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Abstract

Empirical researchers commonly use instrumental variable (IV) assumptions to identify treatment
effects. However, the credibility of these assumptions are often questionable. In this paper, we
consider what can be learned when the assumptions necessary for point identification are violated
in two specific ways. First, we allow the data to be contaminated, meaning that the exclusion
restrictions of the IV estimator hold for only a fraction of the sample. Second, we allow for the
data to be censored. After relaxing these assumptions point identification is no longer feasible,
but we are able to construct sharp bounds of the treatment effect. In particular, we show that
miscarriages can be seen as generating a contaminated and censored sample with which to
analyze the impact of a mother’s age at conception on the subsequent development of her child.
Utilizing the aforementioned bounds, we are able to demonstrate that for non-black children, a
delay in their mother’s age at first birth is detrimental to their well being.
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1. Introduction

This paper addresses the identification of treatment effects when data are generated by a less than

ideal randomized experiment. This issue has been a long standing problem in economics and the

social sciences in general. The difficulty in identifying these treatment effects from observational

or experimental data is that the data are inherently incomplete. Although we observe the outcome

for each individual resulting from the treatment they received, we do not observe the

counterfactual outcomes that they would have attained under alternative treatments. In lieu of

observing the counterfactual outcomes, researchers typically invoke sufficient assumptions to

recover their expected value.

Over the years various sets of alternative identifying assumptions have been proposed,

one of the most common of which is instrumental variables. Under this approach, the researcher

finds an instrumental variable (IV) that is correlated with the choice of treatment, but

uncorrelated with treatment outcomes. Although this technique has its advantages, often it

replaces the suspect assumption of random treatment selection with alternative exclusion

restrictions that are equally questionable.1 This paper follows in the spirit of Manski (1989, 1990)

by asking what can be learned when some of these exclusion restrictions are relaxed. In general,

without invoking further assumptions, point identification will no longer be feasible, but sharp

bounds of the treatment effect can be derived.

In particular, we build on the work of Hotz, Mullin and Sanders (1997). These authors

relax the traditional IV exclusion restriction by allowing it to be violated for a fraction of the

population. They go on to demonstrate that such a “contaminated” instrumental variable can be

viewed as generating a “contaminated” sample in the terminology of Horowitz and Manski

(1995). Then, applying Horowitz and Manski’s results on forming bounds on moments of
                                                          
1 See Heckman (1990, 1996), Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996) and Manski and Nagin
(1998).
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random variables based upon contaminated samples, they provide sharp bounds of the treatment

effect. This contribution is significant because it covers a wide variety of evaluation contexts. For

example, many controlled experiments fall into this framework due to the inability of

experiments to eliminate various forms of non-compliance.2 This paper extends their estimation

technique to construct sharp bounds in the presence of endogenously censored outcomes within a

contaminated sample. This extension is important since it covers a large subset of the evaluation

contexts with contaminated data. For example, many experiments suffer from attrition which can

be viewed as a form of censored outcomes.

We apply our bounds to examine the impact of a mother’s age at conception on the

subsequent development of her child. A controlled experiment in which age at first birth is

randomly assigned is clearly not feasible, but Hotz, McElroy and Sanders (1997) observe that

random miscarriages closely mimic this experiment and can be used to construct an IV estimator.

Unfortunately, not all miscarriages are random. The presence of behaviorally induced or non-

random miscarriages potentially biases their IV estimator. In the terminology of Horowitz and

Manski, the miscarriage sample is a contaminated sample of the random miscarriage population,

since it is mixed with non-random miscarriages. Hotz, Mullin and Sanders (1997) construct sharp

bounds of the causal effect of teenage childbearing on maternal outcomes from this contaminated

sample.

We extend this work to the analysis of child outcomes. In addition to the problems of

selection-bias and the inability to differentiate between random and non-random miscarriages

present in the analysis of maternal outcomes, the analysis of child outcomes presents the

additional difficulty of censored data. In particular, some women never have children, while

others who intend to have children have not had their first child within the sampling frame of the

                                                          
2 See Hotz and Sanders (1996).
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data. This censoring problem does not occur for the children of teenage mothers, but it does

complicate the estimation of their counterfactual outcomes. However, we still can construct sharp

bounds of the causal effect of early childbearing. Furthermore, we are able to use these bounds to

test the assumptions underlying traditional OLS and IV estimators.

We find that the deleterious effects of teenage childbearing for non-black women not only

disappear when estimators account for self-selection into early motherhood, but that a delay in

childbearing for this sub-population of women is actually harmful to their children. This result

adds to a growing literature which indicates that despite the strong negative correlation between a

woman’s age at first birth and the subsequent attainment of her child, a minor having a child is

purely a signal of a woman already in need of assistance, not the cause of her or her child’s

troubles. For example, Geronimus and Korenman (1992) and Hoffman, Foster, and Furstenberg

(1993) exploit differences in sisters’ childbearing to estimate family fixed-effect models. They

find that the estimated deleterious effects of early motherhood on maternal outcomes are about

one half the size inferred from cross-sectional estimates on the same data. Ribar (1994) estimates

a bivariate probit model of the joint decision to complete high school and bear a child as a

teenager with three alternative exclusion restrictions to attain identification. Under all

specifications, the causal-effects of early childbearing on educational attainment are small and

more often than not, positive. Angrist and Evans (1996), Bronars and Grogger (1994), and Hotz,

McElroy, and Sanders (1997) employ natural experiments (legislation, twins and miscarriages,

respectively) and attain IV estimates indicating few negative effects and some positive effects of

teenage motherhood for those who choose it. Hotz, McElroy, and Sanders’ results are confirmed

by the more robust bounds constructed in Hotz, Mullin and Sanders (1997).

Turning to the effects on children, the literature is smaller, but has a similar flavor. In a

review of the available statistical methods of identifying the effects of teenage childbearing,
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Rosenzweig and Wolpin (1995) conclude that teenage mothers have lower-gestation births, but at

birthweights greater than older mothers. Geronimus, Korenman and Hillemeier (1994) use

differences in sisters’ childbearing to estimate a family fixed-effect model of the consequences of

teenage childbearing on children and conclude that their estimates offer little support for a

detrimental effect on children's achievement. Moreover, the only statistically significant

estimates they attain, suggest a positive impact of teenage childbearing. Finally, our estimates

provide a more robust verification of the conclusion that the children of teenage mothers are not

harmed and may benefit from their mothers’ choice to bear children. Furthermore, the results tell

the same story over a diverse range of measures, including birth weight, behavioral problems and

cognitive attainment.

2. Pregnancy Resolution and the Evaluation Problem

In this section, we characterize the problem of identifying the casual effect of teenage women

bearing children. The exposition maintains the notation and closely parallels that of Hotz, Mullin

and Sanders (1997). Those familiar with this previous work may wish to skip to the next section

which addresses the additional complications involved in the analysis of child outcomes as

opposed to maternal outcomes.

A pregnancy can be resolved in one of four ways: it can end in a birth (B); an induced

abortion (A); or one of two types of miscarriages, non-random (NR) and random ones (RM). The

non-random miscarriage category includes those which are induced by such behaviors as

smoking and drinking. From a choice theoretic perspective, the first three ways of resolving a

pregnancy can be viewed as choices women make, either directly or indirectly. As such, these

choices, and their determinants, may be correlated with the outcome variables of interest. Let D

indicate the way in which a women chooses to resolve her pregnancy, where D = B, A or NR.
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In contrast to the first three methods of resolving a pregnancy, random miscarriages

represent events that are exogenously imposed on pregnant women. Let *Z  indicate the

occurrence of a random miscarriage, where *Z RM=  or ~RM. A key feature of random

miscarriages is that they prevent women from choosing how their pregnancies are resolved.3 So,

when a random miscarriage occurs, a pregnant woman’s preference for how her pregnancy would

be resolved may not be revealed. Nonetheless, it is useful to characterize what a woman’s choice

would have been if she had not experienced a random miscarriage. Let LD  indicate a woman’s

latent pregnancy resolution choice, where LD  = B, A or NR. Her latent choice status is defined as

how her pregnancy would be resolved in the absence of a random miscarriage.

