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CHAPTER I  
 

 
INTRODUCTION 

 
 

The promise of machine learning and clinical bioinformatics 
 

Clinical bioinformatics has the potential to transform healthcare by providing 

patients with personalized diagnostic and therapeutic solutions (Ashley et al., 2016, 

Hamburg et al., 2010). The pace of innovation within this field has been staggering with 

consistent improvements in both sequencing technology and analysis methodology. For 

example, we are currently in the “fourth generation” of next generation sequencing 

(NGS) technology and current platforms are now capable of generating long multi-

kilobase reads which was previously impossible (Slatko et al., 2018). Additionally, new 

methods of analyzing data are constantly being published which help drive both basic 

science research and diagnostics (Kelly et al., 2016, Sajda et al., 2006, Zhou et al., 

2015). Given these advancements, it is not unreasonable to expect a future in which 

every patient’s genome will be sequenced upon admittance to the hospital and various 

sequencing strategies used concurrently to guide the decision-making process. 

In order for this future to become a reality a number of challenges must be 

addressed. First, the sheer size and heterogeneity of the data being produced will 

require improvements in data management strategy and computing infrastructure (Shilo 

et al., 2020). The “big data” revolution, that was popular a few years ago, provided the 

initial impetus for much of the progress in data management and infrastructure that has 

occurred to date. During this revolution, big data was described as a type of data with 
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three main characteristics, that is, the data was said to have the “three V’s”. These 

included: volume (size of the data), variety (many sources and types of data), and 

velocity (pace at which the data is produced) (Laney et al. 2001). Later, the three V’s 

were expanded to include a fourth V, veracity, which describe the biases and 

trustworthiness of the data being produced (Normandeau et al. 2013). Bioinformatics 

data encompasses all four of these V’s and many of the tools developed to address the 

challenges of the big data movement can be applied in healthcare (Shilo et al., 2020). 

Some of these tools include: the introduction of the Hadoop ecosystem, cloud platforms, 

and the development of multiple related open-source projects (Ahuja et al., 2012, 

Archenna et al., 2015).  

A second challenge that must be addressed before widespread adoption of 

clinical bioinformatics techniques in the hospital will be the development of robust 

analysis methods capable of delivering accurate, reliable, and consistent results (Al 

Kawam et al., 2017). Healthcare is an industry, similar to the airline industry, where 

making mistakes could have dire consequences and the margin for error is small. 

Recently, machine learning methods have become more popular among bioinformatics 

researchers. They have been applied in wide array of different settings such as: 

genome-wide association studies (GWAS), enhancer prediction, pharmacogenomics, 

among many others, however; deploying robust and accurate machine learning models 

comes with a host of challenges and we have not achieved a level of performance  that 

justifies widespread adoption (Al Kawam et al., 2017, Doherty et al., 2018, Kleftogiannis 

et al., 2016).  
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Challenge of developing robust machine learning pipelines 

Designing robust machine learning pipelines that generalize to unseen data has 

always been a challenge (Bishop 2006, Harrington 2012). The process of constructing a 

pipeline in and of itself involves subjectivity. For example, the choice of pre-processing 

method, machine learning model, performance metric, hyperparameter tuning strategy, 

all must be considered when constructing a pipeline. (Géron 2019). In the past, to make 

any meaningful progress often required the guidance of a trained specialist. Within the 

last decade, automated machine learning (autoML) frameworks have been introduced 

to simplify this process. These frameworks are designed to search across the various 

combinations and provide an optimized solution (Feurer, M. et al., 2019). However, 

many of these frameworks lack interpretability and it is difficult to know why certain 

pipelines outperform others.  

For example, if one or more components within a machine learning pipeline 

produce uninformative outputs the overall performance can degrade, but determining 

the root cause of the decreased performance is difficult given the inherent dependency 

chain of pipeline components (Lourenço, R. et al., 2019). Diagnosing the point of the 

failure within a learning pipeline is still a challenge and an area of active research 

(Olson, R.S. et al., 2016, Lourenço, R. et al., 2019, Feurer, M. et al., 2019).  
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Application of machine learning to the microbiome 

Bioinformatics research involving metagenomic data is not as mature as 

research involving other data sources such as transcriptomics or proteomics. Hence, 

many of the foundational studies done for other types of NGS data have not been done 

for metagenomic sequencing data. For example, there are multiple studies exploring the 

application of feature selection and feature engineering methods to transcriptomic data 

and their impact on classifier performance, but very few exist for metagenomic data 

(Saeys, Y., et al., 2007, Hauskrecht, M. et al., 2007). Performing these experiments are 

necessary and will form the basis for future improvements in the field.  

Finally, given all that machine learning has to offer, it is important to note that 

even the most robust machine learning pipeline cannot substitute for understanding 

what is actually happening at the biological level. Models are crude exploratory and 

explanatory tools, but true progress is only possible by studying the system at the 

lowest level. Combining bioinformatics insights with experimentation is the ideal 

combination and tools designed with this purpose in mind will be of the utmost 

importance.   

 

Research objectives 

The objective of this dissertation is to first conduct a benchmarking study 

comparing various feature transformation strategies to 16s metagenomic data 

controlling for model and disease type. The second objective is to develop a python 

framework that expands on this theme, providing a tool to select the optimal machine 
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learning pipeline which includes: pre-processing, feature transformation, and model 

choice. The final objective is to apply the tool to a broader research study exploring the 

role of milk derived osteopontin on the gut microbiome.  

