ELDERLY MIGRATION, STATE TAXES, AND WHAT THEY REVEAL

by

Ali Sina Onder and Herwig Schlunk

Faculty Sponsor: John P. Conley

Working Paper No. 09-WG01

January 2009

DEPARTMENT OF ECONOMICS VANDERBILT UNIVERSITY NASHVILLE, TN 37235

www.vanderbilt.edu/econ

Elderly Migration, State Taxes, and What They Reveal^{*}

Ali Sina Onder[†]

Vanderbilt University Department of Economics Herwig Schlunk[‡] Vanderbilt University Law School

January 2009

Abstract

Empirical results obtained from the 2000 Census elderly migration data using a general gravity model of migration flows confirm earlier findings of the 'same sign problem' in the literature, which means that the elderly both migrate from and to states where taxes are higher. The same sign problem can be attributed to the heterogeneity of in- and out-migrating groups. We propose that it is possible to control for heterogeneity of migrating groups by controlling for some characteristics of either the origin or the destination state. In a gravity equation estimation for elderly migration, when controlled for heterogeneity of migrants, the same sign problem fades away, and the gravity equation shows clearer patterns for elderly migration. In particular, local amenities, tax exemptions, and low inheritance taxes are shown to be significant variables in attracting the elderly into a state.

Keywords: Tiebout Hypothesis, Migration, Taxation, State Taxes, Amenities JEL Classification Codes: H24 H25 H31 H7

^{*}We would like to thank John Conley and Karen Conway for helpful comments and discussions. [†]email: alisina.onder@vanderbilt.edu

[‡]email: herwig.schlunk@law.vanderbilt.edu

1 Introduction

In a federal system, jurisdictions will differ in their provision of public goods and in their imposition of taxes. If individuals can move freely from jurisdiction to jurisdiction, then all else equal, each individual will move to a jurisdiction that best suits his or her preferences for public goods and taxes. This idea constitutes the essence of the 'Tiebout Hypothesis'. According to Tiebout (1956):

"The consumer-voter may be viewed as picking that community which best satisfies his preference pattern for public goods. [...] At the local level various governments have their revenue and expenditure patterns more or less set. Given these revenue and expenditure patterns, the consumer-voter moves to that community whose local government best satisfies his set of preferences." (p.418)

It is thus natural to ask: in exactly what way do local governments' public-good-provision and tax policies affect individuals' migration decisions? This question can perhaps best be answered by investigating the effect of local government policies on the interstate migration of the elderly population in the US.

The primary benefit of focusing on elderly migration is that the elderly population consists primarily of retirees, and as a group retirees are relatively immune to labor market causalities and to other factors that affect the income stream of the working population. Although positive labor market aspects and high levels of expected income may be inviting for younger migrants, elderly migrants do not need to consider labor market aspects in their migration decision. With labor market considerations left aside, one would expect public finance variables and local amenities to manifest themselves more clearly in the migration decisions of elderly migrants than in those of younger migrants. Thus, by focusing on elderly migration, one is left with a relatively clear and undistorted view of the effects of state governments' policy decisions on interstate migration.

There is in addition a second more practical benefit of focusing research on elderly migration: the empirical results obtained can be expected to have significant policy implications. The share of the elderly population is increasing, and according to the Bureau of Census reports, it is expected to increase further. In order to take advantage of the opportunities posed by such increase, and conversely to face the challenges posed by such increase, governments at the state and local level (and indeed also at the federal level) will need to focus more thought and resources on the elderly population.

This paper investigates the effects of state and local government policies on the migration decisions of the elderly. What policies attract the elderly and what policies drive them away? How do the elderly react to different types of taxes? How do amenities and specific tax exemptions affect their migration decisions?

Under the assumption that individuals, on average, behave in a way that maximizes their utility, they eventually reveal their preferences by the choices they make. This revelation principle lies at the core of the Tiebout Hypothesis. When faced with alternative 'fiscal menus,' that is, with various combinations of local public goods and local taxes to finance these local public goods, individuals will sort themselves into jurisdictions on the basis of their preferences for such menus. Using a gravity model for migration, this paper investigates what kinds of 'fiscal menus' are popular among elderly migrants in the U.S., and what kinds are not.

We employ the elderly migration dataset published in a 2003 special report of the 2000 Census, entitled "Internal Migration of the Older Population." We overlay the data of elderly migration flows between states with data about state characteristics, in particular data about state and local government finances, but also data about certain state-specific amenities. That way, we constructed a gravity equation that takes into account pushing effects of the origin state's characteristics as well as pulling effects of destination state's characteristics.

Most of the previous studies that investigate interstate migration using gravity models have shown that when state level data is used for migration analysis, a problem known as the 'same sign problem' occurs. In a gravity model of interstate migration, pushing and pulling effects are expected to have opposite signs: if some characteristic of a state positively affects out-migrants' decisions to move out, the same characteristic should not also positively affect in-migrants' decisions to move in. The 'same sign problem' refers to the phenomenon that pushing and pulling effects often turn out to have the same sign. The same sign problem can generally be attributed either to aggregation, which is an inevitable result of using state level data, or to the heterogeneity of inand out-migrating populations.

Our main contribution is to demonstrate that the relative attractiveness of states' 'fiscal menus' becomes more apparent when migrations over very short distances and very long distances are left out of the regressions. The same is also true when outmigration solely from higher per-capita income states is considered. The probable reason for this is that these two methods provide some correction for the heterogeneity within the population of elderly migrants. Migrations over either very short distances or very long distances might be noisy because they are more heavily influenced by non-fiscal considerations, such as the cost of moving or the location of children or grandchildren. In the case of restricting the analysis to outmigration from higher income states, the likelihood is that the focus is predominantly on more affluent migrants, and thus not on 'counter-stream' migrants who might be able to successfully free ride on the higher amenity offerings of high tax states.

2 Literature Review and Background

Most empirical research on elderly migration focuses on determining the main factors that attract elderly migrants. Graves (1979) investigates in-migration rates across different age groups for large metropolitan areas and finds that the main attractions for migrants differ significantly by age group: young migrants' decisions are affected by economic opportunities presented by a location, while elderly migrants tend to be attracted by the amenities of a location. Similarly, Clark and Hunter (1992) compare different age groups' migration decisions and find that the existence of amenities affects migration decisions of older migrants more than that of younger migrants.

Elderly migration is necessarily affected by the costs and benefits of migration. The benefits are

a location's amenities, including local public goods; the costs are the taxes that must be paid when living in that specific location. Focusing on taxes, Cebula (1990) shows that the mere existence of a state income tax has a significant negative effect on the volume of elderly in-migration. Conway and Houtenville (2001) confirm that the elderly are attracted to states with amenities, including suitable climate conditions and a low cost of living. In addition, they show that an exemption of food from sales tax induces elderly in-migration. Somewhat less intuitively, they also report that lower spending on public welfare induces elderly in-migration.

No matter if one uses two separate equations for in-migration and out-migration, or a single gravity equation, a given explanatory variable would be expected to have opposite signs for the case of in-migration and for the case of out-migration. That is, if a given variable is found to be a significant factor driving the elderly out of a jurisdiction, then one would expect this very same variable to be a significant factor keeping the elderly from migrating into a jurisdiction. Conway and Houtenville (1998) use in-migration and out-migration estimations for testing the effects of several fiscal variables on elderly migration across states. Surprisingly, they find that all tax variables – property tax, sales tax and income tax – have the same sign in both the in-migration and the out-migration estimations:

"All of the tax share coefficients are positive and statistically significant. ... [Moreover] these results cannot be dismissed; the public sector variables are almost always jointly statistically significant." (pp.678-9)

Conway and Houtenville (2001) employ a gravity model of migration, and this model confirms the results in Conway and Houtenville (1998), including the 'same sign problem.' A descriptive explanation for this phenomenon is offered in Conway and Houtenville (2001), and some insight can be found in Voss et al. (1988) as well. As it turns out, the states that have the highest in-migration rates also happen to be the states that have the highest out-migration rates. Voss et al (1988) refer to the highly positive correlation between in-migration and out-migration as 'counter-stream migration.' It is due to 'counter-stream migration' that the regression results carry the same signs for in-migration and out-migration. While this may well be true as a descriptive matter, it fails to provide a satisfactory explanation for the causes underlying the phenomenon.

Some research has put forward the theory that the availability of amenities in a jurisdiction may be partially (or even completely) compensated for in such jurisdiction's labor and real estate markets. That is, if amenities vary across jurisdictions, then in general equilibrium we would expect some wage and rent compensation to occur, for otherwise everyone would live solely in amenity-rich jurisdictions. See for example, Haurin (1980) and Roback (1982). Graves and Waldman (1991) examine this theory under the plausible assumption that the elderly constitute a small group, whose migration decision cannot affect the wage structure in the jurisdiction to which they are migrating. They provide empirical evidence to show that "in a world in which compensation for amenities occurs in varying degree in land and labor markets at alternative sites and there are no moving costs, retirement migration will be toward areas in which more of the compensation for amenities is in wages." (p.1376). This is not surprising: the elderly generally can free ride to the extent that compensation for amenities occurs in the labor market, but they generally cannot free ride to the extent that compensation occurs in the real estate market.

Conway and Rork (2006) focus on another important factor that could affect elderly migration: estate, inheritance and gift taxes. Using panel data, they surprisingly discover that estate, inheritance and gift tax policies do not affect elderly migration.

In this paper, we use indicator variables for the exemption of social security payments from state income taxation, the exemption of pension income from state income taxation, the exemption of drug sales from state sales taxes, and for the existence of atypical state inheritance or gift taxes. The indicator variable for inheritance or gift taxes turns out to be significant for most of the specifications; moreover, it does not have a same sign problem.

3 Model

There are J states, and N retirees. A retiree, n, derives utility from private consumption x, and from bundle of state specific public good G and amenities A, so that the utility function of retiree n is given by: $U_n(x, G, A)$

Axiom 1 $U_n(x, G, A)$ is a twice differentiable, and concave function in all of its arguments.

Axiom 2 $U_n(x, G, A)$ is strictly increasing in x.

Axiom 3 There exist G^* such that $\frac{\partial U_n(x,G^*,A)}{\partial G} = 0$ for given x and A, and there exists A^* such that $\frac{\partial U_n(x,G,A^*)}{\partial A} = 0$ for given x and G. Moreover, for every $G^0 < G^*$, $\frac{\partial U_n(x,G^0,A)}{\partial G} > 0$, and for every $G^1 > G^*$, $\frac{\partial U_n(x,G^1,A)}{\partial G} < 0$. Similarly, for every $A^0 < A^*$, $\frac{\partial U_n(x,G,A^0)}{\partial A} > 0$, and for every $A^1 > A^*$, $\frac{\partial U_n(x,G,A^1)}{\partial A} < 0$.

