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Abstract

We introduce a perfect price discriminating (PPD) mechanism for allocation problems
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price discriminating monopolist who faces a price schedule that does not depend on her
report. In any PPD mechanism, every player has a dominant strategy to truthfully re-
port her private information. We establish a revelation principle for dominant strategy
implementation: any outcome that can be dominant strategy implemented can also be
dominant strategy implemented using a PPD mechanism. We apply this principle to
derive the optimal, budget-balanced, dominant strategy mechanisms for public good
provision and bilateral bargaining.

Keywords: Dominant strategy implementation, Vickrey-Clarke-Groves mechanisms,
public good provision, bilateral bargaining

JEL Classi�cation Numbers: C72 (Noncooperative Games), C78 (Bargaining The-
ory), D44 (Auctions), D82 (Asymmetric and Private Information), H41 (Public Goods)

�We would like to thank Brett Katzman and Herve Moulin for their comments and suggestions.
yDepartment of Economics, Finance, and Quantitative Analysis, Kennesaw State University, 1000 Chas-

tain Road, Box 0403, Kennesaw, GA 30144, U.S.A. Email: jschwar7@kennesaw.edu
zDepartment of Economics, Vanderbilt University, VU Station B #351819, 2301 Vanderbilt Place,

Nashville, TN 37235-1819, U.S.A. Email: quan.wen@vanderbilt.edu



1 Introduction

In allocation problems with incomplete information, economists search for mechanisms that

implement a desirable outcome in some equilibrium, such as Bayesian-Nash and dominant

strategy equilibrium. Although dominant strategy equilibrium is more restrictive than

Bayesian-Nash, it has many desirable properties. For example, dominant strategies are

not sensitive to the belief of any player about the other players�information or strategies.1

However, the best outcome under Bayesian-Nash implementation may not be implementable

using dominant strategies. Take the well known example of a public good: the outcome that

is both budget-balanced and e¢ cient can be Bayesian-Nash implemented by the expected

externality mechanism, but cannot be dominant strategy implemented by any mechanism.2

If the performance shortfall is not too big, the mechanism designer may decide in favor of a

dominant strategy mechanism. In this paper, we provide a revelation principle that charac-

terizes all dominant strategy mechanisms for allocation problems, thus facilitating the search

for optimal dominant strategy mechanisms.

We introduce perfect price discriminating (PPD) mechanisms and show that they play

a de�ning role in dominant strategy implementation. In a PPD mechanism, each player

faces a price schedule that is exogenous to her report. To a buyer, this price schedule gives

the prices she would have to pay for each unit, such as $10 for the �rst unit, $15 for the

second unit, etc. To a seller, this price schedule gives the prices that she would be paid for

each unit. A player cannot change the prices that she would pay (or be paid) for any unit.

Although a player�s price schedule does not depend on her own report, it generally depends

on the other players�reports. A player �rst reports her type to the mechanism designer, who

then determines the quantity that maximizes the player�s payo¤, given the price schedule

and the player�s reported type. Thus, the PPD mechanism treats a seller as a perfect price

1For other advantages of dominant strategy implementation, see Mookherjee and Reichelstein (1992) and
the references therein.

2See, for example, Fudenberg and Tirole (1992, pp 271-274) for details.
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discriminating monopolist and a buyer as a perfect price discriminating monopsonist. The

well known Vickrey auction is one example of a PPD mechanism. Many other mechanisms

in the literature can also be formulated as PPD mechanisms, as we demonstrate in the

conclusion.

As in the Vickrey auction, every player has a dominant strategy to report her type truth-

fully in any PPD mechanism (Proposition 4). Given the exogenous nature of the price sched-

ule that a player faces, misreporting her type can only mess up the optimization problem

to maximize this player�s payo¤. We establish a revelation principle for dominant strategies

(Proposition 5): every outcome that can be dominant strategy implemented can also be

dominant strategy implemented with a PPD mechanism. This result identi�es the funda-

mental cause for dominant strategies that is universal to all allocation problems. We refer

to this result as a revelation principle because of its similar �avor to the original Revelation

Principle: every outcome that can be Bayesian-Nash implemented can also be Bayesian-Nash

implemented with a direct mechanism.3 With the original Revelation Principle, a mecha-

nism designer may restrict attention to direct mechanisms when searching for Bayesian-Nash

implementation. With our revelation principle, a mechanism designer may restrict attention

to PPD mechanisms when searching for dominant strategy implementation.

Building PPDmechanisms involves constructing the price schedule for each player. Often,

speci�c goals like budget-balancedness or speci�c features of the environment considerably

restrict the price schedules. In other words, the special format of PPD mechanisms in itself

greatly simpli�es the search for dominant strategy mechanisms, and then particulars of the

problem may further simplify the search. To show how to put our revelation principle to

work, we build PPD mechanisms for public good provision and bilateral bargaining problems

with budget-balancedness in mind. The nature of these problems impose severe quantity

restrictions. In the public good problem, one player obtains the public good if and only if

3Myerson (2008) gives a historical perspective on mechanism design and the role of the Revelation Prin-
ciple.
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every player also obtains the public good. In the bargaining problem, the buyer receives the

good if and only if the seller relinquishes the good. We exploit these restrictions in sections 4

and 5 to �nd the budget-balanced dominant strategy mechanisms that maximize the players�

payo¤s.