 

Dissertation aims 

Aim 1: To determine whether applying various feature selection, feature 

engineering, or feature extraction methods prior to training influences 16s 

metagenomic classifier performance 

The first aim explores whether applying various feature selection, feature engineering, 

and feature extraction methods to 16s metagenomic data prior to training improves 

performance. Analysis methodology and benchmarks for metagenomic data aren’t as 

mature as other forms of sequencing data and limited work has been done in this space 

to date. Chapter III presents evidence that in the case of colorectal cancer metagenomic 

data, applying these methods could be advantageous in some cases, but not all. In this 

chapter, I train and evaluate a random forest classifier across multiple colorectal cancer 

datasets and compare how each method influences performance.  

 

Aim 2: To develop a python package that lets researchers identify which 

components of a machine learning pipeline contribute most to performance 

The second aim introduces an autoML python framework designed for 16s 

metagenomic data. The framework is capable of selecting the most performant 

combination of pre-processing technique, feature transformation method, and machine 
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learning model for metagenomic data. Additionally, the framework will identify which 

components of the pipeline contribute most to performance. Chapter III will introduce 

the package then apply it to a colorectal cancer dataset.   

 

Aim 3: To determine the influence of milk derived osteopontin on the gut 

microbiome  

The third aim will present initial efforts to explore the impact of milk derived osteopontin 

on gut microbiome. Chapter IV will present evidence linking milk-derived osteopontin to 

alterations in the gut microbiome and the tool introduced in Chapter III is used to identify 

target bacterial species that could be responsible for the phenotype observed.  
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CHAPTER II  
 
 

BACKGROUND 
 

 
Machine Learning 

 
Machine learning is a type of artificial intelligence in which computers use large 

amounts of data to learn how to complete a given task instead of being programmed to 

do so explicitly (Hornby, et al., 2011, Bzdok, et al., 2018). This paradigm differs from the 

statistical approach in which strict assumptions are made about the data generating 

process (Serra, et al., 2018). Instead of strong assumptions, machine learning 

algorithms use a collection of training examples to learn the unknown target function. 

There are multiple sub-disciplines of machine learning such as: supervised learning, 

unsupervised learning, reinforcement learning, active learning, etc., but here I describe 

supervised learning, which is the type of learning used throughout this dissertation, and 

future references to machine learning will assume this paradigm.  

Machine learning algorithms make weaker assumptions compared to the 

statistical approach and draw potential functions from a hypothesis set H. The learning 

algorithm, A, then uses the training examples along with the hypothesis set to produce a 

final hypothesis, which is the trained model that estimates the unknown target function 

(Figure 2.1). This approach has become popular among bioinformatics researchers 

because of its’ increased flexibility; making it perfect for situations in which explicit 

modeling is intractable. In other words, the hypothesis set from which potential functions 
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are drawn is more expressive compared to other approaches which enables these 

approaches to detect subtle nuances in the data (Bzdok, et al., 2018).  

 

 

 
Feature Selection 

 
 Machine learning algorithm use training examples to learn an unknown target 

function. Each training example has a number of attributes, known as features, that 

describe the data. For example, suppose a researcher would like to use an RNA-Seq 

 
 

Figure 2.1. Supervised machine learning paradigm 
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transcription profile to predict a given phenotype, in this case the features would be the 

genes and their corresponding expression values (Byron et al., 2016, Luo et al., 2017). 

Feature selection refers to the process of selecting features, or data attributes, that are 

more relevant for downstream tasks such as classification or regression (Wang, L. et 

al., 2016). Multiple studies have shown that if a machine learning model is provided with 

irrelevant features as input, predictive accuracy is reduced, hence studying methods 

that select informative features is a worthy pursuit (Luo et al., 2017, Wang, L. et al., 

2016).  

 There are three main types of feature selection methods. These include filter, 

wrapper, and embedded methods. Filter methods simply select features based on some 

criteria or performance metric. For example, features can be ranked based on their chi-

square statistic given the target. Wrapper methods embed the model search space with 

the feature subset search space in an iterative procedure to eventually arrive at the 

optimal choice (Figure 2.2). Wrapper methods have the added benefit of including 

interactions with the model, however, it is easier to overfit using this approach and these 

methods can be computationally expensive (Saeys, Y. et al. 2007). Finally, embedded 

methods include the search for features in the classifier construction itself. These 

methods include interactions, but are less computational expensive when compared to 

wrapper methods (Lazar, C., et al., 2012, Saeys, Y. et al. 2007).  
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Feature Extraction and Feature Engineering 

 
Feature extraction is also used to reduce the number of features but the 

approach taken differs from feature selection. While feature selection selects features 

from those that already exists, feature extractions creates entirely new features that are 

derived from the original data (Figure 2.3) (Guyon, I., et al. 2008) Principal component 

analysis (PCA) is a popular feature extraction technique. The principle components are 

derived from the original data; however, they differ from the original data and were 

design to include more information in a compressed format. Although the extracted 

feature are different from the original input data they can be used as input to the 

machine learning model (Taguchi, Y. H, et al. 2017). Feature extraction methods seek 

 
 

Figure 2.2 Three primary classification for feature selection methods 
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to reduce the relevant pieces of information to a smaller set that is used as input to the 

machine learning algorithm. The term “feature engineering” is typically used 

interchangeable with feature extraction and that meaning will be assumed through the 

remainder of this work.  