Finally, let Y denote an outcome of interest at age t, where we forego indexing by t to

avoid excessive notation. Following the framework of the literature on the identification of

treatment effects, we define 1Y  to be the outcome that would result if a woman’s first birth occurs

when she is a teen and 0Y  to be the outcome that would result if her childbearing is delayed. Our

interest is in the effect of a woman having a birth as a teen verses delaying it on subsequent

outcomes for the population of women who first gave birth as teens. More precisely, we are

interested in identifying

( ) { }1 0 ,X E Y Y D B Xα ≡ − = (2.1)

where α  may vary with X, a vector of exogenous characteristics. From this point onward, the

conditioning on X is left implicit to avoid excessive notation.

The casual effect in (2.1) characterizes how different a teen mother’s subsequent Ys

would be if she postponed the birth of her first child. This casual effect is analogous to the mean

                                                          
3 Here, we assume that random miscarriages occur early in a woman’s pregnancy, before she has the opportunity to
abort the fetus or induce a non-random miscarriage. Below, we discuss the implications of some random
miscarriages being preempted by abortions or non-random miscarriages for the identification of the casual effect of
early childbearing.
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effect of treatment on the treated in the evaluation literature. As discussed in Heckman and Robb

(1985), α  is a non-standard parameter from the vantage point of structural modeling in

econometrics. Structural modeling is typically used to identify the average effect of a potentially

endogenous event (a teen birth) on Y for everyone in the population, rather than just those who

are observed to have chosen the event (teen mothers). We focus on the casual effect for teen

mothers for two reasons. First, this effect is more readily identified from available data. Second,

policies that seek to reduce the rate of teenage childbearing will likely target women who, under

the status quo, would become teenage mothers. Knowledge of α  is sufficient to assess the

potential consequences of eliminating teenage childbearing for these women.

The fundamental problem in identifying α  is that while we observe the outcomes of

teenage mothers, 1Y , we can never directly observe the counterfactual outcome, 0Y , for these

women, i.e. what the outcome would have been for these women in the absence of a teen birth.

At issue is what comparison group to use to obtain data on 0Y  and its expectation. Often the

outcomes for women who chose not to have teen births are used. In general, using the outcomes

for the latter group to measure the counterfactual outcomes for the former will not identify α .

Rather, it will identify

{ } { } { } { }1 0 0 0E Y D B E Y D B E Y D B E Y D Bα  = − ≠ = + = − ≠  (2.2)

where the expression in brackets is the selection-bias term -- i.e. the mean difference in outcomes

that would have existed between women who had births and women who did not if both had

delayed their childbearing.

In many evaluation problems the selection-bias term is eliminated by conducting a

randomized experiment. In this case, the appropriate randomized experiment would involve

randomly allowing some latent-birth type women to have children as teenagers and preventing

others. Such an experiment is clearly unethical and, thus, not feasible to implement. This study



7

considers three alternative estimation techniques to address the selection-bias term: Ordinary

Least Squares (OLS), Instrumental Variables (IV), and Horowitz-Manski (HM) bounds.

2.1 Ordinary Least Squares (OLS)

The standard OLS estimator attempts to correct for the selection-bias term by conditioning on

enough covariates such that it is zero, i.e. condition on a set of covariates X such that

{ } { }0 0, ,E Y D B X E Y D B X= = ≠ . However, if the observable covariates do not control for all

of the self-selection into early childbearing, then the estimator remains biased.

We consider two OLS estimators. The first, conditions on all exogenous variables

available in the data. A complete list of these variables is provided in the discussion of the data.

Although we do not believe the available exogenous variables are sufficient to eliminate the

selection bias, this estimator is included to facilitate comparisons between our results and

previous work.

Second, we restrict the sample to women who became pregnant as teens. If the covariates

in the traditional regression controlled for the selection bias, then this restricted regression will

be unbiased as well. However, the standard errors will be greater due to the reduction in sample

size. On the other hand, if the covariates failed to correct for all of the self-selection into teenage

childbearing and teenage mothers are more similar to teens who become pregnant and fail to

have a birth than teens who do not conceive, then the restricted regression could suffer from less

selection-bias. Since this restricted sample is more alike on observable characteristics, it is likely

that they are more similar on unobservable characteristics. Furthermore, this second OLS

estimator provides a Hausman like test of the assumptions underlying the first OLS estimator.

2.2 Miscarriages as an Instrumental Variable

As discussed earlier, a controlled experiment in which latent-birth type women are randomly

assigned childbearing status is not feasible. However, a naturally-occurring experiment, in which
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teenagers experience random miscarriages, would seem to mimic this controlled experiment and

provide ideal data for identifying α . Three conditions are necessary for random miscarriages to

identify α .

Condition 1. The occurrence of a random miscarriage precludes the occurrence of a
birth, while the absence of a random miscarriage ensures the occurrence of a birth for latent-birth
type women.

Condition 2. Random miscarriages do not affect outcomes of latent-birth type women,

i.e. { } { }*
0 0,L LE Y D B Z RM E Y D B= = = = .

Condition 3. Latent-birth type women and their miscarriage status are observable.

If these conditions are met, α  is identified and can be estimated as the difference between the

mean outcomes of latent-birth type women who have births and those who have random

miscarriages.

While Condition 1 is not controversial, the validity of the remaining two conditions are.

A random miscarriage may cause a behavioral response, such as depression, if the child was

desired, or elation, if it was unwanted. This effect of the randomizing event is labeled the

“Hawthorne Effect” in randomized experiments and Heckman and Smith (1995) refer to this

phenomena as “randomization bias.” To satisfy Condition 3 the researcher must know the

identities of latent-birth type women. For those that bear children, this identification is easy.

However, among the miscarriage population, it is impossible to disentangle the latent-birth type

women from latent-abortion and non-random miscarriage type women without further

assumptions. In particular, when Condition 3 fails to hold, the following two additional

conditions are sufficient to construct a consistent instrumental variables estimator:

Condition 4. Random miscarriages do not affect outcomes of latent-abortion type

women, i.e. { } { }*
0 0,L LE Y D A Z RM E Y D A= = = = .
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Condition 5. (a) Random miscarriages do not affect outcomes of latent-non-random-

miscarriage type women, i.e. { } { }*
0 0,L LE Y D NR Z RM E Y D NR= = = = ; and (b) the expected

outcome for women experiencing non-random miscarriages can be expressed as a weighted
average of the expected outcome for latent-birth and abortion type women, i.e.

{ } [ ]( ) { } [ ]( ) { }0 0 01 1L L L
B NR A NRE Y D NR P P E Y D B P P E Y D A= = − = + − = .

Condition 4 provides an avenue through which the population of women who abort their

pregnancies can be used to purge the miscarriage population of latent-abortion type women.

