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Purpose: Chemical exchange saturation transfer (CEST) is an MRI technique  
sensitive to the presence of low-concentration solute protons exchanging with water. 
However, magnetization transfer (MT) effects also arise when large semisolid mol-
ecules interact with water, which biases CEST parameter estimates if quantitative 
models do not account for macromolecular effects. This study establishes under what 
conditions this bias is significant and demonstrates how using an appropriate model 
provides more accurate quantitative CEST measurements.
Methods: CEST and MT data were acquired in phantoms containing bovine serum 
albumin and agarose. Several quantitative CEST and MT models were used with 
the phantom data to demonstrate how underfitting can influence estimates of the 
CEST effect. CEST and MT data were acquired in healthy volunteers, and a two-
pool model was fit in vivo and in vitro, whereas removing increasing amounts 
of CEST data to show biases in the CEST analysis also corrupts MT parameter 
estimates.
Results: When all significant CEST/MT effects were included, the derived param-
eter estimates for each CEST/MT pool significantly correlated (P < .05) with bovine 
serum albumin/agarose concentration; minimal or negative correlations were found 
with underfitted data. Additionally, a bootstrap analysis demonstrated that signifi-
cant biases occur in MT parameter estimates (P < .001) when unmodeled CEST data 
are included in the analysis.
Conclusions: These results indicate that current practices of simultaneously fitting 
both CEST and MT effects in model-based analyses can lead to significant bias in all 
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1  |   INTRODUCTION

Chemical exchange saturation transfer (CEST) is a MRI 
method based on the exchange of magnetization between 
solutes and water. The protons associated with small, mobile  
solutes resonate at specific frequency offsets to water, but 
are difficult to detect directly using MRI, although some 
are in constant, direct chemical exchange with water.1 CEST 
contrast is generated by selectively saturating the labile pro-
tons of mobile solutes using narrow-bandwidth radiofre-
quency (RF) irradiation. This saturation is then exchanged 
with water protons through direct chemical exchange of pro-
tons, resulting in an attenuation of the water signal, allow
ing indirect evaluation of the biochemical constituents of 
the tissue of interest.2,3 Importantly, the magnitude of the 
attenuation of the water signal is related to both the chemi-
cal exchange rate, which has been correlated with pH,4 and 
the concentration of the exchanging solute. CEST imaging 
is thus a unique imaging technique which can be used to 
investigate how pathology perturbs the underlying bio-
chemistry and pH balance in the body and has been used to 
study pathologies such as stroke,5-8 cancer,9-12 and multiple 
sclerosis.13,14

A major confound in CEST imaging is the magnetiza-
tion transfer (MT) effect. This effect arises from protons 
attached to immobile, semisolid macromolecules, such as 
myelin15,16 in the central nervous system. The MT effect is 
characterized as a broad, asymmetric saturation lineshape 
which introduces significant saturation effects over the  
entire CEST spectrum.4,17 This effect can bias and over-
whelm calculations of the CEST effect, such as the MT 
ratio asymmetry (MTRasym) measurement that is routinely 
performed in CEST analyses.2 Increasingly, more detailed 
models are being implemented to quantify CEST effects and 
separate different contributions to the spectrum. However, 
the influence of the MT effect on these analyses has not 
been systematically explored. While several studies have 
investigated the MT effect in CEST imaging,3,18,19 most 
often the MT effect is removed as a confound,20-22 despite 
it having radiological significance in its own right.11,23-29 
Therefore, eliminating this contrast mechanism in favour of 
CEST may also eliminate valuable information about the 
tissue under investigation.

Quantitative MT (qMT) imaging has been used to  
investigate pathologies with underlying macromolecular 
change by modeling the MT effect using a super-Lorentzian  
lineshape.15,16 If both labile and macromolecular constit-
uents are affected, collecting both MT and CEST data 
may provide greater insight into the underlying patholog-
ical processes than either method would alone. Previous 
studies have either quantified the MT effect using a qMT 
model, and then applied the qMT parameter estimates into 
a CEST analysis,11,30 or simply included the MT effect as 
an additional pool in a multi-pool Lorentzian-lineshape 
analysis,31 preventing comparison of these results with 
existing qMT literature. To the authors’ knowledge, only 
one quantitative analysis method, derived from the Bloch-
McConnell equations, has been developed that quanti-
tatively estimates both the MT and CEST parameters 
simultaneously.32-35 Unfortunately, this methodology has 
not yet been used to explicitly measure the MT effect,  
instead modeling it as a combined term with nuclear 
Overhauser effect-relayed exchange (NOE).34 Simplifying 
assumptions such as these (eg, combining multiple pools 
together, ignoring constituents that produce significant 
CEST/MT effects) may introduce unexpected biases into 
the analysis, which will lead to inaccurate estimates of 
CEST parameters.

In the current study, we demonstrate that the biases  
described above are largely removed when all detectable 
CEST effects are sufficiently modeled. We illustrate this by 
(1) expanding Chappell et al’s method32 to incorporate a line-
shape function, (2) demonstrating this bias in simulations of 
a seven-pool model of CEST and MT, (3) fully fitting the 
model to in vitro data by including all observable CEST 
pools, and (4) showing that these biases will also influence 
the parameter estimates of the MT effect using in vitro and in 
vivo data in a CEST+MT analysis by fitting a two-pool qMT 
model with varying amounts of CEST information added to 
the estimation.

