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1 Introduction

Since Rogoff�s (1996) observation on the volatile yet extremely persistent real exchange rate, the

mean reversion to long-run purchasing power parity (PPP) has attracted considerable attention

from researchers. To measure persistence, the half-life of deviations from PPP has been frequently

employed as a quantity of interest. Using the empirical evidence provided by Frankel (1986),

Diebold, Husted and Rush (1991) and Lothian and Taylor (1996), Rogoff claimed the consensus

of three to Þve-year half-lives of deviations. However, as recently pointed out by Taylor (2001),

nonlinearity might possibly be a source of large half-life estimates, since it could cause upward bias

if a linear model were incorrectly employed in the estimation.

The nonlinear adjustment of deviations from PPP can mainly be justiÞed by the presence of

trading costs, including transportation costs, insurance costs, information costs and tariffs and non-

tariff barriers. As emphasized by Obstfeld and Rogoff (2000), trade costs most likely play a central

role in the persistence of international price differentials, as well as in many other empirical puz-

zles in international macroeconomics. For this reason, estimating nonlinear time-series models has

become a very popular approach among the recent studies on the real exchange rates adjustment

dynamics (e.g., Michael, Nobay and Peel, 1997, Obstfeld and Taylor, 1997, O�Connell, 1998, Saran-

tis, 1999, Taylor and Peel, 2000, Baum, Barkoulas and Caglayan, 2001, and Taylor, Peel and Sarno,

2001). One difficulty regarding the nonlinear models is that, unlike the traditional linear approach,

the interpretation of results in terms of the persistency of PPP deviations is not straightforward,

since the rate of adjustment becomes slower as deviations become smaller by construction. One

may report the shape of nonlinear impulse response functions to investigate the difference between

1



linear and nonlinear models. However, such nonlinear impulse response functions can be deÞned in

several different ways (see Gallant, Rossi and Tauchen, 1993, Koop, Pesaran and Potter, 1996, and

Potter, 2000), and their evaluation usually relies on simulation methods.

The purpose of this paper is to propose a simple persistency measure of PPP deviations based

on the largest Lyapunov exponent of the nonlinear adjustment process of real exchange rates. While

this measure is certainly not a unique measure of convergence, there seem to be some advantages

in PPP applications. First, estimation of the measure is straightforward and no simulation method

is required. Since this approach does not rely on computer-intensive methods, the measure can be

obtained even if the sample size is very large. Second, it is similar to a half-life measure in the

sense that it can be interpreted as the half-lives of the locally linearized nonlinear processes. By

deÞnition, it corresponds to an exact half-life concept if the true process is linear. This measure is

therefore convenient for assessing the effect of nonlinearity in comparison with the previous results of

linear half-lives of PPP deviations available in the PPP literature. Third, the measure is estimated

using the nonparametric regression technique without specifying the parametric functional form.

In consequence, the method is robust to very general nonlinearity in the adjustment process.

The remainder of the paper is organized as follows: Section 2 introduces the nonlinear adjustment

process of real exchange rates and proposes a nonparametric convergence measure. The Þnite sample

properties of the proposed measure are also investigated by a Monte Carlo simulation. In Section

3, the proposed measure is applied to two different data sets, the annual historical exchange rate

series originally constructed by Lee (1976) and quarterly series during the current ßoat. Comparison

of the results with those based on a conventional linear measure is also provided. Finally, some
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concluding remarks are made in Section 4.

2 Linear and Nonlinear Adjustments Toward PPP

2.1 Motivation

Let qt be the (log of the) real exchange rate series deÞned by

qt = st + p
∗
t − pt (1)

where st, p∗t , and pt are the (log of the) nominal exchange rate, the (log of the) foreign price level

and the (log of the) domestic price level, respectively. The conventional approach in investigating

the speed of convergence to PPP is to employ the following linear autoregressive model of order one

(AR(1)),

qt = ρqt−1 + εt (2)

where 0 < |ρ| < 1 and εt is a white noise.1 For annual data, the half-life of deviations from PPP

(τ) is the number of years required for the initial deviation from the long-run level to dissipate

by half under zero future shocks. Suppose the long-run PPP level (E[qt] = 0) as the starting

point q0 with an initial shock δ > 0. From δ/2 = |qτ | = |ρ|τδ, the half-life is then given by

τ ≡ ln(1/2)/ ln |ρ| where absolute value is introduced to allow oscillation.2 Since the denominator

1For absolute prices, long-run PPP (or the law of one price) implies that the mean of the process is zero. While a
non-zero mean is allowed for price indexes, the constant term is excluded in the AR(1) model for illustrative purposes.

