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1. Introduction 

 

1.1. Overview 

Most voluntary and involuntary actions that a human individual performs everyday are governed 

by the human brain. The brain and the spinal cord formulate the core nervous system in the human body 

which formulate/execute the actions. Currently, diffusion-weighted magnetic resonance imaging (DW-

MRI) is the only imaging modality that holds the potential to capture the microstructural tissue properties 

in-vivo (within living) at an intra-voxel millimetric scale for the human brain. DW-MRI holds the potential 

to transform our understanding of neurological disorders and the capacity to help in healthcare. Throughout 

the life span the brain alters in various ways [1] and  evolution has led for humans to have a longer life span 

[2]. Increased life span has been directly correlated with an expectation of higher cases of dementia related 

disorders for e.g. Alzheimer’s disease [3]. Number of cases reported for Alzheimer’s in 2015 was 5.3 

million in USA alone [4]. Multiple Sclerosis in US itself accounts for over 400,000 cases with 

approximately 10,000 new cases being received every year [5, 6]. Current global review studies suggest 

that for every 10,000 children 62 are diagnosed with autism spectrum disorder [7].   

Prevalence of neurological disorders has led scientists/researchers to conduct longitudinal studies, 

connectome-based studies to characterize governing factors between control and impaired subjects. The 

Human Connectome Project (HCP) [8, 9] is one such popular study with over 2400 acquired scans with a 

systematic protocol focusing on high quality and same subject repeat data. The Baltimore Longitudinal 

Study of Aging (BLSA) [10, 11] is more focused towards characterization of long term effects of 

neurological disorders, the data acquisition started in 1958 with over 1000 participants aged between 17 to 

96 years. The imaging acquisitions began in the year 1977 [10]. The protocols that govern imaging 

modalities (e.g. MRI) are being acquired consistently with more variants of modalities being added as 

technological advancements progress. Due to the successive changes of sites and scanner hardware 

upgrades, it has become a critical processing step to harmonize the DW-MRI acquisitions to support large 



31 

 

scale statistical analysis. DW-MRI holds great potential for developing our understanding of neurological 

disorders large scale studies from multiple cohorts of population need to be harmonized for meaningful 

interpretations. 

The term ‘harmonization’ can be defined as a method for ‘allowing data to be meaningfully 

compared when there are multiple sources of data’. Harmonization is necessitated so that models that are 

fit to DW-MRI do not get affected by the bias and variance of the scanner sites and hardware upgrades. 

Harmonization will allow for an unbiased or reduced bias estimates of the tissue properties, for which a 

plethora of advanced methods/models exist currently. Due to the complex acquisition schemes of DW-MRI 

the advanced methods are applicable for estimation of microstructure tissue properties. 

The microstructure/microarchitecture models can be classified into two major categories: 

orientation models and compartment models. A few popular orientation models are persistent angular 

structure (PAS-MRI) [12], Q-ball imaging (QBI) [13], diffusion orientation transform (DOT) [14], 

constrained spherical deconvolution (CSD) [15]. The well-known compartment models in use are neurite 

orientation dispersion and density imaging (NODDI) [16] and spherical mean technique (SMT) [17] etc. 

The orientation models provide information about the geometrical microstructure at an intra-voxel level 

and the compartmental models provide us with fractional estimates of the tissue that constitutes the voxel. 

In general, the orientation methods are often collectively referred as high angular resolution diffusion 

imaging (HARDI) methods [18]. The HARDI methods are described in a more elaborate fashion in section 

3.2.  

The diffusion microstructure/microarchitecture methods have showed varied reproducibility when 

compared intra-method, inter-method, intra-session, inter-session, inter-scanner; where intra-method and 

intra-session exhibit high reproducibility and the others exhibit low reproducibility [19, 20]. In the context 

of precision/accuracy for HARDI methods and compartment methods, there are three possible validations 

1.) phantom based studies, 2.) histology-based validation (animal studies) and 3.) scan-rescan studies of 

human in-vivo acquisitions. Although the methods are primarily intended for applicability on humans it is 

exceedingly difficult to perform human histology validation due to lack of such datasets. Phantom studies 
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have indicated sound validation of most of the methods [21, 22]. However, the same is not true for histology 

validation using datasets from animal studies [23]. This indicates there is scope for development of new 

microstructure methods that are focused towards reproducibility specifically towards inter-session, inter-

scanner and show a high precision for histology-based validation[23, 24]. Earlier proposed models have 

not shown high correlation with the same metrics being derived from histology [25]. The most widely used 

methods are classical mathematical transforms, and machine learning to drive these models has only been 

mildly explored [25, 26] to improve reproducibility and show a higher correlation. These gaps lay out the 

foundation of this dissertation. Briefly, the gaps for microstructure modelling can be segregated into 1.) 

highly reproducible and harmonized estimates of microstructure tissue properties and 2.) microstructure 

estimates that show high correlation with histology-based tissue estimates.  

This chapter is segregated into different sections. Section 2 covers the fundamental information 

regarding DW-MRI, hyper-parameters of DW-MRI, and its applications. Section 3 delves into the 

understanding of microstructural measures from imaging modalities and their associative synergy with 

histological measures. In section 4, we cover the majority of the harmonization and reproducibility 

methodologies involved for the neuroimaging data in section 4. The section covers how the acquisitions 

were normalized and registered collectively for analysis. Next in section 5 we cover the basics of deep 

learning and how it can be applied to DW-MRI; covered in section 5. Section 6 outline’s the clinical 

applicability of these approaches and outlines this dissertation into contributions. 
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As a part of this dissertation, we lay out the characterization of empirical reproducibility in the 

context of HARDI methods and tractography to understand the strengths and the fallacies of prior 

established work from the literature. Further, we propose novel methods to reconstruct microarchitecture 

from external validation data (animal studies). The external validation data showed promising results which 

motivated us to utilize them for proposal of multiple harmonizing approaches for microstructure 

measurement. In parallel, we also show that recovery of 3D microstructural measures from 2D histology 

imaging is possible.  

We briefly outline all the contributions that have been performed as a part of this dissertation. A 

brief overview for each contribution can also be observed in Figure I.1. 

1.1.1. Contribution 1: Empirical characterization of reproducibility of microstructure 

Due to the existence of a plethora of microstructure modelling techniques and multiple tractography 

reconstructions, a reproducibility evaluation was necessitated. Hence, we empirically characterized 

microstructure modelling methods using single subject large scale in-vivo acquired data. The acquired data 

 

Figure I.1. Overview of the contributions proposed in this dissertation. Contribution 1: was to 

evaluate empirical reproducibility for microstructure in terms of HARDI methods and 

tractography. Contribution 2: Proposition of novel data-driven methods using rare animal 

histology datasets. Contribution 3: Inter-modal learning to recover 3D microstructure from 2D 

microscopic imaging. Contribution 4: Scanning acquisition parameter invariant learning 

manifolds for generalizability of data-driven learning techniques. Contribution 5: Recovery of 

multi-shell DW-MRI microstructural measures from single-shell DW-MRI 
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had multiple repeats per session with repetitions of sessions and the same was acquired on different scanners 

for evaluation.  

Two well-known HARDI models were chosen (Q-ball and PAS-MRI) because they both belong to 

the same category of orientation tissue models; however, they are at the extreme ends of a spectrum in 

terms of anisotropic nature with Q-ball showing smooth angular structure while PAS-MRI recovering 

sharper angular structure. The two methods follow a fundamentally different classical transformation for 

modelling. This study was performed on one of the largest single subject datasets with a total number of 

more than 5400 brain volumes. The study design focused on intra-method and inter-method comparison. 

The metrics that were used for characterization were symmetric angular error, peak fraction and general 

fractional anisotropy. Both the methods showed a high level of disagreement when they were inter-

compared for the same subject. 

The global tractography (geometrically connected tract micro-structure) reproducibility challenge 

was conducted on a single subject acquisition acquired across two different scanners, with over 1800 brain 

volumes per scanner. The data was acquired in two different sessions per scanner and hence the 

tractographic algorithms were assessed at three levels of intra-session, inter-session and inter-scanner 

reproducibility. As a final outcome given all algorithms the variance was quite high for all the tracts. 

However, considering the top five submissions measured by intraclass correlation coefficient and dice 

similarity measure 8 of the tracts showed high reproducibility, 4 showed moderate and 4 showed low 

reproducibility.  

To understand the underlying challenges associated with studies of microstructure and 

microarchitecture, empirical characterization was the first step that we took. There are multiple HARDI 

methods. For an intricate evaluation, we choose two methods PAS-MRI and Q-ball to study for intra and 

inter method disagreement. The contribution is covered in greater detail in chapter II and III. As a pre-

processing technique, we also explored if the reproducibility could be improved by proposal of an outlier 

detection and imputation technique covered in chapter IV. 

The moniker of microarchitecture begins with microstructure methods however, it was as critical 
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to assess the reproducibility of tractography. To address this, we conducted a global challenge of for the 

assessment of 16 different tracts that depict the neural pathway structure of the human brain. Nine Teams 

submitted a total of 46 different algorithm pipelines that could reconstruct the streamlines. The outcome is 

discussed in greater detail in chapter V. 

1.1.2. Contribution 2: Novel methods to improve precision and reproducibility of microstructure using single 

shell DW-MRI acquisitions 

Validation studies are often performed using corresponding histology with DW-MRI measures. We 

explore the potential of an external validation dataset to drive data-driven machine learning approaches.  

The venture led us to explore a harmonized reconstruction of the microstructure by utilizing paired 

in-vivo data from different scanners of the same subject. The contribution is further defined by inclusion of 

scalar metrics as loss so that a joint harmonization framework is formed. 

We inferred that the current approaches were limited when histological validations were assessed. 

Hence, we proposed a novel deep learning method that could recover the microstructure using external 

validation data. This approach is covered in more detail in chapter VI. The approach motivated us to 

harmonize the scanner site effects and propose a framework technique using deep learning that could predict 

harmonized microstructure. The framework is discussed more elaborately in chapter VII and VIII. 

1.1.3. Contribution 3: Combining DW-MRI with 2D imaging to predict 3D measures from 2D imaging. 

Integration of DW-MRI and histology for microstructure reconstruction has encouraged us to think 

about applications where there is a lack of DW-MRI acquisition measurement and only 2D imaging exists. 

There are no known ways to extract 3D microstructure information from 2D imaging. Hence this 

contribution is focused towards obtaining 3D microstructural measures from 2D imaging acquisitions. 

While contribution 2 led us to proposal and implementation of harmonizing techniques, it 

simultaneously depicted a pathway to a new challenge where the 3D microstructural measures could not be 

derived from 2D imaging. Using rare datasets, we propose techniques that can recover 3D measures using 

2D imaging. This work is covered in more detail in chapter IX and X. We hope that this work will find 
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applicability where researchers are faced with data where only 2D imaging exists, for example postmortem 

brain studies based on histology. 

1.1.4. Contribution 4: Learning across the manifolds of single and multi-shell DW-MRI for advanced 3D 

microstructure reconstruction 

Typical clinical DW-MRI scan acquisitions are based on single shell DW-MRI data with a limited 

number of gradient directions. The promising results from the prior work were limited in application to 

advanced multi-shell DW-MRI acquisitions where the scanning parameters could vary in number of 

diffusivity shells, varying diffusivity values and varying number of gradient directions per diffusivity shell. 

Therefore, we proposed and developed a learning manifold where the data could have varying scanning 

parameters. 

Such methodologies will be critical for the new wave of research studies that are being conducted 

for a richer understanding of the DW-MRI based microstructure. Research institutes often collect advanced 

DW-MRI data where there are two or more diffusivity shells. A typical example is also of the Human 

Connectome Project where three shells of data per scan acquisition were collected. 

Contribution 2 opened the possibilities for the applicability/utility for reconstruction of fiber 

orientation based microstructural measures, yet it was limited only towards operating on single shell DW-

MRI. Although, the typical clinical acquisitions are single-shell hardware advancement in the near future 

will allow for multi-shell DW-MRI at clinical level. This led us to propose the learning space manifold for 

multi-shell DW-MRI for reconstruction of fiber orientational measures. The proposed methods were trained 

and validated extensively on a rare histology with corresponding DW-MRI dataset. The proposed method 

was tested based on reproducibility measures with in-vivo imaging of the normal human brain. 

1.1.5. Contribution 5: Recovery of microstructural measures based on multi-shell DW-MRI from single shell 

DW-MRI 

The second and fourth contribution paved the path for effective learning and reconstruction of 

microstructural measures across multiple varying parameters. However, an interesting 
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opportunity/hypothesis left to explore was the recovery of multi-shell DW-MRI from single shell DW-

MRI. The existing data from clinical studies primarily was acquired with single shell DW-MRI and in 

present times is still a clinical standard. Hence, the hypothesis of recovery of advanced multi-shell DW-

MRI microstructural measures from single shell DW-MRI. 

We show that such a recovery is possible and has more information content than prior existing 

single shell techniques. This contribution is specifically useful for existing longitudinal studies of aging 

where a vast amount of clinical single shell DW-MRI data has been collected to study effects of aging and 

longitudinal effects of neurological disorders. 

Contribution 4, while applicable for advanced multi-shell DW-MRI acquisitions, is currently 

limited because of the advanced acquisition scheme and this led us to the idea to explore the possibility of 

recovery of multi-shell DW-MRI information from single shell DW-MRI. The  majority of the current 

existing data via clinical studies [10] being conducted are of clinical nature and typically have a single shell 

DW-MRI acquisition with less data.  

Therefore, we developed advanced data-driven methods to recover multi-shell information from 

single shell. The contribution is also intended towards lowering the acquisition time further as it quite often 

it is not possible for a subject suffering from a neurological condition to be scanned for a longer period of 

time. 

The scope this dissertation is outlined with the following objectives: 

1.) Empirical characterization of reproducibility of microstructure 

2.) Novel methods to increase precision and reproducibility of microstructure using single shell 

DW-MRI acquisitions 

3.)  Combining DW-MRI with 2D imaging to predict 3D measures from 2D imaging. 

4.) Reconstruct reproducible and precise microstructure using multi-shell DW-MRI acquisitions 

Multi-shell micro-architecture reconstruction using single shell DW-MRI imaging. 
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1.2. Diffusion-Weighted MRI for Neuroimaging  

1.2.1. Diffusion-Weighted MRI Acquisition Parameters 

Achieving the right target contrast is the target for all medical imaging procedures. The well-known 

contrasts of T1, T2 and FLAIR provide an elaborate comprehension of the understanding of the connected 

 

Figure I.2. The gradient directions are sampled over a sphere and for every gradient direction a 

3D DW-MRI volume is acquired. Observable are 25 gradient volumes with the arrows depicting 

corresponding gradient volumes in those directions. Specifically, the middle axial slice of a human 

brain is show for all gradient directions 
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tissue structure of the brain for both healthy and diseased subjects. However, these modalities are not limited 

and cannot acquire information regarding to intra-voxel microstructural tissue properties. Diffusion-

weighted MRI allows non-invasive imaging at millimetric resolution scale per voxel of the gray and white 

matter tissue [27]. DW-MRI allows for a reconstruct of the micro-architecture due to the signal attenuation 

being the representation of the random or Brownian motion of water molecules in the human brain. The 

human brain is 73% water [28]. Since the inception of DW-MRI in mid-1980’s [29] it has become a critical 

tool for imaging in-vivo neuro microarchitecture/microstructure clinically and for advancement through 

research.  

The most commonly used diffusion pulse sequence is pulsed gradient spin echo (PGSE), the 

sequence was proposed by Stejskal and Tanner in 1965 [30]. The diffusion-weighting characterized by 

gradient pulses, for a PGSE sequence are defined as: 

𝒃 =  𝜸𝟐𝜹𝟐𝑮𝟐(∆ − 
𝜹

𝟑
)      Eq. 1 

Where 𝛾 is the gyromagnetic ratio, 𝐺 is gradient amplitude, 𝛿 duration and ∆ separation where the 

b is the diffusion weighting taking place. 

The most common way that a diffusion signal can be characterized by under a Gaussian 

 

Figure I.3. Middle axial slice of a subject for two different gradient volumes is visualized. It can be 

observed that the arrows highlight a region of interest for the corpus callosum where the signal 

attenuation is different for both the gradient volumes. 
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assumption:  

𝑺 =  𝑺𝟎𝒆−𝒃𝑫      Eq. 2 

Here, 𝑆0 is the signal present in the absence of diffusion gradient pulses. The afore-mentioned 

PGSE sequence and the diffusion signal has been probed widely by the scientific community and will be 

used in the forthcoming chapters of this thesis.  

DW-MRI acquisitions vary in terms of number of gradient volumes and diffusivity values (b-

values) (Figure I.2, Figure I.3, Figure I.4). For ease of discussion, we can categorize them into clinical and 

advanced acquisition schemes. A major difference between the two is the amount of time required to acquire 

the data. For e.g. clinical acquisitions can typically be acquired in less than 5 minutes. The clinical 

acquisitions are usually defined by b-values of less than 1000 s/mm2 with less than 30 gradient volumes. 

Anytime the number of gradient volumes is greater than 45 it is termed as high angular resolution DW-

MRI (HARDI) [18]. A HARDI sequence can be considered as an advanced acquisition scheme. More 

advanced acquisition schemes would be where multiple b-values exist with varying number of gradient 

directions. A higher number of gradient directions and multiple diffusivity values allow for a higher angular 

and radial resolution which allows for measurement of more specific tissue properties. A typical voxel 

resolution for DW-MRI is 2.5mm isotropic. 

 

Figure I.4. Middle axial slice of a human subject is visualized for three different gradient directions. 

Each gradient direction corresponds to a unique diffusivity value. We can observe the change in 

contrast due to the change in diffusivity value. 
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1.2.2. High Angular Resolution DW-MRI  

These acquisitions have become more common in recent times for research purposes. These 

acquisitions require longer periods of time where multiple diffusivity values are acquired with a varying 

number of gradient volumes [18].  Advanced acquisitions are capable of allowing the microstructure 

reconstruction methods to be more precise, reproducible and infer crossing, fiber fanning microstructures 

[31, 32]. The HCP uses an advanced acquisition protocol with diffusivity values of 1000, 2000 and 3000 

s/mm2 are acquired with a total of 90 gradient volumes per diffusivity value. The HCP data is being acquired 

at a voxel resolution of 1.25mm iso which is much higher than the clinical 2.5mm iso. The total volume per 

voxel when compared is 1.95mm3 vs 15.6mm3 roughly equivalent to 8 times of clinical resolution. 

1.2.3. Spherical Harmonic & Simple Harmonic Oscillator Modelling of DW-MRI 

  There are varying scanning acquisition hyper-parameters in terms of gradient directions and 

diffusivity values. As also described prior in section 2.1 the DW-MRI acquisitions can be broadly classified 

into two major categories of single shell DW-MRI and multi-shell DW-MRI. Single shell DW-MRI can 

typically consist of non-diffusion weighted image and varying number of gradient volume for a fixed or 

specific diffusivity value (e.g b = 1000s/mm2 and 30 gradient directions, commonly used for clinical 

acquisitions). Whereas, the multi-shell DW-MRI would typically contain two or more than two diffusivity 

values with varying gradient directions per diffusivity shell. Briefly, it can be stated that multi-shell DW-

MRI consists of varying number of diffusivity shells, varying diffusivity values and varying gradient 

directions. As the scanning acquisition parameters vary a lot, it is generally useful have a consistent signal 

representation technique for further applicability to tissue models for detecting microstructure orientation 

and sometimes intra-voxel tissue compartmental measures as well. Spherical harmonics (SH) have been 

well established for the representation of single shell DW-MRI [33] however they are limited to a single 

shell and theoretically cannot capture the variations for a multi-shell DW-MRI acquisition.  Simple 

harmonic oscillator reconstruction (SHORE) [34] is a modelling representation technique that was proposed 

to model multi-shell DW-MRI ubiquitously without compromising on the single shell DW-MRI 



42 

 

representation.  

1.3. Microstructural Measures 

1.3.1. Diffusion Tensor Imaging  

Diffusion tensor imaging (DTI)is one of the first tissue models that was discovered and primarily 

shows the orientation of the white matter (WM) microstructure on a per voxel basis. Modelling the tissue 

microstructure is an inverse problem as the signal attenuation characterizes the underlying tissue 

microstructure present. Hence a tensor was hypothesized to fit the tissue structure and can be observed as 

an ellipsoid per voxel [35]. The DTI is estimated using a rank-2 symmetric positive definite matrix D: 

𝑫 =  [

𝑫𝒙𝒙 𝑫𝒙𝒚 𝑫𝒙𝒛

𝑫𝒙𝒚 𝑫𝒚𝒚 𝑫𝒚𝒛

𝑫𝒙𝒛 𝑫𝒚𝒛 𝑫𝒛𝒛

]     Eq. 3 

The tensor matrix can replace the diffusion coefficient in the diffusion signal equation in the form 

of: 

𝑺 =  𝑺𝟎𝒆−𝒃𝒈𝑻𝑫𝒈     Eq. 4 

This equation can be further simplified to the form of: 

𝐥𝐧 (
𝑺

𝑺𝟎
) =  − ∑ ∑ 𝒃𝒊𝒋𝑫𝒊𝒋

𝟑
𝒋=𝟏

𝟑
𝒊=𝟏      Eq. 5 

The DTI allows for estimation of other useful metrics such as fractional anisotropy (FA) and mean 

diffusivity (MD) which have become the ubiquitous in clinical DW-MRI and research of DW-MRI. FA 

describes the anisotropic nature of the orientation which is directly correlated with the amount of WM 

present in a voxel. MD describes the amount of diffusivity in the voxel which is used for characterizing 

neuropathology in the brain. 

DTI has become prevalent in clinical studies however it is limited to studying only the primary 

orientation on a per voxel basis. It cannot resolve multiple fiber orientations [36] on a per voxel basis and 

hence cannot be used to study crossing, fanning fiber regions which call out for more advanced models that 

can infer more information using advanced DW-MRI imaging protocols (Figure I.5) . 
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1.3.2. HARDI Methods 

With the limitation of DTI being failing to recover only a primary orientation in the WM. Multiple 

approaches were proposed which utilized additional information from advanced HARDI acquisitions that 

could recover multiple orientations on a per voxel basis. The motivation behind the proposed approaches 

was to incorporate multiple diffusivity values and a high number of gradient volumes in the hope of 

inferring a more elaborate microstructure. A few popular approaches that have been proposed are 

constrained spherical deconvolution (CSD), persistent angular structure (PAS-MRI), Q-ball imaging, 

diffusion orientation transform (DOT), diffusion spectrum imaging (DSI), simple harmonic oscillator 

reconstruction (SHORE), solid harmonics (SoH) and there are multiple others.  Global challenge studies 

were performed to assimilate a collective evaluation of these approaches [22]. A few of the HARDI model 

 

Figure I.5. A) Depicts a single fiber population and its corresponding DTI model as an ellipsoid. B) 

Shows a fanning fiber population and its corresponding DTI model vs the HARDI based fiber 

model. C) We can observe a crossing fiber population and its corresponding DTI model vs HARDI 

fiber model 
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reconstructions on in-vivo data can be observed (Figure I.6). Comparisons of the proposed approaches have 

suggested inter-method disagreement for voxel wise orientation reconstruction. A substantial number of 

approaches have utilized the modelling capacities of spherical harmonics (SH) to model the DW-MRI 

signal and the reconstruct the underlying tissue microstructure as well. The underlying tissue orientational 

 

Figure I.6. HARDI methods visualization of asubject’s middle axial slice. I) Reconstruction from 

Diffusion orientation transform. II) Q-ball Imaging III) Persistent Angular Structure IV) 

Spherical Deconvolution. It can be observed that each method shows a different tissue 

microstructure if compared for the same voxel across the different methods. 
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structure has most often been referred to as the fiber orientation distribution function (fODF or FOD) both 

abbreviations are commonly used in the literature. Development of these approaches led to formulation of 

metrics that could adapt to the new generation of models such as general fractional anisotropy (GFA), peak 

fraction (PF), angles between crossing fibers etc. 

The advanced reconstruction methods have so far utilized classical mathematical transforms and 

mild explorations of data-driven techniques have been performed. There is a lack of methods that could be 

driven by external validation data (e.g animal studies). 

Single Shell Spherical Harmonic Model: The assumption that only a single diffusivity shell of DW-

MRI is being modeled allows for the modeling of DW-MRI on a sphere. Spherical harmonics (SH) are 

special functions that are defined on the surface of a sphere and allow for the formation of an orthonormal 

basis. The necessity for such a modeling arises due to the variability in scanning acquisition parameters in 

terms of the number of gradient directions for a DW-MRI scan. SH modeling allows for the representation 

of the signal via coefficients that are orthogonal and independent of each other. The Gaussian model of 

DW-MRI signal can be rewritten as below for SH DW-MRI modelling: 

𝑺

𝑺𝒐
=  ∑ ∑ 𝑪𝒍𝒎𝒀𝒍

𝒎(𝒖)𝒍
𝒎=−𝒍

𝑳
𝒍=𝟎     Eq. 6 

Here the 𝑌𝑙
𝑚 is the SH component with ‘l’ and ‘m’ representing the order and the phase of SH. ‘C’ 

are the SH coefficients that will capture a representation of the signal. ‘S’ is the DW-MRI signal 

measurement and ‘So’ is the non-diffusion-weighted signal measurement. 

The SH model for the DW-MRI signal utilizes a portion of Laplace’s equation in spherical 

coordinates and are defined as: 

𝒀𝒍
𝒎(𝜽, 𝝓) =  √

𝟐𝒍+𝟏

𝟒𝝅

(𝒍−𝒎)!

(𝒍+𝒎)!
𝑷𝒍

𝒎(𝐜𝐨𝐬 𝜽)𝒆𝒊𝒎𝝓   Eq. 7 

Here 𝑌𝑙
𝑚 represents the corresponding SH at polar coordinates of (𝜃, 𝜙) where ‘l’ and ‘m’ 

correspond to the order and phase of the SH, 𝑃𝑙
𝑚 is the associated Legendre polynomial. The SH is used to 

form a basis set which can be used for estimation of SH coefficients. The basis set is a matrix of dimensions 

‘N x R’ where ‘N’ represents the number of gradient directions and ‘R’ represents the number of 
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coefficients. The basis set is defined as: 

𝑩 =  [
𝒀𝟏(𝜽𝟏𝝓𝟏) ⋯ 𝒀𝑹(𝜽𝟏𝝓𝟏)

⋮ ⋱ ⋮
𝒀𝟏(𝜽𝑵𝝓𝑵) ⋯ 𝒀𝑹(𝜽𝑵𝝓𝑵)

]    Eq. 8 

Here the elements of the basis matrix can be computed using equation __. 

With utilization of the basis matrix the DW-MRI signal equation can be formulated as an over-

determined system of equations: 

𝑿 = 𝑩𝑪     Eq. 9 

Where ‘B’ is the basis matrix and ‘C’ are the SH coefficients that will be estimated. The system of 

equations is based on the assumption that the number of gradient directions ‘N’ are always greater than ‘R’ 

as otherwise the system of equations becomes unsolvable. This system can be solved using linear least 

squares represented as: 

𝑪 = (𝑩𝑻𝑩)−𝟏𝑩𝑻𝑿     Eq. 10 

 However, it has been shown by prior work that regularized linear least squares offer significant 

representational advantages relatively [33]. It should also be noted that due to symmetric acquisition nature 

in terms of gradient directions only even ordered real SH are utilized. The number of coefficients for a 

given SH order ‘R’ can be estimated by:  

𝑹 =  
(𝒍+ 𝟏)(𝒍+𝟐)

𝟐
     Eq. 11 

Here ‘l’ is representative of the maximum order that the SH series has to be truncated at. For greater 

45 gradient directions 8th order is preferred as 45 coefficients can be estimated. It is advantageous to have 

more than 45 gradient volumes as some gradient volumes could be noisy due to scanner-based artifacts or 

as such. The primary advantage that SH modeling offers is that the signal measurements for a varying 

number of gradient directions can be recovered with a consistent number of coefficients. Also, the signal 

can be resampled to a different set of gradient directions using the coefficients due to their useful property 

of orthonormal basis sets. 

Numerous advantages are offered by SH based modeling of DW-MRI signal for an effective feature 

representation. However, SH based modeling is limited for DW-MRI acquisitions where multiple 

diffusivity shells are present. At best the SH basis can be termed as an angular basis it does not consist of a 
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radial basis. 

Multi-Shell Simple Harmonic Oscillator Reconstruction: With the added acquisitions of multiple 

diffusivity shells for the signal to be captured in a single set of coefficients a radial scaling function is 

applied to SH basis. The simple harmonic oscillator reconstruction (SHORE) model was proposed for this 

purpose and the DW-MRI signal equation can be re-written as below: 

𝑺

𝑺𝒐
=  ∑ ∑ ∑ 𝑪𝒌𝒍𝒎𝑮𝒌𝒍(𝒒, 𝜻)𝒀𝒍

𝒎(𝒖)𝒍
𝒎=−𝒍

𝑳
𝒍=𝟎

𝑲
𝒌=𝟎    Eq. 12 

Here ‘C’ are the SHORE coefficients that will be estimated, ‘G’ depicts the radial scaling 

function which is combined with the SH basis 𝑌𝑙
𝑚. The radial scaling function ‘G’ can be defined as: 

𝑮𝒏𝒍(𝒒, 𝜻) = 𝜿𝒏𝒍(𝜻) (
𝒒𝟐

𝜻
)

𝒍

𝟐
𝐞𝐱𝐩 (−

𝒒𝟐

𝟐𝜻
) 𝑳

𝒏−
𝒍

𝟐

𝒍+
𝟏

𝟐 (
𝒒𝟐

𝜻
)   Eq. 13 

Here the 𝜻 is a scaling parameter, q is the radius of the diffusivity value and ‘L’ depicts the 

associated Laguerre polynomial. The SHORE modeling allows for estimation of a basis matrix similar to 

SH based modeling which in turn allow for the estimation of coefficients using the branch of least square 

methods. SHORE is usually compatible up to 6th order after which it is considered unstable as per prior 

work [37].Tractography 

The different regions of the brain are connected through the white matter nerve structure also often 

referred to as the microarchitecture organization of the brain. These connections serve as the passageway 

for transmission of information between the different regions of the brain. Therefore, an understanding of 

the tracts is fundamental for studying normal and diseased subjects alike. The recovery of intra-voxel fiber 

geometry estimates is a pre-requisite for estimating the tracts of the white matter. Delineation of these tracts 

is termed as tractography [38]. For over two decades tractography has been utilized for over two decades 

to study the different connections between regions of interest in the human brain. Also, tractography has 

been used for pre-surgical guidance by neurosurgeons [39, 40]. The tract delineation can be performed by 

multiple methods [41-43]. A visualization of tracts on the human brain is depicted in Figure I.7. 

Tractography reconstruction can be segregated into two parts where the first part is the intra-voxel 

fiber geometric reconstruction which can provide the orientational information about the fiber 
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microstructure. The second part is the algorithmic that reconstructs streamlines or tracts by a continuous 

connection of the fiber orientations. DTI is one of the most commonly used techniques for recovery of intra-

voxel fiber structure for performing tractography. HARDI methods can provide more elaborate information 

for tractographic algorithms and it is an active area of research. Existence of these tracts have been known 

through post-mortem or animal studies [44]. Estimation of tracts through DW-MRI was made possible first 

in 1999 [45].  

The first technique invented to delineate tracts was termed as fiber assignment through continuous 

tracking (FACT). The technique relied on the primary fiber orientations being detected by DTI. The 

delineated tracts were also shown to have a correspondence with known anatomical locations of the fibers 

in a rat brain [46]. FACT algorithm relies on the primary orientation vector estimated per voxel using an 

orientational microstructure estimate. The simplest example is from DTI as it provides only a single primary 

orientation. Fiber tracking via FACT was formulated based on the primary orientation as follows: 

𝑹 =  ∑ ∑ 𝒂𝒃𝒔(𝝀𝟏𝒊
 .  𝝀𝟏𝒋

)/𝒔(𝒔 − 𝟏)𝒔
𝒋

𝒔
𝒊    Eq. 14 

Here 𝜆1represents the corresponding longest primary direction for a voxel and ‘s’ is the total 

number of neighboring data points that are being utilized. Intuitively, if the value of R is high then it implies 

that neighboring voxels have fibers that are well-aligned the next voxel can be selected. While if the value 

of R is low then the fiber tracking is terminated as it implies discontinuity or that fiber orientations of 

neighboring voxels do not align.  

