DOMINANCE CRITERIA FOR CRITICAL-LEVEL GENERALIZED UTILITARIANISM

by
Alain Trannoy and John A. Weymark

Working Paper No. 07-W07

May 2007

DEPARTMENT OF ECONOMICS
VANDERBILT UNIVERSITY
NASHVILLE, TN 37235

www.vanderbilt.edu/econ



Dominance Criteria for Critical-Level
Generalized Utilitarianism*
by

Alain Trannoy

EHESS and GREQAM-IDEP,
Centre de la Vieille Charité, 2 rue de la Charité,
13002 Marseille, FRANCE

(e-mail: alain.trannoy@ehess.univ-mrs.fr)
and

John A. Weymark

Department of Economics, Vanderbilt University,
VU Station B #35189, 2501 Vanderbilt Place,
Nashville, TN 87235-1819, U.S.A.

(e-mail: john.weymark@vanderbilt.edu)

May 2007

*The second author gratefully acknowledges the financial support of the
Ecole des Hautes Etudes en Sciences Sociales.



Abstract

“Dominance Criteria for Critical-Level Generalized Utilitarianism”
by
Alain Trannoy and John A. Weymark

Social welfare dominance criteria based on critical-level generalized utili-
tarian social welfare functions are investigated. An analogue of a generalized
Lorenz curve called a generalized concentration curve is introduced. For a
fixed critical utility level ¢, a partial order of utility distributions based on
these curves is defined and shown to coincide with the partial order obtained
by declaring one utility distribution to be weakly preferred to a second if and
only if the former is weakly preferred to the latter for all inequality averse
critical-level ¢ generalized utilitarian social welfare functions. An extension
of this result that allows for a range of critical levels is also established.

Journal of Economic Literature classification numbers: D31, D63, D13.

Keywords and phrases: critical-level utilitarianism, generalized Lorenz dom-
inance, social welfare dominance.



1. Introduction

While Dalton (1920) was the first to ground the measurement of income in-
equality on social welfare considerations, it was not until the pioneering ar-
ticles of Kolm (1969), Atkinson (1970), Dasgupta, Sen, and Starrett (1973),
and Rothschild and Stiglitz (1973) in the late 1960s and early 1970s that
a systematic attempt was made to provide normative foundations for the
measurement of inequality.! Much of the subsequent literature employs the
framework and concepts introduced by Atkinson and Kolm. However, their
theoretical analyses are restricted to comparisons of distributions for the
same number of individuals. As Dasgupta, Sen, and Starrett (1973, p. 184)
have observed, in order to make inequality comparisons across countries or
time, it is necessary to consider populations of different size. A natural way
to extend fixed population results to the variable population case is provided
by the Dalton (1920) Principle of Population. This principle regards an in-
come distribution and any replication of it as exhibiting the same degree of
inequality. The dominance criteria based on Lorenz and generalized Lorenz
curves satisfy this population replication principle. Following Dasgupta, Sen,
and Starrett (1973), it is now standard practice to make comparisons involv-
ing different sized populations on the basis of Dalton’s principle. However, by
employing this principle, one is implicitly assuming that inequality and social
welfare should be thought of in per capita terms and, hence, that population
size is not a concern.

About the same time that the foundations of the modern theory of in-
equality measurement were being laid, there was a resurgence of interest in
population ethics. See, for example, Dasgupta (1969). Particularly influen-
tial contributions to this literature were provided by Blackorby and Donald-
son (1984) and Parfit (1984).> One of their central concerns is the question
of determining under what circumstances should the addition of a person to
a given population be regarded as being welfare improving. To answer this
question, Blackorby and Donaldson (1984) proposed using a generalization
of classical utilitarianism called critical-level generalized utilitarianism as a
social objective.

To date, the ethical debates about the best way to evaluate distribu-

1See Sen (1973) for an illuminating discussion of these articles.
2See Broome (2004) and Blackorby, Bossert, and Donaldson (2005) for recent mono-
graphs on population ethics.



tions of utilities for different population sizes has not had any impact on
normatively-based inequality measurement. In this article, we make an ini-
tial attempt at integrating the literatures on population ethics and inequality
measurement by investigating the implications for social welfare dominance
criteria of making comparisons of distributions of utilities (or any other scalar
attribute of well-being, such as income or wealth) using critical-level gen-
eralized utilitarian social welfare functions.®> Dominance criteria based on
critical-level generalized utilitarianism provide an alternative to the general-
ized Lorenz dominance criterion of Tomi¢ (1949), Kolm (1969), Rothschild
and Stiglitz (1973), Shorrocks (1983), and Kakwani (1984). Our new domi-
nance criteria are of interest in so far as one would like a measure of social
welfare for the population as a whole, rather than some measure of welfare
per capita, as is implicitly the case with generalized Lorenz dominance.