2  |   THEORY

Similar to the analytical solution for a two-pool model described 
in the various papers by Yarnykh et al36,37 and Zhou et al,4,38 we 

parameter estimates unless a sufficiently detailed model is utilized. Therefore, care 
must be taken when quantifying CEST and MT effects in vivo by properly modeling 
data to minimize these biases.
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can derive an analytical solution of a multi-pool CEST model. 
Without losing generality, we can assume a three-pool model 
(free, solute, and semisolid):

where MF,S,M
x,y,z

 are the x-, y-, and z-components of magnetiza-
tion for the free (F), solute (S), and semisolid (M) pools; ∆ is 
the frequency offset of the RF pulse with respect to the pool 
of interest (eg, Δ=Δ�−�s, where Δ� is the RF pulse offset 
with respect to water, and �s is the pool offset with respect to 
water); B1(t) is the amplitude of the RF pulse; g

(
Δ,TM

2

)
 is 

the absorption lineshape for the semisolid pool, RF,S,M

1,2
=

1

T
F,S,M

1,2

;  
and kAB is the effective exchange rate from pool A to pool 
B. Equations 1-5 are normalized to the equilibrium mag-
netization of water, MF

0
, and therefore kAB = kBAMB

0,r
, with 

MB
0,r
=

MB
0

MA
0

. The lineshape of the semisolid pool can be rep-
resented by several different shapes, including a Lorentzian, 
super-Lorentzian, or Gaussian function.15,16,39

Recent analyses by Tee et al33 demonstrated that a con-
tinuous wave equivalent pulse (CWEP) approximation can 
be used in place of a discretized pulse model with minimal 
error. This same approximation is used here to simplify the 
model derivation, and therefore, we can split Equations 1-5 
into the following time intervals: CEST saturation pulse (tm), 
spoiling gradient free precession evolution (ts), on-resonance 
excitation pulse (tp), and the readout and relaxation free pre-
cession evolution (tr).

36,37

We can expand the two-pool model derived by Yarnykh 
et al36,37 to incorporate multiple pools by reintroducing  
the transverse magnetisation components and eliminating the  
water saturation function. Using a CWEP approximation,  
the magnetization vector for a pulsed CEST sequence is  
similar to that derived by Yarnykh et al,36,37 with a few notable  
differences:

where M is the magnetisation vector of all pools  
immediately before the excitation pulse, M0 is the equilib-
rium magnetization, defined as M0 =

[
0, 0, 1, 0, 0, MS

0, r
, MM

0, r

]
,  

I is the identity matrix, Em = exp
((

RL+W
)

tm
)
 describes a  

saturation pulse with duration tm, Er = exp
(
RLtr

)
 and 

Es = exp
(
RLts

)
 describe the free precession intervals follow-

ing the excitation and CEST saturation, respectively. C is a 
diagonal matrix of the form:

which corresponds to the instantaneous rotation of the mag-
netization by an on-resonance excitation pulse with flip angle 
�. S is a matrix of the form S=diag (0, 0, 1, 0, 0, 1, 1), and is 
used to spoil the transverse magnetization immediately after 
each free precession period. The relaxation matrix RL and 
saturation matrix W are defined as:
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C =diag (sin (�) ,sin (�) ,cos (�) ,sin (�) ,sin (�) ,cos (�) ,cos (�))
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Importantly, the term 
(
RL+ W

)−1
RL generalises the MSS 

term from Equation 12 in Yarnykh,36 allowing Equation 6 to 
be easily expanded to an N-pool model.

3  |   METHODS

3.1  |  Simulations

All data analyses were performed in Python 3.6.8 (NumPy 
1.15.4, Pandas 0.24.1, SciPy 1.2.1, NiBabel 2.3.1). 
Simulations were performed to demonstrate the bias in the 
amide and MT estimates resulting from fitting a three-pool 
model (free, amide, MT) to a more detailed CEST model 
(Supporting Information Table S1). A seven-pool model 
consisting of water, amide, creatine, three pools representing 
NOE-relayed exchange, and a semisolid pool (see Supporting 
Information Table S1, all pool parameters taken from van Zijl 
et al20) was simulated using the following sequence param-
eters: a CEST pulse train consisting of fifty 20-ms Gaussian 
pulses with a 50% duty cycle, followed by an excitation pulse 
of 7˚. 36 offsets were simulated between ±5 ppm using a sat-
uration flip angle of 180˚ to acquire the CEST spectrum, and 
at 7.5, 15, 30, 60, and 100 ppm using saturation flip angles of 
180˚ and 540˚ to acquire the MT spectrum. The simulated MT 
and CEST data were then fit using the variational Bayesian 
inference algorithm (the Fabber model in FSL v5.0.2.1)32,40-42  
(see Image Processing section) to a three-pool model (free, 
amide, semisolid) to demonstrate how the derived CEST and 
MT parameter estimates are affected by underfitting.

3.2  |  Phantom preparation

Two sets of six 50 mL tubes were filled with solutions of 
phosphate-buffered saline (PBS) at a pH of 7.4, containing 
0.01% w/v NaN3 for bacterial suppression, with varying con-
centrations of agarose gel (A9539; Sigma) and bovine serum 
albumin (BSA) (A3059; Sigma). The first set of phantoms 
contained varying concentrations of agarose with 6% w/v 
BSA. The agarose concentrations were 0%, 0.26%, 0.52%, 
0.78%, 1.04%, and 1.3% w/v. The second set of phantoms 

contained varying concentrations of BSA, with 0.65% w/v 
agarose. The BSA concentrations were 0%, 1.8%, 3.6%, 
7.2%, and 9% w/v BSA, with another copy of the 0.78% w/v 
agarose, 6% w/v BSA phantom for comparison. Each set of 
tubes were then placed in custom 3D-printed phantom hold-
ers and set in the centre of two 4L Nalgene bottles (Thermo 
Fisher Scientific, Waltham, MA, USA). The tubes were then 
submerged in a bath of deionized water (see Figure 1A,B).

