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Chapter 1

Introduction

1.1 Structured Representation of Data

In the field of machine learning, most approaches can be divided into two categories: Black

box solutions focused on matching inputs to outputs, and model based approaches seeking to

give structure to a set of data. Both have their place for different types of problems, although

this paper provides reasons to choose structured learning over black box solutions.

1.1.1 Black Box Learning

Black box learning can be defined as any approach that provides little to no explanation

of how inputs are mapped to outputs or processed into answers. A popular contemporary

example is the use of neural nets to solve problems in functional approximation, pattern

recognition, or classification[42]. While a neural net can be understood in terms of the neuron

layers and weights, the most that can be said about how a particular input produces a given

output is that the weights have been trained to produce that result.

Patterns and structure are important for extending the usefulness of any machine learning
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tool beyond the data it has been trained on [36]. In the case of black box methods, patterns

in the data are obscured and learned in a hidden way. One benefit of this approach is that

there doesn’t need to be any prior assumptions made about models used to represent the

data, often giving more flexibility in the types of problems that can be solved.

A natural downside to obscuring the patterns in the data that a black box method has

learned is a lack of transparency when it comes to trying to understand how a system works.

When a black box machine learning tool fails, it is difficult to quantify exactly what went

wrong. Trying to remedy this downside by increasing transparency requires enforcing a known

structure on the internals of the black box, which may not even be possible in some cases

such as when working with neural nets.

1.1.2 Model Based Learning

Model based learning methods lie on the other end of the spectrum from black box methods.

Instead of leaving the choice of structure up to the internals of the machine learning tool,

the model is more explicitly specified and the model’s parameters are varied systematically,

usually through numerical optimization, to best fit the given data[4]. An example of a

highly structured method is linear regression, where the model is specified and the learning

component tries to find the parameters that best fit a line to the given set of data. While

the loss of flexibility means that such a model can only be used when the data actually fits a

linear model, it becomes much easier to understand what the model predicts and when or

2



why it may fail.

Another example of a more flexible model based learning tool is a Support Vector Ma-

chine (SVM). In an SVM, data is partitioned into classes based on a separating hyper-plane

[43], [39]. This plane is chosen based a set of training data, with the goal of maximizing

the orthogonal distance to the points closest to the plane. These closest points determine

the hyper-plane, and are called the support vectors. The so called “kernel trick” casts

the problem into an infinite dimensional dual space where a separating hyperplane can

always be found.[35]. Due to the structure they impose, however, it is much easier to

quantify what causes failure. When a new data point is incorrectly classified, it means that

the support vectors chosen were inadequate, and the new point can be used to correct this flaw.

There is a balance between structure and flexibility when it comes to machine learning

methods. Improving the flexibility by reducing the imposed structure allows for use in more

cases and applications to more problems. By reducing the structure, however, the ability to

understand the internal mechanisms of the machine learning tool is reduced. There is no

one-size-fits-all when it comes to solving problems, and machine learning is no exception.

The desired balance point between structure and flexibility must be decided in order to pick

an appropriate technique.
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1.2 Manifold Learning

Manifold learning is a type of model based learning where the data is assumed to lie on a

manifold, a completely separable topological space that is locally homeomorphic to Euclidean

space. The goal of the learning component is to determine the structure of this manifold.

Often that structure can then be used to solve several types of problems, such as defining a

notion of distance on the manifold or deciding if a new point belongs to the learned manifold

or not. It is this type of model-based learning that will be discussed further throughout this

paper.

1.3 Gaussian Processes and Manifolds

Gaussian processes (GPs) can be used for probabilistic functional regression when the model

for a set of data is unknown [31],[45],[32]. A Gaussian process is a probability distribution over

functions. Each point on the function is a random variable. Given an input x and prior input

and output data X and Y respectively, a Gaussian process φ returns a distribution N(y, σ2)

where y is the expected value of the Gaussian process at x. The result is computed by using

the covariance of the new input x with prior inputs X through a covariance function. The de-

tails of Gaussian processes and covariance functions are discussed in greater detail in Section 2.

GPs can be used for dimensionality reduction through a Gaussian process latent variable

model(GPLVM) [20]. A set of data Y is assumed to be a function of unknown latent variables

4



X, and a Gaussian process φ is used to model this mapping. The latent variables must be

learned by finding X that maximizes the likelihood of the Gaussian process φ. This model of

a set of data and lower dimensional representation implies a manifold structure. More details

on GPLVMs are given in Section 2.

A manifold can be loosely defined as a set of points with a notion of a local neighborhood

around each point that also belongs to the set. Points belonging to a manifold can be

represented by coordinates, with a function mapping between the coordinates in <k to the

manifold points, where k is the dimension of the manifold. It is common for the points of

a manifold to exist in a higher dimensional space. When this is the case, the space where

the points exist is called the ambient space, and the manifold is said to be embedded in

this space. For instance, the surface of a sphere in <3 is a 2-dimensional manifold that is

embedded in a 3-dimensional ambient space. Points on the sphere can be represented by a

pair of coordinates. A more detailed description of the basics of manifolds and differential

geometry can be found in [26].

Properties can be defined on a manifold that, while enforcing more structure, provide extra

utility in the application of a manifold to problems. One particularly useful property is the

notion of distance, a metric which is required when any sort of analytic geometry or calculus

is needed. A Riemannian manifold is one that incorporates local distance measurement

through the use of a metric tensor at every point on the manifold. Section 5 will go into

more detail on Riemannian manifolds and the metric tensor itself.

5



Figure 1.1: Example of a 2-D manifold embedded in a 3-D ambient space(left). The surface of
sphere is considered to be 2-dimensional because it can be described by a 2-dimensional coordinate
space(right). The mapping between sphere and rectangle has distances along longitudes varying
between 0 and 2π and latitudes between 0 and π. Distances on the plane do not equal distances on
the sphere.

This dissertation develops and presents a new method for working with learned manifold

structures starting from an assumption of a stochastic manifold. A manifold can be said

to be stochastic when the points on the manifold are random variables. The geometry and

differential properties of a stochastic manifold differ slightly from a Riemannian one. Methods

for working with a stochastic manifold are derived and presented in Section 5. Additionally,

this approach is applied to practical problems to demonstrate the capabilities that a stochastic

manifold can provide.

A method for learning a manifold from a set of data using Gaussian processes is developed

and presented in Section 3, and some of the foundations for how to work with Gaussian

processes are described. Section 4 discusses the use of Gaussian processes in a Bayes filter as

a practical way of using latent variable modeling that simultaneously suggests a manifold

interpretation. Section 5 covers in detail the adaptation of GPLVMs to produce a Gaussian

6



process manifold. Stochastic manifolds require modifications of the mathematical framework

used for Riemannian manifolds and those modifications are derived and presented in Section

5. Finally, the applications of Gaussian process manifolds are presented in Section 6.

7



Chapter 2

Literature Review

2.1 Manifold Applications in Literature

The literature on manifold learning breaks down into two categories: (1)work that depends

the geometric and differential properties of known manifolds and uses this structure to solve

problems associated with manifold structures and (2)work that learns the manifold structure

assumed to be present in a set of data with the goal of providing a simplified representation

or regression to predict new data. Research for both of these categories is presented here.

The first category assumes a specific manifold structure or that the manifold is known

analytically1. These applications adapt existing Euclidean space methods to work in a more

general manifold context. When used, Gaussian processes model functions on the manifold

and are not used to define the manifold itself.

Mazumdar[28] suggests path planning on a Riemannian manifold from the perspective

of optimal control. The paper demonstrates that the trajectories obtained by solving the

equations for optimal control are geodesics on the manifold itself. This work assumes that

the Gaussian curvature2 of the manifold evaluates to zero. The work does not include any
1Here analytically means that any derived manifold property such as the metric tensor or curvature can

be evaluated at any location on the manifold and are infinitely differentiable
2Measure of how non-Euclidean the manifold is at a given point
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application of these results to any motion planning problems. The manifolds are known

analytically and are restricted to only 2 dimensions.

Zeestraten[47] demonstrates a technique for probabilistic imitation learning on Riemannian

manifolds. Their approach to imitation learning uses multivariate Gaussians to describe the

motion of a system, then uses the distributions to interpolate and extrapolate the behavior.

To extend this approach to a Riemannian manifold, Euclidean methods are adapted for use

in the tangent space3 of the manifold. Their work shows how an existing imitation learning

method can be applied in the context of a Riemannian manifold. While the methods used

are probabilistic, the manifold itself is not. The manifold is deterministic and must be known

analytically.

Englert[10] gives a method for planning motions across a sequence of manifolds in the

state space of a system. Using sample-based motion planning, a trajectory that crosses several

different manifolds can be found to generate a path. If the manifolds represent different

behaviors of the system, this represents a way to chain together different learned behaviors

to accomplish a goal. The motion planning techniques given in [10], however, are applicable

only to manifolds that are known analytically. The techniques are not readily adaptable to

learned manifolds where sampling away from the training data becomes impossible.

Mallasto[27] introduces a wrapped Gaussian process, a type of Gaussian process that learns

local submanifold structure on a given Riemannian manifold. This allows for the Gaussian

process to incorporate the structure of the manifold. The idea of a wrapped Gaussian process

latent variable model(WGPLVM) follows from this. The WGPLVM effectively learns the

structure of a submanifold, and is demonstrated to perform better than a GPLVM that has
3Local Euclidean vector space associated with each point
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no knowledge of the larger manifold. The manifold that the WGPLVM is based on is assumed

to be known analytically.

Coveney[7] uses Gaussian processes to interpolate values over a 2D triangle mesh manifold.

The triangle mesh represents the surface of a 3D object, in this case a human heart. The

quantities of interest have a covariance that is related to the distance between them on the

surface of the manifold, rather than the Euclidean distance in 3 dimensions. That requires

modification of the covariance function for the Gaussian process. This modification accounts

for the manifold structure of the triangle mesh. Then the Gaussian process can be used to

interpolate values across the surface of this manifold. This is another case where the manifold

is known and not learned.

Gao[12] uses Gaussian processes to identify landmark points on a Riemannian manifold to

quantify similarities between surfaces based on these landmark points. The work demonstrates

superior performance when points are selected by maximum uncertainty under a Gaussian

process as compared to manually selected landmark points. The manifold here is a triangle

mesh, so again the manifold is not learned but instead provided.

Lin[25] provides an alternative framework for working with Gaussian processes on manifolds

by embedding the manifold in such a way that the geometry is close to Euclidean. The work

also applies to cases where the manifold is naturally embedded in a Euclidean space. While

the work demonstrates that evaluating the covariance function in the ambient space works

well, the manifolds they consider are known, not learned.

Samir[33] uses Gaussian processes on a Riemannian manifold to capture the structure of

the space of strictly non-decreasing distribution functions. They define a Gaussian process

on a known manifold, and use it to assess data known to lie on this manifold. The method
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used is applicable only to the particular manifold, and not to learned manifolds.

All of these papers use a known manifold structure while the work presented in this

dissertation considers manifolds where the structure is learned from a set of data via Gaussian

processes. This allows for use in more general contexts when no prior information is available

about the manifold structure of the data.

2.2 Manifold Learning in Literature

Papers in the second category learn a manifold from data. They assume that the data lies on

a manifold of lower dimension than the data itself. The geometric and differential structure

of the resulting manifold is not discussed and no method for using the manifold beyond

simple regression is presented. Gaussian processes are often used to define the mapping to

the manifold, but the manifold is always considered to be deterministic and not stochastic.

Barkan[3] discusses a technique for extending manifolds beyond the original training data.

Gaussian processes are used to make predictions away from known samples through simple

regression. This improves the usability of manifolds by extending the range of inputs that

can be covered. The probabilistic nature of the Gaussian process is not used here, as the

only concern is the accuracy of the points predicted by the Gaussian Process. GPLVMs are

also not compared to other manifold learning methods, which is notable considering that the

extension through Gaussian Process regression is intrinsic to GPLVM manifolds.

Thimmisetty[41] uses Gaussian processes to work with manifolds generated by diffusion

maps over geological data. The manifold structure is found by using diffusion maps, and

then Gaussian processes are used to interpolate and extrapolate this structure to predict
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unknowns in the data space. Similar to Barkan[3], this work does not consider GPLVMs

as an alternative for generating the manifold, but it does make more use of the statistical

properties of Gaussian processes. The predictions made by Gaussian process regression

include the variance produced by the Gaussian process, but the manifold is not considered to

be stochastic.

Calandrea[5] describes a type of regression called Manifold Gaussian process. Although

the name includes the word, no manifold is learned as a part of this approach. Instead,

Manifold GPs use a GP-like covariance function for nonlinear regression. The procedure

is to learn a feature space from the input data and regress on the features instead of the

original data. While this does show some utility working with discontinuous data, it does not

contribute much to manifold learning.

Guhaniyogi[13] address the problem of training a GP over large datasets by using com-

pressed Gaussian processes. The approach is appropriate for cases where the data is assumed

to lie on a manifold and so some of the information of the samples can be compressed. The

primary goal of the work was to improve the speed of using a Gaussian process method. It

does not consider the learned manifold in a probabilistic way.

Liang[24] presents a method for placing landmarks on a manifold using Gaussian processes.

The goal of placing these landmarks is to find a minimal set of points that capture the

structure of the manifold, or in some cases represent categories in datasets such as the NMIST

or facial image data. Landmarks should be spread out as much as possible to maximize the

information each one provides, and this can be done using Gaussian processes to maximize

the variance of each point added with respect to landmarks already placed. This is extended

further by allowing a landmark to be selected from the region of the manifold instead of just
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choosing a specific sample, as it may be desirable for a landmark to represent a local average.

This work does not start with a known manifold structure, but it also does not consider the

manifold structure when selecting landmark points.

Yang[46] demonstrates how a manifold can be learned for regression by Bayesian methods

using Gaussian processes. It is demonstrated how regression can occur while bypassing

the need to learn the manifold completely; however, no real applications are shown and no

methods are given to use this regression to work with manifold properties such as distance or

trajectory planning.

Jorgenson[17] uses what he names an Iso Gaussian Process. It is a manifold learning

approach that produces a distance and topology preserving manifold. This is achieved by first

generating a neighborhood graph to ensure the local distances and topology of the data are

preserved (similar to how Isomap[2] works), then maximizing the likelihood of this graph with

respect to the latent variable representation. The approach is then applied to the Swiss roll

and MNIST data sets to demonstrate the degree to which the Iso Gaussian Process preserves

topology and local distances, producing manifolds that give an accurate representation of the

original data. While the generation of Iso Gaussian Process manifolds is discussed, the use of

these manifolds to solve real problems is not covered. No demonstration of how to use the

topological structure and distance preservation is given.

These papers demonstrate methods for learning manifold structure from sample data

but do not use the learned manifold to solve practical problems beyond simple regression or

classification. They make no use of the geometric or differential properties of the manifold.

The work presented in this dissertation develops methods for working with the structure of

learned manifolds and uses them to solve problems in constrained motion planning.
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2.3 Closely Related Research

Some research does attempt to connect the learned manifold to applications while making

use of the geometry and structure of the manifold. Havoutis[15] uses the manifold struc-

ture for robotic motion, learning constraints in the form of a “skill" manifold. Once the

structure is known, the manifold is used to guide new motion–a new performance of this

skill–without needing to optimize against the constraints. This creates benefits in terms

of the speed at which new trajectories can be computed, making it possible to generate

new trajectories in real time. Havoutis demonstrates this with the walk cycle of a bipedal

robot. While the benefits of using manifold structure are shown here, only the tangent space

of the manifold is actually learned. This means motion can be restricted to the tangent

space of the manifold. No manifold coordinates are found, however, meaning there is no

benefit from the reduced dimensionality of the manifold. Trajectories are found by following

geodesics on the manifold, although the method used simply projects a line onto the man-

ifold. Figure 2.1 shows how this naive implementation can fail to produce the intended results.

Havoutis extends the use of skill manifolds to handle real time disruptions, such as

obstacles preventing travel in portions of the manifold, or disturbances that cause the system

to leave the manifold entirely [16]. These additions help make the use of skill manifolds

viable in practical situations, and given the speed with which they can be computed, makes

them useful for path planning in robotic systems–both in physical space and in the robot’s

configuration space. Since only the tangent space is known, projecting points onto the
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manifold in order to recover from disruptions requires an iterative process that finds a point

where any motion in the tangent space would push it farther from the point being projected.

Li[23] improves on the work done by Havoutis[16]. This paper looks more specifically at

the problem of constrained task manipulation and uses skill manifolds to plan trajectories for

motion. Similar to Havoutis, the manifold is learned through the tangent space. This allows

for motion to be restricted to the tangent space of the manifold, ensuring that the constraints

learned by the skill manifold are satisfied. A Gaussian process is used to project points that

have been perturbed away from the manifold to the closest on-manifold point. This results in

a speed improvement over the iterative approach used by Havoutis. The skill manifold and

the process through which trajectories are found still suffer from the same weaknesses of (1)no

coordinate space to simplify computations and (2)a naive implementation of the shortest path.

Havoutis’ work and Li’s work are much closer than the other papers described above to

the work presented in this dissertation, with some important distinctions. With no coordinate

space learned for their manifold, all computations must take place in the ambient space of the

manifold. All computations must be projected into the tangent space, incurring an additional

cost on top of the need to work in a higher dimension than the manifold. The other major

difference is the method by which trajectories are found. The approach given by the existing

work is to project the shortest path in the ambient space onto the manifold and assumes

that this is sufficient to generate a geodesic on the manifold. This assumption may hold on

manifolds with low curvature or in cases where the endpoints of the path are close but it is

not generally true (see Figure 2.1).
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Figure 2.1: Three lines (red) connecting start and endpoints in the ambient space of the manifold
and geodesics (black) on a parabolic surface connecting those same points. Note that although
the three lines intersect at a single point, the geodesics have no equivalent intersection point. This
means that projecting the lines to the manifold (which would produce a single intersection point on
the manifold) would not result in geodesics.

2.4 Stochastic Manifolds

In the literature there exists very little work that considers the stochastic nature of a learned

manifold while also trying to quantify the geometry and structure of the manifold. As

discussed, most break down into one of the two categories mentioned with either an emphasis

on the learning portion or focusing on the manifold structure. One recent paper discusses

16



some of the difficulties involved with using manifold geometry when considering learned

manifolds.

Hauberg explores the benefits of manifold learning and the shortcomings that typical mani-

fold learning approaches encounter when trying to use the manifold’s differential structure[14].

A good representation of a manifold should allow for interpolation, a well-defined distance,

and a measure that permits integration. Hauberg argues that current methods fail to provide

these components and gives examples of cases where current methods will produce poor

results because of the behavior they exhibit far from the training data. If the distance metric

that defines the topology is small far from the data, trajectories will prefer paths away from

the well-trained regions. Ideally, the boundary of the training data would serve as a boundary

for the manifold. If instead the metric is large far from the data, the interpolation will not

be smooth within the manifold. Trying to find a balance between the two extremes for the

distance metrics results in problems when considering gaps in the manifold as there is no

way to distinguish between structural holes and gaps in the training data.

Hauberg then discusses a probability-based manifold learning approach. With a probabilis-

tic mapping from the coordinate representation to the manifold, it is possible to construct a

stochastic metric which incorporates a measure of uncertainty. The points on the manifold are

random variables, each point corresponding to a probability distribution as a function of the

coordinate inputs. Quantifying this uncertainty in the points on the manifold allows for holes

and boundaries within it to be well defined, solving some of the issues that arise in current

methods. Hauberg further discusses the differences between a stochastic manifold (i.e. one
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with quantified uncertainty) and a deterministic Riemann manifold. Using the expected value

of the metric and applying traditional Riemannian methods for integration over the manifold

provides an accurate approximation while still retaining the properties of a stochastic manifold.

Hauberg also discusses how to work with path length on stochastic manifolds[9]. In that

paper, the need to treat distances on a stochastic manifold differently from regular manifolds

is covered in detail. The framework for using the expected value of the curve length or the

metric tensor is shown, although derivations and details on how to compute the expected value

are not. Again, the use of this information to solve problems on manifolds is not demonstrated.

While Hauberg’s work suggests that stochastic manifolds are needed to use the manifold

geometry, no work was presented that does so. This dissertation addresses that gap with a

novel method that learns manifold structure from a set of data and then uses the resultant

geometric and differential properties to solve motion planning problems.
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Chapter 3

Gaussian Processes

3.1 Fundamentals

Before the details of a Gaussian Process Manifold (GP-Manifold) can be discussed, the

fundamentals of Gaussian Processes need to be explained.

