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1. Introduction

A desirable property of a voting procedure is that it be immune to the strate-
gic withdrawal of a candidate for election. Dutta, Jackson, and Le Breton
[3] have recently established a number of theorems which demonstrate that
this condition is incompatible with some other desirable properties of voting
procedures. In this article, we show that Grether and Plott’s [5] nonbinary
generalization of Arrow’s [1] Theorem can be used to provide relatively simple
proofs of two of Dutta, Jackson, and Le Breton’s impossibility theorems.

For any profile of linear voter preferences, a voting rule determines a win-
ning candidate from any subset of candidates drawn from a fixed list of po-
tential candidates based on the preferences of the voters over the candidates
running for office. A voting procedure is candidate stable if no candidate
would prefer to withdraw from an election when all of the other potential
candidates enter. In other words, it is a Nash equilibrium for all potential
candidates to stand for election. When there is no overlap between the candi-
dates and voters, Dutta, Jackson, and Le Breton restrict attention to voting
rules that respect unanimity in the sense that a candidate who is ranked
first among the candidates on the ballot by all of the voters is elected. Their
candidate stability theorem for the no overlap case shows that unanimity and
candidate stability jointly imply that a single voter determines the outcome
in any election in which all or all but one of the potential candidates is on
the ballot.1

Dutta, Jackson, and Le Breton also consider a stronger version of their
candidate stability axiom. A voting procedure is strongly candidate stable if
the election outcome is unaffected when a candidate withdraws who would
lose if every candidate enters the election. When there is no overlap between
candidates and voters, the two candidate stability conditions are equivalent,
at least when candidates rank themselves first, which is what Dutta, Jackson,
and Le Breton assume. In their strong candidate stability theorem, candi-
dates can also be voters. Because candidates are assumed to rank themselves
first, the unanimity condition is strengthened to require that a candidate is
chosen if he or she is the top-ranked candidate on the ballot by all voters once
the self-preferences of non-elected voting candidates is ignored. Dutta, Jack-

1When candidates are permitted to vote, Dutta, Jackson, and Le Breton have shown
that candidate stability is incompatible with a weak unanimity condition that is consistent
with a candidate ranking him- or herself first and a monotonicity condition that is satisfied
by many common voting procedures. We do not consider this result here.
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son, and Le Breton’s strong candidate stability theorem shows that when this
unanimity condition is combined with strong candidate stability, the voting
rule must be dictatorial in the sense described above.

Dutta, Jackson, and Le Breton do not prove their candidate stability the-
orem for the no overlap case directly; they instead show that it is a corollary
to their strong candidate stability theorem. Their proof of the latter result
is quite long and complicated. Although, as Dutta, Jackson, and Le Breton
[3, p. 1021] note, ‘the logic of Arrow’s theorem cannot be directly applied’
to prove their results, they nevertheless are able to use Wilson’s [7] gener-
alization of Arrow’s Theorem at a key step in their argument. The proofs
provided here demonstrate that the incompatibility of Dutta, Jackson, and
Le Breton’s axioms in the two theorems described above follows fairly directly
from a restricted-domain version of Arrow’s impossibility theorem.

In Section 2, we present Grether and Plott’s Theorem. Dutta, Jackson,
and Le Breton’s theorems are described in Section 3. Our proofs of the
candidate stability and strong candidate stability theorems follow in Sections
4 and 5, respectively. In Section 6, we relate our analysis to the recent
articles on multivalued voting procedures by Eraslan and McLennan [4] and
Rodŕıguez-Álvarez [6].

2. The Grether-Plott theorem

Let N = {1, . . . , n} with n ≥ 2 be a finite set of individuals and X =
{x1, . . . , xm} with m ≥ 3 be a finite set of alternatives. An agenda is a
nonempty subset of X. An ordering of X is a reflexive, complete, and tran-
sitive binary relation on X. The corresponding strict preference relation
P and indifference relation I are defined as follows: For all x, y ∈ X, (a)
xPy ↔ xRy and ¬(yRx) and (b) xIy ↔ xRy and yRx. A linear ordering
of X is an antisymmetric ordering; i.e., an ordering for which no two dis-
tinct alternatives are indifferent. Let R denote the set of all orderings and
L denote the set of all linear orderings of X.

