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CHAPTER 1

INTRODUCTION

This dissertation aims to thoroughly explore some complexities one can face while
handling large dimensional data and provide some ready-to-use alternatives to address
critical issues. We specifically focus on electronic medical record (EMR) data in
Chapter 2 and task-induced functional magnetic resonance imaging (fMRI) data in
Chapters 3 - 4. In this introduction Chapter, we provide some general backgrounds
that are directly related to the data we explore and conclude with an outline of the
work proposed in Chapters 2 - 4.

1.1 Phenome-Wide Association Studies (PheWAS) in EMR Data
Similar to Genome-wide association studies (GWAS), Phenome-wide association

studies scan through the phenotypes in the database with specific genotype of interest.
The goal for PheWAS is to explore disease comorbidities related to the genotype of
interest and can benefit the downstream analyses (i.e., drug repurpose or targeted
treatments). Phecodes, billing code-derived disease case-control status, are usually
used as binary outcome variables in PheWAS and logistic regression has been the
standard choice of analysis method. Since the clinical diagnoses in EMR are often
inaccurate with errors, which can lead to biases in the odds ratio estimates, much
effort has been put to accurately define the cases and controls to ensure an accurate
analysis.

1.1.1 The Need for Exclusion Criteria Lists
Denny et al. (2016) realized this limitation and tried to come up with an automatic

process to correctly classify the controls. Specifically, in order to correctly classifying
controls in the population, an exclusion criteria list for each Phecode was manually
compiled by a group of physician to obtain unbiased odds ratios. The proposed
PheWAS diagnosis diagram is as follow. If a subject has two or more ICD 9 codes
on different days that map to the Phecode of interest, the subject is categorized as a
case. If a subject has only 1 ICD 9 that map to the Phecode of interest, the subject is
excluded from the analysis. If a subject does not have any ICD 9 code that maps to
the Phecode of interest nor any ICD 9 code on the exclusion criteria list, the subject is
then categorized as a true control. Otherwise, the subject is excluded for the analysis.
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However, even with only 1800 Phecodes, it took around two years or more to fully
compile the exclusion criteria lists for all Phecodes. In addition, the comorbidities
of the diseases are still largely unknown. Therefore, the accuracy of the list cannot
be guaranteed without extensive data curation process. The costly curation process
limits the efficiency of large-scale analyses that take full advantage of all structured
phenotypic information available in EMR.

1.1.2 Study Designs in PheWAS with EMR Data
In Chapter 2, we focus on the study designs in EMR data. In general, there are

two well-known study designs. The first design is the case-control design where the
investigators collect data based on the outcome of interest. The exposure status of
each subject is also recorded. The second design is the cohort design where data are
collected based on the exposure of interest. Each subject is followed up to examine
the case status, prospectively or retrospectively. In PheWAS, the genotype of interest
can be viewed as the exposure and the various phenotypes can be viewed as outcomes.
Therefore, instead of case-control studies, the study design in PheWAS resembles a
retrospective cohort design more. We later show that the desired nature of a different
estimator, valid in cohort studies, allows us to bypass the need for exclusion criteria
lists. PheWAS can be efficiently extended to a larger-scale, phenome construction
agnostic analysis of phenotypes, which use ICD 9/10 codes, preserve much more
disease-related clinical information than Phecodes.

1.2 Task-induced fMRI Data Analysis
Functional magnetic resonance imaging (fMRI) is a tool that measures brain ac-

tivities by detecting dynamic changes associated with blood flow. As the neuronal
activities of a brain region increase, the oxygen consumption and the blood flow in-
crease. The blood-oxygen-level-dependent (BOLD) signal then serves as an indirect
measurement for neuronal activities in fMRI data. In this dissertation, we focus
on task-induced fMRI data which measure the contrasts between stimuli of interest.
With task-induced fMRI analysis, the investigators can learn about the regions of the
brain associated with specific task of interest.
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1.2.1 Pipeline to preprocess the data
To obtain task-induced fMRI brain images, multiple subjects are usually recruited.

These subjects are asked to perform a specific task (i.e., finger tapping or reacting
to different images). For each subject, the brain is scanned by the MRI machine for
BOLD signals at various time points. At the end, we can collect the time series of
BOLD signals for each subject. Before we can begin the analysis, several preprocess-
ing steps must be performed. These preprocessing steps are usually standardized but
can vary between different experiments. Some major steps include slice-time correc-
tion, motion correction, co-registration, normalization, high and low-pass temporal
filtering. These steps ensure the processed data are free of any contamination that
is not directly related to neural activity. Lastly, spatial smoothing is often applied
before the analysis. Due to the noisy nature of the data, spatial smoothing is an im-
portant preprocessing step to increase the signal-to-noise ratio (SNR). After a series
of preprocessing steps, the data are ready for analysis. Due to the large number of
comparisons, multiple correction methods are usually used to obtain appropriate sta-
tistical inference in fMRI data analysis. Common multiple correction methods include
controlling for family-wise error rates (random field theory, RFT) and false discovery
rates (FDR). Controlling for family-wise error rates provide strong control over the
number of false positives, but tends to be conservative, leading to low power. Con-
trolling for FDR is more liberal and preferable method nowadays to better balance
the false positives and power. Both methods rely on p-values.

1.2.2 Second-generation p-values
There are several drawbacks of p-value including interpretation issues and sepa-

ration with clinical significance. At first, p-value was created to measure the prob-
ability of obtaining the result or more extreme based on current data assuming null
hypothesis is true. After being incorporated as a measurement for hypothesis test-
ing, p-value is sometimes misinterpreted as Type I error rate or false discovery rate,
leading to confusion of the definition of p-value. More and more discussion has been
surrounding the difference between statistical and clinical significance. In traditional
hypothesis testing, null hypothesis is set at a point (i.e., 0). When the result rejects
the null hypothesis, there might be points in the alternative hypothesis that are not
clinically different from the null. We call the result statistically significant but not
necessarily clinically meaningful. In order to address these drawbacks of p-value,
Blume et al. (2018) introduced second-generation p-values (SGPV). By expanding
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the null hypothesis from a point to an interval, points that are not clinically mean-
ingful are incorporated as an interval null for hypothesis testing. SGPV is simply the
proportion of observed data that support the null hypothesis. With convenient inter-
pretation and the incorporation of interval null, SGPV overcomes the long-standing
drawbacks of p-values. In our dissertation, we introduce SGPV as a new inference
tool in task-induced fMRI analysis to better balance between Type I and II error
rates.

1.3 Dissertation Focus
Due to the large dimensionalities of the data we focus on, regular statistical meth-

ods might not work well, forcing the researchers to develop new techniques to account
for it. However, the additional noisy nature of the biomedical large dimensional data
makes statistical analyses even more complex.

1.3.1 General problems
In PheWAS analysis, the prevalence of the outcomes varies largely, leading to

difficulties in convergence of more sophisticated new methods. These newly-developed
methods are usually computationally burdensome and the convergence of the models
cannot be guaranteed. Therefore, efficient estimation methods are critically in need.
In task-induced fMRI data analysis, multiple preprocessing steps are required to
reduce and correct for noise. These steps are usually necessary and standardized in
researcher’s analysis pipelines. However, these steps, if not carefully considered, could
be influential on statistical inference. The frequentist inference approaches in task-
induced fMRI data analysis tend to be either far too conservative or they fail to correct
for multiple comparisons. Novel methods have been proposed. These methods are
mostly computational burdensome and focus solely on ensuring the correct nominal
family-wise Type I error rates. However, more and more literature (Slotnick (2017))
are now claiming that the ignorance of Type II error rates could severely hinder the
scientific discoveries. A good method should balance both Type I and II error rates
simultaneously.

1.3.2 A glance of contributions
• We propose to view the study design in PheWAS as retrospective cohort de-

sign and provide a different estimator which allows PheWAS to be extended to
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analyzing larger-scale phenotypes efficiently (Chapter 2).

• We thoroughly explore the influence of the choice of spatial smoothing along
with experimental factors on Type I and II error rates. We also extend the
spatial smoothing to maximum likelihood estimates (Chapter 3).

• We introduce a novel inferential method, second-generation p-values (SGPV)
that improves upon the p-values inferential framework and demonstrate superior
performance to frequentist analysis techniques (Chapter 4).
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CHAPTER 2

OVERCOME THE LIMITATION OF PHENOME-WIDE ASSOCIATION
STUDIES (PHEWAS): EXTENSION OF PHEWAS TO EFFICIENT AND

ROBUST LARGE-SCALE ICD CODES ANALYSES

2.1 Introduction
The first successful Genome-Wide Association Study (GWAS) was published by

Ozaki et al. (2002). Since then, GWAS has been used as a main tool to identify new
genetic associations in many diseases. With the accumulation of DNA biobank linked
with electronic medical records (EMR), large number of genetic-disease associations
can be conducted in one study. One alternative approach to assess the genetic-disease
associations is the Phenome-Wide Association Study (PheWAS), proposed by Denny
et al. (2013) and has demonstrated reproducibility from known associations on GWAS
catalog (Buniello et al. (2019)). Following the concept of "reverse-GWAS", PheWAS
analyses scan through large number phenotypes with a given genetic variant. It is an
extremely helpful tool when trying to build disease comorbidity networks.

Current practice for PheWAS analyses models the genetic-disease associations
with logistic regression consisting binary disease outcomes and a genetic variant ex-
posure of patients. In the EMR system, ICD billing codes remain the most com-
monly used phenotype outcomes to assess patient’s disease status. According to
World Health Organization (WHO), ICD 9 codes have been used from year 1900 till
now. Currently there are around 13000 codes available. Starting October, 2015, ICD
10 codes have officially entered the health system. The new ICD 10 system carries
around 68000 codes with more classification options to categorize diseases. However,
the billing codes data are known to be noisy. One statistical assumption for logistic
regression is clear classification of cases and controls population. Since 2010, several
studies have been done with raw ICD 9 codes or combined ICD 9 codes (Neuraz et al.
(2013); Hebbring et al. (2015)) without accurate definition of the controls population.
Although showing some degree of reproducibility, violating the assumption of logistic
regression can lead to biased results. In 2016, Denny et al. (2016) et al proposed to
aggregate ICD 9 codes into "Phecodes" based on the similarities of the different ICD
9 codes. Phecodes have since become standard choice for phenotypes in PheWAS.
To be classified as a "case" for a Phecode, the subject needs to have at least 2 or
more ICD 9 codes on different days mapping to that specific Phecode. Since most
of the efforts in clinical practice have been spent on trying to define true cases, the
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remaining population might not be true controls. Therefore, one exclusion criteria
list was manually composed for each Phecode, trying to filter out the potential mis-
classification of the remaining non-case population. To be classified as a true control
for a Phecode, the subject can not have any ICD 9 code mapping to the Phecode and
any ICD 9 code in the exclusion criteria list for the Phecode.

From the clinical standpoint, manually-compiled exclusion criteria lists, consider-
ing disease comorbidities, might help improve accuracies of the regression estimates
by filtering out misclassification in the non-case population. This procedure acts as
Gold-standard. However, there are few drawbacks with this approach. First, the
disease networks are large and complex. There are still plenty of unknown relation-
ships between the diseases. It is highly possible that the complete disease networks
weren’t fully considered when compiling the exclusion criteria lists. Next, the accu-
racies of the lists cannot be guaranteed without extensive data curation process. The
PheWAS analyses with Phecodes could give a better understanding of the general
view of the disease structures but result in loss of information. The ICD codes can
potentially provide more details on the disease status, treatment information and so
on. The costly curation process in current PheWAS analyses limits the efficiency of
large-scale analyses that take full advantage of all structured phenotypic information
available in EMR.

To overcome this limitation in PheWAS analyses, we turned to the original study
design. In case-control studies, the data are collected based on the disease status. In
contrast, retrospective data are accessed after some patients have already developed
the outcomes. The investigators then jump back in time to identify the exposure sta-
tus at a point of time before any development of the disease outcome. Lastly, one can
determine whether the subject subsequently develops the outcome. In PheWAS, we
have one exposure, usually a SNP, with multiple disease outcomes. The proportions
of subjects that are in exposed and unexposed groups are the same for each SNP-
outcome analysis. Further, SNPs exist before the development of the general diseases
in the system. With these two conditions, we can think of the population being di-
vided by the exposure status and followed throughout time in the EMR system. This
kind of study can be viewed as a retrospective cohort study. Once we established
the study design, we further explored other options to assess the genetic-disease as-
sociations. In case-control studies, since the investigators already set up the disease
prevalence, odds ratio remains the only measurement. In contrast, in retrospective
cohort studies, relative risk is also a valid measurement. In our study, we evaluated
the usage of relative risk as a measurement in PheWAS analyses.We demonstrated
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that relative risk, although not completely address the misclassification issues in EMR
data, overcomes the need for clear classification of the true control population. Rela-
tive risk is a robust and efficient estimator that enables analyses on larger-scale ICD
codes.

In Theoretical Background section, we demonstrate via theoretical formula on
how relative risk can be free of biases due to misclassification. In Simulation section,
we show the performance of relative risk comparing to Gold-standard odds ratio with
several combinations of outcome prevalence and degrees of misclassification. In Real
Data Analysis section, we illustrate with real data that relative risk model behaved
similarly to Gold-standard model. Further, we generalize PheWAS analyses to ICD
9 codes. We were able to obtain additional relevant useful disease information that is
missed in PheWAS analyses. Lastly, in Discussion section, we explore other available
methods and discuss the implication of our work to the scientific field.

2.2 Theoretical Background
To begin with, we would like to explore different scenarios with theoretical formula

derivation. Table 2.1 illustrates the distribution of hypothetical data with binary
exposure (E) and binary outcome (Y). Letter a, b, c and d denote the number of
observations in each E, Y combination. The sum of a, b, c, d equals the number of
total observations (N).

Table 2.1: 2 × 2 table with Outcome and Exposure in hypothetical data

Y = 1 Y = 0
E = 1 a b
E = 0 c d

With Table 2.1, the formula for odds ratio is ad
bc

and
a

(a+b)
c

c+d
for relative risk. The odds

ratio can be converted to relative risk with formula (Grant (2014)), OR
1−p_risk+(p_risk×OR)

where p_risk denotes the risk in the control groups (P(Y=1|E=0)), in this case,
c
c+d . There are two scenarios that could happen when defining cases and controls:
cases misclassified into controls and controls misclassified into cases. For the purpose
of PheWAS analyses, the scenario where cases are misclassified into controls is the
primary focus and shown in the main text. The method and simulation result for
the scenario where controls are misclassified into cases is shown in Appendix. We
can derive the formula when cases were misclassified into controls with Table 2.2.
We denote Z as the proportion of cases being misclassified as controls and T as the
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proportion of the misclassification not being removed.