3.1.1 Definitions

A Gaussian Process is defined as a collection of random variables, any finite number of which

have a joint Gaussian distribution [32]. In practice, it forms a probability distribution over

functions, treating each point on the function as a random variable. To ensure smoothness

of the function, the covariance between points is defined as a function of the inputs to the

Gaussian Process. (Note that this is a generalization of the standard statistical covariance.)

Points which are close in the domain should be highly correlated and thus have a high

covariance. With this interpretation, a Gaussian Process for a function f(x) ∈ Rd can be

defined by a mean function, m(x) ∈ Rd, and covariance function, k(x, x′) ∈ R, where:

19



m(x) = E[f(x)] (3.1)

k(x, x′) = E[(f(x)−m(x))>(f(x′)−m(x′))] (3.2)

These definitions are taken from Rasmussen [32]. In this case, the random variables of the

Gaussian Process estimate the value of f(x) at location x. This can be used to fit a curve to

a set of data by choosing x as the input, m(x) as the output, and selecting an appropriate

functional form for the covariance function. That choice determines the characteristics of the

curve being fit. An example is the radial basis function(RBF):

k(x, x′) = α1e
−α2‖x−x

′‖2
2 (3.3)

where α1 and α2 are hyperparameters (constants that are used to control the behavior of

the Gaussian process). α1 represents the signal-to-noise ratio and α2 represents the length

scale of changes in the Gaussian Processes. Different covariance functions can be chosen

to model different expectations of what the data represents. The radial basis function is a

common choice because it models the expectation that points close to each other on the input

will be close on the output. RBF covariance is what will be used as the standard covariance

function for Gaussian processes in this work unless otherwise specified. Figure 3.1 shows a

plot of the RBF covariance with respect to the distance between two points x and x′.

A covariance matrix K is used to store the covariances between a number of points from

the same Gaussian process. It is an N ×N symmetric positive definite matrix whose entries
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Figure 3.1: RBF Covariance k(x, x′) as a function of the distance between two points x and x′.
α1 = 1, α2 = 1

are Kij = k(xi, xj) for xi, xj ∈ X, where X is the N-dimensional domain of inputs to the

Gaussian Process.

3.1.2 Regression from Prior Information

Prior information must be incorporated by a Gaussian process in order to perform functional

regression. Given a set of N prior inputs X and outputs Y along with the covariance function

k(x, x′), a new output y′ can be predicted for any new input x′, using the following formulas:

y′ = k(x′, X)>K−1Y (3.4)
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V [y′] = k(x′, x′)− k(x′, X)>K−1k(x′, X) (3.5)

Where k(x′, X) is the N -vector of covariances between x′ and each of the points in X

and K is the N ×N covariance matrix with entries given by the covariance function over

X. For a more detailed derivation of these equations, see [32]. In the second equation, the

vector of covariances is multiplied through the inverse of the covariance matrix to produce

a vector of coefficients that weight the components of k(x′, X) toward the points closest to

x′ in X. The result is the variance of the distribution for the point found at x′. In the first

equation the function output at each point in X is similarly weighted to produce the mean of

the distribution for y′. When considering prior points for a Gaussian process, the uncertainty

of each measurement of the prior points α3I is added to K. This has a nice side effect of

ensuring that K is positive definite when the covariance between points is small.

Taking the derivative of y′ with respect to x′ only requires taking the derivative of the

covariance function k(x′, X), as neither K or Y have any dependence on x′. The RBF

covariance is infinitely differentiable, so a Gaussian process using RBF covariance will also

have this property. The derivatives can be found recursively according to:

dk(x′, x)
dx′

= (−α2x
′)α1e

−α2‖x−x
′‖2

2 (3.6)

= (−α2x
′)k(x′, x) (3.7)

dnk(x′, x)
dx′n

= −(n− 1)α2
dn−2k(x′, x)
dx′n−2 − α2x

′d
n−1k(x′, x)
dx′n−1 (3.8)
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dn+1k(x′, x)
dx′n+1 = d

dx′

(
−(n− 1)α2

dn−2k(x′, x)
dx′n−2 − α2x

′d
n−1k(x′, x)
dx′n−1

)
(3.9)

= −(n− 1)α2
dn−1k(x′, x)
dx′n−1 − α2

dn−1k(x′, x)
dx′n−1 − α2x

′d
nk(x′, x)
dx′n

(3.10)

= −nα2
dn−1k(x′, x)
dx′n−1 − α2x

′d
nk(x′, x)
dx′n

(3.11)

Figure 3.2 shows an example using a Gaussian Process to fit a curve to the sample points

from a hypothetical range-finder. Note that the variance increases with the distance from the

sample points. The uncertainty increases and the accuracy falls off as the distance from a

sample point increases. The red circles represent the y values of known sample points (x, y),

while the blue curve are predicted points (x′, y′) based on (3.4). Both y and y′ are Gaussian

random variables, where the variance is shown by the gray region around the curve.

The hyperparameters of the covariance function can be used to tune the Gaussian Process

to better fit the data. Figure 3.3 taken from [32] illustrates the importance of having the

correct values for the hyper parameters. In these plots the length scale, or α2 parameter

from the radial basis function specified earlier, is varied while the remaining hyperparameters

are optimized to maximize the marginal likelihood of the data (i.e., the probability of the

observed data given the hyperparameters). In practice, all the hyperparameters are estimated

through a method such as scaled conjugate gradient optimization to best fit the input data.
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Figure 3.2: Gaussian Process curve fit to sample points from a hypothetical rangefinder. Sample
points are given by the red circles, with the mean function of the Gaussian Process in blue and the
variance envelope in gray.

Figure 3.3: Three Gaussian processes for the same data set. Crosses represent the prior data and
the smooth line shows the corresponding Gaussian process, with the gray region showing the 95%
confidence interval. (a) has the optimal set of hyperparameters. (b) has the length scale set too
small while (c) has the length scale set too high [32].

3.2 GP-LVM and Dimensionality Reduction

Gaussian Processes can also be used for dimensionality reduction. In many cases when

working with high dimensional data, it can be desirable to simplify the problem by reducing
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the dimension to a more manageable lower dimension, often called the latent space. This

is often the case when the intrinsic dimensionality of the problem is likely to be less than

the dimension of the data. In such a case there may be redundancies in the data across

its dimensions. An example of this might be a warped plane in three dimensions. If the

exact nature of the warping is known, any analysis or problems can be solved more easily in

two dimensions and then warped back into three dimensions. A number of techniques for

dimensionality reduction exist for different types of problems.

3.2.1 Existing Dimensionality Reduction Techniques

Principal Component Analysis (PCA) is a linear dimensionality reduction technique that

finds the dimensions of highest variance within a multidimensional data set. PCA does this

by decomposing the data into an orthogonal basis ordered by the magnitude of variance along

each axis [37]. This works well for problems where the data is linear, but is less effective

when data is non-linear.

Isomap [40] is another dimensionality reduction technique that can accurately model some

non-linear data. It works by computing distances between points and forming a graph of

connected points based on k-nearest neighbors or within a certain fixed radius. The resulting

distances are used in a multi-dimensional scaling algorithm [29] to provide dimensionality

reduction. In effect Isomap finds the geodesics on the high dimensional set. When using time

series data from a dynamical system, subsequent points can be assumed to be connected,
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providing some additional information. However, Isomaps are sensitive to noise, especially in

initial conditions [2]. Given slightly different initial conditions highly similar processes may

lead to significantly different manifolds (in shape and extent) and to latent mappings that

exhibit little similarity. This limits the applicability of Isomap to nondeterministic physical

systems.

Kernel PCA is a non-linear approach similar to PCA where the data is first mapped to an

arbitrary higher dimension where it can be easier to separate points [34]. PCA is performed

in this higher dimensional space to give the final non-linear low dimensional representation.

This is accomplished using a kernel method similar to that of a support vector machine that

works without actually mapping to a higher dimensional space first, instead defining a kernel

function that represents an inner product in the higher space. While Kernel PCA is capable

of handling non-linear structure within a data set and performs well for data clustering,

it is not particularly applicable to the regressions necessary to approximate dynamical systems.

3.2.2 GP-LVM Optimization

Gaussian Processes can be used for dimensionality reduction as well, by treating the change

in dimension as a mapping from the low dimensional latent space X to the high dimensional

space Y. The mapping is chosen from low to high so that it is possible to have an injective

(one-to-one) mapping between the two spaces. If the mapping was performed from high to

low then it would not necessarily be possible to ensure this constraint. The low dimensional
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space X is then taken as an input to a Gaussian Process with output Y, and the marginal

likelihood of a given X can be found from the following equation taken from Lawrence [20]:

p(Y |X,α) = 1
(2π)DN2 |K|D2

e
− trace(K−1Y Y>)

2 (3.12)

Here D is the dimension of the data set Y, and N is the number of data points. The

covariance matrix K is constructed over the latent variables using the covariance function,

k(x, x′). Maximizing this likelihood with respect to X gives a latent space that best reproduces

the data set Y. The hyperparameters are also included in the maximization to ensure that the

mapping between the two spaces is as accurate as possible. The resulting Gaussian Process

Latent Variable Model (GP-LVM) is a non-linear probabilistic dimensionality reduction

method that can be used in a wide range of applications [20].

The optimization itself is typically performed using a scaled conjugate gradient method

that is initialized using some other approach such as Principle Component Analysis or graph

diffusion. The negative log likelihood is taken and minimized to simplify computations:

L(X) = − ln( 1
(2π)DN2 |K|D2

e
− trace(K−1Y Y>)

2 ) (3.13)

= − ln( 1
(2π)DN2 |K|D2

)− − trace(K−1Y Y >)
2 ) (3.14)

= ln((2π)DN2 ) + D

2 ln(K|) + 1
2 trace(K−1Y Y >)) (3.15)
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For optimization, the gradient of this likelihood must be taken with respect to the latent

variables X and the hyperparameters α. This gradient is easier to break into two parts, the

first being the gradient of L with respect to K:

dL

dK
= D

2 K−1 − 1
2K−1Y Y >K−1 (3.16)

The final gradient with respect to latent variables and hyperparameters can then be found

through the chain rule:

[
∂K
∂Xij

]
mn

=



α2 (xnj − xij) k (xi,xn) , for m = i,

α2 (xmj − xij) k (xm,xi) , for n = i,

0, otherwise

(3.17)

∂K
∂α1

= K
α1

(3.18)

∂K
∂α2

= −1
2 dist2 (X)�K (3.19)

(3.20)

Details on these derivation can be found in the Appendix.

3.3 External Information

In any machine learning method, it is useful to be able to incorporate extra information

about the data used for training. This extra information can take many forms; in some

cases the data may be a time series, leading to information about adjacent states. The
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relative closeness of points may also be known, and the method used for learning can use

this to better preserve the structure of the data. In some cases, extra information about the

data is available (in the form of time-progression or known distance graphs). This can be

added to the GP-LVM optimization process to improve accuracy through extra terms on

the likelihood function. The following are examples of how external information can be added.

3.3.1 Wang and Low Dimensional Character Representation

Wang used Gaussian Processes to model motion capture data with the intent of producing

a lower dimensional representation of the high dimensional animation [44]. He adds an

additional Gaussian Process to model the sequential time-series nature of the data, which

takes a latent space point as input and as output produces the next point in the time-series.

The resulting latent space trajectories corresponding to the input animation sequences are

much smoother when using this additional information.

3.3.2 Levine and Latent Space Control

Levine adds a “connectivity" term to the likelihood to allow for control over which states

should be close to each other in order to preserve in the latent space the closeness of points

that were close in the data space [22]. The connectivity term is a graph structure linking

points together with a notion of distance. The latent space that results from using this term

allows for additional control over the distance between latent points. Levine uses this to

ensure the endpoints of motion capture data are close to each other to allow for transitions
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from one animation sequence to another. This is combined with a control system that

operates in the latent space to fulfill goals in the state space.

3.3.3 Ko and Latent Space Labels

Ko uses information about the desired latent space to guide the optimization process to

match some points to desired coordinates in latent space [19]. This allows for more direct

control over the final latent coordinates produced for a given data set, which can be useful

for giving some meaning to the latent space. The method used allows for weighted “labels"

that can be modified to change the degree to which the optimization tries to adhere to the

labels. While there is some utility with this addition, adding labels can result in less optimal

mappings due to the extra constraints on the optimization process.
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Chapter 4

GP-Bayes Filter

Latent variable modeling is a useful dimensionality reduction tool that helps simplify a

complex system, but often times the latent variables that form the basis for the model are

not directly measurable. This is especially common when the latent variables themselves are

generated from machine learning, but can be true even when they have physical meaning.

An example of this might be a robot containing a variety of rangefinders or other telemetry

sensors where the latent variables in question are the components of the position of the

robot. Although the sensors produce information related to the position, such as distance to

a landmark, the position is not directly measurable. To solve this type of problem, Bayes

filters in the form of Kalman or particle filters are used to track the quantities that cannot

be measured [6].

4.1 GP-Bayes Filter

A typical Bayes filter consists of two main components. The first is a model of the system

and how it evolves through time. This is used to predict the next state of the system based

on the current state as well as how the uncertainty propagates. The second component uses

measurements from whatever sensors are available to update the quantities of the system

being tracked by the filter. Since the desired quantities cannot be measured directly, the
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measurement component instead predicts what the sensors are most likely to read based on

the current state of the system and compares the prediction to what was actually observed.

The difference between these two is then used to update the state accordingly. In a typical

Bayes filter, these two components are called update and measurement respectively. At

each time-step, the system is updated and then measured to accurately track the desired

quantities.

4.1.1 Basic GP-Bayes Filter

The difficulty in producing a well performing Bayes filter generally lies in the difficulty of

finding a good model for the update and measurement steps. Producing a good model often

requires a deep understanding of how the system being tracked works. A GP-Bayes filter

as presented originally by Ko seeks to apply Gaussian Process regression to the update and

measurement models [18]. Two separate Gaussian Processes are used, one for the update step

and one for the measurement. Both are generated from a set of training data consisting of

known state and sensor measurements, using hyperparameter optimization to ensure a good fit.

Consider a system with unobservable state x and observable outputs z. Then a GP-Bayes

filter tracking this system can be described by the following equations:

~xi = ~kTi−1KXX2:N (4.1)

Σx
i = (k(~xi−1, ~xi−1)− ~kTi−1K−1

X
~ki−1)I (4.2)
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~zi = ~kTi KY Y (4.3)

Σz
i = (k(~xi, ~xi)− ~kTi K−1

Y
~ki)I (4.4)

where K is the covariance matrix with entries from the covariance function k. The vector

~k is the same as k(x,X) from equation3.4, produced by evaluating the covariance function

for a given x against every column from X. X represents the latent space values and Y

represents the observable outputs. Since the filter predicts state i from state i− 1, X is offset

so that an input of xi−1 has an output of xi, which is why X is indexed from 2 to N. This

information can be used in a Kalman filter according to the following series of equations:

x̂i = ~kTi−1KXX2:N (4.5)

Qi = (k(~xi−1, ~xi−1)− ~kTi−1K−1
X
~ki−1)I (4.6)

Gi = ∂(x̂i)
∂~xi−1

(4.7)

Σ̂i = GiΣ̂i−1GT
i + Qi (4.8)

(4.9)

This set of equations is the “update” step. Here x̂ is the prediction for the next latent

state, Q is the Gaussian process’ variance matrix, G is the Jacobian of the Gaussian process

for this prediction, and Σ̂ is the covariance matrix for the prediction x̂.

~zi = ~kTi KY Y (4.10)
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Σz
i = (k(~xi, ~xi)− ~kTi K−1

Y
~ki)I (4.11)

Hi = ∂(~zi)
∂~xi

(4.12)

Kgain,i = Σ̂iHT
i (HiΣ̂iHT

i + Σz
i )−1 (4.13)

~xi = x̂i + Ki(ŷi − ~zi) (4.14)

Σi = (I−KiHi)Σ̂i (4.15)

This set of equations is the “measurement” step. Here ~z is the predicted measurement

and Σz
i is the associated covariance matrix. H is the Jacobian of the Gaussian Process for

this prediction and ŷ is the current measured data value. Kgain,i is the Kalman gain, an

optimal term that minimizes the error between the prediction ~z and measurement ŷ. The

Jacobians for ∂(x̂i)
∂~xi−1

and ∂(~zi)
∂~xi

are relatively easy to derive and are shown in Ko[19].

4.1.2 GP-LVM Addition

The GP-Bayes filter requires some amount of training data to use, and more importantly

requires knowledge of the system state that is being tracked. In some cases, the system state

may not be known directly or there may not be a ground truth system state available at all.

This could happen when the state of a system is constrained in such a way that a smaller

hidden variable set determines the system’s behavior. The GP-Bayes filter can be extended

to use a GP-LVM latent space as the system state to be tracked instead. In the GP-LVM

case, X is the derived latent variables while in the normal GP-Bayes filter X is a set of known

system state variables. The latent space then becomes a virtual system state space. While
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this does not change the GP-Bayes filter itself significantly, it does allow for easier use of the

latent space as it provides a way to estimate the current latent coordinates of a system.

4.2 Ko Implementation

Ko & Fox presented both the GP-Bayes filter and the extension to GP-LVMs in their papers

[18],[19]. While the GP-Bayes filter itself worked well, the GP-LVM extension allowed for

robust training of a robotic manipulator to mimic a training set. This was due to the

use of the GP uncertainty estimates to pick system inputs that lowered the uncertainty in

subsequent steps. The control system was then trained exclusively on the control inputs that

reduced the Gaussian Process variance, i.e. only control inputs that resulted in a state with

higher certainty were used. Essentially, this used the certainty of the latent state as a proxy

for stability and ensured that the system stayed in stable regions rather than diverging to

unlearned portions of the latent space. This highlights one of the biggest advantages to using

Gaussian Processes–a measurement of the accuracy of a prediction is a very desirable trait

for a machine learning approach.

4.2.1 Modifications to Ko

While the GP-Bayes filter presented in Ko works well, for the research presented in this

dissertation a change was made in the implementation of the filter’s measurement. In Ko’s

original equation, (4.11) above, the uncertainty in the measurement is only a function of

the Gaussian Process used to find the predicted measurement based on the latent space
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coordinates. In practice, sensors have their own uncertainty in the results they report. A

sensor measurement can be considered as a random variable, and appropriate considerations

need to be made for the distribution of this random variable. A modification to equation

(4.11) above accounts for this:

Σz
i = (k(~xi, ~xi)− ~kTi K−1

Y
~ki)I + R (4.16)

Here R represents the covariance matrix for the sensor inputs that produce ŷi in equation

(4.14). This covariance matrix can be found by appropriate testing of the sensors in a

controlled environment.

4.3 Manifold Interpretation of GP-LVM

The idea of using latent variable modeling as a low dimensional representation of a data set

is fundamentally trying to describe the data set as a low dimensional object despite the high

dimensional space it is embedded in. In this way, the data set is considered as a manifold

existing in this high dimensional space but with constraints that allow it to be described with

the low dimensional representation due to the latent variable model. These latent variables

are the coordinates of the manifold and more accurately represent the true dimensionality. It

is possible that the manifold is in fact of a higher dimension, in which case the latent space

coordinates are an approximation to the manifold. However, if this approximation and error

estimates can be quantified then it can remain useful for most cases.
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Chapter 5

GP Manifolds

The latent space variables of a GP-LVM function as coordinates for the data space manifold.

Interpreting this way is consistent with the GP-Bayes filter, and provides some interesting

usages for GP-LVMs. The resulting Gaussian process manifolds (GP-Manifold) produced by

this interpretation are stochastic, meaning the manifold points are random variables rather

than simple points.

5.1 GP Manifold Definition

There exist many formalized definitions for manifolds, so the definition used here must be

specified clearly. A manifold M is a set of points p ∈M with the property that for each point

p there exists an open neighborhood (or collection of points in M) that is homeomorphic1

to an open set in <k, where k is the dimension of M [26]. The collection of homeomorphic

functions that map between <k to M are called charts, and have the constraint that for

overlapping regions with different charts it is possible to define a change of coordinates

between the two that is a continuous function. Typically the definition of these charts

requires that they cover the manifold M completely, but in the cases discussed here it is not

necessary to completely define all the charts needed to cover M . Instead, the manifold M is
1A homeomorphic function is one that is bijective and continuous
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considered in patches that are covered by the training data.