Each individual i ∈ N has a preference ordering Ri ∈ R of X. A pref-
erence profile R = (R1, . . . , Rn) is an n-tuple of individual preference order-
ings. Two preferences R1, R2 ∈ R coincide on A ⊆ X if for all x, y ∈ A,
xR1y ↔ xR2y. Two profiles R1,R2 ∈ Rn coincide on A ⊆ X if R1

i and R2
i

coincide on A for all i ∈ N .
The set of admissible profiles and/or the set of admissible agendas may
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be restricted a priori. The preference domain is D, a nonempty subset of
Rn. The agenda domain is A, a collection of nonempty subsets of X.

A social choice correspondence C : A×D → X is a mapping that assigns
a nonempty subset of the agenda to each admissible agenda and admissible
profile. The set C(A,R) is the choice set. If for all A ∈ A and all R ∈ D,
C(A,R) contains a single alternative, then C is a social choice function. In
this case, we write x instead of {x} when {x} is the choice set.

In its choice-theoretic formulation, Arrow’s [1] Theorem demonstrates
that the four Arrow social choice correspondence axioms are incompati-
ble when the preference domain is unrestricted (i.e., D = Rn) and every
nonempty subset of X is an admissible agenda. The Arrow axioms are Ar-
row’s Choice Axiom, Independence of Infeasible Alternatives, Weak Pareto,
and Nondictatorship.

Arrow’s Choice Axiom places restrictions on how choices are made out of
different agendas for a fixed preference profile.

Arrow’s Choice Axiom. For all A1, A2 ∈ A and all R ∈ D, if A1 ⊆ A2

and C(A2,R) ∩ A1 �= ∅, then C(A1,R) = C(A2,R) ∩ A1.

Informally, for a given profile R, if the agenda A1 is a subset of the agenda
A2 and the choice sets for these two agendas have at least one alternative in
common, then the choice set for the smaller agenda consists of that part of
the choice set for the larger agenda that is contained in the smaller agenda.

Independence of Infeasible Alternatives requires the choice set to be in-
dependent of preferences over alternatives not in the agenda.

Independence of Infeasible Alternatives. For all A ∈ A and all R1,R2 ∈
D, if R1 and R2 coincide on A, then C(A,R1) = C(A,R2).

For all A ∈ A and all R ∈ D, the weak Pareto set is

P(A,R) = {x ∈ A |� ∃y ∈ A such that yPix for all i ∈ N}.
The Weak Pareto axiom requires the choice set to be a subset of the weak
Pareto set.

Weak Pareto. For all A ∈ A and all R ∈ D, C(A,R) ⊆ P(A,R).

For a nonempty set A ⊆ X and an ordering R ∈ R, the set of best
alternatives in A according to R is

B(A, R) = {x ∈ A | xRy for all y ∈ A}.
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An individual d ∈ N is a dictator for the social choice correspondence C : A×
D → X if C(A,R) ⊆ B(A, Rd) for all A ∈ A and all R ∈ D. That is, d is
a dictator if the choice set is always a subset of d’s best alternatives in the
agenda. Nondictatorship is the requirement that there be no dictator.

Nondictatorship. There is no dictator.

Grether and Plott [5] investigated the consistency of the Arrow axioms
when the only admissible agendas are those subsets of X containing at least
k alternatives, where k < |X|.

k-Set Feasibility. There exists a positive integer k < |X| such that A ∈ A
if and only if |A| ≥ k.

Grether and Plott assumed that the preference domain is unrestricted.
Their theorem is also valid for the domain of linear preference profiles, and
it is this version of their theorem that is relevant here.

Unrestricted Linear Preference Domain. D = Ln.

The Grether-Plott Theorem shows that the Arrow axioms are inconsis-
tent with an unrestricted linear preference domain when the agenda domain
satisfies k-Set Feasibility.

Theorem 1. (Grether-Plott [5]) There is no social choice correspondence
with an unrestricted linear preference domain that satisfies k-Set Feasibil-
ity, Arrow’s Choice Axiom, Independence of Infeasible Alternatives, Weak
Pareto, and Nondictatorship.