 

 
 

Gene Set Enrichment Analysis 
 

Gene set enrichment analysis (GSEA) is a technique used to identify groups of 

genes, or proteins, whose expression is associated with a given phenotype 

(Subramanian, A et al., 2005). The main idea underlying this technique is to look for 

overrepresentation of a collection of genes at the top or bottom of a ranked list of genes. 

More specifically, genes are ranked according to their correlation to a phenotype. Given 

the ranked list of genes, we can assess whether a collection of genes in a set cluster 

 
 

Figure 2.3. Illustration showing difference between feature extraction and feature 
selection 
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towards the top or bottom of the ranked list of genes using a statistical test such as the 

Kolmogorov-Smirnov (KS) test. It is important to note that the genes within a gene set 

are usually related in some way and could function together, so detecting cases where 

a phenotypic class is able to divide out these specific genes could be informative.  The 

gene sets can be visualized using tracks where black bars each represent a gene. In 

Figure 2.3 we can see a gene set where the black horizontal lines represent genes. 

Most of the genes in this case cluster toward the top of the ranked gene list where there 

is high expression in phenotype A compared to phenotype B. Although GSEA is not 

used explicitly in this dissertation, the underlying principle described forms the basis for 

how components of a machine learning pipeline are assigned importance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 2.4. GSEA ranked gene list and gene 
set diagram (Subramanian et al 2005) 
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Automated Machine Learning 

  
Automated machine learning (autoML) describes an automated procedure for 

constructing machine learning pipelines. These procedures are able to identify the 

optimal pipeline end-to-end from raw dataset to complete pipeline meaning it must 

make decisions regarding data transformation, feature selection or feature engineering, 

model choice, etc. (Feurer, M., et al. 2019). These procedures make it easier for non-

experts to use machine learning on their dataset without extensive background 

knowledge.   

The gut microbiome and 16s metagenomic sequencing 
 

The intestinal microbiome, also known as the gut microbiome, is comprised of 

the various microorganisms located within the intestinal tract and associated with the 

host (Arumugam, M., et al., 2011).  The gut microbiome plays an important role in many 

critical functions such as: the proper development of the intestinal tract, and adequate 

tuning of immunological responses. Moreover, the microbiome is associated with many 

and varied physiological and disease processes. Therefore, how the microbiome is 

acquired and maintained are questions that warrant extensive research. 16s 

metagenomic sequencing is a common sequencing approach to determine the 

abundance of different bacterial species (Jovel, J et al. 2016). This sequencing strategy 

relies on the fact that most bacteria share a common 16s gene. This gene has a 

common and a variable region. The common regions are shared between different 

bacterial species while the variable regions are different. The variable regions are then 
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used as a kind of sequencing fingerprint to identify specific bacterial species. The work 

in this dissertation is based on OTU tables constructed from 16s NGS.  

 
Osteopontin 

 
Osteopontin is a glycosylated phosphoprotein encoded by the Spp-1 gene, originally 

characterized as part of the rat bone matrix (Frazen, A. et al. 1985, Prince, C.W. et al., 

1987). Osteopontin is a pleiotropic molecule involved in a diverse array of physiological 

and disease processes such as: bone remodeling, atherosclerosis, tumor development 

and migration, inflammatory bowel diseases, immunomodulation, among others (Di 

Bartolomeo, M et al., 2016, Giachello, C. M., et al. 1993, Hur, E. M., et al., 2007).  
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CHAPTER III  
 
 

LOKKI AN AUTOMATED MACHINE LEARNING FRAMEWORK 
 
 

Authors 
 

Michael Greer, Zhiao Shi, Bing Zhang 
 
 

Introduction 
 

The microbiome is defined as the collection of all microbes living inside or on the 

surface of a host. Recent studies have shown a correlation between microbiome 

composition and the severity of numerous diseases (Kinros et al., 2011, Qin et al., 2014, 

Turnbaugh et al., 2006, Zackular et al. 2014). This observation, coupled with the 

decreasing cost of next-generation sequencing, has driven efforts to develop non-

invasive diagnostic models that use microbiome profiles to identify at-risk patients (Bang 

et al., 2019). However, research involving microbiome-based analysis methods are still 

very much in their infancy and many of the benchmarking studies done for other types of 

sequencing data have not been done for metagenomic data.  

There are certain characteristics of the human microbiome that make it difficult to 

analyze. For example, large microbial differences exist between similar individuals, such 

as twins (Turnbaugh et al., 2009). Microbiome data is also high-dimensional which adds 

to the complexity. Traditional statistical models do not account for this high level of inter-

individual variation and complexity (Segata et al., 2011). This has led many researchers 

to consider machine learning approaches which are better able to detect differences 

between samples in spite of high amounts of inter-species variation (Namkung et al., 
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2020, Zhou et al., 2019). However, selecting the appropriate data pre-processing method, 

feature processing method and machine learning algorithm that comprise a complete 

pipeline is time-intensive and often requires expert knowledge. 

Automated machine learning (autoML) frameworks were created to abstract away 

many of the details required to create machine learning pipelines (Feurer et al., 2015). 

