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Introduction 

The work presented in this dissertation is based upon a simple but astonishing observation:   

 

Free-solution interferometric measurements report changes in molecular 

conformation and hydration upon binding. 

 

This observation is not particularly new, but historically it has not been well understood 

and its importance has been understated. 

Chapter 1: Origin and prediction of free-solution interaction studies performed label-

free (adapted here from Proceedings of the National Academy of Sciences, Volume 113) provides 

a historical background to the current state of optical methods for measuring molecular interactions 

and lays out the current theory of refractive index (RI) detection of free solution interactions.  

However, the current theory, which stems from surface immobilized RI techniques such as surface 

plasmon resonance, is incorrectly applied to free-solution measurements.  In fact, the current 

prevailing theory conflicts with decades of free solution experiments, and in this work, we discuss 

discrepancies from numerous optical techniques performed in laboratories around the world over 

the past 50 years.  Then, we posit a new theory:  changes in molecular conformation and hydration 

are the source of free solution refractive index signals.  I developed a heuristic model built on 

structural data from the Protein Databank that uses bound and unbound molecular structures to 

calculate the change in RI based upon changes in structure conformation. The chapter concludes 

with a rather simple method that accurately predicts both the magnitude and direction of free-

solution RI signals.  Additionally, this work provides detailed instructions on how to perform free 

solution assays (FSA) using a backscattering interferometer (BSI). 

Interferometers are extremely sensitive optical sensors, which has been both a blessing and 

a curse.  Interferometers have been employed to measure the distance to stars and even recently a 

2.5-mile underground interferometer was used to measure gravitational waves, a phenomenon 

predicted by Albert Einstein more than 50 years ago.  On the other hand, interferometers’ high 

sensitivity to changes in RI, regardless of source, means high sensitivity to bulk property changes, 
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such as temperature and pressure, has limited their use in biosensing applications.  The temperature 

sensitivity of RI sensors has been a particularly difficult barrier to overcome, making it necessary 

to actively control the system temperature and ultimately limiting the resolution of RI sensitivity.  

The laboratory of Darryl Bornhop, Ph.D. has worked to mitigate this limitation by performing 

interferometric measurements in a glass chip with a microfluidic channel to serve as the optics.  

Because the glass chip is in intimate contact with an aluminum block that is temperature controlled 

by a Peltier and the surface area-to-volume ratio is high, the Bornhop Interferometer enabled RI 

sensing at high sensitivity in quite small volumes (100’s of picoliters).  The chip-based method 

employed to obtain these important results has enabled a wide array of RI biosensing applications 

to be demonstrated by the Bornhop lab, their collaborators, and even independent researchers.  Yet, 

true translation and wide dissemination of the observations noted in Chapter 1 will require an easy 

to use, robust interferometer.  In Chapter 2: A Highly Compensated Interferometer  

for Biochemical Analysis, adapted here from ACS: Sensors Volume 3, I demonstrate the first 

steps toward such a device.  The compensated interferometer (CI) consists of a diode laser with an 

elongated beam and a CCD camera.  The elongated beam allows the illumination of a 12.8 mm 

section of a microfluidic channel, producing a set of elongated interference fringes that allows a 

test sample and reference solution to be interrogated simultaneously.  The practical implication of 

this unique optical configuration is that one beam illuminates a single object resulting in two nearly 

identical interferometers.  The result of this optical approach is a significant reduction in 

environmental noise through common mode noise rejection, thereby enabling high sensitivity RI 

measurements without the need for external temperature control.  Thus, the CI can be used to 

perform molecular interaction assays on a significantly simplified instrument, without the need for 

a high-resolution temperature controller, greatly reducing the cost, size, and power consumption 

of the device, while providing an increase in signal/noise.  Chapter 3: Longitudinal Pixel 

Averaging for Improved Compensation in Backscattering Interferometry, adapted here from 

Optics Letters Volume 43, provides a quantitative demonstration of the necessary operating 

principles for CI, defining the channel interrogation properties needed to achieve true 

compensation between the two RI sensing regions. 

Translation of this technology to the broader biomedical research community or to the 

clinical setting will necessitate higher throughput and a streamlined data analysis approach.  To 

address the issue of throughput, I interfaced the CI with an automated microfluidic droplet 
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generator to facilitate hands-free, rapid sample introduction via a droplet train.  This operation is 

detailed in Chapter 4: Compensated Interferometric Reader Signal Extraction and Analysis.  

With an assay methodology and reader technology in hand I turned to addressing several 

biomedical applications for FSA-CIR.  The first I will describe is found in Chapter 5: Rapid 

assay development and quantification of two chemical nerve agents in serum, which 

demonstrates that quantitative tests aimed at diagnosing exposure to organophosphorus nerve 

agents using aptamer probes can be developed rapidly and with excellent sensitivity.  This work 

builds upon the work presented in my master’s thesis [1] where the BSI method was applied to the 

quantification of aptamer-small molecule binding.  Here, aptamer probes and our unique 

interaction sensing approach described in Chapter 1 enabled the development of low cost, highly 

sensitive assays without the derivatization or immobilization steps that retard assay development 

for other techniques.   

I describe in Chapter 6: Quantitation of Opioids and the Prospect of Improved 

Diagnosis of Neonatal Abstinence Syndrome the development of high sensitivity quantitative 

assays for three opioid targets and their primary metabolites in urine using the FSA-CIR approach.  

With a simple mix-and-read assay, I achieved sub-10 picograms per milliliter detection limits, and 

accurately quantified spiked test “unknowns” across a 3-decade span of concentrations.  This assay 

development effort is accompanied by a pharmacokinetic analysis that demonstrates the added 

utility of the improved sensitivity and time-to-result provided by the FSA-CIR method over the 

current gold-standard technique in diagnosing neonatal abstinence syndrome and in analgesic 

dosing of neonates with opiates for pain management.  This pharmacokinetic analysis shows that 

even in the most extreme circumstances, by the time symptoms of neonatal withdrawal symptoms 

are manifest (48-72 hours after birth) the levels of opioids in neonatal urine have decreased below 

the detection limit of mass spectrometry (MS) methods.  Compared to MS methods, the lower 

projected cost, easier use, and FSA-CIR’s improved detection limits are predicted to allow 

confirmation of opioids in neonatal urine samples well past the typical onset of symptoms, which 

could enable confirmatory testing in low resource, near patient settings.  

In Chapter 7: Preclinical Evaluation of a Free  

Solution Assay for the Quantification of a Candidate  

Lung Cancer Biomarker CYFRA 21-1 I describe my efforts to begin clinical translation of FSA-

CIR.  In this biomedical application, and perhaps the most exciting result presented here, I use 
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FSA-CIR to address the lack of an accurate diagnostic biomarker for lung cancer.  FSA-CIR 

provided a 40-fold lower limit of quantitation (LOQ) for the cytokeratin candidate lung cancer 

biomarker CYFRA 21.1 when compared to the current gold-standard assay technique 

Electrochemiluminescence.  We hypothesized that by lowering the LOQ of the biomarker it is 

possible to increase the discriminatory power of the biomarker (e.g. expand the separation between 

cases and controls).  Chapter 7: presents the initial results of this project, which show that the 

improved LOQ of FSA-CIR did provide greatly enhanced discrimination of cases vs controls in a 

225-patient cohort of patients presenting indeterminate pulmonary nodules (IPNs). 

Translation of this platform technology will require an automated approach to data 

analysis.  Chapter 8: CIR Analysis Tools presents a first step towards the goal of automated 

analysis.  I developed a data analysis algorithm and encoded it into an easy to use LabVIEW 

program that enables a user to turn the raw CI data output (phase shift over time) into usable data 

in a spreadsheet format.  Description of the algorithm and a preliminary validation is presented in 

Chapter 8, while a step-by-step tutorial for analyzing data using this program presented in 

Appendix C, and additional troubleshooting information in Appendix D. 

This collection of work demonstrates that I have made advancements in the underlying 

theory of free solution molecular interactions, engineered a nearly-mature compensated 

interferometric reader, and applied it to several important biomedical problems.  
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Chapter 1: Origin and prediction of free-solution interaction 

studies performed label-free 

As published in Proceedings of the National Academy of Sciences volume 113 

Contemporary assays enabling single molecule detection [2-3] have accelerated the 

sequencing of the human genome [4] and facilitated imaging with extraordinary resolution without 

labels [5].  To most closely approximate the natural state, an interaction assay methodology would 

interrogate the processes (reaction, molecular interaction, protein folding event, etc.) without 

perturbation.  Label-free chemical and biochemical investigations [6-7] transduce the desired 

signal without an exogenous label (fluorescent, radioactive, or otherwise) representing an essential 

step toward this goal.  Many label-free methods require one of the interacting species to be either 

tethered or immobilized to the sensor surface, introducing a potential perturbation to the natural 

state of the species [8-9].  However, back-scattering interferometry (BSI) is a free-solution label-

free technique with the added benefit of sensitivity that rivals fluorescence [10].  There are other 

techniques performed in free solution, such as mass spectrometry (MS) [11-12] and nuclear 

magnetic resonance (NMR) [13-14] and the widely used isothermal titration calorimetry (ITC) 

[15-16].  As with NMR, ITC has many advantages, but exhibits modest sensitivity and often 

requires large sample quantities.  Another increasingly popular free-solution approach is micro-

scale thermophoresis (MST).  Yet for MST to operate label-free, one of the binding partners must 

have a significant absorption/fluorescence cross-section [17-18].  BSI represents an attractive 

alternative to these methods because of its high sensitivity, small sample volume requirement, 

optical simplicity and broad applicability [19-22].  Whereas ITC and MST are well known, the 

fundamental mechanistic basis for the signal observed in BSI is less well understood.  

Herein we attempt to address the fundamental basis for the signal observed in label-free, 

free-solution interaction studies performed with an interferometer.  We present a hypothesis for 

the mechanism of signal generation in free-solution assays (assumed to be label-free from this 

point forward) and pose a preliminary model for interaction studies.  Our model is a work in 
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progress and as such has limitations.  Here it is our intent to stimulate additional investigations and 

to address two questions:  

1) How can interactions be measured label-free and in free-solution, in the absence of 

absorbance, a significant mass change, or a thermal signature? 

2) What intrinsic property allows unprecedented sensitivities (picomolar to 

femtomolar) in complex milieu, when neither of the individual binding partners is 

detectable at those levels? 

In addressing these questions, we show that free-solution methods properly performed by 

interferometry have a unique, enabling signal transduction mechanism and that the signal 

magnitude correlates with changes in quantifiable intrinsic properties.  We also demonstrate that 

the Free-Solution Response Function (from hereon, FreeSRF) can be quantified and within 

defined parameters can be predictive.   

Results presented establish that the relative measurements performed in free-solution allow 

the solution refractive index (RI) to provide a reproducible, robust, and quantifiable readout of 

chemical reaction progression (interaction), principally due to conformation and hydration 

changes upon binding.  We illustrate that the changes leading to a FreeSRF cannot be considered 

simply as mass weighted dη/dC responses, even though the interferometer exhibits a dη/dC 

response for a single analyte (salt, sugar, protein, antibody, or DΗA strand) [23].  We describe 

how to properly employ BSI and configure the free-solution assay to ensure quantitation of binding 

affinities for a wide range of species: (e.g. ion binding a protein [10], a sugar binding a lectin [9], 

hydrogen bonds forming in non-aqueous media [24], small molecules to membrane-proteins 

embedded in cell-derived vesicles [19], merozoite proteins to intact human erythrocytes [22], and 

protein folding [25]).  Finally, we show how to estimate the magnitude of free-solution signal 

using protein database-derived information.  

Background 

Nearly two decades ago the Bornhop lab published observations indicating that their 

unique interferometer could be used to measure protein folding [25].  The importance of these 

preliminary studies was not more fully realized until 2007, when our group showed that binding 

events, such as ion-protein, protein-protein, and small molecule-protein interactions, could be 
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measured using a RI technique in free-solution and without labels [10].  Numerous examples have 

validated that free-solution measurements by interferometry can be used to quantity interactions 

of widely different affinities  µM – pM) and on interacting pairs with significant mass differences 

(>10,000 fold) [19-21].  While we, and others, have postulated the origin of the free-solution 

signal, no explicit explanation for the physical phenomenon has emerged.  Here we capitalize upon 

the pioneering observations by Sota and others including Pitner and Koch [26-29], using 

techniques typically thought to be insensitive to bulk RI changes [26] that couple energy into an 

immobilized sensor surface layer, which suggest that a theory based purely on dη/dC 

considerations does not adequately describe the response for optical methods performed in free-

solution.  The background necessary to support this supposition is provided vide infra and in 

Appendix A.    

A wide range of surface techniques have dη/dC signal dependence, where the performance 

is bounded by the relative change in mass-concentration at the surface (Equations A.1 – A.3).  

These observations have led to a reasonable but mistaken assumption that signal transduction in 

free-solution is the same as deflection, refraction, or wavelength shift, techniques where 

performance is bounded by the relative change in volume at the surface (mass or concentration).  

The dη/dC formalism was established in 1988 in one of the first papers describing surface plasmon 

resonance (SPR) [30].  Other descriptions on how to relate these changes to adsorbed films 

appeared thereafter [31-33].  In one of these reports, researchers showed the SPR response was 

linear with surface concentration of protein (ng/mm2) for adsorbed species, and introduced the 

refractive index increment (RII), which was defined as dη/dC in ml/g [33].  They illustrated that 

the RI of the surface layer was the sum of the concentration weighted RII (Eq A.1).  Using a 

Matthews report [34] indicating the fractional solvent content of a globular protein crystals ranges 

from 30-78%, they then estimate the probed surface thickness to range from 60 and 200nm.  Yet, 

the closely packed protein crystal representation omitted values for solvent content and specific 

volume.   

Yee and co-workers [31] recast the Lorenz-Lorenz equation (Eq A.2), further establishing 

the paradigm by showing that ηprotein = 1.57 RIU for the water-free (unreacted) protein was close 

to that of crystalline proteins of 1.60 RIU as confirmed by Schuck [35].  Importantly these values 

are greater than those estimated for “adsorbed protein films” using ellipsometric approaches 

assuming a single optical thickness, since the film volume does indeed include a great deal of water 
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[31, 36-37].  Yee et. al. referred to that part of the film that “are made of protein material itself, 

not water.”  They also noted, “we believe this approach, which neglects the intermixed solvent in 

the adlayer, is more direct and general for quantitative analysis of adsorbate coverages for proteins 

and adsorbates in general” [31].  A report by Marsh also suggests that hydration/conformation are 

important predictors of binding-induced structural changes [38].  

In 2000, Davis and Wilson reported on an approach to determine the RII of small molecules 

for correction of SPR data [39].  They too employed the formalism of a concentration weighted 

RII (Eq A.3) and predicted the maximum (BIACORE) SPR instrument response for binding of a 

single ligand (Eq 1.1).   

  (RUpred)max = RUM * (MWL/MWM) * (dη/dC)L / (dη/dC)M Eq.  1.1 

where (RUpred)max is the predicted maximum instrument response in resonance units for 

binding at a single site, RUM is the experimental amount of macromolecule immobilized on the 

chip in resonance units, MWL is the molecular weight of the ligand, MWM is the molecular weight 

of the immobilized macromolecule, (dη/dC)L / (dη/dC)M is the RII of the macromolecule.  The 

relative mass was also shown to be an important parameter in predicting the maximal signal in 

flow injection gradient SPR systems [40].   

The model described above and in Appendix A used to define the response for RI (bio)-

sensing methods, does not take into account the possibility that the signal may be impacted by 

conformation and hydration changes upon chemical or biochemical transformation (binding, 

folding, shedding or gaining waters of hydration).  Sota and co-workers were the first to question 

this supposition by reporting the detection of conformational changes in an immobilized protein 

using an SPR biosensor [26].  They observed that the SPR signal of the tethered protein and the 

molar ellipticity of dihydrofolate reductase in solution responded similarly to pH changes.  

Combined with tethered protein sensor surface measurements in the pH range of 0.12 – 7.80, they 

postulated that their observations were “consistent with the interpretation that changes in the SPR 

signal reflect conformational changes occurring during acid denaturation” [26].   

Numerous others have questioned the paradigm of RI sensing exhibiting simply a mass 

weighted response.  In 2000, Boussaad, Pean, and Tao employed multi-wavelength SPR to show 

that altering the reduction potential of a solution caused a change in the conformation of 

cytochrome C and a corresponding change in signal [41].  Salamon et al. reported the use of an 

SPR-related technique, coupled plasmon-waveguide resonance spectroscopy (CPWR), to study 
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ligand-induced conformational changes in a G-protein coupled receptor embedded in a lipid 

bilayer [42].  Gestwicki and coworkers exploited the observation that the SPR response is not 

strictly dictated by the RII to enhance small molecule detection [28].  In this work and a subsequent 

patent [43] they demonstrated that ligand-induced conformational changes can be used to report 

small molecule binding to immobilized maltose-binding protein and tissue transglutaminase by 

SPR, without the need for a high molecular weight (MW) competitor.  For ligands binding to a 

receptor, they showed: a) there is a net negative ΔRI with a decrease in hydrodynamic radius; and 

b) when the interaction increases hydrodynamic radius, a net positive ΔRI results.  Using response 

reversibility and similarities between reported and SPR-determined equilibrium dissociation 

constants, they confirmed that these signals could not be attributed to the addition of analyte 

molecular mass to the surface as would be predicted by Eq. A.1-3 and 1.1.  They showed, with a 

high level of confidence, the observations were a consequence of specific receptor-ligand 

interactions.   

The details of the Gestwicki, et. al. experiments are important here.  X-ray crystal structures 

show that Maltose binding to Maltose Binding Protein (MBP) induces a conformational change.  

The hinge-twist structure change between the two domains of MBP causes a net decrease in 

hydrodynamic radius [28].  As predicted for a negative net change in hydrodynamic radius, the 

event produced a negative ΔRI.  Also consistent with their hypothesis was the observation that a 

positive ΔRI resulted when calcium binds to tissue transglutaminase (tTG), which is allosterically 

regulated by Ca2+.  The positive ΔRI of roughly +1000 resonance units (RU) reported for Ca2+ 

binding to tTG, from a change in hydrodynamic radius resulting from a ca. 15° rotation, was much 

greater than the expected +28 RU from mass alone.  Thus, the conformationally active form of 

tTG increased the SPR signal intensity by 36-fold upon calcium binding.  Unlike calcium, maltose 

is of sufficient molecular mass (360 Da) to be detected directly by SPR.  Yet, when maltose binds 

to MBP, a net negative change in RI is recorded in the SPR sensorgram, apparently because the 

binding event-induced conformational change overwhelms the positive response due to 

accumulation of mass from maltose (MBP-maltose interaction gave a net 5-30 RU signal).   

After a period of silence, several SPR papers appeared on the topic of conformation-

dependent sensing despite many considering the reports to be simply anomalous behavior [44-48], 

attributed to: 1) buffer mismatch, 2) volume exclusion due to ligand density differences [44-46], 

3) non-specific matrix interaction [47], and 4) non-specific reference interactions [48].  Regardless, 
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a recent paper reported that the RI sensing figures of merit were dependent on shape and the size 

of the Au nanoparticles [49] with sensitivities generally increasing as the nanoparticles became 

elongated and their apexes become sharper.  When nanobipyramids’ aspect ratio was increased 

from 1.5 to 4.7 signal increased from 1.7 to 4.5.  Then in 2010, SPR was employed to quantify E. 

coli DΗA ligase using a hairpin DΗA to probe self-structure change during the ligation process 

[50].  Clearly no change in MW was necessary to provide signal for this assay.  

Because of the significant difference in the mass of the binding pair, ion - protein 

interactions are an important class of interactions to consider.  Christopeit, Gossas, and Danielson 

[51] showed that SPR detects these interactions, provided that a large conformational change is 

induced upon binding.  Here a Ca2+-induced conformational change of C-reactive protein (CRP) 

made the protein more compact, decreasing the hydrodynamic radius, leading to an 

“unexpectedly” negative ΔRI change.   

Recently the Koch group contributed two studies [29, 52] further bolstering the argument 

that free-solution signals correlate to binding-induced conformational changes.  In 2010, they 

reported that SPR sensorgram amplitudes for saturated Ca2+-binding of protein-coated surfaces 

greatly exceeded the theoretical values [52], concluding the SPR signal was a consequence of the 

concerted Ca2+-binding induced protein conformational change in the vicinity of the protein–

dielectric, rather than being due to a mere mass effect.  Using NMR structures of Ca2+-free (apo) 

and Ca2+-bound myristoylated recoverin (mRec), reported as average structures, they illustrated 

Ca2+-free recoverin has a tense (T), compact conformation in which the myristoyl group is 

sequestered in a hydrophobic pocket (Figure A.1A).  Yet, in the Ca2+-loaded form it undergoes a 

transition to a released (R), more extended conformation, where the myristoyl is solvent-exposed 

(Figure A.1B).  The Ca2+-induced transition is characterized by both an increase in the radius of 

gyration (Rgyr) and total solvent accessible surface area (SASA).  They postulated that the solvation 

shell of the R conformation differs significantly from that of the T conformation, which affects the 

surrounding water structure and the overall change in RI signal measured.  Recently, this group 

also showed a correlation between SPR, dynamic light scattering (DLS), and size-exclusion 

chromatography [29], confirming that conformational changes under conditions of molecular 

crowding yield fingerprint profiles reflecting different hydrodynamic properties for each Ca2+-

sensor protein under changing Ca2+ conditions.  These properties were extremely sensitive to even 
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small alterations of structure/conformation induced by point mutations.  The Bornhop group has 

made similar observations in free-solution for binding of folate to histone demethylase, LSD1 [53].   

The work reported by the Koch the group indicates that the site-specific homogeneous 

immobilization of the proteins enhances the intensity of the phenomenon, but the RI changes 

induced by concerted Ca2+-binding/conformational transitions are essentially isotropic.  Using 

DLS, circular dichroism (CD), and ellipsometry as confirmatory and complementary methods, 

they concluded, “conformational changes can be detected even via the p-polarized resonance 

excited by the commercial SPR systems (Biacore, GE)…likely to be a direct result of the 

heterogeneous orientation … a different case (than) the anisotropic immobilization of membrane 

receptors in lipid bilayers that require both s- and p-polarizations to be fully characterized as in 

plasmon waveguide resonance spectroscopy (PWRS) [54]” [52].  Thus, Koch predicts that 

conformational changes are less likely to be observed in the absence of both polarizations with 

highly organized systems.   

Like PWRA, dual polarization interferometry (DPI) [55], employs both s- and p-

polarizations of light.  DPI is based on the observation that a laser illuminated waveguide stack 

produces an interference fringe pattern that undergoes a phase change when an immobilized layer 

on the top stack changes.  By introducing alternating polarization states [transverse electric (TE) 

and transverse magnetic (TM)], at right angles to each other into the stack, the difference in 

response allows two independent surface measurements.  Using classical optical theory, these two 

outputs give a measure of thickness and density for the (protein) layer.  Comparison of the TM 

and TE output has enabled shape, orientation, binding, and molecular conformation changes to be 

studied [56]. 

Overall, the collective literature described above are consistent with our hypothesis that 

systems with significant conformation and hydration changes, do not conform to the theory that 

predicts RI changes are equal the sum of the mass weighted RI values (Eq. A.1-3 and 1.1).  Too 

much evidence exists, from a diverse set of chemical/biochemical processes, for these observations 

to be anomalous or spurious in origin.  Particularly since the signal was observed in the presence 

of a large background arising from a mass adsorbed at the surface.  Hence, configuring an assay 

to reduce or eliminate competing RI signals should result in a measurement that reports 

conformation/hydration changes.  In 2007, Bornhop’s group tested this hypothesis, showing that 

under the proper conditions a sensitive RI sensor can transduce solution-phase binding events [10].  
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Since this original report, BSI has been used widely [19-22, 24-25, 57], and benchmarked 

extensively, with comparisons to ITC, SPR and other established assay platforms.   

Results and Discussion 

A unique aspect of our free-solution methodology is that often the sensitivity of the assay 

far exceeds that for detecting the individual participating species.  In other words, the ligand alone 

has no quantifiable dη/dC response under the conditions of the assay, but when comparing the 

bound sample to the receptor/target (reference) there is robust and reproducible signal (Fig. A.2-

3).  This observation has raised the two important questions: 1) How it is physically possible to 

perform these label-free studies in free-solution?  2) What is the signal source?  Here we aim to 

definitively answer these questions, putting forth an explanation and a preliminary model for the 

free-solution signal and detailed transduction procedures by interferometry.    

Conformation and Hydration Changes are the Origin of Free-Solution Signals 

To quantify interactions in free-solution the experiment must be designed in a manner that 

places the chemical and optical focus on changes in conformation, hydrodynamic volume, 

hydration state, and to a lesser extent, the electronic state.  Proper handling of index-matched 

sample and reference enable chemical focusing, while correct instrument alignment and operation 

maximize signal transduction by the interferometer.  Our methodology should also apply to 

systems where there is no mass change, as in protein folding or where the difference in mass for 

the binding pair is large.  We describe here how, the relative mass of the binding partners plays a 

minor role in determining the Free-Solution Response Function (FreeSRF). 

Many years ago, Bornhop’s group demonstrated protein folding on very small sample 

quantities with an early generation capillary interferometer, showing that a readout for ubiquitin 

folding could be obtained [25].  In retrospect, we now realize the importance of this observation, 

which illustrated that in the absence of any mass change, we could employ an RI sensor to follow 

conformation changes in free-solution.  Recent efforts to construct an assay for respiratory 

syncytial virus (RSV) provides additional evidence for our hypothesis that free-solution assays are 

reporting changes in conformation and hydration [57].  Bornhop’s group found that the BSI 

sensitivity was not only related to the number of unpaired nucleotides, but also to the structure of 

the targeted regions of the RNA sequence.  For example, locked nucleic acid (LNA) probes showed 

a 4-fold sensitivity improvement compared to DΗA probes of the same sequence.  To explain this 
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non-dη/dC behavior, Bornhop’s group investigated how the free-solution signal was impacted by 

changes in the duplex structure.  Using titration and incubation of DΗA:DΗA duplexes with 

trifluoroethanol (TFE), an established method for converting the duplex structure [58-59], they 

induced the transition from the B-form to A-form (Figure A.4).  They then monitored these 

structural transformations with circular dichroism (CD) and ellipticity at 270nm showing that the 

BSI free-solution readout reports structural transformations in the DΗA duplex. Other experiments 

performed by us and others [60] involving positional DΗA mismatch binding experiments further 

validate our hypothesis, showing free-solution signal enhancement emanates from induced 

alterations to the helical geometry of the nucleic acid hybrid and not a dη/dC change.    

The Interferometer 

The technology used to perform free-solution studies represents a unique interferometry 

configuration [10].  The optical train depicted in Fig. 1.1 is quite simple for a highly sensitive, 

small volume interferometer, consisting of a coherent source, an object (channel in a chip or 

capillary) and a transducer.  Probing the object with an unfocused He-Ne beam at nearly 90o (± 7° 

to allow fringes to be viewed), results in a high-contrast interference fringe pattern in the back-

scattered direction.  Depending on configuration, tracking the position of the fringes enables RI 

changes to be quantified in the range from 10-4 - 10-9 [61-62], within picoliter – nanoliter probe 

volumes.  A long effective path length results from multiple reflections at the fluid-channel 

interface and leads to the unprecedented sensitivity in constrained volumes [63].  We, and others, 

still use capillaries, yet the most common interferometer configuration is based on a microfluidic 

chip containing a nearly semicircular isotropically etched channel that is 100 µm deep and 210 µm 

wide.  Based on empirical observations, we have found that fringe selection is best accomplished 

by filling the channel with the analysis solution (buffer, serum, etc.) and counting approximately 

5 fringes from the centroid, then windowing or selecting 5-7 fringes in this region that exhibit a 

nearly single spatial frequency (see also: Alignment and Fringe Selection in Appendix A).  While 

the fringes closest to the centroid appear to exhibit a greater shift [64], a binding signal has yet to 

elude us in the region described above.  With proper alignment, the fringe contrast ratio approaches 

99% and this metric, combined with response to a change in RI (detection limits with glycerol 

solutions) serves to consistently produce the desired outcome.  Good thermal stabilization and 

environmental isolation is also necessary and allows the device to produce a detection limit of ΔRI 
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< 5 ×10-7.  Typically, the sample/chip is probed with both planes of polarization as a result of 

coupling a linearly polarized laser into a non-polarization maintaining single mode fiber coupler.   
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Fig. 1.1 BSI Block diagram showing orientation of the beam relative to the chip, a photograph 
of the fringe pattern, the line profile of the region of interest for a good fringe pattern and the 
FFT spectrum for that region of interest (ROI). 
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Misalignment will lead to slanted fringes and/or fringes with poor contrast.  All of the 

configurations of BSI Bornhop’s group and collaborators have investigated exhibit a classical 

dη/dC and dη/dT response expected of an RI detector.   

It is likely that the multipass optical configuration of BSI contributes to success in 

performing free-solution and label-free measurements as does the ultra-small (constrained) volume 

of BSI, but it is unlikely these alone are enabling characteristics.  While additional research is 

needed, we can state that there is a combination of factors that enable our free-solution 

measurements.  These include: 1) the use of the proper assay methodology involving informed 

choice of reference and control and RI matching, 2) careful sample handling, 3) prudent instrument 

design with respect to temperature and pressure control, and 4) informed fringe selection as 

described vide infra.   

If the conformation/hydration hypothesis described here has a physical basis, free-solution 

assays should be detectable by a device with comparable ΔRI sensitivity to those used in the SPR 

reports noted above.  Detection limits vary for SPR, but consistently reach ΔRI = 10-6.  In our 

hands the BSI detection limit is ΔRI = 10-6 or 10-fold below this level [20-21, 63].  Therefore, 

using proper methodology the signal to noise ratio (S/N) of our interferometer should enable 

molecular interactions to be measured.  As shown in Table A.1 and Figure A.2; 1) the actual ΔRI 

measured by BSI for a binding event is well within the instrument detection limit and 2) as recently 

suggested [65] the predicted ΔRI using dη/dC considerations (Equation A.13 – A.17) would be 

undetectable.  

The Signal is Not Calorimetric  

Reactions and binding events can add or remove energy from a solution, changing the 

solution temperature, a property that has long been used to study interactions by calorimetry.  Heat 

can also perturb the optical properties of a solution, in great part because of the relatively high 

dη/dT response exhibited by most fluids (1×10-4 °C for water).  To rule out dη/dT perturbations as 

free-solution signals we have shown that the quantities of sample interrogated in the interferometer 

volume cannot generate a temperature change large enough to produce a detectable ΔRI signal 

[10] (Appendix A).  Also the absence of signal decay by conduction to a heat sink in stop-flow 

kinetic binding studies further confirms that the heat of reaction is not the source of the free-

solution signal [10].  Virtually all assays performed since 2008 have been run as end-point 
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determinations, with samples prepared, mixed, allowed to equilibrate (sometimes for hours), and 

then read by the interferometer.  The end-point scenario excludes reaction-based calorimetric 

contributions to the signal.  

The Free-Solution RI Signal for Interactions/Reactions 

Consider the reaction between the two species A and B.  As a chemist, it is tempting to 

write the equation for this reaction as: A + B → A-B, but this disregards the complexity of the 

interaction.  When A and B react they undergo electronic transitions, lose or gain hydration, and 

experience significant changes in the atomic geometry.  So, the product is just that, an entirely 

new species allowing the reaction to written as: A + B → C.  If this is the case, then the product 

 

Fig. 1.2 Comparison of ribbon drawings for Calmodulin unbound and bound with various 
ligands A) unbound Calmodulin (PDB: 1CFD), B) Calmodulin bound to Calcium (PDB: 
1OSA), C) Calmodulin bound to M13 (PDB: 1CDL), and D) Calmodulin bound to TFP (PDB: 
1CTR). 
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formed from the interaction of A and B must have a unique and different dielectric constant or 

molecular dipole moment.  The new species therefore responds differently to the probing 

electromagnetic radiation, in a manner analogous to the pH-change induced ‘structural’ 

transformations in a dye molecule that lead to a significant change in absorption (color).  For 

example, even the subtle change produced by ionizing phenol to phenolate results in quantifiably 

different absorbance spectra.    

To aid in visualizing the free-solution transduction phenomena, we use the structural 

diversity found in calmodulin (CaM) Fig. 1.2.  Binding of Ca2+ to CaM (Fig. 1.2A) leads to a 

significant conformation and hydration change [66], resulting in a new complex, Ca2+-CaM (Fig. 

1.2B) which has a considerable and quantifiably different electromagnetic cross-section (dielectric 

constant).  Then, if the Ca2+-CaM complex reacts with the M13 protein kinase (Fig. 1.2C) the 

subsequent complex is unique and has a quantifiably different RI due to induced structural and 

hydration changes [67].  Binding the small-molecule inhibitor, TFP, induces changes in atomic 

arrangement and hydration that leads to yet another unique chemical entity (Fig. 1.2D) [68].  These 

graphical representations, generated from X-ray structures found in the Protein Data Bank 

(RSCB/PDB), for bound and unbound species pictorially illustrates that the potential magnitude 

of free-solution signal can be large (ca. > 10-4 RIU) under the proper conditions.  Calculations of 

ΔRI (Table A.1, Figure A.2-3) further illustrate this point.   

While FreeSRF is not proportional to the sum of the mass-weighted change in RI for the 

reactants (Appendix A, Eq A.13 – A.17, and Figure A.2 – A.3), this property does not preclude 

non-reacting or non-interacting analytes from exhibiting an RI response.  Only the proper 

preparation of the sample and reference, typically from the same matrix, enables the extraction of 

the free-solution signal by canceling out (often) very large bulk RI background signals.  In other 

words, the determination is not made by comparing samples with huge RI differences, but nearly 

identical ΔRI values.  For example, we don’t compare η1 = 1.33131 to η2 = 1.39131, but samples 

with RI values of 1.391312 and 1.391318 (ΔRI = 6 ×10-6).  The use of relative measurements 

ensure that the interaction is the predominant signal.  Further, to minimize the influence of non-

specific binding at the surface we establish a base-line with the receptor present in the buffer or 

matrix under investigation and then to the best of our ability using rinse solutions, reestablish this 

level before introduction of every new concentration for the assay.   
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The Free-Solution Response Function and an Expression Predicting Performance 

Our first attempt to formulate a model for label-free, free-solution assays was heuristic and 

based on the assumption that binding-induced change in hydrodynamic radius dominated the 

signal for CaM interactions.  Preliminary calculations utilized the Protein Data Bank (RCSD/PDB) 

structural information to estimate the radius of gyration (Rgyr) and solvent accessible surface area 

(SASA) of the bound and unbound species (ΔRgyr and ΔSASA).  A simple multivariable linear 

equation was obtained that relates the interferometry signal in phase, to change in Rgyr and SASA 

for the CaM system (ΔBSI = 1.0 + 2.6×10-4 SASA + 0.054 ΔRgyr).  Fig. A.5A shows the 

correlation between the predicted and experimental values for free-solution interaction studies of 

CaM binding Ca2+, Ca2+-CaM – TFP, Ca2+-CaM – calcineurin, Ca2+-CaM – M13 peptide.  The 

surprisingly good correlation (R2 = 0.88) between the actual and predicted signal magnitude for 

these binding events encouraged us to further our investigation.   

Next, we expanded our formalism and applied it to a training set of binding pairs.  Our 

expression mirrors Beer’s Law in its simplest form, which equates the absorbance of a species to 

the experimental parameters of the determination (path length and concentration) and the intrinsic 

property of the species (molar absorptivity).  Here, we propose defining the response for free-

solution sensing to be expressed as: 

 ρ = χβC Eq.  1.2 

where: ρ is the FreeSRF measured in radians, χ is the Molar Refractometry in RIU/moles/L, β is 

the instrument response function in radians/RIU, and C is the concentration in moles/L.  This 

simple equation demonstrates that the fringe shift (in radians) quantified by an interferometer when 

measuring a folding, binding, or hybridization event in free-solution (no labels) is directly 

proportional to: a) the magnitude of structural change (predominantly conformation and hydration) 

of the sample; b) the dθ/dη sensitivity of the interferometer (which incorporates the optical path 

length); and c) the concentration of the analyte.  Below, we show that ρ is not a function of the RII 

or the relative mass of the interacting species and that it can be estimated for a binding pair with 

reasonable confidence.   

Important caveats:  Free-solution assays are predicated on the assumption that the solution 

is interrogated and not the surface (see below).  The equation for FreeSRF states that the signal 

magnitude, ρ, is proportional to the number and type of transformations (See for example [57]), 
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not just the number of bonds formed or broken.  Measurement of ρ is obtained as a change in RI 

reported by a fringe shift or estimated from χ, the species concentration and instrument 

performance.  As such, the most significant contributors to error in ρ are instrument drift, run-to-

run reproducibility, and the uncertainty in χ.   

In defining χ as the molar refractometry, we recognize that the structural changes observed 

are a consequence of processes (folding, interactions, chemical reactions, biochemical 

transformations, etc.) that lead to changes in the analyte intrinsic properties, such as the dielectric 

constant, the molecular dipole moment, or other third order parameters.  This premise is supported 

by evidence from complementary techniques including CD, ellipsometry (Fig. A.4), ITC, DLS 

[29] and NMR.  Accuracy in χ is dominated by the quality of the initial training set data and the 

correctness of the structure prediction method and data derived from it.  Several combined 

resources can provide quality structural data: the PDB; 2) PYMOL/MOLMOL (molecular analysis 

and display programs) and 3) M-FOLD for DΗA/RNA structure prediction and 4) Chimera for 

structural analysis.  

Note that β appears in the equation to account for path length variations, interferometer 

sensitivity (S/N) differences from device-to-device, lab-to-lab, or even operator-to-operator.  

Currently dθ/dη is expressed as milliradians/RIU, but other sensible units that accurately express 

the instrument figures of merit can be used for β.  In consideration of β, is should be recognized 

that signal extraction from an interferometric fringe shift is enabled by proper optical alignment, 

as well as careful selection and handling of references and controls.  As a cautionary note, it is our 

observation that BSI fringes do not exhibit uniform behavior with respect to free-solution 

sensitivity (Appendix A).  What we have found is that optimized optical alignment for fringes 6-

13 (counted from the centroid) yields a single spatial frequency when using fast Fourier Transform 

(FFT) [61] (Fig. 1.1) that has always reported the free-solution signal.   

The magnitude of FreeSRF scales with concentration, therefore the addition of more 

protein always increases ρ, but it must be recognized that C is the product concentration, the 

quantity of the new shape or complex.  So, circumstances can be imagined where increasing the 

amount of receptor doesn’t produce a directly proportional change in ρ.  For KD determinations, 

this can be dealt with by avoiding a scenario where a high product concentration is reached in the 

assay.  At this juncture for KD determinations, we perform FreeSRF most often with target 

concentrations near the assumed affinity or at KD/10.  Additionally, we are mindful that error in C 
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impacts FreeSRF, contributing uncertainty to the training set employed to define χ and then used 

to predict ρ for a new system.    

As with Beer’s Law, which exhibits non-linearity for three major reasons [69], we do 

expect refined versions of our theory to take on higher order terms that could affect ρ similarly.  

While nonlinearities may be identified, our preliminary observations conform well to the simple 

expression proposed.  We do acknowledge that our model can be improved and support that it will 

benefit from further investigation.   

Testing the Validity of FreeSRF 

As with other models [38, 70-73], it was necessary to use a learning set to establish the 

appropriate relationships and weighting parameters for FreeSRF.  In our case, we determined χ 

from ρexp for a training set of well-characterized binding systems (Table 1.1).  Multiple users 

performed the assays on several different interferometers (of similar configuration) to insure 

confidence in the result and minimize operator or device biases.  