For a Gaussian process manifold (GP-Manifold), the definition is modified slightly. Given

a set of training points Y and a corresponding GP-LVM with a Gaussian process φ and

latent variables X, a GP-Manifold is MGP = {Y, φ,X}. The Gaussian process φ contains

the hyperparameters and covariance functions needed to provide the mapping from X to Y .

Under this definition, Y are the manifold points, X are the manifold coordinates, and φ is

the chart connecting coordinates to manifold points.

5.1.1 Notation

When working with manifolds, it is common to use mathematical objects known as tensors. A

tensor of type (r, s) can be written as T k1···kr
l1···ls , where r and s are the number of contravariant

and covariant components respectively. Contravariant tensor components are ones which

change with the inverse of a coordinate change, and are represented by superscript. Covariant

tensor components change directly with the coordinates, and are represented by subscript.

The contravariant and covariant components determine how the tensor changes under a

change of coordinates, and the rank of the tensor is (r + s).

In a coordinate system with points p ∈ <n, the indices of the tensor T can range from

1 . . . n. The Einstein summation convention will be used when writing out tensors [26]:

AijB
j =

n∑
j=1

AijB
j (5.1)
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Figure 5.1: Diagram showing the contravariant and covariant components of a vector v with
respect to basis vectors e1 and e2. Contravariant components are shown in blue, and represent a
linear combination of basis vectors. Covariant component are shown in red, and represent the dot
product of v with the basis vectors.

There are a few familiar mathematical objects than can be described as tensors. The first

is that a vector is a tensor of rank 1, where the difference between a (1, 0) and a (0, 1) tensor

is the difference in how the quantity changes under a coordinate transformation. Matrices

can be considered as rank 2 tensors, where a matrix is typically written as a (0, 2) tensor Mij

and the inverse is written as a (2, 0) tensor M ij . A scalar quantity would be a tensor of rank

0. An example of a rank 3 tensor could be the gradient of a matrix, where the gradient is

taken with respect to each of the components of the matrix.

5.1.2 Importance

The interpretation of a data set as a manifold comes with benefits in terms of dimensionality

reduction and the additional tools available. Reducing the dimensionality of the data im-

proves the speed of operations and leads to more numerical stability. A manifold also allows

the use of differential geometry, which is a field of mathematics that works with manifold

structures and the application of calculus to non-Euclidean spaces [26]. Once a data set
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can be understood as a differentiable manifold, the many theorems and tools studied in

differential geometry become available to use to solve different types of problems.

One of the more important benefits of a manifold interpretation is a better definition of

distance with respect to the manifold. Differential geometry allows for the computation of a

metric tensor (see Section 5.2) on the manifold, which captures the idea of distance within

the tangent space of the manifold. The tangent space is a Euclidean space associated with

each point on the manifold with a dimension equal to the dimension of the manifold itself,

while the metric tensor is a bilinear form2 that defines an inner product within this tangent

space. By considering the data set as a manifold that is embedded within the full state space,

it possible to define distance from the manifold and to measure how far away a new sample

point is from the manifold. Notions of area, angle, and volume are re-defined in relation to

the manifold through the use of a metric tensor.

An example of how the manifold structure can be used is present in Havoutis [15], where

path planning is constrained by learning a manifold structure and restricted to geodesics

(see Section 5.3) along the manifold. The author’s original training data is prepared by

using constraints that are complicated and require a significant amount of time to compute

trajectories. Once the manifold that is generated from these constraints is found, however,

these constraints become implicit in the structure of the manifold. By definition, the manifold

consists only of points that meet these constraints, so any point that is part of the manifold

must satisfy the constraints. New trajectories generated from geodesics along the manifold are
2Mapping from a pair of vectors to a scalar
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significantly faster to solve for while still meeting the original constraints with a high degree

of accuracy. In Havoutis only the tangent space of the manifold is actually learned. The

downside of learning only the tangent space means that you only have a linear approximation

of the manifold at each point. This approximation is fine for manifolds that are close to

Euclidean, but for more highly curved manifolds the errors in approximation will be more

severe. Despite these downsides, the manifold structure provides significant benefits when

extrapolating the training data.

5.1.3 Bayesian Manifolds

While there are many benefits to the manifold interpretation, they come with a cost of

ensuring that the resulting manifold behaves consistently when using the metric tensor.

Hauberg presents an argument for why typical manifold learning approaches fall short of their

goal in [14]. The two main issues are extrapolating the manifold beyond the training set and

interpolating through holes in the manifold that are real–actually part of the structure–rather

than an absence of data. In the case of extrapolation, if the metric tensor tends to a constant

as trajectories move away from the training data then the length of these paths as measured

by the metric does not increase, allowing for paths to diverge from the manifold and “teleport”

to another point. Trying to resolve this by linear extrapolation makes the assumption that

far from the training data the manifold is effectively flat, and so in regions where there is a

gap (such as in a torus) the real manifold structure is lost. Figure 5.2 from [14] illustrates

both of these cases with a circular manifold.

41



Figure 5.2: Geodesics on a circular manifold, shown in white, for three cases. Left is the case
where the metric tensor disappears far from the manifold, and geodesics “teleport” around the edges
since travel away from the training data carries no distance. Center is the case where the metric
tensor is extrapolated linearly, and geodesics cross through structural holes. Right is the case using
a probabilistic metric, where the structure of the circle is captured more accurately. The background
color shows the magnitude of the distance metric, with light colors indicating larger values. [14]

According to Hauberg[14], trying to resolve these issues from a deterministic standpoint

requires either giving up the smoothness of the manifold or giving up on trying to learn

the structure accurately. Hauberg offers a solution in the form of changing the approach:

using a Bayesian method to learn the manifold structure. The metric is now stochastic,

but it can be well approximated by a deterministic one–the expected value of the metric

tensor. The variance in the metric becomes the necessary component to solve the issues

of extrapolation and interpolation. In regions that are not near training data, the metric

tensor becomes larger due to the higher variance associated with being far from the train-

ing data. In effect, measurements of distance take into account the variance associated with it.

A Gaussian process makes a good candidate for Bayesian manifold learning since as

presented earlier the GP-LVM can be interpreted as learning the manifold structure of a
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data set. Since Gaussian processes naturally include the variance when making predictions,

it fits nicely into Hauberg’s requirements for an accurate manifold learning approach. In

fact, Hauberg uses Gaussian processes as an example demonstrating the ability of a Bayesian

approach to learn the structure of a manifold where deterministic methods fail [14]. The

details of how to use a Gaussian process for tasks involving manifold structures will be

presented below.

5.2 Metric Tensor

A manifold is called Riemannian if it has an associated metric tensor at each point on the

manifold. Embedding a manifold in <n is sufficient to define such a metric tensor, typically

written as g, or gij when considering the components of the tensor. The metric tensor defines

an inner product in the tangent space of a manifold, giving a basis for the measurement of

angles and lengths of tangent space vectors. The metric tensor is used in many common

formulas in differential geometry, so it is a good place to start when working with a manifold.

5.2.1 Derivation from GP-Manifold

For a manifold of dimension k embedded in a Euclidean space with a chart φ(x) mapping

from a coordinate space <k to the embedded coordinates in <n (where k ≤ n), the metric

tensor gij is the inner product of the Jacobian of φ with itself. Mathematically we have the

following:
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J =



∂φ1
∂x1

· · · ∂φ1
∂xk

... . . . ...

∂φn
∂x1

· · · ∂φn
∂xk


(5.2)

g = J>J (5.3)

gij = ∂φ

∂xi
· ∂φ
∂xj

(5.4)

When using a GP-LVM for the manifold coordinates, φ(x) becomes a Gaussian process.

Recall from section 2 the formula for evaluating a Gaussian process at a specific point

(modified here to fit the context of a manifold):

φ(x) = k(x,X)>K−1M (5.5)

Here X and M are the latent variable coordinates and the manifold points respectively

from the initial training data. Computing the derivatives with respect to x needed for the

Jacobian are straightforward since K and M are constant with respect to x, since they come

from the training data while x represents a new sample point.

Taking the derivative of the Gaussian process comes down to taking the derivative of

the covariance function k(x,X). An RBF kernel is typically used due to some of the nice

properties it has, including the relative ease of taking derivatives. As shown earlier, an RBF

covariance function has the following form:
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k(x, x′) = α1e
−α2‖x−x

′‖2
2 (5.6)

Taking the derivative with respect to the ith component of x yields:

∂k(x, x′)
∂xi

= (−α2xi)α1e
−α2‖x−x

′‖2
2 (5.7)

= (−α2xi)k(x, x′) (5.8)

These derivatives form the Jacobian, and the variance is given by equation (3.5). The

distance metric is given by the inner product of the Jacobian with itself, but care must be

taken as the desired result is the expected value for gij , not just the deterministic value. The

following equation shows how this is done:

E[gij] = E[J>J]ij (5.9)

= [E[J>]E[J]]ij + V [J]ij (5.10)

The Jacobian is itself a Gaussian process, where the covariance is taken between derivatives.

From Rasmussen [32], the following relationship is used:

cov(fi,
∂fj
∂xj

) = ∂k(xi, xj)
∂xj

, cov(∂fi
∂xi

,
∂fj
∂xj

) = ∂2k(xi, xj)
∂xdi∂xj

(5.11)

Here the derivatives of a Gaussian process can be estimated through the covariance of

45



the derivatives with respect to the prior sample points. This covariance is found by taking

the derivative of the covariance function. This results in the following expressions for the

expected value and variance of the Jacobian:

E[J]ij = ∂k(x,X)
∂xj

>

K−1Mi (5.12)

V [J]ij = ∂2k(xi, xj)
∂xi∂xj

− ∂k(x,X)
∂xi

>

K−1∂k(x,X)
∂xj

(5.13)

Where Mi is the ith component of all the manifold points. The variance term can be

understood as computing the variance of the derivative, then subtracting the covariance of

the derivatives with respect to the prior sample points. Once this expected value of the

metric tensor has been computed, the manifold can be treated as though it were Riemannian

using this metric tensor.

5.2.2 Intrinsic Nature

The metric tensor of a manifold has the property that it is intrinsic, meaning it does not

depend on a specific coordinate system or how the manifold is embedded in a higher dimen-

sional space [26]. In practice this means that the exact choice of the latent coordinates in

the GP-LVM should not significantly impact the metric tensor, as long as the mapping the

Gaussian process produces is one the minimizes the likelihood function in Section 3.2.2 to

best fit the training data. Figure 5.3 shows how a manifold can have multiple coordinate

mappings. Regardless of the coordinate system used, the metric tensor remains the same

under an appropriate change of coordinates.
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Figure 5.3: Two different coordinate systems for a spherical manifold. Left is the standard
latitude-longitude, right is a stereographic projection. While the coordinate lines differ, geodesics
and distance on the surface remains invariant.

5.3 Geodesics

Geodesics are the manifold analog of straight lines in a Euclidean space. They represent

trajectories on the manifold which have no perpendicular acceleration within the tangent

space of the manifold. Because of this geodesics form minimal energy solutions to path

integrals on the manifold between points, or in other words they represent local minima in

terms of distance between points. Solving for geodesics is tantamount to finding the shortest

distance between two points on a manifold, a useful application.

For a given point p on a manifold and a tangent space vector ~v, there exists a unique
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geodesic γ(t) such that:

γ(0) = p (5.14)

γ′(0) = ~v (5.15)

When considering a geodesic connecting two points on a manifold, however, the uniqueness

is not guaranteed. The existence of a geodesic given two points holds only if the manifold

is compact, or contains all boundary points[26]. Such a manifold is said to be geodesically

complete, and it can be shown that GP-Manifolds meet this criteria

5.3.1 Geodesics on GP-Manifolds

Solving for geodesics on a manifold can be done in several ways. The most straight forward

approach is to solve the differential equations that define a geodesic. Borrowing from [26],

the differential equations take the following form:

d2γi

dt2
+ Γijk(γ(t))dγ

j

dt

dγk

dt
= 0 for all i (5.16)

Here we use the Christoffel symbols Γijk, a tensor-like object that represents how the

tangent space of the manifold changes from point to point where i, j, and k are indices from

1...dim(M). The Christoffel symbols are given by the following equation (simplified through

Einstein summation):
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Γijk = 1
2g

il(∂glj
∂xk

+ ∂glk
∂xj
− ∂gjk

∂xl
) (5.17)

Combining this equation with the definition of gij in equation (5.4) produces a much

simpler expression in terms of the Gaussian process charts for the manifold:

Γijk = 1
2g

il( ∂

∂xk
(φl · φj) + ∂

∂xj
(φl · φk)−

∂

∂xl
(φj · φk)) (5.18)

= 1
2g

il(φlk · φj + φl · φjk + φlj · φk + φl · φjk − φlj · φk − φlk · φj) (5.19)

= gil(φl · φjk) (5.20)

Note that the Christoffel symbols require a second derivative of the Gaussian process to

compute. Taking (5.8) as a starting point, the second derivative is then:

∂2k(x, x′)
∂xi∂xj

= ∂

∂xj
(−α2xi)k(x, x′) (5.21)

= −α2δijk(x, x′) + (α2)2xixjk(x, x′) (5.22)

= (α2xixj − δij)α2k(x, x′) (5.23)

where δij is the Kronecker delta function3. When using the metric tensor of a GP-Manifold,

recall that it is necessary to use the expected value of the metric tensor from equation 5.10.

The derivative of the variance term must be taken and used in equation 5.17. The derivatives

for the variance term entries V [J]ij are given by:
3δij = 1 for i = j, 0 otherwise
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∂V [J]ij
∂xk

= ∂

∂xk

(
∂2k(xi, xj)
∂xi∂xj

− ∂k∗
∂xi

>
K−1∂k∗

∂xj

)
(5.24)

= ∂3k(xi, xj)
∂xi∂xj∂xk

− ∂2k∗
∂xi∂xk

>

K−1∂k∗
∂xj
− ∂k∗
∂xi

>
K−1 ∂2k∗

∂xj∂xk
(5.25)

where k∗ = k(x,X). The first term ∂3k(xi,xj)
∂xi∂xj∂xk

is different from the previous derivative

terms, since it only involves individual components of the input vector x. Using the RBF

covariance function defined earlier, we have:

k(xi, xj) = α1e
−α2(x2

i
+x2
j

)
2 (5.26)

∂2k(xi, xj)
∂xi∂xj

= α2
2xixjk(xi, xj) for i 6= j (5.27)

∂3k(xi, xj)
∂xi∂xj∂xk

=



0 for i = j, k 6= i, j

(α2
2xj − α3

2x
2
ixj)k(xi, xj) for k = i

(α2
2xi − α3

2xix
2
j)k(xi, xj) for k = j

(5.28)

Combining these in the equation for the Christoffel symbols results in the following

expression for the variance term, which can then be added to the expression in equation 5.17.

After all the term canceling, the final expression for the Christoffel symbols is:
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Γijk = gil
(
φl · φjk −

∂k∗
∂xl

>
K−1 ∂2k∗

∂xj∂xk
+ δjk(1− δjl)(1− δkl)(α2

2xl − α3
2xix

2
j)k(xj, xk)

)
(5.29)

Once the necessary components of the differential equations have been found, all that

remains to find a geodesic between two points is to solve a boundary value differential equation

problem. Solvers for these types of problems exist already and are generally sufficient to

find the necessary solution. In some cases, however, the solution to a particular problem can

be quite sensitive and difficult for a solver to converge. This is typically the case when the

metric tensor is large, which occurs for a GP-manifold when the training data is sparse in the

region where the geodesic is computed. In these cases another approach to finding geodesics

can be used, called curve shortening flows.

5.3.2 Curve Shortening Flows

The principle behind curve shortening flows is to iteratively and smoothly adjust a path so

that it is as short as possible [11]. To do this, points on the path are moved to minimize the

amount of curving or turning that the path does. In a Euclidean space, this would result in a

straight line. More generally, however, it results in a geodesic when applied to a curve on a

manifold. To formalize the notion of the amount of turning that a path does requires the

concept of the curvature κ of a curve.

Consider a curve γ(t) in <n. At each point on γ, let T̂ (t) be the unit vector tangent to
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the curve. T̂ can be found by dividing ~γ′(t) by its length, and represents motion in a straight

line. Turning motion can be found by taking the derivative of the unit tangent vector, noting

that T̂ ′(t) · T̂ (t) = 0 since the length of T̂ is constant. This new vector is normal to γ(t),

and the unit vector N̂(t) is used to describe its direction. Curvature is defined by the norm

κ(t) = ‖T̂ ′(t)‖, giving the relationship T̂ ′(t) = κ(t)N̂(t).

The curvature represents how much γ(t) is deviating from a straight line at a given point.

To straighten out the curve, each point is deformed along N̂(t) by an amount proportional to

the curvature. Iterating this approach results in a path that is as straight as possible, and by

extension the shortest path between the start and end points. Figure 5.4 shows one step of

this iteration.

Figure 5.4: Diagram showing one iteration of a curve shortening flow. The solid black curve is
evaluated to find the flow (arrows) that will reduce the curvature at each point. The resulting
dashed curve is shorter than the original. Repeating this process results in a straight line.

5.3.3 Curves on Manifolds

Curve shortening flows become more complicated when considering curves that lie on a

manifold. The curvature of a trajectory on a manifold must take into account the curvature
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due to the way the manifold itself is curved. Solving the differential equations in the first

approach requires no additional changes due to the way it works entirely in the coordinate sys-

tem. Curve shortening flows, however, require finding a tangent space derivative along a curve.

To take the appropriate derivative, the notion of a covariant derivative is needed. In

literature the covariant derivative of a tangent space vector field V along γ, given the notation

DtV is defined as follows [26]:

(DtV )k = v̇k + Γkij γ̇ivj (5.30)

where vk are the components of the vector field V and Γkij are the Christoffel symbols.

With this definition, the previous approach of curve shortening flows is possible using this

more general definition of a derivative.

One advantage to the curve shortening flow approach is that due to its iterative nature,

it is possible to obtain approximate solutions by terminating the process early. This means

in some applications where the time available for solving is constrained, it is possible to

guarantee at least an approximate solution within the available time. Additionally, the solu-

tion can be improved later if time allows, making this option very useful in real time scenarios.
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5.4 Curvature Tensor

An important part of a manifold interpretation for a data set is understanding the geometry

of the manifold. The metric tensor and geodesics offer some insight into how the geometry

impacts distance and angle measurement, but there are more effects caused by the geometry

of the manifold. The Riemann curvature tensor offers a quantitative way to talk about these

effects, such as how vector fields transport along the manifold. In Euclidean geometry, Lie

brackets are used to measure the commutativity when traveling along different fields. When

vectors are transported along vector fields, the order in which they are transported can result

in differences in the final vector, and it is this difference that Lie brackets measure. Manifolds

present an additional way in which the commutativity changes, and this is measured by the

curvature tensor.