If a retiree chooses to reside in state *i*, she will enjoy state specific public goods and amenities, G_i and A_i , and the utility of retiree *n* in state *i* is given by $U_n(x_i, G_i, A_i)$. However she will have to face state specific price level p_i as well as state taxes t_i and t_{I_i} . State taxes are grouped in two broad classes: Taxes related to consumption and living expenses, and taxes related to wealth and income. Sales taxes and property taxes can be examples for taxes related to consumption and living expenses. As far taxes related to wealth and income are concerned, retirees are not wage earners, however they may be receiving pension and/or social security payments, which are subject to income tax as well.

Price level and taxes in a state affect an individual's budget constraint for private consumption. Even though a state's public good provision and amenities may be attractive to a retiree, if price level and menu of taxes restrict her private good consumption considerably, she may not choose to move to that state.

Another variable affecting a retiree's decision to move from state i to j is the moving cost, which is a function of the distance, d_{ij} , between state i and state j, denoted by $c(d_{ij})$. **Axiom 4** Moving cost function $c(d_{ij})$ from state *i* to state *j* is strictly increasing and convex in distance, d_{ij} .

Suppose that a retiree n is initially residing in state i. The solution of the following optimization problem shows her utility, if she moves from state i to state j.

$$U_n^{ij} = \max_x U_n\left(x, G_j, A_j\right) \tag{1}$$

s.t.
$$(p_j + t_j) x \le w_n (1 - t_{I_j}) - c (d_{ij})$$

where w_n is wealth of retiree *n* which she has accumulated for her retirement. It is easy to see that the optimization problem (1)-(2) yields the following outcome:

$$U_{n}^{ij} = U_{n} \left(\frac{w_{n} \left(1 - t_{I_{j}} \right)}{p_{j} + t_{j}} - \frac{c \left(d_{ij} \right)}{p_{j} + t_{j}}, G_{j}, A_{j} \right)$$
(2)

If retiree n chooses to stay in state i, her initial location, then her utility will be:

$$U_{n}^{i} = U_{n} \left(\frac{w_{n} \left(1 - t_{I_{i}} \right)}{p_{i} + t_{i}}, G_{i}, A_{i} \right)$$
(3)

Retiree n decides whether to stay or to move to another state as follows: Let U_n^* denote the set of retiree n's best possible alternatives to staying in state i, so that:

$$U_n^* = \max\left(U_n^{i1}, U_n^{i2}, ..., U_n^{ii-1}, U_n^{ii+1}, ...U_n^{iJ}\right)$$
(4)

Hence retiree n moves from state i to state j if and only if:

$$U_n^{ij} \in U_n^*$$
 and $U_n^{ij} > U_n^i$

A retiree makes her decision of relocation from state i to state j based on vector of parameters $(p_j, t_j, t_{I_j}, G_j, A_j, d_{ij})$ offered by state j. These parameters of state j are price level, consumption tax, income tax, public good provision, amenities, and distance to origin state. Suppose that retiree n is initially residing in state i, and conditions of migration are satisfied for state j, that is: $U_n^{ij} \in U_n^*$ and $U_n^{ij} > U_n^i$.

It is interesting to see how these parameters should interact in order to keep utility derived from migration constant, other things being equal. The following three propositions focus on parameters' pairwise interactions, that are of interest especially in our empirical analysis. Their proofs are in appendix.

Proposition 1 (Public Goods or Amenities vs. Consumption or Income Tax): An increase in public good provision in a state may be accompanied by either an increase or decrease in taxes to keep constant the attractiveness of state for a given retiree. Since preferences are single peaked in public goods and amenities, whether an increase or decrease is necessary in taxes, depends on how levels of public goods and amenities compare to their most optimal levels.

The previous proposition states an intuitive relation between taxes and public goods or amenities:

Proposition 2 (Price Level vs. Consumption Tax): In order to keep constant the attractiveness of a state for any retiree, an increase in price level needs to be matched by a one to one consumption tax decrease.

Proposition 3 (Distance vs. Consumption or Income Tax): If two states have the same attractiveness for a retiree, and have different distances from retiree's state of origin, then, other things equal, the further away state has lower consumption and income taxes. Difference in income tax is proportional to marginal cost of moving, and inversely related to retiree's wealth. Difference in consumption tax is proportional to marginal cost of moving as well, but it is inversely related to net wealth, and proportional to price level.

4 Data and Methodology

Interstate migration data of the elderly population between years 1995 and 2000 are provided by the 2000 Census. Migration flows are determined by the change in residence of the elderly from 1995 to 2000, and the dataset is displayed as state of residency in 2000 is shown sorted by the state of residency in 1995. Elderly population contains those who are 65 years old and older, and this data doesn't contain migration flow from outside the US.

Data about the local and state government finances is obtained from the US Census Bureau's "Local and State Governments' Finances, 1993-94" online dataset. State population and state personal income data are from the Bureau of the Economic Analysis.

Cost of living index is obtained from state level consumer price indexes constructed by Berry et al (2000), and we used these consumer price indexes to obtain state real personal income figures.

We use a gravity equation of the following form:

$$\begin{split} \ln m_{ij} &= \alpha + \beta_1 \ln dist_{ij} + \beta_2 neigh_{ij} + \gamma_1 \ln pop_i + \gamma_2 \ln pop_j + \\ &+ \gamma_3 dens_i + \gamma_4 dens_j + \gamma_5 urban_i + \gamma_6 urban_j + \\ &+ \gamma_7 \ln crime_i + \gamma_8 \ln crime_j + \gamma_9 temp_i + \gamma_{10} temp_j + \\ &+ \gamma_{11} \ln price_i + \gamma_{12} \ln price_j + \\ &+ \gamma_{13}A_i + \gamma_{14}A_j + + \gamma_{15}TAX_i + \gamma_{16}TAX_j + \\ &+ \gamma_{17} revenue_i + \gamma_{18} revenue_j \\ &+ \gamma_{19} exempt_i + \gamma_{20} exempt_j + \gamma_{21}PUBSP_i + \gamma_{22}PUBSP_j + \\ &+ \gamma_{23} intact1_i + \gamma_{24} intact1_j + \gamma_{25} intact2_i + \gamma_{26} intact2_j + \end{split}$$

Dependent variable is the natural logarithm of number of elderly migrants from state i to state j. Description of independent variables: (α is the constant term; independent variables in lower

case letters denote natural logarithm)

 $dist_{ij}$: Distance of population centers between states *i* and *j*.

 $neigh_{ij}$: A dummy variable for neighbor states. If states *i* and *j* share a common border, it becomes one, otherwise it is zero.

pop : Total population of respective state

dens : Population density of respective state, found by dividing state's total population by its area.

urban : Ratio of urban population to total population in a state.

crime : Crime rate in a state

temp: Annual average temperature in major locations in a state.

price : Consumer price index in a state

A: An indicator variable for amenities. If a state is an amenity-rich, A=1, and if a state is amenity-poor, A=0, following the indicator developed by Greenwood et al (1991).

TAX: Vector consisting of property tax (state average), general sales tax, individual income tax, corporate income tax, and other tax revenue. All tax rates are calculated using 'State and Local Government Finances' data, by taking the ratio of revenue from each type of tax to state personal income. Inheritance tax is included in form of an indicator variable, taking the value 1 if a state imposes inheritance tax, and 0 if not.

revenue : This vector includes two revenue items that are not covered by state and local government revenue obtained by taxation. These are revenue from federal transfers (calculated as a ratio to state personal income), and total charges (calculated as a ratio to state population).

exempt : This is a vector of three indicator variables that indicate whether social security payments, pensions, and drug sales are exempt from income and sales tax, respectively.

PUBSP: Public spending vector- includes expenditures on education, health, hospitals, highways, public transport, police, fire protection, parks and recreation. All variables are calculated by dividing the total expenditure of state and local governments by population of the state, hence expenditure variables are stated in per capita terms.

*intact*1 : (denoted by inter11 in regression results) This is the interaction term for individual income tax rate and pension exemption.

*intact*2 : (denoted by inter14a in regression results) This is the interaction term for logarithm of crime and urbanization ratio.

Before we proceed to estimation results in next section, it is worthwhile to make some comments about the dataset. We look at the migration inflow and outflow of 48 states (that is, excluding Alaska, Hawaii and District of Columbia), and the gravity equation estimation uses a total of $48 \times 47 = 2256$ observations. We don't consider within state migrations, and we drop those migration state-pairs which indicate zero migration for 1995-2000 period.

Table 1 displays the rankings of states according to ratio of their in-migrants and out-migrants to total migration nationwide, to total population in that state, and to total elderly population in that state. The "counter-stream migration" claim put forward bu earlier studies is confirmed by those in- and out-migration ratios displayed in Table 1. Nevada and Florida turn out to have the biggest share in accepting in-migrants, as well as in sending off out-migrants. In the next section, we will investigate how regression results change when we exclude the states that have the most share in elderly in- and out-migration. Graphs 1 through 4 show in- and outmigration shares of major receiving and sending states.

5 Empirical Results

Table 2 displays the regression results for three different specifications of elderly migration data. All three specifications pass Pregibon's link test, so that they do not contain a specification error with 95% confidence.

Column (1) is based on total migration between states. As explained in the theoretical section, differences between origin and destination states' policy variables are likely to become clearer as moves over greater distances are considered, since such differences must be sufficient to overcome the costs of moving. In particular, since the migration cost function is assumed to be convex, regression analysis of shorter distance migrations will be very noisy.

Accordingly, Columns (3) and (4) show regression results that are run under certain restrictions on distance. Distance between two states is measured as the distance between the population centers of the two states. A complete list of pairs of states and the distance between them is given in Table 3.

Column (2) contains only net migration numbers, where net migration is equal to the difference between in-migrants and out-migrants.

Column (5) seeks to reduce the noise in the net migration regression. Thus, we include only those state pairs that have significant net migration, to wit a net migration ratio of at least 0.13. In addition, we include only origin states with relatively affluent per capita income of between \$20,000 and \$30,000. The rationale for this restriction is that it reduces the likelihood that the analysis will be too noisy due to less affluent 'counter-stream' migrants who might seek to free ride on the higher amenity offerings of high tax states.

Finally, the regression displayed in Column (6) is also based on net migration data. It contains all state pairs that have a net migration rate of at least 0.14. This time there is no constraint on distance or on the origin state's per capita income. We show this regression mainly to stress how it can differ from the regression in Column (2), and how noisy the results can get, even when we are dealing with net migration data.

The regressions show that there is more elderly migration to neighboring states than to more distant states. Moreover, if neighboring states are removed from the data set (and even if they are not), the amount of elderly migration between two states decreases as the distance between such states increases. This is hardly surprising – Conway-Houtenville (2001) report the same results – and is likely due to the confluence of a number of factors. For example, the direct costs of moving surely increase with distance. In addition, the degree of familiarity with prospective destinations almost surely decreases with distance, and that in turn should have a depressing effect on long-

distance migration. Note however that latter explanation is likely to become less significant over time: as the fraction of the elderly who are proficient users of the internet increases, the costs associated with becoming familiar with prospective distant destinations will decrease. Thus, we would expect the negative effect of distance on elderly migration to moderate somewhat in the future.

