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Abstract

Humans are social animals that experience intense suffering when they perceive a lack of social connection. Modern
societies are experiencing an epidemic of loneliness. Although the experience of loneliness is universally human, some
people report experiencing greater loneliness than others. Loneliness is more strongly associated with mortality than
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obesity, emphasizing the need to understand the nature of the relationship between loneliness and health. Although it is
intuitive that circumstantial factors such as marital status and age influence loneliness, there is also compelling evidence of
a genetic predisposition toward loneliness. To better understand the genetic architecture of loneliness and its relationship
with associated outcomes, we extended the genome-wide association study meta-analysis of loneliness to 511 280 subjects,
and detect 19 significant genetic variants from 16 loci, including four novel loci, as well as 58 significantly associated genes.
We investigated the genetic overlap with a wide range of physical and mental health traits by computing genetic
correlations and by building loneliness polygenic scores in an independent sample of 18 498 individuals with EHR data to
conduct a PheWAS with. A genetic predisposition toward loneliness was associated with cardiovascular, psychiatric, and
metabolic disorders and triglycerides and high-density lipoproteins. Mendelian randomization analyses showed evidence of
a causal, increasing, the effect of both BMI and body fat on loneliness. Our results provide a framework for future studies of
the genetic basis of loneliness and its relationship to mental and physical health.

Introduction
Loneliness is a universal human experience that has been docu-
mented across cultures and generations. According to the evolu-
tionary theory of loneliness (1), this painful feeling corresponds
to an aversive response to a discrepancy between a people’s
desired and perceived level of social connectedness (2,3). This
definition emphasizes the desired level of social connection
and highlights the difference between loneliness and solitude.
Unlike solitude, the signal associated with loneliness has likely
evolved to motivate humans and other social animals to seek
and improve the salutary social connections needed to help
them survive and reproduce (4). Loneliness serves as an emo-
tional warning or signal that there is an emotional imbalance
in one’s social network, regardless of the size of that network.
Feeling lonely is also very common; about 5–30% of adults in
Western populations report some degree of loneliness, while the
actual prevalence may be higher since loneliness is stigmatized
in many cultures (5–7).

Both social isolation and chronic high levels of loneliness
are strongly correlated with negative health outcomes; chronic
loneliness has a stronger association with early mortality than
obesity does (8). A long-running longitudinal study on physical
and mental health, the Harvard Study of Adult Development,
has concluded that the warmth of one’s relationships has the
greatest impact on wellbeing and life satisfaction (9). Findings
like these suggest that loneliness is a public health concern.
Although these studies demonstrate a clear and strong correla-
tion between loneliness and increased morbidity and mortality,
the causality and etiology of the relationship between loneli-
ness and mental and physical health is unclear. For example,
loneliness may cause poor health, or, alternatively, poor health
may cause loneliness directly or indirectly by disrupting social
networks.

Multiple factors influence variation in the experience
of chronic loneliness (1). Most studies have focused on
circumstantial factors such as marital status, age, and sex
(10–13). However, there are also innate individual differences
in the propensity to feel lonely. Heritability estimates based
on twin and family data suggest that ∼37% of the variation
in loneliness levels is explained by genetic factors (14) and
studies analyzing molecular genetic data estimated that the
aggregate of common genetic variants accounted for 4–27%
in individual differences in loneliness (15–17). A genome-wide
association study (GWAS) of social interaction and isolation in
the UK Biobank sample identified 15 common genetic variants
associated with loneliness (17). Here, we extend the GWAS based
meta-analysis for loneliness including more than half-a-million
subjects of European descent from various cultural backgrounds.
In addition to the UK biobank (UKB), we analyzed data from

23andMe (USA), the Health and Retirement Study (USA),
the Netherlands Twin Register (NTR), and the Swedish Twin
Registry (STR).

We performed a series of analyses on the new summary
statistics (18) to further elucidate the biological basis underlying
the propensity to feel lonely and the genetic overlap between
loneliness and complex human traits related to personality,
cognition, reproduction, substance use, social connections and
physical and mental health. Next, we carried out a phenome-
wide association study (PheWAS). PheWAS has emerged as a
method to screen for associations between genetic measures
and a range of phenotypes, such as those measured in electronic
health records (EHR) (19,20). For many phenotypes, EHR may
provide more objective measures of physical and mental health
than self-reported health data, which may not be readily known
by patients (e.g. lab values) or can be distorted by mood and recall
bias. Since the time of their original publications, the PheWAS
approaches expanded beyond the analysis of a single SNP to
include analysis of polygenic risk scores (21). We constructed a
polygenic score of loneliness based on the estimated SNP effects
from our new GWAS meta-analysis and performed a PheWAS in
the Vanderbilt University Medical Center (VUMC) EHR and asso-
ciated biobank by testing the association between the genetic
risk for loneliness and 897 disease phenotypes and three types
of clinically measured lipid levels. However, these analyses do
not distinguish causal effects from pleiotropic effects. Therefore,
we further tested for bidirectional causal relationships between
loneliness and a selection of genetically correlated phenotypes
by Mendelian randomization (MR) analysis. We performed a
comprehensive characterization of the polygenic contribution
to loneliness and extended this understanding to elucidate the
genetic relationships between loneliness and health.

Results
GWAS meta-analysis

GWASs were run in seven cohorts with a total of 511 280
adult subjects, on dichotomous measures for loneliness for
the largest cohort (UKB; 81 011 cases and 367 945 controls) and
continuous measures for the other six cohorts (see Material
and Methods for more details on the meta-analysis approach).
The six continuous GWASs were first meta-analyzed separately
and were then combined with the categorical GWAS in a meta-
analysis using sample size-based weights (22). The proportion
of phenotypic variance accounted for by all genotyped variants
(SNP heritability) of the categorical loneliness measure in UKB
and continuous loneliness measure were 8.1% (SE = 0.07) and
4.2% (SE = 0.07) respectively (see Supplementary Table 3). The
genetic correlation between the categorical GWAS and the
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Figure 1. QQ-plot and Manhattan plot of meta-analysis on loneliness. (A) The QQ-plot shows a considerable inflation of association statistics (λ = 1.28), which is mostly

due to true polygenic signal rather than population stratification (LD-score regression intercept = 0.99). (B) Manhattan Plot of the Loneliness GWAS meta-analysis

showing 19 independent genome-wide significant associations from 16 loci.

continuous GWAS (computed with LD-score regression) was.69
(P = 8.6 × 10−16). This non-unity genetic correlation may reflect
the heterogeneity of the trait and/or measures, which has also
been observed between different cohorts for other GWAS meta-
analyses, such as major depressive disorder (MDD) (23). The
SNP heritability in the meta-analysis was 6.6% (SE = 0.03), which
accounts for approximately one fifth to one-quarter of the total
heritability as estimated in twin-family studies. The estimate
is ∼2.4% higher than the SNP heritability estimate reported in
an earlier GWAS on social interaction and social isolation in the
UKB sample only (17).

The genomic inflation factor λ was 1.28 for the full meta-
analysis (Fig. 1) and results from linkage disequilibrium score
regression (LDSC) analysis (24) showed that this inflation was
due to true polygenic signal (LDSC intercept = 0.99). We identi-
fied 19 independent genome-wide significant variants (r2 < 0.1),
which were located in 16 genomic regions (i.e. within 250 kb;
Fig. 1, Table 1, and Supplementary File 1). Twelve loci were within
regions that were reported as significant in an earlier GWAS
study on social interaction and social isolation in UKB alone (17),
while four loci were novel (Table 1).