For each of the training systems the reference-corrected phase shift (ρexp in milliradians) 

was experimentally quantified at known concentrations of ligand.  These values were used to 

determine the FreeSRF values for the experimental conditions: ρexpBmax, βexp, and CBmax, which in 

turn facilitates the calculation of values for χexp for the training set at the final concentration of 

product: 

 
ρexpBmax

β * CBmax
 = χexp Eq.  1.3 

Running a dη/dC calibration experiment allows β to be determined in radians/RIU for the 

specific instrument used in the binding assay.  This experiment consists of measuring the phase 

shift as a function of glycerol concentration in mM (or another suitable analyte).  From this linear 

relationship, we obtain the slope, expressed in radians/mM.  For example, the response of BSI4 

(instrument #4 of 9) for a glycerol calibration curve was found to be 0.011 radians/mM, a typical 

value for our chip-based device.  Then we express β in RIU per mM glycerol using a conversion 

factor from the CRC for dη/dC; in the case of glycerol this parameter is 1.04863×10-5 RIU/mM 

[74].  Thus, for BSI4: 

 β = 
0.015 

radians
mM

1.04863×10-5 
RIU
mM

 = 1442.308 
radians

RIU
 Eq.  1.4 
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To obtain the desired values for χBmax we must know the concentration of the product, 

[Complex], detected upon physical transformation.  Several approaches can be used to find this 

value.  Here we used an equilibrium solver written in Excel to determine the [Complex] at each 

concentration of ligand.  The solver uses the mass balance equation, the receptor concentration, 

ligand concentration, and KD to calculate product concentration (Appendix A).  Then the maximal 

concentration of product is determined by plotting the product versus ligand concentrations and 

fitting the curve using a single-site binding isotherm.  Bmax is equal to the maximal concentration 

of product that is formed under the experimental conditions with high accuracy and has less bias 

than results produced at lower concentrations with a reduced S/N.  To check the validity of using 

Bmax for the [Complex] and our solver, we used the quadratic equation to solve the equilibrium 

mass balance equation for the concentration of the complex at each point on the saturation isotherm 

produced from the end-point binding assay.  Results shown in Table A.2 illustrate that using the 

solver for Bmax produces comparable values to the more computationally intensive approach based 

on the quadratic expression. 

With ρexp/CBmax and β in hand, we have the experimentally determined value χexp for each 

of the training set species and can turn to the task of determining χ.  From our experience with 

CaM and observations by others (see above), the hypothesis that the free-solution signal has its 

origin in the physical transformations upon binding or folding emerges. Therefore χ should be 

principally proportional to reaction/binding-induced conformation and hydration changes. Thus, 

allowing us to propose the expression for χto be: 

 χmodel = A(ΔSASA) + B(aveSASA) + C(ΔRGyr) + D(aveRGyr) + E Eq.  1.5 

where ΔSASA is the difference in solvent addressable surface area for bound complex and the 

unbound species in Å2, the aveSASA is the sum of SASA values divided by the number of values 

(PDB structures), ΔRGyr is difference for the radius of gyration for the unbound species and that of 

the complex (bound species) in Å, aveRGyr is sum of radius of gyration values divided by the 

number of values (PDB structures), and A, B, C, D, and E are fitting coefficients.  The inclusion 

of the average quantities for Rgyr and SASA was motivated by a report by Marsh and Tiechmann 

[38] where they demonstrate that that the absolute SASA value of a protein taken from a complex 

is an indicator for the amount of conformational change expected upon binding and is thus 
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expected to affect Xmodel.   The absolute Rgyr value is required to normalize the effects of the 

absolute SASA value with protein size as described by Marsh in equation 2 [38]. 

It is noteworthy that the quality and accuracy of the data-base structures used to determine 

the hydrodynamic properties directly impacts our predicted outcome.  Here we used the 

RSCB/PDB (Table A.3) to calculate of Rgyr and SASA with methods described below.  In some 

cases, the PDB files were only available for corresponding ligand/receptor pairs in varying 

multiples of subunits (for example, unbound calmodulin was found as a monomer, but calmodulin 

bound to calcineurin was found as a homodimer).  In cases where appropriate, these multimers 

were split into monomers using Chimera [75].    

Numerous approaches exist to quantify Rgyr [76-78].  Here we employed a Chimera script 

obtained from (http://plato.cgl.ucsf.edu/trac/chimera/wiki/Scripts), enabling the calculation of Rgyr 

using the expression: 

 Rgyr = 
∑ mk(rk-rmean)2N

k=1

∑ mk
N
k

 Eq.  1.6 

where r is the position and m is the mass of each atom in the molecule.  Hydrogens were removed 

for this calculation for consistency across species, because the Chimera program automatically 

adds these when displaying a new PDB file.  Non-interacting species, such as ions, solvents and 

accessory ligands were also removed prior to determining the Rgyr.  The results for these 

calculations are compiled in Table A.4.  The values obtained from Chimera correlated well with 

a self-written MATLAB© script using the same coordinates obtained from the PDB files.  

Chimera was also used to aid in calculation of the SASA values.  As recommended, solvent 

excluded molecular surfaces were created with the help of the MSMS package: 

http://mgltools.scripps.edu/packages/MSMS/.  Typically, the SASA of only the main protein chain 

is used, with the surface area obtained using the “Surface” command in the MSMS program, which 

uses four different algorithms to determine surface area.  Non-protein molecules were discarded 

(including solvents, ions, and ligand) prior to calculations, except when the ligand was also a 

protein undergoing its own ‘significant’ structural change.  To calculate the solvent accessible 

surface area of the molecule, a “probe” (sphere of radius 1.4 Å) is “rolled” across the surface of 

the molecule.  To begin, the first atom is selected, and the probe is placed at a distance of the radius 

of the atom, and then moved around the atom in the tangential direction until the probe comes into 

contact with the nearest neighbor atom.  Then, the probe is moved along a path of equal radial 
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distance between the two atoms until it encounters a third atom.  This process is repeated to find 

the junctions between all atoms and their neighbors until the probe has been moved across the 

entire structure and the whole surface of the structure has been constructed.  Table A.4 presents 

the values for SASA for each of the learning set structures.  

We now have ΔRgyr, ΔSASA and their average values (from PDB structure) allowing us to 

determine the theoretical value for χmodel for each interaction.  Using the experimentally determined 

value for χexp, obtained from ρexp/Cβ and theoretical χ values for our entire training set, we 

determined the coefficients A, B, C, D, and E for Eq 5 (Table A.5) by performing a linear 

regression in MATLAB©.   Using a wide range of χ values this simple model produced a "good" 

fit with a high correlation coefficient (Fig. A.5B), but with a modest Spearman correlation 

coefficient of ρs=0.853 (a nonparametric measure of statistical dependence between variables that 

indicates the relationship is not random and that the correlation between the variables can be 

described using a monotonic function).  Yet, a relatively large residual error (20,249) (Table A.5) 

and percent difference between χexp and χmodel enhances the possibility of poor prediction accuracy, 

particularly for systems with a relatively small FreeSRF (ρ).   

A better fit was found by separating the binding systems into two sets, ‘large’ and ‘small’ 

responders, based on the size of FreeSRF (ρexp). Since the interferometer reports the magnitude of 

structural changes (not the binding species MW), some proteins will populate both sets upon 

interaction with different ligands.  For example, CaM can be found in both training sets.  Using 

 

Fig. 1.3 Plots showing correlation of χexp and χmodel when the learning sets are split into small 
(A) and large (B) χ values. 
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the signal-size segregation approach produces the plots shown in Fig. 1.3.  These plots clearly 

illustrate that the relation between the χexp versus χmodel predicted a priori produces two excellent 

results, with linear correlation coefficients of R2 = 0.991 and 0.998 and p values of 2.76×10-6 and 

3.13×10-12 for the small and large FreeSRF models, respectively.  Further evaluation of the 

relationship yields Spearman Rank correlation coefficients of ρs = 0.936 and 0.979, respectively 

(Table A.5).  It is important to note that our results don’t necessarily split into two best fit models 

and we acknowledge that there are likely some scaling factors we haven't identified which could 

impact the quality of the fit.  The model can really be split in any number of ways (2 subsets or 3, 

4, 5 subsets) and provide similar results, yet a division into just large and small sets results in a 

relatively simple and easy-to-use model that produces a reasonably high-quality result.  It is also 

possible that as the training set expands a group of intermediate species will emerge.  To the best 

of knowledge, there's not really a way to ascribe a physical property to E, which is the error term, 

disturbance term, or noise.  This variable captures all other factors which influence the dependent 

variable yi other than the regressors xi and is dissimilar for the large/small sets because of the 

significant difference in error between the two models.  

It is noteworthy that the training set used has a significant level of diversity, including ion-

protein, protein-protein, small molecule-protein, protein-aptamer, membrane protein targets 

analyzed as cell-derived vesicles, an antibody-antigen pair, and unaltered human erythrocytes [22].  

Further, the highly correlated results were obtained over a period spanning more than three years, 

 

Fig. 1.4 A) Flow diagram for predicting the suitable model (small or large) for a binding pair.  
B) Results for predicting the model for the entire learning set.   
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by numerous BSI operators and on six different BSI instruments.  Overall, the model provides 

values for the Molar Refractometry, χ, which correlate well with those derived from the binding 

experiment (Table 1.1), suggesting it can be used to estimate the FreeSRF for systems where 

binding-induced conformation and hydration changes can be obtained with reasonable accuracy.  

Predicting/Estimating FreeSRF   

There are two levels of prediction applicable to FreeSRF: one is to determine whether the 

small or large model should be used, and the other is to estimate the free-solution signal for a 

molecular interaction not currently part of the training set.  Fig. 1.4A illustrates the work flow used 

to estimate the applicability of using the small vs. large model.  First, the structural information 

(PDB) and the large and small model-fitting parameters (A, B, C, D, and E) are used to calculate 

χmodel.  Then, since most assays are run under these conditions, we estimate the final complex 

concentration by setting it equal to KD/10 (Table S1).  Upon performing these two calculations 

and using the FreeSFR relationship, either a non-sense or sensible answer for the predicted change 

Table 1.1 comparing χmodel to χexp 

Large Model Small Model 

Receptor Ligand 
Experimental 
Chi (RIU/M) 

Model 
Chi 

(RIU/M) 

Percent 
Error 

Receptor Ligand 
Experimental 
Chi (RIU/M) 

Model 
Chi 

(RIU/M) 

Percent 
Error 

IL-2 
Antibody 

Interleukin-2 827964 823965 0.5% Calmodulin TFP 75.2 73.6 2.2% 

β2AR Alprenolol 591423 604924 2.3% Calmodulin TFP 75.2 78.7 4.6% 

β2AR Isoproterenol 290953 278649 4.2% Calmodulin TFP 75.2 73.2 2.7% 

Basigin Rh5 215777 212174 1.7% 
Carbonic 
Anhydrase II 

Sulpiride 62.0 60.2 2.9% 

Carbonic 
Anhydrase II 

Acetazolamide -57291 -42419 26.0% Calmodulin 
Calmodulin-

Ca2+ 
56.1 56.5 0.6% 

Carbonic 
Anhydrase II 

Acetazolamide -57291 -37288 34.9% HIV PR 
Pepstatin 

1F1N 
13.7 13.7 0.5% 

Calmodulin Calcineurin 46087 37389 18.9% HIV PR Pepstatin 1F1 10.2 7.2 29.9% 

Calmodulin Calcineurin 46087 51594 11.9% Con A Mannose 7.8 14.4 85.4% 

Calmodulin M13 16458 15393 6.5% Con A Mannose 7.8 7.7 1.2% 

Thrombin Bock 9409 16261 72.8% Con A Glucose 2.6 -1.3 149.2% 

Thrombin Tasset 7109 12462 75.3% Con A Glucose 2.6 4.6 78.1% 

Carbonic 
Anhydrase II 

Benzene 
Sulfonamide 

-1379 -16771 1116.4% Recoverin Ca2+ 78.0 78.1 0.1% 

Carbonic 
Anhydrase II 

Benzene 
Sulfonamide 

-1379 -4607 234.2% 
     

Carbonic 
Anhydrase II 

Sulfanilamide 782 -17018 2276.2% 
     

Carbonic 
Anhydrase II 

Dansylamide -34377 -40557 18.0% 
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in ΔRI (e.g. detectable or not by BSI) emerges.  Following the flow chart in Fig.1.4A and using a 

conservative estimate for the operating range for the interferometer (ca. ΔRI 3 ×10-3 to 3 ×10-6) 

allows successful ranking of the binding pair with respect to large or small model.  Fig. 1.4B 

illustrates that in most cases (23 of 27) or 85% of the time the prediction properly classifies the 

binding pair.  An additional calculation (Appendix A) using the instrument response function β 

enables the determination of the actual ΔRI produced for a binding pair (Table A.1).  Two 

important observations can be gleaned from this table.  The first is that the experimentally 

measured value ρ correlates well with the predicted signal.  Second, the table and Fig. A.2 – A.3 

illustrates that the magnitude of ΔRI for a binding event is relatively large.   

Armed with the small vs. large selection method, we tested the capability of the model to 

estimate the free-solution signal for two molecular interaction pairs not used in the training set.  

These are Ca2+ – recoverin protein-ion interaction and the dansylamide – carbonic anhydrase 

(CAII) enzyme-inhibitor system.  Using the PDB and Eq 1.5 we first calculated χmodel for each of 

the two test systems.  Based on ΔSASA, aveSASA, ΔRgyr, aveRgyr, we obtain χmodel of 78.1 RIU/M 

and -40,557 RIU/M for Ca2+ – recoverin and dansylamide – CAII respectively (Table 1.1).   

To estimate FreeSRF (ρpred) we combine χmodel with β for the instrument to be employed 

and the values of C determined from the KD using our solver and the concentrations to be used to 

generate a binding isotherm.  We commonly use a receptor concentration of ~KD/10 and a ligand 

concentration of 4-10-fold larger than KD to reach saturation (Bmax).  For example, for Ca2+ – 

recoverin, use of the mass balance equation, a receptor concentration of 5.40×10-7 M, and a KD = 

0.27×10-6 M [79], allows the BSI equilibrium concentrations can be predicted (Table A.2).  

Substitution into the FreeSRF relationship, ρpred = χmodelβexpC, yields Eq 10: 

 ρc = 78.1 
RIU

mM
×1055663 

milliradians

RIU
×C (M) Eq.  1.7 

which allows the ρc at each ligand concentration to be calculated.  Plotting ρc-model versus 

the ligand concentration gives the predicted free-solution binding assay (green curve Fig. 1.5A).  

The same procedure was performed for the dansylamide – CAII binding pair, producing values for 

C and the modeled FreeSRF (ρc-model) (Table A.2).  Plotting these results gives the green binding 

curve displayed in Fig. 1.5B.  

Independent of our prediction, we performed free-solution measurements with BSI to 

determine the KD for both the recoverin and CAII systems.  The saturation isotherm binding curves 
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for these experiments are presented as blue lines in Fig. 1.5.  To further illustrate the correlation 

between measured and estimated FreeSRF, we plotted the χexp values on Fig. 1.3 showing where 

they lie on the training-set line.  The percent difference from χmodel was 0.13% for Ca2+-Recoverin 

and 18.0% for dansylamide-CAII.   

Overall there is a very good correlation between the empirical and theoretical results.  The 

relative difference between the ρexp and ρmodel was found to be less than ~29%, except for one value 

for one dansylamide – CAII concentration reaching 37.8% (Table A.2).  It is not surprising that 

the largest difference in ρ values occurs at the lowest concentrations on the binding curve, a region 

of lowest instrumental S/N, which typically reports the smallest phase change.  As expected for 

the cluster of systems that have relatively small experimental FreeSRF signals (Fig. 1.3) and a 

larger difference in χmodel, will lead to a comparable error in the prediction.  Yet, the ability to 

confidently estimate the signal for a binding event within a factor of 2, given only a KD value and 

the structure, should enable rapid assay optimization, advancing the study of intermolecular 

interactions.   

Also of note, our model accurately predicted a negative FreeSRF (ρ) value (relative to 

glycerol) for the CAII – system, which was subsequently reported in the binding curve by the 

interferometer.  This phenomenon, having been ascribed to a reduction in hydrodynamic diameter, 

was also observed by SPR for numerous binding systems.  Directionality of the signal is a poorly 

studied parameter at this stage for free-solution measurements, requiring considerably more 

 

Fig. 1.5 Experimental (blue) and modeled (green) FreeSRF binding curves for A) Recoverin 
- Ca2+ and B) Carbonic Anhydrase II - Dansylamide.   
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investigation to provide meaningful mechanistic insights.  It is under intense investigation and 

does appear to inform about the binding mechanism as suggested by others [28, 43].   

Even though the molecular shape and hydration changes predict the free-solution signal, it 

may be necessary to use additional parameters to more accurately describe the molecular dipole, 

dielectric constant or electronic structure.  For example, systems that undergo oxidation/reduction 

may produce an electronic structure redistribution that would require use of a third-order term in 

the equation for χ.  We opted for a linear model for simplicity and because it produces an excellent 

correlation.  Yet, we do recognize that the dependence of RI from changes in structural and 

dynamical parameters could be more complex than the linear model we fit to, in part because the 

fitting was done with a somewhat limited number of experimental data points.  Interestingly, 

Marsh et al [38] make a compelling argument that the absolute value of SASA correlates with the 

amplitude of conformational change, so ascribing the dependence of RI changes upon binding to 

alterations in SASA and Rgyr is quite reasonable.  We acknowledge that with additional 

experimental data and a better understanding of the physical basis of these transformations, a more 

complex model could emerge that more accurately predicts changes in RI.  Going forward we will 

be continually evaluating and adding systems to expand our training set, which should improve 

model performance.  To enable broader use by the community we will be establishing a website 

to make our model available and for other investigators to contribute to the learning set.  

The presentation of these results provides adequate evidence to address a recent assertion 

made by Soren, et.al. [65] that; “so far no explicit explanation into how binding could physically 

generate a BSI signal has been provided.”   

Experimental Parameters for Effective Free-Solution Measurements 

Free-solution investigations are comparative analyses and it is only under the proper 

conditions that these relative RI signals become quantifiable.  Therefore, we clearly define in 

Appendix A the experimental conditions needed to insure others can successfully perform free-

solution assays.   

Chapter 1 Conclusion 

We have presented a hypothesis: “the signal origin for label-free, free-solution studies can 

be principally ascribed to alterations in structure upon reaction, interaction, or folding.  These 

changes in conformation and hydration produce a quantifiable RI signal.”  Numerous examples 
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from the SPR literature describe unanticipated RI signals that could only be attributed to binding-

induced changes of this type, findings that further support our supposition.  An expression for the 

free-solution response function (FreeSRF) is proposed, ρ = χβC, which relates structural changes 

(χ) to the fringe shift ρ.  A training set of a diverse set of binding systems was tested on multiple 

instruments over a several year period and used to derive the coefficients for χ derived from a 

linear relationship between the experimental and predicted value for FreeSRF (ρ).  Using this 

relationship, we were able to predict, a priori, with reasonable accuracy the FreeSRF for two 

binding systems.  To enable others to employ this approach and further refine the model, we have 

described in full detail the conditions and methodologies needed to perform free-solution assays.  

Using a carefully designed sample-reference assay that constrains background dη/dC changes and 

working within the S/N of our interferometer, it is possible to study processes in the absence of a 

mass change as in protein folding or molecular interactions when the two interacting species are 

at undetectable starting concentrations.  

Based on the strong correlation between FreeSRF and the structural changes detected by 

the system, our model and BSI enable the use ρexp to determine or predict χ.  This capability could 

provide insights into mechanism of action, allow expedited medicinal chemistry activities, and 

potentially predict the impact on structure and/or affinity with environment.  Additionally, 

quantitative free-solution assays can be rapidly optimized using our FreeSRF model.   

While an excellent correlation between our theory and experiment has been obtained, we 

acknowledge more refinement of the model could be advantageous.  As with Beer’s Law, higher 

order terms may be required for some processes (particularly for electronic redistribution) to fully 

describe a label-free, free-solution experiment.   

We predict that the availability of a user-friendly interferometric instrument could usher in 

a new era for label-free, free-solution chemical, biochemical and medical analyses.   
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Chapter 2: A Highly Compensated Interferometer  

for Biochemical Analysis 

As published in ACS Sensors volume 3, July 2018.  Copyright 2018 American Chemical Society 

Interaction assays have led to significant scientific discoveries in the biochemical, medical, 

and chemical disciplines.  The basis of these inter- and intramolecular interactions includes 

London dispersion, hydrogen bonding, hydrophobic character, and electrostatics.  In the past three 

decades, the sophistication and power of techniques to interrogate these processes has developed 

at an unprecedented rate.  These methods range from Nuclear Magnetic Resonance (NMR) [80] 

and Mass Spectrometry (MS) [81-82] to calorimetric [83-84] and thermophoretic [85].  Among 

the most commonly used label-free interaction assay methods are the refractive index (RI) methods 

[86], including Biolayer Interferometry (BLI) [87] and Surface Plasmon Resonance (SPR) [88].  

All these methods have advantages, but the free-solution methods calorimetery and NMR are 

limited by sensitivity.  Many other label-free methods, including BLI and SPR, require analyte 

immobilization onto the sensor surface, increasing assay complexity [89] and impacting 

performance when working within complex matrices.  Backscattering interferometry (BSI) offers 

an alternative to these methods, providing free-solution operation [10]. complex matrix 

compatibility [90]. no sensitivity to the relative mass of the participating species [91], and 

picogram/mL sensitivity [92].  

Numerous other interferometric methods have been used to perform biosensing 

determinations.  These include the Mach–Zehnder interferometer (MZI), the Young interferometer 

(YI), the Hartman interferometer (HI), and the dual polarization interferometer.  For a more 

detailed discussion of these interferometric methods we direct the reader to two reviews on 

interferometry in biosensing [86, 93].  Not covered in these reviews are two methods, one is a 

variation of the porous Si surface sensing method [94] and the other is a hybrid approach using 

active and passive plasmonic interferometry [95].  

The first method has been reported to measure bovine serum albumin (BSA) adsorption in 

the range from 150 pM to 15 µM [96] and the use of electrical double layer (EDL)-induced 
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accumulation of charged ions onto a negatively charged nanostructured surface of SiO2 to give 

bulk measurements of ca. 10-7 RIU [97].  Here, a signal processing strategy based on subtracting 

before and after reflectance spectra provides an improvement over previous Si sensors.  It is not 

clear just how the double layer system reported to provide bulk RI measurements might be used 

to perform solution-phase interaction studies.  The second relatively new interferometric method 

uses fluorescence modulation of the interferometric signal allowing picoliter sample volumes to 

be interrogated [98].  This type of sensor can work with an incoherent source, providing detectable 

ΔRI changes estimated at 5×10-4 RIU in 1pL, but does require fluorescence modulation [98].  By 

comparison, BSI provides 10-6 - 10-7 RIU sensitivity in a 350 pL volume [91]. 

One limitation of most interferometers is that they exhibit a significant level of temperature 

sensitivity [99].  However, it has been reported that the MZI can be configured in a manner to limit 

temperature-induced drift [100]. Also, because temperature variations affect the RI and physical 

thickness inversely, instrumental thermostatting is less stringent in the HI than in other 

interferometric methods [101]. 

Here we report on a new interferometric design that addresses the thermal sensitivity 

problem, while allowing specific binding assays in free-solution using the Free-SRF-BSI 

methodology [91].  FreeSRF capitalizes on background elimination by RI-matching the sample 

and reference [102], yet up until now these assays required the use of sequential measurements in 

the same channel of a microfluidic chip.  The accuracy of such determinations can be impacted by 

temperature fluctuations and source instabilities that lead to fluctuations in the measured RI.  Thus, 

we have used a high-resolution temperature controller and a chip design to mitigate environmental 

perturbations of the laser beam in BSI.   

The obvious improvement to the sequential measurement approach is a simultaneous 

sample-reference configuration.  The laboratory of Dr. Bornhop has investigated two approaches 

to a simultaneous sample-reference BSI configuration: two adjacent capillaries [103] and two 

channels in a chip [104].  In the first case, we effectively demonstrated sensitivity in the nanoRIU 

regime [103], yet found the approach to be impractical due to alignment constraints and the 

necessity to encapsulate the capillaries.  In the second case, we used a calcite beam splitter to 

produce two parallel, orthogonally polarized, equal intensity beams, which were used to illuminate 

two microfluidic channels etched into a micro-fluidic chip separated by 1 mm [104].  This 

approach allowed binding assays to be performed, yet alignment was extremely tedious.  Upon 
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careful evaluation, we found the two-channel chip approach provided little environmental noise 

rejection, giving relatively low level of compensation.  In theory, fabrication of microfluidic 

channels with channel diameter accuracy of ±5 nm should allow for compensation, yet, aligning 

the two discrete, adjacent interferometers proved problematic, requiring the use of a high-

resolution temperature controller to compensate for room temperature variations.  Now, we think 

it better to describe this optical train as a comparator, as opposed to a compensated interferometer.   

Here we demonstrate an interferometric configuration with a high level of noise rejection, 

enabling operation in the absence of a temperature controller.  The Compensated Backscattering 

Interferometer (CBSI), shown in Fig. 2.1, uses a single elongated laser to interrogate adjacent 

regions of the same microfluidic channel simultaneously.  The result in essentially two identical 

interferometers, providing compensation of temperature variations and source instabilities, such 

as wavelength and intensity wander.  Relative RI determinations are performed by spatially 

separating two solutions (a binding sample and reference sample) with air, oil, or a hole in the chip 

and then measuring the difference in spatial position of two discrete regions of an interference 

pattern (Fig. 2.1).  Here we demonstrate that CBSI provides a noise floor of ca. 10-8 RIU without 

environmental control and in the presence of an 8°C external temperature excursion.  We also 

show mix-and-read FreeSRF binding assays with CBSI allowing the quantification of protein-ion 

(Ca2+ - Recoverin) and protein-small molecule (Concanavalin A (ConA) - mannose) interactions 

in nanoliter volumes, label-free and in free solution in the absence of a temperature controller. 
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Experimental 

As shown in Fig. 2.1, a helium-neon (He-Ne) laser (wavelength 632 nm, Melles Griot, 

USA) illuminates a channel in a microfluidic chip.  The glass chip was obtained from Micronit 

Microtechnologies (Netherlands), has an isotropically etched channel [105] that is nearly semi-

circular with dimensions of (210 µm×100 µm radius) and served as both the sample container and 

the resonator for the interferometer.  The chip, side-view shown in Fig. 2.1, has been described in 

detail elsewhere, with the modifications discussed below.  Briefly, the He-Ne beam was shaped 

and conditioned by first passing it through a collimating lens (Oz Optics, Canada) giving a 

Gaussian beam diameter at 1/e2 of 0.8 mm.  This beam was then stretched along one axis by a pair 

of anamorphic prism pairs, each with a 4-fold expansion (Thorlabs, New Jersey, USA).  The prisms 

were arranged in series with identical orientation to produce a 16-fold expansion of the laser profile 

along one axis.  The result was a beam that was about 12 mm in the long axis of the channel and 

 

Fig. 2.1 Block diagram of the Compensated Backscattering Interferometer 
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0.8 mm in the short axis.  Interrogation of the channel by the elongated laser results in a series of 

interference “fringes” as shown in Fig. 2.1.  The resulting fringe patterns were captured on a 2D 

CCD array (Basler, 12.8 mm×9.625 mm total detector size, 5.5 µm2 pixels) that is placed 10 cm 

from the channel in the nearly 0° backscatter direction.  The black shadow in the center of the 

fringe pattern is produced by a 1mm hole drilled through the center of the channel allowing the 

sample and reference regions to be separated. 

Using an in-house LabVIEWTM program, windows of the fringes from each detection zone 

measuring 200 pixels long×1200 pixels wide were selected for further analysis.  The fringe 

selection method was similar to the one previously reported for BSI [106], consisting of choosing 

fringe windows with a nearly a single spatial frequency (Fig. 2.1).  The fringe positional shifts 

from each of these two windows were quantified by a fast Fourier transform (FFT), allowing for 

tracking of the phase of the dominant frequency over time.   

The sample introduction method used here takes advantage of the unique properties of 

microfluidic channels, capitalizing on the high surface tension of aqueous solutions and small 

dimensions of the channel [107].  The result is the ability to introduce samples unperturbed by a 

pressure source, using only capillary action to draw the droplets into chip.  The hole drilled through 

the center microfluidic channel is large enough to serve as a passive “fluid stop,” preventing the 

sample/reference solutions from jumping across the gap.  The added benefit of this injection 

approach is that the sample/reference solutions are introduced at constant pressure.  The hole also 

serves as the waste collection site.  For clarity, an injection is pictorially demonstrated in Fig. 2.2 

using red and green dye.  As shown, 1 µL is pipetted into the chip inlet at either end of the channel 

(Fig. 2.2C).  Capillary action pulls the sample into the channel (Fig. 2.2D), and then stops once 

the sample reaches the hole drilled in the center of the channel (Fig. 2.2E).   

Chip temperature was measured by thermistor embedded in an aluminum chip holder and 

controlled by a Peltier driven by a high-resolution temperature controller (Wavelength 

Electronics).  Several precautions ensure optimum temperature regulation.  The thermistor/thermal 

couple (Omega Engineering Inc., USA) and Peltier were selected of sufficient size and power and 

mounted in intimate contact with an aluminum block and cooling fins with a layer of thermal 
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grease.  We used only thermistor/thermal couples specified for use with the Wavelength 

Electronics integral-differential controller.  The controller was recently calibrated and was 

positioned in the laboratory so as to be as far as possible from sources of temperature variations, 

such as those induced by heating and A/C cooling vents.   

Temperature compensation experiments were performed by injecting deionized (DI) water 

into both detection regions and measuring the phase difference between the two windows for five 

minutes to establish a baseline readout while the chip was held at a constant temperature of 25°C.  

 

Fig. 2.2 CBSI sample introduction scheme.  A side-view schematic of the microfluidic chip 
showing (A) the hole through the channel to function as a fluid stop and (B) the channel filled 
with both reference and sample. 
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Then, the temperature of the entire chip was increased (by the Peltier) in increments of 0.5°C and 

the phase shifts were recorded for one minute.  Following the one-minute measurement, 

temperature was increased again by 0.5°C.  This procedure was repeated until measurements had 

been made from 25-27°C.  The experiment was performed in triplicate.  Glycerol ‘compensation’ 

determinations were performed by injecting the same concentration of glycerol (0, 0.5, 1, 3, and 5 

mM in DI water) into both sides of the channel, and the phase shift were recorded for 30 seconds.  

Temperature was held constant at 25°C ± 0.001°C by the Peltier.  After each measurement, the 

samples were removed by vacuum applied to the center hole, and the channel was rinsed with 100 

µL of DI water and 100 µL Methanol.  Concentrations were run from low to high and then the 

entire concentration range was repeated in triplicate.  The glycerol ‘calibration’ experiment was 

performed using increasing concentrations of glycerol (0, 0.5, 1, 3, and 5 mM) in Phosphate 

Buffered Saline (PBS), introduced into the ‘sample side’ with PBS introduced into the ‘reference 

side’ of the chip.  The measurement was performed by collecting 30 seconds of data for each 

sample-reference pair in absence of temperature control.  The channels were rinsed with 100 µL 

PBS, 100 µL methanol, and 100 µL deionized water and then dried for 2 minutes before injection 

of the next sample.  This procedure was performed in triplicate.   

CBSI stability in the presence of large ambient temperature changes was tested by placing 

the entire optical train in a temperature-controlled chamber, inducing large temperature changes, 

and measuring the baseline noise.  First, we established the baseline of the un-thermostatted CBSI 

at ambient temperature (22°C) inside the enclosure.  Then, we heated the box by 4°C and measured 

the baseline noise for 5 minutes.  This experiment was repeated by heating the chamber by an 

additional 4°C allowing for evaluation of compensation over an 8°C change in the environment. 

Binding assays were performed in an endpoint format [91].  Concanavalin A (ConA) and 

Mannose samples were prepared in a buffer containing 50mM Sodium Acetate, 1 mM Ca2+, and 1 

mM Mn2+ in deionized water.  Binding samples consisted of increasing concentrations of Mannose 

(0-800 µM) incubated with 2 µM ConA.  Reference samples consisted of Mannose only.  Samples 

were incubated at room temperature for 2 hours before measurement.  Recoverin samples were 

prepared in modified Phosphate Buffered Saline (PBS) devoid of Ca2+ or Mg2+.  Binding samples 

consisted of increasing concentrations of Ca2+ (0-4 µM) in PBS incubated with 540 nM Recoverin 

(Novis Biologicals).  Reference samples consisted of matched Ca2+ concentrations with no 

Recoverin present.  Samples were incubated at room temperature for 1.5 hours with gentle 
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agitation.  Sample-reference differential measurements were recorded over 15 seconds for each 

replicate measurement.  Total analysis time from the end of incubation to finalized data analysis 

is 1 hour.  To obtain dissociation constants (KD), the data were fit to single-site saturation isotherms 

using Graphpad Prism (Graphpad Software, Inc.).  Mannose, PBS, Ca2+, and ConA were obtained 

from Sigma.   

Results and Discussion 

Interferometer Design.  We hypothesized that by using an elongated beam to illuminate 

a microfluidic channel etched into a chip, a high contrast fringe pattern (Fig. 2.1) would allow for 

RI measurements in multiple locations along the channel simultaneously.  Then, if chip and beam 

non-uniformities could be effectively averaged and two samples could be separated by a gap or 

hole, the optical train would form nearly identical interferometers.  In short, comparing solutions 

in the same channel with the same laser should result in a significant level of noise reduction.  

 

Fig. 2.3 CBSI phase output as a function of time for a temperature ramp of 2°C in 0.5°C steps, 
in 1-minute intervals.  The reference/sample windows are plotted in red and blue, with the 
compensated (difference) signal plotted in black. 
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To test this theory, we first evaluated CBSI by measuring the instrument response to large 

temperature changes imparted to the chip with deionized water in both sides of the channel.  After 

recording the phase difference between the two windows for 5 minutes to establish a baseline, the 

temperature of the chip was increased in increments of 0.5°C from 25 - 27°C (Fig. 2.3).  The result 

of this temperature ramp experiment (ΔT = 2°C) was a linear response in phase change for both of 

the two sensing regions (R2=0.9995), with the slopes equal to 146.3 ± 1.15 and 146.4 ± 1.18 

mrad/°C respectively.  The difference in these phase values provides a level of compensation of 

0.57 mrad/°C, or a maximum baseline excursion of ΔRI of 1.8×10-6 over the entire range.  Using 

the value of dη/dT for water of 1.06×10-4 RIU/°C (CRC Handbook of Chemistry and Physics) the 

total temperature induced perturbation corresponds to a ΔRI = 2.12×10-4.  Here the differential 

measurement provided a 122-fold reduction in RI sensitivity to environmental noise.  

Next, we tested noise compensation for samples consisting of solutions of glycerol in PBS, 

at increasing concentrations, but using the same concentration in both the sample and reference 

region.  This approach allowed us to evaluate compensation in more complex PBS matrix.  Here, 

each glycerol concentration exhibited the expected RIU change in each window for the analyte 

(11.38 ± 0.09 mrad/mM in region 1 and 11.41 ± 0.13 mrad/mM in region 2) with R2=0.9994.  In 

the absence of any electronic filtering, the difference or compensated signal exhibited a baseline 

response of 1.6×10-7 RIU/mM.   

Fig. 2.4A presents results from an experiment where we compared the S/N performance of 

CBSI to BSI [106].  Here, the standard deviation of the baseline for BSI and CBSI is plotted with 

both systems thermally stabilized (red and blue bars in Fig. 2.4A) and with CBSI operating without 

temperature control (green bar in Fig. 2.4A).  The first two plots result from measuring the 

magnitude of the noise/drift over 5 minutes (1.6 µRIU and 1.4 µRIU) for BSI and CBSI 

respectively.  Surprisingly, when turning off the Peltier for the CBSI instrument, the equilibrium 

baseline noise further decreased from 1.4 µRIU to 1.04 µRIU.  This is a 27% reduction in baseline 

noise over the “temperature-stabilized” configuration illustrating the noise floor for CBSI is lower 

in the absence of active temperature control.  A possible explanation for this observation is that 

the integral differential controller driving the Peltier cannot operate at a resolution high enough to 

contain the noise floor below 1×10-6 RIU (ca. 0.009oC).  As it cycles on and off based upon the 

measured temperature of the chip holder and the set point, minor temperature fluctuations will be 

induced by the Peltier causing the RI of the fluid to change. 
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In the real world, environmental perturbations are never confined to the microfluidic chip, 

but rather will affect the entire optical train.  Therefore, we tested CBSI stability in the presence 

of large ambient temperature changes by placing the entire optical train in a temperature-controlled 

chamber and inducing large temperature changes.  First, we established the baseline of the un-

thermostatted CBSI at ambient temperature (22°C) inside the enclosure (1.04 µRIU).  Then we 

heated the box by 4°C and measured the baseline noise for 5 minutes.  Using the dη/dT for water 

of 1.06×10-4 RIU/°C for a range of relevant temperatures (20-30°C), we calculated this 4°C change 

to correspond to a ΔRI of 424 µRIU (Fig. 2.4B first red bar).  CBSI exhibited very little sensitivity 

to this large thermal perturbation, reporting an increase in baseline noise of 1.2×10-7 RIU or 0.12 

µRIU (error bar on second blue bar).  Here the overall noise level of CBSI was 1.16 µRIU.  Upon 

further raising the temperature of the enclosure another 4°C, (final temperature 30°C, second red 

bar, note Y axis is a log scale), we measured an increase in drift (noise over 5 minutes) of just 0.08 

µRIU.  Interestingly the total 8°C temperature change, corresponding to a substantial perturbation 

of 8.5×10-4 RIU (848 µRIU) induced only a 2×10-7 RIU (0.20 µRIU) increase in drift noise.  In 

other words, CBSI compensates for a 4280-fold temperature-induced change in RIU without any 

electronic filtering.  This level of compensation should enable use in environments with widely 

changing temperatures, including benchtop and remote locations.   

 

Fig. 2.4 (A) BSI and CBSI baseline noise with and in the absence of thermal stabilization.  
Error bars represent standard deviation of 3 measurements.  (B) CBSI baseline noise and 
predicted ΔRI from a 4°C and 8°C ambient temperature change to the entire optical train.  
Error bars represent standard deviation of 3 measurements. 
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Further testing CBSI without temperature control, we performed glycerol calibration 

curves in PBS.  Here five glycerol concentrations (0, 0.5, 1, 3, and 5 mM) were analyzed in 

triplicate, producing a robust response with a slope of 13.2 mrad/mM (1.25mRad/ µRIU) and R2 

of 0.9996 (Fig. 2.5).  The LOD obtained without filtering or temperature control (measured as 

3×baseline/slope) was found to be 7.0×10-7 RIU (0.11 mM glycerol) utilizing a baseline noise over 

3 seconds of 0.39 µRIU.  A more conservative value for performance, the LOQ (measured by 

3×σ/slope) was calculated using the standard deviation of replicate injections (0.74 µRIU) and was 

found to be 1.8×10-6 RIU (1.8 µRIU or 0.17 mM glycerol).  By applying a low pass filter (0.5 

second time constant) to the data, the baseline noise was reduced to 2.8×10-8 RIU, resulting in an 

LOD of 6.7×10-8 RIU.   

For comparison, we performed the same calibration experiment on a single channel BSI 

instrument with no temperature control.  Fig. 2.5 inset illustrates the significant ambient 

temperature sensitivity of the interferometer, showing that over the course of each 10-minute 

calibration trial, the signal drifted by roughly -2.1×10-5 RIU.  Furthermore, the reproducibility of 

replicate injections reported an LOQ of 14.14 mM glycerol (148 µRIU), over 80-fold poorer than 

for CBSI.  