However, few frameworks have been designed to meet the requirements for microbial 

classification tasks (Yang et al., 2020). Even fewer frameworks seek to explain the 

characteristics of top performing pipelines. This exploratory analysis would be useful for 

a number of reasons such as: determining bottlenecks in performance, identifying cost 

savings opportunities if a less computational expensive component performs nearly as 

well as other more performant expensive choice, and gaining insights on how to make 

future improvements. For example, if non-linear models perform well in general, 

researchers could focus their attention on these types of algorithms and explore other 

non-linear models available elsewhere. Hence, there is a need for software that can 

explain which components of a machine learning pipeline are the most relevant. Here, we 

first conduct a benchmarking study that explores whether applying various feature 

selection and feature engineering techniques prior to training influences classifier 

performance. Next, we expand our study to the development of an entire autoML 

framework that will simplify the task of selecting pre-processing, feature selection or 

engineering, and machine learning model for any metagenomic sequencing dataset.   
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Significance 
 

This work is significant for a number of reasons. First, although comparative 

analyses showing the effect various feature selection and feature engineering methods 

have on classification have been done for other types of NGS data, very few have 

evaluated these methods on 16s metagenomic sequencing data. Metagenomic 

sequencing data has specific properties that differ from other NGS data sources, so 

exploring how this data type reacts to various techniques is of interest. Furthermore, in 

this study we will use 16s metagenomic profiles from colorectal cancer patients which 

remains a leading cause of cancer-related death. Benchmarking studies are an 

important first step toward the development of models that can be used in the clinic for 

early detection of the disease. Another reason this study is significant relates to the 

development of the autoML framework. This framework is one of the first autoML 

frameworks designed specifically for metagenomic data. It also introduces a novel 

visualization technique which enables users to determine which component of a 

machine learning pipeline are most relevant to performance.   

 
Objectives 

There were two objectives of this study. First, to conduct a small benchmarking 

experiment to determine whether applying a feature selection or feature engineering 

technique prior to model training improves performance.  Second, to develop an autoML 

framework for 16s metagenomic sequencing data.   
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Materials and Methods 
 
Data Source 
The 16s sequencing data sets were obtained from a recent 16s colorectal cancer meta-

analysis (Sze, M. A., et al. 2018).  

 
Construction of model building pipelines 
To perform an analysis, users must specify a performance metric then a set of pre-

processing, feature transformation, and machine learning algorithms to consider. The 

package will automatically determine the hyperparameters for all classifiers and then 

compute performance for all pipelines based on cross validation.  

 
Model building component enrichment analysis 
To visualize which components of the model building pipelines contribute most to 

performance Lokki first sorts each pipeline according to the selected performance 

metric. Next, it filters the scores based on all combinations of either one (single factor) 

or two (dual factor) components. Finally, statistical significance is assessed using the 

Kolmogorov-Smirnov (KS) Test applied to the scores in the current factor or factor 

combination of interest versus all other scores. The visualization is inspired by gene set 

enrichment analysis (Subramanian et al., 2005) whereby black bars are drawn to show 

where in the ranked list of pipelines the factor or factor combination appear.  

 
Pipeline Selection 
Users have two options available when selecting a final pipeline for re-use on unseen 

data. The first option is to select the top performing pipeline based on cross-validation 

performance. This approach may be optimal in some cases, but may be prone to 

overfitting. The second option is to walk down the ranked list of pipelines and construct 
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a model building pipeline by selecting the first of each component type to appear k 

number of times. For example, suppose k = 3, then if log-transformation is the first pre-

processing method that appears three time in the ranked list of pipelines it will be 

selected, then if PCA is the first feature transformation method to appear three time it 

will be selected, and so on until all components of the pipeline are complete. 

Local Installation 
Lokki can be installed on local computers using the python package index (PyPI) by 

executing pip install lokki from the terminal. After installing the package, it can be imported 

and used without any further setup.  

 
 

Results 
 
Benchmarking Study 
 
A summary of the datasets, and sample size, for the benchmarking study are provided 

in Table 3.1. To visualize the amount of diversity within each dataset I measured the 

alpha diversity using richness (observed OTU) and evenness (shannon score) metrics. 

There was no significant difference in richness or evenness when comparing normal to 

cancer patients across all datasets (Figure 3.1) 

 
 
 
Table 3.1 Benchmarking study sample sizes  
 
Study # Normal # Disease 
Ahn 148 62 
Baxter 172 120 
Flemer 37 43 
Hale 473 17 
Wang 56 46 
Zeller 50 41 
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A summary of the feature selection and feature engineering methods for the 

benchmarking study are provided in Table 3.2 and Table 3.3 respectively. The results of 

applying these methods prior to training a random forest classifier is provided in Figure 

3.2.  

 
Table 3.2 Benchmarking study feature selection methods  
 

Method Acronym 
Chi-Square Statistic chix 
Mutual Information mi 

Minimum Redundancy Maximum Rel. mrmr 
 
 
 
Table 3.3 Benchmarking study feature engineering methods  
 

Method Acronym 
Independent Component Analysis ica 

Kernel PCA kernel 
Principle Component Analysis pca 

Supervised Principle Component 
Analysis 

spca 

 

 
 
Figure 3.1. Normal vs disease richness (observed OTUs) and evenness (shannon) of 
microbiome profiles across all datasets  
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There was not a consistent, or significant, trend observed. In some cases, a feature 

selection or feature engineering step improved performance and other cases it hurt 

performance.  The results were dataset specific and it is difficult to make 

recommendations based on the data. A tool is needed to broaden the search to include 

not only feature selection and feature engineering, but the entire learning pipeline.  

 

Introducing Lokki 
 
Lokki is a python package, designed for metagenomic sequencing data, that allows users 

to assess which components of a collection of machine learning pipelines contribute most 

 
Figure 3.2. Normal versus disease prediction performance after applying the listed 
feature selection or feature engineering methods 
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to performance. A machine learning pipeline consists of three components: a data 

transformation component, a feature selection or feature engineering component, and a 

machine learning algorithm (Figure. 3.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to typical approaches, such as log-transformation of the data, feature 

extraction using principal component analysis, and a random forest classification model, 

Lokki also includes microbiome analysis-specific methods such as taxonomy-aware 

feature selection (Oudah et al., 2018). A complete list of the methods available for these 

components can be found in Table 3.4-6.  