MAGMA and S-PrediXcan gene-based analyses

To identify associations at a gene level, we performed two
types of gene-based analyses using the GWAS meta-analysis
association statistics: 1) MAGMA, which aggregates single-
nucleotide polymorphism (SNP) effects at the gene level
using positional annotations and 2) S-PrediXcan, which uses
expression quantitative-trait loci annotations to assign SNPs to
genes. The meta-analysis summary statistics formed the basis
to compute gene-based P-values in MAGMA (25) and S-PrediXcan
(26) for 18 714 and 13 037 protein-coding genes, respectively. In
the MAGMA analysis, a total of 58 genes reached genome-wide
significance at a Bonferroni corrected significance threshold of
2.67 × 10−6 (Supplementary Fig. 1). Seven of these genes (TCF4,
PHF2, BPTF, STAU1, TAOK3, CELF1, RERE; Table 1) included at
least one genome-wide significant SNP from the GWAS meta-
analysis. Using S-PrediXcan (26), we identified 19 genes (of
which 6 were also significant in the MAGMA analysis: C1QTNF4,
MAPT, MST1, MTCH2, PLEKHM1 and SLC39A13) that were
significantly associated with loneliness at a Bonferroni corrected
significance threshold of P < 1.29 x 10−6 across 10 brain tissues:
anterior cingulate cortex, caudate, cerebellum, cortex, cerebral
hemisphere, hippocampus, hypothalamus, nucleus accumbens,
prefrontal cortex and putamen (Supplementary Table 4).

GWAS signals are significantly enriched for brain
tissues and evolutionarily conserved regions

Next, we investigated if genetic effects on loneliness were
enriched for loci with specific functional and tissue annotations.

First, we tested whether genome-wide effects on loneliness
were consistent with tissue-specific differential gene expression
based on GTEx RNA-sequence data from 53 tissues types using
two approaches. For the first approach, we determined whether
the distribution of effect sizes of all 17 715 protein-coding genes
estimated from the gene-based tests showed enrichment of
expression across multiple tissues (27). These results (Fig. 2)
indicated that the gene-based association results were signif-
icantly enriched after FDR correction for genes with higher
gene-expression levels in five brain tissues: cortex, cerebellum,
cerebellar hemisphere, anterior cingulate cortex, and substan-
tia nigra (with coefficients for the per-SNP contribution to the
heritability ranging from 2.8 × 10−9 to 3.7 × 10−9). For the second
approach, SNP heritability of loneliness was partitioned into
categories of functional SNP annotations using LDSC (24). We
found that SNPs associated with loneliness were also signifi-
cantly more likely than expected by chance (after FDR correction)
to regulate gene expression in five brain tissues: cortex, frontal
cortex, cerebellum, cerebellar hemisphere, and anterior cingu-
late cortex (Fig. 2).

Second, we used LDSC to test for the enrichment of 24
genomic annotations that are not specific to any cell type,
including coding vs non-coding regions, promoter regions,
introns, and evolutionarily conserved regions (see Finucane et al,
2015 (28) for additional details). Of these 24 annotations, the
genetic signals, after FDR correction, were significantly enriched
for regions that were highly evolutionary conserved in mammals
(similar to other polygenic traits) (28), which contain 2.6% of all
SNPs but explain 20% of the loneliness heritability captured by
all SNPs (Fig. 3).

Genetic correlations

Genetic correlations (29) were estimated for loneliness and 61
characteristics from 9 domains including anthropomorphic
traits, cardiovascular disease risk, cognitive functions, mental
health, reproduction, and substance use. After applying a
Bonferroni corrected significance threshold of 8.2 × 10−4, 39
out of 61 traits showed a significant genetic correlation with
loneliness (Fig. 4 & Supplementary File 1). A significant signal
was observed at least once from each of the 9 domains, with
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Table 1. 19 Independent genome-wide significant SNPs from 16 loci, with independence based on an r2 threshold 1, belonging to the same locus
if they are within 250 kb (see Supplementary File 1 for more details on the significant SNPs)

SNPs CHR BP (hg19) A1/A2 STAND.
BETA (SE)

P-value Gene Position Sign. in UKB
only17

rs599550 18 53 252 388 A/G −0.03 (.004) 5.88E–14 TCF4 Intronic Yes
rs72627233 18 53 486 724 G/T −0.02 (.004) 1.25E–08 RP11–

397A16.3
Exonic Yes

rs12458015 18 53 305 735 C/T −0.02 (.003) 1.16E–09 TCF4 Intronic Yes
rs13291079 9 96 360 650 C/T 0.02 (.003) 1.95E–11 PHF2 Intronic Yes
rs4958586 5 152 248 567 A/G −0.02 (0.003) 1.50E–10 AC091969.1 Intronic Yes
rs773020 9 77 768 122 A/G −0.03 (0.005) 1.43E–09 – Intergenic Yes
rs74338595 2 212 749 786 C/T 0.02 (0.003) 2.19E–09 ERBB4 Intronic Yes
rs7626596 3 82 000 680 A/G 0.02 (0.003) 3.12E–09 – Intergenic Yes
rs171697 5 103 956 516 C/G −.02 (0.003) 4.84E–09 RP11–6 N13.1 Intronic Yes
rs11867618 17 65 875 587 A/G −0.02 (0.004) 7.37E–09 BPTF Intronic
rs7209581 17 66 174 416 C/G −0.02 (0.003) 4.76E–08 BPTF Intergenic Yes
rs7770860 6 131 186 393 C/T −0.02 (0.003) 8.53E–09 EPB41L2 Intronic Yes
rs348258 20 47 768 988 C/T −0.02 (0.003) 1.06E–08 STAU1 Intronic Yes
rs10456089 6 11 959 836 A/G 0.04 (0.006) 1.54E-08 – Intergenic Yes
rs11068917 12 118 791 120 A/C −0.02 (0.004) 1.54E–08 TAOK3 Intronic No
rs62347916 5 24 239 998 A/G 0.02 (0.003) 2.71E–08 – Intergenic No
rs2732650 17 44 344 988 C/G −0.02 (0.004) 3.18E–08 RP11–

259G18.1
Intronic No

rs11039265 11 47 523 214 A/C 0.02 (0.003) 4.57E–08 CELF1 Intronic Yes
rs159960 1 8 476 428 A/G 0.02 (0.003) 4.77E–08 RERE Intronic No

Figure 2. Enrichment of gene expression for 53 specific tissue types using MAGMA and LD-score regression.

the strongest genetic correlations observed for mental health,
especially for depressive symptoms (rg = 0.88, P = 2.2 × 10−101),
subjective wellbeing (rg = −.77, P = 1 × 10−49), and MDD (rg = 0.64,
P = 5.2 × 10−114). In the health domain, tiredness and self-
rated health showed the strongest correlations (rg = 0.74,
P = 3.2 × 10−59, and rg = −.56, P = 2.5 × 10−44, respectively; more
loneliness was correlated with more tiredness and worse
health), while father’s and mother’s age of death showed modest
but significant negative genetic correlations with loneliness
(rg = −.32, P = 1.8 × 10−5, and rg = −.37, P = 1.1 × 10−7, respectively).

Four out of five personality dimensions showed a significant
genetic correlation with loneliness, with neuroticism showing
the highest association (rg = 0.69, P = 2.8 × 10−49); this genetic
association was recently shown to be a major driver for the
association between loneliness and personality (16). SES indica-
tors related to economic success (Townsend index and income;
rg = 0.43, P = 7.7 × 10−12, and rg = −.50, P = 3.4 × 10−30, respectively)
and job satisfaction (rg = − .0.50, P = 1.2 × 10−16) showed a
considerably higher genetic correlation with loneliness than
indicators of cognition (IQ and educational attainment; rg = −.19,
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Figure 3. Enrichment of 24 annotations not specific to cell types, ordered by size (proportion of SNPs).