BSI has been shown to provide high quality binding affinities and enable target quantitation 

at the level of several hundred molecules [90] when operating at level of ca. 10-6 RIU.  Therefore, 

the LOQ provided by the CBSI of 1.8×10-6 RIU, in the absence of active thermal control, is well 

within performance criteria required to allow free-solution molecular interaction assays.  Here we 

chose two binding systems to illustrate the use of CBSI for measuring bimolecular interactions.  

The first system was Concanavalin A (ConA), a protein-small molecule interaction system, chosen 

because of its physiological importance and well documented properties [108].  The second 

binding system was the well-studied studied ion - protein interaction, Ca2+ binding the neuronal 

calcium sensor (NCS) recoverin.   

The study of carbohydrate−lectin interactions spans a multitude of disciplines, from 

virology and neuroscience to glycomics and immunology.  Purified lectins can be used in 

biorecognition [109], such as blood typing, because various glycolipids and glycoproteins on an 

individual’s red blood cells bind specifically to certain lectins.  These principles of biorecognition 

can be applied to various diseases and have been used for in-vitro inhibition of HIV-1 [110].  

Because of the size mismatch in the binding partners (100,000 Da for ConA and 180 Da for the 
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sugar) and the fact that carbohydrates do not usually contain functional groups that induce large 

changes in protein absorbance or fluorescence, quantitative determinations of binding affinities 

are often quite difficult to obtain.  The installation of labels (fluorophores, spin labels, cross-linking 

agents) on the carbohydrate runs the risk of distorting the binding function that is being studied.  

Since CBSI is a label-free, free-solution measurement, we avoid these potential perturbations 

and/or limitation of labeled or tethered assays.  Fig. 2.6A illustrates Concanavalin A – mannose 

binding assay performed on CBSI.  In this experiment we obtained a KD = 84 ± 17 μM, which 

compares favorably with both previous BSI results (96 ± 4 µM) [111] and calorimetry (265-470 

µM) [108].  We attribute the slightly higher error in KD for ConA-mannose binding to elements 

other than instrumental noise, such as age of protein, sample handling, incubation 

time/temperature, and temperature of measurement.  Given the literature range for KD 

determinations and typically published results, the measurement is well within acceptable 

experimental error.  While the calorimetry results reported elsewhere were obtained in free  

 

Fig. 2.5 Calibration curve consisting of glycerol in PBS performed with no temperature 
control, on CBSI.  Error bars represent standard deviation of 3 trials.  Inset: The same 
experiment performed on a standard single channel BSI in the absence of temperature control. 

Standard BSI

Compensated BSI
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Fig. 2.6 Binding assays performed on CBSI with no temperature control.  A) Saturation 
isotherm of the Concanavalin A/Mannose interaction.  B) Saturation isotherm of recoverin 
binding Ca2+. 

KD = 84 ± 17 μM

KD = 288 ± 68 nM

A

B
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solution, the measurement required quite large volumes of sample at high concentration (1 mL of 

100 μM to 1 mM carbohydrate and 2 mL of 10−100 μM lectin) increasing both cost and the 

potential for error due to aggregation.   

Next, we measured the well characterized ion - protein interaction, Ca2+ binding recoverin.  

This binding pair has previously been studied by both interferometric methods in free solution 

[112] and by the surface immobilized format SPR [113].  Recoverin belongs to the family of NCS 

proteins and interacts with the N-terminal 25 amino acids of rhodopsin kinase (GRK1) thereby 

controlling phosphorylation of rhodopsin in a Ca2+-dependent manner.  It has been identified as an 

autoantigen in degenerative retinal diseases [114], and previous studies of Recoverin in context of 

other neuronal calcium binding proteins have advanced the understanding of calcium-dependent 

conformational changes [113], 

The saturation isotherm measured for Ca2+-recoverin interaction with CBSI is presented in 

Fig. 2.6B.  Here the KD value was found to be 288 ± 68nM.  This value is quite similar to previous 

determinations of apparent binding constant by fluorescence (270 nM) [115] and 1.9 µM by SPR 

[113].  SPR applications need immobilization of one interaction partner, which can create 

heterogeneous surfaces and might account for the larger variations observed with this technique.  

We have observed and quantified this phenomenon with BSI by comparing surface and free 

solution measurements of binding affinity [111].  However, CBSI enabled the quantification of 

Ca2+-recoverin binding in free-solution providing affinity constants that are not impacted by any 

modification, such as immobilization or tagging with a fluorophore.   

For further perspective on the two binding events presented, the highest concentration used 

for Mannose was 800 M and the lowest concentration of Ca2+ ~60 nM.  These concentrations 

span about 4 decades (from nearly a micromolar to 10s of nanomolar), illustrating the range of 

performance possible with CBSI operating in the absence of any temperature stabilization.  

Assuming 100% binding would mean that 60 nM of Ca-Recoverin had been formed and quantified.  

Thus, within the CBSI probe volume of 25nL there is merely 1.5×10-15 moles or 1.5 femtomoles 

of Ca-Recoverin detected by CBSI. 

Chapter 2 Conclusion 

Here we demonstrated a compensated backscattering interferometer that is highly 

sensitive, has a nanoliter probe-volume, enables mix-and-read biochemical assays in free solution, 
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and can be operated without temperature control, even in the presence of large environmental 

perturbations.  The utility of the device was shown by characterizing the binding affinity of the 

ConA/Mannose and the Recoverin/Ca2+ systems.  These affinity measurements provided results 

that compared favorably with previous affinity measurements, but with much less sample required, 

no need for surface immobilization, and no modification of either binding partner with a 

fluorophore.  Two major advantages of CBSI are the simplicity of the optical train (laser, object 

and detector/camera) and the ability to function without temperature control.  These properties are 

anticipated to facilitate miniaturization, resulting in a low cost, highly stable, field deployable 

system that is assay agnostic.  
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Chapter 3: Longitudinal Pixel Averaging for Improved 

Compensation in Backscattering Interferometry 

As published in Optics Letters volume 43, January 23, 2018. 

Interferometry is one the most sensitive measurement approaches ever devised by humans.  

It has been used for measuring the distance to stars [116], determining the speed of light in a 

medium as with refractive index (RI) measurements, and, recently, a 2.5-mile long interferometer 

was used to confirm the existence of gravitational waves [117].  Various forms of interferometers 

have been employed in the arena of chemical/biochemical analysis, for example as detectors in 

separation science [106], tools for the study of molecular interactions [91], and for quantifying 

chemical or biochemical targets [92].  The types of interferometers used for these measurements 

include the Mach-Zehnder [100], Fabry Perot [118],Young [119], waveguiding [120], and a 

relatively novel, low-volume approach termed the backscattering interferometer (BSI) [63]. 

BSI is unique among interferometers, allowing ΔRI measurements at 10-7 RIU sensitivity 

in probe volumes from 4 nanoliters to as small as 250 picoliters.  This level of sensitivity has 

enabled a wide array of chemical and biochemical investigations to be performed [10, 102].  While 

powerful and relatively simple, the optical configuration of BSI, consisting of a laser, an object (a 

microfluidic chip or capillary), a mirror, and a camera, has limitations.  The single channel 

configuration of BSI negates direct comparison of sample and reference, adversely influencing 

reproducibility and throughput of biochemical determinations.  As with the vast majority of 

interferometric methods, BSI also suffers from a significant sensitivity to temperature, with 

wavelength and pointing instability often causing drift and an increased noise floor.  There have 

been several manifestations of a differential approach to BSI, all exhibiting varying levels of 

performance improvements.  The most sensitive approach, ca. 10-9 ΔRI, consisted of two 

capillaries touching and tilted so as to direct the individual fringe patterns above and below the 

plane of illumination [103].  RI changes were quantified in the backscatter direction by measuring 

fringe position with matched bicell detectors.  The capillaries were also contained within a 
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thermostatted chamber.  Numerous factors made the tilted capillary approach challenging to set-

up and align.  More recently, we used a calcite polarizer to direct two equal intensity beams onto 

adjacent microfluidic channels in a single glass chip separated by 1 mm [104].  Here a CCD array 

was used to quantify fringe shift.  This approach was also abandoned by our group after 

recognizing it was very difficult to align and that negligible compensation was provided by this 

configuration of BSI.  Finally, in collaboration with Dr. Beiske at the University of Melbourne, 

we built an interferometer by illuminating two touching, co-linear capillaries with a single laser 

beam.  In this case, we interrogated the  predominantly single spatial frequency fringe pattern in 

the forward-looking direction [121].   

Our research on numerous interferometer embodiments has taught us that subtle 

differences in the response function, due to optical misalignment, ultimately limits the level of 

compensation possible for temperature fluctuations, as well as laser pointing instabilities and 

intensity variations.  Our modeling efforts have provided numerous insights [63] into BSI, such as 

how object size and shape influences signal. Yet due to limited resolution of the model and optical 

 

Fig. 3.1 Block Diagram of the Compensated Backscattering Interferometer 
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complexity the interference phenomenon we have been unable to predict the relationship between 

compensation and alignment mismatch.   

As a result of the works noted above, we began to investigate optical approaches that would 

inherently result in two nearly identical interferometers.  After several additional attempts we 

discovered and recently reported on an approach to a compensated backscattering interferometer 

(CBSI) [122].  The CBSI, illustrated in Fig. 3.1, represents a unique optical approach to a nano-

volume interferometer with significant compensation, thus providing insensitivity to temperature 

and source perturbations.  Illuminating the microfluidic channel with a laser that is stretched along 

the axis of the channel produces a series of elongated interference fringes (Fig. 3.1).   The stretched 

laser profile is achieved by passing a Helium Neon laser (632 nm wavelength, 800-micron spot 

size, Melles Griot, USA) through a collimating lens (Oz Optics, Canada) followed by two 4x 

expansion anamorphic prism pairs (Thorlabs, USA), resulting in a beam profile that is 12.8 mm in 

the stretched axis and 0.8 mm in the short axis. 

Differential operation in CBSI is facilitated by separating the sample and reference 

solutions by an air gap or oil droplet, then comparing them directly with the expanded beam 

emanating from a common source.  By placing a hole in the center of the microfluidic channel, the 

two solutions to be compared can be separated.  Alternatively, an immiscible fluid or an air gap 

can separate the solutions.  In either case, two regions of the same ‘object’ (microfluidic channel) 

are simultaneously interrogated by a common source.  As demonstrated in this Letter, having two 

nearly identical interferometers by proper interrogation of the fringe patterns has enabled the 

simple optical train of CBSI to provide a high level of thermal compensation, a challenge widely 

encountered with interferometers.  

While CBSI was easy to align, the initial level of compensation to dη/dT perturbations was 

less than desirable.  Upon further investigation we realized the slight imperfections in the 

manufacturing process of the microfluidic channel that serves as the interferometer can result in 

variations by up to 5% in depth/diameter.  This variation can influence the distribution of the rays 

or laser energy that forms the interference pattern.  The consequence is some non-uniformity in 

the RI response function between discrete regions of the channel. 

We report here that interrogation of longer regions of the fringe pattern average out these 

imperfections, resulting in interference patterns that have increased “likeness” between multiple 

regions.  Fig. 3.2 demonstrates this dramatic improvement in fringe pattern likeness when the 
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signal is averaged over increasing spatial lengths of two fringe pattern regions.  This averaging is 

accomplished using an in-house software program that allows us to increase the read width 

(number of camera pixels) for the fringe interrogation window (Fig 3.1).  As with our previous 

design of BSI, we determine RI changes by quantifying spatial shift of the fringes by calculating 

 

Fig. 3.2 Fringe pattern intensity profiles and differences as function of camera interrogation 
window (left).  Camera image of fringes showing interrogation window. 
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an FFT of the windowed fringes, which allows the phase change to be determined with respect to 

time [91]. 

Fringe Likeness 

A quantitative evaluation of fringe likeness versus interrogation length or camera pixel 

averaging is presented in Fig. 3.3.  This observation is likely due to the intrinsic non-uniformities 

along the length the channel and slight differences in optical alignment of the laser along the 

channel.  The camera used (Basler Aviator A2300, Basler, Germany) has 5.5 µM2 pixels.  In the 

transverse direction, there are roughly 150 pixels per fringe, which is well above the required 

Nyquist sampling frequency to transduce the signal.  Therefore, small changes in pixel size or 

spacing should not affect this accuracy.  This analysis indicates that there is little improvement in 

fringe pattern likeness after about 2000 microns or 360 pixels.  Since performance improvements 

plateau and are likely a function of channel length, we predict that smaller pixels would yield a 

similar result if interrogating the same length of channel.   

 

Fig. 3.3 Percent difference between fringe patterns as a function of averaged channel length. 
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Regardless, the CBSI provides excellent compensation for environmental perturbations.  

When interrogating just 2mm of the channel, or about 360 pixels on the camera, the simple optical 

configuration of CBSI was able to provide two fringe patterns that were different by only 4.3%.  

As shown below, this level of ‘likeness’ provides excellent common mode noise rejection (CMNR) 

and allows for significant dη/dT compensation. 

Fringe Gaussianity 

Another approach to access fringe uniformity after pixel averaging is to compare the 

fringes to a Gaussian distribution, which is the original shape of the beam used to illuminate the 

 

Fig. 3.4 Gaussian fit difference plot for 12 fringes, 6 in each interrogation window.  Inset: 
Fringe is from 2750 microns averaged, 5th fringe from the left. 
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optic (microfluidic channel).  Thus, we expect that the fringe pattern would take on a Gaussian 

shape.  Further, our previous modeling efforts have shown that the interference fringes resulting 

from BSI [63] exhibit a nearly Gaussian shape.  Fig. 3.4 inset illustrates the characteristics of a 

sample and reference region fringe utilizing a 2.75mm window as compared to two Gaussians.  

Note the excellent correlation between the desired and the experimentally observed fringe shape.  

Taking this observation further, we performed Gaussian fit as a function of channel length.  Since 

we typically interrogate multiple fringes, we calculated the normalized difference between 24 

actual fringes (12 fringes in each of the two windows) and each fringe’s fitted Gaussian, as a 

function of the number of averaged microns (length) along the channel.  It is noteworthy that 

spatial averaging both increases sample/reference region fringe pattern likeness, but it also 

produces interference patterns that more closely resemble the ideal Gaussian fringe shapes 

predicted by past modeling efforts.  This observation is quite interesting given that the energy 

distribution into the fringes is a complicated function with some fringes reporting the fluid RI, 

some reporting the fluid channel interface, and some being impacted by inconstancies in other 

parts of the chip (e.g. top and bottom surface). 

Common Mode Noise Rejection 

Next, we evaluated the general level of CMNR.  While an extensive study of CMNR with 

respect to laser pointing and intensity instability was not performed here, we have shown that the 

two factors can contribute significantly to overall performance of BSI (unpublished).  For example, 

under conditions where tight temperature control is maintained, the short and long-term base line 

offer a good indication of the level CMNR of for these parameters. 

Recognizing the significant limitation of interferometers resulting from dη/dT 

perturbations, we evaluated the level of compensation for water as a function of increased channel 

interrogation length.  First, we introduced water into both detection regions of the microfluidic 

channel.  Then using a high-resolution-Peltier-containing chip holder of in-house design and 

temperature controller (Wavelength Electronics, Bozeman, MT, USA), we increased the 

temperature of the microfluidic chip in 0.5°C increments from 25-27°C, while monitoring the 

resulting phase change. 

Fig. 3.5 illustrates the dramatic reduction in temperature sensitivity that can be obtained 

by the CBSI optical configuration.  As a shown in Fig. 3.5A when interrogating fringes over 550 
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microns (100 pixels) or 2750 microns (500 pixels) the interferometer exhibited the expected 

thermal response of 1.02×10-4 RIU/°C for the 2°C change.  Next by recording the difference 

between the two windows (as in a sample and reference determination), the significant temperature 

response is greatly reduced or nearly abated.  For example, the 550-micron windows produced a 

level of compensation corresponding to 5.8×10-6 RIU/°C, which corresponds to about a 50-fold 

reduction in sensitivity to the overall temperature change of 2°C.  Additionally, the 0.55mm 

windowed difference approach reduced the short-term noise from 6.5×10-6 RIU (single window) 

to 1.2×10-6 RIU.  By simply increasing the window size to 2750 microns, CBSI temperature 

compensation performance improved to a level 3.9×10-7 RIU/°C, an additional 15-fold 

improvement in rejection of dη/dT sensitivity.  Putting this observation into context, when probing 

two 2.75mm adjacent sections of an unmodified, commercial micro-fluidic chip with an 

isotropically etched channel with dimensions of 100×210 µm, CBSI gives a 750-fold level of 

compensation for dη/dT perturbations.  It is noteworthy that this level of performance was obtained 

on an interferometer with a probe volume of just 50nL.  It should also be noted that all 

measurements presented here were obtained in the absence of any external electronic filtering.  By 

applying a low pass filter with a 0.5 second time constant to the data output, the baseline noise 

(over 3 seconds) was reduced to a level of 3.1×10-8 RIU.  In other words, a typical CBSI signal for 

the quantification of a 250pg/mL concentration of an analyte such as CYFRA 21-1 probed with a 

 

Fig. 3.5 CBSI compensation for water demonstrated by recording the phase change when 
raising the temperature over 2°C. A) Absolute phase shift reported by each window. B) 
Difference in phase between W1 and W2 for each window size. 
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monoclonal antibody is 25 mrad.  So, the noise from a 2°C change in the room when using a 

2.75mm window is just 2% of the binding signal.   

Environmental Compensation 

Does CBSI represent a differential interferometer that truly compensates for environmental 

noise?  To answer this question, we compared the performance of CBSI operated with and without 

any external temperature regulation.  Fig. 3.6 illustrates that CBSI actually performs better in the 

absence of a temperature controller than when using a high-resolution Peltier.  This is important 

because it is highly irregular to be able to perform an interferometric or RI determination since the 

large dη/dT sensitivity dictates that vast majority of common laboratory instruments that are used 

to measure RI, require significant thermal regulation.   

Finally, we present an analysis of glycerol to show the advantages of channel averaging 

(Fig. 3.7).   Analyte detection was performed by measuring the phase shift between a reference 

solution (water) and sample solution (glycerol in water) using a 2000-micron fringe window, in 

the absence of external temperature regulation.  Each data point is the average of 3 replicate 

measurements, with the graph showing that the error bars (standard deviation) are smaller than the 

symbols.   For CBSI the slope is 14.46 ± 0.30 vs. 5.67 ± 3.17 milliradians per millimolar glycerol 

for the single channel, non thermostatted BSI.  The standard deviation of the baseline noise over a 

3 second period, in the absence of electronic filtering, is 0.68 milliradians, providing a 3-sigma 

 

Fig. 3.6 Operation of CBSI A) with and B) without temperature regulation 
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detection limit of 0.16 millimolar glycerol (1.4×10-6 RIU).  The inset shows the same experiment 

performed on a standard BSI which gives an LOD of ca. 7.4 mM glycerol.  Note that in the absence 

of temperature regulation the standard BSI has very poor signal/noise.   

Chapter 3 Conclusion 

In summary, this work demonstrates that by averaging two larger regions of the 

backscattered and elongated fringe patterns produced in the CBSI optical configuration, significant 

compensation of environmental perturbations can be obtained in interferometric measurements.   

The observation that CBSI is a highly compensated interferometer could pave the way to 

the development of a hand-held RI detector with 10-7 RIU sensitivity.  Such a device, based on a 

diode laser, capillary or microfluidic cell, and a camera, would represent a significant advance in 

technology, providing a >1000-fold improvement in performance over existing commercial hand-

held RI detectors.  

 

Fig. 3.7 CBSI detection of glycerol in water with no temperature regulation.  Error bars are 
the standard deviation of 3 replicate measurements.  Inset shows the same experiment 
performed on standard BSI. 
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Chapter 4: Compensated Interferometric Reader Signal 

Extraction and Analysis 

 

The compensated interferometric reader (CIR) capitalizes on a real-time differential 

measurement between a test sample and a reference solution to enable compensation and provide 

common mode noise rejection.  This is accomplished by flowing alternating droplets of a test 

sample and reference solution through the capillary (which serves as the compensated 

interferometric optics) and recording the difference in interference patterns between two adjacent 

detection regions as a function of time.  As described in Chapters 2 and 3, the interference patterns 

are quantified by taking the FFT of a set of 5 “fringes,” and tracking the phase of these fringes as 

they shift position.  This phase shift correlates with changes in the solution refractive index within 

the microfluidic chip/capillary. 

Figure 4.1 shows the fundamental operation of the CIR’s differential measurement for the 

simplest case: a droplet train consisting of a test sample drop and a reference drop, separated by a 

small oil gap, then a second test sample drop (a replicate measurement of the first test sample) also 

separated by an oil droplet.  This droplet train flows through the capillary from left to right.   

 This example data consists of a test sample of 10 mM glycerol in water and a reference 

solution of water with no glycerol.  In this example data, there are 5 key timepoints of interest, 

represented by the letters A-E.  At time point A, the Test Sample 1 fully occupies both detection 

regions, as demonstrated in the top row (A) of the cartoon graphic at the top of Fig. 4.1.  The result 

of this measurement is a difference in phase of 0, as shown on the plot at the bottom of Fig. 4.1 in 

the blue-highlighted region under the heading A.  As the droplets continue moving through the 

capillary, there is a transition period as Sample 1 moves out of detection region 1 and the oil drop 

passes through the detection region.  This transition is seen on the plot as the slope upward between 

A and B.  At time point B, Test Sample 1 fills detection region 2, and the reference solution fills 

detection region 1.  The result of this differential measurement is the desired CIR signal, in this 

case a positive phase change.  This result is shown on the phase shift/time graph during the time 
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period marked in pink under the header B.  Next the reference solution fills both detection regions  

and the phase returns to 0 (time C).  At time D, now the reference solution fills detection region 2 

and the test sample detection region 1, with the result being a phase change of equal magnitude as 

in B, but in the opposite direction.  Then, following a transition period, test sample 2 fills both 

detection regions, producing a phase shift of 0, shown as time E in Fig. 4.1.  There are 5 regions 

of interest here: A and E indicate when the sample fills both detection regions, and C indicates 

when the reference fills both detection regions.  It is important to note that the flow is continuous, 

 

Fig. 4.1 The fundamental operation of the differential measurement as the droplet train moves 
through the two detection regions. 
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and for the standard droplet size (1 µL) and flow speed (10 µL/min), each highlighted time section 

(A-E) corresponds to ~3 seconds. 

The phase difference at time A, C, and E should be 0.  Reasons for a non-zero measurement 

in regions A, C, and E are discussed in Appendix C.   Times B and D report the differential signal, 

which is the data needed for the measurement.  The average phase change over the duration of B 

is termed the “test/reference phase shift (+p),” while the average phase change over the duration 

of D is the “reference/test phase shift (-p).”   

Figure 4.2 is a cartoon graphic of the data that would result from 3 test/reference solution 

pairs, resulting in 3 test/reference phase shifts (+p), 3 negative phase shifts reference/test phase 

shifts (-p), and 6 regions where the phase shift is 0.  As demonstrated in Fig. 4.2, there are several 

methods that can be employed to obtain a value for the “signal.”  The first method, as demonstrated 

in Fig. 4.2A, is to calculate the phase shift as the test/reference solution phase shift’s excursion 

from the baseline.  Performing the Phase shift – baseline calculation results in an n=3, with an 

average phase shift of +p (denoted by the three vertical arrows in Fig. 4.2A).  A similar phase shift 

– baseline calculation can also be performed by subtracting the negative going reference/test 

excursion (For example, Fig. 4.1 region D, -p).  Because the same test and reference sample are 

used to produce the alternating droplets, the phase shift from Fig. 4.1 region D should have the 

same signal magnitude as region B with opposite sign.  The second method, as demonstrated in 

Fig. 4.2B, is to take the test/reference phase shift and subtract it from the reference/test phase shift 

(corresponding to the difference of D – E in Fig. 4.1).  This results in a signal with magnitude 2×p, 

 

Fig. 4.2 A) Signal quantification by taking the difference between the phase shift and baseline 
results in an average value of +p with n=3, but quantification of the signal using the difference 
between phase shifts B) results in an average value of 2×p and an n=5. 
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and an n=5, as denoted by the five alternating arrows in Fig. 4.2B.  For example, if we apply the 

strategy described in Fig. 4.2 to the data in Fig. 4.1, +p = 0.48, -p = 0.42, and 2×p = 0.90 radians.  

A complete determination in the standard droplet train typically consists of 5 replicate pairs 

of test/reference droplets (10 droplets total).  An example of a complete determination is displayed 

in Fig. 4.3 for a sample pair consisting of 5 millimolar glycerol in water as the test sample and 

water with no glycerol as the reference.  The data in Fig. 4.3 has the same step-wise pattern 

correlating to regions A-E as in Fig. 4.1, and the regions are color coded the same way.  The data 

in Fig 4.3 can be tabulated in the +p method, the -p method, and the 2×p method, and these results 

are presented in Fig. 4.4.  As demonstrated in Fig. 4.4, the +p and -p phase shift have 

approximately the same magnitude (0.214 vs. -0.201) with opposite sign, and similar standard 

deviation (0.017 vs. 0.021).  The 2×p signal, however, is nearly double the +p and -p signal, while 

the noise (standard deviation) only increases by a factor of ~1.5.  The result is a modest, but not 

insignificant, increase to signal-to-noise (14.3 vs. 12.1 and -9.8).  Therefore the 2×p method is 

superior to the +p or -p method, and unless otherwise stated all further CIR signal determinations 

use the 2×p method.   

 

Fig. 4.3 Data resulting from 5 test/reference solution pairs consisting of 5 millimolar glycerol 
in water.  The colors correspond to the colors in Fig. 4.1. 
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It should be noted here that as demonstrated by the data in Figure 3, a 5 test/reference 

solution pair results in 19 regions, of which 10 will be “baseline.”  The first “baseline” is typically 

longer than the others, due to the first droplet in the standard droplet train configuration having a 

larger volume that the other droplets (described in more detail below).  Following the initial long  

baseline, there will be 5 test/reference regions (+p, colored orange) and 4 reference/test regions (-

p, colored orange). 

The droplet train 

The typical FSA-CIR assay consists of preparing a batch of samples that can be used to 

produce a droplet train.  The current instrument incorporates a commercial Dropix droplet 

generator that employs a sample tray with 14 usable wells that are immersed in an oil bath.  

Droplets are made by the capillary moving between the oil and sample reservoir drawing up 

solutions that are separated by an oil droplet, while the syringe pump provides constant draw.  With 

14 wells available per tray, the standard assay consists of two rinse solutions and 6 test-

solution/reference-solution pairs separated by oil, as presented graphically in Fig. 4.5.  As shown 

in Fig.4.5A, the initial rinses are doubled.   

An expanded view of a set of test/reference solution pairs is displayed in Fig 4.5, expressed 

by showing the time each droplet takes to traverse the detection region.  The standard droplet train 

 

Fig. 4.4 The phase shift data in Fig. 4.3, analyzed according to the schema presented in Fig. 
4.2.  Quantifying the signal as 2×p provides an improvement in S/N over the +p and -p method. 

+p -p 2×p

Average 0.214 -0.201 0.408

Standard 
Deviation

0.017 0.021 0.028

S/N 12.1 -9.8 14.3
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begins with 2 initial rinses of 2×4 µL droplets of a rinse solution, typically water, followed by a 

second pair of 2 droplets of 4 µL of a 2nd rinse solution, typically buffer.  The volumes and material 

used for the rinses can be larger in volume and consist of stronger solvents as needed by the assay.  

For example, a simple glycerol calibration curve in phosphate buffered saline (PBS) would use 

PBS  as both rinse 1 and 2, but an experiment measuring antibody binding to vesicles may use 

chloroform as solution 1 and a 25% methanol solution as rinse 2.  The combination of rinses can 

vary according to the experimental matrix (serum, plasma, urine, etc.) and the molecules present 

in solution (proteins, peptides, lipids, etc.).   

The Dropix operating manual describes programing of the Dropix and guides the user on 

flow rate vs. droplet size.  I have employed a syringe pump flow rate of 10 µL/min to generate the 

droplet train presented here.   At this flow rate, the time each droplet takes to traverse in front of a 

point on the detector is calculated by dividing the volume by the flow rate.  For example, the 1000 

µL sample droplet moving at 10 µL/min spends 6 seconds in front of a point on the detector.  The 

lengths of all drops used in the standard droplet train are presented in Fig. 4.5.  The residence time 

of a droplet in the detection region is important to calculate, because the output of the 

interferometer registers or records the signal from the droplets as radians (fringe shift) vs. time.  

 

Fig. 4.5 Droplet train composition by length of time at a fixed point on the detector. A) 
A single determination consisting of 2 sets of duplicated 4 µL rinse solutions followed 
by 5 test/reference solution pairs.  B) The standard droplet train consisting of 6 sample 
pair determinations. 
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The code to program the Dropix to deliver the standard droplet train is included in 

Appendix C. 
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Part III: Biomedical Applications 



76 
 

Chapter 5: Rapid assay development and quantification of two 

chemical nerve agents in serum 

Adapted from a manuscript in preparation for submission to Lab on a Chip 

During the siege of Khirra in 600 BCE, the Athenian army used hellebore to poison the 

city’s water source, causing the defenders to become so weak with diarrhea that the Athenians beat 

them quite easily [123].  In the intervening two and a half millennia since, humanity has produced 

no shortage of advancements in the field of chemical warfare.  In the modern era, several of the 

most widely used weapons of chemical warfare belong to the family of organophosphorus nerve 

agents (OPNAs).  In the past century, OPNAs, specifically sarin gas, VX, and novichok agents 

were proliferated [124], with stockpiles produced by both the United States and the USSR during 

the cold war [125].  They were used against Iranian and Kurdish troops by Iraq during the Iran-

Iraq war, and OPNAs affected both combatants and civilians during the Persian Gulf War [126].  

Even within the past two decades, OPNAs were used in several high profile instances resulting in 

thousands of civilian exposures [127-129].  OPNAs are odorless and colorless molecules that block 

the binding site of acetylcholinesterase (AChE), therefore inhibiting the breakdown of 

acetylcholine [126].  The resulting buildup of acetylcholine leads to the inhibition of neural 

communication to muscles and glands and can lead to increased saliva and tear production, 

diarrhea, vomiting, muscle tremors, confusion, paralysis and even death [130-131].  Long-term 

effects of acute poisoning include neurological damage, psychiatric effects, dermatological 

conditions, sleeplessness, and low serum and erythrocyte AChE levels [130, 132].  While the onset 

of symptoms is often rapid, within minutes to hours, some symptoms can take much longer to 

present.  Conventional tests for AChE activity lack the selectivity to identify the specific OPNA 

used, and testing is not always readily available at the site of an exposure.  Diagnosis of exposure 

is typically based on symptoms and is often confirmed by measuring OPNA adducts to 

butyrylcholinesterase (BChE) in blood [125].    

The effects from chronic, low level OP exposure are not typically as severe as high-level 

acute exposure [133-134], yet still include peripheral nervous system [135-137] and respiratory 
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damage [138], along with depression and cognitive impairment [139].  Organophosphates are still 

widely used in pesticides, and poisoning kills about 200,000 people annually worldwide [140].  

OPNAs are odorless and colorless [141], making occupational OP exposure detection difficult by 

simple observational means. Since low level OPNA exposures do not typically evoke cholinergic 

symptoms such as lachrymation, salivation, meiosis, or muscle fasciculation, it is often difficult to 

diagnose exposure based upon these symptoms or cholinesterase activity without additional 

information from the exposure [142].     However, even intermediate exposure, resulting in non-

specific, flu-like symptoms, represents a case where AChE inhibition never reaches a high enough 

level to produce quantifiable depression in activity [134].  In short, current detection methods 

based either on symptoms or cholinergic activity are insufficient to confirm chronic low/mid-level 

exposure from OPs.   

Among the approaches used to detect OPNA exposure are those based on enzymatic 

activity or by detection of the OPNAs or their metabolites directly by ELISA, fluorescence [143-

144], bead arrays [145], engineered-nanopore technologies [146], and label-free techniques, such 

as surface plasmon resonance (SPR), quartz-crystal microbalance [147], wave-guided 

interferometry [148], and mass spectrometry (MS) [149],  Field deployable photometric dipstick 

assays do exist, but these methods are limited by sensitivity ranges between 10-7-10-5 M [150], 

unreported false positives rates, matrix-dependent sample processing requirements [151], or 

interference from pigmented sample matrices such as blood.  Two commonly used OPNA 

exposure quantification methods include liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS) and the Test-mate ChE Assay [149, 152].  LC-MS/MS exhibits 

relatively high sensitivity and specificity, yet it is usually combined with a multi-step 

extraction/concentration procedure [149].  While powerful, this LC-MS/MS methodology is not 

field deployable.  The Test-mate ChE assay has been shown to be a promising field-kit alternative 

to MS, with a transduction method based on measuring the activity of red blood cell AChE and 

plasma BChE using the modified Ellman method [153].  This kit produces results within 4 minutes 

requiring only 10 µL of blood [152].  While rapid, the Test-mate approach is still based on the OP 

target proteins, AChE or BChE, not the specific OP directly.  Measurement of AChE activity for 

confirmatory testing requires routine measurements of baseline activity to account for intra- and 

inter- person variability [153].  Recently a wearable glove biosensor has been reported, where an 

electrochemical sensor is printed on a disposable nitrile glove enabling “swipe sampling” of 



78 
 

suspicious surfaces or agricultural products [154].  However, because utility is demonstrated by 

coating a surface with a 200 M OP solution, it is difficult to assess the performance of this 

approach in terms of solution-phase biosensing.  Development of alternative techniques are subject 

to challenges related to speed, reproducibility, cost, specificity, sensitivity, accessibility, or large 

sample volumes.  Furthermore, the use of surface immobilization and labeling steps makes assay 

development and analyte validation arduous, slow, and expensive.  Therefore, a free-solution 

method, particularly one that is label-free, enzyme-free, and compatible with complex matrices 

represents an innovative and beneficial alternative for next-generation detection methods.  

The methodology reported here, is a free-solution assay (FSA) [91] combined with a 

compensated interferometer (CI) [155].  The FSA mix-and-read measurement can be used without 

relative mass dependency and in native environments, allows for accurate screening of therapeutics 

[156], improves in-vitro/in-vivo correlations for first-in-human dose estimates [157], investigating 

biological mechanisms of action [53], and quantifying protein biomarker targets [158].  Here we 

demonstrate that when combined with aptamer probes [159], FSA enables rapid development of 

assays that exhibit high sensitivity (pg/mL) and high specificity for the quantification of two 

OPNA acids (VX and GB) in serum.   

Aptamers are short segments of RNA or single-strand DΗA that can be quickly and 

inexpensively selected to bind to desired targets.  They can serve as sensors[160], therapeutics 

[161], and cellular process regulators [162], as well as drug targeting agents [163-166].  The 

diversity of applications and the varied targets to which aptamers can bind (proteins, peptides, and 

small molecules) stem from the ability of aptamers to form complex three-dimensional shapes 

including both helices and single-stranded loops.  Aptamers are selected in vitro, are easily stored 

and transported, and are stable for months to years, making them potential alternatives to 

antibodies or enzymes.  Aptamers work particularly well in FSA because aptamers undergo a 

significant conformation change upon binding, resulting in a large FSA signal [91, 159].  An added 

benefit is that the aptamer-target signal is produced in absence of chemical modification or 

labeling.  Using the aptamer-based FSA method, coupled with the CI, we screened aptamer probes 

by simply mixing and reading the magnitude of the interferometric signal.  Label-free, solution-

phase operation provided rapid selection of “the best-in-class” probe for the target in the matrix of 

interest.  Once selected, the binding affinity of the probes were determined to estimate 

performance.  Here aptamer KD values for the best performing aptamers ranged from 16.1 ± 4.4 
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nM to 41.6 ± 8.3 nM allowing quantification of the target, GB acid or VX acid, at the level of 31 

pg/mL (224 pM) and 29 pg/mL (231 pM) respectively in 25% serum.   Cross-species selectivity 

for both serum assays was determined rapidly, by again using a mix-and-read screen.  Response 

from the screens reported off-target, or interfering, signals well below the limit of quantification 

(LOQ) of the assay for the binding to the best-in-class aptamer probe.  As such, the off-target 

concentration would need to be more than a thousand times higher than the target to produce 

quantifiable inaccuracy at the LOQ, and this is not the case.   

Methods 

Aptamer selection: All OPNA acid aptamers were selected by Base Pair Biotechnologies, 

Inc. (Pearland, TX, USA).  Briefly, 2-aminoethyl monophosphonate (2-AEMP, Sigma Aldrich cat. 

SML0706) was covalently coupled through its primary amine group to aldehyde functionalized 

agarose resin (ThermoFisher Aminolink™ coupling resin, cat. 20381) using the manufacturer’s 

recommended protocol for coupling and mild reduction using cyanoborohydride.  A proprietary 

library of approximately 1015 unique natural DΗA sequences were utilized for aptamer selection.   

Following three rounds of selection against the immobilized 2-AEMP, in the 4th round, we: 1) 

again applied the binding population of aptamers to the ligand-beads, 2) washed away weakly 

bound DΗA species, and 3) subsequently split the pool of beads into two groups and offered one 

of the specific nerve agent metabolites in free solution as an elution agent and collected the 

resulting aptamer pool released from the beads.  The eluted pools were then amplified by PCR, 

and the second, 5’-phosphorylated strand was digested away using lambda exonuclease.  The 

resulting single stranded pools were then recombined for the next round of exposure to the 2-

AEMP beads followed by specific elution using either VX- or GB-acid.  This process of split-and-

pool SELEX was repeated for 14 rounds.  All binding and wash steps were performed in 1X PBS, 

1% BSA, 1 mM MgCl2, 0.02% baker’s yeast tRNA, and 0.5% Tween-20.    In the 4th round and 

onward, decreasing concentrations of the free target molecule were offered to obtain the tightest 

binders.  After 14 rounds, the enriched aptamer pools were labeled with unique barcodes via PCR 

and sequenced using an Ion Torrent PGM next-generation sequencer (Thermo Fisher).  For each 

target, bioinformatics analysis was used to choose aptamers for synthesis and functional screening 

in the described assay.   



80 
 

Aptamer preparation:  The stock aptamers were reconstituted from the dried pellet to a 

concentration of 100 µM in a modified Phosphate Buffered Saline (PBS) containing 1 mM MgCl2, 

10 mM Tris HCl, and 0.1 mM EDTA with pH 7.5.  All further dilutions used this PBS formulation.  

The stock aptamer solution was then diluted to 2 µM (the “Working Concentration”) in PBS.  Once 

diluted to the working concentration, the aptamers were refolded by heating the solution to 90°C 

for 5 minutes in a water bath, then cooled to room temperature for 15 minutes.  This process 

ensures the aptamers were in their desired conformation following lyophilizing and shipping. 

OPNA acid target solution preparation:  Ethyl methylphosphonate (VX acid) with a 

molecular weight of 124.08 g/mol and density of 1.172 g/mL (9.4 M/L) was obtained from 

Synquest Laboratories (98% pure) in liquid form.  A stock solution of 100 mM was prepared by 

diluting 10.59 µL into 989.41 µL of PBS.  Isopropyl methylphosphonate (GB acid) with a 

molecular weight of 138.10 g/mol and density of 1.087 g/mL (7.87 M/L) was obtained from 

Sigma-Aldrich (98% pure) in liquid form.  A stock solution of 100 mM GB acid was prepared by 

diluting 12.7 µL in 987.3 µL of PBS. 

Aptamer Screening:  Aptamers were screened in 25% pooled human serum / 75% buffer 

using the FSA method to determine the signal produced by the aptamers upon binding to the target.  