3. Strategic candidacy

The framework introduced in the previous section needs to be modified some-
what in order to describe the Dutta-Jackson-Le Breton [3] model of strategic
candidacy. Let C = {1, . . . , m} be the set of potential candidates, V be the
set of voters, and N = C ∪ V, where |N | = n. The candidate set C corre-
sponds to the set of alternatives X in the preceding section. We assume that
m ≥ 3 and |V| ≥ 2. We consider both the case in which some candidates are
voters and the case in which they are not. The set C is assumed to be ordered
in such a way that the nonvoting candidates (if any) appear first. Let C1 be
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the set of nonvoting candidates and C2 be the set of voting candidates, where
|C1| = m1 and |C2| = m2. Note that V = C2 ∪ (N\C) and m1 + m2 = m.

Both candidates and voters have preferences over candidates. For i ∈ C,
let

Li = {R ∈ L | B(C, R) = {i}}.

Li is the set of linear preferences on C that rank candidate i first. Candidate
i is assumed to have a preference in Li. Let LC1 =

∏
i∈C1

Li, LC2 =
∏

i∈C2
Li,

and LC = LC1 ×LC2 . Voters who are not candidates can have any preference
in L. A preference profile is now a vector R = (RC1 ,RC2 ,RN\C), where RC1

is the subprofile of nonvoting candidates’ preferences, RC2 is the subprofile of
voting candidates’ preferences, and RN\C is the subprofile of noncandidates’
preferences. The set of admissible preference profiles is L∗ = LC × Ln−m.

Any subset of the set of potential candidates may stand for election, but
only one candidate is elected. Let X denote the set of all nonempty subsets
of C. A voting function is a social choice function V : X × L∗ → C.

Dutta, Jackson, and Le Breton require a voting function to satisfy Inde-
pendence of Infeasible Alternatives, modified in the obvious way to apply to
preference profiles in L∗. In this context, Independence of Infeasible Alter-
natives requires the election outcome only to depend on the preferences over
candidates who enter the election.

Independence of Nonvoters’ Preferences requires the outcome of an elec-
tion to only depend on the voters’ preferences.

Independence of Nonvoters’ Preferences. For all A ∈ X , all R1
C1

,R2
C1

∈
LC1 , and all (RC2 ,RN\C) ∈ LC2×Ln−m, V (A, (R1

C1
,RC2 ,RN\C)) = V (A, (R2

C1
,RC2 ,RN\C)).

A voting function satisfies Unanimity if candidate j is chosen when all of
the voters agree that j is the best candidate running for office.

Unanimity. For all A ∈ X and all R ∈ L∗, if B(A, Ri) = {j} for all i ∈ V,
then V (A,R) = j.

Because of the restriction on candidates’ preferences, Unanimity is vacu-
ous if there is more than one voting candidate. When this is the case, it is
more appropriate to use Strong Unanimity instead.

Strong Unanimity. For all A ∈ X and all R ∈ L∗, if B(A, Ri) = {j} for
all i ∈ N\C and B(A\{i}, Ri) = {j} for all i ∈ C2\{j}, then V (A,R) = j.
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Strong Unanimity requires candidate j to be chosen if j is unanimously
preferred by all voters to all of the other candidates in the election once
each voting candidate’s self preference (other than that of candidate j if j is
a voting candidate) is ignored. If there are no voting candidates, Unanimity
and Strong Unanimity are equivalent.

A voting function is Candidate Stable if each candidate prefers the out-
come when all candidates are on the ballot to the outcome that would obtain
if he or she withdrew from the election.

Candidate Stability. For all i ∈ C and all R ∈ L∗, V (C,R)RiV (C\{i},R).

Strong Candidate Stability requires the election outcome to be unaffected
if a candidate withdraws who would lose if every candidate stood for office.

Strong Candidate Stability. For all i ∈ C and all R ∈ L∗, if V (C,R) �= i,
then V (C,R) = V (C\{i},R).

This axiom is a strengthening of Candidate Stability if the set of vot-
ers and candidates overlap. However, when no voter is a candidate, these
conditions are equivalent for a voting function that satisfies Independence of
Nonvoters’ Preferences.

Lemma 1. (Dutta-Jackson-Le Breton [3]) If a voting function satisfies In-
dependence of Nonvoters’ Preferences and C2 = ∅, then it satisfies Candidate
Stability if and only if it satisfies Strong Candidate Stability.2

Dutta, Jackson, and Le Breton use a strengthened version of the nondic-
tatorship axiom introduced in the preceding section. Let

Am−1 = {A ∈ X | |A| ≥ m − 1}.