There are several strands of literature related to our work. Green and La¤ont (1977)

and Holmstrom (1979) �nd that essentially all e¢ cient, dominant strategy mechanisms are

Vickrey-Clarke-Groves mechanisms.4 Our Proposition 5 shows that any dominant strat-

egy incentive compatible mechanism must be a PPD mechanism, so in a way we generalize

the Vickrey-Clarke-Groves mechanisms relaxing the requirement of e¢ ciency. Mookherjee

and Reichelstein (1992) identify su¢ cient conditions that ensure there is no welfare loss in

strengthening the equilibrium concept from Bayesian-Nash to dominant strategy. However,

these su¢ cient conditions may fail. In Myerson and Satterthwait�s (1982) bilateral bar-

gaining, our results allow us to �nd the optimal dominant strategy mechanism, and for the

example when the buyer�s and seller�s values are uniformly distributed, we quantify that

the best dominant strategy implementation costs 11% of the gains available in the best

Bayesian-Nash implementation. The mechanism designer would weigh this loss against the

informational bene�ts of using dominant strategies. Our result for bilateral bargaining com-

plements Hagerty and Rogerson (1987), who show that �xed-price mechanisms are essentially

the only budget-balanced, dominant strategy mechanisms. Our revelation principle allows

us immediately to show that the optimal, budget-balanced, dominant strategy mechanism

is a �xed-price mechanism. Other papers have also considered sacri�cing some e¢ ciency in

favor of dominant strategies, showing that losses decrease as the number of players increase.

McAfee (1992) does this for double auctions, and Moulin (2007a, b) does this for single-unit

and multi-unit rationing problems. Moulin (2007a, b) also contain references to several other

papers in this vein.

The rest of this is organized as follows. In Section 2, we �rst lay out the basic problem

4See Milgrom (2004, pages 71-73) for a thoughtful treatment of the Green-La¤ont-Holmstrom theorem.
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and then introduce PPD mechanisms. In Section 3, we establish the main result: any direct

mechanism is dominant strategy incentive compatible if and only if it is a PPD mechanism.

Applying this principle, we solve for the optimal, budget-balanced, dominant strategy mech-

anisms for public good provision in Section 4 and bilateral bargaining in Section 5. In Section

6, we conclude by reformulating a number of well known dominant strategy mechanisms as

PPD mechanisms.

2 Allocation Mechanisms

We consider allocation schemes among players with private values. Let N = f1; : : : ; ng be

the set of n players. Let �i be player i�s type for i 2 N , ��i = (�1; : : : ; �i�1; �i+1; : : : ; �n) be the

type pro�le of player i�s opponents, and � = (�i; ��i) be the pro�le of player types. Assume

� is jointly distributed on [0; 1]n according to distribution function F (�). For each i 2 N ,

let Fi(�) denote the marginal distribution of �i. An outcome (q; t) = (q1; : : : ; qn; t1; : : : ; tn) 2

Rn � Rn speci�es each player i�s quantity qi and payment ti. Generally, each player i�s

utility may depend on the entire outcome and the type pro�le. In this paper, we focus on

the private value case where each player i has quasilinear utility that depends only on her

own type �i and her part of the outcome (qi; ti):

ui(qi; ti; �) = vi (qi; �i)� ti:

Assume that vi(0; �i) = 0 for all �i 2 [0; 1]. Also assume that for all �i 2 [0; 1] and qi 2 R,

player i�s valuation function vi(�; �i) : R! R satis�es the following standard conditions:

v1i (qi; �i) � @vi(qi; �i)=@qi � 0; (1)

v1i (qi; �i) � v1i (qi; �
0
i) for �i > �

0
i: (2)

Condition (1) states that player i�s valuation function is nondecreasing in quantity. Condition

(2) is the single-crossing condition, which implies that player i�s demand curve increases

with her type �i 2 [0; 1]. To apply Milgrom�s (2004) envelope theorem, we also assume that
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v2i (qi; �i) � @vi(qi; �i)=@�i exists almost everywhere and is bounded for each i 2 N . As an

aside, player i buys if qi > 0 and sells if qi < 0.

A general mechanism speci�es a set of actions for each player. A player�s strategy maps

her type to an action. The mechanism also speci�es a mapping from action pro�les to

outcomes. This induces a game of incomplete information. The performance (such as e¢ -

ciency) of a mechanism is the compound mapping from type pro�les to outcomes through

the equilibrium strategy pro�le and the mechanism itself. By convention, a mechanism

dominant strategy implements or Bayesian-Nash implements a particular performance if the

equilibrium is dominant strategy or Bayesian-Nash. A direct mechanism is a special class of

mechanisms where the action sets are identical to the type sets, with the interpretation that

the mechanism designer asks each player to reveal her type. More speci�cally,

De�nition 1 In a direct mechanism, each player i 2 N reports her type as �̂i 2 [0; 1]. The

mechanism maps the reported pro�le �̂ 2 [0; 1]n to an outcome (q(�̂); t(�̂)):

q(�) : [0; 1]n ! Q and t(�) : [0; 1]n ! Rn;

where Q � Rn denotes the set of permissible quantity pro�les.