Our regressions show that the elderly both migrate to states with larger populations and migrate away from states with larger populations. These results confirm an identical 'same sign problem' reported in Conway-Houtenville (2001). There may be a simple explanation. People are social animals; they like to go where there are other people. (Indeed, they like to go where there are other people like themselves, as Gale-Heath report in the case of the elderly. That study, too, is consistent with our results.) But they also necessarily predominantly come from places where there are other people. Nor does this explanation lose its force when examining net migration. For example, while the gross flow from New York to West Virginia may not be significantly different from the net flow, whereas the gross flow from New York to Florida may be vastly greater than the net flow, nevertheless even on a net basis New Yorkers are much more likely to go to Florida than West Virginia.

This variable presents another same sign problem. In the case of gross migration, the elderly tend to avoid migrating to states with higher population densities, but they also tend to remain in states with higher population densities. One possible explanation is that these results reflect two separate flows: one from cities to suburbs and the other from the country to suburbs.

Our regressions show somewhat mixed results of the effects of temperature on elderly migration. On balance, the elderly prefer to move to warmer climes, and the findings are at least in some of the regressions weakly significant. This is unsurprising, and is not inconsistent with Gale-Heath, who report a statistically significant avoidance by migrants of states with a greater number of heating days, i.e., of colder states. Moreover, in four of our regressions, the elderly also exhibit a reluctance to migrate away from warmer climes, although these results are not significant. However, our two remaining regressions, the elderly behave unexpectedly: they strongly significantly move away from warmer climes. We could perhaps tell a story of the happy middle: the elderly may prefer more temperate climes to both colder and hotter ones. In any event, similarly inconsistent results occur in Conway-Houtenville (1998) and Conway-Houtenville (2001). Both of those studies use three different weather-related variables: sun, heating degrees and cooling degrees. The 1998 study reported as significant findings both that the elderly avoid migrating to the sun, but also that they migrate to states with a larger number of cooling degrees; the latter finding, but not the former, indicates a preference for states that are warmer. In addition, the 1998 study reported that the elderly migrate to states with a larger number of heating degrees; that would seem to indicate a preference for states that are cooler. The 2001 study does not clarify matters: the results abound in same sign issues and uniformly contradict the significant findings from 1998.

Our regressions show that there is more elderly migration to states with higher property taxes. This result, which is strongly significant, is inconsistent with that reported by Gale-Heath, but is consistent with that reported in Conway-Houtenville (1998) and in Conway-Houtenville (2001). While the result is at first counterintuitive, it may be the result of one of two factors. First, higher property taxes are generally strongly correlated with higher levels of locally provided amenities, and it may simply be the case that the elderly migrate towards such amenities. Second, property taxes are usually an increasing function of the value and hence generally of the size of the property. Since the elderly are predominantly empty-nesters, they may own properties that are on average smaller than those that predominate in a given locale. If this were so, the elderly may to some extent be able to "free ride" off of the property taxes paid by others. Moreover, their ability to successfully engage in such free-riding will be greater the higher the level of property taxes. The likelihood that one of these phenomena (or something very much like one of these phenomena) explains our results is enhanced by a glance at the net migration regressions. These regressions generally report (albeit not significantly) that the elderly migrate away from low property tax states. Assuming a modicum of rationality, the elderly would only flee from low taxation if they are well compensated for such flight. Finally, in the case of gross migration, a same sign problem appears; the elderly weakly significantly move away from high property taxes. This same sign problem also appears in Conway-Houtenville (1998) and in Conway-Houtenville (2001). A possible explanation may be a general preference for retiring in suburbia. Thus, when the elderly are confronted with the very high property taxes of big cities, they move away. But once outside of the big city setting, they may prefer more amenities to fewer.

In the case of general sales tax data, our regression results present a same sign problem. The elderly migrate to states where sales taxes are low. That is surely uncontroversial. But they also migrate away from states where sales taxes are low. Both of these results are significant only for gross migration, but they do retain their sign for net migration. One possibility is that more nuanced data would provide an explanation, but this is pure speculation on our part. For example, the elderly are likely to be disproportionately affected by sales taxes on food and medicine. If so, they could rationally prefer a state that collects a high overall amount of sales tax, but that imposes a low rate of tax on food and medicines, to a state that collects a low overall amount of sales tax, but that does not grant preferential treatment to food and medicine. This is because the elderly could free ride off sales tax revenues in the first posited state, but not the second. Moreover, the existence of states, and even more of localities within states, that differ along these two dimensions means that it is simultaneously possible for some elderly to move to low sales tax states that also offer a generalized respite from high taxation, while others leave low sales tax states that, in spite of their generally low sales taxes, offer no particular benefits to consumers of food and medicine. Our data cannot definitively speak to the foregoing conjecture. However, we do have a dummy variable that measures whether or not a state exempts drug sales from its general sales tax. Thus, we can confirm that the elderly migrate to states that exempt drugs from their general sales tax. However, our data also show that the elderly migrate away from states that exempt drugs from their general sales tax. Both of these results are uniformly significant in the case of gross migrations, but not in the case of net migrations. Moreover, since only five states, and only one state with a significant population (Illinois), do not provide a sales tax exemption for drugs, the results may be suspect.

Comparing our results to other studies, Gale-Heath do not report a result that is statistically significant with respect to the level of sales taxes. However, they do report that a positive change in sales tax rates, i.e., a sales tax increase, significantly reduces the amount of net inmigration. Conway-Houtenville (1998), in turn, report a same sign problem, albeit the opposite one we confront: their elderly statistically significantly migrate to states with high sales taxes; they insignificantly migrate away from states with high sales taxes. Conway-Houtenville (2001) confirm their 1998 result for gross migration flows, but for net migration flows obtain the least intuitively appealing result possible, namely that higher sales taxes tend both to attract elderly migrants to a state and to keep potential elderly migrants from migrating out of a state. However, neither of these last two results is significant.

In our study, we coupled the individual income tax data with the data on meaningful income tax exemptions for pension or retirement income by means of an interaction variable. While the results are not uniform across the various regressions, and mostly not significant, at least some tell an intuitively appealing story. Thus, in the case of net migrations, two of the three regressions show that the elderly do not migrate to high income tax states that do not offer a meaningful pension exemption, but do migrate to high income tax states that offer such an exemption. Moreover, two of the three regressions show that the elderly migrate out of states that couple high income taxes with no meaningful pension exemption, but tend to stay in states that couple high income taxes with a meaningful pension exemption. Thus, the elderly appear to dislike income taxes if and only if they are the ones who are required to pay them! Nirvana is a state with high income taxes that are disproportionately paid by others.

Turning to the gross migration data, the elderly significantly avoid migrating to high income tax states, but their aversion to such states is mitigated somewhat if the state offers a meaningful income tax exemption for some pension income. In addition, the elderly tend to stay in states with high income taxes; a tendency that becomes even more pronounced if the state couples high income taxes with a meaningful pension exemption. We suspect this same sign problem has an explanation along the lines suggested by our analysis of the pension exemption in the prior paragraph. While our data set treats the elderly as a single group, the fact remains that the elderly are not homogenous. Specifically, we can think of two distinct subsets that might react very differently to state income tax rules: the wealthy elderly and the poor elderly. The wealthy elderly continue to earn significant amounts of income, not just from pensions, but also from investments and other sources; the poor elderly have little income beyond that provided by Social Security. All else equal, we would expect the wealthy elderly to avoid states with high income taxes. But we would not expect similar behavior from the poor elderly, as they are not the ones paying the high income taxes and as they presumably get at least some measure of amenity benefit from the state expenditures financed by the high income taxes imposed on others.

Comparing our results with those obtained by others, we note that Conway-Houtenville (1998) report the opposite same sign problem that we confront, albeit the same one they reported for general sales taxes. That is, their elderly significantly migrate away from states with high income taxes, but also strongly significantly migrate to states with high income taxes. They further report that "provisions in the income tax code that exempt pension income have no bearing on either in-migration or out-migration," but do not explain how they arrived at this conclusion. Conway-Houtenville (2001) in turn confirms the same sign problem of their earlier study, but the results are not significant.

Finally, we also looked at the response of the elderly to a complete exemption of Social Security receipts from state income taxation. We found that while the elderly migrate to states that do not tax social security receipts, they also migrate away from states that do not tax such receipts. While these results are significant in the case of gross migration, it is difficult to ascribe much meaning to them. The reason is that while "only" thirty-five states exempt all social security receipts from taxation, those states include all of the biggest states in terms of population as well as every single state that falls into the category of being a traditional retirement haven.

Our regressions based on net migration data show that the elderly significantly migrate to states that collect higher amounts of corporate income tax, but they also albeit not significantly migrate out of states that collect higher amounts of corporate income tax. The former result is intuitively appealing, since corporate income taxes present perhaps the ultimate opportunity for a free ride on the part of the elderly. The latter result, were it significant, might prove difficult to explain; perhaps high corporate income tax collections are correlated with some other undesirable feature of a state, such as having a rust-belt economy. But it is not significant. Finally, our regressions based on gross migration data report the perverse result that the elderly do not migrate to states with high corporate income tax collections and moreover migrate away from states with high corporate income tax collections. Fortunately, neither of these results is significant.

Our regressions show that both in terms of gross migration and in terms of net migration, the elderly strongly significantly migrate to states with high levels of so-called "other taxes"; no similarly significant results were obtained for out-migration. The significant results are intuitively appealing when we consider a tax such as a natural resources severance tax or a documentary or stock transfer tax; such taxes provide a clear opportunity for free-riding on the part of the elderly. The results seem less appealing in the case of a death tax or a gift tax, both of which are also conflated into the "other taxes" category, albeit as a small piece thereof. Thus, we separately tested the response of the elderly to what we call inheritance taxes, which include any taxes above and beyond the common baseline determined by the IRC Section 2011 credit. We find that the elderly strongly significantly migrate to states that do not impose any such incremental tax on bequests or other transfers. This is an intuitively appealing result, for while only a small fraction of the elderly population is subject to such transfer taxes, that fraction of the population is both mobile (they are wealthy) and motivated to avoid such incremental taxes. Our results for migration out of states on the basis of incremental transfer taxes are not similarly significant; in the case of net migration, the sign is the expected sign; in the case of gross migration, it is not. Finally, note that Conway-Houtenville (2001) confirms that the elderly do not move to states with high "death taxes."

Our regressions produce only a handful of significant results for the various government spending variables. First, the elderly do not like to migrate to states with high per capita spending on education. This result is intuitively appealing, as the elderly no longer have children who are likely to be beneficiaries of such education spending. Moreover, the same result appears in Conway-Houtenville (1998) and Conway-Houtenville (2001). However, those studies both report that the elderly are also reluctant to leave states with high levels of education spending. While some of our regressions confirm this same-sign problem, the results are not significant.