3.3  |  In vivo

Nine healthy volunteers (age: 31.8  ±  7.4 years, 4 female) 
were recruited with informed consent in accordance with 
local ethics.

3.4  |  Data acquisition

All images were acquired on a 3T Siemens Verio MRI scan-
ner (Erlangen, Germany) using a single channel transmit 
body coil and a 32-channel receive head coil. The same set of  
images were acquired on both the phantom and in vivo data. 
The CEST acquisition consisted of a CEST pulse train with 
a 2D FLASH readout,43 with a field of view (FOV) of 220 ×  
220-mm2, a resolution of 1.7 × 1.7 × 5-mm3, and repetition 
time/echo time (TR/TE)/�EX = 6.1-ms/2.83-ms/7˚. The CEST 
saturation consisted of a train of fifty 20-ms pulses, flip angle =  
184°, 50% duty cycle using 41 frequency offsets asymmetri-
cally sampled between ±4.5 ppm to adequately sample the 
amide and NOE resonances. Additional offsets at 7.5 ppm,  
15 ppm, 30 ppm, 60 ppm, and 100 ppm were acquired to 
sample the MT spectrum, flip angle = [184˚, 540°]. The shot- 
to-shot interval was 2.375 s. A reference image at an offset of  
800 ppm was also acquired at each saturation power. Other  
parameters included a GRAPPA factor of 3 and 2 averages. A 
T1 map was collected using a variable flip angle 3D-FLASH 
sequence (FOV: 220 × 220 × 5-mm3, resolution: 1.7 × 1.7 × 
5-mm3, TR/TE/� = 20-ms/4.21-ms/25˚, 20˚, 15˚, 10˚, 5˚). Finally,  
a B

∗
1
 map was acquired using the DREAM44 sequence 

(FOV: 256  ×  256  ×  100-mm3, resolution: 4.0 × 4.0 ×  
5.0-mm3, TR/TE1/TE2/�1/�2/�3 = 5-s/1.29-ms/2.69-ms/60˚/8˚/3˚).  

(9)
W=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2�ΔF 0 0 0 0 0

−2�ΔF 0 �B1 (t) 0 0 0 0

0 −�B1 (t) 0 0 0 0 0

0 0 0 0 2�ΔS 0 0

0 0 0 −2�Δs 0 �B1 (t) 0

0 0 0 0 −�B1 (t) 0 0

0 0 0 0 0 0 ��2B2
1
(t) g

�
Δ,TM

2

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A high-resolution T1-weighted image was also acquired 
to use as a reference (FOV: 220 × 220 × 100-mm3, resolu-
tion: 1.1  ×  1.1  ×  5-mm3, TR/TE/�= 250 -ms/2.48-ms/70˚). 
Additionally, to calculate the T1 maps for the phantom data, 
a 2D inversion recovery experiment was performed (FOV: 
220 × 220-mm2, resolution: 1.1 × 1.1 × 5-mm3), using inver-
sion times of 100, 300, 500, 1000, 1250, 1750, 2000, 2500, 
3000, 3500, and 4000-ms.

3.5  |  Image processing

3.5.1  |  Registration

All data were first co-registered to the CEST image data 
using tools from FSL v5.0.2.1 (FMRIB, Oxford, UK).45 
First, the high-resolution T1 image (referred to as HiRes) 
image was bias-field corrected using FAST,46 and was then 

F I G U R E  1   Orientation of the variable agarose phantoms (A) and variable BSA phantoms (B). The percentages in each phantom refer to the w/v  
of either agarose (A) or BSA (B). The normalized, B0-corrected CEST (C,D) and 540° qMT (E,F) Z-spectra for the variable agarose (C,E), and 
variable BSA (D,F) phantoms. CEST Z-spectra were reduced to ±4 ppm to account for B0 shifts in spectra



1364  |      SMITH et al.

brain-extracted using the brain extraction tool (BET).47 The 
relative slice acquired in the CEST acquisition was identi-
fied and extracted from the full HiRes volume, and the 
HiRes image was then registered to the CEST data using 
FLIRT with a 2D rigid body registration (the 2D option in 
FLIRT).48,49 Thus, through-plane motion and/or mismatches 
in orientation cannot be accounted for when moving from the 
HiRes reference space to the CEST space. Next, the CEST 
data were motion-corrected using MCFLIRT49 using the pro-
cess outlined in Supporting Information Figure S1. The B∗

1
 

and T1 data were registered to the original reference image 
using FLIRT48,49, and the slice that corresponded to the 
CEST acquisition was extracted from each volume. This slice 
was then registered using FLIRT48,49 to the down-sampled 
HiRes volume (and therefore to the CEST image data). The 
registration pipeline for the full dataset (ie, HiRes downsam-
pling, CEST motion-correction, and B∗

1
 & T1 coregistration) 

can be found at https​://github.com/smith​alexk/​CEST_analy​
sis,hash7​f6e655.