The pooled human serum used in this work was acquired from a commercial source and did not 

meet the definition of human subjects as specified in 45-CFR 46.102 (f).  Six aptamers were 

screened for GB acid and five aptamers were screened for VX acid.  The screen was performed by 

measuring the FSA signal for a high concentration of OPNA acid (500 nM) in the absence and 

presence of the aptamer at a concentration of 100 nM.  These solutions were prepared by first 

diluting the stock aptamers 1:100 in PBS to obtain a 1 µM solution and diluting the OPNA 

metabolite targets 1:250,000 in PBS to obtain a 400 nM solution.  The 400 nM OPNA solution 

was diluted in 100% pooled human serum to produce a 50% serum / 50 % PBS solution containing 

200 nM of OPNA acid target.  The 2 µM aptamer solution was diluted 1:2 in PBS to obtain a 1 

µM aptamer solution.  Then, 50 µL of the 200 nM OPNA acid solution was mixed with 50 µL of 

the 1 µM aptamer solution to obtain 100 µL of 500 nM aptamer + 100 nM OPNA acid to provide 

the binding sample.  The reference sample was prepared by adding 50 µL of the 1 µM aptamer 

solution to 50 µL of a 50% serum / 50% PBS solution with no OPNA acid target.  Following a 30-

minute equilibration at room temperature, the phase shift between binding and reference solutions 

for each aptamer was measured using CI.  Additionally, to correct for the potential contribution of 
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background to the signal from the OPNA acid target in the absence of binding, the phase shift 

between 100 nM OPNA acid and a blank 25% serum / 75% PBS solution was measured and 

subtracted from the aptamer-binding phase shift measurements. 

Affinity Characterization:  Binding affinity assays were performed in an end-point 

format as described previously [159].  To prepare affinity measurements in 25% serum / 75% PBS, 

a 7-point, 1:2 serial dilution of OPNA acid target was created in 50% serum / 50% PBS with 

concentrations ranging from 2000-31.25 nM (for VX203), with a 0 nM solution prepared 

containing only 50% serum / 50% PBS.  A 400 nM aptamer solution was prepared by diluting the 

2 µM working concentration 1:5 in PBS.  Then 20 µL of each OPNA acid concentration was 

combined with 20 µL of the aptamer solution to create the binding sample.  20 µL of each OPNA 

acid concentration was combined with 20 µL of blank 50% serum / 50% PBS to create the 

reference sample.  This resulted in binding and reference samples with final OPNA acid 

concentrations ranging from 1000-15.6 nM and a 0 nM concentration, and an aptamer 

concentration of 200 nM in the binding samples only with no aptamer in the reference samples, in 

25% serum.  The samples were allowed to incubate at room temperature for 1 hour, then the phase 

shift between each concentration’s reference and sample was measured.  The resulting phase shift, 

averaged over five replicates, was plotted vs. target concentration.  The 0 nM concentration 

sample, containing only the aptamer, compared to the reference solution (no aptamer or target) 

provides a measure of the background signal contribution due to the aptamer and is subtracted 

from all concentrations.  Dissociation constants were then calculated by fitting the data to a single-

site saturation isotherm using Graphpad PrismTM according to the equation: 

 𝑦 =  
∙

 Eq 5.1 

Cross Reactivity:  To assess specificity, the best performing aptamer for each target was 

tested for its binding to the other targets.  For example, the aptamer for GB acid was tested for 

non-specific binding to aptamers selected for VX acid, and vice versa.  This determination was 

performed in 25% serum using a similar procedure to the screening experiments.  Here we 

quantified the response for the interactions for both the target and off-target OPNA acid at 0 and 

1000 nM, when incubated with the respective 500 nM aptamer.   

LOQ Determinations and Unknown Quantification:  Calibration curves were 

constructed in 25% serum / 75% PBS in a similar manner to the affinity determinations with the 
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goal of determining the assay analytical figures of merit.  A 9-point, 2:1 serial dilution was 

prepared in 50% serum / 50% PBS ranging from 20 nM to 0.08 nM, with two additional 

concentrations at 100 and 200 nM, and a zero concentration with no OPNA acid target.  The 

aptamer was prepared at a 1000 nM concentration in PBS.  Then 20 µL of each OPNA acid 

concentration was combined with 20 µL of the aptamer solution to create the binding sample, and 

20 µL of each OPNA acid concentration was combined with 20 µL of blank 50% serum / 50% 

PBS to create the reference sample.  This resulted in 12 sample-reference pairs with concentrations 

ranging from 100 to 0 nM of the OPNA acid target, with 500 nM aptamer in the binding sample 

and no aptamer in the reference. 

Test “unknowns” were prepared by spiking serum with a known concentration of the 

OPNA acid target, diluting to 50% serum in PBS, then combining equal amounts with a 1000 nM 

aptamer in PBS solution to serve as the binding sample and blank PBS to serve as reference.  This 

resulted in a 25% serum solution with 500 nM aptamer in the binding sample and no aptamer in 

the reference.   

The phase shift between sample and reference was fitted to the calibration curve to recover 

the concentration of spiked OPNA acid target. 

Results & Discussion 

Aptamer Screening: The ideal probe for a quantitative interaction assay would; 1) 

produce a large, reproducible signal, 2) have a high affinity to its target, and 3) exhibit little or no 

off-target interactions that could result in false-positive signals.  One of the advantages of FSA 

over techniques such as ELISA is that probe-target performance can be evaluated quite rapidly 

using a mix-and-read screening approach.  This approach is illustrated in Fig 5.1, showing how a 

single serum sample is split into two 10 µL aliquots, with one aliquot being combined with the 

probe aptamer at high concentration and the other aliquot combined with a refractive index-

matched, non-binding control solution.  Following a short incubation period, the FSA signal is 

quantified by measuring the binding sample and reference sample simultaneously in the 

compensated interferometer. Since FSA is matrix independent these screening determinations can 

be performed by simply quantifying the signal and signal/noise for a number of candidate probes 

in the desired milieu.   
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Fig. 5.1. The free solution assay (FSA) method  
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Figure 5.2 illustrates the results of the FSA-CIR screening experiments for our aptamer 

probes.  Here a large concentration of the OPNA acid target (100 nM) was incubated with 500 nM 

of each aptamer in 25% serum (the binding sample), and 100 nM of the OPNA acid target was 

incubated with the 25% serum solution (the reference sample).  This experiment is rapid, taking 

approximately 30 minutes to complete, including sample preparation, incubation and CI analysis 

times.  From this simple approach we were able to identify which of the aptamer probes displayed 

the largest signal for each OPNA acid target.  Hence, in less than an afternoon we were able to 

select the two most attractive aptamer-probe candidates for each OPNA acid target, from 11 

starting species.  In this way, our FSA method allowed for rapid identification of the best aptamer 

candidates for further investigation.   

 

Fig. 5.2. Screening results in serum for 11 aptamers.  A) CI signal and B) signal-to-noise for 
VX acid binding to five aptamers.  C) CI signal and D) signal-to-noise for GB acid binding to 
six aptamers. 
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As illustrated in Fig 5.2A and B the best performing aptamers for VX acid were VX203 

and VX798 (internal nomenclature), providing CI signals of 5143 ± 66 and 4113 ± 97 mrad, 

respectively.  Screening results for the aptamers selected against GB acid are presented in Fig 5.2C 

and D.  Here the highest screening signal (best candidates) were the GB946 and GB459 aptamers, 

with FSA-CI assay reporting signals of 1194 ± 107 mrad and 767 ± 92 mrad, respectively.   Since 

FSA is a molecular interaction assay that measures conformation and hydration changes (solution 

molecular polarizability) [91], we have found that noise in the measurement (background) can vary 

with structure and solution-phase properties, including rearrangement and self-association.   

Therefore, to ensure we have selected the best candidates to move forward in our assay, we 

determined the S/N for each of the screening results (Fig 5.2B and D).   When considering whether 

to use VX798 or V×109, the S/N provided an invaluable indicator of performance.  While both 

aptamers gave similar absolute CI signals (4112 vs 4436 mrad), VX798 provided nearly double 

the S/N (42 vs 24) over V×109 so it was selected as the secondary candidate probe for further 

analysis.  The GB acid aptamer screening produced one distinct frontrunner, both in terms of CI 

signal and S/N, the GB946 species.  Yet several other aptamers (GB048, 402, and 459) looked 

promising during screening.  In this case, a S/N determination did not produce a clear choice for 

the second GB acid aptamer to advance for further testing.  Here we chose to advance the aptamer 

GB459 for further characterization because screening and S/N analysis in urine showed GB459 to 

be the most promising candidate (data not shown). 

Aptamer Affinity Determinations: To ensure the aptamer probes exhibit high affinity, a 

property related to selectivity, we performed saturation isotherm binding assays.  These 

measurements also provide insight as to the potential value of the assays in the context of target 

quantification.  The saturation isotherms for each of the two best aptamer candidates, for each of 

the OPNA acid targets enabled binding affinity, KD, to the ligand (OPNA acid) to be quantified.  

Our assay method has been used widely for KD determinations [86, 167], consists of holding the 

aptamer concentration fixed at a value near the assumed KD, and measures the binding signal of 

the OPNA acid to the aptamer as a function of concentration.   As shown in Fig 5.3, aptamer 

OPNA acid affinity measurements all yielded R2 > 0.9 and affinity values with KDs all in the 

nanomolar range.   Specifically, the VX203 aptamer yielded a KD of 35.1 ± 9.5 nM (Fig 5.3A), 

while the alternate aptamer probe (VX798) gave a KD of 41.6 ± 8.3 nM (Fig 5.3B) both determined 

in 25% serum.  From these two candidates, VX203 was selected as the probe for quantitative 
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assays on the merit of its larger signal and higher affinity (lower KD).    Evaluation of the GB 

aptamer candidates yielded affinities of 37.9 ± 8.4 nM (R2 = 0.98) for GB946 (Fig 5.3C) and 16.1 

± 4.4 nM (R2 = 0.95) for GB459 (Fig 5.3D).  With both candidates yielding affinities in the 10’s 

of nanomolar, GB946 was selected as the probe aptamer due to its larger signal (4022 mrad vs 

2380 mrad).  Results of these binding affinity measurements indicate that we have identified two 

excellent candidates upon which we can develop a high-quality serum assay for the VX and GB 

acids.  Based on previous experience [158] and as shown below, candidate probes that have affinity 

values in the low nanomolar range often produce assays with pM or pg/mL sensitivity with good 

selectivity.    

To confirm this hypothesis, we constructed calibration curves for the top two contenders 

for each target and then evaluated the assay performance with two unknowns to determine 

preliminary quantitative performance.  Figure 5.4 presents the result of these calibration 

investigations, illustrating that the FSA-CI assays provide excellent performance.  Specifically, 

the LOQs, calculated as 3×standard deviation of replicate determinations/(calibration curve slope), 

 

Fig. 5.3. Binding affinities in serum.  Saturation isotherm for VX Acid binding the aptamer 
VX203 A) and the aptamer VX798 B) in serum.  Binding affinity saturation isotherm for GB 
Acid binding the aptamer GB946 C) and the aptamer GB459 D) in serum.   
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were determined to be 231 pM (29 pg/mL) and 224 pM (31 pg/mL) for the quantification of VX 

acid and GB acid respectively.  Limits of detection (LODs), calculated as 3×instrument baseline 

standard deviation over 5-seconds/(calibration curve slope), of 23 pM (3 pg/mL) and 73 pM (10 

pg/mL) for the targets in 25% serum.  Our two-step, mix-and-read assay provides a dynamic range 

of ~2.5 orders of magnitude and requires just 10 µL of serum to perform the assay with >5 

replicates per concentration for the standards and unknown sample.  By comparison, the most 

widely used techniques for high-sensitivity OPNA exposure confirmation are based on mass 

spectrometric detection of OPNA acids [168-169],  adducts to tyrosine [170], or BChE [171-172].  

The protein adduct methods report a range of LODs from 18-97 pg/mL for tyrosine adducts to 

350-4,000 pg/mL for BChE adducts.    The LC-MS/MS LODs of OPNA acids in serum were 

previously reported as 400 pg/mL for GB acid and 500 pg/mL for VX acid from 50 µL lysed blood, 

serum, and plasma specimens.  By comparison, we were able to quantify GB acid from 10 µL of 

serum at 30 pg/mL and avoided the protein precipitation, digestion, or extraction steps of the LC-

MS/MS methods used above.  Conventional LC-MS/MS quantification of OPNA acids and protein 

adducts remains an attractive option for confirmatory testing; however, the method described here 

yields a more than 130-fold improvement in sensitivity with a LOD of 2.9 pg/mL to current LC-

MS/MS measurements of OPNA acids, at a fifth of the sample volume and without the need for 

time-consuming sample extraction steps or costly and bulky laboratory equipment.   

As part of assay development, we tested “unknown” determination accuracy.  Two test 

unknowns were prepared for each target using spiked blank serum.  This data is overlaid upon the 

calibration curves (open circles) in Fig 5.4 and shows recovery with an average error in the 

 

Fig. 5.4. Calibration curves for VX (A) and GB (B) acid quantification. 
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determination of less than 6% (Table 5.1).  More notably, when plotting the spiked concentration 

versus the determined concentration, as shown in Fig  5.5, the determined concentrations lie upon 

a straight line (R2 > 0.99).  

Finally, we performed screening assays to evaluate the specificity of the aptamer probes.  

In this experiment, we incubated the two top performing aptamers for each target with a high 

concentration of both targets (1000 nM).  The results of these determinations are presented in 

Figure 5.6, which illustrates that for our two best aptamers, VX203 and GB946, the level of cross-

reactivity is low.  Specifically, VX203 and GB946 produced a signal at or below the LOQ for their 

respective off-targets (LOQ determined from Fig 5.4).  Even the 2nd best performing aptamers 

produced a signal near the LOQ of the respective off-target quantification assay.  For example, the 

LOQ for the VX assay was determined to be 231 pM, corresponding to a CI signal of 215 mrad.  

However, the 2nd best GB acid aptamer produced a signal of -487 mrad when incubated with the 

high concentration (1000 nM) of VX acid.  Even if only considering the absolute magnitude of the 

signal, GB459 produced a signal only twice the VX acid assay LOQ despite a VX acid 

concentration of 4300 times higher than the LOQ.  If both GB and VX acids were present in a 

 

Fig. 5.5. “Unknown” quantification using the best-in-class aptamer provides high accuracy 
determinations. 
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sample at the concentration of the LOQ (231 pM), the presence of GB acid would only introduce 

an error of 9.5% in the quantification of VX acid. An additional metric of specificity uniquely 

available from the FSA method is signal directionality.  In other words, when the GB acid aptamer 

binds VX acid, the result is a negative signal.   

Likewise, the 2nd best aptamer for VX acid, VX798, produced a signal of 120 mrad when 

incubated with GB acid.  The LOQ for the GB acid assay was determined to be 224 pM, which 

corresponded to a CI signal of 52 mrad.  For a GB acid concentration of 4500 times the 

concentration of the VX acid LOQ, the VX acid aptamer only produced a signal equivalent to 

twice that of the GB acid LOQ.  If both targets were present in equal concentration at the LOQ 

(224 pM), the presence of GB acid would result in a 9.9% error to the VX acid quantification.  

These cross-reactivity results suggest that candidate probe aptamers would correctly report 

which nerve agent is present.  As illustrated in Fig 5.7, VX acid and GB acid share remarkably 

Table 5.1 Quantification of unknowns (values in pM) 

Target Spiked Concentration Determined Concentration* Error 
VX Acid 500 506 ± 29 1% 
VX Acid 40 43.6 ± 19 9% 
GB Acid 300 279 ± 39 7% 
GB Acid 500 530 ± 16 6% 

*Average ± standard deviation of 6 replicates 
 

 

Fig. 5.6. Cross reactivity measurements tested the signal resulting from the best performing 
aptamers selected for both species incubated with VX acid (A) and GB acid (B). 
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similar chemical structures, differing by just one methyl group on the non-polar carbon chain.  

Given the size of the molecules and their structural similarity, the specificity of the aptamer probes 

(Fig 5.6) are even more noteworthy.  There is a remote chance that the aptamer could interact with 

a different contaminant in the serum but given the magnitude of the KD values and the outcome of 

the cross-reactivity experiments, the likelihood of this producing a quantifiable signal that leads to 

a false positive is minimal.  

Chapter 5 Conclusion 

FSA’s mix-and-read format, combined with CI’s simplicity, low cost, small size, low 

energy consumption, and high level of environmental compensation paves the way for the potential 

to develop a field deployable platform for diagnosing exposure to chemical warfare agents.  

Capitalizing on the unique transduction mechanism in FSA coupled with aptamer probes, we 

developed quantitative assays for VX acid and GB acid using CI that are more sensitive and 

considerably less complex than existing laboratory-based assays.  The advantages of the FSA 

methodology using aptamers are the freedom from surface immobilization or aptamer probe 

labeling.  Therefore, the aptamers can be employed in their native form, maximizing the FSA 

signal, while retaining their binding affinity and specificity to their target.  Here we demonstrated 

the capability to rapidly develop quantitative assays for two important small molecule targets, the 

OPNA metabolites GB acid and VX acid.  This work serves as an innovative first step toward a 

field deployable device that can identify the specific OPNA used at quantifiable levels, lower costs, 

greater sensitivity, and smaller sample volumes.     

 

Fig. 5.7. Chemical structures of A) VX acid and B) GB acid. 
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Chapter 6: Quantitation of Opioids and the Prospect of 

Improved Diagnosis of Neonatal Abstinence Syndrome 

Adapted from a manuscript in preparation  

for submission to Clinical Pharmacology & Therapeutics 

The United States is experiencing an opioid epidemic of unprecedented proportions, with 

~100 Americans dying each day from an overdose, and an economic impact of ~$100B/year [173]. 

Newborns are innocent, yet frequently overlooked victims of this epidemic.  Opioid use during 

pregnancy can result in addicted infants, who can suffer from Neonatal Abstinence Syndrome 

(NAS) [174].  This serious condition afflicts ~2% of all neonates born in the U.S. and is increasing 

rapidly [175].  It is not uncommon for newborns to be sent home with NAS, where they undergo 

withdrawal, exhibiting an inability to be comforted, continuous crying, difficulty breathing, 

diarrhea, fever, and seizures. Symptoms can intensify until treatment and if not diagnosed severe 

complications can arise.  The unique pharmacokinetics in newborns, coupled with the limitations 

of existing assays, including poor sensitivity, complexity, long turnaround time, and lack of 

availability, points to a need for a non-invasive, rapid, sensitive and quantitative near-patient 

screening assay.  As described here, the free-solution assay (FSA), performed on a novel benchtop 

reader, could address these limitations.  The simplicity, high sensitivity, small urine volumes, and 

assay speed of our method can potentially expedite and extend clinical feedback and reach patients 

in birthing centers and the low resource hospitals in poor, rural communities that tend to be the 

loci of the opioid epidemic. 

Accurately predicting which neonates have NAS is difficult, partly because expecting 

mothers often don’t acknowledge their drug use and partly because testing is usually only 

performed after a newborn exhibits withdrawal symptoms (~36-48 hours after birth) [176].  While 

many insurers cover a 48-hour hospital stay for mothers and their infants allowing NAS to be 

detected, alternative birthing locations usually have shorter stays and reduced testing access.  
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Universal maternal testing could improve the identification of infants at risk for NAS [177], yet 

its success currently depends on access to Mass Spectrometry (MS) [178].  Since time to diagnosis 

is critical for clinical management of patients with NAS, the capability to accurately detect key 

analytes earlier and longer after birth could vastly improve care and clinical outcome. Varied 

metabolic rates in neonates further complicates therapeutic intervention for NAS and pain 

management, both best guided by testing [179], making rapid, quantitative clinical feedback a 

priority. We show here that the improved detection limits of aptamer-based FSA can both 

accelerate and extend the time needed to provide a quantitative measure of opioids in urine.  

Urine is routinely collected during pregnancy and labor, and is a widely employed clinical 

matrix [180], making urine testing an attractive, non-invasive approach to opioid analysis. Yet, 

unhealthy or premature babies produce significantly less urine than the 1 mL/kg/hour produced in 

healthy newborns, increasing the time required to obtain a sufficient testing volume.  Further, 

sample volume requirements (>100 µL) and time-to-results (24-48 hours, Mayo Clinic) make 

quantitative testing by LC-MS/MS less than optimal for patient management.  The main 

alternatives to MS, the enzyme multiplied immunoassay technique (EMIT II) [181], or the cloned 

enzyme donor immunoassay (CEDIA) [182], are more rapid (1-2 hrs.), but still require 50-100 µL 

of urine and are not particularly sensitive or quantitiative (Table 1). 

Here we report the specific opioid quantitation in 5 µL of urine, at the pg/mL level, by 

capitalizing on the marriage of three synergistic technologies; a unique label-free, solution-phase 

assay [91], high-affinity, high-selectivity DΗA aptamers probes [159], and a recently developed 

compensated interferometer [183]. Our approach takes a total analysis time of ~1 hour, and 

depending on the target, provides opioid limits of quantification (LOQs) 5-275-fold better than 

LC/MS-MS and ~50-1000-fold better than EMIT or CEDIA.  

Methods 

The free solution assay method is shown pictorially in Fig. 6.1 and has been described in 

detail elsewhere [91, 102].  Briefly the mix-and-read approach is based on preparing index matched 

solutions (splitting urine into two parts) and using one of these solutions as the reference and one 

as the binding sample for analysis by our interferometric reader.   

Solution preparation is also described in detail in the SI, but consists of making stock 

aptamer and opioid solutions, either for binding assays or for target quantification.  Aptamer 
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selection and characterization is described in detail in the SI, but briefly these opioid probes were 

selected using a modification of the Systematic evolution of ligands by exponential enrichment 

(SELEX) method of Nutiu et al [184].  This aptamer selection method is advantageous because it 

does not require immobilization of the target molecule and sequences binding the support matrix 

(beads) will not be further amplified.  Reconstituting the aptamer from the dried pellet allowed a 

100 µM stock solution to be prepared that was subsequently diluted to the working concentrations 

(Table B.1).  To ensure the aptamers were in the desired conformation, the aptamers were refolded 

by heating the solution to 90°C for 5 minutes in a water bath, then cooled to room temperature for 

15 minutes.  For cross reactivity measurements (detailed in Appendix B), the stock aptamer 

solution was diluted to 2 µM before refolding.   

Opiate target solution preparation followed normal analytical procedures described in 

detail in the SI.  Briefly the six opioid targets and cortisol (Sigma-Aldrich) listed in Table B.1 

were obtained at 1 mg/ml (2.7 – 3.3 mM) in methanol.  Working solutions of 27 - 32 µM (Table 

B.1, Column D) were prepared by diluting 10 µL of the opioid standard solution with 990 µL of 

PBS.  Then the appropriate volume of the working solutions (Table B.1, Column E) were further 

diluted to give 200 nM opioid solutions.   Care was taken to insure the 1% methanol in PBS 

solution was kept constant across all dilutions so that sample and reference solutions were index 

matched.  The concentration of the target samples stayed below the 1 mM aqueous solubility limit.   

CIR calibration solutions consisted of glycerol solutions (0, 0.125, 0.25, 0.5, 1, and 2mM) 

dissolved in 50% urine / 50% PBS.  PBS serves as the reference sample.  Preparation of solutions 

used for aptamer affinity measurements, LOQ determinations for the opioid targets and the 

unknowns were all prepared as describe in the SI in 50% urine.   

The CIR (Figure A.1) is described in detail in the SI.  Briefly, the reader consists of a 

droplet generator, interferometer, and syringe pump.  The interferometer is based on a laser, a 

fused silica capillary and a CCD camera.  The laser – capillary interaction produces fringes that 

are directed onto the camera and proper windowing of the captured image using an in-house 

LabviewTM program facilitates interrogation of adjacent regions of the capillary for differential 

comparison of sample and reference droplets.  The positional shifts in the fringes within each of 

these two windows is proportional to molecular binding and is quantified by a fast Fourier 

transform (FFT) [185].  Droplet trains are generated directly in the capillary tube by a Mitos 

Dropix.  The single section of capillary serves both as the reader cell and transfer line.  The sample-
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reference pairs were separated by a 40nL droplet of oil (Flourinert FC-40, Sigma-Aldrich).  Prior 

to droplet train generation, the capillary was filled with PBS and the syringe pump operated at a 

flow rate of 10 µL/minute for 10 minutes to establish stable flow.  Then the assay is run by 

introducing each sample/reference solution pair 5 times, followed by two PBS rinses of 4 µL.  This 

process is repeated for each concentration, or unknown, completing a full dropix sample tray.  An 

entire run requires ~14 minutes.  Prior to the analysis of the next dropix sample tray the capillary 

tube is rinsed thoroughly with PBS.  Glycerol calibration confirmed CIR performance with the 

desired values of; a) response ~0.110 radians/mM glycerol, b) injection reproducibility ~0.012 

radians c) an LOQ of ~0.33 mM glycerol calculated as 3×(of 5 replicate measurements) / 

(slope).    

Isothermal end-point binding affinity assays were performed on 1 nM solutions of the 

respective aptamer (to the opioid) in 50% Urine / 50% PBS, with a 7-point serial dilution series of 

the opioids ranging from 50 – 0.780 nM in the same matrix.  The reference solution consisted of 

the same concentration of opioid (50 - 0.780 nM) incubated with a 50 % Urine / 50% PBS solution 

devoid of aptamer.  Dissociation constants were quantified by performing 5 replicates at each 

opioid concentration, plotting the results (Figure 6.3A and B.1) and fitting the data to a single-

site saturation isotherm using Graphpad PrismTM.  Further details of these determinations are found 

in the SI.   

As described in detail in the SI, calibration curves for the opioid assays were obtained by 

creating a dilution series of the target at 0-100 nM in 50% Urine / 49.5% PBS / 0.5% Methanol 

with 1 nM aptamer, an RI matched reference and performing FSA-CIR analysis.  The phase shift 

between binding and reference sample was measured using the CIR, and the response was fit with 

a saturation isotherm.  The slope in the linear region was used to calculate the LOD (3×σ 

instrument baseline noise/slope) and the LOQ (3×σ (of replicate determinations)/slope).  Figure 

6.3B and B.2 show the assay calibration curves for all 6 opioid targets.   

Test “unknowns” were prepared by spiking blank human urine with the opioid target and 

performing the FSA measurement as described above and in the SI.   Unknowns were prepared so 

that the “operator” remained blinded to the sample’s true concentration until after the 

determination was completed.   

Aptamer specificity (cross-reactivity) was tested for each aptamer against their most 

common metabolite and cortisol.  We performed cross-reactivity as described in detail in the SI, 
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briefly, high concentration solutions (2000 nM) of the target opioid, the metabolite, and cortisol 

were prepared in 50% Urine / 49%PBS / 1% methanol allowing the subsequent preparing of 1000 

nM, 500 nM, and 0 nM solutions to be made.  These were reacted with the target aptamer at 1000 

nM aptamer in 50% Urine / 50% PBS and then assayed by CIR in an endpoint format.   

Pharmacokinetic Modelling 

Oxycodone and noroxycodone concentration-time profiles were calculated using a single-

metabolite model where the primary opiate is eliminated via two pathways: 1) directly through 

urine excretion and 2) by metabolism to a single metabolite (Figure B.7).  To calculate the urine 

concentration of oxycodone, it is necessary to first determine the serum concentration over time.  

Then the serum concentration is multiplied by the fraction eliminated through urine (fr) and the 

renal clearance rate (CLr) to obtain the urine elimination rate.  The urine elimination rate is then 

divided by the total urine excretion rate (volume/hour), to obtain the urine concentration.  A similar 

process is used to find the noroxycodone urine concentration,.  The noroxycodone serum 

concentration was calculated using the oxycodone serum concentration and the fraction of 

oxycodone metabolized to noroxycodone.  

The plasma concentration of oxycodone over time was calculated using a first-order decay, 

equation 6.1 [186]. 

 𝐶(𝑡) = 𝐼𝐶𝑒  Eq. 6.1 

Where IC is the initial concentration and k is the elimination rate constant.  We chose two 

cases in our calculations for the initial concentration (IC).  1) The recommended analgesic doses 

(25 ng/mL [187] and 120 ng/mL [188]) for a newborn, and 2) a high concentration induced by 

illicit opiate use by the mother (300 ng/ml and the 2000 ng/ml) [189]. 

Equation 6.2 was used to determine k from the drug’s half-life (𝑡 ), an experimentally 

determined parameter. 

 𝑘 =
( )

 Eq. 6.2 

The work of Valitalo et-al reported that the half-life of oxycodone in healthy neonates is 

about 4 hours, but can reach 8.8 hours in extremely preterm neonates [187].  For healthy newborns, 
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the half-life matures to about 2.1 hours, approximately the value in healthy adults, within the first 

3-6 months of life [187].   

Urine concentration of oxycodone: As illustrated in Figure B.7 the urine oxycodone 

concentration is found by estimating the fraction (𝑓 ) of oxycodone metabolized to noroxycodone 

and assuming the remaining oxycodone (𝑓 ) is found (excreted) in the urine.  The rate of 

oxycodone elimination through urine (dCu/dt) is therefore dependent upon the plasma 

concentration (C) and the renal clearance (CLr), and can expressed by Equation 6.3: 

 
( )

= 𝑓 ∙ 𝐶𝐿 ∙ 𝐶(𝑡) Eq. 6.3 

The fraction of opioid eliminated through urine (not metabolized) is typically 5-11% in 

adults [190], but higher values have been reported for neonates [187, 191].  Because we did not 

consider other metabolites, for our calculations 𝑓 + 𝑓 = 1.  Here we chose to use values of 𝑓 =

0.8 and 𝑓 = 0.2 based upon the published values for neonatal metabolite profiles [192].  Here it 

should be noted that very few reports exist that quantify neonate metabolite profiles or renal 

clearance (CLr), and results are highly variable [191, 193-196].  We chose a value of 10 mL/min/kg 

because this represents an average value for (CLr) [192, 197].  For subject weight we used 2 kg for 

a preterm neonate, 3.5 kg for a full-term neonate, and 7.2 kg for a 6 month old child [198].  Using 

these values provided an effective opioid renal clearance of 20 mL/min for a preterm neonate, 35 

mL/min for a full-term neonate, and 72 mL/min for a 6-month-old.   

We obtained the urine concentration of oxycodone over time by dividing the oxycodone 

elimination rate (Equation 4) by the rate of urine production.  We used urine production rates of 

0.5 mL/hr for a preterm neonate and 1 mL/hr for the full-term neonate and a child of age 6 months 

[199]. 

The serum concentration of noroxycodone (Cm) is dependent upon the rate of 

oxycodone metabolism and the rate of noroxycodone elimination in urine, which can be 

mathematically expressed as equation 6.4: 

 𝐶 (𝑡) = 𝑓
∙

(𝑒 − 𝑒 ) Eq. 6.4 

As in equation 6.2, k is the elimination rate constant of oxycodone and IC is the initial 

oxycodone serum concentration.  The metabolite has a half-life (tm1/2) and extinction coefficient 
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(km).  The limited available data on neonatal opioid metabolite half-lives suggests that 𝑡 / ≈

𝑡  [187, 192].  Therefore, our calculations assumed km=k [197, 200]. 

The rate of noroxycodone elimination (the metabolite) in urine (dCmu(t)/dt) was calculated 

using Equation 6.4 in the same way it as for oxycodone, with appropriate parameters for CLmr 

and fmr.  In healthy adults, a small fraction of noroxycodone is eliminated through metabolism to 

noroxymorphone.  However, in the only published results of oxymorphone/noroxymorphone 

quantification in neonates, the concentration of both species was below the limit of quantification 

in many infants [192].  Therefore, we used 𝑓 = 1 (all noroxycodone is eliminated through urine, 

none is metabolized further).  The value for renal clearance of primary drug was used as the renal 

clearance for noroxycodone (𝐶𝐿 = 𝐶𝐿 ), due to the same observations that led us to use km=k 

[187, 192, 197, 200]. We calculated the urine concentration of noroxycodone over time in the same 

manner as we calculated the urine concentration of oxycodone over time, by dividing the rate of 

noroxycodone elimination by the rate of urine production. 

Aptamer selection using SELEX 

All opioid aptamers were selected by Base Pair Biotechnologies, Inc. (Pearland, TX, USA) 

using a modification of the method of Nutiu et al [184].  Briefly, random sequences in a single-

stranded DΗA library were hybridized to complementary DΗA capture probes immobilized on 

magnetic beads.  Sequences that interact with the target resulting in a structural change were 

released from the beads and thereby separated from non-binders. This aptamer selection method 

is advantageous because it does not require immobilization of the target molecule and sequences 

binding the support matrix (beads) will not be further amplified.  Additionally, off-targets and/or 

background sample matrix can be applied to release non-specifically binding aptamers before 

elution using the desired target of interest.  To avoid the potential risk for opioid contamination in 

“normal” pooled human urine, an ersatz urine formulation comprising 1X PBS, 300 mM urea, 6 

mM creatinine, 0.05% Tween-20, and 1 mM MgCl2 was used.  After multiple rounds of positive 

and negative selection, the enriched aptamer pools were sequenced using an Ion Torrent PGM next 

generation sequencer (Thermo Fisher), and for each target, bioinformatics analysis was used to 

choose aptamers for synthesis and functional screening in the FSA assay.    

 



102 
 

Results and Discussion 

Urine opioid quantification was accomplished using FSA, which is a universal sensing 

method based on measuring the predictable and reproducible binding-induced changes in the 

solution refractive index (RI)[91].  Complex milieu compatibility in the FSA mix-and-read 

approach is facilitated by performing the measurement on ‘matched’ sample-reference pairs and 

then comparing the signal for this pair of samples.   As shown in Figure 6.1 we take a small volume 

of urine, split into two aliquots and then process them to provide ‘binding’ and ‘reference’ 

solutions.  To quantify a target, we add an excess of probe (DΗA aptamer) to one of the aliquots, 

giving the “binding/test” sample, and to the other we add an RI matching solution (buffer) or 

“reference/control.”  Assay/instrument calibration solutions are prepared by first spiking blank 

urine with increasing concentrations of the opiate target, then splitting this sample into two aliquots 

and proceeding as described here and in Appendix B.  These solutions are allowed to equilibrate 

and then introduced into adjacent wells of the droplet generator for analysis by the reader as pairs 

separated by an oil droplet.  The difference in signal between sample–reference pairs provides a 

quantitative measure of target (e.g. concentration of aptamer-target complex), while allowing the 

matrix signal to be nullified.  Since the probe is used in large excess relative to the target µM vs. 

nM) for quantification experiments, the RI signal due to the aptamer is essentially constant can be 

ignored. 

The compensated interferometric reader (CIR), reported here for the first time, incorporates 

the compensated interferometer [183] and is shown to provide improvements in both speed and 

 

Fig. 6.1. Schematic of the free-solution assay (FSA) method. 
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signal-to-noise (S/N) over previous sensors [10].  The CIR described in detail in the SI, is a 

relatively simple device consisting of a sample introduction method (a commercial droplet 

generator (Mitos Dropix, Dolomite Microfluidics, UK), a diode laser (Lasermate, USA), a 

capillary flow cell (Polymicro, Molex, USA), a camera (Basler avA2300 2D CCD array, USA), 

and syringe pump (Figure 5.1 and B.5).  In CIR an expanded laser beam illuminates the long axis 

of the capillary, producing elongated fringes that shift in proportion to the solution RI, which is 

proportional to analyte concentration.   The simultaneous analysis of sample-reference pairs of 1.0 

µL droplets separated by a 40 nL oil droplet in an uninterrupted fluid-droplet-train, speeds analysis 

time substantially over previous FSA measurement [201], while also conserving sample.  Using a 

continuous section of fused silica capillary (250 µM ID×350 µM OD) as both the droplet train 

transfer line and the detector cell for the interferometer, and the appropriate settings for the droplet 

generator and syringe pump we were able to analyze 18 sample pairs in less than a total of 1 hour. 

Our research also capitalizes on the value of employing DNA aptamer probe molecules for 

opioids in urine, by avoiding many of the issues associated with detecting small molecules by 

antibodies [159, 202].   DNA aptamers are advantageous because they can be made to bind with 

high selectively to small molecule targets, they don’t require a cold train for storage/transport, are 

easily ‘manufactured’ using standard nucleic acid methods and can be selected in the matrix of 

interest (urine in our case) [184].  The aptamers selected here for the six opioid targets are 

 

Fig. 6.2. Structures for target molecules: A) Oxycodone (left) and its major urinary metabolite, 
noroxycodone (right). B) Hydrocodone (left) and major urinary metabolite, norhydrocodone 
(right).  C) Fentanyl (left) and its major urinary metabolite, norfentanyl (right). 
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displayed in Figure 6.2, were obtained using a combination of a multiplex version of “structure-

switching” systematic evolution of ligands by exponential enrichment (SELEX) [203-204].  This 

version of SELEX is unique in the ability to minimize undesirable sequences through negative 

selection, providing improved target-binding selectivity.  Once identified and prior to FSA-CIR 

testing, candidate aptamers were sequenced and modeled to provide a preliminary indication of 

how they might perform in our assay. 

With aptamer candidates in hand, FSA-CIR was used to quantify the binding affinity to 

their cognate targets.  Figure 6.3A displays a typical saturation isotherm obtained by our 

methodology for a fentanyl aptamer.  These KD determinations were performed in 50% urine/50% 

phosphate buffered saline (PBS) using the end-point assay described here, previously [91, 159], 

and in Appendix B.   The quantification of the aptamer affinity provides an insight into opioid 

detection sensitivity.  Constructing the assay such that the binding sample consists of urine 

solutions containing increasing concentrations of the target opioid (0-50 nM, e.g. ligand) with 1 

nM aptamer (e.g. receptor) and reference solutions consisting of the individual opioid-containing 

urine/PBS solutions index matched and devoid of aptamer, enabled quantification of KD.  As 

illustrated in Figure 6.3A, based on seven replicate determinations by CIR for each sample-

reference pair, results for affinity measurements are robust and reproducible.  From these 

determinations we obtained high-quality dissociation constants upon fitting the binding curves to 

a single-site saturation isotherm using GraphPad PrismTM.  In all cases the aptamer probes had an 

affinity in the hundreds of picomolar to low-nanomolar range (Table B.2), with the KD for fentanyl 

 
 

Fig. 6.3. A) Fentanyl aptamer KD determination giving an affinity of 2.44 nM and R2 = 0.94.  
Error bars show standard deviation of 7 replicates.  B) Calibration curve for fentanyl. 
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= 2.48 nM, norfentanyl = 0.93 nM, oxycodone = 0.66 nM, noroxycodone = 1.33 nM, hydrocodone 

= 4.49 nM and norhydrocodone = 0.72 nM.  As shown below, KD values in this range enable a 

mix-and-read approach using a single probe, as opposed to the typical sandwich method used in 

ELISA, that provides pg/mL sensitivity and excellent specificity for the target in urine. 

Next, we determined the limits of detection (LODs) and LOQs for all of our opiate-aptamer 

assays.  Here we define the LOD as 3× (5 sec. baseline noise)/(slope of the calibration curve) and 

the LOQ as 3×( for replicates)/slope. Figure 6.3B illustrates a typical calibration curve obtained 

by FSA-aptamer-CIR for an opioid in 50% urine (Figure B.4).  When fitting the fentanyl 

calibration curve to a single-site saturation isotherm, we obtain a correlation coefficient, R2 = 0.99, 

an LOD of 45 pg/mL (135 pM) and a dynamic operating range of ~2.5 orders of magnitude in 

concentration.  As shown in Table B.2, all our opioid assays performed similarly to that for 

fentanyl, giving LODs ranging from ~28-81 pg/mL (90-245 pM) and LOQ’s of 44-183 pg/ml (141-

611 pM).  The fentanyl assay is particularly important due to its recent explosion in use and abuse 

in the USA.  The LOQ of 63 pg/mL for this assay is at least 5-fold better than the best value 

reported for the more time-consuming and complex LC-MS/MS assay [192].  