The generalized Lorenz dominance criterion provides a partial ordering
of alternative income distributions for homogeneous populations.* According
to this criterion, one income distribution weakly dominates a second if the
generalized Lorenz curve for the former lies nowhere below the generalized
Lorenz curve for the latter. With a population of size n, for each fraction k/n
of the population, k£ = 0,...,n, a generalized Lorenz curve plots one nth of
the total income of the poorest k people against k/n, with linear interpolation
used so that the curve is defined for all points p € [0,1]. This curve is
simply the Lorenz curve scaled up by the mean income. This dominance
criterion can be applied both when the size of the population is the same
in both distributions and when it is not. Replicating a population and its
distribution of incomes has no effect on the shape of a generalized Lorenz
curve and, hence, as we have already noted, the generalized Lorenz criterion
satisfies Dalton’s Principle of Population.

In homogenous populations, everyone receives the same utility from a
given amount of income. When this is the case, Kakwani (1984) and Shorrocks
(1983) have shown that the average utility for one income distribution is no
less than the average utility for a second income distribution for all continu-
ous, increasing, concave utility functions if and only the former distribution
generalized Lorenz dominates the latter. We shall henceforth refer to this
result as the Kakwani-Shorrocks Theorem. More generally, assuming that

3 A social welfare function is a real-valued function defined on distributions of utilities.
4For a good introduction to generalized Lorenz dominance, see Lambert (2001, Chap-
ter 3).



the social welfare function is invariant to a replication of the distribution of
utilities (and, hence, invariant to a replication of the income distribution),
a straightforward extension of an argument developed for Lorenz domina-
tion by Dasgupta, Sen, and Starrett (1973) shows that it is sufficient for the
equivalence between welfare dominance and generalized Lorenz dominance
to hold that the social welfare function is increasing, symmetric, and qua-
siconcave for each population size. It is not necessary for the social welfare
function to aggregate utilities by taking their average. Note that the repli-
cation invariance property of the social welfare function implies that overall
social welfare is being measured in per capita terms.

The generalized Lorenz dominance criterion can also be applied to distri-
butions of utility. In this case, the Kakwani—Shorrocks Theorem shows that
one distribution of utilities is weakly preferred to a second distribution by
all inequality averse average generalized utilitarian socal welfare functions
if and only if the former utility distribution generalized Lorenz dominates
the latter. In its inequality averse formulation, average generalized utilitar-
ianism applies a common continuous, increasing, concave transform to each
person’s utility before averaging across individuals to form the social objec-
tive function (see Blackorby, Bossert, and Donaldson, 2005, p. 171). Average
utilitarianism is simply the special case in which this function is defined using
the identity transform.

As Blackorby, Bossert, and Donaldson (2005, p. 143) have noted, average
utilitarianism “makes some stark trade-offs: an alternative with a population
of any size in which each person is equally well off is ranked as worse than
an alternative in which a single person experiences a trivially higher utility
level.” The same observation can also be made about any social welfare
function that is defined in per capita terms, such as average generalized
utilitarianism. As another example of these questionable trade-offs, consider
a poor country that experiences a marginal decrease in utility per capita
holding the distribution of utilities unchanged as measured by the Lorenz
criterion. According to the generalized Lorenz criterion, there has been a
loss in social welfare, and this is true even if the population has increased
substantially.