Table 2.2: 2 × 2 table with Outcome and Exposure; cases misclassified as controls

Y = 1 Y = 0
E = 1 a - aTZ b + aTZ
E = 0 c - cTZ d + cTZ

The formula for odds ratio becomes ad+acTZ
bc+acTZ . When misclassification is completely

removed (T=0), odds ratio is ad
bc
, unbiased and free of Z. When the estimated unbi-

ased odds ratio is converted to relative risk, the estimated relative risk is ac(1−Z)+ad
bc+ac(1−Z) ,

a function of Z. When misclassification is completely ignored (T=1), odds ratio is
ac(1−Z)+ad
bc+ac(1−Z) , biased and a function of Z. The bias increases as Z increases. It’s worth

noting that when Z approaches 1, the biased odds ratio approaches
a

(a+b)
c

c+d
, the relative

risk. When the estimated biased odds ratio is converted to relative risk, the estimated
relative risk is

a
(a+b)

c
c+d

, unbiased and free of Z. For the direct estimation of relative risk,
with the goal of our paper, we do not remove any observation (T=1). The estimated
relative risk is

a
(a+b)

c
c+d

, unbiased and free of Z.
With the theoretical formula, the estimated odds ratios are unbiased only when all

misclassification is removed (T=0). The direct estimation of relative risk or conversion
from biased odds ratios where no observation was removed in the original dataset
(T=1) produce unbiased relative risk.

2.3 Methods
2.3.1 Data
2.3.1.1 Univariate simulation

To validate the theoretical formula, we first conducted univariate simulation. In
univariate simulation, we included only a binary exposure (E) as a predictor and an
binary outcome (Y). We denote proportion of cases being misclassified as controls as
Z. The probability of exposure (Pe) was set to 0.1. The prevalence of Y (P1) includes
0.02 and 0.3 to explore the influence of the prevalence on the estimates. The true
relative risks (RR) were set to 0.5 and 3. Four P1 and RR combinations are listed as
below:

• P1 = 0.02 and RR = 0.5

• P1 = 0.3 and RR = 0.5

• P1 = 0.02 and RR = 3
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• P1 = 0.3 and RR = 3

To explore the influence of varying levels of misclassification (Z), in each P1 and
RR combination, 5 conditions of Z were implemented, including 0 (No misclassifica-
tion), 0.1, 0.25, 0.5 and 0.75 (75% of the true cases misclassified into controls). 500
simulations and 7000 observations (N) were conducted for each P1 and RR combina-
tion.

The distribution for binary E follows Binomial(N, 0.1). The conditional probabil-
ities, P(Y=1|E=1) and P(Y=1|E=0) were calculated with pre-specified Pe, P1 and
RR according to the above list. With Bayes rules, the conditional probabilities can be
computed with known joint probabilities with the relative risk formula where P(Y=1,
E=1) equals RR×P1×Pe

(RR×Pe)−Pe+1 and P(Y=1, E=0) equals P1 - P(Y=1, E=1). Lastly,
P(Y=1|E=1) equals P(Y=1, E=1)/Pe and P(Y=1|E=0) equals P(Y=1, E=0)/(1-
Pe). Y was simulated according to the conditional probabilities, P(Y=1|E=1) and
P(Y=1|E=0). By directly calculating the conditional probabilities, we can easily
make sure all the 4 conditional probabilities, P(Y=1|E=1), P(Y=1|E=0), P(Y=0|E=1)
and P(Y=0|E=0), are positive. After E and Y were simulated, Z proportion of cases
(Y=1) was randomly converted to controls (Y=0). For the additional simulation
where controls are misclassified as cases in Appendix, the simulation procedures fol-
low the above univariate simulation with P1 = 0.3 and RR = 0.5. After E and Y were
simulated, Z proportion of controls (Y=0) was randomly converted to cases (Y=1).

2.3.1.2 Multivariable simulation
We included a multivariable simulation mimicking the commonly-used additive

modeling of SNPs for the exposure variable and the presence of a continuous co-
variate (C). The data were simulated with a log-binomial model: log(P(Y=1|E, C))
= log(0.15) + log(2)E + log(1.3)C. The exposure variable E was simulated with
categories 0, 1, 2 indicating homozygous dominance, heterozygotes and homozygous
recessive genotypes. The corresponding probabilities were 0.6, 0.3 and 0.1. The co-
variate C was simulated with Normal distribution, mean = 0 and variance = 0.3. The
prevalence of Y was approximately 0.456, empirically. Similar to univariate simula-
tion, Z proportion of cases (Y=1) was randomly converted to controls (Y=0).

2.3.1.3 Clinical data
The data were obtained from Vanderbilt BioVU database. The SNPs were selected

from the previous published paper (Denny et al. (2013)) that passed the quality con-
trol after imputation. The four SNPs are s660895, rs1847134, rs258322 and rs4977574.
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For PheWAS analyses, there are 44764 subjects available from the BioVU cohort. For
Phecodes, following the procedure in Denny et al. (2013), we excluded Phecodes with
case number < 25. 1446 Phecodes are available for analyses. The exclusion criteria
will be implemented for Gold-standard logistic regression following the the published
criteria in Denny et al. (2013). For ICD 9 analysis, there are 44846 subjects available
from the BioVU cohort. For the ICD 9 codes, we excluded ICD 9 codes with case
number < 25. 6329 ICD 9 codes are available for analyses.

2.3.2 Statistical analysis
2.3.2.1 Simulation study

For each simulation, we included three models for relative risk comparison, bias-
corrected (Firth (1993)) Poisson, Logistic regression with exclusion criteria and Logis-
tic regression without exclusion criteria. For the logistic regression models, the odds
ratios were converted to relative risk with the conversion formula presented in Theo-
retical Background section. We also reported comparison of Logistic regression with
exclusion criteria and Logistic regression without exclusion criteria for odds ratios.
Logistic regression with exclusion criteria is the current practice of PheWAS, also
referred to as the Gold-standard model. Logistic regression was conducted on dataset
that the misclassification is manually removed. In our simulation, we assumed that
the Gold-standard model can remove all misclassification (T=0). Logistic regression
without exclusion criteria refers to conducting logistic regression on dataset with-
out removing any observation (T=1). For Poisson model, the regression was also
conducted on the dataset without removing any observation.

2.3.2.2 Clinical application
To illustrate the potential biases in BioVU data, Logistic regression with and with-

out exclusion criteria were performed with SNP rs14483486 in Figure 2.4 following a
table demonstrating when the biases are the most obvious. The percent biases were
calculated with the odds ratios estimated from the Logistic regression model with and
without exclusion criteria (100×(OR_without - OR_with)/OR_with). The preva-
lence and misclassification rate were calculated assuming the observations removed
after exclusion criteria were true cases. An example calculation of the prevalence and
misclassification rate is given in Clinical Application Results section.

Further, to compare the performance of Logistic regression with exclusion criteria
(Gold-standard model) and the proposed Poisson model, we conducted analyses with
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the four SNPs previously published in the PheWAS papers (Denny et al. (2013)),
rs660895 (Figure 2.5), rs1847134 (Appendix, Figure 2.8), rs258322 (Appendix, Fig-
ure 2.9) and rs4977574 (Appendix, Figure 2.10). In each figure, we illustrate the re-
sults from Gold-standard logistic regression, bias-corrected Poisson model and Poisson
model with robust sandwich standard errors (Stock and Watson (2008)). Note that
currently, the robust standard errors option is not always compatible with the bias-
correction option (especially when the correction is most needed, outcomes with very
low prevalence). In our previous simulation studies (not shown), the bias-correction
procedure only affects codes with infinite estimates, which constitutes less than 0.5
percent of the codes in real data. We controlled the statistical significance at p-values
≤ 1.20 x 10−5 which equals to controlling false discovery rate (FDR) < 0.01 level for
all 4 PheWAS analyses combined (5784 comparisons) or Bonferroni correction at α
around 0.02 for 1 single PheWAS study (1446 comparisons). Lastly, we implemented
the proposed Poisson model with robust sandwich standard errors on ICD 9 codes
with the same SNPs used in PheWAS analyses. We controlled the statistical signif-
icance at p-values ≤ 4.16 x 10−6 which equals to controlling FDR < 0.01 level for
all 4 ICD 9 analyses combined (25316 comparisons) or Bonferroni correction at α
around 0.03 for 1 single ICD 9 study (6329 comparisons). Results for ICD 9 analyses
are shown in Figure 2.6, Figure 2.11 (Appendix), Figure 2.12 (Appendix) and Figure
2.13 (Appendix). The significance criteria chosen here might be slightly conservative
for 4 studies. However, our criteria are comparable to criteria used in Denny et al.
(2013). The choice of the criteria should not influence the results for methods com-
parison purposes. Age, gender and the first three genetic principle components were
included as covariates for PheWAS and ICD 9 analyses.

2.4 Results
2.4.1 Simulation study

Following the formula in Theoretical Background section, when cases are misclas-
sified into controls, odds ratio from Logistic regression with exclusion criteria stays
unbiased with varying degree of misclassification. When misclassification is not com-
pletely removed, odds ratio is biased and a function of Z. As misclassification rate
increases, biased odds ratio approaches the true relative risk. Therefore, if the true
odds ratio and true relative risk differ more, the biases should become more profound.

The univariate simulation results are shown in Figure 2.1 and Figure 2.2 with
boxplots comparing the proportion of cases misclassified as controls (X axis) and the
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Figure 2.1: Univariate simulation result: Odds ratio boxplots for prevalence = 0.02, 0.3 and exposure
probability = 0.1 with varying true odds ratios. The true odds ratios are 0.495 (top left), 0.406 (top
right), 3.105 (bottom left) and 9 (bottom right). The x-axis denotes the proportion of cases being
misclassified as controls. The y-axis denotes the odds ratio estimates from the logistic regression
with (teal boxes) and without exclusion criteria (red boxes).

estimates for odds ratios/relative risk (Y axis). As shown in Figure 2.1, when the
prevalence is 0.02, the difference between the true relative risk and the true odds
ratio is small (0.5 versus 0.495 and 3 versus 3.105). As Z increases, biases in odds
ratios are almost negligible when ignoring the misclassification. However, when the
prevalence becomes 0.3, the true relative risk and odds ratio differ more (0.5 versus
0.406 and 3 versus 9), the biases becomes noticeable as Z increases. The biased odds
ratios bias toward the true relative risk when ignoring the misclassification. From
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Figure 2.1, unbiased odds ratios can only be obtained with logistic regression when
exclusion criteria were applied (all misclassification is removed).

Figure 2.2: Relative risk boxplots for prevalence = 0.02, 0.3 and exposure probability = 0.1 with
varying true relative risk ratios. The relative risk ratios are 0.5 (top row) and 3 (bottom row).
The x-axis denotes the proportion of cases being misclassified as controls. The y-axis denotes the
relative risk estimates from Poisson model (blue boxes), converted relative risk estimates from logistic
regression with (red boxes) and without exclusion criteria (green boxes).

Counter-intuitively, when the estimated unbiased odds ratios were converted to
relative risk, the estimates were biased. The magnitudes of biases was shown as a
function of Z in Theoretical Background section. The corresponding simulation result
is shown in Figure 2.2. Relative risk converted from unbiased odds ratio from Logistic
regression with exclusion criteria is biased. Similar to Figure 2.1, the biases are not
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noticeable when the prevalence of Y is smaller. As the prevalence increases to 0.3, the
bias becomes profound as Z increases. The relative risk estimated from Poisson model
and converted from biased odds ratio stay unbiased in all scenarios. The univariate
simulation result confirms the conclusion obtained in Theoretical Background section.

Figure 2.3: Odds ratios boxplot (top) and relative risk boxplot (bottom) for exposure probability =
0.1, prevalence = 0.456 and true relative risk = 2. The x-axis denotes the proportion of cases being
misclassified as controls. The y-axis for the top figure denotes the odds ratio estimates from the
logistic regression with (teal boxes) and without exclusion criteria (red boxes). The y-axis for the
bottom plot denotes the relative risk estimates from Poisson model (blue boxes), converted relative
risk estimates from logistic regression with (red boxes) and without exclusion criteria (green boxes).

The multivariable simulation result is shown in Figure 2.3. With the additive
modeling of exposure and the presence of covariate C, the odds ratios (Figure 2.3,
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top) are unbiased only when all misclassification is removed (T=0), same as what
we observe in univariate simulation. In the bottom plot, the estimated relative risk
converted from unbiased odds ratio is biased and increases as Z increases. Unbiased
relative risk is only obtained in the Poisson model. Interestingly, the relative risk
converted from biased odds ratio is biased, unlike what we observe in Figure 2.2.
We hypothesize that the reason for the biases might be due to the added covariate
C . The conversion formula presented in Theoretical Background section does not
consider the presence of any additional covariate.

Although not directly pertaining to PheWAS analyses, the scenario where controls
were misclassified as cases is shown in Appendix. In Appendix, the formula for
both relative risk and odds ratio obtained ignoring misclassification are biased and
functions of Z. In odds ratio estimation (Appendix, Figure 2.7, left), exclusion criteria
are needed to obtain unbiased odds ratios. In relative risk estimation (Appendix,
Figure 2.7, right), all methods failed to obtain unbiased relative risk.

2.4.2 Clinical application
In the Simulation Results section, biases mainly occurred when the prevalence

of the outcome was high. The biases increased as misclassification rates increased.
In Figure 2.4, with SNP rs14483486 as an example, Phecodes with more than 5%
biases include common diseases like diabetic and hypertension related diseases with
prevalence > 0.2. In addition, The misclassification rates for these Phecodes are
high, more than 0.85. The observations match the trend in the simulation results.
Since we do not know the true classification of the control population, the prevalence
and misclassification rates were calculated assuming the observations removed after
exclusion criteria were true cases, misclassified as controls in the original data. Take
Phecode 250.7 for example, there were 34592 subjects classified as true controls, 574
as true cases and 9598 observations removed. We assumed that subjects removed
were true cases. The estimated prevalence was (574 + 9598)/44764 = 0.227. The
estimated misclassification rate was 9598/(9598+574) = 0.943.

