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CHAPTER I 

 

 

INTRODUCTION 

 

 

The appropriate modeling of the biomechanics of the brain for use in interventional applications has 

significant clinical implications. It has the potential to provide noninvasive prediction of therapy delivery (Dai et 

al., 2016), reduce intraprocedural imaging requirements (Chen et al., 2011), and potentially reduce unnecessary 

procedures (Miga, 2016). One such application is image-guided neurosurgery (IGNS) (Schulz et al., 2012). 

During neurosurgery, the brain shifts due to a variety of intraprocedural factors such as swelling, hyperosmotic 

drugs, and/or changes in cerebrospinal fluid levels (Sun et al., 2014). As a result, the patient anatomy represented 

in the preoperative imaging no longer matches the intraoperative presentation and compromises the navigation 

information provided via IGNS. An accurate prediction of brain deformation could allow systems to be 

constructed that could compensate for intraoperative brain shift and reestablish alignment fidelity during IGNS 

(Miga et al., 2016), (Nimsky et al., 2000), (Ohue et al., 2010). While the previous example is primarily concerned 

with tissue localization, another application heavily dependent on understanding brain biomechanics is convection 

enhanced delivery (CED). In this case, the important goal is to understand how drug is distributed in the brain via 

direct interventional catheter. While still having aspects of localization central, this has a wider concern about the 

distribution and extent of a delivered drug therapy within the tissue. In the example of CED, modeling could be 

used to more accurately forecast the drug delivery and as a means to optimize convection parameters and 

consequently enhance treatment (Lieberman et al., 1995), (Linninger et al., 2008), (Raghavan et al., 2006). Each 

of these applications are clinically distinct treatments but are intrinsically linked in soft-tissue brain biomechanics. 

The brain itself is a highly complex organ with a variety of physical structures. In addition, brain tissue 

exhibits properties of heterogeneity and anisotropy. Historically, the Monro-Kellie doctrine has been a central 

working description of brain biomechanics which states that the cranial cavity is a fixed volume that is the sum 

of the volumes of brain tissue, intracranial blood, and cerebrospinal fluid (CSF) (Monro, 1783). It naturally 

follows that with an increase in one of the components, there must be a decrease in one of or both of the other 

(Monro, 1783). Treating the brain as only a solid tissue (often the case in brain models) negates the inherently 

biphasic nature of the brain within the cranial environment. In addition to these constitutive components, the 

anatomical geometric configuration of the brain is also quite complex. The brain is encapsulated by the dura, 

which is a fibrous membrane (Siegel and Sapru, 2015). The dura extends into folds of the brain forming the dural 

septa, which consist of the falx cerebri and the tentorium cerebelli; the dural septa serve the purpose of reducing 

brain displacements during motion (Siegel and Sapru, 2015). The falx cerebri partially separates the cerebral 

hemispheres, and the tentorium cerebelli separates the occipital lobes and the cerebellum (Siegel and Sapru, 

2015). The pattern on the surface of the brain consists of sulci and gyri. The sulci are the groves in the brain, and 

the gyri are the plateaus formed by the boundary ridges of sulci pairs (Siegel and Sapru, 2015). There are also the 

four connected ventricular cavities present within the brain to consider as well. These cavities are filled with CSF, 

and they are connected to the central canal within the spinal cord and the space around the brain (Siegel and 

Sapru, 2015). Intracranial pressure is the pressure measured within the cranial vault (Freeman, 2015). 

Experimental evidence suggests that intracranial pressure can vary spatially within the brain. This was previously 

suggested in a porcine study in which an extradural temporal mass lesion was simulated with an epidural balloon 

(Wolfla et al., 1997). Separate but similar experiments with an expanding frontal mass also reported similar 

findings (Wolfla et al., 1996).  

In addition to a complex geometry, brain tissue consists of both grey and white matter. Grey matter 

consists mostly of cell bodies, and white matter is mainly nerve fibers (Siegel and Sapru, 2015). Quantifying the 

properties of brain tissue is necessary for accurately modeling the biomechanics of the brain. There have been 

attempts to quantify the material properties associated with these tissues. One approach, used in multiple studies, 

was to attempt to quantify these properties using magnetic resonance elastography (Green et al., 2008), (Sack et 
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al., 2008). Another group attempted to quantify the large strain properties of grey and white matter in rectangular 

tissue samples undergoing shear testing (Prange and Margulies, 2002). A separate, in vitro, study quantified 

samples of swine brain tissue in uniaxial tension (Miller and Chinzei, 2002). These studies and many others, 

which range from in vitro to in vivo testing, vary in protocols and in results (Chatelin et al., 2010). These 

inconsistent property values obtained in these many studies have led to variability within existing biomechanical 

modeling techniques. With respect to the exchange with interstitial fluid spaces within brain tissue, grey matter 

is not easily distorted and typically only changes its fluid content by approximately 1.5%, whereas, white matter 

has a much more compliant structure and can increase by as much as 10% (Doczi, 1993). 