Classical utilitarianism does not fare much better, as it suffers from what
Parfit (1984) has called the repugnant conclusion. A social welfare ranking of
utility distributions is subject to the repugnant conclusion if any distribution
in which everyone’s utility is positive, no matter how large, is socially worse
than some other distribution for a larger population in which everyone’s util-
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ity is arbitrarily close to zero.® Average utilitarianism avoids the repugnant
conclusion because the addition of an individual to the population is welfare
improving only if his or her utility exceeds the intial average utility level.
Critical-level generalized utilitarianism was introduced by Blackorby and
Donaldson (1984) in order to overcome these problems with average and clas-
sical utilitarianism. What distinguishes a critical-level population principle
is the existence of a utility level ¢ such that adding a person with this utility
to any utility distribution is a matter of social indifference. The objective
function for a critical-level generalized utilitarian social welfare function is
obtained from the objective function for a generalized utilitarian social wel-
fare function by subjecting the critical level to the same transform that is ap-
plied to utilities and subtracting this amount from each person’s transformed
utility before summing across individuals. By choosing the critical level to
be positive, the repugnant conclusion is avoided. In our example of a poor
country with declining per capita utility, a critical-level generalized utilitar-
ian may regard this change as being a social improvement if the proportion
of the added population with utilities above the critical level is sufficiently
large. For a detailed discussion of critical-level generalized utilitarianism and
related population principles, see Blackorby, Bossert, and Donaldson (2005).
As noted above, we are interested in developing social welfare dominance
criteria for comparing distributions of utilities using inequality averse critical-
level generalized utilitarian social welfare functions. These welfare dominance
criteria can be given different interpretations. In one interpretation, there is a
social planner whose preferences (as expressed by the social welfare function)
agrees with the ethical norms underlying critical-level generalized utilitarian-
ism when this principle exhibits inequality aversion. As in traditional welfare
dominance analysis, this planner wants to propose a social welfare ranking
that has widespread support, and so he identifies the partial order that is
obtained by taking the intersection of all of the inequality-averse critical-level
generalized utilitarian orderings of the utility distributions for a given critical
level. Alternatively, we can suppose that every individual agrees that utility
distributions should be ranked by a critical-level generalized utilitarian social
welfare function, but they disagree about which transform should be applied
to the individual utilities before aggregating. By taking the intersection of

°In most formal models of population ethics (e.g., Blackorby, Bossert, and Donaldson,
2005) zero utility represents a neutral life, with negative utilities corresponding to lives
that are considered to be not worth living.



all such rankings for a given critical level, we obtain the same dominance
relation as in the social planner interpretation of the problem.

Our main objective is to establish an analogue of the Kakwani—Shorrocks
Theorem for critical-level generalized utilitarianism. To do this, we intro-
duce a new graphical representation of a distribution called a generalized
concentration curve. For distributions of utilities, this curve plots the sum
of the utilities of the t individuals with the smallest utilities against t. For a
given critical level ¢, we define a dominance criterion based on these gener-
alized concentration curves and show that this dominance criterion identifies
the same partial order of utility distributions as does the critical-level gen-
eralized utilitarian dominance criterion described above. We also extend our
results to allow for the possibility that the critical level lies within some range,
rather than is known for certain. This extension is based on a generalization
of critical-level generalized utilitarianism introduced by Blackorby, Bossert,
and Donaldson (1996) called critical-band generalized utilitarianism.

In Section 2, we consider welfare dominance based on average generalized
utilitarianism and formally state the Kakwani-Shorrocks Theorem. In Sec-
tion 3, we present our welfare dominance results for critical-level generalized
utilitarianism when the critical level is known. We extend these results in
Section 4 to the case in which the critical level is only known to lie in some
interval. In Section 5, we offer some concluding remarks.

2. Welfare Dominance for Average Generalized Utilitarianism

A utility distribution for a population of size n € Nis a vector u = (uy, ..., u,)
€ R", where u; is the ¢th person’s utility, = = 1,...,n, and N is the set of
positive integers.® The set of possible utility distributions is U = U,e R™.
While we are interpreting the variable whose distribution is of interest to be
utility, it can also be interpreted as being any other scalar attribute of well-
being, such as income or wealth, provided that the critical level is defined in
terms of this attribute, not utility.” For all u € U, n(u) denotes the size of

6We shall also have occasion to consider the set of nonnegative integers, N*.

"In some of these alternative interpretations of the model, it may be natural to require
all distributions to be nonnegative. The formal results presented here also hold with this
restriction. Such a restriction is appropriate when the attribute being considered is wage
income, but not when it is income from self employment or wealth. For example, in their
study of Israeli kibbutzim, Amiel, Cowell, and Polovin (1996) found that the incomes and
wealth of some kibbutzim were negative for some years in their sample.



the population in u and u; denotes the vector in which the components of u
have been rearranged in a nondecreasing order. A social welfare function is
a mapping W: U — R.

