic-

ular, this model assumes that binding between an antibody and a viral protein is determined

by two factors: a) the individual amino acids in each binding position of the antibody and

the virus respectively and b) the effects of the pairwise amino acid interactions between

the antibody and the virus respectively. To capture these, we construct a sequence-based

binary feature vector from the input antibody and virus pair, which explicitly represents the

80

VRC23

gp120

VRC23 binding site

CDRH3 CDRH2

FR3

Figure 7.2: Binding site of VRC23 shown in context of the antibody-antigen complex. The
binding site encompasses FR2, CDR2, FR3 and CDR3 regions of the antibody heavy chain.

individual and pairwise amino acid contributions. Let the input antibody-virus pair repre-

sented as vectors of amino acids, be denoted by (a,v). Let b(a,v) denote the ROSETTA

predicted binding energy for (a,v) and let F(a,v) denote the binary binding decision. We

chose a threshold θ such that F(a,v) =+1 if b(a,v)≤ θ (i.e., a and v bind) and F(a,v) = 1

otherwise. For evaluation of our approach, we choose the value of θ based on experimen-

tal neutralization data. This data is available as the experimental neutralization IC50 (in

units of µg/ml) of VRC23 with the 180 virus sequences in the panel [118]. Lower values

represent better neutralization potency and values that have > 50 concentration represent a

virus that is not neutralized by VRC23. Accordingly, VRC23 has a neutralization breadth

of 63.5% on this panel. We set θ = −28.5 such that the VRC23 breadth of binding com-

puted on the ROSETTA generated data (sequences and the corresponding ROSETTA binding

scores) is consistent with the above experimental neutralization data. We learn the classi-

fier F(a,v) as a linear Support Vector Machine (SVM) [142] using the binary feature set

comprised of actual antibody and virus sequences along the corresponding binding sites, as

well as all pairwise interactions of antibody and virus amino acids. The SVM classifier uses

the ROSETTA binding energy as the ground truth, and allows more efficient sampling by

81

approximating the ROSETTA score function by sequence alone. To optimize the L2 regu-

larization parameter of the SVM, we performed 10-fold cross-validation on the full dataset,

using 80% of the data for training and 20% for testing. Smaller parameter values enforce

higher regularization and higher values lead to overfitting. The average prediction accu-

racy is shown in Figure 7.3 A for different values of the L2 regularization parameter. We

also plot the prediction error on the two classes: binders (+1) and non-binders (−1). The

prediction accuracy is 67% on the test set using the optimized parameter (a random pre-

dictor would be at 50%). We observe that even if the prediction accuracy is relatively low,

it provides reasonable signal within the subsequent breadth optimization step (discussed in

the results section). Since the final decision is determined by solving the breadth optimiz-

ing integer linear program, our approach does not rely on a highly accurate classification

model. In previous research [143], a similar model was introduced to predict δG values for

interaction between PDZ domains and peptide ligands. The result was a 0.69 correlation

coefficient in 10-fold cross validation. This model can also be interpreted to identify the

important binding position pairs that contribute significantly to the final prediction. We

plot this interaction strength for each pairwise interaction in Figure 7.3 C (please refer to

the methods section for details). Next, we learned a linear regression model to predict the

thermodynamic stability, using only the antibody amino acids as features. The prediction

of thermodynamic stability is necessary to ensure that our designed antibodies can be ex-

pressed stably. To simplify the approach, we predicted the stability of the antibody-virus

complex as a function of the antibody sequence only (note that we do not make this as-

sumption during evaluation). Specifically, we constructed a binary feature vector restricted

to amino acids in the antibody binding positions. Let s(a,v) denote the ROSETTA stabil-

ity for the pair (a,v). We learn a linear model C(a) to predict s(a,v) for an antibody a

(i.e., independent of the virus). To measure the accuracy of prediction, we computed the

correlation coefficient between the true scores and the predicted scores. Interestingly, our

assumption that stability scores are only weakly dependent on the virus protein sequence is

82

borne out: we found a correlation of 0.85 between the predicted and actual stability energy

score on the test set (Figure 7.3 B).

L2 Regularization Parameter

P
e

rc
e

n
ta

g
e

 P
re

d
ic

ti
o

n
 E

rr
o

r

Rosetta Energy (REU)

R
e

g
re

s
s

io
n

 P
re

d
ic

te
d

 S
c

o
re

2
7
6

2
7
7

2
7
8

2
7
9

2
8
0

2
8
1

2
8
2

3
6
5

3
6
6

3
6
7

3
6
8

3
6
9

3
7
0

3
7
1

4
2
5

4
2
6

4
2
7

4
2
8

4
2
9

4
3
0

4
5
5

4
5
6

4
5
7

4
5
8

4
5
9

4
6
0

4
6
1

4
6
2

4
7
3

4
7
4

4
7
5

4
7
6

Virus Binding Positions

46
47
48
49
50
51
52
52a
53
54
55
56
57
58
59
60
61
62
71
72
73
74
98
99

100
100a
100b

A
n

ti
b

o
d

y
 B

in
d

in
g

 P
o
s
it

io
n

s

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

In
te

ra
c
ti

o
n

 S
tr

e
n

g
th

A B C

Figure 7.3: Training results for the linear classification: (a) 10-fold cross validation results.
(b) Correlation between predicted score and ROSETTA energy score in linear regression.
(c) Interaction strength of each pairwise interaction between antibody and virus binding
positions.

7.4 Algorithm

Given the classification and regression model learned from data, we formulate an in-

teger linear program (ILP) to optimize the amino acids in the antibody sequence space to

achieve both breadth and stability. The variables are the amino acids in the antibody bind-

ing positions. The objective function optimizes the predicted stability score (i.e., minimizes

C(a)). The constraints represent the condition that the designed antibody should bind to all

the viruses in the panel, using binding predictions from F(a,v). We found that this prob-

lem was always feasible: there always existed some antibody sequence that could bind to

all viral proteins based on our learned binding model. More generally, we can impose a

minimal binding breadth criterion. This algorithm is outlined inFigure 7.4.

Armed with these tools, we used the following protocol to generate a collection of can-

didate antibodies to be evaluated using ROSETTA. First, we took a random subsample of the

full training data corresponding to 100 out of the 180 virus sequences. Using only this sub-

sample, we trained the binding and stability models, F(a, v) and C(a) respectively. We then

solved the ILP described above to compute a stable, broadly-binding antibody sequence,

83

function SolveILP
Input: linear binding and stability models
Output: optimized antibody sequence
Variables: amino acids at the antibody binding sites
Objective: maximize stability
Constraints: the antibody should bind to each virus sequence in the

training set
end function

Figure 7.4: Pseudocode describing the Integer Linear Program.

considering only the 100 out of 180 selected virus sequences (that is, we only constrain

the ILP to bind to these 100 virus proteins, rather than the full set of 180). We repeated

this procedure 50 times, to obtain 50 candidate antibody sequences. To validate these opti-

mized antibody candidates, we predicted binding and stability scores using a model trained

on all the data. In case of stability prediction, we used a linear model as described above

(since the model is reasonably accurate). For binding prediction however, we trained a

non-linear (radial basis function kernel) SVM for improved prediction accuracy. Each of

the 50 candidate antibodies were scored using these models trained on all data, in terms

of predicted binding breadth and stability, and 10 best candidates were then chosen for

ROSETTA evaluation using the full panel of 180 virus proteins. This procedure is outlined

in Figure 7.5.

Generate Data: Rosetta(virus panel,antibody variants)
Learn Models: binding Φ and stability Ψ on all data
Choose 50 random subsamples of 100 viruses
for each random subsample of 100 viruses do

Learn linear binding and stability models
SolveILP
Evaluate breadth (against full panel) using Φ and Ψ

end for
Choose top optimized antibody candidates
Evaluate: Rosetta structure modeling on full panel

Figure 7.5: Pseudocode describing the BROAD algorithm for design of broadly binding
antibodies.

84

7.5 Results

7.5.1 Redesign of VRC23 Improves Predicted Breadth

After generating redesigned antibody sequences with predicted increases in breadth,

we threaded these sequences onto the VRC23-gp120 complexes and subjected them to

structural modeling to measure the change in predicted breadth. We refined the complexes

using the ROSETTA relax protocol. To test the accuracy of the ROSETTA relaxed models,

we compared the relaxed models to solved structures of gp120 viral variants and computed

the root mean squared deviation (RMSD) over Cα atoms on gp120. We observed that

the relax protocol recapitulates the gp120 conformations with an average RMSD of 2.2

Å, whereas the pairwise RMSD between gp120 conformations, representing the intrinsic

flexibility of these molecules, is 1.8 Å (Table 7.1).

gp120 for indicated HIV strain PDB ID RMSD between relaxed model
and crystal structure

Q23-17 4j6r 1.4
YU2-DG 3tgq 2.1
Du172-17 5te7 2.8
RHPA-7 5t33 2.2

X2088-c9 5te4 2.5
ZM109-4 3tih 1.9
JRCSF-JB 4r2g 2.4
HXB2-DG 1g9m 2.5
Q842-d12 4xmp 2.4
Average 2.2

Table 7.1: ROSETTA relaxed models used in BROAD optimization were compared to
solved structures of gp120 viral variants and the root mean squared deviation (RMSD) was
computed over Cα atoms on gp120. The relax protocol recapitulates the gp120 conforma-
tions with an average RMSD of 2.2 Å

Considering that we substituted only residues at the binding site of the gp120 vari-

ants, and not the entire gp120 sequence, we consider that the variant gp120 conformations

are recapitulated with sufficient accuracy for this experiment. As a control, we generated

sequences using structure-based multistate design with the RECON method [21]. The RE-

85

CON method uses ROSETTA design combined with coordination between differing states

to generate an antibody sequence with increased affinity for all target states. Using RE-

CON to redesign antibody-antigen complexes has been benchmarked and been shown to

generate germline-like, broadly binding antibodies [21]. We compared the 10 sequences

created by BROAD to 10 sequences generated by RECON multistate design to compare

the change in breadth to alternate approaches. We found that the BROAD method resulted

in a significant increase in predicted breadth over the RECON multistate design method

(Figure 7.6 A). The BROAD-designed antibodies were able to achieve predicted breadth

ranging from 86.1-100% of viruses, whereas multistate designed antibodies reached a pre-

dicted breadth of 62.8 - 85.6% of viruses. Notably, both methods were able to increase

predicted breadth from the starting value of 53.3% for wild-type VRC23. This finding sug-

gests that the wild-type VRC23 sequence is sub-optimal for breadth, which is supported by

the observation that other known broadly neutralizing antibodies bind in a similar mode to

VRC23 but with breadths exceeding 85% [144, 145, 146, 147]. In addition, we observed

that the BROAD method samples sequence space that is not sampled in multistate design

(Figure 7.6 B). We hypothesize that the BROAD method is able to cross energetic barriers

that restrict sampling in traditional structure-based design methods, and is thereby able to

generate antibodies with greater predicted breadth and lower energy. To support this hy-

pothesis we analyzed the difference in score and binding energy for antibodies designed

by BROAD and multistate design over the panel of viral proteins (Figure 7.7). BROAD

was consistently able to generate lower energy antibody-antigen complexes, with a marked

decrease in binding energy. This finding supports the hypothesis that BROAD is able to

search sequences that are unavailable to multistate design, and that these new sequences

have favorable score and binding energy.

86

BROAD

Multistate design

A

B

BROAD Multistate design
40

60

80

100

VRC23 native breadth

%
 b

re
a

d
th

****p < 0.0001

EWM
D
IGA

Y
N
W

V
I

K
Y
W

M
P

A
G
E

H
L
YGE

C
V
A
F
A
V
S

T
A
F
YAQ

RR
Q

R
V
H
A

N
D

Y
PEQ

F
T
I
A

Y
G
E
L
D

A
D
L

C
S
N
AW0.0

0.5

1.0

F
re

q
u

e
n

c
y

EWMGWV
IKPERGQ

H
A
E
N

VN
E
SYA

HPP

QRDL
PYRDG

F
A
Y
H

N
PW0.0

0.5

1.0

F
re

q
u

e
n

c
y

L RGRS Q RS V C WS

E W M G W I K P E R G A V S Y A P Q R D L Y R D A S W
4

6

4
7

4
8

4
9

5
0

5
1

5
2

5
2

a

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

7
1

7
3

7
4

7
2

9
8

9
9

1
0

0

1
0

0
a

1
0

0
b

Sequence

number

Figure 7.6: Redesign of VRC23 using integer linear programming increases predicted
breadth over HIV viral strains. A. Predicted breadth of 10 redesigned antibodies gener-
ated either by BROAD or multistate design. Bars show mean and standard deviation of
10 sequences. Dotted line shows the predicted breadth of the native VRC23 antibody. B.
Sequence logos of designed antibodies generated by BROAD or multistate design. Amino
acids are colored based on chemical properties. The native VRC23 sequence is shown
below.

7.5.2 Designed Residues Recapitulate Known Binding Motifs

A frequent problem in computational protein design is false positives, that is, sequences

that are predicted to be favorable according to the score function, but are unable to reca-

pitulate that activity in vitro. The ROSETTA score function uses many approximations

87

BROAD Multistate design
-15

-10

-5

0

Im
p

ro
v
e
m

e
n

t
in

 S
c
o

re

fr
o

m
 W

T
 (

R
E

U
)

Score

BROAD Multistate design
-20

-15

-10

-5

0

Im
p

ro
v
e
m

e
n

t
in

 D
D

G

fr
o

m
 W

T
 (

R
E

U
)

Binding Energy

****p < 0.0001

A B

Figure 7.7: Score comparison of redesigned antibodies. The ROSETTA score (A) and
binding energy (DDG) (B) are shown for ten redesigned antibodies made either by BROAD
or multistate design, paired with 180 viruses. Bar plots shown mean and standard deviation.
Shown on the Y axis is difference between score/DDG between the redesigned antibody
and wild-type.

of energetic terms to enable faster simulations, and these approximations can introduce

inaccuracies [148, 149]. To reduce the possibility that the redesigned VRC23 variants

are scored favorably due to inaccuracies in the score function, we compared the designed

residues introduced by BROAD to structural motifs of known broadly neutralizing antibod-

ies (Figure 7.8). In several cases, the residues introduced by BROAD mimicked a known

interaction of an existing antibody. For example, position 61 was mutated from proline in

VRC23 to arginine (Figure 7.8, top left). The broadly neutralizing antibody VRC01 has

an arginine that occupies similar space to the designed arginine [20]. This phenomenon

can be observed for several different broadly neutralizing antibodies, such as VRC-CH31,

3BNC117, and NIH45-46, all of which target the CD4 binding site, but at slightly different

orientations [144, 145, 146, 150]. We observed several examples of this type of recapitula-

tion. Mutation Q62R on VRC23 placed an arginine residue to fill space that is occupied by

a tyrosine on VRC-CH31 (Figure 7.8, top right)this mutation fills a void at the interface to

improve antibody-antigen packing. Mutation L73Y places an aromatic group overlapping

with the position of a tyrosine in antibody 3BNC117, which also improves packing with

88

the antigen (Figure 7.8, bottom left). Lastly, the D102E mutant on the CDRH3 places

a carboxylic acid group in the same position as a glutamic acid on NIH45-46, improving

electrostatic interactions with the antigen (Figure 7.8, bottom right). This observation is

remarkable due to the fact that the antibody loops occupy different space, but redesigned

residues are able to mimic the interactions of the broadly neutralizing antibody side chains.

In addition, it is worthwhile to note that out of these four mutants that recapitulate known

broad motifs, three were unobserved in the sequences sampled by multistate design (Fig-

ure 7.6 B). As an additional comparison, we identified 1,041 sibling sequences of known

broadly neutralizing antibody VRC01, that were isolated in a previous study [151]. These

siblings presumably represent the sequence space accessible to VRC01, and are a good test

case to compare how well our design algorithms are capturing natural sequence variation

in a broad HIV antibody. Since these sequences have CDRH3 loops of different lengths we

were not able to include the portion of the binding site corresponding to the CDRH3 loop.

However we compared the rest of the binding site to the sequences seen in the VRC01

lineage (Figure 7.9). We observe that at several positions, BROAD samples sequences that

are present in the VRC01 lineage but absent from MSD-sampled sequences (Figure 7.9,

blue boxes). For example, at the third position in the binding site isoleucine is sampled at

a high frequency in BROAD and VRC01 lineage sequences, but is never sampled by MSD

(Figure 7.9). We highlight a total of five positions where BROAD outperforms MSD in

sampling sequences that are seen in the VRC01 lineage. To quantify the sequence similar-

ity we computed a sum of squared difference between the two matrices and normalized the

values to 100% [21, 152]. According to this metric the sequences sampled by BROAD are

79.5% similar to those from the VRC01 lineage, whereas those sampled by MSD are only

76.3% similar. We conclude that BROAD more accurately recapitulates motifs known in

broadly neutralizing antibodies.

89

VRC23
VRC23 redesign
VRC01

VRC23
VRC23 redesign
VRC-CH31

VRC23
VRC23 redesign
NIH45-46

VRC23
VRC23 redesign
3BNC117

P61R Q62R

L73Y D102E

Figure 7.8: BROAD design recapitulates structural motifs of known broadly neutralizing
antibodies. Residues that were mutated from the native VRC23 sequence were compared to
known antibodies. Proteins shown are VRC23 (PDB ID: 4j6r); VRC01 (3ngb); VRC-CH31
(4lsp); 3BNC117 (4jpv); and NIH45-46 (3u7y).