Along with measuring the transport of vectors, the Riemann curvature tensor can be

contracted to find the Ricci curvature tensor and the scalar curvature. These two tensors

give a measure of how the volume of a shape deviates from a Euclidean space. The Ricci

tensor measures this deviation when moving along a geodesic, while the scalar curvature is

an average at a point when considering the Ricci tensor in all directions. Both are helpful in

understanding the geometry of a manifold.
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5.4.1 Derivation from Metric Tensor

The Riemann curvature tensor is derived from the metric tensor, making it also an intrinsic

property of a manifold. The mathematical form is given by the following [26]:

Rl
ijk =

∂Γljk
∂xi
− ∂Γlik

∂xj
+ ΓhjkΓlih − ΓhikΓljh (5.31)

Recall that the Christoffel symbols Γijk are derived from the metric tensor gij, meaning

Rl
ijk can be written in terms of the metric tensor itself. From the definition in (5.17), it first

appears that the curvature tensor requires 3rd order derivatives of the original Gaussian

process charts. Examination of the first two terms shows:

∂Γljk
∂xi
− ∂Γlik

∂xj
= ∂

∂xi
(glm(φm · φjk))−

∂

∂xj
(glm(φm · φik)) (5.32)

= ∂glm

∂xi
(φp · φjk)−

∂glm

∂xj
(φm · φik) (5.33)

+glm(φmi · φjk) + glm(φm · φijk) (5.34)

−glm(φmj · φik)− glm(φm · φijk) (5.35)

and it can be seen that the terms with a 3rd order derivative cancel. When using the

expected value of the metric tensor, the variance terms need to be included as well. Recall

from equation (5.29) and consider only the terms coming from the variance, we have:
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[Γijk]var = gil(−∂k∗
∂xl

>
K−1 ∂2k∗

∂xj∂xk
+ δjk(1− δjl)(1− δkl)(α2

2xl − α3
2xlx

2
j)k(xj, xk))(5.36)

[Γijk]A = gil(−∂k∗
∂xl

>
K−1 ∂2k∗

∂xj∂xk
) (5.37)

[Γijk]B = gil(δjk(1− δjl)(1− δkl)(α2
2xl − α3

2xlx
2
j)k(xj, xk)) (5.38)

[Γijk]A is fairly straightforward to evaluate for the curvature tensor:

∂[Γljk]A
∂xi

− ∂[Γlik]A
∂xj

= ∂

∂xi
(glm(− ∂k∗

∂xm

>
K−1 ∂2k∗

∂xj∂xk
))

− ∂

∂xj
(glm(− ∂k∗

∂xm

>
K−1 ∂2k∗

∂xi∂xk
)) (5.39)

= ∂glm

∂xj
( ∂k∗
∂xm

>
K−1 ∂2k∗

∂xi∂xk
)− ∂glm

∂xi
( ∂k∗
∂xm

>
K−1 ∂2k∗

∂xj∂xk
)

+glm( ∂2k∗
∂xm∂xj

>

K−1 ∂2k∗
∂xi∂xk

− ∂2k∗
∂xm∂xi

>

K−1 ∂2k∗
∂xj∂xk

+ ∂k∗
∂xm

>
K−1 ∂3k∗

∂xi∂xj∂xk
− ∂k∗
∂xm

>
K−1 ∂3k∗

∂xi∂xj∂xk
) (5.40)

Terms involving a 3rd order derivative again cancel here. For the final term [Γijk]B, the

single component covariance function from (5.26) is being differentiated here:

∂[Γljk]A
∂xi

− ∂[Γlik]A
∂xj

= ∂

∂xi
glm(δjk(1− δjl)(1− δkl)(α2

2xl − α3
2xlx

2
j)k(xj, xk))

− ∂

∂xj
glm(δik(1− δil)(1− δkl)(α2

2xl − α3
2xlx

2
i )k(xi, xk)) (5.41)
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If i 6= j, then both terms differentiate to zero. If i = j, then both terms cancel. This

leaves only the terms from [Γijk]A in the final equation for the curvature tensor.

Once the Riemann curvature tensor has been found, it can be used to find the Ricci

curvature tensor as well as the scalar curvature. Contracting the tensor requires summing

across indexes on the same tensor. Note that the variable R is reused, with the tensor rank

indicating which curvature it is. The Riemann curvature tensor has a (1,4) tensor rank, the

Ricci curvature tensor has a (0,2) tensor rank, and the scalar curvature is simply a scalar

quantity.

Rij = Rk
kij (5.42)

R = traceRij = gijRij (5.43)

5.4.2 Interpretation of Curvature

Curvature represents how the manifold behaves in a non-Euclidean way. To estimate of how

important it is to compensate for non-linear behavior, the magnitude of the scalar curvature

is useful. Values near zero represent a relatively flat region, where linear approximations will

work well. When the magnitude is higher, the manifold is more highly curved and methods to

account for the non-linearity will need to be used. Particular applications could consider set-

ting a threshold for the scalar curvature above which the type of model used could be changed.
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The Riemann curvature tensor has some extra utility when considering control methods

applied to a manifold. In control theory, Lie brackets are a tool used to describe different

control strategies and how their application in different orders changes the outcome [38].

Importantly, these typically apply to Euclidean control spaces. When applying the same

methods to a manifold, the curvature adds another layer to how the ordering of different

controls produces a different output. Both the Lie bracket and the Riemann curvature tensor

are needed to completely describe the system’s behavior.

To understand why the curvature needs to be taken into account, consider a typical

scenario involving a Lie bracket where a point is moved along two vector fields in different

orders. The Lie bracket describes how separate the endpoints are depending on which order

the two vector fields are traversed. In a case where motion is along straight lines, the Lie

bracket is zero, representing a commutative operation. The case of moving along straight

lines is analogous to tracing the edges of a parallelogram when considering Euclidean spaces.

The behavior on a manifold with non-zero Riemann curvature is more complicated.

Consider a sphere and the case of moving along perpendicular geodesics. On a flat

manifold, switching between two perpendicular geodesics would trace out a rectangle. On a

sphere, however, the geodesics are the great circles of the sphere. If the two perpendicular

geodesics are traced for a quarter of the total circumference, the two endpoints can be

connected by another geodesic perpendicular to both with a length equal to a quarter of

the circumference. The final shape is an equilateral triangle on the sphere with right an-

gles at all 3 points. This sort of geometric oddity is expressed by the Riemann curvature tensor.
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Figure 5.5: Parallel vector transport along geodesics for a non-Euclidean manifold. The red vector
is moved along the geodesics such that the angle relative to the tangent of the line it follows remains
constant. Transport around this closed loop results in changes to the vector based on the curvature
of the manifold.

Another example of how the curvature operates is in the case of parallel vector transport

along geodesics. Figure 5.5 shows how the curvature of a manifold impacts the way that

vectors change when they are transported. The curvature tensor mathematically describes

these changes.
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5.4.3 Optimizing for Curvature Preservation

Using curvature as a measurement of the geometry of a manifold presents an opportunity for

incorporating another source of extra information. The GP-LVM optimization process can

be modified to include a likelihood term corresponding to the curvature, which can be used if

there is any available curvature information. Even if it was only available for some points in

the data set, it could still help produce manifolds that better fit the training data. To find

the needed likelihood term, the curvature itself would need to be completely specified by the

Gaussian processes used to find it.

60



Chapter 6

Example Usages/Experiments

It remains to show the viability of Gaussian process manifolds applied to practical problems.

One limitation of a Gaussian process approach as compared to a more popular neural net is

that the GP-LVM needs to keep the entire training data set while a neural net only needs to

keep the neuron weights. A method to reduce the necessary data is presented by resampling

the training data. Next the usage of the GP-Bayes filter in the case of radiation induced sensor

data is demonstrated, showing that a GP-Bayes filter can help recover sensor information.

Finally, the benefits of using a GP-manifold over traditional manifold learning approach is

shown by using geodesics for path planning.

6.1 GP-LVM Resampling and Compression

6.1.1 GP-LVM vs Neural Net Size Comparison

One major downside to the use of GP-LVMs is they typically require storing and using the

entire training data set. Because of the way the covariance function works, all of the data

points in the training set are needed to compute the covariance vector that is used to evaluate

the Gaussian process at a new data point. This is in contrast to other methods such as neural
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nets, which store neuron weights but do not require the original training data once the net

has been trained.

For small training sets, Gaussian processes work remarkably well, and don’t overfit to the

same extent that a neural net trained on a small data set would. As the size of the training

data grows, the Gaussian process model improves but the time it takes to compute the latent

variables for optimization increases as does the time needed to compute the output for a new

input. One approach to improve the speed of Gaussian processes during optimization is to

use stochastic methods that pick a sample of points and optimize them locally, similar to

what is done with large neural nets [21]. While this is an improvement, it does not remove the

need for retaining a potentially large amount of training data after optimization is complete.

Since Gaussian processes do perform well with a low number of training points, it is

possible to re-sample the training data to find a smaller set that provides sufficient accuracy

while still retaining the benefits of optimizing using all the data available. The number

of points to keep can be selected to provide accuracy within specified margins, ensuring

that the quality of the GP-LVM remains good. There are several approaches to selecting a

representative set of points, each with their own drawbacks and benefits.
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6.1.2 Re-sampling for Compression

To reduce the size of a trained GP-LVM, the training data points used can be re-sampled to

select a smaller representative set. It is important that the training data selected does not

decrease the accuracy of the Gaussian processes making up the GP-LVM. To find the best

approach, different methods will be compared to each other. There are several metrics by

which the accuracy of a given method can be evaluated.

The first metric is the error when reproducing the training data set from the latent

variables using the Gaussian processes from the re-sampled set. Given a training data set

Y with latent variables X and re-sampled data and latent variables Ȳ and X̄, compute an

estimate Ỹ of Y using the latent variables X according to:

Ỹ = k(X, X̄)KX̄ Ȳ (6.1)

where KX̄ is the covariance matrix formed using X̄. The RMSE of the estimate is then

computed from the Euclidean difference of Ỹ and Y . This error is straightforward to measure

and serves as a metric for the quality of a given re-sampling of the training data.

Another metric to consider is how well the geometry of the manifold is preserved. Using

the scalar curvature as a measure of local geometry, the re-sampled manifold can be compared

to the original. While the full curvature tensor might be a more complete picture of the
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manifold geometry, it is much easier to measure error with the scalar curvature. The equations

for computing the scalar curvature given in section 5.4 are repeated here:

R = gijRij (6.2)

Rij = Rk
kij (6.3)

Rl
ijk =

∂Γljk
∂xi
− ∂Γlik

∂xj
+ ΓhjkΓlih − ΓhikΓljh (6.4)

Γijk =
gil(φl · φjk −

∂k∗
∂xl

>
K−1 ∂2k∗

∂xj∂xk

+ δjk(1− δjl)(1− δkl)(α2
2xl − α3

2xix
2
j)k(xj, xk))

(6.5)

A third metric that is not always available is a measure of how well the re-sampled

manifold satisfies the original constraints that produced the training data. In some cases

the constraint function is known and easy to evaluate, offering another way to measure the

quality of a particular re-sampling. In the case of a robotic manipulator, the constraint

could be minimization of total joint angles. Each point produced by the re-sampled manifold

could then be evaluated in terms of the robotic manipulator state that the point corresponds to.

To test different methods, a known manifold is used to train a GP-LVM. The manifold

consists of a set of points that satisfy a known constraint along with a coordinate map that

is used to initialize the latent variables of the GP-LVM before they are optimized. Different

methods are then applied to re-sample for a smaller number of points, and each of the three

listed metrics are compared. The test manifold is a surface known as a Monkey Saddle, shown
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Figure 6.1: Monkey Saddle surface used to test GP-LVM re-sampling. Left shows the manifold,
with points used for the baseline GP-LVM shown. Right shows the coordinates of the manifold
produced by the GP-LVM

in Figure 6.1. Points on this surface satisfy the constraint of z = x3 − 3xy2, so it is pos-

sible to check the third metric of how well a given GP-LVM satisfies the manifold’s constraints.

6.1.3 Re-sampling Methods

Random Re-sample The most straightforward method to re-sampling is to simply

randomly select a number of points from the original set and use those. While this is simple

to implement, it does have some significant downsides. The first is that a truly random

sampling is prone to clustering, meaning some regions of the manifold will have lots of

information while others may be more sparse. In regions where there are few or no sample

points, the manifold accuracy will suffer due to the lack of information, while the extra

samples in the clustered locations will provide no additional benefit in terms of manifold

performance. The second issue is that in cases where the original data is also clustered, it

only makes the first problem worse. When the original training data has regions of dense

65



clusters, a true random sample will tend to select points from these dense clusters result-

ing in an amplification of the clustering issue that random sampling already tends to experience

Figure 6.2: Randomized Re-sampling of manifold data. Left shows the original manifold in black
and the re-sampled manifold in red. Right shows the sample of coordinates obtained by this method

As can be seen in Figure 6.2, the problem of clustering shows up as the higher concentra-

tion of points near the middle, with a large gap in the top left of the coordinate plot. Looking

at the predicted manifold in red compared to the original in black, it is visually apparent

that in this region there is a higher degree of inaccuracy. The red lattice does not fit well to

the black ground truth, meaning trying to use this portion of the manifold will be prone to

errors.

Mitchell’s Best Candidate Ideally, the set of points that produce the best match

to the original data are the ones that would be chosen. This would require examining all

possible subsets of the original data; however, even for modest sizes of data sets there are

far too many possibilities. One observation based on the flaws of the previous method is
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that having the sample points spread out evenly results in better performance. A method

known as Mitchell’s best candidate [30] is used to produce a sample where no points are closet

together than some minimum distance. The resulting distribution of points is evenly spaced

across the sample space. The way this method works is that points are chosen incrementally.

To add a new point first a number of candidates are generated and the candidate that is

furthest from any other point already included is selected as the best candidate, then added

to the existing set of points. Mathematically,

D(p) = min
xi

(dist(p, xi)) (6.6)

where p is a candidate point and xi are the points currently in the re-sampled set. The

point with largest value of D(p) among the candidates is then added to the re-sampled set.

Figure 6.3: Mitchell’s best candidate re-sampling of manifold data. Left shows the original
manifold in black and the re-sampled manifold in red. Right shows the sample of coordinates
obtained by this method

As can be seen in Figure 6.3, the coordinates from the re-sample are much more spread
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out and cover the space much better. The problem of clustering is gone entirely, and the

improvements in manifold quality are evident when observing how close the re-sampled red

manifold approximates the original black one. Measuring the quality by the metrics described

above also show significant improvements.

Maximal Variance While Mitchell’s best candidate approach works well, it is natural

to consider in what ways it may be improved. The core of the best candidate method is

that a number of points are considered and the one with the highest score according to some

scoring function is chosen. The most obvious place to look for improvements is with this

scoring function.

Several different modifications were tested to find a scoring method that resulted in better

re-sampling according to the metrics chosen. Without containing a component relating to the

distance between points, however, the quality was always inferior compared to the original

Mitchell’s best candidate method. This makes sense, as without a distance component to

the scoring function the resulting re-sample will tend to contain a degree of clustering. By

considering functions that incorporate the distance between sample points, a superior method

was discovered by taking the product of distance with the Gaussian process variance of any

candidate point. The scoring function for the modified Mitchell’s best candidate method

then looks like:
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S(p) = D(p)V [f(p)] (6.7)

where D(p) is the distance function from equation (6.6), and V [f(p)] is the variance of

the Gaussian process evaluated at p. To compute the variance for candidate points, the

partial Gaussian process based on the current set of included points is evaluated and used to

find the variance according to equation (3.5). The product of the distance and this variance

is then used as the score to choose the best candidate. Intuitively, the resulting approach

can be understood as trying to find candidates that are as far away from other points as

possible and are not well predicted by the current set of points. For the first several points

added, the variance will always be high and so the distance term is the important one. As

the number of points in the set grows, the distance shrinks and the variance term becomes

more important in the selection of candidates. As the variance term begins to dominate, the

selection method increasingly prioritizes adding points which are not well predicted and thus

improves the overall accuracy of the re-sample.

6.1.4 Quality of Re-sampled Data

In addition to the Monkey Saddle surface, other data sets were used to test these different

methods. Data from the robotic arm discussed in section 6.2 was used in addition to data

from the Robonaut experiments [1]. While the manifolds for these are not easily visualized,

the re-sampling methods described above can still be applied and the quality measured

according to the metrics discussed.
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Randomized Mitchell’s Best Maximal Variance
Monkey Saddle 3.1× 10−3 9.37× 10−6 4.55× 10−6

HEBI Manipulator 1.88× 10−1 2.35× 10−2 8.53× 10−3

Robonaut Data 1.23× 10−2 3.35× 10−3 5.59× 10−4

Table 6.1: Training set squared error comparison of re-sampling methods on different manifolds.
Average point error averaged over 100 trials.

Randomized Mitchell’s Best Maximal Variance
Monkey Saddle 1.01× 10−2 2.32× 10−3 2.09× 10−3

HEBI Manipulator 1.04× 105 1.39× 105 1.14× 105

Robonaut Data 1.16× 106 1.13× 106 3.29× 106

Table 6.2: Curvature squared error comparison of re-sampling methods on different manifolds.
Average curvature error averaged over 100 trials.

For the Monkey Saddle data, 200 training points on the manifold are used to form the

initial GP-LVM, and it is down-sampled to 40 points. The 3DoF HEBI manipulator contains

309 training points in the original GP-LVM, and is down-sampled to 60 points. Finally, the

Robonaut data used a set of sample trajectories consisting of 933 points down-sampled to

200.

Table 6.1 shows the results of the three re-sampling methods applied to each test case

when looking at the error on reproducing the training set. In the case of the Monkey Saddle,

the error is the Euclidean distance error when looking at points on the surface. The HEBI

and Robonaut error is in the joint angles and has the units of radians. As can be seen from

the results, the randomized re-sampling method performs the worst, with improvement by

the Mitchell’s best method and the least error when incorporating the variance into the

candidate scoring function.
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When looking at the scalar curvature(6.2) error to get a sense of how well the re-sample

preserves the geometry, some complications appear. Table 6.2 shows the error in curvature

for the three different manifolds considered. Of these three, the Monkey Saddle is the only

one that is a simulated data set, and is the only one where the curvature error is low enough

to be considered good. The curvature error on the two manifolds from actual data shows a

value far too high to be considered accurate, prompting consideration on the value of the

curvature as a measure of manifold geometry.

The highly inaccurate curvature values have a few interpretations. One possible inter-

pretation is that the dimension of the manifold is insufficient to accurately capture the

geometry. This could be further investigated by varying the dimension of the manifold,

but seems unlikely to generate such large error. The more probable explanation is the

higher noise present in the physical data resulting in curvature values that vary much more

sharply than expected, meaning that the curvature does not adequately describe the ge-

ometry of the manifold and is a poor metric for determining the quality of a given re-sampling.

6.2 GP-Bayes: Sensor Reconstruction

GP-LVMs have a practical usage in the form of GP-Bayes filters. As shown in Ko where a

GP-Bayes filter was used to help train a robotic arm to mimic training data in a closed loop

setting, it is usable in cases not just with motion capture data as in Wang or Levine, but also

in physical systems. Taking this in a different direction, it can be used for sensor correction
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in complex systems.

6.2.1 Problem Statement

In environments with high levels of radiation robotic systems present a way to perform tasks

without putting human operators at risk. Robots do not provide a complete solution, however,

due to the way that radiation causes electronic components to degrade. Solutions to this

problem typically focus on hardening the components of a system to increase their lifetime.

A software solution involving machine learning offers a parallel approach that can supplement

other techniques by improving overall system performance as individual components degrade

or begin to fail.

In cases where the degradation behavior of the affected component is known, it’s often

possible to re-calibrate and correct the degraded behavior. Often times however the way in

which a component fails is either not known, or the component fails completely rather than

degrading smoothly. In these situations, modeling of the component to the degree needed to

re-calibrate is impossible. By considering the entire system instead, some of the component’s

behavior can be estimated sufficient to continue operation of the system.

To recreate the necessary information, it needs to be assumed that there exists some sort

of composite system state that contains the information sufficient to estimate the degraded

component’s behavior. Latent variable modeling can be used to find this unobservable system
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state through the use of a GP-LVM. Once there is a defined system state, a GP-Bayes

filter is used to estimate the state with whatever components are still functioning properly,

and then the system state is used to reproduce the missing or degraded component information.

6.2.2 Experimental Setup

An experiment was designed to test the viability of the GP-Bayes filter in the event of sensor

failure for a 3DoF planar manipulator. Since the control systems for a robotic arm require

accurate joint angle measurements to provide closed-loop control, when a sensor fails it causes

undefined and often undesirable behavior. A GP-Bayes filter can be added to the control

loop to provide estimates for the missing sensor data, allowing the arm to continue to function.

Figure 6.4 shows the 3DoF manipulator that was used, with 3 joints consisting of HEBI

X-Series actuators. These actuators are self contained motor and sensor packages, each

capable of working independently. All three actuators are connected via ethernet cables to a

computer running the control software, receiving the sensor data, and relaying the control

commands. Each actuator has three channels of sensor information: joint angle, angular

velocity, and applied torque. Including data from all three actuators results in 9 channels of

data representing a 9 dimensional data space. As can be seen from the figure, the robotic

manipulator is restricted to a single plane of motion meaning there are more degrees of

freedom than needed for simple point-to-point motion.
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Figure 6.4: Photograph of the 3DoF robotic manipulator used to test the GP-Bayes filter

In order to apply the GP-Bayes filter to the robotic manipulator, there needed to be a

well defined task that the GP-LVM necessary for the filter could be trained on. The task was

to move the end effector of the arm along a straight line, then change directions and move to

a 3rd final point. As the robot was under-constrained due the 3 degrees of freedom in the

plane, an extra constraint of minimizing total joint angle was added.