2.1. Generalized Lorenz Dominance

The generalized Lorenz curve for a utility distribution u € U is a function
GLy: [0,1] — R defined as follows. For each p € [0, 1], let k, be the smallest

integer k, € {0,...,n(u) — 1} such that —22- < p < (2D and let Ay €10, 1]

n(u) n(u)
be the unique number for which p = (1 — )\p)% + M\, %2E) - Then, for all

P n(u)
p€0,1],
GL()—L iu-—%)\[u — U, | (2.1)
" ) [T e T |

where uyg = 0.

The generalized Lorenz curve is well-defined and convex for all u € U.
In contrast, the Lorenz curve for u is not defined if the mean utility is zero
and it is concave if the mean is negative. If some utilities are negative, then
initially a generalized Lorenz curve has a negative slope. For a perfectly
equal distribution, the slope is constant and equal to the mean.® Note that
when p = niu) for some k € {1,...,n(u)} (in which case k, = k — 1), the
formula in (2.1) simplifies to

GLa(p) = ﬁ > (2.2)

The generalized Lorenz dominance criterion is the partial order =% on
U for which one utility distribution weakly dominates a second utility distri-
bution if the generalized Lorenz curve for the first distribution lies nowhere
below that of the second.”

Generalized Lorenz Dominance. For all u,u’ € U,

u =" u' & GLu(p) > GLy(p) for all p € [0, 1]. (2.3)

8See Amiel, Cowell, and Polovin (1996) and Jenkins and Jéntii (2005) for further
discussion of the properties of a Lorenz curve when u has one or more negative components.

9For any binary relation - on U, the corresponding asymmetric and symmetric factors
are denoted by > and ~, respectively.



If u,u’ € R", then (2.3) simplifies to:

k k
uzlu e >y, > Zu’“ for all k € {1,...,n}. (2.4)

=1 =1

2.2. Average Generalized Utilitarian Dominance

An average generalized utilitarian social welfare function is characterized by a
utility transform g: R — R. The transform ¢ that is applied to the individual
utilities permits the social value of utility to diverge from its individual value.
We assume that g € C, the set of increasing concave functions for which
g(0) = 0.19 The social welfare function for average generalized utilitarianism
with utility transform ¢ is given by

n(u)
WA () = n(lu) > gln), el (2.5)

By requiring g to be concave, the social welfare function is weakly inequality
averse. If g is the identity mapping, then I/VgA is the social welfare function
for average utilitarianism.

Consider any pair of distributions u,u’ € Y. The change in social welfare
AW;\ that results from a change in the distribution from u’ to u is

AWM u, ') = Wi (u) — W (u). (2.6)

The average generalized utilitarian dominance partial order =* on U is
defined by taking the intersection of the orderings of the utility distributions
in U for all average generalized utilitarian social welfare functions. That is,
it identifies the ordered pairs of utility distributions for which the change
in social welfare AWgA is nonnegative no matter how inequality averse the
social welfare function is as measured by the utility transform g.

Average Generalized Utilitarian Dominance. For all u,u’ € U,

urztu & AWgA(u, u') >0 for all g € C. (2.7)

10As we shall see, the assumption that g(0) = 0 is a harmless normalization. If utilities
are restricted to be nonnegative and, thus, g is only defined on R, in order to ensure that
g is continuous, it is also necessary to assume that g is continuous at the origin.



2.8. The Kakwani—Shorrocks Theorem

The Kakwani (1984)-Shorrocks (1983) Theorem shows that one distribution
of utilities generalized Lorenz dominates a second if and only if the former
average generalized utilitarian dominates the latter.!!

Proposition 1. For allu,u’ ¢, u =% v’ < u z* v'.

Proposition 1 is a variable population extension of the fixed population
version of this theorem due to Tomi¢ (1949).12 Tt is instructive to see how
it is possible to use Tomié¢’s Theorem to establish Proposition 1. Consider
any u € R” and v/ € R". Let @ be the utility distribution obtained by
replicating u n’ times. Similarly, @’ is obtained by replicating u’ n times.
By construction, u ~“Y @t and u’ ~“Y @’. Therefore, u =% v’ < a Z¢
o', For any g € C, Wi(u) = WA(4) and W2 (u') = WH(@'). Hence,
uz?u < i A . Because it and @ are both in R, Tomié’s Theorem
implies that @ =" & < @ =* @'. Proposition 1 then follows from these
equivalences. Thus, as in Dasgupta, Sen, and Starrett (1973) and Shorrocks
(1983), replications of two utility distributions are used in order to reduce
any variable population comparison to one in which the population size is
fixed.