2In PPP applications, the estimated AR(1) coefficients are almost always positive, suggesting no need for this
absolute value transformation.
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ln |ρ|(≈ |ρ|− 1 = |qt/qt−1|− 1 for a small value) can be interpreted as the speed of adjustment (in

absolute value), τ becomes greater than unity only if the speed of adjustment is slower than that

of the AR(1) model with ρ = 0.5. As ρ approaches unity, the speed of adjustment ln |ρ| approaches

zero from the left, and half-life τ approaches inÞnity, implying the absence of convergence toward

PPP. In practice, the half-lives are estimated by

bτ = ln(1/2)

ln |bρ| (3)

where bρ is an OLS estimator of ρ in (2).
By construction, the speed of adjustment, as well as the half-life, does not depend on the initial

level of real exchange rate (q0) or the size of deviations (δ) in the linear AR(1) model. This feature

can graphically be seen by the shape of the impulse response function in Figure 1. The time

needed for the initial deviation δ to become δ/2 (τ) is identical to the time for δ/2 to become δ/4

(τ 0). However, because arbitrage for each good depends on the relative size of international price

differentials and trade costs, the speed of adjustment is likely to be slower when the deviation from

PPP is smaller.3

Theoretical models of exchange rates with trade costs have been developed by many researchers,

including Dumas (1992), Sercu, Uppal and Van Hulle (1995) and Betts and Kehoe (1999). For

example, in an extreme case with a single good, the dynamics of real exchange rates can be described

3Assumption of a constant speed of adjustment is still appropriate in many other applications. For example, in
nuclear physics, half-life is often used to characterize radioactive materials. Since the probability of decay of an atom
is constant, the proportion of survived nuclei in a Þxed period of time is constant. Therefore the half-life does not
depend on the total number of initial nuclei.

4



by the following threshold autoregressive (TAR) model:

qt =



c+ ρ(qt−1 − c) + εt if qt−1 > c;

qt−1 + εt if − c ≤ qt−1 ≤ c;

−c+ ρ(qt−1 + c) + εt if qt−1 < −c;

(4)

where 0 < ρ < 1. The threshold parameter c can be interpreted as transaction cost in a simple

�iceberg� model (Sercu, Uppal and Van Hulle, 1995), and the model implies the fast price ad-

justment outside the band because of the arbitrage opportunities in trading the goods.4 Such a

TAR model has been estimated by Obstfeld and Taylor (1997) and O�Connell (1998) and has been

used in Taylor (2001) to illustrate the problem of misspeciÞcation with the linear half-life measure.

While the idea of a discrete threshold is appealing for the analysis of deviations from the law of one

price, the aggregation of many goods with different costs of arbitrage generally suggests gradual

change in the speed of adjustment for PPP deviations. For this reason, a class of smooth transition

autoregressive (STAR) models has been popularly employed in recent studies, including Michael,

Nobay and Peel (1997), Sarantis (1999), Taylor and Peel (2000), Baum, Barkoulas and Caglayan

(2001), and Taylor, Peel and Sarno (2001).

In general, smooth nonlinear adjustment of the real exchange rates can be described by the

following nonlinear AR(1) model:

qt = m(qt−1) + εt (5)

where m(qt−1) is a nonlinear conditional mean function. However, it is well-known that the shape of

4Here we are excluding the possibility of instantaneous arbitrage or ρ = 0.
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nonlinear impulse response function depends on the initial conditioning variable q0 (or the history,

in the case of higher-order AR models). In addition to q0, the shape of the impulse response also

depends on the size and the sign of current and future shocks. For example, when q0 = 0, the

impulse response shown in Figure 2 implies that it takes more time for δ/2 to dissipate by half