To compare the performance of Poisson models and Gold-standard model, we
conducted PheWAS analyses on the BioVU data with 4 SNPs. In general, Poisson
models obtain comparable inference to Gold-standard model. Gold-standard model
captures a large number of disease-genetic associations including Type I diabetes and
Rheumatoid arthritis related Phecodes with SNP rs660895 (Figure 2.5, top). Both
bias-uncorrected Poisson model with robust standard errors (Figure 2.5, bottom) and
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Figure 2.4: Bias illustration with SNP rs14483486. In the top figure, the y-axis denotes the percent
difference of the odds ratios estimated from univariate logistic regression with and without exclusion
criteria. We denote this as percent bias as the odds ratios from the Gold-standard model acts as the
truth. The percent bias was calculated with formula: (100×(OR_without - OR_with)/OR_with).
Each dot represents a Phecode. The bottom table summarizes information, including the Phecode
ID, description of the Phecode, prevalence of the Phecode in the study population and misclassifi-
cation rates (estimated from the manually compiled exclusion criteria list) of Phecodes with greater
than 5% absolute bias.

the bias-corrected Poisson model (Figure 2.5, middle) are able to obtain all the signif-
icant Phecodes captured in Gold-standard method. In Figure 2.8 (Appendix), Gold-
standard model only captures one Phecode, "Other non-epithelial cancer of skin" with
SNP rs1847134 (Appendix, Figure 2.8, top). Both bias-uncorrected Poisson model
with robust standard errors (Appendix, Figure 2.8, bottom) and bias-corrected Pois-
son model (Appendix, Figure 2.8, middle) are able to catch the Phecode. In Figure 2.9
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Figure 2.5: PheWAS analysis result for SNP rs660895 with Gold-standard Logistic regression model
(top), bias-corrected Poisson (middle) and robust Poisson model (bottom). Each dot represents
one Phecode. The red line indicates the significance line. X axis denotes the negative log 10 p-
values. Top selected codes are Type I diabetes, Rheumatoid arthritis, Type I diabetes with renal
manifestations and Multiple sclerosis. The maximum value of X axis is 21 for the top two plots and
22 for the bottom plot.")

(Appendix), although both Poisson models fail to get the Phecode, "Neoplasm of un-
certain behavior of skin", captured by the Gold-standard model with SNP rs258322
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Figure 2.6: Result for ICD 9 analysis with SNP rs660895. Each dot represents an ICD 9 code.
Y-axis denotes the negative log 10 P-values. The colors of the dot corresponds to Phecode groups
indicating in the legend. The red line indicates the significance line. The group NA means that
the codes do not correspond to any Phecode group. The significant ICD 9 codes in the red boxes
correspond to V42.83, Pancreas replaced by transplant and V58.64, Long-term usage of non-steroidal
anti-inflammatory. These two codes do not belong to any Phecode group.")

(Appendix, Figure 2.9, top), they are able to obtain all other skin cancer related
Phecodes (Appendix, Figure 2.9, middle and bottom). In Figure 2.10 (Appendix),
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bias-uncorrected Poisson model with robust standard errors (Appendix, Figure 2.10,
bottom) is able to catch all important Phecodes captured in Gold-standard model
about Coronary artery disease (Appendix, Figure 2.10, top). the Phecode, "Unsta-
ble angina", close to the significance borderline, is missed by bias-corrected Poisson
model (Appendix, Figure 2.10, middle).

Since the estimation of relative risk can bypass the need for exclusion criteria
lists, we further extend Poisson model to large-scale phenomes. We conducted anal-
yses on ICD 9 codes via bias-uncorrected Poisson model with robust standard errors.
The corresponding ICD 9 codes analysis result for Figure 2.8 (Appendix) is shown
in Figure 2.11 (Appendix). The ICD 9 codes obtained belong to non-epithelial skin
cancer related Phecode groups, "Other non-epithelial cancer of skin" and "Neoplasm
of uncertain behavior of skin", similar to the result obtained in PheWAS analysis
(Appendix, Figure 2.8). The corresponding ICD 9 codes analysis result for Figure 2.9
(Appendix) is shown in Figure 2.12 (Appendix). The ICD 9 codes obtained belong
to epithelial skin cancer and skin cancer related to sun exposure Phecode groups,
similar to the result obtained in PheWAS analysis (Appendix, Figure 2.9). The cor-
responding ICD 9 codes analysis result for Figure 2.10 (Appendix) is shown in Figure
2.13 (Appendix). The ICD 9 codes obtained belong to Coronary artery diseases Phe-
code groups, including "Coronary atherosclerosis","Angina pectoris" and "Unstable
angina", similar to the result obtained in PheWAS analysis (Appendix, Figure 2.10).
These results show that with ICD 9 codes analyses, we are able to discern the major
related diseases as in PheWAS analyses while obtaining more detailed description of
the diseases. In addition, with ICD 9 codes analyses, we are able to capture infor-
mation that might not be available in Phecode groupings. Take SNP rs660895 for
example, the corresponding ICD 9 codes analysis result is shown in Figure 2.6. All
but two ICD 9 codes obtained belong to the Phecode groups captured in PheWAS
analysis (Figure 2.5). ICD 9 analysis captures 2 additional ICD 9 codes that were not
previously defined in any Phecode group, denoting as "NA" (Figure 2.6). These two
ICD 9 codes are V42.83 (Pancreas replaced by transplant) and V58.64 (Long-term
(current) use of non-steroidal anti-inflammatories). Based on the descriptions, these
two ICD 9 codes relate to the surgical and drug-usage aspects of diabetes which are
highly correlated with the Type I diabetes related Phecodes captured in Figure 2.5.
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2.5 Discussion
PheWAS analyses were designed to provide quick scans to assess disease-genetic

associations in the EMR data. Logistic regression is commonly used to model binary
disease outcomes. In our setting, the disease outcomes are Phecodes, the aggregation
of ICD 9 billing codes. To correctly implement logistic regression, strict assumption on
the accuracies of the defined true "case" and "control" labels is required. It is our belief
that more cares have been given to defining a true case and misclassification happens
mainly in the remaining non-case population. Efforts have been made in Denny
et al. (2013) to manually compile exclusion criteria lists to classify true controls for
unbiased odds ratio estimates. Denny et al. (2013) was able to replicate several SNP-
disease relationships listed in GWAS catalog. However, the manual compilation of the
exclusion criteria lists has several drawbacks, including long data curation time and
subjectivity of the lists. Treating Phecodes as disease outcomes, we also lose precision
during the code aggregation. ICD 9 codes contain more detailed information about a
specific disease. Nevertheless, the limitation of manual compilation procedure hinders
the extension of PheWAS to larger-scale ICD codes analyses.

From the statistical standpoint, this issue of classifying non-case population can
be viewed as outcome misclassification in logistic regression. Different methods have
been proposed to address this issue including validation data-based methods and
model-based methods. In the validation data-based methods, the investigator could
have part of the data validated externally and obtained better model sensitivity and
specificity with these validated data (Edwards et al. (2013); Lyles et al. (2011)). In
PheWAS analyses, it is not easy to have validated data in the EMR system due to the
large number of outcomes being compared. Further, if it takes similar time to obtain
the validation dataset as compiling exclusion criteria, there’s no advantage of the
validation data-based methods over the exclusion criteria list procedure. The model-
based methods incorporate the misclassification rate as a parameter in the models.
By adjusting for the misclassification rate, the coefficient estimate for the exposure
variable should be unbiased. Liu and Zhang (2017) proposed to incorporate misclassi-
fication rate parameter in the model and estimate the parameter with Fisher scoring
algorithm. The simulation demonstrated that with the correct model specification,
the odds ratio estimates are within 5% biases range. In addition, the method does not
require any additional validation data. However, the algorithm doesn’t work well in
higher misclassification rates scenarios with potentially outputting invalid standard
deviation estimates. In their simulation studies, the misclassification rates were only
tested to 0.2. In PheWAS studies, the misclassification rates could range from 0.01
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to 0.97. Therefore, more work need to be done to accommodate scenarios with larger
misclassification rates.

In this study, we evaluated the usage of relative risk as a valid estimator in the
EMR setting for binary outcomes, accounting for potential misclassification in the
non-case population. From Simulation section, we observed that biases occurred
when misclassification in the non-case population was ignored when estimating odds
ratios. The biases increased as outcome prevalence and misclassification rates in-
creased. The relative risk estimates were unbiased in all scenarios without the need
for clear definition of true controls population. Both univariate and multivariable
simulation results confirmed the theoretical formula we derived. In reality, true ef-
fect size estimates and misclassification rates for disease codes are unknown and can
vary widely. Without taking into account of the misclassification, the effect size es-
timates are inaccurate which can lead to misleading interpretations and inference of
the genetic-disease relationships.

When Poisson models were implemented on real data, the performance was sim-
ilar to Gold-standard model. Theoretically, when Poisson model is implemented on
a binary outcome, it tends to be more conservative than logistic regression. One
common alternative model to estimate relative risk is log-binomial model. Since log-
binomial distribution is a log-transformation of the distribution in logistic regression,
the variance should be correct. However, log-binomial model has been reported to
behave poorly and constantly fail to converge under certain settings, especially when
the prevalence of the outcomes is low (Williamson et al. (2013); Marschner and Gillett
(2012)). Fortunately, the over-conservative issue in Poisson model can be overcomed
by applying robust sandwich standard errors (Stock and Watson (2008)) to obtain
the correct variance. This can be seen in Figure 2.10 (Appendix) where the Phecodes
captured by Gold-standard model were all captured by Poisson model with robust
sandwich standard errors and not entirely by the non-robust Poisson model. Another
well-known issue of modeling binary outcomes is small cell count which can lead to
infinite effect size estimates. The infinite effect size estimates usually arise when one
of the cell in a 2 × 2 table is 0. This issue can be corrected by implementing Firth
correction (Firth (1993)). However, the Firth correction option is not always compat-
ible with the robust sandwich standard errors. Therefore, following the preprocessing
step used by Denny et al. (2013), we have excluded codes with less than 25 cases to
reduce the need for Firth correction. In general, we recommended to apply robust
sandwich standard errors with Poisson model to obtain better inference if possible.

In ICD 9 analyses, ICD 9 codes captured by Poisson model with robust sand-
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wich standard errors match with Phecodes captured in the corresponding PheWAS
analyses. In reality, ICD 9 analyses are blinded with Phecode grouping information.
This indicates that the model has enough power to obtain similar inference in ICD 9
analyses as in PheWAS analyses. In addition to capturing the important codes that
match with their Phecode groups, more than 1 ICD 9 codes could be captured for 1
Phecode group. This indicates that we are able to learn what conditions of the dis-
ease contribute most in a certain disease group. Phecodes are aggregation of billing
codes and not all ICD 9 codes were used to define Phecodes. Some information is
lost in PheWAS analyses. In Figure 2.6, 2 codes are captured with no corresponding
Phecode groups. These 2 codes contain information that are tightly related to other
disease codes captured in the same analysis. Code V42.83 relates to Pancreas re-
placed by transplant. This is a surgery code that relates to diabetes, one of the main
diseases captured in the SNP-disease analysis. Code V58.64 relates to the long-term
usage of non-steroidal anti-inflammatory, a pain reliever that has been used mostly
for patients with arthritis pain (Crofford (2013); Wongrakpanich et al. (2018)). This
code is highly related to several arthritis codes captured. The additional information
obtained from ICD 9 analysis is associated with the treatments and procedures the
patients have undergone and could be very useful from clinical perspective.

In this study, we evaluated relative risk as an alternative estimator to assess
SNP-disease associations that overcomes the misclassification issues in disease codes
without clear definition of the controls population. Although several methods have
been proposed to address the misclassification issue when estimating odds ratios, ad-
ditional difficulties still exist in the context of EMR data. It is noteworthy to mention
that using relative risk as an estimator does not completely solve the misclassification
issue in the disease codes. Instead, it is a robust estimator that provides unbiased
estimates without considering the misclassification in the control group. Statistical
models that estimate relative risk are implemented in almost every existing software
and ready to use. From our study, relative risk is a robust estimator that efficiently
extend PheWAS analyses to larger-scale, phenome construction agnostic analyses of
phenotypes (via ICD 9/10) and obtain additional clinical information that might not
be captured with Phecodes.
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2.6 Appendix
2.6.1 Theoretical Background: controls misclassified into cases

Table 2.3: 2 × 2 table with Outcome and Exposure; controls misclassified

Y = 1 Y = 0
E = 1 a + bTZ b - bZ
E = 0 c + dTZ d - dZ

We can denote the odds ratio estimate as ad+bdTZ
bc+bdTZ and the relative risk estimate

as
a+bZ
(a+b)
c+dz
c+d

. Both the odds ratio and relative risk are functions of Z.

2.6.2 Figures

Figure 2.7: Univariate simulation result for controls misclassified as cases for odds ratios (left) and
relative risk ratios (right). The prevalence = 0.3 and the exposure probability = 0.1. The true
relative risk = 0.5 and the corresponding odds ratio = 0.406. The x-axis denotes the proportion of
controls being misclassified as cases. the y-axis for the left plot denotes the odds ratios and relative
risk estimates for the right plot. For the left plot, the red boxes correspond to odds ratios estimated
from logistic regression without exclusion criteria. The teal boxes correspond to odds ratio estimated
from logistic regression with exclusion criteria. For the right plot, the red boxes correspond to the
converted relative risk estimates from logistic regression with exclusion criteria. The green boxes
correspond to the converted odds ratio from the logistic regression without exclusion criteria. The
blue boxes correspond to the relative risk estimated from Poisson model
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Figure 2.8: PheWAS analysis result for SNP rs1847134 with Gold-standard Logistic regression model
(top), bias-corrected Poisson (middle) and robust Poisson model (bottom). Each dot represents one
Phecode. The red line indicates the significance line. X axis denotes the negative log 10 p-values.
The only selected code is Other non-epithelial cancer of skin. The maximum value of X axis is 10
for the top plot and 9 for the middle and bottom plot.")