There is an extensive history of using computational models in a patient specific manner (Clatz et al., 

2005), (Coffey  et al., 2013), (Miga et al., 1997), (Miller and Chinzei, 1997), (Mostayed et al., 2013), (Sun et al., 

2014). Despite extensive research done on the subject of biomechanical modeling of the brain, there is still not a 

general consensus on what representation should be used (Gerard et al., 2017), (Kyriacou et al., 2002), (Miga, 

2016), (Wittek et al., 2009). Model types include viscoelastic (Hagemann  et al., 2002), (Miller, 1999), poroelastic 

(Miga et al., 2001), (Paulsen et al., 1999), elastic (DeLorenzo et al., 2012), (Ferrant  et al., 2002), and hyperelastic 

(Karami et al., 2009), (Wittek et al., 2009) models. Evidence for all these model types have been provided by 

many research groups in various clinical applications. In this work, we continue to investigate a poroelastic model 

which treats the brain as a material consisting of both an elastic solid matrix and a fluid component. We suggest 

this biphasic representation is in better agreement with the observations that led to the Monro-Kellie Doctrine. 

Going further, with respect to enhanced anatomical modeling, some work has been accomplished. One group 

used an inhomogeneous patient-specific model of the brain (Hu et al., 2007). In another investigation, 

improvements in subsurface shift were found in seven clinical cases by accounting for the dural septa (Chen et 

al., 2011). Another group investigated the influence of CSF boundaries and hippocampal fissures on convection 

enhanced delivery simulations. They concluded through simulations that the presence of fissures in the model 

influenced their simulation results (Dai et al., 2016). These investigations, and others like them, point towards the 

significance of accounting for the geometry of the brain. Ultimately, the predominant reason for variations in 

representation, both constitutive and geometric, arises from common investigational approaches that attempt to 

study soft-tissue in isolation rather than generating systems for in vivo observation. Unfortunately, this is a product 

of the extremely challenging nature of in vivo work and the deployment of instrumentation within that domain.  

With this background in mind, we present three main contributions of this investigation. First, we 

demonstrate the ability to accurately model in vivo interstitial pressures in a porcine experiment using a poroelastic 

model. While this work does not validate the use of the poroelastic model in the brain in all applications per se, 

it does provide meaningful evidence for its consideration in the appropriate modeling of brain. The second 

contribution is a systematic investigation into the set of boundary conditions and mesh specifications, 

representative of anatomical characteristics of the brain, necessary to capture the behavior of the brain. Finally, a 

set of approximate values describing brain tissue material properties is provided. 
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CHAPTER II 

 

 

METHODS 

 

 

In Vivo Porcine Data 

 

The in vivo data used for this investigation came from a porcine experiment done by Miga et al. (Miga et 

al., 2000). Miga et al. performed this study, approved by the Institution Animal Care and Use Committee at 

Dartmouth College, on a series of Yorkshire pigs from Parson’s Farm, Hadley, MA (Miga et al., 2000). After 

being anesthetized, the porcine subject had pressure transducers (Johnson & Johnson Codman Microsensor ICP 

Transducer ~ Raynham, MA, Part No. 82-6631) implanted in the midbrain/frontal region of each hemisphere 

(Miga et al., 2000). One transducer is in the hemisphere ipsilateral to the simulated surgical load, explained below, 

while the other transducer is in the contralateral hemisphere. These sensors measured the interstitial pressures 

during the application of loading. Before any surgical procedure was performed on the porcine subject, an MR 

(magnetic resonance) of the neuroanatomy was acquired (Miga et al., 2000). In addition to the pressure 

transducers, 1 mm stainless steel beads were implanted into the parenchyma in a grid-like fashion in order to 

monitor brain tissue movement during the study (Miga et al., 2000) (note in (Miga et al., 2000), gross pathology 

was performed post-mortem to assess implant reactions, which were minimal). A temporal craniotomy was 

performed on the porcine subject, and a surgical-like load was applied through it against the intact dura with a 

piston-like source. This piston was attached to a stereotactic frame, and the piston was translated in increments 

of 2 and 4 mm (Miga et al., 2000). At the start of the experiment, a baseline CT (computed tomography) scan of 

the head was obtained. A CT scan was also performed after each piston translation, enabling the measurement of 

the bead displacement at the conclusion of each translation. The interstitial pressure was measured continuously 

during all piston translations. A more complete description of the protocols followed in this animal study can be 

found in the original paper located in the references (Miga et al., 2000). For the purposes of our investigation, the 

pressure and displacement data from three piston translations (8 mm, 10 mm, 12 mm) were used. 

 

Biphasic Poroelastic Model 
 

In this investigation, we are using a poroelastic model of the brain. This poroelastic model comes from 

Biot’s description of consolidation theory (Biot, 1941) and has been extensively developed for brain biomechanics 

(Miga 1998). The governing equations of this model are: 

 

∇ ∙ 𝐺∇𝒖 + ∇
𝐺

1−2𝑣
(∇ ∙ 𝒖) − 𝛼∇𝑝 = 0         (1) 

𝛼
𝜕

𝜕𝑡
(∇ ∙ 𝒖) +

1

𝑆

𝜕𝑝

𝜕𝑡
− ∇ ∙ 𝑘∇𝑝 = 0          (2). 

 

The variables in (1) and (2) are identified in Table 1. Equation (1) relates mechanical equilibirum to the 

interstitial pressure gradient. Equation (2) relates volumetric strain to the conservation of fluid in a porous media. 