A voter d ∈ V is a dictator for large elections for the voting function V : X ×
L∗ → C if V (A,R) = B(A, Rd) for all A ∈ Am−1 and all R ∈ L∗. Informally,
an individual is a dictator for large elections if this individual’s most-preferred
candidate is elected whenever all or all but one of the candidates run for office.

2We have only stated the part of Lemma 2 in Dutta, Jackson, and Le Breton [3]
that deals with Candidate Stability. Their lemma also assumes that the voting function
satisfies Independence of Infeasible Alternatives and Unanimity, but these assumptions are
not needed to show the equivalence of Candidate Stability and Strong Candidate Stability.
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Strong Nondictatorship. There is no dictator for large elections.

Theorem 2 is the Dutta-Jackson-Le Breton candidate stability theorem
for the case in which there is no overlap between candidates and voters.

Theorem 2. (Dutta-Jackson-Le Breton [3]) If C2 = ∅, there is no voting
function that satisfies Independence of Nonvoters’ Preferences, Independence
of Infeasible Alternatives, Unanimity, Candidate Stability, and Strong Non-
dictatorship.

When candidates can also be voters, Dutta, Jackson, and Le Breton have
established the following theorem about voting functions that satisfy Strong
Candidate Stability.

Theorem 3. (Dutta-Jackson-Le Breton [3]) If a voting function satisfies
Independence of Nonvoters’ Preferences, Independence of Infeasible Alter-
natives, Strong Unanimity, and Strong Candidate Stability, then there is a
dictator for large elections and the dictator is in V\C.

In view of Lemma 1 and the equivalence between Unanimity and Strong
Unanimity when C2 = ∅, Theorem 2 is a simple corollary to Theorem 3.
Note that when V = C, there does not exist a voting function satisfying the
properties in Theorem 3.

4. A proof of the candidate stability theorem

In this section, we use the Grether-Plott Theorem to help prove Theorem 2.
Throughout this section, we assume that C2 = ∅; i.e., there are no candidates
who are permitted to vote.

We first establish a preliminary result concerning social choice correspon-
dences whose agenda domain is Am−1 and whose preference domain is Ln,
where Am−1 is now the set of subsets of X of cardinality at least m− 1. Let
C∗ : Am−1 × Ln → X be such a social choice correspondence.

An analogue to Unanimity for C∗ is Unanimity*, which requires x to be
chosen if it is everyone’s best choice in the agenda.

Unanimity*. For all A ∈ Am−1 and all R ∈ Ln, if B(A, Ri) = {x} for all
i ∈ N , then C∗(A,R) = {x}.
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The following lemma shows that Weak Pareto is implied by Arrow’s
Choice Axiom, Independence of Infeasible Alternatives, and Unanimity* for
a social choice correspondence whose domain is Am−1 × Ln.

Lemma 2. If a social choice correspondence C∗ : Am−1 × Ln → X satisfies
Arrow’s Choice Axiom, Independence of Infeasible Alternatives, and Una-
nimity*, then it also satisfies Weak Pareto.

Proof. Let C∗ : Am−1 × Ln → X be a social choice correspondence that
satisfies Arrow’s Choice Axiom, Independence of Infeasible Alternatives, and
Unanimity*. We have two cases to consider.

Case 1. We first show that for any R ∈ Ln, C∗(X,R) is contained in the
weak Pareto set. On the contrary, suppose that there exists an R ∈ Ln and
x, y ∈ X such that xPiy for all i ∈ N , but y ∈ C∗(X,R). Without loss of
generality, we suppose that x = x1 and y = x2.

By Arrow’s Choice Axiom, x2 ∈ C∗(X\{x3},R). Consider a profile of
preferences R1 ∈ Ln that coincides with R on X\{x3} and has x3 ranked last
by all i ∈ N . By Independence of Infeasible Alternatives, x2 ∈ C∗(X\{x3},R1).
It then follows from Arrow’s Choice Axiom that C∗(X,R1) ∩ {x2, x3} �= ∅.

Arrow’s Choice Axiom now implies that C∗(X\{x4},R1) ∩ {x2, x3} �= ∅.
Consider a profile R2 ∈ Ln that coincides with R1 on X\{x4} and has
x4 ranked last by all i ∈ N . By Independence of Infeasible Alternatives,
C∗(X\{x4},R2) = C∗(X\{x4},R1) and, hence, C∗(X\{x4},R2)∩{x2, x3} �=
∅. By Arrow’s Choice Axiom, we then have C∗(X,R2) ∩ {x2, x3, x4} �= ∅.