25



Figure 2.9: PheWAS analysis result for SNP rs258322 with Gold-standard Logistic regression model
(top), bias-corrected Poisson (middle) and robust Poisson model (bottom). Each dot represents one
Phecode. The red line indicates the significance line. X axis denotes the negative log 10 p-values.
Top selected codes are Melanomas of skin, dx or hx, Other non-epithelial cancer of skin and Actinic
Keratosis. The maximum value of X axis is 15 for the top plot; 13 for the middle and 14 for the
bottom plot.")
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Figure 2.10: PheWAS analysis result for SNP rs4977574 with Gold-standard Logistic regression
model (top), bias-corrected Poisson (middle) and robust Poisson model (bottom). Each dot repre-
sents one Phecode. The red line indicates the significance line. X axis denotes the negative log 10
p-values. Top selected codes are Coronary atherosclerosis, Angina pectoris and Unstable angina.
The maximum value of X axis is 14 for the top plot; 10 for the middle and 14 for the bottom plot.")
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Figure 2.11: Result for ICD 9 analysis with SNP rs1847134. Each dot represents an ICD 9 code.
Y-axis denotes the negative log 10 P-values. The colors of the dot corresponds to Phecode groups
indicating in the legend. The red line indicates the significance line.")
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Figure 2.12: Result for ICD 9 analysis with SNP rs258322. Each dot represents an ICD 9 code.
Y-axis denotes the negative log 10 P-values. The colors of the dot corresponds to Phecode groups
indicating in the legend. The red line indicates the significance line.")
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Figure 2.13: Result for ICD 9 analysis with SNP rs4977574. Each dot represents an ICD 9 code.
Y-axis denotes the negative log 10 P-values. The colors of the dot corresponds to Phecode groups
indicating in the legend. The red line indicates the significance line.")

30



CHAPTER 3

SUGGESTION FOR SPATIAL SMOOTHING IN FMRI GROUP INFERENCE :
USE WITH CAUTION! – LIKELIHOOD SPATIAL SMOOTHING AS A MORE

FLEXIBLE OPTION TO SMOOTH FMRI DATA

3.1 Introduction
Functional magnetic resonance imaging (fMRI) is one of the most widely used

and a powerful tool to map brain activities by measuring changes in blood flow. A
typical fMRI dataset consists of measuring the blood oxygen level-dependent (BOLD)
contrast on three-dimensional volume elements, called voxels, over a set of discrete
time series. (Ogawa et al. (1990); Ogawa et al. (1992); Kwong et al. (1992)). In gen-
eral, fMRI data analysis can be conducted on voxel and region level. The voxel-wise
approach measures the brain activity at the voxel levels while the region of interest
(ROI) approach conducts analysis on groups of voxels at pre-defined regions by taking
mean or median of the voxel-level measurements. Regardless of the types of analyses,
ignoring either spatial or temporal correlation may lead to misleading conclusions. In
fMRI data analysis, normal linear models are mainly used. As mentioned in Kang
et al. (2012), most of the early work has been focusing on the modeling of temporal
correlation in fMRI data. The commonly known work includes the autoregressive
(AR(1)) models proposed by Bullmore et al. (1996) and general linear models applied
to smoothed time series by Worsley and Friston (1995). Later, more work has been
focusing on spatio-temporal correlation. One way to account for spatial correlation
is spatial smoothing. It is usually incorporated as a part of the standard preprocess-
ing steps for fMRI analysis together with scanner drift correction, motion correction,
correction for cardiac and respiratory-related physiological noise, co-registration be-
tween the subject-specific anatomical and functional images, normalization. The
biggest advantage of spatial smoothing step is to increase signal-to-noise ratio (SNR)
for detection (Hopfinger et al. (2000); Bennett and Miller (2010); Mikl et al. (2008);
Pajula and Tohka (2014)).

Worsley et al. (1996) addressed the spatial correlation by applying Gaussian kernel
on the fMRI data. Due to the large usage of general linear model (GLM) in the fMRI
analysis, Gaussian kernel spatial smoothing was widely accepted as part of standard
preprocessing steps mainly for fulfilling the Gaussianity assumption of the GLM mod-
els (Mikl et al. (2008)). With the Gaussian kernel spatial smoothing, the observed
value of the voxel in the center of the smoothing filter will be recomputed with the
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weighted averages of values from other voxels within the filter. The weights depend
on the distance from the centric voxel and the joint Gaussian densities. Another type
of spatial smoothing, proposed by Katanoda et al. (2002), accounts for the spatial
dependency by borrowing information from the neighboring voxels in the Fourier do-
main. Instead of implementing the spatial smoothing on the original fMRI data as
used in Gaussian kernel method, the method proposed by Katanoda et al. (2002)
smoothed the likelihood functions instead. However, even though spatial smoothing
has been accepted as a necessary step for preprocessing, little attention has been paid
to the choice of smoothing methods or the degree of smoothing. The decisions made
during the spatial smoothing step for fMRI group inference could potentially lead to
inflation of false positives. Studies have shown that smoothing filter size, sample size
and location of the brain regions (the inter-subject variability might be different be-
tween brain regions and leads to different SNRs) could be the potential contributing
factors (Mikl et al. (2008); White et al. (2001)).

In this study, we first extended the method proposed by Katanoda et al. (2002) to
time domain. The spatial smoothing was implemented on the regression coefficients
from the GLM models with fMRI time series data. The final coefficient for a specific
voxel was the weighted average of the coefficients from the neighboring voxels with
inverse-variance weighting. We refer this method as "Neighboring voxel" method for
the remaining of the text. Next, we evaluated the influence of degree of smoothing
under combinations of different experimental settings, including sample size, SNR
and length of time series for both Gaussian kernel method and Neighboring voxel
method. To our knowledge, the influence of length of time series hasn’t been assessed
in previous studies before. Lastly, we briefly compare the performance of both spatial
smoothing methods. An outline of the paper is as follows. In Section 3.2.1.1 and
Section 3.3.1, we present simulation studies that illustrate the influence of degree of
smoothing under different combination of experimental settings for both Gaussian
kernel method and Neighboring voxel method. We further investigated how these
factors could contribute to the potential inflation of false positives. In Section 3.2.1.2,
3.2.1.3 and 3.3.2, we apply the two smoothing methods to real fMRI data analysis.
Finally, in Section 3.4, we summarize the results from the previous sections and
provide some general advice for decision-making during spatial smoothing step.
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3.2 Methods
3.2.1 Data
3.2.1.1 Simulated data

To simulate the spatio-temporal correlation similar to the real fMRI data, we
adapted similar data generation process as described in Kang et al. (2015) where data
were generated following the first order autoregressive model (AR(1)) in a region with
spatial dimension 32 × 32 voxels. Data for multiple subjects were simulated instead
of single subject as was in the original paper. Denote Yv(t) as the response at a voxel
v (v = 1,..., V) and time t (t = 1,..., T) at a single subject level. The model with P
stimuli can be expressed as the following for each subject:

Yv(t) =
P∑
p=1

Xp(t)βpv + εv(t)

where Xp denotes the convolution between the pth stimulus impulse function and the
hemodynamic response function (HRF). The canonical HRF function from Statistical
Parametric Mapping 12 (SPM12) (Friston et al. (2007)) was used to generate Xp(t).
We assumed 2 boxcar stimuli for the simulation. The first stimulus was on during [1,
(T/4)+1] and [(T/2)+1, (3T/4)+1] and the second is on otherwise. Spatial correlation
was implemented on the data via exponential covariance function with the decaying
parameter 2 and variance 2.5. The temporal correlation, εv(t) follows AR(1) process
with AR(1) parameter 0.4 and standard deviation 1.5. We assumed that there are
two active blocks with 64 voxels and 36 voxels. The data were either not spatially
smoothed or smoothed by either Neighboring voxel method or Gaussian kernel method
with varying filter sizes.

To compare results from different smoothing methods under various scenarios,
we varied the number of time points, number of subjects and signal-to-noise ratios
(SNRs). To be generalized to real fMRI data, we included T = 64, T = 128 and T =
256 for time points; 5, 10, 20 and 30 subjects and averaged SNRs: 0.087 (range: 0.0435
∼ 0.131), 0.130 (range: 0.0870 ∼ 0.173), 0.18 (range: 0.135 ∼ 0.225), 0.26 (range:
0.173 ∼ 0.347) (calculated with the formula: effect size / standard deviation). The
SNRs correspond to the reported effect sizes: 0,2, 0.3, 0.4 and 0.6. We included
spatially unsmoothed, smoothed with Gaussian filter, FWHM = 2, 4, 8 mm and
likelihood estimates smoothed with nearest neighbors and third-level neighbors. For
all simulations, the null hypothesis of interest is Ho: β2 − β1 = 0 at each voxel.
T-statistics and one-sided p-values were computed for all the smoothing methods
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compared. After adjusting for multiple comparison with FDR at 0.05, Type I error
rate, Type II error rate and the mean error rate were used as comparison metrics.

3.2.1.2 Task-induced fMRI
Analysis on task-induced fMRI data was conducted to assess the influence of

different spatial smoothing methods with varying degree of smoothing. The data
were acquired from a sample of 29 right-handed postmenopausal women between the
ages of 45 - 75 with major depressive disorder (MDD). The participants were asked
to perform emotion dot probe (EDP) task, a spatial attention task that measures
attention bias (Kimonis et al. (2006); Muñoz Centifanti et al. (2013)). The EDP
task used in this study was a picture variant using images from the International
Affective Pictures System (IAPS) (Lang et al. (1999)) and included neutral, positive,
and negative (threat and distress) images. Trials of the EDP consisted of a fixation
cross presented in the middle of the screen, followed by a brief presentation (500 ms)
of a picture pair with one image each on the right and left of the screen. After the
picture presentation, a target (asterisk) appeared either on the right or left of the
screen (replacing one of the images) and the participant was instructed to indicate
by finger button press the side of the screen on which the target appeared as quickly
as possible. The EDP was adapted for fMRI and run as an event related design with
three trial types relevant to the presented data: neutral-neutral pair, neutral-negative
pair and neutral-positive pair. There were 5 stimuli measured in the study and we
are interested in the contrast among two of the stimuli, measuring the brain activity
difference between pressing on the button and seeing the asterisk when presented
negative images.

Participants were scanned on a Philips 3.0 Tesla Achieva scanner, with eight chan-
nel head coil. Each subject received a sagittal T1-weighted 3D turbo field echo sen-
sitivity encoding (TFE SENSE) sequence perpendicular to the anterior commissure
(AC) -posterior commissure (PC) line, repetition time (TR) of 9.9 ms, echo time (TE)
of 4.6 ms, a flip angle of 8 degrees, number signal averages (NSA) 1.0, a field of view
(FOV) of 256 mm, a 256 x 256 matrix, and 1.0 mm slice thickness with no gap for
140 contiguous slices as well as blood oxygen level dependent (EpiBOLD) functional
sequence during the EDP with transverse orientation, TR 2500 ms, TE 35 ms, flip
angle 90 degrees, 1 NSA for, FOV 240, 240 x 128 matrix, and 4.0 mm slice thickness
with no gap, with ascending interleaved acquisition, for 35 contiguous slices. The
data were preprocessed using FSL and MATLAB version R2019 (MATLAB (2019)).
The preprocessing steps included realignment of the functional runs and correction for
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bulk-head motion, co-registration of functional and anatomical images for each par-
ticipant, segmentation of the anatomical image, normalization of the anatomical and
functional images to the standard Montreal Neurological Institute (MNI) template.
The preprocessed functional images had a voxel size of 2 × 2 × 2 mm. More details
about the EDP task and imaging acquisition can be acquired in Albert et al. (2017).
For Gaussian kernel methods, the preprocessed data were smoothed with Gaussian
kernel filters at FWHM = 4 (Smooth.4), 6 (Smooth.6) and 8 (Smooth.8) mm. For
the "No spatial" method, the preprocessed data were not spatially smoothed. For
the Neighboring voxel methods, the spatial smoothing step was implemented on the
regression coefficients from GLM models instead of the preprocessed data. Results
smoothed with "Nearest neighbors" ( ∼ 6 neighboring voxels in 3-D settings) and
"Third-level neighbors" ( ∼ 33 neighboring voxels in 3-D settings) were presented.
The number of voxels involved in spatial smoothing is similar between Smooth.4 and
Third-level neighbors. In the analysis, we included the 5 stimuli and 6 covariates
derived from motion correction step. Denote the stimuli of interest, D1 and D2. The
corresponding regression coefficients are βD1

v and βD2
v . The null hypothesis of interest

is Ho: βD1
v −βD2

v = 0. T-statistics and 2 sided p-values were computed and controlled
for multiple comparison at FDR = 0.05.

3.2.1.3 Resting-state fMRI
As a negative control for the inflation of Type I error rates observed in section 2,

we evaluated the influence of smoothing methods by performing task-induced fMRI
analysis on resting-state fMRI data, similar to what have been done previously in
Eklund et al. (2016). By definition, the resting-state fMRI data are acquired when
subjects are instructed to do nothing but lay still in the scanner without performing
any specific task. The true effect for the stimuli should be 0. The data were acquired
from a sample of 29 healthy volunteers between the ages of 20 and 50 years old.
The subjects had no psychotropic medication use or history of psychiatric disorders.
The patients were scanned on a Siemens 3.0 Tesla Trio Tim scanner with an eight
channel head coil. Each subject received a T1 -weighted 3D magnetization-prepared
rapid gradient-echo (MPRAGE) sequence with a repetition time of 2300 ms, echo
time of 3.46 ms, a flip angle of 9 degrees with a voxel size of 0.9 × 0.9 × 1.2 mm as
well as an EpiBOLD functional resting-state scan with repetition time of 2000 ms,
echo time of 27 ms. The preprocessing steps include head motion correction across
all scans, slice timing correction, co-registration and normalization to the standard
MNI template. All preprocessing was performed using FSL software package (Smith
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et al. (2004)). The preprocessed functional images had a voxel size of 2 × 2 ×
2 mm. For Gaussian kernel methods, the preprocessed data were smoothed with
Gaussian kernel filters at FWHM = 6 (Smooth.6) and 8 (Smooth.8) mm. For the
"No spatial" method, the preprocessed data were not spatially smoothed. For the
Neighboring voxel method used here, the spatial smoothing step was implemented
on the regression coefficients from GLM models by borrowing information from the
nearest neighbors. The hypothesis testing steps generally followed the steps described
at the end of subsection 3.1. Any detected signals were counted as false positives to
compute Type I error rate. At sample size = 5, 10, 15 and 20, 300 random samples
were selected for the analysis, e.g., for N = 10, 300 random combinations were selected
out of

(
29
10

)
combinations. The average Type I error rates were estimated and reported.