Given any reported type pro�le �̂, player i will obtain quantity qi(�̂) and pay ti(�̂). Thus, any

direct mechanism induces a well-de�ned game of incomplete information. In the rest of this

paper, we simply refer to a direct mechanism by its quantity and payment rules (q(�); t(�)).

In the game of incomplete information induced by a direct mechanism, a player may or may

not report her type truthfully in a Bayesian-Nash equilibrium. The well known Revelation

Principle states that every performance that can be Bayesian-Nash implemented can also be

Bayesian-Nash implemented using a direct mechanism, where players truthfully report their

types.5 Thus, without loss of generality, we restrict our attention to direct mechanisms. We

focus on direct mechanisms that are dominant strategy incentive compatible:

5See Milgrom (2004, pp. 39-42) for a more comprehensive description of general mechanisms, and Krishna
(2002, Proposition 5.1) for a simple treatment of the Revelation Principle.
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De�nition 2 A direct mechanism is dominant strategy incentive compatible (DSIC) if for

all i 2 N , and for all �i, �̂i and ��i,

ui (qi(�i; ��i); ti(�i; ��i); �i) � ui
�
qi(�̂i; ��i); ti(�̂i; ��i); �i

�
:

In other words, it is always optimal for a player to truthfully report her type, no matter

what the other players report.

In this paper, we establish a revelation principle for dominant strategy implementation:

every performance that can be dominant strategy implemented can also be dominant strategy

implemented using a perfect price discriminating mechanism. A perfect price discriminating

mechanism speci�es a price schedule pi(qi; �̂�i) for each player that is used in determining

this player�s part of the outcome. The price schedule to any player does not depend on this

player�s own report but may depend on the others�reports. Formally, we have

De�nition 3 A direct mechanism (q; t) is a perfect price discriminating (PPD) mechanism

if for all i 2 N and all �̂ 2 [0; 1]n, these exist a price schedule pi(�; �) : R+ � [0; 1]n�1 ! R+

and a lump-sum payment Li(�) : [0; 1]n�1 ! R such that

qi(�̂i; �̂�i) 2 argmax
qi

Z qi

0

h
v1i (z; �̂i)� pi(z; �̂�i)

i
dz; (3)

ti(�̂i; �̂�i) =

Z qi(�̂i;�̂�i)

0

pi(z; �̂�i)dz + Li(�̂�i): (4)

By (4), player i pays the area under her price schedule, up to the quantity she wins, plus

a lump-sum payment that is independent of her report. Given the payment rule and the

reported pro�le �̂, the PPD mechanism assumes that player i has reported truthfully and

then chooses qi to maximize her payo¤, since (3) and (4) imply that

qi(�̂i; �̂�i) 2 argmax
qi

h
vi(qi; �̂i)� ti(�̂i; �̂�i)

i
:

Figure 1 illustrates player i�s part of the outcome (qi; ti) in a PPD mechanism for the case

when Li(�̂�i) = 0. If we interpret v1i (�; �i) as the inverse demand curve of player i of type �i,
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and if we interpret pi(�; �̂�i) as the inverse supply curve player i faces, then the mechanism

chooses the �market-clearing�quantity. But the payment is that of a buyer who can perfectly

price discriminate, paying the height of the supply curve for each unit she buys.

-

6
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0 qi

v1i (�; �̂i)

pi(�; �̂�i)

ti

Figure 1: Player i�s outcome in a PPD mechanism

3 Revelation Principle

In any PPD mechanism, each player faces a price schedule that is exogenous to her report.

The player cannot change the price that she would pay for any unit. In this situation, the

mechanism determines the quantity for her that maximizes her payo¤, assuming she has told

the truth about her type. The player could do no better if she were allowed to choose for

herself how much quantity to purchase at the exogenous price schedule. In other words, the

mechanism does the optimization for the player. Lying about her type can only cause the

mechanism to mess up the optimization. This gives the player a dominant strategy to report

her type truthfully. We next formalize this intuition with Proposition 4.

Proposition 4 Any PPD mechanism is dominant strategy incentive compatible.

Proof. Consider any ��i and any PPD mechanism with price schedules and lump-sum

payments fpi(�; �); Li(�)gi2N . Equation (4) implies that player i�s report �̂i can only a¤ect her
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payment insofar as it a¤ects the quantity player i is awarded. Given ��i, note that qi(�̂i; ��i)

may or may not be equal to qi(�i; ��i) for �̂i 6= �i. Equations (3) and (4) then imply that

ui(qi(�i; ��i); ti(�i; ��i); �i) = max
qi

Z qi

0

�
v1i (z; �i)� pi(z; ��i)

�
dz � Li(��i)

�
Z qi(�̂i;��i)

0

�
v1i (z; �i)� pi(z; ��i)

�
dz � Li(��i)

= ui(qi(�̂i; ��i); ti(�̂i; ��i); �i):

In other words, the PPD mechanism is DSIC.