 The FACT algorithm was well received and led to a discovery for an entire field of tractography 

where multiple methods have been proposed some utilizing Bayesian statistics and some utilizing the 

information yielded by uncertainty measures. It became viable to state that there were too many 

tractography methods that had been proposed which led to benchmarking and challenges of tractography 

algorithms [42, 47].  

Challenges have become a present norm in various capacities where some challenges tested 

reproducibility, a few exhibited phantom based validations [21] and a few tried to validate using histology 

[44].  The challenge studies focused towards tractography have specifically shown the current set of 



49 

 

problems that exist (how it differs on different scans from scanners, how some algorithms are not 

consistent.) Due to the varying scanning acquisition parameters of DW-MRI based acquisitions it is become 

important to establish that what type of scanning parameters lead to which kind of tractography based 

algorithms. 

DW-MRI is currently the only way to delineate these tracts non-invasively and no imaging 

modalities can directly acquire the underlying neural pathway connections of the human in-vivo brain. 

Tractography can be classified into two major types of probabilistic and deterministic. It directly relies on 

the orientation estimates from the geometry-based microstructure reconstruction methods, which is one of 

the primary reasons as to why extensive research is being performed for advanced reconstruction methods 

such as HARDI methods. To improve precision and reproducibility of tractography, it is often constrained 

using microstructural measures of FA or GFA [41]. 

 

 

Figure I.7.Probabilistic tractography reconstruction which shows the neural pathways of an in-

vivo brain on the same subject presented in two different views A) Coronal view B) Axial view. It 

can be observed that it is a challenge to detect which of the fiber streamlines correspond with the 

actual anatomy of the connectivity structure of the brain.  
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1.4. Reproducibility & Harmonization of DW-MRI 

“The extent to which consistent results are obtained when an experiment is repeated” is the 

definition of reproducibility [48]. Generally, reproducibility is a critical aspect of research due to the volatile 

nature of research where it is often observed that certain experiments show high variance. If the experiment 

does not exhibit the characteristic of reproducibility it is not possible for the specific proposition to be 

applicable in a real-world setting. It cannot be stressed enough on the aspect of reproducibility; recently a 

study published in Nature showed that over 70% of scientists were unable to reproduce the result of another 

scientist and more than half failed to reproduce their own results [48]. Advent of reproducibility is 

necessitated for the cumulative growth of scientific knowledge that is being produced every day. At the 

simplest level of understanding one could empirically think that if a pair of measurements are being made 

by repeating a specific experiment twice then the values should be reproduced with minimal error. While 

harmonization is a relative term, it is closely related to reproducibility but in a different context. 

 Harmonization can be defined as a way for “Allowing data to be meaningfully compared when 

there are multiple sources of data” [49]. A simple use case scenario would be harmonization of ‘n’ different 

populations from different regions/countries given the context of dietary patterns [49]. Similarly, in context 

of imaging modalities harmonization becomes a critical context when studies are being conducted across 

multiple different scanner sites [10, 50-54]. 

Both harmonization and reproducibility are equally important caveats for DW-MRI microstructure 

modelling that still need to be addressed. Given a single subject reproducibility can be measured across 

DW-MRI signal, different HARDI methods, tractography. In order to measure reproducibility, there are 

multiple pre-processing steps that must be performed for uniform analysis even for a single subject. This 

section is segregated further into reproducibility metrics and harmonization methodologies. 

1.4.1.  Reproducibility Metrics 

Reproducibility of DW-MRI can be measured at different steps of the hierarchy such as directly at 

the signal measurement, microstructure metrics computed from different models such as DTI, or at the 
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tractography based reconstructed tract. The collection of metrics used for measuring the reproducibility of 

DW-MRI spans a wide variety ranging from mean squared error (MSE) to correlation-based similarity 

measurements over a sphere based on angular correlation coefficient (ACC) to Dice- Sorensen coefficient 

(DSC). 

The mean squared error for a pair of measurements is defined as: 

𝑴𝑺𝑬 =  
𝟏

𝒏
∑ (𝒀𝒊 − 𝒀𝒊̂)

𝟐𝒏
𝒊=𝟏     Eq. 15 

The angular correlation coefficient for a pair of SH measurements (u, v) is defined as: 

𝑨𝑪𝑪 =  
∑ ∑ 𝒖𝒋𝒎𝒗𝒋𝒎

∗𝒋
𝒎=−𝒋

∝
𝒋=𝟏

[∑ ∑ |𝒖𝒋𝒎|
𝟐𝒋

𝒎=−𝒋
∝
𝒋=𝟏 ]

𝟎.𝟓 
.[∑ ∑ |𝒗𝒋𝒎|

𝟐𝒋
𝒎=−𝒋

∝
𝒋=𝟏 ]

𝟎.𝟓 
  

   Eq. 16 

Expected measure from ACC is on a scale of -1 to 1 where 1 indicates high correlation. 

The Dice-Sorensen coefficient for pair of binary image measurements is defined as: 

𝑫𝑺𝑪 =  
𝟐|𝑿 ⋂ 𝒀|

|𝑿|+ |𝒀|
    Eq. 17 

Expected measure from DSC is on a scale of 0 to 1 where 1 indicates high similarity. 

If the reproducibility is being measured for the DW-MRI signal directly where the scanning 

acquisition parameters are the same then standard statistics such as mean, standard deviation, MSE,  root 

mean squared error (RMSE) are applicable on the computed apparent diffusion coefficient (ADC) [55-57]. 

However, these metrics are not sufficient or are not always directly applicable for use of measuring 

reproducibility for microstructural metrics. 

There are many techniques for modelling the microstructure of DW-MRI which also often 

characterize a different kind of tissue property for the underlying tissue organization of the voxel. The most 

common orientational measure is provided by DTI [35] where FA reflects the anisotropic nature of the fiber 

population. FA as a scalar value allows for direct computation of standard statistics. However, the advanced 

HARDI methods often characterize multiple fiber populations in a single voxel which cannot be effectively 

captured by FA. The microstructure orientation characterized by HARDI methods is typically a set of either 

SH coefficients or it can be represented as a set of probabilistic values over a sphere. If reproducibility is 

being measured for SH coefficients for a pair of voxels then ACC [15] is used. ACC was first proposed by 
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Anderson et. Al in [15] and has been used widely in [58-60]. Quite often the major peaks of the fiber 

distributions are computed where they become 3D vectors per peak. It is usually uncommon to find more 

than 3-4 peaks per voxel. However, the metrics change for as the nature of data which is being measured is 

different. Symmetric angular error (SAE) as in [19, 61-63] is used and success fraction (SF) as in [19, 64]. 

For all compartmental measures such as partial volume fraction of tissues and orientation dispersion index 

since they are scalar values it is straightforward to apply standard statistics.  

When dealing with tracts reconstructed from tractography based algorithms, the metrics utilized 

are different because the context changes to analysis of bundle-based streamlines. Commonly used metrics 

for tractography reproducibility are bundle overlap, bundle overreach and DSC as can be observed in [21, 

41, 43] 

We consider reproducibility metrics at three different levels: 

- Assessment of direct signal reproducibility where it would be root mean squared error 

(RMSE) or mean absolute error (MAE). This could be across the brain or at voxel level. 

- Assessment of the reproducibility of tissue microstructure. Here the metrics can change to 

ACC, MSE, PF and SF. These are voxel-based metrics. 

- Assessment of reproducibility for tractography. Here the metrics change to volume-based 

ones such as DSC, ICC, bundle overlap and bundle overreach. 

1.4.2. Harmonization Methodologies 

Similar to the assessment of reproducibility at different levels harmonization can be performed at 

different levels as well (Refer Section 4.2). Prior harmonization methodologies have suggested techniques 

to harmonize the microstructure metrics directly such as FA [50]. However, the approach is limited by the 

analysis being focused on the singular metric. There are other approaches that have tried to harmonize the 

DW-MRI signal directly by calculation of rotational invariant features and registration between inter 

scanner sites. These approaches become limited to a specific study design. These gaps and limitations have 

given the motivation to propose methods that are robust to any type of study design data acquisition and 
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are not limited to a specific metric to perform a large-scale reproducible joint analysis. 

Harmonization for analysis of multiple populations of scans coming from different scanner sites as 

a problem has been approached from various fronts such as harmonization at scanner level or harmonization 

at computed metrics for effective analysis. Earlier works in the literature focused towards direct 

harmonization of the computed metrics from DTI such as FA [50, 51]. The technique proposed in [51] is 

known as ComBat and has been commonly used as a batch-effect correction tool for genomics. 

Harmonization for DW-MRI as a problem can still be considered as a recent one and has not been 

approached as effectively till date. However, given existence of longitudinal studies such as BLSA [10] 

where over 20 years of longitudinal DW-MRI exists for studying the process of aging and other neurological 

disorders; harmonization is necessitated. Recently, signal based harmonization techniques were proposed 

where rotationally invariant features using spherical harmonics were utilized in [52-54]. While the above 

defined are a myriad of techniques for harmonization of DW-MRI data; harmonization from the perspective 

of microstructure modelling has not been addressed yet. Challenge studies have also been conducted for 

inter-site harmonization methodologies and a detailed review can be referred to in [65-67] 

1.5. Machine Learning in DW-MRI 

1.5.1. Advent of Deep Learning 

Neural networks that could ‘learn’ were conceived half a century ago [68, 69] the idea was inspired 

from the neural circuit wiring of a nervous system. A seminal review for the field of neural networks, 

indicates that the original idea can be dated back to early 1800's [70]. When the initial artificial neuron 

model was proposed the proposed model was not intended to learn rather present a biological understanding 

for the neuronal activity in the brain [71]. In fact as stated in [70] “In a sense neural networks have been 

around even longer, since early supervised neural networks were essentially variants of linear regression 

methods going back at least to the early 1800s (e.g., Legendre, 1805; Gauss, 1809, 1821); Gauss also refers 

to his work of 1795”.  
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Neural networks greatly evolved in 1980's; however, the ideas were limited by the hardware in that 

era. Only in the current (soon to end) decade has the progress been maximized with deep neural networks 

[72]. The early phase of research (early 2000’s) on deep learning networks comprised of exploration of 

different combinations of the fundamental blocks of deep learning network architectures (for e.g. number 

of layers, width and height of convolutions, skip connections, different activation functions etc.) [73-76]. 

Recent aggressive research utilizing deep learning for computer vision now holds the potential for an 

advantageous expansion for multiple fields. A brief overview of advent of deep learning is shown in Figure 

I.8. 

The deep learning revolution started snowballing once its advantageous applicability was showed 

for image recognition tasks such as image classification. Simple network architectures consisting of a few 

layers of neurons were shown to be able to classify hand written digits at extremely high accuracy as 

compared to classical/traditional machine learning models [73].  

Machine learning is often defined as the ability of computers to perform a specific task based on a 

consistent set of patterns. Using a set of data or sample space where the data belongs to a class a machine 

 

Figure I.8.Advent of deep learning and its progression from non-learning neuronal activity-based 

models to learning models on neuronal activity. The learning-based models formed the basis for 

the proposition of multiple architectures in 2000’s and its current applicability and generalizability 

to multiple fields such as natural language processing, genomics and medical imaging. 
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can be trained to evaluate and learn from the data. The data is broken into sets of training and testing where 

the training data is utilized by a machine learning model to learn a set of parameters that can be used for 

performing a specific task. The testing data is withheld, and the machine learning model is evaluated on the 

testing set of data. A simple example is a set of images where an image is labelled to a class of either “cats” 

or “dogs” and a machine learning model can be trained on this dataset to evaluate on a testing set to predict 

whether the given image belongs to the class of “dogs” or “cats” (Figure I.9). There are many categories of 

machine learning models such as Bayesian model, dimensionality reduction algorithms, clustering 

algorithms and deep learning models. Deep learning has exponentially become popular in the current 

decade for image processing and similarly for medical imaging as well. 

Gradually the applicability of deep learning was extended to a collection of broad tasks such as 

image and video recognition [77], object detection as landmarks in images and videos [78], classification 

of multiple objects [79], generation of similar data via adversarial models [80], segmentation of objects and 

registration. Apart from computer vision tasks deep learning is also being utilized for completely different 

fields of natural language processing [81], genetics [82], astronomy [83], and many more. Specifically, in 

computer vision deep learning is also heavily being utilized for medical imaging computer vision tasks as 

 

Figure I.9.Shows the workflow of a neural network where it can discern between a cat or a dog. 

The deep neural network is represented by lots of neurons that translate to learning parameters. 
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well [84]. Medical imaging as compared to generic computer vision is much more complex due to advanced 

nature of acquisitions for various imaging modalities of CT, functional MRI, DW-MRI, PET etc. The core 

of this thesis is focused towards opening up the possibilities of how and what deep learning can bring to 

the table for DW-MRI.   

1.5.2. Deep Learning for DW-MRI 

Unlike various other fields where deep learning has heavily evolved and become a norm for generic 

2D image,video tasks and NLP.. The same does not hold true for the modality of DW-MRI due to the 

complex nature of the acquisition scheme. The radial and angular dependency of the 3D volumes of DW-

MRI do not allow for a straightforward application of data-driven approaches which is unlike for generic 

2D vision tasks where deep learning is applicable in a straight-forward fashion. MRI acquisitions are 3D 

volumes and for DW-MRI the dimensionality becomes 4D due to the gradient volumes. The increase in 

dimensionality creates a challenge for application of data-driven approaches due to limitations of hardware. 

Complexity is further increased with inclusion of multiple diffusivity shells as the data dimensionality 

becomes 5D. The primary challenge is the dimensionality of the DW-MRI acquisitions and the secondary 

challenge is the inconsistency of the acquisition style where the number of gradient volumes and diffusivity 

values vary on independent scanning acquisition parameters. Data-driven modeling for DW-MRI are at a 

nascent stage [25]. 

Generative adversarial networks have been used for acceleration of reconstruction of MRI [85]. 

The authors couple the adversarial loss with an innovative content loss. While [86] uses the introduced 

novelty above, additionally they propose to use a two-stage architecture for better adaption of loss functions 

and ensure learning on other features as compared to joint training. The results were interpreted on a cardiac 

MRI dataset. Deep learning has also been applied to diffusion tensor cardiac magnetic resonance for 

resolving microscopic structural organization of the myocardium [87]. A cascaded convolutional neural 

network architecture was used for assessment as compared to other classical methods on a simulated 

dataset. Thereafter, there are also a few data-driven approaches to reconstruct microstructural measures 
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[25] and address harmonization for DW-MRI for inter-site scanning acquisition [66, 88, 89].     
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2.  Empirical Comparison of Multi-Fiber Reproducibility of PAS-MRI and Q-ball with Empirical 

Multiple b-values HARDI 

 

This chapter has been adapted from the published work in [19]. 

2.1. Introduction 

Diffusion tensor imaging (DTI) [35] is widely recognized as a robust method and heavily relied 

upon for interpreting brain structural connectivity in vivo, but it can only resolve a dominant single fiber 

orientation. Advanced diffusion weighted magnetic resonance imaging (MRI), such as Q-ball [13], 

Persistent Angular Structure (PAS-MRI) [12], Spherical Deconvolution (SD) [15, 90], Diffusion 

Orientation Transform (DOT)[91], seek to resolve this shortcoming by modeling complex intra-voxel 

structure. With DTI, empirical reproducibility studies [92, 93] provided concrete information linking 

observed behavior with theoretical noise sensitivities. Understanding the empirical tradeoffs between these 

sequences is critical to design of optimal imaging protocol and analysis specification. Yet, to date, 

comparative analysis of the advanced sequences (commonly known as high angular resolution diffusion 

imaging - HARDI) has not been performance on large standardized dataset. The overall objective of this 

work is to address this shortcoming.  

Herein, we focus on two methods, Q-ball and PAS-MRI. Q-ball models the voxel wise orientation 

diffusion function (ODF) by low-order spherical harmonics [33], and is thus able to detect multiple fibers 

as peaks in diffusion signal in a spherical coordinate system. PAS-MRI more explicitly models the intra-

voxel diffusion by a discrete number of fiber compartments [12]. Prior work with Q-ball has shown that it 

resolves multiple fibers in regions of fractional anisotropy (FA) < 0.4 and detects many voxels with the 

second direction of diffusion for FA > 0.15 at b-values greater than 1500 s/mm2 [94]. In [95], Q-ball 

resolved crossing angles to approximately 45 degrees with lower accuracy at b-values of higher than 4000 

s/mm2, and it was estimated that lower b-values lead to under estimation in crossing fibers. 

Similarly, PAS-MRI has been shown to recover multiple fiber orientations at “low” b-value of 1200 
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s/mm2 and has been shown more consistent than q-ball on synthetic MRI data [64]. PAS-MRI was further 

established as a special case of SD described as maximum entropy spherical deconvolution (MESD) which 

was shown to be more accurate than traditional SD at the cost of increased computational time [96]. The 

empirical literature has not yet shown how consistently PAS reproduces the crossing fiber angles.  

Briefly, in this study (see Figure II.10), we pre-process the data with eddy and topup (FMRIB 

Software Library (FSL), [97, 98]) for each scan session individually and, then all sessions were registered 

to the Montreal Neurological Institute (MNI) template in FSL to establish a coordinate system for inter-

session analysis. Thereafter, the gold sets were created by concatenating all the single scans per b-value in 

the acquisition order and HARDI methods were implemented.  

2.2. Methods 

2.2.1. DW-MRI Data Measurements 

A healthy volunteer was scanned for three different sessions each two hours long at 3T (Achieva, 

Philips Medical Systems, Best, The Netherlands) with a 32-channel head coil on consecutive days. The first 

two scan sessions consist of four repetitions of 96 gradient directions per the b-values of 1000, 1500, 2000, 

2500 and 3000 s/mm2. For each shell, a scanner average of 10 minimally weighted reference images (“b0”) 

was acquired. The last scan session had three repetitions of 96 gradient directions per the same b-values 

above equivalent to 15 single scans. This data was acquired at the voxel resolution of 2.5mm x 2.5mm x 

2.5mm with a matrix of 96 x 96 and 38 slices. Briefly, scan parameters were: Multi-Band=2; SENSE=2.2; 

TR= 2650 ms;TE=94 ms;partial Fourier=0.7. Fold over direction was A-P with a P fat shift. For each set 

of the 5 diffusion weighted shells, an additional “b0” was acquired with reverse phase encoded volumes 

(i.e., fold over direction A-P with A fat shift), 3 diffusion weighted directions with a b-value of 1000 s/mm2 

along the imaging frame cardinal directions, and all other parameters were kept constant. 
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2.2.2. Data Pre-processing 

The data for each session were corrected for patient movement, eddy current distortion, and 

susceptibility distortion through topup and eddy [97, 98]. Every diffusion weighted scan in each session 

had a single b0 (scanner average of ten scans). In addition, each session also had four reverse phase encoded 

b0 volumes (scanner average of ten scans). All b0s (including reverse phase encoded b0s) in a session were 

concatenated together and fed as inputs to topup. For eddy, every scan in a session was concatenated and 

then corrected using the results from topup (note that the acquisition did not have complete reverse phase 

encoding acquisitions for the diffusion weighted directions). Afterwards, the distortion-corrected b0s from 

the first session were averaged and registered to a 2.5mm isotropic MNI T2 resample from 0.5mm  weighted 

template using 6 degree of freedom registration with normalized mutual information metric  (flirt, [99]). 

The volumes for the next session were brought to the same space by averaging its b0s together and 

registering it to the averaged b0s in the first session. The same procedure was subsequently done to the last 

session to bring all three corrected sessions to a common subject specific MNI space. 

 

Figure II.10.  5830 volumes were acquired in 3 sessions that comprised 11 (4/4/3) repetitions of 5 

shells, each with 96 diffusion weighted directions and a scanner average of ten b0 images. All data 

from each session was distortion corrected and the reregistered in MNI space. “Gold standard” 

data for each shell was created by concatenating all data into a single acquisition, while each 

empirical acquisition shell was also considered separately. PAS and Q-ball were run on all data 

and reproducibility measures were computed. 
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All sessions were normalized by the b0 corresponding to the scan to account for amplitude drift. A 

weighted mean b0 was created from all b0 scans in MNI space by a weighted average of all b0’s. Weight 

has been taken as inverse of the median of all b0 scans in MNI space averaged with the mean of b0’s from 

all sessions. The resulting normalization scan was computed by multiplying the weighted mean b0 to the 

ratio of diffusion weighted scan (in MNI space) to the b0 (in MNI space). 

2.2.3. Segmentation:  

The data was divided into 11 single scans per b-value each consisting of 96 gradient directions with 

a single b0. To create the reference standard (“gold model”), we concatenated the 11 single scans in the 

order of acquisition to create a volume of 1067 gradient directions per b-value. For the analysis a white 

matter mask was created a structural image using FSL's automated segmentation tool (fast, [100]) and 

subsequently registered to the diffusion data..  

2.2.4. Q-ball Reconstruction 

The Q-ball was reconstructed following [101] and using spherical harmonic basis functions [33] 

using the Camino Diffusion Toolkit [102]. Q-ball estimates the diffusion orientation distribution function 

(ODF) by approximating it through a Funk-Radon Transform of the diffusion weighted signal. Herein, we 

use the spherical harmonic order of 8 for Q-ball, as per the guidance in [101]. 

2.2.5. RE-PASMRI Reconstruction 

PAS was reconstructed from maximum entropy spherical deconvolution [96]. We used the reduced 

encoding model for the MESD [103]. Similar to Q-ball, PAS estimates the “persistent angular structure” of 

the diffusion propagator which resembles the DODF from Q-ball. We used a reduced encoding of 16 as per 

[103] which gives a good trade-off between computation speed and accuracy for the PAS. The gold sets 

(amalgamated 11 single scans) for the PAS were processed across multiple CPU cores with the data being 

split at imaging slices. 
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2.2.6. Peak Reconstruction 

The peak reconstruction of the ODF and the PAS was performed using sfpeaks from Camino which 

is an implementation for searching the local maxima of the reconstructed PAS and ODF’s using Powell’s 

method [12]. Both PAS and Qball were restricted to detecting peaks of (principal direction threshold) 

greater than one unit of peak strength divided by the mean of all the detected reconstruction functions 

(PAS/ODF). We used the recommended default parameters of the program sfpeaks. These parameters 

follow the precedence of [12]. 

2.3. Metrics 

2.3.1. Reproducibility of Peaks 

The consensus number of peaks was defined per voxel as the mode number of peaks across the 11 

repetitions. The mean and standard deviation of agreement with consensus (1 versus 0 for disagreement) 

was determined within the white matter mask for each shell. To assess bias, absolute agreement was 

computed with the mean and standard deviation of agreement with gold standard number of peaks was 

determined within the white matter mask for each shell. 

2.3.2.  Peak Fraction 

The consensus peak fraction was defined per voxel as the mean peak fraction for the first 3 peaks 

across the 11 repetitions. The root mean squared error (RMSE) and bias (mean difference) between each 

repetition and the gold standard for each shell were computed and averaged over the white matter mask. 

2.3.3. Reproducibility of Crossing Fiber Angle 

For any case of voxel where two or more peaks were detected, we determine the minimum angle 

being resolved, ∡ = argmin
𝑖,𝑗,𝑘

(arccos(𝑖, 𝑗)  𝑎𝑟𝑐𝑜𝑠(𝑗, 𝑘) 𝑎𝑟𝑐𝑜𝑠(𝑗, 𝑘)) where peaks are represented as vectors i, j, 

k. The absolute error per voxel for the crossing fiber angle is defined as | ∡ 𝑔𝑜𝑙𝑑 −  ∡ 𝑡𝑒𝑠𝑡 |. We define a 

crossing fiber success fraction as the proportion of voxels which have error less than 20 degrees. 
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2.4. Results 

 

2.4.1. Consistency in Number of Peaks and Peak Strength 

The consensus for the number of peaks per voxel is consistent as a function of b-value for both 

PAS and Q-ball (Table II.1). PAS is more consistent than Q-ball for all experiments in Table II.1, yet the 

within white matter mask variance is similar. For both methods, substantial bias is evident between the 

single repetition and gold standard data in terms of lower consistency with the gold standard versus with 

the consensus. PAS exhibits a trend toward lower bias an increasing b-value while q-ball appears to 

increase. The RMSE of the peak fraction for 11 single scans shows a decreasing trend with increasing b-

value for PAS while for Q-ball remains consistent (Table II.2). Peak fraction bias decreases with increasing 

Table II.2 Reproducibility for the number of peaks 

 PAS Q-ball 

b-Values 

s/mm2 

Mean 

Consensus 

Std. Dev.  

in WM 

Abs. 

Agreement 

(Gold) 

Std. Dev. 

Of Abs. 

Agreement 

in WM  

(Gold) 

Mean 

Consensus 

Std. Dev. in 

WM 

Abs. 

Agreement 

Std. Dev. Of 

Abs. 

Agreement 

in WM  

(Gold) 

1000 0.792 0.170 0.678 0.302 0.6834 0.183 0.531 0.315 

1500 0.799 0.168 0.713 0.277 0.691 0.184 0.546 0.312 

2000 0.799 0.169 0.729 0.261 0.681 0.178 0.531 0.307 

2500 0.804 0.166 0.743 0.250 0.669 0.173 0.507 0.305 

3000 0.793 0.167 0.737 0.244 0.652 0.168 0.475 0.302 

 

Table II.1 Reproducibility for the peak fraction 

 PAS Q-ball 

b-Values 

s/mm2 

RMSE 

Consensus 

Std. Dev.  

in WM 

RMSE Gold Std. Dev.  

In WM 

(Gold) 

RMSE 

Consensus 

Std. Dev.  

in WM 

RMSE 

Gold 

Std. Dev.  

in WM 

(Gold) 

1000 0.075 0.032 0.103 0.049 0.128 0.060 0.211 0.120 

1500 0.070 0.031 0.094 0.046 0.124 0.060 0.202 0.118 

2000 0.068 0.030 0.090 0.045 0.126 0.056 0.205 0.114 

2500 0.066 0.030 0.086 0.044 0.125 0.052 0.208 0.112 

3000 0.068 0.030 0.087 0.043 0.126 0.049 0.215 0.110 
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b-values for PAS but remains consistent for Q-ball. 

2.4.2. Crossing Fiber Angles indexed with FA 

There is an increase in the number of crossing fibers voxels detecting in “gold standard” maps 

increasing b-value (refer Figure II.11). For all b-values, PAS resolves crossing fibers in the range of 65 to 

90 degrees. At lower b-values, crossing fiber are detected up to an FA of ~0.6, but at b-value of 3000 

s/mm2, the concentration of voxels with crossing fibers has a FA of <0.4. The spatial maps in Figure II.11 

show qualitative agreement between the gold standard and single repetition, but there are clear spatial 

patterns of differences. These differences are reflected quantitatively in the bias shown in Table II.1 and 

Table II.2.  

Figure II.12 presents a similar analysis for Q-ball. The voxels with crossing fibers largely occur at 

70 to 90-degree angles; however, a clear second population crosses at ~55 degrees. While crossing fibers 

are often detected in voxels with FA up to ~0.4, the majority of detected crossing fibers lie in voxels with 

FA < 0.2. Notably, number of crossing fibers increases with b-value. Similarly, with PAS, the spatial maps 

for Q-ball show systematic difference in the number of fibers estimated with the gold standard relative to a 

single repetition, which is also reflected in Table II.1 and Table II.2. 
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2.4.3. Success Fraction and Error 

PAS resolves crossing fiber most successfully when the angle is greater than 75 degrees (Figure 

II.13 A), which occurs when the difference between gold is minimized (Figure II.13 B). There is a trend 

 

Figure II.11. Results for PAS: (A) Two-dimensional histograms of crossing fiber angles detected 

with the gold standard at each b-value.  (B) FA maps at each b-value computed with DTI for the 

gold standard. (C) Number of peaks detected for the gold standard. (D) Number of peaks detected 

for a single repetition. 
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for more accurate crossing fiber detection at high angles for lower b-values, and more accurate low angle 

crossing for higher b-values. Q-ball exhibits overall lower success fraction than PAS and has a peak 

sensitivity for 65-75-degree crossings (Figure II.13 C). Lower angles crossing is more accurate with Q-ball, 

but Q-ball shows degrading performance near 90-degree crossing. The highest b-values resulted in the 

lowest errors for Q-ball.   

 

 

Figure II.12. Results for Q-ball: (A) Two-dimensional histograms of crossing fiber angles detected 

with the gold standard at each b-value.  (B) FA maps at each b-value computed with DTI for the 

gold standard. (C) Number of peaks detected for the gold standard. (D) Number of peaks detected 

for a single repetition. 
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2.5. Conclusion  

This is the first large-scale empirical reproducibility analysis to compare Q-ball at PAS at 3T in 

vivo. For the acquisition studied, PAS is more reproducible both in terms of number fibers per voxel (Table 

II.1) and the peak fraction (Table II.2). However, there is still substantial variability (15% ~ 20%) in terms 

of consensus for both Q-ball and PAS. It is important to note that Q-ball and PAS detect different aspects 

of intra-voxel structure within identical data. Note the two-dimensional histograms in Figure II.11 and 

Figure II.12 where PAS identifies more fibers in moderate FA voxels, while Q-ball resolves fibers within 

voxels with low FA. Similarly, PAS MRI is more consistent for crossing fibers at near-right angles while 

Q-ball appears more consistent for lower angles. A deeper consideration of the validity and consistency of 

cross-fiber populations across analysis method is clearly warranted and will be pursued.   

Moreover, the study reveals that both Q-ball and PAS exhibit strong biases in estimated fiber 

fractions with the number of signal averages considered. Specifically, compare the consensus 

reproducibility versus the gold standard reproducibility in Table II.1 and Table II.2. Qualitatively, the 

differences can be appreciated in terms of the peak maps in Figure II.11 and Figure II.12 and seen in the 

rendering of Figure II.14. Visually, the single scan estimates for Q-ball appear consistent with prior 

expectations of fiber crossing locations; while the face validity differences for PAS are less clear. Deeper 

consideration of Q-ball and PAS estimation with signal-to-noise-ratio (SNR) and/or number of repetitions 

 

Figure II.13. (A) Crossing fiber success fraction for PAS and (B) mean error between each 

repetition and the gold standard for PAS. (C) Crossing fiber success fraction for Q-ball and (D) 

mean error between each repetition and the gold standard for Q-ball. 
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is clearly warranted (as has been done for DTI [92, 93].  

 

In summary, this study provides direct empirical evidence of systematic differences between Q-

ball and PAS. Although b-value clearly impacts estimation of fiber structure, the choices in analysis 

approach (Q-ball versus PAS) and number of scans (single repetition versus gold standard) have a more 

substantial impact on data interpretation. Additionally, the types of crossing fibers detected by the methods 

were difference in terms FA, crossing angle, and number of peaks. There is clear opportunity for innovation 

in data interpretation to improve consistency, minimizing the impact of SNR, and unifying models of intra-

voxel structure. In the meantime, PAS would appear to be a pragmatic alternative to Q-ball for detecting 

intra-voxel structures in voxels with moderate FA. 

 

 

 

Figure II.14. Illustration of the differences in model fit for the gold standard datasets with: (A) 

PASMRI – 1000 s/mm2, (B) Q-ball – 1000 s/mm2, (C) PASMRI – 3000 s/mm2, and (D) Q-ball – 

3000 s/mm2. 
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3.  Empirical Estimation of Intra-Voxel Structure with Persistent Angular Structure and Q-ball 

Models of Diffusion Weighted MRI 

 

This chapter has been adapted from the published work in [104]. 

3.1. Introduction 

Diffusion weighted magnetic resonance imaging (MRI) enables non-invasive milli-metric mapping 

of local tissue orientation via sensitivity to directional diffusion on the micrometer scale. The tensor model 

in diffusion tensor imaging (DTI) has been wildly successful for interpreting this signal in cerebral white 

matter tracts and reconstructing major fiber pathways in the brain as it is sensitive to fiber orientations [35]. 