(τ 0) compared to the time from δ to δ/2 (τ). This fact makes interpretation of persistency or

deÞning nonlinear half-life complicated. Gallant, Rossi and Tauchen (1993) have proposed a (j-

period) nonlinear impulse response based on the difference between the (j-step ahead) expectation

conditioned on q0 and an expectation conditioned on q0+δ that can be evaluated by a combination of

nonparametric conditional density estimation and Monte Carlo integration. However, each impulse

response still depends on q0 and δ. Taylor and Peel (2000) and Taylor, Peel and Sarno (2001)

employed this deÞnition of nonlinear impulse response and reported half-lives of their estimated

STAR model for several different δ�s but for a particular q0. Koop, Pesaran and Potter (1996) and

Potter (2000) proposed another deÞnition of nonlinear impulse response which can be interpreted as

a generalization of Gallant, Rossi and Tauchen�s deÞnition. In either case, computation involves the

Monte Carlo integration method. In addition, consideration of sampling variability or estimation

error makes evaluation of the nonlinear impulse responses or the half-lives even more difficult.

Below, we consider an alternative measure of persistency based on the largest Lyapunov exponent

of the time series.5

5Potter (2000, footnote 10) also mentioned using the Lyapunov exponent as a possible alternative to his generalized
impulse response function.
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2.2 Lyapunov Exponent of Nonlinear Time Series

The largest Lyapunov exponent is a measure of stability of a dynamic system in terms of the sensitive

dependence on initial conditions. For the nonlinear AR(1) model (5), the Lyapunov exponent is

deÞned by

λ ≡ lim
T→∞

T−1
TX
t=1

ln |Dm(qt−1)| (6)

whereDm(qt−1) is the Þrst derivative of the conditional mean function. Suppose two different initial

conditions q0 and q00 with small difference δ (q
0
0 = q0 + δ). Then, λ is the average growth rate of

difference between two trajectories {qt}∞t=0 and {q0t}∞t=0. The Lyapunov exponent is often used to

deÞne a chaotic system because two trajectories diverge for such a system. On the other hand, for

a stable system with a steady state, the Lyapunov exponent can be interpreted as an average rate

of convergence. Since the denominator of the linear half-life τ is the speed of convergence ln |ρ|,

we can construct an analogous measure of persistency for a stable nonlinear system by replacing

ln |ρ| with λ, or τ∗ ≡ ln(1/2)/λ. It should be noted that τ∗ is identical to τ under the linearity

assumption, since Dm(qt−1) = ρ for all t. As an example, let us consider the TAR model (4). Since

the model implies Dm(qt−1) = ρ outside the band and Dm(qt−1) = 1 inside the band, λ is the

average of ln ρ and 0(= ln 1) weighted by the time spent in each region (which depends on c and

εt). If the probabilities of qt being in two regions are equal, then τ∗ for the TAR model will be

twice of τ ∗(= τ ) for the linear AR model with the same ρ in terms of this particular measure of

persistency.6

6Taylor (2001) employed a different concept of convergence for the TAR model. He deÞnes a half-life of the model
as ln(1/2)/ ln |ρ| regardless of the size of c.
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In general, the nonlinear AR model (5) can be estimated by using the nonparametric regression

technique without the speciÞcation of the functional form as in the TAR or STAR models. To

estimate the Lyapunov exponent from data, Nychka, Ellner, Gallant and McCaffrey (1992) have

proposed a sample analogue estimator based on the nonparametric method. Following this idea, we

estimate τ∗ by

bτ∗ = ln(1/2)

T−1
PT
t=1 ln

¯̄̄ dDm(qt−1)¯̄̄ (7)

where dDm(qt−1) is a nonparametric estimator of the Þrst derivative of m(qt−1) in (5) and T is the
sample size. This measure of convergence is not an exact half-life since half-life can be deÞned

in many different ways, similarly to the nonlinear impulse responses discussed in the previous

subsection. However, it is a half-life-like measure in the sense that it can be interpreted as the

half-lives of the locally linearized nonlinear processes. Suppose a Þrst-order Taylor series expansion

of (5) at the initial point, or q01 − q1 = Dm(q0)(q00 − q0) = Dm(q0)× δ. By repeating the expansion

at each local point and using absolute values, we have

δ/2 = |q0τ∗ − qτ∗| = |Dm(qτ∗−1)| ×
¯̄̄
q0τ∗−1 − qτ∗−1

¯̄̄
= · · · = τ∗

Π
t=1
|Dm(qt−1)| δ,

and τ ∗−1 ln(1/2) = τ ∗−1
Pτ∗
t=1 ln |Dm(qt−1)| implies τ ∗ = ln(1/2)/

³
τ∗−1

Pτ∗
t=1 ln |Dm(qt−1)|

´
. For

this reason, we simply call bτ ∗ as a nonparametric half-life measure despite the fact that it is not
the half-life for a certain δ and q0.