3.5.2  |  Model-based analysis

Z-spectra were fit to Equation 7 using the Fabber algorithm 
in FSL v5.0.2.1 with a customized CEST model (University 
of Oxford, Oxford, UK) (https​://github.com/ibme-qubic/​
fabber_models_cest,hash4​e354a7), which implements a 
variational Bayesian inference model to perform the estima-
tion.32,40-42 For each pool, the model fits posteriors based on 
Bayesian priors of Mi

0,r
, kiw, and Ti

2
. As the T1 for each pool 

is difficult to characterise independently, the T1 prior is set 
to the T1,obs value determined from the variable flip angle 
T1 data, as has been done previously.24,50 The model also  
accounts for B+

1
 inhomogeneities, by setting the B+

1
 prior to 

the B+

1
 map derived from the DREAM sequence. Importantly, 

the implementation of Fabber used here adds the ability to 
select different MT saturation lineshapes, as well as calcu-
lates Z-spectra for excitation flip angles other than 90˚. In 
all analyses, the semisolid pool in phantom data was fit with 
a Gaussian lineshape,3 whereas the in vivo semisolid pool 
was fit with a super-Lorentzian lineshape.15,16 Furthermore, 
to align the MT effect more closely with qMT literature, the 
relative pool concentration MMT

0,r
 is referred to as the semi-

solid to water pool size ratio (PSR).51,52

3.5.3  |  Multi-pool phantom analysis

BSA has been shown to have three CEST peaks: an amide 
resonance centred at 3.5 ppm, a fast-exchanging resonance 
centred at 2.0 ppm, and a peak from relayed-NOE exchange 
centred on −3.5 ppm.53,54 However, as the guanidinium 

protons exchange at approximately 1000 Hz, it is most likely 
not detectable at 3T, particularly using when using low-
power pulses,2 and was thus excluded from the analysis. We 
therefore fit a four-pool model (free, amide, NOE, semisolid) 
to the CEST+MT data to demonstrate that biases due to the 
MT effect are largely removed when all detectable CEST  
effects are included. We also analysed the data by estimating 
the water and MT pool parameters first using the >5 ppm 
data similar to Mehrabian et al11; these parameters were then 
fixed during the CEST parameter estimation to demonstrate 
that the estimates derived from a qMT analysis can also be 
used to correct CEST parameter estimations in a simplified 
CEST model. These two approaches to a multi-pool analy-
sis are referred to as the CEST+MT and qMT-Fix analyses, 
respectively. For the CEST data, the MTR*, a measure of 
the MTRasym in an ideal two-pool model, was generated for 
each pool (amide, NOE), as has been described previously,32 
while the semisolid pool was described using the PSR. In 
order to generate the MTR*, the exchange rate and concen-
tration for each pool output from the Bayesian analysis were 
used to generate an idealized two-pool Z-spectrum, and the 
MTR* was calculated using Equation 10.32 The calculation 
compares the signal at the CEST pool frequency from this 
two pool Z-spectrum [SF+S (Δ�)] with the signal from an 
idealized one-pool Z-spectrum [Sw(Δ�)], normalized by the 
unsaturated signal (S0). The T1 and T2 relaxation values in 
the idealized simulations were set to 1.0 s and 140 ms for the 
water pool, to 1 s and 10 ms for the amide pool, and to 1 s and 
5 ms for the NOE pool. The three-pool fit described by Tee 
et al34 (water, amide, NOE+MT) was used to demonstrate 
the importance of estimating the MT pool as a distinct pool 
(referred to as the NOE+MT analysis).

3.5.4  |  Bootstrap analysis

To demonstrate the bias caused by failing to include  
detectable CEST effects is not limited to the CEST pool, but 
can, indeed, affect the MT pool, a two-pool model (water, 
semisolid) was repeatedly fit to the in vivo and phantom 
CEST+MT data, after removing 10 pseudo-random offsets 
at a time from the CEST data, in a bootstrapping analysis 
(five iterations, including 41, 31, 21, 11, and 1 offsets). To 
correct for B0 inhomogeneities, the B0 map posterior from 
the full CEST+MT dataset was used as an image prior for all 
reduced datasets. This produced five independent posterior 
estimations (as a function of the number of CEST offsets in-
cluded) of the two-pool parameter estimates. These posteri-
ors were then compared to two-pool posteriors derived from 
qMT-only data.

(10)MTR∗ =
Sw (Δ�)−SF+W (Δ�)

S0

https://github.com/smithalexk/CEST_analysis,hash7f6e655
https://github.com/smithalexk/CEST_analysis,hash7f6e655
https://github.com/ibme-qubic/fabber_models_cest,hash4e354a7
https://github.com/ibme-qubic/fabber_models_cest,hash4e354a7
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3.6  |  Statistical analysis

Regions of interest (ROIs) were drawn in the splenium, genu, 
caudate, and thalamus using the HiRes image for each volun-
teer and in each phantom using MIPAV (NIH, Bethesda, MD, 
USA), and mean parameter values were taken from each ROI.

For the multi-pool analysis, the MTR* (amide, NOE) or PSR 
(MT) was correlated with either the BSA or agarose concentra-
tion and the coefficient of determination (R2) was calculated 
(using SciPy’s linregress function). The Wilcoxon rank-sum 
test was used to statistically compare the PSR, semisolid-to- 
water exchange rate (kMF), and semisolid T2 (T2M) between the 
qMT-only data and the bootstrapped CEST+MT data.