To address DTI’s shortcomings in regions of complex intra-voxel structure, High Angular Resolution 

Diffusion Imaging (HARDI) methods acquire and analyze additional data to estimate multiple fiber 

population orientations per voxel. These methods reveal more elaborate information about the intra-voxel 

structure, e.g., Diffusion Orientation Transform (DOT) [91], Spherical Deconvolution (SD) [15, 105], 

Persistent Angular Structure (PAS-MRI) [12] or Q-ball [13]. 

Previous large-scale reproducibility studies with DTI have been essential for understanding the 

empirical behavior of the tensor estimator (e.g., [62, 63]). We perform an in-depth comparison of PAS-

MRI and Q-ball as representative variants of HARDI methods. PAS-MRI models the intra-voxel diffusion 

using a discrete number of fiber compartments [106], while Q-ball estimates an orientation distribution 

function (ODF), which is assumed to reflect the underlying fiber orientation distribution through its impact 

on diffusivity [101]. PAS has been shown to be more consistent than Q-ball on synthetic data at lower or 

clinical b-values of about 1200 s/mm2 [64]. Meanwhile, Q-ball is effective at higher b-values (~3000 

s/mm2 or greater) [19]. Previous work on Q-ball has also shown that it resolves multiple fiber orientations 

for fractional anisotropy (FA) regions < 0.4 [94]. While a minimum angle of fiber orientations has not been 

established for PAS yet, Q-ball has been known to resolve angles down to 45 degrees with diminishing 

accuracy depending on adequate signal to noise ratio (SNR) [95].  Herein, we compare the empirical 
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reproducibility of PAS-MRI and Q-ball focusing on b-values of 1000 and 3000 s/mm2. We have also 

compared the models in terms of agreement between PAS & Q-ball. 

In [106], the authors show that PAS can more consistently resolve crossing fiber voxels compared 

to Q-ball. PAS has also been shown capable of detecting up to two crossing fibers with robustness in the 

method in presence of noisy data [107]. In [108], improvement in probabilistic index of connectivity (PICo) 

tractography was shown using a Bingham distribution with compelling PAS results compared with Q-ball. 

A drawback noted was that PAS-MRI showed a spurious perpendicular peak for fanning structures based 

on bootstrap validation. In [109], the authors state that the fiber orientation distribution methods have a 

high agreement with probabilistic tractography and PAS-MRI specifically having a sparse connectivity 

matrix. It has been strongly suggested for further validation using more complex biological phantoms 

techniques [110].  

Previously, the bias and variance of PAS and Q-ball methods have been assessed using relatively 

small datasets [12, 13, 101, 111]. Region of interest (ROI) analysis has shown that Q-ball retains angular 

information when b-value is brought down to the range of 2000 – 2500 s/mm2 [112]. Average angular 

resolution of Q-ball has been estimated to be between 15o and 30o based on analysis presented in [113]. 

While analyses of bias have been performed using repeated phantom/synthetic data [95], verification of 

these results are important with in vivo data. Q-ball can identify crossing fibers, yet it fails in scenarios 

where there are fanning or splitting of fibers. In [114], a comparative reproducibility study of tractography 

between PAS-MRI and Q-ball was performed for specific ROI’s. Both the methods were shown to be highly 

reproducible with PAS-MRI being slightly superior. Phantom studies [110] on Q-ball using tractography 

have suggested the need for more reliable validation methods. Here, we offer an extensive empirical scan-

rescan validation set on a single subject acquired at multiple b-values so that the diffusion model fitting 

methods can be studied on a range of acquisition sequences and quantities of data following large-scale 

validation work done with DTI [62, 63]. 
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3.2. Methods 

Briefly, the data were pre-processed for each scan session individually and successively registered 

to the Montreal Neurological Institute (MNI) space template (Figure III.15). Gold standard models were 

created for each method and b-value by concatenating the 11 scans per b-value and fitting with each method. 

Comparisons were performed across repetitions to assess variance/reproducibility, while comparisons 

between the gold standard scans were performed to assess bias. 

3.2.1. DW-MRI Data Measurements 

A healthy volunteer was scanned in three different sessions on successive days on a 3T Phillips 

Scanner with a 32-channel head coil. The first and last scan sessions consisted of four repetitions of 96 

gradient directions per b-values at each of 1000 and 3000 s/mm2. The second session had three repetitions 

of the protocol. For each b-value shell, ten minimally weighted reference images (b0’s) were also acquired. 

Voxel resolution for the data is 2.5mm x 2.5mm x 2.5mm with a matrix of 96 x 96 and 38 slices. The scan 

parameters were: Multi-Band=2; SENSE=2.2; TR= 2650 ms; TE=94 ms; partial Fourier=0.7. Fold over 

direction was A-P with a P fat shift. For each set of 5 shells, an additional diffusion scan was acquired with 

reverse phase encoded volumes (i.e., fold over direction A-P with A fat shift) with a minimally weighted 

volume and 3 diffusion weighting directions with a b-value of 1000 s/mm2 along the imaging frame cardinal 

directions, and all other parameters were kept constant. All data were acquired in accordance with the 

Vanderbilt University Institutional Review Board (IRB) guidelines and with the signed consent of the 

volunteer. 
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3.2.2. Preprocessing 

Each session was corrected for eddy current motion, patient head movement and susceptibility 

distortion with FSL’s topup and eddy [115, 116]. Every diffusion weighted shell was preceded by a non-

diffusion weighted image (b0) averaged ten times on the scanner, and each session had four reverse phase 

encoded b0 volumes. All b0’s including reverse phase encoded b0’s in a session were concatenated and fed 

as inputs to topup. For eddy all scans in a session were concatenated and then corrected together using the 

results from topup). Once topup and eddy had been performed the corrected b0’s from the first session were 

registered to a 2.5mm isotropic MNI T2 which was resampled from a 0.5mm weighted template using six 

degree of freedom registration [117]. The volumes for the next session were brought to the same space by 

averaging the b0’s together and registering the combined image to the averaged b0’s in the first session. 

The same procedure was subsequently done to the last session to bring all three sessions into a common 

subject-specific pose aligned with MNI space. 

Thereafter, all the sessions were normalized by the b0 corresponding to the scan to account for 

amplitude drift (Figure III.15). A weighted mean b0 was created from all b0 scans in MNI space by a 

weighted average of all b0’s. The weight was taken as the inverse of the median of all b0 scans in MNI 

 

Figure III.15. Flowchart depicting the pre-processing pipeline 
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space averaged with the mean of b0’s from all sessions. The final normalization scan was computed by 

multiplying the weighted mean b0 to the ratio of diffusion weighted scan (in MNI space) to the b0 (in MNI 

space). 

3.2.3. Data Segmentation:  

Individual target images (T1 weighted scans) were affine registered to the MNI305 atlas [118] and 

bias corrected with N4 [119] using Advanced Normalization Tools (ANTs) [120] on the atlas and the target 

images. Non-rigid registration was performed from atlas images to the target image using Advanced 

Normalization Tools (ANTs) and symmetric image normalization algorithm (SyN) [121]. Image and label 

volumes for the atlas were then deformed to the target space with bi-cubic and nearest-neighbor 

interpolation and fused with non-local spatial STAPLE [122, 123] and Adaboost correction [124]. Each 

individual voxel in the brain was labelled to one of the 133 labels obtained from the multi-atlas labelling 

using the BrainCOLOR protocol [125]. T1 image labels were brought back to original target space with the 

ANTs inverse transformation. All WM labels were concatenated together to create a WM mask. The mask 

has been used for all reported results with the only exception of the visual glyphs where we have shown all 

data for the particular slice. 
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In order to avoid circularity of defining white matter by FA and then examining FA in white matter, 

we defined the white matter mask based on multi-atlas segmentation of the T1-weighted MRI (Figure III.17 

& Figure III.16). As the histograms show, the structural definition spans the full breadth of white matter 

configurations from homogenous major tracks, to crossing fibers, and even to some regions of partial 

volume (e.g., very low FA). 

3.2.4. Q-ball Reconstruction 

Q-ball’s orientation distribution function (ODF) was originally calculated using a funk radon 

transform [13] using a sphere in q-space on raw diffusion data. In [101], the authors showed that a faster 

and robust q-ball model can be formed and regularized using spherical harmonics.  

 

Figure III.16. Histogram of FA values in the white mask for both b-values of 1000 and 3000 s/mm2. 

 

Figure III.17. Spatial maps of middle axial slice A) white matter mask B) fractional anisotropy in 

white matter mask C) where fractional anisotropy < 0.3 in white matter mask. 
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The spherical harmonic q-ball has exhibited different behavior with spherical harmonic orders, 

which keep even orders to retain symmetry. Previous results have revealed spherical harmonic order shows 

dependence on the number of gradient directions and b-value [20]. Additionally, lower order harmonics 

lead to less angular resolution. High spherical harmonic orders and high b-values yield decrease in angular 

error for high SNR sequences for b-values up till 6000 s/mm2 [20].  Herein, the parameters chosen were 

order 8 for the spherical harmonics and the default regularization parameter which is 0.006. Camino was 

used for the implementation [126]. 

3.2.5. RE-PASMRI Reconstruction 

PAS is a special case of spherical deconvolution. The radius of sphere defined for PAS is a constant 

parameter and set to 1.4 as was determined in [12]. Reduced encoding PAS was shown to have a good 

tradeoff between speed and accuracy [111], and reduced encoding was used herein to improve 

computational efficiency. PAS was reconstructed from maximum entropy spherical deconvolution [96] 

with the reduced encoding model [111] with a reduction factor of 16. The gold standard sets of the PAS 

were computed in an “embarrassingly parallel” computation model (split across axis stacks) across multiple 

CPU’s so as not to affect the algorithm but ensure computation at reasonable speeds. Camino was used for 

the implementation [126]. 

3.2.6. Peak Reconstruction 

Peak search was performed using sfpeaks from camino [126]. Local maxima are determined within 

a fixed search radius using Powell’s method. The radius was specifically set to 1.4 for PAS as per [12] from 

the default 0.4 which was used for Q-ball. The number of peaks being determined for both the methods was 

set to 3. The pdthresh defines a ratio of peak strength to mean of the basis function values was set to 1 for 

both the methods. In brief, the parameters chosen for the two methods have been the suggested optimized 

parameters for these methods given the acquisition parameters. Lowering of the pdthresh could lead to 

detection of spurious/false peaks. 

Note that the search radius of sfpeaks is note the same parameters as the radius constant in the PAS 
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model. Peak finding algorithms have a separate search radius parameter however it is set as per the model. 

Maximum entropy models require a higher radius because of the definition of the model as per [15, 91]. 

While the default parameters of the sfpeaks have been used for Q-ball. Usage of higher radius such as 1.4 

for Q-ball will lead to unstable or spurious results. 

3.3. Metrics 

3.3.1. Success Fraction 

Success fraction (SF) has been effectively applied to characterize synthesized data on a small scale 

in vivo dataset [64], originally termed as consistency fraction in the article. Success fraction declares two 

intra-voxel measurements to be in agreement if (1) the number of fiber populations is equivalent and (2) 

the peaks are within an angular tolerance.  In [64], 18 degrees was used as the tolerance; herein we use 20 

degrees.  

All metrics have been binned at intervals of 0.1 by FA. The binned values have been represented 

by the mean with standard deviations across the bin. 

3.3.2. Peak Fraction 

The peak fraction is a representation of the function value detected from the PAS or the ODF. We 

have restricted the analysis to scenarios of <= 3 fiber populations per voxel and that had been defined during 

the peak search algorithms as well. The ODF/PAS values were normalized in cases where fiber populations 

detected were > 1. It has been defined as a function of FA and is also mapped to the number of voxels. We 

have chosen to represent this for all the eleven single test models per b-value for both the methods, where 

f_i^n are the normalized peak fraction (PAS/ODF) values of the peaks detected and fi is the function value 

(PAS/ODF) of the peak detected: 

𝒇𝒊
𝒏 = fi / (f1 + f2 + f3)      Eq. 18 

3.3.3. Symmetric Angular Error 

Symmetric angular error presents an insight to bias of the reproducibility of the fiber populations 
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being detected from the PAS and Q-ball functions and a different perspective from the SF as it combines it 

with quantitative peak fractions. It informs us about quantitative error presence even in cases where the 

gold standard model detects two populations and the test model detects three. Consider two vectors, a gold 

standard vector, jn, and test model vectors, km, along with gold standard weights, gn, and test weights, tm. 

The symmetric angular error (SAE) is a representation of the orientation error between all the peaks of the 

gold model and the test model: 

( 𝐚𝐫𝐠 𝐦𝐢𝐧(∡(𝒋𝒏, 𝒌𝒎) ⋅  𝒈𝒏) + 𝐚𝐫𝐠 𝐦𝐢𝐧(∡ (𝒋𝒏, 𝒌𝒎) ⋅  𝒕𝒎) ) / 𝟐   Eq. 19 

3.4. Results 

 

With the one-fiber case, SF for PAS and Q-ball shows increasing consistency as a function of FA 

(Figure III.18 A). It should be noted that SF for PAS at a b-value of 1000 s/mm2 is significantly lower. At 

the extremes of FA (0.8-0.9 or 0.1-0.2), limited sample sizes lead to higher variance in the estimates (e.g., 

PAS at a b-value of 3000 s/mm2). With the two-fiber case (Figure III.18 B), SF is maximal at intermediate 

FA (0.35-0.55 PAS and ~0.55 for Q-ball). With the three-fiber case, SF is generally low for both methods 

 

Figure III.18. SF separated in fiber population cases from PAS and Q-ball at b-values of 1000 

s/mm2 and 3000 s/mm2. A) Single fiber population detected by gold standard methods. B) Two 

fiber population detected by gold standard methods. C) Three fiber population detected by gold 

standard methods. Error bars represent standard deviation across each bin. 
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while Q-ball at a b-value of 3000 s/mm2 shows the highest SF.  

Figure III.19 explores both the number of voxels identified along with the FA, and peak fraction. Q-ball 

shows more voxels with single fiber populations than PAS at both b-values (Figure III.19A). As the b-

values increase, PAS exhibits a slight increase in the single fiber voxels while Q-ball finds a substantial 

decrease. With the two-fiber case, PAS estimates a wide spread of peak fraction (0.5-0.8) for a range of FA 

 

Figure III.19. Peak Fractions of the methods across eleven single scans per b-values of 1000 s/mm2 

and 3000 s/mm2. A) Number of voxels mapped as a function of FA. B)  Two fiber population f1 as 

function of FA with number of voxels as the third dimension. C) Three fiber population f1 as 

function of FA with number of voxels as the third dimension. D) Three fiber population f2 as 

function of FA with number of voxels as the third dimension. 
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(0.2-0.8), but Q-ball finds a very narrow, peak fraction of (0.5-0.6) for a more limited range of FA (0.3-0.6) 

(Figure III.19 B). The number of two-fiber voxels moderately increases with b-value for PAS and Q-ball. 

For the three-fiber case, there is substantial decrease in detected fibers with PAS, but an increase with Q-

ball. For a b-value of 1000 s/mm2, PAS finds 3 fibers for an FA of 0-0.6, but for a b-value of 3000 s/mm2, 

PAS detects 3 fibers only FA < 0.4. For Q-ball, the FA range mains the same (FA in 0-0.5) with a peak 

fraction of ~one third for both b-values (Figure III.19 C & D).  

The single fiber cases exhibit symmetric angular error less than multi-fiber cases for both PAS and 

Q-ball (Figure III.20). Symmetric angular error decreases with increased FA for all scenarios. PAS shows 

 

Figure III.20. Symmetric angular error is shown for A) PAS at b-value of 1000 s/mm2, B) Q-ball at 

b-value of 1000 s/mm2, C) PAS at b-value of 3000 s/mm2, and D) Q-ball at b-value of 3000 s/mm2. 

Error bars represent standard deviation across the bin. 
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lower symmetric angular error than Q-ball (Figure III.20A vs. B and Figure III.20 C vs. D). Interestingly, 

symmetric angular errors are lower for the three crossing fibers relative to the two crossing fibers. Yet, note 

that 7836 and 661 voxels were detected with three fibers for PAS and Q-ball at b-value of 1000 s/mm2 

while they were 2941 and 816 at b-value of 3000 s/mm2, respectively. Figure III.21 presents a qualitative 

comparison.  

 

Figure III.21. Enlarged ROI contains genu of corpus callosum and left pre-frontal area: A) Q-ball 

is shown for the middle axial slice at b-value of 3000 s/mm2. Enlargements are presented for: B) 

PAS at b-value 1000 s/mm2, C) Q-ball at b-value 1000 s/mm2, D) PAS at b-value 3000 s/mm2, and 

E) Q-ball at b-value 3000 s/mm2. (1) Structural differences between PAS and Q-ball. (2) Fanning 

fibers in Q-ball while crossings detected by PAS. (3) Loss of structure for PAS. (4) Reduction in 

fanning for Q-ball. 
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Figure III.22 compares the gold standard estimates from PAS to the individual estimates from Q-

ball and vice versa. SF follows the same trend for all four scenarios for the single fiber population. For the 

single fiber case, SF is higher when the PAS treated as the baseline (red curves: Figure III.22A vs C and 

Figure III.22 B vs. D). Yet, for the two-fiber model, Q-ball ground truth generally agrees with PAS at high 

 

Figure III.22. A) SF gold standard model PAS and test models Q-ball at b-value of 1000 s/mm2. B) 

SF gold standard model PAS and test models Q-ball at b-value of 3000 s/mm2. C) SF gold standard 

model Q-ball and test models PAS at b-value of 1000 s/mm2. D) SF gold standard model Q-ball and 

test models PAS at b-value of 3000 s/mm2. Error bars represent standard deviation across the bin. 
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b-value (>0.5), but a substantial fraction (~80%) of PAS two-fiber cases are not seen in Q-ball (black 

curves: Figure III.22 A vs C and Figure III.22 B vs. D). The three fiber cases are not consistent for either 

baseline or b-value scenario (blue curves: Figure III.22). We can appreciate these levels of agreement 

qualitatively in Figure III.23. The major white matter tracts have single fiber detected and have high SF 

 

Figure III.23. Middle-axial slice spatial map for intra-model comparison. A) PAS gold standard 

model and Q-ball test models at b-value 1000 s/mm2. B) Q-ball gold standard model and PAS test 

models at b-value 1000 s/mm2. C) PAS gold standard model and Q-ball test models at b-value 3000 

s/mm2. D) Q-ball gold standard model and PAS test models at b-value 3000 s/mm2. (1) False 

positives being detected by PAS. 
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with both approaches used as gold standards (Figure III.23 first column). The impact of the number of 

voxels shown with two fibers on the overall SF is shown in the second column of Figure III.23. 

Table III.3. Mean SNR and the error observed per session for the acquired dataset. 

Session Mean SNR  Std SNR Single b0 equivalent 

Session 1 32.81 0.1091 10.3768 

Session 2 27.84 0.0830 8.8065 

Session 3 32.81 0.1091 10.3768 

 

3.5. Discussion 

This study focuses on capturing the differences between PAS and Q-ball interpretations of a single 

acquisition type using the established best practices. We interpret the differences observed in the results to 

be fundamentally attributed to algorithms, and hence discuss the relative sensitivity/reproducibility of each 

approach. Note that the observed differences between Q-ball and PAS may arise not only from the data 

model, but also from their dependencies on experimental factors (e.g., noise level, angular sampling), on 

the selection of reconstruction/model parameters (e.g., order/radius), peak determination algorithm 

parameters. We have made the data freely available on nitrc.org to allow deeper exploration of these 

considerations. 

In the literature, Q-ball has been shown to detect crossing angles in multi-fiber regions down to 45 

degrees at b-values of 8000 s/mm2. Given sufficient SNR using high quality phantom data, and Q-ball 

improves on accuracy with b-values > 4000 s/mm2 [95]. Typically, these b-values are not clinically 

feasible. Crossing fiber angles have been detected with Q-ball for FA less than 0.4 [94]. Meanwhile, PAS 

resolves greater crossing fiber populations on sparse diffusion data and is able to resolve crossing fibers at 

lower b-values which are clinically feasible [64].  

Herein, we find that both the methods perform well when self-comparing each single scan with 

concatenated multiple single scans (gold standard model). Specifically, both methods work well on single 
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fiber population scenarios (however, this is not the application for which the methods were designed to 

address) (Figure III.18) [12]. However, Q-ball performs better than PAS for single fiber scenarios, which 

is interesting because it is probable that PAS is detecting false positives. Comparing (Figure III.18 & Figure 

III.20) we see that specifically for lower FA there is high standard deviation which is indicative of the false 

positives for PAS. Q-ball performs consistently for this scenario. 

With the evaluated imaging sequences, Q-ball and PAS reliably detect multiple fibers only for 

crossing regions with no more than two fiber populations (Figure III.18). Note that PAS and Q-ball both 

show low reproducibility for extreme FA values which is a likely artifact. The inference is that the detection 

of fiber population might not be accurate. At high values of FA, it is more probable that single fiber 

populations would be expected rather than two fiber populations. While the lower FA regions show 

disagreement for two fiber populations which is not as extreme as for higher FA values. Suggestively it 

could be noise that is making the methods underperform in those regions. It is also possible that the methods 

are not able to resolve more complex architecture, which might be present in the lower anisotropic regions 

as there is evidence of very low reproducibility in three fiber populations regions or more. Comparison with 

histological validation may indicate which methods are more accurate in regions of disagreement [23, 127]. 

It is likely that usage of these voxels might lead to spurious tracts or false continuations. 

Comparing (Figure III.18) and (Figure III.20), we find an interesting difference. The symmetric 

angular error (Figure III.20) shows that most of the errors detected for three fiber populations are less than 

the two-fiber population scenario. Yet this is contradicted by the SF (Figure III.18) which shows us that 

there is hardly any agreement for three fiber scenarios. Though our analysis suggests that they are not 

reproducible there might be a possibility to improve them and increase their reproducibility. Robust fitting 

of HARDI methods with removal of outlier volumes could lead to improvements. 

The peak fractions of Q-ball show a self-consistent, but distinct, value in most scenarios (Figure 

III.19). While PAS shows them consistently as well but across a wider range. It can be expected from Q-

ball that they will be consistent values because a smooth function (ODF) has been normalized. While PAS 

is a spikier function and hence the wider range of fiber fraction. Characterization of the reconstruction of 
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PAS and ODF may lead to a better understanding but it is beyond the scope of this article which deals with 

fiber population and their angular error. A deeper understanding of the differences between ODF and FOD 

methods are needed, in particular peak fractions lead to quite different interpretations for the different 

approaches. This is not surprising as the ODF function is quite smooth and not intended to directly model 

the fiber fraction. For typical clinical b-values (~1000 s/mm2) for PAS offers advantages for sensitivity and 

reproducibility. Q-ball can achieve similar reproducibility performance as PAS given moderate increases 

in SNR or directions [95]. For higher b-values, Q-ball detects more detailed micro-architecture in the brain 

(Figure III.16) at the higher b-value which implies more voxels detected with crossing fibers. This is 

supported by the fact that symmetric angular error is lower for single and two fiber populations for higher 

b-values (Figure III.20). PAS appears to be a more reasonable choice given higher reproducibility of 

crossing fiber majorly of the two fiber populations (Figure III.18) and (Figure III.20). However, care should 

be taken in interpretation of both methods as to which regions they are applied as both methods are unstable 

at the extreme of FA (Figure III.17).  

Prior conference analysis of the data [19], showed that PAS resolves crossing fibers more 

consistently than Q-ball at moderate and higher crossing angles. Accuracy and consistency for both Q-ball 

and PAS have been shown to increase with increasing SNR (our empirical data is low SNR) [13], but the 

observed methodological effects are not mitigated by large quantities of data as indicated as at the 

comparison between gold standard models computing using all available data (Figure III.17) and (Figure 

III.18). In [111], PAS was consistent in all cases with SNR > 16, but for Q-ball to reach this level of 

consistent/accuracy SNR >24 (which ours is not, and is not often seen in clinical scans). Note that the SNR 

of the presented data were 11.828 in the centrum semiovale (WM), in the peripheral white matter, and 5.838 

in the cortical gray matter in the b0 images. Also shown are values of single b0 equivalent as our scanner 

provides with an average of 10 b0’s for a b0 (refer Table III.3 and Table III.4). Hence, single b0 equivalent 

is (SNR calculated)/√10. The SNR has been calculated using Reeder’s difference method [128].  PAS 

accuracy and consistency is better than Q-ball for crossing fibers at our low/clinically feasible SNR regime, 
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Q-ball is more consistent than PAS in single fiber regions at a lower SNR. This is interesting to note, 

probably due to the false positives in PAS.  

Table III.4. Mean SNR and the error observed across all sessions for the acquired dataset. 

Session Mean SNR  Std SNR Single b0 equivalent 

All sessions 33.12 0.0945 10.47 

 

Q-ball shows fanning fiber voxels while PAS detects sharp and narrow peaks as visually evident 

by the glyphs (see (1), Figure III.19). Higher number of crossing fiber voxels are seen for PAS when 

compared to Q-ball glyphs which also reinforces the fact that there are more 2 or more fiber voxels for PAS 

(see (2)). Highlighting architectural differences between the two methods. The effect of b-value can be seen 

on both the methods as it increases from 1000 s/mm2 to 3000 s/mm2. It is evident that fanning of the fiber 

reduces, and peaks become narrower for Q-ball and PAS both (see (3, 4)). However, for Q-ball it is 

beneficial for PAS it is detrimental. It is noticeable qualitatively that the fanning structure being captured 

by PAS-MRI at b-value of 1000 s/mm2 is lost once the b-value is increased (see (3). This loss of structure 

is also being quantified by the symmetric angular error metric (Figure III.18). The crossing fiber voxels 

being detected till FA of 0.8-0.9 at b-value of 1000 s/mm2 has dropped to FA < 0.6. 

At high values of FA (FA > 0.6), there is noticeable disagreement between Q-ball and PAS which 

is evident even for the two-fiber case (Figure III.20). PAS detects multiple fibers even when the tensor FA 

is high, which would appear to indicate false positives (Figure III.21, see (1)). Meanwhile, Q-ball 

consistently finds a single fiber in cases where the tensor FA is high.  

In summary, the analyses for single-fiber populations are in good self-agreement with PAS, 

however there is the possibility of false positives. Q-ball performs qualitatively better with fair inter-model 

agreement. For two-fiber populations, the methods are in fair self-agreement except for extreme high or 

low FA regions. Overall PAS shows more reproducibility and the inter-model agreement is reasonable for 

mid-ranges of white matter FA (0.4 < FA < 0.6). The three-fiber population case shows low self-agreement 

indicating model instability for both PAS and Q-ball. There is little agreement between both the methods 
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in terms of crossing fibers (Figure III.20, Figure III.21). Visually also the agreement is less than expected 

given crossing fiber regions or two and more fiber population voxels. 
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4. SHARD: Spherical Harmonic Based Robust Outlier Detection for HARDI Methods 

 

This chapter has been adapted from the published work in [129] 

4.1. Introduction 

Diffusion weighted magnetic resonance imaging (DW-MRI) measurements provide contrasts 

sensitive to the micro-architectural environment at a millimeter scale. The data have been widely used to 

model brain structural connectivity using diffusion tensor imaging (DTI) [35]. However, DTI is limited in 

that it only provides a single fiber/peak orientation per voxel. More recent methods which can be labelled 

collectively as high angular resolution diffusion imaging (HARDI) provide models capturing information 

on the existence of multiple fiber orientations per voxel. Yet, HARDI is not a singular technique; rather, 

numerous methods exist to model DW-MRI data with more complex intra-voxel models such as Q-ball, 

spherical deconvolution, PAS-MRI, diffusion orientation transform [12-14, 90, 101].  

Generally, acquisitions consisting of 45 or more diffusion weighted volumes can be termed as 

HARDI acquisitions [130]. With increased number of gradient volumes per acquisition the probability of 

artifacts that might invade the acquisition also increases. Artifacts occur not only due to noise or system 

instabilities of a scanner but also from physiological motion of the subject [131], e.g., signal dropout, signal 

intensity spike, ghosting and striping (see Figure IV.24). A single artifact in a gradient volume can be 

detrimental for voxel-wise fitting methods and can lead to increased bias and variance for the methods. It 

has been shown that a single corrupted gradient volume for a HARDI acquisition can introduce an error of 

approximately 10% in Fractional Anisotropy (FA) and General Fractional Anisotropy (GFA) [132] using 

robust spherical harmonics Q-ball imaging [101]. Generally, the practical quality control advice for DW-

MRI is to either remove gradient volumes or perform correction using interpolation techniques [132]. 

Hence, it is critically important for the artifacts to be detected and either removed or imputed for reduction 

of bias in HARDI methods. 

Previous work on robust estimation of DTI has been characterized with weighted least squares fit 
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and robust M-estimators [133, 134]. Briefly, outlier detection models have been designed to exclude and 

then compute DTI with the remaining measurements. Subsequently, iteratively reweighted linear least 

squares (IRLLS) were developed to increase the speed with DTI [135]. To date, a consensus has not been 

reached for HARDI outlier detection. One approach uses compressed sensing on q-space resampling as an 

alternative to excluding gradient volumes [136], which is effective when there is signal dropout because of 

bulk motion. An adaption of the robust estimation of tensors by outlier rejection (RESTORE) [133] uses 

spherical harmonics for outlier detection and exclusion, higher order model outlier rejection (HOMOR) 

[137]. HOMOR is effective at removing outliers at higher b-values (up to 3000 s/mm2 where RESTORE 

suggests invalid outliers), while HOMOR maintains similar performance to RESTORE at lower/clinical b-

values. Outlier detection and replacement has also been incorporated in the non-parametric framework of 

eddy [138]. Eddy’s non-parametric model achieves superior performance over RESTORE [139]. Here we 

focus on outlier detection independent of registration and distortion correction. In light of the advanced 

work with tensors, one could construct statistically robust variants of each traditional HARDI model. 

However, such efforts would require specific coding for each HARDI variant and potentially dramatically 

increased computational times given the need for re-computation of fitting procedures on a voxel-wise 

basis. Here, we follow in HOMOR’s approach for outlier detection using an iterative linear least squares 

model, but our approach uses residual-based re-weighting with a ridge regression with L2 penalty. HOMOR 

does not impute the data and is a detection technique while our approach is both a detection and replacement 

model on a voxel by voxel basis. 

Here, we propose a robust outlier imputation model that uses an iterative regularized weighted 

linear least squares (IRWLLS) fit which functions per voxel. The IRWLLS model uses even order weighted 

spherical harmonics which can be used to calculate residuals with the original signal intensities. The 

weights are based on squared residuals and squared standard deviation (SD) of residual between signal 

intensities and regular spherical harmonics across the entire acquired volume of the brain. Based on a certain 

threshold multiplied with the SD of the entire brain residuals, the outliers can be detected and imputed with 

weighted spherical harmonic intensities. This work reveals that an imputation model can be useful for 
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detecting artifacts and it minimizes error when compared with an in vivo acquired ground truth (good scan). 

In an empirical demonstration, the improvement is noticeable for Q-ball in terms of angular correlation 

coefficients. 

4.2. Methods 

4.2.1. DW-MRI Data Measurements and Pre-processing  

A single healthy volunteer was scanned for a single session at 3T (Achieva, Philips Medical System 

Systems, Best, The Netherlands) with a 32-channel head coil. Two scans were acquired each with 64 

gradient direction for a b-value of 3000 s/mm2 each with a minimally weighted reference (b0). Acquisition 

parameters voxel resolution=2.5x2.5x2.5 mm3 Multi-Band=2; SENSE=2.2; TR= 2650 ms; TE=94 ms; 

partial Fourier=0.7. In one of the two scans, the volunteer was specifically asked to move their head at 

random intervals. This was done to introduce artifacts in the acquired scan. One third of the gradient 

volumes show major artifacts in the middle axial slice and can be noticed easily visually (refer Figure 

 

Figure IV.24. Comparison of good and corrupted scan data from an empirical in vivo acquisition. 

The red arrows in the second-row highlight areas of artifact. 
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IV.24). 