P = 5.9 × 10−6, and rg = −0.27, P = 3.3 × 10−28, respectively). Genetic
correlations with traits from the reproduction domain indicate
that having more offspring and having offspring at a younger
age is genetically associated with higher levels of loneliness, an
association that is opposite to a previously reported phenotypic
correlation (14). For substance use, alcohol consumption had
a significant genetic correlation with loneliness (rg = −0.16,
P = 4.9 × 10−4), with more alcohol consumption is associated with
lower loneliness, while alcohol dependence had a larger genetic
correlation in the opposite direction (rg = 0.43, P = 9.7 × 10−7). In
the social circle domain, family and friendship satisfaction both
showed significantly larger genetic correlations with loneliness
(rg = 0.56, P = 3.4 × 10−42, and rg = 0.55, P = 5.7 × 10−31, respectively;
more loneliness was associated with less family and friendship
satisfaction) than the frequency of friend and family visits
(rg = 0.17, P = 1 × 10−5; more loneliness was associated with
fewer visits), suggesting that the subjective experience of social
isolation may play a larger role in feeling lonely than objective
social isolation.

PheWAS on the loneliness polygenic score

Three cardiovascular, four neuropsychiatric, and four of the
metabolic phenotypes were significantly associated with a
genetic propensity to loneliness after Bonferroni correction
for the 897 phenotypes tested (P < 5.57 × 10−5) (Fig. 5). Mood
disorders yielded the most significant association with the
loneliness polygenic score (Ncases = 3370, OR = 1.13, SE = 0.02,
P = 3.57 × 10−9), followed by depression (Ncases = 3025, OR = 1.13,
SE = 0.02, P = 5.98 × 10−9), myocardial infarction (Ncases = 2051,
OR = 1.13, SE = 0.03, P = 6.82 × 10−6), overweight, obesity and
other hyperalimentation (Ncases = 3040, OR = 1.10, SE = 0.02,
P = 6.86 × 10−6), and type-2 diabetes (Ncases = 3967, OR = 1.09,
SE = 0.02, P = 1.12 × 10−5). Complete results may be viewed inter-
actively at https://sealockj.shinyapps.io/loneliness_interactive/.

In our subsequent analysis of quantitative lipid traits (with
SNP-based heritabilities between ∼5% and ∼15%, see Supple-
mentary Fig. 2), the loneliness polygenic score was modestly but
significantly associated with reduced HDL (R2 = 0.12%, P = 5.69 x

10−7) and increased triglycerides (R2 = 0.27%, P = 2.43 x 10−12),
but not pre-medication low-density lipoprotein (LDL) levels
(R2 = 9.00 x 10−4%, P = 0.76; see Supplementary Table 7). To
benchmark these results, we compared them to the proportion
of variance explained by a polygenic score of corresponding
lipids values (Supplementary Table 6) and for coronary artery
disease (CAD) developed using the beta weights from the
Global Lipids Genetics Consortium study (http://lipidgenetics.
org/#DataDownloads) and the CARDIOoGRAMplusC4D study
(http://www.cardiogramplusc4d.org/data-downloads/) (30). The
proportion of variance explained by the polygenic score for
CAD was similar in magnitude to the variance explained by
the loneliness polygenic score for clinically evaluated HDL
(R2 = 0.34%, P = 6.96 x 10−10), triglycerides (R2 = 0.22%, P = 7.52
x 10−7), and LDL-premed (R2 = 0.27%, P = 2.30 x 10−5; see
Supplementary Fig. 3).

Mendelian randomization

To test if the genetic correlations may reflect causality, we
applied MR to examine evidence for causal effects of one
phenotype on another. We made a selection of traits that
showed a significant genetic correlation with loneliness and
of which the top SNPs were unlikely to share pleiotropic
effects with loneliness were examined. We focused on the
relationship between loneliness and cardiovascular disease
and its associated risk factors including CAD, myocardial
infarction, HDL cholesterol, LDL cholesterol, total cholesterol,
triglycerides, BMI, and body fat, which we also found to be
significantly genetically correlated with loneliness. Of these
traits, there were four with a significant genetic correlation
with loneliness which we included in the MR analyses, namely
CAD (rg = 0.19), triglycerides (rg = 0.14), BMI (rg = 0.18), and body
fat (rg = 0.25) (see Fig. 6 and Supplementary Fig. 5). When both
gene-exposure and gene-outcome associations are significant
and in the expected ratio of a causal effect, and the MR
assumptions are met (31), this is considered evidence for a causal
relationship.

https://sealockj.shinyapps.io/loneliness_interactive/
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz219#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz219#supplementary-data
http://lipidgenetics.org/#DataDownloads
http://lipidgenetics.org/#DataDownloads
http://www.cardiogramplusc4d.org/data-downloads/
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz219#supplementary-data
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Figure 4. Genetic correlations as computed with LD-score regression. Red stars are significant after Bonferroni correction.
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Figure 5. Results of the Phewas on the polygenic score for loneliness, corrected for gender, age, first 10 PCs, and batch.

Figure 6. Two-Sample Mendelian Randomization results for the causal effect of (A) BMI on loneliness and (B) body fat on loneliness.

We found evidence of a causal, increasing the effect of BMI
on loneliness using the inverse-variance weighted (IVW) median
and GSMR methods, but not the MR-Egger method (Table 2 and
Fig. 6A). The effect size of MR-Egger is of slightly weaker mag-
nitude to the other two analyses but the Egger intercept is not
significantly different from 0 (see Supplementary Table 8), indi-

cating that there is no horizontal pleiotropy. There was evidence
for heterogeneity between the different SNPs from Cochran’s
Q (Supplementary Table 10). From body fat to loneliness, there
was also evidence for a causal effect using the IVW, weighted
median and GSMR methods (higher body fat caused more loneli-
ness; Table 2 and Fig. 6B). Results of MR-Egger were not reported

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz219#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz219#supplementary-data


3860 Human Molecular Genetics, 2019, Vol. 28, No. 22

due to their limited reliability as shown by the low I2 statistic
(0.57; Supplementary Table 9). Again, there was some evidence
of heterogeneity between the different SNPs from Cochran’s Q.
There was no clear evidence of causal effects of loneliness on
any of the cardiovascular risk traits. We note that sample overlap
between GWASs could cause a bias of MR results in the direction
of the observational association. However, sample overlap was
minimal in the present study (max 3.7%).

Discussion
Chronic loneliness is strongly associated with physical and men-
tal health and is a growing concern in many societies. In this
study, we extended molecular genetic studies of loneliness by
investigating the genetic architecture of loneliness and its rela-
tionship with a wide range of traits in 511 280 subjects of Euro-
pean ancestry from five Western countries, and an additional
18 498 US subjects of European ancestry in which we conducted
a subsequent PheWAS. We identified 19 SNPs located in 16 inde-
pendent loci that were significantly associated with loneliness.
The most significant SNP signal came from chromosome 18
within the TCF4 gene, which plays an important role in nervous
system development and has been associated with MDD (23). We
detected 12 loci that were also detected by a previous study on
social interaction and isolation that used the same UK Biobank
subjects (17), and we report an additional four novel loci. In
addition, we report 58 significantly associated gene from our
genome-wide gene-based association analyses.