Assay performance, regardless of methodology, can be impacted by undesirable off-target 

response [205-207].  Aptamer-based assays are no exception, with cross reactivity to non-target 

 
 

Fig. 6.4. Fentanyl and norfentanyl cross reactivity results.  High specificity aptamers result in 
off target signals below the assay LOQ. 
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species and matrix components a potential problem.  First, outstanding LOQ values obtained here 

in urine, the lack of concentration dependent response for the matrix (data not shown) and the 

advantage of direct sample-reference comparison, indicates there is little matrix non-specific 

binding.   Second, we focused on quantifying the level of cross-reactivity of the aptamer to its 

cognate target(s), the primary drug-metabolite, as well as the common biological signaling 

molecule cortisol.  Cortisol was chosen because its widely found in urine, neonate levels have been 

correlated with opiate exposure and it is a known marker of stress [208].  Using FSA, we 

established the expected signal for samples containing large concentrations of the target, e.g. 

fentanyl, etc. (0 nM, 500 nM, and 1000 nM).  Next, we quantified the signal urine from two 

interfering species spiked in ~100% urine, first from the most common metabolite, norfentanyl in 

this case, and next cortisol.  In all assays we used 1000 nM of the ‘target’ aptamer.  Here, the large 

concentration of the aptamer contributes measurably to the signal (bulk RI of the solution), 

therefore we zero CIR by subtracting this aptamer background signal.  Figure 6.4 illustrates the 

results of several target and off-target binding experiments.  Notably, even at quite high 

concentration of the interfering species, all aptamer assays performed well, exhibiting off-target 

binding ranging from 0.03% to ~13% (Table B.2, Figure B.3).  With ‘cross-reactivity’ signal 

magnitudes near or below the LOQ for the assay (Figure B.3), the off-target species concentration 

would need to be 4,000-10,000 times higher than the target concentration to introduce quantifiable 

inaccuracy into the LOQ.  Here the norfentanyl aptamer exhibited the most undesired cross-

reactivity, 12.9% for fentanyl.  In this case it might be valuable to measure the ratio of target-to-

metabolite in the clinical setting to correct for off-site binding.  We acknowledge that to fully 

implement this assay clinically and predict potential false positives, it will be necessary to establish 

the magnitude of off-target binding for numerous other species. Yet, given the affinity of our 

aptamers and results for cortisol, we are confident that our multiple target assay will prove to be 

highly specific. 

At the time of this research true clinical samples were not available from our collaborator, 

therefore we prepared spiked urine “unknowns.”  This was accomplished by adding the opioid 

targets to pooled human urine (Valley Biomedical) at concentrations between 250 pg/mL and 4 

ng/mL (Figure B.4).  Using the appropriate calibration curve for each target and the FSA-CIR 

measurement performed blinded by the operator from the unknown, we obtain concentrations for 

these test samples (Table B.4).  Plotting these values versus the actual ‘spiked’ concentrations for 
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all assays results in a linear plot (R2 = 0.996, Figure B.4).  In all cases the assay provided 

quantification of the unknown target concentration with less than 6% error (Tables B.2 & B.3).  

Interestingly, all unknowns evaluated here are 75-1000-fold below the standard clinical cut-off of 

300 ng/ml [209], or 500-8000-fold below the Substance Abuse and Mental Health Services 

Administration (SAMHSA) drug-testing cut-off of 2000 ng/ml [210]. 

Table 6.1 shows that the aptamer-based FSA-CIR assay performed quite well compared to 

other methods.  While gas chromatography has been used in the past, it has mostly given way to 

immunoassays for screening and LC-MS/MS for analyte confirmation/quantification.  FSA-CIR 

is akin to immunoassay, in that it could be used as a screening tool, yet our free-solution method 

exhibits many differences, most important is that it is quantitative.  EMIT® II Plus (Siemens) is 

qualitative or at best semi-quantitative (+/- 1.5 ng/mL) for opioid determinations.  The Product 

Insert reports cut-offs in the 2-50 ng/ml range, and a very small ‘quantitative’ operating range of 

5-20 ng/mL.  CEDIA® (Thermo Scientific), has similar performance to the EMIT II Plus (CEDIA 

Product Insert).  The aptamer-based FSA-CIR method is 50-1000-fold more sensitive than 

commercial immunoassays (Table 6.1) and is quantitative over about 2.5 decades.  Table 6.1 also 

illustrates that compared to LC-MS/MS methods, with LOQs of 10-50 ng/ml for hydrocodone, 

oxycodone, noroxycodone and Norhydrocodone [211] in urine, FSA LOQs in the pg/mL range are 

1-3 decades more sensitive than LC-MS/MS.  Even for the best MS-based assay reported [178], 

aptamer-based FSA is still 2-5-fold and 15-20-fold more sensitive for fentanyl and norfentanyl 

respectively, while requiring 20 times less sample.  MS-based assays do provide the ability to 

directly measure multiple analytes with high specificity (depending on spectrometer resolution), 

yet the instrumentation is complicated, costly and impractical for the near-patient setting.  Results 

presented here indicates the aptamer-based FSA-CIR represents attractive alternative. 

In addition to the advantages of small volume and simplicity available with FSA, enhanced 

sensitivity has the potential to speed time-to-result and extend detection time, allowing previously 

unavailable pharmacokinetics.  While the pharmacokinetics of opiates in neonates varies 

considerably [192], recent work by Valitalo [187] provides parameters that allows us to place 

reasonable bounds on expected neonate opiate lifetimes.  Using their parameters for drug half-life 

and oxycodone as a representative case, we calculated opioid concentration in urine over time for 

preterm and healthy neonates.  Figure 6.5A shows that for a preterm neonate (t1/2 = 8.8 hr) and a 

very large initial concentration (IC) of drug, corresponding to a positive test result for illicit drug 



108 
 

use (2000 ng/ml), the presence of oxycodone would be unquantifiable after 43 hours by LC-

MS/MS with an LOQ of 10 ng/mL. Yet, FSA-CIR, allows quantification of oxycodone for up to 

112 hours following this level of opioid exposure, extending the detection window by nearly three 

days (70 hours).  Assessing a more typical situation, for a recommended analgesic dose of 25 ng/ml 

in a preterm neonate, Figure 6.5B illustrates how the concentration of oxycodone never reaches 

 

Fig. 6.5. Oxycodone concentration vs. time window in neonates for several representative 
cases, illustrating the increased time for detection that the lower LOQ of FSA-CIR provides 
over LC-MS/MS 



109 
 

the LOQ for LC-MS/MS in urine.  Currently, multiple blood draws are the only way to accurately 

detect this opiate under these conditions.  However, with aptamer-based FSA-CIR, oxycodone 

urine levels are detectable for 56 hours, making urine analysis a viable option.  In a full-term 

neonate (t1/2 = 4 hr) exposed to an illicit level of 300 ng/ml, or a healthy child (age = 6 months, t1/2 

= 2 hr) exposed to an analgesic dose (25 ng/ml), Figure 6.5C-D show how improved LOQs can 

provide an extended period of 32 and 16 hours of accurate confirmatory testing to exposure as well 

as providing pain management feedback. 

Measuring noroxycodone in neonates  

Further addressing the pharmacokinetic variability found in young children, enhanced 

assay sensitivity and near-patient monitoring of the primary opioid metabolite could allow more 

accurate titration of analgesics.  Using a simple model for metabolism (Figure B.7) [187], our and 

the LC-MS/MS LOQ values for noroxycodone, we construct plots that illustrate this opportunity. 

Based on an 80% fraction metabolized, our concentration vs. time plots (Figure 6.6) show several 

things. 

In a neonate pain management setting, for safe and effective drug administration it would 

be desirable to have dose titration and monitoring on a case-by-case basis.  Here we show that the 

improved sensitivity of our assay has the potential to accurately quantify both the primary opioid 

and its metabolites providing a vehicle toward the proper assessment of metabolic rates, and 

therefore administration, dosage and interval [195, 212].   

To illustrate the value of improved LOQs for the target drug or metabolite we capitalized 

on our calculations to construct the concentration versus time plots shown in Figure 6.6 for four 

representative pharmacokinetic cases.  In Fig. 6.6A the urine concentration over time for both 

oxycodone (blue) and noroxycodone (red) for a low analgesic dose (25 ng/mL serum 

concentration) is presented for a preterm neonate using an oxycodone half-life of t1/2 = 8.8.  In this 

instance, the concentration of noroxycodone rises above the LOQ for FSA-CSI quickly, being 

detectable after a few minutes, but never rises above the LOQ of LC-MS/MS.   

Using the recommended analgesic dose in a preterm neonate, (IC = 120 ng/mL serum 

concentration), produces the results shown in Figure 6.6B.  Here the noroxycodone concentration 

does rise above the LOQ for LC-MS/MS, but only after 2.4 hours.  Under this scenario, limited 
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drug sensitivity provided by LC-MS/MS leads to an interval not fast enough to allow accurate 

feedback for proper drug dosing every couple of hours of a neonate undergoing pain management.   

Full-term “healthy” newborns being administered an IC = 25 ng/mL (Fig. 6.6C) represents 

a similar case to that shown in Fig 6.6A.  Again, for the lower dose of drug, neither the 

noroxycodone nor the oxycodone are at a concentration quantifiable by LC-MS/MS (Fig. 6.6C).  

 
Fig. 6.6. Oxycodone and Noroxycodone urine concentrations over time for several cases.  IC denotes 
the initial plasma concentration. 
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Yet, FSA-CIR would be able to quantify noroxycodone accurately after only a few minutes.  For 

the higher dose of drug, IC = 120 ng/mL (Fig. 6.6D), the concentration of metabolite rises above 

the LC-MS/MS LOQ only after 1.3 hours.  Further, the oxycodone level drops below the detection 

limit for MS/MS in this period of time.  In both cases, for full-term infants, aptamer-based FSA-

CIR can accurately quantify noroxycodone only a few minutes after administration.  These LOQ 

comparisons illustrate how FSA can potentially provide a simple screen for earlier opiate 

detection, be used to extend the period of detection and enable the ability to quantify/identify 

opioids for a longer period after birth.  

Results of our calculations, illustrated in Fig. 6.6, correlate with the results published by 

Kokki et al., where they found oxycodone concentrations remained above ~10 ng/mL for ~1-3 

hours in healthy children (age 6-91 months), following administration of a high analgesic dose.  

As for noroxycodone, when quantified at approximately 1 hour after administration, only in a few 

cases (4) was it was determined to above 10ng/ mL, yet in in the majority of cases it never 

surpassed 10 ng/mL [200]. 

Chapter 6 Conclusion 

Here we demonstrate how improved sensitivity can positively impact both confirmatory 

testing of NAS and dose-titration for neonates undergoing pain management.  Using a single-

metabolite model for oxycodone metabolism and excretion, we put bounds on the expected range 

of lifetimes of both the drug and metabolite in plasma and the subsequent concentration in urine.  

For detection of exposure to illicit use, aptamer-based FSA-CIR enables an extended window for 

confirmatory testing between 2-4 days in neonates past the average onset time of NAS symptoms.  

By the time NAS symptoms have presented in neonates (48-72 hours), residual oxycodone 

concentration levels are too low for confirmation by LC-MS/MS.  In the pain-management setting, 

aptamer-based FSA-CIR would enable quantification of metabolite after a shorter period and 

therefore provide more accurate information for dosing. 

In conclusion, we report a small volume urine assay for oxycodone, hydrocodone, fentanyl, 

noroxycodone, norhydrocodone, and norfentanyl with excellent LODs and LOQs. The aptamer-

based FSA-CIR approach, coupled with high affinity DΗA aptamer probes represents a potential 

solution for the need to quantify opioids at high sensitivity, non-invasively on small sample 

volumes.  The method reported here is rapid when compared to currently available methods and 
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exhibits accuracy of better than 95% across a wide range of opioid concentrations. Even with the 

use of a commercial droplet generator, a relatively low-cost system can be configured in a bench-

top format, making it compatible with the near-patient setting. The simplicity of the reader and 

recent demonstration of temperature controller-independent operation [183], point to the potential 

for developing a hand-held digital reader. Enabled by highly selective aptamers, an understanding 

of the signal transduction mechanism for FSA, and the capability to predict signal magnitude using 

the molar refractometry [91], this novel technology has the promise to revolutionize near-patient 

screening in a variety of contexts, particularly for neonatal opioid quantification. 
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Chapter 7: Preclinical Evaluation of a Free  

Solution Assay for the Quantification of a Candidate  

Lung Cancer Biomarker CYFRA 21-1 

Adapted from a manuscript in preparation for submission to Science Translational Medicine 

Lung cancer is the leading cause of cancer-related deaths in the United States [213].  Low 

dose chest CT screening programs that target high-risk individuals (e.g., individuals 55-75 years 

of age with a smoking history of at least 30 pack-years and who have smoked within the last 15 

years) can reduce the relative risk for lung cancer-specific mortality by 20% in the context of a 

randomized clinical trial [214].  There is a growing movement to implement this life saving 

screening into routine practice, with endorsements from the U.S. Preventive Services Task Force 

[215], the vast majority of professional societies [216], and a willingness from payers to provide 

reimbursement [215-216].  Yet, numerous challenges still need to be navigated for early detection 

of lung cancer to implement this service and to provide significantly improved outcomes.  Among 

those are: a) how can we position a biomarker prior to chest CT screening to decrease the cost and 

rates of false positive tests; b) how to address the diagnosis of lung cancer among indeterminate 

pulmonary nodules (IPNs); and c) how to detect recurrence after therapy.  The availability of a 

rapid, high sensitivity detection method to improve the quantification of biomarkers has the 

potential to aid in improving individualized management of indeterminate pulmonary nodules 

(IPNs) in lung cancer patients.  

Redefining the value of strong candidate biomarkers could produce changes in the 

guidelines for the management of indeterminate pulmonary nodules, for disease monitoring and 

for the early detection of cancer in the preclinical period.  Our approach addresses how current 

clinical blood biomarker strategies are too insensitive to enable detection of a developing tumor 

within the first decade of tumor growth [217] and mirrors what was accomplished when a high 

sensitivity version of the CRP assay was demonstrated.  Because of improved sensitivity, the h-

CRP test, performed widely today, allowed the repurposing of an otherwise nondiscriminatory 
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biomarker, transforming it into a clinically useful target for determining initial status of a patient 

with a suspect cardiac event [218-220].  Others have taken this tactic of addressing biomarker 

value by attempting to increase the sensitivity of the assay [221-222].  While promising results 

have been obtained, there is no definitive report that shows significant improvement in positive 

predictive value (PPV) and diagnostic likelihood ratio (DLR) values for lung cancer from a single 

protein lung cancer biomarker.   

Numerous approaches have been reported to quantify biomarkers for the study of 

pathogenesis in cancer, albeit their clinical translation has been problematic.  Among the most 

common methods are enzyme-linked immunosorbent assays (ELISA) [223], 

electrochemiluminescence (ECL) [224-226], and bead array technologies [227].  Label-free 

techniques, such as surface plasmon resonance (SPR) [228-229], quartz-crystal microbalance 

[230], wave-guided interferometry [231-232], and mass spectrometry (MS) have been employed 

for biomarker quantification, but have yet to provide an improvement in diagnostic power [233].    

Although MS has been exceedingly valuable in the biomarker discovery phase [234-235], 

instrumentation complexity and difficulty with quantification make its use in clinical screening 

unattractive [236].  Multiplexed MRM/MS targeted assays using stable-isotope-labeled peptide 

standards for accurate quantitation are showing promise as clinical diagnostic assays [237], but 

complexity and low-throughput remain as challenges.   

Newly emerging platforms have reported single-molecule sensitivity.  These techniques 

capitalize principally on one of two approaches, yet still employ a fluorescence sandwich assay 

based on multiple chemical steps.  One approach is a microparticle-based assay that is analogous 

to ELISA.  The technique, named Singulex, uses a capture and separation step to yield a bead with 

the fluorescently labeled target,  then by limiting the probe volume to a few femtoliters in a manner 

similar to confocal microscopy uses single molecule counting technology to obtain high sensitivity 

for biomarker targets [238].  Simoa (Single Molecule Array) from Quanterix is a technology that 

exploits the advantages of digital assays by employing a sandwich assay on beads which are each 

collected in wells formed at the end of a coherent fiber optic or similar small volume receptacle 

[239-240].   Both techniques have deficiencies, related to speed, reproducibility, cost, and/or 

accessibility.  SOMALOGIC has taken a different approach to quantifying serum proteins, 

employing aptamers, which are stands of DΗA or RNA selected to bind selectively with the target 

[241].  Their detection approach capitalizes on a slow ‘off-rate’ for one of the complexes formed 
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to separate the sample from background [242].  While this aptamer-probe method has shown 

promise [243], multiple (as many as 10) sample handling and labeling steps, combined with 

relatively complicated instrumentation has impeded the wide dissemination of the technology for 

biomarker quantification.   

In general, platforms that require either surface immobilization and/or labeling steps can 

make assay development and species validation arduous, slow, and expensive.  Given these 

observations, we have chosen to explore the potential to do biomarker quantification label-free 

and in free-solution.  The Free-Solution Assay (FSA) presented here appears to represent a viable 

alternative [91] to many of the existing and emerging assays.  FSA is a mix-and-read approach 

that is assay agnostic, highly sensitive, rapid, and matrix independent.  It will be shown here that 

when FSA is combined with a newly demonstrated compensated interferometric reader (CIR), 

reported here for the first time, it is possible to quantify a protein biomarker rapidly in serum 

samples at levels significantly lower than the gold standard approach (50 pg/mL vs. 500 pg/mL 

for ECL).   

With the overall objective to improve the detection methods for the early diagnosis of lung 

cancer among indeterminate pulmonary nodules (IPNs), we hypothesized that, as with h-CRP, this 

lower limit of quantitation (LOQ) could transform biomarker utility.  In doing so it would be 

possible to redefine the detectable concentrations of one of the best candidate serum biomarkers 

for lung cancer, CYFRA 21-1, thereby significantly improving its clinical utility by increasing the 

discriminatory power of the biomarker.  CYFRA 21-1 has a long history of being investigated as 

a potential lung cancer biomarker [223, 244-245].   Yet, to date, insufficient sensitivity and 

specificity has limited the value of CYFRA 21-1 in clinical practice.  Even so, CYFRA 21-1 

concentration appears to correlate with disease progression [246-248].  The diagnostic utility of 

CYFRA 21-1 in lung cancer has been restricted by the low constitutive expression in healthy 

individuals (2.4 ng/mL), a value which is well below the typically reported ELISA limit of 

quantification (LOQ) values typically reported as 4 ng/ mL, and near the typically reported limit 

of detection (LOD) of 1 ng/mL [249].  Our preliminary observations with backscattering 

interferometry (BSI) showed that our FSA, based on a single antibody probe to CYFRA 21-1 and 

read by an interferometer, can provide up to 40-fold LOQ improvements for serum biomarker 

quantification, when compared to established enzyme-linked immunosorbent assays (ELISAs) 

[92].   Here we build on these observations, reporting a new higher throughput interferometric 



119 
 

reader with enhanced signal-to-noise (S/N) performance, and the application of our FSA to 

quantify CYFRA 21-1 in a clinically relevant patient population.  

Methods 

Study Design The objectives of this study were to evaluate the performance of the free-

solution assay method (FSA), measured by the compensated interferometric reader (CIR), as an 

ultrasensitive, volume constrained, biomarker quantification platform and to demonstrate it can be 

used to improve the utility of the protein biomarker CYFRA 21-1 for lung cancer diagnosis through 

improved sensitivity.  The FSA-CIR method was used to quantify the level of CYFRA 21.1 in 225 

patient serum samples.  CYFRA 21-1 is a well-studied fragment of cytokeratin 19 that is widely 

regarded as a potential diagnostic biomarker for lung cancer.  This is a case control study design 

of archival blood specimens.  The patient cohort was selected from samples available in the 

Vanderbilt Thoracic Biorepository.  The study was approved by the Internal Review Boards at 

both Vanderbilt University and Vanderbilt University Medical Center.  

Blinding of group allocation was achieved by relabeling of the samples with an internal ID 

number (randomly assigned with numbers 1-225) after being pulled from the biorepository and 

before being delivered for measurement by FSA-CIR.  The samples were run in the order of 

increasing ID number.  Two separate CIR instruments were used to analyze the samples, and 

samples were split randomly between the two instruments.  There was no correlation between 

sample ID# and patient histology, cancer staging, gender, smoking history, age of the patient at 

time of sample collection, or age of the sample at time of measurement. 

Materials and Reagents: Unless otherwise specified, reagents were purchased from 

Sigma-Aldrich, and lab disposables were purchased from Fisher.  Deionized water (DI H2O) was 

used to prepare all aqueous solutions. Pooled human serum was obtained from Valley Biomedical.  

CYFRA 21.1 was obtained from DRG International.  The CYFRA 21.1 monoclonal antibody 

(clone XC4, product # MBS850246) was obtained from MyBioSource. 

The Mitos Dropix was obtained from Dolomite Microfluidics through their US distributor, 

Blacktrace.  The capillary interface to the Dropix was fabricated in house.  To avoid non-specific 

adsorption of proteins and plasticizer leaching sample-well-trays were machined from PEEK at 

the Vanderbilt Physics and Astronomy Machine Shop.  Capillary mounting blocks were machined 
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from aluminum at the Vanderbilt Physics and Astronomy Machine Shop and black-anodized by 

Mid-Western Anodizing, Milwaukee, WI. Capillary was obtained from Molex. 

Compensated interferometric reader setup, signal transduction, and calibration 

The CIR, illustrated in Figure 7.1, is a unique nano-volume interferometric sensor 

consisting of a laser, a fused silica capillary and a CCD camera.  The laser beam is conditioned in 

a manner to be elongated along the central axis of the capillary by passing the light through a pair 

of spherical lenses (Lasermate, USA).  This expansion results in a beam profile that is ~12.8 mm 

in the long axis and ~0.8 mm in the short axis.  Upon illumination of the capillary, a series of high 

contrast elongated interference fringes are produced from the laser-capillary interaction. These 

fringes are directed onto the 2D CCD, which is used to quantify the position of these fringes as a 

function of time.  Proper windowing of the 2D CCD array, using an in-house LabVIEWTM 

program, facilitates interrogation of two nearly adjacent regions of the fringes, and thus the 

capillary, for differential reader operation allowing the optical train to function as a compensated 

interferometer. When properly aligned so that the fringe patterns of the two regions are matched, 

the result is two nearly identical interferometers enabling operation in the absence of active 

temperature control, as well as compensation for wavelength wander and laser intensity instability 

[155].  The positional shifts in the fringes from each of these two windows is quantified by a fast 

Fourier transform (FFT) [91] allowing for calculation of the phase change as a function of time.  

 

 
 

Fig. 7.1 Workflow of the compensated interferometric reader. Block diagram of the CIR, 
showing droplet generator (left), laser and fringe detector (center), and syringe pump (right).   
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The difference in the phase readout between the two windows provides a relative measure of 

refractive index (RI).   

Capillary preparation and mounting:  Capillary tubing (350 µm outer diameter / 250 

µm inner diameter) was obtained in a 20-meter spool from Polymicro (Molex, USA).  A 1-meter 

length of the capillary was separated from the spool by careful scoring of the capillary using the 

sharp edge of a freshly snapped silicon wafer [250].  An anodized black aluminum block (3x3 

inches by ½ inch thick) served as a mounting block for the capillary.  A shallow V-Groove (100 

µm deep) etched into the block provides alignment and support for the capillary.  A hole was 

drilled through the mounting block where the laser impinges on the capillary to reduce scattered 

light.  Prior to mounting the capillary upon the aluminum mounting block, the capillary interior 

was silanized using Sigmacote®
 according to the following protocol:  Using the syringe pump, 

1mL of water was drawn through the capillary at a rate of 200 μL/min.  Then the capillary is dried 

out by pulling 10 mL of air through the tube at a rate of 1 mL/min.  Next, Sigmacote® (300 μL) 

was pulled through the capillary at a rate of 50 μL/min, followed by another air-drying step at a 

rate of 1 mL/min.  After drying, the capillary was wetted by flowing DI H2O (500 μL) at a rate of 

50 μL/min through the tube.  The water-filled capillary was then placed into an oven at 150°C for 

30 minutes to dry and complete the silanization.  The coated capillary was then mounted on the Al 

block, which was mounted to two perpendicular translation stages (Newport 423 linear aluminum 

stage driven by Newport SM-25 Vernier Micrometer) to allow precise alignment of the capillary 

relative to the incoming beam. 

CIR Alignment:  The diode laser was attached to the optical bench so as to give a 35 cm 

beam path to the capillary.  The interaction of the beam with the capillary produces a series of 

interference “fringes” which are directed onto the CCD array mounted 5 cm from the capillary.  

Beam – capillary alignment was achieved by translating the capillary so that it was centered with 

respect to both the short and long axis of the beam.  Proper alignment was attained when the 

interference fringes exhibited a nearly single spatial frequency, uniform intensity and a high-

contrast ratio (>0.9) as calculated from the maximum intensity / minimum intensities.   

Syringe Pump Setup:  A Chemyx® Nexus 3000 Syringe pump operated in so as to pull 

fluids was affixed with a Hamilton Gastight® 1001 syringe.  The syringe was interfaced to the 

capillary using a LabSmith Luer-Lock to capillary adaptor.  Using a Hamilton syringe with an 
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inner diameter of 4.610 mm and volume of 1000 µL allowed continues operation for ~100 minutes 

at a typical operating flow rate of 10 µL/min.   

Droplet Train Generation:  The Mitos Dropix was interfaced to the interferometer so that 

droplet trains were formed directly in the capillary, allowing a single section of capillary to serve 

as both the reader detection cell and the transfer line.  Here the interface was accomplished by 

feeding the capillary through a sample hook of in-house design.  This approach provides for 

uninterrupted, unperturbed droplet generation and flow.   It also reduces the potential for sample 

loss.  Droplet trains were produced by this sample hook/capillary assembly moving up and down 

between two “reservoirs” while the pump pulls fluid.  One of the reservoirs was an open tray 

containing oil (Fluorinert FC-40, Sigma-Aldrich), serving to separate the droplets, the other was a 

PEEK tray consisting of 24 bottomless wells where the sample and reference solutions reside.  

Hook sample-well dwell time and solution flow rate determines droplet volume and spacing.  Prior 

to droplet train generation, the capillary was filled with PBS and the syringe pump operated at a 

flow rate of 10 µL/minute for 10 minutes to establish a stable flow through the system.   

Next the Dropix was programmed using its onboard control software provided by Dolomite 

Microfluidics to produce a droplet train with the appropriate droplet order, volume, and spacing.  

The program facilitates droplet train generation by timing the movement of the sample-collection 

hook between the reservoirs containing the samples and the oil bath.  Sample hook dwell time in 

each appropriate reservoir is determined by the droplet volume, spacing, and flow rate in the 

capillary.  Here a single determination consists of a droplet train of 1000nL of sample and reference 

solutions separated by 40nL of oil.  Sample and reference solutions (18 µL) were loaded into 

adjacent wells in the sample tray.  Typically, the first sample/reference pair in the droplet train was 

preceded by 4 x 4 µL droplets of PBS, each separated by 100nL of oil, to serve as a rinse.  For all 

determinations using the CIR, the sample/reference pairs were introduced five times for a total of 

10 droplets.  Following the analysis of each group of sample/reference droplet pairs a 500nL 

droplet of oil and 2 x 4 µL droplets of PBS separated by 100nL of oil was used to rinse and prepare 

the capillary for the next sample/reference pair.  When operating the CIR, a total of 6 

sample/reference solution pairs can be analyzed sequentially from a single tray.  The entire droplet 

train, consisting of all six sample pairs and the required rinses, takes about 14 minutes to run.   

After an entire tray was run, the capillary was rinsed with PBS for 3 minutes to prepare the CIR 

for a new PEEK tray containing 6 new sample pairs.  A total of 6 sample trays, including all rinses, 
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can be sampled before the syringe needs to be emptied and the capillary rinsed thoroughly with 

PBS (500 µL at 50 µL/min).   No quantifiable noise or change in reader response was detected due 

to emptying the syringe and restarting the pump. 

CIR signal transduction: As the droplet trains traverse the detection region, the resulting 

interferometric fringe patterns were captured on the CCD array and processed in real time.  

Windows of the fringes from each detection region measuring 200 pixels long×1200 pixels wide 

were selected for analysis using our in-house software running under a LabVIEWTM program 

(National Instruments).  A set of 5 fringes with a nearly single-spatial frequency, defined as a Fast 

Fourier Transform (FFT) power spectrum with a ratio of 4:1 or greater (dominant frequency to 

neighboring frequencies), was selected from each detection region.  Measuring the FFT phase of 

the dominant frequency as a function of time provides a quantitative measure of the fringe shift 

which can be correlated to the change in RI for the sample and reference windows.  The difference 

in phase change between the two regions when the sample/reference droplets were in their 

respective window provides a readout for the interferometer.   

CIR Calibration:  Device performance and instrument response was evaluated using 

solutions of glycerol in 25% pooled serum / 75% PBS.  This was accomplished by generating a 

calibration curve using solutions containing 0, 0.125, 0.25, 0.5, 1, and 2mM glycerol in 

serum/PBS, with Serum/PBS used as the reference sample.  For each glycerol concentration, 18 

µL of glycerol (sample) and 18 µL of serum/PBS (reference) were loaded into adjacent wells in 

the Dropix tray and their relative response measured with the CI allowing a calibration curve of 

concentration vs. response to be constructed.  Using this experimental data and the calibration 

curve we determine the response (sensitivity) of the instrument (target value >0.110 radians/mM 

glycerol). We also measure the reproducibility of replicate measurements enabling the calculation 

of the standard deviation (target value <0.012 radians) and the limit of quantification (LOQ) which 

is calculated as 3×σ / slope of the calibration curve for 5 replicate measurements.  Glycerol 

calibration curves must produce LOQs of 0.33 mM glycerol or less.   In terms of RIU sensitivity, 

using the dη/dC value for glycerol of 1.05×10-5 RIU/mM, this corresponds to an LOQ of 3.4 µRIU.  

To determine the LOD the baseline noise was determined as the standard deviation of the phase 

shift over the duration of a single measurement (~1 second).  Here we found this value to typically 

be on the order of 0.0042 radians giving an LOD that was 0.111 mM glycerol or 1.16 µRIU.  Based 

upon our past experience, this sensitivity was more than adequate to perform free-solution 
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molecular interaction studies [91, 201].  When the values noted above are not obtained, capillary 

rinsing and refinement of the optical alignment is often necessary.   

Free Solution Assay Methods 

Calibration curves were prepared by spiking several aliquots of a 50% pooled human serum 

/ 50% PBS solution with concentrations of the biomarker target CYFRA 21.1 ranging from 0.024 

ng/mL to 25 ng/mL.  Each serum aliquot was combined with a solution containing the probe 

antibody to produce the binding sample.  To produce an RI-matched, nonbinding reference sample, 

each serum aliquot is combined with a “blank” solution containing buffer with no antibody.  

Following a 1-hour incubation at ambient temperature (22 °C) on a shaker (300 rpm), the sample 

and reference solutions were loaded onto the droplet generator and measured by the CIR in order 

of increasing concentration.  A single site saturation isotherm was fitted to the resulting phase 

shifts according to the equation: 

 Y = Bmax×X/(KD + X) Eq. 7.1 

where Y is the phase shift at concentration of X (in ng/mL), Bmax is the maximum signal at 

saturation, and KD is the dissociation constant.  Calibration curves consisted of 11 concentrations 

of biomarker, with 2:1 serial dilution resulting in concentrations ranging from 24 pg/mL to 25 

ng/mL and a concentration devoid of CYFRA 21.1 biomarker to serve as a “zero” concentration.  

Then, the CYFRA 21.1-spiked serum (20 µL) was added to PBS (20 µL) to form the reference 

sample, and CYFRA 21.1-spiked serum (20 µL) was added to PBS containing 2 µg/mL probe 

antibody (20 µL) to form the binding sample.  Final sample compositions were 25% serum in PBS, 

with 1 µg/mL antibody is the binding sample.  Following the initial validation studies (explained 

below), calibration curves consisted of 5 concentrations of biomarker (5:1 serial dilution resulting 

in concentrations ranging from 25 ng/mL to 40 pg/mL) and a zero concentration. 

Patient serum samples were measured by preparing binding and reference sample pairs 

according to the following procedure:  Each serum sample was thawed on an Eppendorf 

thermomixer (300 RPM) at 20 °C for 20 minutes, then homogenized by aspiration with a 75 µL 

mixing volume using a hand pipetter.  Then, 10 µL of the patient serum was added to 30 µL of 

PBS to form the “reference” sample, and 10 µL of the patient serum was added to 30 µL of solution 

containing the probe antibody (1.5 µg/mL) to form the “binding” sample.  Samples were incubated 

at ambient temperature (22 °C) using shaking (300 rpm) for 1.5 hours before measurement with 
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FSA-CIR.  Final samples were 40 µL with a composition of 25% patient serum, 75% PBS buffer, 

with 1 µg/mL probe antibody in the binding sample.  Sample and Reference (18 µL of each) were 

loaded into adjacent wells in the droplet generator sample-well-tray. 

After measurement with FSA-CIR, the phase shift for each patient serum sample was fit to 

the calibration curve to determine the concentration of CYFRA 21-1 using Graphpad Prism. 

Spiked “unknowns” were prepared by adding a known quantity of the CYFRA 21-1 

biomarker to pooled serum, then processing the samples in the same manner as patient samples. 

After the initial determination of the patient cohort we performed the assay on a set of 

twenty samples (10 controls, 5 adenocarcinoma, 5 squamous cell carcinoma) randomly selected 

and blinded by our clinical collaborators.  Aliquots of these samples (200 µL) were subjected to 

an additional freeze-thaw cycle and measured in the same manner as the full cohort, then subjected 

to another freeze-thaw cycle and measured.  Coefficients of Variations (CVs) of the replicate 

measurements were calculated as standard deviation / average.   

Patient characteristics  

Cases and control samples were selected from our thoracic biorepository to meet the 

following criteria.  Samples need to have been enrolled in our indeterminate pulmonary nodule 

cohort by chest CT.  All nodules must have been ascertained by either a tissue diagnosis or a 2 

year follow up with no evidence of growth.  The 225 patient samples were selected to include 

roughly equal proportion of four histology groups (no cancer, adenocarcinoma, squamous cell 

carcinoma, and small cell carcinoma).  Samples were selected to maintain an even distribution of 

gender, smoking history, and nodule size across all four histology groups. 

Serum sample collection and storage:   

Patient serum samples were collected according Vanderbilt Thoracic biorepository 

Standard Operating Procedures THO 0136, THO 0398, and THO 1078, corresponding to different 

research studies.  For all three studies, the serum sample collection followed the same format.  

Patient blood sample (10 mL) was collected via venipuncture.  Patient blood was then allowed to 

clot at room temperature for 30 minutes, then centrifuged.  Centrifuge protocol was as follows: 15 

minutes at 1000g at 4°C for THO 1078; 15 minutes at 2000g at 0-4°C for THO 0398 and THO 

0136.   The supernatant (serum) was aliquoted into several Eppendorf cryovials: two aliquots of 1 

mL, and the remaining serum in 50 µL aliquots.  All aliquots were labeled with a Lung ID and 
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barcode number and immediately stored at -80°C.  Time between venipuncture sample collection 

and sample freezing in the -80 was kept to under 2 hours.  Samples were stored in the same -80°C 

freezer until they were pulled for this study, but were not thawed until the time of measurement by 

FSA-CIR.  All standard operating procedures are available online (Massion lab Website).  

Results: FSA-CIR provides high sensitivity analysis of serum protein.  

Several advances have enabled the breakthrough lung cancer biomarker results reported 

here.  The first is the demonstration of the one of the first truly compensated interferometers [155].  

This benchtop interferometric sensor is based on a simple optical train that consists of a diode 

laser, an object (capillary tube), and a camera and allows the elimination of the high-resolution 

temperature controller typically needed for such devices [183].  Further simplifying the device 

compared to other interferometric sensors [86], is the use of an inexpensive diode laser for 

illumination of the capillary flow cell.  In work parallel to that reported here we have begun to 

reduce the compensated interferometer to practice, having constructed a beta test unit with ultimate 

goal of translating the technology to the commercial sector.   

Here we married the compensated interferometer with a modified droplet generator (Mitos, 

Dropix), and an inexpensive syringe pump to construct a compensated interferometric reader (CIR) 

(Fig. 7.1).  CIR, reported here for the first time, uses a fused silica capillary tube for seamless 

sample droplet train generation and analyte quantification.  The ability to use of a capillary is 

noteworthy, because it has been shown to have sensitivity advantages over chip-based optics [63, 

251].  Also, as a consequence of our unique compensation method, which eliminates the need for 

high resolution thermal regulation of the flow cell, the instrument is greatly simplified and can in 

theory be battery operated.  Furthermore, the continuous transfer line approach used here provides 

for effective, smooth, uninterrupted sample droplet production.  Collectively, when compared to 

previous sensor designs [86], the CIR provides significantly increased throughput, streamlined 

data collection and analysis, and constrains sample size to less than 1µL.    

CIR represents a unique biomarker detection approach that functions by having samples 

drawn into and through the capillary by a syringe pump (Fig. 7.1) and having those droplets 

traverse the detection region of the interferometer.  In short, comparison of sample – reference 

pairs, separated by a droplet oil allows the quantification of the target biomarker.  Specifically, the 

laser illuminates the capillary with an expanded beam that is reflected/refracted by the tube 
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producing an elongated interference fringe pattern.  Comparison of positional shifts in the adjacent 

regions of this reflected beam pattern (fringes), when a train of sample and reference solution 

droplets traverses through the beam, provides a measure of the antibody-biomarker target complex.  

In other words, protein biomarkers are quantified by interrogating two regions of the backscattered 

light that is directed onto a CCD camera and using an in-house image processing software to 

measure the difference phase change in the fringe patterns for the sample and reference.  This 

process is similar to that described previously, and involves performing a Fourier Transform, to 

quantify relative positional shift in the fringes [91].   

Recognizing the advantages of microfluidics for sample handling and the need for turn-

key operation in translation, we chose to use a slightly modified, commercially available droplet 

generator (Mitos, Dropix).  Multi-well biocompatible, low non-specific adsorption, sample holders 

unique to our laboratory ensured that replicate sample analyses by CIR provided high analysis 

precision.   

The two nearly identical interferometers [155] used in our CIR represents a unique optical 

detection approach with unprecedented noise rejection from temperature fluctuations and laser 

pointing-intensity instabilities.  The combination of this noise rejection and the inherent 

performance of the interferometer, results in an ultra-sensitive reader capable of detecting probe-

target binding in ultra-small sample volumes of serum.  Here CIR facilitated direct interrogation 

of adjacent sample/reference droplets of 0.8μL, separated by 40nL droplet of oil, enabling rapid 

serum protein biomarker quantification with excellent sensitivity.  CIR is, to our knowledge, the 

only nanoliter-volume interferometer based on a battery-operated diode laser with no need for a 

high resolution temperature controller [86].  These developments should pave the way for its use 

in a clinical lab and the near-patient setting.   

Establishment of a CYFRA 21-1 assay 

Fig. 7.2 illustrates the workflow used to perform an assay with FSA.  A small volume of 

serum is split into two aliquots and then processed to provide ‘binding’ and ‘reference’ solutions.  