The acquired data wer preprocessed for patient movement, eddy current distortions and 

susceptibility distortion using eddy and topup [139, 140]. The b0’s were concatenated together and fed as 

input to topup. Both the scans were concatenated together and then used as input to topup which was 

pipelined to eddy. The corrected data from eddy were successively registered to the b0’s using flirt [99, 

 

Figure IV.25. SHARD Algorithm’s iterative pipeline. The first phase of SHARD (white boxes), 

involves a regularized spherical harmonic fit to the preprocessed diffusion data, which enables 

estimation of the standard deviation of the model fit across the brain (σ). The second phase (green 

boxes) uses iterative reweighted spherical harmonic fitting to identify and de-weight outliers on a 

voxel wise basis. Finally (red boxes), outliers are identified from the reweighted spherical harmonic 

fit, median filtered, and imputed with their model fit values. The resulting data can be used in 

subsequent HARDI model processing (black box). 
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117]. The two scans were normalized by the corresponding b0 to account for the amplitude drift. 

4.2.2. SHARD Algorithm 

The pre-processed data was fitted to spherical harmonics of order 6 to generate 28 basis functions. 

The SD was calculated of the residuals between the DW-MRI data signal intensities (S/So) and the spherical 

harmonic fitted signal intensities for both the scans (σ) (Figure IV.25). The spherical harmonic basis 

functions were fitted to DW-MRI using a regularized linear least squared fit (RLLS) and is also known as 

a ridge regression with L2 penalty. Regularization constant was fixed at 0.005 as the known used value 

from Q-ball. This algorithm functions on a voxel by voxel basis iteratively. Weights have been calculated 

as square root of inverse of sum of squares of σ and residual per voxel leading to an equivalent number of 

weights as the gradient directions. The original DW-MRI data are fitted using weighted spherical harmonics 

basis functions of order 6. A weighted regularized linear least squared fit (WRLLS) has been used 

iteratively till the convergence criteria are satisfied. The criteria were set to three deviations of σ for the 

residual. Failure of satisfaction of the criteria leads to recalculation of weights using any signals that were 

imputed. At every iteration, the outlier binary map is updated. Once the procedure has been completed for 

the entire brain volume a final outlier map is generated. This outlier map is denoised/interpolated using a 

two-dimensional median filter to get rid of spurious outliers that were detected during the iterations of the 

SHARD algorithm. Denoised outlier map is used for imputation of the original DW-MRI measurements 

which are replaced by the sampled weighted spherical harmonic signals for the true outliers that were 

detected. This algorithm can be used for either exclusion or imputation functionality or for both. However, 

in regard to this work it has been used an exclusion and imputation model. 

4.2.3. Validation of SHARD in Simulation 

The ground truth (good scan) was taken and artificial noise was added per voxel at gradient 

directions that were chosen randomly. ‘S’ defines the signal intensity for a diffusion weighted volume while 

‘So’ defines a non-weighted diffusion volume. For a randomly chosen gradient direction a probability (p) 

was randomly generated. If p >= 0.5 then the corruption factor was used to divide S/So and if it was p < 0.5 
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then corruption factor was used to multiply S/So. This experiment was repeated 64 times per corrupted 

direction while increasing number of corrupted directions up to the maximum number of gradient directions 

that were acquired with this data set. This synthetic corruption model has been labelled as ‘Slash Model’ 

for future reference and in the figures as well. We used a two-step validation process the first one being the 

root mean squared error measured against the ground truth across all the signal intensities (S/So) over the 

entire brain volume comprising of all gradient directions (1). ‘G’ is the total number of gradient directions 

and ‘N’ is the total number of slices that were acquired. 
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The second step validation is using angular correlation coefficient (ACC) which is based on the 

coefficients of the HARDI method Q-ball (2). ACC is a convenient way for calculating correlations of 

functions of all directions over a spherical harmonic expansion. It provides an estimate of how closely two 

orientation distribution functions (ODF) relate to each other. It was first estimated on a voxel by voxel 

basis. ‘u’ is the test function of Q-ball coefficients while ‘v’ is the true set of Q-ball coefficients from the 

ground truth (good scan) data. It can be inferred that the ACC if taken between two separately calculated 

Q-ball coefficients from ground truth data its value will be equivalent to 1. This was empirically determined 

as well. This metric has been represented across the entire brain volume using RMSE and the mean. 
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    Eq. 21 

 

When performing this robust experiment on the ground truth (good scan) and the motion scan data 

the same methodology as above has been used. However instead of multiplying or dividing signal intensities 

by a corruption factor, random permutations of the gradient volumes were chosen from the motion scan 
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data. The permutations ranging from 1 to 64. At each level of corrupted directions, the experiment was 

repeated 64 times for robustness. 

4.3. Results 

4.3.1. True and False Positive 

True positives have been defined as outliers that are correctly identified by the model (true outliers 

are known because they are simulated) while false are the ones that are detected but they are not in actual. 

The number of false positives being detected for both the slash model and when tested with motion scan 

data are close to 1000 voxels combined across all the uncorrupted gradient volumes (Figure IV.27A and 

C). Specifically, when motion corrupted scan volumes are swapped, it is noticeable that there are visual 

inconsistencies. The true positives in the corrupted gradient volumes are consistently greater and at a much 

higher ratio than the number of false positives being detected (Figure IV.27B and D). The number of true 

positives drop in cases of certain corrupted volumes and are accounted to gradient volumes that are not 

corrupt in the motion scan data. The ratio is ~1:60 when using motion data scan to introduce corruption. 

The ratio is even higher in the scenario of slash model true positives and false positives. Qualitatively, the 

above-mentioned result is re-enforced as it is apparent to notice that there are fewer outliers being detected 

in the uncorrupted gradient volumes (Figure IV.26B and D). This result is regardless of slash model 

corruption of volumes or swapping corrupted volumes from motion scan data. 

4.3.2. RMSE of Signal Intensity 

The RMSE of 64 repeated measurements with random permutations that the overall error after 

using this algorithm for pre-processing is always less than the original error (Figure IV.28A and B). This 

can be observed for both slash model corruption and motion scan corruption. A distribution plot of the 64 

repeated measurements for the first 20 corrupted directions shows that either the RMSE is reduced or it is 

the same when compared with the original error (Figure IV.28C and D). The RMSE increases for the 

original corruption and after imputation with the increase of corrupted gradient directions. However, the 
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RMSE after imputation is generally less by approximately 0.06 for the S/So. The base error that is 

introduced by SHARD in the ground truth with no corrupted volumes is approximately 0.015 for S/So 

(Figure IV.28D). The distribution plots show that there is a higher likelihood of having a lower RMSE as 

compared to original RMSE after imputation. 

 

 

Figure IV.26. Middle axial slice shown for the diffusion data and the binary outlier map. i*j denotes the 

weighted gradient volume corresponding to gradient directions. A) Ground truth data when corrupted with 

an artifact containing gradient volume from the motion scan. B) Outlier detected on the corrupted gradient 

volume in (A). C) Simulated good scan data when corrupted artificially by random multiplication and division 

of signal intensity using a corruption factor (Slash Model). D) Outliers detected with the artificial corrupted 

gradient volume in (C). 
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Figure IV.27. Count of outliers detected in corrupted gradient volumes (True Positive) and 

uncorrupted gradient volumes (False Positive). A) False positive, outliers detected in the 

uncorrupted gradient volume when using corrupted gradient volumes from motion scan. B) True 

Positive, outliers detected in the uncorrupted gradient volumes which has random volumes 

swapped in from the motion scan. C) False positive, outliers detected in the uncorrupted gradient 

volume when using Slash model corruption factor for random gradient volumes. D) True Positive, 

outliers detected in gradient volumes when using Slash model corruption factor for random 

gradient volumes. 
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4.3.3. RMSE of ACC 

RMSE of ACC across the entire brain shows us that the error is consistently reduced when 

compared to the ground truth ACC (Figure IV.29A and B). This result holds true for both slash model and 

corruption using motion scan data. It is noticeable, however, that the error reduction in the scenario of 

motion scan data is comparatively lesser as compared to error reduction in slash model. The RMSE of ACC 

increases with increasing number of corrupted gradient directions and so does the RMSE of ACC after 

imputation. However, the constant error reduction can be noticed at about 0.03 for the slash model and 0.02 

for the motion scan data. 

 

Figure IV.28. A) RMSE of corrupted and imputed signal intensities across the brain when 

compared with the ground truth. Corrupted gradient volumes were swapped from the motion 

scan. Each point represents RMSE across 64 measurements. B) RMSE of corrupted and imputed 

signal intensities when compared with ground truth. Gradient volumes were corrupted with a 

corruption factor artificially (slash model). Each point represents RMSE across 64 measurements. 

C) Violin plot of 64 repeated measures of RMSE per bin with random permutations before 

imputation for the first 20 corrupted gradient volumes. The corrupted volumes were swapped from 

motion scan data. D) Violin plot of 64 repeated measures of RMSE per bin with random 

permutations after imputation for the first 20 corrupted gradient volumes. The corrupted volumes 

were swapped in from motion scan data. 
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4.4. Discussion 

 

The SHARD algorithm is a promising pre-processing technique for mitigating outliers in HARDI 

data. The base error that has been observed in the ground truth (Figure IV.29D) with no corrupted volumes 

can be visually attributed to artifacts that are present in the ground truth “good” data (Figure IV.30). These 

artifacts can sometimes be difficult to capture with visual observation (given 44 total slices per dataset) but 

were detected by SHARD. SHARD’s utility appears to degrade once approximately 10 corrupted gradient 

volumes are introduction. 

 

The usage of spherical interpolation of data has been quite popular in the recent times for [132, 

137]. In this scenario while using a weighted version of spherical harmonics only a reduction 0.06 in terms 

of RMSE could achieved when imputing original signal intensities. There is potential room for 

improvement with usage of different interpolation techniques. Though there have been outlier detection 

models which have used spherical harmonics of order 4 [137]. A parameter optimization analysis could 

 

Figure IV.29. RMSE of ACC between spherical harmonics coefficients of Q-ball: A) between 

corrupted data (Slash model) and ground truth data. B) between corrupted data (motion scan 

data) and ground truth data. 
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prove to be beneficial purely focused towards spherical harmonic orders. Another possible room for 

improvement is whether to introduce a weighted mean of the signal intensity along with the spherical 

harmonic fitted signal intensity which could further reduce the error between the original and the imputed 

signal. 

A median filter approach slice wise has been effective, but it is a two-dimensional solution. A 

positive improvement could be made using a three-dimensional spatial regularization which could tighten 

the exact outliers being detected to the specific artifact. This could lead to a crucial increment in accuracy 

of temporal artifacts that could possibly invade the data. At the same time doing so should also remove 

single spurious outliers that are detected. Labelling a single voxel as an outlier is a difficult question to 

answer and simply labelling them as an outlier might only lead to increment in errors between original and 

imputed signal. Clustering of outliers holds potential in increasing this algorithm’s efficiency. 

 

 

 

Figure IV.30. A) Middle axial slice containing a striping artifact in the ground truth. B) Outlier 

mask detected by the SHARD model. 
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4.5. Conclusion 

The SHARD algorithm can detect sufficient outliers in corrupted gradient volumes which contain 

artifacts or contain signal dropout regions while not impacting the uncorrupted gradient volumes. Instead 

of exclusion of the detected outliers they can be safely imputed with the weighted spherical harmonic 

modelled signal intensities without introducing additional errors. Further validation and testing of this 

algorithm is necessary on a larger data set and using multiple HARDI models that are present. A comparison 

with the present outlier imputation techniques is clearly warranted. It would be interesting to estimate which 

techniques can detect and impute outliers without introducing additional errors. 
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5. Tractography Reproducibility Challenge with Empirical Data (TraCED): The 2017 ISMRM 

Diffusion Study Group Challenge 

 

This chapter has been adapted from the published work in [41]. 

5.1. Introduction 

Diffusion weighted magnetic resonance imaging (DW-MRI) is a technique which allows for non-

invasive mapping of the human brain’s micro-architecture at milli-metric resolution. Using voxel-wise fiber 

orientation reconstruction methods, tractography can provide quantitative and qualitative information for 

studying structural brain connectivity and continuity of neural pathways of the nervous system in vivo. 

There have been many algorithms, global, iterative, deterministic and probabilistic, that reconstruct 

streamlines using fiber reconstruction methods. Tractography was conceived [141] using one of the first 

fiber reconstruction method, diffusion tensor imaging (DTI) [35]. However, DTI has a well-known 

limitation: it cannot resolve complex fiber configurations [142]. With the advancement in acquisitions 

protocols allowing for better resolution and higher number of gradient values new methods for 

reconstruction of local fiber have been developed. These methods are commonly referred to as high angular 

resolution diffusion imaging (HARDI), e.g., q-ball, constrained spherical deconvolution (CSD), persistent 

angular structure (PAS) [12, 13, 90]. HARDI methods enable characterization of more than a single fiber 

direction per voxel, but have been often shown to be limited when more than two fiber populations exist 

per voxel [19, 143]. While there is definite gain in sensitivity when using HARDI methods, there remain 

critical questions of their reproducibility [144].  

There have been many validation efforts that aim to assess the anatomical accuracy of tractography. 

Early studies investigated how well tractography followed large white matter trajectories through 

qualitative comparisons with dissected human samples [145], or previous primate histological tracings 

[146]. Later works on the macaque [147] or porcine [148] brains highlighted limitations and common errors 

in tractography. Recently, the sensitivity and specificity of tractography in detecting connections has been 
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systematically explored against tracers in the monkey [149-151], porcine [152], or mouse [153] brains. The 

main conclusions drawn from these are (1) that algorithms always show a tradeoff in sensitivity and 

specificity (i.e. those that find the most true connections have the most false connections) (2) short-range 

connections are more reliably detected than long-range, (3) connectivity predictions do better than chance 

and thus have useful predictive power, and (4) tractography performs better when assessing connectivity 

between relatively large-scale regions rather than identifying fine details or connectivity.         

Despite the wide range of validation studies, there have been few reproducibility studies of 

tractography [21, 154, 155]. Rather than ask how right (or wrong) tractography is, we ask how stable are 

the outputs of these techniques? Because tractography is an essential part of track segmentation, network 

analysis, and microstructural imaging, it is important that reproducibility is high, otherwise power is lost in 

group analyses or in longitudinal comparisons. In this study, given a standard, clinically realistic, diffusion 

protocol, we aim to assess how reproducible tractography results are between repeats, between scanners, 

and between algorithms. 

Publicly organized challenges provide unique opportunities for research communities to fairly 

compare algorithms in an unbiased format, resulting in quantitative measures of the reliability and limitation 

of competing approaches, as well as potential strategies for improving consistency.  In the diffusion MRI 

community, challenges have focused on recovering intra-voxel fiber geometries using synthetic data [22] 

and physical phantoms [21, 156]. Similarly, diffusion tractography challenges [154] have provided insights 

into the effects of different acquisition settings, voxel-wise reconstruction techniques, and tracking 

parameters on tract validity by comparing results to ground truth physical phantom fiber configurations [21, 

155]. Recently, more clinically relevant evaluations have been put forth. For example, a recent MICCAI 

challenge benchmarked DTI tractography of the pyramidal tract in neurosurgical cases presenting with 

tumors in the motor cortex [157]. Towards this direction, the current challenge utilized a large-scale single 

subject reproducibility dataset, acquired in clinically feasible scan times. This challenge was intended to 

study reproducibility to describe the limitations for capturing physiological and imaging considerations 

prevalent in human data and evaluate the newest generation of tractography algorithms.  
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This paper is organized as follows. First, we present the analysis structure of this challenge to 

characterize which tracts are the most reproducible. Second, we characterize the variance across the 

tractography methods by design features and compare the potential containment of tracts on a per algorithm 

basis. 

5.2. Methods 

5.2.1. DW-MRI Data Acquisition 

Neuroimaging The data were acquired with a multi-shell HARDI sequence on single healthy human 

subject. The two scanners were both Phillips, Achieva, 3T, Best, Netherlands. These are referred to as 

scanner ‘A’ and ‘B’. The three shells that were acquired: b=1000 s/mm2, 2000s/mm2 and 3000s/mm2 with 

20, 48 and 64 gradient directions respectively (uniformly distributed over a hemi-sphere and independently 

per shell, this was done in consideration of scanner hardware.). The other parameters were kept consistent 

for all shells. They are as follows: Delta=~48ms, delta=~37ms, partial fourier=0.77, TE = 99 ms, TR ~= 

2920 ms and voxel resolution=2.5mm isotropic. A total of 15 non-weighted diffusion volumes ‘b0’ images 

interspersed as 5 per shell were acquired. Additionally, for scanner A & B, 5 reverse phase-encoded b0 

images and 3 diffusion weighted directions were acquired to aid in distortion correction. The additional 3 

diffusion-weighted direction volumes were acquired for ease of acquisition from the scanner. They do not 

contribute to the pre-processing of the data in any way.  

Additionally, a T1-weighted reference image (MPRAGE) was acquired for each session per 

scanner (4 volumes total). A single volume of T1 was used which was registered to the first session of 

scanner A where the session had already been registered to the MNI template. This was done using a 6 

degree of freedom rigid body registration. 

For the initial data release, a technical issue resulted in 5 non-reverse phase-encoded b0 images for 

scanner A. Note that at the end of the challenge, the scanner ‘A’ data were completely re-acquired for both 

sessions with 5 reverse phase-encoded b0 images and 3 diffusion weighted directions. These data were 

released as supplementary material, but not included in the presented challenge data. Following the protocol 
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for tractography in [158], we delineated six tracts cingulum (CNG) Left/Right (L/R), inferior longitudinal 

fasciculus (ILF) (L/R), inferior fronto-occipital (IFO) (L/R). The mean intra-class correlation (ICC) inter-

scanner values for the original challenge data and the updated challenge data were 0.86 and 0.89, 

respectively. The mean difference between methods was 0.15 in terms of ICC. As expected, the inclusion 

of full reverse phase encoding for Scanner ‘A’ introduced a small increased in consistency relative to much 

larger differences between methods.  

DW-MRI Data Pre-processing as illustrated in Figure V.31, the 5 repeated acquisitions from each 

of the four sessions (two repeated on scanner A and B) were concatenated and corrected with FSL’s eddy 

 

Figure V.31.Non-rigid image registration of GM probability maps of three subjects. Each color 

box highlights the corresponding region of interest. Right column shows detailed differences in 

cortical folding patterns across the subjects. 
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and topup [140, 159, 160]. Intensity normalization was performed by dividing each diffusion weighted scan 

by the mean of all non-weighted diffusion volume (B0) per session. The average B0 from scanner A of the 

first sessions was rigidly (six degrees of freedom) registered [117] to a 2.5 mm T2 MNI template (this was 

done to ensure resampling from registration was done on both datasets). Next, the average B0 from the 

scanner A second session was rigidly registered to the average B0 of the registered scanner A first session 

B0 which had already been registered to the MNI space. Successively, the sessions from scanner B were 

registered to the sessions of scanner A. The b-vectors were rotated to account for the registration of the 

DW-MRI data [161].  

The T1 weighted MPRAGE was rigidly registered to the average registered b0 from the first session 

of scanner A. This transformation was applied to the T1 maintaining 1 mm isotropic resolution, thus 

providing a high-resolution segmentation that may be converted into diffusion space by performing a simple 

down-sampling. Multi-atlas segmentation with non-local spatial STAPLE fusion was used for the 

segmentation of the T1 volume to 133 different ROI’s [123, 162].  Finally, Multi-atlas CRUISE 

(MaCRUISE) was used to identify cortical surfaces [163]. These were provided for ease of algorithm 

implementations. 

An informed consent under the Institutional Review Board (IRB) was obtained to conduct this 

study. 

5.2.2. Challenge Rules and Metrics 

For each of the 20 HARDI datasets (5 repetitions x 2 sessions x 2 scanners), participants were asked 

to submit a tractogram (i.e., “fiber probability membership function”) for each well-modeled fiber 

structures (uncinate (UNC) L/R, fornix (FNX) L/R, genu of the corpus callosum, cingulum (CNG) (L/R), 

corticospinal tract (CST) (L/R), splenium of the corpus callosum, inferior longitudinal fasciculus (ILF) 

(L/R), superior longitudinal fasciculus (SLF) (L/R), and inferior fronto-occipital (IFO) (L/R)(1)). Each 

tractogram is a NIFTI volume at the field of view and resolution of the T1-weighted reference space where 

the floating-point value (32-bit single precision) of each voxel is in [57] and indicates the probability of the 
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voxel belonging to the specified fiber tract. Thus, participants submitted a total of 320 (5 x 2 x 2 x 16) 

NIFTI volumes using the acquisition of both the scanners. Assessment of fiber fractions was supported (i.e., 

the sum across all tracts is <=1 with the remainder as background). However, strict probabilities where each 

voxel may have a high probability of 2 or more fibers with a sum greater than 1 were permitted as well. 

Tractograms within a submission were compared based on reproducibility of the tracts (intra-class 

correlation coefficient (ICC) statistics for continuous values and Dice similarity scores based on maximum 

probability assignment at 0.5). Intra-session, inter-session, same scanner, and inter-scanner scanner metrics 

have been reported for quantitative interpretation. The ICC and dice value of unique number of 

combinations of pairs of repeats were used as data points for violin plots depicting results of intra-session, 

inter-session and inter-scanner. The unique combinations of repetitions were 40, 50 and 100 respectively 

for the three levels of reproducibility. 

5.2.3. Containment Analysis  

A key question is whether the differences in tractography are driven by different considerations of 

the volume of the track, i.e., the larger the volume is, the more likely the track may include the underlying 

true track. For example, it is plausible that a set of tractography methods could see the same underlying 

probabilistic connection pattern and choose to threshold it based on different preferences for the volume of 

tracks. If the preference was driving the tractography differences, then tractograms would essentially be 

able to be nested from smallest to largest. To examine this hypothesis, we define the property containment 

index (CI) for two tracts where 

𝑪𝑰(𝑨, 𝑩) = {

|𝑨| = 𝟎: 𝟏
|𝑨| ≠ 𝟎 𝒂𝒏𝒅 |𝑩| = 𝟎 ∶ 𝟎

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 ∶  |𝑨 ∩ 𝑩|/|𝑩|
    Eq. 22 

 

For the purposes of this discussion, we define the tractogram set to be the binary volume resulting 

at a 0.05 threshold of the mean of all results submitted for each algorithm. A visual understanding of 

containment index can be observed in Figure V.32.  
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Then, an optimal ordering (“nesting”) of tractogram entries can be computed by maximizing the 

containment energy (CE, i.e., sum of CI for all tracts versus the tracts earlier than the one under 

consideration): 

𝐚𝐫𝐠𝐦𝐚𝐱
𝒐∈𝒑𝒆𝒓𝒎(𝟏…|𝑬𝒏𝒕𝒓𝒚|)

𝑪𝑬 =  𝐚𝐫𝐠𝐦𝐚𝐱
𝒐∈𝒑𝒆𝒓𝒎(𝟏…|𝑬𝒏𝒕𝒓𝒚|)

∑ ∑ 𝑪𝑰(𝑬𝒏𝒕𝒓𝒚{𝒐𝒊}, 𝑬𝒏𝒕𝒓𝒚{𝒊𝒋})
𝑵

𝒋≤𝒊

𝑵

𝒊

 Eq. 23 

Where perm denotes the permutation operator and Entry is a list of all entered tractograms. 

Conceptually, this procedure finds the ideal order to stack the tractograms inside each other where the first 

tract is “most inside” the subsequent ones and the last tract is “most outside” all others. We define <CI> as 

the average containment index of all nesting for the ordered entries that are smaller than or equal to an entry 

provides a quantitative way to examine “nesting” (note, this approach includes the self-containment index 

so that the first entry has a CI of 1). Then, we can see how the nesting holds up from the inner (#‘1’) to the 

outer (#‘46’) entry. 

5.3. Results 

Table V.5 presents a more detailed technical contribution of each of the works: 

- Team 1, Team 5, Team 6, Team 8 and Team 9 used all three shells of b-values provided in 

the dataset. Team 2 used all shells with data from an additional 30 subjects from the Human Connectome 

 

Figure V.32. A) Where the shape X is impeccably contained in Y and Y is contained in Z. The 

resulting containment CI(Y, X) = 1, CI(Z, X) = 1 and CI(Z, Y) = 1. B) Shape Y is a noisy 

representation of shape Z where CI(Y, Z) = 0.84. C) Shape Z is different from shape Y in a different 

orientation and the CI(Z,Y) = 0.17 
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Project. Team 3 used shells of b-values 1000 and 2000 s/mm2. Team 7 and Team 4 only used the shell of 

b-value 3000 s/mm¬2.  

- Additional pre-processing has been used by four teams. Team 4: Data was upsampled to 

1mm isotropic resolution. Team 6 used image de-noising techniques and upsampled the data to 1.25mm. 

Team 5 and Team 9 used different styles of segmentation of the data presented for analysis.  

- In terms of the fiber detection model, Team 6 and Team 3 used variants of tensor models 

while the others have used different variants of constrained spherical deconvolution. Notably Team 8 used 

a compartment analysis model using spherical harmonics. 

- Considering the tractography parameters - the range of step sizes that have been used lie 

between 0.2-1.25mm. Threshold angle lies in the range of 20-40 degrees.  

- Single fiber assumptions were considered with the condition of FA > 0.7 by teams Team 1 

and Team 4. A notable observation here is that a general assumption was made by Team 6 to reject voxels 

which were less than 0.15 FA. 

- Team 2, Team 6 and Team 8 post-processed the tractography results for removal of 

spurious fibers by defining different and specific constraints.  

- Of note, Team 2 treated the tractography problem as a segmentation problem and 

developed a U-net which was trained on the HCP data. While Team 9 used a multi-atlas approach to 

tractography. The other teams used the general approach of probabilistic or deterministic tractography. 

An overlay of all 46 submissions, for all estimated fiber pathways can be observed (Figure V.33 

Column 1 & 3). Only the left side has been shown as the right side is a similar observation. There are vast 

differences that can be noticed in the estimated pathways. The volume of the brain occupied by each tract 

from different submissions varied dramatically. When all 46 submissions are overlaid, tracts occupy 14-

53% of the brain volumetrically (average – 34%). Specifically, the union of all entries for FNX (L/R), CNG 

(L/R), IFO (L/R) and SLF (L/R) cover (30.7, 25.8), (40.9, 37.2), (42.4, 46.1), (50.6, 53.3) respectively, 

while CST (L/R), ILF (L/R), UNC (L/R) and Fminor and Fmajor cover (23.6, 25.4), (33.4, 33.6), (14.3, 

17.4), 44.3 and 34.1. Note that individual submissions appear qualitatively reasonable (Figure V.33 Column 
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2 & 4).   

 

 

The number of algorithmic submission’s team wise are Team 1: 14, Team 2: 1, Team 3: 2, Team 

4: 12, Team 5: 1, Team 6: 6, Team 7: 1, Team 8: 6 and Team 9: 3. It can be observed that the ICC range 

for the set of algorithms on a per team basis does not show a lot of variance. The ICC range of algorithms 

per team are Team 1 (0.61 – 0.77), Team 4 (0.52 – 0.58), Team 6 (0.77 – 0.85), Team 8 (0.81 – 0.89), Team 

 

Figure V.33. Left: An overlay of all the 46 submissions from all sessions that were acquired using 

both scanners per tract Right: An overlay of a single submission using all sessions that were 

acquired using both scanners per tract A) Uncinate left B) Fornix left C) Cingulum eft D) 

Corticospinal tract left E) Inferior Longitudinal Fasciculus left F) Inferior Fronto-Occipital 

Fasciculus left G) Superior Longitudinal Fasciculus left H) Fminor. 
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9 (0.27 – 0.69), Team 3 (0.64, 0.73), Team 2 (0.85), Team 7 (0.88) and Team 5 (0.97). The teams that 

submitted more than 3 algorithms show an average difference of 0.1 in terms of ICC. 

 

 

Violin plots (depict the probability density of the data) of ICC and Dice for intra-session 

reproducibility, inter-session, and inter-scanner measures of reproducibility are presented in Figure V.34, 

Figure V.35 and Figure V.36 respectively. Since the observations are highly similar in the afore-mentioned 

 

Figure V.34. Violin plots of intra-session submissions across both the scanners per tract. A) Dice 

similarity coefficients B) Intra-class correlation coefficients. The top row depicts the median of the 

top five intra session submissions. The tracts are in the following order (L/R): a) Uncinate b) Fornix 

c) Fminor & Fmajor d) Cingulum e) Corticospinal tract f) Inferior longitudinal fasciculus g) 

Superior longitudinal fasciculus h) Inferior fronto-occipital tract 
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figures we only present a detailed comment on Figure V.34 which holds true for Figure V.35 and Figure 

V.36 as well. This figure helps in identifying the low, moderate and high reproducibility tracts. The intra-

session distributions (Figure 4B) across entries for UNC (L/R) and FNX (L/R) are bi-modal with a median 

of the lower mode less than 0.4 ICC. The CST (L) has a smaller fraction of the entries with ICC less than 

0.4, while the remainder of the entries have only a few outlier entries less than 0.4 The inter-session (Figure 

V.35) and inter-scanner (Figure V.36) distributions were similar, with a slight increase in outlier entries for 

IFO (L/R). The patterns in the dice were similar when using a quality threshold of less than 0.4 dice.  

 

Figure V.35.Violin plots of inter-session submissions across both the scanners per tract. A) Dice 

similarity coefficients B) Intra-class correlation coefficients. The top row depicts the median of the 

top five inter session submissions. The tracts are in the following order (L/R): a) Uncinate b) Fornix 

c) Fminor & Fmajor d) Cingulum e) Corticospinal tract f) Inferior longitudinal fasciculus g) 

Superior longitudinal fasciculus h) Inferior fronto-occipital tract 
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We define cutoffs for high, moderate, and low reproducibility on the inter-scanner reproducibility. 

High reproducibility was defined as a median ICC greater than 0.6 and less than 5% of entries less than 0.4 

ICC. Moderate reproducibility was defined as median ICC greater than 0.4 and less than 25% of entries 

less than 0.4 ICC. Low reproducibility was defined as a median ICC less than 0.4 or more than 25% of 

entries less than 0.4 ICC. Hence, the high reproducibility tracts were Fminor, CST (/R), ILF (L/R), SLF 

(L/R) and IFO (L/R). The moderate reproducibility tracts were CST (L), Fmajor, CNG (L/R). The low 

reproducibility tracts were UNC (L/R) and FNX (L/R). This above is observed when looking at all 

submissions however when observing the top 5 submissions we see higher reproducibility. 

 

Figure V.36. Violin plots of inter-scanner submissions across both the scanners per tract. A) Dice 

similarity coefficients B) Intra-class correlation coefficients. The top row depicts the median of the 

top five inter scanner submissions. The tracts are in the following order (L/R): a) Uncinate b) 

Fornix c) Fminor & Fmajor d) Cingulum e) Corticospinal tract f) Inferior longitudinal fasciculus 

g) Superior longitudinal fasciculus h) Inferior fronto-occipital tract 
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When the analysis is restricted to only the top five submissions, we see a different picture that 

suggests substantively reproducible methods. The inter-scanner reproducibility among the top 5 entries in 

ICC (min-max, average) are shown in Figure V.36. 

 

Figure V.37 illustrates the top five entries for the tracts with the lowest inter-scanner reproducibility 

alongside the volumetric median (median per voxel from five submissions) of the top five entries.  

Qualitatively, the volumetric profiles of the UNC (L/R) and FNX (L/R) are very different across the top 

five entries. The first submission has small “core” tracts labeled, while the second, third and fifth found 

much larger spatial extents and the fourth was mid-way between. 

5.4. Discussion 

The most reproducible tracts were Fminor, CST (\R), ILF (L\R), SLF (L\R), IFO (L\R), while the 

moderately reproducible tracts were Fmajor, CNG (L\R) and CST (\L). Lowest reproducibility tracts are 

UNC (L\R), FNX (L\R). These tracts have a well-spread/broad probability distribution. Note that the 

reproducibility of these tracts was maintained across imaging sessions and change of scanner. It is evident 

that all the algorithms entered are not consistently identifying the same fiber structures given the extreme 

 

Figure V.37. First row shows the median of Uncinate (L/R) and the top five submissions. The 

second row shows the median and submissions of Fornix (L/R). 
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variance observed in Figure V.33. While most of the individual submissions show a reasonable detection 

of the tracts if observed from a ROI point of view (Figure V.33), the difference between tract volumes 

between methods is quite high.  