We found that the associated variants were significantly
enriched for regions that are conserved in mammals, which has
been observed for other polygenic traits as well (28). Additionally,
we found that genome-wide signals were highly enriched for
genes that were expressed in the brain, in particular in the
cerebellum, (frontal) cortex, anterior cingulate cortex, and sub-
stantia nigra. The cerebellum is mostly known for its modulating
role in motor, cognitive, and affective functions, and has been
shown to play a role in social cognition as well, especially for
processes that require higher-level abstraction away from the
current event (i.e. past, future or hypothetical events) (32). The
prefrontal cortex is implicated in the perception of social iso-
lation (i.e. loneliness) (33–35). The anterior cingulate cortex is
functionally connected with the prefrontal cortex, with which it
is associated with emotional and physiological adjustments for
potential threats and stressors, and is known to be involved the
social (rather than the physical) pain associated with loneliness
(36). The substantia nigra is best known for its role in reward
and learning, which extends to social contexts as well (37). A
large GWAS meta-analysis on MDD that included a similar tissue
enrichment analyses identified only partly the same anatom-
ical regions: all the same cortical regions were significantly
associated with MDD (frontal cortex, cortex, anterior cingulate
cortex, substantia nigra), but none of the cerebellar regions were
(cerebellar hemisphere and cerebellum) (23). This suggests that
the role of the cerebellar region may be more specific or larger for
loneliness. Loneliness likely involves additional brain regions,
since all 13 brain regions included in the enrichment analyses
depicted in Figure 2 were nominally significant with P < 0.05.

Out of the 61 traits considered in our genetic correlation
analyses, 39 showed a significant genetic correlation with lone-
liness, suggesting widespread shared genetic influences (e.g.
pleiotropic effects) or causal relationships between loneliness
and several traits. MDD has been strongly associated with lone-
liness in previous studies (38–40), but evidence from non-genetic
longitudinal studies indicates that loneliness and depression are
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conceptually and statistically different constructs (39–41). Our
results confirm the strong biological ties between loneliness,
major depression, and depressive symptoms in both research
ascertained samples and EHR from a hospital population. Our
analyses do not provide conclusive findings however regarding
the direction of causation in the relationship between loneliness
and MDD, due to a lack of instrument variables for loneliness
that are strong enough for causal inference.

There are several traits that show genetic correlations with
the loneliness that are in opposite directions from previously
reported phenotypic (non-genetic) correlations. Having more
offspring was associated with lower levels of loneliness (14);
however, the genetic correlations with number of offspring and
age at first birth indicated that having more children or children
at an earlier age was associated with more loneliness. Alcohol
abuse has been associated with higher levels of loneliness (42);
however we found a genetic correlation in the opposite direction
with alcohol use. A possible explanation of these apparently
contradictory results is that they are driven by a (genetic) asso-
ciation between loneliness and socio-economic status, which is
related to many life outcomes. We observed a significant genetic
overlap between loneliness and SES-related traits (e.g. income,
job satisfaction, educational attainment, social deprivation of
the neighborhood), with lower SES indicators showing a genetic
association with more loneliness (with a particularly strong
genetic correlation for income and job satisfaction: rg = −.50).
Number of offspring is negatively genetically correlated with
educational attainment43 (and positively genetically correlated
with loneliness), higher age at first birth is positively genetically
correlated with educational attainment (43) (and negatively
genetically correlated with loneliness), while alcohol consump-
tion shows a positive genetic correlation with educational
attainment (44) (and a negative genetic correlation with
loneliness), and alcohol dependence is negatively genetically
correlated with educational attainment (45) (and positively
genetically correlated with loneliness); these observations are all
in line with the negative genetic association between loneliness
and educational attainment/SES (46).

Our phenome-wide analysis in a unique EHR dataset
recapitulated the genetic correlation results and found that
genetic propensity to loneliness is associated with increased risk
for clinical depression, cardiovascular disease, and metabolic
diseases such as type-2 diabetes. Elevated triglycerides and
reduced HDL, two well-known risk factors for heart disease,
were also associated with predisposition to loneliness after
adjusting for covariates and even after restricting to levels
prior to use of antilipemic medications. These findings provide
a proof of principle that in clinical settings, polygenic scores
may be used to uncover relationships between unmeasured
behavioral traits (such as loneliness) and health outcomes.
Another important advantage of this out-of-sample analysis
is that by relying on clinical measurements and physician
assigned ICD codes instead of retrospective self-report, we avoid
potential reporting biases related to the loneliness that may
influence correlations between loneliness and health outcomes.
One possible limitation of this out-of-sample analysis could
be the potential for some overfitting because we included all
SNPs at a P-value threshold of 1. However, this is unlikely to
be a substantial driver of our results given that an analysis
of loneliness polygenic scores using a P-value threshold of
0.05 yielded similar findings (Supplementary Fig. 4). Another
limitation is that while polygenic score analyses can identify
novel genetic relationships, they cannot distinguish pleiotropy
from causal effects.

With MR analysis, which can supply evidence for causal
effects, we only found evidence of a causal, increasing, effect
of BMI and body fat on loneliness. This concurs with a recent
MR study reporting that BMI increases depressive symptoms
and decreases subjective well-being (47). The causal effect size
on loneliness was stronger for total body fat than for BMI,
which may be due to body fat being a better measure for an
unhealthy excess of body weight than BMI. Nonetheless, both
findings point to an increased body weight causally leading to
poorer mental health. Our MR analysis ruled out the possibility
of horizontal pleiotropy among the instrumental variables in this
analysis. It is important to note that the condition in MR of ‘no
pleiotropy’ is only required for the instrument variables them-
selves and need not apply genome-wide. Indeed, it is possible
(perhaps even likely) that the relationship between loneliness
and health outcomes is influenced by bidirectional causal effects
and pleiotropic biological effects.

In this study, we report 19 independent genetic associations
in 16 loci and we report 58 genome-wide significant genes that
are associated with loneliness in a sample of subjects from five
Western countries. The genetic signals were enriched for genes
expressed in specific brain tissues in cortical and cerebellar
regions. We showed that the genetic risk for loneliness is asso-
ciated with a wide range of health-related traits. Future work
needs to establish the etiology of these associations and to deter-
mine which additional loci explain the rest of common genetic
variation underlying loneliness, which together explained ∼ 7%
of individual differences.

Materials and Methods
Subjects & phenotype

A total of 511 280 adult subjects from 7 different cohorts
were included in the GWAS meta-analysis. An overview of
subjects and phenotyping across cohorts can be found in
Supplementary Table 1. The UK Biobank (UKB) dataset was the
largest. UKB was the only cohort with a dichotomous phenotype
(Ntotal = 511 280: 81011 lonely and 367 945 non-lonely individuals).
The other six cohorts had three types of continuous measures
for loneliness: the sum of 9 items on a 4-point scale, the sum of
3 items on a 3-point scale, and 1 item on a 4-point scale.

Genotyping and QC

Information on genotyping, imputation and QC is given in
Supplementary Table 2. In all cohorts, SNP data were imputed
to either 1000 Genomes or the Haplotype Reference Consortium
(HRC). SNPs remaining after QC ranged from 5.7 million to 14.1
million. Based on ancestry information derived from SNP data,
only subjects with European descent were included.

GWASs & meta-analysis

GWASs were performed in all seven cohorts, with the variables
age, sex, family relationships, and ancestry-informative PCs as
fixed effects (see Supplementary Table 2 for details). The largest
GWAS, the categorical GWAS for the UK Biobank dataset, was
conducted using linear mixed modeling in fastGWA, which
controls for both cryptic relatedness and population stratifi-
cation (48,49). The six continuous GWASs were meta-analyzed
using the multivariate approach described in Baselmans et al
(2019) (50). This approach controls for bias due to relatedness
or sample overlap between GWASs by incorporating the

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz219#supplementary-data
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cross-trait LD-score intercept (a measure for sample overlap)
from LDSC (24) as weights. The categorical GWAS and continuous
GWAS meta-analysis were then meta-analyzed using sample
size-based weights in order to account for the respective dif-
ferences of heritabilities, genetic correlation, and measurement
scales of the categorical and continuous GWASs (see Demontis
et al, 2017, for more details) (22).