7.6 Discussions

7.6.1 Summary of Results

In this paper, we describe the development of a new protein design method that we

call BROAD. This method uses structural modeling with ROSETTA combined with inte-

ger linear programming optimization techniques to rapidly search through sequence space

for broadly binding antibodies. We validated this method by computationally optimiz-

ing the amino acid sequence of the broadly neutralizing anti-HIV antibody VRC23. Af-

ter modeling VRC23 variants in silico we were able to generate VRC23 variants with a

90

EWMGWVIKPERRGQHENVQNESYAHPQRDPY0.0

0.5

1.0

F
re
q
u
e
n
c
y

EWMIAGRWLMIRQSKNPSEMQLYRTRWGGQRSGAPVGSKNFYLNGSAPQGWRNRQRSKNQDFIVT
L

I
D
Y
H
S

0.0

0.5

1.0

F
re
q
u
e
n
c
y

Q L S
VEGHKN

D

N

M

S
A

V

K

D

N
A

G

T
T

D

RG
I

P
V

Y

HH

T

S

P
K

S T

R

V
L

S
M

N

A

L
F

H

0.5

F
re
q
u
e
n
c
y EWMDIGAYNWVIKYWMPAGELYGECVAFAVSTAFYAQRRQRVH

A

N
D
Y
PE0.0

1.0

BROAD (79.5% similar)

MSD (76.3% similar)

VRC01 lineage

E W M G W I K P E R G A V S Y A P Q R D L Y

46 47 48 49 50 51 52 52a 53 54 55 56 57 58 59 60 61 62 71 73 7472Sequence

number

Figure 7.9: Sequences from BROAD design recapitulate sequences observed in the lin-
eage of broadly neutralizing antibody VRC01. For BROAD and MSD sequences a per-
centage similarity to the VRC01 lineage was computed (similarity shown in parenthesis).
Blue boxes highlight positions where BROAD samples an amino acid that is present in
the VRC01 lineage but was not sampled by MSD. The VRC23 native sequence is shown
below.

predicted breadth of 100% over the simulated viral panel, compared to a predicted 53%

breadth for the wild type antibody. This outcome represents a substantial step forward in

protein design, and our methodologies can be used to address a wide variety of protein de-

sign problems in which traditional structural models are insufficient. Although we did not

test antibody variants in vitro in this study, we predict that the computationally designed

variants will have greater breadth against the HIV viral panel. However, we note several

caveats with respect to experimental validation of these antibodies. Since this experiment

was designed as a computational proof of principle, we modeled only the amino acids at

the antibody binding interface of gp120, and not the entire gp120 sequence. This led to

gp120 models with 2 Å accuracy (Table 7.1), which we consider sufficient for validat-

91

ing our design principles but not necessarily for experimental validation. Future directions

in this work include optimizing protocols for gp120 homology modeling to reduce this

discrepancy and enable experimental validation.

7.6.2 Backbone Optimization in Protein Design

A distinct advantage of the BROAD method is the ability to truly incorporate backbone

movement into protein design. Many protein design methods have been developed that

incorporate backbone ensembles to some degree [96, 21, 153, 154]. However, this work

typically involves either pre-generating large backbone ensembles, many of which may be

redundant, or introducing backbone movement iteratively after steps of sequence design. In

our approach, since we are relaxing the backbone of all mutants before fitting the sequence-

based predictor, we were able to design sequences that may be slightly sub-optimal on the

starting backbone coordinates, but can be highly favorable when a slight backbone relax-

ation is applied. This approach allows us to search sequence space that is not accessible

to other methods, which are highly constrained to the initial backbone coordinates. We

observed that the BROAD-generated sequences are not sampled by ROSETTA design us-

ing the RECON method, and indeed are more favorable according to the ROSETTA energy

function. Therefore, we conclude that we are searching a ‘blind spot’ in the sequence space

that is missed by traditional design.

7.6.3 Application to HIV Immunology

This approach to research could be of great utility to the field of HIV immunology. A

longstanding goal of the field is discovering broadly neutralizing antibodies as the basis of

a rational structure-based vaccine strategy [155, 156]. Much work has gone into redesign-

ing existing antibodies to increase their breadth and potency [82, 145]. However, HIV is

known for its variability, and with this variability comes a difficulty in generating a single

antibody with potent neutralization against all possible variants. The BROAD method ad-

92

dresses this problem by enabling rapid redesign of known antibodies against viral panels of

arbitrary size. This technology can be used in the future as part of the antibody discovery

and characterization process, by rapidly searching sequence space for variants for greater

breadth. In addition, protein design also has been used on the reverse side of the vacci-

nation problem, namely, to design a vaccine with high affinity for antibodies of interest

[157, 158, 159]. We can foresee the application of the BROAD method to this problem as

well, by optimizing immunogens for recognition of germline precursors of known broadly

neutralizing antibodies.

7.7 Materials and Methods

7.7.1 Structural Modeling

The VRC23-gp120 complex used for modeling was from the Protein DataBank (PDB

ID: 4j6r). The structure was downloaded from the PDB (www.rcsb.org) and processed

manually to remove water and non-protein residues. The CH1 and CL1 domains of the

antibody structure were removed from the structure manually, and the structure was renum-

bered starting from residue 1. To select binding sites on the antibody and virus, we applied

a distance cutoff of 4 Å from the opposing protein chain, where any residue with a heavy

atom within 4 Å of a heavy atom on the opposing protein was considered to be at the bind-

ing site. Distance calculations were done using PyMol visualization software [160]. We

expanded this binding site to several neighboring residues to include contiguous stretches

of at least four residues to constitute a binding site. A total of 27 residues on the antibody

were included in the binding site. We similarly determined a viral binding site to use for

structural modeling. This site included 5 contiguous stretches that were determined to be in

contact with VRC23 (32 positions total). These positions were 276282; 365371; 425430;

455462; and 473476 (HXB2 numbering). To model gp120 variants, we performed a mul-

tiple sequence alignment using ClustalW [161] of the variant sequences with the gp120 in

93

the crystal structure (Q23.17), and substituted the corresponding amino acids at the binding

site using ROSETTA side chain optimization [148].

7.7.2 Training Set

To generate a training set of structural models, we made random antibody substitutions

in the previously defined binding site. Each antibody variant had five randomly selected

amino acid mutations. Viral variants were taken from a set of 180 known HIV gp120

sequences [118]. We chose random combinations of antibody variants and viruses, as

well as the native antibody sequence with all 180 viruses, for a total of 2200 antibody-

virus pairs to serve as the training set. All antibody-virus pairs were subjected to an energy

minimization via the ROSETTA relax protocol, which involves iterative rounds of side chain

repacking and backbone minimization with an increasing repulsive force [162]. 50 models

of each antibody-virus pair were generated by ROSETTA relax, and the lowest scoring

model was used for further evaluation. The talaris2013 score function was used for all

ROSETTA simulations.

7.7.3 Linear Classification and Regression

Our data-driven sequence-based model to learn amino acid contributions to binding

and stability is similar to the graphical model approach proposed in [122]. Let Na and Nv

denote the number of binding positions on the antibody and the virus respectively. Let

A = {A1,A2, . . . ,ANa} be a set of discrete random variables representing the amino acids in

the binding positions of the antibody. Each Ai takes values in the set of M = 20 amino acids.

Similarly, let V = {V1,V2, . . . ,VNv} represent the variables for the virus binding positions.

The inputs for binding prediction are the antibody and virus sequences a= {a1,a2, . . . ,aNa}

and v = {v1,v2, . . . ,vNv} where ai and v j are the amino acid values for the random variables

Ai and Vj. Amino acid contributions to binding can be modeled as a bipartite graph in

which nodes for A and V represent the amino acids and the edges Ω ⊆ A×V represent

94

the pairwise amino acid interactions. Each node ai and v j has associated weight vectors

xi and y j ∈ RM. The edge (i, j) between nodes ai and v j has an associated weight matrix

Qi j ∈ RM×M to represent the position specific contribution to binding for each amino acid

pair. Consequently, given a and v, the binding score varies as the sum of individual amino

acids and pairwise interaction effects. Given this setting, a and v are predicted to bind, i.e.,

Φ(a,v) = +1 (b(a,v)≤ θ), if

Na

∑
i=1

M

∑
j=1

xi jai j +
Nv

∑
i=1

M

∑
j=1

yi jvi j +
Na

∑
k=1

Nv

∑
l=1

M

∑
u=1

M

∑
m=1

akuqum
kl vlm + c≤ 0 (7.1)

where c is the intercept term and ai j and vi j are binary indicator variables that take the

value 1 if amino acid j is present at position i (∑ j ai j = 1,∑ j vi j = 1∀i). The qum
kl term

represents Qkl(u,m). These weights can be efficiently learned using a linear SVM classifier.

Formally, a SVM constructs a hyperplane in a high-dimensional space. A hyperplane that

has the largest distance to the nearest training data point of a particular class intuitively

achieves the best separation between the classes. The feature vector f consists of Na×

M binary antibody features, Nv×M binary virus features and Na×Nv×M×M binary

pairwise interaction features corresponding to x,y and Q respectively. Given a set of d

training instance-label pairs (fi, li), i = 1, . . . ,d, li = {+1,−1}, a l2-regularized linear SVM

generates a weight vector w by solving the following unconstrained optimization problem

for the max-margin hyperplane: minw
1
2wT w + λ ∑

d
i=1(max(1− liwT fi,0))2, where λ >

0 is the regularization parameter. Smaller λ values enforce higher regularization. The

second term is the squared hinge loss function. The decision function is given by sign(wT f).

We used the LIBLINEAR SVM implementation [163] to learn the classifier. Finally, the

weights x,y and Q are retrieved from the combined weight vector w.

The linear regression model Ψ(a) predicts the stability scores as a function of the anti-

body sequence features.

Ψ(a) =
Na

∑
i=1

M

∑
j=1

xs
i jai j + cs (7.2)

95

where xs ∈ RM is the weight vector is regression and cs is the intercept. Given a set of

d training instance-score pairs (ai,si) (si = s(ai,vi), so there are multiple scores for the

same antibody feature vector), i = 1, . . . ,d, the regression objective with l1 regularization is

given by: minxs 1
2d (||(x

s)T ai+cs−si||2)2+α||xs||1, where the first term is the least squares

penalty, α is the regularization parameter and ||xs||1 is the l1-norm of the weight vector.

We used the Lasso implementation in scikit-learn [164] to learn this model. In this case of

a large feature space, l1 regularization promotes sparse corfficients and is a natural choice

for feature selection. The feature set in case of the classifier is much larger. However, while

training the classifier, l1-regularization assigns the majority of the weights to 0 and most of

the signal from pairwise interactions is lost. Therefore we used l2-regularization to learn

the classifier.

7.7.4 Breadth Maximization Integer Program

We leverage the weights in the binding and stability prediction models Φ(a,v) and Ψ(a)

to formulate an ILP for optimization in the antibody sequence space. The objective is to

maximize stability (minimize stabilty score). The constraints enforce the condition that the

designed antibody should bind to each virus sequence in the training set. Finally, we add

the constraint that the binary variables at each antibody binding position should sum to 1,

96

i.e., each position takes only one amino acid. The ILP is given by the following:

minimize
Na

∑
k=1

M

∑
u=1

(xs
ku)aku

subject to
Na

∑
k=1

M

∑
u=1

(Nv

∑
l=1

M

∑
m=1

qkl
umvn

lm + xku

)
aku

+
Nv

∑
i=1

M

∑
j=1

yi jvn
i j + c≤ 0− ε

∀n ∈ 1, . . . , t
M

∑
u=1

aku = 1,∀k,aku ∈ {0,1}

where ε = 0.0001. We used CPLEX version 12.51 to solve the above ILP on a 2.4GHz

hyperthreaded 8-core Ubuntu Linux machine with 16 GB RAM.

7.7.5 RECON Multistate Design

VRC23 was placed in complex with all 180 viruses and designed via RECON multistate

design to increase predicted breadth across the panel. Models of viral variants were created

as previously described, by substituting amino acids at the binding site. All VRC23-gp120

pairs were refined by ROSETTA relax with constraints to the starting coordinates to prevent

the backbone from making substantial movements. Constraints were placed on all Cα

atoms with a standard deviation of 0.5 Å. All residues at the binding site of VRC23 were

included in design, for a total of 27 residues. The RECON protocol was run in parallel over

180 processors (manuscript describing parallelization in preparation), with four rounds of

design and a ramping convergence constraint [21]. The binding sites on both the antibody

and gp120 chain was subjected to backrub movements between rounds of design to increase

sequence diversity [165]. A total of 100 designs were generated. Sequences generated

97

by both BROAD and RECON methods were visualized using the WebLogo tool https:

//weblogo.berkeley.edu/logo.cgi.

7.7.6 Sequence Validation

To compare sequences generated by BROAD optimization and RECON multistate de-

sign, we threaded the optimized antibody sequences over the unprocessed VRC23-gp120

complexes, and subjected these complexes to ROSETTA relax to determine the score and

binding energy of optimized antibodies vs. wild-type. 50 models were generated for each

complex, and the lowest scoring model was used for evaluation. To compare native and

optimized VRC23 sequences, we compared the total energy of the VRC23-gp120 complex

as well as the binding energy (DDG), defined below:

DDG = Ecomplex− (EAb +EAg)

where EAb and EAg are the energies of the antibody and antigen alone, respectively.

Structures of modeled VRC23-gp120 complexes were visualized using Chimera software

[83].

7.7.7 Comparison to VRC01 Lineage Sequences

VRC01 lineage sequences were derived from a previous study [151]. The 1,041 cu-

rated heavy chain sequences we used in this analysis are available in GenBank with ac-

cession numbers KP840719KP841751. To compare sequence profiles we used a modified

Sandelin-Wasserman similarity score, as described in [166, 152] . Briefly, this score was

calculated by computing the sum of squared difference for each amino acid frequency at

each position, which was then subtracted from two and normalized to yield a percent simi-

larity for each position and summed over all designed positions to give an overall similarity

score.

98

Chapter 8

ANTIBODY DESIGN AS A STACKELBERG GAME

8.1 Contributions

In this chapter, we formulate antibody design as a Stackelberg game between the vac-

cine designer (drug designer, etc), who stimulates an antibody with particular binding char-

acteristics (this is the binding site in the antibody sequence), and the virus subsequently

responds to the antibody by attempting to evade it (evade binding to it, that is) through a

series of local mutations. So, the “designer” chooses an antibody, and the virus responds

through a shortest sequence of mutations leading to escape.

The designer-virus game poses two challenges: 1) enormous search space for both the

designer and the virus (≥ 1050 in each case), and 2) determination whether an arbitrary

antibody-virus pair bind. To tackle the former challenge, we propose, and compare the

performance of, several stochastic local search heuristics, using the native antibody as a

“springboard”. Even for computing virus escape alone, this approach scales poorly. The

major bottleneck is the second challenge: binding evaluation. For this purpose we make

use of Rosetta, a premier computational protein modeling tool [20]. Rosetta, however,

can be extremely time consuming even for a single evaluation (which could take nearly

an hour, as it makes use of its own sophisticated amalgam of local search techniques to

simulate a binding complex). To significantly speed up the search, we use classification

learning to predict whether or not an antibody-virus pair bind, limiting Rosetta evaluations

only to cases in which the classifier predicts that they do not. While this makes the virus

escape search practical, the bi-level nature of the problem means that antibody design is

still quite time consuming. To address this, we make use of Poisson regression to predict

virus escape cost. Making use of the resulting predictions now makes antibody design

viable, with “inner loop” (virus escape) evaluations restricted to a small set of candidate

99

antibodies predicted to be difficult to escape.

In summary, we make the following contributions:

1. A novel Stackelberg game model of antibody design and virus escape interaction,

2. stochastic local search techniques to determine optimal virus escape, with classifier-

in-the-loop used to speed up the evaluations, and

3. stochastic local search techniques for optimal antibody design, making use of Poisson

regression to predict minimal virus escape time.

Our methods ultimately exhibit antibodies that are far more robust to mutation than the

native antibody.

8.2 Antibody Design as Stackelberg Game

When an antibody is present in the system, it effectively reduces the fitness of all virus

mutations that bind to it. This exerts selective pressure on virus mutants, ultimately leading

to survival of those which escape binding. The native viral strains (also called wild type,

in that they are typically found “in the wild”) have, by definition, an evolutionary advan-

tage in the absence of the antibody (vaccine), and can be presumed to initially dominate.

Consequently, mutations that exhibit greater differences from the native (wild type) are in-

creasingly unlikely, both because three or more point mutations are unlikely, and because

general selective pressures on the virus [167]. Thus, the virus in the presence of an anti-

body that binds the native faces two opposing pressures: one which pushes it to escape the

antibody, and the other to retain most of the native type protein structure.