To quantify a target, we add an excess of antibody probe to one of the aliquots, giving the 

“binding/test” sample, and to the other we add a refractive index (RI) matching solution (buffer) 

or “reference/control.”  Solutions are allowed to equilibrate and are introduced into adjacent wells 

of the droplet generator for analysis by the interferometer as pairs separated by an oil droplet.  The 
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difference in signal between the sample–reference pair provides a quantitative measure of target 

(e.g. concentration of antibody-target complex), while allowing the matrix signal to be nullified.  

As noted above the scientific principal for FSA is based on binding-induced changes in molecular 

conformation and hydration producing predictable and reproducible changes in the solution dipole 

moment [91]. 

As a first step toward testing our hypothesis that lowered LOQs for serum protein markers 

can improve performance of the increase their clinical utility as lung cancer biomarkers we 

established the analytical performance of FSA-CIR for quantifying CYFRA 21-1.  We show here 

that using a commercial antibody to CYRFA 21-1 we were able obtain high quality calibration 

curves over multiple days that gave an average LOQ of 40pg/mL in 25% serum.  Fig. 7.3 presents 

a summary of these results, showing the calibration curves for 9 serum CYFRA 21-1 assays, the 

95% confidence interval for these curves and the response for the spiked serum samples that served 

as ‘unknown’ test standards.  These calibration curves gave correlation coefficients of R2 = 0.98-

0.99 (Fig. 7.3).  Using FSA-CIR we were able to easily process 20 samples/hour.  Analyzing 0.8 

µL/droplets we could operate at a modest throughput of 50 serum samples per day, obtaining intra-

assay CVs of 6.2% for five replicate measurements and an inter-assay CV of 9.5% for four-day 

replicate determinations.  The LOQs reported here are ~2-fold better than those published recently 

for a complicated, chemically intensive immunoassay, reported to give an LOQ of 80pg/mL [252], 

 

 
 

Fig. 7.2 Schematic of the Free-solution assay method 
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and 10-fold better than the ~500pg/mL LOQ for the gold-standard Roche Cobas commercial 

electro-chemiluminescence assay (ECL) for CYFRA-21-1 [253]. 

As a test of assay accuracy, we prepared ‘unknowns’ by spiking CYFRA 21-1 in to serum, 

then quantified the unknowns using FSA-CIR.   Figure 7.3 shows that, barring just two exceptions, 

FSA-CIR provided a highly quantitative result for these determinations, with the percent difference 

ranging from 0.4% to 25%.  While the 10ng/mL sample gave a 32% difference, the determined 

value still fell with the 95% confidence interval (grey region, Fig. 7.3) and represents an error in 

CYFRA 21-1 that would not impact classification as it is well above the traditional case vs. control 

cut-off of around 2-4 ng/mL.   It should be noted that the one outlier that showed a 77% difference 

at a concentration of 50ng/mL was a test solution prepared at a concentration outside the normal 

operating range for the assay intended to show the response of a very high concentration.  

Furthermore, a concentration of 50ng/mL is also well above the range of CYFRA 21-1 values that 

would impact the diagnostic go-no-go decision tree for ranking a patients IPN as benign or 

malignant.  Overall, within the linear range of the calibration curve (0 to 4 ng/mL), FSA-CIR 

provided an average percent difference between actual and determined concentration of 10.9%.   

 

 
 

Fig. 7.3 Cyfra 21-1 calibration curve performance for nine independent assays and results for 
spiked protein standard unknowns. 

C
IR

 R
es

p
o

n
s

e 
(m

ra
d

) Spiked Protein Standards
(colors indicate different days)

95% Confidence Interval
(9 calibration curves)

LOQ = 40 pg/mL



130 
 

Robustness of the assay 

To test the robustness of the assay, serum samples were submitted to the following 

treatments: measures repeated on different days, measured by different operators, and 

measurement following multiple freeze and thaw cycles.  Again, these samples consisting of 10 

controls, 5 adenocarcinomas, 5 squamous cell carcinomas were blinded to the FSA-CIR operator, 

having been randomly selected.  Fig. 7.4 illustrates the results of this experiment, showing that the 

FSA-CIR biomarker quantification method is robust and repeatable with respect to sample freeze-

thaw cycles.  The average CV for all sample determinations over three days and 2 extra freeze-

thaw cycles was found to be 21.1%.  While additional, more extensive tests of sample handling 

are necessary before formal translation to the clinic, the fact that we observed relatively small 

changes in the patient CYFRA 21-1 biomarker concentrations for these 20-blinded patient samples 

indicates that assay is robust over a 3-day period and that at least two freeze-thaw cycles can be 

tolerated.    

Testing of the assay in a case control study  

With a mix-and-read assay and a bench-top reader in hand, we performed preclinical 

evaluation to address the two questions key to our hypothesis.  1) As with the introduction of a 

 

 
 

Fig. 7.4 Reproducibility of the assay across 3 independent (freeze-thaw) experiments.   
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high sensitivity CRP assay [218], can a lower LOQ versus the gold standard approach allow  

CYFRA 21-1 to become a clinically useful biomarker? 2) Can increasing biomarker sensitivity 

improve the discriminatory power of the biomarker?  To address these questions, we quantified 

CYFRA 21-1 in serum samples from a cohort of patients with incidentally found indeterminate 

pulmonary nodules.  The cohort consisted of 225 individuals including 75 with nonmalignant 

nodules, 45 adenocarcinomas (stages 1 and 2), 44 squamous cell carcinomas (stages 1 and 2) and 

61 small cell lung cancers (limited and extensive stages), (Table 7.1) as determined by biopsy and 

histology.  The FSA-CIR quantified level of CYFRA 21-1 grouped by histology is shown in Fig. 

7.5, with the limit of quantification of FSA-CIR and of ELISA denoted by dotted lines.  

Next we tested our biomarker diagnostic performance against clinical predictors [254].  

Here we predicted risk for lung cancer for each patient based on the Gould model [255].  Our 

preliminary data suggest a strong improvement to risk prediction when combining the FSA-CIR 

measurement with the Gould model over the Gould model alone.  This improved performance is 

Table 7.1 Patient Characteristics  

 
 No Cancer ADC SCC SCLC 
 N=75 N=45 N=44 N=61 

Age 59.2 ± 12.7 65.2 ± 8.0 65.8 ± 7.8 63.9 ± 8.9 

Gender (%)     

Male 40 (53) 26 (58) 29 (66) 36 (59) 
Female 35 (47) 19 (42) 15 (34) 25 (41) 

Smoking (%)     

    Current 20 (27) 7 (16) 11 (25) 20 (33) 
Ex 54 (72) 38 (84) 33 (75) 38 (62) 
Never 1 (1) 0 (0) 0 (0) 3 (5) 
Pack Years 41.1 ± 30.3 50.1 ± 31.3 53.9 ± 23.5 63.7 ± 32.8 
Nodule Size (cm) 2.5 ± 1.6 2.7 ± 1.7 2.7 ± 2.0 3.6 ± 2.6 

Path Staging (%)     

IA-IB 0 (0) 33 (73) 34 (77) 0 (0) 
IIA-IIB 0 (0) 12 (27) 10 (23) 0 (0) 
IIIA-IV 0 (0) 0 (0) 0 (0) 0 (0) 
Limited 0 (0) 0 (0) 0 (0) 33 (54) 
Extensive 0 (0) 0 (0) 0 (0) 28 (46) 
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demonstrated by the receiver operating characteristics (ROC) curves shown in Fig. 7.6.  The area  

under the curve (AUC) increases from 0.62 based on the Gould model to 0.94 when combining 

Gould with CYFRA 21-1 measured by FSA-CIR.  Using a cutoff of 1.19 ng/mL CYFRA 21-1 for 

all tumors provides a positive predictive value (ppv) of 99% (Table 7.2) and a positive diagnostic 

likelihood ratio (DLR+) of 64.  The optimal cutoff is lowest for adenocarcinoma, at 1.01 ng/mL, 

with sensitivity and specificity both above 90%.  The best performing population in this cohort 

was squamous cell carcinoma, with a cutoff of 1.12 ng/mL providing sensitivity of 98% and 

specificity of 97%.  Even small cell lung cancer, traditionally not correlated with elevated CYFRA 

21-1 levels, reported excellent discrimination, with an optimal cutoff of 1.19 ng/mL providing a 

sensitivity of 75% and specificity of 99%. 

  

 

 
 

Fig. 7.5 Measurement of Cyfra 21.1 by F-CBSI across individuals with benign lung nodules 
(normal), Stages 1, 2 lung squamous (SCCs), Adenocarcinomas (ADCs) and all stages small 
cell carcinomas (SCLCs). 
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Fig. 7.6 ROC curve illustrating added value of FSA-CIR over clinical parameters and nodule 
size for the diagnosis of IPNs. N=225 lung cancers.  
 

Table 7.2 Diagnostic properties of CYFRA 21-1 by CBSI. PPV, positive predictive value; 
NPV, negative predictive value; DLR, diagnostic likelihood ratio; FP, false positive; FN, false 
negative.  

 All tumors ADC SCC SCLC 
Cutoff 1.19 1.01 1.12 1.19 

Sensitivity. 0.85 0.93 0.98 0.75 
Specificity. 0.99 0.95 0.97 0.99 

PP V 0.99 0.91 0.96 0.98 
NPV 0.77 0.96 0.99 0.83 

DLR (+) 64 17.5 36.6 56.6 
DLR (-) 0.15 0.07 0.02 0.25 

False Positives 1 4 2 1 
False Negatives 22 3 1 15 

Optimal Criterion 0.84 0.88 0.95 0.74 
PPV = Positive Predictive Value, NPV = Negative Predictive Value, DLR (+) = Postiive Diagnostic 
Likelehood Ratio, DLR (-) = negative Diagnostic Likelehood Ratio 
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Comparison of FSA-CIR to ECL  

An independent analysis was then performed on aliquots of the same serum samples by a 

Clinical Laboratory Improvement Amendments (CLIA) approved lab at the University of 

Maryland, using the gold-standard Roche Cobas 601 module procedure, an electro-

chemiluminescence (ECL) technology.  These results are displayed in a box plot, along with the  

FSA-CIR findings (Fig. 7.7).  With our FSA-CIR, 98/225 patient samples were below 1.2 ng/mL 

for the gold-standard ELISA technique.  More importantly, the figure shows that the FSA-CIR 

analysis gave a clear separation of cases and controls for this patient cohort.   

Discussion 

Lung cancer continues to be one of the most difficult disease to diagnose.  Challenges to 

early detection include: a) how to diagnosis patients with IPNs; b) how to determine recurrence 

 

 
 

Fig. 7.7 Box plots illustrate Cyfra 21-1 measurements by FSA and Roche across individuals 
with indeterminate lung nodules, Stages 1, 2 lung squamous (SCCs), Adenocarcimonas 
(ADCs) and all stages small cell carcinomas (SCLCs). 
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after therapy; and c) how to position biomarker use prior to chest CT screening to improve clinical 

outcomes.  Here we tested a hypothesis that by virtue of lower LOQs afforded by FSA-CIR 

measurements it was possible to redefine the concentration of the candidate biomarker CYFRA 

21-1 in the control population of patients diagnosed with IPNs.   As with the h-CRP test, we 

pondered if a >10-fold better serum biomarker LOQ would lead to enhanced separation between 

cases and controls, thereby improving the diagnostic utility of the biomarker.  Data shown here for 

a 225-patient cohort, that indicates it is possible to improve the clinical performance of CYFRA 

21-1.  To my knowledge this is first report where a single biomarker of lung cancer exhibited 

performance metrics of 85% specificity, 99% sensitivity, and a positive predictive value of 99% 

for all tumors.   

Furthermore, the patient cohort was independently analyzed by a CLIA laboratory using 

the Roche ECL assay for the CYRFA 21.1 biomarker.  In this head-to-head comparison of FSA-

CIR with ECL, our assay methodology outperformed the gold standard in diagnostic testing for 

CYFRA 21-1 assay, providing a clear and quantifiable separation of cases and controls.  This 

performance advantage was a result of a 10-fold improvement in sensitivity by FSA-CIR when 

compared to the FDA approved ECL method offered by Roche.  Interestingly, in the probe volume 

defined by the laser capillary interaction of 40 nL, at the LOQ of 50 pg/mL there is ~2 femtomoles 

(2 ×1015 moles of target present).  Also we are confident that we can further improve the sensitivity 

of FSA-CIR, given a recent report, where we able to use our assay method to quantify 120 protein-

target molecules in a tissue matrix [90]. 

Chapter 7 Conclusion 

In this report we have shown that combining a newly demonstrated interferometer with a 

droplet generator and a syringe pump results in a relatively simple, microfluidic reader, the CIR.  

When combining this reader with FSA a label-free, solution-phase assay the result is a potentially 

revolutionary platform for biomarker validation and diagnosis for numerous reasons: 1) Its label-

free (no fluorescence or radiolabeling) making it rapid, cost effective, and allowing the use of 

unaltered or minimally processed patient samples; 2) Analyses can be performed on <1 µL sample 

aliquots allowing multiple replicates to be performed on quantity-limited samples; 3) The 

simultaneous comparison of sample and reference solutions allows matrix insensitive operation 

and ensures assay specificity; 4) Sensitivity of the FSA-CIR exceeds that of many, more 
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complicated competing technologies and can be further improved; 5) The optical engine of CIR is 

simple, consisting of a diode laser, capillary tube, and camera, and due to the unique compensation 

performance, it was possible to eliminate the need for a high-resolution temperature controller, 

paving the way for the construction of a benchtop or even battery-operated hand-held reader; 6) 

When combined with FSA, CIR is highly modular (assay agnostic) allowing for quantitation of a 

wide array of interactions (antibodies to DΗA to small molecules), providing the ability to rapidly 

test additional potential serum biomarkers with numerous probe variations.   

In summary, employing a single monoclonal antibody as the detection probe, our 

preliminary FSA-CIR CYFRA 21-1 data reported an improvement of ROC AUC from 0.63 for 

the Gould model to 0.94 using the Gould model + CYFRA 21-1 measured by FSA-CIR in a 225-

patient cohort.  Furthermore, the use of CYFRA 21-1 enabled a +DLR of 64 using a cutoff of 1.19 

ng/mL.  The improvements in biomarker predictive capability illustrated here are among the best 

reported, particularly for a single biomarker.  Results shown here using our FSA-CIR method to 

quantify serum CYFRA 21-1 indicates it is possible to redefine cases from controls, where the 

Roche ECL Cobas assay could not.   While a more stringent clinical validation from additional 

(external and independent) datasets are needed, our results suggest it may be possible to address a 

major hurdle in the management of patients with lung cancer by implementing an improved non-

invasive testing protocol in the clinical setting.    
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 Chapter 8: CIR Analysis Tools 

 

To facilitate translation of the CIR platform to the broader community, I have encoded the 

data analysis strategy presented in Chapter 4 into a set of tools that enable a user to easily analyze 

their data.  The CIR analysis program is a LabVIEWTM virtual instrument (VI) that processes the 

raw phase-over-time data into averaged values that are then exported to excel.  A brief overview 

of the program is presented in Fig. 8.1.  The data is loaded into the program (step 1), then the user 

must select the region of the data containing the 5-replicate test/reference solution droplets for the 

first test/reference solution pair (step 2).  The program then partitions this trace into “solution 

samples” and “oil” (step 3-5), at which point the user updates a table containing the averaged 

values to be exported (step 6).  The user then repeats steps 2-5 for the rest of the solution pairs in 

the droplet train. 

The program user interface (Fig. 8.2) is arranged so that the user works from top to bottom.  

The top graph shows the phase shift/time data for the entire droplet train.  The operator then uses 

the green and blue cursors to select the region of interest, which will then be displayed in the 

middle graph.  The bottom graph shows the selected data overlaid with the average values for each 

droplet pair, as depicted by the large red dots.  These values are then added to a table for export to 

excel, and the process is repeated for all test/reference sample pairs in the droplet train.  A complete 

step by step tutorial for this program is included in Appendix C. 

Once the averages for all droplet pairs have been tabulated, the operator can export the 

averaged values for further analysis in the paired CIR Excel Template. 

Data workup using the CIR Excel Template 

The CIR analysis program exports the data in the form of a tab delineated spreadsheet, 

consisting of 19 columns and 6 rows (for a standard droplet train consisting of 6 test/reference 

pairs).  The 19 data points per row correspond to the averages of the 19 regions as described in 

Fig. 4.3 and Fig. 8.2.  However, the final data required for biochemical analysis are the 2×p signals  
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Fig. 8.1 CIR analysis program user interface. 

 

Fig. 8.2 CIR Analysis Algorithm Flow Chart. 
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(Fig. 4.4).  To expedite this last step of analysis, I have prepared an Excel Template spreadsheet 

that converts the CIR Analysis program output into a list of 2×p averages with standard deviations. 

The CIR Excel Template has 3 “sheets,” as denoted by the three tabs on the bottom left of 

Fig. 8.3.  The first is titled “Raw,” and this is where the operator pastes the sheet of averages from 

the CIR analysis (further explained in Appendix C).  The second sheet (displayed in Fig. 8.8) is 

titled “Plotting.”  This sheet is the primary point of interaction for the user working with the CIR 

Excel Template.  Each row contains all replicate 2×p values for a 5 test/reference solution droplet 

train (the standard configuration, as described above) in column D-J.  Each row in column K has 

the average of the replicate values in that row.  Column L has the standard deviations of the 

replicate values in that row, and column M contains the number of replicate values.  The standard 

droplet train contains 6 test/reference solution pairs per run, therefore this sheet is vertically 

delineated with a black line every six rows for ease of navigation.  The 2×p values are 

automatically colored based on their relative value, with the lowest numbers colored red and the 

highest numbers colored blue.  The coloration is a useful aid in quickly spotting troublesome data 

 
 
Fig. 8.3 The CIR Excel Template is a companion to the CIR Analysis program.  Each row 
contains all replicate values for a 5 test/reference solutions droplet train.  The 2×p values are 
listed in columns D – J, and these are plotted on the graph on the right.  Column K contains 
the final averaged phase shift for each droplet pair. 
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or outliers.  For example, row 2, columns D through J contain the 2×p values for the first  

concentration, which have an average of 0.0542.  The value in row 2, column J is 0.002, nearly 

two standard deviations from the mean, and could be a statistical outlier.  The values in row 2, 

columns D to I are colored lightly, but the value in 2J is a dark red.  This coloration aids the user 

in quickly finding which values may be outliers.  If all numbers in a row are colored similarly (for 

example, the values in row 7 are all a similar shade of blue) there are no outliers. 

For the example data displayed in Fig 8.3, a single tray of 6 sample pairs has been pasted 

into the file, and therefore only rows 1-6 show are filled while rows 7-24 are empty.  Rows 7-24 

will automatically populate when the user pastes data into the corresponding location in the “raw” 

sheet. 

On the right side of the “plotting” sheet is a plot of the replicate 2×p values.  The X-axis 

for the plot is column A, which is initially numbered in increasing integers, starting with 1.  For 

concentration dependent data, the values in column A can be replaced with the concentration of 

each sample pair, which will alter the plot to display a common dose-response curve.   

Column B (Neg) and C (Pi) of the “plotting” sheet are used only when troubleshooting in 

advanced situations, and are described in detail in Appendix C. 

The third sheet is entitled “Workup,” and requires no input by the user.  This sheet contains 

formulas that perform calculations in the background.  The full function of each section of this 

template is described in detail in Appendix C. 

After pasting the data in the Spreadsheet template, the operator can then adjust the plot to 

display the data appropriately, perform curve fitting, or copy the values in columns K-M (titled 

Average, Stdev, and Count) to paste into a 3rd party curve fitting or plotting program. 

 

Fig. 8.4 Comparison of the same experimental CIR data when analyzed manually and when 
using the CIR analysis program, repeated by three independent users.  There is excellent 
agreement between manual and automated analysis for all users. 
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Comparison of Analysis Software vs Manual Averaging 

Figure 8.4 displays the results of analysis by 3 independent users when analyzing the same 

raw data using both the CIR analysis program (displayed as the colored diamonds) and by 

manually averaging the regions (displayed as the open circles).  For all 3 users, there is nearly 

perfect overlap between the manual analysis (open circles) and CIR Analysis Program (diamonds), 

which implies the CIR analysis program processes the data accurately.  The linear fit of the data 

is plotted for both analyses, and due to the perfect overlap, the linear fits are indistinguishable.   

The analytical figures of merit for all 6 analyses (3 users, manual vs. auto) are presented in 

Table 8.1.  It is interesting to note here that while the response function (slope) shows good 

agreement across all three users and both analysis methods, the fitted y-intercept shows good 

agreement between the three users, but there is a discrepancy between auto (0.013, 0.012, and 

0.012) and manual (0.016, 0.016, 0.016).  An explanation for this discrepancy in slope is that while 

the CIR analysis program selects all data points between “oil,” a human user biases the selected 

data to the middle of each data region when manually selecting the data to average.   

The same data presented in Fig. 8.4 can be used to determine the reproducibility of analysis 

across users.  Figure 8.5 shows the standard deviation of the three independent measurements as 

calculated for the six sample pairs (0, 0.31, 0.625, 1.25, 2.5, and 5 mM glycerol).  Each data point 

represents the standard deviation of the three averages.  For example, when analyzing the 0.31 mM 

glycerol data manually, User 1 calculated the average as 0.0614 rad, User 2 calculated 0.0687 rad, 

and User 3 calculated 0.05919.  The standard deviation of these three independent analyses is 

0.0050 rad.  This calculation is performed for the manual analysis and for the CIR analysis program 

analysis.  As demonstrated by Figure 8.5, there is less variability (lower standard deviations) in 

analyses across the three users when using the CIR analysis program vs. when performing the 

Table 8.1 Comparison of manual vs CIR Analysis Program 

 User 1 User 2 User 3 
 Auto Manual Auto Manual Auto Manual 

Slope 
0.088 

± 0.007 
0.088 

± 0.007 
0.088 

± 0.007 
0.087 

± 0.007 
0.088 

± 0.007 
0.088 

± 0.007 

Y-Int 0.013 0.016 0.012 0.016 0.012 0.016 

R2 0.9775 0.9762 0.9784 0.9729 0.9783 0.9777 

LOQ 0.532 0.574 0.520 0.551 0.517 0.620 
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analysis manually.  While the CIR Analysis Program minimizes the discrepancy between users, it 

should be noted that this discrepancy is already very small and unlikely to significantly affect 

manually analyzed data.  Even the largest discrepancy (0.005 radians) correlates to ~3×10-7 RIU, 

which is below the typical detection limit for the device (~5×10-7 RIU).  Given the breadth of 

results we have obtained previously with the CIR and the small magnitude of error that is inherent 

to manual analysis (below the detection limit of the device), it is reasonable to assume that 

manually analyzing assay data has not significantly impacted the accuracy of past CIR results.   

The CIR Analysis Program enables much faster analysis of raw CIR data.  To analyze the 

data presented in Fig. 8.4, the three users spent 19, 18, and 22 minutes to analyze the data manually.  

But when using the CIR analysis program, the users spent 2, 3, and 2.5 minutes.  This is an average 

of approximately 17 minutes in time savings when analyzing a 6-sample-pair tray’s data.  For 

example, when analyzing the CIR data for a 225-patient sample cohort and the associated controls 

and calibration curves (which would amount to an extra 75 sample pairs), data analysis using the 

CIR Analysis Program would save 12.9 hours when compared to analyzing the data manually. 

The advantages to using the data analysis program include ease of use, time savings, and 

making the technology more translatable so that an unskilled user can use the CIR. 

 

 
Fig. 8.5 Standard deviation of the analysis of the same data across 3 independent users. 
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Conclusion 

This chapter has presented the strategy employed in a set of tools I have created for analysis 

of CIR data, and presented a preliminary validation of these tools.  The CIR analysis program 

enables a user to quickly convert the raw CIR phase/time data into a set of averages.  These 

averages are then imported into the CIR Excel Template, which parses the data into a set of average 

and standard deviation values, which can be used for further data analysis in Excel or in 3rd party 

applications (such as Graphpad Prism or Origin).  Three users analyzing the same data 

demonstrated good correlation between their manual analysis and analysis using the CIR analysis 

program, with good agreement in the analysis across all three users. 
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Conclusions and Future Directions 

 

Here I have described advances to the theory, instrumentation, and applications of the free-

solution molecular interaction assay.  I have also demonstrated an ultra-sensitive interferometric 

reader.  The studies contained here represent major advancements in understanding the mechanism 

for signal generation for free-solution assay (FSA) and demonstrating the utility of the assay 

methodology.  Furthermore, I implemented a compensated interferometric reader that enables FSA 

for studies in biomarker validation, small molecule quantification and pharmacologic mechanism 

of action studies.  The methods presented here represent an emerging technique with the potential 

to revolutionize drug discovery, medicine, biomedical engineering, and analytical chemistry.   The 

work presented here showcases improvements to the theory, instrumentation, and biomedical 

applications for this potentially revolutionary platform technology. 

 

Chapter 1: Chapter 1: Origin and prediction of free-solution interaction studies 

performed label-free, adapted here from Proceedings of the National Academy of Sciences, 

Volume 113, presents the operational parameters for the free-solution assay and a first pass at 

defining the response function, or FreeSRF, was developed on a diverse training set and provided 

excellent accuracy and predictability for the systems studied.  Supporting information for this 

chapter is included in Appendix A. 

However, based on insights gained recently, I hypothesize that building training sets for 

specific molecular species (i.e. aptamer-small molecule, protein-antibody, etc.) and for specific 

sample matrices (i.e. aqueous vs non-aqueous, polar vs nonpolar solvents, etc.) will further 

improve the prediction accuracy for these specific types of interactions, while adding to the 

understanding of the mechanism of free-solution interaction assays.  I also postulate that these 

improvements in the understanding of FreeSRF signal transduction will lead to intelligent probe 

design and therefore the ability to design specific molecular probes that capitalize on the FSA 

mechanism to provide larger signals and improved assay sensitivity.  In our initial model, we used 

surface area and radius of gyration as our markers of change in conformation/hydration, but there 



148 
 

may be other physical parameters from molecular structures that add improved performance to the 

model, for example change in surface charge, ordered vs disordered sidechains, and hydrogen bond 

formation/breaking.     

Similarly, a first principles approach describing the mechanism for free solution assays, 

beginning from Maxwell’s equations of light propagation and interaction with matter, is expected 

to further improve our understanding of FreeSRF.  The Clausius Mossotti relation and an effective 

medium theory approximation such as the Maxwell-Garnett mixing formula are both currently 

being investigated, with promising preliminary results. 

In Chapter 2: Chapter 2: A Highly Compensated Interferometer  

for Biochemical Analysis, adapted here from ACS: Sensors Volume 3, I presented the 

compensated interferometer, an improved interferometric sensing approach that facilitates high 

sensitivity nano-volume refractive index (RI) measurements and molecular interaction assays 

without a temperature controller. 

Chapter 3: Chapter 3: Longitudinal Pixel Averaging for Improved Compensation in 

Backscattering Interferometry, adapted here from Optics Letters Volume 43, expanded upon the 

work in Chapter 2 by defining the channel interrogation properties needed to achieve true 

compensation between the two RI sensing regions. 

Chapter 4: CIR Data Analysis Methods provides a technical description of the signal 

extraction mechanism employed to convert the raw phase shift/time data collected by the CIR to a 

useful format.   

Chapter 5: Rapid assay development and quantification of two chemical nerve agents 

in serum describes research to demonstrate an important biomedical application of the 

compensated interferometer.  This chapter, adapted here from a manuscript submitted to Lab on a 

Chip, presents a strategy for developing highly sensitive, highly specific quantitative assays for 

organophosphorus nerve agents in serum by combining the FSA method with the compensated 

interferometric reader and aptamer probes.  In this work, FSA-CIR provided sensitivity better than 

the current gold standard mass spectrometry-based methods without the need for multiple 

extraction steps, costly equipment, or derivatization/immobilization steps.  The research shows 

that the assay method is rapid, robust, quantitative, and highly sensitive in a complex matrix.  

Supporting information for this chapter, including CIR setup, in depth methods, and a description 

of the pharmacokinetic calculations is included in Appendix B. 



149 
 

Chapter 6: Chapter 6: Quantitation of Opioids and the Prospect of Improved 

Diagnosis of Neonatal Abstinence Syndrome represents another biomedical application that 

significantly improves on the current mass-spec based method, which is time-consuming, 

expensive and has limited performance.  In this work I demonstrated assays for quantitating three 

opioid targets (oxycodone, hydrocodone, and fentanyl) and their primary urinary metabolites 

(noroxycodone, Norhydrocodone, norfentanyl).  Again, I used aptamer probes (DΗA) to 

demonstrate the potential of FSA-CIR. In addition to developing assays for use in urine, defining 

the analytical figures of merit, performing spiked unknown determinations, and interrogating 

specificity, or cross reactivity, I performed pharmacokinetic modeling.  These modeling efforts 

showed that the level of opioid target in neonatal urine samples would be below the detection limits 

of current methods before symptoms arose in the patient.  The significantly improved limits of 

quantification (LOQs) provided by FSA over current methods extend the window in which the 

level of opioid in neonatal urine samples would be detectable.  These improvements in detection 

limits over current gold standard methods provided by FSA point to the potential to do 

confirmatory testing of neonate opioid exposure for a longer time period than existing methods 

and well-after the onset of neonatal abstinence syndrome symptoms.  Similarly, the 

pharmacokinetic modeling efforts indicate that FSA could be valuable in the neonatal pain 

management setting. 

Chapter 7: Preclinical evaluation of a free solution assay for the quantification of a 

candidate Lung Cancer Biomarker CYFRA 21-1 presents third biomedical application I 

explored with FSA-CIR.  Here I performed a preclinical evaluation of the potential lung cancer 

serum biomarker CYFRA 21.1 in a blinded 225-patient cohort.  The overall goal of this 

investigation was to improve the capability for diagnosis of lung cancer by addressing the need for 

an accurate diagnostic biomarker.  The hypothesis of this ongoing study is that by virtue of lower 

LOQs provided by FSA-CIR measurements it will be possible to redefine the concentration of the 

candidate serum biomarker CYFRA 21-1 in the control population of patients diagnosed with 

IPNs.  Results from FSA-CIR presented in this chapter showed that by using a single monoclonal 

antibody as the probe, it was possible to obtain a 40-fold improvement in assay sensitivity over 

the current gold-standard method, electrochemiluminescence (ECL), which greatly increased the 

discriminatory power of the biomarker.  If these preliminary observations hold true for additional 

patient cohorts and a more rigorous clinical analysis, this avenue of use for FSA and CIR could 
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lead to a paradigm shift in how lung cancer patients are managed, possibly improving diagnosis 

of this otherwise difficult to detect disease. 

Chapter 8: CIR Analysis Tools describes the algorithm used in the Auto Analysis 

Program I wrote in LabVIEWTM, which is intended to simplify system operation.  A step-by-step 

tutorial that teaches how to operate this program is included in Appendix C.  Additionally, a 

troubleshooting guide covering several other aspects of CIR setup and function not included 

elsewhere are presented in Appendix D. 

While the research included in my dissertation has been focused on target quantification, 

there are equally impressive opportunities in affinity characterizations, specifically for first-in-

human-dose estimation for therapeutic candidate molecules.  Results from several projects I 

participated in that are not included in this dissertation have demonstrated the use of FSA-CIR to 

obtain in-vivo/in-vitro affinity correlations in serum, cell-derived vesicles, and tissue-derived 

vesicles.  Such measurements can be performed in a matter of days using the FSA method.  Other 

experiments not included in this dissertation showed the potential for direct measurement of multi-

site binding, where each binding event produces a RI signal that is unique in both magnitude and 

direction.  Studies of multi-site binding are still in the preliminary stage but show promise for the 

unperturbed study of complex binding systems.  No other small-volume technique, optical or 

otherwise, can accurately measure binding affinities in native conditions without labeling or 

surface immobilization of the constituents of sample.   

The Redpoint Prototype  

While completing the projects presented in this dissertation, I also participated in an 

academic-industry collaboration aimed at making the compensated interferometer a viable 

commercial reader or benchtop interaction photometer.  The platform, named Redpoint, shown in 

Fig 9.1, was developed in conjunction with Biotex, Inc. (Houston, TX) and represents a nearly 

mature instrument with relatively mature graphical user interface that guides the user through the 

process of performing a binding assay, screening assay, or target quantification experiment.  This 

first generation Redpoint device was based upon the chip configuration (as detailed in Chapters 

2 & 3) and provided excellent RI sensitivity, but was difficult to use due to a less than optimum 

sample introduction method based on manual pipetting and the need for capillary action to draw 

the sample into the chip.  Chip clogging was found to be an issue as well.  Even so, several users 
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were able to perform binding experiments on the platform, demonstrating its functionality and  

illustrating the potential of the methodology.  Redpoint also contained a series of pumps, rinse 

bottles, tubing, and valves to rinse the microfluidic chip after each sample was measured.   Upon 

demonstrating compensation (Chapter 2 and 3) it became apparent the best course of action for the 

next generation interferometric reader would be to replace the chip with disposable capillaries.  

This approach would simplify the user interface and capitalize on the signal/noise improvement 

provided by the capillary over the chip (as detailed in Chapters 5, 6, and 7).  The core Redpoint 

optical train remains intact though, as does the operating software.  

Future Device Improvements 

 Since Redpoint (and CIR) is based on a low power diode laser, capillary, and a camera to 

capture the fringes, the optical train opens the door to a miniaturized version of the detector.  

Elimination of the temperature controller, as possible with the compensated interferometer also 

greatly simplifies the instrument design paving the way for rapid deployment in the wider scientific 

community.   

I conceptualize Redpoint Gen 2 being designed to function as reader that can rapidly 

interrogate a series of single-use capillaries, with a simple sample introduction strategy that 

 

 
 

Fig. 9.1 The Redpoint Platform developed in collaboration with Biotex, Inc, represents a fully 
functional prototype benchtop interaction photometer based upon the compensated 
interferometer. 
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requires the user to simply dip the capillary into the sample solution (for example, a patient blood 

or urine sample) drawing up the premixed sample/reference with capillary action, followed by 

insertion of the capillaries into the reader.  This sample introduction strategy is expected to 

facilitate rapid, easy use particularly suited to end-users who have not been trained in analytical 

chemistry techniques, such as nurses in the near-patient setting, which will expedite translation of 

the technology from lab to clinic.  

In the long term I fully anticipate that CI can be miniaturized into a hand-held device or 

built in a manner that would allow integration into a smartphone attachment with a slot for the 

disposable capillary and that uses the smartphone’s camera, battery, and processing power to run 

the interferometer.   

Similarly, I envision a benchtop version of the CIR, coupled with a droplet generator and 

automated sample preparation robotics which would enable fully automated automation.  In this 

embodiment of the technology, a “snap in/snap out” disposable capillary cassette would enable 

easy capillary replacement between experiments, and capillaries that are pre-coated with various 

surface chemistries (silanized, hydrophobic, or hydrophilic) would allow the end user to tailor the 

device to the needs of their experiments.  The “front end” sample preparation would be handled 

by a robotic automated pipetter, relieving the end user from the repetitive and precise pipetting 

steps currently required.  Data analysis would also be automated by combining the strategy 

provided in Chapters 4 and 8 and Appendix C with an internal timer to match data to the 

corresponding sample.  A device incorporating these features could enable free solution assay 

binding affinities or target quantification where the end user needs only to pipette an approximate 

amount of sample into a 96 well plate, load the well plate into the device, and let the device handle 

everything else. 

The Future: Applications  

Armed with a volume constrained, highly sensitive biosensor based upon the FSA-CIR 

technology, development of a highly sensitive, highly specific quantitative test requires only the 

development of a probe (aptamer, antibody, small molecule, or another molecular probe).  The 

possible areas of use are nearly endless, with multiple multi-billion-dollar products within reach.   
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As discussed in Chapter 5, FSA-CIR assays using aptamer probes could provide a field 

deployable chemical nerve agent detection strategy, applicable to both environmental testing and 

human exposure testing in blood or urine.   

The results from Chapter 6 demonstrates how an FSA-CIR opioid/opioid metabolite 

detection strategy could enable low-resource clinical management for neonates at risk of neonatal 

abstinence syndrome.  To progress towards the goal of low resource opioid detection, we have 

continued our already fruitful collaboration with Base Pair Biotechnologies to further expand the 

opioid quantification assays to encompass several other high-profile opioid targets, then build the 

assay and device into an integrated, easy-to-use kit for neonatal abstinence syndrome diagnosis in 

low-resource hospitals and birthing centers.   

Capitalizing on the promising results of our CYFRA 21-1 quantification in lung-cancer 

studies presented in Chapter 7, we aim to increase the number of samples measured by FSA-CIR.  

Contingent upon validation in individual sample cohorts, we envisage a clinical trial at the 

Vanderbilt University Medical Center with Dr. Pierre Massion.  In this trial, which is currently 

being designed, patients presenting indeterminate pulmonary nodules will have their level of 

CYFRA21-1 quantified in a blood sample using the compensated interferometer.  The level of 

CYFRA 21-1 in the patient’s blood will then be incorporated into a risk model to aid clinicians in 

the patient management decision-making process. 

 Because CYFRA 21-1 is a marker of epithelial inflammation, it could be a useful biomarker 

in early detection of other carcinomas, such as pancreatic, ovarian, colon, prostate, and breast.  

Additionally, there are other potential biomarkers that may provide added sensitivity and 

specificity for detecting lung cancer, and/or allow the clinician to predict response to therapy.  I 

have begun preliminary investigation into the evaluation of Cancer Antigen 125 (CA-125), and 

plan to move forward with studies of other potential biomarkers including human epididymis 

protein (HE4), neuron-specific enolase (NSE) and progastrin-releasing peptide (ProGRP) in lung 

cancer.   

Longitudinal studies of biomarker levels may provide added insight, especially among 

high-risk patients or patients with comorbidities.  The improved sensitivity of FSA-CIR over 

current methods could demonstrate a change in a patient’s biomarker levels over time that 

corresponds to changing risk.  The Vanderbilt Thoracic Biorepository has already begun 

identifying candidate patients for longitudinal studies for which serum samples have been banked, 



154 
 

and the laboratory of Dr. Pierre Massion is designing a study with these samples.  As new candidate 

biomarkers immerge, or previously studied biomarkers show promise for repurposing, we will be 

in a position to rapidly develop assays with FSA-CIR and evaluate them in a clinical context. 

Another important potential application for FSA-CIR is in the detection of infectious 

disease, especially in low-resource areas of the world.  FSA has already demonstrated 

quantification of plasmodium-host protein interactions on intact, unmodified erythrocytes to study 

the pathogenesis of malaria [256], and has also been shown to be useful for antibody-antigen 

quantification for the serological diagnosis of infectious disease [257].  The combination of a low-

cost, field deployable detector with a mix-and-read assay would result in a valuable tool for doctors 

in the developing world.  Even in the developed world, viral detection is not employed widely in 

the clinic, and this leads to over-prescription of antibiotics.  Viral RNA hybridization-induced 

secondary structure alterations have been quantified using the FSA method, suggesting that this 

approach might be useful for detecting viral biomarkers of infection [258]. 

 In conclusion, the free solution assay method measured by a volume-constrained 

compensated interferometer represents a powerful tool with many potential uses that can impact 

human health, quality of life, and healthcare costs.  With the simplicity, ease of use, and wide 

applicability of the method, it is not hard to imagine that the Free Solution Assay method measured 

by a compensated interferometric reader could be a widely used laboratory technique. 
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Appendix A: Supporting information for  

Chapter 1: Origin and prediction of free-solution interaction 

studies performed label-free 

 

Modeling and Background 

In 1991 a group from Pharmacia [33] showed SPR response was linear with surface 

concentration of protein (ng/mm2) for adsorbed species, and introduced the refractive index 

increment (RII), which was defined as dη/dC in ml/g.  They further illustrated that the RI of the 

surface layer was:  

 ηlayer = ηliquid + (dη/dC)dextran Cdextran + (dη/dC)protein Cprotein Eq.  .1 

In addition, the thickness of the protein at the surface, represented by a closely packed 

protein crystal was calculated.  In the absence of values for solvent content and specific volume, 

they used Matthews report [34] that indicated the fractional solvent content for globular protein 

 

Fig. A.1 Comparison of structures of recoverin before and after Ca2+ binding.  A) Compact 
conformation of Ca2+-free recoverin showing the myristoyl group sequestered in a 
hydrophobic pocket and B) Ca2+-loaded form in a more extended conformation, where the 
myristoyl is solvent-exposed. 
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crystals ranged from 30-78% to show the extreme values gave a surface thickness range of 60 and 

200nm.     