Second, the elderly prefer to migrate to states with high per capita government spending on health care and hospitals. This is intuitively appealing, as the elderly make disproportionate use of health care and hospitals. Surprisingly, Conway-Houtenville (1998) and Conway-Houtenville (2001) obtain the opposite result. Nonetheless, their results indicated that the elderly migrated away from states with low spending on hospitals.

Third, the elderly prefer to migrate to states with high per capita government spending on police. This too is appealing: the elderly are surely disproportionately vulnerable and thus would be expected to place additional value on police protection. Note, however, that in the case of gross migration, there is also a significant tendency for the elderly to move away from states with high per capita spending on police. A possible explanation is that high expenditures for police may be correlated with some other undesirable characteristic of a state, such as being highly urban and therefore having high crime rates.

Finally, the elderly prefer to migrate to states that have higher per capita government spending on parks and recreation. This is again an appealing result, since the elderly as a class have more leisure time to enjoy such amenities. Nonetheless, the news here is not unambiguous, as in the case of gross migration, the elderly also significantly move away from states with high per capita spending on parks and recreation. As with most same sign problems, these results may be masking some heterogeneity either in the elderly or in the variable itself. That is, while some of the elderly may benefit from spending on parks and recreation, others may be unwilling or unable to use public recreation facilities. Moreover, in some states, the funded facilities may be of the sort that are attractive to the elderly, while in others they might be of the sort that are more attractive to the young (e.g., rugged hiking paths or playgrounds).

A significant and surprising finding is that the elderly do not appear to be attracted to states that derive a larger share of their revenues from the Federal government. One would expect the reverse to be true: from the vantage of a state's residents, funds received from the Federal government allow the state to provide amenities without any need for the state to impose any directly corresponding taxes or fees. Why would the elderly eschew such a free ride? A possible explanation is that the mere fact of greater Federal revenues may be masking some other undesirable feature of a state. For example, a state may receive greater Federal revenues because it is poor and therefore has a greater need for such revenues. Or a state may receive greater Federal revenues because it has a more powerful and perhaps concomitantly more corrupt political establishment (in which case the funds may not be spent in a manner that benefits the residents at large). In either of these cases, a rational retiree might well choose to avoid the Federal handout.

Our regressions show that he elderly are less likely to migrate to states that impose higher fees and other charges. It is somewhat unclear whether this is an expected result. One can imagine three possibilities with respect to a service that a state could provide and that is targeted to the elderly. First, the state could choose not to provide the service, and thus force the cost of the service onto the elderly. Second, the state could provide the service, but could charge the elderly an appropriate fee. Third, the state could provide the service, but could pay for it out of general revenues. The first and the third possibility involve low government fees, but only the third actually benefits the elderly. Similarly, one can imagine three possibilities with respect to a service that a state could provide and that is not targeted to the elderly. First, the state could choose not to provide the service, and thus force the cost of the service onto those who make use of the service. Second, the state could provide the service, but could charge the users an appropriate fee. Third, the state could provide the service, but could pay for it out of general revenues. The first and the third possibility involve low government fees, but now the third actually operates against the interests of the elderly. Finally, note that, at least in the case of gross migration, our regressions also show that the elderly tend to stay in states that impose higher fees and other charges. As suggested by the foregoing discussion, and particularly given the wide variety of fees and charges, an explanation based on the heterogeneity of the elderly is the likely cause of this same sign problem.

While not all of our results are significant, our regressions show that the elderly tend to migrate to states with a lower cost of living and away from states with a higher cost of living. Since many of the elderly live on a fixed income – i.e., an income that does not change in response to changes in price levels – this is exactly the behavior we would expect: retirees move to states where their incomes go farther. Our results are consistent with those reported in Gale-Heath, Conway-Houtenville (1998) and Conway-Houtenville (2001).

6 Conclusion

The 'same sign problem' arises when using the 2000 Census migration data, as it has when using earlier Census migration data. Our main contribution is to demonstrate that the same sign problem tends to diminish when migrations over very short distances are excluded from the regressions, or when only outmigration from higher per-capita income states is considered. These two methods apparently provide some correction for the heterogeneity of elderly migrants. Once corrected, the relative attractiveness of a state's bundle of public goods and taxes becomes more apparent.

Previous studies have shown that prices of location specific amenities are to some extent implicit in labor market and/or land market prices. A state or local government's tendency to additionally impose higher taxes on residents to capture those residents' willingness to pay for amenities will inevitably lead to a sort of 'double taxation' of the tax base, as is noted in 'vertical tax competition' studies. The investigation of the effects of such a 'double taxation' is necessarily our next stop.

References

- Berry, W. D., R. C. Fording, and R. L. Hanson (2000) "Annual Cost of Living Index for the American States, 1960-1995," Journal of Politics, vol. 60, no. 2, 550-567.
- [2] Cebula, R. J. (1990) " A Brief Empirical Note on the Tiebout Hypothesis and State Income Tax Policies," Public Choice, 67, 87-89.
- [3] Clark, D. E. and W. J. Hunter (1992) "The Impact of Economic Opportunity, Amenities and Fiscal Factors on Age-Specific Migration Rates," Journal of Regional Science, vol. 32, no. 3, 349-365.
- [4] Conway, K. S. and A. J. Houtenville (1998) "Do the Elderly Vote with their Feet?," Public Choice, 97, 663-685.
- [5] Conway, K. S. and A. J. Houtenville (2001) "Elderly Migration and State Fiscal Policy: Evidence from the 1990 Census Migration Flows," National Tax Journal, vol. 54, no. 1, 103-123.
- [6] Conway, K.S. and J.C. Rork (2006) "State 'Death' Taxes and Elderly Migration- the Chicken or the Egg?," National Tax Journal, vol. LIX, no.1, pp. 97-128.
- [7] Conway, K.S. and J.C. Rork (2008) "Income Tax Preferences for the Elderly," Public Finance Review, 36 (5), 523-562.
- [8] Farnham, M. and P. Sevak (2006) "State Fiscal Institutions and Empty-Nest Migration: Are Tiebout Voters Hobbled?," Journal of Public Economics, 90, pp.407-427.
- [9] Gale, L.R. and W.C. Heath (2000) "Elderly Internal Migration in the United States Revisited," Public Finance Review, vol.28, no.2, pp.153-170.
- [10] Graves, P. E. (1979) "A Life-Cycle Empirical Analysis of Migration and Climate, by Race," Journal of Urban Economics, 6, 135-147.

- [11] Graves, P. E. and D. M. Waldman (1991) "Multimarket Amenity Compensation and the Behavior of the Elderly," American Economic Review, vol. 81, no. 5, 1374-1381.
- [12] Greenwood, M. J., G. L. Hunt, D. S. Rickman, and G. I. Treyz (1991) "Migration, Regional Equilibrium, and the Estimation of Compensating Differentials," American Economic Review, vol. 81, no. 5, 1382-1390.
- [13] Haurin, D. R. (1980) "The Regional Distribution of Population, Migration, and Climate," Quarterly Journal of Economics, 95, 293-308.
- [14] Knoll, M.S. and T.D. Griffith (2003) "Adjusting Taxes for Regional Living Costs and Amenities," The Harvard Law Review Association, vol.116, no.4, pp.987-1025.
- [15] Morgan, K.O. and S. Morgan (2000) "State Rankings 1999," Morgan Quitno Corporation.
- [16] Rhode, P.W. and K.S. Strumpf (2003) "Assessing the Importance of Tiebout Sorting: Local Heterogeneity from 1850 to 1990," American Economic Review, vol.93, no.5, pp.1648-1677.
- [17] Roback, J. (1982) "Wages, Rents, and the Quality of Life," Journal of Political Economy, 90, 1257-1278.
- [18] Schoenblum, J.A. (2001) "2001 Multistate Guide to Estate Planning," Panel Publishers, New York.
- [19] Tiebout, C.M. (1956) "A Pure Theory of Local Expenditures," Journal of Political Economy, vol.64, no.5, pp.416-424.
- [20] Voss, P.R., R. J. Gunderson, and R. Manchin (1988) "Death Taxes and Elderly Interstate Migration," Research on Aging, 10, no. 3, 420-450.
- [21] US Census Bureau (2003) "Internal Migration of the Older Population," Census 2000 Special Report, CENSR-10.

7 Appendix

Proof of Proposition 1:

We obtain from (2) by total differentiation:

$$dU_{n}^{ij} = \frac{1}{p_{j} + t_{j}} \frac{\partial U_{n}}{\partial x} \left(-w_{n} dt_{I_{j}} - c' dd_{ij} + \frac{c \left(d_{ij}\right) - w_{n} \left(1 - t_{I_{j}}\right)}{p_{j} + t_{j}} \left(dt_{j} + dp_{j}\right) \right) + \tag{5}$$

$$+\frac{\partial U_n}{\partial G_j}dG_j + \frac{\partial U_n}{\partial A_j}dA_j$$

Holding other variables constant, we compare a change in public good provision and a change in income tax, which is necessary to keep U_n^{ij} constant:

$$dt_{I_j} = \frac{p_j + t_j}{w_n} \frac{\frac{\partial U_n}{\partial G_j}}{\frac{\partial U_n}{\partial x}} dG_j$$

From axiom 3, we know that any retiree's preferences over public good provision are single peaked, that is "there exist G^* such that $\frac{\partial U_n(x,G^*,A)}{\partial G} = 0$ for given x and A, and there exists A^* such that $\frac{\partial U_n(x,G,A^*)}{\partial A} = 0$ for given x and G. Moreover, for every $G^0 < G^*$, $\frac{\partial U_n(x,G^0,A)}{\partial G} > 0$, and for every $G^1 > G^*$, $\frac{\partial U_n(x,G^1,A)}{\partial G} < 0$." Then, $dt_{I_j} > 0$ if $\frac{\partial U_n}{\partial G_j} > 0$, and $dt_{I_j} < 0$ if $\frac{\partial U_n}{\partial G_j} < 0$.

Similarly, comparing change in level of amenities and change in income tax:

$$dt_{I_j} = \frac{p_j + t_j}{w_n} \frac{\frac{\partial U_n}{\partial A_j}}{\frac{\partial U_n}{\partial x}} dA_j$$

Since any retiree's preferences over level of amenities are single peaked, it follows that $dt_{I_j} > 0$ if $\frac{\partial U_n}{\partial A_j} > 0$, and $dt_{I_j} < 0$ if $\frac{\partial U_n}{\partial A_j} < 0$.

Using the same methodology, one can easily establish the relation between consumption tax and level of amenities or public goods, and the sign of this relation mainly depends on whether $A_j < A^*$ or $G_j < G^*$.

Proof of Proposition 2:

From total differential, we obtain $(dt_j + dp_j) = 0$, hence $dt_j = -dp_j$.