In principle, any nonparametric estimator can be used for the derivative estimation. In this

paper, we employ a class of kernel-type regression estimators called a local polynomial regression
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estimator (see Fan and Gijbels, 1996). There are several advantages of local polynomial regression

over the Nadaraya-Watson regression estimator. First, it reduces the bias of the Nadaraya-Watson

estimator. Second, it adapts automatically to the boundary of design points and no boundary

modiÞcation is therefore needed. Third, and most importantly for our purpose, it is superior to

the Nadaraya-Watson estimator in the context of derivative estimation. As explained in Fan and

Gijbels (1996, p.77), the local polynomial of order two, or local quadratic smoother, is preferable

for Þrst derivative estimation for the same reasons.

The local quadratic estimators at point x can be obtained by minimizing the weighted least

squares criterion
PT
t=1 (qt − β0 − β1(qt−1 − x)− β2(qt−1 − x)2)2Kh (qt−1 − x) whereKh(u) = K(u/h)/h,

K(u) is a kernel function and h is a smoothing parameter (or bandwidth). The Þrst derivative es-

timator dDm(x) is given by the second element of the solution

bβ = (X0WX)−1X0Wy,

where

X =



1 (q0 − x) (q0 − x)2
...

...
...

1 (qT−1 − x) (qT−1 − x)2


,

y = (q1, . . . , qT )
0 and W =diag{Kh(q0 − x), . . . , Kh(qT−1 − x)}. We compute the Þrst derivatives

at each data point qt−1 and substitute into (7) to obtain bτ ∗.
It is now common practice to report the conÞdence intervals for bτ in the linear model to consider

sampling variability. For example, to evaluate the precision of the half-life, Cheung and Lai (2000)
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reported both asymptotic and bootstrap conÞdence intervals for bτ while Kilian and Zha (2002) used
Bayesian conÞdence intervals. In the empirical section, we also report the conÞdence interval for

the nonparametric measure bτ∗ based on the asymptotic distribution of the local quadratic estimator
of the Lyapunov exponent derived in Shintani and Linton (2001).7 In Murray and Papell�s (2002)

study, they employed a median-unbiased estimator of ρ and reported that conÞdence intervals of

bτ included inÞnity in many cases, which implies some possibilities of a unit root. For a unit root
process, the linear measure bτ is consistent in the sense that half-life estimates diverge to inÞnity as
the sample size increases. In Shintani and Linton (2001), it is shown that the Lyapunov exponent

based on the local quadratic regression converges to zero when the true process is a random walk,

or m(qt−1) = qt−1 and an iid error in (5). This implies bτ∗ is also consistent in the sense that it
diverges to inÞnity for a unit root case.

2.3 Simulation

We conduct a small Monte Carlo simulation to investigate the Þnite sample performance of the

proposed measure of persistence. We Þrst consider the TAR model (4) as a true process. We

generate the artiÞcial data from (4) with εt = N(0, 1), ρ = 0.5 and the varying threshold parameter

c, then estimate both nonparametric and linear measures with the sample sizes T = 100 and 200.

Each experiment is replicated 10,000 times and the performance of two measures is evaluated by the

relative distance from the true half-life (τ ∗) of (4). For the nonparametric measure, the Gaussian

kernel function with several values of the smoothing parameter h is employed.

7For comparison, we report the conÞdence interval of the linear measure bτ based on the limit distribution of the
rate of convergence ln |bρ| instead of that of AR parameter bρ in the empirical section.
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The upper half of Table 1 reports results based on the simulation with T = 100. First, when

c = 0, (4) reduces to a simple linear model with AR parameter 0.5 and the true half-life is one

year. As expected, since there is no misspeciÞcation with linear measure in this case, the bias of

the linear measure is smaller than that of the nonparametric measure. However, the variability of

both estimates is almost identical. Second, when c increases, the performance of linear measure

bτ worsens as a result of misspeciÞcation. The upward bias becomes more severe when (4) has a
longer true half-life. When the true half-life is as large as 5.70, unit roots are obtained for several

cases which result in inÞnite half-life estimates (The median is 8.62). On the other hand, the

nonparametric measure bτ∗ does not suffer from upward bias observed in the linear measure. While

the nonparametric estimates depend on the selection of the smoothing parameter to a certain degree,

the small sample bias, as well as variability in the estimates, is found to be considerably less than

those of linear measure. The lower half of Table 1 reports results with T = 200. When c = 0, both

nonparametric and linear measures become closer to the true half-life compared to T = 100 case.