Condition 5 enables one to extract the non-random-miscarriage population from the miscarriage

population. Although this final condition is strong, Hotz, McElroy and Sanders (1997) point out

that if the epidemiological literature is correct, then conditioning on smoking and drinking during

pregnancy is sufficient for Condition 5 to hold. See Hotz, Mullin and Sanders (1997) for the

details on how to implement the appropriate IV estimator under Conditions 1, 2, 4 and 5.

2.3 Horowitz-Manski Bounds

In this section we develop bounds of the casual effect of teenage childbearing which employ

weaker assumptions than those needed for point identification. The general intuition is that

miscarriages can be thought of as a “contaminated” instrumental variable. As such, the estimate

provided by it can be viewed of as a combination of an unbiased estimate from random

miscarriages plus bias from non-random miscarriages. Horowitz and Manski (1995) provide the

necessary tools to construct sharp bounds on this potential bias.

Initially, assume that only Conditions 1 and 2 hold. So, we are unable to distinguish

between random and non-random miscarriages, but we do observe when miscarriages occur. Let

Z indicate the occurrence of a miscarriage, either random or otherwise, where Z = M or ~M.

Therefore, the distribution of outcomes for women experiencing a miscarriage is identified and

can be expressed as a mixture of the outcomes for the women of the three latent types.
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{ }
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(2.3)

where ( )*PrRMP Z RM≡ =  is the probability of a random miscarriage; ( )Pr L
jP D j≡ =  is the

probability of the jth pregnancy resolution being a woman’s latent choice, j = B, A and NR for

which 1B A NRP P P+ + = ; and MP  is the probability of a miscarriage, where

( )1M RM RM NRP P P P= + − . While in the absence of Condition 3 we are unable to point identify α ,

we are able to place a bound on it. Recall from (2.1) that { } { }1 0
LE Y D B E Y D Bα ≡ = − = .

Since { }1E Y D B=  is identified by women who had a birth as a teen, placing a bound on α  rests

entirely on forming a bound for { }0
LE Y D B= . Rearranging and consolidating terms in (2.3)

yields

{ } { } ( ) { }*
0 0 0*

1
1 ,L LE Y D B E Y Z M E Y D B Z Mλ

λ
   = = = − − ≠ =    

(2.4)

where *λ  ( )B RM MP P P≡  is the proportion of miscarriages that occur randomly to latent-birth

type women. While { }0E Y Z M=  is identified, the second term in brackets on the right-hand

side of equation (2.4), { }0 ,LE Y D B Z M≠ = , is not identified. So, neither { }0
LE Y D B=  nor α

are identified.

But the fact that equation (2.4) holds implies that there is a tight set of bounds on

{ }0
LE Y D B= . This follows from results in Horowitz and Manski (1995) on the identification of

bounds for moments of random variables using data from contaminated samples so long as one

knows (or can estimate) either *λ  or a lower bound on this proportion. Let λ  denote this lower

bound. Below, we discuss how one estimates λ  from epidemiological studies of random

miscarriages and vital statistics data. For now, we assume that λ  is known.
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The intuition for the bounds is as follows: Suppose that half of the miscarriage population

are latent-birth type women. Then, the population of non-latent-birth type women cannot have a

distribution below that of the bottom half of the miscarriage population. So, the mean outcome

for the bottom half of the miscarriage population is a lower bound on the average outcome for

non-latent-birth type women. In general, the fraction ( )1 λ−  of miscarriages are non-latent-birth

type women and the expected value of the ( )1 λ− -quantile of the distribution of outcomes among

the miscarriage population is a lower bound on the average outcome for non-latent-birth type

women. Notationally, define ,1MY λ−  to be the ( )1 λ− -quantile of the distribution of Y, i.e.

( ),1Pr 1MY Y Z Mλ λ−≤ = = − . Then, the greatest lower bound on { }0 ,LE Y D B Z M≠ =  is given

by the truncated mean

{ }0 ,1 ,ME Y Y Y Z Mλ−≤ = . (2.5)

By similar reasoning, the greatest upper bound is

{ }0 , ,ME Y Y Y Z Mλ≥ = . (2.6)

It follows from Corollary 4.1 in Horowitz and Manski (1995) that these bounds are sharp.

Using (2.5) and (2.6) as bounds for { }0 ,LE Y D B Z M≠ = , we define the Horowitz-

Manski bounds on α  as

( ) ( )1 1,L UA Aα λ λ ∈   . (2.7)

where

( ) { } { } ( ) { }1 1 0 0 ,1

1
1 ,L MA E Y D B E Y Z M E Y Y Y Z Mλλ λ

λ −
 ≡ = − = − − ≤ =  , (2.8)

( ) { } { } ( ) { }1 1 0 0 ,

1
1 ,U MA E Y D B E Y Z M E Y Y Y Z Mλλ λ

λ
 ≡ = − = − − ≥ =  . (2.9)
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Notice that these bounds are defined even if Y does not have bounded support.

If in addition to Conditions 1 and 2, we assume that Condition 4 holds, i.e. we assume

there is no Hawthorne Effect for latent-abortion type women, then the bounds can be tightened.

Rearranging and consolidating terms in equation (2.3) yields

{ } { } { }
( ) { }

*
0 0

0 * * *
0

1

1 ,

L

L

L

E Y Z M E Y D A
E Y D B

E Y D NR Z M

θ

λ λ θ

 = − =   = =      − − − = =  
(2.10)

where *θ  ( )A RM MP P P  is the proportion of miscarriages that occurred randomly to latent-

abortion types. Using analogous bounds to (2.5) and (2.6) for { }0 ,LE Y D NR Z M= =  and letting

θ  be a lower bound for *θ , the modified Horowitz-Manski bounds are

( ) ( )2 2, , ,L UA Aα λ θ λ θ ∈   . (2.11)

where

( ) { }
{ } { }
( ) { }

0 0

2 1

0 ,1

1
,

1 ,
L

M

E Y Z M E Y D A
A E Y D B

E Y Y Y Z Mλ θ

θ
λ θ

λ λ θ − −

 = − =
 ≡ = −
 − − − ≤ = 

, (2.12)

( ) { }
{ } { }
( ) { }

0 0

2 1

0 ,

1
,

1 ,
U

M

E Y Z M E Y D A
A E Y D B

E Y Y Y Z Mλ θ

θ
λ θ

λ λ θ +

 = − =
 ≡ = −
 − − − ≥ = 

. (2.13)
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Whenever { } { }0 0 ,1 ,1 ,M ME Y D A E Y Y Y Y Z Mλ θ λ− − −= > ≤ ≤ = , ( ) ( )2 1,L LA Aλ θ λ> . Similarly,

whenever { } { }0 0 , , ,M ME Y D A E Y Y Y Y Z Mλ λ θ+= < ≤ ≤ = , ( ) ( )2 1,U UA Aλ θ λ< . These bounds

are sharp given the maintained conditions.4

3. Censored Outcomes

In addition to the problems of selection-bias and the unobservable nature of non-random

miscarriages, the analysis of child outcomes presents the following additional difficulty: Some

women never have children, while others who intend to have children have not had their first

child within the sampling frame of the data. This censoring problem does not occur for the

sample of teenage mothers’ children, but it does complicate the estimation of counterfactual

outcomes.