3. Welfare Dominance for Critical-Level Generalized Utilitarian-
ism

3.1. Critical-Level Generalized Utilitarian Dominance
A critical-level generalized utilitarian social welfare function is characterized

by a critical level ¢ € R and a utility transform g € C. For any utility
distribution u € U, adding an individual to the population with utility level

See Kakwani (1984, Theorem 1). This theorem is not stated explictly in Shorrocks
(1983), but it follows from the Corollary to his Theorem 2 and his remarks in footnote 7
and on page 8. Neither Kakwani nor Shorrocks assume that g(0) = 0. However, if g does
not satisfy this property, it can be made to do so by replacing g(¢) with g(t) = g(¢) — g(0)
for all ¢t € R without affecting the sum in (2.5).

12See Marshall and Olkin (1979, Theorem 4.B.2). Versions of Tomié¢’s Theorem have
also been established by Kolm (1969) and Rothschild and Stiglitz (1973). Kakwani and
Shorrocks appear to be the first to have applied the generalized Lorenz dominance criterion
to populations of different size.



¢ 1s a matter of social indifference. The social welfare function for critical-
level generalized utilitarianism with critical level ¢ and utility transform g is
given by

n(u)
Weg(w) = > [g(w) — g(c)], Yaeu? (3.1)

i=1
If g is the identity mapping, then W, , is the social welfare function for
critical-level utilitarianism with critical level c¢. If, furthermore, ¢ = 0, we
then have classical (total) utilitarianism. Analogous to (2.6), for all u,u’ €

U, let

AW, ,(u,u’) = W, (u) — W ,(u'). (3.2)

The critical-level ¢ generalized utilitarian dominance partial order =—S*
on U is defined by taking the intersection of the orderings of the utility
distributions in U for all critical-level generalized utilitarian social welfare
functions when the critical level is fixed at ¢. Analogous to the construction
of the average generalized utilitarian dominance relation, it identifies the
ordered pairs of utility distributions for which the change in social welfare
AW, 4 is nonnegative regardless of the degree of inequality aversion exhibited
by the social welfare function, i.e., regardless of the degree of concavity of
the transform g.

Critical-Level ¢ Generalized Utilitarian Dominance. For all ¢ € R,
for all u,u’ e Y,

uztu e AW, (u,u’) >0 for all g € C. (3.3)

For comparisons of two utility distributions with the same sized popula-
tion, average generalized utilitarian and critical-level ¢ generalized utilitar-
ian dominance are equivalent criteria because the terms involving the critical
level cancel in the welfare difference in (3.2) and the sign of the welfare differ-
ence in (2.6) is unaffected if average utility is replaced by the sum of utilities.
However, this equivalence no longer holds if the two distributions are for
populations of different size.

13For an axiomatization of this population principle, see Blackorby, Bossert, and Don-
aldson (1998, Theorem 2).



3.2. Critical-Level Generalized Concentration Curve Dominance

Generalized Lorenz dominance employs replications of distributions in order
to reduce a variable population comparison to a fixed population equivalent.
However, replicating a utility distribution is not a matter of social indiffer-
ence for any critical-level generalized utilitarian rule. Nevertheless, adding
individuals with utility equal to the critical level is. This observation pro-
vides a basis for identifying a new dominance criterion that can be used to
establish an analogue to Proposition 1 for critical-level ¢ generalized utili-
tarian dominance. Furthermore, this criterion coincides with the generalized
Lorenz dominance partial ordering for fixed population comparisons.

For any utility distribution, a generalized concentration curve plots the
sum of the utilities of the ¢ individuals with the smallest utilities against ¢,
with linear interpolation used so that the curve is defined for non-integer
values of ¢t. Formally, the generalized concentration curve for u € U is the
function GCy: [0,n(u)] — R defined as follows. For each ¢ € [0, n(u)], let k;
be the smallest integer k; € {0,...,n(u) — 1} such that &, <t < k+ 1 and
let \; € [0,1] be the unique number for which ¢t = (1 — \)k; + A\ (ke + 1).
Then, for all t € [0, n(u)],

k¢

GCu(t) = D wpi + Aefugr+1 — ). (34)

1=0

The generalized concentration curve is well-defined and convex for all
u € U. If some utilities are negative, then initially this curve has a negative
slope. For a perfectly equal distribution, the slope is constant and equal
to the common utility value. When ¢ € {1,...,n(u)}, the formula in (3.4)
simplifies to

The construction of a generalized concentration curve is illustrated in
Figure 1. The solid lines in this diagram show the generalized concentration
curves for the distributions u! = (5, 5,10,15,25) and u® = (—20, 0, 20, 40).