The governing equations are solved using the Galerkin finite element method in 3-dimensions (3D) with 

linear tetrahedral elements (Lynch, 2005). The full weighted residual, finite element representation of (1) and (2) 

have been previously described (Paulsen et al., 1999). Fully implicit time stepping is required for temporal 

integration (Miga et al., 1998). The time step in the three piston pushes examined in the scope of this investigation 

is 90 seconds. The model is solved with a direct solver package, MUltifrontal Massively Parallel sparse direct 

Solver (MUMPS) (Amestoy et al., 2001), (Amestoy et al., 2006), and utilizes a sparse matrix library, Portable, 

Extensible Toolkit for Scientific Computation (PETSc) (Balay et al., 2016b), (Balay et al., 1997), (Balay et al., 

2016a). 
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We generate two finite element meshes to perform this investigation, both representing the same porcine subject. 

We make the meshes by segmenting the porcine brain from the MR series taken during the animal study. A single 

surface description of the brain with the ventricles is created using the marching cube algorithm from the manually 

segmented brains (Schroeder et al., 1996). Then a linear tetrahedral element mesh, visualized by the outer 

boundary of Fig. 1 is generated using a custom software based on the surface description (Sullivan et al., 1997). 

The CT and MR spaces are coregistered to one another, ensuring that the transducer and bead positions determined 

in measurement space (CT) are all located in computational model space (MR) (Miga et al., 2000). In order to 

represent the heterogeneity of brain matter, tetrahedral elements are classified according to the corresponding 

white and grey matter within an element from MR intensity (Miga et al., 2000), (Miga  et al., 2000). This 

distinction is visualized in Fig. 1 in the axial slice through the mesh of the brain. Ventricles were treated as a 

separate structure and serve as an internal boundary capable of supporting presecribed boundary conditions. The 

vetricular boundary surface is illustrated by the black points within Fig. 1.  

The single mesh, described above, captures grey matter, white matter, and ventricles. While this covers 

the heterogeneity of the brain tissue and venricular structure, it does not speak to the dural septa. The dural septa 

are accomplished by manually segmenting the falx cerebri and the tentorium cerebelli planes and using a custom 

splitting code that generates two neighbor nodes within the same spatial region. The dural septa split can be 

visualiazed within the image of the finite element mesh in Fig. 1. A series of meshes are created with and without 

septa to study its anatomical influence. The number of elements in the mesh is approximately 224,000 and the 

number of nodes for all meshes is over 40,000.   

The value prescribed for both grey and white matter in all piston pushes are as follows. The Young’s 

modulus is 2,100 Pa, and the value of Poisson’s ratio is 0.45. Material properties associated with hydraulic 

conductivity (𝑘) and the saturation constants (𝛼, 
1

𝑆
), are the subject of material property determination for grey 

and white matter. These six material properties (𝑘, 𝛼, 
1

𝑆
 for grey and white matter, respectively) are allowed to 

vary and are fit for in the inverse model (Methods Section D). We should also note that while Young’s modulus 

and Poisson’s ratio are likely modestly affected as well, we elected to use values that were previously determined 

TABLE 1 

EQUATIONS’ VARIABLES 

Symbol MEANING Units 

𝑝 Interstitial pressure Pa 

𝒖 Displacement vector m 

𝐺 Tissue shear modulus (𝐺 = 𝐸/2(1 + 𝑣)) Pa 

𝐸 Young’s modulus Pa 

𝑣 Poisson’s ratio (unitless 

quantity) 

𝛼 Ratio of fluid volume extracted to volume 

change of tissue under compression 

(unitless 

quantity) 

1

𝑆
 

Void compressibility constant (amount of 

fluid capable of being forced into a tissue 

constant in volume) 

Pa-1 

𝑘 Hydraulic conductivity (m3s)/kg 
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to optimize (Miga  et al., 1998) with respect to a homogeneous model to reduce the degrees of freedom. 

 

 

Our description of the mesh so far does not account for the gyri and sulci. These structures are present 

throughout the brain, and we hypothesize that these serve as a source of compliance in the brain and as such 

allowed for variability in our saturation constants, 𝛼, 
1

𝑆
. In the literature these are often prescribed as 𝛼=1, 

1

𝑆
= 0 

indicating a fully saturated media (Chen et al., 2011), (Miga et al., 2000). While certainly intuitive, the 

propagation of pressure in the brain at the bulk level seems to contradict that behavior. This led to our approach 

suggesting that some of the finer fissure systems, not currently resolved, are acting as a source of compliance, 

much like the ventricular system does often in space occupying lesions. 

 

Model Sensitivity 
 

The purpose of this study is to accurately model in vivo interstitial pressures with a poroelastic model and 

appropriate boundary conditions. The boundary conditions, meshes, and property designations were 

systematically varied to isolate the influence of the three features (dural septa, ventricle boundary condition, and 

saturation parameters) which reflect the creation of four models: 1) the full anatomical model description, 2) the 

full anatomical description except for dural septa, 3) the full anatomical description but without the ventricle 

boundary description, and 4) the full anatomical description with  fully saturated brain tissue (𝛼=1, 
1

𝑆
= 0). The 

boundary conditions within the context of each model in this study are explained below. 