Proof of Proposition 3:

Using the total differential of U_n^{ij} we obtain the following result for changes in distance and income tax:

$$dt_{I_j} = \frac{-c'}{w_n} dd_{ij}$$

Using the total differential of U_n^{ij} we obtain the following result for changes in distance and consumption tax:

$$dt_{j} = \frac{-c'\left(p_{j} + t_{j}\right)}{w_{n}\left(1 - t_{I_{j}}\right) - c\left(d_{ij}\right)} dd_{ij}$$

	<u>in-migration share in total</u> <u>elderly migration (%)</u>		out-migration share in total elderly migration (%)
FL	19.60	NY	10.24
AZ	6.49	FL	9.40
CA	6.29	CA	8.64
ТХ	4.86	IL	5.02
NC	3.44	NJ	4.51
	ratio of in-migration to state's population (%)		ratio of out-migration to state's population (%)
NV	2.55	NV	1.21
AZ	2.14	AZ	0.95
FL	1.96	FL	0.94
DE	1.13	NH	0.93
NH	0.99	OR	0.84
	ratio of in-migration to state's elderly population (%)		ratio of out-migration to state's elderly population (%)
NV	18.88	NV	8.97
AZ	14.28	NH	7.35
FL	10.29	WY	6.79
DE	8.13	NM	6.54
NH	7.83	AZ	6.33

<u>Table 1: Ratio of In-Migration and Out-Migration to Total Migration**, State's Total</u> <u>Population and State's Elderly Population for Top Five States in each Category</u>

**) Total number of elderly migrants for 1995-2000: 1,456,760

Graph 3: Leaving PA, Where did they Migrate to?

Table 2: Interstate Elderly Migration Regressions

	(1)	(2)	(3)	(4)	(5)	(6)
	Inmig	Innetmig	Inmig	Innetmig	Innetmig	Innetmig
neighbor	0.8162	0.3547			0.5339	0.5221
	(12.97)**	(2.22)*			(3.77)**	(3.49)**
Indistance	-1.0804	-0.9967	-1.1483	-1.0708	-1.0115	-1.0281
	(40.76)**	(15.14)**	(36.17)**	(11.60)**	(17.38)**	(17.45)**
Inpopulationto	0.8393	0.6054	0.8064	0.6199	0.7225	0.7083
	(18.83)**	(5.11)**	(16.80)**	(4.24)**	(5.59)**	(5.47)**
Inpopulationfrom	0.9363	0.7782	0.9232	1.0009	0.7107	0.6952
	(20.51)**	(6.81)**	(18.64)**	(9.35)**	(3.98)**	(3.78)**
urbanto	-27.8890	-55.8080	-32.8224	-43.4324	-43.6510	-45.8763
	(4.82)**	(4.48)**	(5.30)**	(3.37)**	(3.62)**	(3.76)**
urbanfrom	-12.7542	-22.7924	-15.8463	-21.8048	-66.2385	-40.5425
	(2.12)*	(1.68)	(2.44)*	(1.67)	(1.97)*	(1.24)
Incrimeto	-1.3810	-3.1073	-1.8560	-2.5924	-2.4450	-2.6095
	(2.89)**	(3.07)**	(3.65)**	(2.62)**	(2.52)*	(2.66)**
Incrimefrom	-0.5408	-1.7943	-0.7788	-0.9153	-6.1071	-3.5565
	(1.05)	(1.46)	(1.42)	(0.79)	(1.90)	(1.13)
temperatureto	0.0012	0.0023	0.0013	0.0030	0.0021	0.0017
	(2.06)*	(1.62)	(2.19)*	(2.07)*	(1.53)	(1.23)
temperaturefrom	0.0020	-0.0016	0.0020	-0.0026	-0.0025	-0.0005
	(3.31)**	(1.05)	(3.22)**	(1.75)	(1.12)	(0.24)
propertytaxincomeratioto	17.2457	40.6023	20.0104	36.7213	36.8904	36.5853
	(3.86)**	(4.59)**	(4.18)**	(3.85)**	(4.20)**	(4.09)**
propertytaxincomeratiofrom	11.6799	27.6537	10.6682	-4.8943	-22.1791	-16.7198
	(2.55)*	(2.57)*	(2.15)*	(0.39)	(1.61)	(1.20)
generalsalestaxincomeratioto	-11.3800	-0.4516	-10.1263	-7.8597	-4.5853	-4.0630
	(3.27)**	(0.06)	(2.64)**	(0.89)	(0.60)	(0.53)
generalsalestaxincomeratiofrom	-11.6041	3.6990	-12.7523	-15.9390	-14.2825	-19.7178
	(3.11)**	(0.42)	(3.06)**	(1.67)	(1.32)	(1.77)
indincometaxincomeratioto	-19.0123	-3.9341	-19.2020	-1.2265	-1.5871	-4.4437
	(4.37)**	(0.47)	(4.09)**	(0.14)	(0.20)	(0.55)
indincometaxincomeratiofrom	-8.9443	3.3779	-9.9360	-38.6151	1.2875	13.9309
	(1.99)*	(0.25)	(2.02)*	(2.57)*	(0.07)	(0.76)
corpincometaxincomeratioto	-10.5176	22.3682	-3.2890	76.3012	70.9971	67.4549
	(0.90)	(0.71)	(0.26)	(1.98)*	(2.04)*	(1.91)
corpincometaxincomeratiofrom	8.6123	-0.3056	10.0896	38.7401	61.6090	35.5446
	(0.74)	(0.01)	(0.78)	(1.65)	(1.13)	(0.65)
othertaxincomeratioto	38.2787	81.6333	42.1656	55.1710	63.4705	60.5194
	(5.13)**	(4.89)**	(5.15)**	(3.15)**	(4.23)**	(3.90)**
othertaxincomeratiofrom	12.6657	30.7428	12.9909	0.6182	-0.2264	-0.5568
	(1.63)	(1.94)	(1.51)	(0.04)	(0.01)	(0.02)
socialsecto	0.1976	-0.0998	0.1935	-0.0095	0.0087	0.0278
	(3.70)**	(0.90)	(3.42)**	(0.08)	(0.08)	(0.26)
socialsecfrom	0.1776	0.0753	0.1773	0.3275	0.0891	0.1071
_	(3.35)**	(0.61)	(3.14)**	(2.33)*	(0.50)	(0.59)
pensionto	-0.5200	-0.8063	-0.6212	-0.4021	-0.3768	-0.4532
	(4.02)**	(3.46)**	(4.56)**	(1.86)	(1.74)	(2.05)*

pensionfrom	-0.0363	-0.1412	-0.0561	-0.6939	0.3294	0.8376
	(0.27)	(0.32)	(0.38)	(1.49)	(0.52)	(1.47)
drugsaleto	1.0240	0.3771	1.1445	0.4156	0.5210	0.5661
	(11.01)**	(1.61)	(11.37)**	(1.58)	(2.18)*	(2.31)*
drugsalefrom	0.6028	0.2104	0.6905	0.7427	0.2227	0.3112
	(6.86)**	(0.94)	(7.47)**	(3.21)**	(0.52)	(0.71)
inheritanceto	0.2492	0.6628	0.2601	0.5231	0.4785	0.4738
	(5.59)**	(6.01)**	(5.41)**	(4.27)**	(4.24)**	(4.07)**
inheritancefrom	0.0167	-0.1315	0.0135	-0.0004	-0.1169	-0.2142
	(0.38)	(1.18)	(0.28)	(0.00)	(0.78)	(1.51)
reducationpercapto	-12.5675	-80.8115	-13.3170	-34.9749	-75.8829	-69.7281
	(0.59)	(2.08)*	(0.58)	(0.88)	(2.19)*	(1.99)*
reducationpercapfrom	15.7676	-130.1967	21.7125	13.4151	-26.2435	-12.1770
	(0.72)	(2.45)*	(0.89)	(0.22)	(0.53)	(0.24)
rhighwayspercapto	12.8896	-96.9277	-19.0536	-74.8913	-63.4880	-57.4101
	(0.35)	(1.20)	(0.47)	(0.89)	(0.84)	(0.75)
rhighwayspercapfrom	63.7847	-7.7981	36.0499	155.8296	-0.9777	-29.3559
	(1.82)	(0.10)	(0.93)	(1.94)	(0.01)	(0.25)
rhealthhosppercapto	77.6395	166.2222	110.5020	109.2750	114.7539	124.9705
	(2.66)**	(2.67)**	(3.56)**	(1.64)	(1.83)	(1.96)
rhealthhosppercapfrom	-15.0345	-11.6543	5.8780	56.8884	145.9241	146.2037
	(0.51)	(0.16)	(0.19)	(0.81)	(1.17)	(1.15)
rpoliceexppercapto	270.3850	-173.3851	374.3915	172.3744	198.6687	254.8959
	(2.51)*	(0.60)	(3.19)**	(0.53)	(0.72)	(0.90)
rpoliceexppercapfrom	246.4005	462.1275	302.6635	160.3986	-249.1431	17.6119
	(2.26)*	(1.82)	(2.61)**	(0.70)	(0.47)	(0.03)
rfireexppercapto	-83.7932	-89.2778	-161.8793	277.8796	-243.7243	-238.8596
	(0.57)	(0.22)	(0.99)	(0.67)	(0.72)	(0.68)
rfireexppercapfrom	-54.3782	-576.8002	-97.0167	-287.7345	503.5377	181.3242
	(0.38)	(1.70)	(0.62)	(0.89)	(0.63)	(0.22)
rparkrecexppercapto	508.2776	1525.0330	642.9306	1307.5490	1286.4180	1247.2560
	(4.01)**	(4.84)**	(4.75)**	(4.30)**	(4.08)**	(3.92)**
rparkrecexppercapfrom	557.2105	298.9487	659.7679	432.9613	141.4861	245.4086
	(4.65)**	(1.10)	(5.22)**	(1.73)	(0.40)	(0.68)
rtransitexppercapto	3.3696	139.5161	-11.0652	-26.0580	53.8068	62.5001
	(0.07)	(1.00)	(0.22)	(0.14)	(0.30)	(0.34)
rtransitexppercapfrom	45.9260	-71.2508	34.8402	74.6250	64.9723	-13.8936
	(0.94)	(0.68)	(0.63)	(0.65)	(0.52)	(0.12)
revenuefedincomeratioto	-11.1047	-42.6839	-12.5046	-29.5959	-26.5199	-27.4769
	(3.45)**	(5.61)**	(3.70)**	(3.53)**	(3.79)**	(3.90)**
revenuefedincomeratiofrom	3.2928	14.5643	3.2271	8.7377	4.7364	4.7703
	(0.98)	(1.84)	(0.88)	(1.13)	(0.34)	(0.34)
totchargesrevpercapto	-1.5594	-2.0974	-1.9311	-1.7999	-1.9278	-2.0174
	(4.82)**	(3.07)**	(5.76)**	(2.38)*	(2.88)**	(3.00)**
totchargesrevpercapfrom	-0.7225	0.3054	-0.9965	-1.6659	-1.0951	-1.4228
	(2.34)*	(0.39)	(3.11)**	(1.90)	(0.82)	(1.03)
densityto	-0.0011	0.0002	-0.0012	-0.0005	-0.0006	-0.0005
	(5.90)**	(0.31)	(5.45)**	(0.72)	(1.10)	(0.95)
densityfrom	-0.0011	-0.0005	-0.0012	-0.0001	-0.0016	-0.0024
	(5.54)**	(0.99)	(5.65)**	(0.30)	(1.75)	(2.83)**
amenityto	0.4912	0.6016	0.4986	0.6953	0.6819	0.6455