Had we plotted the fraction of the total utility for the population as a
whole that is obtained by the ¢ individuals with the smallest utilities against
t, the resulting curve would be formally equivalent to what is known in the
literature on the measurement of industrial concentration as a concentration

10
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Figure 1: Generalized Concentation Curves

curve. See, for example, Blackorby, Donaldson, and Weymark (1982).1* In
this application, firms correspond to individuals and output or sales corre-
spond to incomes. Thus, a generalized concentration curve is obtained from
a concentration curve by multiplying by the mean of the variable being con-
sidered, just as a generalized Lorenz curve is obtained from a Lorenz curve
by multiplying by the mean, at least when the mean is not zero.

For utility distributions u,u’ € R", the generalized concentration curve
for u lies nowhere below that of u’ if and only if the generalized Lorenz
curve for u lies nowhere below that of u’. However, when the number of
individuals differ in two utility distributions, whether their generalized con-
centration curves cross or not is of no significance because they have different
domains of definition. We are interested in defining a dominance criterion
for generalized concentration curves that can be applied to both fixed and
variable population comparisons when the critical level of utility is a given
fixed value ¢. This is accomplished by regarding generalized concentration
curves for two utility distributions with different population sizes as being

14Gtrictly speaking, the concentration curves used to measure industrial concentration
plot the sum of the ¢ largest utilities against ¢ and, hence, are concave functions.
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in the same equivalence class of the dominance relation if the only difference
in the two distributions is that one of them has additional individuals with
the critical utility level.'® In order to compare two generalized concentration
curves for different populations, we augment the utility distribution for the
smaller population with a sufficient number of individuals with the critical
level of utility until the population sizes in the two distributions are the same.

For any ¢ € R, the critical-level ¢ generalized concentration curve domi-
nance criterion is the partial order =€ on U defined as follows. One utility
distribution weakly dominates a second utility distribution according to this
criterion if after augmenting the distribution for the smaller population (if
necessary) as described above, the generalized concentration curve for the
first (possibly augmented) distribution lies nowhere below that of the (pos-
sibly augmented) second distribution. To define this dominance criterion
formally, we need to introduce some further definitions.

For all u € U, ¢ € R, and n € N*, the augmented utility distribution
u.; is defined by setting u., = (u,cl;), where 1; is the vector of ones in
R™. Note that u = u.5 when 7 = 0. For all u,u’ € U, let n(u,u’) = 0 if
n(u) > n(u') and n(u,u’) = n(u’) — n(u) otherwise.

Critical-Level ¢ Generalized Concentration Curve Dominance. For
all c € R, for all u,u’ € Y,

urzu o GCu, i (t) = GOy . )(t) for all ¢ € [0, max{n(u),n(u’)}].
o (3.6)

This definition can be illustrated using the utility distributions in Figure
1. To compare u! and u?, it is necessary to augment u? by adding a single
individual with the critical utility level c¢. For concreteness, let ¢ = 10. The
resulting distribution is u® = uf,; = (—20,0,20,40,10). The corresponding
concentration curve coincides with that of u? for ¢t < 2 and then shifts to the
right for higher values of ¢, as indicated by the dashed line in the diagram.
We thus have u! =§¢ u? even though the generalized concentration curves
for u' and u? intersect. Note, however, that if the critical level exceeds 20,
then u! and u? are not comparable using this dominance criterion.

15Tn their analysis of the measurement of industrial concentration, Blackorby, Donald-
son, and Weymark (1982) introduced the corresponding property for concentration curves
for the special case in which ¢ = 0. They called their property “zero output independence.”
They did not consider other values of c.

12



3.3. An Equivalence Theorem

We now show that for any value of the critical level ¢, the partial order of the
utility distributions in U/ obtained using critical-level ¢ generalized concen-
tration curve dominance is equivalent to that obtained using the critical-level
generalized utilitarian dominance criterion for the same value of the critical
level.

Proposition 2. For any c € R, for allu,v' €U, u 5 v’ < u =zt u'.