 

Full Anatomical Condition Description 

 

The full anatomical condition description accounts the model containing full realization of dural septa, 

ventricles, and heterogeneous hydraulic conductivity and saturation constants. In this realization, the inverse 

model determines the 6 degrees-of-freedom associated with the material properties that best fits the measured 

interstitial pressure dynamics during loading. The six properties are 𝑘𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟, 𝑘𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟, 𝛼𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟, 

 

Figure 1. Finite element mesh representative of the porcine brain. The dural septa splits are discernable within the mesh. The black 

points within the mesh visualize the nodes of the boundary between the brain parenchyma and the ventricles. The slice through the 

mesh visualizes the distinction between grey and white matter within the parenchyma. There is an additional distinction, which is 

not enforced in this study, between the tissues in either hemisphere.  
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𝛼𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟, 1
𝑆⁄ 𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟

, and 1
𝑆⁄ 𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟

. Allowing variable saturation parameters does allow a 

compliance in the fluid component to exist. The far-field (from mechanical load) cortical surfaces are designated 

as fixed in displacement and experiencing no fluid drainage (Miga et al., 2000). This decision is supported by the 

dura being left intact during the experiment. The brain stem region is set as stress-free and does not permit fluid 

drainage. Locations directly associated with the application of piston loading are designated displacement 

boundary conditions associated with 8 mm, 10 mm, and 12 mm (Miga et al., 2000), and no drainage. The region 

surrounding the piston area is stress-free and does not allow fluid drainage. This creates a tenting area around the 

immediate application of the piston (Miga et al., 2000). Consistent with the anatomical role of the dural septa, the 

nodes associated in the mesh are fixed in displacement and do not permit fluid drainage. In clinical practice, the 

intracranial pressure reference point is defined at the level of the foramen of Monro (Freeman, 2015). This 

structure is the part of the ventricles which connects the third and lateral ventricles. Additionally, the ventricular 

system is continuous with the central spinal canal (Siegel and Sapru, 2015). We hypothesize that this connection 

permits the ventricles, when the integrity of the dura is not compromised, to act as a reference pressure for the 

brain. As the ventricles represent a compliant internal boundary that can drain upon loading, while allowed to 

deform, the pressure at its boundary is set to zero, and it serves as a reference pressure for the rest of the brain. 

The solution of this set of conditions incorporates the influence of the dural septa, the ventricles, and the sulci and 

gyri within the brain. In order to isolate and study the influence of all of these individual features, they are then 

systematically removed with the next three models below. 

 

Condition without Dural Septa Description 

 

To study dural septa influence, a model is created that eliminated the dural septa and its associated 

boundary condition from the aforementioned model. Similar to the full anatomical model, this model still attempts 

to determine the same six material properties, namely, 𝑘𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟, 𝑘𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟, 𝛼𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟, 𝛼𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟, 

1
𝑆⁄ 𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟

, and 1 𝑆⁄ 𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟
. 

 

Condition without Ventricle Boundary Description 

 

This simulation is done to define the influence of the ventricle boundary condition, which in the full 

anatomical model serves as a constant pressure reference. In this case, the mesh includes the dural septa split, and 

its associated boundary conditions. However, the ventricles are now not prescribed a reference pressure, rather 

they are considered non-draining surfaces. It is still necessary to designate a reference pressure for equation 

resolution. In this model, we revert back to a previous representation whereby the brain stem nodes are changed 

from non-draining to a constant pressure of zero, as a reference. We should note that this brain stem designation 

has been used in other studies (Miga et al., 2000). Similar to the above, the six material properties being fit are 

𝑘𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟, 𝑘𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟, 𝛼𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟, 𝛼𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟, 1 𝑆⁄ 𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟
, and 1 𝑆⁄ 𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟

. 

 

Condition Assuming Fully Saturated Tissue Description 

 

The last tissue model is the more traditional model employed when using Biot’s consolidation theory to 

represent brain. Under these indications, the brain is treated as a fully saturated media, resulting in 
1

𝑆
= 0 and 𝛼 =

1 for both grey and white matter (Chen et al., 2011), (Miga et al., 2000). This reduces our parameterization fit to 

only two material properties, 𝑘𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 and 𝑘𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 . In the former three models, we allow for unsaturated 

effects as a means to accommodate missing structural compliance associated with sulci and gyri. In this model, 

we distinctly terminate that capability in favor of the more common assumptions in the literature. 
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Inverse Model 

 

As alluded to in the previous sections, the general analysis to be achieved in this work is to take each of 

our models with varying structural and material representations, and reconstruct the material properties to best fit 

our measured interstitial pressure values form our experimental system. The general structure of this procedure 

can be seen in Fig. 2. The parameters (𝑘𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟, 𝑘𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟, 𝛼𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟, 𝛼𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟, 1 𝑆⁄ 𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟
, 

and 1 𝑆⁄ 𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟
) are estimated with this inverse model approach. The same procedure is applied with all four 

brain models with the exception that in the last model, only the hydraulic conductivity parameters are 

reconstructed. In order to ensure repeatability of our results, for each piston push of each inverse reconstruction, 

twenty randomized initial starting property guesses of the inverse model are performed. Therefore, in this 

investigation there are a total of 240 distinct runs of the inverse model (4 models, 3 different piston pushes, and 

20 initial guesses for each). The 20 distinct initial guesses are generated by randomly perturbing each value of a 

known fitted property set by +/- 25%.  