Let v0 denote the native virus, which we treat simply as a sequence (vector) of amino

acids, and v and a arbitrary virus and antibody sequences, respectively. Let O(a,v) repre-

sent binding energy for the antibody-virus pair (a,v), which is computed by Rosetta. We

100

stylize the “dilemma” faced by the virus as the following constrained optimization problem:

min
v∈V
‖v0− v‖0 (8.1a)

s.t. : O(a,v)≥ θ , (8.1b)

where V is the space of virus sequences under consideration, and θ is a threshold on

binding energy which designates escape (that is, once binding energy is high enough, the

proteins will no longer bind1); this threshold is typically domain-dependent. The l0 norm

simply computes the number of sequence positions in v that are different from v0. While

in principle we could consider the space of all possible virus sequences in this subproblem,

since virus structure and, consequently, its binding properties can be affected by a change

in any residue (amino acid) in its sequence. However, first-order effect in regard to its

antibody binding properties is determined by the sequence that is a part of the native virus

binding site. Therefore, we only consider the problem of virus escape in terms of binding

site mutations.

The optimization problem (8.1) can be viewed as a best response of the virus to a fixed

antibody a. Now we consider the problem of designing an antibody, a, that is robust to virus

escape. The target, virus escape, is now precisely defined by the virus optimization prob-

lem (8.1). Let v(a) be the solution to this problem—naturally, a function of the antibody

choice a. The designer’s decision problem is then

max
a∈A
‖v0− v(a)‖0, (8.2)

where A is the antibody design space, which we restrict to the native binding site for the

same reasons as for the virus. Alternatively, we can write this is a bi-level optimization

1This idea may seem counterintuitive at first, but it is a reflection of the well-known tendency of chemical
compounds towards low-energy states.

101

problem composing (8.2) with (8.1):

max
a∈A

min
v∈V
‖v0− v‖0 (8.3a)

s.t. : O(a,v)≥ θ , (8.3b)

Note that the antibody-virus interaction in our model is a Stackelberg game in which

the designer (antibody) is the leader, and the virus is the follower, who chooses an alter-

native virus sequence in response to the antibody chosen by the designer. Moreover, this

game is zero-sum: the designer wishes to maximize the number of escape mutations, a

quantity which is minimized by the virus. This interaction bares more than surface sim-

ilarity to Stackelberg security games [26, 27, 28]; the nature of the model, of course, is

entirely distinct. Game theoretically, our focus is on commitment to pure strategies (i.e.,

a fixed antibody sequence), and the solution is therefore not necessarily equivalent to a

Nash equilibrium of the corresponding simultaneous move game, unlike games in which

commitment to a mixed strategy is possible [28].

Returning to the bi-level optimization program that is the core of our antibody design

problem, we face two primary challenges: 1) enormous search space for both the designer

and the virus, and 2) determination whether an arbitrary antibody-virus pair bind. In the

case of the former, even if we restrict the search to the binding sites, the search space

for the antibody is 2052 and it is 2045 for the virus, since there are 20 amino acids and

the binding sites include 52 and 45 residues (sequence “slots”), respectively. Before we

begin with the associated algorithmic questions, we reduce the search space significantly

by abstracting amino acids into 7 groups that share common chemical properties, with each

group represented by a single prototype amino acid. We label these groups with letters

{C,P,A,W,R,D,N}. In the context of the second challenge, we note that even a single

evaluation of binding energy for an arbitrary antibody-virus pair using Rosetta can take up

102

to 40 minutes. However, local search, which is one of our core techniques below, can help

with this. In particular, if we start with a known antibody-virus binding structure and keep

the antibody fixed, we can evaluate the effect of single-point mutations in the virus an order

of magnitude faster (i.e., in several minutes). Several minutes is still extremely slow if we

consider the search space size, so clearly it is not in itself sufficient, but is a considerable

help when coupled with our search methods described below. Setting the challenges aside

for the moment, at the high level the problem can be solved as shown in Algorithm 8, where

a0 and v0 are the native antibody-virus pair. Algorithm 8 takes as a black box our ability

Algorithm 8 High-level algorithm for antibody design

function ABDESIGN(a0,v0)
s = initializeState(a0,v0)
for K iterations do

a = chooseNext(s)
e = findEscape(a,v0) // e = escape time
a∗ = updateOpt(a,e)

return a∗

to compute virus escape (which in turn relies on Rosetta as a black box to evaluate binding

strength), and is in the form of a very general stochastic local search algorithm [168], which

proceeds through a sequence of iterations, choosing and evaluating candidate antibodies a

in the process, returning the most effective antibody found at the end.

8.3 Rosetta Protocol

An important component of our simulation-based optimization procedure is the evalu-

ation of binding energy for a given antibody-virus pair using Rosetta. We now describe the

specific protocol used to this end, developed with the aid of a Rosetta co-creator, striving

to minimize the amount of time spent evaluating binding energy.

The native virus-antibody complex PDB2 is obtained from the protein database and is

2The Protein Data Bank (PDB) format provides a standard representation for macromolecular structure
data derived from X-ray diffraction and NMR studies. The initial antibody-virus complex is obtained in this
format and all 3D structures are output in this format after the relax/repack steps described in the protocol.

103

first cleaned. The fast relax procedure3 is performed on this complex, which works by

iteratively making side chain repack and energy minimization steps. The structure can

change up to 2-3 Å from the starting conformation during this process. We output 10

structures and choose the one with minimum ddg4 as the starting relaxed complex. This

process requires about 40 minutes per structure output. Ddg of this chosen relaxed complex

is the binding score between the native virus and native antibody.

To obtain 3D structures corresponding to single point mutations, we make an appropri-

ate amino acid change in the virus/antibody part of the sequence. This is followed by 1

repack and 1 energy minimization step (as opposed to many cycles of these two steps until

some limit is reached required by fast relax), for faster results. This takes about 6 minutes

per structure output. Each such procedure is made to output three 3D structures (about

20 minutes total time) corresponding to the mutated sequence. Ddg score of each of the

structures is evaluated and the minimum ddg score is recorded as the score corresponding

to that particular mutation. For all such quick repack and energy minimization steps, the

starting PDB is already relaxed, so there is only a small difference compared to running the

much slower fast relax protocol each time.

8.4 Computing Minimal Virus Escape

Given that computing virus escape is a core subproblem—the “inner loop” of the anti-

body design process—we begin our endeavor with this subproblem.

8.4.1 Greedy Local Search

Our baseline approach for computing an escape sequence for the virus, given an anti-

body a, is a greedy local search algorithm initialized with the native virus v0 (Algorithm 9).

3See https://www.rosettacommons.org/manuals/archive/rosetta3.4 user guide/d6/d41/relax commands.
html for details.

4ddg is the energy of the antibody-virus complex less the total energy of the two in isolation. Thus, when
ddg is negative it implies that the complex has a lower energy, i.e., is more stable, than individual proteins.

104

Before even undertaking the search, we check that v0 binds to a; if it does not, we can im-

mediately return 0 (that is, there are 0 mutations needed to escape). At the high level, the

algorithm proceeds as follows. Starting with v0, the binding score is evaluated for all the

neighbors of v. The single-point mutation causing the largest increase in binding energy

score from the native is chosen at each iteration until this score exceeds the threshold θ .

The escape cost is computed simply as the number of greedy iterations, e.

Algorithm 9 Greedy local search for a virus escape sequence minimizing ‖v0− v‖0.

function VIRUSESCAPEGREEDY(a,v0)
v← v0

e← 0
while O(a,v0)< θ do

v← argmaxw∈V :‖v−w‖0=1 O(a,w)
e← e+1

return e

As mentioned earlier, greedy local search has an important feature that the binding score

in each iteration can be computed much faster by Rosetta, given the structure from previous

iteration, than if it were computed for an arbitrary antibody-virus pair. An example run of

greedy search is shown in Figure 8.1 for θ = 0, where escape takes 5 mutations.

Local search has two important disadvantages. First, it is quite possible that by con-

sidering combinations of mutations one can achieve much faster escape time. An arguably

more severe issue is that it still requires extremely slow evaluations by running Rosetta

in each iteration. Next, we tackle the latter problem by using classification learning as a

means to avoid costly evaluations.

8.4.2 Speeding Up Search through Learning

Figure 8.1 reveals an interesting piece of structure about the problem: most candidate

mutations in any iteration make little difference in binding score, but there are typically a

few that make a rather significant difference. Conceptually, this is an opportunity: if we

could restrict our evaluations only to those that are likely to matter, we can save much time

105

O
(a

,v
)

0

-20

-40

-60
0 15 30 0 15 30 45

-4

-12

-8

-16
45

-4

-12

-8

-16

0 0

-4

-8

-12
0 15 30 450 15 30 45

0 15 30 45

0

-4

2

O
(a

,v
)

O
(a

,v
)

O
(a

,v
)

O
(a

,v
)

Figure 8.1: Example greedy search to compute escape cost. Horizontal axes correspond
to point mutations in each virus sequence position, relative to the sequence from previous
iteration, and vertical axis is the corresponding binding score. C,P,A,W,R,D,N correspond
to the 7 amino acid classes that are candidate mutations.

in the execution of the greedy search.

To operationalize this observation, we train a classifier that predicts for a given (a,v)

pair whether the virus sequence v will cause a significant change in binding score relative

to other single-point mutations from its neighbor (since the said neighbor is left unspeci-

fied, we are effectively assuming that significant deviation from baseline score is primarily

a property of the evaluated virus sequence, rather than the sequence for which we are con-

sidering single-point mutations). To generate training data for this classifier, we collect a

set of actual greedy search runs for alternative antibodies. For each (a,v) pair, the feature

vector consists of binary indicators whether a particular position is different from the native

(a0,v0) sequences, as well as a collection of 15 amino acid features defined with the help

106

of domain experts for each position in the sequence pair.

For a given feature vector (i.e., a given (a,v) pair), we assign a label +1 if O(a,v) >

M(a, v̄) + 0.9(g(a, v̄)−M(a, v̄)), and−1 otherwise, where v̄ is the virus sequence for which

v is a single-point mutation, M(a, v̄) is the median binding score of all single-point muta-

tions from v̄, and g(a, v̄) is the highest score among these. We denote the resulting classifier

by Ω(a,v).

In addition, we train using the same data and same features a classifier Ψ(a,v) which

predicts whether a and v bind (labeled as +1) or not (labeled as −1).

In each case, we train a linear SVM classifier with l2 loss and l1 penalty, ensuring

sparsity to cope with our rather large feature space. Also, since in both cases the two

classes are highly unbalanced (very few mutations cause large increase in the score and we

stop searching as soon as there is escape, so most pairs bind), we assign class weights for

the two classes that are inversely proportional to their frequencies in the training dataset.

Armed with the two classifiers just constructed, we can now significantly speed up the

greedy search. The new algorithm (Algorithm 10) works as follows. In each iteration of

the virus escape search and for each possible neighbor w (i.e., single-point mutation) of

the current virus iterate v, we first check whether w will effect a significant difference from

the baseline score for v using the classifier Ω(a,w). If so, we also check using Ψ(a,w)

whether w will still bind to a; if we expect that it will not, we verify this prediction by

actually evaluating the binding using Rosetta. If it is confirmed, we can now stop the

search. Otherwise, w is added to the consideration set of next virus iterates. Finally, we

only evaluate those possible single-point mutations from v which we expect to make a

significant difference, and which are not predicted to have already escaped (if they are, but

were verified to bind, we can simply reuse the corresponding binding score here, so there

is no need to evaluate this mutation again).

107

Algorithm 10 Classifier-guided greedy search.

function CLASSIFIERGUIDEDSEARCH(a,v0)
v← v0

e← 0
while O(a,v0)< θ do

B← /0
e← e+1
for w : ‖v−w‖0 = 1 do

if Ω(a,w) = +1 then
if Ψ(a,w) =−1 then

if O(a,w)≥ θ then
return e

else
B← B∪w

v← argmaxw∈B O(a,w)
return e

8.5 Antibody Design

Having considered the problem of computing virus escape for an arbitrary antibody a,

we now turn to the “outer loop” of the bi-level optimization problem: antibody design. We

begin by considering two alternative local search heuristics, taking the evaluation function

(virus escape) as given. We then proceed to shortcut virus escape evaluation altogether

through another application of machine learning.

8.5.1 Stochastic Local Search for Antibody Design

Random with a Native Antibody Bias (BiasedRandom): Our simplest algorithm is a

random search which is biased towards the native antibody sequence a0 (and restricted

to changes in its binding site alone, as all other methods), so as to take advantage of the

structure in the native antibody a0. In particular, we first choose the number of mutations n

to a0 uniformly at random in the interval [1,52] (that is, randomly changing between 1 and

all residues in the binding site of the native antibody). Then we choose a random subset of

n residues, R, in the a0 binding site. Finally, independently for each residue (slot) r ∈ R,

108

we pick an amino acid group distinct from a0 uniformly at random from all the 7 groups

we consider. This yields a candidate antibody a ∈ A. We proceed through this search by

drawing I such candidate antibodies {ai}i=1,...,I . Here, we leverage the classifier Ψ(a,v) to

predict whether the (a,v) pair bind. In particular, if ai drawn according to the procedure

above is predicted not to bind to the native virus v0, it is simply discarded, and another is

drawn in its place, until one is found which binds to the native virus. Each ai is evaluated

by calling the findEscape(ai,v0) evaluation function, which executes Algorithm 10.

Simulated annealing: A relatively widely used stochastic local search method is sim-

ulated annealing [168]. Our variation of simulated annealing (Algorithm 11) uses as a

starting point a random antibody that is sampled in exactly the same biased way as Biase-

dRandom above. In addition, it leverages the classifier predicting binding described above

to check that an antibody generated in a given step binds to the native virus v0, throwing

away any instance that does not.

Algorithm 11 Simulated Annealing search

function ABSEARCHSA(a0,v0,α,T0)
do

a← BiasedRandom()
while Ψ(a,v0) =−1
e =findEscape(a,v0)
a∗← a
u∗← e
T ← T0
for i in 1 to I do

T ← αT
do

a′← random neighbor of a
while Ψ(a′,v0) =−1
∆E←findEscape(a′,v0) −e
if ∆E > 0 then

a← a′

e← findEscape(a′,v0)
else

a← a′ w.p. exp(∆E/T)
e← findEscape(a′,v0)

109

8.5.2 Speeding Up Antibody Search through Learning

Clearly, the main bottleneck of the antibody design search is evaluation. While we

previously described a collection of strategies for speeding up evaluation, ultimately they

are all relatively slow, each requiring multiple calls into Rosetta even in the best case. A

natural question is whether we can shortcut this lengthy process altogether by predicting

escape time. We implement this idea by using Poisson regression as stochastic prediction

of escape times for a given antibody a. The advantage of using Poisson regression is that

it properly captures the stochasticity of our escape evaluations, an important source of

which is stochasticity in Rosetta evaluations. In Poisson regression, the escape time Z is

distributed as Pr(Z = z) = e−µ µz

z! , where log(µ) = βx, with β the parameter vector and x

the vector of features. We used the same set of features as for the classification tasks above.

After the Poisson regression model is learned, it can be used in place of findEscape(a,v0)

in all of the design algorithms, with actual evaluations only necessary to check the final so-

lution.

We wish to make an important final point about overall antibody design implementa-

tion. All of the learning methods described need training data, the collection of which must

take place during the design process itself. Therefore, the overall algorithm would work as

follows. For the first subset of iterations of antibody design, the baseline greedy approach

must be used to collect sufficient training data to train the classifiers Ω(·) and Ψ(·). In

the next subset of iterations, the evaluations use the classifier-based methods, as additional

training data is collected to predict escape times. Finally, we can proceed with many more

iterations of antibody design by only using the predicted escape times. While this is the

ideal use of the proposed approach, our evaluation below considers the different proposed

pieces in isolation to enable sound practical recommendations.

110

8.6 Evaluation

To evaluate our approach we used a native antibody-virus interaction for HIV.

The native structure is the co-crystal structure of the antibody VRC01 complexed with

the HIV envelope protein GP120.

This structure has 3 chains, the virus chain G and the heavy and light chains in the

antibody H and L. The binding site on the virus is chain G with 45 residues, while the

binding site on the antibody includes chains H and L with a total of 52 residues.

The binding score for the native pair is O(a0,v0) =−49.5. The visual representation of

the native binding structure is shown in Figure 8.2 (left).

H

L L

HH

G G

Figure 8.2: The native antibody, H and L, with the native virus, G (left) and antibody with
escape cost=7 (right). The arrows point at some significant differences.

8.6.1 Computing Virus Escape

We begin the evaluation with the subproblem of computing virus escape. To evaluate

the effectiveness of using the two classifiers in the search process, we consider 346 anti-

bodies drawn according to the Biased Random distribution described above (to mirror the

distribution with which they are drawn algorithmically). For evaluation, we consider two

settings: a) using 75% for training, and b) using 50% for training, with the rest used for

evaluation. In our running time comparison (so that the comparison is meaningful), we use

111

nu
m

be
r o

f e
va

lu
at

io
ns

0

10

15

20

5

x104

0 100 200 300

A
B

0 100 200 300
antibodies

nu
m

be
r o

f e
va

lu
at

io
ns

0

10

15

20

5

x104

A
B

nu
m

be
r o

f e
va

lu
at

io
ns

0

10

15

20

5

x104

0 100 200 300

A
B

0 100 200 300

A
B

nu
m

be
r o

f e
va

lu
at

io
ns

0

10

15

20

5

x104

0 30 60 90

4

0

-3

∆(
e)

0 18090

2

0

-2

4

∆(
e)

0 30 60

2

0

-2

∆(
e)

0 70 140

2

0

-2

∆(
e)

(a) (b) (c) (d)

Figure 8.3: Comparison between baseline (A) and classifier-based greedy (B) algorithms
for computing virus escape in terms of the number of evaluations (top) and computed es-
cape time (bottom). (a) θ = 0, 75% of data for training; (b) θ = 0, 50% of data for training;
(c) θ = −15, 75% of data for training; (d) θ = −15, 50% of data for training. Horizontal
axes denote antibodies.

the combined running time expended both in collecting the training data and the evaluation.