We start by dealing with the easier case of estimating the expected outcome of latent-

abortion type women. An implication of Condition 4 (no Hawthorne Effect for latent-abortion

type women) is that these women’s desire to eventually have a child is independent of whether

they experience a random miscarriage or have an abortion. Therefore, an equal proportion of the

latent-abortion type women in both the miscarriage and abortion populations will remain

childless. A possible exception to this conclusion is that miscarriages and abortions can lead to

future fertility problems. However, given that we know of no evidence indicating otherwise, we

assume that infertility caused by the abortion or miscarriage that terminated the first pregnancy

occurs randomly. Thus, such infertility randomly censors child outcomes, at potentially different

                                                          
4 A proof can be provided from the authors upon request. Also, the bounds could be tightened further if one were to
assume that the distribution of outcomes for women intending to have an abortion is unaffected by a random
miscarriage. Under this assumption, we could extract the latent-abortion outcome distribution from the miscarriage
distribution leaving the distribution of outcomes for those that had miscarriages, but did not intend to have an
abortion. Then, the first type of Horowitz-Manski bounds can be computed for this resultant distribution (the
resultant distribution is still contaminated with non-random miscarriages). However, in this paper, these bounds are
not informative conditional on the other estimators because of the imprecision of the estimates of the density
functions.
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rates, in both the miscarriage and abortion populations. But random censoring does not affect the

identification of any of the estimators.5

Turning to latent-birth type women in the miscarriage population, we consider three

approaches to implementing the Horowitz-Manski bounds. First, we assume that children are

randomly distributed to latent-birth type women in the miscarriage population.

Condition 6. Latent-birth type mothers in the miscarriage population are a random
sample of latent-birth type women in the miscarriage population.

When Condition 6 holds, child outcomes for latent-birth type women have been randomly

censored from the miscarriage population. As with latent-abortion type women, random

censoring does not affect the identification of any of the estimators. However, it does change the

proportion of children in the miscarriage population belonging to latent-birth type women. In

particular, let *δ  be the proportion of latent-birth type women in the miscarriage population with

children and δ  be a lower bound for *δ . Also, let *η  be the proportion of women in the

miscarriage population with children and η  be the proportion of such mothers in the sample.

Then, in the Horowitz-Manski bounds given in (2.7) and (2.11), replace λ , the proportion of

latent-birth type women, with λ λδ η′ ≡ , the proportion of children with latent-birth type

mothers. Similarly, replace θ , the proportion of latent-abortion type women, with θ θγ η′ ≡ , the

proportion of children with latent-abortion type mothers, where γ  is the proportion of latent-

abortion type women in the miscarriage population with children.6

Although Condition 6 is a strong assumption, there is nothing in the data to cast doubt on

it. In analysis not shown here, the length of delay from miscarriage to birth has no statistically

significant impact on children’s outcomes. In a linear specification, the point estimate indicates a

                                                          
5 If the rates of random censoring differ between the miscarriage and abortion populations, then the weights of the IV
estimator need to be adjusted. In general, the weights are constructed such that the weighted ratio of women having
abortions to those having children needs is constant across the miscarriage and non-miscarriage samples.
6 Similar re-weighting of the observation needs to done for the IV estimator (see footnote 5).
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slight decrease in children’s attainment as the length of delay increases, but the size of the

estimate is statistically insignificant and economically inconsequential. Non-parametric and

alternative parametric specifications were unable to determine any pattern in child outcomes as a

function of the length of delay between the first miscarriage and the birth of the child. However,

the power of all of these tests are very low, since there are only 18 births in the miscarriage

sample that occur with a delay in excess of three years.

The second approach takes a more agnostic viewpoint as to the source of censoring of

child outcomes for latent-birth type women in the miscarriage population. When the outcome in

question is bounded, the censored observations can be replaced by the minimum or maximum

attainable value as the construction of the lower or upper bound dictates. In other words, the

miscarriage population provides bounds on a fraction δ  of the latent-birth types (those with

children in the counterfactual state), while the remaining latent-birth types are bounded by the

lower and upper bounds on Y, LY  and UY , respectively. Therefore, after correcting for censoring,

the A1 bounds become

( ) ( )3 3,L UA Aα λ λ′ ′ ∈   . (3.1)

where

( ) { }
{ } ( ) { } ( )

3 1

0 0 ,1

1
1 , 1

L

M U

A E Y D B

E Y Z M E Y Y Y Z M Yλ

λ

δ λ δ
λ ′−

′ ≡ =

  ′− = − − ≤ = − −  ′ 

, (3.2)

( ) { }
{ } ( ) { } ( )

3 1

0 0 ,
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Note that assuming the average censored outcome is bounded by the ε  and κ  percentiles

of the population simultaneously tightens the bounds and makes them informative for unbounded

outcomes. Computationally, replace the lower and upper bounds of Y with the ε  and κ  quantiles

of the distribution of Y in equations (3.2) and (3.3). Given that ε  and κ  are choice parameters,

the A3 bounds are feasible for unbounded outcomes under arbitrarily weak additional

assumptions since ε  and κ can be set arbitrarily close to zero and one hundred. Finally, the A2

bounds can be adjusted for censored outcomes in a similar manner to yield what we shall refer to

as the A4 bounds. In practice, we experiment with values for ε  and κ  to determine how robust

the IV point estimates and the previous bounds are to nonrandom censoring of outcomes.

The third approach attempts to address the following two shortcomings of the A3 and A4

bounds: (1) When the outcome of interest is unbounded, these bounds are uninformative; and (2)

in some situations, it is unclear whether the minimum and maximum values are appropriate

bounds for the counterfactual outcome. To illustrate the latter case, consider the problem

analyzed here of teenage childbearing. How does one measure the impact on a woman’s first

born child of a delay in childbearing when such a delay causes the woman not to have children?

As an alternative to attempting to answer this question, it is possible to reduce the

treatment group (teenage mothers) to a set of women that matches those women with children in

the miscarriage population. It is important to note that such a change alters the treatment effect

being estimated. Instead of estimating α , the effect of treatment on the treated, we are estimating

α� , the effect of treatment on a sub-sample of the treated. In particular, the effect of treatment on

those women who would go on to have children at a later date if they were prohibited from

having a child as a teenager. Note that the sub-sample of women being omitted are those women

who would only have children as teenagers. The absence of a child in the counterfactual state
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makes it unclear how to incorporate these women into an analysis of child well being. So,

dropping them may be preferable.

The bounds for the counterfactual outcome for the children of teenage mothers are

identical to those constructed under Condition 6. The change is that we no longer have point

identification of the expected outcome for the children of the appropriate sub-population of

teenage mothers. However, using the results in section 2, the expected outcome for the children

of this sub-population of teenage mothers is bounded below by

{ }0 ,1 ,BE Y Y Y D Bδ−≤ = (3.4)

and above by

{ }0 , ,BE Y Y Y D Bδ≥ = . (3.5)

Substituting these expression into the A1 bounds given in equation (2.7) yields

( ) ( )5 5,L UA Aα λ λ′ ′ ∈  � . (3.6)
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Similarly, the A2 bounds given in equation (2.11) become

( ) ( )6 6, , ,L UA Aα λ θ λ θ′ ′ ′ ′ ∈  � . (3.9)

where
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4. Estimating λ′ , θ′  and δ

In constructing the bounds in Section 3 it was assumed that λ ′  and θ′ , lower bounds on the

proportion of children in the miscarriage population with latent-birth and abortion type mothers,

as well as δ , an upper bound on the proportion of latent-birth type women in the miscarriage

population who have not yet had a child, were all known. Clearly, they are not known and must

be estimated. The first step is to estimate λ  and θ , lower bounds on the proportion of latent-

birth and abortion type mothers in the miscarriage population, respectively.

We divide this estimation problem into two pieces. First, we estimate a lower bound on

the fraction of miscarriages that occur randomly. Second, conditional on being a random

miscarriage, we estimate the proportion of miscarriages that are of each type. Throughout the

analysis we maintain the assumption that non-random miscarriage are reported less frequently

than random miscarriages.