	(9.04)**	(4.47)**	(8.51)**	(5.02)**	(5.43)**	(5.10)**
amenityfrom	0.2898	-0.0152	0.3131	0.3769	0.3226	0.2696
	(5.54)**	(0.12)	(5.60)**	(2.80)**	(2.19)*	(1.83)
inter11to	8.5227	14.6924	13.3333	-0.7702	2.5695	6.1896
	(1.61)	(1.44)	(2.34)*	(0.08)	(0.27)	(0.64)
inter11from	-5.6674	10.5292	-4.5556	21.5400	-5.5066	-22.3519
	(1.03)	(0.64)	(0.75)	(1.29)	(0.26)	(1.16)
inter14ato	3.4304	6.4977	4.0471	5.2396	5.2444	5.5126
	(4.87)**	(4.26)**	(5.38)**	(3.33)**	(3.55)**	(3.69)**
inter14afrom	1.6330	2.9338	2.0355	2.7151	8.2698	5.1173
	(2.23)*	(1.75)	(2.59)**	(1.70)	(2.01)*	(1.27)
Incpito	0.0034	-3.8953	-0.2821	-4.5439	-2.8818	-3.0020
	(0.00)	(2.64)**	(0.39)	(2.94)**	(2.20)*	(2.31)*
Incpifrom	2.6063	1.4157	2.8488	2.0229	0.2591	4.5048
	(3.53)**	(0.86)	(3.46)**	(1.11)	(0.07)	(1.27)
Constant	-19.9365	37.0178	-13.6440	19.7569	66.4032	27.9667
	(2.26)*	(1.84)	(1.42)	(0.98)	(1.50)	(0.67)
Observations	2168	1104	1820	508	608	593
Adjusted R-squared	0.83	0.68	0.82	0.86	0.85	0.85

Robust t-statistics in parentheses

* significant at 5% level; ** significant at 1% level

(1) Total Migration regression without adjustment (complete data)

(2) Net Migration regression without adjustment (complete data)

(3) Total Migration regression with distance 4-43, and not including neighbor states

(4) Net Migration regression with distance 8-35, net migration ratio > 0.1855, and not including neighbors

(5) Net Migration regression with origin state's per capita income 20-30, and net migration ratio > 0.13

(6) Net Migration regression with net migration ratio > 0.14

<u>Origin</u>	Destination	<u>Distance</u>	<u>Origin</u>	Destination	<u>Distance</u>	<u>Origin</u>	Destination	<u>Distance</u>
RI	MA	0.525	NE	SD	3.300	CO	NM	5.009
MA	NH	0.887	ND	SD	3.340	KY	AL	5.043
NY	NJ	1.091	NY	MA	3.369	MA	DE	5.088
DE	MD	1.261	AR	MO	3.384	KY	MI	5.170
PA	MD	1.347	DE	СТ	3.409	AR	KS	5.202
NH	RI	1.400	WV	NC	3.414	AL	LA	5.225
СТ	RI	1.449	IN	MI	3.417	MI	WV	5.294
DE	NJ	1.539	CA	NV	3.496	WV	DE	5.296
NH	VT	1.639	OH	IN	3.526	WY	UT	5.378
MA	СТ	1.699	TN	GA	3.531	DE	VT	5.430
VA	MD	1.739	NJ	MA	3.571	MO	OK	5.475
СТ	NY	1.771	NH	NY	3.582	UT	NV	5.487
PA	DE	1.852	IA	MO	3.635	NE	MN	5.551
СТ	NJ	1.879	CO	WY	3.652	PA	NC	5.552
SC	NC	2.042	KY	OH	3.655	NH	DE	5.559
NH	ME	2.094	AR	MS	3.901	SD	MN	5.583
NH	СТ	2.177	VT	NJ	3.984	VT	PA	5.590
NY	DE	2.301	NH	NJ	4.020	NE	OK	5.615
VT	MA	2.319	WV	MD	4.041	WV	IN	5.618
TN	KY	2.321	PA	WV	4.111	VA	OH	5.621
IN	IL	2.394	СТ	ME	4.230	NC	DE	5.624
WI	IL	2.528	OK	AR	4.289	AZ	NM	5.627
KY	IN	2.567	PA	СТ	4.326	TN	SC	5.647
OH	WV	2.580	NJ	VA	4.340	SC	KY	5.653
СТ	VT	2.587	TN	IN	4.370	NY	ME	5.669
MA	ME	2.621	KS	MO	4.382	PA	OH	5.673
LA	MS	2.638	IA	WI	4.417	IL	OH	5.687
PA	NY	2.645	IA	NE	4.423	PA	RI	5.773
NJ	PA	2.648	WI	IN	4.496	MS	GA	5.775
RI	VT	2.699	MI	IL	4.499	NC	OH	5.812
MD	NJ	2.699	LA	AR	4.522	SC	AL	5.826
MI	OH	2.777	KY	WV	4.524	TN	IL	5.830
OR	WA	2.779	TN	MS	4.543	NV	AZ	5.867
VA	DE	2.808	MD	СТ	4.573	MT	WY	5.896
PA	VA	2.818	NC	MD	4.598	NE	MO	5.925
AL	TN	2.819	KY	IL	4.679	LA	TX	5.937
AL	MS	2.860	GA	KY	4.682	TN	OH	5.938
VA	NC	2.860	OK	TX	4.688	RI	MD	5.950
NE	KS	2.864	ID	MT	4.691	FL	GA	5.970
OK	KS	2.872	IA	IL	4.718	PA	MA	5.992
GA	AL	2.916	IL	MO	4.723	KY	NC	6.013
SC	GA	2.922	WV	SC	4.737	ME	NJ	6.098
RI	ME	3.089	DE	RI	4.740	OH	MD	6.100
ME	VT	3.103	GA	NC	4.752	KS	SD	6.130
VA	WV	3.153	WI	MN	4.816	MO	IN	6.140
VT	NY	3.158	SC	VA	4.902	ND	MN	6.145
MD	NY	3.195	WI	MI	4.907	MO	WI	6.159
NY	RI	3.206	VA	NY	4.929	AR	AL	6.171
RI	NJ	3.256	IA	KS	4.945	VA	CT	6.216
MN	IA	3.294	UT	ID	4.992	TN	AR	6.220

Table 3: Distance Between Population Centers of States

|--|

<u>Origin</u>	Destination	<u>Distance</u>	<u>Origin</u>	Destination	Distance	<u>Origin</u>	Destination	<u>Distance</u>
NH	PA	6.224	DE	ME	7.635	AR	GA	8.882
GA	WV	6.232	AL	MO	7.654	SD	MO	8.885
SC	FL	6.268	CO	SD	7.656	MN	IN	8.892
MA	MD	6.269	SC	DE	7.661	IA	MI	8.925
TN	WV	6.320	MO	LA	7.770	UT	CA	8.966
MO	TN	6.333	AR	NE	7.782	WY	ND	8.999
VT	MD	6.342	NY	NC	7.790	CO	AZ	9.024
TX	AR	6.346	AZ	CA	7.810	IL	NE	9.024
SD	IA	6.348	KY	AR	7.826	NC	СТ	9.025
MS	MO	6.405	MS	OK	7.850	IA	TN	9.069
UT	MT	6.412	VA	MA	7.895	KS	MS	9.103
ND	NE	6.486	MS	TX	7.963	MO	MI	9.129
IL	MN	6.522	WV	IL	7.966	GA	IL	9.137
NJ	WV	6.607	CO	NE	7.979	MO	TX	9.142
MD	SC	6.638	NC	FL	8.003	GA	MD	9.154
SC	OH	6.671	LA	GA	8.032	IN	PA	9.190
MD	NH	6.672	NM	UT	8.045	KS	WI	9.198
NC	TN	6.734	IN	NC	8.046	NJ	SC	9.199
NY	WV	6.756	IN	SC	8.057	OK	CO	9.234
UT	CO	6.762	NM	WY	8.080	LA	KS	9.270
MS	KY	6.812	VT	VA	8.081	MS	FL	9.279
AR	IA	6.896	WY	SD	8.082	DE	MI	9.282
MN	MO	6.922	AR	IN	8.107	FL	TN	9.311
MO	KY	6.941	VA	MI	8.143	ND	KS	9.350
KY	WI	7.013	OH	NY	8.169	WI	AR	9.358
IA	IN	7.021	MI	MD	8.259	MI	SC	9.373
OH	WI	7.045	ID	WY	8.274	LA	KY	9.443
UT	AZ	7.066	WV	AL	8.282	CO	MT	9.463
NC	NJ	7.164	MS	IN	8.296	MD	IN	9.519
ID	NV	7.173	IA	ND	8.296	GA	MI	9.539
AL	IN	7.180	PA	ME	8.303	NM	OK	9.557
TN	LA	7.181	OH	NJ	8.321	WI	WV	9.568
WA	ID	7.193	WI	TN	8.349	WV	VT	9.609
OH	GA	7.236	NH	VA	8.355	MI	NY	9.622
IN	GA	7.239	СТ	WV	8.401	OH	MO	9.624
OH	DE	7.269	IL	AL	8.433	NM	TX	9.680
LA	OK	7.274	OH	AL	8.490	MI	MN	9.700
AL	FL	7.310	MD	KY	8.550	WY	NE	9.720
MN	KS	7.374	PA	KY	8.587	GA	MO	9.732
IA	OK	7.403	MI	NC	8.588	ID	CA	9.746
VA	KY	7.406	IL	KS	8.631	DE	KY	9.809
MI	TN	7.413	SC	MS	8.686	OR	CA	9.818
ID	OR	7.462	KS	CO	8.731	ND	CO	9.821
GA	VA	7.478	OK	SD	8.734	NV	OR	9.830
AR	IL	7.485	ME	MD	8.763	NY	SC	9.831
PA	MI	7.491	IN	VA	8.765	WV	RI	9.836
RI	VA	7.538	NE	WI	8.780	GA	PA	9.849
AL	NC	7.543	TN	VA	8.782	OH	CT	9.927
SC	PA	7.549	IL	MS	8.796	MS	IA	10.010
KS	TX	7.559	KY	IA	8.843	NJ	MI	10.041