These randomized property values are input into the poroelastic, finite element model, along with the 

appropriate boundary conditions, the time step, and the mesh. The interstitial pressure transient is then solved for, 

and fit to the measured interstitial pressure at the two transducers using a nonlinear least-squares constrained 

optimization in MATLAB (MathWorks Inc, Nattick, MA). Within our custom objective function, we designate 

the difference between the model calculated and experimentally measured pressures to be a relative sum-squared 

error (SSE). The relative sum-squared error is calculated with: 

 

Figure 2. This flow chart illustrates the inverse model used to fit the model calculated intracranial pressure to the experimentally 

measured intracranial pressure while estimating the material properties.  
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𝑆𝑆𝐸 = ∑ (
(𝑃𝑒−𝑃𝑚)

𝑃𝑒
)
𝑖

2
𝑖=𝑁
𝑖=1            (3) 

Where Pe is the experimentally measured pressure, Pm is the model determined pressure, and i represents the 

value of pressure at the ith time point in the transient. Equation (3) represents a relative pressure difference fitting. 

Given the nature of a step response in interstitial pressure upon surgical loading, this relative measure was used 

to not unduly weight the early transient pressure values. 

With respect to (3), the experimental data consists of 200 data points (100 per transducer) evenly sampled 

along the time course being modeled. To prevent influence of transducer noise, the experimental values are fit to 

a fourth order polynomial to the filtered experimental data. With respect to simulation transient, intra-time point 

values are linearly interpolated to fully utilize the experimental data. Using MATLAB’s (MathWorks Inc., Natick 

MA) trust region reflective optimization framework, property values are iteratively determined such that the least 

squared error described in (3) is minimized. We use a custom convergence criteria for the optimization, 

designating that if the difference between 12 consecutive relative sum-squared errors is less than 1E-8, the 

optimization is complete. The sum-squared error in equation (3) is used as a measure of quality in the model fit. 

Once convergence for each of the 240 runs has been achieved, we perform a forward solve of the 

poroelastic model using the estimated model parameters from each. These forward runs provide both the 

interstitial pressure and displacement solutions for all runs. We designate two types of results. First, the ‘best fit’ 

is the 1 run out of 20 for a specific piston push in a given simulation which converges with the smallest sum-

squared error. Second, since 20 pressure profiles for each piston push and model were performed to test for 

sensitivity to initial guess, the ‘average pressure result’ represents an average reconstruction value given some 

arbitrariness to initial guess. 
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CHAPTER III 

 

 

RESULTS 

 

 

Pressure 

 

We use both a qualitative and quantitative analysis to assess the interstitial pressure calculated. In Fig. 3, the 

results of the inverse model simulations are summarized. The experimental interstitial pressures at both 

 

Figure 3. In panels (a), (b), (c), and (d), the solid black lines are the experimental pressure data measured with the transducers. The 

solid cyan and red lines are the average pressure results in the near hemisphere transducer and far hemisphere transducer respectively. 

The translucent red and cyan areas are plus and minus two standard deviations of the average pressure result calculated at each time 

point. Panel (a) shows the model calculated pressure fits obtained when the full anatomical condition is enforced. Panel (b) shows 

the model calculated pressure fits when the dural septa is not included. Panel (c) show the model calculated pressure fits when the 

ventricle boundary condition is not included. Panel (d) shows the model calculated pressure fits when the brain tissue is treated as 

fully saturated.  
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transducers are shown by the solid, black lines. The higher pressures are associated with the transducer in the 

hemisphere ipsilateral to the piston. The lower pressures are associated with the transducer in the hemisphere 

contralateral to the piston push. Observing the measured in vivo interstitial pressure, there is a sustained gradient 

between the two hemispheres of the brain and a distinct transient behavior. In all panels of Fig. 3, the cyan and 

red lines represent the average pressure results in the transducer which is in the hemisphere ipsilateral to the piston 

and the transducer which is in the contralateral hemisphere respectively. The shaded regions represent plus and 

minus two standard deviations of the average pressure results, where the average is associated with the variable 

initial guess within the parameter determination. From the standard deviations in all panels of Fig. 3, it is evident 

that the methods used in this investigation provide repeatable results. Panel (a), which is the simulation when all 

anatomical conditions are enforced, shows that the anatomical specificity enforced captures the amplitude, the 

gradient between the hemispheres, and the transient. The simulation shown in panel (b) differs from the full 

anatomical simulation by not including the dural septa representation. Panel (b) shows that the quality of pressure 

fits in this simulation condition is comparable to the simulation with all of the anatomical constraints enforced. It 

does, however, consistently have less accuracy at the first time step (90 s) in each piston push relative to the full 

anatomical description. The simulation in panel (c) differs from the full anatomical simulation by treating the 

brain stem as the reference pressure of the brain versus the ventricle boundary within the parenchyma. Not only 

does this result in inaccurate pressure magnitudes, but also does not maintain a sustained gradient between the 

two transducers. The simulation in panel (d) differs from the full anatomical simulation by treating the brain tissue 

as a fully saturated material. Initially there is a gradient present between the two transducers, but this gradient is 

not sustained over the time course of the piston pushes. Additionally, the pressure is overestimated in all of the 

solutions.  