 

 

 

 
 
Figure 3.3 Schematic overview of the Lokki package  
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Table 3.4 Data transformation methods 
Name Description  
none No Data Transformation 
log Log Transformation 
zscore  Z Score Transformation  

 
Table 3.5 Feature selection and feature engineering methods  
Name Description  
none No Feature Transformation 
hfe Hierarchical Feature Engineering  
chi_square  Chi Square Feature Selection  
mutual_information Mutual Information Feature Selection 
pca Principal Component Analysis  
factor_analysis Factor Analysis 
ica Fast Independent Component Analysis  
nma Non-Negative Matrix Factorization  

 
Table 3.6 Machine learning algorithms  
Name Description  
decision_tree Decision Trees 
random_forest Random Forest  
lda Linear Discriminant Analysis  
qda Quadratic Discriminant Analysis  
extra_tree Extreme Randomized Trees 
logistic_regression Logistic Regression 
adaboost AdaBoost  
gradient_boosting Gradient Boosting  
svm Support Vector Machine 
ridge_regression Ridge Regression 

 
 

In addition to metagenomic data, users also have the ability to analyze 

precomputed prediction performance results from a set of machine learning pipelines 

together with pipeline component information, such as those from the DREAM or other 

crowdsourcing challenges. In this way, users can identify common characteristics of the 

winning pipelines (Figure 3.3).  

Lokki’s visualization engine provides a novel way to compare performance results 

from all pipelines and to identify key determinants of model performance. A detailed 
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description of how read the visualization is provided in Figure 3.4. Lokki is a python 

package designed to function like many other popular data analysis libraries such as 

pandas and numpy. An overview of how to interact with the package is provided in Figure 

3.5-7.  

 
 
 
 
 
 

 
 
 

 
 
Figure 3.4. Lokki enrichment visualization description 
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Figure 3.5. Running basic analysis  

 

 
 
Figure 3.6. Generating an enrichment analysis plot  

 
 
Figure 3.7. Selecting a complete pipeline for later use  



    

 26 

 
To demonstrate the utility of the Lokki software package, we analyzed a previously 

published 16s dataset from colon cancer patients (Baxter et al., 2016). The OTU table 

contained 292 patients, 172 normal and 120 disease. Pipeline performances (AUC) 

ranged from 0.48 to 0.65 (Figure 3.8 top). 

 

 

 
 

Figure 3.8 Performance distribution and enrichment plot for Baxter dataset 
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The single factor enrichment analysis results showed no preprocessing resulted in a 

significant decrease in performance (Figure 3.9). The simple chi-square-based feature 

selection outperformed other advanced feature selection or feature engineering methods 

(Figure 3.10). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

 

 
 

 
Figure 3.9 Single factor preprocessing results  
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Figure 3.10 Single factor feature selection and feature engineering 
results 

 
 

 

 

 

 

 
 

Figure 3.11 Single factor machine learning model results 
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Interestingly, the microbiome taxonomy-based features did not outperform other 

approaches in this case despite incorporating taxonomic information (Figure 3.8, 3.10). 

Among all 10 machine learning algorithms tested, logistic regression showed the best 

performance, followed by gradient boosting (Figure 3.11). Two factor analysis results 

revealed more detailed information. For example, chi-square-based feature selection 

worked well with logistic regression but not SVM (data not shown). This example shows 

how Lokki can be used to identify key determinants of model performance in a data-driven 

manner. 

 

Discussion 
 

The benchmarking study did not yield significant or consistent results. In some 

cases, a feature selection step improved performance while in other cases it decreased 

performance. Hence, broadening the search to include components of the entire pipeline 

instead of restricting attention to one component could be advantageous. In response to 

these results I have developed a software package, Lokki, that helps users discover 

efficient machine learning pipelines. Lokki provides a novel enrichment analysis method 

to compare performance results from all pipelines of interest to identify key determinants 

of model performance. The software was designed with ease-of-use in mind. From a 

simple installation procedure and data input format to a logical programming interface, 

this software will be immediately useful to researchers when analyzing new data or 

precomputed performance results. The enrichment analysis feature presented in this tool 
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fills an unmet need in predictive modeling of microbiome data, with general applicability 

to other machine learning tasks. 

In order to take full advantage of the Lokki package users may want to consider 

the following guidelines. First, when performing a de-novo search using an OTU table as 

input, users should consider filtering out OTU columns that have excessive zeros. For 

example, users should filter out columns where > 80% of the samples have a zero value 

before feeding the data into the package. Performing this step will dramatically reduce 

the time it takes to complete the analysis since metagenomic data is typically zero-inflated 

and many columns could be eliminated. After running the analysis users may also want 

to serialize the results object using a package like pickle. This is recommended so the 

same analysis won’t need to be re-run each time the user wants to create a different 

enrichment plot since the results objects can simply be deserialized. Finally, users should 

avoid using non-parametric models if they have a small sample since there is an 

increased probability the resulting models will be overfit. Although there is not a standard 

method to determine the appropriate sample size given a particular model, there are 

heuristics users are encouraged to explore and follow. 