Table 3: Di	stance	Betwee	n Popula	tion	Centers	s of Sta	ates	(cont'd)	
			-						

<u>Origin</u>	Destination	Distance	<u>Origin</u>	Destination	Distance	Origin	Destination	Distance
ŴI	SD	10.048	VA	IL	11.119	CA	WA	12.098
WV	MA	10.085	NJ	KY	11.129	AL	PA	12.230
AL	VA	10.115	KY	MN	11.152	TN	NE	12.254
OK	MN	10.148	WI	MS	11.178	SC	RI	12.305
MD	TN	10.168	NH	NC	11.183	AR	WV	12.321
MN	AR	10.180	AL	KS	11.189	NY	GA	12.325
IL	OK	10.185	IN	NE	11.189	FL	MD	12.338
AL	MI	10.201	AR	OH	11.214	WI	PA	12.364
TX	NE	10.241	NY	KY	11.224	WY	OK	12.394
FL	LA	10.243	WI	OK	11.290	IA	CO	12.401
NV	NM	10.282	KS	WY	11.292	NC	WI	12.407
GA	DE	10.285	KS	KY	11.313	WV	ME	12.409
RI	NC	10.295	IL	PA	11.334	SD	MT	12.476
IL	SC	10.318	WV	MO	11.338	IL	ND	12.537
NH	WV	10.334	CO	NV	11.344	WI	SC	12.549
NC	MS	10.365	AZ	ID	11.360	GA	IA	12.599
AL	OK	10.398	OH	RI	11.372	NE	KY	12.622
OH	IA	10.406	LA	IA	11.373	WV	IA	12.639
IN	KS	10.416	СТ	MI	11.379	VA	WI	12.665
IL	NC	10.425	TN	DE	11.419	SC	MA	12.702
TN	PA	10.425	MI	VT	11.421	MI	NH	12.711
MT	WA	10.428	MI	AR	11.458	OH	FL	12.734
ME	VA	10.438	ND	MO	11.465	NC	LA	12.750
TN	OK	10.439	WA	NV	11.482	MI	RI	12.770
MS	OH	10.463	UT	OR	11.510	NC	MO	12.815
AZ	WY	10.477	IN	OK	11.517	MA	MI	12.821
KS	TN	10.481	MA	ОН	11.526	TN	NJ	12.839
NM	KS	10.528	OR	MT	11.559	MS	VA	12.849
OH	VT	10.567	TX	CO	11.589	DE	AL	12.901
KY	FL	10.642	SC	AR	11.592	KY	СТ	12.905
VA	FL	10.655	GA	WI	11.594	NC	AR	12.918
MA	NC	10.682	OH	NH	11.598	CO	MN	12.948
IN	DE	10.727	MS	NE	11.630	DE	IL	12.956
WV	MS	10.743	MS	MI	11.640	SC	VT	12.980
IN	LA	10.797	NY	IN	11.694	NM	ID	13.032
NV	WY	10.806	MD	AL	11.710	WI	MD	13.036
AL	ТХ	10.820	IL	MD	11.778	CA	NM	13.040
NV	MT	10.910	KY	OK	11.802	TN	NY	13.067
VT	NC	10.940	NJ	GA	11.816	CO	MO	13.093
AL	IA	10.942	OH	MN	11.821	FL	DE	13.095
SC	LA	10.945	IN	NJ	11.837	OH	LA	13.096
WI	AL	10.957	ТХ	IA	11.841	MT	NM	13.126
WI	ND	10.958	MN	TN	11.843	KS	MI	13.129
FL	WV	11.002	ND	MT	11.888	AR	FL	13.145
ID	CO	11.004	NM	SD	11.920	GA	OK	13.162
IL	SD	11.017	WA	UT	11.925	IN	FL	13.205
IL	LA	11.017	SC	MO	11.961	SD	TX	13.208
SC	СТ	11.055	TN	ТХ	12.014	NH	SC	13.218
AR	SD	11.056	OK	ND	12.040	ME	NC	13.255
NE	NM	11.088	LA	NE	12.054	LA	WI	13.259

Table 3: Distance	Between Pop	ulation Centers	of States	(cont'd)

<u>Origin</u>	Destination	<u>Distance</u>	<u>Origin</u>	Destination	<u>Distance</u>	<u>Origin</u>	Destination	<u>Distance</u>
MN	MS	13.259	CO	CA	14.717	OK	SC	15.879
NE	MI	13.340	MN	TX	14.766	VT	TN	15.911
LA	WV	13.350	KY	NH	14.779	PA	IA	16.043
SD	UT	13.353	MS	PA	14.800	FL	TX	16.065
SD	IN	13.359	NY	AL	14.808	ID	SD	16.091
CO	AR	13.378	NC	IA	14.836	TN	RI	16.092
AL	NE	13.420	MS	SD	14.870	ND	ID	16.106
IN	СТ	13.453	RI	IN	14.898	KS	AZ	16.115
AZ	MT	13.454	OH	OK	14.908	KS	SC	16.121
FL	PA	13.463	NE	MT	14.909	WI	VT	16.191
ME	OH	13.581	SD	MI	14.920	FL	СТ	16.261
MN	WY	13.663	ND	IN	14.930	CT	WI	16.281
GA	KS	13.664	WI	NJ	14.940	AL	СТ	16.283
GA	СТ	13.693	FL	MO	14.963	AR	MD	16.295
IL	TX	13.710	AR	VA	14.981	WY	AR	16.309
GA	TX	13.729	GA	RI	15.006	CO	LA	16.323
NY	IL	13.737	IN	MA	15.046	OK	WV	16.325
NM	AR	13.773	FL	IL	15.076	TN	MA	16.370
KY	VT	13.921	NH	IN	15.097	NE	AZ	16.404
OH	KS	13.935	SD	TN	15.100	PA	AR	16.409
TX	KY	13.953	SD	KY	15.147	MD	IA	16.494
MT	CA	13.974	OK	AZ	15.158	SD	AL	16.515
NJ	IL	13.977	WY	TX	15.172	TX	ND	16.547
WY	IA	13.978	IA	NM	15.184	MN	NM	16.580
AL	MN	13.983	MO	PA	15.213	MO	DE	16.620
VT	IN	14.006	MI	FL	15.282	TX	SC	16.646
ND	AR	14.030	ME	SC	15.285	NH	TN	16.648
DE	WI	14.120	TX	WI	15.291	AZ	SD	16.655
LA	MI	14.182	LA	VA	15.338	OH	SD	16.680
WV	MN	14.297	WY	WA	15.342	WI	CO	16.745
WY	CA	14.301	GA	MN	15.345	WV	NE	16.759
VA	MO	14.334	SD	LA	15.354	SC	MN	16.806
KY	RI	14.346	MA	GA	15.372	ME	KY	16.830
UT	ND	14.353	MO	MD	15.373	NM	MS	16.875
MS	MD	14.388	FL	NY	15.390	MT	KS	16.888
IA	SC	14.395	NM	LA	15.393	IL	CO	16.917
AL	NJ	14.406	GA	VT	15.419	LA	MD	16.919
TX	IN	14.451	WY	MO	15.448	RI	IL IL	16.938
UT	NE	14.515	KS	UT	15.492	MN	NC	16.938
MI	ME	14.523	СТ	IL	15.507	IL	NH	17.020
WI	NY	14.527	DE	MS	15.606	KY	ND	17.033
ND	NM	14.551	AZ	OR	15.640	IL	MA	17.046
FL	NJ	14.552	GA	NE	15.647	ME	IN	17.054
MA	KY	14.578	OR	WY	15.706	AZ	WA	17.061
MI	OK	14.602	KS	WV	15.719	CO	MS	17.081
AZ	TX	14.643	VA	IA	15.785	FL	OK	17.085
LA	MN	14.666		VT	15.816	NJ	MS	17.087
OH	NE	14.671	ND	MI	15.820	NC	KS	17.116
TN	СТ	14.675	NH	GA	15.822	OK	NC	17.167
NM	MO	14.692	UT	OK	15.824	MN	PA	17.176

Origin	Destination	Distance	Origin	Destination	Distance	Origin	Destination	Distance
RI	FL	17.279	IL	ME	18.906	 FL	ME	20.367
TX	UT	17.342	UT	IA	18.912	ND	WV	20.418
ND	TN	17.362	NJ	AR	18.923	AL	ME	20.458
LA	PA	17.383	MN	UT	18.929	LA	AZ	20.546
NY	MS	17.418	MN	DE	18.936	SD	SC	20.608
VA	MN	17.425	СТ	MS	18.954	AZ	IA	20.650
TX	OH	17.472	CO	IN	18.954	MS	MA	20.652
WI	NH	17.547	SD	WV	18.973	NE	FL	20.686
FL	WI	17.553	NY	AR	19.049	TX	VA	20.704
DE	AR	17.554	ND	AL	19.094	MD	NE	20.707
AL	RI	17.641	VA	OK	19.120	AR	СТ	20.720
WI	RI	17.663	OR	NM	19.127	VT	MN	20.799
DE	IA	17.674	NM	IL	19.155	MT	MO	20.815
MA	WI	17.697	TN	CO	19.167	IN	NM	20.831
MN	MT	17.699	ME	WI	19.290	GA	ND	20.890
MS	ND	17.726	MN	NY	19.296	WY	IN	20.899
MA	FL	17.750	NE	NV	19.323	MO	RI	20.969
NY	MO	17.776	AZ	AR	19.327	NH	MS	20.994
MI	TX	17.801	ID	KS	19.477	DE	KS	20.995
VT	AL	17.816	MO	СТ	19.520	MN	СТ	21.039
NJ	MO	17.838	NV	OK	19.533	TX	MT	21.045
MD	MN	17.848	CO	AL	19.549	FL	MN	21.120
SC	NE	17.864	KS	PA	19.564	MA	MO	21.141
GA	ME	17.910	NM	WI	19.586	SD	NC	21.156
ND	OH	17.961	LA	NJ	19.617	MO	NH	21.221
MA	AL	17.977	LA	WY	19.629	CO	MI	21.300
ID	NE	17.991	AL	NM	19.643	NM	KY	21.339
WY	WI	18.039	NJ	MN	19.740	LA	СТ	21.491
DE	LA	18.119	KS	MD	19.751	MN	ID	21.572
CO	OR	18.146	ND	NV	19.804	IA	RI	21.601
FL	IA	18.191	KS	NV	19.811	OK	DE	21.609
WA	CO	18.197	UT	MO	19.848	IA	NH	21.619
MT	OK	18.233	VA	NE	19.867	MA	IA	21.688
NC	TX	18.311	NM	WA	19.883	AR	VT	21.716
KS	FL	18.321	NV	TX	19.913	WY	TN	21.729
WV	TX	18.323	TN	NM	19.979	MN	AZ	21.749
NH	AL	18.364	NY	LA	19.986	NE	DE	21.915
NY	IA	18.410	KY	CO	20.033	AR	MT	22.019
NH	FL	18.420	AR	UT	20.053	CA	SD	22.053
LA	ND	18.443	WY	MS	20.137	NY	KS	22.103
FL	VT	18.520	VT	MO	20.146	VA	SD	22.123
SD	GA	18.577	СТ	IA	20.180	RI	AR	22.157
SD	NV	18.582	OK	ID	20.238	MD	TX	22.165
NC	NE	18.608	MO	AZ	20.316	TX	ID	22.175
IL	WY	18.681	RI	MS	20.337	KS	NJ	22.197
NJ	IA	18.683	PA	NE	20.341	ID	IA	22.202
VA	KS	18.713	VT	IA	20.346	CO	GA	22.209
TN	ME	18.727	OK	MD	20.349	MN	NH	22.215
AZ	ND	18.766	PA	OK	20.349	AZ	MS	22.250
IA	MT	18 798	MS	VT	20 350	SD	PA	22 258