4  |  RESULTS

4.1  |  Simulations

The Z-spectra for the simulations are displayed in Figure 2. 
Comparing the seven-pool data (black dots) to the three-pool 
data (solid green line), the effect of the extra CEST peaks 
is realized as a spectrum-wide reduction in relative signal, 
particularly on the upfield side of the spectrum, where the 
addition of NOE pools produces a broad decrease in signal. 
The effect of fitting a three-pool model to seven-pool data 
is also illustrated (dashed red line). While the deviations 

from the seven-pool data are minimal, the fit surrounding the 
amide peak is overestimated (see Figure 2 inset), while the fit 
on the upfield side of the spectrum is poor throughout. This 
introduces a bias into the estimated PSR (PSR = 15.26%), 
relative to the simulated PSR (PSR = 20%). Additionally, 
while the observed PSR bias is relatively small (∼20% bias), 
more significant changes were observed in the three-pool fit 
of MTR*, relative to the simulated MTR* (5.2% and 11.0%, 
respectively, >50% bias).

4.2  |  Four pool analysis

4.2.1  |  Phantom data

Figure 1C-F displays the CEST and qMT Z-spectra for each set 
of phantoms. In the variable agarose phantom (Figure 1A,C,E), 
both the CEST and qMT spectra are affected as the amount 
of agarose (and therefore semisolid concentration) is increased, 
reflecting the broad spectral influence of the semisolid compo-
nent. Conversely, the variable BSA phantom (Figure 1B,D,F) 
only displays significant variations within the CEST spectrum, 
reflecting the increasing amide and NOE concentrations.

Two methods to potentially alleviate the biases intro-
duced by underfitting CEST data are shown in Figures 3 and 
4, where a four pool (water, amide, −3.5-ppm NOE, semi-
solid) model estimation is performed using the CEST+MT  

F I G U R E  2   Simulation results demonstrating the bias. The black points represent a Z-spectrum using seven pools (free, amide, creatine,  
3 NOE-relayed exchange peaks, semisolid), whereas the green line represents a three-pool Z-spectrum (free, amide, semisolid). Using a model that 
does not adequately represent the underlying biochemical environment (eg, using a three-pool model to fit seven-pool data, such as that represented 
by the red dashed line) may result in underfitting, and therefore, will bias results
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F I G U R E  3   Semisolid (PSR), and amide and NOE (MTR*) maps for the variable agarose phantom experiment. The top row illustrates the 
full, four-pool model estimation, the middle displays the fixed-qMT estimation, and the bottom row shows the same fit assuming the NOE and MT 
pools are a single pool, similar to Tee et al34

F I G U R E  4   Semisolid (PSR), and amide and NOE (MTR*) maps for the variable BSA phantom experiment. The top row illustrates the full, 
four-pool model estimation, the middle displays the fixed-qMT estimation, and the bottom row shows the same fit assuming the NOE and MT 
pools are a single pool, similar to similar to Tee et al34
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(top row) and the qMT-Fix (middle row) methods. The bot-
tom row of Figures 3 and 4 illustrates the parameter estimates 
from the underfit NOE+MT analysis. Figure 3 displays the re-
sults of these three approaches for the variable agarose phan-
tom, while Figure 4 shows the results for the variable BSA 
phantom. Importantly, the PSR estimates for each phantom 
were similar across each methodology that included a distinct 
MT pool, indicating that including the amide and NOE pools 
in the analysis has significantly reduced the biases that were 
present in the two-pool model. Additionally, while the amide 
and NOE MTR* parameter estimates from the CEST+MT 
analysis were lower than those found using the qMT-Fixed 
analysis, the removal of the MT pool caused considerable 
changes to the estimated MTR*, particularly in the variable 
agarose phantoms. In particular, the amide MTR* changed 
dramatically as the agarose concentration increased, indicat-
ing that accurate quantification of the MT effect is imperative 
to ensure the stability of the CEST parameter estimation.

The differences between these methods can be seen in 
more detail in Figure 5, which shows the correlation of each 
moiety with BSA and agarose concentration, and in Table 1,  
which displays the significance levels for these correla-
tions. Using either the CEST+MT or qMT-Fix analyses 
produces strong correlations in the amide and NOE MTR*  
(Figure 2A,C, R2 > 0.9, P < .001), with only minimal, non- 
significant correlations in the MT pool (Figure 2E, R2 ≈ 0.6, 
P > .05). The opposite trend is seen with increasing agarose 
concentration, where the MT pool shows high correlation 
(Figure 2F, R2 = 0.9, P <  .05), while the NOE and amide 
MTR* show low correlations (Figure 5B,D, max R2 =  .73, 
P >  .05, except for CEST+MT NOE: P = .03). Note that, 
while the semisolid R2 for the CEST+MT analysis is nomi-
nally 0.68, this is due solely to the high PSR estimate at 0% 
agarose. Removing this point from the correlation increases 
R2 to 0.92 (P = .011), in line with the other correlations.

Conversely, when combining the NOE and MT pools, 
there is no clear correlation in any pool (Figure 5A-D, all 
R2 ≤ 0.69 P > .04), with some of the pools displaying nega-
tive trends as the concentration of either agarose or BSA are 
increased. This indicates that not fully describing the CEST 
environment, or incorrectly modeling it, can cause severe dis-
parities, which can affect all moieties under consideration.