Of course, the intuition for why a player wants to report her type truthfully is familiar

from the Vickrey auction, but observe that the proof to Proposition 4 in no way depends on

the allocative e¢ ciency of the mechanism. What we show in the next in Proposition is the

more astounding result that any mechanism which induces truthful revelation as a dominant

strategy must be a PPD mechanism.

Proposition 5 [Revelation Principle for Dominant Strategy Implementation] Any

DSIC direct mechanism can be implemented with a PPD mechanism.

Proof. Consider any DSIC direct mechanism (q; t). The idea of our proof is to construct

an individual price schedule pi(�; �) and lump-sum payment Li(�) for each player i 2 N

such that (q; t) can be obtained using equations (3) and (4). Focus on player i. Fix an

arbitrary ��i and let qi(�i) � qi(�i; ��i), suppressing the dependence on ��i for simplicity,

and similarly throughout this proof. The incentive compatibility and the single-crossing

condition (assumption 2) guarantees that qi(�i) is nondecreasing (Theorem 7.2 of Fudenberg

and Tirole, 1991). For all qi 2 [qi(0); qi(1)], de�ne

�i(qi) =

�
inf f�i 2 [0; 1] : qi(�i) � qi g for qi � qi(1)
1 otherwise.

Observe that if qi(�) is strictly increasing then �i(�) is simply the inverse of qi(�), or to put it

di¤erently �i(qi) is the type of player i who would win qi units in the mechanism. Let player

i�s price schedule be

pi(qi) = v
1
i (qi; �i(qi)): (5)
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Note that neither �i(qi) nor pi(qi) depend on player i�s reported type, although they do

generally depend on ��i. Consider

max
qi

Z qi

0

�
v1i (z; �i)� v1i (z; �i(z))

�
dz:

For all z < qi(�i), the monotonicity of qi(�) guarantees that �i � �i(z). The single-crossing

condition (2) then implies the integrand is nonnegative. Likewise, for all z > qi(�i), the

integrand is nonpositive. Therefore,

qi(�i) 2 argmax
qi

Z qi

0

�
v1i (z; �i)� v1i (z; �i(z))

�
dz;

thereby establishing (3) for the price schedule in (5).

Now consider the PPD mechanism (q; t�) where

t�i (�̂i) =

Z qi(�̂i)

0

pi(z)dz:

By Proposition 4, (q; t�) is a DSIC direct mechanism. Applying the envelope theorem6 to

both (q; t) and (q; t�), we have

vi(qi(�i); �i)� ti(�i) = vi(qi(0); 0)� ti(0) +
Z �i

0

v2i ((qi(z); z)dz; (6)

vi(qi(�i); �i)� t�i (�i) = vi(qi(0); 0)� t�i (0) +
Z �i

0

v2i ((qi(z); z)dz: (7)

From (6) and (7), we have

ti(�i) = t
�
i (�i)� t�i (0) + ti(0) =

Z qi(�i)

0

pi(z)dz + Li;

where Li � �t�i (0)+ti(0) does not depend on �i. Thus, ti(�) satis�es (4) for the price schedule

in (5), so indeed, (q; t) is a PPD mechanism.

This proof makes familiar use of envelope theorem (Milgrom and Segal, 2002 and Milgrom

2004) once we show that the quantity rule we specify in our PPD mechanism is identical

to the quantity rule in the original DSIC mechanism. The PPD mechanism we construct

6We make use of the envelope theorem as given in Theorem 3.1 of Milgrom (2004). See Milgrom and
Segal (2002) for a more general treatment of the envelope theorem.
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in the proof to Proposition 5 shares some features with the mechanism in Ausubel and

Cramton (2004). However, they impose e¢ ciency and then show that their mechanism is

DSIC, whereas we show that all DSIC mechanisms must resemble the Vickrey auction.

4 A Public Good Problem

Consider a simple public good problem between two players of whether to build a public

good or not. We assume this is a pure public good, so that it is not a¤ordable to exclude

anyone from using the public good. For concreteness, we may think of two island residents

who consider having a bridge built. Because the amount of public good needs to be the same

for every player, there are two permissible quantity pro�les: (q1; q2) 2 Q = f(0; 0); (1; 1)g,

where (0; 0) means the public good will not be built and (1; 1) means that it will. Each player

has linear utility �iqi� ti. Player i�s private value �i is continuously distributed on [0; 1] with

distribution function Fi(�) and positive density fi(�). The public good costs c 2 (1; 2) so that

it takes both players to pay for the public good.