The reproducibility (ICC) of the entered algorithms varied from 0.27 to 0.97 (Figure V.38 A), but 

most of the algorithms performed with a reproducibility of 0.6 or higher. Similar levels of reproducibility 

were observed for methods that used selective shells or additional data from the Human Connectome 

Project. Note it would be inappropriate to assume independence and there are a few methods per categorical 

assignment, so statistical analysis across method types was not performed. Qualitatively, CSD was the most 

popular approach as the pre-processing fiber reconstruction method (Figure V.38 B). Tensor and 

compartment models perform well but trailed slightly behind CSD when comparing maximum values that 

have been achieved using these methods. The modified version of CSD with the addition of Deep Learning 

U-net also performed well.  

The choices of analysis parameters appear to have affected method performance. A comparison of 

different step sizes that have been used shows that the most heavily used category was 0.2mm (Figure 

V.38C). However, methods using all other step size choices (e.g., 0.005, 1 and 1.25mm) performed better 

in terms of ICC. A variety of threshold angles have been used lying in the range of 20 – 60 degrees (Figure 

V.38 D). The variation is hard to comment upon as this suggests that a threshold angle is specific to the 

type of tractography algorithm. High reproducibility has been achieved at lower threshold angles such as 

20 degrees and at higher angles as well such as 45 or 60 degrees. Additional pre-processing before 

implementing fiber reconstruction methods shows improvement for ICC only when additional 

segmentation was performed (Figure V.38 E). A comparison of de-noising coupled with up-sampling and 

no additional pre-processing shows higher reproducibility when no additional steps are performed. While 

most of the algorithms did not use additional post-processing steps (Figure V.38 F), the few algorithms that 

used the methods of outlier rejection, spurious fiber removal and SIFT2 show improvement in 

reproducibility. In brief, it might be inferred that additional pre-processing and post-processing techniques 

are helpful in increasing the reproducibility of tractography algorithms, though a systematic test of this 
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would be necessary to draw accurate conclusions. 

 

While it would be expected that an algorithm with empty or inaccurate bundles could achieve an 

extremely high ICC which would be representative of ‘null’ learning. Hence, we conducted consistency 

analysis using the containment index as to which bundles are contained inside which ones. The inaccurate 

ones will lie on the outside or show up as outliers which can be observed in Figure V.39. 

 

Figure V.38. A) Quantifies the number of algorithms that used a specific part of the dataset or 

added more from other sources. B) Quantifies the usage of HARDI/Tensor methods by different 

tractography algorithms as a pre-step. C & D) Quantifies the step size and threshold angle 

parameter for tractography algorithms. E & F) Quantify the number of additional pre-processing 

and post-processing techniques applied for the tractography algorithms. 
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As seen in Figure V.39, <CI> is moderate and variable (~0.4-0.6) for the first approximately 20 

entries (after ordering) and then steadily increases for the CST, Cingulum, Forceps, ILF, IFO, and SLF. 

Hence, for smaller tractograms, approximately 50% of the variance is explained by nesting, but there are 

substantial contributions from other factors. For the larger tractograms (~20-46 ordered entries), the 

differences appear largely driven by increasing volume of the tracts. UNC and Fornix are a bit more variable 

between ordered methods, which indicates associations within methods and suggests disagreements across 

major categories of entries. Finally, the Fornix is highly variables across methods (~<0.4 <CI>), which 

point towards inconsistency of tract definition between approaches. When looking across all pairs of tracts, 

the overall rank correlation of the method ordering was low (mean=0.25) with a high variance (standard 

deviation=0.27, range=-0.28 to 1.0). Therefore, the relative volumetric differences between tracts were not 

 

Figure V.39. Ordering entries to minimize containment energy (CE) shows that containment index 

is generally lower for the volumetrically smaller tractograms (toward “inside” on each subplot) 

and increases for the larger tractograms (toward “outside” on each subplot). Variations in 

containment explained the least amount of entry variability for the UNC and Fornix, while the 

other tracts were more consistent. The containment between all methods (A) were more variable 

and lower than the containment for the top five methods (B). 
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consistent for methods across white matter tracts. Examining nestings of the top five tracts showed that 

Submission 5 (not shown) was always the largest, while Submission 1 and Submission 4 were determined 

to be the most inner methods half of the time. Submission 2 was the second largest for 12/16 tracts, while 

Submission 3 was the second largest for the others. This is consistent with a visualization interpretation of 

Figure V.37. The <CI> was ~1 for the fifth method, so a highly reproducible tract was feasible that 

encompassed the choices of the other top entries. The top 5 entries had high <CI> (>0.7) for the Fornix, 

IFO, ILF, but the remaining tracts were showed low CI for at least one method. Therefore, while at least 

one of the top methods differed from the others in a substantial manner, this could not be explained by 

volumetric differences of the tracts. 

5.5. Conclusion 

The most reproducible tracts considering all submitted algorithm outcomes are Fminor, CST (\R), 

ILF (L\R), SLF (L\R), IFO (L\R). The moderately reproducible ones are Fmajor, CNG (L\R) and CST (\L). 

Tracts with low reproducibility are UNC (L\R) and FNX (L\R). The most reproducible algorithms are 5A, 

8D, 7A, 6E and 6F (Table V.5) as per criteria of ICC. The mentioned algorithms are not an example of a 

consistent null learning as they all lie with in a nested containment with the largest covered volume. 

In conclusion, the 2017 ISMRM TraCED Challenge created a publicly available multi-scanner, 

multi-scan in vivo reproducibility dataset and engaged nine groups with 46 algorithm entries. The TraCED 

Challenge dataset is freely available at www.synapse.org. Consistent with previous studies, reproducibility 

of tractograms was found to vary by anatomical tract. When viewed across all entries, reproducibility was 

concerning (ICC <0.5); however, the cluster of top performing methods resulting in reassuringly high 

results (ICC > 0.85). Variation in performance were seen across processing parameters, but the challenge 

design did not provide sufficient number of samples to identify uniformly preferred design choices. The 

key novel finding of this challenge is that variations in tractography methods can be largely attributed to 

larger/smaller volumetric difference tradeoffs for the larger tracts, especially among methods that are tuned 

towards volumetrically larger tractograms. Yet, the different methods clearly result in fundamentally 
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different tract structures at the more conservative specificity choices (i.e., volumetrically smaller 

tractograms). The containment index, containment energy, and containment index framework provides a 

consistent approach to evaluate the nesting structure tractograms, and the freely available data and results 

from this challenge can be used to quantify new tractography approaches. 

Table V.5.The table presents all the hyper-parameters of the different algorithms that were submitted 

and an overall evaluation of the algorithm in terms of ICC and Dice. 

Synapse 

Submission id 

Algorithm 

ID ICC DICE b-value shells 

HARDI/Tensor 

Model Step size 

Threshold 

angle 

Additional Pre-

Processing Post-Processing 

syn8533598 1A 0.7753 0.6364 All shells CSD 0.2mm 30 degrees NA 

Distance transform of 

bundle volumes 

syn8643780 1B 0.6857 0.6596 All shells CSD 0.2mm 30 degrees NA NA 

syn8643793 1C 0.6343 0.6346 All shells CSD 0.2mm 30 degrees NA 

Distance transform of 

bundle volumes 

syn8648608 1D 0.7707 0.5402 All shells CSD 0.2mm 30 degrees NA 

Distance transform of 

bundle volumes 

syn8649314 1E 0.6498 0.6508 All shells CSD 0.2mm 30 degrees NA NA 

syn8649322 1F 0.6192 0.6197 All shells CSD 0.2mm 30 degrees NA 

Distance transform of 

bundle volumes 

syn8649611 1G 0.6324 0.6332 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649618 1H 0.6494 0.6503 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649622 1I 0.6517 0.6526 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649650 1J 0.6662 0.6671 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649652 1K 0.6616 0.6624 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649654 1L 0.6362 0.637 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649656 1M 0.7093 0.7103 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649658 1N 0.6984 0.6994 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 
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syn8555229 2A 0.8506 0.7918 

All shells + 30 

HCP subjects CSD + U-net 0.2mm 20 degrees NA 

Spurious Fiber 

Removal 

syn8656474 3A 0.7379 0.7253 

b1000 and 

b2000 Tensor Variant 0.2mm 25 degrees Data Upsampling NA 

syn8656475 3B 0.6463 0.6341 

b1000 and 

b2000 Tensor Variant 0.2mm 25 degrees Data Upsampling NA 

syn8662707 4A 0.5285 0.5317 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662708 4B 0.5822 0.3207 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662709 4C 0.5881 NaN b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662710 4D 0.5285 0.5317 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662711 4E 0.5781 0.3182 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662712 4F 0.5835 NaN b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662713 4G 0.5285 0.5317 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662714 4H 0.5291 0.4932 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662715 4I 0.5302 NaN b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662716 4J 0.5285 0.5317 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662717 4K 0.5596 0.5323 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662718 4L 0.5616 NaN b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8664905 5A 0.9738 0.8231 All shells CSD 1.25mm 45 degrees 

Additional 

Segmentation SIFT2 

syn8666133 6A 0.7702 0.7708 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8666134 6B 0.8358 0.5742 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8666135 6C 0.8171 0.7595 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8666136 6D 0.817 0.7704 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8666137 6E 0.8586 0.571 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 
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syn8666138 6F 0.8458 0.7646 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8667007 7A 0.8868 0.6187 b3000 CSD 1.25mm 40 degrees NA NA 

syn8666587 8A 0.86 0.8672 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8666598 8B 0.8367 0.5166 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8666602 8C 0.8349 0.5287 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8666936 8D 0.8901 0.6409 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8667021 8E 0.8145 0.4983 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8667022 8F 0.8103 0.4773 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8698866 9A 0.6145 0.6015 All shells CSD 0.2mm 40 degrees 

Addtional 

Segmentation NA 

syn8698867 9B 0.6968 0.6804 All shells CSD 0.2mm 40 degrees 

Addtional 

Segmentation NA 

syn8698868 9C 0.2703 0.2572 All shells CSD 0.2mm 40 degrees 

Addtional 

Segmentation NA 
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6. Deep Learning Captures More Accurate Diffusion Fiber Orientation Distributions than 

Constrained Spherical Deconvolution 

 

This chapter has been adapted from the published work in [164]. 

6.1. Introduction 

Understanding the relationship between observed diffusion weighted MRI signals and true tissue 

microarchitecture is of fundamental concern for biophysical modeling, detecting microstructural 

differences, and brain tractography. Substantial efforts have been invested in interpreting the diffusion 

signal from both model-based (e.g., constrained spherical deconvolution - CSD [15, 165], Q-ball [13], 

persistent angular structure - PAS [12]) and data-driven [89] perspectives. Recently, multi-layer neural 

networks (or informally, deep learning or deep neural networks - DNN) have emerged as a leading class of 

machine learning approaches. Moreover, advances combining MRI and whole brain histology have enabled 

volumetric registration between MRI and histological processes, while co-registered confocal microscopy 

allows direct 3D observation of intra-voxel tissue orientation. Here, we apply deep learning to investigate 

the potential information content in single shell diffusion weighted MRI to explain histologically observed 

fiber orientation distribution (FOD) functions. 

6.2. Data Acquisitions & Methods 
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6.2.1. Data Acquisitions 

Three ex-vivo squirrel monkey brains were imaged on a Varian 9.4T scanner. Briefly, data were 

acquired with a 3D diffusion-weighted EPI sequence (b-value=6,000 s/mm2, 100 directions) at 300um 

isotropic resolution. After scanning, the tissue was sectioned, stained with the fluorescent DiI, and imaged 

on an LSM710 Confocal microscope following the procedures outlined in [23]. The histological FOD was 

extracted using structure tensor analysis. Finally, a multi-step registration procedure [23] was used to 

determine the corresponding diffusion MRI signal. A total of 567 histological voxels were processed, and 

a hundred random rotations were applied to each one of them for both the MR signal and the histology FOD 

to augment the data bringing the total to 57,267 voxels [166]. 

 

For qualitative validation, a single healthy human volunteer was scanned for a single session using 

a 3T (Achieva, Philips Medical Systems, Best, The Netherlands) with a 32-channel head coil. Four scans 

acquired were at a b-value of 2000 s/mm2 (which approximates the diffusion contrast of a fixed ex vivo 

scan at a b-value of 6000 s/mm2) with 96 gradient directions and an additional b0 per scan (2.5mm isotropic 

 

Figure VI.40. Confocal histological data provides a ground truth basis for fiber orientation 

distributions. The truth data was split into a training set and a testing set. Once trained, the deep 

learning approach was applied to both the testing set and a separate human dataset. 
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resolution, matrix of 96x96, 38 slices, Multi-Band=2; SENSE=2.2;TR= 2650 ms; TE=94 ms; partial 

Fourier=0.7). Standard pre-processing with FSL (topup, eddy correction, registration, averaging across 

scans) was performed before analysis. 

6.2.2. Methods 

Both ex-vivo and in-vivo HARDI acquisitions were fit with 8th order real spherical harmonics. 

Outliers were manually reviewed for imaging artifacts, and 54 voxels were removed. FOD’s from the 

histology were fitted with a 10th order real spherical harmonics. Histology data was divided into 

training/validation (44,541 voxels) and testing sets (7,272 voxels) without mixing augmented data 

(rotations). For training/validation, a 20% percent split was used with 5 folds. Mean squared error was used 

to assess model accuracy [167]. 

 

 

 

 

 

 

Figure VI.41. A) Histogram of MSE across all voxels between histology and DNN predicted FOD’s. 

B) Histogram of ACC across all voxels from the test set of histology and DNN predicted FOD’s. 

Media ACC is 0.817 C) Histogram of ACC across all voxels from the test set of histology and CSD 

predicted FOD’s. Median ACC is 0.797 
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6.3. Results 

The median angular correlation coefficient (ACC) for CSD (0.7965) was significantly (p<0.05, non-

parametric signed rank test) lower than for the deep approach (0.8165) (Figure VI.41), which corresponded to a 

lower root mean squared error for the deep approach (0.539 versus 0.561). Qualitatively, the predicted FOD’s on 

the human in vivo data demonstrate anatomical consistency (Figure VI.42), indicating that the deep learning 

approach is predicting structure in line with prior observations. 

 

 

 

 

 

Figure VI.42. Qualitative visualizations of the MRI fitted to 8th order SH, Histology FOD 10th 

order SH, CSD 8th order SH, DNN prediction 10th order SH (in order per row). A) 75th percentile 

(0.936) of ACC for DNN. B) 50th percentile (0.817) of ACC for DNN. C) 25th percentile (0.740) of 

ACC for DNN. 
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6.4. Discussion 

 

By demonstrating superiority of a deep learning approach over a leading model-based approach, CSD, 

we show that (1) there exists additional information in the diffusion signal that is not currently exploited by CSD, 

and (2) provide an illustrative data-driven model that makes use of this information.  In a preliminary analysis, we 

applied the same network to ex vivo imaging at a b-value of 9000 s/mm2 and found a significantly higher ACC 

(0.850, p<0.05, non-parametric signed rank test) for deep learning which is 6.7% higher than CSD.  Hence, 

generalizing the deep learning to use multiple shells and adapt to high b-values is a promising area of exploration. 

To enable others to investigate our results, the derived TensorFlow models that describe the identified 

MRI:histology relationships are available on the NITRC project “masimatlab”. 

 

 Perhaps most importantly, this deep learning analysis demonstrates that current models for identifying 

fiber orientation distributions do not make all possible use of existing information, and additional innovation is 

possible. The deep learning models presented herein are preliminary and have not guaranteed optimality properties, 

 

Figure VI.43. A.) Prediction of deep learning model on human in vivo data at a b-value of 2000 

s/mm shown on a middle axial slice. B.) deep learning models predictions zoomed region of interest 

in the pons of corpus callosum. C) CSD predictions zoomed region of interest in the pons of corpus 

callosum. D)  Predictions of CSD on human in vivo data at a b-value of 2000 s/mm shown on a 

middle axial slice. 
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and further exploration of the space of multi-layer neural networks is warranted. Additionally, continued 

refinement of deep learning approaches could make use of both traditional data augmentation of ground truth (e.g., 

rotations as used herein), but also physics/diffusion simulations of modeled geometry along with image acquisition 

models.
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7. Deep Learning Reveals Untapped Information for Local White-Matter Fiber Reconstruction in 

Diffusion-Weighted MRI 

 

This chapter has been adapted from the published work in [25]. 

7.1. Introduction 

Precise reconstruction of white-matter (WM) structural connectivity is of critical importance for 

the advancement of neuroscience. Though multiple approaches have been proposed for the reconstruction 

of WM micro-structure a consensus for precision and reproducibility has not been attained [27]. A critical 

challenge when reconstructing WM connectivity for human MRI in-vivo acquisitions is due to the lack of 

a ground truth [168, 169]. Multiple approaches have been proposed to reconstruct WM micro-structure and 

resolve multiple fiber orientations per voxel in the brain [22, 170]. Here, we address two key questions: 1) 

‘Do state-of-the-art methods precisely capture independently observed structure?’ (Figure VII.44) and 2) 

‘Are data-driven approaches able to better capture this structure while generalizing for in-vivo data?’ 

Diffusion tensor imaging (DTI) [35] is a diffusion-weighted magnetic resonance imaging (DW-

MRI) technique that has been widely applicable for clinical and research use. DTI can only resolve a single 

direction of fiber structure [92, 93], but it is well known that more complex structures are pervasive, such 

as crossing and fanning fibers [61, 143]. To resolve complex structures multiple classical approaches have 

been proposed such as CSD, Q-ball, PAS-MRI [12, 13, 15]. The proposed approaches are often collectively 

termed as high-angular resolution diffusion imaging (HARDI) methods [18], but HARDI methods are 

plagued by limited reproducibility and are difficult to assess with respect to precision due to the challenge 

of lack of a ground truth. Validation studies have highlighted biases, inaccuracies, and limitations of 
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HARDI methods in characterizing tissue microstructure [171]. This gap in performance suggests that DW-

MRI signal may not be utilized completely/sufficiently. 

Data-driven approaches can be useful in validation of the hypothesis of the existence of untapped 

information because they generalize towards the ground truth. Deep-learning, a subset of machine learning, 

has been particularly useful in generalizing non-linear mappings [72]. Herein, we show the evidence of 

untapped information using a residual deep learning neural network (ResDNN) based on prior work. Our 

network was trained on a 3-D confocal histology dataset consisting of white matter (WM) voxels from two 

squirrel monkey brains and validated on a third, independent brain [171]. Further we also show an 

improvement in terms of precision and reproducibility when the newly created method is applied on scan-

rescan data from in-vivo human brain DW-MRI acquisitions from the Human Connectome Project (HCP). 

The DNN applicable for reconstruction of local white matter reconstruction was first proposed in. 

This study presents the first data-driven diffusion-weighted magnetic resonance imaging (DW-

 

Figure VII.44.A) Middle axial slice of a human brain acquired using DW-MRI. B, C) CSD FOD’s 

of the same subject on two different scanners showing inconsistency which cannot be validated 

without ground truth. D) Coronal slice of a Squirrel Monkey. E, F, G, H) Right: CSD FOD’s at 

b-value of 3000 s/mm2 Left: Ground truth reconstruction using aggregated histological 

structural tensors depicting a loss in precision. 
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MRI) analysis method that links in-vivo feasible imaging protocols with 3-D histological ground truth. A 

novelty here is an introduction of combined usage of histology and deep-learning. Under full-specimen 

validation, the proposed model yields higher predictive accuracy than the leading model-based approach. 

Hence, this study demonstrates that a significant level of information in the DW-MRI is untapped with 

current analysis methods. Moreover, we demonstrate that the proposed method is more reproducible in a 

sample of scan-rescan pairs from the Human Connectome Project. The proposed method generalizes from 

an ex-vivo pre-clinical context to an in-vivo human context without re-training. 

7.2. Methods 

7.2.1. Squirrel Monkey Data Acquisitions 

All animal procedures were approved by the Vanderbilt University Animal Care and Use 

Committee. This data comes a prior study [171]. Three ex-vivo squirrel monkey brains were imaged on a 

Varian 9.4T scanner. A total of 100 gradient volumes were acquired using a diffusion-weighted echo planar 

imaging (EPI) sequence at a diffusivity value of 9000 s/mm2 with the isotropic resolution being 0.3mm. 

Once acquired the tissue was sectioned and stained with fluorescent dil and imaged on a LSM710 Confocal 

microscope followed [171]. The histological fiber orientation distribution was extracted using 3D structure 

tensor analysis [23]. A multi-step registration procedure was used to determine the corresponding diffusion 

MRI signal. A total of 567 histological voxels were processed. Respective number of voxels by Monkey A, 

B and C were 270, 162 and 135. 54 of the total number of voxels were labelled as outliers qualitatively and 

rejected for analysis. The outlier voxels were detected using ACC when fitted with CSD.  A hundred 

random rotations were applied to the remaining voxels after the removing the outliers. This brought the 

total number of voxels to 51,813 voxels. All voxels from Monkey C were kept completely hidden for 

evaluation purpose of the machine learning model. Total number of voxels for Monkey C after outlier 

removal were 9090. The voxels from monkey A and B were used for the training and they accumulated to 

a total of 42,723.  
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7.2.2. Human Connectome Project Data 

Human connectome project (HCP) data of 12 subjects with the retest acquisition was used (ID’s: 

103818, 105923, 111312, 114823, 115320, 122317, 125525, 130518, 139839, 143325, 144226 and 

146129). The acquisitions at b-value of 3000 s/mm2 with 90 gradient directions were extracted for the 

study. A T1 volume of the same subject was used for WM segmentation using FAST [100]. Pre-processed 

HCP diffusion data was used where topup and eddy have been applied for distortion corrections [140, 159]. 

7.2.3. Residual Deep Neural Network Regression 

The data driven models learn a set of parameters when provided with a set of corresponding inputs 

and outputs. The set of parameters here depict a non-linear mapping. The input was defined by spherical 

harmonic (SH) coefficients that were fitted to the ex-vivo DW-MRI acquisition of squirrel monkeys per 

voxel. This was done using regularized linear least squares fit on the DW-MRI signal. The SH coefficients 

have been known to characterize the diffusion signal sufficiently [33]. Ortho-normal representation allows 

for flexibility of different acquisitions. The DW-MRI signal was fitted to 8th order SH [33, 101]. 

Acquisitions with greater than 45 gradient volumes are known to be characterized well by 8th order SH 

coefficients. The output for the training network were SH coefficients of 8th order per voxel depicting the 

fiber orientation distribution (FOD) structure from histology. These were derived from histology [23].  

The neural network architecture briefly is five layers deep with the number of neurons per layer 

being: 45 (Input), 400, 45, 200, 45, 200 and 45 (Output) respectively (Figure VII.45). The middle three 

layers are used as a combined residual block. Rectified linear units were used for activation only to 

introduce non-linearity. The output layer was not activated to introduce negativity in the ResDNN as SH 

coefficients can be negative. Default hyper-parameters of ‘RMSProp’ optimizer were used while training 

the network for convergence with the exception of learning rate being set to 10-4 [167]. Cross-validation 
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set size was set to 0.2. Number of iterations for optimal convergence were determined to be at 400. 

7.2.4. HARDI Methods and Angular Correlation Coefficient 

Multiple HARDI methods were implemented for comparison to the proposed ResDNN approach. 

A list of methods that were compared for the acquisition of the test monkey ‘C’ are Q-ball imaging (QBI), 

with constant solid angle (QBICS), super resolved constrained spherical deconvolution (sCSD) at 6th and 

8th order, Lucy-Richardson constrained spherical deconvolution (CSDLR), diffusion orientation transform 

(DOT), diffusion orientation transform revisited (DOTr1). All the mentioned HARDI methods were 

compared using angular correlation coefficient (ACC). ACC is defined as below:  
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     Eq. 24 

ACC is calculated using ‘u’ and ‘v’ where they are two sets of SH coefficients of the same order. 

It is a measure of similarity on a scale of -1 to 1. A measurement of 1 denotes a perfect similarity. 

7.3. Results 

 

  

Figure VII.45. Left to Right: Input of SH coefficients of DW-MRI signal at 8th order to the DNN. 

The middle box depicts the architecture of the ResDNN with number of neurons and activation 

functions respectively. Output is denoted by SH coefficients of the FOD of a structural tensor at 

8th order. 
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Results are presented in three sections: 1) we compare the ground truth histology with HARDI 

methods and ResDNN with accuracy assessed by ACC [15]. All comparisons were made on a third squirrel 

monkey which was not used for the training of the network. 2) Quantitative assessment of scan-rescan pairs 

from HCP dataset using 12 subjects using ACC with sCSD at 6th and 8th order.  3) Qualitative assessment 

of the fiber orientation distribution (FOD) glyphs and spatial maps of slices from in-vivo HCP brain slices.  

 

 

A trained ResDNN using ground truth based on histology with corresponding diffusion signal 

reconstructs more precise fiber structure as compared to super resolved spherical deconvolution (CSD). 

The median ACC of the ResDNN is 0.82 as compared to any other HARDI method approach where all 

median is <0.79 (Figure VII.46). Non-parametric signed rank tests for the ACC distributions shows that 

ResDNN is higher than other HARDI methods (p<<0.01).  

 

 

Figure VII.46. Distribution of ACC between the ground truth and the CSD FOD’s of monkey C. The red 

line indicates the median at for the distribution. A, C) super resolved constrained spherical deconvolution 

at 6th and 8th order respectively with median at 0.75 and 0.77. B) Lucy-richardson constrained spherical 

deconvolution with median at 0.79. D, G) Diffusion orientation transform and its revisited approach with 

median at 0.61 and 0.75 respectively. E, F) Q-ball imaging and with constant solid angle with median at 

0.73 and 0.75. H) Proposed ResDNN approach with median at 0.82 
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For quantitative assessment on in-vivo DW-MRI acquisitions the ResDNN was tested on paired 

human in-vivo acquisitions. Twelve test-retest acquisition subjects were acquired from the human 

connectome project (HCP). The distribution of ACC between the pair of scans for sCSD at 6th order SH, 

 
Figure VII.47. A) ACC of all paired WM voxels across the 12 subjects laid out in distribution for the 

ResDNN, sCSD at 6th and 8th order. ResDNN distribution is skewed towards higher correlation. B, C, D) 

Violin plots per subject of ACC for paired WM voxels for sCSD at 6th order, 8th order and ResDNN. Blue 

line denotes the median. 
 

  

Figure VII.48. The selected ROI shows frontal lobe of WM on right side. The image underlay in 

A, B, D & E is ACC which shows agreement between pairs of A & B and D & E. C & F show the 

ACC of the middle axial slice of the brain. FOD of sCSD are shown in A & B where they show 

lesser agreement as compared to FOD of ResDNN in D & E. 
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8th order and SH ResDNN are shown in (Figure VII.47). ResDNN shows the most skewed distribution 

towards higher correlation (Figure VII.47 A). Observing distribution plots per subject the ResDNN shows a 

more skewed distribution towards higher correlation for all subjects as compared to sCSD at 6th and 8th 

order. The mean, median and standard deviation of the ACC across the 12 subjects for CSD at 6th order: 

(0.61, 0.71, 0.31), 8th order: (0.54, 0.60 and 0.31). The same for the ResDNN are (0.74, 0.88, 0.31). The 

reproducibility gain calculated by the difference of the ACC median of sCSD at 6th order and ResDNN is 

24% and the same for 8th order is 46%. Non-parametric signed ranked test for all pairs of ACC distributions 

show that the ACC of ResDNN is significantly higher than sCSD (p<<0.01). 

 

 Figure VII.49. Spatial maps of ACC of middle axial slice for scan-rescan pairs are shown for both 

ResDNN and sCSD at 6th order. First row shows sCSD ACC spatial maps for subjects 1-6. Second row 

shows ResDNN ACC spatial maps for subjects 1-6. Third row shows sCSD ACC spatial maps for 

subjects 7-12. Fourth row shows ResDNN ACC spatial maps for subjects 7-12. It can be observed that 

the ResDNN shows higher ACC for all observed pairs. 
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We chose a region of interest (ROI) in the right frontal lobe of the white matter (WM) of the brain 

(Figure VII.48). Comparing sCSD (A & B) we can observe that the FOD glyphs are similar qualitatively 

for single fiber populations; however, notable differences can be seen for multiple fiber populations. 

Comparing ResDNN (D & E) the FOD glyphs visually agree more as compared to sCSD specifically glyphs 

with multiple fiber populations as well. Observing the ACC across the middle axial slice of the brain for 

sCSD (C) and ResDNN (F), it can be noticed that the ACC is higher across the brain for DNN. 

Spatial maps of ACC (Figure VII.49) show that the ACC for ResDNN predicted SH coefficients 

are higher for all pairs of subjects when compared with ACC of sCSD at 6th order. Subject 4, 5, 6 and 12 

 

Figure VII.50. A, B, C, D) 1st Column: depicts ground truth FOD with representation as 8th order 

SH Coefficients. 2nd & 3rd Column: depicts sCSD predicted FOD with representation of 6th and 

8th order SH. 4th Column: depicts CSDLR predicted FOD with representation as 8th order SH. 

5th Column: depicts ResDNN predicted FOD as 8th order SH Coefficients. ACC is depicted at 

bottom right corner when compared with ground truth. 



136 

 

show lower ACC relatively for both ResDNN and sCSD as compared to other subjects.  

FOD glyphs (Figure VII.50) of sCSD and CSDLR show a spurious detection of fiber population 

which is not present in the ground truth for single fiber configurations. ResDNN and sCSD both depict 

similar structure which resembles the ground truth for the principal orientation. 

7.4. Discussion 

Accurate characterization of the structural properties of the brain can lead to fundamental insights 

into cognition, development, and diseases. Currently, the only noninvasive method to map the structural 

connectivity is diffusion MRI. In this study, we use data-driven machine learning approaches to learn a 

relationship between the diffusion MRI signal and the underlying tissue microstructure. Together, we find 

that there is information in the diffusion signal that is currently unutilized or underutilized by current 

methods, and that this information is stable.  Specifically, our study has three major takeaways: 1) ResDNN 

can reconstruct the FOD more precisely/accurately than current diffusion reconstruction methods. 2) The 

information gain is significant which is indicative of a more precise reconstruction of the micro-structure 

architecture of the brain, while also providing evidence that a better non-linear mapping exists between the 

signal and the FOD. 3) In-vivo validation on scan and rescan data used from the HCP confirms 

reproducibility and stability of the model, demonstrating clinical applicability. Qualitative analysis re-

enforces the improved scan-rescan consistency.  

While advocating the use of a data-driven approach is nascent in the domain of DW-MRI. A novelty 

here is the introduction of the combined usage of histology and deep learning. The numerous classical 

approaches to reconstruct the FOD have been reproducible and successful however the evidence suggests 

that a more precise one could be discovered. The result of the information gain shows us that there is 

untapped information present in the DW-MRI signal that is not being accounted for. This study in no way 

suggests as to what could be another non-linear mapping. The advancements in machine-learning 

specifically deep learning have made this discovery possible. 

Deep learning has been widely applicable in image processing and has become a powerful tool. 
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While it is still treated as a black box because of the large number of parameters that a ResDNN learns, 

deep learning is becoming clinically accepted. Although a simple sequential ResDNN has been used for the 

study, more complex networks can be designed for more specific DW-MRI problems. Spatial information 

as features can be used for improving the performance of the ResDNN. A precise reconstruction of FOD’s 

directly leads to improved performance for tractography algorithms.  

On a side note there are multiple HARDI methods that enforce non-negativity in different ways 

(cite non-negative papers here). However, they cannot be directly enforced upon deep learning, hence, to 

enforce non-negativity we follow a proposed procedure (Figure VII.51A). Starting out with normalized 

DW-MRI signal it is truncated by a regularizing hyper-parameter (theta=0.005). This is needed to eliminate 

negative and extremely low values (<0.005) as they would translate to noisy values in log transform. The 

log transform of DW-MRI signal was fitted to SH leading to them being in log space. This procedure was 

performed on the FOD SH coefficients as well. A consistent set of 100 gradient directions was used which 

uniformly sampled over a sphere. While testing the withheld set of voxels were not transformed in any way 

to ensure integrity of blind testing. In comparison the non-negative results show a median ACC of 0.81 as 

compared to ResDNN ACC of 0.82. While there is a little compensation in correlation, we are able to 

enforce non-negativity in the network. The non-negativity requires a deeper validation to show further 

applicability.  