While applying the tool to our selected dataset the simple feature selection and 

machine learning methods worked best. There are two primary reasons why the simple 

feature selection and machine learning model performed better. First, microbiome data 

is inherently noisy and there is a high level of variance even among the same individual, 

that is, the data has a low signal to noise ratio. Simple approaches are less likely to fit 

the noise compared to more complex approaches that have more representational 
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power. Given the increased representational power, complex approaches can easily fit 

the noise which would lead to poor performance on out of sample data (i.e. low 

generalizability) since the patterns detected in the noise are unlikely to repeat.  

The second reason has to do with the relationship between the complexity of a 

model, VC-dimension, and sample size. The VC-dimension is a metric used to 

characterize the complexity of machine learning models where higher values are 

associated with more complex models. It has been shown previously that the test error 

on out of sample data can be bounded by the training error plus another term. More 

specifically, it has been shown that:  

 

Pr#test error  ≤ 	training error +'
1
𝑁 *𝐷	 ,log ,

2𝑁
𝐷 . + 1. − log	 ,

𝜙
4.23 = 1 − 𝜙 

 

where D is the VC-dimension, N is the sample size and 𝜙 ∈ [0, 1] is constant. Note how 

the upper bound on the test error shrinks as  𝑁 → ∞, that is, the term under the square 

root will tend to 0 x (some large number) = 0 as 𝑁 → ∞ which means the bound on the 

test error decreases as the sample size increases. A tight bound would imply similar, or 

better, test error when compared to the training error (i.e. high generalizability). Also 

note how as 𝐷 → ∞ the bound on the test error grows to infinity. That is, as the model 

choice becomes more complex it becomes harder to get a tight bound on the test error. 

The data in my study had a small sample size and coupling that with a complex model 
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would result in a large bound and it is less likely the models will generalize which helps 

explain the poor performance.  
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CHAPTER IV  
 
 

MILK DERIVED OSTEOPONTIN AND THE INTESTINAL MICROBIOME 
 

 
Authors 

 
Michael Greer, Ali Nazmi, Kristie Hoek, Danyvid Villagomez-Olivares 

 
 

Introduction 
 

The impact of the microbiome in both health and disease has been revealed in the 

past two decades. It is now well established that the microbiome has a remarkable 

influence on obesity, modulation of immune responses, development of autoimmune 

disorders, among other physiological processes (Valdes, A. M., et al. 2018). Because of 

its importance, how the microbiome is acquired during birth, how it matures and how it is 

maintained are important questions that warrant thorough investigation.  

One of the most relevant determinants of microbiome colonization after birth is 

breastfeeding (Rautave, S., et al., 2016). A recent meta-analysis show a significant 

divergence in the microbiome and its effects in exclusively breastfeeding infants and 

those that have other nourishment mechanisms (Ho, N. T., et al., 2018). Of its many 

benefits, there is increasing evidence that breast milk may represent a source of bacteria 

for colonization of the infant intestines (Urbaniak, C. et al, 2014, Martin, R. et al, 2003), 

as well as providing complex oligosaccharides to help establishing the nascent 

microbiome (Rautave, S., et al., 2016). Furthermore, milk also provides important 

bioactive factors such as immunoglobulins, lysozyme, lactoferrin and defensins that help 
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the infant battle infections as well as providing a supportive environment for proper 

microbiome colonization.   

An abundant bioactive factor present in milk is osteopontin. Osteopontin 

concentration in human milk varies depending on whether it is measured in colostrum, 

early milk (72 h to 7 d post-partum) or mature milk (28 d post-partum), but it ranges from 

18 to 322 mg/ml (138 mg/ml in average), which constitutes around 2% of the total protein 

in human milk (Nagatomo, T., et al., 2004, Schack, L. et al. 2009). The high levels of 

osteopontin in milk suggest an important role for this protein in the development of 

neonates and the intestinal microbiome, however, there are limited published works 

describing the effect of maternal milk-derived osteopontin on the intestinal microbiome.  

 

Significance 
 
The significance of this work resides on the importance of breastfeeding in the 

development of infants. It is well established that the microbiome is acquired during birth, 

but there is increasing evidence suggesting that breast milk represents an important 

source of bacteria for colonization of the infant. In addition to providing nutrients to the 

neonate, breast milk also contains important bioactive factors, such as osteopontin, that 

could modulate the nascent microbiome. This study will provide important evidence about 

the role of milk-derived ostepontin in the development of a proper intestinal microbiome. 

Completion of this study will also serve as a foundation for future research focusing on 

how microbiome dysbiosis, caused by insufficient milk-derived osteopontin, impacts the 
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susceptibility to diseases such as obesity, inflammatory bowel diseases, diabetes, among 

others.  

 

Objectives 
 

The objectives of this study were two-fold. First, to determine the influence of 

osteopontin on the development of the gut microbiome. Second, to investigate whether 

osteopontin influences the growth of bacteria present within the microbiome. 

 

Materials and Methods 
 
Mice 
 
C57BL/6J were originally purchased from The Jackson Laboratory (000664) and have 

been maintained and acclimated in our colony for several years. Spp-1−/− (004936) mice 

on the C57BL/6 background were originally purchased from The Jackson Laboratory. 

Spp-1−/− mice were crossed with C57BL/6J wild-type mice to generate heterozygous 

offspring, and subsequently bred among themselves to generate knockout mice. Male 

and female mice were used for all experiments. Mice were maintained in accordance 

with the Institutional Animal Care and Use Committee at Vanderbilt University. 