We used the LIBLINEAR SVM implementation [169], using l2 loss and l1 regularization.

The ratio of +1 to −1 instances in the training data is ∼0.005 for both classifiers. The av-

erage accuracy for the classifier Ω which predicts which neighbors will cause a significant

change in the baseline score is 90.3% when 75% of the data is used for training and 90.7%

when 50% of the data is used for training. The corresponding false negative rates are 6%

and 10.2% respectively. For the classifier Ψ, the respective accuracies/false negative rates

are 90.5%/17.6% and 90.4%/15.3%.

All these results are based on five-fold cross-validation.

The results of the comparison between the baseline and classifier-based greedy ap-

proaches for computing virus escape are shown in Figure 8.3. As expected, using the

classifiers in the greedy loop dramatically reduces the number of Rosetta evaluations. The

main question is whether it preserves the quality of the resulting solutions. The results in

Figure 8.3 (bottom) show a scatterplot of the escape time difference (∆e) compared to base-

line greedy (verified using Rosetta) for the collection of antibodies tested. Zero, of course,

112

means that they are the same; above zero means that the classifier-based approach finds

mutations with smaller escape time than greedy—that is, it actually yields a better solu-

tion, whereas below zero results imply that the classifier-based approach results in a worse

solution than the baseline. It is clear from the figures that quite often the classifier-based

approach is actually better, in part because of the randomness that the classifier inaccuracy

introduces into the process (as a result of this, it is no longer strictly hill climbing). The

average differences, which are −0.02,0.07,0.11, and 0.15 for (a), (b), (c), and (d) respec-

tively, suggest that we lose very little by switching to the classifier-based search in terms

of expected solution quality.

8.6.2 Antibody Design

An important contribution towards practical antibody design was the proposal of using

Poisson regression in place of the full virus escape subroutine. The effectiveness of this

approach for optimization purposes hinges on our ability to distinguish among antibodies

in terms of escape cost, far more so than actual accuracy. Correlation is a natural measure

of this. We train the Poisson regression model on the escape cost for the same 346 antibod-

ies considered above. We use the GLMNET package in R [170] to fit Poisson regression

parameters, using l1 regularization. We find that the average correlation between predicted

and actual (computed) escape times is 0.66 (based on 10-fold cross-validation), suggest-

ing that the idea is potentially quite viable. Next, we actually utilize the predicted escape

costs in the local search algorithms proposed for antibody design: biased random (or sim-

ply “random” in the experiments) and simulated annealing. The comparison in terms of

predicted escape time, as a function of the number of iterations, is shown in Figure 8.4

. The random biased approach appears clearly better than simulated annealing, perhaps

somewhat surprisingly. The likely reason is that our filter that removes any candidates that

do not already bind to v0, combined with the bias introduced in search, already provide a

good balance between global search and local structure. Next, we evaluated the quality of

113

the final candidate antibody generated by each search after 400 iterations, averaged over

80 independent search sequences using actual greedy local search for virus escape. The

results, shown in Figure 8.5 demonstrate both that the ordering predicted by the Poisson

regression is consistent with the evaluation result: random, again, is significantly better

than simulated annealing (p-value< 0.001).

Finally, we report the upshot: the actual set of antibodies we generated as a part of our

search process, ranked in terms of evaluated escape cost (Figure 8.6). It is noteworthy that

we found many antibodies which are much more robust to escape than the native when

θ = 0.

search iterations

av
er

ag
e

pr
ed

ic
te

d
es

ca
pe

 c
os

t

0 100 200 300 400
1.6

1.8

2.0

2.2

2.4

simulated annealing
random subsample

Figure 8.4: Antibody design algorithms comparison (θ = 0).

8.6.3 The Best Antibody

The best antibody discovered in our experiments has escape cost of 7 (compared to

only 1 mutation needed to escape the native VRC01 antibody!), and the resulting antibody

complexed with the native virus is shown in Figure 8.2 (right). The designed antibody

has 39 amino acid changes from the native. Structurally, this antibody has two portions

of the mid-H chain that are somewhat wider apart, which likely leads to a better grip on

the virus chain G. Similarly there is a larger area of interaction between the L chain and

G chain in the new antibody. Visually, the differences appear quite small, but make a

114

random simulated annealing
0

2

4

6

prediction
evaluation
max cost

es
ca

pe
 c

os
t

Figure 8.5: Antibody design algorithms comparison after 400 iterations averaged over 80
search sequences (θ = 0).

significant difference in the ultimate breadth of binding, emphasizing the importance of a

computational micro-level design approach.

 evaluated antibodies
0 200 400 600 800

0

2

4

6

8

es
ca

pe
 c

os
t

Figure 8.6: Evaluated antibodies for θ = 0, ranked by escape cost. The native antibody
escape cost is 1.

8.7 Discussions

We have, for the first time, formulated the virus evading antibodies problem as a Stack-

elberg game in which the antibody designer moves first, and the virus responds by escaping

through the smallest number of protein sequence edits. We were able to exploit the problem

115

structure to develop effective classification algorithms to significantly speed up the evalu-

ation of escape cost for a particular antibody, as well as to predict escape cost, with little

loss in solution quality. Moreover, we exhibited an antibody that is far more robust to virus

escape than the native (i.e., the antibody found in nature to bind to the corresponding virus

epitope).

While our general approach shows much promise as an alternative route for antibody

design to what is traditionally pursued, it has a number of limitations. First, we use protein

sequence edit distance as a proxy for the difficulty of viral escape. In reality, a more

meaningful measure is the number of nucleotide mutations required. This gives rise to two

questions for future research: first, how good a metric is edit distance in predicting virus

escape, and second, how can one map a metric based on nucleotide mutations into protein

sequence edits (necessary for our search process). For the second question, a promising

idea is to define a more generic cost function for virus escape, where cost of edit from one

amino acid to another is measured in terms of corresponding mRNA mutations. If we could

devise such a cost function, the approach developed in this paper is almost immediately

applicable.

Another important consideration is that escape is not the lone survival criterion for a

virus protein. Other important considerations are virus protein stability, and its ability to

function and reproduce. For example, antibodies generally bind to a functional region of the

virus, so that escaping an antibody will often imply weakened binding to a body protein

critical for reproduction (such as CD4 in the case of HIV and sialic acid in the case of

influenza). Modeling this balancing game is relatively direct in our framework: we would

need to include additional binding energy constraints on virus escape, and our approach

remains largely unchanged.

Yet another issue is the viability of an antibody. This involves two considerations: pro-

tein stability, and the ability to develop a vaccine that would elicit it. The first consideration

can be handled directly in our framework: stability would entail an additional constraint

116

on the energy of the antibody 3D structure, which can be evaluated using Rosetta. This

additional constraint would, again, have little qualitative impact on the proposed approach.

The second issue is a problem for all research in antibody design and characterization, and

is not limited to our method in particular [17]. Addressing this issue requires both extensive

“wet-lab” evaluation, and, ultimately, clinical evaluation, both clearly outside the scope of

this work.

A final issue worth noting is that typically we encounter a population (more precisely,

a quasispecies) of viruses, rather than a single type, whenever mutation rates are high. The

simplest way to integrate this aspect into the model is by considering multiple native virus

proteins, and optimizing an antibody, or a collection of antibodies, that target all of these.

Fundamentally, this doesn’t change the overall approach, but clearly introduces additional

challenges which likely require further computational advances (e.g., clustering of virus

epitopes).

117

Chapter 9

LEVERAGING PROBLEM STRUCTURE FOR GLOBALLY OPTIMAL SOLUTION

IN THE ANTIBODY DESIGN GAME

9.1 Contributions

In this chapter, we investigate deeper into the computational aspects of our radically

different approach for antibody design in the context of rapidly mutating viruses: using a

game theoretic (Stackelberg game) model for the interaction between the antibody and the

virus. In this game, the antibody designer chooses an antibody sequence, while the virus

aims to maximally destabilize binding to the resulting antibody, subject to a constraint on

the number of mutations (this constraint captures the fact that such a mutation has to be

sufficiently likely). This game can be formulated as a bi-level optimization problem; un-

fortunately, such a formulation is quite intractable. We address tractability in three steps:

first, we learn a linear approximation of the antibody-virus binding score as a function of

its sequence (including all pairwise interactions at the binding site); second, we formulate

the optimal virus escape problem as an integer linear program; and third, after relaxing the

integrality constraint in the virus escape program and taking its dual, we formulate the anti-

body design bi-level problem as a mixed-integer linear program. Our experimental results

demonstrate that our approach is extremely effective against two recent prior approaches

for HIV antibody design.

9.2 A Game Theoretic Model of Antibody Design

We define an antibody or virus primary sequence as a sequence (vector) of amino acids

as in previous work [171]. Let c denote the native virus (the initial virus strain before mu-

tations) and (a,v) be arbitrary antibody and virus sequences respectively. Let B(a,v) and

S (a,v) denote the binding energy and the thermodynamic stability scores of the antibody-

118

virus complex. A combination of these is used as the overall energy score (often known as

the z-score) of the complex, which is what we actually work with, and denote by Z (a,v).

Also, lower (more negative) scores indicate stronger binding and stability of the antibody-

virus complex.

The virus sequence attempts to escape binding to the antibody by making a series of

mutations. We can represent the number of mutations in a mutated virus sequence v from

the native c as ‖v− c‖0, where the l0 norm computes the number of sequence positions

in v that are different from c. Given an antibody a, we model the virus as making up

to α mutations with the goal of maximizing its binding energy score so as to destabilize

binding. This model is motivated by natural selection: viral proteins which tightly bind to

an antibody will be cleared by the immune system, leaving those which do not, and the

remaining viral variants, mutating from a native sequence, will thereby increase in relative

prevalence.

In general, there are many potential virus variants that can infect an individual. To

capture this, we consider T virus sequences of different types t in a virus panel, each

starting from a native sequence ct and making mutations to escape binding to a.

We can formally represent the optimization problem being solved by a collection of

viruses as follows:

maximize
vt∈V

T

∑
t=1

Z (a,vt)

subject to ‖vt− ct‖0 = α,∀t. (9.1a)

where V is the space of virus sequences under consideration. The optimization problem

(9.1) can be viewed as the combined best response of the virus panel to a fixed antibody a.

The space of feasible virus sequences V can be all possible combinations of amino

acids in corresponding positions. However, in practice many such combinations are infea-

sible in nature, for example, because some mutations in specific positions destabilize the

119

viral protein, or affect function. These considerations are too complex to capture cleanly.

As a proxy, we constrain feasible mutations in each position to those which have been

observed in nature (in that position) sufficiently often. More precisely, we only consider a

mutation in a position i to an amino acid j if pi j ≥ θ , where pi j is the empirical frequency of

the associated position-specific mutation, and θ an exogenously specified threshold (θ = 0

is a natural choice, and one we use in the experiments; at this threshold, we only disallow

mutations that have never been observed in nature).

In addition to only allowing mutations which are not too rare in nature, we impose

another natural restriction on V . Specifically, first-order effects in regard to its antibody

binding properties are determined by the sequence that is a part of the native virus binding

site (i.e., positions on the native virus sequence which are in contact with the native anti-

body in the original binding complex). Therefore, we only consider the problem of virus

escape in terms of binding site mutations. This also allows us to significantly reduce the

dimensionality of the problem in practice.

Now we consider the problem of designing an antibody, a, that is robust to virus escape,

as we have now formally defined using the optimization problem (9.1). The antibody de-

signer’s decision problem is then to choose an antibody which minimizes the energy scores

(strengthens binding and stability) with respect to the virus panel {1, . . . ,T}, accounting

for potential mutations of each virus in response. This gives rise to the following bi-level

optimization problem for antibody design:

min
a∈A

max
vt∈V

T

∑
t=1

Z (a,vt)

subject to ‖vt− ct‖0 = α,∀t (9.2a)

where A is the antibody design space, which we restrict to the native binding site for the

same reasons as for the virus. Observe that the antibody-virus interaction in our model

can be viewed as a Stackelberg game in which the designer (antibody) is the leader, and

120

each virus is the follower, who chooses an alternative virus sequence in response to the

antibody chosen by the designer. Moreover, this game is zero-sum: the designer minimizes

the energy score, a quantity which is maximized by each virus t.

9.3 Solution Approach

9.3.1 A Bi-Linear Representation of Energy Scores

The optimization problem (9.2) is intractable in general, even when simulated using the

ROSETTA software. In particular, computing such a function using ROSETTA even for a

given pair of sequences requires many runs of stochastic local search, and takes on the order

of minutes or hours. We make progress by approximating the complex black-box ROSETTA

energy function Z (a,v) by a bi-linear function of the antibody and virus sequences, similar

to the approach proposed by Kamisetty et al. [143]. The model is based on an assumption

that the binding and stability of an antibody-virus complex is primarily determined by two

factors: a) the individual amino acids in each binding position of the antibody and the virus

respectively, and b) the effects of the pairwise amino acid interactions between the antibody

and the virus. We now describe this model in detail.

We represent an antibody sequence a as a binary position by amino-acid matrix, with

ai j = 1 iff amino acid j appears in position i, and ai j = 0 otherwise. Thus, ∑ j ai j = 1,

since exactly 1 amino acid can be in a given position. Similarly, virus protein sequence is

represented as a binary matrix vi j which is 1 iff amino acid j is in position i. Let Na and Nv

denote the number of binding positions on the antibody and the virus respectively, and let

M = 20 denote the number of amino acids.

Amino acid contributions to the energy score can be modeled as a bipartite graph in

which nodes represent the amino acids and the edges represent the pairwise amino acid

interactions. Each antibody position node i has an associated weight vector xi ∈ RM. Sim-

ilarly, each virus position node j has an associated weight vector y j ∈ RM. The edge (i, j)

121

between antibody position node i and virus position node j has an associated weight ma-

trix Qi j ∈RM×M to represent the position specific contribution to the energy score for each

amino acid pair. Consequently, given a and v, the energy score varies as the sum of individ-

ual amino acids and pairwise interaction effects. Given this setting, the z-score for a given

pair a and v is defined as:

Z (a,v) =
Na

∑
i=1

M

∑
j=1

xi jai j +
Nv

∑
i=1

M

∑
j=1

yi jvi j +
Na

∑
k=1

Nv

∑
l=1

M

∑
u=1

M

∑
m=1

akuqum
kl vlm + I (9.3)

where I is the intercept term and qum
kl represents Qkl(u,m).

Our bi-linear model thus has four sets of parameters: xi, y j, and Qi j for all pairs of

antibody and virus positions, i and j, respectively, and the intercept I. We learn these

parameters by generating a dataset of ROSETTA energy function values for a number of

pairs of antibody and virus sequences (as detailed in the experiments).

Armed with the bi-linear model described in this section, we can convert the hard

bilevel optimization problem into a significantly more tractable mixed-integer linear pro-

gram through a combination of convex relaxation and duality, as we describe next.

9.3.2 Integer Linear Program for Virus Escape

Our first step is to formulate the virus optimal escape problem as an integer linear

program.

We start by observing that the number of mutations α can be computed using a dot

product with the sequence representation described above. Specifically, vt · vt = Nv and

vt · ct = Nv− α . Moreover, Z (a,v) is now a linear function with the above sequence

representation. These observations allow us to formulate the virus escape optimization in

Equation 9.1 as an integer linear program (ILP). Since in this problem the antibody a is

fixed, we can group the model in Equation 9.3 in terms of the variables v as
N
∑

i=1

M
∑
j=1

xi jai j +

122

N
∑

i=1

M
∑
j=1

(
yi j +

N
∑

k=1

M
∑

u=1
akuqki

u j

)
vi j + I. Thus, the virus escape ILP for a particular native virus

indexed by t (from a collection of T of these) can be formulated as follows:

maximize
vt∈V

T

∑
t=1

Nv

∑
i=1

M

∑
j=1

(
yi j +

Na

∑
k=1

M

∑
u=1

akuqki
u j

)
vt

i j +T
Na

∑
i=1

M

∑
j=1

xi jai j

subject to
M

∑
j=1

vt
i j = 1,∀i, t (9.4a)

Nv−
Nv

∑
i=1

M

∑
j=1

vt
i jc

t
i j = α,∀t (9.4b)

vt
i j ≤ L(pi j−θ),∀i, j, t (9.4c)

vt
i j ∈ {0,1},∀i, j, t

where constraint 9.4a enforces that the binary variables vt
i j at each antibody binding posi-

tion should sum to 1, i.e., each position admits one amino acid. The term
Nv

∑
i=1

M
∑
j=1

vt
i jc

t
i j in

constraint 9.4b computes the dot product vt · ct . The constraint 9.4c encodes the constraint

that we only allow mutations at positions to amino acids which have been observed at a

frequency pi j ≥ θ as a linear constraint; here, L is a large number.