Others have expanded on these observations.  In 1998 Sinclair Yee and co-workers [31] 

showed that the Lorenz-Lorenz equation can be reduced to: 

 ηsoln = fjηj + fkηk = fj(ηj - ηk) + ηk Eq.  .2  

where f is the volume fraction of the species.  Using a literature derived value for protein 

specific volume [259-260] (0.77 mL/g) in Error! Reference source not found., Yee showed that 

ηprotein - ηbuffer = 0.234 RIU.  They noted: “since in those solutions ηbuffer = 1.336 RIU, (we obtain) 

ηprotein = 1.57 RIU for the water-free (unreacted) protein.  This value is very close to the index of 

refraction measured for crystalline proteins of 1.60 RIU, a finding confirmed by Schuck [35].  

Importantly these values are greater than those estimated for “adsorbed protein films” using 

ellipsometric approaches assuming a single optical thickness, since the film volume includes a 

great deal of water [31, 36-37].  Yee et. al. referred to that part of the film that “are made of protein 

material itself, not water”.  They also noted, “we believe this approach, which neglects the 

intermixed solvent in the adlayer, is more direct and general for quantitative analysis of adsorbate 

coverages for proteins and adsorbates in general.”[31]  It was also reported that the volume of a 

functional group can be estimated from its geometry (bond lengths, angles) and van der Waals 

radii of its atoms or can it can be treated as a parameter and determined by fitting the equation to 

known RIs.  One can also measure ηa in cases where very thick adlayers can be grown.  By simply 

measuring the maximum response for an infinitely thick (>> ld) adlayer, one gets Rmax = m(ηa - ηs).  

Since the slope of the calibration plot, m, and the RI of the solvent are known, one can solve for 

ηa. 

In 2000, Davis and Wilson reported on an approach to determine the RII of small molecules 

for correction of SPR data [39].  They too employed the formalism of a concentration weighted 

RII and predicted the maximum (BIACORE) SPR instrument response for binding of a single 

ligand: 

 RUobs = η * X = X [(δη/δC)ligand C] Eq.  .3 

where RUobs is the observed instrument response in resonance units after blank subtraction, 

η is the refractive index at the surface which increases as ligand binds to immobilized 

macromolecule, X is a factor to convert η to RUobs, (δη/δC)ligand is the refractive index increment 
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(RII) of the bound ligand, and C is the concentration of ligand bound at the biospecific surface in 

mass/volume.  In a plot of Δη versus concentration they showed that the RII range for small 

molecules can be quite large (0.15 – 0.34), and that the value measured for the protein BSA 

corresponded well with literature values of 0.17 – 0.18.  They predicted the maximum SPR 

instrument (BIACORE) response for binding of a single ligand to be:   

 (RUpred)max = RUM * (MWL/MWM) * (δη/δC)L / (δη/δC)M Eq.  .4 

(RUpred)max is the predicted maximum instrument response in resonance units for binding 

at a single site, RUM is the experimental amount of macromolecule immobilized on the chip in 

resonance units, MWL is the molecular weight of the ligand, MWM is the molecular weight of the 

immobilized macromolecule, (δη/δC)L / (δη/δC)M is the RII of the macromolecule.  The relative 

mass was also shown to be an important parameter in predicting the maximal signal flow injection 

gradient SPR systems [40].   

Shortly after this report, a group in Brazil [40] showed that flow injection gradient SPR 

systems exhibit the same response as previously reported and that the expression:  

 Cligand = Δθ/Χ(δη/δC)ligand Eq.  .5 

could be used to determine the RII of the ligand/molecule and macromolecule solutions, 

where C is concentration of molecules adsorbing over surfaces, Δθ shift detected and Χ is the 

instrument calibration constant.   

The existing paradigm described above is based on a model that defines the response for 

RI sensing methods as being proportional to the mass or concentration weighted change in RI.  

Critical to our point is that this supposition does not take into account the possibility that signal 

change may be impacted by significant conformation and hydration changes upon chemical or 

biochemical transformation (folding, binding, changes in waters of hydration).  

The Free-Solution Signal in the Absence of a Mass Change 

Using the titration and incubation DΗA:DΗA duplexes with trifluoroethanol (TFE), an 

established method for converting the duplex structure [58-59], we induced the transition from the 

B-form to A-form (Figure A.3).  We then monitored these structural transformations with circular 

dichroism (CD), ellipticity at 270nm, and BSI [57].  As illustrated in Figure A.3A, the CD analysis 

confirmed the predicted structural transition in the DΗA:DΗA duplex.  Correcting for the bulk RI 
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change in the solvent, we also found that, as the DΗA:DΗA duplex adopted a more A-form, both 

the ellipticity signal and the free-solution change in RI increased significantly (Figure A.3B).  This 

correlation is of particular importance, because the ellipticity signal reports film thickness and is 

widely accepted method to determine conformation changes [261].  Collectively, the results 

confirm that the free-solution readout reports a structural transformation in the DΗA duplex.   

Heuristic Model for the Free-Solution Response Function  

Our first attempt at modeling the free-solution assays was heuristic and based on the 

assumption that binding-induced change in hydrodynamic radius dominated the signal for CaM 

interactions.  The preliminary calculations utilized the PDB structural information to estimate the 

radius of gyration (Rgyr) and solvent accessible surface area (SASA) of the bound and unbound 

species (ΔRgyr and ΔSASA).  A simple multivariable linear equation was obtained that relates the 

interferometry signal in phase, to change in Rgyr and SASA for the CaM system (ΔBSI = 1.0 + 

2.6×10-4 SASA + 0.054 ΔRgyr).  Figure A.4A shows the correlation between the predicted and 

experimental values for free-solution interaction studies of CaM binding Ca2+, Ca2+-CaM – TFP, 

Ca2+-CaM – calcineurin, Ca2+-CaM – M13 peptide.  Calcineurin – CaM data spread (purple) is 

rather large due to a wide range of values for SASA for structures with close Rgyr values.  The 

surprisingly good correlation (R2 = 0.88) between the actual and predicted signal magnitude for 

these binding events encouraged us to further our investigation.   

Figure A.4B presents the results from our unsegregated model, which uses a wide range 

of χ values (all of those evaluated), but with a modest Spearman correlation coefficient (ρs=0.853), 

a nonparametric measure of statistical dependence between variables indicating that the 

relationship is not random. 

Mass Balance Equation Calculations  

To calculate the ΔRIU of the test samples, the concentration of product must first be 

calculated using the mass balance equation.  A binding system’s dissociation constant (KD) is 

related to the concentration of free protein [P], free ligand [A] and bound complex [PA] by the 

mass-balance equation: 

 K =
[P][A]

[PA]
  Eq.  .6 

Since the total amount of protein and ligand can be defined as: 
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 [P]total = [P]free + [PA] Eq.  .7 

 [A]total = [A]free + [PA] Eq.  .8 

These equations can be solved for amount of free protein and free ligand as: 

 [P]free = [P]tot - [PA] Eq.  .9 

 [A]free = [A]tot - [PA] Eq.  .10 

The equation for KD can then be rewritten as: 

 KD = 
([P]tot - [PA])([A]tot - [PA])

[PA]
 Eq.  .11 

This can be rearranged to a quadratic in the following manner:  

 KD[PA] = ([P]tot – [PA]) ([A]tot – [PA]) Eq.  .12 

 KD[PA] = [P]tot[A]tot – [A]tot[PA] – [P]tot[PA] + [PA]2 Eq.  .13 

 0 = [PA]2 – [A]tot[PA] – [P]tot[PA] – KD[PA] + [P]tot[A]tot Eq.  .14 

 0 = [PA]2 – ([P]tot + [A]tot + KD)[PA] + [P]tot[A]tot Eq.  .15 

The concentration [PA] can then be solved for by using the quadratic equation: 

 [PA] = 
[P]tot + [A]tot+ KD  ± [P]tot+ [A]tot+ KD

2
-4[P]tot[A]tot

2
 Eq.  .16 

This result will yield two outcomes, only one of which will be physically relevant, which 

is used to calculate the amount of complex present in a binding assay based upon known 

concentrations of the protein, ligand, and the KD. 

 

Calculation of dη/dc signal 

Here we perform a quantitative comparison of the convention and FreeSFR when used to 

predict/measure a refractive index change for a binding event.  According to Qian et. al., the mass 

weighted refractive index increment (RII) for a protein complex is: 

 
dη

dccomplex
= (1-Wr)

dη

dcligand
+ Wr

dη

dcreceptor
 Eq.  .17 
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where Wr is the mass percentage of the receptor in the complex [262].  For our example calculation 

we use the mannose binding to Concanavalin A (ConA) system.  The refractive index increment 

(RII) values used was 0.146 ml/g [40] for mannose and 0.190 ml/g for ConA [35].  Using a 

molecular weight for mannose of 180 Daltons and 26.5 kDa for ConA and equation A.17, the 

calculated mass weighted RII for the binding system (dη/dccomplex) is 0.1897 ml/g.    

The RII values were then used to predict the refractive index change in both the reference 

and test sample solutions.  The references are samples that do not contain the receptor (ligand 

alone), so ΔRIU calculated by multiplying the RII by the concentration of ligand (Eq A.18). 

 ΔRIUreference = RIIligand×[ligand] Eq.  .18 

To calculate the ΔRIU of the test samples, the concentration of product must first be 

calculated using the mass balance equation as described above (Eq. A.7 – A.12).  From there the 

amount of receptor and ligand left in solution can be calculated as: 

 [receptor] = [receptor]initial – [product] Eq.  .19 

 

Fig. A.2 Determination of the predicted dη/dc ΔRIU.  Plots show the calculated dη/dc for the 
reference () and test (+) samples for A) the Concanavalin A – Mannose system and D) the 
Calmodulin – Calcineurin system.  Plots B) and E) show the predicted dη/dccomplex signal () 
compared with the experimentally observed signal () for ConA-mannose and Calmodulin-
calcineurin, respectively.  Plots C) and F) show the predicted dη/dccomplex signal () compared 
with the experimentally observed signal () versus product concentration for ConA-mannose 
and Calmodulin-calcineurin. 
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 [ligand] = [ligand]initial – [product] Eq.  .20 

Using these concentration values and the RII’s, the maximum ΔRIU of the binding samples 

can be calculated as: 

 ΔRIUtest = RIIproduct×[product] + RIIreceptor×[receptor] + RIIligand×[ligand]  

  Eq.  .21 

These values were plotted versus ligand concentration (Figure A.2A) and illustrate that, 

while three of the reference and test samples are predicted to give measurable RI signals using 

BSI, the ΔRIU for these samples will be very similar.   

In order to further illustrate our point, the ΔRIU predicted for the dη/dccomplex, which is the 

difference between the reference and test samples at the same ligand concentration, was plotted 

versus ligand concentration in Figure A.2B.  The plot also presents the experimentally measured 

binding signal produced by BSI (Figure A.2B), clearly showing the difference in measured signal 

and that predicted by the current theory.  This example shows that we are in agreement with the 

statement [65]: “that it would be in conflict with the conventional theory to expect a protein binding 

event would produce a measurable RI change expected by pure dη/dc considerations.” 

Additional calculations are illuminating.  For the Mannose – ConA system, the 

concentration of complex at maximum binding was found to be 1.79 µM (4.76×10-5 g/mL) or a 

maximum ΔRIU of 1.4×10-8.  This value is considerably below the detection limit of most RI 

detectors (ca. 10-6).  In another calculation, we set the experimental ΔRIU equal to the difference 

between the ΔRIU of the test sample and the ΔRIU of the reference sample at the highest 

concentration, we find that the RII of the ConA-mannose complex would need to be 3164.1 mL/g 

to generate the experimental signal.  The RII calculated using the Qian equation is 0.1897 mL/g. 

Plotting the calculated ΔRIU versus product concentration, along with the actual ΔRIU 

measured by BSI for this binding event (Figure A.2C), further illustrates the dramatic disconnect 

between the signal predicted from dη/dc considerations and that measured by our interferometer.  

In this case, the conventional model predicts a signal that it is 3 orders of magnitude below the 

experimentally measured ΔRIU.   
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These calculations were repeated for the calmodulin - calcineurin assay.  Figure A.2D-F 

illustrates similar results are obtained for the protein-protein binding pair.  Here, even though the 

ligand is much larger in mass (and absolute RI), the ΔRIU of the reference (calcineurin) and the 

test samples, (Eq. A.17 – A.21), are below the detection limits of the instrument.  We attribute this 

result to the use of considerably lower concentrations of the ligand.  As before, the FreeSRF 

(binding) signal quantified by the interferometer was large and reproducible at ΔRIU (4.41×10-4). 

Figure A.3 presents the results for performing the calculations show in Eq. A.17 – 21 for 

two other binding systems.  According to Zhao et. al, large proteins (<10kDa) exhibit a RII of 

0.190 with a Gaussian standard deviation of 0.003 mL/g [35], so this value was used for all species 

that met that criteria.  In all cases, a 0.003 mL/g deviation produced minimal change in the final 

mass weighted refractive index change calculation.  This result is principally due to the large 

differences between the masses of the species.  For the small molecule dansylamide, no RII 

information was available, so the RII of 0.2 mL/g was used, which is a common RII for small 

molecules.  Regardless, no RII value in the range of 0.1 mL/g to 0.5 mL/g produced an RI change 

large enough to be detected by current RI techniques.   

 

 

Fig. A.3 Comparison of Experimental and Modeled dη/dc Signal.  Plots showing the 
experimental BSI signal in RIU with the calculated dη/dc signal for A) Recoverin binding 
Ca2+; and B) Carbonic Anhydrase II binding dansylamide.  

A B
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Experimental Parameters for Effective Free-Solution Measurements 

Free-solution assays must be prepared to purposely minimize the difference in RI between 

the sample and the reference (and/or control).  The procedure is illustrated in Figure A.6 and, in 

short, the sample and reference are prepared from the same matrix (buffer, serum, urine, RBCs, 

etc.).  A fixed concentration solution of the receptor is prepared in the matrix and then combined 

with the ligand dilution series, which is typically prepared in buffer.  Reference solutions are 

matrix solutions, devoid of the receptor/target that have been combined with the dilution series.  

For cells, cell- or tissue-derived samples (e.g. vesicles, membrane fractions, lipoparticles, etc.), the 

reference sample consists of a preparation with the receptor either absent from the matrix or 

inactivated (expression knocked out, chemically blocked, etc.).  Test samples are prepared by 

combining the dilution series with the receptor-in-matrix solutions.  Reference and test samples 

are then allowed to reach equilibrium, often on ice when proteins are evaluated, and then 

introduced sequentially into the interferometer.  The difference in fringe position (shift) between 

the reference and test sample reports the binding/interaction in a concentration dependent manner.  

In an attempt to enable others to successfully perform free-solution assays with an in 

interferometer and avert reports stating; “…we are not able to reproduce the protein A–IgG binding 

results by Bornhop et al. performed with a reported detection limit of 10-6 RIU…” [65], we note 

that three conditions are critical to the success of a free solution assays.  1) Care must be taken 

when preparing the solutions.  It is essential that the RI of the sample and reference composition 

are matched.  While we have not found it to be necessary to dialyze as recommended in ITC [263], 

 

Fig. A.4 A) Predicted versus BSI experimental values for the CaM binding system.  B)  Plots 
showing correlation of χexp and χmodel of the unsegregated learning set. 
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the test and reference and/or control samples must be reasonably well index matched.  If 2% 

DMSO is to be used, both the reference and the test solutions must have the same amount (2%) of 

DMSO.  2) Protein DΗA and other types of samples denature over time or can be altered as a 

consequence of environmental conditions. None have an indefinite shelf life.  Free-solution assay 

reports functional transformations, and the absence of tethering or a surrounding structure like a 

dextran to orientate the protein, makes it critical they are operational.  Even one freeze-thaw cycle 

or the length and/or environment used during equilibration can impact the performance of the 

assay.  Experience has taught us that the presence of the correct band on a Western is not 

necessarily an indicator the protein is unadulterated.  3) To insure the signal is not from surface 

interactions, we establish a baseline for the matrix with replicate injections.  Then after each 

consecutive injection, we reestablish that baseline by rinsing the channel prior to collecting the 

next datum.  This procedure helps to ensure that the binding signal is emanating from the change 

in composition of the solution and not adoption to the walls.  Any sample-to-sample baseline 

excursion would be reporting a change in the optical path length for the interferometer such as the 

 

Fig. A.5 Illustration of the procedure for using BSI to measure a binding affinity. 
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RI of the solution or the effective channel diameter.  Channel rinses, and to a lesser extent coatings, 

serves to improve replicate assay reproducibility by minimizing the contribution of non-specific 

binding.  A wide variety of rinse solutions have been found to be successful, ranging from simply 

buffer to light acid/base to Piranha, to methanol and chloroform.  Since the chip is the optics, the 

baseline shift from sample to sample to can be used to determine if something has been adsorbed 

to the surface and when it has been removed.    

The importance of #3 cannot be over emphasized, since others have questioned the validity 

of our BSI protein binding studies [65], suggesting that using "channels etched in glass 

chips…could affect protein interactions.  It was also stated that, “It is well known that protein 

adsorbs to…surfaces” and since “BSI is sensitive towards RI change of both bulk and surface 

layers…we believe that unspecific binding of proteins could produce erroneous signals.”  It is true 

that BSI can detect RI changes in either the bulk or the surface [264-267], in fact we and others 

have employed this unique property to compare affinities derived from free-solution and surface-

immobilized formats for the same species [9, 60].  Yet, after >7 years of operation, more than 30 

users running numerous blinded samples on multiple different instruments, provide significant 

evidence that our procedures are enabling free solution measurements. 

We often work at nM-pM concentrations, a regime where the neither the ligand nor probe 

exhibits a quantifiable response.  In this case, there is no dη/dC response expected, yet procedures 

always include the dη/dC determination for a dilution series of the ligand. This procedure allows 

for compensation of species with higher RI values that would potentially skew the saturation 

isotherm [10, 20].   

Free-solution measurements do quantify solution-phase RI changes, thus effective, long-

term environmental control is needed to succeed.  Since dη/dT is large for fluids, temperature 

control of the sample/chip is required at the level of a couple millidegrees C.  Accomplishing this 

level of thermal stability consists isolating the optical train, using a high-performance Peltier 

controller and thermoelectric device (TE) and a chip mount with a large thermal mass and designed 

to have intimate contact with TE and the chip [10, 20].   

Though sensitivity of RI to pressure (dη/dP) is about 10-fold less than dη/dT, pressure 

perturbations will impact the measurement performance if not constrained.  Since end-point assays 

involve sequentially introducing the samples into a microfluidic channel, often followed by rinses, 

we have developed a somewhat unique injection methodology aimed toward minimizing sample-



167 
 

to-sample pressure (dη/dP-induced) differences.  While effective, simplifying the macro-to-micro 

interface, while constraining the required volume, has been one of the most challenging aspects of 

deploying our method into other laboratories.  The current manual approach, optimized 

empirically, works by having a drop is dispensed onto the channel inlet and a applying a controlled 

vacuum to the channel outlet for a fixed time period.  This semi-automated approach is effective, 

but still requires the operator to develop injection skills.  The level of difficulty is modest, but as 

with GC injections to this day, manual sample introduction requires practice.  Repetition and 

multiple repeats of the assay aid to mitigate the contribution of injection to error in the assay.  

Improved sample introduction methods are currently under intense investigation.   

Alignment and Fringe Selection 

Physics of fringe production and selection are intertwined, because ‘poor’ alignment is 

really miss-alignment and leads to a different fringe profile (beam energy distribution).  Free-

solution assay success with our interferometer, is dependent on a general understanding of the 

optical train that reports the signal.  In the Bornhop interferometer, “the chip is the optics”, so in 

addition to obtaining high-quality chips (Micronit, NL), proper optical alignment is essential.  

There are several criteria for success and significant deviation from this configuration changes the 

optical train resulting in fringe patterns different from those we have characterized.  A) The 

Gaussian laser beam should consist of nearly parallel rays that evenly overfill the channel and 

impinge on chip at an angle near to 90° (Fig. 1.1).  The best angle is 90° direct backscatter 

configuration, but to prevent light reentering the laser cavity and to direct the fringes onto the 

camera, we have found that ±7° angle is acceptable. If the chip/capillary is not in maxima of the 

Gaussian profile the intensity profile will change significantly with different fringes reporting 

optical path length changes other than those desired.  Optimization here is easily accomplished by 

translating the beam or chip so as to obtain equal intensity on both sides of the centroid.  B) Tilt 

of the incoming beam should be avoided as it leads to a different “object” being interrogated or 

serving as the interferometer.  The result of this type of miss-alignment leads to a different fringe 

profile with fringes becoming distorted or slanted.  C) As reported elsewhere [268], placing the 

object (chip/capillary) in a region of beam divergence or convergence will distort the fringes in a 

manner similar to adding a modest power lens.  In our experience this configuration will degrade 

performance using the regions of interest (ROI) we have previously characterized.  D) Fringe 
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quality is also of paramount importance to obtaining high RI performance.  Well-shaped fringes 

(Figure A.6A) have found that contrast ratios approaching ca. 98% should be obtained for the 

fringes of interest.  Poor contrast indicates reduced interferometer finesse, so as with and 

interferometer the result is diminished sensitivity (Figure A.6B).   

A fully physical description of BSI and quantitative analysis of fringe production are 

beyond the scope of this communication, with excellent discussion found in the literature [63, 251, 

269], yet a summary is provided here.  Since fringe position (shift) reports the RI, proper selection 

is imperative.  With reference to Figures 1.1 and A.7 it can be easily recognized that the fringes 

are not equivalent in their physical origin and thus their response.  BSI is a multi-modal 

interferometer with several dominate frequencies, all mixing as a result of reflection and refraction 

from the surfaces of the chip.  There is low frequency component emanating from the top and 

bottom surface reflections, a middle frequency (the one we employ) principally from a 

combination of the rays combining after reflecting from all surfaces and traversing the channel.  

The other frequencies are potentially of interest but have not been as well characterized.  To 

illustrate the complexity of BSI, Figure A.7 presents optical ray traces of the optical train using 

 

Fig. A.6 A) An example of a fringe pattern with a good alignment.  Fringes are smooth, 
Gaussian shaped, evenly spaced, high contrast, and with similar intensities.  B) An example 
of a fringe pattern with poor alignment.  Fringes have a high frequency noise, have lost the 
Gaussian shape, and have a lower contrast ratio. 
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ASAP® modeling software.  Figure A.7B presents a higher resolution modeling outcome, 

showing, as empirical evidence suggests [63, 251], that the Bornhop multimodal interferometer 

has an optical path-length, greater than the dimensions of the channel.  Note that Figure A.7B 

more clearly shows that there is significant optical energy (numbers of rays) concentrated in the 

central part channel, predominantly interrogating the bulk solution.  Others take a grazing angle 

path, principally reporting RI changes at the channel surface.  Simply put, not all fringes emanate 

from the same region of the object (chip, capillary, capillary in an enclosure etc.), and as a 

consequence they don’t all exhibit a strong free-solution signal.  There is added complexity to the 

 

Fig. A.7 Optical modeling of the beam path.  A) Ten parallel rays are impinged on the chip 
from the right are allowed to refract and reflect and exit to the right interfering.  Reprinted 
with permission from Ref 63. Copyright 2000 American Chemical Society.  B) Optical ray 
trace of a semicircular channel in a microfluidic chip. 
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system since quite a bit of signal mixing occurs, resulting in fringes that respond to both the surface 

and the bulk RI changes.  Therefore, selection of the appropriate fringes is necessary to obtain 

robust free-solution signals.  Since we have yet to identify a pure frequency, a desirable outcome 

results only from combining assay procedures (see above), with prudent alignment guided by 

empirical evidence.   

Using a chip with a 210 µm×100 µm semicircular channel isotropically etched in a 0.7mm 

substrate and covered with a 1.1mm thick top-plate produces fringes that are ca. #6-14 from the 

centroid that exhibit a nearly single spatial frequency (Figure 1.1).  As described in detail 

previously [61], we perform a Fast Fourier Transform (FFT), within a LabView program, 

facilitating the time dependent collection of the position of fringes in radians.   

Using this same chip, we determine the probe volume by calculating the volume of fluid 

within the intersection of the beam and the channel.  The cross-sectional area of channel is two 

quarter circles connected by a 10 µm wide rectangle (width of the etch mask) and can be calculated 

by: 

 A = 
πr2

2
 + 10r Eq.  .22 

where r is the etch radius of the channel in µm.  Our channels have an etch radius of 100 µm, 

yielding a cross sectional area of 16708 µm2.   

This area is then multiplied by the beam diameter (d) to determine the probe volume.  Our 

beam diameter is 450 µm and results in a probe volume of 7.5nL. 

The BSI Signal is Not Calorimetric 

Under conservative conditions we used the reaction between IgG and PA [10], the Gibbs 

free energy, and heat energy equation to predict a temperature change of ~1.0910-5 K.  For 100% 

energy transfer to an RI change, 1 µM of the IgG-PA pair, normally analyzed at nM concentrations, 

would induce a 1.0910-9 RIU signal in water.  This value is two orders of magnitude smaller than 

the BSI detection limit of 1 10-7 RIU and a decade below the system noise floor of ΔRI = 10-8 

[270].  Having applied this calculation to the entirety of binding pairs within the model, the largest 

RI change that could be induced upon binding is no greater than the system noise, with a majority 

of the ΔRI values predicted being several orders of magnitude lower than the instrument LOD.  
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Therefore, it is reasonable to infer that the heat of reaction cannot be a significant contributor to 

the RI signal reported in free-solution assays.   

Stop-flow kinetic binding studies offered further validation that the heat of reaction is not 

the source of the free-solution signal [10], showing an absence of signal decay due to conduction 

to a heat sink.  Environmental temperature drift can and does produce spurious signals, but this 

annoyance can be corrected for with careful instrument design and system temperature control.  

Virtually all assays performed since 2008 have been run as end-point determinations, with samples 

prepared, mixed, allowed to equilibrate (up to 10 hours) and then read by the interferometer.  The 

end-point scenario excludes calorimetric contributions to the signal.  

 

 

 

 

 

  

 

Fig. A.8 A) CD spectra of the DΗA duplex Inset: A-form to B-form transition monitored at 
270 nm by ellipticity.  B) Correlation for BSI signal and ellipticity.  Adapted from Ref 57 
with permission of Oxford University Press. 
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Table A.1 Comparison of Experimental and Predicted RIU Change 

  

Receptor Ligand KD (M) BSI ΔRIU 
Predicted ΔRIU 

Large Model Small Model 

L
ar

ge
 

IL-2 Antibody Interleukin-2 2.59E-11 8.17E-05 2.13E-06 2.23E-09 

β2AR Alprenolol 5.50E-10 1.51E-05 3.33E-05 3.54E-08 

β2AR Isoproterenol 1.52E-09 7.45E-06 4.25E-05 4.95E-08 

Basigin Rh5 1.08E-06 2.33E-05 2.30E-02 3.46E-05 

Carbonic Anhydrase II Acetazolamide 1.06E-08 2.87E-05 4.50E-05 2.56E-08 

Carbonic Anhydrase II Acetazolamide 1.06E-08 2.87E-05 3.96E-05 3.04E-08 

Calmodulin Calcineurin 1.14E-08 4.90E-04 4.26E-05 9.66E-08 

Calmodulin Calcineurin 1.14E-08 4.90E-04 5.88E-05 1.11E-07 

Calmodulin M13 9.87E-09 8.76E-05 1.52E-05 6.95E-08 

Thrombin Bock 5.96E-09 1.90E-05 9.70E-06 4.84E-08 

Thrombin Tasset 3.84E-09 1.45E-05 4.78E-06 3.00E-08 

Carbonic Anhydrase II Benzene Sulfonamide 5.68E-07 1.38E-05 9.53E-04 2.65E-06 

Carbonic Anhydrase II Benzene Sulfonamide 5.68E-07 1.38E-05 2.62E-04 3.24E-06 

Carbonic Anhydrase II Sulfanilamide 1.76E-06 3.92E-05 2.99E-03 8.15E-06 

Carbonic Anhydrase II Dansylamide 4.45E-07 1.72E-05 1.81E-03 1.15E-06 

S
m

al
l 

Calmodulin TFP 7.82E-06 1.56E-04 1.42E-02 5.75E-05 

Calmodulin TFP 7.82E-06 1.56E-04 1.85E-02 6.15E-05 

Calmodulin TFP 7.82E-06 1.56E-04 1.37E-02 5.72E-05 

Carbonic Anhydrase II Sulpiride 5.90E-06 3.11E-05 6.00E-04 3.55E-05 

Calmodulin Calmodulin-Ca2+ 1.82E-05 2.89E-04 1.10E-02 1.03E-04 

HIV PR Pepstatin 1F1N 5.30E-06 3.04E-05 2.24E-02 7.28E-06 

HIV PR Pepstatin 1F1 1.45E-05 4.52E-05 7.18E-02 1.04E-05 

Concanavalin A Mannose* 9.63E-05 1.55E-05 4.46E-01 1.39E-04 

Concanavalin A Mannose* 9.63E-05 1.55E-05 5.21E-01 7.38E-05 

Concanavalin A Glucose* 3.44E-04 1.46E-05 2.21E+00 4.41E-05 

Concanavalin A Glucose* 3.44E-04 1.46E-05 1.97E+00 1.60E-04 

Recoverin Ca
2+

 7.35E-07 4.42E-05 2.06E-03 5.74E-06 
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Table A.2 Comparison of Experimental and Modeled BSI Signal 

 
Ligand 

Concentration 
(M) 

ρexp 
Experimental 

BSI signal 
(mrad) 

C (M)* 
ρmodel 

Predicted BSI 
signal (mrad) 

Percent 
Error 

C
ar

b
on

ic
 A

n
h

yd
ra

se
 

0.00 0.00 0.00 0.00 0.0% 

3.90×10-8 -3.81 4.07×10-11 -2.37 37.8% 

7.80×10-8 -4.57 7.52×10-11 -4.38 4.1% 

1.56×10-7 -5.91 1.31×10-10 -7.62 29.0% 

3.12×10-7 -9.68 2.07×10-10 -12.09 24.9% 

6.25×10-7 -14.32 2.93×10-10 -17.10 19.4% 

1.25×10-6 -17.89 3.70×10-10 -21.55 20.5% 

2.50×10-6 -21.36 4.25×10-10 -24.78 16.0% 

R
ec

ov
er

in
 

0.00 0.00 0.00 0.00 0.00% 

2.50×10-7 9.73 1.90×10-7 12.20 25.43% 

5.00×10-7 17.71 3.29×10-7 21.12 19.25% 

1.00×10-6 29.39 4.50×10-7 31.06 5.69% 

2.00×10-6 36.17 5.03×10-7 37.88 4.75% 

4.00×10-6 40.93 5.23×10-7 41.33 0.97% 

8.00×10-6 40.11 5.32×10-7 42.97 7.13% 

*Solution to the mass balance equation 

 

  



174 
 

Table A.3:  Compiled List of PDB Structures Used for Calculations 

 

 Receptor Ligand 
Bound 

PDB ID 
Unbound 
PDB ID 

L
ar

ge
 

IL-2 Antibody Interleukin-2 4YUE 1M4C and 1F8T 

β2AR Alprenolol 3NYA 2RH1 

β2AR Isoproterenol 2Y03 2RH1 

Basigin Rh5 4U0Q 3I84 and 4WAT  

Carbonic Anhydrase II Acetazolamide 1ZSB 1CA2 

Carbonic Anhydrase II Acetazolamide 1YDA 1CA2 

Calmodulin Calcineurin 2R28 1OSA 

Calmodulin Calcineurin 2F2O 1OSA 

Calmodulin M13 1CDL 1OSA 

Thrombin Bock 1HUT 3U69 

Thrombin Tasset 4I7Y 3U69 

Carbonic Anhydrase II Benzene Sulfonamide 4JSA 1CA2 

Carbonic Anhydrase II Benzene Sulfonamide 2WEJ 1CA2 

Carbonic Anhydrase II Sulfanilamide 2NNG 1CA2 

Carbonic Anhydrase II Dansylamide 1OKL 1CA2 

S
m

al
l 

Calmodulin TFP 1CTR 1OSA 

Calmodulin TFP 1LIN 1OSA 

Calmodulin TFP 1A29 1OSA 

Carbonic Anhydrase II Sulpiride 1G4O 1CA2 

Calmodulin Calmodulin-Ca2+ 1OSA 1CFD 

HIV PR Pepstatin 1F1N 4EJK 5HVP 

HIV PR Pepstatin 1F1 4EJD 5HVP 

Concanavalin A Mannose* 5CNA 1JBC 

Concanavalin A Mannose* 1I3H 1JBC 

Concanavalin A Glucose* 1CJP 1JBC 

Concanavalin A Glucose* 1GIC 1JBC 

Recoverin Ca2+ 1OMV 1REC 
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Table A.4 Calculated Structural Components 

 Receptor Ligand 
Bound  

Radius of 
Gyration (Å) 

Unbound 
Radius of 

Gyration (Å) 

Bound 
Surface Area 

(Å
2
) 

Unbound Surface 

Area (Å
2
) 

L
ar

ge
 

IL-2 Antibody Interleukin-2 28.11 38.98 24399.8 26849.7 

β2AR Alprenolol 28.84 29.21 22944.5 22633.3 

β2AR Isoproterenol 22.00 21.43 17028.6 15726.8 

Basigin Rh5 29.56 19.19 25215.0 27363.2 

Carbonic Anhydrase II Acetazolamide 17.40 17.40 11420.8 11549.7 

Carbonic Anhydrase II Acetazolamide 17.35 17.40 11490.0 11549.7 

Calmodulin Calcineurin 21.68 22.45 9457.7 10129.7 

Calmodulin Calcineurin 21.43 22.45 9645.2 10129.7 

Calmodulin M13 16.5 22.45 8965.9 10129.7 

Thrombin Bock 17.82 17.76 12849.4 12684.2 

Thrombin Tasset 17.67 17.76 12791.4 12684.2 

Carbonic Anhydrase II Benzene Sulfonamide 17.39 17.40 11775.4 11549.7 

Carbonic Anhydrase II Benzene Sulfonamide 17.53 17.40 11948.8 11549.7 

Carbonic Anhydrase II Sulfanilamide 17.41 17.40 11772.7 11549.7 

Carbonic Anhydrase II Dansylamide 17.41 17.40 11448.1 11549.7 

S
m

al
l 

Calmodulin TFP 15.78 22.45 8977.8 10129.7 

Calmodulin TFP 15.54 22.45 9046.4 10129.7 

Calmodulin TFP 15.54 22.45 8960.0 10129.7 

Carbonic Anhydrase II Sulpiride 17.61 17.40 12001.4 11549.7 

Calmodulin Calmodulin-Ca2+ 22.45 20.29 10129.7 10290.8 

HIV PR Pepstatin 1F1N 17.34 17.22 10160.4 9556.4 

HIV PR Pepstatin 1F1 17.60 17.22 10069.7 9556.4 

Concanavalin A Mannose* 17.19 17.32 10559.5 10303.9 

Concanavalin A Mannose* 17.08 17.32 10447.5 10303.9 

Concanavalin A Glucose* 17.17 17.32 10310.7 10303.9 

Concanavalin A Glucose* 17.19 17.32 10405.4 10303.9 

Recoverin Ca
2+

 18.30 16.50 12014.0 10333.0 
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Table A.5 Model Fitted Parameters 
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Appendix B: Supporting Information for Chapter 6: Quantitation 

of Opioids and the Prospect of Improved Diagnosis of Neonatal 

Abstinence Syndrome 

 

The Compensated Interferometric Reader 

The compensated interferometric reader (CIR), illustrated in Figure B.1, consists of a 

compensated interferometer [155], a droplet generator and a syringe pump.   

Syringe Pump Setup:  A Chemyx® Nexus 3000 Syringe pump pulling a Hamilton 

Gastight® 1001 syringe provides constant flow through the capillary at 10 µL/min.  The syringe 

was interfaced to the capillary using a LabSmith Luer-Lock to capillary adaptor.  Using a Hamilton 

syringe with an inner diameter of 4.610 mm and volume of 1000 µL gives a total flow time of 

about 100 minutes.   

Droplet Train Generation:  The Mitos Dropix was interfaced to the interferometer so that 

droplet trains were formed directly in the capillary (350 µm OD / 250 µm ID, Polymicro, Molex, 

USA), allowing a single section of capillary to serve as both the reader cell and the transfer line.  

Droplet trains were produced by a sample hook/capillary moving up and down between two 

 

Fig. B.1 Reader consisting of a droplet generator for sample introduction, compensated 
interferometer (diode laser, capillary cell and camera) and syringe pump.  
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“reservoirs” while the pump pulls fluid.  One of the reservoirs was an open tray containing the oil 

(Fluorinert FC-40, Sigma-Aldrich) used to separate the droplets, the other was a PEEK tray 

consisting of 24 bottomless wells where the sample and reference solutions reside.  Hook sample-

well dwell time and solution flow rate determines droplet volume and spacing.  The Dropix system 

was programmed using the built-in software.   

Sample and reference solutions were loaded into adjacent wells in a Dropix sample well 

tray (20 µL of each).  A single determination consists of a droplet train of 1000nL of sample and 

reference solutions separated by 40nL of oil.  The first sample/reference pair was preceded by 4 x 

4 µL droplets of PBS, each separated by 100nL of oil.  For all determinations using the CIR, the 

sample/reference pairs were introduced five times for a total of 10 droplets.  Following the analysis 

of each group of sample/reference droplet pairs a 500nL droplet of oil and 2 x 4 µL droplets of 

PBS separated by 100nL of oil was used to rinse and prepare the capillary for the next 

sample/reference pair.  An entire droplet train, consisting of all six sample pairs and the required 

rinses, takes about 14 minutes to run through the CIR.  Assays requiring more than 6 

determinations were performed by running multiple trays sequentially.  After an entire tray was 

run, the capillary was rinsed with PBS for 3 minutes before beginning the next tray.  

CIR Calibration:  Device performance and instrument response was evaluated using 

solutions containing 0, 0.125, 0.25, 0.5, 1, and 2mM glycerol in PBS in 50% urine / 50% PBS.  

PBS serves as the reference sample.  Using the calibration curve we establish that the response 

function of the instrument is ~0.110 radians/mM glycerol, the reproducibility of replicate 

measurements (standard deviation) for like glycerol concentrations is <0.012 radians, and the limit 

of quantification LOQ values <0.33mM.  The LOD was determined by measuring ~3 seconds of 

baseline noise of the phase shift and was ~0.111mM glycerol.  Based upon our past experience, 

this sensitivity is more than adequate to perform free-solution molecular interaction studies [185, 

201]. 

Aptamer selection  

All opioid aptamers were selected by Base Pair Biotechnologies, Inc. (Pearland, TX, USA) 

using a modification of the SELEX method of Nutiu et al [184].  To avoid the potential risk for 

opioid contamination in “normal” pooled human urine, an ersatz urine formulation comprising 1X 

PBS, 300 mM urea, 6 mM creatinine, 0.05% Tween-20, and 1 mM MgCl2 was used.  After multiple 
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rounds of positive and negative selection, the enriched aptamer pools were sequenced using an Ion 

Torrent PGM next generation sequencer (Thermo Fisher), and for each target, bioinformatics 

analysis was used to choose aptamers for synthesis and functional screening in the FSA assay.    