Follow-up analyses

Gene-based tests & gene enrichment tests: GWAS meta-analysis
summary statistics were used to compute gene-based P-values
in MAGMA (25) for 18 714 protein-coding genes using FUMA (27).
MAGMA in FUMA was further used to test whether the effects of
genes on loneliness were correlated with higher or lower gene
expression in a given tissue based on GTEx RNA-seq data (27).
This was tested for 53 specific tissue types.

LD-Score Regression Heritability Partitioning: Stratified LD-
score regression was carried out using LDSC in order to par-
tition the heritability signal into specific cell-type groups or
genomic annotations (24,28). This method requires the GWAS
meta-analysis summary statistics, and LD information based on
an external reference panel, for which we used the European
populations from the HapMap 3 reference panel.

S-PrediXcan: S-PrediXcan (26) uses reference panels with
both measured gene expression and genotype data collected
on the same individuals to build predictive models of gene
expression in samples in which only genotype information is
available. Predicted expression of genes for cases and controls
can then be associated with phenotypic differences, yielding a
test of association that incorporates transcriptional information.
We used S-PrediXcan (26) to predict gene expression levels
in 10 brain tissues and to test whether the predicted gene
expression correlates with loneliness. Pre-computed tissue
weights were employed from the Genotype-Tissue Expres-
sion (GTEx v7) project database (https://www.gtexportal.org/)
(51) as the reference transcriptome dataset. As input data,
we included the loneliness GWAS meta-analysis summary
statistics, transcriptome tissue data, and covariance matrices
of the SNPs within each gene model (based on HapMap SNP
set; available to download at the PredictDB Data Repository)
from 10 brain tissues: anterior cingulate cortex, caudate basal
ganglia, cerebellar hemisphere, cerebellum, cortex, frontal
cortex, hippocampus, hypothalamus, nucleus accumbens basal
ganglia, and putamen basal ganglia. We used a transcriptome-
wide significant threshold of P < 1.29 × 10−6, which is the
Bonferroni corrected threshold when adjusting for all tissues
and genes (38 611 gene-based tests).

Genetic correlations: Genetic correlations between loneliness
and 61 other traits were computed in LDSC (29). Here, the genetic
correlation between traits is based on the estimated slope from
the regression of the product of z-scores from two GWASs on
the LD score and represents the genetic covariation between the
two traits based on all polygenic effects captured by the included
SNPs. Summary statistics from well-powered GWASs were avail-
able for 61 traits related to personality, cognition, reproduction,
social circle, body composition, substance use, and physical
and mental health. Multiple testing was corrected for using a
Bonferroni corrected significance threshold of.05/61 = 8.2 × 10−4.
LD scores were based on European populations from the HapMap
3 reference panel (24,29).

Polygenic scores for the PheWAS: Since loneliness is not
a phenotype systematically documented within the medical
record, we were unable to determine the best fit P-value thresh-

old for polygenic scoring. Therefore, we relied on an inclusive
threshold (P < 1) and applied the clumping protocol to all SNPs
to generate polygenic scores. All SNPs from the loneliness meta-
analysis were thinned using an association-driven pruning algo-
rithm that clumped SNPs into 250 kb windows and removed
SNPs in LD (r2 > 0.1) with the most associated SNP (i.e. lowest
P-value) in that window. LD estimates were directly derived from
the BioVU samples (see below). After clumping, a total of 93 501
LD-independent SNPs remained for scoring. Scores were then
constructed using PRSice software (52) and defined by the sum
of the number of risk alleles at each locus, weighted by their
estimated effect sizes. The polygenic scores were calculated
in an independent sample of 18 498 genotyped individuals of
European descent in BioVU. Genotyping and QC of this sample
have been described elsewhere (20,53).

PheWAS: In the genotyped BioVU sample, a logistic regres-
sion model was fitted to each of 897 case/control phenotypes
to estimate the odds of each diagnosis given the loneliness
polygenic score, after adjustment for sex, median age of
the longitudinal HER measurements, top 10 principal com-
ponents of ancestry, and genotyping batch. The 897 disease
phenotypes included 32 infectious diseases, 75 neoplasms, 86
endocrine/metabolic diseases, 29 hematopoietic diseases, 36
mental disorders, 44 neurological disorders, 54 sense organs,
126 circulatory system disorders, 59 respiratory diseases, 85
digestive diseases, 77 genitourinary diseases, 3 pregnancy
complications, 43 dermatologic disorders, 64 musculoskeletal
disorders, 8 congenital anomalies, 24 symptoms, and 52
injuries/poisonings. We required the presence of at least two
International Classification of Disease (ICD) codes that mapped
to a PheWAS disease category (Phecode Map 1.2 (https://
phewascatalog.org/phecodes) to assign ‘case’ status. PheWAS
analyses were run using the PheWAS R package (54).

Lipid traits in the EHR: We examined the relationship
between the loneliness polygenic score and three quantitative
lipid traits. Clinically measured lipid levels included LDL
(N = 6455 with pre-medication values), high-density lipopro-
tein (HDL) (N = 10 722), and triglycerides (trigs) (N = 11 012;
Supplementary Table 5). As most patients had multiple lipid
values available in their EHRs, we calculated median LDL,
HDL, and triglyceride values for each patient after removing
outlier values that were +/− 4 SDs from the sample mean.
To adjust for age, we extracted the age at the median lipid
value. If the number of lab measurements was even, we used
the average age between the two median measurements. We
then regressed the median lab value on sex and the cubic
spline of median age, and quantile normalized the residuals.
For sensitivity analyses, we also calculated the median of pre-
medication (Supplementary Table 5) lipid values, using only
observations that occurred before the first mention of lipid-
lowering medication in the EHR (55), and transformed the age-
and sex-adjusted residuals as above. Linear regression models
were then fitted to the median LDL, HDL, and trigs values
respectively to estimate the effect of the loneliness polygenic
score on each lipid trait. As the lipid traits were already sex and
age-adjusted, we included only the top 10 principal components
of ancestry and genotyping batch as covariates.

MR: We performed two-sample bidirectional MR (56) analy-
ses to investigate the direction of causality in the relationship
between loneliness and cardiovascular risk factors and diseases.
Of the eight cardiovascular risk factors and diseases for which
we know the genetic correlations from the LDSC analyses (CAD,
myocardial Infarction, HDL cholesterol, LDL cholesterol, total
cholesterol, triglycerides, BMI and body fat), we tested the four