 
DNA Extraction and 16s Analysis 
 
Stool was collected from 5 individual WT and and 6 Spp-1−/− mice at three different time 

points. DNA was extracted using the QIAGEN PowerSoil Kit and processed following 

manufacturer’s instructions. Sequencing was performed on an the Illumina MiSeq 
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platform (2 x 100 paired-end reads). The python tool QIIME (Caporaso, J. G., et al., 

2010) was used for quantifying OTU abundance and computing alpha diversity metrics.  

 

Ensemble feature selection 
 
The autoML package, Lokki, was used to train machine learning pipelines. These 

pipelines were then filtered for those with AUC > 0.75 and those that included a feature 

selection step. OTUs were ranked in decreased order of how many separate pipelines 

the OTU was selected. 

Results 
 

To confirm whether or not osteopontin reaches the instestinal tract upon breast 

feeding we set ♂Spp-1+/- x ♀Spp-1+/- breeders then flushed the small intestines and 

colon of 21 day and 49 day Spp-1+/+ and Spp-1-/- littermates with PBS which was then 

used on an osteopontin-specific ELISA. Our data indicates that osteopontin is present in 

the Spp-1-/- mice which confirms the presence of milk-derived osteopontin from the 

♀Spp-1+/- dam. 
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A recent publication, using 8 week old co-housed but not littermates WT and Spp-1-/- 

mice, showed that osteopontin-deficient mice presented decreased relative levels of the 

phyla Bacteroidetes, but increased Firmicutes and Proteobacteria (Ito, K., et al., 2017). 

To corroborate these published results, we set ♂Spp-1+/- x ♀Spp-1+/- breeders and the 

microbiome from offspring Spp-1+/+ and Spp-1-/- littermates was analyzed at 21, 35 and 

49 days of age. As shown in Figure 4.2, the observed number of operational taxonomic 

units (OTU) were similar for Spp-1+/+ and Spp-1-/- mice at 21 and 35 days of age. 

Interestingly, at 49 days of age, the number of observed OTU was significantly higher in 

Spp-1+/+ mice than in littermate Spp-1-/- mice, and correlated with greater microbiome 

evenness at the same time point (Figure 4.3). 

 
 

 
 

Figure 4.1 Osteopontin concentation in the small intestine and colon of 21d 
and 49d Spp-1-/- mice and Spp-1+/+ mice. 
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Figure 4.3 Evenness of the microbiome present in stool in the indicated mice at different 
time points. n=3 to 6 mice. *P<0.05 by Mann-Whitney Test. 
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Figure 4.2 Estimated operational taxonomic units present in stool microbiome in the 
indicated mice at different time points. n=3 to 6 mice. *P<0.05 by Mann-Whitney Test. 
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The composition of the microbiome at the order level showed primarily an increase in 

Clostridiales and Desulfovibrionales in Spp-1+/+ mice in comparison to littermate Spp-1-/- 

mice at 7 weeks of age (Figure 4.4). On the other hand, the relative frequency of 

Bacteroidales and Lactobacillales was higher in 49-day-old Spp-1-/- mice than in Spp-1+/+ 

littermates. We validated the 16S sequencing results by real-time PCR and found similar 

results. It is important to note that our results differ from those reported by Ito et al., 

suggesting that the use of littermate animals versus co-housed, non-littermates may be 

responsible for the observed discrepancy.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4 Relative stool microbiome order frequencies present in stool. 
Data derived from 16S sequencing in the indicated mice at different time 
points. n=3 to 6 mice. Blue bars, wild type mice; red bars, Spp-1-/- mice. 
*P<0.05; **P<0.01 by Student’s t test. 
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The clostridiales order exhibited the most significant difference between wild type and 

Spp-1-/- mice. Two bacterial species, clostridioides mangenotti and clostridium 

innocuum, from the clostridiales order were grown in culture with different concentations 

of osteopontin to determine whether osteopontin influenced the growth in culture. The 

results are shown in Figure 4.5. Increasing osteopontin prevented the growth of the 

bacteria in almost every case.   

 
The python package, Lokki, was used to identify other bacteria of interest using 

ensemble feature selection. The results are summarized in Table 4.1  

 
Table 4.1 Lokki prediction of relevant bacteria  

ID Lokki Prediction Rank 
OTU0011 Deferribacteraceae 1 
OTU0024 Lachnospiraceae 2 
OUT0009 Prevotellaceae 3 
OUT0026 Ruminococcaceae 4 
OUT0018 Lactobacillaceae 5 

 

 
Figure 4.5 Growth rate (by optical density) of clostridioides mangenotti and clostridium 
innocuum at varying concentrations of osteopontin.  
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Discussion 

 
Here, we show that mice deficient in osteopontin (encoded by the Spp-1 gene) 

present gut microbiome dysbiosis. Furthermore, we provide evidence that in Spp-1-/- 

mice the relative abundance of Bacteriodales and Lactobacillales is increased, whereas 

the abundance of Clostridiales and Desulfovibrionales is decreased when compared to 

Spp-1+/+ littermate controls. Interestingly, the observed dysbiosis was evident only at 

around 49 days after birth. Because the littermate mice used for these experiments 

derived from Spp-1+/- mothers, Spp-1-/- pups were nurtured with osteopontin present in 

the milk until they were weaned at 21 days of age, at which point the source of 

osteopontin was eliminated. I also show that osteopontin can influence the growth of 

bacteria in culture. Lokki was able to predict relevant bacteria for further consideration 

using ensemble feature selection, however, these predictions still require experimental 

validation. 