A mechanism is budget-balanced if t1+ t2 = c whenever (q1; q2) = (1; 1) and if t1+ t2 = 0

whenever (q1; q2) = (0; 0). A mechanism is feasible if t1 + t2 � c whenever (q1; q2) = (1; 1)

and if t1 + t2 � 0 whenever (q1; q2) = (0; 0). A mechanism is individually rational if each

player�s utility is nonnegative in the equilibrium for all �1 � �2 2 [0; 1]2. An allocatively

e¢ cient performance requires that for all �1 � �2 2 [0; 1]2: (q1; q2) = (1; 1) if and only if

�1+ �2 � c. It is well known that there is no individually rational mechanism in this setting

that is DSIC, allocatively e¢ cient, and budget-balanced (or even feasible). The mechanism of

Arrow (1979) and d�Aspremont and Gerard-Varet (1979a, b) forgo DSIC in order to achieve

allocative e¢ ciency and budget-balancedness.7 Alternatively, we forgo allocative e¢ ciency,

and instead search for the DSIC mechanism that maximizes ex ante surplus among all DSIC

mechanisms that are feasible. Appealing to Proposition 5, we may restrict attention to PPD

7See Krishna (2002) or Milgrom (2004) for more on the impossibility results for DSIC mechanisms and
the possibility results for the weaker Bayes-Nash implentation.

10



mechanisms. Constructing PPD mechanisms requires constructing the price schedule for

each player. In this public good problem, the small number of permissible quantity pro�les

and the feasibility constraint helps us pin down the price schedules, as we show next.

Suppose that player 2 reports �2 and player 1 reports �̂1, and denote player 1�s price

schedule by p1(q1; �2). In any PPD mechanism for this public good problem, the quantity

for player 1 is chosen to solve the following problem:

max
q12f0;1g

Z q1

0

h
�̂1 � p1(z; �2)

i
dz:

Maximization then entails comparing 0 (when q1 = 0) to �̂1 �
R 1
0
p1(z; �2)dz (when q1 = 1).

Without loss of generality, we may restrict to price schedules that are constants with respect

to quantities by letting:

p�1(�2) �
Z 1

0

p1(z; �2)dz and p�2(�1) �
Z 1

0

p2(z; �1)dz:

Thus, in the PPD mechanism q1 = 1 whenever �1 > p�1(�2) and q1 = 0 whenever �1 < p
�
1(�2),

and similarly for player 2. When �1 = p�1(�2), the PPD mechanism may specify either q1 = 0

or q1 = 1. Because the only permissible outcomes are (q1; q2) 2 f(0; 0); (1; 1)g, we obtain the

following restrictions for the price schedules:

�i > p�i (�j)) �j � p�j(�i) for i 6= j and all (�i; �j) 2 [0; 1]2 (8)

�i < p�i (�j)) �j � p�j(�i) for i 6= j and all (�i; �j) 2 [0; 1]2 : (9)

Lemma 6 All price schedules p�1(�2) and p
�
2(�1) that satisfy restrictions (8) and (9) are

nonincreasing.

Proof. We will show that p�1(�2) is nonincreasing. To get a contradiction, suppose it is

not. Then for some �2 < �
0
2, we have p

�
1(�2) < p

�
1(�

0
2). Pick any �1 such that p

�
1(�2) < �1 <

p�1(�
0
2). Restriction (9) requires that �

0
2 � p�2(�1):Thus, �2 < �

0
2 � p�2(�1), which along with

�1 > p
�
1(�2) violates restriction (8) for (�1; �2).
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We may safely restrict attention to price schedules for i = 1; 2 such that

p�1(1) < 1 for i = 1; 2: (10)

Otherwise, because the price schedules are nonincreasing, for almost all realizations of (�1; �2)

we would have (q1; q2) = (0; 0) and the public good would not be built. Thus, when (�1; �2) =

(1; 1) the project is built, and feasibility requires that:

p�1(1) + p
�
2(1) � c (11)

Consider the especially simple �xed-price mechanisms de�ned below.

De�nition 7 A �xed-price mechanism is a PPD mechanism such that for some �1 2 [0; 1]

and �2 2 [0; 1] such that �1+ �2 = c, the price schedules are

p̂1(�2) =

�
1 for �2 < �2
�1 for �2 � �2

p̂2(�1) =

�
1 for �1 < �1
�2 for �1 � �1:

(12)

The following proposition shows that we may further restrict attention to �xed-price mech-

anisms.

Proposition 8 Consider any feasible PPD mechanism with p�1(�) and p�2(�) satisfying restric-

tions (8)-(11). Then there exists a feasible �xed-price mechanism that yields each players at

least as much ex ante expected utility.

Proof. Inequality (11) implies that either p�1(1) � c=2 or p�2(1) � c=2 or both. Without

loss of generality, suppose that p�1(1) � c=2. Now consider the �xed-priced mechanism with

the price schedules in (12) using �1 = c�p�2(1) and �2 = p�2(1), and with the same lump-sum

payments as in the original PPD mechanism. It is straightforward to show that �i 2 [0; 1)

for i = 1 and 2.