https://www.gtexportal.org/
https://phewascatalog.org/phecodes
https://phewascatalog.org/phecodes
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traits that showed a significant genetic correlation, namely CAD
(rg = 0.19), triglycerides (rg = 0.14), BMI (rg = 0.18), and body fat
(rg = 0.25). We used genome-wide significant SNPs from the five
GWASs (loneliness and the four significant traits) to serve as
instrumental variables (gene-exposure association). SNPs were
pruned for LD (r2 < 0.001), and the remaining SNPs (or proxy SNPs
with r2 ≥ 0.8 when the top-SNP was not available in the other
GWASs) were then identified in the GWAS summary statistics
of the outcome variable (gene-outcome association). When both
gene-exposure and gene-outcome associations are significant
and in the expected ratio of an indirect causal effect, and the
MR assumptions are met (31), this is considered the evidence for
a causal relationship. We combined estimates from individual
SNPs by applying IVW linear regression (57). We conducted three
sensitivity analyses more robust to horizontal pleiotropy (i.e.
effects of the SNPs on the target outcome outside of their effect
on the exposure), each relying on distinct assumptions: weighted
median regression (58), MR-Egger regression (59) and General-
ized Summary-data based Mendelian Randomization (GSMR)
(60). Weighted median regression can provide a consistent esti-
mate of a possible causal effect, even when up to 50% of the
weight in the genetic instrument comes from invalid instru-
ments. MR-Egger regression uses ‘Egger’s test’ to test for bias
from horizontal pleiotropy. MR-Egger will provide a consistent
estimate of the causal effect, given that the strength of the
genetic instrument (gene-exposure association) does not corre-
late with the effect that the instrument has on the outcome. This
InSIDE assumption (Instrument Strength Independent of Direct
Effect) is a much weaker assumption than the assumption that
there is no pleiotropy. However, if the no measurement error
(NOME) assumption is violated, MR-Egger may be biased. Viola-
tion of NOME can be assessed with the I2 statistic, which ranges
between 0 and 1. When I2 is below 0.9, there is a considerable risk
of bias. By applying MR-Egger simulation extrapolation (SIMEX)
(61), this bias can be corrected for. When I2 is below 0.6 the results
of MR-Egger (even with SIMEX correction) are not reliable. For our
analyses we report MR-Egger results when I2 > 0.9, MR-Egger-
SIMEX results when I2 = 0.6–0.9 and we don’t report MR-Egger
results when I2 < 0.6. Lastly, we performed GSMR, a method that
takes into account LD between the different genetic variants
included in an instrument. Since GSMR accounts for LD, we
pruned the genetic variants included in GSMR instruments at a
higher threshold of r2 < 0.05 (as opposed to r2 < 0.001). Including
SNPs in higher LD than 0.05 was shown to provide very limited
increase in power. GSMR includes a filtering step which excludes
SNPs that are suspected to have pleiotropic effects on both the
exposure and the outcome (HEIDI filtering).

Funding
The National Institutes of Health (NIH, R01AG033590 to JC);
the Royal Netherlands Academy of Science Professor Award
(PAH/6635 to NTR: DIB). Data collection and genotyping in NTR
by the Netherlands Organization for Scientific Research (904-
61-090, 85-10-002, 904-61-193, 480-04-004, 400-05-717, Spi-56-
464-14192 and 480-15-001/674); Biobanking and Biomolecular
Resources Research Infrastructure (BBMRI – NL, 184.021.007
and 184.033.111); the Avera Institute for Human Genetics,
Sioux Falls, South Dakota (USA) and the National Institutes
of Health (NIH, R01D0042157-01A); the NIMH Grand Oppor-
tunity grants (1RC2MH089951-01 and 1RC2 MH089995-01). A
Rubicon grant from the Netherlands Organization for Scientific
Research (NWO; grant number 446-16-009 to J.L.T.); NIMH (grant
5R01MH113362-02 to L.K.D.); NIH training grant (2T32GM080178

to J.M.S). The Frontiers of Innovation Scholars Program (FISP;
#3-P3029 to S.S.-R.); the Interdisciplinary Research Fellowship in
NeuroAIDS (IRFN; MH081482); a pilot award from DA037844 and
2018 NARSAD Young Investigator Grant (27676); the California
Tobacco-Related Disease Research Program (TRDRP; Grant
Number 28IR-0070 to S.S.-R. and A.A.P.); Institutional funding
(the 1S10RR025141-01 instrumentation award, and by the
CTSA grant UL1TR000445 from NCATS/NIH to Medical Center’s
BioVU); NIH (additional funding through grants P50GM115305
and U19HL065962); Part of the computations for this paper
was performed on Cartesius (grant ‘Population scale genetic
analysis’; NWO rekentijd: 16332).

Conflict of Interest Statement
PF, SLE and members of the 23andMe research team are employ-
ees of 23andMe Inc.

Data access
The full summary statistics for the 23andMe dataset will be
made available to qualified investigators who enter into an
agreement with 23andMe that protects participant privacy. Inter-
ested investigators should visit research.23andMe/collaborate/
#publication to learn more and to apply for access.

Supplementary Material
Supplementary Material is available at HMG online.

Acknowledgements
We dedicate this paper to the memory of Dr John T. Cacioppo,
who was a pioneer in the scientific study of loneliness. We
warmly thank all volunteer participants who contributed data
to this project. Preparation of this manuscript was supported
by the National Institutes of Health. This study makes use
of data from the UK Biobank Resource (Application Number:
25472). The dataset(s) used for the PheWAS analyses described
were obtained from Vanderbilt University The authors wish to
acknowledge the expert technical support of the VANTAGE and
VANGARD core facilities, supported in part by the Vanderbilt-
Ingram Cancer Center (P30 CA068485) and Vanderbilt Vision
Center (P30 EY08126).

References
1. Cacioppo, J.T. and Cacioppo, S. (2018) Loneliness in the mod-

ern age: an evolutionary theory of loneliness (ETL). Adv. Exp.
Soc. Psychol., 58, 127–197.

2. Cacioppo, S., Grippo, A.J., London, S., Goossens, L. and
Cacioppo, J.T. (2015) Loneliness: clinical import and interven-
tions. Perspect. Psychol. Sci., 10, 238–249.

3. Cacioppo, J.T., Cacioppo, S., Capitanio, J.P. and Cole, S.W.
(2015) The neuroendocrinology of social isolation. Annu. Rev.
Psychol., 66, 733–767.

4. Cacioppo, J.T., Cacioppo, S. and Boomsma, D.I. (2014) Evolu-
tionary mechanisms for loneliness. Cognit. Emot., 28, 3–21.

5. Beutel, M.E., Klein, E.M., Brähler, E., Reiner, I., Jünger, C.,
Michal, M., Wiltink, J., Wild, P.S., Münzel, T., Lackner, K.J.
et al. (2017) Loneliness in the general population: prevalence,
determinants and relations to mental health. BMC Psychiatry,
17, 97.



3864 Human Molecular Genetics, 2019, Vol. 28, No. 22

6. Hakulinen, C., Pulkki-Råback, L., Virtanen, M., Jokela, M.,
Kivimäki, M. and Elovainio, M. (2018) Social isolation and
loneliness as risk factors for myocardial infarction, stroke
and mortality: UK Biobank cohort study of 479 054 men and
women. Heart, 104, 1536–1542.

7. Victor, C.R. and Yang, K. (2012) The prevalence of loneliness
among adults: a case study of the United Kingdom. J. Psychol.,
146, 85–104.

8. Holt-Lunstad, J., Smith, T.B., Baker, M., Harris, T. and
Stephenson, D. (2015) Loneliness and social isolation as
risk factors for mortality: a meta-analytic review. Perspect.
Psychol. Sci., 10, 227–237.

9. Vaillant, G.E. (2012) Triumphs of Experience. Harvard University
Press, Cambridge, MA, US.

10. Yang, K. (2018) Causal conditions for loneliness: a set-
theoretic analysis on an adult sample in the UK. Qual. Quant.,
52, 685–701.

11. Simon, M.A., Chang, E.-S., Zhang, M., Ruan, J. and Dong, X.
(2014) The prevalence of loneliness among US Chinese older
adults. J. Aging Health, 26, 1172–1188.

12. de Jong Gierveld, J., Keating, N. and Fast, J.E. (2015) Determi-
nants of loneliness among older adults in Canada. Canadian
J. Aging/La Rev Canadienne Vieillissement, 34, 125–136.

13. Honigh-de Vlaming, R., Haveman-Nies, A., Bos-Oude
Groeniger, I., de Groot, L. and van’t Veer, P. (2014)
Determinants of trends in loneliness among Dutch older
people over the period 2005-2010. J. Aging Health, 26, 422–440.