3.3 Results
3.3.1 Simulation study

We denoted "No spatial" for method without considering any underlying spatial
correlation. Among the Neighboring voxel methods, results with "Nearest neighbors"
( ∼ 4 neighboring voxels in 2-D simulation) and "Third-level neighbors" ( ∼ 13 neigh-
boring voxels in 2-D simulation) were presented. Among Gaussian kernel methods,
results with FWHM = 2 ("Smooth.2"), 4 ("Smooth.4") and 8 ("Smooth.8") mm were
included. A general rule of thumb for functional MR studies is that the Gaussian
kernel filter size, FWHM, should be of the order of 2 to 3 times the voxel size (Wors-
ley and Friston (1995); Newlander et al. (2014)). Therefore, FWHM = 2 mm was
the minimum filter size selected in the simulation for Gaussian kernel method. With
the formula, FWHM = 2.355 σ, the number of voxels involved in smoothing is sim-
ilar between Smooth.2 and Third-level neighbors in the 2-D simulation. Lastly, we
referred the term "larger power settings" to scenarios with larger sample size, longer
time length or higher SNRs. The term "smaller power settings" was denoted other-
wise. Type I, Type II and mean error rates between different smoothing methods for
5, 10, 20 and 30 subjects with T = 64, 128 and 256 and varying SNRs are presented
in Figure 3.1, Figure 3.2, Figure 3.7 (Appendix) and Figure 3.8 (Appendix). Within
each fixed sample size, Type II error rates decrease but Type I error rates increase as
the length of time points and SNRs increase for all methods. In general, we observe
that Type I error rates increase and Type II error rates decrease as the degree of
smoothing increases (Gaussian kernel methods with larger filter sizes or Neighboring
voxel methods with more neighboring voxels involved).
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Figure 3.1: Simulation results for 5 subjects with different time lengths, T = 64, 128, 256. X-axis
consists of the effect sizes, 0.2, 0.3, 0.4 and 0.6. The first column corresponds to the Type I error
rates (average number of false positives divided by the total number of null voxels). The second
column corresponds to the Type II error rates (average number of false negatives divided by the
total number of non-null voxels). The third column corresponds to the mean error rates (average
between Type I error rates and Type II error rates). No Spatial corresponds to method without
considering underlying spatial correlation. Smooth 2, 4, 8 corresponds to Gaussian Kernel Filter
sizes, FWHM = 2, 4, 8 mm. Nearest and Third-level neighbors correspond to Neighboring voxel
method involving first-level closest and third-level closest neighboring voxels.

Next, we look into the performance of each method more closely in this simulation
study. Without considering the underlying spatial correlation, the No spatial method
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Figure 3.2: Simulation results for 30 subjects with different time lengths, T = 64, 128, 256. X-axis
consists of the effect sizes, 0.2, 0.3, 0.4 and 0.6. The first column corresponds to the Type I error
rates (average number of false positives divided by the total number of null voxels). The second
column corresponds to the Type II error rates (average number of false negatives divided by the
total number of non-null voxels). The third column corresponds to the mean error rates (average
between Type I error rates and Type II error rates). No Spatial corresponds to method without
considering underlying spatial correlation. Smooth 2, 4, 8 corresponds to Gaussian Kernel Filter
sizes, FWHM = 2, 4, 8 mm. Nearest and Third-level neighbors correspond to Neighboring voxel
method involving first-level closest and third-level closest neighboring voxels.

is the most conservative smoothing method throughout all scenarios. The trade-off of
higher Type II error rates for lower Type I error rates leads to the largest mean error
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rates in most settings. Among Gaussian kernel methods, Smooth.4 performs the best
in terms of mean error rate in lower power settings especially when N = 5 (Figure
3.1) and N = 10 (Appendix, Figure 3.7). In contrast, Smooth.2 performs the worst in
terms of mean error rate in most lower power settings by having larger Type II error
rates. As the power of the settings increases, the performance of Smooth.8 becomes
the worst by having larger Type I error rates. It’s worth mentioning that as the power
of the settings increases, Smooth.2 starts to outperform Smooth.4. The observation is
more obvious when N = 20 (Appendix, Figure 3.8) and N = 30 (Figure 3.2). Among
Neighboring voxel methods, Third-level neighbors method outperforms the Nearest
neighbors method by having lower Type II error rates and similar Type I error rates
in lower power settings. In larger power settings, Nearest neighbors method has lower
mean error rates with the advantage of having lower Type I error rates. Similar to
Gaussian kernel methods, Nearest neighbors method starts to outperform Third-level
neighbors method as the power of the settings increases. This implies the potential
need of smaller filter size/number of neighboring voxels for smoothing methods in
higher power studies.

According to the above results, Type II error rates naturally decrease for all meth-
ods as the power of the studies increases. Larger degree of spatial smoothing decreases
Type II error rates more. Nevertheless, the decreasing Type II error rates benefits
come with the price of increasing Type I error rates. We further explore the reasoning
behind the false positives and how experimental factors relate to the false positives.
We presented the average proportion of being classified as significant for each voxel
at N = 20 with T= 128 (Figure 3.3) and T= 256 (Appendix, Figure 3.9). The voxels
within the red boxes are the true active voxels. We included the results from No spa-
tial method, Third-level neighbors method, Smooth.4 and Smooth.8 (increasing order
of degree smoothing). In both Figure 3.3 and Figure 3.9 (Appendix), we observe that
only parts of the voxels within the red boxes are classified as active with 50% of less
for No spatial method. As the degree of smoothing increases, the true active voxels
are detected more often. In addition, the voxels surrounding the true active voxels are
classified as significant more frequently as the degree of smoothing increases. These
voxels actually contribute to Type I error rates. Comparing to Figure 3.3, we notice
that as the length of time series increases from 128 to 256 (Appendix, Figure 3.9),
more voxels surrounding the true active voxels were misclassified as significant. The
observation in Figure 3.3 and Figure 3.9 (Appendix) implies that the false positives
occur near the true active voxels. As the power of the studies increases, more voxels
adjoining the true active voxels are misclassified as active voxels.
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Figure 3.3: Average proportion of being classified as significant for each voxel over 300, 32 by 32,
2D simulations with effect size = 0.3, sample size = 20 and T = 128. Results from No spatial,
Third-level neighbors, Smooth.4 and Smooth.8 are reported. The color bar indicates the average
proportion of a voxel being classified as significant. The bars are in the increments of 0.2, ranging
from 0 to 0.8 for No spatial method and 0 to 1 for the others. The voxels within the red boxes are
truly active.

The direct comparison between the performance of Gaussian kernel methods and
Neighboring voxel methods could be difficult as the number of voxels involved in
smoothing and how these voxels contribute to smoothing are different. With the
formula, FWHM = 2.355 σ, the number of voxels involved in smoothing is approx-
imately the same between Smooth.2 and Third-level neighbors method. Here, we
briefly compare the performance between these two methods. When T = 64 in Fig-
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ure 3.1, Smooth.2 has slightly lower Type I error rates and higher Type II error
rates compared to Third-level neighbors method. In all other scenarios, Smooth.2
has similar Type II error rates while having a bit lower Type I error rates compared
to Third-level neighbors method, leading to somewhat better performance in terms
of mean error rates for Smooth.2 in the simulation. In higher power settings, espe-
cially when subject sample size is at least 20 and length of time series is at least 128,
the Nearest neighbors method starts to outperform Smooth.2 by having lower Type
II Error rates. Since FWHM = 2 mm is the lowest filter size for Gaussian kernel
methods, this indicates the need to go beyond the minimum filter size for Gaussian
kernel methods in certain scenarios and that Neighboring voxel methods might be
more flexible in adjusting the degree of smoothing.

3.3.2 Clinical application
We first performed task-induced fMRI analysis on resting-state fMRI data and the

result is shown in Figure 3.4. We notice that the Type I error rate does not depend
on the smoothing degree. In addition, the Type I error rate drops to 0 as sample
size increases. This result demonstrates opposite trend when performing analysis on
task-induced fMRI data. It also serves as a negative control for the Type I error rate
when the true effect size is 0. When the true effect size is 0, the Type I error rate
does not depend on smoothing degree and decreases as sample size increases.

The analysis results for task-induced fMRI data are shown in Figure 3.5, Fig-
ure 3.6 and Figure 3.10 (Appendix). In the simulation section, we observed that
smoothing degree as well as experimental factors both affect activation. In Figure
3.10 (Appendix), when sample size = 15, only one side of the middle temporal gyrus
is classified as active while in full sample size, both sides of middle temporal gyrus are
classified as active. This potentially indicates that the power increases as sample size
increases. For the occipital lobe area, we observe that the activation areas expand
as sample size increases to 29. In Figure 3.5, activation maps of varying smooth-
ing degree are shown. Both Gaussian kernel and Neighboring voxel methods follow
the trend that as the filter size/number of neighboring voxels increase, the activa-
tion areas expand. No spatial model is the most conservative method as observed
in the simulation section. In Figure 3.5A, although sparse, most of the activation
surrounds the cuneus region followed by some activation in lingual gyrus. These re-
gions are located in the occipital lobe. In Figure 3.5B, by incorporating the nearest
neighbors, stronger signals are seen in both cuneus and lingual gyrus regions. With
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Figure 3.4: Relationship between average Type I error rate and sample size for No spatial, Smooth.6,
Smooth.8 and Nearest neighbors method after implementing whole-brain task-induced fMRI analysis
on resting-state fMRI data. 300 resamples from full sample size at 29 were drawn with sample size
5, 10, 15 and 20 to compute the average Type I error rate.

third-level neighbors incorporated (Figure 3.5C), more activation is observed in oc-
cipital lobe and more obvious activation is shown on both sides of cuneus and lingual
gyrus regions. In Gaussian kernel methods, we observe similar activation patterns
as filter size increases. In real data, we can roughly approximate the Third-level
neighbors method with Smooth.4 as shown in Figure 3.6. Although showing slight
increase of Type I error rates in the simulation results, Neighboring voxel method
seems to perform similarly with Gaussian kernel method in real data. So far, we have
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Figure 3.5: Activation maps for the 37th axial slices when sample size = 29. The yellow blobs
indicate activation areas. A corresponds to No Spatial method; B corresponds to Nearest neighbors
method; C corresponds to Third-level neighbors method; D corresponds to Smooth.4 method; E
corresponds to Smooth.6 method and F corresponds to Smooth.8 method.

demonstrated that in real data, both experimental settings and smoothing degree are
important for the classification of active regions and highly related to Type I and
II error rates. The performance of Gaussian kernel method and Neighboring voxel
method are approximately identical.

We further notice that activation in different regions are heterogeneous. In Figure
3.5, the true activation might be mainly located in the occipital lobe, cuneus, lingual
gyrus and middle frontal gyrus. However, the activation of middle frontal regions are
only noticeable in Smooth.6 (Figure 3.5E) and Smooth.8 (Figure 3.5D) while excess
activation is observed in the bottom half of the brain. This indicates that the SNRs
are different between each active region. This observation is consistent with previous
literature that some ROIs, if are truly active, would require smaller filter sizes while
others require larger filter sizes (White et al. (2001); Mikl et al. (2008)). In summary,
the choice of the smoothing degree needs to be carefully selected and that uni-filter
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Figure 3.6: Activation maps for the 41th to 45th axial slices when sample size = 29. The yellow
blobs indicate activation areas. A corresponds to Smooth.4 method and B corresponds to Third-level
neighbors method.

size/number of neighboring voxels might not be appropriate for smoothing procedure
in whole brain analysis.

3.4 Discussion
Inflation of Type I error rates due to spatial smoothing has been observed in our

study and reported in some previous literature. Our study further concludes that
the falsely active voxels mainly surround the active voxels. The degree inflation of
Type I error rates is influenced by the smoothing degree and experimental settings.
Increasing SNRs, sample size and length of time series lead to an increase in power
and Type I error rates. The amount of the inflation depends on the smoothing
degree. Especially in Smooth.4 and Smooth.8, the increase in Type I error rates is
more profound compared to methods with smaller smoothing degree.

Spatial smoothing is a standard and needed procedure for current fMRI analysis.
However, the choice of specific filter size is often arbitrary. Results have indicated
that careful consideration on the choice of degree of smoothing is required to obtain
valid inference and that both experimental settings and ROIs (due to heterogeneous
activation between different regions) are important factors when making decisions on
spatial smoothing. Based on the results shown in this study so far, we can infer that
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one size of filter/fixed number of neighboring voxels for whole brain analysis might not
be appropriate as mentioned in subsection 3.3. Some research have been focusing on
determining the optimal Gaussian kernel filters sizes (Mikl et al. (2008); White et al.
(2001)). Some has focused on using different kernel shapes other than Gaussian kernel
(Bartés-Serrallonga et al. (2014)). Lastly, others have focused on adaptive Gaussian
kernel smoothing on images from a single time series (Yue et al. (2010); Strappini
et al. (2016)). Specifically, Yue et al. (2010) points out that there are no guarantees of
improved inference on group level with the adaptive smoothing approaches and it is
currently not feasible to optimally smooth all images simultaneously. On a different
direction, Wang et al. (2013) focused on estimating the accurate HRF instead and
has shown promising results. However, the computation can be burdensome and the
selection of optimal bandwidth still requires further research. With the scale of the
whole brain voxel-wise analysis, further research in optimal degree of smoothing under
different experimental settings and different regions of the brain seems to still be the
most promising solution. In our study, we compared the behavior of two smoothing
methods, Gaussian kernel method and Neighboring voxel method under different sce-
narios. Although these two methods performed similarly, Neighboring voxel method
possesses some advantages over the traditional Gaussian kernel method. The number
of neighboring voxels and the shapes of the smoothing filters are more flexible. In
addition, edge effect is easier to be avoided with Neighboring voxel method.

In this study, we thoroughly explored the behavior of error rates and consequences
from inappropriate spatial smoothing. Based on current group inference framework,
research investigating the optimal spatial smoothing filter sizes considering regions of
the brain and experimental settings might be the best solution to balance between
Type I and II error rates. Currently, few research have been done in this area and
little filter size advice can be provided for future analysis. We also evaluated an alter-
native smoothing method and pointed out that although Neighboring voxel method
performs similarly to Gaussian kernel method, it provides several advantages over
Gaussian kernel method as a tool for further research in optimal spatial smoothing.
The research results can then be provided as suggestions for future fMRI analysis
to obtain valid inference with appropriate spatial smoothing. Lastly, we emphasize
again the careful consideration of the utilities for balancing between Type I and II
error rates when applying spatial smoothing in group inference task-induced fMRI
analysis.
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3.5 Appendix
3.5.1 Neighboring voxel method

The Gaussian kernel smoothing method is widely used and can be directly imple-
mented from MATLAB (MATLAB (2019)). Here we smooth the likelihood functions
with neighboring voxels in time domain. There are total of V voxels, P external
stimuli, total time points T and J subjects in the analysis. We define the time series
at voxel v for subject j to be Yj,v(t) where t = 1,...,T, j = 1,...,J and v = 1,...,V.
The GLM model for each voxel v, subject j and time t looks like the following:

Yj,v(t) =
P∑
p=1

βpj,vXj,p(t) + εj,v(t)

where

• βpj,v is the coefficient estimate for voxel v due to stimulus p for subject j.