9.3.3 Mixed Integer Linear Program for Antibody Design

While we can represent the optimization problem faced by the virus given a fixed an-

tibody using a linear integer program, our underlying problem of antibody design is still

a bi-level problem. Such bi-level problems (with integer variables, as in our case) are, in

general, extremely challenging to solve.

At the high level, we propose to leverage the linear structure of the problem to solve it.

First, we relax the integrality constraint of the inner (virus escape) problem. This yields a

linear program, the dual of which we embed into the outer integer linear program. By re-

laxation, combined with strong duality of linear programming, the resulting mixed-integer

linear program minimizes an upper bound on the z-score objective with respect to optimal

123

virus escape.

We start with the ILP 9.4 computing the optimal virus escape, and relax the integrality

constraint; that is, we relax the binary vt
i j variables to be continuous and add the constraints

0≤ vt
i j ≤ 1. Next, we show that the resulting relaxed LP has integral optimal solutions.

The standard form LP {max wT s : As = b,s ≥ 0} with integral right-handside vector

b has an integral optimal solution if its constraint matrix A is totally unimodular [172], a

notion we now define.

Definition 9.3.1 (Total Unimodularity). A matrix A is totally unimodular (TUM) if the

determinant of each square submatrix of A is in {0,1,−1}. In particular, each entry of A is

in {0,1,−1}.

Theorem 9.3.1 (Sufficient Condition). A matrix A is TUM if it only has at most two non-

zero entries 1 or -1 in every column, and for all columns with two non-zero coefficients, the

column sum is 0.

We next use this sufficient condition for TUM to prove that our LP relaxation yields

optimal solutions to the original ILP. This result allows us to work with the relaxed LP for

the virus escape problem.

Proposition 1. The LP relaxation of the virus escape ILP 9.4 has integer optimal solutions.

Proof. We first prove that the constraint matrix in the LP relaxation is TUM. Consider the

LP relaxation with the constraints 9.4a and 9.4b and the non-negative variables. The

additional constraints 0 ≤ vt
i j ≤ 1 are already enforced using 9.4a and the fact that all

variables are non-negative. The corresponding constraint matrix has at most two non-

zero elements in any given column corresponding to the variables vt
i j. The first non-zero

element +1 from the relevant constraint 9.4a and the second non-zero element -1 from

9.4b. Therefore, using theorem 9.3.1, the constraint matrix is TUM. Since the right hand

side vector has integer elements, this LP relaxation has optimal integer solutions. This

124

conclusion continues to hold after adding the constraints 9.4c since these only additionally

restrict the variables to be zero under specific conditions.

We observe that the primal relaxed LP is feasible and bounded, and, therefore, the

dual is also feasible and bounded, and (by strong duality) has the same solution as the

primal. Let the associated (non-negative) dual variables be denoted by ψ t
i j for each of the

constraints vt
i j ≤ 1, and let φ t

i (unrestricted), πt (unrestricted) and ρ t
i j (non-negative) denote

the dual variables corresponding to constraints 9.4a, 9.4b, and 9.4c. Note that all dual

variables are continuous. The dual LP is the given by the following (a is fixed here as in

the primal LP):

minimize
φ ,ψ,ρ,π

T

∑
t=1

[Nv

∑
i=1

φ
t
i − (Nv−α)πt +

Na

∑
i=1

M

∑
j=1

L(pi j−θ)ρ t
i j +

Nv

∑
i=1

M

∑
j=1

ψ
t
i j

]
+T

Na

∑
i=1

M

∑
j=1

xi jai j

subject to φ
t
i −π

tct
i j +ρ

t
i j +ψ

t
i j ≥

(
yi j +

N

∑
k=1

M

∑
u=1

akuqki
u j

)
,∀i, j, t (9.5a)

ψ,ρ ≥ 0,π,φ unrestricted variables

Next, we integrate this dual LP into the antibody optimization problem in Equation 9.2

to formulate the following mixed integer linear program (MILP):

minimize
a∈A ,φ ,ψ,ρ,π

T

∑
t=1

[Nv

∑
i=1

φ
t
i − (Nv−α)πt +

Na

∑
i=1

M

∑
j=1

L(pi j−θ)ρ t
i j +

Nv

∑
i=1

M

∑
j=1

ψ
t
i j

]
+T

Na

∑
i=1

M

∑
j=1

xi jai j

subject to φ
t
i −π

tct
i j +ρ

t
i j +ψ

t
i j−

N

∑
k=1

M

∑
u=1

akuqki
u j ≥ yi j,∀i, j, t (9.6a)

M

∑
u=1

aku = 1,∀u (9.6b)

at
i j ∈ {0,1},∀i, j, t

ψ,ρ ≥ 0,π,φ unrestricted variables

The variables now include the binary antibody variables ai j, and the constraints ensure

that these sum to 1 at each antibody binding position, i.e., each position admits one amino

125

acid. An important observation we can make is that while originally we had bi-linear terms

involving antibody and virus decision variables, these are decoupled after taking the dual,

resulting in solely linear terms.

9.4 Experiments

The data comprises the anti-HIV antibody VRC23 [141] (the native antibody) against a

set of 180 diverse HIV gp120 virus sequences (derived from Chuang et al. [118]). To gener-

ate our training data, we make random antibody and virus substitutions in the binding sites

of VRC23 and the set of 180 virus sequences (Na = 27 and Nv = 32). Each antibody/virus

variant has five randomly selected amino acid mutations. All antibody-virus pairs are sub-

jected to an energy minimization via the ROSETTA relax protocol (iterative rounds of side

chain repacking and backbone minimization [173], talaris2013 score function). We gen-

erate 50 models of each antibody-virus pair and choose the lowest scoring model in each

case. We then construct the dataset for our experiments with a total of 7360 such random

antibody-virus combinations (including VRC23 and the 180 virus sequences). We compute

mutation frequencies (pi j in our terminology) from an exhaustive database of over 66,000

HIV-1 sequences (from the Los Alamos HIV sequence database http://www.hiv.lanl.gov/).

We set the threshold θ to be 0, excluding only mutations which are never observed in

nature.

9.4.1 Bi-linear Z-score Model

The feature vector f consists of Na×M binary antibody features, Nv×M binary virus

features and Na×Nv×M×M binary pairwise interaction features corresponding to x,y

and Q respectively. We use sparse matrices to represent this feature space and use the

Lasso implementation in scikit-learn [174] with l1 (sparse) regularization. To measure

the accuracy of predictions, we compute the correlation coefficient between the ROSETTA

computed z-scores and the scores predicted by regression. We perform a 10-fold cross

126

validation experiment with 80% of the data for training and 20% for testing. Based on this

parameter tuning, we choose regularization parameter λ = 0.01 with an average correlation

of 0.85 between the predicted and the ROSETTA computed z-scores.

We denote our proposed antibody design approach as STRONG: STackelberg game

theoretic model for RObust aNtibody desiGn and compare against the two prior approaches,

a) BROAD [166] and b) the game theoretic approach proposed in [171] (henceforth denoted

as AAMAS2015).

9.4.2 Comparison against BROAD

BROAD [166] is a state of the art algorithm for antibody design against a fixed panel

of HIV virus variants that involves generating a large training set of binding and stability

scores using ROSETTA, fitting linear models to predict binding and stability, and solving

an ILP to compute an optimal broadly binding antibody sequence.

We perform the comparison following the experimental workflow in BROAD. We con-

struct 50 random subsamples of the full training data corresponding to T = 100 out of

the 180 virus sequences We train binding and stability prediction models on this data and

compute the BROAD antibody sequence by solving an ILP with the T virus sequences in

the training subsample. Next, for each training subsample we learn the bi-linear model

in Equation 9.3 and save the coefficients. Then, we solve the MILP 9.6 to compute the

corresponding STRONG antibody for a given α . Given this antibody, we solve ILP 9.4

to compute T escaping virus sequences corresponding to each of the T training sequences

(native). We use CPLEX version 12.51 to solve the (mixed) integer linear programs. Fi-

nally, we train a z-score model on the full dataset (T = 180). We evaluate the BROAD

and the STRONG antibody sequences in terms of the predicted z-score against a) the full

180 virus panel and b) the 100 escaping virus sequences in case of each training subsam-

ple. This procedure is outlined in Algorithm 12. As we show in Figure 9.1 STRONG is

significantly better in minimizing the z-score objective as compared to BROAD.

127

Algorithm 12 Generating and evaluating STRONG antibody candidates
for each random training set subsample corresponding to T = 100 virus sequences do

Training Data: B(a,v),S (a,v),Z (a,v) corresponding to the T training sequences
Learning: bi-linear model for z-score
Optimization: STRONG antibody←MILP 9.6 solution, escaping set← ILP 9.4

solution
Evaluation: predicted z-score using model trained on the full dataset, and ROSETTA

modeling

0 2 4 6 8
Number of mutations (al ha)

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

Z-
sc
or
e

BROAD
STRONG

0 2 4 6 8
Number of mutatio s (alpha)

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

Z-
sc
or
e

BROAD
STRONG

Figure 9.1: Comparison between STRONG and BROAD in terms of the z-score objective
(lower is better): on the full 180 virus panel (left) and the 180 escaping virus set (right).

Finally, we evaluate in terms of the breadth of binding (fraction of viruses in the eval-

uation panel to which the designed antibody binds) generated using ROSETTA structure

modeling. We choose 50 random subsamples of training sets with T = 30 virus sequences.

Based on binding and stability models trained on the full dataset, we generate the top 10

BROAD candidates. Next, we generate the STRONG antibody for a randomly chosen top

BROAD candidate using α = 5. We perform ROSETTA structure modeling on these an-

tibody candidates (one BROAD and one STRONG candidate) and the escaping set of 30

virus sequences. For comparison, we also include the native antibody VRC23. We present

the ROSETTA computed breadth in each case in Table 9.1. STRONG significantly outper-

forms BROAD against the escaping virus panel while it continues to be effective against

the training panel.

128

Virus Sequences for Evaluation VRC23 BROAD STRONG

180 HIV panel 53.3 100 96.1
30 Escaping virus sequences 43.3 86.7 93.3
30 Training virus sequences 56.7 100 100

Table 9.1: ROSETTA structure modeling results: breadth of binding (%).

9.4.3 Comparison against AAMAS2015

The game-theoretic antibody design approach in [171] uses machine learning guided

stochastic local search to compute optimal antibodies. Following the biased random ap-

proach in the above research, we generate a set of 350 antibody sequences starting with

VRC23. We compute the corresponding average escape costs (number of mutations to

escape) with greedy local search starting from the 180 virus panel. We train a binary

antibody-virus binding prediction model using an rbf kernel SVM on the full dataset and

use this model in the greedy search to evaluate binding. Next, we learn a linear regression

model to predict this average escape cost as a function of the antibody sequence. Using

these models, we perform 50 independent sequences of local search (400 iterations, ran-

dom with native bias [171]) to compute 50 optimal antibody candidates.

For comparison, we generate STRONG antibodies corresponding to the above 50 anti-

bodies, with α set to the nearest integer escape cost in MILP 9.6. Using the z-score model

trained on the full dataset, we evaluate these antibodies in Figure 9.2, on the full 180 panel

and the escaping set in each case (from ILP 9.4). Our proposed approach is significantly

better in minimizing the objective (z-score). We also plot the comparison as a function of

the local search iterations and observe a similar trend in Figure 9.3. Note that the z-scores

increase with iterations since the average escape cost increases as well.

129

AAMAS2015 STRONG

−1.5

−1.0

−0.5

0.0

Z-
sc

or
e

AAMAS2015 STRONG
−0.5

0.0

0.5

1.0

Z-
sc

or
e

Figure 9.2: Comparison between STRONG and AAMAS2015 in terms of the z-score ob-
jective (lower is better): on the full 180 virus panel (left) and the 180 escaping virus set
(right).

0 100 200 300 400
Local search iterations

−2.0

−1.5

−1.0

−0.5

0.0

Z-
sc
or
e

AAMAS2015
STRONG

0 100 200 300 400
Local search iterations

−1.5

−1.0

−0.5

0.0

0.5

1.0

Z-
sc
or
e

AAMAS2015
STRONG

Figure 9.3: Comparison between STRONG and AAMAS2015 in terms of the z-score ob-
jective against search iterations (lower is better): on the full 180 virus panel (left) and the
180 escaping virus set (right).

9.5 Conclusions

We proposed an efficient approach for computational antibody design using a Stackel-

berg game model for the interaction between the antibody and the virus. We formulated

the game as a bi-level optimization problem, and proposed a method for solving it by lever-

aging a bi-linear model predicting binding stability as a function of antibody and virus

sequence, combined with integer programming. We show, in particular, that we can com-

pute optimal virus escape using an integer linear program the LP relaxed version of which

has integer solutions. Consequently, taking the dual of the associated relaxed LP we obtain

an optimization program which can be directly embedded in the optimal antibody design

problem, so that the antibody design problem can be solved using mixed-integer linear

130

programming. Our experiments show that our approach significantly outperforms both

the prior game theoretic alternative, and a state-of-the-art broadly binding antibody design

algorithm.

131

Chapter 10

CONCLUSIONS

10.1 Summary of Contributions

Adversarial planning and decision problems arise in several real-world situations and

these involve strategic interactions between multiple agents. In computing optimal deci-

sions, one needs to consider the corresponding combinatorial strategy space. Therefore,

a major challenge is to compute reasonably optimal solutions and to simultaneously en-

sure scalable decision making algorithms. In this dissertation, we achieve the following

two major goals. First, we present plan interdiction games, specifically, Stackelberg game

theoretic interaction to model large-scale adversarial decision problems. Second, we de-

velop scalable algorithms to solve the corresponding bi-level optimization problems in the

combinatorial strategy space.

In the plan interdiction framework, the defender deploys specific mitigation strategies

to interdict the attacker’s plans. The attacker then responds to the deployed mitigations

by computing an optimal plan in that environment. In previous work, a Stackelberg game

model formulation of plan interdiction has been considered, inspired by cybersecurity ap-

plications. In this model, the defender chooses a subset of actions to block (remove), and

the attacker constructs an optimal plan in response. This previous research is in the context

of deterministic (PDDL-based) planning and also, planning with uncertainty by modeling

the attacker as a markov decision process (MDP). However, there are several challenges

in representing and solving the MDP interdiction game, especially because the MDP state

space is exponential in size of the state variables. In this dissertation, we present novel

game-theoretic models for MDP interdiction and develop several efficient algorithmic ap-

proaches to alleviate the scalability limitations. Concurrently, we conjecture that the de-

132

cision making framework in interdiction games is a natural fit for real-world applications

beyond cybersecurity. In particular, we focus on a novel application area in immunology

and vaccine design. A major problem faced by drug and vaccine designers is that the dis-

ease (virus) evolves and mutates (extremely rapidly in some cases e.g., HIV) and therefore

escapes any prescribed treatment. The primary function of a vaccine is to generate antibod-

ies in the immune system, the protective protein sequences that fight against and destroy

any foreign infections (virus sequences). The goal of vaccine design, therefore, is to design

or discover antibodies that are robust against specific viruses. A robust antibody should

be effective against specific virus sequences and it should continue to be effective as these

sequences mutate to escape. We consider the problem of robust antibody design as a vari-

ation of plan interdiction, with an antibody sequence as the defender and an escaping virus

sequence as the attacker. Specifically, we model the interaction between the antibody and

the virus as a Stackelberg game. Our work, to our knowledge, is the first game-theoretic

model of molecular-level interaction between infectious disease treatment (antibodies or

vaccines) and the disease (virus).

This dissertation consists of two parts. In the first part, we present game-theoretic mod-

els for MDP interdiction and develop efficient algorithms for computing optimal decisions

for the defender. In each case, we demonstrate superior scalability through extensive ex-

periments on realistic MDP problem domains from the international planning competition

(IPC). In our proposed algorithms, it is important to note the trade-off between scalability

and utility (solution quality). In general, if we select the entire set of basis functions, we

will compute an exactly optimal solution. However, in our experiments, we demonstrate

that it is possible to achieve dramatic speed up without compromising solution quality.

In the second part, we focus on robust antibody design as an interdiction problem.

Specifically, the optimal antibody sequence (the defender) interdicts the escape plan of the

virus sequence (the attacker). Before we consider a game-theoretic model, we focus on

the general problem of broadly binding antibody design, i.e., we attempt to optimize the

133

antibody sequence against a fixed panel of virus sequences. Our algorithm achieves 100%

breadth of binding on a standard panel of 180 HIV sequences, as validated by extensive ex-

periments using the state of the art protein modeling software ROSETTA. Next, we proceed

to present a Stackelberg game-theoretic model for antibody and virus interactions. We de-

velop several algorithmic approaches to solve the difficult bi-level optimization problems

corresponding to the game. The specific contributions in this dissertation are summarized

in the following sections.