Once training data was collected, a baseline for what sensor failure produces in the system

was also tested. Figure 6.5 shows the end effector trajectory along the designated path, as
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Figure 6.5: Spatial plots showing the trajectory of the end effector position for both training data
and failure test case

well as the case when joint A’s angle sensor experienced a simulated failure. With no feedback

from the joint angle sensor, the motor continues to drive the joint well past the desired angle

and the end effector diverges from the intended path. Exactly what happens to the trajectory

of the end effector depends on the details of how the angle sensor fails, leaving the behavior

undefined when the failure mode of the sensor is unknown.

6.2.3 Usage of GP-Bayes Filter

To use a GP-Bayes filter for the described system, a GP-LVM is used to create a hidden

state that will be tracked and used to recreate the missing sensor information. While the

resulting planar position of the end effector could potentially be used as a hidden state,
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the extra degrees of freedom mean that there are multiple possible joint angles for a given

position. Constraining this with the minimal total joint angle resolves this to some de-

gree, but as this is a soft constraint it does not completely alleviate the problem. Using a

GP-LVM allows for a hidden state that is better suited to the particulars of the robot’s motion.

The GP-LVM optimizes the latent space for three dimensions, since the robot has three

degrees of freedom. To ensure that the latent space dynamics Gaussian process is learned

properly, the dynamics kernel as mentioned in Wang and Levine is included in the optimiza-

tion process (shown below). The resulting latent space variables and Gaussian processes are

then able to be used for the GP-Bayes filter.

~xi = ~kTi−1KXX2:N (6.8)

Figure 6.6 shows how the GP-Bayes filter is used to track the state of a system, using

available sensor data to improve estimates of the system state. First the system state for the

current time-step is predicted based on the most recent estimate. The system state prediction

is used to predict what measurements should be observed, which are then compared to the

actual observations. Since not all sensor data is valid, only available measurements are

compared. Based on the relative errors in the prediction compared to measurements, the

system state is then adjusted to better fit observation. Once the final system state estimate

is calculated, the measurements for the missing sensors can be predicted from this final latent

variable state estimate.
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Figure 6.6: Illustration of GP-Bayes filter and sensor reconstruction. A) New latent coordinates
(white) predicted based on current (black). B) Observed measurements (black) compared to predicted
(white). C) Latent coordinates (white) adjusted to fit measurements resulting in final estimate
(black). D) Missing sensor data (X) is estimated based on predictions (black)

6.2.4 Results

To more accurately assess the performance of the GP-Bayes filter in extending the use of a sys-

tem beyond individual component failure, it needs to be compared to a baseline approach for

handling sensor failure. The most straightforward solution is to simply playback the sensor in-

formation, ignoring any input from available sensors. The recorded motion should be relatively

close to the original intended task, as long as the system and the external environment hasn’t

change significantly. While it may seem that performance would be better if only the missing
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sensor data is replayed, in practice it is difficult to synchronize the playback with the other

sensors and results in worse performance compared to playing back all the sensor data at once.

Figure 6.7: End Effector trajectory normal operation vs GP-Bayes filter control

Under conditions identical to the training data, the replay approach works almost perfectly.

Figure 6.7 shows the GP-Bayes filter sensor replacement compared to the training data,

demonstrating the viability of the method under ideal conditions. What is more interesting

is to look at cases where conditions have changed somewhat and the control loop needs

accurate sensor information to compensate. To test the robustness of the GP-Bayes filter,

two separate cases involving changes to the motor speeds (simulating a load or change in

power supply) and an obstacle in the path (external differences) are examined as well.
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Figure 6.8: End Effector motion for the frictional case. Normal control represent the training
data with all sensors working properly.

To test the usefulness of the GP-Bayes filter in cases where the system behavior has

changed, the joint motors were slowed down to represent the manipulator carrying a load

or running on low power. This was simulated by taking any motor velocity commands

and reducing the commanded velocity before sending to the actuators themselves. Figure

6.8 shows the end effector trajectories that result from this change. Note that the replay

trajectory diverges quite quickly, and only recovers somewhat due to the change in direction

at the corner. The GP-Bayes filter, however, results in motion still very similar to the original.

Figure 6.9 helps quantify the performance of the two approaches. The error is com-

puted by measuring the distance to the normal path at each point. The error for the

replay method drops to zero only as it crosses the intended path, but remains well above
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Figure 6.9: End Effector positional error for the slowed joint velocity case. Distance is measured
to the closest point on the normal path.

the GP-Bayes filter error for the majority of the trajectory. This demonstrates the ability

of the GP-Bayes filter to use the remaining sensor information to compensate for missing data.

Introducing an obstacle along the path demonstrates the ability of the GP-Bayes filter to

correct for external disruptions while missing information necessary to recover. Figure 6.10

shows the case where an obstacle is introduced that deflects the end effector to the side. The

trajectory replay makes no attempt to compensate and instead continues on a now offset

path. The GP-Bayes filter manages to recover, and although it overshoots on the corner it is

able to compensate and winds up much closer.

Plotting the error shown in Figure 6.11 tells much the same story as the trajectory
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Figure 6.10: End Effector motion for the case with an obstacle present. Normal control represent
the training data with all sensors working properly.

plot. The error for the GP-Bayes filter overshoots briefly before recovering, while the replay

approach never recovers. An important note is that the joint with the simulated failure is

Joint C as shown in figure 6.4 which is deflected more than the other joints, making this the

case with the worst error.

6.2.5 Observations

The results of this experiment show that a GP-Bayes filter works to solve some of the

original problems with regards to component failure in complex systems. While the tests

performed focused on single component failure for a simple task, it could easily be extended

to multiple component failures across several tasks, perhaps even composing simple tasks

together through a library of trained actions. While the uncertainty information from the
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Figure 6.11: End Effector positional error for the case with an obstacle present. Distance is
measured to the closest point on the normal path.

Gaussian processes was used for the GP-Bayes filter, it could also be used within the control

system to give a measure of how close the system is to a known state, giving more assurances

with regards to the accuracy of recovered information.

It would also be possible to simply use the GP-Bayes filter within a system to cause an

alert if it sees inconsistent behavior such as that caused by component failure. When compar-

ing observed measurements to the predictions made by the GP-Bayes filter, large deviations

from the predictions would indicate inconsistent behavior. In this way the GP-Bayes filter

acts as a safeguard that detects component degradation or failure rather than a part of the

control loop. This might be more desirable in some cases where precision is important or

other concerns prevent using machine learning tools within the control loop.
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6.3 GP Manifold: Metric Tensor and Geodesics

One of the more practical use cases of manifold learning applied to a system is the ability

to perform path planning on the manifold using geodesics. The constraints of the desired

system behavior are contained within the manifold representation, so any trajectory that lies

on the manifold will satisfy the constraints associated with the desired behavior. A geodesic

is the shortest trajectory connecting two points on the manifold, and is therefore the optimal

path for the system.

6.3.1 Havoutis and Geodesic Path Planning

The idea for geodesic path planning is presented in Havoutis [15]. Havoutis seeks to improve

the domain of motion planning for robotic systems that use training data to learn skills or

behaviors. To improve the generality and flexibility of these learned skills, a “skill manifold”

is defined as a low dimensional representation of the training data that specifies the structure

and dynamics of the skill. Once the manifold is known, geodesic trajectories on the manifold

correspond to execution of the desired skill. Havoutis uses Locally Smooth Manifold Learning

[8], an approach that seeks to find the tangent space of manifold rather a coordinate mapping.

This approach does not need to generate a latent space, instead associating a set of basis

vectors for the tangent space at every point. This can be used to traverse the manifold by

restricting motion to this tangent space, and can even be used to extrapolate the manifold
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based on smoothness assumptions. This approach has many of the same downsides as most

deterministic manifold learning methods as discussed in Section 5.1.3.

In Havoutis’ work, the learned tangent space is used to produce geodesics on the manifold.

Trajectories are generated by creating a segmented line from the start and end points of the

desired motion and then mapping the points on the line to the manifold while also minimizing

the length of the path. To make sure points on the line lie on the manifold, the points are

iteratively adjusted to minimize the error between the direction of the line and the projection

of the line to the tangent space of the manifold.

To demonstrate this method, Havoutis first uses a 3-link manipulator operation in a

2-dimensional plane. The skill manifold that Havoutis has chosen to learn is motion that min-

imizes the pose strain, or distance from a rest position. His results show very low error when

interpolating on the manifold and moderately higher error when extrapolating trajectories off

the learned portion of the manifold, but with shorter planning time than is required to compute

the paths using redundancy resolution. Havoutis then performs a similar demonstration using

a small humanoid robot, where the skill manifold is a walking motion. The constraints of the

motion are defined using a cost function, and training trajectories are generated by initializing

a simple path and optimizing it according to the cost function. Once the skill manifold was

learned, new trajectories could be generated as before. Results showed that although the

error of the geodesic trajectories compared to the cost function was relatively high due to the

manifold’s smoothness assumptions, the generated trajectory still resulted in stable walking

motion. The time needed to plan the motion using the skill manifold was a significant decrease

from the trajectories planned using the cost function, from almost 2 minutes down to 2 seconds.
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This could allow for greater flexibility in adjusting trajectories in response to new information.

One problem with the approach used by Havoutis is that the manifold learning method

has the same problems as other deterministic methods that were described in section 5.1.3.

The approach works well with the largely flat manifolds it was tested on, but will begin to

suffer when considering more complex manifolds due to the smoothness assumptions it makes.

This was noticeable in the test case of the walking motion where the constraint error was

significantly higher. It also suffers when a manifold has gaps that are part of the structure

rather than missing data, as it will try to form paths through those gaps as if they were flat.

Another problem is the way that geodesics are computed. The method described by

Havoutis produces only a locally optimal path, where the initial trajectory is the Euclidean

shortest path. It can be shown that there exist cases where the geodesic found through

Havoutis’ method is not the globally shortest path, and due to the way the manifold is learned

there is no coordinate space and therefore no way to adapt the manifold to solve the geodesic

differential equations. When adding obstacles [16], Havoutis’ method no longer produces

geodesics and relies on a naive method to route around obstacles that does not work in all cases.

6.3.2 GP-Manifold Geodesics

While the principles of skill manifolds and geodesics for path planning introduced by Havoutis

are still used, the way in which they are used by a Gaussian process differs significantly.
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Instead of just learning the tangent space of a manifold, the coordinate mapping is found

through a GP-LVM. The major downside to a tangent space approach is that it doesn’t

allow answering the question of whether or not a particular point belongs to the manifold

or not. Havoutis demonstrates an approach for finding the projection of a point onto the

manifold, and while it works in practice it relies on the existence of a point known to lie on

the manifold in close proximity. Learning the coordinate space of the manifold through a

GP-LVM eliminates this issue.

The second major way that the GP-Manifold approach differs is in the computation of

geodesics. Havoutis uses an iterative method that gradually fits the straight line approach onto

the manifold through use of the tangent space to ensure points only move along the manifold

itself. When using a GP-Manifold, geodesics can instead be found through solutions to their

governing differential equations as mentioned in section 5.3. There are several advantages

to this approach, with the biggest advantage being the application of existing differential

equation solvers to improve solution time rather than relying on a custom iterative method.

Using a differential equation solver such as MATLAB’s built-in bvp4c also means that step

size can be handled dynamically, an important necessity when considering manifolds with vary-

ing curvature that would need to be considered and implemented in Havoutis’ original method.

In some cases, the differential equation solver may not converge nicely due to numerical

instabilities. These can occur when the determinant of the metric tensor is large, something

that can happen for a GP-Manifold when the trajectory endpoints lie far from the trained

portion of the manifold. In these situations, the curve shortening flow approach mentioned
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in section 5.3 can be implemented instead. This approach shares some commonality with

the iterative method used by Havoutis. Both methods iterate until the path is shortened

sufficiently, but they operate in different spaces. Havoutis works in the tangent space of the

manifold, represented by a restriction on the ambient space that the manifold is embedded in.

The curve shortening flows work in the coordinate space, using the metric tensor to inform

the notion of distance. Working in the coordinate space guarantees the final result will lie on

the manifold, while working in the tangent space can result in error pushing the final path

away from the manifold if step size is not considered properly.

6.3.3 Obstacle Avoidance

One benefit that Havoutis presents in his approach is the ability to dynamically plan paths

around obstacles not present in the original training data. The same can be accomplished

in a superior way by using GP-Manifolds and the geodesic path planning. In the case of a

known obstacle introduced after training, a region on the manifold is designated as blocked

by the obstacle. The distance metric can be modified to penalize trajectories that enter this

region, resulting in geodesics that will avoid the obstacle. This results in a natural way to

introduce dynamic obstacle avoidance.

The metric tensor must be modified in such a way that it only affects the region near

the obstacle to be avoided. This can be done by adding a component f(p) to the diagonal

elements of the metric tensor that is a function of the position on the manifold, which is
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large in the avoidance region and zero elsewhere. In order to be able to solve the geodesic

differential equations, however, the metric tensor needs to be differentiable at all points,

imposing additional constraints on the function added to the metric tensor. The derivative

f ′(p) must also be zero along the boundary of the avoidance region to ensure that the

derivative of the metric tensor has no discontinuities that would prevent finding solutions to

the geodesic differential equations.

One such function that satisfies these requirements is the bump function, defined as:

f(r) =


exp(− 1

1−( r
R

)2 ) for r < R

0 otherwise

(6.9)

Here R is the radius of the avoidance region, and r is the distance from the center of

the region in coordinate space. Note this assumes local linearity around the obstacle due

to the presence of a Euclidean distance term that does not depend on the metric tensor.

This makes the size of the avoidance region somewhat dependent on the curvature of the

manifold near the obstacle. While this can be corrected for by implementing a more complex

bump function that accounts for the manifold’s geometry, adding this complexity drastically

increases the time needed to compute the geodesic differential equations that incorporate

this bump function.
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6.3.4 3 Link Test Results

To test the performance of the GP-Manifold based geodesics, a similar test case to the one

described in Havoutis was used. A 3-link planar manipulator simulation was used to produce

training points for a region of a flat plane, with a constraint enforcing minimal joint angles.

Each training point in the plane was recorded as a triple of the joint angles corresponding to

the solution of the robotic manipulator at that point. A grid of points was produced, and

then a random sample of those points was used to train the GP-Manifold. In Havoutis, extra

information regarding the distance between points was added due to the method used to

learn the tangent space; this is not needed for training the GP-Manifold.

Once trained, the capabilities of the geodesic path planning method were tested by

generating start-end point pairs and computing the shortest path between them. The time

needed to solve the geodesic differential equations was recorded and once the path was

found, the constraint error at each point could be measured. The GP-Manifold predicted the

joint angles at each point along the path, and the constraint function used to produce the

original training points could be applied to the resulting point to find how much the geodesic

trajectory point differed from the correct value.

Figure 6.12 shows the GP-Manifold in the joint angle space of the 3 link manipulator and

the corresponding end effector positions. The black lines are the trajectories planned by the

geodesic path planner, according to the constraint of the manifold. The original training

points followed a constraint of minimal sum of squared joint angles, so the trajectories should
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Figure 6.12: Plot showing the joint space manifold and end effector positions for the 3 link planar
manipulator with the geodesic paths. Circles represent the training points, lines are generated
geodesics Left is the joint space manifold, right is the end effector position.

also meet this constraint at each point along the path.

Figure 6.13: Plot showing the joint space manifold and end effector positions for the 3 link planar
manipulator with the geodesic paths. Left is the joint space manifold, right is the end effector
position.

Figure 6.13 shows similar results to Figure 6.12 but for trajectories outside the training

data. When trajectories must be computed for points outside the training data, the large

increase in the distance metric due to the high uncertainty can result in numerical instabilities
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that cause problems when solving the geodesic differential equations. It is possible to omit

the term from the metric tensor corresponding to the uncertainty, and solve the differential

equations while ignoring the stochastic nature. This was necessary to produce some of the

paths shown in Figure 6.13.

The RMSE is computed at each point along each trajectory, resulting in an RMSE of

1.15×10−4±1.06×10−4 for trajectories within the training region and 2.00×10−3±2.40×10−3

for points outside of it. This is compared to Havoutis’ RMSE for a similar region of

1.89×10−4±3.60×10−5 for trajectories within the training data and 6.84×10−2±2.19×10−2

outside of it. The GP-Manifold shows slightly better performance inside the training region,

and much better outside of it.

6.3.5 Robonaut Example Learning

Gaussian process skill manifolds can be used to learn by demonstration from example data

without explicitly knowing the constraints. To demonstrate the ability to learn by demon-

stration, raw data from the Robonaut experiments[1] is used to train the GP-manifold. Once

the manifold is learned, new trajectories can be generated that mimic the original behavior

from the Robonaut experiments.

The original Robonaut data comes from experiments where the motion of one of the

Robonaut arms was manually moved to pick up an object and drop it in a container and
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Figure 6.14: The NASA Robonaut platform. Photo credit: Dr. Alan Peters

then back to the starting position. All of the sensor data for multiple trials from the original

experiments was available, divided into two categories for success and failure. Successful

examples are where the object was picked up and placed properly, and failed examples are

where the object was not picked up properly or was dropped prematurely. For training the

GP-manifold, only the 5 successful examples were used for learning.

For the purposes of generating new trajectories, the useful data are the 7 joint angles for

the arm. Since the behavior that is being learned is a motion in 3D space, the GP-manifold

approximation is a 3 dimensional one. To generate trajectories, the starting point on the

manifold is taken from one of the successful trajectories while the end point is selected from

a region where all 5 trajectories would have reached the object to be picked up. The geodesic

differential equations from (5.16) were then solved with the endpoint boundary conditions to
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Figure 6.15: Plot showing the manifold coordinate space geodesics. Training data is blue, start
and end points are in red, geodesics are in black.

get the final trajectory.

Figure 6.15 shows the coordinate space of the manifold. The geodesics are shown in black,

and the training data is shown in blue. Note that these trajectories are in the coordinate

space; the manifold points are the 7 dimensional joint angles and so it is difficult to visualize

those directly. Instead, it is possible to use the joint angles to compute the forward kinematics

and produce a visualization of the trajectory of the end effector.

One difficulty of learning by demonstration is that there are not quantifiable metrics for

success beyond a binary success or failure of the task. Instead, the performance of the method

must be judged subjectively by observing successful examples and qualitatively describing
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Figure 6.16: Plot showing the manifold coordinate space geodesics. Training data is blue, start
and end points are in red, geodesics are in black.

how well the new trajectories match the original demonstration behavior.

Figure 6.16 shows the trajectory of the end effector for both the training paths in blue

and the generated geodesics in black. Note that the generated trajectories follow the shape

of the training paths rather than cutting across straight to the endpoint. This is confir-

mation that the geodesics are remaining on the manifold and staying close to the training data.

6.3.6 Tiago Skill Manifold

As further demonstration of the capability of geodesic trajectory planning on GP-Manifolds,

tests were done using a ROS simulation of the TIAGo robot. TIAGo is a mobile robot
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produced by PAL Robotics with a 7DoF manipulator that can be equipped with several

different end effectors.

Figure 6.17: TIAGo robot, produced by PAL Robotics.

The 7DoF manipulator on the TIAGo robot is a good example for the utility of geodesic

path planning. The task under consideration is a constrained motion, where the end effector

remains in perpendicular contact with a surface. This might be the case when the robot is

used to write on a surface. The constraints for this type of motion are relatively simple when

expressed in Cartesian space, but become more complex when converting them into joint

angles and velocities. These constraints in joint space can be represented by a GP-Manifold,

with geodesics representing the shortest paths that satisfy the constrained motion.
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To produce the training data that the GP-Manifold is built from, a set of points covering

the constraint surface in Cartesian space along with the normal vector at each point are

generated. The inverse kinematics are then solved through ROS to obtain the joint space

configuration of the robot for each point. These joint space configurations are then the

points on the GP-Manifold, and the manifold coordinates can either be taken from the

Cartesian space points or learned through a GPLVM. Since the surface in Cartesian space is

a 2-dimensional shape, a 2-dimensional coordinate space works well.

Figure 6.18: End effector(left) and coordinate(right) trajectories. Trajectories are shown in black,
training points are in blue.

Figure 6.18 shows the end effector trajectories along with their corresponding manifold

coordinates. In this figure, the trajectories shown are geodesics for point-to-point motion.