Apart from precision the criteria of reproducibility have been validated as well using scan-rescan 

pairs from the HCP. Reproducibility while not correlated with precision has its own independent importance 

due to the fact of clinical applicability. Precision without reproducibility is an example of high variance in 

the information being reconstructed. For example, if the reproducibility is not high for a healthy control 

subject then the interpretation of the reconstruction on a diseased subject would be an unreliable one. Here 

we have shown that the ResDNN achieves high reproducibility across two different datasets: HCP and in-
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house acquired data. This model marks the advent of artificial intelligence (AI) in DW-MRI. 

AI has gained quite the popularity and applicability in multiple domains. The ResDNN presented 

here can be foreseen as a small part of an overall data-driven approach that could eventually be constructed 

for DW-MRI data. There are multiple clinical issues regarding DW-MRI that can be tackled such handling 

of multiple acquisition hyper-parameters and acquisition details. 

The ResDNN presented can only learn as well as the presented ground truth to it which could be 

improved upon (improved registration, SNR, artifact suppression, etc.). Also, another limitation is that the 

DW-MRI acquisition was ex-vivo for the training of the ResDNN. However, it was validated upon human 

in-vivo data. Lastly, the dataset that was created was sparse. Standard data augmentation techniques could 

possibly be useful in making the dataset usable for training this model for the study. We hope that the work 

presented in this study will be helpful in guiding researchers and neuroscientists better for forward looking 

research in AI with DW-MRI. 

 

Figure VII.51. A) Describes the step procedure followed to incorporate non-negativity which consists 

of a log transformation to eliminate negative values and using log space SH coefficients for input and 

output for ResDNN network. B) Shows the comparison between the ground truth and predictions from 

ResDNN in linear space and log space. 
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7.5. Conclusion 

We have shown three key findings with the presented study. 1.) A machine learning framework 

can be used to directly learn the non-linear mapping between DW-MRI and 3D confocal histological 

derived ground truth. 2.) The trained ResDNN is able to show that it is able to utilize untapped information 

which is present in the DW-MRI signal. 3.) The trained ResDNN model is able to perform more consistently 

when relatively compared to state of the art sCSD.
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8. Inter-scanner Harmonization of High Angular Resolution DW-MRI using Null Space Deep 

Learning 

 

This chapter has been adapted from the published work in [88]. 

8.1. Introduction 

The Diffusion-weighted MRI (DW-MRI) provides orientation and acquisition-dependent imaging 

contrasts that are uniquely sensitive to the tissue microarchitecture at a millimeter scale [27]. Substantial 

effort has gone into modeling the relationship between observed signals and underlying biology, with a 

tensor model of Gaussian processes being the most commonly used model [35]. Voxel-wise models that 

characterize higher order spatial dependence than tensors fall under the moniker of higher angular 

resolution diffusion imaging (HARDI) [130]. Recently, a myriad of techniques has emerged to estimate 

local structure from these diffusion measures [12, 13, 15, 165]. However, broad adoption and clinical 

translation of specific methods has been hindered by a lack of re-producibility [61, 94], inter-scanner 

stability [172, 173] , and anatomical specificity when compared to a histologically defined true 

microarchitecture [24, 171]. There are known critical issues of the inter-scanner diffusion harmonization 

that go beyond noise effects [51, 52, 174]. 

Recently, it has become feasible to apply a data-driven approach to estimate tis-sue 

microarchitecture from in vivo diffusion weighted MRI using deep learning. This approach relied on a 

histologically defined truth with correspondingly paired voxels with diffusion weighted magnetic resonance 

imaging data. Yet, no approaches to date have addressed inter-scanner variation and scan-rescan 

reproducibility. Moreover, traditional deep learning architecture do not specifically create models that have 

these necessary characteristics for clinical translation. Here, we propose a new learning architecture, the 

null space deep network (NSDN), to address the short comings of precision and reproducibility across 

scanners. Within the NSDN framework, we use inter-scanner paired in vivo human data to stabilize the data 

driven approach linking pre-clinical DW-MRI with histological data. Using a withheld dataset, the NSDN 
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method is compared against a previously published fully connected network and the leading model-based 

approach, super resolved constrained spherical deconvolution (CSD) [175] in terms of the precision with 

which the model captures histologically defined truth from DW-MRI data, the reproducibility of the 

approach on in vivo human data, and the generalizability of the model to in vivo data acquired on an 

additional MRI scanner.  

The remainder of this manuscript is organized as follows. Section 2 presents the acquisition and 

processing of all the data that has been used for the study. Section 3 presents the design and the parameters 

of the proposed network architecture. Section 4 presents the results. Section 5 presents the conclusion.  

8.2. Data Acquisition and Processing 

Three ex-vivo squirrel monkey brains were imaged on a Varian 9.4T scanner (Figure VIII.52). A 

total of 100 gradient volumes were acquired using a diffusion-weighted EPI sequence at a diffusivity value 

of 6000 s/mm2, acquired at an isotropic resolution of 0.3mm. Once acquired, the tissue was sectioned and 

stained with fluorescent dil and imaged on a LSM710 Confocal microscope following procedures outlined 

in [24, 171]. A similar procedure is outlined by [176]. The histological fiber orientation distribution 

(HFOD) was extracted using 3D structure tensor analysis. A multi-step registration procedure was used to 

determine the corresponding diffusion MRI signal. A total of 567 histological voxels were processed. 54 

voxels of these were labelled as outliers qualitatively and were rejected from the analysis. A hundred 

random rotations were applied to the remaining voxels for both the MR signal and the HFOD to augment 

the data and bringing the total to 51,813 voxels [166]. A withheld set of 72 test voxels was maintained for 
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validation. With rotations, these total to 7,272 voxels. 

The in vivo acquisitions of the human subjects’ data were acquired on three different sites, referred 

to as ‘A’, ‘B’ and ’C’. Three healthy human subjects were ac-quired with a scan each at the sites in the 

following manner. Subject 1: Site ‘A’ and Site ‘B’. Subject 2: site ’A’ and site ‘B’. Subject 3: site ‘B’ and 

site ‘C’. Structural T1 MPRAGE were acquired for all subjects at all sites. The diffusion acquisition 

protocol and scanner information are listed for each of the sites as follows. 

Site ‘A’ was equipped with a 3T scanner with a 32-channel head coil. The scan was acquired at a 

diffusivity value of 2000 s/mm2 (approximating diffusion contrast of fixed ex-vivo scan at a b-value of 

6000 s/mm2). 96 diffusion weighted gradient volumes were acquired with a ‘b0’. Briefly the other 

parameters are: SENSE=2.5, partial Fourier=0.77, FOV=96x96, Slice=48, isotropic resolution: 2.5mm. 

Site ‘B’ was equipped with a 3T scanner with a 32-channel head coil. All the parameters of the 

scan acquisition were as of scanner at site ‘A’ except for the isotropic resolution which was 

1.9mmx1.9mmx2.5mm and up-sampled to 2.5mm isotropic. 

Site ‘C’ was equipped with a 3T scanner with a 32-channel head coil. The scan acquisition 

 

Figure VIII.52. Formation of the training dataset where 2D histology was performed on the 

squirrel monkey brains and FOD’s were constructed per voxel basis using ensemble structure 

tensor analysis which correspond to ex vivo MRI acquisition of the squirrel monkey brains. 

Comparative analyses were performed between the reconstructed histology FOD’s and FOD’s 

from CSD, DN and NSDN. 
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parameters were same as that of site ‘A’, except for the number of slices (n=50) and GRAPPA=2 (instead 

of SENSE).  

All in vivo acquisitions were pre-processed with standard procedures eddy, topup, b0 normalization 

and then registered pairwise per subject [97, 98]. T1s were registered and transformed to the diffusion 

space. Brain extraction tool was used for skull stripping [177]. FAST white matter (WM) segmentation was 

performed using the T1 for the in vivo data [100]. Note that there were three pairs of pre-processed 

acquisitions in total.  

The pair of data from Subject 1 along with the histology data set was used for the training of NSDN. 

The pairs of data from Subject 2 and 3 were used for quantitative and qualitative evaluation of the network. 

No site ‘C’ data were used in training. 

8.3. Method: Network Design 

Our proposed null space architecture is motivated by the linear algebra null spaces in that we need 

to design/constrain the aspect of the network that has no impact on the outcome. This work is inspired by 

[178] in which a person re-identification classification problem in computer vision was addressed using a 

Siamese architecture deep network. The novelty of our approach is that we use paired (but unlabeled) data 

to train the data-driven network to ignore potential features that would lead it to differentiate between the 

paired data.  

The proposed network design takes three inputs of 8th order spherical harmonic (SH) coefficients 

(Figure VIII.53). Each input provides an orthonormal representation of the DW-MRI signal and is known 

to characterize the angular diffusivity signal well [33]. The network outputs a 10th order SH FOD. The base 

network consists of five fully connected layers; the numbers of neurons per layer are 45, 400, 66, 200 and 

66 in the respective order. Activation functions of ‘ReLU’ have only been used for the first two layers. 

They have not been used for the remainder of the layers to allow for negativity in the network because SH 

coefficients need not be positive. The three outputs obtained by the network are merged with a common 

loss function which optimizes on the assumption that the pairwise difference should be zero given the 
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subject is the same and there should not be a difference in the FOD being predicted. For implementation 

simplicity, a modified weighted square loss function was defined as (here in λ=1): 

𝑳 =  
𝟏

𝒎
∑ (𝒚𝒕𝒓𝒖𝒆𝒊

− 𝒚𝒑𝒓𝒆𝒅𝒊
)𝟐 + 𝝀 (𝑷𝒂𝒊

−  𝑷𝒃𝒊
)𝟐𝒎

𝒊=𝟏     Eq. 25 

‘m’ is the total number of samples. Pa and Pb are paired in-vivo voxels. A sample size of 37,648 

pairs of paired WM voxels were extracted from subject 1 using the acquisitions from site ‘A’ and site ‘B’. 

A random selection of 37,648 data points was made from the training data set of the histology voxels. While 

training the network a K-fold cross-validation was used with K=5. The cross-validation set size was set to 

0.2. ‘RMSProp’ was used as the optimizer of the network [167]. The number of iterations was determined 

at 3 using cross-validation. A batch size of 100 has been used.   

 

To evaluate the performance, we use Angular Correlation Coefficient (ACC) which describes the 

correlation between two FOD’s on a scale of -1 to 1 [15], where ‘1’ is the best outcome. 

 

Figure VIII.53. Network design for the null space architecture. The architecture depicts how 

pairwise inputs of in-vivo voxels can be incorporated in a deep neural net architecture and can be 

added in the loss function as a noise enhancement/augmentation technique. 
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8.4. Results 

The median of the ACC computed from the blind set of 7,272 augmented histology voxels for CSD, 

DN and NSDN were 0.7965, 0.8165, and 0.8281, respectively. Non-parametric signed rank test for all pairs 

of distributions were found to be p < 0.01. Qualitatively, we explore the results relative to the truth voxel 

in Figure VIII.54. At 25th percentile it can be observed that CSD and DN show a crossing fiber structure 

when compared to HFOD. NSDN is representative of more similar single fiber structure of histology. At 

50th percentile CSD tends to show a crossing fiber structure, while DN and NSDN show a higher ACC and 

are like the structure of histology. At 75th percentile all three methods closely resemble the histology 

 

For subject 2, the histogram distribution of ACC for NSDN is most skewed (to-wards higher ACC) 

compared to DN and CSD (Figure VIII.55A). The median values for the ACC distributions of CSD, DN 

and NSDN are: 0.67, 0.74 and 0.82. The gain in performance is (calculated by the difference of the medians) 

is 21.19% for (CSD, NSDN) and 10.09% for (DN, NSDN). Non-parametric signed rank test for all pairs of 

ACC metrics per voxels for subject 2 resulted in p< 0.001.  

 

Figure VIII.54. Representative voxels are shown for the 25th, 50th, and 75th percentiles of CSD ACC 

along with corresponding DW-MRI, DN and NSDN glyphs and ACC’s.  
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Qualitatively, we explore the spatial diffusion inferred structure in the WM of the frontal lobe of 

the middle axial brain slice (Figure VIII.56). CSD (A & D) show low correlation and spurious fibers in the 

crossing fiber regions. DN (B & E) improves correlation in crossing fiber regions however NSDN (C & F) 

shows the highest correlation for crossing fiber regions. For single fibers, all three methods show high 

correlation.  

In the quantitative results for subject 3, we observe that the skewed distribution towards higher 

ACC for NSDN is the highest as compared to both the other methods (Figure VIII.55 B). The median for 

three distributions of CSD, DN, and NSDN are 0.62, 0.67 and 0.74. The performance gain of NSDN over 

CSD is 16.08% and DN is 10.41%. Non-parametric signed rank test for all pairs of voxels for subject 3 

show p < 0.001. 

 

 

Figure VIII.55.  A.) Histogram peaks of ACC per bin distributed over 100 bins for subject 2 of 

CSD, DN and NSDN. B) Histogram peak of ACC per bin distributed over 100 bins for subject 3 of 

CSD, DN and NSDN.  
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8.5. Conclusion 

The NSDN method for reconstructing fiber architecture is (1) more accurate when compared to 

histologically defined FODs, (2) more reproducible qualitatively and quantitatively on scan-rescan data, 

and (3) more reproducible on previously unseen scanners. While histological-MRI paired datasets are 

exceedingly rare, scan-rescan data are ubiquitous and often acquired as part of multi-site studies. The NSDN 

meth-od provides a natural framework for harmonization that can use already acquired scan-rescan data to 

ensure that analysis methods are as reproducible across all sites.  A much wider comparative study with 

multiple different HARDI methods and using multiple scanners is warranted. It would be interesting to 

 

Figure VIII.56.  The selected ROI shows internal capsule and a part of the global pallidus. The 

image underlay for the ROI’s shown is Angular Correlation Coefficient (ACC) to indicate areas of 

agreement between scan-rescan (vertical pairs). CSD shows high correlation for core white matter 

where single fiber orientation exists (observer diagonal pattern of high ACC). DN shows increased 

correlation over a broader region which encompasses crossing fibers. NSDN shows a higher 

correlation across the most extended anatomical area.  
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explore the impact of including data from diffusion phantoms to enhance the diversity of signals captured 

in a data-driven approach. 

While this work focused on DW-MRI, the NSDN approach can naturally be ap-plied to other deep 

learning-based networks with two relatively simple modifications. First, one needs to construct a multiple 

channel network graph of the same form as “base network,” but with shared weights for all channels and 

without cross-connections between the channels. This will ensure that one input can be placed per channel 

and all inputs will see the “same” base network. Second, the loss function needs to be modified so it 

combines a traditional loss with a reproducibility loss. The traditional loss comes with (without loss of 

generality) from the first channel’s output relative to a traditionally provided truth dataset. The 

reproducibility loss is then computed by a metric of reproducibility between the remaining channels (herein 

a weighted squared error metric, but Dice, surface distance, etc. could be used as ap-propriate for the 

datatype). The potential synergies with data augmentation and neighborhood information have yet to be 

explored. 
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9. Harmonizing 1.5T/3T Diffusion Weighted MRI Through Development of Deep Learning 

Stabilized Microarchitecture Estimators 

 

This chapter has been adapted from the published work in [179]. 

9.1. Introduction 

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive imaging modality 

that can provide information about microarchitecture of the brain at a millimetric scale [27, 168, 180]. 

Multiple DW-MRI approaches have been proposed to model the DW-MRI signal to estimate the 3D 

microstructure [22]. A common approach is diffusion tensor imaging (DTI) which can capture a single fiber 

population per voxel [35, 181, 182]. Although DTI has been established as reproducible and characterizes 

the DW-MRI signal well, it is limited that it cannot capture complex fiber microstructure like fanning, 

crossing, kissing fibers [93, 183]. Advanced approaches fall under the nomenclature of high angular 

resolution diffusion imaging (HARDI) methods [18]. HARDI methods are routinely applied to DW-MRI 

acquisition with more than 45 gradient volumes [18], as reviewed in [22]. While HARDI methods are quite 

reproducible (>0.7) in terms of fiber counts within a scanning protocol on a single device, but quite different 

across methods [19, 61, 94]. Challenge studies depict a similar story [22]. In the context of DW-MRI signal 

the measurements are affected by different scanners and HARDI method reconstruction is impacted due to 

these effects [184]. Hence, harmonization is a critical problem where the microarchitecture reconstruction 

is impacted by protocol effects, scanner effects, and site effects (Figure IX.57).  
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Harmonization has been pursued at for DTI using COMBAT to harmonize the metrics of fractional 

anisotropy (FA) and mean diffusivity (MD) [51]. While COMBAT is a method of harmonizing the metrics 

directly, [174] was proposed to harmonize the DW-MRI signal using rotational invariant spherical 

harmonic (RISH) features [54, 174]. Previously meta-analysis techniques have been used to quantify group 

differences for e.g., FA [50, 185]. Statistical covariates have been used to characterize site differences as 

well [186]. Recently, an approach to harmonize the microstructure was recently proposed to harmonize the 

microarchitecture directly in the space of spherical harmonics [187]. However, this approach relied on 

scanners of the same manufacturer and similar field strength and only relied on just an extra L2 loss for 

harmonization. The time separation between acquisitions were within ~2 weeks. This approach was built 

on the basis of sequential DNN approach.  Herein, we extend the approach to inter-field strength 

harmonization and evaluate in a rather extreme case of 4 years mean separation. Moreover, we introduce a 

modification to loss function to improve consistency of scalar metric consistency while maintaining FOD 

consistency.  

The NSDN approach is based on using a dataset where corresponding DW-MRI and ground truth 

FOD of microstructure was reconstructed using histology [171]. The dataset consists of white matter (WM) 

 

Figure IX.57. A) Middle axial slice on a 1.5T scanner depicting CSD FOD’s across the WM. B) 

Middle axial slice on a 3T scanner depicting CSD FOD’s across the WM. C) Angular Correlation 

Coefficient of the FOD’s which is calculated on corresponding voxels of 1.5T and 3T scanner. 

Annotations 1,2 and 3 depict low correlation regions of the brain on the left side, same can be 

observed on the right side. 
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voxels from three squirrel monkeys. A deep neural network (DNN) regression model could learn the 

histology using the inputs of DW-MRI on a voxel by voxel basis. The proposed NSDN approach takes 

paired inputs of voxels of 17 subjects (1.5T and 3T scanners). The hypothesis is that when 

predicted/estimated their outcome should be the same, this has been modelled using a custom loss function 

and with the help of identical dual networks. A total of 37 subjects from the Baltimore Longitudinal Study 

of Aging (BLSA) were identified with paired acquisitions on 1.5T and 3T scanners. 20 subjects were 

completely withheld for testing of the proposed approach. CSD and DNN as baseline. 

9.2. Data & Methods 

9.2.1. Squirrel Monkey Data Acquisition 

Three squirrel monkeys ex-vivo acquisition were acquired on a Varian 9.4T scanner [23]. A total 

of 100 gradient volumes were acquired using a diffusion-weighted EPI sequence at a b-value of 6000 

s/mm2. Voxel resolution was set at 0.3 mm. Once acquired the tissue was sectioned and stained with 

fluorescent dil and imaged on a LSM710 Confocal microscope with procedures outlined in [171]. The 

ground truth histological FOD (HFOD) was extracted with 3D structure tensor analysis. A total of 513 

histological voxels were processed with corresponding DW-MRI after quality control. 100 random rotations 

were applied to each voxel thus augmenting the dataset to 51,813 voxels. A withheld set of 7,272 voxels 

were maintained for validation. The DW-MRI signal and HFOD were both represented in spherical 

harmonic (SH) coefficients of the 6th order using a regularized linear least square fit. 44,541 voxels were 

used for training DNN and NSDN. 

9.2.2. BLSA Data Acquisition 

37 control subjects were imaged after informed consent and institutional review board approval 

and retrieved in de-identified form from the BLSA based on paired acquisitions on 1.5T and 3T scanners 

[10]. All acquisitions were extracted with their corresponding MPRAGE. All scans were processed with 

topup and eddy for correction of susceptibility distortion and eddy currents [140, 159]. Skull stripping was 
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performed using FSL on all scans [177]. Multi-atlas segmentation was done on the MPRAGE using 

BrainCOLOR protocol [123]. The segmented image and the diffusion image were all co-registered using 

flirt [99, 117]. The DW-MRI was limited to only WM of the brain using the segmented image. All DW-

MRI voxels were transformed to 6th order SH coefficients using a regularized linear least square [33] fit 

for training and testing the NSDN. A total of ~750,000 WM voxels were extracted from the 17 training 

subjects. 44,541 WM voxels were randomly selected from the BLSA ~750,000 WM voxels to down sample 

the unpaired training data for NSDN. 

9.2.3. Null Space Deep Network 

The NSDN architecture is built upon the base network of the DNN (Figure IX.58). The base 

network is composed of all fully connected dense layers with 28, 400, 66, 200 and 28 neurons per layer. 

The first three layers were activated using ‘ReLU’ while the remaining two outer layers were linearly 

activated to ensure that negativity as a SH coefficient prediction can be negative. Inputs to DNN are 6th 

order DW-MRI SH Coefficients and outputs are 6th order FOD SH Coefficients. Both are 1D vectors of 28 

 

Figure IX.58. The base regression neural network is depicted in the center which describes the 

parameters of the fully-connected dense layers with respective activation functions. The plot at 

left: Depicts three inputs where the center input comes from corresponding DW-MRI with 

histology. The other two are pairwise inputs from corresponding voxels of scanner 1.5T and 3T. 

The plot at right: Depicts the loss function which uses the hypothesis that the outcome/prediction 

should be same irrespective of the scanner gradient strength. 
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coefficients. 

NSDN is inspired by linear algebra null spaces where the motivation is that the network must be 

constrained in such a way that the outcome is left unaffected. A similar architecture was first proposed for 

person re-identification problem [188]. The novelty in this approach is that paired unlabeled data is used to 

drive the training of the network where it learns to ignore features of scanner noise and inter-scanner bias 

which would otherwise lead the network differentiate between the data. The NSDN architecture follows 

the DNN structure and has an identical dual network of the DNN. This implies the core network to have 

shared weights where it can learn and ignore potential scanner bias features. NSDN takes 3 inputs of 6th 

order DW-MRI SH coefficients where the first comes from the histology data and the other two are a 

corresponding/pair of voxels of the same subject from 1.5 Tesla and 3 Tesla scanners. The output of NSDN 

is a 6th order FOD SH coefficient. 

The NSDN uses a custom loss function which is an additive combination of three L2 losses and all 

are governed by their individual hyper-parameters (1). The first is the L2 loss between the network’s FOD 

prediction and the ground truth with the hyper-parameter ‘α’. The second is the L2 loss between the paired 

voxels which has an expectation of 0 and the hyper-parameter is ‘λ’. The third is the L2 loss between the 

GFA of the paired voxels which also has an expectation of 0 and the hyper-parameter is ‘β’. The GFA is 

defined by std(ψ)/rms(ψ) where ψ is a set of SH Coefficients. GFA describes the anisotropic nature of the 

expansion of SH coefficients. The hyper-parameter ‘α’ was set to 2.75 in an ad-hoc manner. This was done 

to balance the relative energies of the other two loss function terms. 

𝑳 =  
𝟏

𝒎
∑ 𝜶(𝒚𝒕𝒓𝒖𝒆𝒊

− 𝒚𝒑𝒓𝒆𝒅𝒊
)𝟐 + 𝝀 (𝑷𝒂𝒊

−  𝑷𝒃𝒊
)𝟐 + 𝜷 (𝑮𝑭𝑨(𝑷𝒂𝒊

) − 𝑮𝑭𝑨(𝑷𝒃𝒊
))𝒎

𝒊=𝟏  Eq. 26 

All methods were evaluated using ACC (2), MSE and difference in GFA. ACC is a metric for 

calculating correlations of functions of all directions over a spherical harmonic expansion. It provides an 

estimate of how closely two FOD’s relate to each other. ‘u’ and ‘v’ are the two sets of expansions of SH 

for corresponding voxels in all analysis. A value of ‘1’ for ACC describes high correlation. 
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      Eq. 27 

9.3. Results 

The ACC of the NSDN has the most skewed distribution towards ‘1’ as compared to both the 

baseline approaches (Figure IX.59A). DNN has the highest variance of MSE distribution with CSD having 

a lower variance and NSDN as the lowest (Figure IX.59 B). CSD and NSDN show an equally controlled 

distribution for difference in GFA while DNN having a higher variance as compared to the other two 

 

Figure IX.59. A) Shows ACC between 1.5T and 3T scanner acquisitions across all WM voxels of 

20 withheld subjects for the three methods CSD, DNN and NSDN. B) Shows MSE between 1.5T 

and 3T scanner acquisitions across all WM voxels of 20 withheld subjects for the three methods 

CSD, DNN and NSDN. C) Shows difference in GFA between 1.5T and 3T scanner acquisitions 

across all WM voxels of 20 withheld subjects for the three methods CSD, DNN and NSDN. 
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(Figure IX.59 C). The median diff in GFA in terms of absolute values for CSD, DNN and NSDN are 0.05, 

0.09 and 0.05. The median value of MSE for CSD, DNN and NSDN are 0.0037, 0.0326 and 0.0011. The 

median ACC of CSD, DNN and NSDN are 0.28, 0.46 and 0.81. Non-parametric signed rank test for all 

 

Figure IX.60.  Row-wise spatial maps of ACC for the middle axial slice of the brain are depicted 

for the three methods per columns. ACC improves from left to right with NSDN achieving the 

highest across all four subjects. 
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pairs of distributions were found to be p < 0.001. 

The mean ACC of CSD, DNN and NSDN are 0.28, 0.36 and 0.74 (Figure IX.60A, B & C orange 

and blue lines). CSD has the highest ACC variance while ACC variance decreases for DNN and is the most 

constrained for NSDN (Figure IX.60A, B, & C). The difference in GFA for pairs of WM voxels per subject 

has a similar constricted spread for CSD and NSDN while DNN has the widest variance (Figure IX.60 D, 

E & F). The distribution of MSE for all pairs of WM voxels per subjects shows that the DNN variance is 

the highest with CSD having quite a constrained distribution while NSDN having an even narrower one.  

Figure IX.61 presents a qualitative comparison of spatial maps of ACC across four random 

subjects. Figure IX.62 examines the frontal lobe matter where we see low correlation for CSD, increased 

ACC with DNN, and the highest correlation with NSDN. Figure IX.63 presents a harmonized perspective 

of the subject presented in Figure IX.57. 
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9.4. Discussion 

The NSDN architecture simultaneously (1) learns a mapping from ex vivo DW-MRI to a histology FOD, 

(2) ignores in-vivo scanner effects that occur between 1.5T and 3T, and (3) enforces consistency of GFA. 

This effort is a first attempt at direct harmonization of the estimated microstructure (FOD) through 

manipulation of data-driven tissue models. We believe this framework will be useful for harmonization of 

 

Figure IX.61.  A, B and C) Depict the individual distribution per subject of ACC across WM voxels 

between 1.5T and 3T scanners. The blue and orange lines depict the mean and median of ACC 

across all 20 subjects. D, E and F) Depict the individual distribution per subject of difference in 

GFA across WM voxels between 1.5T and 3T scanners. G, H and I) Depict the individual 

distribution per subject of MSE across WM voxels between 1.5T and 3T scanners. 
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the microstructure in situations where scan-rescan data are available and have shown its efficacy in an 

extreme situation of non-contemporaneous 1.5T and 3T imaging. More broadly, the NSDN architecture 

could applied for other machine learning problems in different domains where there is paired unlabeled 

data. 

Despite the success of the NSDN, there limitations of this study and additional validation is needed. 

First, the scan-rescan data were not contemporaneously acquired. Second, only two scanners / protocols 

were used, and these scanners were the same manufacturer. Third, subjects were all older than 67 years old. 

In terms of generalizability, NSDN has yet to be evaluated across scanners within a field strength, across 

b-values, or across gradient sample schemes. 

 

Figure IX.62.  A & B) Depicts CSD FOD’s with underlay of ACC on Scanner 1.5T and Scanner 3T 

data. C & D) Depicts DNN FOD’s with underlay of ACC on Scanner 1.5T and Scanner 3T data. E 

& F) Depicts NSDN FOD’s with underlay of ACC on 1.5T and 3T. G) The region of interest being 

observed is the left side frontal lobe WM. 
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Figure IX.63.  A) Middle axial slice on a 1.5T scanner depicting NSDN FOD’s across the WM. B) 

Middle axial slice on a 3T scanner depicting NSDN FOD’s across the WM. C) ACC of the FOD’s 

which is calculated on corresponding voxels of 1.5T and 3T scanner. Annotations 1,2 and 3 depict 

higher correlation regions of the brain on the left side, same can be observed on the right side as 

compared to Figure 1. 
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10. Learning 3D White Matter Microstructure from 2D Histology 

 

This chapter has been adapted from the published work in [189]. 

10.1. Introduction 

Diffusion magnetic resonance imaging (dMRI) has proven a valuable tool in the neuroscience 

community due to its ability to infer tissue composition, microstructure, and structural connectivity of the 

brain [190, 191]. In the white matter, diffusion of water molecules is sensitive to the size, shape, and 

orientation of extra and intra-cellular tissue components [192], making it possible to infer the distribution 

of axonal fiber orientations in each dMRI voxel from a set of diffusion measurements, a model typically 

referred to as the fiber orientation distribution (FOD). These fiber orientation estimates can be used to 

reconstruct the structural connections between brain areas in a process known as fiber tractography [43, 45, 

193]. However, tractography has been shown to have several fundamental limitations [194, 195], and 

validating the accuracy and reproducibility of these techniques is critical for them to become reliable 

medical and research tools.  

Towards this end, the gold standard for validating dMRI (and a number of other contrasts) is in 

comparison to histology. For example, validation has been performed by (A) comparing tractography 

against histological tracers injected into the brain [44, 196, 197], (B) comparing estimated fiber orientations 

against myelin or axon stains [198-200], and (C) comparing diffusivity measures against cell or neuronal 

densities [201]. However, these studies have been limited to 2D analysis of tissue sections imaged with 

bright field microscopes. Very few studies have performed 3D validation [202, 203] due to limited field-

of-view, time, and costs associated with 3D acquisitions. In contrast, 2D light microscopy is relatively 

inexpensive, can cover an entire tissue slice at high in-plane resolution, can be acquired on dozens to 

hundreds of sections of the same brain, and can be stained for a number of contrasts associated with tissue 

microstructure (for example, myelin, Nissl, tracers, etc.).  

With this in mind, it would be of great interest to the neuroimaging community to be able to learn 
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the 3D tissue microstructure from 2D histology. Thus, in this study, we use ex vivo diffusion MRI of a 

squirrel monkey brain and corresponding myelin stained sections in combination with a convolutional 

neural network (CNN) to learn the relationship between the 3D diffusion estimated FOD and the 2D myelin 

stain. This network can be used to validate dMRI structural measurements in 3D. Additionally, this pre-

trained network could be transferred to human stained sections to infer the 3D fiber distribution at 

resolutions currently unachievable with dMRI, allowing fiber tractography at unprecedented resolutions. 

We envision the use of similar networks to learn other 3D microstructural measures from an array of 

potential common 2D brightfield contrasts. 

10.2. Methods 

Here, we aim to use 2D myelin-stained micrographs, from which traditionally only 2D orientation 

information is extracted, in order to estimate the 3D fiber structure in these locations (Figure X.64). 