4.3  |  Bootstrap analysis

Figure 6 illustrates the effect of unmodeled CEST data on 
the estimated PSR. As the number of CEST offsets included 
in the model decreases, the PSR approaches the values esti-
mated by the qMT-only points, becoming most similar when 
a significant amount of CEST data are removed (ie, with 
less than 10 CEST offsets remaining). Indeed, most of the 
phantom data PSR is reduced with respect to the qMT-only 

measurement, with only the 0% agarose data deviating from 
this trend. However, this deviation is most likely due to the 
fitting attempting to create an MT pool when no such pool is 
present, and therefore, any significant deviation from water-
only is treated as the MT pool (eg, the saturation from amides 
and NOE). Furthermore, as BSA concentration increases 
(Figure 6B), the bias in the estimated PSR also increases as 
more CEST information is introduced to the analysis; for  
instance, the bias in PSR is lower in the 0% BSA data (blue) 
relative to the 9% BSA data (brown).

4.3.1  |  In vivo data

An example of the ROIs drawn on the HiRes image, along 
with example in-vivo Z-spectra in the caudate and genu, are 
shown in Figure 7. An example B1 transmit map is shown 
in Supporting Information Figure S2. The genu and cau-
date display similar CEST saturation effects; however, the 
Z-spectrum in the genu is more asymmetric about the water 
resonance (Figure 7B, MTRasym), and produces a larger MT 
effect (Figure 7C), consistent with the genu containing more 
myelin than the caudate. This observation is confirmed in the 
qMT-only PSR estimate shown in Figure 8 (top row), where 
we see much higher PSR in the genu relative to the caudate. 
However, this contrast difference becomes less obvious as 
we add more CEST data point to the parameter estimation 
(Figure 8, bottom row), where the PSR estimates in both the 
white matter and gray matter increase as more unmodeled 
CEST data are added to the analysis. Critically, this effect is 
observed across the brain, indicating that unmodeled CEST 
effects are affecting the estimates of the PSR.

The bias introduced by unmodeled CEST effects is fur-
ther demonstrated in Figure 9. The PSR across all ROIs is 
significantly different from the qMT-only data if any CEST 
data are included in the analysis (P  <  10−3 for more than 
1 CEST offset). Indeed, the qMT-only data matches estab-
lished values for PSR in the brain structures highlighted,50,55 
indicating that the unmodeled CEST effects are producing 
bias in the analysis. This is further confirmed in the kMF and 
T2M estimates (Supporting Information Tables S2-S3), where 
each parameter is significantly different (P < 10−3) once sub-
stantial amounts of CEST data are included in the analysis.

5  |   DISCUSSION

The goal of this study was to demonstrate that significant  
biases can appear in quantitative models of CEST and MT if 
care is not taken to properly include all significant CEST and 
MT effects. We demonstrated that utilizing a model that is not 
sufficiently detailed to estimate the underlying exchange pro-
cesses will cause biases to occur (Figure 2) in the parameters 
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derived from the CEST and MT pools under consideration. 
We then confirmed that these biases can be removed if a suf-
ficiently realistic model is applied to the data (Figures 3–5,  

Table 1), as well as how improper modeling of the MT  
effect influences the parameter estimations for the observable 
CEST effects. We finally showed that these effects are not 

F I G U R E  5   Correlation plots for each full-model fit as a function of both BSA concentration (A,C,E) and agarose concentration (B,D,F) for the 
amide (A,B), NOE (C,D), and semisolid (E,F) pools. Dotted lines display the trendlines for the respective correlation. The amide and NOE MTR* are 
strongly correlated with BSA concentration for the qMT-Fix and CEST+MT models (R2 > 0.9). The semisolid PSR in F is strongly correlated with 
agarose when using the qMT-Fix, but not with the CEST+MT. However, removing the 0.0% agarose point increase the correlation to R2 = 0.92
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limited to the CEST pools, but that the model parameters for 
the MT pool will be biased if all observable CEST effects are 
not included in the model (Figures 6, 8, and 9).

5.1  |  Model-based analyses

The MT effect is a major confound in all CEST imaging stud-
ies2,20 if not properly modeled; however, it is also a well- 
understood biophysical process. The literature quantifying 
the MT effect is vast, with many qMT studies in healthy50,56-59 
and pathological24-27,60,61 tissues in the human body; thus, it 
has a well-defined parameter range. However, most previ-
ous studies of in vivo CEST effects have either ignored the 
MT effect (eg, using the MTRasym), or utilized an alternative 
fitting model, such as AREX,5,62 to simultaneously estimate 
MT and CEST effects. Unfortunately, neither of these meth-
ods allows validation of the MT effect with existing qMT 

literature; there is either no parameter to investigate the MT 
effect (MTRasym) or the parameter describing the MT effect 
is derived using different methodologies (AREX), meaning 
it has a different parameter range than what has already been 
established in the literature. By harmonizing the estimates 
derived from a CEST analysis with established methods 
in the qMT literature, we can better correlate the structural 
(qMT) and chemical (CEST) environments, particularly in 
pathologies such as multiple sclerosis,13,14,24 and cancer.11,63

When performing a model-based fitting of the Bloch-
McConnell equations, care must be taken to ensure biases 
are not introduced into the parameter estimates. This is par-
ticularly true for tissues that have a significant MT effect. 
The broad spectral linewidth of the MT effect ensures that it 
will absorb any unmodeled CEST effects (Figures 2, and 8).  
Unfortunately, most in vivo CEST experiments will be influ
enced to some degree by the MT effect. This can be seen in 
Figure 5, where the amide MTR* changes drastically as a 

T A B L E  1   P-values associated with the correlation plots from Figure 5

 

Variable BSA phantoms Variable agarose phantoms

qMT-Fix CEST+MT NOE+MT qMT-Fix CEST+MT NOE+MT

Amide <0.001 <0.001 0.045 0.322 0.841 0.041

NOE <0.001 <0.001 0.330 0.523 0.030 0.054

Semisolid 0.068 0.073 – <0.001 0.045 –

Note: Bolded values represent significant correlations (P < .05). Similar to Figure 5F, when removing the 0.0% agarose point the P-value for the correlation is .011.