More complex trajectories can be planned by simply drawing any path in the coordinate

space. These coordinate trajectories are mapped through the GP-Manifold to produce the

series of joint angles for the robot to follow. The trajectories can then be evaluated in terms
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of how well they meet the original constraints for the motion in terms of their deviation from

the intended surface. For this set of 30 geodesics, the RMSE is 5.244× 10−2 ± 2.682× 10−2

cm when looking at the deviation from the plane of motion.

An important concern when talking about constrained motion is the time it takes to

produce a solution. Solutions already exist in the form of inverse kinematics, so it is important

to compare the time needed. For these geodesics, the solution time averages 0.06 seconds.

Using inverse kinematics to solve these trajectories for the joint configuration averages 0.2

seconds, almost four times as long. It is important to note that this is only once a trajectory

in Cartesian space has been found, while the geodesic solution incorporates this additional

step. This is a noticeable speed benefit that makes the GP-Manifold viable despite the

existence of inverse kinematic methods to find solutions.
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Chapter 7

Conclusion

Manifold learning is a branch of structured machine learning that can provide a compact,

tangible representation of a complex, high dimensional system. A manifold can be derived

from a data set that comprises the inputs and outputs of a high dimensional system. The

result is a closed lower-dimensional subset of the system’s state space – a manifold – that not

only represents the training data but also can be used to control the system in novel situations.

Probabilistic manifolds can be learned as Gaussian Processes that enable extrapolation to

inputs that do not conform precisely to the learned manifold thereby expanding their use to

systems with noisy and uncertain inputs.

7.1 Contributions

This dissertation has covered the fundamentals of Gaussian processes in Section 3, a proba-

bilistic approach to functional regression that has been used for dimensionality reduction

in the form of GP-LVMs. Section 4 covered the use of Gaussian processes in GP-Bayes

filters to model and track complex systems, ultimately showing that the assumptions needed

for a GP-Bayes filter imply the existence of a manifold. Section 5 defined and described

GP-manifolds as a probabilistic approach to manifold learning and developed new methods
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for working with a stochastic manifold. Section 6 showed the application of these topics to

practical situations.

The existing work in this area was covered in Section 1.2. Manifold learning in literature

falls into two main categories. The first is where manifold structure is used to solve problems,

but the manifold itself is already known. The second is where the manifold is learned from a

set of data, but in these cases the manifold structure is not used to solve problems beyond

simple regression. Combining these two categories into cases where the manifold is both

learned and then used for more complex problems such as path planning is demonstrated in

Havoutis [15],[16]. The weaknesses of that particular approach lie in the incomplete nature

of the manifold learned and the naive approach to finding geodesics. To successfully combine

both the learning and usage of manifold structure requires that a new approach to both be

taken. Hauberg [14] demonstrates the necessity of stochastic manifolds if the structure of a

learned manifold is to be used properly.

This dissertation addresses the need of a stochastic manifold by developing a framework

for GP-manifolds. Section 5 contains the contributions to manifold learning through the defi-

nition of Gaussian process manifolds. The derivations for working with stochastic manifolds

in the particular case of a Gaussian process manifold are also shown here. Section 5.2 explains

how the metric tensor differs in the case of a stochastic manifold and then derives the expected

value of the metric tensor in equation (5.10). The code showing how this is implemented is

shown in Appendix 8.2.1. Section 5.3 gives the definition of geodesics through the geodesic

differential equations. The Christoffel symbols needed for these equations are derived from the

expected value of the metric tensor in equation (5.29). The code implementing these deriva-
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tions is shown in Appendix 8.2.2, and the geodesic equations and solutions are found through

the code shown in Appendix 8.2.3. Section 5.4 explains the importance of the curvature

tensor in regards to geometry on manifolds. The curvature tensor for a GP-manifold is de-

rived in equation (5.31), with the code implementing these equations shown in Appendix 8.2.6.

The benefits of using GP-manifolds can best be understood by their application to prac-

tical problems. Section 6 covers these applications and how they improve upon existing

work. Section 6.1 demonstrates a novel method of GP-LVM compression through re-sampling.

Section 6.2 shows the application of a GP-Bayes filter to a problem involving sensor failure.

Section 6.3 covers multiple experiments where path planning for robotic systems is performed

using geodesics on learned manifolds. The first experiment in Section 6.3.4 mirrors the

experimental setup in Havoutis [15], and demonstrates superior accuracy when performing

geodesic path planning. The second experiment in Section 6.3.5 demonstrates the ability to

take data from manual operation and use it to learn a manifold and generate new trajectories

that mimic the original operation. The final experiment in Section 6.3.6 takes a more complex

robotic manipulator and shows significant speed improvement for constrained path planning

by using geodesics on a learned manifold when compared to a method that explicitly satisfies

the motion constraints.
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7.2 Manifold Improvements

One of the ways that GP-Manifold learning could be improved is to find ways to improve

the manifold learning portion. Looking at different kernel functions or additional likelihood

terms could result in finding coordinates for the manifold that improve the quality of the

mapping. One likelihood term that may be interesting to consider is one that is based on

information regarding the curvature of the manifold, if that information is available.

Adding a curvature likelihood term may improve the preservation of manifold structure in

the mapping that a GP-Manifold provides. To add this term, the curvature tensor or scalar

would need to be described in terms of the coordinates. Next, the probability distribution of

the curvature would need to be found in order to set up the likelihood term properly. One

aspect of this approach that may present particular difficulty is the dependence of the metric

tensor on the variance of the original Gaussian Process.

Other improvements could be made to the re-sampling methods, looking into other types

of sampling that may give similar or better performance when compared to the Mitchell’s

best candidate method discussed in section 6.1.3. It might also be possible to perform

some manner of sampling before the optimization process that could speed up the learning,

although finding a way to measure distance without any manifold structure could prove

problematic. Instead, the sampling methods discussed may have some use in training the

GP-Manifold through batches.
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7.3 Manifold Usage

While the contents of sections 6 shows some use cases for GP-Manifolds, particularly the use

of geodesics on manifolds for path planning. There are still more use cases for manifolds that

GP-Manifolds enable by allowing the use of the metric and curvature tensors. One more

obvious use case is considering control systems on manifolds.

In the discussion on the curvature tensor in section 5.4, it was briefly mentioned that

the interpretation of the curvature has implications in the case of commutativity of vector

transport. In typical control systems the Lie bracket is used to describe the commutativity,

allowing for new control strategies to be understood as the result of switching between existing

ones in a particular order. When applying this to manifolds, the curvature tensor is needed

to completely describe the commutativity in addition to the Lie bracket. GP-Manifolds allow

for the curvature tensor to be used in this way, opening the possibility of exploring control

systems restricted to manifolds.
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Chapter 8

Appendix

8.1 Likelihoods and Gradients for Latent Variable Op-

timization

8.1.1 Probability of the Data

Given an N -sample vector time series {y1, . . . ,yN}, of data let Y be the data matrix,

YN×D =
[

y1 · · · yN

]T

=
[

yc1 · · · ycD

]
where ym ∈ RD and yc` ∈ RN , (8.1)

and let X be the matrix of the corresponding time series of latent vectors,

XN×d =
[

x1 · · · xN

]T

=
[

xc1 · · · xcd

]
where xm ∈ Rd and xc` ∈ RN . (8.2)

Define a weight matrix for the data vectors as

W = diag (w) , where w =
[
w1 · · · wD

]T

, such that w` > 0, (8.3)
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and write the Gaussian process hyperparameters as the vector,

α =
[
α1 α2 α3

]
(8.4)

Then the conditional probability of the data given the latent variables, the hyperparameters,

and the weights is

p(Y|X,α,W) = |W|N√
(2π)ND |Kx|D

exp
(
−1

2 trace
(
K−1x YW2YT

))
, (8.5)

where the kernel matrix

Kx = [k (xm,xn)]N×N (8.6)

is a radial basis function matrix with elements,

k (xm,xn) = α1 exp
(
−α2

2 ‖xm − xn‖2
)

+ 1
α3
δm,n, (8.7)

for latent vectors xm and xn from the time series with

δm,n =


1 for m = n

0 for m 6= n

. (8.8)
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8.1.2 Log Likelihood of the Data

The log likelihood of the conditional distribution (8.5) is the scalar value,

LY = N log |W| − ND
2 log (2π)− D

2 log |Kx| − 1
2 trace

(
K−1x YW2YT

)
. (8.9)

This can be simplified for computation. The logarithm of the determinant of a diagonal

matrix is

log (|W|) = log
(

D∏
`=1

w`

)
=

D∑
`=1

log (w`) . (8.10)

RBF kernel Kx is symmetric positive definite and therefore has a Cholesky decomposition:

Kx = LL T, (8.11)

where L is lower triangular. Therefore, the determinant of Kx is

|Kx| = |L|
∣∣∣L T

∣∣∣ =
N∏
n=1

diag [L]
N∏
n=1

diag
[
L T

]
=
(

N∏
n=1

diag [L]
)2

, (8.12)

and its logarithm is

log (|Kx|) = 2
N∑
n=1

log (diag [L]) . (8.13)

The last term of (8.9) can be simplified since W is a D×D diagonal matrix:

YW2YT = YW [YW]T =
[
w1yc1 · · · wDycD

] [
w1yc1 · · · wDycD

]T

, (8.14)
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where yc` is the ` th column of Y – the ` th data stream for times 1 to N . Since the trace is

linear, and since trace(AB) = trace(BA) whenever A is m×n and B is n×m,

trace
(
K−1x YW2YT

)
= trace

[
K−1x

D∑
`=1

w2
`yc`yc`T

]
(8.15)

= trace
[
D∑
`=1

w2
`

[
K−1x yc`

]
yc`T

]
(8.16)

=
D∑
`=1

w2
` trace

[[
K−1x yc`

]
yc`T

]
(8.17)

=
D∑
`=1

w2
` trace

[
yc`T

[
K−1x yc`

]]
(8.18)

=
D∑
`=1

w2
`yc`T

[
K−1x yc`

]
. (8.19)

Then the log likelihood of the conditional distribution (8.5) can be written

LY = N
D∑
`=1

log (w`)− ND
2 log (2π)−D

N∑
i=1

log (diag [L])− 1
2

D∑
`=1

w2
`yc`T

[
K−1x yc`

]
. (8.20)

8.1.3 Gradient of the Log Likelihood of the Data

We need to find the values of X, W, and α that will minimize the negative log likelihood.

That requires the gradient of LY with respect to X, W, and α. First consider the gradient

with respect to X. It is the Nd-dimensional row vector constructed via the column-wise

catenation of the N×d matrix,

∇XLY = vec
([
∇X,1LY · · · ∇X,dLY

])T

, (8.21)
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where [∇X,`LY]T is the gradient along the ` th dimension of X. Each column of the matrix

is the vector of partial derivatives ∂LY/∂xi,` for i = 1, . . . , N . Each of those can be found

using the chain rule for matrix calculus1:

∂LY

∂xi,`
= trace


[
∂LY

∂Kx

]T
∂Kx
∂xi,`

 =
∑
cols

∑
rows

{
∂LY

∂Kx
� ∂Kx
∂xi,`

}
, (8.22)

where “�” is a Hadamard product – an element-wise multiplication. Referring to equ. (8.9)

the first factor in (8.22) is the N×N symmetric matrix,2

∂LY

∂Kx
= −D

2
∂

∂Kx
log |Kx| − 1

2
∂

∂Kx
trace

(
K−1x YW2YT

)
= −D

2 K−1x
∂

∂Kx
|Kx| − 1

2
∂

∂Kx
trace

(
WTYTK−1x YW

)
= −D

2 K−1x + 1
2K−1x YWWYTK−1x . (8.23)

We derive the second factor in (8.22) one kernel matrix element at a time:

∂k

∂xi,`
(xm,xn) = ∂

∂xi,`

[
α1 exp

(
−α2

2 ‖xm − xn‖2
)

+ 1
α3
δij

]
= −α2

2
∂

∂xi,`
‖xm − xn‖2 k (xm,xn)

= −α2

2
∂

∂xi,`
〈xm − xn,xm − xn〉k (xm,xn) . (8.24)

1See https://en.wikipedia.org/wiki/Matrix_calculus
2For the second term see Peterson and Pederson, The Matrix Cookbook, eqn. (113).
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At this point, note that all the components of xm or xn that are not the ` th will result in 0.

Therefore the inner product simplifies to

= −α2

2
∂

∂xi,`
〈xm,` − xn,`, xm,` − xn,`〉k (xm,xn) . (8.25)

Now note that if neither m = i nor n = i, or if both m = i and n = i then the result is zero.

Assume that m = i, then the derivation continues:

= −α2

2 (〈1, xi,` − xn,`〉+ 〈xi,` − xn,`, 1〉) k (xi,xn) (8.26)

= −α2

2 (xi,` − xn,` + xi,` − xn,`) k (xi,xn) (8.27)

= −α2 (xi,` − xn,`) k (xi,xn) [m = i, n 6= i]. (8.28)

Finally, if n = i the derivation would continue from (8.25) with

∂k

∂xi,`
(xm,xn) = −α2

2 (〈−1, xm,` − xi,`〉+ 〈xm,` − xi,`,−1〉) k (xm,xi) (8.29)

= −α2 (−xm,` + xi,`) k (xm,xi) (8.30)

= α2 (xm,` − xi,`) k (xm,xi) [m 6= i, n = i]. (8.31)

108



There are N×N×d of these values over all X. Combine (8.28) and (8.31) to get the partial

derivative of the entire kernel matrix, Kx, with respect to scalar xi,`, the N×N matrix:

[
∂Kx
∂xi,`

]
m,n

=



α2 (xn,` − xi,`) k (xi,xn) , for m = i,

α2 (xm,` − xi,`) k (xm,xi) , for n = i,

0, otherwise

. (8.32)

Consider xi,` – component ` of latent vector, xi. If we fill in an N×N matrix by collecting

the values of (8.32) over m,n ∈ {1, . . . , N}, then the matrix has one non zero row, the i th,

and one non zero column, also the i th. Moreover this sparse matrix is symmetric and its

main diagonal is 0. That is, the matrix is of the form

∂Kx
∂xi,`

(xm,xn) = α2



0i−1×i−1 ui 0i−1×N−i

uT
i 0 yT

i

0N−i×i−1 yi 0N−i×N−i


, (8.33)

where 0 r×s is an r×s zero matrix and vectors and

uT
row=i = [(x1,` − xi,`) k (xi,x1) · · · (xi−1,` − xi,`) k (xi−1,xi)] , (8.34)

yT
row=i = [(xi+1,` − xi,`) k (xi+1,xi) . . . (xN,` − xi,`) k (xN ,xi)] . (8.35)

For each dimension ` of latent vector xi, ∂LY/∂xi,` is the scalar given by eqn. (8.22).

To obtain the full gradient, ∇XLY, requires that we compute (8.22) N×d times. There is,

however, much redundancy in that calculation. There exists another way to compute ∇XLY
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that is much more efficient.

Recall that ∂LY/∂KX is a symmetric matrix. Write its 3×3 submatrix in the upper left

as:

∂LY

∂KX
=



a b c

b d e

c e f


. (8.36)
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Consider the upper left 3×3 submatrices of the first three ∂Kx/∂xi,`s.

∂Kx
∂x1,`

= α2



0 (x2,` − x1,`)k(x1,x2) (x3,` − x1,`)k(x1,x3)

(x2,` − x1,`)k(x2,x1) 0 0

(x3,` − x1,`)k(x3,x1) 0 0


(8.37)

∂Kx
∂x2,`

= α2



0 (x1,` − x2,`)k(x2,x1) 0

(x1,` − x2,`)k(x2,x1) 0 (x3,` − x2,`)k(x2,x3)

0 (x3,` − x2,`)k(x3,x2) 0


(8.38)

∂Kx
∂x3,`

= α2



0 0 (x1,` − x3,`)k(x1,x3)

0 0 (x2,` − x3,`)k(x2,x3)

(x1,` − x3,`)k(x3,x1) (x2,` − x3,`)k(x3,x2) 0


.(8.39)

Note that they sum to 0. Through induction one can deduce that is true for any N .

N∑
i=1

∂Kx
∂xi,`

= 0. (8.40)

Using that information rewrite the three matrices as

∂Kx
∂x1,`

=



0 r s

r 0 0

s 0 0


,

∂Kx
∂x2,`

=



0 −r 0

−r 0 t

0 t 0


,

∂Kx
∂x3,`

=



0 0 −s

0 0 −t

−s −t 0


. (8.41)
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Then, the first three ∂LY/∂xi,`s are

∂LY

∂x1,`
= trace


[
∂LY

∂Kx

]T
∂Kx
∂x1,`

 = trace





br + cs · ·

· br ·

· · cs




= 2(br + cs), (8.42)

∂LY

∂x2,`
= trace


[
∂LY

∂Kx

]T
∂Kx
∂x2,`

 = trace





−br · ·

· −br + et ·

· · et




= 2(−br + et), (8.43)

∂LY

∂x3,`
= trace


[
∂LY

∂Kx

]T
∂Kx
∂x3,`

 = trace





−cs · ·

· −et ·

· · −cs− et




= 2(−cs− et). (8.44)

Now note that,

2
∑
cols





a b c

b d e

c e f


�



0 r s

−r 0 t

−s −t 0




= 2



br + cs

−br + et

−cs− et


=



∂LY/∂x1,`

∂LY/∂x2,`

∂LY/∂x3,`


, (8.45)

where the second matrix is

N∑
i=1

Φi

[
∂Kx
∂xi,`

]
with Φi [A] =


Ain for n = 1, . . . , N, if m = i and

0 otherwise.
(8.46)

Also note that although each ∂KX/∂xi,` is symmetric, the second matrix in (8.45) is antisym-

metric. The result extends through induction from 3 to N to yield the partial derivative of
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the log likelihood with respect to dimension ` of X. It is the N -vector,

∂LY

∂x`
= −α2

∑
cols

[
∂LY

∂Kx
� 2χ` �Kx

]
(8.47)

= −2α2
∑
cols

[(1
2K−1x YWWYTK−1x −

D

2 K−1x
)
� χ` �Kx

]
. (8.48)

where N×N matrix χ` has elements

[χ`]m,n = xm,` − xn,`. (8.49)

Note that it is antisymmetric. Kx is the kernel matrix (8.6) Matrix χ` �KX is the antisym-

metric aggregated kernel constructed from all the ∂KX/∂xi,` matrices.3 If we collect those

for all ` = 1, . . . , d we get the N×d matrix of partial derivatives of LY with respect to X, the

Jacobian matrix,
∂LY

∂X
=
[
∂LY

∂x1
· · · ∂LY

∂xd

]
. (8.50)

Then the gradient of LY with respect to X is the Nd-dimensional row vector,

∇XLY =
[
vec

(
∂LY

∂X

)]T

, (8.51)

where vec is the vectorization operator that makes a column vector from a matrix by stacking

its columns from left to right.

The gradient of LY with respect to the D×D diagonal weight matrix is found from its

partial derivatives with respect to the weights wi for i = 1, . . . , D. Referring to eqn. (8.20)
3To get the same result as eqn. (8.48) trace eqn. (8.22) would have to be executed N times – at considerably

more computational expense than (8.48) computed once.
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we find:
∂LY

∂wi
= N

wi
− wiyT

i

[
K−1x yi

]
. (8.52)

Then the gradient is the D-dimensional row vector,

∇WLY =
[
∂LY

∂w1
· · · ∂LY

∂wD

]
. (8.53)

Since the α parameters are hidden inside the RBF kernel, we need to use the chain rule

to compute the gradient of LY with respect to them. The partial derivatives of the kernel

values with respect the alphas are,

∂k

∂α1
(xm,xn) = exp

(
−α2

2 ‖xm − xn‖2
)
, (8.54)

∂k

∂α2
(xm,xn) = −1

2 ‖xm − xn‖2
[
k (xm,xn)− 1

α3
δm,n

]
, and (8.55)

∂k

∂α3
(xm,xn) = − 1

α2
3
δm,n. (8.56)

Over all the latent variables they form the N×N matrices,

∂Kx
∂α1

= 1
α1

[
Kx − 1

α3
IN×N

]
, (8.57)

∂Kx
∂α2

= −1
2 dist2 (X)�Kx, and (8.58)

∂Kx
∂α3

= − 1
α2

3
IN×N . (8.59)

dist2 (X) is the N×N matrix of squared distances between all the latent vectors. Then the
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derivative of LY with respect to α` is

∂LY

∂αj
= trace

[
∂LY

∂Kx
∂Kx
∂αj

]
=
∑
cols

∑
rows

[
∂LY

∂Kx

]T

� ∂Kx
∂αj

, (8.60)

for j = 1, 2, 3. Note that ∂LY/∂KX is symmetric so the transpose is unnecessary. Then the

gradient is the row vector

∇αLY =
[
∂LY

∂α1

∂LY

∂α2

∂LY

∂α3

]
. (8.61)

The gradient of the log likelihood of the conditional probability of the data, Y, is therefore

the set

∇X,w,α LY = {∇XLY,∇WLY,∇αLY} . (8.62)

given by eqns. (8.21), (8.53), and (8.61).