10.2.1. Data Acquisition – MRI 

MRI experiments, histological methods, and data registration were performed on an ex vivo squirrel 

monkey brain following the procedures described in [127, 204]. Briefly, ex vivo imaging was performed a 

Varian 9.4 T magnet, with diffusion weighted scans acquired using a PGSE multi-shot spin-warp imaging 

sequence (TR = 4.6 s, TE = 42 ms, 32 gradient directions, b ≈ 1000s/mm2, 300 μm voxel, 192x128x115 

matrix). Diffusion processing was performed in “histology” space after registration (see below) using 

constrained spherical deconvolution [205] for voxel-wise reconstruction, resulting in diffusion FODs 

reconstructed in histology space. 
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10.2.2. Data Acquisition – Histology 

Following scanning, the brain was frozen and cut serially on a microtome in the coronal plane at 

50 um thickness. Every 6th section (150um) was mounted and stained with a gallyas silver stain [206] to 

identify myelinated axons. Whole-slide brightfield microscopy was performed using a Leica SCN400 Slide 

Scanner at 20× magnification, resulting in a maximum in-plane resolution of 0.5 um/pixel. To ease 

computation and memory burdens images were down-sampled to 2 um/pixel to serve as input to the 

network. Finally, a multi-step registration procedure was utilized [207] that involves 2D affine and 2D non-

rigid transformations to an intermediate “frozen tissue block space”, followed by 3D affine and 3D non-

rigid transformations to MRI data. Deformation fields produced by registration steps allow transfer of any 

set of data to any desired space for comparisons [204], in this study, we chose to process dMRI data in 

histology space, resulting in high resolution myelin images aligned with corresponding dMRI derived 

FODs. 

10.2.3. Deep Learning Network 

We use a CNN architecture that consists of four 2D convolutional layers (Figure X.65). The input 

is a “patch” of the high-resolution myelin image of size 256x256 pixels. The patch has a corresponding 

dMRI FOD, represented using spherical harmonic (SH) basis functions, in this case using 6th order SH of 

 

Figure X.64. Conventional micrographs are inherently 2D representations of the underlying tissue. 

Here, we aim to use Brightfield microscopy of myelin-stained tissue to estimate the 3D fiber 

orientation distribution 
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size 1x28. The C1, C2, C3, C4 layers consist 128x128, 64x64, 32x32 and 16x16 feature maps. For all 2D 

convolutional layers the kernel size was set to (3, 3) and strides at (2, 2). All 2D convolutional layers were 

activated by ‘Relu’ followed by batch normalization and 2D max pooling was used except for C1 where 

only max pooling was used. The C4 layer was flattened and a dropout of 0.5 was used while connecting to 

a fully connected layer of 28 neurons which is equivalent to the output of the network a set of 6th order SH 

coefficients. 

Ten myelin-stained micrographs were utilized in this study. Nine slices were used for the training 

and the validation of the CNN and a single slice was completely withheld for testing of the CNN. From 

these images, a total of 248,304 patches were generated with corresponding outputs. 30,000 of these were 

randomly selected for validation of the network to prevent over-fitting of the network. This leads to the 

training data being set at 218,304 patches. The CNN was trained with the loss function of ‘mean squared 

error’. The optimizer of the network was used as ‘RMSProp’. Batch size was set to 1000 as feeding more 

patches were not possible due to limitation of GPU memory. The network was trained for 50 epochs after 

which it attained convergence as per cross-validation criteria. A Nvidia 1080 Ti GPU was used to train the 

network. 

10.3. Results 

Figure X.66 shows the results of applying this network to the unseen myelin-stained section. The 

CNN iterated through 50 epochs, minimizing the mean squared error (MSE) of SH coefficients. MSE for 

the unseen slice (Figure X.66 A) are on the order of that seen during training. The converged network 

attained MSE of 0.025, which is close to the median shown for the hidden slice. Additionally, the estimated 

3D FODs show a range of agreement with ground truth, with ACCs ranging from negative to nearly perfect 

(Figure X.66 B), with a median value of 0.48, indicating moderate predication ability. Example myelin-
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stained patches, the ground truth FODs, and predicted FODs are shown for varying levels of reconstruction 

accuracy (Figure X.66 C-F).  

Figure X.67 visualizes the predicted and ground truth FODs reconstructed across the full unseen 

slice. Visualizing across a larger FOV shows spatial consistency in predictions, in agreement with expected 

anatomy and dMRI FODs. This suggests the possibility of utilizing this approach for fiber tractography on 

2D images. While many regions show high prediction power (Figure X.67, left), this technique can result 

in largely inaccurate FOD reconstructions in others (Figure X.67, right). 

10.4. Discussion 

Recently, deep learning approaches have proven valuable in the field of diffusion MRI, 

demonstrating the ability to accurately predict FODs from the diffusion signal [208], and harmonizing 

signal across scanners [209, 210], lending insight into the relationship between the signal and tissue 

microstructure. In this study, we have used a CNN to estimate 3D fiber distributions from inherently 2D 

micrographs. To the best of our knowledge, this study is the first attempt to extract 3D features from 2D 

histology.  

Although results varied across the brain, many predicted fiber geometries showed moderate to high 

agreement with the ground truth distributions. This analysis and network structure could potentially be used 

 

Figure X.65. This architecture begins with a single input patch of size 256x256x with a 

corresponding output of 6th order SH coefficients (1x28). The network consists of four 

convolutional layers with subsequent down-sampling and flattened towards the end to a fully 

connected dense layer. Relu activation, batch normalization and max pooling have been used for 

all convolutional layers. 
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to estimate other 3D tissue microstructure features from the large number of available 2D histological 

resources, atlases, and databases. For example, it may be possible to estimate cell or neuron densities, 

diameters, segment lengths, orientations, and undulations, among other microstructural features that may 

be clinical indicators of pathologies or diseases. This would be critical to diffusion MRI validation studies, 

in addition to a variety of other MRI contrasts.  

Alternatively, this methodology could be used to reconstruct the 3D structural connections of a 

human brain, at spatial resolutions surpassing those feasible with current clinical and pre-clinical scanners. 

For example, an existing myelin-stained atlas of the human brain could be utilized, and processed using the 

current methodology, resulting in 3D fiber distributions at ~500um isotropic resolution, characterizing 

volumes much smaller than the typical 2.5mm resolution. Smaller voxels may alleviate partial volume 

affects and the crossing fiber problem [106, 211, 212], potentially improving the accuracy of tractography 

and improving our understanding of the human connectome.  

There are several potential improvements to the current study, as well as future areas of exploration. 

The next step will be to include additional slices from the same monkey, as well as incorporate, test, or 

train on multiple subjects from existing atlases or databases [127, 204]. Successful generalization to new 

subjects would lend significant confidence in applying this to unseen brains or new species, for example 

the human brain. Finally, we recognize that the low ACC in many regions of the brain may be due to 

ambiguities associated with determining whether a fiber is going-into or coming-out-of the 2D plane, both 

of which may intuitively look similar in a 2D projection image. Implementing a loss function that is 

invariant to the through-plane orientation may lead to better reconstructions, although the network would 

not be able to identify whether the axon distribution is oriented into or out of plane. Successful 

implementation of this network would require some form of post-processing of FODs to ensure spatial 
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continuity. This could possibly be solved by “flipping” certain FODs in the through-plane direction so that 

they were consistent with their neighbors in a way similar to 2D phase unwrapping. 

10.5. Conclusion 

 

 

Figure X.66. The CNN minimizes the MSE of SH coefficients between ground truth and predictions 

(A), resulting in ACC values with median correlations of 0.49. Example myelin-stained patches, 

ground truth FODs and predicted FODs are shown for varying levels of reconstruction accuracy 

(C-F).   
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We have implemented a deep learning approach in order to extract 3D microstructural measures 

from inherently 2D microscopy images. Specifically, we trained a CNN to estimate the 3D fiber distribution 

from myelin-stain brightfield micrographs, with moderate to high accuracy throughout most of the brain. 

Spatial coherence suggests that this technique could be performed on consecutive 2D slices to perform 3D 

fiber tractography, potentially at resolutions much higher than that possible with current dMRI practices, 

and possibly on new unseen brains or specimens – for example the human brain. There is potential to use 

this, and similar, techniques to estimate a number of 3D metrics from 2D histological contrasts. 

 

 

 

 

 

Figure X.67.  Predicted FODs (top) from 2D histology are shown along with the ground truth fiber 

geometries (bottom) for two regions. One exhibiting high agreement (left) with the ground truth, 

the other with a lower agreement (right).  
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11. Deep Learning 3D White Matter Fiber Orientation from 2D Histology: Pulling 3D Rabbits Out 

of 2D Hats 

 

This chapter has been adapted from the published work in [189]. 

11.1. Introduction 

The gold standard for most measures of brain tissue microstructure, composition, pathology, and 

connectivity is typically histological analysis. For example, diffusion MRI validation of tractography and 

microstructure has been performed through comparisons against tracers [213, 214], against myelin or axons 

stains [199, 200], and against neuron stains [201]. However, these studies have been limited to 2-

dimensional (2D) analysis of tissue sections with Brightfield microscopy. Very few studies have performed 

3-dimensional validation due to limited time, fields-of-view, and costs associated with 3D acquisition and 

hardware. In contrast 2D light microscopy is inexpensive, can cover an entire tissue slice at high in-plane 

resolution, can be performed on dozens of sections of the brain, and can be stained with a number of 

contrasts to elucidate tissue microstructure. Thus, it would be of great interest to be able to learn 3D tissue 

structure from inherently 2D microscopy (Figure XI.68). In this study, we use ex vivo diffusion MRI of a 

squirrel monkey brain and corresponding myelin stained sections, in combination with a convolutional 

neural network (CNN) to learn the relationship between 3D diffusion estimated fiber orientation 

distributions (FOD) and the 2D myelin stain. 
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11.2. Methods 

Two ex-vivo squirrel monkey brains were scanned, sectioned, and stained for this study. Diffusion 

MRI was performed (b=1000s/mm2, 300μm isotropic resolution, 32 directions) on a 9.4T scanner, and 

FODs reconstructed using spherical deconvolution. Each brain was cut serially on a microtome, stained 

with Gallyas silver stain, and imaged on a whole-slide Brightfield microscope at 0.5um/pixel. Histology 

and MRI were registered following the procedures utilized in [207]. Thus, the input to the CNN is a 256x256 

pixels “patch” of the high-resolution myelin image and a corresponding diffusion FOD, represented using 

6th order spherical harmonic (SH) coefficients as a 28x1 vector of coefficients – the CNN then aims to 

estimate the FOD from a given patch. For learning, we utilized a CNN architecture with four 2D 

convolutional layers (Figure XI.69) and a fully connected dense layer.  

One monkey was used for training/validation and the other for testing. For training, 9 myelin-

stained micrographs from the first monkey were utilized, resulting in 248,304 patches (and corresponding 

FODs). For validation, a 10th slice from the same monkey brain was used to compare diffusion FODs and 

predicted FODs using the angular correlation coefficient (ACC) which describes the overall agreement 

between spherical functions. For testing, and to evaluate generalizability to a new brain, the network was 

 

Figure XI.68. Conventional micrographs are inherently 2D representations of the underlying 

tissue. Here, we aim to use Brightfield microscopy of myelin-stained tissue to estimate the 3D fiber 

orientation distribution 
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applied to two histological slices from the second monkey brain. 

11.3. Results 

Figure XI.70 shows the ACC results on the unseen validation slice from the same brain that training 

was performed on. The ACC is moderate to high in most white and gray matter regions, with a median 

value of 0.48 (for reference, a scan-rescan using spherical deconvolution has shown an ACC of 0.67 [88]). 

Comparisons of the true (diffusion MRI) FODs and predicted FODs show general agreement in shape and 

orientation, and importantly, the ability to predict through-plane orientation. 

Figure XI.71 and Figure XI.72 show slices from the withheld second squirrel monkey brain, where 

3D FODs were predicted from myelin-data alone. The FODs generally match expected fiber orientations 

and show the ability to extract through-plane orientation information. 

11.4. Discussion 

In this study, we have used a CNN to estimate 3D fiber distributions from inherently 2D 

 

Figure XI.69. This architecture begins with a single input patch of size 256x256x with a 

corresponding output of 6th order SH coefficients (1x28). The network consists of four 

convolutional layers with subsequent down-sampling and flattened towards the end to a fully 

connected dense layer. Relu activation, batch normalization and max pooling have been used for 

all convolutional layers. 
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micrographs. We have shown that predicted FODs are in moderate to high agreement with FODs estimated 

 

Figure XI.70. The CNN architecture can predict 3D FODs with moderate accuracy. The ACC map 

of the unseen slice is shown, with median ACC of 0.48. Predicted and True (diffusion MRI) FODs 

are shown in 3 regions of interest, where background color indicates ACC (brighter signifies 

greater agreement).   
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using diffusion MRI, the network can predict through-plane orientations, and that it can be generalized to 

stains of different brains. This analysis and network structure could potentially be used to estimate other 

3D tissue features from the large number of available 2D histological atlases and databases. For example, 

3D estimates of cell and neuron diameters, lengths, orientations, undulations, and densities could be 

relevant for validating various MR contrasts.  

One potential application of this methodology is for “myelin-stained” fiber tractography. Applying 

this network to a series of consecutive slices could be used to perform 3D tractography on brains that have 

not had a diffusion MRI scan. Future research should explore feasibility of myelin-tractography using 

 

Figure XI.71.  The network can predict 3D FODs from 2D histology of a different brain. Predicted 

FODs from slices on a different brain are shown zoomed-in for 3 white and gray matter regions 

(background image intensity is the myelin stain in the region).  
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existing open-source atlases [204]. Alternatively, this methodology could be generalized to human myelin 

stains, and used to reconstruct the 3D structural connections of the human brain at spatial resolutions 

surpassing those feasible with current state-of-the-art acquisitions (<500 um histological resolution versus 

2.5mm diffusion MRI), possibly alleviating partial volume and crossing fiber effects.  

Future improvements to increase accuracy should include using additional slices for training, as 

well as training using multiple monkeys to increase robustness to variation in staining intensities. 

 

 

 

 

 

 

Figure XI.72.  The network can predict 3D FODs from 2D histology of a different brain. Predicted 

FODs from slices on a different brain are shown zoomed-in for 5 white and gray matter regions.  

 

 



174 

 

12. Enabling Multi-Shell b-Value Generalizability of Data-Driven Diffusion Models with Deep 

SHORE 

 

This chapter has been adapted from the published work in [26]. 

12.1. Introduction 

Diffusion-weighted magnetic resonance imaging (DW-MRI) is essential for non-invasive 

reconstruction of the microstructure for the human in-vivo brain. These images are sensitized to the 

underlying organization of the tissue at a millimetric scale. Multiple approaches have been proposed that 

can model the non-linear relationship between the DW-MRI signal and biological microstructure with the 

most common being diffusion tensor imaging (DTI) [35]. Substantial efforts have shown that other 

advanced approaches can recover more elaborate reconstruction of the microstructure and these methods 

are collectively referred to as high angular resolution diffusion imaging (HARDI) [18]. HARDI methods 

have been broadly proposed in two categories of single shell acquisitions and multi-shell acquisitions (i.e., 

using multiple diffusivity values). A majority of single shell HARDI methods utilize spherical harmonics 

(SH) based modelling as in q-ball imaging (QBI) [13], super-resolved constrained deconvolution (sCSD) 

[175], and many others. However, SH based modelling cannot directly leverage additional information 

provided by multi-shell acquisitions. SH have been combined with other bases to represent multi-shell data, 

e.g., solid harmonics [31], simple harmonic oscillator reconstruction (SHORE) [37], and spherical polar 

Fourier imaging [215].  

Methodological exploration has been driven through classical mathematical transforms while data-

driven approaches have been limited (Figure XII.73) due to lack of external validation data. Prior work 

using data-driven approaches for DW-MRI has been shown in [216], however the primary application for 

their work is shown for outlier detection and low rank signal prediction. Validation through histology is 

critical to evaluate the precision of white matter (WM) reconstruction [23]. Prior work through machine 

learning approaches on reconstruction for single shell diffusion acquisitions has exhibited higher precision 
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and reproducibility. However, this has not been shown for multi-shell acquisitions due to lack of external 

validation data [187] (Figure XII.73). 

To overcome these issues, we propose a novel approach, Deep SHORE, which incorporates the 

following key contributions: (1) an unsupervised hyper-parameter optimization for improved learning in 

the SHORE manifold, (2) representation of a microstructure model in the SHORE manifold to improve 

precision and reproducibility, and (3) a non-negativity constraint implementation for a deep learning model. 

12.2. Data Acquisition 

Three ex-vivo squirrel monkey brains were imaged on a Varian 9.4T scanner. A total of 100 gradient 

volumes were acquired using a diffusion-weighted EPI sequence at diffusivity values of 3000, 6000, 9000 

and 12000 s/mm2 at an isotropic resolution of 0.3mm. An observation is that approximation of b-values for 

the ex-vivo acquisition is equivalent to in-vivo b-values of 1000, 2000, 3000 and 4000 s/mm2 [217]. After 

acquisition, the tissue was sectioned and stained with fluorescent dil and imaged on a LSM710 confocal 

microscope following procedures outlined in [23]. The histological fiber orientation distribution (HFOD) 

was extracted using 3D structure tensor analysis. A multi-step registration procedure was used to determine 

 

Figure XII.73. Different classes of methods have been used to infer tissue microstructure from 

single shell and multi shell DW-MRI data. The gap addressed herein is in data-driven machine 

learning models for multi-shell DW-MRI data. 
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the corresponding diffusion MRI signal [23]. A similar procedure is outlined in [176]. A total of 567 

histological voxels were processed. A hundred random rotations were applied to the remaining voxels for 

both the MR signal and the HFOD to augment the data, bringing the total to 57,267 voxels. As a limitation 

we acknowledge that there is a possibility of registration error approximately up to the size of MR voxels 

(up to 300 micrometers) [218]. 

The in-vivo acquisitions of the three human subjects were acquired on two sites ‘A’ and ‘B’. Both 

sites were equipped with a 3T scanner with a 32-channel head coil.  Structural T1 MPRAGE was acquired 

for all subjects on both the sites. The diffusion acquisition protocol and scanner information are listed on 

each site as follows: 

Site ‘A’: The scan was acquired at a diffusivity values of 1000, 1500, 2000, 2500, 3000 s/mm2. A 

total of 96 diffusion weighted gradient volumes were acquired per diffusivity value with a ‘b0’. Briefly the 

other parameters are: SENSE=2.5, partial Fourier=0.77, FOV=96x96, Slice=48, isotropic resolution: 

2.5mm. 

Site ‘B’: All parameters of scan acquisition were same as that of the scanner at site ‘A’ except for 

the isotropic resolution which was 1.9x1.9x2.5mm3 and down-sampled to 2.5mm iso. 

The in-vivo acquisitions were pre-processed with standard procedures of eddy, topup and b0 

normalization followed by pairwise registration per subject [99]. T1s were registered and transformed to 

the diffusion space. Brain extraction tool was used for skull stripping [177]. WM segmentation was 

performed using T1 for in-vivo data [100]. 
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12.3. Methods 

The SHORE basis function has been shown to capture the representation of multi-shell DW-MRI 

with minimal representation error [37] and ensure the same when modelling single shell DW-MRI. The 

DW-MRI normalized signal, E(q), can be represented as: 

𝑬(𝒒) =  ∑ ∑ ∑ 𝒄𝒏𝒍𝒎𝑮𝒏𝒍(𝒒, 𝜻)𝒀𝒍
𝒎(𝒖)𝒍

𝒎=−𝒍
𝒏
𝒍=𝟎

𝑵
𝒏=𝟎    Eq. 28 

where c are the coefficients to be estimated, G depicts the radial basis combined with Y, the SH basis. The 

radial basis G is represented as follows: 

𝑮𝒏𝒍(𝒒, 𝜻) = 𝜿𝒏𝒍(𝜻) (
𝒒𝟐

𝜻
)

𝒍

𝟐
𝐞𝐱𝐩 (−

𝒒𝟐

𝟐𝜻
) 𝑳

𝒏−
𝒍

𝟐

𝒍+
𝟏

𝟐 (
𝒒𝟐

𝜻
)     Eq. 29 

where ζ is the scale parameter, q is the radius of the diffusivity value, and L depicts the associated Laguerre 

polynomial. Eq (2) can be optimized using the BFGS [219] algorithm by iterative refitting of the 

coefficients c. BFGS is well-known for solving unconstrained non-linear optimization problems. The 

novelty that we introduce here is that, when functioning across several normalized datasets, an optimal ζ 

per dataset, will lead to learning on an optimized manifold. Additional parameters of SHORE include: radial 

 

Figure XII.74. ACC of paired voxels between HFOD and predictions of the deep learning methods 

across three different manifolds (1) Optimized SHORE -> SH (2) Optimized SHORE -> SHORE 

(3) Unoptimized SHORE -> SHORE across all 57,267 voxels. Predictions across A) single shell of 

b-value 6000 s/mm2. B) Two shells of 3000 and 6000 s/mm2. C) Three shells of 3000, 6000 and 9000 

s/mm2. D) Four shells of 3000 -12000 s/mm2. 
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order: 6, and regularization constants: 1e-8 [37]. SHORE estimates 50 coefficients at 6th order. Regularized 

linear least squares were used for the estimation of the coefficients. As one notes, l is even for diffusion 

spherical harmonics or SHORE due to symmetry of diffusion inference process. Essentially, SH at 8th order 

and SHORE at 6th order offer the same degree of freedom. SHORE at higher orders is known to suffer from 

overfitting effects [220]. 

The HFOD represented as SH coefficients can be fitted to the SHORE basis with the two considerations 

of (1) diffusivity value and (2) ‘ζ’ scaling parameter. First the SH coefficients from an 8th order were 

sampled over a sphere of 100 gradient directions. The directions were ensured to be uniformly sampled on 

the sphere with minimized electrostatic repulsion. These directions were kept consistent at all times while 

predicting from the network as well. The diffusivity value was set to 2000 s/mm2. After which, it was fitted 

to SHORE basis using the process described above. 

Non-Negativity. The FOD, when modelled as SH, cannot exist with negative mean. If it does, then 

the microstructure exists in the imaginary part of the SH which does hold true when modelling with real 

even ordered SH. Hence, there was an existing gap to enforce non-negativity on a deep learning network 

while training and making predictions. We use a regularization value of 0.005 to truncate all values on a 

set of gradient directions where value is <=0 on both sides of input and output. Thereafter, log space is used 

instead of linear space: ln(E(q)) and ln(P(r)), where E(q) is the normalized signal and P(r) is the FOD 

sampled over the gradient directions. Fitting of the representation method such as SH or SHORE follows 

after log transformation. After the predictions are made, the coefficients of a representation are transformed 

using exponential to recover them back to linear space. 

Deep Network Design. We use a 5-layered deep network with the following number of neurons: 

x1:400, x2:45, x3:200, x4:45 and x5:200. A residual block was created for the layers x2, x3 and x4 and 

hence the number of neurons was kept equal for x2 and x4. All layers were activated with ‘elu’. Additional 

parameters of the network: Loss function: mean squared error, batch size: 1000, optimizer: RMSProp. 

While training, only the input and output coefficients were modified for different subcases (discussed in 

next section). This was due to the fact that SHORE at 6th radial order is defined by 50 coefficients and SH 
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at 8th order is defined by 45 coefficients. For training of the network, we used k-fold cross validation where 

k=5 for optimal training.  

 To evaluate on any withheld set of data we used the angular correlation coefficient (ACC) 

[15], which is a measure on a scale of -1 to 1 where 1 is the best correlation. ACC is defined using two sets 

of SH coefficients ‘u’ and ‘v’: 

𝑨𝑪𝑪 =  
∑ ∑ 𝒖𝒋𝒎𝒗𝒋𝒎

∗𝒋
𝒎=−𝒋
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[∑ ∑ |𝒖𝒋𝒎|
𝟐𝒋

𝒎=−𝒋
∝
𝒋=𝟏 ]

𝟎.𝟓 
.[∑ ∑ |𝒗𝒋𝒎|

𝟐𝒋
𝒎=−𝒋

∝
𝒋=𝟏 ]

𝟎.𝟓 
  

    Eq. 30 

Evaluation Strategies. From the total of 57,267, we create 8 testing sets of data where each set 

has 7,272 voxels except for the last one which has 6,363 voxels. The remaining data for each set were used 

as training. For all cross-validation experiments, blocks of 101 voxels were randomly allocated to 

testing/training cohorts ensuring that no synthetic rotations of training data were included in the testing 

phase. While fitting SHORE coefficients the diffusivity shell of 6000 s/mm2 was withheld leading to four 

cases of evaluation in incrementing order of shells. For evaluation purposes, we used three sub-cases of 

deep learning manifolds 1.) Input of ‘ζ’ optimized SHORE DW-MRI and output SH-HFOD. 2) Input of 

unoptimized ‘ζ’ SHORE-DWMRI and output of SHORE-HFOD 3.) Input of optimized ‘ζ’ SHORE-

DWMRI and output of SHORE-HFOD. 

 Furthermore, we make comparisons between single-shell and multi-shell approaches. For single 

shell, we show the comparison between the leading single shell approach sCSD, a prior proposed approach 

that utilizes deep learning [25, 187] (SHDNN) and SHORE derived FOD on the withheld shell and the 

same for multi-shell where sCSD and SHDNN were excluded.  

For in-vivo reproducibility evaluation, we compare the ACC for all the pairs of WM voxels between 

the two sites ‘A’ and ‘B’ on a per subject basis. For SHORE based approaches, all the five shells of data 

were used while for sCSD we used b-value of 2000 s/mm2 as the highest reproducibility was exhibited on 

the specific shell.  

12.4. Results 

Evaluation across the withheld shell using combinations with other shells shows that when learning 
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across the optimized SHORE manifold the ACC is most skewed towards higher correlation as compared to 

the other two approaches (Figure XII.74). The median of all distributions for each method is presented in 

Table XII.6. The median for optimized SHORE learning is the highest. We found significant improvements 

after non-parametric signed rank test for all pairs of distributions (p<<0.001, Wilcoxon signed rank test). 

Table XII.6 Median & mean values of 4 dataset combinations for the deep learning approaches.  

Deep Learning Approaches One Shell Two Shell Three Shell Four Shell 

 Median Mean Median Mean Median Mean Median Mean 

U SHORE → SHORE HFOD 0.70 0.67 0.65 0.61 0.74 0.69 0.73 0.68 

O SHORE → SH HFOD 0.75 0.71 0.61 0.50 0.74 0.67 0.77 0.72 
O SHORE → SHORE HFOD 0.78 0.75 0.73 0.67 0.77 0.73 0.80 0.76 

U-Unoptimized, O-Optimized. All methods were intercompared per shell combination, using Wilcoxon 

signed rank test and corrected using Bonferroni correction. All combinations were found to be significant. 

 

When comparing predictions across single shell methods (Figure XII.75 A), the trend in the 

following increasing order of correlation (median in parenthesis): sCSD (0.73), SHORE-FOD (0.74), 

SHDNN (0.76), NNSHORE-DL (0.77), SHORE-DL (0.78). Similarly, when making multi-shell 

comparisons (Figure XII.75 B) we can observe increasing order of correlation: SHORE-FOD (0.75), 

NNSHORE-DL (0.79) and SHORE-DL (0.80). Non-parametric signed rank test for all pairs of distributions 

were found to be p << 0.001. 

Observing the distribution of ACC across all pairs of WM voxels per subject (Figure XII.76), 

increasing level of reproducibility from sCSD, SHORE-DL, SHORE-FOD and NNSHORE-DL. Non-

parametric signed rank test for all pairs of distributions were found to be p << 0.001 (Table XII.7). The 

NNSHORE-DL exhibits highest reproducibility across all three subjects.  

Table XII.7 Median and mean values of ACC for WM voxels across 3 subjects for the methods.  

Method Subject 1 Subject 2  Subject 3  

 Median Mean Median Mean Median Mean 

Super resolved CSD 0.37 0.37 0.49 0.47 0.31 0.31 

SHORE-DL 0.49 0.41 0.59 0.49 0.48 0.42 
SHORE-FOD 0.59 0.50 0.64 0.53 0.49 0.42 

NNSHORE-DL 0.63 0.52 0.67 0.56 0.61 0.52 

All methods were intercompared per subject, using Wilcoxon signed rank test and corrected 
using Bonferroni correction. All combinations were found to be significant. 
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Qualitatively we can observe that SHORE-FOD exhibits higher reproducibility than sCSD and 

NNSHORE-DL exhibits higher as compared to SHORE-FOD (Figure XII.77). 

12.5. Conclusion  

Deep SHORE is the first data-driven approach that generalizes diffusion microstructure estimation 

across multiple b-values, radial b-value sampling, and angular orientation sampling. Our approach enables 

direct comparison of data-driven diffusion analyses with model-based methods, e.g., sCSD, SHORE-FOD. 

Although Deep SHORE (NNSHORE-DL) compares favorably when subjected to quantitative cross-

validation against histology data (Figure XII.75 & Figure XII.76, Table XII.6 & Table XII.7), the total 

amount of data available is a limitation of this study. As current and planned studies acquire more data, we 

 

Figure XII.75. A) Comparison of single shell approaches on the diffusivity shell of 6000 s/mm2 

using ACC on all pairs of voxels of predictions of different methods with HFOD. B) Comparison 

of multi-shell approaches on all four shells between 3000 – 12000 s/mm2 using ACC on all pairs of 

voxels of predictions for different methods.   

 

 

 

Figure XII.76.  Comparison of proposed approaches with baselines of sCSD and SHORE-FOD 

across all pairs of WM voxels between the scans of site ‘A’ and ‘B’ for each subject. A) Subject 1 

B) Subject 2 and C) Subject 3  
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will be able to better train and evaluate data-driven approaches. 

 

 

 

 

 

 

 

Figure XII.77.    We focus on the ROI of left side frontal lobe of WM. The glyphs depict the FOD’s 

derived from baselines of sCSD, SHORE-FOD and the proposed NNSHORE-DL. The underlay 

depicts the scalar measure of ACC. A & D) sCSD reconstructed on site ‘A’ and ‘B’. B & E) 

SHORE-FOD reconstructed on site ‘A’ and ‘B’. C & F) NNSHORE-DL reconstructed on site ‘A’ 

and ‘B’. 
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13. Deep Learning Estimation of Multi-Tissue Constrained Spherical Deconvolution with Limited 

Single Shell DW-MRI 

 

This chapter has been adapted from the published work in [221]. 

13.1. Introduction 

Diffusion-weighted magnetic resonance imaging (DW-MRI), a non-invasive in-vivo MR imaging 

technique captures unique information regarding the microstructure of the human brain [222]. One of the 

first microstructure analysis techniques was diffusion tensor imaging (DTI) [35]. However, DTI has been 

limited by only recovery of fiber populations in a primary direction. Multiple advanced acquisition schemes 

with advanced reconstruction methods were proposed to detect crossing fiber populations [22]. The 

advanced reconstruction techniques are collectively referred to as high angular resolution diffusion imaging 

(HARDI) methods [18]. A primary application of reconstructed microstructure is for constructing the white 

matter (WM) neural pathways of the human brain also known as tractography [182]. Advanced tractography 

methods, such as high definition fiber tractography (HDFT) [40], have been applied for utilized for 

neurosurgery guidance. A caveat is that HDFT requires multi-shell DW-MRI (multiple diffusivity values) 

acquisitions which are expensive and take much more time as compared to a single shell acquisition [40]. 

This work is focused towards recovery of HDFT with single shell DW-MRI acquisitions (Figure XIII.78).  

There are multiple methods that can be used as a prior for HDFT such as generalized q-sampling 

(GQI) [223] and multi-tissue constrained spherical deconvolution (MT-CSD) [224] both of which are 

microstructure reconstruction methods. This work tackles the problem of microstructure reconstruction 

only using the single shell DW-MRI acquisitions. There are a couple of existing approaches that have shown 

the possibility of recovery of tissue volume fraction from single-shell data. The first poses it as a non-

negative factorization problem [225]. The second is a deep learning approach which directly takes the input 

of diffusion weighted images for fiber orientation distribution function (fODF) reconstruction [226]. The 

first approach has only been shown to reconstruct microstructure while the second one is restricted in terms 
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of broader applicability as it is tied to input of diffusion weighted images directly and does not include a 

joint estimation of tissue fraction. Herein, we propose to use deep learning techniques which ensure broader 

applicability by the usage of spherical harmonics and we explore the differences between using single voxel 

and cubic patches for reconstruction of MT-CSD. 