Free Solution Assay Methods 

Aptamer solution preparation:  The aptamer stock solutions were prepared by 

reconstituting the aptamer dried pellet to a concentration of 100 µM in a modified Phosphate 

Buffered Saline (PBS) containing 1 mM MgCl2, 10 mM Tris HCl, and 0.1 mM EDTA with pH 

7.5.  All further dilutions used this PBS formulation.  The stock aptamer solution was then diluted 

to 1 µM (working concentration) in PBS.  Once diluted to the working concentration (Table B.1), 

the aptamers were refolded by heating the solution to 90°C for 5 minutes in a water bath, then 

cooled to room temperature for 15 minutes.  This process ensures the aptamers were in their desired 

conformation.  For cross reactivity measurements (detailed below), stock aptamer solution was 

diluted to 2 µM before refolding. 

Opiate target solution preparation:  The six opioid and metabolite targets and cortisol, 

listed in Table B.1, were obtained from Sigma-Aldrich at 1 mg/ml in methanol.  For all targets, 

stock solutions were prepared at a concentration of 2.7 – 3.3 mM.  Care was taken to insure the 

concentration of the target samples stayed below the 1 mM aqueous solubility limit.  To prepare 

analysis samples, 10 µL of the opioid standard solution was added to 990 µL of PBS, creating 

working solutions of 27 and 32 µM (Table B.1, Column D).  The resulting solvent composition 

of the working solutions was 99% PBS and 1% methanol.  Next, a volume of the working solution 

(Table B.1, Column E) was diluted to 200 nM with 1% methanol in PBS.  The 1% methanol in 

PBS solution was kept constant across all target dilutions to ensure that solutions in the free-

solution measurements were index matched. 
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Aptamer characterizations:  Binding affinity assays were performed in an end-point 

format:  First, a 100 nM solution of each target was prepared in 50% Urine / 49.5% PBS / 0.5% 

Methanol by adding 100 µL of the 200 nM target (prepared above) to 100 µL of pooled human 

urine (Valley Biomedical).  Second, a 7-point serial dilution series was prepared from the 100 nM 

target solution by diluting the solution in half at each step with 50% urine / 49.5% PBS / 0.5% 

methanol.  This dilution series resulted in 7 concentrations ranging from 100 – 0.780 nM.  A “zero” 

concentration consisted of 100 µL of 50% urine / 49.5% PBS / 0.5% methanol.  The corresponding 

aptamer to the target was then diluted from the 1 µM working concentration to give a solution of 

2 nM aptamer in 50% Urine / 50% PBS.  An RI-matched control solution was then prepared with 

50% urine and 50% PBS.  For each concentration in the target dilution series, 10 µL of the diluted 

target was combined with 10 µL of the 2nM aptamer to produce the binding sample, while 10 µL 

of the diluted target was combined with 10 µL of the RI-matched control solution to produce the 

reference sample.  The final aptamer concentration in the binding samples was 1nM, and the final 

target concentration ranged from 0 – 50 nM.  For each concentration, the binding and reference 

samples were measured with the CIR in quintuplicate.  The averaged phase shift for 5 replicates 

was plotted vs. target concentration (Figure B.2).   

  

Table B.1. Opioid targets and their dilution concentrations. 

A) Target 
B) 

Molecular 
Weight 

C) Stock 
Concentration 

D) Working 
Concentration 

E) Dilution 
Volume of 

Target 

F) Dilution 
Volume of 1% 
Methanol/PBS 

Oxycodone 315.36 
g/mol 3.17 mM 31.7 µM 6.33 µL 993.67 µL 

Noroxycodone 
HCl 

337.80 
g/mol 2.96 mM 29.6 µM 6.44 µL 993.56 µL 

Hydrocodone 299.36 
g/mol 3.34 mM 29.9 µM 6.70 µL 993.30 µL 

Norhydrocodone 
HCl 

321.80 
g/mol 3.11 mM 31.1 µM 6.43 µL 993.57 µL 

Fentanyl 336.47 
g/mol 2.97 mM 29.7 µM 6.73 µL 993.27 µL 

Norfentanyl 
Oxalate 

322.36 
g/mol 3.10 mM 31.0 µM 6.45 µL 993.55 µL 

Cortisol 362.46 
g/mol 2.76 mM 27.6 µM 7.24 µL 992.76 µL 
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Fig. B.2 Saturation isotherms for each target and its best performing aptamer. 
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Dissociation constants were then calculated by fitting the data to a single-site saturation 

isotherm using Graphpad PrismTM according to the equation: 

 𝑦 =  
∙

 Eq. B.1 

Figure B.2 shows the saturation isotherm for all six opioid target-aptamer KD 

determinations, and these results are presented in Table B.2. 

Day-to-day reproducibility was evaluated for three targets (Oxycodone, Noroxycodone, 

and Norhydrocodone) by rerunning the assay on subsequent days.  For these three determinations, 

we calculated the percent difference (mean/standard deviation) for both signal magnitude (BMAX) 

and affinity (KD), obtaining a value of 13.6% for BMAX and 24.5% for KD.  Based on these results 

we determined additional KD determinations unnecessary for hydrocodone, fentanyl, and 

norfentanyl.    

Opioid Quantification 

Calibration curves were prepared by creating a dilution series of the target (opioid) at 

concentrations ranging from 0-200 nM in 50% Urine / 49.5% PBS / 0.5% Methanol.  Aptamer 

solutions of 2 µM were prepared in 50% Urine / 50% PBS.  The binding sample was prepared by 

combing 10 µL of the target each concentration of the target dilution series with 10 µL of 2 µM 

aptamer solution.  To produce the reference solution, 10 µL of each target dilution was combined 

with 10 µL of the RI-matching control solution.  The final aptamer concentration in the binding 

samples was 1 µM, and the final target concentration ranged from 0–100 nM.   

Table B.2. Performance summary for opioid assays. 

Target Kd (nM) LOD (pg/ml) LOQ (pg/ml) Off Target 
Signal[a] 

Quantification 
Error 

Fentanyl 2.48 45 63 4% 5.5% 

Norfentanyl 0.93 81 94 13% 5.6% 

Oxycodone 0.66 28 44 0% 4.4% 

Noroxycodone 1.33 72 183 8% 2.4% 

Hydrocodone 4.49 45 159 0% 1.6% 

Norhydrocodone 0.72 42 84 11% 4.1% 

[a] Determined versus the target opioid’s metabolite or parent compound 
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Fig. B.3 Calibration curves for the six opioid targets. 
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The phase shift between binding and reference sample was quantified with CIR by fitting 

the response to a saturation isotherm.  The slope in the linear region of this curve was used to 

calculate the LOD (3×σ of the instrument baseline noise/slope) and the LOQ (3×σ of replicate 

measurements/slope).  Figure B.3 shows the assay calibration curves for all 6 opioid targets.   

Cross-Reactivity Measurements 

Specificity studies were performed for each of the aptamers to the target metabolite and 

cortisol.  For example, the aptamer for oxycodone was tested for non-specific binding to 

noroxycodone and cortisol, and binding of the noroxycodone aptamer to oxycodone and cortisol.   

Binding samples consisted of a 2000 nM target solution prepared from the working 

concentration (Table B.1, Column D), in 50% Urine / 49%PBS / 1% methanol.  A 50 µL volume 

 

Fig. B.4 Cross-reactivity Studies for 6 aptamer probes vs. their target, off-target, and cortisol. 
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of this solution was further diluted in 50 µL of 50% Urine / 49% PBS / 1% methanol to produce a 

1000 nM solution.  A solution containing 2000 nM aptamer in 50% Urine / 50% PBS was prepared 

from the stock aptamer solution.  Then, 10 µL of the aptamer was incubated with 10 µL of 0 nM, 

1000 nM, and 2000 nM of the target, resulting in final solutions containing 1 µM aptamer and 

1000 nM, 500 nM, and 0 nM target in a solution of 50% urine / 49.5% PBS / 0.5% methanol.   

Reference samples were prepared by adding 10 µL of a 50% urine / 50% PBS solution to 

10 µL of 0 nM, 1000 nM, and 2000 nM of the target, giving final solutions containing 1000 nM, 

500 nM, and 0 nM target in 50% urine / 49.5% PBS / 0.5% meth.   

Sample-reference pairs were measured with CIR with the results from these determinations 

presented in Figure B.4.  In all cases, the response for the aptamers’ designated targets was quite 

large, while the signal for the off-target species and cortisol were at or below the assay’s LOQ.  

The dotted line in Figure B.4 represents the LOQ values for each aptamer assay.  

Quantification of Unknowns 

Test “unknowns” were prepared by spiking blank human urine with the opioid target.  

Then, 10 µL of the unknown was combined with 10 µL of 2 µM aptamer probe in PBS to create 

the binding sample.  The reference sample was created by combining 10 µL of the unknown sample 

with 10 µL of PBS devoid of aptamer.  All unknowns were prepared by a lab member other than 

 

Fig. B.5 FSA-CIR quantification of unknowns, providing <5% error for all species in spiked 
unknown measurements. 
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the “operator,” with the operator blinded to the sample’s true concentration.  The signal for the 

unknowns were fit to the calibration curve to determine the concentration.  All unknowns were 

measured within the linear region of the calibration curves.  The percent error was calculated as 

% 𝑒𝑟𝑟𝑜𝑟 =  .  The unknowns are plotted as open circles in overlaid upon the 

calibration curves in Figure B.3.  The results are summarized in Table B.3 and Figure B.5 and 

illustrate the excellent correlation between the true and unknown values.  

Table B.3. Quantification of Unknowns (values in ng/ml). 

Target 
Unknown 1 Unknown 2 Average 

Error Spiked Measured Spiked Measured 

Fentanyl 0.25 0.26 1.68 1.80 5.5% 

Norfentanyl 1.45 1.51 4.03 4.31 5.6% 

Oxycodone 0.32 0.33 0.95 0.91 4.4% 

Noroxycodone 0.41 0.42 2.53 2.53 2.4% 

Hydrocodone 0.60 0.59 2.25 2.20 1.6% 

Norhydrocodone 0.32 0.31 1.61 1.54 4.1% 
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Pharmacokinetic Modelling 

Oxycodone and noroxycodone concentration-time profiles were calculated using a single-

metabolite model where the primary opioid is eliminated via two pathways: 1) directly through 

urine excretion and 2) by metabolism to a single metabolite and then excretion through urine.  As 

shown below, to calculate the urine concentration of a drug (for example, oxycodone), it is 

necessary to first determine the serum concentration over time.  This is calculated using a first-

order decay, Eq. B.2.[186] 

 𝐶(𝑡) = 𝐼𝐶𝑒  Eq. B.2 

Where IC is the initial concentration and k is the elimination rate constant.  We chose two 

cases in our calculations for the initial concentration (IC).  1) The recommended analgesic doses 

(25 ng/mL [187] and 120 ng/mL [188]) for a newborn, and 2) a high concentration induced by 

illicit opiate use by the mother (300 ng/ml and the 2000 ng/ml) [189]. 

  

 

 
 

Fig. B.6 Single metabolite model of drug elimination. 
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Equation B.3 was used to determine k from the drug’s half-life (𝑡 ), an experimentally 

determined parameter. 

 𝑘 =
( )

 Eq. B.3 

From the work of Valitalo et-al reported half-life values for oxycodone depends on 

numerous factors.  In healthy neonates it is about 4 hours, but can reach 8.8 hours in extremely 

preterm neonates [187].  For healthy newborns, the half-life decreases to about 2.1 hours, a value 

that is approximately the same as that observed in healthy adults [187].  Here we calculated k for 

all cases, from t1/2 = 8.8 to 2.1 

With k in hand we used Eq. B.2 to calculate the serum concentration of drug (oxycodone).    

Urine concentration of oxycodone: As illustrated in Fig. B.6 the urine oxycodone 

concentration is found by estimating the fraction (𝑓 ) of oxycodone metabolized to noroxycodone 

and assuming the remaining oxycodone (𝑓 ) is found (excreted) in the urine.  The rate of 

oxycodone elimination through urine (dCu/dt) is therefore dependent upon the serum concentration 

(C) and the renal clearance (CLr), and can expressed by Eq. B.4: 

 
( )

= 𝑓 ∙ 𝐶𝐿 ∙ 𝐶(𝑡) Eq. B.4 

It should be noted that, the fraction of opioid eliminated through urine (not metabolized) is 

widely agreed upon to be 5-11% in adults [190].  However, higher values have been reported for 

neonates, with some being as high 20% [187, 191].  Here we chose to use a value 𝑓 = 0.2 based 

upon the published values for neonatal metabolite profiles [192].  Because we did not consider 

other metabolites, in our calculation 𝑓 + 𝑓 = 1, which would make 𝑓 = 0.8.   

While few reports exist that quantify neonate metabolite profiles, there are indications that 

choosing a value of 10 mL/min/kg for renal clearance (CLr), represents a relevant value [191, 193-

196]. For subject weight we used 2 kg for a preterm neonate, 3.5 kg for a full-term neonate, and 

7.2 kg for a 6 month old child [198].  Using these body mass values we obtained opioid renal 

clearance values of 20 mL/min for a preterm neonate, 35 mL/min for a full-term neonate, and 72 

mL/min for a 6 month old.   

To obtain the urine concentration of oxycodone as a function of time, (see Fig. 6.5 and 

B.7, blue line) we divide the oxycodone elimination rate determined by using Eq. B.4, by the rate 
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of urine production.  Here we used urine production rates of 0.5 mL/hr for a preterm neonate and 

1 mL/hr for both a full-term neonate and a 6 month old child [199]. 

Now to determine the urine noroxycodone, the serum noroxycodone (primary metabolite) 

concentration must be found.  This value (Cm) is dependent upon the rate of oxycodone 

metabolism and the rate of noroxycodone elimination in urine, mathematically expressed as Eq. 

B.5: 

 𝐶 (𝑡) = 𝑓
∙

(𝑒 − 𝑒 ) Eq. B.5 

Where k is the elimination rate constant of the drug (oxycodone) and IC is the initial 

oxycodone serum concentration, fm fraction of oxycodone metabolized to noroxycodone, km the 

elimination rate constant of the metabolite (noroxycodone), and (tm1/2) is the metabolite half-life.  

While there is limited available data on the exact neonatal opioid metabolite half-life, the existing 

literature suggests that 𝑡 / ≈ 𝑡 / , in other words the parent drug and metabolite both exhibit 

similar half-lives [187, 192].  Therefore, our calculations assumed km=k [197, 200].  Using these 

values and Eq. B.5 we obtained the serum concentration of noroxycodone. 

With the serum values in hand we can now calculate the rate of noroxycodone elimination 

(the metabolite) in urine (dCmu(t)/dt). These values were calculated using Eq. B.4 in the same way 

as for oxycodone, using the appropriate parameters for CLmr and fmr.  In healthy adults, a small 

fraction of noroxycodone is eliminated through metabolism to noroxymorphone.  However, in the 

only published results of oxymorphone/noroxymorphone quantification in neonates, the 

concentration of both species was below the limit of quantification [192].  Therefore, we used 

𝑓 = 1 (all noroxycodone is eliminated through urine, none is metabolized further).  The value 

for renal clearance of primary drug was used as the renal clearance for noroxycodone (𝐶𝐿 =

𝐶𝐿 ), due to the same observations that led us to use km=k [187, 192, 197, 200]. We then 

calculated the urine concentration of noroxycodone over time by dividing the rate of noroxycodone 

elimination by the rate of urine production. 
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Appendix C: CIR Analysis Program Tutorial 

 

I have shown in chapters 5, 6, and 7 that the free-solution assay (FSA) and the compensated 

interferometric reader can be used effectively for a plethora of biomedical research and preclinical 

applications.  This appendix is intended to be an overview of the operation and trouble-shooting 

procedures for a data analysis program which is intended to simplify system operation.  

Figure C.1 shows an example of the raw data collected while operating the CIR, a 

spreadsheet of radians vs time.  The first three rows consist of 1) The date of data collection, 2) 

the time data collection began, and 3) the time data collection terminated.  Row 5 contains headers 

for the data columns, with the data arranged as follows: A is time, B is window 1 phase, and C is 

W2 phase.  Column D contains the bounds for the camera windows.  Column F contains the 

difference output.  This raw data can be plotted in excel, although selecting regions to average for 

further analysis is inefficient in Excel.  Interpretation of these traces can be unintuitive.  For this 

reason, as part of my recent efforts I have been working on automating data collection.  Thus far I 

have a program that saves the data as a tab-delineated spreadsheet, which can be opened in any 

common spreadsheet or text program for easy plotting, curve fitting, or other analysis.   
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Fig. C.1 Raw data output: The data collection program saves the data as a tab-delineated 
spreadsheet, which can be opened in any common spreadsheet or text-editing program.   
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Auto analysis program 

As with any LabVIEW VI, the Auto Analysis program will run when it is first launched.  

However, if the program is not running, click the top left button with a right-facing arrow icon 

(Fig C.2).  The program can also be stopped at any time by clicking the button with red-lettered 

“STOP.”  The program can then be started again with no interruption by clicking the right-facing 

arrow again.  On older computers, it can be helpful to stop the program when not using it, then 

restart it when needed.  The auto-analysis program can slow down the performance of other 

programs on the computer but will not do so when stopped.  NOTE: stopping the program using 

the red stop sign in the top left (next to the “run” arrow) will cause errors, and the program may 

cease to function correctly when restarted.  If this happens, simply close the Auto Analysis 

program and reopen it. 

 

  

 

Fig. C.2 Auto analysis program user interface. 
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Step 1: Load data 

To begin (Step 1), the user loads the desired raw data by clicking the “Open File” button 

and selecting the raw data from the dialog box (Fig. C.3).  To the right of this button is an area 

where the column corresponding to the appropriate data can be adjusted.  For standard operation, 

these values never need to be changed, but future updates to the analysis protocol may warrant 

analysis of different columns within the raw data output structure.  Briefly, time (X axis) will be 

column 0, Window 1 and 2 will be column 1 and 2, respectively, and the differential readout will 

be column 5. 

 

 

  

 

Fig. C.3 The program will run when launched, but if the program is stopped or paused, click 
the arrow to run.  To load data, click the “Open File” button and a dialog box will appear.  
Select the raw data to be analyzed.  For standard operation, there is no need to adjust the “Data 
column” inputs. 
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Step 2: Select Region of Data for analysis 

 

Once the data is loaded, the next step is to select the duration of data containing the first 5-

replicate measurements of the first test/reference solution pair.  To do this, use the pointer to click 

and drag the green and blue cursors to surround the desired data region, as illustrated in Fig 4.12.  

NOTE: The green cursor should go to the left and top of the data region with the blue cursor on 

the right and bottom.  If the cursors are not visible, then they are outside of the bounds of the graph.  

The cursors can be reset to their default position by clicking the “Raw Data Reset Cursors” button 

to the right of the top plot (Fig. C.4). 

 

Fig. C.4 Use the blue and green cursors to select the phase data from the concentration to be 
analyzed.  Reset the location of these cursors using the “Raw Data Reset Cursor” button. 
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The middle window shows a zoomed-in view of the data selected in the top panel.  The top 

panel’s cursors control the bounds for this graph.  The blue and green cursors in the middle graph 

will control how the program discriminates “solution” and “oil” regions of the trace and can be 

moved with the pointer.  The first cursor (from the left, solid green) should be placed at the 

beginning of the first flat region at a phase shift of 0 after the long rinse.  This is the region of the 

trace where the reference solution is in both windows.  Ensure the cursors is placed within the flat 

region (it is ok to miss the first few data points to err on the side of caution).  The second cursor 

(solid blue) should be placed just before the end of this same flat region.    As shown in Figure 13, 

there will be 19 flat regions between “Reference in both” and “End of Region.”  The dotted green 

cursor should be placed after the last flat region.  In most cases, the middle plot will look like it 

contains no data here, because the oil will cause a phase-shift excursion large enough to be off the 

scale of this plot.  If the cursors are not within this window, they can be reset to a default value 

within this window by clicking the “Selected Data Reset Cursors” button (Fig. C.5). 

The first two cursors will correspond to the duration when the first reference drop is in 

front of both window 1 and window 2.  Large excursions from this baseline that exceed the cutoff 

 

 

Fig. C.5 The middle window shows a zoomed in view of data selected in the top panel. 
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(detailed below) will be denoted as “oil.”  The last cursor denotes the end of this solution pair’s 

replicate droplets, so no data after this cursor will be considered when the program averages and 

arranges the data for output.  Behind the scenes, here the program will average the data points 

between the green and blue cursors and that value will be the “baseline.”   

If the difference data is confusing or the start/end location of the droplets is difficult to 

discern, the second tab on this middle window (Selected Data W1-W2) contains a plot of the 

individual windows overlaid (Fig. C.6).  There are no controls on this tab, and the cursors cannot 

be moved from this tab; they reflect the location of the cursors in the first tab (Selected Data Diff).  

This tab can be useful to aid the user in discriminating where the first and last droplets begin and 

end. 

 

  

 

Fig. C.6 Use the tabs at the top of this middle window to switch between a plot of the 
difference data (Fig. C.5), or the raw data for both windows (window 1 is in blue, window 2 
is in red).  This is not necessary for analysis, but this is a useful plot to aid the user determine 
where the data begins and ends. 
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Step 3: Set cutoff threshold 

To discriminate between usable data and oil, the program uses a cutoff with a user-

adjustable threshold (Fig. C.7).  Two criteria (with two independently adjustable thresholds) are 

used here: 1) the absolute magnitude of the difference signal relative to the baseline and 2) the rate 

of change of the signal.  Any time point where either the absolute magnitude or rate of change 

exceed their respective cutoff value is denoted as a “gap,” and this is illustrated on this graph as 

any time point with a blue background.  The operator adjusts the level of the threshold by clicking 

the horizontal line with the pointer, then dragging it up or down vertically.  

 

  

 

Fig. C.7 Select the “Set Threshold” tab to display a plot of cutoff criteria.  The vertical blue 
bars show where the algorithm has “cut” data.  This should correspond to data containing oil.  
Raise or lower the horizontal red and white bars to change the threshold parameters. 
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The absolute magnitude of the signal is displayed on the plot as the solid red area, as 

explained in Fig. C.8.  The tall, sharp red peaks correspond to the time when oil passes through 

either window, as the FC-40 oil used to separate solutions has a much different RI than the aqueous 

solutions.  Areas with a red arrow correspond to where the same test or reference solution fully 

fills both W1 and W2, therefore the difference is 0.  Areas marked with a white arrow correspond 

to a test solution in W1 and reference solution in W2, or vice versa, where the signal magnitude is 

appreciable (~0.2 radians).  The cutoff for this threshold can be adjusted by moving the red 

horizontal bar using the pointer.  If you cannot see the red bar, click the “Reset Threshold Cursors” 

button to the right  

 

  

 

Fig. C.8 Cutoff threshold tab explanation: Areas with a red arrow correspond to where the same 
sample or reference fully fills both W1 and W2, therefore the difference is 0.  Areas marked 
with a white arrow correspond to a sample in W1 and reference in W2, or vice versa, where the 
signal magnitude is appreciable (~0.2 radians).  The tall peaks in between arrows correspond 
to where the oil separates sample drops. 
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The second criteria is rate of change, calculated using Eq. C.1: 

 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 =  
| |

 Eq. C.1 

Where the rate of change is calculated as the absolute value of the difference between each 

data point (Xt) and the data point at the previous time (Xt-1).  The threshold cutoff for rate of change 

works similarly to the threshold for absolute magnitude and is controlled by the white horizontal 

bar. 

In the vast majority of cases, either the magnitude or rate of change cutoff will suffice to 

properly partition the data, however in some cases one may miss the “gap” between solutions.  For 

this reason, both are included. 

The threshold values are set appropriately when a solid blue vertical bar completely fills 

the space between test/reference solution plateaus (Fig. C.9).  An example of the cutoff threshold 

set too high, too low, and properly configured is displayed in Fig C.10.  

 

 

 

 

Fig. C.9 Cutoff threshold explanation 
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Fig. C.10 Cutoff threshold example.  The vertical blue bars represent where the signal value 
has exceeded the cutoff, and therefore where the program has decided there is a “gap” between 
sample/reference measurements.  In panel A, the threshold bar is set too high, and most of the 
“gaps” are missed.  In panel B, the threshold bar is set too low, and therefore the program 
counts some of the Sample-Reference data regions as “gaps.” Panel C shows the threshold in 
the “goldilocks” zone where all “gaps” exceed the threshold but none of the usable data does. 
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Step 4: Data partition and averaging 

The program decides where the data of interest are based on the spaces between the “gaps” 

(the blue regions in Fig. C.10).  All data points between two gaps are averaged together, and this 

represents the average value of a single differential measurement.  When all cursors and thresholds 

are set properly, a 5 test/reference-sample pair train will be partitioned into 19 averages, and these 

values will be plotted in the bottom panel window as displayed in Fig. C.11.   

In this bottom panel, the large red dot indicates the calculated average value for its segment 

of data.  Each red dot’s X value corresponds to the middle of its region’s time, and the Y value is 

the average phase shift over that time period.  The smaller pink dots indicate where that region 

begins and ends (Fig. C.11).  

 

 

 

Fig. C.11 The data is partitioned into sample-reference regions according to the cutoff criteria 
then averaged over the length of a sample-reference measurement.   
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If all red dots are present and in the correct location, then it is time to tabulate and save the 

data.  

  

 

Fig. C.12 The large red dots are plotted in the center of each averaged data region.  The red 
dots’ X axis value is the average time of that region, and the Y value is the average phase shift 
of that region.  The smaller pink dots indicate the start and end of the data region that is 
averaged.  
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Step 5: Tabulation of averages 

If the large red dots are placed correctly, click “Update Table” to save the averages into a 

table.  Repeat steps 2-5 for all test/reference solution pairs (standard of 6 per tray).  If the large red 

dots are placed incorrectly, adjust threshold cutoff (step 3) or the initial reference bounds (step 2). 

 

  

 

Fig. C.13 Clicking “Update Table” saves the averages to the table on the right.  These values 
are plotted as a scatter dot plot underneath this table. 
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Appendix D: CIR Setup and Troubleshooting 

 

This appendix contains a compilation of setup and troubleshooting procedures that cover 

several aspects of CIR operation that were not detailed elsewhere. 

 

Capillary setup for CIR operation 

 

Capillary Coating Procedure 

These steps are best performed with the capillary mounted on the CIR while watching the 

fringes.  

1. Flow 1mL of DI H2O (200 µL/min) 
a. At this point the fringes will be high contrast and uniform 

2. Flow 100 µL of 1mM NaOH, followed by 500 µL DI H2O (200 µL/min) 
3. Flow 100 µL of 1mM H2SO4, followed by 1mL of DI H2O (200 µL/min) 

a. At this point the fringes will still be high contrast and uniform 
4. Flow 300 µL of Sigmacote (50 µL/min) 

a. Fringes will become blurry, not well defined, “wiggly” 
5. Flow several full syringe volumes of air through the capillary to dry it (pull 

quickly by pump or by hand) 
a. Fringes will disappear, except briefly when small drops of Sigmacote 

move through 
6. Flow 1mL DI H2O, followed by 50 µL of 1mM NaOH (200 µL/min) 

a. Fringes will become slightly more uniform, but will still be “wiggly” 
7. Flow 1mL DI H2O (200 µL/min) 

a. Fringes should return to high contrast, uniform.  If they do not, flow 
some Fluorinert through capillary, followed by more water. 

8. Begin Assay once fringes return to high contrast/uniform and are stable over 30 
seconds while pulling water at 200 µL/min 

 

The capillary should be re-aligned using the matrix you will run assays in (buffer, serum, 

etc.).  At this point the capillary is ready to begin assays.   
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Capillary/Dropix Interface 

The sample collection Hook: The Dropix sample hook guides the tube/capillary through 

the oil reservoir and into the bottom of the sample well tray, guided by the Dropix.  The inner 

diameter (0.8 mm) holds the tubing secure so that there is no movement of the opening of the 

tubing relative to the sample hook during operation.  The original sample hook was designed for 

flexible FEP tubing and makes a very tight 180° turn with a radius of ~2.5 mm.   

The HT-CSI system requires a single piece of uninterrupted capillary from sample 

collection to detection.  The turn in the original hook was too tight to allow capillary through 

without breaking.  The hook was modified to enable capillary (450 µM OD) to pass through  

The original hook is removed using strong wire cutters or a Dremel tool with cutting 

attachment.  This leaves the hook fitting without the hook. 

To facilitate capillary handling, a 12-gauge blunt needle is bent (using a C-Clamp and a 1” 

OD metal pipe).  Then, the needle is attached to the hook fitting by a 1” steel “arm” bolted into the 

hook fitting by ¼”-20.  The needle is secured to the arm using a pipette tip and superglue. 

 

Fig. D.1 The unmodified and modified Dropix Sample Collection Hook. 
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The sample collection end of the needle should be cut off (using Dremel cutting tool) to 

allow 2mm of clearance between the needle and the bottom of the sample tray when both are 

installed on the Dropix, and the Dropix is in the “Up” configuration (collecting sample).   

A length of 1/16” OD / 0.02” ID PEEK tubing is inserted into the bent needle so that ~1.5” 

extends from the top of the ensemble and 1mm extends from the sample collection opening.  The 

PEEK is necessary to firmly secure the capillary, and to ensure that ragged/uneven/dented portions 

of the steel tube do not damage the capillary as it is slide through the needle tubing. 

Capillary is slid through the needle until 2mm extends past the tip of the PEEK.  This 

means the capillary will extend 3mm past the end of the needle.  When the Dropix is in the “Up” 

configuration, the capillary will extend 1mm into the sample well. 

If the needle does not extend far enough, the Capillary may “shift” it’s relative location 

and miss sample wells. 

If the needle extends too far, the needle can hit the sample well tray.  This will either:  

 

Fig. D.2 Schematic of the tip of the sample collection hook, peek tubing, and capillary 
opening. 

Sample Well

Needle

PEEK

Capillary
2m

m
1m

m
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1) Bump the tray, knocking it from the Dropix rack, causing the Dropix to miss collection 

of all subsequent drops OR even knock the tray off the device completely, spilling samples 

everywhere.  2) Cause the needle to enter the sample well.  This can cause the sample to “run” 

down the needle (losing all sample into the oil bath), or cause sample to reside inside the tip of the 

needle, between the needle and the PEEK tubing.  This sample can then interact with sample in 

subsequent wells causing carryover between samples 

If the capillary does not extend far enough, some or all samples will be missed by the 

capillary, resulting in no sample drop introduction to the CIR system 

If the capillary extends too far, as the hook moves from one well to the next, the end of the 

capillary will not lower enough to clear the bottom of the sample well.  The capillary tip can then 

break off as it hits the bottom of the sample well tray 

If the PEEK extends too far, the PEEK can enter the sample well, collecting sample in the 

“collar” between the PEEK and capillary.  This sample can be introduced to subsequent wells, 

causing carryover between wells. 

If the PEEK does not extend far enough to fully cover the opening of the needle, the 

capillary can scrape against the needle and crack/break/score and snap off 

The circular opening to the capillary must be flat, uniform, and free of obstructions/cracks. 

Obstructions and cracks can impede droplet flow (causing irregular flow speed), cause 

droplet breakup (turbulent flow), or harbor sample that will cause carryover in subsequent sample 

wells. 

The capillary should be prepared by light scoring with a freshly broken edge of silicon 

wafer, then gentle bending of the capillary to snap off the edge.  This should be done after the 

capillary is pushed through the needle, as the capillary opening is easily broken while inserting 

through needle. 
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Capillary/Hook placement 

The orange peek tubing should stop right where the metal tube hook does, and the capillary 

should extend upwards from this until it is 1mm below the sample wells.  CHECK THIS BEFORE 

EVERY ASSAY. 

The tip of the capillary can become damaged/moved during regular use.  Score-off the first 

~3 mm of capillary at the start of each new assay if the capillary is not replaced. 

Once hook and capillary are in place, run the WELL TEST Dropix protocol which will 

rapidly move the capillary into and out of each sample well.  The capillary should not move during 

this test, if it does, reset the capillary, adjust its location, and try again.  Do this before placing the 

hook in the oil bath. 

  

 

Fig. D.3 To adjust the capillary height, place the sample collection hook on the dropix with 
the oil bath removed.  Then, snap a sample well tray into place and ensure a 1mm gap between 
the opening of the capillary and the bottom of the tray while the dropix is in the “down” 
(resting) position. 
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Changing the capillary between assays 

1. Remove old capillary 
a. Unscrew Luer-Lock connection to syringe, empty syringe into waste 
b. Gently tug on capillary to remove it from Dropix sample collection hook 
c. Unscrew mounting plates holding capillary in v-groove 
d. Discard old capillary in glass waste 

2. Prepare New Capillary 
a. Cut a 65cm length of capillary from the spool by gently scoring the capillary with 

the sharp edge of a shard from a shattered silicon wafer 
b. Connect one end of capillary to syringe through Luer-Lock 
c. Apply capillary coating 

i. Flow 1mL of water through the capillary at a rate of 200 μL/min 
ii. Flow 300 μL of hydrophobic coating through capillary at a rate of 50 

μL/min for 
iii. Pull air through the capillary by hand for 3 full syringes 
iv. Flow 500 μL of water through the capillary at a rate of 50 μL/min 
v. At this point, flowing water through capillary should not cause more 

fringe drift.  If it does, continue flowing water through at 50 μL/min until 
fringes no longer drift 

3. Mount Capillary 
a. Lay capillary across the mounting block, ensuring it rests flatly in the groove.  

Screw mount plates down gently to hold capillary in place. 
b. Thread open end of capillary through the Dropix sample collection hook and 

mount sample collection hook on the Dropix robotic arm 
4. Align Capillary 

a. Ensure the capillary is in the center of the stretched laser beam profile where the 
beam intensity is uniform 

i. The resulting fringes should be straight and with uniform intensity along 
the length of the capillary.  If they are not, ensure the mounting plates are 
flat with even amounts of pressure, ensure the capillary is not twisted or 
bent. 

IMPORTANT NOTE: Never touch the region of the capillary where the laser impinges.  

Any contact, with any material, will result in scratches/smudges on the capillary surface that will 

result in SEVERELY reduced interference fringe contrast ratio and uniformity. 
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Sample well tray preparation and cleaning. 

The 24-well sample trays are milled from solid PEEK by CNC (Computer Numeric Control 

machining) to ensure biocompatibility.  Before each use, the trays are washed by submersion with 

agitation for 5 minutes in each of the following, and rinsed with water between each: Methanol, 

Acetone, Chloroform, 10mM NaOH, 10mM Sulfuric Acid.  The trays are then dried in an oven at 

80°C for at least 30 minutes and allowed to cool to room temperature before use. 

 

Standard Tray Wash Procedure 

1. After use, keep trays in a soapy water bath until ready to clean (they can stay in this bath 

for up to 1-2 days) 

2. Prepare 5 glass jars with the following solutions: 

a. Methanol, Acetone, Chloroform, 1mM Sulfuric Acid, 1mM Sodium Hydroxide 

3. To begin cleaning 

a. Rinse trays under flowing tap water for 1 minute 

b. Shake off excess water, then place trays into glass jar with Methanol.  Close the jar 

and gently swirl for 1 minute. 

c. Remove trays, rinse, and repeat step 2 for Acetone, Chloroform, Acid, and Base 

d. Rinse trays in DI water for 1 minute 

e. Place trays in warm oven (80°C) to dry for at least 30 minutes.  Trays can be stored 

in the oven for several days before use.  For longer storage times, trays can be kept 

in a sealed container at room temperature.  Suggested storage vessels include 

Tupperware and Ziplock bags. 

f. Trays should be cooled to ambient temperature before use. 
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Oil Bath Preparation 

To fill the oil bath to the proper level before an assay, the following steps are recommended.  

With no sample well strip in place, snap the hook onto the Dropix Guide.  Fill the oil bath so that 

the oil is ~1 mm above the top of the capillary.  NOTE: This will fill the oil bath to higher than the 

MITOS recommended amount.  Proper oil level is achieved when there is no meniscus resulting 

from the capillary above the oil level (Fig. D.4).  Ensure to replenish the oil after each assay. 

 

 

 

 

 

Fig. D.4 Incorrect and correct filling of the dropix oil bath. 
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Diode laser mount and power supply 

The CIR uses a low-cost diode laser with integrated beam-conditioning optics to produce 

the elongated laser profile.  The diode laser used in the experiments in this dissertation is produced 

by Lasermate (model PLP6395AH).  A diode laser’s wavelength and intensity are very sensitive 

to the supplied current, so to ensure wavelength and intensity stability, we powered the diode laser 

using an Acopian A5MT1200 high precision linear regulated power supply.   

The diode laser was mounted using a C-Clamp collar-style housing manufactured at the 

Vanderbilt Physics and Astronomy Machine Shop (Fig. D.5).  This housing was designed to fit 

onto a standard optical mounting. 

Using the Acopian power supply, this diode laser has a lifetime of about 6 months of 

continuous use, although the lifetime can be significantly shorter if the diode laser is not handled 

with care.  Diode Laser End of Life (EOL) is signified by laser flickering, dimming, or non-

uniformity in the beam profile.  

 

  

 
 
Fig. D.5 Diode laser power supply and housing/mount. 
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Arduino Power Supply 

In several iterations of the instrument, the diode laser is powered by an Arduino UNO 

microcontroller board.  The diode laser is powered by the Arduino’s built in power converter, 

which produces a stable 5v output.  The Arduino power circuit is modified by the addition of 

3×100 nF capacitors across the leads, and a potentiometer for power output control (Fig. D.6). 

To prepare the Arduino UNO to power the diode laser: 

1. Solder these connections to the Arduino shield: 
a. Three capacitors in parallel soldered across ground/5V 
b. Potentiometer soldered across Ground/5V 
c. 2 1x4 connectors to attach Leads to laser 
d. 1 1x8 connector to connect Ground/5V to shield 

2. Attach shield to Arduino Using connectors 
3. Attach Leads to laser 

a. Black = Ground 
b. Red = 5V after Potentiometer 

4. Dial in appropriate current using potentiometer 
a. “Appropriate” current is lowest current that produces strong, uniform beam.  

During initial setup, current can be turned to 100% (turn the potentiometer all the 
way down) to produce bright beam. 

b. Once beam is impinging on capillary (after alignment of the mirrors, camera), 
introduce liquid solution (water or buffer) and adjust the potentiometer until bright, 
high contrast, stable fringes.  This is typically at ~95% (turn potentiometer all the 
way down, then back off slightly).  

 
 
Fig. D.6 Arduino UNO used as the Diode laser power supply 
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Data collection program 

These steps describe the process used by the Data collection program.  This has been 

implemented in both the CIR analysis program developed in LabVIEWTM and in a commercial 

prototype, Redpoint. 

1. Acquire Camera image 
2. Partition camera image into two discrete windows 

a. This is hard coded to be the 500 pixels at either end of the camera image 
b. The fringes from these 500 pixels are averaged to create the fringe signal for each 

window 
3. Selection of fringes from fringe pattern for both windows for Fourier Transform 

a. The user selects a set of 5 fringes from the signal for each window.  These fringes 
are selected during alignment and this window is locked in for the duration of the 
experiment (all samples in a binding curve OR all samples in a calibration curve 
and all unknowns to be measured and fit to the curve). 

b. This selection goes from the top of the first fringe to the top of the 5th fringe 
c. The 5 fringes for both windows are Fourier Transformed.  The phase for the 

dominant frequency is recorded for both windows, and the difference in this phase 
is recorded as the phase shift 

Repeat this loop for duration of measurement.  The result is a trace of phase-shift data the 

corresponds to the length of the experiment. 
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