When c increases, the upward bias of linear measure is larger than those for T = 100 case, while

relatively accurate estimates are obtained with nonparametric measure with a smaller smoothing

parameter.

Second, we consider the following simple STAR model:

qt = qt−1 − qt−1
h
1− exp

n
−qt−12

oi
+ εt (8)

with εt = N(0, σ2). This class of model has been employed in Taylor, Peel and Sarno (2001) and

others. For this model, we control the true half-life (τ∗) by varying the dispersion parameter σ. All
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other values for the simulation are identical to those in the TAR case. The results are presented in

Table 2. In general, the results are somewhat similar to the TAR results. Nonparametric measure is

closer to the true half-life than the linear measure. For large σ, the performance of the nonparametric

measure is satisfactory. For small σ, nonparametric measure shows the downward bias. However,

upward bias of the linear measure is larger compared to that of the nonparametric measure.

In summary, the simulation result supports Taylor�s (2001) discussion that inappropriate linear

speciÞcation may result in large half-live estimates if there is nonlinearity in the adjustment process.

The nonparametric measure, in contrast, seems to be robust for such a nonlinearity.

3 Empirical Results

3.1 Data

In this section, the persistence of PPP deviation is reinvestigated using the nonparametric half-life

measure. Two different data sets are used for the analysis. The Þrst data set is the long-horizon

annual real exchange rate series originally constructed by Lee (1976) and later extended by Murray

and Papell (2002), using the sample period 1900 to 1996. Countries under consideration are Canada,

France, Italy, Japan, the Netherlands and the U.K. All the series are WPI-based real exchange rates

with the U.S. dollar used as the numeraire currency. The well-known caveat of using the long-horizon

data is that it includes both Þxed and ßoat exchange rate periods. The second data set we consider

consists of the real exchange rates under the current ßoat period, and it presumably suffers less

from the effect of the regime shift. We utilize the data used in Murray and Papell (2002) which
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consists of quarterly CPI-based real exchange rates of twenty countries from 1973:1 to 1998:2.8

3.2 Cointegrating Rank Test

As a preliminary analysis, we investigate the possibility of nonstationarity of the real exchange

rates as many previous studies could not reject the unit root hypothesis. Rather than conducting

the unit root test for every single series, we utilize a multivariate test, as it is invariant to the

choice of the numeraire currency. More speciÞcally, the system consists of U.S. dollar-based real

exchange rates for all countries (other than the U.S.) instead of the real exchange rates for all

bilateral pairs. Such an approach is employed by Taylor and Sarno (1998) with the cointegrating

rank test of Johansen (1991). In addition to the commonly used Johansen likelihood ratio (LR)

test, we employ a nonparametric cointegrating rank test proposed by Shintani (2001). Table 3

reports the results from both data using one lag in the estimation. If the long-run PPP holds, we

should Þnd the full cointegrating rank and no unit root. However, for the annual series, the result

implies four unit roots based on the LR test and three unit roots based on the nonparametric test.

It implies that the PPP is unlikely for about half the countries considered. Furthermore, for the

quarterly series, the number of nonstationary elements is greater than those found in the annual

data. These observations are consistent with the former studies that found unit roots in the real

exchange rates. However, it should be noted that both the LR test and the nonparametric test are

linear cointegrating rank tests. They are therefore not valid when the true process has a nonlinear

structure.

8The U.S. dollar is used as a base currency. See Murray and Papell (2002) for the data construction.
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3.3 Estimation of Two Convergence Measures

Let us now turn to the nonparametric half-life estimation of the real exchange rates. For the kernel

function K(u) required in the estimation of the nonlinear autoregressive model, the Gaussian kernel

is employed. The smoothing parameter h is selected by minimizing the residual squares criterion

(RSC) given in Fan and Gijbels (1996, p.118), which is known to be a consistent selection method

for the local polynomial regression. For the heteroskedasticity and autocorrelation consistent (HAC)

variance estimation required for the standard error, we employ the QS kernel with a lag window

parameter selected by the optimal selection method of Andrews (1991).