Deep learning has become a powerful tool for learning non-linear mappings between a set of inputs 

and outputs where a non-linear mapping exists [166]. Although deep learning has been quite useful in other 

medical imaging domains, it is still in its nascent stages for DW-MRI. Recent work has been seen in 

microstructure estimation, harmonization and k-space reconstruction [85-87]. For this specific problem, we 

explore two different network architectures for recovery of MT-CSD microstructure. The first approach is 

a residual deep neural network (ResDNN) [25] of five layers with a residual block in between and takes 

input of a single voxel in the form of spherical harmonics (SH) while providing the output of fODF derived 

from MT-CSD which are also in the form of SH. The second network takes an input of a cubic patch of 

voxels and makes the prediction of the center voxel thus using spatial information as features for the deep 

learning network. This network has five convolutional layers with a residual block further consisting of 

convolutional layers (ResCNN). This network is inspired from previous work [66]. 

The methods proposed have been trained, validated, and tested on the human connectome dataset 

[227]. Deep learning networks were trained on 5 subjects and validated on 2. While 8 subjects were 

withheld for testing. The deep learning methods were also compared with the silver standard of super-

resolved constrained spherical deconvolution (sCSD) [228] as a baseline. All comparisons were made with 

the MT-CSD being considered as the ground truth. 

13.2. Data & Methods 

13.2.1. Human Connectome Project Data 

The human connectome project (HCP) dataset has an advanced acquisition scheme with three 

different diffusivity values 1000, 2000 and 3000 s/mm2. All three diffusivity values are acquired with 90 

gradient directions with interspersed b0’s. The pre-processed dataset provided was used for this work. All 
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diffusion weighted volumes were normalized by the mean b0 as a standard pre-processing step. A total of 

15 HCP subjects with the above acquisition scheme were used (Training: 5, Validation: 2, Testing: 8).  

For training the proposed networks only the single shell of diffusivity value at 1000 s/mm2 was 

used. The diffusion weighted volumes of that specific shell were fitted to 8th order SH which will be utilized 

as input training data for the network. Spherical harmonics in context of DW-MRI have become a standard 

way for representation of data with minimal representation error [33]. The output for the network which 

can be broken into two different parts 1.) SH coefficients of the fODF (8th order) which are reconstructed 

using MT-CSD on all three shells (1000, 2000 & 3000 s/mm2) of DW-MRI data. 2.) Tissue volumes 

fractions which are scalar values for cerebrospinal fluid, apparent fiber density (white matter fraction), gray 

matter fraction. 

13.2.2. Deep Learning Networks 

The ResDNN is inspired from prior work and consists of five full connected dense layers (Figure 

XIII.79). The number of neurons used per layer are x1: 400, x2: 45, x3: 200, x4: 45, x5: 200. The residual 

block is formed using the addition of the x2 and x4 layer. All layers are activated using ‘relu’. The inputs 

are a vector of 1x45 coefficients of 8th order DW-MRI SH. The outputs are 1x45 fODF SH coefficients at 

8th order with an additional 1x3 scalar vector which represents the tissue fraction volume. To adapt the use 

of fractional volumes as output we use a modified loss function which is defined in (1) where m denotes 

the number of samples ytrue is the set of fODF SH derived from MT-CSD ypred is the set of SH predictions 

made by ResDNN Ptrue denotes the vector of tissue fraction value while Ppred denotes the predicted vector of 

tissue fractions. 
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The ResCNN architecture stems from prior work where the network was originally intended for a 

harmonization problem. The network takes an input of 3x3x3x45 where the cubic patch consists of 8th order 

DWMRI SH coefficients for each voxel in the cubic patch (Figure XIII.79). The output is the same as 

defined for the ResDNN. This network architecture is divided into three parts, its core part being the residual 

block which consists of multiple functional units (each functional unit is dedicated to a specific order of 

SH). The residual block can be stacked multiple times keeping the spatial dimensions intact. For our purpose 

we use a single block. The residual block is connected with two more convolutional kernels which is finally 

connected to a dense layer for predicting the center voxel of the cubic patch. All layers are ‘relu’ activated. 

We use the same modified loss as described above for ResDNN. 

13.2.3. Evaluation Criteria 

To compare the predictions of the proposed deep learning methods we use angular correlation 

 

Figure XIII.78. The top row describes the pipeline of obtaining microstructure information from 

multi-shell DW-MRI which in turn can be used to perform high definition fiber tractography. The 

bottom row describes the problem that we tackle for this work where we explore of how to perform 

high definition fiber tractography using only single-shell DW-MRI data. 
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coefficient (ACC) [15] to evaluate the similarity of the prediction when compared with the ground truth 

estimate of MT-CSD. ACC is a generalized measure for all fiber population scenarios. It assesses the 

correlation of function of all directions over a spherical harmonic expansion. In brief, it provides the 

estimate of how closely a pair of fODF’s are related on a scale of -1 to 1 where 1 is the best measure. Here 

‘u’ and ‘v’ represent sets of SH coefficients. 
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    Eq. 32 

The tissue fraction volumes are assessed using mean squared error (MSE) per voxel and per tissue 

fraction. MSE has been evaluated over the entire brain volume in encompassing all regions of the brain. 

13.3. Results 

We observe that ResCNN shows the most skewed distribution towards high correlation (Figure 

XIII.80 A) followed by ResDNN and sCSD. The mean ACC values across all 8 subjects were found to be 

0.67, 0.72 and 0.64 for ResCNN, ResDNN and sCSD. Following subject wise ACC distributions (Figure 

XIII.80 B, C, D) for the entire brain volume we can see that ResCNN shows the most skewed distribution 

towards higher ACC for all subjects, followed by ResDNN and sCSD. Non-parametric signed rank test for 

all pairs of distributions were found to be p < 0.001. The root mean squared error across all pairs voxels for 

all subjects was found to be sCSD: 0.0323, ResDNN: 0.0168, ResCNN: 0.0124. Visually, the spatial map 

(Figure XIII.81) of the middle axial slice for a single subject indicates that sCSD has high ACC for WM, 

while ResDNN shows improvement in the circulatory regions between WM and GM with ResCNN 

showing the highest ACC. All three methods show low ACC for CSF and GM regions. 
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The RMSE for CSF and GM is lower for ResDNN as compared to ResCNN (Table XIII.8). While 

ResCNN only exhibits lower RMSE for only WM. The spatial maps for the middle axial slice of the same 

subject indicate higher error (MSE) of CSF and GM for ResCNN as compared to ResDNN. However lower 

MSE can be observed for WM for ResCNN as compared to ResDNN. Non-parametric signed rank test 

between distribution of MSE errors for the pair per tissue fraction were found to be p < 0.001.  

 

Table XIII.8  RMSE of all tissue fraction volumes. 

Method RMSE CSF  RMSE GM RMSE WM  

ResDNN  0.0135 0.0305 0.0264 

ResCNN 0.0173 0.0320 0.0249 

 

 

Figure XIII.79. Top row describes the input, the architecture and hyper-parameters of ResDNN 

and then the output of the network with the loss function. The bottom row descirbes the same for 

ResCNN architecture. 
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13.4. Discussion 

In this work, we depict a full pipeline that begins from scanner acquisition to HDFT reconstruction 

using only a single shell DW-MRI acquisition. Deep learning on SH coefficients allows for generalizability 

and applicability when other scanner acquisitions need to be used for HDFT reconstruction. The deep 

learning approaches proposed for this work well and could be further improved by exploration of more 

intricate deep learning architectures and larger training datasets. While we have shown the proposed method 

to be applicable at a clinical diffusivity value, further validation on reduced numbers of gradient directions 

is necessary. 

To do a full 3 shell by 90 direction scan takes ~40 minutes.  The deep learning can potentially 

provide usable data for HDFT quality scans at ~5 minutes for a diffusivity value of 1000 s/mm2 with 32 

gradient directions. Clinical MRI use of advanced methods is very limited due to longer scan acquisition 

time.  Reducing scan time by a factor of 8 could set the conditions for clinical use of HDFT quality scanning 

to grow dramatically perhaps several orders of magnitude. 

 

Figure XIII.80.  Spatial angular correlation coefficient maps of the middle axial slice of the brain 

of a single subject. A) fODF predictions from sCSD. B) fODF predictions from ResDNN. C) fODF 

predictions from ResCNN  
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Figure XIII.81. A) Distribution of ACC for all voxels of withheld subjects using sCSD, ResDNN & 

ResCNN predicted fODF when compared with fODF of MT-CSD. B) Subject wise distribution of 

ACC for sCSD. C) Subject wise distribution of ACC for ResDNN. D) Subject wise distribution of 

ACC for ResCNN.   

 

 

 

Figure XIII.82.  Spatial maps of mean squared error between tissue fraction estimates of ResDNN 

and ResCNN with estimates of MT-CSD. 
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Figure XIII.83.  Tractography reconstruction of HDFT for the tract corpus callosum using A) 

ResDNN C) ResCNN E) MT-CSD. Reconstruction of HDFT for tract arcuate using B) ResDNN D) 

ResCNN and F) MT-CSD. 
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Figure XIII.84.  Crossing fiber region of interest of fODF on a middle coronal slice reconstruction 

shown for A) sCSD, C) ResDNN, D) ResCNN and B) MT-CSD. 
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14. Recovery of Spherical Mean Technique for Single Shell DW-MRI 

 

14.1. Introduction 

Clinical use of diffusion-weighted magnetic resonance imaging (DW-MRI) has rapidly grown and 

its usage has increased for diagnosis of neurological diseases and surgical planning [40]. Diffusion imaging 

and microstructure models allow for estimation of tissue properties such as intra/extra cellular volume 

fraction (ICVF) and intra/extra diffusivities and structural connectivity for the in-vivo brain [222]. Recent 

development of scanner hardware enables high quality acquisitions of DW-MRI (high angular and radial 

sampling) [229]. Microstructure models are developed with the assumption of dense sampling of DW-MRI 

(for example at least 2 diffusivity shells).  

Yet, typical clinical DW-MRI acquisition have only a single shell of diffusion measurement [10]. 

This is because the typical clinical scan is limited to a less than a ten-minute scan due to substantial 

reductions in reimbursements for the brain scan. A typical half our clinical slot involves structural, T2 and 

perhaps diffusion scanning, localizers and patient setup and removal within the 30 minutes slot. The 

Connectome scan was 40 minutes on a research dedicated scanner.   

To have wide clinical use high resolution diffusion scanning must be done in a far shorter time. 

The primary motivation of this work to explore the possibility of estimating microstructure methods from 

a short duration single shell data and produce data through the use of deep learning methods to create near 

Connectome multi-shell quality data to set the stage for wide use of advanced diffusion tractography in 

clinical scans. In the paper we show that spherical mean technique (SMT) [17] a popular microstructure 

estimation technique, can be estimated using a single shell of data using machine learning. 

Diffusion models can be segregated into two broad categories: 1) Geometric information such as 

fiber tracking [47] and tissue anisotropy. These are estimated using models such as Q-ball imaging (QBI), 

super-resolved constrained spherical deconvolution (sCSD), diffusion orientation transform (DOT), multi-

tissue CSD [224]. 2.) Microstructural based models that estimate tissue properties such as neurite 
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orientation dispersion and density imaging (NODDI), SMT, AxCaliber, CHARMED, LEMANDE etc [16]. 

The geometric information in each voxel can be estimated using high angular sampling with single shell 

acquisitions. However, to estimate tissue microstructural properties, one requires multi-shell acquisitions 

with high b-values [16]. The classical diffusion models are derived based on mathematical model of 

diffusion process in biological tissue with complex geometries. Such models necessitate multiple b-values 

and therefore cannot be directly modelled using single shell (typically clinical) data. Yet, such a non-linear 

mathematical model can be learned using data-driven techniques specifically deep learning, which can 

enable the possibility to use these techniques clinically. Deep learning (DL) has most widely been used for 

semantic segmentation of different organs [230] for the human body and gradually it has trickled into 

inference of geometric tissue structure [25], surface parcellation [231, 232], registration [233], et cetera. 

In brief, the method proposed in this paper is a pipeline that estimates MT-CSD and tissue volume 

fraction using a single shell. The MT-CSD tissue fraction volumes predicted from the trained models were 

used as inputs with SMT ground truth to train secondary networks. We present results for single voxel-

based and patch-based DL regression techniques. 

14.2. Methods 

The section is segregated into two sub-sections of data pre-processing and the proposed method. 

14.2.1. Data & Pre-processing 

Preprocessed human connectome project (HCP) data were used [227]. A total of 15 subjects were 

utilized for the study of which 5 were used for training, 2 for validation and 8 for testing. The HCP 

acquisition is consistent across all subjects: 90 gradient directions per b-values: 1000, 2000 and 3000 s/mm2.  
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MT-CSD [224] ground truth was reconstructed using all data (three shells). The MT-CSD jointly 

estimates fiber orientation distribution function (fODF) and tissue volume fractions for white matter (WM), 

grey matter (GM) and cerebrospinal fluid (CSF). SMT ground was reconstructed using all data as well. 

Spherical harmonics (SH) are a well-known representation of single shell DW-MRI data [33]. For input 

generalizability 8th order even SH (45 coefficients) were fitted to b-value of 1000 s/mm2 utilizing all 90 

gradient directions. Regularized linear least squares were used for the fitting of SH coefficients. 

14.2.2. Methods 

The proposed approach is segregated into two stages (Figure XIV.86ure 2). First, we train a model 

on single shell DW-MRI data to recover tissue volume fractions estimated via MT-CSD. Second, we train 

the secondary models to predict SMT metrics using predicted tissue volume fractions from stage 1.    

 

 

Figure XIV.85. Advanced microstructure methods rely on the assumption of the existence of multi-shell 

DW-MRI data. The proposed method is focused towards recovery of advanced measures such as spherical 

mean technique using single-shell DW-MRI at a clinical diffusivity value. 
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14.2.3. Primary Deep learning Networks 

The ResDNN network architecture from [25] was originally used to reconstruct histology derived fODF. For 

this work, the loss function was modified to incorporate a joint estimation of tissue volume fraction of MT-CSD. The 

loss function is defined as follows: 

𝑳𝟏 =  
𝟏

𝒎
∑ 𝜶(𝑭𝒕𝒊

− 𝑭𝒑𝒊
)𝟐 + 𝜷 (𝑷𝒕𝒊

−  𝑷𝒑𝒊
)𝟐𝒎

𝒊=𝟏    Eq. 33 

‘m’ represents batch size, ‘F’ is the MT-CSD fODF ground truth set of SH coefficients, ‘t’ and ‘p’ represent 

true and predicted respectively, ‘P’ is the vector of tissue fraction volumes and α, β are hyper-parameters for the loss 

function terms. They were both set to 1 for this experiment. Inputs were a single voxel SH coefficients (1x45) and 

outputs were fODF (1x45) and tissue volume fractions (1x3). 

ResCNN network follows the architecture from [66] and was originally proposed as network for 

harmonization of DW-MRI data across different sites. This network forms residual blocks per order of SH. Hence for 

our work it had 4 residual blocks dedicated to 2nd, 4th, 6th and 8th order SH coefficients. SH coefficients are 

orthogonal to each other and hence the above information was utilized to the advantage. The loss function was kept 

the same as above. Inputs were a cubic patch of 3x3x3x45 SH coefficients, and the outputs were tissue fraction 

volumes (1x3) and fODF (1x45) of a single voxel. 

14.2.4. Secondary Deep learning Networks 

The secondary deep learning networks were used for the estimation of SMT derived metrics of 

axial diffusivity (AD), transverse diffusivity (TD) and intra-cellular volume fraction (ICVF). They follow 

the architecture of the primary deep learning networks. For ResDNN only the inputs (1x3) and outputs 

(1x3) were modified. For ResCNN as there was no usage of SH coefficients only a single residual block 

was kept. The loss function that was used for both the secondary networks is defined below: 

𝑳𝟐 =  
𝟏

𝒎
∑ 𝜿(𝒙𝒕𝒊

− 𝒙𝒑𝒊
)𝟐 + 𝝂(𝒚𝒕𝒊

−  𝒚𝒑𝒊
)𝟐 +  𝝆(𝒛𝒕𝒊

−  𝒛𝒑𝒊
)𝟐𝒎

𝒊=𝟏    Eq. 34 

‘x’, ‘y’, ‘z’ represent AD, TD and ICVF respectively. ‘t’ and ‘p’ represent true and predicted. κ, ν 

and ρ are weighted hyper-parameters. Due to the vast differences of scale for AD, TD vs ICVF there was a 

need to estimate κ, ν empirically. ICVF ranges on a scale of 0-1, while AD and TD range on a scale of 0-

0.003. To ensure the physical nature of AD and TD we chose to estimate hyper-parameters instead of 

normalizing them on a scale of 0-1. 
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An empirical step wise search for weights of κ, ν was performed using a single training subject and 

validation subject in the range of (100 – 1100) at steps of 10. The best validation scores were estimated at 

1020 for κ, ν both. The estimated hyper-parameter value was used for both ResDNN and ResCNN for the 

final training and overall results. 

14.3. Results 

Observing the quantitative results (Figure XIV.87), the ResCNN depicts lower RMSE for all three 

SMT metrics. Notably, the difference in the RMSE distribution is highest for TD. Non-parametric signed 

rank test between the two distributions showed statistical significance (p< 0.001). The RMSE for all 

subjects for ResDNN vs ResCNN are ICVF: 0.0893 vs 0.0768, AD: 0.0004 vs 0.0003 mm2/s, TD: 0.0003 

vs 0.0001 mm2/s. Qualitatively (Figure XIV.88) ResCNN predictions look very similar to the ground truth 

upholding the spatial context. The RMSE for ICVF is low in CSF but higher in other WM regions. TD 

shows lower RMSE as compared to AD. 

14.4. Discussion & Conclusion 

The results indicate a recovery of SMT based metrics using only single-shell DW-MRI data. 

However, the RMSE is indicative of contextual anatomical based error for specific regions of interest. This 

can be indicative that more training data would be useful and also at the same time handling class imbalance 

when training such models. Such a recovery without radial sampling has so far been impossible with 

classical diffusion models. SMT has also been learned using linear short term memory models however 

they were limited by usage of two shell DW-MRI data as input [234]. An alternative explanation of the 

anatomical associations of error is that these regions represent the additional information that is present in 

multi-shell data that is not present (even when considering spatial context and prior information). 

Consideration of the differences between learned parameters with limited data and parameters estimated 

with all data may provide a fruitful area of biomarker exploration. 

We have a proposed a novel approach to reconstruct SMT derived metrics using only a single shell 

of data at the cost of minimal to moderate error at specific locations. Relatively, the deep learning method 
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can recover microstructure information with a scan acquisition of 13 minutes approximately. 

 

 

 

 

Figure XIV.86. Two stage deep learning framework where the primary stage is for learning the non-linear 

mapping of orientational fractional estimates. The fractional estimates are used as input for the second 

network to learn the non-linear mapping to predict spherical mean technique metrics. 

 

Figure XIV.87. Distribution of root mean squared error between predictions and ground truth of all voxels 

of all subjects for both methods ResDNN and ResCNN. Left: AD RMSE, Center: TD RMSE, Right: ICVF 

RMSE   
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Figure XIV.88.  Spatial plots of a middle axial slice of a single subject. The columns depict AD, TD and 

ICVF respectively. The first row shows the ground truth derived from SMT using all data. The second row 

shows predictions made using only a single shell of data. The third row depicts spatial root mean squared 

error for the three metrics respectively.  

 

 



200 

 

15. Conclusion & Future Work 

 

15.1. Conclusion 

The primary aspiration for this dissertation is to lay out the groundwork for the integration between 

DW-MRI and histology in terms of microstructure modelling. There are multiple rationales behind this 

primary aspiration of designing a wave of data-driven methodologies for DW-MRI microstructure tissue 

modelling. Firstly, the microstructure tissue models were primarily validated on phantom based acquisitions 

where even though the DW-MRI signal measurements are not ‘synthetic’ but the actual device as a phantom 

is ‘synthetic’ and it is biased to state that it can perfectly resemble the biological tissue properties of a 

human brain in-vivo. Secondly, lack of specificity and reproducibility among the many methods that model 

the tissue properties were always observable and there was a gap for improving sensitivity, specificity and 

reproducibility. This observation has been made through not only histology-based validation but also 

through multiple empirical reproducibility studies.  

The empirical characterization performed as a part of this dissertation was unique in the way of 

large-scale single subject reproducibility datasets and the analysis performed upheld an observation of low 

inter-method agreement for microstructure modelling (Chapter II, III, IV and V). We utilized the aspect of 

histology-based validation as a forefront for establishment of data-driven machine learning methodologies 

for integration of DW-MRI with histology. The proposed methodologies paved the path for an increased 

specificity for histology driven validation which are a step closer to the biological tissue model complexity 

relative to phantom based validations. The new surge of data-driven methods holds key insights for a gain 

in information provided to neuro-clinicians, radiologists etc. 

The gain in information from data-driven methodologies were proposed in different capacities for 

applicability to multiple domains of problems that exist across the spectrum of DW-MRI tissue 

microstructure modelling. The primary method is a generalized reconstruction of geometric microtissue 

structure that could map an in-vivo DW-MRI signal to ex-vivo microscopic based 3D histology 
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microstructure (Chapter VI, VII, XII). Due to higher specificity in terms of histology-based validation the 

information reconstructed is better validated and are more likely to reduce false positives for tractography 

based algorithms. Null-space variants of the same method (Chapter VI and VII) reconstruct harmonized 

microstructure across multiple scanner sites invariant to hardware specifications of the MRI scanners 

(Chapter VIII and IX). Harmonized reconstructions are more apt towards studies that are focused towards 

understanding effects on multiple populations where scanner hardware effects could lead to biased results, 

and usage of harmonized methodologies would cause a reduction in the bias.  On a parallel note the data-

driven methodologies promoted inter-modal learning between 2D microscopic imaging and 3D DW-MRI 

imaging where neighborhood information is being transformed to 3D microstructural information (Chapter 

X and XI). The inter-modal methodologies can provide 3D relevant information from microscopic imaging 

where there is no existence of DW-MRI information. The more advanced DW-MRI acquisition schemes 

where two or more shells of information are being acquired capture more detailed information. Due to 

increase in length of acquisition times novel data-driven methodologies are proposed that can reconstruct 

similar quality microstructural measures from single shell information (Chapter XIII, XIV). 

In brief the data-driven methodologies have shown improvement for tract-based reconstructions 

and are applicable towards studying prognosis and diagnosis for neurological disorders and also for pre-

surgical neurosurgery guidance information (Chapter VI, VII, XII, XIII, XIV). While the harmonizing and 

inter-modal data driven methodologies are applicable towards research studies for longitudinal, multi-site 

studies and when there is lack of DW-MRI acquisitions. 

Analysis of brain microstructure is challenging for the white matter because of inconsistencies 

between different HARDI methods. The challenges are further elaborated by factors of multiple scanner 

sites, scanner hardware upgrades and variational longitudinal study designs. Moreover, because of 

inconsistencies of different HARDI methods tractography based analysis studies also get affected. Briefly, 

summarized are the contributions proposed in this dissertation and the successive section covers the new 

possible ventures for exploration based on the contributions. 

Summarized contributions: 
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Contribution 1: Empirical characterization of reproducibility of microstructure 

Contribution 2: Novel methods to increase precision and reproducibility of microstructure using single 

shell DW-MRI acquisitions 

Contribution 3: Combining DW-MRI with 2D imaging to predict 3D measures from 2D imaging. 

Contribution 4: Reconstruct reproducible and precise microstructure using multi-shell DW-MRI 

acquisitions. 

Contribution 5: Multi-shell micro-architecture reconstruction using single shell DW-MRI imaging. 

The successive sections describe the different kinds of future applicability on the grounds that this 

dissertation has developed. 

15.2. Applicability of Proposed Contributions 

15.2.1. Data-driven microstructural reconstructions 

The aperture of data-driven modalities is a unique perspective that can drive reproducible 

microstructural reconstructions. The proposed idea that combines histology microstructural measures from 

a 3D perspective with DW-MRI is the first outlook that has been presented towards the scientific 

community engaged in DW-MRI research. Data-driven reconstruction methods for both single shell 

(Chapter VI, VII) and multi-shell DW-MRI (Chapter XII, XIII) have not only shown a higher 

reproducibility and specificity as compared to classical methodologies but also a wider preface of 

applicability towards tractography. Specifically, where the tractography is intended for pre-neurosurgical 

guidance information. Pilot studies have also indicated a similar observation.  

15.2.2. Multi-site scanner harmonization  

Multiple approaches have been proposed for harmonization of DW-MRI but in different contexts 

and specifically they have not been done so in terms of microstructural measures. The advocated 

contributions towards data-driven harmonization are the first of a kind of data-driven harmonization 

methodologies for DW-MRI microstructural measures. The harmonized reconstruction methods have been 
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shown to be generalizable to scan acquisitions from unseen/unknown scanner sites. 

Harmonization methods such as these can be directly applied for a continued analysis of multiple 

populations of acquisitions that have been acquired at different scanner sites and enable a harmonized 

reconstruction of tracts based on microstructural reconstructions. Also, the harmonization methods were 

tested across scanners of different hardware capabilities such as 1.5T vs 3T. The methods are particularly 

useful for longitudinal analysis of data where the scanners often undergo hardware upgrades as the 

acquisitions are quite often separated by a few years in between. 

15.2.3.   Inter-modal data-driven methodologies 

This dissertation advocates methods that can reconstruct 3D microstructural measures from 2D 

microscopic imaging by utilization of spatial neighborhood information from the 2D images. The 

methodology depicted is preliminary and has opened a crevice for the grounds of 3D reconstructions from 

2D images. These kinds of methods can be used for studying microstructural measures where there is a lack 

of 3D microstructural measures due to lack of DW-MRI acquisitions. Although the results have been 

depicted on animal datasets, these methods can be extended towards applicability on cadaver-based tissue 

where there is a lack of DW-MRI acquisition.  

Also, one might hypothesize to tackle the problem in the reverse direction, where the high 

resolution 2D image can be reconstructed from the in-vivo 3D DW-MRI imaging. 

15.2.4. A Collection of data-driven methods 

The primary resemblance for all the proposed methods is that they are of a data-driven nature and 

are inter-woven as such. They have collectively served as an inspiration for the successive contributions in 

this dissertation. The collective phase of all the data-driven methods under a common moniker have a high 

applicability in varied contexts and problems as mentioned in the prior sections. Nevertheless, at the same 

time based on these methods; also exists a wider cavity that thoroughly needs to be explored further for the 

methods to be applicable in a succinct and improved manner. 

The consecutive section indicates of future ideas worthy exploring based on the work performed 
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as a part of this dissertation.  

15.3. Future Ventures for Exploration 

15.3.1. Ventures for data-driven methodologies for DW-MRI 

Based on a thorough empirical validation for microstructural measures the work in this dissertation 

showed the tremendous applicability for a new wave of data-driven models for DW-MRI to model the 

microstructural measures (Contributions 1 and 2). However, the proposed contributions only show a tiny 

fraction of the upcoming possibilities for DW-MRI microstructure modelling. In brief, the following sub-

areas of microstructure modelling still need to be addressed: 1.) Utility of spatial neighborhood information 

for modelling. 2.) The premises of for data-driven harmonization can be extended to multiple facets of 

clinical studies such as longitudinal studies, disease progression etc. 3.) The contributed data-driven 

methodologies are dependent upon ‘unconstrained’ deep learning networks, the term ‘constrained’ is an 

exciting area of exploration. 

The primary approaches proposed in contribution 1 and 2 [19, 25, 41, 61, 129, 164, 179, 187] 

typically utilized a single 3D voxel-based input. Although data-driven, the methodology of a single voxel-

based input is similar to most of the classical approaches [95, 105, 142, 216, 224, 235, 236] that model the 

DW-MRI signal to microstructural measures. The spatial neighborhood information generally has been 

quite aggressively explored for other imaging modalities such as segmentation for T1 MRI brain volumes 

[237-239] and even for deep learning based registration [233]. However, to a large extent the spatial 

information remains unexplored for DW-MRI microstructure modelling and currently there is no existence 

of an evaluation of how much spatial information gain is presented on incrementing or decrementing the 

spatial patch dimensions. Spatial information gain could also be directly utilized for addressing future 

problems for data-driven harmonization specifically for longitudinal studies where the neighborhood 

information could contain information about temporal artifacts or as such. 

There are only a few data-driven harmonization techniques [66, 67, 187] so far. The prior proposed 

methods [66, 67] and including our contributions [164, 179, 187] only address harmonization in terms of 
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different scanner sites and varied acquisition schemes. It should also be noted that even the proposed 

methods have only been validated on a maximum 3-4 different scanning sites. Considering the real-world 

scenario, the problem is much wider as there more than 4 scanner manufacturers which manufacture various 

kinds of scanners with different hardware. Another lacking area of contribution is that these harmonization 

methodologies are not directly applicable towards harmonizing data of clinical studies for longitudinal 

aging or disease progression. Temporal affects are still widely unaccounted for when conducting statistical 

analysis for long duration clinical studies. The shift from traditional approaches to data-driven approaches 

is eminent and the current use of deep learning has been heavily incorporated in prior harmonization data-

driven approaches [66, 67, 179, 187]. However, the deep learning networks in general have been framed as 

non-convex optimization objectives. 

A typical deep learning model consists of multiple convolutional and fully connected layers. The 

optimization algorithms such as stochastic gradient descent, that channel the backpropagation is based on 

first order differentials of standard loss functions that are only ‘indirectly’ linked with the layers. However, 

the alternative hypothesis is that the layers of the deep learning network can be constrained to the domain-

specific data. The constraining of deep learning layers is a recent development [240] and has not still been 

explored in most of the wide fields of NLP, Genomics and medical imaging etc. In general, medical imaging 

data has its own idiosyncrasies and domain specific constraints. These specific constraints need to be 

discovered and applied to push for an overall effective data-driven field of medical imaging in general and 

specifically for DW-MRI. 

15.3.2. Ventures for 2D to 3D microstructural measures 

The contribution 3 in this dissertation showed the wide possibilities of the recovery of 3D 

microstructural measures from super-high resolution 2D microscopic histology imaging. Although still 

data-driven approach at its core, the contribution spawns’ multiple other problems that can be utilized for 

information gain from DW-MRI. However, the discovery that 3D reconstruction is possible in brief lays 

out the following other grounds: 1.) Reconstruction of tractography based streamlines from high resolution 
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2D microscopic imaging 2.) Reconstruction of high-resolution microscopic histology from 3D DW-MRI 

brain volumes. 

There is sparse work on reconstruction of 3D microstructural measures from 2D microscopic 

histology imaging. The proposed work in this dissertation (contribution 3) is probably one of the first few 

proposed approaches in the literature [189]. Achieving tractography based reconstruction from 2D histology 

has so far been an unachievable feat. Yet, the validation for the 3D microstructural measures are closely a 

direct factor on tract-based reconstruction. Variation of spatial information patch for 3D microstructure 

reconstruction has also not been validated till date. Vice-versa, this open problem can also be framed the 

opposite way (3D DW-MRI to 2D High resolution microscopic imaging) for clinical information feasibility. 

High resolution microscopic imaging holds key information for pathology related studies and such a 

reconstruction has not been performed till date. 

15.3.3. Ventures for DW-MRI Multi-shell learning 

The work shown as a part of this dissertation (contribution 4 and 5) discovered the learning 

manifolds for data-driven methods of multi-shell DW-MRI. Although, multi-shell scanning acquisitions 

are moderately found in clinical studies; they cannot be declared a standard norm (for e.g single shell 

clinical acquisitions). The current progress is indicative of the fact that acquisition time for multi-shell scans 

is being reduced with advanced scanner hardware. The multi-shell acquisitions allow for more advanced 

and complex microstructural measures that are more sensitive to the underlying tissue properties of a voxel 

internally. The contribution 4 and 5 opened up the possibilities for the following in brief: 1.) Tractography 

based on multi-shell DW-MRI data driven based reconstruction. 2.) The possibility of recovery of the ‘many 

many’ DW-MRI multi compartment models from a single-shell of information. 

15.4. Concluding Notes on Future Work 

There are multifarious possibilities for applicability when utilizing data-driven methodologies. 

DW-MRI as a modality is the only one so far that holds information to model intra-voxel tissue properties. 

This dissertation is a critical step towards making the DW-MRI measures more specific, reproducible and 
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information towards pre-neurosurgical guidance information.
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