Assumption 1. The rate of underreporting by non-random miscarriage types is at least as
great as underreporting in the entire population.

Assumption 1 implies that the proportion of miscarriages that are random is greater in our sample

than the population as a whole. To date, there is substantial evidence that smoking or drinking

during pregnancy, or having an intrauterine device in place at the time of conception, raises the

rate of random miscarriages. However, according to Kline, Stein and Susser (1989) the medical

evidence on an association between other behavioral factors and miscarriages remains less



19

conclusive.7 So, we presume that a miscarriage is random if it occurs to a woman who never

smoked cigarettes nor drank alcohol during her pregnancy.8 For women who smoked cigarettes,

we assume they smoked at least 15 a day.9 Kline, Stein and Susser (1989) finds that these women

are 60 percent more likely to experience a miscarriage. Similarly, for women who drank alcohol,

we assume they drank one to two drinks per day during their pregnancy. Harlap, Shiono and

Ramcharan (1980) finds that consumption at such levels leads to no more than a 100 percent

increase in miscarriages. These factors lead to the following percentages of miscarriages being

random: 62.5 percent for women who smoked, 50 percent for those who drank and 39.5 percent

for those who did both.10 Given these rates and utilizing the data in the NLSY on respondent’s

smoking and drinking behavior, we estimate that 87 percent of the miscarriages in our sample

were random.11

Now, we turn to dividing the random miscarriages into the proportion belonging to each

of the three latent types. Initially, we determine an upper bound on the fraction of latent-non-

random miscarriages in the random miscarriage group. Given Assumption 1, non-random

miscarriage types compose no more than three percent of the random miscarriage group.12 To be

conservative, we set the percentage of latent-non-random miscarriage types in the random

                                                          
7 Kline, Stein and Susser (1989) note that other factors (nutrition, cocaine use, etc.) affect gestational age, birth
weight, and infant mortality, but there is no evidence that they affect the incidence of miscarriage.
8 We ignore the effect of an intrauterine device for two reasons: (1) It is uncommon among teen women; and (2) our
data has no information on contraceptives used while women were teens.
9 We have no reliable data on the quantity of cigarettes or alcohol consumed. So, we assume that all women who
smoked or drank did so in large quantities, guaranteeing a lower bound on the fraction of random miscarriages.
10 We obtained the 39.5 percent figure by assuming that the effects of smoking and drinking are independent.
11 We have data on smoking and drinking during the year of a women’s pregnancy. To be conservative, we assume
that if a woman smoked or drank in that year, then she smoked or drank during her pregnancy.
12 13 percent of miscarriages are non-random. Since, 45 percent of pregnancies end in births and 41 percent end in
abortions, 14 percent end in a miscarriage. Thus, 1.8 percent of pregnancies end in a non-random miscarriage.
Adjusting for the risk exposure of both abortions (1/3) and non-random miscarriages (1/2), the percentage of non-
random miscarriages is 1.5.
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miscarriage population at its upper bound, three percent, guaranteeing that random miscarriage

types are not over-represented.

Before dividing the remaining 97 percent into λ  and θ , the percent of latent-birth and

abortion types in the miscarriage population, respectively, note that the bounds are continuous in

these parameters. This fact suggests the following strategy: Generate two decompositions, one

over-representing latent-birth types and the other under-representing latent-birth types. By

continuity and monotonicity of the truncated sample means, we know that any decomposition of

the random miscarriage group falling between these two decompositions, which includes the true

decomposition, will produce bounds that fall between those obtained using these two

decompositions. Hence, if the bounds under the two approaches are similar, then we have

confidence in their robustness.

To justify the first decomposition, we assume that underreporting is equal across the three

latent types.

Assumption 2. While we allow underreporting of pregnancies, underreporting is at a
constant rate across latent-types.

When Assumption 2 holds, λ  and θ  can be estimated from the NLSY sample. The sample

proportions of births and abortions among non-miscarried pregnancies, adjusted for the lower

risk exposure to a miscarriage of latent-abortion types, can serve as estimates of λ  and θ . Using

data on the number of births and abortions in our sample, we estimate that latent-birth types

compose 75 percent of the miscarriage sample, while latent-abortion types account for 9 percent

of the miscarriages. Since Assumption 2 implies that latent-birth types report all of their

pregnancies, this decomposition probably over-represents the proportion of latent-birth types. We

refer to this decomposition as Decomposition A2.

For the second decomposition, we assume that the proportion of latent-birth and abortion

types in our sample of random miscarriages is the same as that of the population as a whole.
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Assumption 3. Under-reporting of miscarriages is constant across latent types.

Based on the number of births and abortion in the population as reported by U.S. Vital Statistics

and the Alan Guttmacher Institute, we estimate that latent-birth types account for 65 percent of

miscarriages, while latent-abortion types compose 20 percent of the miscarriage population. If

latent-birth types report their miscarriages more often than the population as a whole, then this

decomposition under-represents the fraction of latent-birth types. Furthermore, since this

decomposition places fewer latent-birth type women in the miscarriage population, the resultant

bounds are wider whenever Condition 4 (no Hawthorne Effect for latent-abortion types) is not

imposed. However, when Condition 4 is imposed, the bounds corresponding to the two

decomposition are of identical width, although centered at potentially different locations. We

refer to this second decomposition as Decomposition A3.

Finally, we need estimates of γ , the fraction of latent-abortion types who remain

childless, δ , the proportion of latent-birth types in the miscarriage population who remain

childless, and η , the fraction of the miscarriage population without children. The first and third

of these can be estimated by the analogous proportions in our sample. These estimates are γ̂

equal to 21 percent and η̂  equal to 84 percent. To estimate δ , we assume that latent-non-random

miscarriage types are the least likely to have had a child.13 When this assumption holds,

( )*λδ θγ λ θ η + + ≥  . (4.1)

Rearranging terms, we have a lower bound for *δ , i.e.

( ) ( )*δ η λ θ λ θ λ≥ + − +   . (4.2)

                                                          
13 Since latent-non-random miscarriage types compose less than 16 percent of the miscarriage sample, the results are
robust to this assumption so long as the birth rate for latent-non-random miscarriage types does not greatly exceed
that of the population as a whole.



22

Substituting our estimates of the corresponding population parameters in equation (4.2) yields an

estimated lower bound of 85 percent of latent-birth types in the miscarriage population being

childless.

Putting these estimates together implies that the fraction of children in the miscarriage

population belonging to latent-birth type mothers is 76 and 66 percent under decompositions A2

and A3, respectively. Similarly, the percent of children belonging to latent-abortion type mothers

is 9 and 18, respectively. Using these estimates of the fraction of mothers in the miscarriage

sample who were latent-birth and abortion types, we construct non-parametric kernel estimates of

the bounds. All of the parameter estimates are given in Table I.

5. Data

We use the National Longitudinal Survey of Youths (NLSY). The NLSY is an annual survey of a

nationally representative sample of youths who were 14 to 21 years old when the series began in

1979. Despite attrition, this dataset remains representative of its intended population after

adjusting by the original 1979 sampling weights (MaCurdy, Mroz and Gritz (1998)). In 1983, a

retrospective pregnancy history was administered, and thereafter a pregnancy history was

administered approximately every two years. We restrict our attention to women, including those

in the oversamples of Blacks and Hispanics, and their first-born children. We exclude later births

to avoid complications that arise from differences in child outcomes due to birth order.