We now show that p̂1(�2) � p�1(�2) for all �2 2 [0; 1]. For �2 � �2 we have

p̂1(�2) = �1 = c� p�2(1) � p�1(1) � p�1(�2);
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where the �rst inequality results from restriction (11) and the second inequality results from

Lemma 6. For �2 < �2 we have p̂1(�2) = 1: By restriction (9), �2 < �2 = p�2(1) implies

that 1 � p�1(�2), so again p̂1(�2) � p�1(�2): Similarly, it can be shown that p̂2(�1) � p�2(�1)

for all �1 2 [0; 1]. Since the price schedules in this �xed-price mechanism never exceed the

price schedules in the original PPD mechanism, the �xed-price mechanism yields at least

as much expected utility for each player. The feasibility of the original mechanism and the

construction of the �xed-price mechanism guarantees that the �xed-price mechanism is also

feasible.

By Proposition 8, we can narrow our search for an optimal DSIC mechanism (maximizing

the players�ex ante surplus) by searching within the class of �xed-price mechanisms, thus

giving the following proposition.

Proposition 9 Among all feasible DSIC mechanisms, the �xed-price mechanism with

(�1; �2) 2 argmax
�1;�2

Z 1

�1

Z 1

�2

[�1 + �2 � c] f2(�2)f1(�1)d�2d�1 such that �1+�2 = c (13)

and no lump sum payments is optimal.

Proof. By Proposition 5, we can search an optimal mechanism within PPD mechanisms,

and by Proposition 8, we can further restrict attention to �xed price mechanisms. Note that

(13) maximizes the sum of the players�ex ante surpluses over all �xed-price mechanisms.

Feasibility requires that the sum of the lump sum payments exceeds zero, and so having

nonzero lump sum payments cannot increase the sum of the player surpluses.

As an example, when each �i is uniformly distributed on [0; 1], i.e., f1(�) = f2(�) = 1, the

integral in (13) becomes

1

2
(1� �2)

�
1� �21

�
+
1

2
(1� �1)

�
1� �22

�
� c(1� �1)(1� �2)

=
1

2
(1� �1)(1� �2)(2� c) =

2� c
2
(1� �1)(1� c+ �1);

which is maximized when �1 = �2 = c=2. This result has a simple interpretation: the public

good is built if and only if each player values the good at least half of its cost, in which

13



case, the cost is equally shared. Evaluating (13) at �1 = �2 = c=2 yields ex ante surplus of�
1� 1

2
c
�3
.

In contrast, the mechanism of d�Aspremont and Gerard-Varet (1979a, b) and Arrow

(1979)� commonly referred to as the expected externality mechanism� Bayesian-Nash im-

plements the allocatively e¢ cient outcome, but their mechanism is not DSIC.8 The fully

e¢ cient surplusZ 1

c�1

Z 1

c��1
[�1 + �2 � c] d�2d�1 =

4

3

�
1� 1

2
c

�3
:

Thus in this example, the optimal DSIC mechanism captures 75% of the total surplus avail-

able. In other words, 25% of the total surplus is the cost of adopting the best DSIC mecha-

nism instead of the best Bayesian incentive compatible mechanism.

5 A Bargaining Problem

Consider Myerson and Satterthwaite�s (1983) bargaining problem between a buyer (player

1) and a seller (player 2). Each player has linear utility �iqi � ti. Each �i is continuously

distributed on [0; 1] with distribution function Fi(�) and positive density function fi(�). When

a trade occurs, the buyer obtains the object and the seller forfeits the object. Thus, there are

only two permissible quantity pro�les: (q1; q2) 2 Q = f(0; 0); (1;�1)g, where (0; 0) means no

trade and (1;�1) means trade.

A mechanism is budget-balanced if t1+t2 = 0 in all outcomes, and feasible if t1+t2 � 0 for

all outcomes. A mechanism is individually rational if each player�s utility is nonnegative in

the equilibrium for all �1��2 2 [0; 1]2. An allocatively e¢ cient performance requires that for

all �1��2 2 [0; 1]2, (q1; q2) = (1;�1) if and only if �1 � �2. Myerson and Satterthwaite (1983)

show that there is no individually rational mechanism in this setting that is DSIC, allocatively

e¢ cient, and budget-balanced. Instead, they �nd the surplus-maximizing mechanism among

all budget-balanced mechanisms that can be Bayesian-Nash implemented. Alternatively, we

8See Fudenberg and Tirole (1992), pages 273-275, for details.
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forgo allocative e¢ ciency, and instead search for the DSIC mechanism that maximizes ex ante

surplus among all DSIC mechanisms that are feasible. By Proposition 5, we may restrict

attention to PPD mechanisms. Constructing PPD mechanisms requires constructing the

price schedules for the buyer and the seller. In this bargaining problem, the small number

of permissible quantity pro�les and the feasibility constraint helps us pin down the price

schedules, as we shown next.