For the annual data set, the nonparametric half-life estimates with the 95 percent conÞdence

intervals are provided in Table 4. In the same table, the results using the conventional linear measure

are also reported for comparison. On the whole, the nonparametric half-lives do not differ much

from the linear half-lives except for the U.K. On one hand, quite similar values between the two

measures are obtained for Canada, France and Italy. On the other hand, somewhat shorter half-

lives are obtained with a nonparametric measure for Japan and the Netherlands. It is interesting

that the largest reduction in half-life is observed in the case of the U.K. The half-life based on the

conventional linear measure is 4.84 years. This number is indeed very close to 4.6 years of half-life

implied by Frankel�s (1986) study of the long-horizon dollar/pound real exchange rates (see Rogoff,

1996, p. 656). By employing the nonparametric measure, the half-life is reduced to 2.64 years with

a substantially smaller conÞdence interval.

Even if there is only a moderate difference between the nonparametric and linear half-life esti-

mates, it does not imply that the adjustment process is well approximated by the linear process.
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This point become clearer if we plot the nonparametric estimates of the rate of adjustment at each

data point. Figure 3 shows the estimated speed of adjustment for six countries. Obviously, none of

them are ßat. More importantly, it shows faster adjustment when the deviations from the long-run

level are large. The notable fact is that we have not imposed any parametric restriction to obtain

a structure such as the STAR model. It implies that the data is favorable to our conjecture of the

presence of trade costs as a source of nonlinearity.

For the quarterly data set, both results based on nonparametric and linear measures are reported

in Table 5. For the conventional linear measures, slightly shorter half-lives are obtained than those

based on the long-horizon data. The only exception is Canada with fairly long half-life point

estimates. The median half-life based on the linear measure is 2.52 years compared to 3.01 years

obtained from the long-horizon annual data. At the same time, the wide conÞdence intervals of linear

measure show the uncertainty of the point estimates. Indeed, inÞnity is included for seventeen out

of twenty countries, which implies the difficulties of excluding the possibility of a unit root. These

observations are consistent with the former Þndings in the literature as well as with the result of

the linear cointegrating rank test in this paper.

When the nonparametric measure is employed, half-lives again become shorter than those based

on the long-horizon data. However, the most notable Þnding is that the nonparametric method

provides smaller half-life estimates than the corresponding linear estimates for all the countries

except Canada. The median of the nonparametric half-life measure is 1.44 years and the median of

the difference between the nonparametric and linear measure is 0.99 years (the average half-life and

difference are 1.53 and 1.08 years, respectively, when Canada is excluded). On average, about a 40
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percent reduction in half-lives is observed by introducing nonlinearity into the adjustment process.

With respect to the precision of the point estimates, the conÞdence intervals of nonparametric half-

lives are considerably shorter than those for the linear half-lives. In some cases, 95 percent upper

bounds for the nonparametric half-lives are indeed lower than corresponding point estimates based

on the linear measure. In contrast to the linear measure, inÞnity is excluded from all the conÞdence

intervals of nonparametric measure, again with the exception of Canada.

4 Conclusion

This paper has introduced a nonparametric convergence measure of PPP deviations which allows

for general nonlinear real exchange rate adjustment. If the nonlinearity in the adjustment process is

a possible pitfall in understanding the PPP puzzle as discussed in Taylor (2001), our nonparametric

measure seems to be a reasonable way to evaluate the average speed of adjustment.

The simulation result on the Þnite sample properties of the nonparametric measure is found to

be encouraging. When the true process has TAR or STAR structure, half-lives based on the linear

measure suffers from upward bias because of the misspeciÞcation. In contrast, the nonparametric

measure provides relatively accurate estimates for both linear and nonlinear adjustment process.

The proposed measure is applied to two different real exchange rates data sets. When the annual

historical data is used, the nonparametric method yields more than two years of reduction in the

half-life of U.K./U.S. real exchange rates compared to the linear estimate of 4.84 years. When the

current ßoat data is used, a one-year reduction from the linear estimates is observed on average in

twenty countries. These empirical results suggest that the speed of reversion is indeed faster than
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in previous studies with the linear assumption. Furthermore, the nonparametric measure yields a

shorter conÞdence interval than that of linear measure. In case of the former, inÞnite half-lives are

excluded from the intervals for almost all cases.