Equation for MAP estimation of the latent variables.

In Wang et al. [] the authors minimize the joint negative log-posterior of the unknowns,

eqn. (8.20), plus the sum of the logs of hyperparameters, α. That is equivalent to maximizing

LY = N
D∑
`=1

log (w`)−D
N∑
i=1

log (diag [L])− 1
2

D∑
`=1

w2
`yc`T

[
K−1x yc`

]
−

3∑
j=1

log(αj). (8.63)

The constant second term in (8.20) is unnecessary for optimization.

Since a term that is a function of α has been added to (8.20) its gradient must be modified.
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In particular (8.61) becomes

∂LY

∂αj
=

∑
cols

∑
rows

[
∂LY

∂Kx

]T

� ∂Kx
∂αj

− ∂

∂αj

3∑
j=1

log(αj)

=
∑
cols

∑
rows

[
∂LY

∂Kx

]T

� ∂Kx
∂αj

− 1
αj
. (8.64)

Equation (8.62) holds with that modification of ∇αLY.4

8.2 Gaussian Process Matlab Code

8.2.1 Metric Tensor
Code to compute the metric tensor at a given point. See Section 5.2

1 f unc t i on [ g ] = MetricTensor_GP ( p , sampleP , sampleY , theta , varianceTerm ,
optionalGFunc )

2 %METRICTENSOR_GP Ca l cu l a t e s the Metric Tensor f o r a GP Manifold
3 % p −− Manifold coo rd ina t e s f o r po int on mani fo ld to compute symbols
4 % sampleP −− Pr ior coord inate po in t s f o r GP
5 % sampleY −− Pr ior mani fo ld po in t s f o r GP
6 % theta −− GP hyperparameters
7 % varianceTerm −− Flag to determine whether or not to in c lude var iance in
8 % ca l c u l a t i o n s
9 % optionalGFunc −− Function to modify metr ic t enso r a f t e r c a l c u l a t i o n s .

10 % Used pr imar i l y f o r ob s t a c l e avoidance
11

12 %Number o f GP pr i o r po in t s
13 numSamples = s i z e ( sampleY , 1 ) ;
14 %Dimension o f GP Manifold
15 numGPDims = s i z e (p , 2 ) ;
16 %Dimension o f embedding space f o r the GP Manifold
17 numDims = s i z e ( sampleY , 2 ) ;
18 %Number o f po in t s to compute metr ic t enso r f o r
19 numPoints = s i z e (p , 1 ) ;
20

21 % Legacy support f o r c a l l s with no varianceTerm de f ined
22 i f narg in < 5
23 varianceTerm = f a l s e ;
24 end
25

26

27 %RBF Kernel matrix f o r GP Manifold

42016-05-13 This has been checked numerically and found to be accurate.
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28 K_sample = GPrbfKernel ( sampleP , theta ) ;
29

30

31

32

33 %I n i t i a l i z e v e c t o r s
34 Xdot = ze ro s ( numPoints , numDims ,numGPDims) ;
35 Sigma = ze ro s ( numPoints , numGPDims,numGPDims) ;
36 kdotvec = ze ro s ( numPoints , numSamples ,numGPDims) ;
37

38 %Fi r s t d e r i v a t i v e and var iance terms
39 f o r i =1:numGPDims
40 %Covariance vec to r d e r i v a t i v e
41 kdotvec ( : , : , i ) = GPrbfPointDer (p , sampleP , theta , i ) ;
42 %Manifold embedded space d e r i v a t i v e
43 Xdot ( : , : , i ) = ( kdotvec ( : , : , i ) /K_sample ) ∗sampleY ;
44 i f varianceTerm
45 %ca l c u l a t e var iance term
46 f o r j =1: i
47 k_j = GPrbfPointDer (p , sampleP , theta , j ) ;
48 i f i ~= j
49 %Base l i n e var iance f o r every po int
50 Sigma ( : , i , j ) = ( theta (2 ) ^2 ∗ p ( : , i ) .∗p ( : , j ) .∗ exp(− theta (2 ) ∗(p ( : , i ) .^2 + p ( : , j )

. ^2 ) /2) ) ;
51 end
52 %Reduce var iance based on covar iance with e x i s t i n g
53 Sigma ( : , i , j ) = Sigma ( : , i , j )−diag ( ( kdotvec ( : , : , i ) /K_sample ) ∗k_j ’ ) ;
54 Sigma ( : , j , i ) = Sigma ( : , i , j ) ;
55 end
56 end
57 end
58

59 %Metric t enso r
60 g = ze ro s ( numPoints ,numGPDims,numGPDims) ;
61 f o r i =1:numGPDims
62 f o r j =1: i
63 %Compute each entry o f the metr ic t enso r by tak ing the dot product
64 %of the mani fo ld embedding space ve c to r s
65 g ( : , i , j )=dot (Xdot ( : , : , i ) ,Xdot ( : , : , j ) , 2 ) ;
66 %I f the var iance term i s inc luded , add i t to the metr ic t enso r
67 i f varianceTerm
68 g ( : , i , j ) = g ( : , i , j ) + Sigma ( : , i , j ) ;
69 end
70 %Metric t enso r i s symmetric
71 g ( : , j , i )=g ( : , i , j ) ;
72 end
73 end
74

75 %I f the ext ra metr ic t enso r mod i f i c a t i on i s inc luded , eva luate i t at the
76 %point ( s ) be ing cons ide r ed
77 i f narg in < 6
78 optionalG = ze ro s ( numPoints , numGPDims,numGPDims) ;
79 e l s e
80 [ optionalG , ~ ] = optionalGFunc (p , g ) ;
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81 end
82

83 %Add the extra mod i f i c a t i on ( zero i f not inc luded )
84 g = g + optionalG ;
85 end

8.2.2 Christoffel Symbols
Code to compute the Christoffel Symbols at a given point. See Section 5.3

1 f unc t i on [ symbols ] = ChristoffelSymbols_GP ( p , sampleP , sampleY , theta ,
varianceTerm , optionalGFunc )

2 %CHRISTOFFELSYMBOLS_GP Ca l cu l a t e s the Ch r i s t o f f e l Symbols f o r a GP Manifold
3 % p −− Manifold coo rd ina t e s f o r po int on mani fo ld to compute metr ic
4 % sampleP −− Pr ior coord inate po in t s f o r GP
5 % sampleY −− Pr ior mani fo ld po in t s f o r GP
6 % theta −− GP hyperparameters
7 % varianceTerm −− Flag to determine whether or not to in c lude var iance in
8 % ca l c u l a t i o n s
9 % optionalGFunc −− Function to modify metr ic t enso r a f t e r c a l c u l a t i o n s .

10 % Used pr imar i l y f o r ob s t a c l e avoidance
11

12 %Number o f GP pr i o r po in t s
13 numSamples = s i z e ( sampleY , 1 ) ;
14 %Dimension o f GP Manifold
15 numGPDims = s i z e (p , 2 ) ;
16 %Dimension o f embedding space f o r the GP Manifold
17 numDims = s i z e ( sampleY , 2 ) ;
18 %Number o f po in t s to compute Ch r i s t o f f e l symbols f o r
19 numPoints = s i z e (p , 1 ) ;
20

21 % Legacy support f o r c a l l s with no varianceTerm de f ined
22 i f narg in < 5
23 varianceTerm = f a l s e ;
24 end
25

26

27 %RBF Kernel matrix f o r GP Manifold
28 K_sample = GPrbfKernel ( sampleP , theta ) ;
29

30

31

32

33 %I n i t i a l i z e v e c t o r s
34 Xdot = ze ro s ( numPoints , numDims ,numGPDims) ;
35 Sigma = ze ro s ( numPoints , numGPDims,numGPDims) ;
36 kdotvec = ze ro s ( numPoints , numSamples ,numGPDims) ;
37

38 %Fi r s t d e r i v a t i v e and var iance terms
39 f o r i =1:numGPDims
40 %Covariance vec to r d e r i v a t i v e
41 kdotvec ( : , : , i ) = GPrbfPointDer (p , sampleP , theta , i ) ;
42 %Manifold embedded space d e r i v a t i v e
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43 Xdot ( : , : , i ) = ( kdotvec ( : , : , i ) /K_sample ) ∗sampleY ;
44 i f varianceTerm
45 %ca l c u l a t e var iance term
46 f o r j =1: i
47 k_j = GPrbfPointDer (p , sampleP , theta , j ) ;
48 i f i ~= j
49 %Base l i n e var iance f o r every po int
50 Sigma ( : , i , j ) = ( theta (2 ) ^2 ∗ p ( : , i ) .∗p ( : , j ) .∗ exp(− theta (2 ) ∗(p ( : , i ) .^2 + p ( : , j )

. ^2 ) /2) ) ;
51 end
52 %Reduce var iance based on covar iance with e x i s t i n g
53 Sigma ( : , i , j ) = Sigma ( : , i , j )−diag ( ( kdotvec ( : , : , i ) /K_sample ) ∗k_j ’ ) ;
54 Sigma ( : , j , i ) = Sigma ( : , i , j ) ;
55 end
56 end
57 end
58

59 %Metric t enso r
60 g = ze ro s ( numPoints ,numGPDims,numGPDims) ;
61 f o r i =1:numGPDims
62 f o r j =1: i
63 %Compute each entry o f the metr ic t enso r by tak ing the dot product
64 %of the mani fo ld embedding space ve c to r s
65 g ( : , i , j )=dot (Xdot ( : , : , i ) ,Xdot ( : , : , j ) , 2 ) ;
66 %I f the var iance term i s inc luded , add i t to the metr ic t enso r
67 i f varianceTerm
68 g ( : , i , j ) = g ( : , i , j ) + Sigma ( : , i , j ) ;
69 end
70 %Metric t enso r i s symmetric
71 g ( : , j , i )=g ( : , i , j ) ;
72 end
73 end
74

75 %I f the ext ra metr ic t enso r mod i f i c a t i on i s inc luded , eva luate i t at the
76 %point ( s ) be ing cons ide r ed
77 i f narg in < 6
78 optionalG = ze ro s ( numPoints , numGPDims,numGPDims) ;
79 optionalGDer = ze ro s ( numPoints , numGPDims,numGPDims,numGPDims) ;
80 e l s e
81 [ optionalG , optionalGDer ] = optionalGFunc (p , g ) ;
82 end
83

84 %Add the extra mod i f i c a t i on ( zero i f not inc luded )
85 g = g + optionalG ;
86

87 %I n i t i a l i z e the second d e r i v a t i v e s
88 Xddot = ze ro s ( numPoints , numDims ,numGPDims,numGPDims) ;
89 kddotvec = ze ro s ( numPoints , numSamples , numGPDims,numGPDims) ;
90 f o r i =1:numGPDims
91 f o r j =1: i
92 %Second d e r i v a t i v e o f the covar iance vec to r
93 kddotvec ( : , : , i , j ) = GPrbfPointDDer (p , sampleP , theta , [ i , j ] ) ;
94 kddotvec ( : , : , j , i ) = kddotvec ( : , : , i , j ) ;
95 %Second d e r i v a t i v e o f the embedded space vec to r
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96 Xddot ( : , : , i , j ) = ( kddotvec ( : , : , i , j ) /K_sample ) ∗sampleY ;
97 Xddot ( : , : , j , i ) = Xddot ( : , : , i , j ) ;
98 end
99 end

100

101 %I n i t i a l i z e C h r i s t o f f e l symbols v a r i ab l e
102 symbols = ze ro s ( numPoints , numGPDims,numGPDims,numGPDims) ;
103

104 f o r j =1:numGPDims
105 f o r k=1:numGPDims
106 %I n i t i a l i z e vec to r o f d e r i v a t i v e s
107 gDer ivat iveVector = ze ro s ( numPoints ,numGPDims) ;
108 f o r l =1:numGPDims
109 %Der iva t i v e s o f ext ra mod i f i c a t i on to metr ic t enso r
110 optionalGDer_l=optionalGDer ( : , l , j , k )+optionalGDer ( : , l , k , j )−optionalGDer ( : , j , k ,

l ) ;
111 %Der iva t i v e s o f GP metr ic t enso r
112 gDer ivat iveVector ( : , l ) = ( dot (Xddot ( : , : , j , k ) ,Xdot ( : , : , l ) , 2 ) +0.5∗ optionalGDer_l

) ;
113 %Der iva t i v e s o f var i ance terms
114 i f varianceTerm
115 varDer iva t ive = −diag ( ( kdotvec ( : , : , l ) /K_sample ) ∗kddotvec ( : , : , j , k ) ’ ) ;
116 i f j == k && j ~= l
117 varDer iva t ive = varDer iva t ive + ( theta (2 ) ^2 ∗ p ( : , l ) − theta (2 ) ^3 ∗ p ( : , l ) .∗

(p ( : , j ) . ^2 ) ) . . .
118 .∗ exp(− theta (2 ) ∗(p ( : , l ) .^2 + p ( : , j ) . ^2 ) /2) ;
119 end
120 gDer ivat iveVector ( : , l ) = gDer ivat iveVector ( : , l ) + varDer iva t ive ;
121 end
122 end
123 f o r n = 1 : numPoints
124 g_n = reshape ( g (n , : , : ) ,numGPDims,numGPDims) ;
125 %Mult ip ly by i nv e r s e metr ic t en so r ( slow step )
126 %Cannot pre−compute inver s e , due to numerica l i n s t a b i l i t y
127 %Addit iona l ly , i n v e r s e i s used only once so pre−computing does
128 %not save time .
129 symbols (n , : , j , k ) = g_n\ gDer ivat iveVector (n , : ) ’ ;
130 end
131 end
132 end
133

134

135 end

8.2.3 Geodesic Differential Equations
Code to evaluate the geodesic differential equations at a given point. See Section 5, Equation
(5.16).

1 f unc t i on [ yprime ] = geodesicDiffEq_GP ( t , y ,X,Y, theta , varianceTerm , optionalG )
2 %GEODESICDIFFEQ Geodesic D i f f e r e n t i a l Equations f o r a GP Manifold
3 % Used by boundary value s o l v e r s ( bvp4c ) to f i nd g eod e s i c s on a GP
4 % Manifold . Opt iona l ly in c lude var iance and add i t i o na l metr ic mod i f i e r s .
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5 % y −− Trajec tory and d e r i v a t i v e . y ( 1 : Dims , : ) i s the t r a j e c t o r y ,
6 % y(Dims : end , : ) i s the d e r i v a t i v e ( with r e sp e c t to time )
7 % X −− Pr io r mani fo ld coo rd ina t e s
8 % Y −− Pr io r mani fo ld po in t s
9 % theta −− RBF covar iance hyperparameters

10 % varianceTerm−− Flag to inc lude var iance terms
11 % optionalG −− Function conta in ing metr ic t enso r mod i f i c a t i on s
12

13 %Coordinate /mani fo ld dimension
14 numGPDims = s i z e (X, 2 ) ;
15 %number o f t r a j e c t o r y po in t s
16 numPoints = s i z e (y , 2 ) ;
17

18 %Trajec tory po in t s
19 Y_in = ze ro s ( numPoints ,numGPDims) ;
20

21

22 f o r i =1:numGPDims
23 Y_in ( : , i )=y ( i , : ) ;
24 end
25

26 %Compute Ch r i s t o f f e l Symbols
27 i f narg in < 6
28 %Compatabi l i ty ( deprecated
29 symbols = ChristoffelSymbols_GP (Y_in ,X,Y, theta ) ;
30 e l s e i f narg in < 7
31 %Variance term , no metr ic t enso r mod i f i c a t i on s
32 symbols = ChristoffelSymbols_GP (Y_in ,X,Y, theta , varianceTerm ) ;
33 e l s e
34 %Variance term and metr ic t enso r mod i f i c a t i on s
35 symbols = ChristoffelSymbols_GP (Y_in ,X,Y, theta , varianceTerm , optionalG ) ;
36 end
37

38

39 %i n i t i a l i z e time d e r i v a t i v e s ( f o r s o l v e r s )
40 yprime = ze ro s (2∗numGPDims, numPoints ) ;
41

42 f o r i =1:numGPDims
43 %2nd order equation , so pass d e r i v a t i v e s back as d e r i v a t i v e s f o r
44 %t r a j e c t o r y
45 yprime ( i , : ) = y ( i+numGPDims , : ) ;
46

47 %2nd order d e r i v a t i v e s
48 diffEQ_sum = ze ro s (1 , numPoints ) ;
49 f o r j =1:numGPDims
50 f o r k=1:numGPDims
51 diffEQ_sum = diffEQ_sum −symbols ( : , i , j , k ) ’ . ∗ ( y ( j+numGPDims , : ) .∗ y (k+numGPDims

, : ) ) ;
52 end
53 end
54 yprime ( i+numGPDims , : ) = diffEQ_sum ;
55 end
56

57

121



58 end

8.2.4 Geodesic Solver
Code to find a geodesic between two points. Uses the Geodesic Differential Equations.

1 f unc t i on [ path , time , s o l ] = generateGeodes i c ( s ta r tPo int , endPoint ,GP_X,GP_Y,
hyperParams , varianceTerm , i n i t i a l S o l , optionalG )

2 %GENERATEGEODESIC Generate a geode s i c path f o r GP Manifo lds
3 % I n i t i a l i z e s and s o l v e s the geode s i c d i f f e r e n t i a l equat ions us ing bvp4c
4 % sta r tPo in t −− Star t po int o f the geode s i c
5 % endPoint −− End point o f the geode s i c
6 % GP_X −− Pr ior mani fo ld coo rd ina t e s
7 % GP_Y −− Pr ior mani fo ld embedded space po in t s
8 % hyperParams −− RBF Covariance func t i on hyperparameters
9 % varianceTerm −− Flag to inc lude var iance terms in c a l c u l a t i o n s

10 % i n i t i a l S o l −− Optional i n i t i a l guess
11 % optionalG −− Metric t enso r mod i f i c a t i on s
12

13 %Dimension o f GP Manifold coo rd ina t e s
14 numGPDims = s i z e ( s ta r tPo int , 2 ) ;
15

16 %Residue func t i on to ensure boundary cond i t i on s ( s t a r t and end po in t s )
17 r e s i du e = @(y0 , y1 ,~ ,~ ,~ ,~ ) [ y0 ( 1 :numGPDims) ’− s ta r tPo int , y1 ( 1 :numGPDims) ’−

endPoint ] ;
18

19 %I n i t i a l guess
20 tGuess=l i n s p a c e (0 , 1 , 10 ) ;
21 yGuess=@( t ) [((1− t ) ∗ s t a r tPo in t+t ∗ endPoint ) , z e r o s (1 ,numGPDims) ] ;
22

23 %Options f o r d i f f eq s o l v e r
24 opt ions = bvpset ( ’ RelTol ’ , 0 . 1 , ’ AbsTol ’ , 0 . 1 , ’ S ta t s ’ , ’ on ’ , ’ Vector i zed ’ , ’ on ’ ) ;
25