Repeated use of this argument leads to the conclusion that C∗(X,Rm−2)∩
{x2, . . . , xm} �= ∅ for some profile Rm−2 ∈ Ln that coincides with R on
{x1, x2} and has x1P

m−2
i x3, x2P

m−2
i x3, and x3P

m−2
i x4P

m−2
i · · ·Pm−2

i xm for
all i ∈ N . Because x1Pix2 for all i ∈ N , we therefore have x1P

m−2
i xj for all

i ∈ N and all j = 2, . . . , m. Hence, Unanimity* is violated.
Case 2. We now show that for all x ∈ X and all R ∈ Ln, C∗(X\{x},R)

is contained in the weak Pareto set. On the contrary, suppose that there
exist distinct x, y, z ∈ X and R ∈ Ln such that yPiz for all i ∈ N , but
z ∈ C∗(X\{x},R). Consider a profile R1 ∈ Ln that coincides with R on
X\{x} and has x ranked last by all i ∈ N . By Independence of Infeasible
Alternatives, z ∈ C∗(X\{x},R1). By Arrow’s Choice Axiom, C∗(X,R1) ∩
{x, z} �= ∅, which contradicts what was established in Case 1 because y
Pareto dominates both x and z in R1. ✷

When C2 = ∅, if a voting function V satisfies Independence of Nonvoters’

8



Preferences, one can identify V with a social choice function CV with domain
X × Ln−m by setting, for all A ∈ X and all RV ∈ Ln−m,

CV (A,RV) = V (A, (R̄C1 ,RV)),

where R̄C1 is an arbitrary subprofile in LC1 .
3 Let C̄V : Am−1 ×Ln−m → C be

the restriction of CV to Am−1 × Ln−m.
We now prove Theorem 2.

Proof of Theorem 2.4 Suppose that C2 = ∅ and the voting function V : X ×
LC1 × Ln−m → C satisfies all the assumptions of Theorem 2 except Strong
Nondictatorship. Let C̄V be the social choice function defined above. Because
V satisfies Independence of Infeasible Alternatives and Unanimity, C̄V satis-
fies Independence of Infeasible Alternatives and Unanimity*. By Lemma 1,
V satisfies Strong Candidate Stability. Because C̄V is a function and V
satisfies Independence of Nonvoters’ Preferences, the satisfaction of Strong
Candidate Stability by V is equivalent to the satisfaction of Arrow’s Choice
Axiom by C̄V . Hence, by Lemma 2, C̄V satisfies Weak Pareto. C̄V satisfies
k-Set Feasibility with k = m − 1. Therefore, by the Grether-Plott Theo-
rem (Theorem 1), C̄V is dictatorial. But C̄V being dictatorial is equivalent
to V having a dictator for large elections. Thus, V does not satisfy Strong
Nondictatorship. ✷

5. A proof of the strong candidate stability theorem

We now consider the possibility that some candidates vote. As in the pre-
ceding section, we identify a voting function V with a social choice function
CV whose preference domain only includes preferences of voters. Because
candidates who vote rank themselves first, the preference domain of CV is
restricted. We show that if V satisfies the assumptions of Theorem 3, then,
restricted to agendas in Am−1, CV can be extended to the unrestricted linear
preference domain in such a way that all of the assumptions of Lemma 2 are
satisfied. The conclusions of Theorem 3 follow relatively straightforwardly
from this observation.

3When C2 = ∅, we write RV instead of RN\C .
4Although Theorem 2 is a corollary to Theorem 3, we provide a separate proof of

Theorem 2 because the direct proof is quite short.
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When C2 is not necessarily empty, the procedure used in Section 4 to
associate a social choice function with a voting function needs to be gener-
alized. Consider an arbitrary R̄C1 ∈ LC1 . If a voting function V satisfies
Independence of Nonvoters’ Preferences, one can identify V with a social
choice function CV with domain X × LC2 × Ln−m by setting, for all A ∈ X
and all (RC2 ,RN\C) ∈ LC2 × Ln−m,

CV (A, (RC2 ,RN\C)) = V (A, (R̄C1 ,RC2 ,RN\C)).

Let C̄V : Am−1 ×LC2 ×Ln−m → C be the restriction of CV to Am−1 ×LC2 ×
Ln−m.