The shorter half-lives obtained in this paper may, to some degree, reconcile the persistency issue

with the long-run PPP. While we suspect that the nonlinearity is caused by the presence of trade

costs, our nonparametric methods cannot identify the source of nonlinearity. For further investi-

gation of this issue, it seems that analysis based on disaggregated prices offers useful information.

One approach is to use price indexes of both traded and nontraded goods along the line suggested

by Engel (1999, 2000). The other approach is to measure the persistency of good-by-good inter-

national price differentials. The latter approach is currently being pursued by the author (Crucini

and Shintani, 2002).
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Table 1
Finite Sample Performance of Convergence Measures

with TAR Model

Threshold Parameter (c) 0.00 0.50 1.00 2.00 5.00
True Half-Lives (τ∗) 1.00 1.41 1.84 2.70 5.70

(1) T = 100
Nonparametric h∗ = 0.3 0.88 1.24 1.60 2.40 4.93
Measure (bτ ∗) (0.25) (0.35) (0.46) (0.79) (2.93)

h∗ = 0.4 0.89 1.31 1.77 2.76 5.72
(0.25) (0.35) (0.47) (0.83) (3.15)

h∗ = 0.5 0.90 1.36 1.88 3.01 6.33
(0.25) (0.35) (0.49) (0.89) (3.44)

Linear 0.97 1.53 2.25 4.05 ∞
Measure (bτ) (0.25) (0.38) (0.57) (1.26) (�)

(2) T = 200
Nonparametric h∗ = 0.2 0.92 1.25 1.57 2.28 5.03
Measure (bτ ∗) (0.19) (0.27) (0.37) (0.60) (1.99)

h∗ = 0.25 0.93 1.29 1.66 2.52 5.77
(0.19) (0.27) (0.36) (0.61) (2.18)

h∗ = 0.3 0.93 1.34 1.77 2.76 6.39
(0.19) (0.26) (0.36) (0.60) (2.31)

Linear 0.98 1.56 2.32 4.34 12.81
Measure (bτ) (0.18) (0.27) (0.40) (0.87) (5.22)

Note: Mean of estimated half-lives with standard deviation in parenthesis. The
smoothing parameter for the nonparametric measure is h = h∗×range. 10,000 repli-
cations.
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Table 2
Finite Sample Performance of Convergence Measures

with STAR Model

Dispersion Parameter (σ) 0.30 0.25 0.20 0.15 0.10
True Half-Lives (τ∗) 1.11 1.30 1.66 2.45 4.15

(1) T = 100
Nonparametric h∗ = 0.3 1.10 1.32 1.66 2.21 3.17
Measure (bτ ∗) (0.25) (0.33) (0.45) (0.67) (1.10)

h∗ = 0.4 1.20 1.47 1.86 2.48 3.55
(0.28) (0.36) (0.48) (0.70) (1.16)

h∗ = 0.5 1.29 1.58 2.01 2.67 3.82
(0.30) (0.38) (0.51) (0.74) (1.24)

Linear 1.61 1.99 2.55 3.44 5.08
Measure (bτ) (0.37) (0.47) (0.65) (1.00) (1.86)

(2) T = 200
Nonparametric h∗ = 0.2 1.05 1.25 1.58 2.13 3.21
Measure (bτ ∗) (0.17) (0.23) (0.33) (0.50) (0.84)

h∗ = 0.25 1.09 1.32 1.68 2.31 3.50
(0.17) (0.24) (0.34) (0.50) (0.84)

h∗ = 0.3 1.15 1.41 1.82 2.50 3.76
(0.19) (0.25) (0.34) (0.50) (0.83)

Linear 1.65 2.05 2.66 3.65 5.56
Measure (bτ) (0.25) (0.33) (0.45) (0.70) (1.30)

Note: Mean of estimated half-lives with standard deviation in parenthesis. The
smoothing parameter for the nonparametric measure is h = h∗×range. 10,000 repli-
cations.
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Table 3
Multivariate Linear Cointegrating Rank Test

H0 :Cointegrating Rank (Unit roots) Johansen LR Test Nonparametric Test
(a) Annual Data: 1900-1996