10.2 MDP Interdiction

10.2.1 Factored Representation and Scalable Bi-Level Optimization

The primary challenge in MDP interdiction is that the state space is exponential in the

number of state variables. We address this problem by leveraging approximation tech-

niques for factored MDPs. We present a mixed integer linear program formulation of a

Stackelberg game model of factored MDP interdiction. We represent the value function

as a linear combination of a set of basis functions. For effective basis representation, we

make use of a Fourier basis over a Boolean hypercube to represent the value function over

the binary state variables. Since the exact Fourier basis representation is still exponential,

we generate basis function iteratively while we compute the attacker’s optimal policy by

approximate factored MDP solution approaches. In doing so, we are able to efficiently

represent the exponential state space for value function computations, using an optimized

set of Fourier basis functions. However, in solving the MDP interdiction game, we face a

second challenge of a super-exponential set of constraints corresponding to alternative eva-

sion plans of the attacker. To tackle this problem, we develop a novel constraint generation

algorithm using a combination of linear programming factored MDP solvers and heuristics

for attack plan generation.

Our algorithms achieve dramatically improved scalability on realistic MDP problem

134

domains from the IPC and scale up to more than 260 state space sizes compared to the exact

interdiction baseline which does not scale beyond toy problem sizes (about 28). We also

demonstrate empirically that our algorithms achieve near-optimal interdiction decisions in

each MDP domain in our experiments.

10.2.2 MDP Initial State Interdiction: Single-Level Optimization

Although our proposed MDP interdiction algorithms are reasonably scalable, some sig-

nificant scalability limitations continue to prevail. For example, if we want to capture un-

certainty about the attacker, we would need to compute an optimal policy for each attacker

type, and this becomes intractable quite easily. We propose a novel interdiction model in

which, unlike prior work, the defender modifies the initial state of the attacker. The attacker

then starts planning from this modified initial state to compute an optimal policy. This is

also very general because the previous interdiction approaches can be modeled by adding

action-specific preconditions as state variables. We demonstrate that this model achieves

much simpler and more scalable interdiction algorithms. Specifically, the attacker’s opti-

mal policy computation is independent of the defender’s interdiction decision (modifica-

tion of initial state to a new start state). This results in a single-level optimization problem

corresponding to interdiction as compared to the more difficult bi-level optimization prob-

lems faced in previous work. We present a baseline initial state interdiction algorithm with

factored MDP solution approaches with Fourier basis and formulate the interdiction opti-

mization as an integer linear program. However, we observe that the difficulty of solving

the factored MDP grows exponentially in the number of interdependencies among state

variables in the underlying Bayesian network. Consequently, we propose model-free re-

inforcement learning to further improve scalability by directly learning the value function

from observations.

135

10.2.3 Improving Scalability with Reinforcement Learning

We begin with linear action-value Q-function approximation using the Fourier basis

set and adapt the traditional Q-learning algorithm to embed an a basis function selection

step in between gradient descent iterations. Specifically, we formulate a mixed integer

linear program that computes the most important basis function to add to an existing set,

based on the largest marginal impact on the Q-function approximation. We then extend

the interdiction integer program to work with the Q-function and present an algorithm for

state interdiction with linear Q-learning. Extensive experiments demonstrate that this ap-

proach achieves dramatically improved scalability. However, the performace still depends

on the subset of basis functions chosen for the approximation. To address this limitation,

we generalize the reinforcement learning framework to incorporate non-linear Q-function

approximation, e.g., neural networks-based Q-function. Since the integer linear program

that we developed for interdiction will no longer work with the non-linear approximation,

we propose two local search approaches, a) greedy local search by changing one state vari-

able at a time and b) a local linear approximation algorithm which linearizes the Q-function

locally and solves an integer linear program in that region. Extensive experiments demon-

strate that the non-linear Q-learning approach with local linear approximation achieves the

best scalability while ensuring reasonable solution accuracy. We reason that the Q-learning

based approaches scale better primarily because these do not need to explicitly solve the

MDP and learn the value function directly from observations.

10.2.4 Bayesian Interdiction

So far, in our models, we assumed that the interdiction game has complete information.

However, this is often not the case in real-world situations. We model this uncertainty about

the attacker (e.g., its capabilities and actions) in a Bayesian game framework to incorporate

several possible attacker types (in terms of the initial attack state such that the defender

136

does not have access to the full initial state). We observe that the value function learning is

in terms of the full initial state, whether or not observed by the defender. Therefore, all our

interdiction algorithms can be extended to the Bayesian game framework by introducing

additional variables and constraints specific to an attack type (and averaging over attacker

types in case of non-linear Q-learning). Extensive experiments demonstrate a large benefit

to the defender from considering Bayesian interdiction compared to the baseline interdic-

tion of a worst-case attack. While the runtime increases in Bayesian interdiction, it is small

relative to the actual time it takes to solve the MDP. To summarize, we present a scalable

extension of MDP interdiction to include uncertainty about the attacker in a Bayesian game

framework.

10.3 Robust Antibody Design as an Interdiction Game

10.3.1 Broadly Binding Antibody: Single-Level Optimization

We begin by proposing an algorithm for broadly binding antibody design against a fixed

panel of virus sequences. We quantify antibody-virus binding and stability using scores

generated by ROSETTA. However, ROSETTA evaluations are extremely expensive compu-

tationally (about an hour for a single antibody-virus pair scoring evaluation). First, we learn

a bi-linear model of pairwise amino acid interactions from data generated using ROSETTA

binding and stability scores. We then proceed to formulate the antibody design optimiza-

tion problem as an integer linear program that builds on the coefficients of the amino acid

interactions in the bi-linear model. Our algorithm achieves global optimization in the an-

tibody sequence space against a standard HIV virus panel and exhibits 100% breadth of

binding as predicted through ROSETTA evaluations. Additionally, it significantly outper-

forms the state of the art computational protein design algorithms. We further demonstrate

that sequences recovered by this method recover known binding motifs of broadly neu-

tralizing anti-HIV antibodies. Finally, our approach is general and can be extended easily

137

to other protein systems. Although our modeled antibodies were not tested in vitro, we

predict that these variants would have greatly increased breadth compared to the wild-type

antibody. To summarize, the combination of methods from optimization and protein struc-

ture modeling allows us to surpass protein design limitations that have been seen up to this

point. We predict that if we test these optimal antibodies against the HIV panel they will

have greater neutralization breadth compared to existing antibodies.

10.3.2 Game Theoretic Robust Antibody Optimization

Next, we consider the goal in robust antibody design, i.e., the designed antibody should

continue to bind and deactivate the virus sequences against escape mutations. We formulate

antibody design as a Stackelberg game between the antibody sequence / vaccine designer

(leader) and the virus (the follower) that responds by attempting to escape through the

minimum number of mutations.

The key challenge is the enormous combinatorial search space corresponding to the

antibody and virus sequence binding sites. We propose and evaluate several stochastic

local search approaches to optimize the antibody sequence, starting from a native antibody.

Our search algorithms incorporate the computationally expensive ROSETTA evaluations.

To speed up the search, we use classification learning to predict antibody-virus binding and

restrict actual ROSETTA evaluations to the cases in which there is escape prediction. While

this helps in the inner loop (virus escape search) of the bi-level optimization, the outer loop

(antibody optimization) is still computationally expensive. To address this, we learn the

escape costs (minimum number of mutations to escape) using a Poisson regression, as a

function of the antibody sequence. This makes the outer loop tractable since the inner-

loop evaluations are restricted to only those antibody candidates that are predicted to be

robust. Overall, we propose scalable algorithms for antibody design with stochastic local

search approaches incorporating classifiers to predict virus escape and Poisson regression

to predict escape costs. Our algorithms achieve improved scalability without significantly

138

compromising solution quality. Finally, we exhibit an antibody that is far more robust

compared to the native antibody. Specifically, we report an optimized antibody which

requires a minimum of 7 mutations for the virus to escape binding to it. The native antibody,

on the other hand, fails to bind the virus after a single strategic escape mutation.

10.3.3 Global Solution to the Bi-Level Optimization

While our game-theoretic antibody design framework achieves superior performance,

it relies on local search and hence, does not compute a global solution. Moreover, it does

not consider the stability score of the antibody-virus complex, where stability of complex is

a critical factor in deciding the viability of a designed antibody sequnece. To achieve these

objectives, we formulate the bi-level optimization problem (corresponding to the antibody

design game) in terms of the combined binding and stability score (denoted as z-score). We

leverage the bi-linear pairwise amino acid interaction model to learn the z-scores generated

using ROSETTA. Building on this bi-linear model, we formulate the virus escape decision

problem as an integer linear program. Typically, it is absolutely not trivial to compute an

optimal solution to such bi-level problems with integer variables. Using linear program re-

laxation and duality, we formulate the antibody design bi-level problem as a compact mixed

integer linear program. We further demonstrate with a proof that our compact formulation

computes the optimal integer solution despite the relaxation and duality transformations.

Moreover, we can efficiently solve our compact optimization problem using state of the

art solvers, e.g., CPLEX. The compact formulation also allows us to incorporate a panel

of viruses into the decision problem. Therefore, our algorithm performs efficient global

optimization in the antibody space, compared to state of the art local search approaches,

which may only achieve limited exploration of the search space. Extensive experiments

demonstrate that our algorithm outperforms our previous algorithms in terms of robustness

to escape mutations evaluated as predicted z-scores.

139

10.4 Future Work

In this section, we outline some of the limitations of our algorithmic approaches and

provide directions for future work.

10.4.1 Randomized Strategy Commitment

In our algorithms, we consider problems in which the defender deploys deterministic

mitigation strategies. However, recent advances in Stackelberg games for security involve

randomized strategies in case of the defender and demonstrate that such randomization

leads to even higher utilities. Considering mixed strategies poses several algorithmic chal-

lenges in the interdiction framework and is definitely an interesting direction for future

work.

10.4.2 Partial Observability

MDPs provide an efficient modeling framework to capture the attacker’s behavior in

plan interdiction. In our algorithms, we assume full observability of the MDP state space.

However, in many real-world situations, the actual state may not be observed directly.

Instead, a probability distribution is maintained over the set of possible states, based on a set

of observations and the observation probabilities. This partially observable MDP (POMDP)

framework is general enough to model a variety of real-world sequential decision processes.

The solution to a POMDP computes the optimal action for each possible belief over the set

of states. Generalizing our MDP interdiction games to incorporate partial observability is

another interesting direction for future research.

10.4.3 Multiple Defenders

An interesting future direction is to develop algorithms to incorporate multiple defend-

ers in the decision making process. Such a scenario is common in several real-world sit-

140

uations, e.g., power grids, transporation networks and even physical security forces that

often need to coordinate decision making to collectively defend against the attacker(s). In

decentralized network interdiction games, multiple agents with differing objectives focus

on interdicting parts of a shared network. This modeling framework is also relevant in drug

design when multiple antibodies / treatment therapies / drugs act in combination against an

external infection.

10.4.4 Repeated Games

The Stackelberg game model is undoubtedly a natural fit that capture the interactions

between the defender and attacker in physical security as well as cybersecurity and im-

munology as we have discussed in this dissertation. At the same time, in certain real-world

situations, the players in the game interact repeatedly over time and a repeated game model

may be more accurate. This applies to the plan interdiction problem as well as specific

applications in drug design. In plan interdiction, an important research direction is that

of dynamic interdiction, where the objectives of the players can change over time, and

also, each player observes and responds to the other player’s strategy. A relevant modeling

framework is that of stochastic games which generalize both MDPs and repeated games

[78] and factored representations have also been studied [175]. Along similar lines, a crit-

ically important future research direction in immunology is to model antibody and virus

co-evolution in a repeated game framework.

10.4.5 Challenges in the Antibody Design Application

We now summarize some of the limitations of our approaches and future directions in

the antibody design application.

141

Appropriate Cost Function for Virus Escape

In our virus escape model, we use single point mutations (protein sequence edit dis-

tance) as a measure of viral escape difficulty. A more biologically meaningful measure is

the number of neucleotide / mRNA mutations involved. For example, a single amino acid

change is achieved through a specific sequence of neucleotide mutations.

Learning Rosetta Scores

A major challenge is to learn the ROSETTA binding and stability scores with suffi-

cient accuracy from data. While our (linear and non-linear) learning algorithms do achieve

reasonable accuracy, there is plenty of room for improvement. A promising future di-

rection would be to leverage recent advances in deep neural networks to accurately learn

the ROSETTA energy scores. This will address the issue of computationally expensive

ROSETTA evaluations. Moreover, bi-level optimization algorithms that build on more ac-

curate energy prediction models can potentially achieve better quality solutions (although

our antibody design algorithms are extremely efficient despite the moderately accurate pre-

dictions using the bi-linear model).

Negative Design

The optimization framework in our models can be adapted to solve the problem of

negative design which is very important in computational protein design. At a very high-

level, in negative design, a protein sequence needs to maintain binding to one set of protein

sequences and simultaneouly needs to escape binding from a separate set of protein se-

quences.

Challenges in Extending the Antibody design Algorithms to Wet Lab Experiments

We conjecture that if we experimentally test our designed optimal antibodies against

the HIV panel those will have greater neutralization breadth compared to existing antibod-

142

ies. However, at present, there are several challenges before we can proceed to wet lab

experiments. First, insertions and deletions in the antibody protein sequence space make

experimental modeling very difficult. Homology modeling of viral proteins is also a critical

problem. To evaluate our designed antibodies, we need to use a set of viral proteins that are

already crystallized. Finally, modeling only a small binding site is also an issue. Ideally,

the algorithms model the entire antibody-virus interface.

Finally, it is important to emphasize that the proposed research has enormous potential

to bring about remarkable changes in the way vaccines are designed against rapidly mutat-

ing pathogens e.g., HIV and influenza. Furthermore, the computational techniques in our

research can be directly translated to the more general problems of robust drug design and

treatment regimens.

143

BIBLIOGRAPHY

[1] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Com-

puter, (1):41–50, 2003.

[2] Daniel A Menascé et al. The insider threat security architecture: A framework for

an integrated, inseparable, and uninterrupted self-protection mechanism. In 2009

International Conference on Computational Science and Engineering, pages 244–

251. IEEE, 2009.

[3] Qian Chen, Sherif Abdelwahed, and Abdelkarim Erradi. A model-based approach

to self-protection in computing system. In Proceedings of the 2013 ACM Cloud and

Autonomic Computing Conference, page 16. ACM, 2013.

[4] Firas B Alomari and Daniel A Menascé. Self-protecting and self-optimizing

database systems: Implementation and experimental evaluation. In Proceedings of

the 2013 ACM Cloud and Autonomic Computing Conference, page 18. ACM, 2013.

[5] Manish Jain, Jason Tsai, James Pita, Christopher Kiekintveld, Shyamsunder Rathi,

Milind Tambe, and Fernando Ordóñez. Software assistants for randomized patrol

planning for the lax airport police and the federal air marshal service. Interfaces,

40(4):267–290, 2010.

[6] Daniel Bilar, George Cybenko, and John Murphy. Adversarial dynamics: the con-

ficker case study. In Moving Target Defense II, pages 41–71. Springer, 2013.

[7] Daniel Lowd and Christopher Meek. Good word attacks on statistical spam filters.

In CEAS, volume 2005, 2005.

[8] Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: formal

144

reasoning and practical techniques. In Proceedings of the 13th ACM conference on

Computer and communications security, pages 59–68. ACM, 2006.

[9] Long Cheng, Fang Liu, and Danfeng Yao. Enterprise data breach: causes, chal-

lenges, prevention, and future directions. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, 7(5):e1211, 2017.

[10] Lin Chen and Jean Leneutre. A game theoretical framework on intrusion detection in

heterogeneous networks. IEEE Transactions on Information Forensics and Security,

4(2):165–178, 2009.

[11] Tansu Alpcan and Tamer Başar. Network security: A decision and game-theoretic

approach. Cambridge University Press, 2010.

[12] Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and Milind Tambe.

Stackelberg security games: Looking beyond a decade of success. In IJCAI, pages

5494–5501, 2018.

[13] James Pita, Manish Jain, Janusz Marecki, Fernando Ordóñez, Christopher Portway,

Milind Tambe, Craig Western, Praveen Paruchuri, and Sarit Kraus. Deployed armor

protection: the application of a game theoretic model for security at the los ange-

les international airport. In Proceedings of the 7th international joint conference

on Autonomous agents and multiagent systems: industrial track, pages 125–132.

International Foundation for Autonomous Agents and Multiagent Systems, 2008.

[14] Carol Koetke. One size doesn’t fit all. TECHNOS, 8(2):20–26, 1999.

[15] Fei Fang, Thanh Hong Nguyen, Rob Pickles, Wai Y Lam, Gopalasamy R Clements,

Bo An, Amandeep Singh, Milind Tambe, Andrew Lemieux, et al. Deploying paws:

Field optimization of the protection assistant for wildlife security. In AAAI, pages

3966–3973, 2016.

145

[16] UNAIDS. Hiv fact sheet, 2013.

[17] Jinghe Huang, Byong H Kang, Marie Pancera, Jeong Hyun Lee, Tommy Tong,

Yu Feng, Hiromi Imamichi, Ivelin S Georgiev, Gwo-Yu Chuang, Aliaksandr Druz,

et al. Broad and potent hiv-1 neutralization by a human antibody that binds the

gp41–gp120 interface. Nature, 515(7525):138, 2014.

[18] José M Cuevas, Ron Geller, Raquel Garijo, José López-Aldeguer, and Rafael

Sanjuán. Extremely high mutation rate of hiv-1 in vivo. PLoS biology,

13(9):e1002251, 2015.

[19] Joshua Letchford and Yevgeniy Vorobeychik. Optimal interdiction of attack plans.