I identified Bacteriodales, Clostridiales, Desulfovibrionales and Lactobacillales as 

relevant bacteria without Lokki while I identified Deferribacteraceae, Lachnospiraceae, 

Prevotellaceae, Ruminococcaceae, and Lactobacillaceae using tool. However, it’s 

important to note that the bacteria identified without the tool used data that was 

summarized at the order-level while the data used with the tool were summarized at the 

family-level. A majority of the bacteria identified using the tool were actually a part of the 

relevant order-level bacteria. For example, Lachnospiraceae and Ruminococcaceae are 

both a part of the Clostridiales order which previous work has shown to be correlated 

with inflammatory bowel disease (IBD) severity. Also, Prevotellaceae is a part of the 
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Bacteroidales order. A t-test was used to identify the relevant bacteria without the tool. 

Some benefits of this approach are simplicity, it is computationally inexpensive, and 

previous work suggests it is a conservative statistical test compared to other methods, 

however, a negative of this approach is that it makes assumptions about the distribution 

of OTU abundances which may be incorrect. A non-parametric test could have been 

used as an alternative. An ensemble feature selection approach was used with the 

Lokki package. A benefit of this approach is that ensembles are known to decrease 

variance and increase the stability of predictions which could give more accurate results 

given the low signal to noise ratio of microbiome data. A negative of this approach is 

ensembles tend to be more computationally expensive.  
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CHAPTER V 
 
 

CONCLUSION 
 
 

Clinical bioinformatics is a rapidly evolving field that has the potential to transform 

the healthcare industry. It is likely that future patients will be screened and given 

personalized solutions for their healthcare needs. This future requires improvements in 

both computing infrastructure and analysis methodology. The big data revolution has 

initiated progress in some respects, they’ve introduced data management software and 

cloud computing infrastructure capable of managing petabyte-scale data, however 

improvements in analysis methodology are still needed. Researchers have had success 

leveraging the power of machine learning algorithms to analyze large quantities of data 

but developing robust machine learning pipelines is still a challenge.  

Creating tools that make it easier to the develop robust machine learning 

pipelines will be of paramount importance. Automated machine learning frameworks 

were introduced to ease the pipeline development process and abstract away many of 

the details required to evaluate, tune, and select models that will generalize out of 

sample. While many automated machine learning frameworks have been introduced in 

recent years, most do not assign important to the pipeline components and it is still 

difficult to know how each components effect performance. This information can help 

researchers make informed decisions and select for robustness.  

This dissertation focused on the development and use of bioinformatics analysis 

to address two health-related problems using a data-driven and hypothesis-driven 
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approach. The first problem involved efforts to improve metagenomic sequence-based 

classifiers performance by conducting a benchmarking study and introducing a novel 

software package in Chapter III. This type of work is important to advance the 

development of non-invasive metagenomic-based diagnostics for diseases such as 

colon cancer. The second problem started with the hypothesis that the protein 

osteopontin influences the microbiome. The goal of this project was to determine how 

the absence of osteopontin influences microbiome composition which led to the 

discovery that milk-derived osteopontin is likely driving some of the observed 

differences. While completing these studies I learned a number of principles 

summarized below.  

To start, although the benchmarking study results were inconclusive, logical 

trends were observed in the exploratory analysis of alpha diversity where increased 

richness and evenness were observed in the normal samples. The results of the 

benchmarking study also motivated the development of the python-based Lokki 

software package which is able to construct entire machine learning pipelines and 

explain which components contribute most to performance. The introduction of this 

software is a major contribution of my work. The software introduced could have a large 

impact for a number of reasons. First, it opens up an entirely new dimension of analysis 

by applying ideas from gene set enrichment analysis to pipeline evaluation. Current 

autoML approaches completely ignore the wealth of information available by studying 

how each pipeline performed by component, however, this information can be useful for 

determining bottlenecks in performance, identifying cost savings opportunities if a less 
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computational expensive component performs nearly as well as other more performant 

expensive choice, and gaining insights on how to make future improvements. This tool 

has the potential to help researcher develop improved models for diagnostics based on 

a patient’s microbiome profile. This is also one of the first autoML packages designed 

specifically for metagenomic data with microbiome-specific feature selection techniques 

built into the software.  

A central insight from the hypothesis driven study involving osteopontin was that 

milk-derived osteopontin influences microbiome composition. I arrived at this conclusion 

after sequencing stool samples collected at various time points and noticing a time 

dependent difference in the microbiome. Further experiments supported the hypothesis 

that milk-derived osteopontin is present within the intestine. This result is significant 

because few studies to date have explored the impact of milk-derived osteopontin on the 

microbiome. Also, given that infant formula has a much lower concentration of 

osteopontin than breast milk, and that many mothers use formula as an alternative to feed 

their children, it is essential to understand the functions of milk-derived osteopontin and 

its impact in the development of newborns. The results from this study provided the 

impetus for future work in this direction.  
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CHAPTER VI  
 
 

FUTURE DIRECTIONS 
 
 

A major limitation of the current work was the lack of experimental validation in 

Chapter IV for the predictions made by Lokki. A number of experiments could have 

been done for a more detailed understanding of the factors driving the observed 

phenotypes. For example, the bacterial strains identified from the tool could have be 

cultured in the presence or absence of recombinant osteopontin. We could then 

measure the growth rate over time and see whether osteopontin influences their growth. 

Another experiment could introduce osteopontin to osteopontin-deficient mice through 

oral gavage in order to see if the wild-type phenotype is rescued. These experiments, 

and many others, are currently in progress.  
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