Using the Wilcoxon rank sum test, we compare the set of sum-squared errors obtained in every fit 

calculated. More specifically, we compare the sum-squared errors of the final solution of each model type to one 

another to determine if there are statistically relevant differences between each type of model. This test shows 

that the pressure solutions of the full anatomical description, the description without the dural septa, the 

description without the ventricle boundary, and the description treating the brain as fully saturated are all 

statistically significantly different from one another. Based on the difference between the measured in vivo 

pressures and the model estimated pressures, the best pressure fit is associated with the dural septa not being 

included, but the full description of the boundaries is statistically comparable when evaluating the 12 mm piston 

push. The lack of ventricle boundary conditions produces a dramatic decrease in the quality of fit, and the 

treatment of the brain as a saturated medium results in the worst fit, with respect to average sum-squared error, 

within this investigation.  

Qualitatively, the compartmentalization of the interstitial pressure can be visualized in Fig. 4. In Fig. 4, 

all of the images are of the best fit in each simulation at the 10 mm piston push. These are also all from the first 

time step in these solutions. Due to the variability in magnitude of the pressure solutions between simulation 

types, the images were all individually scaled to capture the relative distribution of pressure within the mesh in 

each simulation. In panel (a), when the full anatomical conditions are accounted for, there are higher pressures in 

the hemisphere ipsilateral to the piston. There is also a clear distinction between the pressure within the ipsilateral 

hemisphere relative to the contralateral hemisphere and cerebellum. When the dural septa were not included, there 

was no compartmentalization between hemispheres or structures present, shown in panel (b). When the brain stem 

was treated as the reference pressure instead of the ventricles, compartmentalization between the two hemispheres 

and the cerebrum and cerebellum is still visually evident, shown in panel (c). The extent of the difference between 

the hemisphere ipsilateral to the piston push and the hemisphere contralateral to the piston push is less distinct 

than when the full anatomical condition is enforced. In panel (d), where the simulation treats the brain as fully 

saturated, there is an obvious compartmentalization effect between the ipsilateral and contralateral hemispheres. 

The area of high pressure is far more pervasive relative to the other simulations. Additionally there are higher 

pressures present in the cerebellum and brain stem region.  
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Shift Correction 
 

As described in the Methods, there were stainless steel beads implanted into the parenchyma that were 

tracked with repeat CT-imaging. Since the inverse model is fit to the experimental interstitial pressure, the 

displacement of the stainless steel beads provides a source of validation for the simulations performed. They also 

quantify the quality of the fits for the solid component of the brain tissue. During the experiment, the bead 

locations were measured at the conclusion of each of the piston pushes. As a metric for comparing displacements, 

we calculated the percent shift correction at the conclusion of the 8 mm, 10 mm, and 12 mm piston push in each 

simulation performed (Table 2). The runs evaluated were the best fits for each of the piston pushes and simulations 

respectively. The percent shift correction is calculated using Eq. 4 below.  

 

 

Figure 4. This reflects the differences in compartmentalization based on the type of simulation. In panels (a), (b), (c), and (d), the 

pressure values are scaled to the minimum and maximum of the specific solutions shown above. The solutions shown above are all 

the best fits respectively from the first time step of the 10 mm piston push. Panel (a) reflects the compartmentalization when all 

anatomical conditions are simulated. Panel (b) visualizes the compartmentalization when the dural septa is not included. Panel (c) 

reflects the compartmentalization when the ventricle boundary condition is not enforced. Panel (d) demonstrates the 

compartmentalization when the brain tissue is treated as fully saturated. 
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%𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 100% ∗ (1 −
𝑚𝑒𝑎𝑛(‖𝑑𝑒⃗⃗⃗⃗  ⃗−𝑑𝑚⃗⃗ ⃗⃗ ⃗⃗  ‖)

𝑚𝑒𝑎𝑛(‖𝑑𝑒⃗⃗⃗⃗  ⃗‖)
)         (4) 

 

Where 𝑑𝑒
⃗⃗⃗⃗  is the experimentally measured displacement vector, and 𝑑𝑚

⃗⃗ ⃗⃗  ⃗ is the model determined displacement 

vector. Table 2 shows that the best shift correction is consistently accomplished when the dural septa boundary 

is not included. 

 

Looking more specifically at the individual bead displacements at the 10 mm piston push, which reflects the 

general behavior between the shift corrections, the same trend was reflected (Fig. 5). The strongest agreement 

between the experimental (Exp.) and model calculated (Calc.) bead displacements are present in the simulation 

 

Figure 5. These are calculations from the best fits runs from the 10 mm piston push. These calculations quantify the model calculated 

(Calc.) bead displacements at the conclusion of the simulated piston push and compare them to the experimentally (Exp.) measured 

displacements. In panels (a), (b), (c), and (d) the top left, top right, and bottom left subfigures are the displacement calculations in 

the x, y, and z axis respectively. The subfigure on the bottom right of all the panels represents the total displacement.  
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which excluded the dural septa (Fig. 5 panel (b)). The full anatomical description, shown in panel (a), also was 

able to reasonably approximate the bead displacements. Comparing all panels, it is evident that all of the models 

were able to calculate shift corrections comparably.  