F I G U R E  6   PSR as a function of the number of CEST data-points used in the analysis for the phantoms with varying agarose (A) and the 
phantoms with varying BSA (B). The dashed line indicates the split between data with CEST information, and qMT-only data. As more CEST 
information is added to the analysis, the PSR derived from the experiment is biased. The error bars represent the standard deviation for each PSR 
estimate
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function of the agarose concentration. By using a sufficiently 
detailed model, we can reduce this bias.

This work expands upon previous work by Desmond and 
Stanisz.3 They demonstrated that CEST and MT can be quan-
tified simultaneously using the Bloch-McConnell while vary-
ing pH; however, they limited their analysis to constant CEST 
and MT solute concentrations, and they only utilized a single 
CEST pool in their analyses. The results here demonstrate 

that we can accurately quantify multiple CEST and MT  
effects while ensuring the effect from each pool is isolated.

This paper presents two methods for overcoming the  
biases introduced by the MT effect: fully modeling the bio-
physical environment, or independently modeling the MT 
effect. While either method provides complementary infor-
mation to estimate CEST and MT effects, simultaneously 
modeling all observable pools is preferred over modeling 
the MT effect separately, particularly when using a Bayesian 
approach. Under the Bayesian model, it is more accurate to 
allow all parameters of interest to vary; therefore, fixing the 
MT pool beforehand could introduce bias into the model. 
However, it is important to note that the MT effect could be 
influenced by the more accurate estimation of the water pool 
T2. Therefore, if comparing estimates of the MT effect with 
previous, traditionally acquired MT data (such as that shown 
in Sled and Pike56), it would be prudent to fix the MT effect 
first to ensure these comparisons are accurate.

When considering quantifying the CEST effect, care must 
be taken to avoid overfitting the data. Ideally, the most accu-
rate method would be to fully model the environment under 
observation; however, this may be difficult to perform for 
in vivo data. The number of pools necessary to completely 
model an in vivo metabolic environment would produce a 
model that is strongly susceptible to overfitting, particularly 
if pools are included in an experiment where they are not 
detectable (eg, fast exchanging pools in a low-power, low-
duty cycle scheme). The effect of overfitting can be seen 
in Supporting Information Figure S3, where a hydroxyl 
pool (exchange rate = 2000 Hz) was added to the four-pool 
model previously utilized for the CEST+MT, qMT-Fix, 
and NOE+MT analyses. The CEST+MT analysis displays 
strong correlations (R2  >  0.85) for every pool as a func-
tion of BSA concentration as well as for every pool except 
amides (R2  =  0.55) as a function of agarose concentration 
(R2  >  0.80). Furthermore, the MTR* for the amide, NOE, 
and hydroxyl pools in the qMT-Fix and NOE+MT analyses 
contain almost identical values. This implies that fixing the 
MT model will produce the same estimations as assuming 
the MT effect is due to NOE, which is not correct given the 
moieties under consideration. Therefore, it is crucial to care-
fully consider which CEST pools are predicted to contribute 
significant contrast to the experiment in question to avoid 
overfitting the data. Fitting the MT effect independently may 
reduce overfitting in the CEST domain and reduce bias in the 
estimated CEST parameters; indeed, a similar analysis has 
been performed previously.11

5.2  |  Limitations

One limitation of the study is the lack of parity between the 
qMT-Fix and CEST+MT techniques in Figures 3 and 4. 

F I G U R E  7   A, Reference image with ROIs of the genu (light blue), 
splenium (dark blue), caudate (yellow), frontal white matter (green), 
internal capsule (dark red), frontal gray matter (light red), caudate 
(yellow), and caudate (gold). Plots of the CEST (B) and MT (C) spectra 
for the caudate (solid, gold) and genu (dashed, light-blue). The shaded 
areas for each plot represent the standard deviation over each point. The 
MTRasym for each ROI has also been plotted for the CEST data
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Estimating the MT pool beforehand may remove some of 
the interplay between the different parameter values during 
the Bayesian inference, which may cause these differences 
to arise. Additionally, because the CEST data were only 
collected over a single saturation power, it may difficult to 
accurately separate the exchange rate and M0 components 
of the model.64,65 Therefore, utilizing multiple CEST satura-
tion powers over the target solute region may help reduce 
the disparity between the two methods. However, while 
the effect magnitudes are different, it is important to note 
that the relative effect sizes accurately depict the changes in 
CEST or MT effect for both methods. This is in contrast to 
the NOE+MT correlation plots in Figure 5a-d, where the MT 
effect is combined with the NOE. Here, both the amide and 
NOE CEST effects are clearly corrupted by the MT effect, 
demonstrating that small variations in the CEST effect are 
beneficial to an otherwise completely inaccurate parameter 
estimation.

Implementing the analysis methods presented here also 
requires several additional scans in order to quantitatively 
model the CEST effect. This means either increasing scan 
time or reducing the amount of CEST data that is acquired 
for a given resolution and FOV. This may make it difficult 
to develop a clinically applicable CEST scan. However, 
several other methods already require these scans.11,66 
Furthermore, previous studies have been performed that 
collected CEST data in a clinically acceptable scan time 
(≈3 min),7,34 and new sequences have been developed that 
may significantly reduce the scan time for a given imaging 
volume.66 Thus, moving to a quantitative analysis method-
ology may not preclude acquiring CEST data in a clinical 
setting.