Similar to the public good problem considered in the previous section, we may safely

restrict ourselves to price schedules for the buyer that are constant with respect to quantities

by letting:

p�1(�2) �
Z 1

0

p1(z; �2)dz:

Now consider the seller�s price schedule. Suppose that the buyer reports �1 and the seller

reports �̂2, and denote the seller�s price schedule by p2(q2; �1). In any PPD mechanism for

this bargaining problem, the quantity for the seller is chosen to solve the following problem:

max
q22f0;�1g

Z q2

0

h
�̂2 � p2(z; �1)

i
dz:

Maximization then entails comparing 0 (when q2 = 0) to
R 0
�1 p2(z; �1)dz� �̂2 (when q2 = �1).

Without loss of generality, we may restrict the seller�s price schedules to be constant with

respect to quantity by letting:

p�2(�1) �
Z 0

�1
p2(z; �1)dz

with the interpretation that p�2(�1) is the payment the seller will receive if there is a trade,

given the buyer�s reported value of �1. In the PPD mechanism:

q1 =

�
1 if �1 > p�1(�2)
0 if �1 < p�1(�2)

and q2 =

�
�1 if �2 < p�2(�1)
0 if �2 > p�2(�1):

When �1 = p�1(�2), the PPD mechanism may specify either q1 = 0 or q1 = 1 and when

�2 = p�2(�1) the PPD mechanism may specify either q2 = 0 or q2 = �1. Because the only

15



permissible outcomes here are (q1; q2) 2 f(0; 0); (1;�1)g, the price schedules must satisfy the

following restrictions:

�i > p�i (�j)) �j � p�j(�i) for i 6= j and all (�i; �j) 2 [0; 1]2 (14)

�i < p�i (�j)) �j � p�j(�i) for i 6= j and all (�i; �j) 2 [0; 1]2 : (15)

Lemma 10 If p�1(�2) and p
�
2(�1) satisfy restrictions (14) and (15), then p

�
1(�2) and p

�
2(�1)

are nondecreasing.

Proof. The proof is similar to that of Lemma 6.

We may safely restrict attention to price schedules such that

p�1(0) < 1 and p
�
2(1) > 0: (16)

Otherwise, if either of these conditions did not hold, for almost all realizations of (�1; �2) we

would have (q1; q2) = (0; 0) and trade would not occur. Thus, when (�1; �2) = (1; 0) trade

occurs, and feasibility requires that:

p�1(0) � p�2(1) (17)

Consider the PPD mechanism where, whenever trade occurs, the buyer pays a �xed-price

and the seller receives a �xed-price. Speci�cally, consider the �xed-price mechanism de�ned

below.

De�nition 11 A �xed-price mechanism is a PPD mechanism such that for some � 2 [0; 1] ;

the price schedules are

p̂1(�2) =

�
� for �2 � �
1 for �2 > �

p̂2(�1) =

�
0 for �1 � �
� for �1 > �:

(18)

The following proposition shows that we may further restrict attention to �xed-price mech-

anisms.
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Proposition 12 Consider any feasible PPD mechanism with p�1(�) and p�2(�) satisfying re-

strictions (14)-(17). There exists a feasible �xed-price mechanism that yields the players at

least as much ex ante expected utility.

Proof. Consider the �xed-price mechanism with price schedules in (18) using � = p�1(0),

and with the same lump-sum payments as in the original PPD mechanism. By (16) and (17)

we have 0 < � < 1.

We now show that p̂1(�2) � p�1(�2) for all �2 2 [0; 1]. For �2 � � we have p̂1(�2) =

� = p�1(0) � p�1(�2), where the inequality results from Lemma 10. For �2 > � we have

p̂1(�2) = 1. Using (17), we obtain �2 > � = p�1(0) � p�2(1). Restriction (14) then implies that

1 � p�1(�2), so again p̂1(�2) � p�1(�2). Similarly, it can be shown that p̂2(�1) � p�2(�1) for

all �1 2 [0; 1]. Since the buyer�s price schedule in this �xed-price mechanism never exceeds

the price schedule in the original PPD mechanism, and since the seller�s price schedule

in this �xed-price mechanism always weakly exceeds the price schedule in the original PPD

mechanism, the �xed-price mechanism yields at least as much expected utility for the players.

The feasibility of the original mechanism and the construction of the �xed-price mechanism

guarantees that the �xed-price mechanism is also feasible.

By Proposition 12, we can search for an optimal mechanism (maximizing the players

ex ante surplus) by searching within the class of �xed-price mechanisms, thus giving the

following proposition.

Proposition 13 Among all feasible DSIC mechanisms, the �xed-price mechanism with

� 2 argmax
�

Z 1

�

Z �

0

[�1 � �2] f2(�2)f1(�1)d�2d�1 (19)

and no lump sum payments is optimal.

Proof. By Proposition 5, we can search for an optimal mechanism within the class of

PPD mechanisms, and by Proposition 12, we can further restrict attention to �xed price

mechanisms. Note that (19) maximizes the sum of the players�ex ante surpluses over all

17



�xed-price mechanism. Feasibility requires that the sum of the lump sum payments exceeds

zero, and so having nonzero lump sum payments cannot increase the sum of the player

surpluses.