We want to extend C̄V to a social choice function C̃V whose domain is
Am−1 × Ln−m1 ; i.e., to a social choice function with an unrestricted linear
preference domain. For any (RC2 ,RN\C) ∈ Ln−m1 , define (R◦

C2
,R◦

N\C) ∈
LC2 × Ln−m as follows:

(i) if i /∈ C2, then R◦
i = Ri, and

(ii) if i ∈ C2, then R◦
i ∈ Li is such that R◦

i coincides with Ri on C\{i}.

Note that (R◦
C2

,R◦
N\C) is uniquely defined. The social choice function C̃V is

defined by setting, for all A ∈ Am−1 and all (RC2 ,RN\C) ∈ Ln−m1 ,

C̃V (A, (RC2 ,RN\C)) = C̄V (A, (R◦
C2

,R◦
N\C)).

Lemma 3 demonstrates that if a voting function V satisfies the assump-
tions of Theorem 3, then the social choice function C̃V satisfies the assump-
tions of Lemma 2.

Lemma 3. If a voting function V satisfies Independence of Nonvoters’ Pref-
erences, Independence of Infeasible Alternatives, Strong Unanimity, and Strong
Candidate Stability, then the social choice function C̃V satisfies Arrow’s
Choice Axiom, Independence of Infeasible Alternatives, and Unanimity*.

Proof. First, we show that C̃V satisfies Arrow’s Choice Axiom. Let (RC2 ,RN\C) ∈
Ln−m1 and c ∈ C be such that C̃V (C, (RC2 ,RN\C)) �= c. By definition,

C̃V (C, (RC2 ,RN\C)) = C̄V (C, (R◦
C2

,R◦
N\C)) = V (C, (R̄C1 ,R

◦
C2

,R◦
N\C)). Thus,

V (C, (R̄C1 ,R
◦
C2

,R◦
N\C)) �= c. Strong Candidate Stability then implies that

V (C\{c}, (R̄C1 ,R
◦
C2

,R◦
N\C)) = V (C, (R̄C1 ,R

◦
C2

,R◦
N\C)). By definition, we also

have C̃V (C\{c}, (RC2 ,RN\C)) = C̄V (C\{c}, (R◦
C2

,R◦
N\C)) = V (C\{c}, (R̄C1 ,R

◦
C2

,R◦
N\C)).
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It then follows that C̃V (C\{c}, (RC2 ,RN\C)) = C̃V (C, (RC2 ,RN\C)). Thus,

C̃V satisfies Arrow’s Choice Axiom.
Second, we show that C̃V satisfies Independence of Infeasible Alterna-

tives. Consider any A ∈ Am−1 and let (RC2 ,RN\C), (R̄C2 , R̄N\C) ∈ Ln−m1

coincide on A. By construction, (R◦
C2

,R◦
N\C) coincides with (R̄◦

C2
, R̄◦

N\C) on
A. Because V satisfies Independence of Infeasible Alternatives, we then have
V (A, (R̄C1 ,R

◦
C2

,R◦
N\C)) = V (A, (R̄C1 , R̄

◦
C2

, R̄◦
N\C)). Using the definitions of

CV and C̃V , it now follows that C̃V (A, (RC2 ,RN\C)) = C̃V (A, (R̄C2 , R̄N\C)),

and, hence, that C̃V satisfies Independence of Infeasible Alternatives.
Third, we show that C̃V satisfies Unanimity*. Consider any A ∈ Am−1.

Let (RC2 ,RN\C) ∈ Ln−m1 and c ∈ C be such that for all i ∈ V, B(A, Ri) =
{c}. Note that B(A, R◦

i ) = {c} for all i ∈ N\C and B(A\{i}, R◦
i ) = {c} for

all i ∈ C2\{c}. Because V satisfies Strong Unanimity, V (A, (R̄C1 ,R
◦
C2

,R◦
N\C)) =

c. Using the definitions of CV and C̃V , we conclude that C̃V (A, (RC2 ,RN\C)) =

c. Thus, C̃V satisfies Unanimity*. ✷

Lemmas 2 and 3 are now used to prove Theorem 3.