We use for our analysis the 978 women in the NLSY who reported a pregnancy before

their 18th birthday. Of those pregnancies, 723 resulted in births, 185 terminated in abortions and

70 ended in miscarriages.14 After adjusting for population weights, these numbers imply that 73

percent of non-miscarried pregnancies are brought to term in our sample. However, the

                                                          
14 Jones and Forrest (1992) compare the responses on pregnancy in the self-administered questionnaire to the
responses in the open survey and find that it is very rare that a pregnancy is reported with different resolutions in the
two mediums.
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corresponding number for the population is only 52 percent.15 So, abortions are almost certainly

underreported. The fact that abortions are underreported, leads one to believe that miscarriages

will also be underreported. But, it is difficult to determine the degree of this problem since there

are no data sources, comparable to the Alan Guttmacher Institute data on abortions, with which

to verify their accuracy. If underreporting is correlated with outcomes of interest, then it can bias

all of the estimators.

In addition to interviewing the original members of the NLSY, the children of women in

the NLSY were interviewed in a child supplement starting in 1986. This supplement contains

information about: the child’s cognitive attainment, the behavioral problems of the child, and the

household in which the child lives. We use the following assessments of children: birth weight,

the Peabody Individual Achievement Tests (PIATs), the Peabody Picture Vocabulary Test

(PPVT), the behavioral problem indices (BPI), and measures of the child’s home environment.16

The first four of these categories are child outcomes, while the last, home environment, provides

indices of inputs into the child. All outcomes except birth weight are measured in percentile

scores, normalized such that a higher score is better and, where appropriate, scores have been

adjusted for cohort and age at the time of measurement. Finally, all of the child assessments used

are listed in Table II with a brief description of the objective of the assessment, the manner in

which it is compiled and the ages at which it is taken.

6. Results

In this section we discuss the empirical estimates from the alternative estimators of the casual

effect of teenage childbearing for the variables discussed in Section 5. All of the OLS and IV

estimates computed control for the following background characteristics of a woman: her AFQT

                                                          
15 Population numbers are based on data from U.S. Vital Statistics and the Alan Guttmacher Institute.
16 When the same measure is available for multiple years, the average of the normalized scores is used in order to
reduce the noise associated with these measures.
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score (adjusted for age and cohort), whether she lived in an intact family at age 14, whether she

lived in a female-headed household at age 14, her family’s income in 1978, whether her family

was on welfare in 1978, and the education of her mother and father. Finally, all estimates of

bounds only control for the quartile of the woman’s AFQT score.

Before discussing any particular estimates, it is useful to discuss a couple findings that

facilitate the exposition of the results. First, the empirical estimates are qualitatively similar

under the two proposed decompositions, Decomposition A2 and A3.17 So, for the sake of brevity,

we focus the discussion on the bounds constructed under Decomposition A2.18 Second, although

at times the bounds can reject the assumptions underlying some of the point estimator, the

bounds themselves are always internally consistent.

6.1 Consistency Across Estimators

Tables III and IV present the point estimates for black and non-black women, respectively. If the

assumptions underlying all of the estimators are true, then these estimates should be mutually

consistent. In particular, when the assumptions underlying the unrestricted OLS estimator hold,

the restricted OLS estimator can be viewed as this unrestricted estimator plus noise. Thus, we can

perform a Hausman test of the assumptions underlying the unrestricted OLS estimator. Also, if

the assumptions underlying a set of bounds are valid, then any unbiased point estimator should

fall within those bounds.19

                                                          
17 Since Decomposition A3 places fewer latent-birth type women in the miscarriage population, the bounds not
imposing Condition 4 (no Hawthorne effect for latent-abortion type women) are wider under this decomposition.
However, when Condition 4 is imposed, the bounds are of identical width and centered slightly higher than under
Decomposition A2.
18 The estimates of the alternative bounds under Decomposition 3A can be obtained from the authors upon request.
19 For discussions of testing joint inequality constraints such as we have here see Perlman (1969) and Wolak (1989).
In our application, since at most one of the two constraints can be violated, the squared number of standard
deviations outside of the bounds is distributed ( ) 2

11 2 χ  under the null hypothesis that our assumptions hold.



25

For black women, from a strict statistical perspective the results are very consistent. The

Hausman test never comes close to rejecting the assumptions underpinning the unrestricted OLS

estimator (the lowest p-value across the seven measures is 0.17). Furthermore, only three of the

21 point estimates generated by the OLS and IV estimators fall outside the most restrictive A2

bounds (see Table V) and none of these violations exceed half a standard deviation. However,

despite the inability of the formal tests to detect any violations in the underlying assumptions, for

all seven measures analyzed, the restricted OLS estimator produces a greater point estimate than

the unrestricted OLS estimator; an outcome consistent with a negative selection bias into early

childbearing. If the estimated effects for the seven measures were independent of one another, the

Sign test would indicate that all seven estimates increasing with the additional restriction should

occur less than one percent of the time. Since all seven estimates are based on the same sample,

they are not independent, but this outcome does shed doubt on the assumptions underlying the

unrestricted OLS estimator.

Turning to non-black women, the assumptions underlying the OLS estimators are

strongly rejected. The Hausman test rejects the unrestricted OLS estimator for four of the seven

measures (behavioral problems, PIAT mathematics and both the emotional and cognitive home

environment with p-values of 0.01, 0.04, 0.08 and 0.01, respectively). Additionally, six of the

seven unrestricted point estimates fall below their corresponding A2 lower bound (see Table V)

and four of these violation are statistically significant. As we continue to relax assumptions, the

unrestricted OLS estimator continues to lie outside the bounds, but the deviations start to loose

statistical significance. Similarly, the restricted OLS estimator is routinely below its

corresponding A2 lower bound with three of the deviations being statistically significant. In

contrast to the OLS estimates, the point estimates from the IV estimator always lie within all of

the bounds.
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In summary, the results indicate that the OLS estimator suffers from negative selectivity

bias. There is strong statistical support of this conclusion for both the restricted and unrestricted

OLS estimators for non-black women, so neither of these estimators will be discussed further.

For black women the data are unable to reject the absence of selectivity bias, but the point

estimates are strongly suggestive of its presence.

6.2 Point Estimates

Due to the selectivity bias detected in the OLS estimators, we focus the discussion on the IV

point estimates. The estimates tell a very different story for black and non-black women.20 For

the former, although the point estimates are never statistically significant, they give the

impression that teenage childbearing has a negative effect on children. With the exception of the

PPVT, the five measures of child development all decrease for the children of teens. On the other

hand, all five measure increase for the children of non-black teens, including a statistically

significant ten percentile improvement in behavioral problems and mathematics.21 Furthermore,

the emotional support the child receives improves substantially for non-black children.

The following sub-sections assess the robustness of these findings to the assumptions

underlying the IV estimator.

6.3 Allowing for Non-Random Miscarriages

One concern with the IV estimator is that it places strong assumptions on the non-random

miscarriage population. To assess the robustness of the previous results to these assumptions, we

treat the non-random miscarriage population as a source of contamination in our sample and

                                                          
20 Differences across racial lines should not be surprising, since the population of teenage mothers differs greatly by
race. In particular, 35 percent of black women in the NLSY conceive their first child before their eighteenth birthday
and 97 percent of those children are born out-of-wedlock. The corresponding numbers for non-black women are 13.5
percent bearing children of which 76 percent are out-of-wedlock.
21 Although the point estimate for birth weight is not statistically significant, the estimate of a 3.99 ounce increase is
in line with the preferred fixed-effects instrumental-variables sibling estimator of Rosenzweig and Wolpin (1995)
which produces an estimate of 3.36 ounces.
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construct the A2 Horowitz-Manski bounds given in equation (2.11). Table V displays the

corresponding estimates.