14. Distel, M.A., Rebollo-Mesa, I., Abdellaoui, A., Derom, C.A.,
Willemsen, G., Cacioppo, J.T. and Boomsma, D.I. (2010) Famil-
ial resemblance for loneliness. Behav. Genet., 40, 480–494.

15. Gao, J., Davis, L.K., Hart, A.B., Sanchez-Roige, S., Han, L.,
Cacioppo, J.T. and Palmer, A.A. (2017) Genome-wide associ-
ation study of loneliness demonstrates a role for common
variation. Neuropsychopharmacology, 42, 811–821.

16. Abdellaoui, A., Chen, H.Y., Willemsen, G., Ehli, E.A., Davies,
G.E., Verweij, K.J., Nivard, M.G., de Geus, E.J., Boomsma, D.I.
and Cacioppo, J.T. (2019) Associations between loneliness
and personality are mostly driven by a genetic association
with neuroticism. J. Pers., 87, 386–397.

17. Day, F.R., Ong, K.K. and Perry, J.R. (2018) Elucidating the
genetic basis of social interaction and isolation. Nat. Com-
mun., 9, 2457.

18. Pasaniuc, B. and Price, A.L. (2017) Dissecting the genetics
of complex traits using summary association statistics. Nat.
Rev. Genet., 18, 117–127.

19. Denny, J.C., Bastarache, L., Ritchie, M.D., Carroll, R.J., Zink, R.,
Mosley, J.D., Field, J.R., Pulley, J.M., Ramirez, A.H., Bowton, E.
et al. (2013) Systematic comparison of phenome-wide asso-
ciation study of electronic medical record data and genome-
wide association study data. Nat. Biotechnol., 31, 1102.

20. Denny, J.C., Ritchie, M.D., Basford, M.A., Pulley, J.M., Bas-
tarache, L., Brown-Gentry, K., Wang, D., Masys, D.R., Roden,
D.M. and Crawford, D.C. (2010) PheWAS: demonstrating the
feasibility of a phenome-wide scan to discover gene–disease
associations. Bioinformatics, 26, 1205–1210.

21. Roden, D.M. (2017) Phenome-wide association studies: a new
method for functional genomics in humans. J. Physiol., 595,
4109–4115.

22. Demontis, D., Walters, R.K., Martin, J., Mattheisen, M., Als,
T.D., Agerbo, E., Belliveau, R., Bybjerg-Grauholm, J., Bækved-
Hansen, M., Cerrato, F. et al. (2018) Discovery of the first
genome-wide significant risk loci for ADHD. Nat. Genet., 51,
63–75.

23. Wray, N.R. and Sullivan, P.F. (2018) Genome-wide associ-
ation analyses identify 44 risk variants and refine the
genetic architecture of major depression. Nat. Genet., 50,
668–681.

24. Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang,
J., Patterson, N., Daly, M.J., Price, A.L. and Neale, B.M. (2015)
LD score regression distinguishes confounding from poly-
genicity in genome-wide association studies. Nat. Genet., 47,
291–295.

25. de Leeuw, C.A., Mooij, J.M., Heskes, T. and Posthuma, D. (2015)
MAGMA: generalized gene-set analysis of GWAS data. PLoS
Comput. Biol., 11, e1004219.

26. Barbeira, A., Shah, K.P., Torres, J.M., Wheeler, H.E., Torsten-
son, E.S., Edwards, T., Garcia, T., Bell, G.I., Nicolae, D., Cox,
N.J. et al. (2016) MetaXcan: summary statistics based gene-level
association method infers accurate PrediXcan results. bioRxiv,
p. 045260.

27. Watanabe, K., Taskesen, E., van Bochoven, A. and Posthuma,
D. (2017) FUMA: Functional mapping and annotation of
genetic associations. bioRxiv, 110023 in press.

28. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G.,
Reshef, Y., Loh, P.-R., Anttila, V., Xu, H., Zang, C., Farh, K.
et al. (2015) Partitioning heritability by functional annotation
using genome-wide association summary statistics. Nat.
Genet., 47, 1228.

29. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day,
F.R., Loh, P.-R., Duncan, L., Perry, J.R., Patterson, N., Robinson,
E.B. et al. (2015) An atlas of genetic correlations across human
diseases and traits. Nat. Genet., 47, 1236–1241.

30. Nikpay, M., Goel, A., Won, H.-H., Hall, L.M., Willenborg, C.,
Kanoni, S., Saleheen, D., Kyriakou, T., Nelson, C.P., Hopewell,
J.C. et al. (2015) A comprehensive 1000 genomes–based
genome-wide association meta-analysis of coronary artery
disease. Nat. Genet., 47, 1121.

31. Davey Smith, G. and Hemani, G. (2014) Mendelian random-
ization: genetic anchors for causal inference in epidemiolog-
ical studies. Hum. Mol. Genet., 23, R89–R98.

32. Van Overwalle, F., Baetens, K., Mariën, P. and Vandekerck-
hove, M. (2014) Social cognition and the cerebellum: a meta-
analysis of over 350 fMRI studies. Neuroimage, 86, 554–572.

33. Cacioppo, S., Capitanio, J.P. and Cacioppo, J.T. (2014) Toward
a neurology of loneliness. Psychol. Bull., 140, 1464.

34. Amodio, D.M. and Frith, C.D. (2006) Meeting of minds: the
medial frontal cortex and social cognition. Nat. Rev. Neurosci.,
7, 268.

35. Layden, E.A., Cacioppo, J.T., Cacioppo, S., Cappa, S.F., Dodich,
A., Falini, A. and Canessa, N. (2017) Perceived social isolation
is associated with altered functional connectivity in neural
networks associated with tonic alertness and executive con-
trol. Neuroimage, 145, 58–73.

36. Cacioppo, S., Frum, C., Asp, E., Weiss, R.M., Lewis, J.W. and
Cacioppo, J.T. (2013) A quantitative meta-analysis of func-
tional imaging studies of social rejection. Sci. Rep., 3, 2027.

37. Delgado, M.R. (2007) Reward-related responses in the human
striatum. Ann. N. Y. Acad. Sci., 1104, 70–88.

38. Abdellaoui, A., Nivard, M.G., Hottenga, J.-J., Fedko, I.O., Ver-
weij, K.J.H., Baselmans, B.M.L., Ehli, E.A., Davies, G.E., Bartels,
M., Boomsma, D.I. et al. (2018) Predicting loneliness with
polygenic scores of social, psychological, and Psychiatric
Traits. Genes, Brain, Behav, 17, e12472.

39. Cacioppo, J.T., Hawkley, L.C. and Thisted, R.A. (2010) Per-
ceived social isolation makes me sad: 5-year cross-lagged
analyses of loneliness and depressive symptomatology in



Human Molecular Genetics, 2019, Vol. 28, No. 22 3865

the Chicago health, aging, and social relations study. Psychol.
Aging, 25, 453.

40. Cacioppo, J.T., Hughes, M.E., Waite, L.J., Hawkley, L.C. and
Thisted, R.A. (2006) Loneliness as a specific risk factor
for depressive symptoms: cross-sectional and longitudinal
analyses. Psychol. Aging, 21, 140–151.

41. Weeks, D.G., Michela, J.L., Peplau, L.A. and Bragg, M.E. (1980)
Relation between loneliness and depression: a structural
equation analysis. J. Pers. Soc. Psychol., 39, 1238–1244.

42. Åkerlind, I. and Hörnquist, J.O. (1992) Loneliness and alcohol
abuse: a review of evidences of an interplay. Soc. Sci. Med., 34,
405–414.