Proof of Theorem 3. Suppose that the voting function V satisfies the as-
sumptions of Theorem 3. By Lemmas 2 and 3, the social choice function
C̃V satisfies Arrow’s Choice Axiom, Independence of Infeasible Alternatives,
and Weak Pareto. Because C̃V satisfies k-Set Feasibility with k = m − 1
and has an unrestricted linear preference domain, C̃V is dictatorial by the
Grether-Plott Theorem. Because C̃V coincides with C̄V on the domain of
C̄V , C̄V is also dictatorial. Hence, there is a dictator for large elections for
V . Strong Unanimity implies that this dictator must belong to V\C. ✷

6. Multivalued voting procedures

In this section, we relate our analysis to the recent articles by Eraslan and
McLennan [4] and Rodŕıguez-Álvarez [6] on multivalued voting procedures.5

A voting correspondence is a social choice correspondence V : X×L∗ → C.
Eraslan and McLennan [4] consider the following candidate stability axiom.

Strong Candidate Stability*. For all i ∈ C and all R ∈ L∗, either
V (C,R) = {i} or V (C\{i},R) = V (C,R)\{i}.

5Dutta, Jackson, and Le Breton [3] only briefly consider multivalued voting procedures.
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For voting functions, Strong Candidate Stability* is equivalent to Strong
Candidate Stability. Restricted to agendas in Am−1, Strong Candidate Sta-
bility* is equivalent to Arrow’s Choice Axiom.

For a voting correspondence V , we can construct a social choice corre-
spondence C̃V with domain Am−1 ×Ln−m1 as in the preceding section. With
only trivial changes to the proof, Lemma 3 and, hence, Theorem 3 are valid
for voting correspondences if Strong Candidate Stability* is substituted for
Strong Candidate Stability.6 Eraslan and McLennan have shown that this
theorem can be further strengthened. Their main result shows that, in the
voting correspondence version of Theorem 3, V is characterized by a serial
dictatorship, and this is true even if individuals are permitted to have weak
preference orderings (subject to the proviso that each candidate ranks him-
or herself strictly above the other candidates) and the unanimity condition
is weakened somewhat.7

For the Candidate Stability axiom to apply to voting correspondences,
preferences over candidates need to be extended to preferences over subsets
of candidates. Rodŕıguez-Álvarez [6] considers two such extensions based on
the work of Barberà, Dutta, and Sen [2]. In the first of these extensions,
what Rodŕıguez-Álvarez calls BDS1, sets of candidates are ordered by their
conditional expected utilities using an initial probability distribution over
the set C and a von Neumann-Morgenstern utility function representing the
preference on C. The corresponding multivalued version of Candidate Sta-
bility requires that for any preference profile R ∈ L∗, no candidate i would
prefer to withdraw when the set of candidates is C using any preference over
subsets of candidates that is obtainable from Ri with the BDS1 extension
procedure. Lemma 2 in Rodŕıguez-Álvarez [6] demonstrates that if a voting
correspondence V satisfies Independence of Nonvoters’ Preferences and Inde-

6We only need to replace C̃V (C, (RC2 ,RN\C)) �= c and V (C, (R̄C1 ,R
◦
C2

,R◦
N\C)) �= c

with C̃V (C\{c}, (RC2 ,RN\C)) �= ∅ and V (C\{c}, (R̄C1 ,R
◦
C2

,R◦
N\C)) �= ∅, respectively, in

the proof that C̃V satisfies Arrow’s Choice Axiom.
7Our proof can be easily adapted to establish the voting correspondence version of

Theorem 3 (using Strong Candidate Stability*) when individuals can have any weak pref-
erence subject to the restriction on candidates’ preferences described above. To apply
our proof strategy, the social choice correspondence C̃V would need to be defined for the
domain Am−1 ×Rn−m1 . For i ∈ C2, the preference R◦

i associated with Ri would then be
required to have i as the uniquely best candidate, but would preserve any indifferences
among the other candidates. Note that both the Grether-Plott Theorem and Lemma 2
are valid for the preference domain Rn.
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pendence of Infeasible Alternatives and there are no voting candidates, then
V satisfies the multivalued version of Candidate Stability using the BDS1
extension procedure if and only if it satisfies Strong Candidate Stability*.
Rodŕıguez-Álvarez has also shown that Theorem 2 holds for voting corre-
spondences when Candidate Stability is applied using the BDS1 preference
extension procedure. Using his Lemma 2 instead of Lemma 1, our proof of
Theorem 2 provides an alternative way of establishing his theorem.
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