As one may have suspected given the large standard errors in the point estimates for the

children of black women, the bounds are uninformative for this population. The point estimates

are relatively inaccurate and even if the sampling variability is ignored, the bounds all contain

zero.

In contrast to the results for black children, the bounds for non-black children are

informative. In particular, they give an almost identical story as the IV point estimates. For all

measures except birth weight, the A2 bounds are non-negative and the lower bounds are

significantly greater than zero for the same three measures that have statistically significant IV

point estimates. Furthermore, the lower bounds for those three outcomes are only one to two

percentile points below their corresponding IV point estimates. Thus, the conclusion that non-

black children of teenage mothers benefit from their mothers’ early childbearing is robust to the

inclusion of non-random miscarriages.

6.4 Allowing for Non-Random Censoring

A second alternative explanation for our finding an increase in well being for the children of non-

black teenage mothers is that within the miscarriage population there is negative selection into

future childbearing. In other words, members of the miscarriage population who have not yet

born a child are a non-random sample of this population, so child outcomes suffer from non-

random censoring. To assess the robustness of our results to the presence of non-random

censoring, we turn to the A4 Horowitz-Manski bounds, which allow for both non-random

miscarriages and non-random censoring. Table VI contains the point estimates of these bounds.
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The first two columns present the lower and upper bounds for each measure constraining

the censored observations to fall between their minimum and maximum attainable values.22

Under this specification, the bounds contain zero for all for all of the measures except the

emotional support provided to the child, which has a lower bound very close to zero. Hence, if

we are unwilling to place any constraints on the types of women yet to have children in the

miscarriage population, we are unable to sign the causal effects of early childbearing. However,

with very mild assumptions on this population of childless women, we can recover our earlier

results.

The middle two columns of Table VI contain the bounds when we assume that the

expected outcome for the potential children of childless women falls within two standard

deviations of the population mean. With this relatively weak assumption, the bounds for

behavioral problems, mathematics and emotional support are non-negative and the p-values

corresponding to the test of whether the lower bounds are greater than zero are 0.17, 0.22 and

0.07, respectively. Strengthening the assumption such that the expected outcome falls within one

standard deviation drops these p-values to 0.07, 0.10 and 0.03, respectively (see the final two

columns of Table VI). In summary, the conclusion that non-black children of teenage mothers

benefit from their mothers’ early childbearing is robust to severe selectivity in the censoring of

child outcomes, but not robust to absolutely all forms of censoring.

6.5 Further Robustness Checks

We compute two additional checks of the robustness of our conclusions. First, we relax

Condition 4, the assumption that the eventual children of latent-abortion type women are

                                                          
22 Since birth weight is unbounded from above, in the presence of censored data the Horowitz-Manski bounds on the
counterfactual birth weight is unbounded from above. So, there is no lower bound on the causal effect of teenage
childbearing on children’s birth weight.
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unaffected by a miscarriage preempting the abortion of their mother’s first pregnancy.23 The A1

bounds given in equation (2.7) allow both for non-random miscarriages and the relaxation of

Condition 4. As seen in Table VII, under these weaker assumptions the bounds for behavioral

problems, mathematics and emotional support remain non-negative, but the p-values

corresponding to the test of whether the lower bounds are greater than zero rise to 0.08, 0.22 and

0.18, respectively. If in addition to relaxing Condition 4 we allow for non-random censoring of

child outcomes, then all of the bounds become uninformative.

Second, for those uncomfortable bounding the well being of a yet unborn child, we

compute the A6 bounds given in equation (3.9) which reduce the treatment group (teenage

mothers) to a set of women that matches those women with children in the miscarriage

population. As discussed during the derivation of these bounds, this change alters the treatment

effect being estimated. Instead of estimating the effect of treatment on the treated, we are

estimating  the effect of treatment on those women who would have already had a children if they

were prohibited from having one as a teenager. These bounds are not presented in any table since

the results are almost identical to the A4 bounds which allowed for censored child outcomes, but

constrained the degree of censoring to keep the expected censored outcome within two standard

deviations of the population mean.24

7. Conclusion

We conclude by discussing the substantive implications of what we have learned about the

impact of teenage childbearing on several measures of child well being through exploiting the

natural experiment which miscarriages provide. First, as repeatedly found in the literature, the

                                                          
23 When Condition 4 is relaxed, we are unable to use the observed outcomes for the children of women who aborted
their first pregnancy to extract these women from the miscarriage population. Instead, latent-abortion type women in
the miscarriage population are treated as an additional source of contamination in our sample.
24 The A6 bounds are available from the authors upon request.
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traditional OLS estimator is rejected by the data. This finding is supported both by the bounds

and the Hausman test of the internal consistency between the two nested OLS estimators.

Second, for non-black women the traditional IV estimator indicates that a delay in

childbearing for those women currently choosing to be teenage mothers would harm their

children. This finding is consistent across all seven measures analyzed and statistically

significant in the following three areas: behavioral problems, mathematical achievement and

emotional support provided to the child. Furthermore, relaxing the assumptions of the IV

estimator to allow for non-random miscarriages, non-random censoring of child outcomes or the

behavior of women intending to have an abortion to be affected by a miscarriage does not alter

the qualitative nature of these findings. Note that these results are a far cry from endorsing early

or illegitimate childbearing, but they do indicate that those women having children as minors

may be acting in their own and their children’s best interests given the environment they face.

Third, the data are not as informative for black children, but they are suggestive that the

effects may be substantially different than we observed for non-black children. In particular, the

IV point estimates are typically negative, meaning that black children suffer due to their mothers’

early childbearing. Furthermore, the positive effects estimated for non-black children more often

than not exceed the upper bound (A2 bounds) on the same measure for black children. Thus,

despite the fact that the data do not allow us to reject that there are no differences across racial

lines, the point estimates and bounds, coupled with the substantial racial difference in both the

incidence of teenage childbearing and the fraction of those births which are illegitimate, lead

these authors to conclude that the effect of teen fertility probably differ qualitatively by race.

Finally, this study demonstrates that the information generated by less than ideal natural

experiments is capable of resolving conflicts about causal effects. Furthermore, the ability to peel

back one identifying assumption at a time and see the affect this relaxation produces in the
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bounds allows researchers to ascertain the robustness of their conclusions to their assumptions.

For example, in this study the three measures for which the IV estimator produces statistically

significant impacts for non-black children are robust to the to the inclusion of non-random

miscarriages. Additionally, the results are qualitatively similar when either non-random

censoring of child outcomes is permitted or the no Hawthorne effect assumption is relaxed.