• εj,v(t) is the error term that accounts for temporal correlation under the addi-
tivity and separability assumption of spatio-temporal correlation for subject j.
For temporal elements, we will assume that εv is independent of εv′ .

3.5.1.1 Overview of estimation
There are 2 stages for the estimation procedure. For stage 1, We obtained βpj,v with

iterative weighted least square (IWLS) method and retained its covariance matrix,
Cov(Rj,v). Here we provided steps to estimate these two parameters.

• Step 1: Obtain OLS estimate of β̃pj,v = (XT
j,pXj,p)−1(XT

j,pYj,v)

• Step 2: Obtain residuals Rj where Rj,v = Yj,v - β̃pj,v

• Step 3: Estimate βpj,v and Cov(Rj,v) with the following sub-steps

– Step a: Assuming AR(1) parametric form, we can obtain φ̂ and σ̂2 with
Yule-Walker equation to construct Cov(Rj,v). The AR(1) formula can be
written as the following linear regression form:
(Rj,v,2, ..., Rj,v,T)T = (Rj,v,1, ..., Rj,v,(T-1))Tφ+ (εj,v,2, ..., εj,v,T)T

We can obtain φ̂ and σ̂2 with OLS estimation.

– Step b: Update and iterate Step 1 -3 until convergence of βpj,v. We can con-
struct βj,v as vertical stack of βpj,v for all stimuli. βpj,v = (XT Ω̃−1X)−1(XT Ω̃−1Y )
where Ω̃−1 is Cov(Rj,v)
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For stage 2, once we obtained the converged βj,v and its covariance matrix Cov(Rj,v),
we were able to start the smoothing process. We first defined the neighboring voxels
to include. The neighboring voxels were determined based on the Euclidean distance
between voxels in our settings. We included the nearest L neighbors with a total of L
+ 1 voxels. The smoothing procedure has the formula, βj = Fβs,j + ε′j where βj is a
vector with vertical stack estimates (βj,v) from stage 1 for L + 1 voxels (Dimension:
[P × (L + 1)] × 1). βs,j (Dimension: P × 1) is a vector with vertical stack of final
smoothed estimates for P stimuli and subject j taking into account of L neighbors. F
is a transition matrix with vertical stack of L + 1 identity matrices with dimension
of P ×P (F dimension:[P × (L+ 1)] ×P ) . The covariance matrix for βj is the block
diagonal matrix of Cov(Rj,v) for all L + 1 voxels. With these elements, one can
estimate βs,j with inverse-variance weighting method. For each voxel, βps,j denotes the
smoothed estimate for subject j, stimulus p accounting for nearest L neighbors.

3.5.1.2 Group inference
The goal for the analysis is to distinguish active and inactive voxels when certain

stimuli are presented to a group of subjects. We formed the hypothesis with the
linear combination of βs, that is Ho : βps − β1

s = 0 vs. H1 : βps − β1
s > 0 where βs are

the group-level parameter of interest. To obtain group level inference, βps,j − β1
s,j was

obtained for each subject from stage 2 estimation. The mean and standard error of all
subject-level linear combination were used to compute t-statistics for the hypothesis
testing. The one-sided hypothesis was tested at voxel-level correcting for multiple
comparison.
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3.5.2 Figures

Figure 3.7: Simulation results for 10 subjects with different time lengths, T = 64, 128, 256. X-axis
consists of the effect sizes, 0.2, 0.3, 0.4 and 0.6. The first column corresponds to the Type I error
rates (average number of false positives divided by the total number of null voxels). The second
column corresponds to the Type II error rates (average number of false negatives divided by the
total number of non-null voxels). The third column corresponds to the mean error rates (average
between Type I error rates and Type II error rates). No Spatial corresponds to method without
considering underlying spatial correlation. Smooth 2, 4, 8 corresponds to Gaussian Kernel Filter
sizes, FWHM = 2, 4, 8 mm. Nearest and Third-level neighbors correspond to Neighboring voxel
method involving first-level closest and third-level closest neighboring voxels.
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Figure 3.8: Simulation results for 20 subjects with different time lengths, T = 64, 128, 256. X-axis
consists of the effect sizes, 0.2, 0.3, 0.4 and 0.6. The first column corresponds to the Type I error
rates (average number of false positives divided by the total number of null voxels). The second
column corresponds to the Type II error rates (average number of false negatives divided by the
total number of non-null voxels). The third column corresponds to the mean error rates (average
between Type I error rates and Type II error rates). No Spatial corresponds to method without
considering underlying spatial correlation. Smooth 2, 4, 8 corresponds to Gaussian Kernel Filter
sizes, FWHM = 2, 4, 8 mm. Nearest and Third-level neighbors correspond to Neighboring voxel
method involving first-level closest and third-level closest neighboring voxels.
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Figure 3.9: Average proportion of being classified as significant for each voxel over 300, 32 by 32,
2D simulations with effect size = 0.3, sample size = 20 and T = 256. Results from No spatial,
Third-level neighbors, Smooth.4 and Smooth.8 are reported. The color bar indicates the average
proportion of a voxel being classified as significant. The bars are in the increments of 0.2 from 0 to
1. The voxels within the red boxes are truly active.
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Figure 3.10: Activation maps for the 37th axial slice where the yellow blobs indicate activation areas
resulting from Gaussian kernel method with FWHM = 6 mm. The left plot corresponds to sample
size = 15. The right plot corresponds to full sample size = 29 subjects.
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CHAPTER 4

SECOND-GENERATION P-VALUES FOR FUNCTIONAL MAGNETIC
RESONANCE IMAGING DATA

4.1 Introduction
General linear model (GLM) followed by multiple testing correction on the re-

ported p-values has remained the main hypothesis testing framework in functional
magnetic resonance imaging (fMRI) data analysis. Due to the nature of fMRI data,
large noises presented in the data require higher trade-off of Type I error rate for
power in order to make meaningful scientific discoveries. Further, large number of
comparisons on the voxel level analysis requires proper multiple comparison adjust-
ment to draw appropriate inference. Lindquist and Mejia (2015) provided a coherent
and detailed introduction to different multiple comparison methods used in the Neu-
roimaging field. There are two major types of multiple comparison adjustment meth-
ods commonly used in fMRI analysis. Random Field Theory (RFT) was proposed by
Worsley et al. (1992) to control for family-wise error rates. But, this method could be
conservative when the number of comparisons is large. Later, a more liberal method,
False Discovery Rate (FDR) was proposed by Benjamini and Hochberg (1995) and
Genovese et al. (2002). However, the heavy dependence on p-values has been criticized
recently in the statistics and science community. Throughout the years, more and
more discussion has been surrounding the usage of p-values. Some known statistical
drawbacks of using p-values as an evidence metrics include difficulty in interpreta-
tion (Hubbard et al. (2003)) and heavy dependence on sample sizes (Greenland et al.
(2016); Blume and Peipert (2003); Wasserstein and Lazar (2016)). In addition, the
difference between clinical significance and statistical significance (Mark et al. (2016);
Ranganathan et al. (2015)) has been gaining attention. With more information pre-
sented in the data, it is known that with p-values as an inference tool, even minor
differences could result in statistical significance. However, the magnitudes might be
too small to be clinically meaningful.

Methods have been suggested to improve upon p-values inference. Yet, most of the
improvements have been limited to changing the threshold of significance (Benjamin
et al. (2018); Lakens et al. (2018)). Inference tools other than p-values have also been
proposed including Likelihood paradigm (Kang et al. (2015); Blume (2002)), Bayes
Factors (Bayarri et al. (2016)) and posterior probability (Spiegelhalter et al. (2003)).
These methods differ from the common usage of p-values and haven’t gathered enough
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followers to change the clinical practice.
A new method, second-generation p-value (SGPV), was proposed by Blume et al.

(2018) to resolve the issues raised in traditional p-values. SGPV preserves some prop-
erties of traditional p-values while providing convenient and simple interpretation
for non-statisticians. SGPV can be interpreted directly as the proportion of esti-
mates supporting the null hypothesis. Furthermore, SGPV allows the incorporation
of clinically meaningful intervals into hypothesis testing. Under the interval testing
framework, the Type I error rate is bounded and shrinks to 0 as more information
is presented in the data (Blume et al. (2018)). SGPV also promotes good research
practice by preventing the post-hoc interpretation of mediocre results. To implement
SGPV, an inference interval on a parameter of interest (confidence interval, support-
ive interval or credible interval) and a clinically meaningful null interval are required.
Fortunately, it is convenient to construct such null region in fMRI analysis with the
observed data in the cerebrospinal fluid (CSF). Since there is no neuron in CSF, the
region should be neurofunctionally null and any detected signals are considered pure
noise.

In this study, we propose a novel application of SGPV to overcome the issue often
reported in fMRI group inference (Mikl et al. (2008)), i.e., trade-off between more
power and inflation of Type I error rates. With SGPV, the Type I error rate can
be naturally controlled while gaining enough power as more information is presented.
An outline of the paper is as follows. In Section 4.2, we provide an overview of the
proposed method and its interpretation. In Section 4.3.1.1, 4.3.2.1 and 4.4.1, we
present a simulation study that illustrates the performance of SGPV compared to
RFT and FDR. In Section 4.3.1.2, 4.3.2.2 and 4.4.2, we apply the proposed method
to real fMRI data analysis. Finally, in Section 4.5, we explore some unanswered
questions, summarize the advantages, and discuss some practical issues in the use of
SGPV.

4.2 Second-Generation P-values
The novelty of the SGPV lies in its ability to perform interval null hypothesis test-

ing in a straightforward manner. The investigator is able to include in the null space
multiple point hypotheses that are scientifically indistinguishable from the traditional
point null in that experiment. For example, the null hypothesis for a parameter of in-
terest is usually 0, exactly 0. However, other point hypotheses, i.e., 0.2, 0.1, -0.1, -0.2
may not be scientifically meaningful, especially if the effect can only be estimated to
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within ± 0.2 units, for example. Of course with a classical p-value, a miniscule effect,
such as 0.0001, could even be used to reject the null hypothesis that the effect is zero
with large enough sample. Whether or not such an effect is scientifically meaningful
is left for post-hoc discussion. What the SGPV does is force investigators to think
about this issue before the data are collected (and hence greatly improve the external
validity of the experimental findings). If prior clinical knowledge is incorporated when
constructing the interval, the inference that follows is both statistically and clinically
meaningful.

Let I represent the interval estimate of hypotheses that are supported by the data
(e.g. a confidence interval) and H0 represent the null region. If I = [x,y] where x
and y are real numbers and y > x, then the length of I is y - x. The formula for
second-generation p-value is defined as:

pδ =
|I ∩H0|
|I|

× max
{ |I|

2|H0|
, 1
}

where I ∩ H0 is the overlap between interval of hypothesis and null region. The
first term of the formula denotes the fraction of I that overlaps with H0 and the
second term is a small sample correction factor. From the formula, we can derive
that pδ = |I∩H0|

|I| when |I| ≤ 2|H0| and pδ = 1
2
|I∩H0|
|H0| when |I| > 2|H0|. This shows

that when the data are sufficiently precise (|I| ≤ 2|H0|), pδ is just the overlap fraction
between I and H0. When the interval estimate is wide (|I| > 2|H0|), pδ is reduced to
1
2
|I∩H0|
|H0| , bounded by 1

2 .
Here we provided pδ under several scenarios.
1. If I is fully contained in H0, |I| ≤ 2|H0|. Then, pδ = |I∩H0|

|I| = 1.
2. If I is fully outside of H0, |I∩H0|

|I| = 0. Therefore, regardless of the relationship
between |I| and |H0|, pδ = 0.

3. If I overlaps with H0 and |I| ≤ 2|H0|, pδ equals to the fraction of I that
overlaps with H0.

4. If I overlaps with H0 and |I| > 2|H0|, pδ equals to the fraction of 1
2 times the

overlap fraction.
The interpretation for SGPV is straightforward approximately the proportion frac-

tion of data-supported estimates that are also supporting the null hypothesis. When
pδ = 1, the data-supported estimates only support the null hypothesis. In this case,
the data only support the null. When pδ = 0, the data-supported estimates only
support hypotheses that are not null. Here, the data can be said to support only
alternative hypotheses, the equivalent of rejecting the null hypothesis in hypothesis
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testing. When 0 < pδ < 1, the data-supported estimates support both null and al-
ternative hypothesis. Here the data are properly called inconclusive. The magnitude
of the SGPV reflects the degree to which the inconclusive data are leading. It is this
option that matches most closely with hypothesis tests that fail to reject the null
hypothesis. The current data, do not preferentially support either hypothesis over
the other.

The SGPV is effectively a three-region summary statistic: support for the null
region (pδ = 1), support for the alternative region (pδ = 0) and inconclusive region (0 <
pδ < 1). In a Neuroimaging analysis, this translates to the voxel being inactive, active,
or undetermined/inconclusive. Note the contrast with traditional p-values, which are
a two-region summary statistic: significant or active (p < 0.05) and inconclusive or
undetermined (p > 0.05). The ability to capture support for the null hypothesis is an
essential advance for SGPVs and a welcome advance for neuroimager who can now
distinguish between active, inactive and undetermined regions of the brain.

Depending on the magnitude of pδ, results in the inconclusive region could have
different meanings. For example, in scenarios where pδ equals 0.5, the hypothesis
intervals are usually very wide, neither supporting nor not supporting the null hy-
pothesis. We call this scenario "strictly inconclusive". On the contrary, some results
might be near the extreme ends, i.e., 0 < pδ < 0.1 or 0.9 < pδ < 1. Blume et al. (2019)
illustrated an example to report this type of results with a genetic association study.
For a result with 0 < pδ < 0.1, the data are suggestive of a meaningful association
but are unable to rule out trivial effects. For a result with 0.9 < pδ < 1, the data
are suggestive of no association, but not strong enough to rule out meaningful effects.
The results near the extreme ends might provide some indication of the association
but the evidence is not strong enough to make a definite decision.