0 (6) 130.21∗ [102.14] 353.65∗ [241.33]
1 (5) 78.37∗ [76.07] 219.73∗ [182.07]
2 (4) 45.21 [53.12] 136.56∗ [132.22]
3 (3) 23.30 [34.91] 77.48 [89.76]
4 (2) 7.95 [19.96] 33.04 [55.22]
5 (1) 2.40 [9.24] 13.56 [27.51]

(b) Quarterly Data: 1973:1-1998:2
14 (6) 74.38 [102.14] 44.09 [241.33]
15 (5) 54.95 [76.07] 29.05 [182.07]
16 (4) 38.26 [53.12] 16.80 [132.22]
17 (3) 21.79 [34.91] 8.80 [89.76]
18 (2) 11.71 [19.96] 4.23 [55.22]
19 (1) 4.27 [9.24] 0.80 [27.51]

Notes: Numbers with asterisks imply that the null hypothesis is rejected at the 5
percent signiÞcance level. Numbers in brackets are 5% critical values.

23



Table 4
Persistency of PPP Deviations
(Annual Data: 1900-1996)

Country Nonparametric Linear
Measure Measurebτ ∗ 95% CI bτ 95% CI

1. Canada 3.10 [2.09, 5.98] 3.03 [1.81, 9.37]

2. France 1.41 [1.08, 2.05] 1.36 [0.89, 2.87]

3. Italy 2.53 [1.53, 7.40] 2.47 [1.52, 6.61]

4. Japan 6.14 [3.78, 16.28] 6.50 [3.28, 426.50]

5. Netherlands 2.21 [1.50, 4.18] 2.99 [1.77, 9.62]

6. United Kingdom 2.64 [1.88, 4.40] 4.84 [2.58, 39.47]

Note: QS kernel with optimal lag window (Andrews,1991) is used to construct
conÞdence intervals for nonparametric measure.
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Table 5
Persistency of PPP Deviations under the Current Float

(Quarterly Data: 1973:1-1998:2)

Country Nonparametric Linear
Measure Measurebτ ∗ 95% CI bτ 95% CI

1. Australia 2.64 [1.52, 9.74] 3.42 [1.38, ∞]

2. Austria 1.19 [0.80, 2.29] 2.35 [1.16, ∞]

3. Belgium 2.16 [1.31, 6.03] 3.12 [1.40, ∞]

4. Canada 32.22 [5.99, ∞] 20.00 [3.16, ∞]

5. Denmark 0.98 [0.70, 1.61] 2.59 [1.23, ∞]

6. Finland 2.27 [1.33, 7.64] 2.84 [1.30, ∞]

7. France 0.94 [0.67, 1.54] 2.47 [1.17, ∞]

8. Germany 1.08 [0.70, 2.32] 2.36 [1.13, ∞]

9. Greece 1.28 [0.90, 2.16] 2.56 [1.22, ∞]

10. Ireland 0.91 [0.64, 1.61] 1.60 [0.85, 13.61]

11. Italy 1.75 [1.08, 4.57] 2.37 [1.14, ∞]

12. Japan 2.76 [1.78, 6.12] 3.78 [1.73, ∞]

13. Netherlands 1.53 [0.93, 4.45] 2.22 [1.09, ∞]

14. New Zealand 2.09 [1.34, 4.78] 2.25 [1.09, ∞]

15. Norway 0.44 [0.30, 0.83] 1.87 [0.95, 89.15]

(continued)
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Table 5 (Continued)

Country Nonparametric Linear
Measure Measurebτ∗ 95% CI bτ 95% CI

16. Portugal 2.25 [1.42, 5.37] 3.85 [1.65, ∞]

17. Spain 2.54 [1.58, 6.41] 3.65 [1.63, ∞]

18. Sweden 0.43 [0.26, 1.21] 3.27 [1.43, ∞]

19. Switzerland 0.63 [0.47, 0.92] 1.19 [0.67, 4.94]

20. United Kingdom 1.35 [0.87, 3.00] 2.06 [1.02, ∞]

Note: See note of Table 4.
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  Fig. 1. 
Linear Impulse Response and Half-Life 
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  Fig. 2. 
Nonlinear Impulse Response and Half-Life 
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  Fig. 3. The Rate of Convergence
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