However, if all three of these assumptions are relaxed simultaneously, the conclusion is seriously

weakened.
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Miscarriage Population
Everyone Black Non-Black

Percent of Random Miscarriages 0.87 0.83 0.88

Gamma 0.79 0.88 0.77

Eta 0.84 0.87 0.83

Lambda
Decomposition A2 0.75 0.76 0.74
Decomposition A3 0.65 0.62 0.70

Theta
Decomposition A2 0.09 0.04 0.11
Decomposition A3 0.20 0.19 0.16

Delta
Decomposition A2 0.85 0.87 0.84
Decomposition A3 0.86 0.87 0.84

Lambda Prime
Decomposition A2 0.76 0.76 0.75
Decomposition A3 0.66 0.61 0.71

Theta Prime
Decomposition A2 0.09 0.04 0.11
Decomposition A3 0.18 0.19 0.14

Table I
Parameter Estimates



Instrument Objective Measurement
Age of 

Children
Birth Weight Health of child Weight in ounces At birth

Behavioral Problems To measure the frequency, 
range and type of childhood 
behavior problems

Mothers respond to 28 
questions on specific 
behavior problems over the 
past three months

4+ years

Cognitive Attainment

PIAT Mathematics To measure academic 
achievement in mathematics

84 multiple choice questions 5+ years

PIAT Reading 
Recognition

To measure word 
recognition and 
pronunciation

Child matches letter, names 
letters and reads single 
words aloud

5+ years

Peabody Picture 
Vocabulary Test

To measure receptive 
vocabulary

Child chooses one of four 
pictures that best matches a 
stated word

3+ years

Home Environment

Cognitive To assess the amount of 
cognitive stimulation the child 
receives

Interviewer observation of 
the interaction between 
mother and child
Maternal report of child's 
interactions with adults, 
discipline methods, 
toys/educational materials 
and available activities

5+ years

Emotional To assess the amount of 
emotional support the child 
receives

Same as cognitive 5+ years

Table II
Child Assessments Administered in the NLSY: 1986, 1988, 1990, 1992, 1994 and 1996



OLS IV

Assessment AllA PregnantB PregnantB

Birth Weight -1.41 0.18 -9.73 
(1.42) (2.45) (7.70)

Behavioral Problems 1.73 2.83 -3.08 
(1.36) (2.41) (5.95)

Cognitive Attainment

PIAT Mathematics 0.27 1.70 -5.97 
(1.24) (2.32) (5.95)

PIAT Reading Recognition -2.56** -0.66 -2.79 
(1.28) (2.58) (5.26)

PPVT 2.50** 2.79 7.46 
(1.26) (2.39) (4.91)

Home Environment

Cognitive -1.44 1.25 -2.52 
(1.16) (2.28) (5.47)

Emotional -0.49 1.74 1.53 
(1.13) (2.17) (4.23)

A All women with children are included in the analysis.
B Each women with a child who experienced her first pregnancy before 18 is included.  
* Significant at 0.10 level.
** Significant at 0.05 level.

Table III
Point Estimates of the Percentile Change in Children's Outcomes

from Bearing Children as Minors for Black Women
(Standard Errors are Given in Parentheses)



OLS IV

Assessment AllA PregnantB PregnantB

Birth Weight -1.29 -1.41 3.99 
(1.32) (2.08) (8.27)

Behavioral Problems -2.60* 2.51 10.02**
(1.50) (2.23) (4.38)

Cognitive Attainment

PIAT Mathematics -0.19 3.26 10.53**
(1.22) (2.08) (5.10)

PIAT Reading Recognition 0.32 2.17 3.58 
(1.13) (2.01) (6.15)

PPVT 2.07 1.54 4.38 
(1.50) (2.35) (6.59)

Home Environment

Cognitive -1.31 1.45 4.02 
(1.13) (1.96) (4.28)

Emotional -1.38 2.90 13.13**
(1.16) (2.02) (4.85)

A All women with children are included in the analysis.
B Each women with a child who experienced her first pregnancy before 18 is included.  
* Significant at 0.10 level.
** Significant at 0.05 level.

Table IV
Point Estimates of the Percentile Change in Children's Outcomes

from Bearing Children as Minors for Non-Black Women
(Standard Errors are Given in Parentheses)



Black Non-Black
Assessment Lower Upper Lower Upper

Birth Weight -19.31 -0.15 -0.82 6.79 
(8.07) (8.45) (8.34) (8.51)

Behavioral Problems -6.83 5.05 9.29** 14.30 
(6.61) (6.78) (5.16) (4.38)

Cognitive Attainment

PIAT Mathematics -12.61 2.01 8.42* 13.35 
(6.70) (6.58) (5.73) (4.46)

PIAT Reading Recognition -10.09 3.91 0.76 9.16 
(5.97) (5.50) (7.30) (6.15)

PPVT 4.46 15.73 0.16 8.19 
(5.90) (3.42) (7.78) (6.14)

Home Environment

Cognitive -7.22 5.19 1.87 5.78 
(5.95) (6.15) (4.77) (4.49)

Emotional -3.31 8.37 11.15** 15.67 
(4.28) (4.69) (5.39) (4.51)

* Significant at 0.10 level.
** Significant at 0.05 level.

Table V
Horowotz-Manski Bounds of the Percentile Change in Children's Outcomes

from Having a Teen Mother:

(Standard Errors are Given in Parentheses)
 Allowing for Non-Random Miscarriages



Two Standard Deviations One Standard Deviation

Assessment Lower Upper Lower Upper Lower Upper

Birth Weight - 24.31 -5.43 10.85 -2.96 8.37 
- (7.26) (7.12) (7.26) (7.12) (7.26)

Behavioral Problems -1.95 18.26 4.21 17.43 6.46* 15.18 
(4.40) (3.76) (4.40) (3.76) (4.40) (3.76)

Cognitive Attainment

PIAT Mathematics -0.94 19.21 3.75 18.31 6.35* 15.70 
(4.87) (3.82) (4.87) (3.82) (4.87) (3.82)

PIAT Reading Recognition -6.27 16.79 -3.64 14.29 -0.92 11.57 
(6.19) (5.23) (6.19) (5.23) (6.19) (5.23)

PPVT -9.06 13.69 -4.22 13.69 -1.06 11.99 
(6.62) (5.26) (6.62) (5.26) (6.62) (5.26)

Home Environment

Cognitive -6.76 12.53 -2.22 9.91 -0.01 7.7 
(4.11) (3.88) (4.11) (3.88) (4.11) (3.88)

Emotional 0.89 20.68 6.76* 19.5 8.99** 17.26 
(4.60) (3.88) (4.60) (3.88) (4.60) (3.88)

* Significant at 0.10 level.
** Significant at 0.05 level.

 Allowing for Non-Random Miscarriages and Non-Randoming Censoring of Child Outcomes

The Expected Value of Censored Outcomes is Within

Table VI

(Standard Errors are Given in Parentheses)

Horowotz-Manski Bounds of the Percentile Change in Non-Black Children's Outcomes
from Having a Teen Mother:

The Minimum and
Maximum Values of the Sample Mean of the Sample Mean



Black Non-Black
Assessment Lower Upper Lower Upper

Birth Weight -44.08 14.72 -1.24 10.42 
(5.99) (6.37) (7.64) (7.80)

Behavioral Problems -20.91 8.42 6.17* 14.93 
(4.82) (5.20) (4.32) (4.04)

Cognitive Attainment

PIAT Mathematics -23.99 8.62 4.03 14.00 
(4.79) (4.57) (5.12) (4.14)

PIAT Reading Recognition -19.19 12.42 -1.52 12.12 
(4.35) (3.87) (6.64) (5.57)

PPVT -13.80 15.73 -3.90 10.10 
(4.30) (2.67) (7.04) (5.54)

Home Environment

Cognitive -19.97 10.16 -1.72 6.61 
(4.15) (4.56) (3.93) (4.39)

Emotional -18.36 10.85 4.38 15.67 
(3.24) (3.75) (4.85) (4.40)

* Significant at 0.10 level.
** Significant at 0.05 level.

Table VII
Horowotz-Manski Bounds of the Percentile Change in Children's Outcomes

(Standard Errors are Given in Parentheses)

from Having a Teen Mother:
 Allowing for Non-Random Miscarriages and Hawthorne Effects for Aborters