Evaluating the same set of piston pushes shown in Table 2, we use the Wilcoxon rank sum test to determine 

if the quality of displacement fits is statistically different between simulations. For each simulation type and piston 

push, ‖𝑑𝑒
⃗⃗⃗⃗ − 𝑑𝑚

⃗⃗ ⃗⃗  ⃗‖ for the 18 beads is calculated for the run with the smallest sum-squared error. Then the 

simulations are compared to one another with respect to these sets of measurements (18 beads at every piston 

push). Although some piston specific comparisons revealed statistical significance, these differences were not 

present in every piston push comparison. Therefore, we are unable to conclusively say that the shift corrections 

between the simulations are statistically significantly different from one another. Therefore, the shift correction 

accomplished in all simulations are of comparable quality. 

 

Property Reconstruction  
 

From Fig. 3 it is clear that the quality of the fits was not highly variable between the repeated initializations 

of our inverse problem framework. Despite this, we did notice some degree of variability between the properties 

reconstructed within the groups of runs. Table 3 shows the properties found in the best fits. The property values 

estimated for grey and white matters are consistently different across all of the best fit properties across all piston 

pushes and simulations. This would suggest that including heterogeneity was a necessary condition to capture 

best fits. Observing the changes in the best fits of 𝑘𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 and 𝑘𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 in the full anatomical conditions, 

conditions without the dural septa, and conditions excluding the ventricle boundary, there is a change in the 

magnitude with piston push changes however we see a consistent behavior where the hydraulic conductivity 

associated with white matter is greater than that of grey. Although not true for every best fit, 𝛼𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 tends 

to be closer to the historical value of 1, which corresponds to the brain tissue treated as a saturated material. This 

TABLE 2 

PERCENT SHIFT CORRECTION 

PERCENT SHIFT 

CORRECTION 

Piston Push 

8 

mm 

10 

mm 

12 

mm 

Simulation 

Full 

Anatomical 

Condition 

60.0 57.6 53.7 

Condition 

without 

Dural 

Septa 

64.5 70.3 73.8 

Condition 

without 

Ventricle 

Boundary 

58.1 60.2 64.8 

Condition 

Assuming 

Fully 

Saturated 

60.0 65.0 67.4 
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is in contrast to 𝛼𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟, which is generally lower. Table 3 reflects different property values based on the 

simulation selected. The reconstructions of 1 𝑆⁄ 𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟
 and 1 𝑆⁄ 𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟

 were all non-zero, regardless of 

simulation type. Additionally, the variations between runs not only change among simulation types, but also 

between the properties themselves.   

 

 

 

TABLE 3 

ESTIMATED PROPERTIES SUMMARY 

Simulation 
Piston 

Push 

kg Best 

Fit 

kw Best 

Fit 
αg Best Fit 

αw Best 

Fit 

1/Sg Best 

Fit 

1/Sw Best 

Fit 

Full Anatomical Condition 8 mm 2.7E-13 1.9E-11 4.3E-01 8.7E-01 3.3E-06 4.3E-05 

 10 mm 3.2E-13 1.1E-11 4.5E-01 5.8E-01 2.6E-06 3.0E-05 

 12 mm 1.8E-12 9.8E-12 4.8E-01 1.0E+00 2.3E-06 4.4E-05 

AVERAGE  8.0E-13 1.3E-11 4.5E-01 8.2E-01 2.7E-06 3.9E-05 

Condition without Dural Septa 8 mm 2.2E-14 8.0E-12 3.9E-03 8.8E-01 5.5E-10 2.2E-05 

 10 mm 2.5E-14 2.8E-12 4.9E-03 4.2E-01 1.1E-13 9.1E-06 

 12 mm 4.2E-14 9.0E-13 5.9E-03 1.8E-01 2.8E-11 4.7E-06 

AVERAGE  3.03-14 3.9E-12 4.9E-03 4.9E-01 1.9E-10 1.2E-05 

Condition without Ventricle 

Boundary 
8 mm 5.9E-12 1.1E-09 4.5E-01 8.5E-01 1.5E-07 3.0E-05 

 10 mm 1.7E-12 1.3E-09 1.0E+00 7.9E-01 4.9E-06 4.5E-05 

 12 mm 1.0E-12 8.4E-10 7.2E-01 9.8E-01 3.4E-06 5.6E-05 

AVERAGE  2.9E-12 1.1E-09 7.2E-01 8.7E-01 2.8E-06 4.4E-05 

Condition Assuming Fully 

Saturated 
8 mm 9.0E-11 1.0E-12 - - - - 

 10 mm 8.2E-11 1.0E-12 - - - - 

 12 mm 8.7E-11 1.0E-12 - - - - 

AVERAGE  8.6E-11 1.0E-12     
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 12 mm 1.0E-12 8.4E-10 7.2E-01 9.8E-01 3.4E-06 5.6E-05 

AVERAGE  2.9E-12 1.1E-09 7.2E-01 8.7E-01 2.8E-06 4.4E-05 
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CHAPTER IV 

 

 

DISCUSSION 

 

 

The pressure results shown in Fig. 3 panels (a) and (b) reflect that the interstitial pressure can be modeled 

using the full anatomical description as well as the description which did not include the dural septa. While the 

significance of removing the dural septa boundary was not evident in Fig. 3, comparing the pressure distributions 

between panel (b) and the remaining panels of Fig. 4, it is evident that it defines the compartmentalization of 

pressure between the left and right hemispheres as well as between the cerebrum and cerebellum. Further 

investigation with multiple pressure transducers is needed to properly tune the compartmentalization effect. The 

percent shift correction when the dural septa are excluded is consistently better than the other simulations (Table 

2 and Fig. 5). While this was an unexpected result, it may be due to the manner in which the dural septa boundary 

conditions were implemented, i.e. it is possible that the use of Dirichlet conditions for septal nodes may be over 

constraining the solution. Moreover, the shift corrections were not statistically significantly different than the 

other model calculated shift corrections at every piston push.  