In Proceedings of the 2013 international conference on Autonomous agents and

multi-agent systems, pages 199–206. International Foundation for Autonomous

Agents and Multiagent Systems, 2013.

[20] Jeffrey J Gray, Stewart Moughon, Chu Wang, Ora Schueler-Furman, Brian

Kuhlman, Carol A Rohl, and David Baker. Protein–protein docking with simultane-

ous optimization of rigid-body displacement and side-chain conformations. Journal

of molecular biology, 331(1):281–299, 2003.

[21] Alexander M Sevy, Tim M Jacobs, James E Crowe Jr, and Jens Meiler. Design of

protein multi-specificity using an independent sequence search reduces the barrier

to low energy sequences. PLOS Comput Biol, 11(7):e1004300, 2015.

[22] Drew Fudenberg and Jean Tirole. Game theory mit press. Cambridge, MA, page 86,

1991.

[23] Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

[24] Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science &

Business Media, 2010.

146

[25] Zhengyu Yin, Dmytro Korzhyk, Christopher Kiekintveld, Vincent Conitzer, and

Milind Tambe. Stackelberg vs. nash in security games: Interchangeability, equiv-

alence, and uniqueness. In Proceedings of the 9th International Conference on Au-

tonomous Agents and Multiagent Systems: volume 1-Volume 1, pages 1139–1146.

International Foundation for Autonomous Agents and Multiagent Systems, 2010.

[26] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind Tambe, Fernando

Ordóñez, and Sarit Kraus. Playing games with security: An efficient exact algo-

rithm for Bayesian Stackelberg games. In Proceedings of the Seventh International

Conference on Autonomous Agents and Multiagent Systems, pages 895–902, 2008.

[27] Manish Jain, James Pita, Milind Tambe, Fernando Ordóñez, Praveen Paruchuri, and

Sarit Kraus. Bayesian stackelberg games and their application for security at los

angeles international airport. SIGecom Exch., 7:10:1–10:3, June 2008.

[28] Dmytro Korzhyk, Zhengyu Yin, Christopher Kiekintveld, Vincent Conitzer, and

Milind Tambe. Stackelberg vs. nash in security games: An extended investigation

of interchangeability, equivalence, and uniqueness. Journal of Artificial Intelligence

Research, 41:297–327, 2011.

[29] Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit

to. In Proceedings of the 7th ACM conference on Electronic commerce, pages 82–90.

ACM, 2006.

[30] Praveen Paruchuri, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando

Ordonez, and Sarit Kraus. Playing games for security: An efficient exact algo-

rithm for solving bayesian stackelberg games. In Proceedings of the 7th interna-

tional joint conference on Autonomous agents and multiagent systems-Volume 2,

pages 895–902. International Foundation for Autonomous Agents and Multiagent

Systems, 2008.

147

[31] Christopher Kiekintveld, Janusz Marecki, and Milind Tambe. Approximation meth-

ods for infinite bayesian stackelberg games: Modeling distributional payoff uncer-

tainty. In The 10th International Conference on Autonomous Agents and Multia-

gent Systems-Volume 3, pages 1005–1012. International Foundation for Autonomous

Agents and Multiagent Systems, 2011.

[32] Jason Tsai, Christopher Kiekintveld, Fernando Ordonez, Milind Tambe, and Shyam-

sunder Rathi. Iris-a tool for strategic security allocation in transportation networks.

2009.

[33] Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph DiRenzo, Ben

Maule, and Garrett Meyer. Protect: A deployed game theoretic system to protect the

ports of the united states. In Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems-Volume 1, pages 13–20. International

Foundation for Autonomous Agents and Multiagent Systems, 2012.

[34] Fei Fang, Peter Stone, and Milind Tambe. When security games go green: Designing

defender strategies to prevent poaching and illegal fishing. In IJCAI, pages 2589–

2595, 2015.

[35] Chao Zhang, Arunesh Sinha, and Milind Tambe. Keeping pace with criminals: De-

signing patrol allocation against adaptive opportunistic criminals. In Proceedings of

the 2015 international conference on Autonomous agents and multiagent systems,

pages 1351–1359. International Foundation for Autonomous Agents and Multiagent

Systems, 2015.

[36] Zhengyu Yin, Albert Xin Jiang, Matthew Paul Johnson, Christopher Kiekintveld,

Kevin Leyton-Brown, Tuomas Sandholm, Milind Tambe, and John P Sullivan.

Trusts: Scheduling randomized patrols for fare inspection in transit systems. In

IAAI, 2012.

148

[37] Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014.

[38] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an

overview. In Decision and Control, 1995., Proceedings of the 34th IEEE Confer-

ence on, volume 1, pages 560–564. IEEE, 1995.

[39] Christian Fritz and Sheila A McIlraith. Computing robust plans in continuous do-

mains. In ICAPS, 2009.

[40] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge, 1998.

[41] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,, 2016.

[42] Yixin Chen, Benjamin W Wah, and Chihwei Hsu. Temporal planning using subgoal

partitioning and resolution in sgplan. Journal of Artificial Intelligence Research,

26:323–369, 2006.

[43] Martin L Puterman. Markov decision processes: Discrete stochastic dynamic pro-

gramming. 1994.

[44] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient

solution algorithms for factored mdps. Journal of Artificial Intelligence Research,

19:399–468, 2003.

[45] Daphne Koller and Ronald Parr. Computing factored value functions for policies in

structured mdps. In IJCAI, volume 99, pages 1332–1339, 1999.

[46] Carlos Ernesto Guestrin. Planning under uncertainty in complex structured environ-

ments. PhD thesis, Stanford University, 2003.

149

[47] Daphne Koller and Ronald Parr. Policy iteration for factored mdps. In Proceedings

of the Sixteenth conference on Uncertainty in artificial intelligence, pages 326–334.

Morgan Kaufmann Publishers Inc., 2000.

[48] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on

artificial intelligence and machine learning, 4(1):1–103, 2010.

[49] Warren B Powell. Approximate Dynamic Programming: Solving the curses of di-

mensionality, volume 703. John Wiley & Sons, 2007.

[50] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bert-

sekas. Dynamic programming and optimal control, volume 1. Athena scientific

Belmont, MA, 2005.

[51] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-

4):279–292, 1992.

[52] JN Tsitsiklis and B Van Roy. An analysis of temporal-difference learning with func-

tion approximationtechnical. Technical report, Report LIDS-P-2322). Laboratory

for Information and Decision Systems, Massachusetts Institute of Technology, 1996.

[53] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-

forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[54] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with

double q-learning. In AAAI, volume 2, page 5. Phoenix, AZ, 2016.

[55] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International conference on machine

learning, pages 1928–1937, 2016.

150

[56] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529–533, 2015.

[57] Javier Salmeron, Kevin Wood, and Ross Baldick. Worst-case interdiction analysis

of large-scale electric power grids. IEEE Transactions on power systems, 24(1):96–

104, 2009.

[58] Alan W McMasters and Thomas M Mustin. Optimal interdiction of a supply net-

work. Naval Research Logistics Quarterly, 17(3):261–268, 1970.

[59] PM Ghare, Douglas C Montgomery, and WC Turner. Optimal interdiction policy

for a flow network. Naval Research Logistics Quarterly, 18(1):37–45, 1971.

[60] Laura P Swiler, Cynthia Phillips, David Ellis, and Stefan Chakerian. Computer-

attack graph generation tool. In DARPA Information Survivability Conference &

Exposition II, 2001. DISCEX’01. Proceedings, volume 2, pages 307–321. IEEE,

2001.

[61] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M

Wing. Automated generation and analysis of attack graphs. In null, page 273. IEEE,

2002.

[62] Dan Zerkle and Karl N Levitt. Netkuang-a multi-host configuration vulnerability

checker. In USENIX Security Symposium, 1996.

[63] Ronald W Ritchey and Paul Ammann. Using model checking to analyze network

vulnerabilities. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE

Symposium on, pages 156–165. IEEE, 2000.

151

[64] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based

network vulnerability analysis. In Proceedings of the 9th ACM Conference on Com-

puter and Communications Security, pages 217–224. ACM, 2002.

[65] Mark Boddy, Johnathan Gohde, Tom Haigh, and Steven Harp. Course of action

generation for cyber security using classical planning. In International Conference

on Automated Planning and Scheduling, pages 12–21, 2005.

[66] Jorge Lucangeli Obes, Carlos Sarraute, and Gerardo Richarte. Attack planning in

the real world. arXiv preprint arXiv:1306.4044, 2013.

[67] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic security risk manage-

ment using bayesian attack graphs. IEEE Transactions on Dependable and Secure

Computing, 9(1):61–74, 2012.

[68] Stefano Bistarelli, Marco Dall’Aglio, and Pamela Peretti. Strategic games on de-

fense trees. In International Workshop on Formal Aspects in Security and Trust,

pages 1–15. Springer, 2006.

[69] Saman A Zonouz, Himanshu Khurana, William H Sanders, and Timothy M Yardley.

Rre: A game-theoretic intrusion response and recovery engine. IEEE Transactions

on Parallel and Distributed Systems, 25(2):395–406, 2014.

[70] Cynthia A Phillips. The network inhibition problem. In Proceedings of the twenty-

fifth annual ACM symposium on Theory of computing, pages 776–785. ACM, 1993.

[71] Gerald G Brown, W Matthew Carlyle, Robert C Harney, Eric M Skroch, and R Kevin

Wood. Interdicting a nuclear-weapons project. Operations Research, 57(4):866–

877, 2009.

[72] James Pita, Milind Tambe, Chris Kiekintveld, Shane Cullen, and Erin Steigerwald.

Guards: game theoretic security allocation on a national scale. In The 10th Interna-

152

tional Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages

37–44. International Foundation for Autonomous Agents and Multiagent Systems,

2011.

[73] Yevgeniy Vorobeychik and Satinder P Singh. Computing stackelberg equilibria in

discounted stochastic games. In AAAI, 2012.

[74] Albert Xin Jiang, Zhengyu Yin, Chao Zhang, Milind Tambe, and Sarit Kraus.

Game-theoretic randomization for security patrolling with dynamic execution uncer-

tainty. In Proceedings of the 2013 international conference on Autonomous agents

and multi-agent systems, pages 207–214. International Foundation for Autonomous

Agents and Multiagent Systems, 2013.

[75] Nicola Basilico, Nicola Gatti, and Francesco Amigoni. Patrolling security games:

Definition and algorithms for solving large instances with single patroller and single

intruder. Artificial Intelligence, 184:78–123, 2012.

[76] Steven Willmott, Julian Richardson, Alan Bundy, and John Levine. An adversarial

planning approach to go. In International Conference on Computers and Games,

pages 93–112. Springer, 1998.

[77] Raghuram Ramanujan, Ashish Sabharwal, and Bart Selman. On adversarial search

spaces and sampling-based planning. In ICAPS, volume 10, pages 242–245, 2010.

[78] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer

Science & Business Media, 2012.

[79] Linling He and Jiang Zhu. Computational tools for epitope vaccine design and eval-

uation. Current opinion in virology, 11:103–112, 2015.

[80] Brian Kuhlman, Gautam Dantas, Gregory C Ireton, Gabriele Varani, Barry L Stod-

153

dard, and David Baker. Design of a novel globular protein fold with atomic-level

accuracy. science, 302(5649):1364–1368, 2003.

[81] Bassil I Dahiyat and Stephen L Mayo. De novo protein design: fully automated

sequence selection. Science, 278(5335):82–87, 1997.

[82] Jordan R Willis, Gopal Sapparapu, Sasha Murrell, Jean-Philippe Julien, Vidisha

Singh, Hannah G King, Yan Xia, Jennifer A Pickens, Celia C LaBranche, James C

Slaughter, et al. Redesigned hiv antibodies exhibit enhanced neutralizing potency

and breadth. The Journal of clinical investigation, 125(6):2523–2531, 2015.

[83] Sarel J Fleishman, Timothy A Whitehead, Damian C Ekiert, Cyrille Dreyfus, Ja-

cob E Corn, Eva-Maria Strauch, Ian A Wilson, and David Baker. Computational

design of proteins targeting the conserved stem region of influenza hemagglutinin.

Science, 332(6031):816–821, 2011.

[84] Eva-Maria Strauch, Steffen M Bernard, David La, Alan J Bohn, Peter S Lee,

Caitlin E Anderson, Travis Nieusma, Carly A Holstein, Natalie K Garcia, Kathryn A

Hooper, et al. Computational design of trimeric influenza-neutralizing proteins tar-

geting the hemagglutinin receptor binding site. Nature biotechnology, 35(7):667,

2017.

[85] Neil P King, William Sheffler, Michael R Sawaya, Breanna S Vollmar, John P Sum-

ida, Ingemar André, Tamir Gonen, Todd O Yeates, and David Baker. Computational

design of self-assembling protein nanomaterials with atomic level accuracy. Science,

336(6085):1171–1174, 2012.

[86] M Rosenberg and A Goldblum. Computational protein design: a novel path to future

protein drugs. Current pharmaceutical design, 12(31):3973–3997, 2006.

[87] Shaun M Lippow, K Dane Wittrup, and Bruce Tidor. Computational design of

154

antibody-affinity improvement beyond in vivo maturation. Nature biotechnology,

25(10):1171–1176, 2007.

[88] John Karanicolas and Brian Kuhlman. Computational design of affinity and speci-

ficity at protein–protein interfaces. Current opinion in structural biology, 19(4):458–

463, 2009.

[89] Bruno E Correia, John T Bates, Rebecca J Loomis, Gretchen Baneyx, Chris Carrico,

Joseph G Jardine, Peter Rupert, Colin Correnti, Oleksandr Kalyuzhniy, Vinayak

Vittal, et al. Proof of principle for epitope-focused vaccine design. Nature,

507(7491):201–206, 2014.

[90] Alexander M Sevy and Jens Meiler. Antibodies: Computer-aided prediction of struc-

ture and design of function. Microbiology spectrum, 2(6), 2014.

[91] Johan Desmet, Marc De Maeyer, Bart Hazes, and Ignace Lasters. The dead-

end elimination theorem and its use in protein side-chain positioning. Nature,

356(6369):539, 1992.

[92] Julia M Shifman and Stephen L Mayo. Modulating calmodulin binding specificity

through computational protein design. Journal of molecular biology, 323(3):417–

423, 2002.

[93] Jordan R Willis, Bryan S Briney, Samuel L DeLuca, James E Crowe Jr, and Jens

Meiler. Human germline antibody gene segments encode polyspecific antibodies.

PLoS computational biology, 9(4):e1003045, 2013.

[94] Gurkan Guntas, Ryan A Hallett, Seth P Zimmerman, Tishan Williams, Hayretin

Yumerefendi, James E Bear, and Brian Kuhlman. Engineering an improved light-

induced dimer (ilid) for controlling the localization and activity of signaling proteins.

Proceedings of the National Academy of Sciences, 112(1):112–117, 2015.

155

[95] Stanley C Howell, Krishna Kishore Inampudi, Doyle P Bean, and Corey J Wilson.

Understanding thermal adaptation of enzymes through the multistate rational design

and stability prediction of 100 adenylate kinases. Structure, 22(2):218–229, 2014.

[96] James A Davey and Roberto A Chica. Improving the accuracy of protein stability

predictions with multistate design using a variety of backbone ensembles. Proteins:

Structure, Function, and Bioinformatics, 82(5):771–784, 2014.

[97] Steven M Lewis, Xiufeng Wu, Anna Pustilnik, Arlene Sereno, Flora Huang,

Heather L Rick, Gurkan Guntas, Andrew Leaver-Fay, Eric M Smith, Carolyn Ho,

et al. Generation of bispecific igg antibodies by structure-based design of an orthog-

onal fab interface. Nature biotechnology, 32(2):191, 2014.

[98] James J Havranek and Pehr B Harbury. Automated design of specificity in molecular

recognition. Nature Structural and Molecular Biology, 10(1):45, 2003.

[99] Andrew Leaver-Fay, Ron Jacak, P Benjamin Stranges, and Brian Kuhlman. A

generic program for multistate protein design. PloS one, 6(7):e20937, 2011.

[100] Chris T. Bauch and David J.D. Earn. Vaccination and the theory of games. Proceed-

ings of the National Academy of Sciences, 101(36):13391–13394, 2004.

[101] GB Chapman, M Li, J Vietri, Y Ibuka, D Thomas, H Yoon, and AP. Galvani. Using

game theory to examine incentives in influenza vaccination behavior. Psychological

Science, 23(9):1008–1015, 2012.

[102] Jingzhou Liu, Beth F. Kochin, Yonas I. Tekle, and Alison P. Galvani. Epidemiologi-

cal game-theory dynamics of chickenpox vaccination in the usa and israel. Journal

of the Royal Society Interface, 9(66):68–76, 2012.

[103] Sheng-He Huang, Wensheng Zhou, Ambrose Jong, and Huan Qi. Game theory

156

models for infectious diseases. In Frontiers in the Convergence of Bioscience and

Information Technologies, pages 265–269, 2007.

[104] Marco Archetti. Evolutionarily stable anti-cancer therapies by autologous cell de-

fection. Evolution, Medicine, and Public Health, pages 161–172, 2013.

[105] Richard H Lathrop, Nicholas R Steffen, Miriam P Raphael, Sophia Deeds-

Rubin, Michael J Pazzani, Paul J Cimoch, Darryl M See, and Jeremiah G Tilles.