43. Barban, N., Jansen, R., De Vlaming, R., Vaez, A., Mandemakers,
J.J., Tropf, F.C., Shen, X., Wilson, J.F., Chasman, D.I., Nolte,
I.M. et al. (2016) Genome-wide analysis identifies 12 loci
influencing human reproductive behavior. Nat. Genet., 48,
1462–1472.

44. Clarke, T.-K., Adams, M.J., Davies, G., Howard, D.M., Hall, L.S.,
Padmanabhan, S., Murray, A.D., Smith, B.H., Campbell, A.,
Hayward, C. et al. (2017) Genome-wide association study of
alcohol consumption and genetic overlap with other health-
related traits in UK biobank (N= 112 117). Mol. Psychiatry, 22,
1376–1384.

45. Walters, R.K., Adams, M.J., Adkins, A.E., Aliev, F., Bacanu,
S.-A., Batzler, A., Bertelsen, S., Biernacka, J., Bigdeli, T.B.,
Chen, L.-S. et al. (2018) Trans-ancestral GWAS of alcohol
dependence reveals common genetic underpinnings with
psychiatric disorders. Nat. Neurosci., 21, 1656–1669.

46. Macdonald, S.J., Nixon, J. and Deacon, L. (2018) ‘Loneliness in
the city’: examining socio-economics, loneliness and poor
health in the north east of England. Public Health, 165, 88–94.

47. van den Broek, N., Treur, J., Larsen, J., Verhagen, M., Verweij,
K. and Vink, J. (2018) Causal associations between body mass
index and mental health: a Mendelian randomization study.
J. Epidemiol. Commun. Health, 72(8), 1–3.

48. Jiang, L., Zheng, Z., Qi, T., Kemper, K.E., Wray, N.R., Visscher,
P.M. and Yang, J. (2019) A resource-efficient tool for mixed
model association analysis of large-scale data. bioRxiv, in
press, 598110.

49. Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M. and
Price, A.L. (2014) Advantages and pitfalls in the applica-
tion of mixed-model association methods. Nat. Genet., 46,
100–106.

50. Baselmans BML, Jansen R, Ip, HF, van Dongen J, Abdellaoui
A, van de Weijer MP, Bao Y, Smart M, Kumari M, Willemsen
G, Hottenga JJ; BIOS consortium; Social Science Genetic
Association Consortium, Boomsma DI, de Geus EJC, Nivard
MG, Bartels M. 2019. Multivariate genome-wide analyses of the
well-being spectrum. Nat. Genet., 28 22: 445–451.

51. GTEx Consortium (2015) The genotype-tissue expression
(GTEx) pilot analysis: multitissue gene regulation in
humans. Science, 348, 648–660.

52. Euesden, J., Lewis, C.M. and O’Reilly, P.F. (2014) PRSice: poly-
genic risk score software. Bioinformatics, 31, 1466–1468.

53. Ruderfer, D.M., Walsh, C.G., Aguirre, M.W., Ribeiro, J.D.,
Franklin, J.C. and Rivas, M.A. (2018) Significant shared her-
itability underlies suicide attempt and clinically predicted
probability of attempting suicide. Molecular Psychiatry. epub
(see: https://www.nature.com/articles/s41380-018-0326-8).

54. Carroll, R.J., Bastarache, L. and Denny, J.C. (2014) R Phe-
WAS: data analysis and plotting tools for phenome-wide
association studies in the R environment. Bioinformatics, 30,
2375–2376.

55. Xu, H., Stenner, S.P., Doan, S., Johnson, K.B., Waitman, L.R.
and Denny, J.C. (2010) MedEx: a medication information
extraction system for clinical narratives. J. Am. Med. Inform.
Assoc., 17, 19–24.

56. Burgess, S., Scott, R.A., Timpson, N.J., Smith, G.D., Thompson,
S.G. and EPIC-InterAct Consortium (2015) Using published
data in Mendelian randomization: a blueprint for efficient
identification of causal risk factors. Eur. J. Epidemiol., 30,
543–552.

57. Ehret, G.B., Munroe, P.B., Rice, K.M., Bochud, M., Johnson,
A.D., Chasman, D.I., Smith, A.V., Tobin, M.D., Verwoert, G.C.,
Hwang, S.-J. et al. (2011) Genetic variants in novel pathways
influence blood pressure and cardiovascular disease risk.
Nature, 478, 103.

58. Bowden, J., Davey Smith, G., Haycock, P.C. and Burgess, S.
(2016) Consistent estimation in Mendelian randomization
with some invalid instruments using a weighted median
estimator. Genet. Epidemiol., 40, 304–314.

59. Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian
randomization with invalid instruments: effect estimation
and bias detection through egger regression. Int. J. Epidemiol.,
44, 512–525.

60. Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R.,
Robinson, M.R., McGrath, J.J., Visscher, P.M., Wray, N.R. et al.
(2018) Causal associations between risk factors and common
diseases inferred from GWAS summary data. Nat. Commun.,
9, 224.

61. Bowden, J., Del Greco M, F. Minelli, C. Davey Smith, G. Shee-
han, N.A. and Thompson, J.R. (2016) Assessing the suitability
of summary data for two-sample Mendelian randomization
analyses using MR-Egger regression: the role of the I 2 statis-
tic. Int. J. Epidemiol., 45, 1961-1974.

62. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh,
J., Downey, P., Elliott, P., Green, J., Landray, M. et al. (2015) UK
biobank: an open access resource for identifying the causes
of a wide range of complex diseases of middle and old age.
PLoS Med., 12, e1001779.

63. Sanchez-Roige, S., Fontanillas, P., Elson, S.L., Pandit, A.,
Schmidt, E.M., Foerster, J.R., Abecasis, G.R., Gray, J.C., de
Wit, H., Davis, L.K. et al. (2018) Genome-wide association
study of delay discounting in 23,217 adult research
participants of European ancestry. Nat. Neurosci., 21,
\textit{ }16.

64. Willemsen, G., Vink, J.M., Abdellaoui, A., den Braber, A.,
van Beek, J.H., Draisma, H.H., van Dongen, J., van’t Ent,
D., Geels, L.M. and van Lien, R., et al (2013) The Adult
Netherlands Twin Register: twenty-five years of survey
and biological data collection. Twin Res. Hum. Genet., 16,
271-281.

65. Ikram, M.A., Brusselle, G.G., Murad, S.D., van Duijn, C.M.,
Franco, O.H., Goedegebure, A., Klaver, C.C., Nijsten, T.E.,
Peeters, R.P., Stricker, B.H. et al. (2017) The Rotterdam study:
2018 update on objectives, design and main results. Eur. J.
Epidemiol., 32, 807–850.

66. Magnusson, P.K., Almqvist, C., Rahman, I., Ganna, A., Vik-
torin, A., Walum, H., Halldner, L., Lundström, S., Ullén, F.,
Långström, N. et al. (2013) The Swedish twin registry: estab-
lishment of a biobank and other recent developments. Twin
Res. Hum. Genet., 16, 317–329.

67. Durand, E.Y., Do, C.B., Mountain, J.L. and Macpherson,
J.M. (2014) Ancestry composition: a novel, efficient
pipeline for ancestry deconvolution. biorxiv, in press,
010512.


	Phenome-wide investigation of health outcomes associated with genetic predisposition to loneliness
	Introduction 
	Results
	GWAS meta-analysis
	MAGMA and S-PrediXcan gene-based analyses
	GWAS signals are significantly enriched for brain tissues and evolutionarily conserved regions
	Genetic correlations
	PheWAS on the loneliness polygenic score
	Mendelian randomization

	Discussion
	Materials and Methods
	Subjects & phenotype
	Genotyping and QC
	GWASs & meta-analysis
	Follow-up analyses

	Funding
	Conflict of Interest Statement
	Data access
	Supplementary Material