In this study, we mimic the decision rules similar to traditional p-values framework
for fair comparisons. In addition to the original SGPV (SecondP), we also included the
dichotomized version of SGPV (D-SecondP) where voxels with pδ in the inconclusive
region are classified as inactive. We compared the results of D-SecondP with Random
Field Theory (RFT) and False Discovery Rate (FDR).
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4.3 Methods
4.3.1 Data
4.3.1.1 Simulated data

We validated our proposed inference tool with simulation studies. The data were
simulated with spatially and temporally correlated time series at each voxel. After
fitting the voxel-specific general linear model, we combined the results and assessed
the Type I and II error rates based on different approaches to controlling for multi-
ple comparison: RFT, FDR, SecondP (Second Generation p-values) and D-SecondP
(Dichotomous second-generation p-values).

To simulate the spatio-temporal correlation similar to real fMRI data, we adapted
similar data generation process as described in Kang et al. (2015) where data were
generated following the first order autoregressive model (AR(1)) in a region with
spatial dimension 32 × 32 voxels. Data for multiple subjects were simulated in this
study. Denote Yv(t) as the response at a voxel v (v = 1,..., V) and time t (t = 1,..., T)
at a single subject level. The model with P stimuli can be expressed as the following
for each subject:

Yv(t) =
P∑
p=1

Xp(t)βpv + εv(t)

where Xp denotes the convolution between the pth stimulus impulse function and the
Hemodynamic Response Function (HRF). The canonical HRF function from Statis-
tical Parametric Mapping 12 (SPM12) (Friston et al. (2007)) was used to generate
Xp(t). We assumed 2 boxcar stimuli for the simulation. The first stimulus was on
during [1, (T/4)+1] and [(T/2)+1, (3T/4)+1] and the second is on otherwise. Spatial
correlation was implemented on the data via exponential covariance function with the
decaying parameter 2 and variance 2.5. The temporal correlation, εv(t) follows AR(1)
process with AR(1) parameter 0.4 and standard deviation 1.5. We assumed that there
were two active blocks with 64 voxels and 36 voxels. To compare the methods under
various scenarios, we varied the number of time points and number of subjects. To
be generalized to real fMRI data, we included T = 64, T = 128 and T = 256 for
time points; 5, 10, 20 and 30 subjects and average signal to noise ratios (SNRs) 0.130
(range: 0.0870 ∼ 0.173) (calculated with the formula: effect size / standard devia-
tion). To simulate CSF region consisting of 10 × 10 voxels, the procedure followed
the above settings with zero true effect sizes for all parameters related to stimuli in
this region.

All simulated data were spatially smoothed with Gaussian kernel filter size at
full width, half maximum (FWHM) = 8 mm, except for the scenarios assessing the
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effects of smoothing kernel size. To explore the effect of smoothing kernel sizes on the
methods, we evaluated the performance of RFT, FDR and D-SecondP at sample size
= 10 and T= 128 with various degrees of smoothing: FWHM = 0 (Unsmoothed),
incorporating information from the immediate neighboring voxels (UseNeighbors),
FWHM = 4 and FWHM = 8.

4.3.1.2 Clinical data
For the dataset used in real data application, the data were acquired from a sample

of 29 right-handed postmenopausal women between the ages of 45 - 75 with major
depressive disorder (MDD). The participants were asked to perform emotion dot
probe (EDP) task, a spatial attention task that measures attention bias (Kimonis
et al. (2006); Muñoz Centifanti et al. (2013)). Trials of the EDP consisted of a
fixation cross presented in the middle of the screen, followed by a brief presentation
of a picture pair with one image each on the right and left of the screen. After the
picture presentation, a target (asterisk) appeared either on the right or left of the
screen (replacing one of the images) and the participant was instructed to indicate by
finger button press the side of the screen on which the target appeared as quickly as
possible. These images included neutral, positive, and negative (threat and distress)
images. The EDP was adapted for fMRI and run as an event related design with
three trial types relevant to the presented data: neutral-neutral pair, neutral-negative
pair and neutral-positive pair. There were 5 stimuli measured in the study and 6
experimental related covariates. We are interested in the contrast among two of the
stimuli, measuring the brain activity difference between pressing on the button and
seeing the asterisk when presented negative images.

Participants were scanned on a Philips 3.0 Tesla Achieva scanner, with eight
channel head coil. Each subject received a Sagittal T1-weighted 3D Turbo Field Echo
Sensitivity Encoding (TR = 9.9 ms; TE = 4.6 ms; a flip angle of 8 degrees) as well
as Blood Oxygen Level Dependent (EpiBOLD) functional sequence during the EDP
with transverse orientation (TR = 2500 ms; TE = 35 ms; flip angle = 90 degrees).
More details about the EDP task and imaging acquisition can be found in Albert
et al. (2017). The data were preprocessed using FSL and MATLAB version R2019
(MATLAB (2019)). The preprocessing steps included realignment of the functional
runs and correction for bulk-head motion, co-registration of functional and anatomical
images for each participant, segmentation of the anatomical image, normalization of
the anatomical and functional images to the standard Montreal Neurological Institute
(MNI) template. Additionally, the scans were segmented into CSF region. The
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preprocessed functional images had a voxel size of 2 × 2 × 2 mm and spatially
smoothed with Gaussian kernel FWHM = 8 mm.

4.3.2 Statistical Analysis
4.3.2.1 Simulated data

In this simulation, the null hypothesis of interest is Ho: β2−β1 = 0 at each voxel.
For FDR procedure, the 2 sided p-values were computed and controlled at 0.05. For
RFT, the threshold was set at 3.46, controlling for 2-sided error probability at 0.05.
For SecondP and D-SecondP, the clinically null region was deemed at ± (interquartile
range (IQR) of β2−β1 of voxels in the CSF region) / 6. The length of this interval was
relatively constant throughout all scenarios. To explore the behavior and make fair
comparisons between the methods as sample size increases, the length of the interval,
i.e., 2 × IQR/6, was found empirically where the corresponding Type I error rates
for D-SecondP were similar to FDR at sample size = 5 for all time points.

4.3.2.2 Clinical application
In the analysis, we included the 5 stimuli and 6 covariates measured. Denote the

stimuli of interest, D1 and D2. The corresponding regression coefficients are βD1
v and

βD2
v . The null hypothesis of interest is Ho: βD1

v − βD2
v = 0. Similar to the simulation

settings, the FDR and RFT were controlled for 2-sided error probability at 0.05. The
RFT threshold was calculated to be 4.84 (Worsley et al. (1996); Tierney et al. (2016)).
For SecondP and D-SecondP, the clinically null region was set at ± (IQR of βD1

v −βD2
v

of voxels in the CSF region) / 6, i.e., [-0.1, 0.1].
To assess the consistency and robustness of each method, we first explored the

proportion of voxels categorized as active by each method in the whole brain or
relative to the full sample size (N = 29) with various sample sizes. If too few or too
many voxels are categorized as active by a method, the method could be either highly
conservative or liberal. If there’s a large decrease in proportion of active voxels relative
to the full sample size (N = 29), then the method can be considered as non-robust.
Further, without knowing the ground truth, another way to evaluate the performance
of each inference method is a data decimation approach (Zhou et al. (2019); Yang
et al. (2014)). According to each inference method, a voxel was deemed "active" or
"inactive" based on the activation established with full sample size (N = 29). We
treated the result at full sample size as the truth for the data decimation approach.
For each smaller sample size, 500 random samples were selected for the analysis,
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e.g., for N = 10, 500 random combinations were selected out of
(

29
10

)
combinations.

The results from smaller sample sizes were compared to the "truth" to estimate the
average error rates. Although this method relies on the results from the full sample
size and might not give any indication of the ground truth, data decimation allows
one to evaluate the ability of a method to reproduce the results at larger sample size
and examine the behavior of each method as the sample size decreases. In general, a
method that can most closely reproduce the results at full sample size is preferred.

4.4 Results
4.4.1 Simulation study

The simulation results were summarized in Figure to Figure . Figure illustrates the
Type I and II error rates of different methods under various time lengths and sample
sizes. A key feature of the SGPV method is that it distinguishes between results that
are inconclusive and results that support the null, unlike traditional methods which
group these two into a single ąğfail to rejectąĺ or ąğnon-significantąĺ region). This
leads to difficulty in defining the Type II error rate. By excluding the voxels in the
inconclusive region for Type II error rate calculations, the Type II error rates remain
the lowest throughout all scenarios for SecondP.

To make fair comparisons with FDR and RFT, D-SecondP was used for com-
parison where the voxels in the inconclusive regions were deemed as inactive. At T
= 64, FDR has the leverage of having smaller Type II error rates throughout most
sample size scenarios, followed by the D-SecondP method. The RFT method is the
most conservative with the largest Type II error rates. However, as the time length
increases, Type II error rates for D-SecondP become similar to FDR while the rates
for RFT remain higher. For all methods presented, as time length and sample size
increase, Type II error rates decrease dramatically.

At sample size = 5, FDR and D-SecondP share similar Type I error rates. RFT
has the highest Type II error rates and the lowest Type I error rates at the same time,
reflecting typical Type I and II error rates trade-off. At this sample size, the Type I
error rates do not change much with varying time length for all methods. As sample
size increases, obvious increases in Type I error rates for FDR and RFT are observed
and the error rates rise the most for FDR. Furthermore, as time length increases,
the slopes between Type I error rates and sample size become steeper for both FDR
and RFT but remain relatively constant for D-SecondP. It is worth noting that RFT
starts off with the lowest Type I error rate at sample size = 5 but reaches to the same
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Figure 4.1: Results of the simulation study based on 300 repetitions with different sample sizes at 5,
10, 20 and 30. Rows represent the different time series at T = 64, 128 and 256. Columns represent
the different error rates. The first column corresponds to the Type I error rates among the truly
null regions (the average number of false positives divided by the total number of voxels in the null
regions). The second column corresponds to the Type II error rates among the truly active regions
(the average number of false negatives divided by the total number of voxels in the active regions).
The third column is the average of the first two columns. Different inference methods are indicated
with different colors: FDR (red), RFT (green), SecondP (blue) and D-SecondP (turquoise). Note
that SecondP and D-SecondP shares the same Type I error rate.

level as D-SecondP at all time lengths when sample size reaches 30.
One way to evaluate the joint performance of Type I and II error rates is to

compute the mean error rates, the average between Type I and II error rates. Due
to the conservative nature of RFT, the mean error rates for RFT are the highest in
most scenarios. At T = 64, large decrease in Type II error rates for FDR outweighs
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the increase in Type I error rates, resulting in the lowest mean error rates. However,
as time length increases, the dramatic increase in FDR Type I error rates leads to
the highest mean error rates with increasing sample sizes. The mean error rates for
D-SecondP become the lowest with steady Type I error rates compared to RFT and
FDR as time length and sample size increase.

Figure 4.2: Results of the simulation study based on 300 repetitions in terms of proportion of voxels
in the inconclusive region where the SGPV for the voxel is greater than 0 and less than 1. The
average proportion was calculated as the average number of voxels in the inconclusive region divided
by the total number of voxels in the null or the non-null region. The solid lines correspond to the
null regions and dashed lines correspond to the non-null regions with T = 64 (red), T = 128 (green)
and T = 256 (blue).

To assess the behavior of voxels in the inconclusive (0 < pδ < 1) and strictly
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Figure 4.3: Results of the simulation study based on 300 repetitions in terms of proportion of voxels
in the strictly inconclusive region where the SGPV for the voxel is 0.5. The average proportion was
calculated as the average number of voxels in the strictly inconclusive region divided by the total
number of voxels in the null or the non-null region. The solid lines correspond to the null regions
and dashed lines correspond to the non-null regions with T = 64 (red), T = 128 (green) and T =
256 (blue).

inconclusive (pδ = 0.5) regions, the average proportions of voxels in these two regions
at various time lengths and sample sizes are summarized in Figure 4.2 and Figure
4.3 (note that strictly inconclusive region is a subset of inconclusive region). If a
voxel belongs to one of the two active blocks described in Section 4.3.1.1, it is in the
non-null region. If a voxel doesn’t belong to one of the two active blocks described in
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Section 4.3.1.1, it is in the null region. In the non-null regions (dashed lines), as time
length and sample size increase, the average proportions of voxels in both regions
decrease as shown in Figure 4.2 and Figure 4.3. In addition, with more information
presented, the average proportion converges to 0 faster (at T = 128, the average
proportion drops to 0 at sample size = 30 while at T = 256, the average proportion
drops to 0 at sample size = 20 (Figure 4.2)). The average proportion of voxels in the
strictly inconclusive null region decreases as sample size increases (Figure 4.3) but
remains relatively constant in the inconclusive null region (Figure 4.2). The effect of
time length on the average proportions is less noticeable in null regions.

Lastly, to explore the spatial smoothing effect in all methods, we evaluated the
error rates under different smoothing methods at T = 128 and sample size = 10
(Figure 4.4). All methods perform the worst in terms of mean error rates when
there’s no smoothing implemented. The performance becomes better after taking into
account underlying spatial correlation, resulting in lower Type II error rates. RFT
obtains the lowest Type I and the highest Type II error rates with all smoothing
methods. Both the Type I and II error rates are the lowest for D-SecondP under all
smoothing methods. For RFT, FDR and D-SecondP, the Type I error rates increase
as the smoothing kernel size increases and the error rate increases the most for FDR.

4.4.2 Clinical application
The average proportions of active voxels in the whole brain and relative to full

sample with respect to different sample size are summarized in the top row plots of
Figure 4.5. Although RFT has the lowest proportion of active voxels in the whole
brain throughout all sample sizes (around 3%), the average proportion of active voxels
drops to 40% relative to the full sample size (N = 29) at sample size = 10. The average
proportions of active voxels change the most for FDR. The average proportion drops
from 40% to 10% in the whole brain and only 30% of the active voxels remain relative
to the full data when sample size drops to 10. In contrast, D-SecondP maintains the
average proportions more steadily. The proportion drops from 20% to 10% in the
whole brain and 60% of the active voxels remain relative to the full data when sample
size drops to 10, indicating that the inference based on D-SecondP is more robust to
decreasing sample size compared to the other methods.