Knowledge-based avoidance of drug-resistant hiv mutants. AI Magazine, 20(1):13,

1999.

[106] Richard H Lathrop and Michael J Pazzani. Combinatorial optimization in rapidly

mutating drug-resistant viruses. Journal of Combinatorial Optimization, 3(2-

3):301–320, 1999.

[107] Pablo Hernandez-Leal, Lindsey Fiedler-Cameras, Alma Rios-Flores, Jesús A

González, L Enrique Sucar, and Sta Marı́a Tonantzintla. Contrasting temporal

bayesian network models for analyzing hiv mutations.

[108] Lothar Richter, Regina Augustin, and Stefan Kramer. Finding relational associations

in hiv resistance mutation data. In Inductive Logic Programming, pages 202–208.

Springer, 2010.

[109] Andrew L Ferguson, Jaclyn K Mann, Saleha Omarjee, Thumbi Ndung’u, Bruce D

Walker, and Arup K Chakraborty. Translating hiv sequences into quantitative fitness

landscapes predicts viral vulnerabilities for rational immunogen design. Immunity,

38(3):606–617, 2013.

[110] Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino, Debora S Marks,

Chris Sander, Riccardo Zecchina, José N Onuchic, Terence Hwa, and Martin Weigt.

Direct-coupling analysis of residue coevolution captures native contacts across many

157

protein families. Proceedings of the National Academy of Sciences, 108(49):E1293–

E1301, 2011.

[111] David T Jones, Daniel WA Buchan, Domenico Cozzetto, and Massimiliano Pontil.

Psicov: precise structural contact prediction using sparse inverse covariance estima-

tion on large multiple sequence alignments. Bioinformatics, 28(2):184–190, 2012.

[112] Hetunandan Kamisetty, Sergey Ovchinnikov, and David Baker. Assessing the

utility of coevolution-based residue–residue contact predictions in a sequence-

and structure-rich era. Proceedings of the National Academy of Sciences,

110(39):15674–15679, 2013.

[113] Sivaraman Balakrishnan, Hetunandan Kamisetty, Jaime G Carbonell, Su-In Lee, and

Christopher James Langmead. Learning generative models for protein fold families.

Proteins: Structure, Function, and Bioinformatics, 79(4):1061–1078, 2011.

[114] John Thomas, Naren Ramakrishnan, and Chris Bailey-Kellogg. Graphical models

of residue coupling in protein families. IEEE/ACM Transactions on Computational

Biology and Bioinformatics (TCBB), 5(2):183–197, 2008.

[115] John Thomas, Naren Ramakrishnan, and Chris Bailey-Kellogg. Protein design by

sampling an undirected graphical model of residue constraints. Computational Bi-

ology and Bioinformatics, IEEE/ACM Transactions on, 6(3):506–516, 2009.

[116] Hetunandan Kamisetty, Eric P Xing, and Christopher J Langmead. Approximating

correlated equilibria using relaxations on the marginal polytope. 2011.

[117] John Thomas, Naren Ramakrishnan, and Chris Bailey-Kellogg. Graphical models

of protein–protein interaction specificity from correlated mutations and interaction

data. Proteins: Structure, Function, and Bioinformatics, 76(4):911–929, 2009.

158

[118] Gwo-Yu Chuang, Priyamvada Acharya, Stephen D Schmidt, Yongping Yang,

Mark K Louder, Tongqing Zhou, Young Do Kwon, Marie Pancera, Robert T Bailer,

Nicole A Doria-Rose, et al. Residue-level prediction of hiv-1 antibody epitopes

based on neutralization of diverse viral strains. Journal of virology, 87(18):10047–

10058, 2013.

[119] Mark C Evans, Pham Phung, Agnes C Paquet, Anvi Parikh, Christos J Petropoulos,

Terri Wrin, and Mojgan Haddad. Predicting hiv-1 broadly neutralizing antibody

epitope networks using neutralization titers and a novel computational method. BMC

bioinformatics, 15(1):1, 2014.

[120] Anna Feldmann and Nico Pfeifer. From predicting to analyzing hiv-1 resistance to

broadly neutralizing antibodies. Technical report, PeerJ PrePrints, 2015.

[121] Haidong Wang, Eran Segal, Asa Ben-Hur, Daphne Koller, and Douglas L Brutlag.

Identifying protein-protein interaction sites on a genome-wide scale. In Advances in

neural information processing systems, pages 1465–1472, 2004.

[122] Hetunandan Kamisetty, Bornika Ghosh, Christopher James Langmead, and Chris

Bailey-Kellogg. Learning sequence determinants of protein: Protein interaction

specificity with sparse graphical models. In Research in Computational Molecular

Biology, pages 129–143. Springer, 2014.

[123] Manish Jain, James Pita, Milind Tambe, Fernando Ordónez, Praveen Paruchuri, and

Sarit Kraus. Bayesian stackelberg games and their application for security at los

angeles international airport. ACM SIGecom Exchanges, 7(2):10, 2008.

[124] Dmytro Korzhyk, Zhengyu Yin, Christopher Kiekintveld, Vincent Conitzer, and

Milind Tambe. Stackelberg vs. nash in security games: An extended investigation

of interchangeability, equivalence, and uniqueness. Journal of Artificial Intelligence

Research, 41:297–327, 2011.

159

[125] Brenda Ng, Carol Meyers, Kofi Boakye, and John J Nitao. Towards applying inter-

active pomdps to real-world adversary modeling. In IAAI, 2010.

[126] Leanid Krautsevich, Fabio Martinelli, and Artsiom Yautsiukhin. Towards modelling

adaptive attacker’s behaviour. In International Symposium on Foundations and Prac-

tice of Security, pages 357–364. Springer, 2012.

[127] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic

programming with factored representations. Artificial intelligence, 121(1):49–107,

2000.

[128] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Struc-

tural assumptions and computational leverage. Journal of Artificial Intelligence Re-

search, 11(1):94, 1999.

[129] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value func-

tion decomposition. J. Artif. Intell. Res.(JAIR), 13:227–303, 2000.

[130] Robert St-Aubin, Jesse Hoey, and Craig Boutilier. Apricodd: Approximate policy

construction using decision diagrams. In NIPS, pages 1089–1095, 2000.

[131] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projections for factored

mdps. In IJCAI, volume 1, pages 673–682, 2001.

[132] Ryan O’Donnell. Some topics in analysis of boolean functions. In Proceedings of

the fortieth annual ACM symposium on Theory of computing, pages 569–578. ACM,

2008.

[133] Swetasudha Panda and Yevgeniy Vorobeychik. Near-optimal interdiction of factored

mdps. In Conference on Uncertainty in Artificial Intelligence, 2017.

[134] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

160

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-

forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[135] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: A system for large-scale machine learning. In OSDI, volume 16, pages

265–283, 2016.

[136] Joint United Nations Programme on HIV/AIDS et al. Fact sheet—latest statistics on

the status of the aids epidemic, 2017.

[137] UNAIDS. Fact sheet-latest statistics on the status of the aids epidemic, 2016.

[138] CDC. 2014 ebola outbreak in west africa, 2014.

http://www.cdc.gov/vhf/ebola/outbreaks/guinea/.

[139] CDC. Seasonal influenza, more information, 2018.

https://www.cdc.gov/flu/about/qa/disease.htm.

[140] Rebecca F Alford, Andrew Leaver-Fay, Jeliazko R Jeliazkov, Matthew J O’Meara,

Frank P DiMaio, Hahnbeom Park, Maxim V Shapovalov, P Douglas Renfrew,

Vikram K Mulligan, Kalli Kappel, et al. The rosetta all-atom energy function for

macromolecular modeling and design. Journal of chemical theory and computation,

13(6):3031–3048, 2017.

[141] Ivelin S Georgiev, Nicole A Doria-Rose, Tongqing Zhou, Young Do Kwon, Ryan P

Staupe, Stephanie Moquin, Gwo-Yu Chuang, Mark K Louder, Stephen D Schmidt,

Han R Altae-Tran, et al. Delineating antibody recognition in polyclonal sera from

patterns of hiv-1 isolate neutralization. Science, 340(6133):751–756, 2013.

[142] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

161

[143] Hetunandan Kamisetty, Bornika Ghosh, Christopher James Langmead, and Chris

Bailey-Kellogg. Learning sequence determinants of protein: Protein interac-

tion specificity with sparse graphical models. Journal of Computational Biology,

22(6):474–486, 2015.

[144] Tongqing Zhou, Ivelin Georgiev, Xueling Wu, Zhi-Yong Yang, Kaifan Dai, Andrés

Finzi, Young Do Kwon, Johannes F Scheid, Wei Shi, Ling Xu, et al. Structural

basis for broad and potent neutralization of hiv-1 by antibody vrc01. Science,

329(5993):811–817, 2010.

[145] Ron Diskin, Johannes F Scheid, Paola M Marcovecchio, Anthony P West, Florian

Klein, Han Gao, Priyanthi NP Gnanapragasam, Alexander Abadir, Michael S Sea-

man, Michel C Nussenzweig, et al. Increasing the potency and breadth of an hiv

antibody by using structure-based rational design. Science, page 1206727, 2011.

[146] Florian Klein, Ron Diskin, Johannes F Scheid, Christian Gaebler, Hugo Mou-

quet, Ivelin S Georgiev, Marie Pancera, Tongqing Zhou, Reha-Baris Incesu,

Brooks Zhongzheng Fu, et al. Somatic mutations of the immunoglobulin framework

are generally required for broad and potent hiv-1 neutralization. Cell, 153(1):126–

138, 2013.

[147] Johannes F Scheid, Hugo Mouquet, Beatrix Ueberheide, Ron Diskin, Florian Klein,

Thiago YK Oliveira, John Pietzsch, David Fenyo, Alexander Abadir, Klara Velin-

zon, et al. Sequence and structural convergence of broad and potent hiv antibodies

that mimic cd4 binding. Science, 333(6049):1633–1637, 2011.

[148] Andrew Leaver-Fay, Matthew J O’meara, Mike Tyka, Ron Jacak, Yifan Song, Eliz-

abeth H Kellogg, James Thompson, Ian W Davis, Roland A Pache, Sergey Lyskov,

et al. Scientific benchmarks for guiding macromolecular energy function improve-

ment. In Methods in enzymology, volume 523, pages 109–143. Elsevier, 2013.

162

[149] Brian J Bender, Alberto Cisneros III, Amanda M Duran, Jessica A Finn, Darwin

Fu, Alyssa D Lokits, Benjamin K Mueller, Amandeep K Sangha, Marion F Sauer,

Alexander M Sevy, et al. Protocols for molecular modeling with rosetta3 and roset-

tascripts. Biochemistry, 55(34):4748–4763, 2016.

[150] Tongqing Zhou, Jiang Zhu, Xueling Wu, Stephanie Moquin, Baoshan Zhang,

Priyamvada Acharya, Ivelin S Georgiev, Han R Altae-Tran, Gwo-Yu Chuang,

M Gordon Joyce, et al. Multidonor analysis reveals structural elements, genetic

determinants, and maturation pathway for hiv-1 neutralization by vrc01-class anti-

bodies. Immunity, 39(2):245–258, 2013.

[151] Xueling Wu, Zhenhai Zhang, Chaim A Schramm, M Gordon Joyce, Young

Do Kwon, Tongqing Zhou, Zizhang Sheng, Baoshan Zhang, Sijy O’Dell, Krisha

McKee, et al. Maturation and diversity of the vrc01-antibody lineage over 15 years

of chronic hiv-1 infection. Cell, 161(3):470–485, 2015.

[152] Albin Sandelin and Wyeth W Wasserman. Constrained binding site diversity within

families of transcription factors enhances pattern discovery bioinformatics. Journal

of molecular biology, 338(2):207–215, 2004.

[153] Benjamin D Allen, Alex Nisthal, and Stephen L Mayo. Experimental library

screening demonstrates the successful application of computational protein design

to large structural ensembles. Proceedings of the National Academy of Sciences,

107(46):19838–19843, 2010.

[154] Andrew Leaver-Fay, Karen J Froning, Shane Atwell, Hector Aldaz, Anna Pustilnik,

Frances Lu, Flora Huang, Richard Yuan, Saleema Hassanali, Aaron K Chamberlain,

et al. Computationally designed bispecific antibodies using negative state reper-

toires. Structure, 24(4):641–651, 2016.

[155] Xueling Wu, Zhi-Yong Yang, Yuxing Li, Carl-Magnus Hogerkorp, William R

163

Schief, Michael S Seaman, Tongqing Zhou, Stephen D Schmidt, Lan Wu, Ling Xu,

et al. Rational design of envelope identifies broadly neutralizing human monoclonal

antibodies to hiv-1. Science, 329(5993):856–861, 2010.

[156] Jinghe Huang, Gilad Ofek, Leo Laub, Mark K Louder, Nicole A Doria-Rose,

Nancy S Longo, Hiromi Imamichi, Robert T Bailer, Bimal Chakrabarti, Shailen-

dra K Sharma, et al. Broad and potent neutralization of hiv-1 by a gp41-specific

human antibody. Nature, 491(7424):406, 2012.

[157] Joseph Jardine, Jean-Philippe Julien, Sergey Menis, Takayuki Ota, Oleksandr Ka-

lyuzhniy, Andrew McGuire, Devin Sok, Po-Ssu Huang, Skye MacPherson, Meaghan

Jones, Travis Nieusma, John Mathison, David Baker, Andrew B. Ward, Dennis R.

Burton, Leonidas Stamatatos, David Nemazee, Ian A. Wilson, and William R.

Schief. Rational hiv immunogen design to target specific germline b cell receptors.

Science, 340(6133):711–716, 2013.

[158] Gilad Ofek, F. Javier Guenaga, William R. Schief, Jeff Skinner, David Baker,

Richard Wyatt, and Peter D. Kwong. Elicitation of structure-specific antibod-

ies by epitope scaffolds. Proceedings of the National Academy of Sciences,

107(42):17880–17887, 2010.

[159] Bruno Correia, John Bates, Rebecca J Loomis, Gretchen Baneyx, Chris Carrico,

Joseph Jardine, Peter Rupert, Colin Correnti, Oleksandr Kalyuzhniy, Vinayak Vittal,

Mary J Connell, Eric Stevens, Alexandria Schroeter, Man Chen, Skye Macpher-

son, Andreia Serra, Yumiko Adachi, Margaret A Holmes, Yuxing Li, and William

R Schief. Proof of principle for epitope-focused vaccine design. 507, 02 2014.

[160] Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November

2015.

[161] M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan,

164

H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J.

Gibson, and D.G. Higgins. Clustal w and clustal x version 2.0. Bioinformatics,

23(21):2947–2948, 2007.

[162] Steven A Combs, Samuel L. DeLuca, Stephanie H Deluca, Gordon Lemmon,

David P Nannemann, Elizabeth Dong Nguyen, Jordan R Willis, Jonathan H. Shee-

han, and Jens Meiler. Small-molecule ligand docking into comparative models with

rosetta. Nature Protocols, 8:1277–1298, 2013.

[163] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

Liblinear: A library for large linear classification. Journal of machine learning

research, 9(Aug):1871–1874, 2008.

[164] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[165] Colin A. Smith and Tanja Kortemme. Backrub-like backbone simulation recapitu-

lates natural protein conformational variability and improves mutant side-chain pre-

diction. Journal of molecular biology, 380 4:742–56, 2008.

[166] Alexander M Sevy, Swetasudha Panda, James E Crowe Jr, Jens Meiler, and Yevgeniy

Vorobeychik. Integrating linear optimization with structural modeling to increase hiv

neutralization breadth. PLoS computational biology, 14(2):e1005999, 2018.

[167] Martin A. Nowak and Robert May. Virus Dynamics: Mathematical Principles of

Immunology and Virology. Oxford University Press, 2001.

[168] Holger H. Hoos and Thomas Stutzle. Stochastic Local Search: Foundations & Ap-

plications. Morgan Kaufmann, 2004.

165

[169] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

LIBLINEAR: A library for large linear classification. Journal of Machine Learning

Research, 9:1871–1874, 2008.

[170] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for

generalized linear models via coordinate descent. Journal of Statistical Software,

33(1):1–22, 2010.

[171] Swetasudha Panda and Yevgeniy Vorobeychik. Stackelberg games for vaccine

design. In Proceedings of the 2015 International Conference on Autonomous

Agents and Multiagent Systems, pages 1391–1399. International Foundation for Au-

tonomous Agents and Multiagent Systems, 2015.

[172] Alexander Schrijver. Theory of linear and integer programming. John Wiley &

Sons, 1998.

[173] Steven A Combs, Samuel L DeLuca, Stephanie H DeLuca, Gordon H Lemmon,

David P Nannemann, Elizabeth D Nguyen, Jordan R Willis, Jonathan H Sheehan,

and Jens Meiler. Small-molecule ligand docking into comparative models with

rosetta. Nature protocols, 8(7):1277, 2013.

[174] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. The Journal of Machine

Learning Research, 12:2825–2830, 2011.

[175] Michail G Lagoudakis and Ronald Parr. Learning in zero-sum team markov games

using factored value functions. In Advances in Neural Information Processing Sys-

tems, pages 1659–1666, 2003.

166