Proof. Consider any ¢ € R and u,u’ € Y. From (3.6), we have that u =S¢

v S Uenuw) =GO u’cﬁ(u,7u). For a fixed population, it follows from their

definitions that generalized Lorenz dominance coincides with critical-level ¢
generalized concentration curve dominance for any value of ¢ € R. Thus,

u = u e Ue 7 (u,u) ~GL uw! To complete the proof, we show that
GC u’
. )

~ c,n(u’,u)’
the latter relation holds if and only if u 7

For any critical-level generalized utilitarian rule, adding an individual
with utility equal to the critical level is a matter of social indifference. Hence,

u ~ u, ) and u' ~ST W/ The transitivity of =S then implies

c c,a(u’,u)’
that u =" v’ < Ue 7 (u,w) O But for fixed population compar-

~c c,i(u’,u)"

isons, for any g € C, an average generalized utilitarian rule with utility trans-
form ¢ ranks utility distributions in exactly the same way as a critical-level
generalized utilitarian rule for the same utility transform regardless of the

value of the critical level. Therefore, U, zuw) 5" W, nw ) € Uea(uuw) A
GL .,/

ulc7ﬁ(u,1u <:> uc7ﬁ(u7u’) f>\—-/ uc,ﬁ(u’,u)'

It then follows from these equivalences that u Z" v’ & u puw) 2"
/

u : (]

¢,n(u’,u)

- By Proposition 1, camuuw) Z* ul

~ ¢, (u’,u)

As we have observed, for any value of the critical level ¢, u =" u’ <
u =L u’ whenever n(u) = n(u’). However, when n(u) # n(u’), u =S¢ u’ is
neither a necessary or sufficient condition for u -¢* w’. For example, suppose
that n(u’) > n(u) and that u ~$* u’. By Proposition 2, we therefore have
W nmu) ~O w. However, if u; > ¢ for all i € {1,...,n(u)}, then by
Proposition 1, we have u =" U, (u,w), from which it follows that u =Gy
A similar argument shows that u' =% u if u; < ¢ for all i € {1,...,n(u)}.

Blackorby, Bossert, and Donaldson (2003, p. 375) have introduced a gen-
eralization of critical-level generalized utilitarianism called number-sensitive

critical-level generalized utilitarianism. (See also Blackorby, Bossert, and
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Donaldson, 2005, p. 168.) With this principle, the critical level is permitted
to depend on the population size, but not on the individual utilities. It is
straightforward to extend Proposition 2 so that it applies to number-sensitive
critical-level generalized utilitarianism. Note that the augmentation proce-
dure used above to convert two distributions into distributions for the same
sized population only involves augmenting the distribution for the smaller
population by adding an appropriate number of individuals with the fixed
critical level. If, however, the critical level is permitted to depend on pop-
ulation size, then it is these number-sensitive critical levels that are used
when adding individuals. For example, if the smaller population contains 10
people and the larger contains 12, then two people are added to the smaller
population distribution, one person with the critical level for a population of
size 10 and one person with the critical level for a population of size 11.

4. Critical-Band Generalized Utilitarian Dominance

Blackorby, Bossert, and Donaldson (1996, 2005) have considered a gener-
alization of critical-level ¢ generalized utilitarian dominance that allows for
there to be a range of critical levels. Consider any ¢,¢ € R with ¢ < ¢
The interval [c,c] is interpreted as being the smallest band in which it is
known that the critical level lies. Critical-band [c, ¢] generalized utilitarian
dominance is the partial order zg% obtained by taking the intersection of
the critical-level generalized utilitarian partial orders for all ¢ € [¢,¢. In
other words, the critical-level generalized dominance criteria must agree for
all values of the critical level in this interval in order for this criterion to rank

utility distributions.

Critical-Band |[c, ¢| Generalized Utilitarian Dominance. For all ¢,¢ €
R with ¢ < ¢, for all u,u’ € U,

u ?Q[(é% u e urzhua forall c € e e (4.1)

In Proposition 3, we show that this partial order is equivalent to the
partial order that is obtained by taking the intersection of the critical-level ¢

16In their definition of critical-band generalized utilitarian dominance, Blackorby,
Bossert, and Donaldson (1996, 2005) replace the closed interval [c,¢] with an arbitrary
bounded interval. An axiomatization of their version of this population principle may be
found in Blackorby, Bossert, and Donaldson (2005, Theorem 7.12).
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generalized utilitarian partial orders for the critical levels ¢ and ¢ that define
the endpoints of the band. It then follows from Proposition 2 that this partial
order is also the intersection of the partial orders defined by critical-level ¢
generalized concentration curve dominance for these two values of c.