When �i is uniformly distributed on [0; 1], the integral in (19) becomesZ 1

�

Z �

0

[�1 � �2] d�2d�1 =
1

2
�(1� �);

which is maximized when � = 1=2. This result also has a simple interpretation: trade occurs

if and only if the buyer�s value excesses 1/2 and the seller�s value is less than 1/2. Evaluating

(19) at � = 1=2 yields ex ante surplus of 1
8
.

In contrast, Myerson and Satterthwaite (1983) derive the optimal Bayesian mechanism

and show that trade occurs if and only if �1 � �2 � 1=4, thus giving ex ante surplusZ 1

1=4

Z �1� 1
4

0

(�1 � �2) d�2d�1 =
9

64
:

In this bargaining problem, the optimal DSIC mechanism captures 8/9 of the total surplus.

In other words, about 11% of the total surplus would the �cost� of adopting any DSIC

mechanism.

Our PPD characterization of DSIC mechanisms complements Hagerty and Rogerson

(1987) who use a completely di¤erent approach to show that �xed-price mechanisms are

the only DSIC, budget-balanced, individually rational mechanism for bilateral bargaining.

6 Conclusion

In this paper, we characterize all DSIC mechanisms as PPD mechanisms. Many DSIC

mechanisms in the literature can be formulated immediately as PPD mechanisms. For

example, consider various games among players with single-unit demand and linear utility

�iqi� ti. The Vickrey (1961)� i.e., second price� auction is a PPD mechanism where player

i�s price schedule is

pi(qi; ��i) = max
j 6=i

�j for 0 � qi � 1;
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i.e., the highest report of player i�s opponents. When each distribution Fi(�) of �i is regular,

meaning that the marginal revenueMRi(�i) = �i�[1� Fi(�i)] =fi(�i) is increasing, Myerson�s

(1981) optimal auction is implemented by Bulow and Roberts� (1989) �second marginal

revenue�auction, where player i�s price schedule is

pi(qi; ��i) = max
j 6=i

�
MR�1i (0);MR

�1
i (MRj(�j)

	
for 0 � qi � 1:

Consider McAfee�s (1992) dominant strategy double auction among m buyers who each

demands one unit and n sellers who each can supply one unit. Each player has linear utility

with type bounded between [0; 1]. Players report their types, the buyers�reports are sorted

such that b1 � b2 � � � � � bm, sellers�reports are sorted such that s1 � s2 � � � � � sn. To

ensure the mechanism is well de�ned, McAfee arti�cially appends bm+1 = 0 and sn+1 = 1.

Let k be the the number of e¢ cient trades, i.e., the smallest k such that bk+1 < sk+1. De�ne

p = 1
2
(bk+1 + sk+1). If p 2 [sk; bk] then the �rst k buyers purchase from the �rst k sellers at

price p. Otherwise, the mediator buys a unit from each of the �rst k � 1 sellers at price sk

and sells a unit to each of the �rst the �rst k� 1 buyers at price bk, pocketing the di¤erence

for herself. McAfee shows that this double auction is a DSIC mechanism.

Alternatively, we can reformulate McAfee�s auction as a PPD mechanism with the price

schedules determined as follows. Consider any arbitrary buyer and rename her buyer 0. Sort

and rename the other m � 1 buyers such that b2 � b3 � � � � � bm. Arti�cially set b1 = 1.

Again, let k be the smallest number such that bk+1 < sk+1 and de�ne p = 1
2
(bk+1 + sk+1).

Then buyer 0�s price schedule (de�ned over q0 2 [0; 1]) is

p0(q0; ��0) =

�
bk if p =2 [sk; bk]
p otherwise.

A similar construction provides the seller�s price schedule. Our construction is similar to that

in McAfee�s proof; however, our price schedule makes more explicit that the price schedule

a buyer or seller faces in no way depends on her own report.

In the more general, multiple-unit Vickrey auction (see Vickrey, 1961, pp 66-71) among

players with quasilinear utility functions, to �nd the height of buyer i�s price schedule, one
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needs to �nd the aggregate demand of the other buyers and the aggregate supply of the

other sellers built from their reports, and then �nd the equilibrium price in the market that

excludes player i. The height of buyer i�s price schedule at quantity qi is the price at which

a residual supply of qi becomes available. Ausubel (2004) illustrates the price schedule that

a buyer faces in a Vickrey auction, showing a �gure remarkably like Figure 1 in this paper.

Likewise, the inverse of the residual demand is the seller�s price schedule.

In the third price auction, the highest bidder wins the object and pays the third highest

bid. At �rst blush, one might think a third price auction is a PPD mechanism, since a

player�s own report does not a¤ect the price schedule she faces (the second highest bid of

her opponents). However, the third price auction is not a PPD mechanism since the player

who has the second highest bid receives zero units even though her report exceeds the price

schedule she faces, violating condition (3) in the de�nition of PPD mechanisms.9
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