While we do not compare the model-based analysis 
with multi-pool Lorentzian models,5,67-69 these models are 
only semi-quantitative, as the CEST parameter estimates 
derived from such models are dependent upon the B1 am-
plitude associated with the CEST acquisition. Therefore, 
changing the sequence parameters may also influence the 
parameter contrast. This effect should largely be allevi-
ated by quantitatively estimating the data using the Bloch-
McConnell equations, which utilizes the B1 amplitude 
to estimate the CEST effect. Additionally, the MT effect 
has been shown to be modeled as a super-Lorentzian in 
vivo15,16; however, this would not be the case in a multi-
pool Lorentzian model, introducing further confounds into 
a comparison between each methodology. Importantly, 
Mehrabian et al11 demonstrate one method to combine the 
multi-pool Lorentzian with qMT, by solving for the qMT 
parameters and then removing the MT effect from the data, 
before fitting the remaining CEST data using a multi- 
pool Lorentzian approach. This may, indeed be a useful  
approach, as it allows for direct comparisons with existing 
MT and CEST studies, while reducing the biases associ-
ated with each methodology.

Other researchers have developed complementary tech-
niques to quantify the CEST and MT effects simultaneously. 
Zaiss et al19 demonstrated that their R1� method can fit both 
CEST and MT data; importantly, this is an analytical model 
and, thus, may converge more rapidly than using the Bloch-
McConnell equations, which require multiple matrix multi-
plications during the fitting process. However, incorporating 
more pools may require re-derivation of the model, which 
could prove difficult if several CEST effects are expected. 
Malik et al70 recently expanded extended phase graph theory 

F I G U R E  8   The estimated PSR using a two-pool model (water, semisolid) for a single volunteer for the qMT-only data (top), and as a 
function of the number of CEST offsets (bottom). As more CEST data are included in the qMT analysis, estimates of both gray and white matter 
PSR significantly increase
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to include an MT pool, and Chan et al71 adapted the extended 
phase graph model to quantify both CEST and MT effects. 
They found good agreement of their model with their phantom 
concentrations and were able to apply their methods in vivo. 
Importantly, the methods presented here can be adapted to use 
Chan et al’s extended phase graph theory,71 which could fur-
ther improve the model fittings. Comparing these methods, as 
well as expanding the analysis to incorporate multiple CEST 
saturation schemes in order to isolate CEST effects with dif-
ferent exchange rates, is the subject of future work.

6  |   CONCLUSIONS

In conclusion, the results of this study demonstrate that quan-
titative models of the CEST effect in vivo may be biased by 
the MT effect due to underfitting. While methods do exist to 
correct this bias, care must be taken when modeling CEST 
and MT effects in vivo by either fitting MT data separately, 
then propagating these estimates into the CEST analysis, or 
by employing a sufficiently detailed model that minimises 
these biases.

F I G U R E  9   Boxplots displaying the mean PSR as a function of the number of CEST offsets for the splenium, genu, frontal white matter 
(FWM), internal capsule, caudate, frontal gray matter (FGM), and thalamus, with the qMT-only fits as a comparison (to the right of the dotted line). 
Significant differences are also displayed (*P < .05, ***P < 10−3)
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

TABLE S1 Pool Parameters used in simulations. T1 values 
were taken from the average of the T1 in the genu of a sin-
gle subject. All other parameters were taken from van Zijl 
et al (1)
TABLE S2 Mean free-to-macromolecular exchange rate as 
a function of the number of CEST offsets for the splenium, 
genu, frontal white matter (FWM), internal capsule (IC), 
caudate, frontal grey matter (FGM), and thalamus, with the 
qMT-only fits as a comparison. Fits which are significantly 
different to the qMT-only data are in bold (P < 10−3)
TABLE S3 Mean macromolecular T2 as a function of the 
number of CEST offsets for the splenium, genu, frontal white 
matter (FWM), internal capsule (IC), caudate, frontal grey 
matter (FGM), and thalamus, with the qMT-only fits as a 
comparison. Fits which are significantly different to the 
qMT-only data are in bold (P < 10−3)

FIGURE S1 Co-registration process for the CEST data 
(every 2nd offset shown for clarity). The CEST data were 
first split into three groups of volumes using ±1 ppm as the 
demarcation point. The volumes greater than |1 ppm| were 
registered to the S0 image. Next, the volumes within ±1 ppm 
were registered to the co-registered S(−1 ppm) image. The 
three volumes were then recombined for further processing
FIGURE S2 B1 transmit map for an example volunteer. 
There are significant inhomogeneities in the anterior and pos-
terior portions of the brain, which would significantly affect 
the CEST estimation maps if not corrected
FIGURE S3 Correlation plots for each five pool (water, 
amide, hydroxyl, NOE, semisolid) full-model fit as a func-
tion of both BSA concentration (A,C,E,G) and agarose 
concentration (B,D,F,H) for the amide (A,B), NOE (C,D), 
hydroxyl (E,F) and semisolid (E,F) pools. Dotted lines dis-
play the trendlines for the respective correlation. Introducing 
a hydroxyl pool results in strong correlations with BSA con-
centration for all pools when using the CEST+MT analysis, 
and strong correlations in all but the amide pool with aga-
rose concentration. Similar trends can be seen in the qMT-
Fix analysis. Additionally, the NOE+MT analysis produces  
exactly the same correlations as the qMT-Fix analysis
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