Proposition 3. For all ¢,¢c € R with ¢ < ¢, for all u,u’ € U, the following
conditions are equivalent:

(1) u rﬁ_z[cg%} u/7
(ii) [ Zoh ' and u " u’}, and
(iii) [u =9Cu and u 5° u}.
Proof. Tt follows trivially from the definition of >‘[CB] that (i) implies (ii).
We now show that (ii) implies (i). Suppose that (ii) holds. Consider any
c€lec,gelC nmeN ueR" and u € R™. There are two cases to

consider.
Case 1. Suppose that n > m. By assumption,

> lo(u) — 9(2)] = 3-lof0f) ~ 9(0)) (12)

Equivalently,
> o) 2 Y- glul) + (0~ m)g(e). (43)

Because n—m > 0, ¢ < ¢, and the function ¢ is increasing, (4.3) implies that
> g(u) > 3 g(u) + (n — m)g(e). (1.4)
or, equivalently,

> la(ws) — g(@)] = Yla(u) - gl (45)

Case 2. Suppose that m > n. By assumption,

n

S lg(us) — g(e)] > S o) — 9(0)]. (4.6)

i=1 =1



Equivalently,

I

s
I
_

9(us) + (m — n)g(c) > gmlgw;). (4.7)

v

Because m—n > 0, ¢ > ¢, and the function g is increasing, (4.7) implies that

3" glus) + (m — n)g(c) > igw;), (48)

i=1

which is equivalent to (4.5).
Thus, (4.5) holds in both cases. Because ¢ is an arbitary element of [c, ¢],
we have therefore shown that u =S u’ for all ¢ € [¢,¢]. That is, (i) holds.
The equivalence of (iii) with both (i) and (ii) now follows immediately
from Proposition 2. O

5. Concluding Remarks

Social welfare dominance criteria provide a way of partially ordering distribu-
tions based on widely shared value judgements. In practice, the dominance
criterion that is most commonly employed is the generalized Lorenz par-
tial order. Implicitly, this dominance criterion measures social welfare in
per capita terms. More precisely, as the Kakwani-Shorrocks Theorem es-
tablishes, it coincides with the averaged generalized utilitarian dominance
criterion. However, as we have noted, per capita measures of social welfare
make some trade-offs that many would find unpalatable when the size of the
population is subject to variation. Critical-level generalized utilitarianism
was introduced as a way of overcoming these concerns. The critical-level
generalized utilitarian welfare dominance criterion introduced here measures
differences in social welfare in aggregate, not per capita, terms.

We have also introduced a new geometric construction, the generalized
concentration curve for a distribution, that is a natural analogue for critical-
level generalized utilitarianism of a generalized Lorenz curve. For a given
value of the critical level ¢, we have used generalized concentration curves
to define a new dominance relation, the critical-level ¢ generalized utilitarian
partial order, and shown that it coincides with the critical-level generalized
utilitarian partial order for this value of the critical level, thereby providing
an analogue of the Kakwani—Shorrocks Theorem for this population principle.
Furthermore, we have used critical-band generalized utilitarianism to extend
this result so as to allow for a range of critical levels.
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We have framed our discussion in terms of distributions of utilities. How-
ever, in empirical applications of our dominance criteria, for practical reasons,
income is most likely to be chosen as the measure of individual well-being.
Implementation of our proposal will then require the specification of a criti-
cal income level or critical income band. In this interpretation of our model,
the critical level is the level of income for which it is a matter of social in-
difference to add an additional individual with this amount of income. For
most societies, this level will be below the observed average income of the
population. It is also likely to be below what is regarded as an appropriate
value for an absolute poverty line. Given the lack of an obvious choice for
the critical income level, the use of a critical band is an attractive option, as
then any distributional comparisons that can be made using our approach
to constructing a dominance partial order will not be overly sensitive to the
exact specification of the critical level. In any event, the choice of the critical
level calls for further investigation, which is beyond the scope of this article.

Sen (1973, p. 76) has argued that “[t|reating inequality as a quasi-ordering
[i.e, as a partial ordering] has much to be commended from the normative as
well as the descriptive point of view.” The same can be said for social welfare
comparisons. The critical-level and critical-band generalized utilitarian wel-
fare dominance criteria introduced here provide alternatives to generalized
Lorenz dominance. They are alternatives that we think have much “to be
commended.”
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