The observation from the top row plots in Figure 4.5 can be partially visualized in
Figure 4.6. The RFT has the least activation among all methods compared at both
sample sizes. This conservative nature was also observed in Figure 4.5 and simulation
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Figure 4.4: Simulation results for FDR (red), RFT (green), D-SecondP (blue) at T = 128 and sample
size = 10. Type I, II and mean error rates are shown with varying smoothing methods: unsmoothed,
UseNeighbors, FWHM=4 mm and FWHM = 8 mm.

results. At sample size = 15, the activation patterns are very similar between FDR
and D-SecondP. However, at full sample size, although more active voxels are observed
for both FDR and D-SecondP compared to sample size = 15, the increase for FDR
is more drastic than D-SecondP. In our study, the voxels are deemed active in most
of the latter half of the brain with FDR, covering larger areas in and between ROIs.
The boarders between different ROIs become unclear.

The results of data decimation are shown in the bottom row plots of Figure 4.5.
Treating the activation patterns at full sample size the truth, RFT has the lowest
Type I error rates compared to FDR and D-SecondP throughout all sample sizes.
As expected, it also has the highest Type II error rates. At sample size = 10, the
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Figure 4.5: Real data analysis comparing FDR (red), RFT (green) and D-SecondP (blue). The top
left image corresponds to the average proportion of active voxels in the whole brain with varying
sample sizes. The average proportion was calculated as the average number of active voxels divided
by the total number of voxels used in the analysis. The top right image corresponds to the average
proportion of active voxels relative to the full sample size. The average proportion was calculated
as the average number of active voxels at each sample size divided by the number of active voxels at
full sample size. Results for Data decimation are shown in the bottom row. The voxels patterns at
full sample size were treated as the truth. Type I error rate was calculated as the average number
of false positives at each sample size divided by the total number of voxels in the null regions at full
sample size. The Type II error rate was calculated as the number of false negatives at each sample
size divided by the total number of voxels in the non-null regions at the full sample size.

error rate is as high as 90%. D-SecondP has slightly lower Type I error rate at larger
sample sizes compared to FDR. In addition, throughout all sample sizes, D-SecondP
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Figure 4.6: Data decimation results of activation maps for the 37th axial slice. The yellow blobs
indicate activated areas resulted from FDR (first column), RFT (second column) and D-SecondP
(third column). The first row corresponds to the activation maps with full sample size at 29. The
second row corresponds to the activation maps with a randomly selected sample of size 15.

has lower Type II error rates than FDR. With lower Type II error rate and decent
Type I error rate control, D-SecondP is the most robust method against decreasing
sample size among the methods compared in this study.

4.5 Discussion
Current fMRI inference still heavily relies on p-values. Drawbacks of p-values have

been discussed in both statistical and scientific fields. The newly proposed method,
SGPV, offers convenient and simple interpretation to non-statisticians. The goal
of this paper is to evaluate SGPV as an inference tool in fMRI analysis compared
to other commonly used methods under various experimental settings. We assessed
the behaviors of SGPV, RFT and FDR under different time lengths and sample
sizes with simulated and real fMRI data. In both simulation and data decimation
using real fMRI data, SGPV shows better performance in terms of average test error
rates than both RFT and FDR. With the interval null, SGPV is not only able to
decrease the Type II error rate as more data are presented compared to RFT but
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also attenuate the inflation of Type I error rate compared to FDR (Figure 4.1).
Further, we have shown that SGPV is more robust to decrease in sample size than
the conventional approaches via a data decimation study (Figure 4.5). However, two
questions remained unanswered by the results presented. First, what was the reason
for the discrepancy observed in Figure 4.2 and Figure 4.3 where the proportion of
voxels in strictly inconclusive region (pδ = 0.5) shrinks to 0 (Figure 4.3) but stays
relatively constant in the null inconclusive region (0 < pδ < 1) as sample size increases
(Figure 4.2)? Second, what was the reason for better control of Type I error rate with
D-SecondP over other methods? To further address these questions, we specifically
looked into the behaviors of the voxels in the null region with simulated data presented
in Section 4.4.1 at T = 128 and sample size = 5 and 30. We denote null voxels that
are close to the active voxels in the "Neighboring" zone, consisting of 7% of the null
region and the remaining 93% of the null voxels in the "Remaining" zone.

From Figure 4.3, as sample size increases, the proportion of voxels in the null
strictly inconclusive region decreases to around 0. The hypothesis intervals are usually
very wide in the strictly inconclusive region and neither support nor not support the
null hypothesis. Once more information is presented, voxels move out of this region
and towards support for alternative region (pδ = 0) or support for the null region
(pδ = 1). We further explore the behavior of these voxels after leaving the strictly
inconclusive region. At sample size = 5, the median SGPV in the "Neighboring" zone
is 0.32. 24.7% of voxels are in the support for the alternative region (pδ = 0) and
the remaining 75.3% of voxels are in the inconclusive region (33.5% in the strictly
inconclusive region; 36.8% with 0 < pδ < 0.5 and 5% with 0.5 < pδ < 1). When
sample size increases to 30, the median SGPV drops to 0.009. 71.5% of voxels are in
the support for the alternative region (pδ = 0) and the remaining 28.5% of voxels are
in the inconclusive region (0% in the strictly inconclusive region; 27.1% with 0 < pδ

< 0.5 and 4% with 0.5 < pδ < 1). There is a large increase in the proportion of voxels
in the support for the alternative region (pδ = 0) but only a minor difference in the
proportion of voxels with 0 < pδ < 0.5. We can infer that most voxels, initially in the
strictly inconclusive region, move towards the support for the alternative region (pδ
= 0) and large portion of the voxels with 0 < pδ < 0.5 moves into the support for the
alternative region (pδ = 0). Conceptually, voxels in the null region should have null
effect. As sample size increases, null voxels should move towards the support for the
null region (pδ = 1). One simple explanation is that these voxels become falsely active
due to spatial smoothing (Mikl et al. (2008)). During spatial smoothing, non-zero
false effects are artificially added to the null voxels by weighing in neighboring active
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voxels. Voxels in the "Neighboring" zone are highly close to the active voxels and
became almost indistinguishable from the truth. At sample size = 5, around 26%
of voxels in this zone are mistakenly categorized as active by FDR and D-SecondP.
Due to the conservative nature of RFT, these voxels are still correctly classified as
inactive by RFT. The result corresponds to the lowest Type I error rates observed
for RFT at sample size = 5 and similar Type I error rate for FDR and D-SecondP
(Figure 4.1). Although voxels in this zone only consists of 7% of the null region, as
sample size increases to 30, more than 70% of voxels are mistakenly categorized as
active by FDR, D-SecondP and RFT.

Comparing to voxels in the "Neighboring" zone, voxels in the "Remaining" zone
are located further away from active voxels. At sample size = 5, the median SGPV
in the "Remaining" zone is 0.5. 94% of voxels are in the inconclusive region (61.8%
in the strictly inconclusive region; 22.1% with 0 < pδ < 0.5 and 10% with 0.5 < pδ <
1). When sample size increases to 30, the median SGPV in the "Remaining" zone is
0.58. 94.4% of voxels are in the inconclusive region (1.7% in the strictly inconclusive
region; 30.4% with 0 < pδ < 0.5 and 62.3% with 0.5 < pδ < 1). The proportion of
voxels in the inconclusive region does not change. This shows that after leaving the
strictly inconclusive region, voxels remain in the inconclusive region where data are
not strong enough to make a definite decision for these voxels as sample size increases.
Both proportions of voxels with 0 < pδ < 0.5 and 0.5 < pδ < 1 increase. This implies
that heterogeneity exists among these migrated voxels. Some voxels move towards
the support for the null region (pδ = 1) as expected and end up with 0.5 < pδ < 1.
These voxels are located the furthest away from active voxels with negligible influence
from spatial smoothing. Others move towards the support for the alternative region
(pδ = 0) and have 0 < pδ < 0.5. These voxels are located closer to the "Neighboring"
zone compared to voxels with 0.5 < pδ < 1. Although voxels with 0 < pδ < 0.5
are less affected by spatial smoothing compared to voxels in the "Neighboring" zone,
most of the added false effects are still influential. We believe that with wider range
of null values in the null interval (H0), most of the false effects in the "Remaining"
zone are captured as part of the interval null making these voxels distinguishable from
the truth and are kept in the inconclusive region. In contrast, the false effects are
more likely to be detected by methods under point null hypothesis testing framework.
As sample size increases, the influence from false effects becomes worse. More false
active voxels are then identified by FDR. The Type I error rates for FDR start from
similar values as D-SecondP at sample size = 5 to higher values at sample size =
30, leading to a steeper increase in Type I error rates compared to D-SecondP as
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shown in Figure 4.1. In our simulation study, RFT is slightly conservative. Voxels in
the "Remaining" zone are still correctly classified as inactive by RFT. Therefore, at
sample size = 30, the Type I error rates for RFT and D-SecondP are similar (Figure
4.1). The Type I error rates for RFT start from almost 0 at sample size = 5 to similar
values as D-SecondP at sample size = 30, leading to a steeper increase of Type I error
rates compared to D-SecondP (Figure 4.1). However, in real fMRI data analysis with
larger number of comparisons, RFT is highly conservative with low power and low
Type I error rate (Figure 4.5 and Figure 4.6). To sum up, we have explained the
discrepancy in Figure 4.2 and Figure 4.3 and further illustrate that by incorporating
the inconclusive region and interval testing, SGPV is able to discern the true active
voxels with better control of false positives over other common methods.

Another desired property of SGPV is the ability to incorporate clinical knowledge
into hypothesis testing. This allows the investigator to draw both statistically and
clinically meaningful inference. In addition, this property also helps promote good
statistical practice by preventing post-hoc interpretation. Nevertheless, constructing
the clinical region can be subjective. The interval chosen in this study should serve
as a guide. Prior knowledge in clinical practice and data noise patterns are required
when choosing an appropriate interval range and demand further research. With
a fixed and pre-determined clinically null region, we have shown that the SGPV
clearly outperforms the conventional approaches in various scenarios while offering
unique strengths that differ from the traditional hypothesis testing. To make the
usage of SGPV more generalizable in fMRI analysis, an R shiny app is currently
being developed for easy visualization. The results can be exported in Neuroimaging
Informatics Technology Initiative (NIfTI) format as inputs to other imaging software
like FSL or SPM12.
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CHAPTER 5

CONCLUSION

5.1 Summary
This dissertation aims to bring out some complexities one might face when han-

dling large dimensional data while novel methods can be computationally burden-
some. We focus on providing alternative, ready-to-use methods that target to solve
specific issues in the data more efficiently. In Chapter 2, we introduced PheWAS
in EMR data and proposed to estimate relative risk instead of odds ratios to over-
come the need for exclusion criteria. In Chapter 3, we thoroughly demonstrated the
potential influence spatial smoothing and other experimental factors can have on sta-
tistical inference. We also explored an alternative spatial smoothing method. The
factors contributing to statistical inference issues raised in Chapter 3 have largely
been ignored. Most of the current methods have drawbacks and are not ready to be
implemented in voxel-wise analysis. In order to accommodate the deficiency with p-
values inference framework, we introduced a novel inference framework that separates
from the traditional point hypothesis testing for identification of active brain regions
related to specific task of interest. This technique is shown to outperform traditional
frequentist methods in terms of balance between Type I and II error rates.

5.2 PheWAS Analysis Improvement in EMR Data
Section I (Chapter 2) of this dissertation focused on better understanding of Phe-

WAS analysis and provided an alternative method that overcomes the limitation
raised in this chapter. We introduced the purpose of PheWAS and limitation encoun-
tered when performing logistic regression analysis. The main difficulty in PheWAS
is to correctly classify the case statuses of the phenotypes in EMR data. While the
standard method tried to achieve the goal, the accuracy of the manually-compiled ex-
clusion criteria lists for classifying controls population cannot be guaranteed without
extensive data curation process. The inefficiency hinders PheWAS from being ex-
tended to handle larger-scale phenome construction agnostic analysis of phenotypes
that preserve more disease-related clinical information. Other methods tried to im-
prove upon the classification issue by direct estimation of the misclassification rates.
However, in addition to being computationally burdensome, the prevalence of the
phenotypes in EMR varies, often leading to model convergence failure. We demon-

70



strated via simulation and real data application that without accurately classifying
the controls population, large biases can occur when analyzing prevalent diseases.
The desired nature of relative risks overcomes the need for exclusion criteria lists and
provides efficient, reliable, and unbiased estimation. Currently, there are 13000 ICD
9 codes and 68000 ICD 10 codes. We can expect more and more clinical information
to be provided in the future versions of the billing codes. By allowing PheWAS to
bypass the exclusion criteria lists, we are able to efficiently and reliably extend Phe-
WAS to adapt to larger-scale phenome construction agnostic analyses of phenotypes
which contain more disease-related clinical information.

5.3 Task-induced fMRI Data Analysis via Second-generation P-values
Section II (Chapter 3-4) of this dissertation focused on task-induced fMRI data

analysis. fMRI data are noisy and require lots of preprocessing steps before analysis.
However, less attention was paid to investigate the influence of the steps on the statis-
tical inference. In Chapter 3, we explored the spatial smoothing and demonstrate the
influence along with experimental factors on the inference. We have shown that with
traditional frequentist techniques, large trade-off of Type I error rates for power is
observed when more information is added in the analysis. More inactive voxels were
misclassified as active voxels due to the smoothing procedure. However, other ap-
proaches are mostly computationally burdensome and solely focus on controlling the
Type I error rates, ignoring the balance between Type I and II error rates. In order
to address the critical issue, we introduced second-generation p-values by bringing in
the interval null hypothesis testing in Chapter 4. By allowing the interval null, the
falsely active voxels can be contained in the null and allow the true active voxels to be
discern. We have shown in simulation and data analysis that the proposed technique
allows for steady control of Type I error rates while obtaining enough power, resulting
in improved inference compared to traditional methods.

5.4 Summary Contributions
• We proposed to estimate relative risk in PheWAS analysis instead of odds ratio.

It overcomes the traditional difficulties in classification of the controls popula-
tion. The efficient and ready-to-use method allows PheWAS to be extended to
larger-scale phenomes analyses.

• We thoroughly explored and demonstrated the influence of degree of spatial
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smoothing and experimental factors on the statistical inference. We also ex-
tended the smoothing method to maximum likelihood estimates.

• We provided methodology for the detection of active voxels related to the task of
interest using SGPV applied to task-induced fMRI data. The use of our meth-
ods allows for better balance between Type I and II error rates in identifying
activated regions as demonstrated on simulated and clinical data.
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