Excluding the ventricle boundary condition resulted in a substantially worse result, which is reflected by 

inaccurate pressure magnitudes. The results of Fig. 3 panel (c) in conjunction with the results of Fig. 4 panel (c) 

also indicated that the pressures in both the hemispheres ipsilateral and the contralateral to the applied piston push 

were very similar in magnitude. This provides evidence that the appropriate treatment of the ventricle boundary 

within the parenchymal tissue can have significant effect on biomechanical models of the brain. Our decision to 

treat the boundary as a reference model in the brain came from the clinical practice which treats the level of the 

foramen of Monro as the intracranial pressure zero point (Freeman, 2015). The percent shift correction in this 

simulation was also comparable to the other simulations in this paper (Table 2 and Fig. 5).  

Treating the brain as a fully saturated tissue, shown in Fig. 3 panel (c), is the current convention for 

poroelastic models (Chen et al., 2011), (Miga et al., 2000). With this in mind, our results indicate that this may 

not be the appropriate description of the brain tissue. The magnitudes of the experimental data were not matched, 

and the gradient between the hemispheres is not sustained. The differences between panels (a) and (d) reflect that 

enabling the brain tissue to be unsaturated yields a substantial improvement in quality of fit. The results of the 

percent shift correction are also comparable to the full anatomical description (Table 2 and Fig. 5). In a previous 

study of volume regulation, the results led to a hypothesis that brain interstitial space could possibly experience 

volume variations based on stresses present (Doczi, 1993). It is not definite what phenomena the saturation 

property terms are capturing, but we hypothesize that they may be acting as a bulk additional fluid compliance 

resulting from the ready evacuation of fluid from fissures and sulci spaces into subarachnoid spaces during 

compression.  

The properties we estimated in the four simulations are discernably different. This speaks to the variability 

of literature on quantifying brain material properties. While not the focus of this paper, we reconstructed four 

categories of material properties associated with the poroelastic model with varying boundary condition and mesh 

configurations. We also observed changes in magnitude of hydraulic conductivity between different extents of 

piston application. In the context of a single pig, described four different ways, we are able to find a range of 

estimated brain tissue properties. This speaks to the need to use literature property values which were gathered in 

a method most congruent with the biomechanical investigation being performed. 

One shortcoming of the work is in regards to the instrumentation extent. Ultimately, our inverse model is 

driven by two transducer measurements. To some degree, this is a lack of specificity in the raw data, and it is a 

likely contributor to the considerable differences between the minimum and maximum property estimates within 

the sets of 20 runs per simulation per piston translation. We could add specificity by increasing our fitting 

dimensionality with bead displacement data. We should note that we did consider this. We elected not to do this 
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because this would ultimately require a weighting framework which we though could also contribute to property 

reconstruction variability. Nevertheless, this will be a future investigation. 

Our full anatomical description simulation in conjunction with the poroelastic model is able to accurately 

model in vivo interstitial pressures and tissue deformation. It also reflects the compartmentalization of interstitial 

pressure within different areas of the brain. The presence of our treatment of the ventricles and brain tissue as 

unsaturated has a significant impact on the accuracy of the results, while the presence of the dural septa is less 

essential for the purposes of this investigation and may have influenced results by being over constrained. Based 

on the results of the simulation with the full anatomical description, we also infer that our choice to incorporate 

heterogeneity with grey and white matters was appropriate. Lastly, this work challenges the conventional 

representation of the poroelastic model in brain mechanics with a sound in vivo data-driven methodology and 

demonstrates that common assumptions in poroelasticity need to be questioned in the face of complex anatomical 

interactions.  
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CHAPTER V 

 

 

CONCLUSION 

 

 

The purpose of this investigation is to accurately model in vivo interstitial pressures, determine the 

anatomical specificity necessary to capture the pressures accurately, and to estimate the material property values 

of the brain. The results of this study provide strong evidence for the use of a poroelastic representation of brain 

tissue and the pivotal role that certain anatomical features play in accurately modeling both pressure and 

deformation of brain tissue. To the best of our knowledge, the model reconstructions in the simulation with a full 

anatomical description has not been accomplished in other studies into modeling in vivo work. This work 

highlights the importance of incorporating features, such as tissue heterogeneity, the ventricles, and the dural 

septa in future biomechanical models of the brain. The work also challenges conventional assumptions regarding 

poroelastic theory applied to brain biomechanics. While we cannot conclusively say that the need to add fluid-

compliance is explained by the evacuation of intra-sulci/intra-fissure fluid into subarachnoid spaces, it is evident 

from this research that their addition to the model results in the accurate capturing of interstitial pressure 

magnitudes, transient behavior, and importantly the spatial gradient – effects that were very challenging to capture 

in past modeling efforts. 
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