Table 3: Distance Between Population Centers of States (cont'd)

Origin	Destination	Distance	Origin	Destination	Distance	Origin	Destination	Distance
ND	WA	22.290	ND	MD	23.993	FL	CO	26.315
WY	KY	22.305	NV	MN	24.104	MA	OK	26.331
MA	AR	22.399	MO	NV	24.184	ND	FL	26.394
MN	RI	22.403	OH	NM	24.309	AZ	IN	26.454
MA	MN	22.413	AR	ID	24.346	NH	OK	26.472
MT	WI	22.422	WY	OH	24.359	WY	WV	26.479
TX	CA	22.426	KS	VT	24.380	KS	WA	26.616
TX	PA	22.433	CO	WV	24.394	СТ	TX	26.689
WY	AL	22.436	SD	NY	24.530	NM	NC	26.691
OH	CO	22.476	NE	СТ	24.531	VT	ND	26.724
GA	NM	22.510	ME	AR	24.651	AR	CA	26.781
CA	OK	22.521	OK	СТ	24.675	KY	UT	26.788
AR	NH	22.604	IL	AZ	24.745	OR	KS	26.789
LA	UT	22.645	NE	VT	24.760	ID	IL	26.917
ND	SC	22.648	SC	CO	24.782	AZ	KY	26.954
NE	CA	22.686	NJ	TX	24.847	IA	CA	27.098
NY	NE	22.761	SD	NJ	24.879	MS	NV	27.105
MD	SD	22.780	WY	GA	24.955	ND	СТ	27.106
WA	SD	22.820	NE	WA	24.991	MT	TN	27.148
MI	WY	22.839	AL	AZ	25.065	LA	ID	27.276
RI	LA	22.859	AZ	WI	25.067	OR	OK	27.317
OK	NJ	22.923	ND	DE	25.076	MI	MT	27.326
NC	ND	22.947	TX	NY	25.077	MO	CA	27.364
LA	VT	22.948	RI	KS	25.303	WY	SC	27.376
OK	NY	22.963	SC	NM	25.317	VA	CO	27.424
NJ	NE	22.988	ND	NY	25.377	WA	OK	27.431
CA	KS	23.015	NE	OR	25.425	ME	KS	27.449
MS	ME	23.086	MA	KS	25.460	KY	MI	27.485
VVI	UI	23.134	<u>VI</u>	OK	25.474	CA	MN	27.556
MA	LA	23.188	LA	MI	25.492	SD	NH	27.595
MO	ME	23.191	KS	NH	25.509	SD	RI	27.690
ND	CA	23.299	IN	AZ	25.546	SD	MA	27.737
ND		23.307		FL IN	25.633		MI	27.835
		23.395			25.640		NE	27.860
	DE	23.407		ME	25.649			27.866
		23.448			25.675	AZ	GA	27.960
		23.491			25.819			28.076
		23.335			20.039			20.001
	30	23.340			20.000			20.003
		23.000			25.650			20.102
		23.335			25.009			20.122
		23.034			25.922			20.144
		23.000			20.901			20.109
		23.701			20.010			20.220
		23.743			20.003			20.204
		23.010			20.121			20.301
		23.019			20.137			20.004
MN		23.000			20.211	MA		20.400
		23.000			20.200		עא וס	20.433
50		20.000	30		20.234	שא	INI	20.447

<u>Origin</u>	Destination	Distance	<u>Origin</u>	Destination	Distance	Origin	Destination	Distance
ME	OK	28.481	AZ	NC	32.235	RI	WY	35.572
NH	TX	28.657	NY	WY	32.385	SC	ID	35.596
VA	NM	28.677	СТ	CO	32.391	RI	NM	35.614
OR	TX	28.718	NM	NY	32.436	WY	MA	35.648
GA	UT	28.918	NM	NJ	32.440	NM	MA	35.805
MN	OR	29.000	UT	NC	32.601	ME	CO	35.809
IA	WA	29.078	OH	ID	32.602	NM	NH	35.907
OH	UT	29.151	NV	MI	32.636	NV	FL	35.914
MT	OH	29.156	NJ	WY	32.658	CA	MI	35.956
IN	ID	29.158	GA	NV	32.662	WA	IN	36.084
AZ	MI	29.242	AL	CA	32.681	DE	UT	36.353
TX	WA	29.262	CO	VT	32.712	MT	DE	36.411
SD	ME	29.325	SC	MT	32.771	ID	NC	36.515
WY	FL	29.415	FL	UT	32.800	OR	IN	36.604
VA	WY	29.586	WI	WA	32.823	NC	NV	36.672
DE	CO	29.642	TN	CA	32.959	AZ	DE	36.764
IA	OR	29.660	GA	ID	33.113	NY	MT	36.947
ND	ME	29.773	CA	IN	33.426	OH	CA	36.949
NV	AL	29.831	MT	NC	33.492	TN	WA	37.071
PA	NM	29.843	WI	OR	33.594	TN	OR	37.269
NM	MD	29.889	NV	OH	33.719	NY	UT	37.270
MS	CA	29.902	WA	IL	33.793	FL	ID	37.318
AZ	OH	29.935	CO	RI	33.830	ME	WY	37.325
NV	TN	29.938	NH	CO	33.937	NJ	MT	37.330
TN	ID	29.951	CO	MA	33.953	NJ	UT	37.472
PA	WY	30.015	LA	OR	34.140	KY	WA	37.611
IN	NV	30.192	WY	СТ	34.155	AL	OR	37.686
MD	WY	30.417	CT	NM	34.166	AL	WA	37.693
MI	GA	30.484	01	VA	34.170	WA	MI	37.720
AL	ID	30.513	CA	KY VT	34.194		VA	37.858
	KY	30.576	VVY	VI	34.223	ME	NM	37.883
00	NY	30.624	AZ	VA	34.273	OR	KY	37.974
AZ	FL TV	30.705		IL	34.373	NJ	AZ	38.062
ME		30.730		VVA	34.453	AZ	NY	38.063
VVA	MO	30.786	MI	VA	34.583	PA		38.244
INJ	00	30.790		PA	34.719		SC	38.349
AZ		30.803			34.747	UR		38.454
		30.993			34.824			38.473
		31.069			34.830			38.491
		31.070	MS		35.127			38.492
		31.125			35.158			38.073
		31.148		MI	35.162			38.077
		31.43/			35.200			30.703
		31.401			35.273			30.040
		31.474			35.411		V I NI\/	39.200
		31.517		Δ7	35.409			30.307
	SC	31 525		NV	35 521			30 557
		31 530		NH	35 549	C.A	NC	39.688
	WY	31 617	C.A	GA	35 550	Δ7	CT	39 792
	** :	0017		<u> </u>	00.000	/ \	<u> </u>	55.1 UZ

Table 3: Distance Between Population Centers of States (cont'd)

<u>Origin</u>	Destination	<u>Distance</u>	<u>Origin</u>	Destination	<u>Distance</u>
DE	ID	39.867	MD	WA	45.570
MT	NH	39.915	PA	OR	45.703
OH	OR	40.056	OR	MD	46.122
RI	MT	40.081	WA	DE	46.743
MT	MA	40.104	CA	СТ	46.871
WA	GA	40.271	ME	NV	47.130
GA	OR	40.354	OR	DE	47.319
AZ	VT	40.457	CA	VT	47.333
RI	UT	40.473	NY	WA	47.340
NH	UT	40.528	WA	NJ	47.699
UT	MA	40.578	NY	OR	48.043
ID	NY	40.580	RI	CA	48.318
NV	DE	40.804	OR	NJ	48.343
ID	NJ	40.883	CA	MA	48.473
RI	AZ	41.240	NH	CA	48.506
MA	AZ	41.432	WA	VT	48.919
NH	AZ	41.533	WA	СТ	49.100
ME	MT	41.565	VT	OR	49.769
CA	VA	41.583	СТ	OR	49.810
WV	WA	41.695	NH	WA	50.336
NV	NY	41.885	CA	ME	50.419
NV	NJ	42.004	RI	WA	50.486
OR	WV	42.183	WA	MA	50.516
ID	VT	42.319	NH	OR	51.141
ID	СТ	42.348	RI	OR	51.217
UT	ME	42.358	OR	MA	51.275
PA	CA	42.574	WA	ME	51.993
CA	MD	42.717	ME	OR	52.861
WA	SC	42.718			
SC	OR	42.902			
ME	AZ	43.507			
NC	WA	43.581			
СТ	NV	43.645			
NH	ID	43.683			
RI	ID	43.755			
MA	ID	43.814			
NC	OR	43.883			
DE	CA	43.970			
VT	NV	44.037			
OR	FL	44.309			
WA	FL	44.511			
VA	WA	44.827			
PA	WA	45.076			
RI	NV	45.090			
CA	NY	45.117			
NJ	CA	45.202			
NV	MA	45.230			
NV	NH	45.239			
VA	OR	45.285			
ID	ME	45.413			

Table 3: Distance Between Population Centers of States (cont'd)

Table 4: State Personal Real Income(per capita figures, in 2003 US Dollars)

u <u>res, in 2003 US Dollars)</u>					
<u>State</u>	<u>Real Income</u>				
СТ	32,282				
NJ	30,053				
MA	28,621				
NY	28,049				
MD	27,326				
IL	25,780				
NH	25,698				
NV	25,558				
CA	25,429				
CO	25,373				
DE	25,357				
MN	25,060				
WA	25,015				
VA	24,902				
PA	23,938				
RI	23,730				
MI	23,721				
FL	23,342				
OH	22,933				
WI	22,816				
OR	22,656				
KS	22,391				
NE	22,383				
GA	22,356				
WY	22,138				
ТХ	22,079				
MO	22,061				
IN	21,874				
NC	21,854				
VT	21,783				
IA	21,547				
TN	21,307				
ME	20,825				
AZ	20,766				
SD	20,532				
ND	19,863				
ID	19,715				
SC	19,645				
AL	19,601				
OK	19,556				
KY	19,472				
LA	19,144				
UT	19,091				
MT	18,919				
NM	18,531				
AR	18,272				
WV	17,979				
MS	17,053				