26 t i c
27 %I n i t i a l i z e s o l u t i o n f o r s o l v e r
28 s o l i n i t = bvp in i t ( tGuess , yGuess ) ;
29 i f narg in > 7
30 % Ful l s o lu t i on , i n c l ud ing metr ic t enso r mod i f i c a t i on s
31 s o l = bvp4c (@geodesicDiffEq_GP , re s idue , s o l i n i t , opt ions ,GP_X,GP_Y, hyperParams ,

varianceTerm , optionalG ) ;
32 e l s e i f narg in > 6
33 % So lut i on with op t i ona l i n i t i a l guess
34 s o l = bvp4c (@geodesicDiffEq_GP , re s idue , i n i t i a l S o l , opt ions ,GP_X,GP_Y,

hyperParams , varianceTerm ) ;
35 e l s e i f varianceTerm
36 %So lut i on in c l ud ing var iance term
37 opt ions = bvpset ( ’ RelTol ’ , 0 . 2 , ’ AbsTol ’ , 0 . 2 , ’ S ta t s ’ , ’ on ’ , ’ Vector i zed ’ , ’ on ’ ) ;
38 s o l = bvp4c (@geodesicDiffEq_GP , re s idue , s o l i n i t , opt ions ,GP_X,GP_Y, hyperParams ,

varianceTerm ) ;
39 e l s e
40 %Defau l t s o l u t i o n
41 s o l = bvp4c (@geodesicDiffEq_GP , re s idue , s o l i n i t , opt ions ,GP_X,GP_Y, hyperParams ,

f a l s e ) ;
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42 end
43 time = toc ;
44

45 path = s o l . y ’ ;
46 end

8.2.5 Curve Shortening Flows
Code to find a geodesic through Curve Shortening Flows. See Section 5.3.2

1 f unc t i on [ shortPath , stepError , i t e r a t i o n s ] = curveShorteningFlow_GP ( path ,
chr i s to f f e lSymbo lFunc )

2 %CURVESHORTENINGFLOW Finds g eode s i c s through curve shor t en ing f l ows
3 % Uses the curvature o f a path to shorten the ove ra l l ength o f the path
4 % path −− Or ig ina l t r a j e c t o r y to shorten
5 % chr i s to f f e lSymbo lFunc −− Function to generate the Ch r i s t o f f e l symbols
6 % fo r the mani fo ld
7

8 %Error t o l e r a n c e s
9 s t epS i z e = 0 . 0 5 ;

10 t o l e r an c e = 0 . 0001 ;
11 s tepTole rance = 1e−8;
12 % paramError = 0 . 0 1 ;
13

14 %i n i t i a l i z e t , the time parameter f o r the path
15 t = l i n s p a c e (0 ,10 , s i z e ( path , 1 ) ) ’ ;
16 %de f au l t hyperparameters f o r GP
17 theta = [ 1 , 0 . 1 , 1 ] ;
18

19

20 curPath = path ;
21

22

23 %loop cond i t i on s
24 s t epError = 1 ;
25 stepErrorPrev = 100 ;
26 stepChange = 1 ;
27 i t e r a t i o n s = 1 ;
28 %Repeat un t i l t o l e r an c e
29 whi le s t epError > to l e r an c e && i t e r a t i o n s < 200% && abs ( stepChange ) >

stepTole rance%
30

31 %Approximate path with a Gaussian Process
32 theta = OptimizeRBFHyperparameters ( t , curPath , theta ) ;
33 [K,~ , ~ , ~ ] = GPrbfKernel ( t , theta ) ;
34 K_dt = GPrbfPointDer ( t , t , theta , 1 ) /K;
35 K_dt2 = GPrbfPointDDer ( t , t , theta , [ 1 , 1 ] ) /K;
36

37 %Compute Ch r i s t o f f e l symbols a long the path
38 chiSym = chr i s to f f e lSymbo lFunc ( curPath ) ;
39

40 %Find the curvature and tangent space normal o f the path at each po int
41 path_dt = K_dt ∗ curPath ;
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42 unitT = path_dt . / sq r t ( dot ( path_dt , path_dt , 2 ) ) ;
43 path_dt2 = K_dt2∗ curPath ;
44 normalVec = ( path_dt2 − dot ( path_dt2 , unitT , 2 ) .∗ unitT ) . / sq r t ( dot ( path_dt ,

path_dt , 2 ) ) ;
45 %unitT = unitT ( 1 : end−1) ;
46 f o r i = 1 : s i z e ( chiSym , 2 )
47 f o r j = 1 : s i z e ( chiSym , 3 )
48 f o r k = 1 : s i z e ( chiSym , 4 )
49 normalVec ( : , i ) = normalVec ( : , i ) + unitT ( : , j ) .∗ unitT ( : , k ) .∗ chiSym ( : , i , j , k ) ;
50 end
51 end
52 end
53

54 %adjus t po in t s o f path to reduce curvature
55 ad jus t = normalVec ;
56 s t epError = sum( dot ( adjust , adjust , 2 ) ) ;
57 stepChange = stepError − stepErrorPrev ;
58 stepErrorPrev = stepError ;
59 curPath ( 2 : end −1 , : ) = curPath ( 2 : end −1 , : ) + ad jus t ( 2 : end −1 , : ) .∗ s t epS i z e ;
60

61 i t e r a t i o n s = i t e r a t i o n s + 1 ;
62 end
63 shortPath = curPath ;
64 end

8.2.6 Curvature Tensor
Code to compute the curvature tensor at a given point. See Section 5.4.1

1 f unc t i on [ curvature ] = CurvatureTensor_GP (p , sampleP , sampleY , theta , type )
2 %CURVATURETENSOR_GP Computes the curvature t enso r f o r a GP−Manifold
3 % p −− Point ( s ) where the curvature i s to be computed
4 % sampleP −− Pr ior mani fo ld coo rd ina t e s
5 % sampleY −− Pr ior mani fo ld embedded space po in t s
6 % theta −− RBF covar iance hyperparameters
7 % type −− Type o f curvature to compute ( s c a l a r or f u l l t en so r )
8

9 %Number o f po in t s to compute at
10 numPoints = s i z e (p , 1 ) ;
11 %Dimension o f mani fo ld coo rd ina t e s
12 numGPDims = s i z e (p , 2 ) ;
13

14 %Defau l t to s c a l a r curvature
15 i f narg in < 5
16 type = ’ s c a l a r ’ ;
17 end
18

19 %RBF Covariance ke rne l
20 K_sample = GPrbfKernel ( sampleP , theta ) ;
21

22 f o r i =1:numGPDims
23 %Fi r s t d e r i v a t i v e o f po in t s with r e sp e c t to coo rd ina t e s
24 Xdot ( : , : , i ) = GPrbfPointDer (p , sampleP , theta , i ) /K_sample∗sampleY ;
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25 %Second d e r i v a t i v e o f po in t s with r e sp e c t to coo rd ina t e s
26 f o r j =1: i
27 Xddot ( : , : , i , j ) = GPrbfPointDDer (p , sampleP , theta , [ i , j ] ) /K_sample∗sampleY ;
28 Xddot ( : , : , j , i ) = Xddot ( : , : , i , j ) ;
29 %Third d e r i v a t i v e
30 f o r k=1: j
31 Xdddot ( : , : , i , j , k ) = GPrbfPointDDDer (p , sampleP , theta , [ i , j , k ] ) /K_sample∗sampleY ;
32 Xdddot ( : , : , i , k , j ) = Xdddot ( : , : , i , j , k ) ;
33 Xdddot ( : , : , j , i , k ) = Xdddot ( : , : , i , j , k ) ;
34 Xdddot ( : , : , j , k , i ) = Xdddot ( : , : , i , j , k ) ;
35 Xdddot ( : , : , k , j , i ) = Xdddot ( : , : , i , j , k ) ;
36 Xdddot ( : , : , k , i , j ) = Xdddot ( : , : , i , j , k ) ;
37 end
38 end
39 end
40

41 %Metric t enso r
42 g = ze ro s ( numPoints ,numGPDims,numGPDims) ;
43 f o r i =1:numGPDims
44 f o r j =1: i
45 g ( : , i , j )=dot (Xdot ( : , : , i ) ,Xdot ( : , : , j ) , 2 ) ;
46 g ( : , j , i )=g ( : , i , j ) ;
47 end
48 end
49

50

51 %Inve r s e metr ic t en so r pre−computation
52 gInv = ze ro s ( numPoints , numGPDims,numGPDims) ;
53 f o r n=1:numPoints
54 gInv (n , : , : ) = inv ( reshape ( g (n , : , : ) ,numGPDims,numGPDims) ) ;
55 end
56

57

58 %Ch r i s t o f f e l symbols
59 symbols = ze ro s ( numPoints , numGPDims,numGPDims,numGPDims) ;
60 f o r i =1:numGPDims
61 f o r j =1:numGPDims
62 f o r k=1:numGPDims
63 f o r l =1:numGPDims
64 symbols ( : , i , j , k ) = symbols ( : , i , j , k ) + gInv ( : , i , l ) . ∗ ( dot (Xddot ( : , : , j , k ) ,Xdot

( : , : , l ) , 2 ) ) ;
65 end
66 end
67 end
68 end
69

70 %Fina l Riemannian curvature t enso r computation
71 riemann_curvature = ze ro s ( numPoints , numGPDims,numGPDims,numGPDims,numGPDims) ;
72 f o r i =1:numGPDims
73 f o r j =1:numGPDims
74 f o r k=1:numGPDims
75 f o r l =1:numGPDims
76 riemann_curvature ( : , i , j , k , l ) = 0 .5 ∗( dot (Xddot ( : , : , i , k ) ,Xddot ( : , : , l , j ) , 2 ) . . .

i l j k
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77 +dot (Xddot ( : , : , j , l ) ,Xddot ( : , : , k , i ) , 2 ) . . .
78 −dot (Xddot ( : , : , i , l ) ,Xddot ( : , : , k , j ) , 2 ) . . .
79 −dot (Xddot ( : , : , j , k ) ,Xddot ( : , : , l , i ) , 2 ) ) ;
80 symbol_term = ze ro s ( numPoints , 1 ) ;
81 f o r n=1:numGPDims
82 f o r p=1:numGPDims
83 symbol_term = symbol_term + g ( : , n , p) . ∗ ( symbols ( : , n , j , k ) .∗ symbols ( : , p , i , l ) . . .
84 −symbols ( : , n , j , l ) .∗ symbols ( : , p , i , k ) ) ;
85 end
86 end
87 riemann_curvature ( : , i , j , k , l ) = riemann_curvature ( : , i , j , k , l ) + symbol_term ;
88 end
89 end
90 end
91 end
92

93 %I f s c a l a r i s requ i red , cont rac t t en so r us ing i nv e r s e metr ic t enso r .
94 i f strcmp ( type , ’ s c a l a r ’ )
95 curvature = ze ro s ( numPoints , 1 ) ;
96 f o r i =1:numGPDims
97 f o r j =1:numGPDims
98 f o r k=1:numGPDims
99 f o r l =1:numGPDims

100 curvature = curvature + gInv ( : , i , j ) .∗ gInv ( : , k , l ) .∗ riemann_curvature ( : , i , k , j , l )
;

101 end
102 end
103 end
104 end
105 end
106

107 end

8.2.7 Gaussian Process Likelihood Wrapper
Code to unpack GPLVM parameters and call the likelihood and gradient functions. Used
with Matlab’s built-in optimizers to maximize the likelihood.

1 f unc t i on [ L ,G] = LikelihoodRBF (params ,Y)
2 %LIKELIHOODRBF Like l ihood wrapper f o r RBF GP
3 % params −− Input from opt imiza t i on func t i on
4 % Y −− Output Train ing Data
5 % Unpacks params in to the inputs f o r the var i ous l i k e l i h o o d funct i ons ,
6 % then re tu rn s l i k e l i h o o d s and g rad i en t s .
7

8

9 %Get number o f t r a i n i n g po in t s
10 N = s i z e (Y, 1) ;
11 %Dimension o f l a t e n t v a r i a b l e s based on number o f po in t s
12 q = round ( ( l ength ( params )−3)/N) ;
13

14 Nq = N∗q ;
15 % la t en t v a r i a b l e s
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16 X = reshape ( params ( 1 :Nq) , N, q ) ;
17 % hyperparameters ( exponen t i a l s f o r the purpose o f opt imiza t i on )
18 alpha = exp ( params ( end−2:end ) ) ;
19

20 %Gradient computed only i f needed
21 i f nargout > 1
22 %Like l ihood and grad i en t
23 [ L ,G] = GPrbfLikel ihood (X, alpha ,Y) ;
24

25 %Hyper parameters need to be adjusted f o r the l og /exp requ i r ed by
26 %opt imiza t i on
27 G(( end−2) : end ) = alpha .∗G(( end−2) : end ) ;
28 L = −L ;
29 G = −G;
30

31 e l s e
32 L = −GPrbfLikel ihood (X, alpha ,Y) ;
33 end
34 end

8.2.8 Gaussian Process Likelihood
Code to compute the likelihood and gradient of a GPLVM. See section 3.2.2 for details on
the equations behind this code.

1 f unc t i on [ L ,G] = GPrbfLikel ihood (X, alpha , Y)
2 %GPRBFLIKELIHOOD Like l i hood c a l c u l a t i o n f o r the RBF Gaussian Process
3 % Compute the l i k e l i h o o d and grad i en t f o r the RBF Gaussian proce s s with
4 % X −− Pr io r Input po in t s
5 % Y −− Pr io r Output Points
6 % alpha −− RBF Kernel Hyperparameters
7 % Gradient i s computed with r e sp e c t to X and alpha
8

9 N = s i z e (X, 1) ; % number o f time sample ve c t o r s
10 D = s i z e (Y, 2) ; % dimension o f each sample vec to r
11 q = s i z e (X, 2) ; % dimension o f each l a t e n t va r i ab l e
12

13 [K, invK , Kless I , DM2] = GPrbfKernel (X, alpha ) ; % compute RBF ke rne l
14

15 % Fi r s t compute the l og determinant o f K and sq r t (2 p i ^(ND) )
16 L = −D∗( sum( log ( diag ( cho l (K) ) ) ) + ( (N/2) ∗ l og (2∗ pi ) ) ) ;
17

18 % Then compute the log o f the exponent i a l term .
19 % Is −(1/2)∗ t r a c e o f invK∗Y∗diag (W) ∗diag (W) ∗Y’
20 Lex = ze ro s (D, 1 ) ;
21 f o r d = 1 :D
22 Lex (d) = −(1/2)∗Y( : , d ) ’∗ invK∗Y( : , d ) ;
23 end
24 L = L + sum(Lex ) ;
25

26

27 %Gradient computation
28 i f nargout > 1
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29 %Gradient o f the l i k e l i h o o d with r e sp e c t to the rb f k e rne l
30 dL_dK = −(D/2) ∗ invK + .5∗ invK ∗(Y∗Y’ ) ∗ invK ;
31

32 % Compute dK/db_i , d e r i v a t i v e s o f the std rb f k e rne l K w. r . t . hyper parameters
alpha

33 % eqns (56) −(58)
34 dK = c e l l ( 1 , 3 ) ;
35 % dK{1} i s the drvtv o f K w. r . t . alpha (1 )
36 % dK{2} i s the drvtv o f K w. r . t . alpha (2 )
37 % whereas K = alpha (1 ) ∗exp(−( alpha (2 ) ∗ d i s t 2 (X,X’ ) ) ) + I / alpha (3 ) ,
38 % we use K l e s s I = alpha (1 ) ∗exp(−( alpha (2 ) ∗ d i s t 2 (X,X’ ) ) )
39 dK{1} = Kle s s I / alpha (1 ) ; % eqn (56)
40 dK{2} = −0.5∗DM2.∗ Kle s s I ; % eqn (57)
41 dK{3} = −1/(alpha (3 ) ∗ alpha (3 ) ) ; % eqn (58)
42

43 % chain ru l e : dL/da_i = dL/dK x dK/da_i eqn (59)
44 dL_dAlpha = ze ro s (1 , 3) ;
45 f o r i = 1 :2 % alpha (2 ) : alpha (1 )
46 dL_dAlpha( i ) = sum(sum(dL_dK.∗dK{ i }) ) ;
47 end
48 dL_dAlpha (3 ) = −sum( diag (dL_dK) /( alpha (3 ) .^2 ) ) ;
49

50 f o r d = 1 : q
51 % compute dKy/dX_d ( dth co l o f X)
52 % −alpha (2 ) ∗(X_d − X_d’ ) .∗K; K = alpha (2 ) ∗exp(−( alpha (1 ) ∗ d i s t 2 (X,X’ ) ) )
53 dK_dX = GPrbfDer (X, alpha (2 ) , Kless I , d ) ;
54 % chain ru l e : dL_dX = dL/dK .∗ dK/dX
55 % the second term o f the l i n e below makes no sense because
56 % diag (dK_dX) == 0 always ( un l e s s K Kle s s I+I / alpha (3 ) i s used )
57 dL_dX( : , d ) = sum(dL_dK.∗dK_dX, 2) − diag (dL_dK) .∗ diag (dK_dX) ;
58 end
59

60 G = [dL_dX( : ) ’ , dL_dAlpha ] ;
61 end
62 end

8.2.9 Sample GP Script
Example script using a GP-manifold to find geodesics. Script below used for the TIAGo
robot in Section 6.3.6

1

2 %I n i t i a l i z e Robot/ So lve r
3

4

5

6 tiagoRB = importrobot ( ’ t i a go . urdf ’ ) ;
7 t o r s oJo i n t = tiagoRB . getBody ( ’ t o r s o_ l i f t_ l i n k ’ ) . Jo int ;
8 t o r s oJo i n t . HomePosition = 0 ;
9 t o r s oJo i n t . Pos i t i onL im i t s = [ 0 , 1 e −6] ;

10 i k So l v e r = r obo t i c s . InverseKinemat ic s ( ’ RigidBodyTree ’ , tiagoRB ) ;
11

12 %Def ine motion plane
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13 %Using the x+y−z = 0 , then end e f f e c t o r o r i e n t a t i o n i s constant
14 nVec = [1 ; 1 ; −1 ] / sq r t (3 ) ;
15 Rn = [ 1 , 0 , 0 ;
16 0 , 1 , 0 ;
17 0 ,0 , −1 ] ;
18 %Pick a g r id o f po in t s to t r a i n with
19 u = l i n s p a c e ( 0 , 0 . 2 5 , 1 0 ) ;
20 v = l i n s p a c e ( −0 .25 ,0 .25 ,10) ;
21 [U,V] = meshgrid (u , v ) ;
22 coo rd ina t e s = [U( : ) ,V( : ) ] ;
23

24 %Convert coo rd ina t e s to po in t s
25 basePoint = [ 0 . 5 , 0 . 0 , 0 . 5 ] ;
26 orthoVec1 = [ 1 , 0 , 0 ] ;
27 orthoVec2 = [ 0 , 1 , 0 ] ;
28 pointX = basePoint (1 ) + coo rd ina t e s ( : , 1 ) ∗orthoVec1 (1 ) + coo rd ina t e s

( : , 2 ) ∗orthoVec2 (1 ) ;
29 pointY = basePoint (2 ) + coo rd ina t e s ( : , 1 ) ∗orthoVec1 (2 ) + coo rd ina t e s

( : , 2 ) ∗orthoVec2 (2 ) ;
30 pointZ = basePoint (3 ) + coo rd ina t e s ( : , 1 ) ∗0 ;% + coo rd ina t e s ( : , 1 ) .^2 +

coo rd ina t e s ( : , 2 ) . ^ 2 ;
31 po in t s = [ pointX , pointY , pointZ ] ;
32

33

34 %IK so l v e a l l po in t s
35 i n i t i a lGu e s s = tiagoRB . homeConfiguration ;
36 i k So l v e r . SolverParameters . AllowRandomRestart = f a l s e ;
37 endEf f e c to r = ’ arm_tool_link ’ ;
38 weights = [ 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 1 , 1 , 1 ] ;
39 j o i n tAng l e s = ze ro s ( s i z e ( po ints , 1 ) ,8 ) ;
40 f o r i = 1 : s i z e ( po ints , 1 )
41 p = po in t s ( i , : ) ;
42 pose = trvec2t form (p) ∗ eu l2t form ( [ 0 , p i / 2 , 0 ] ) ;
43 j o i n t S o l u t i o n = ikSo l v e r ( endEf fector , pose , weights , i n i t i a lGu e s s ) ;
44 i n i t i a lGu e s s = j o i n t S o l u t i o n ;
45 j o i n tAng l e s ( i , 1 ) = j o i n t S o l u t i o n (13) . J o i n tPo s i t i on ;
46 j o i n tAng l e s ( i , 2 ) = j o i n t S o l u t i o n (14) . J o i n tPo s i t i on ;
47 j o i n tAng l e s ( i , 3 ) = j o i n t S o l u t i o n (15) . J o i n tPo s i t i on ;
48 j o i n tAng l e s ( i , 4 ) = j o i n t S o l u t i o n (16) . J o i n tPo s i t i on ;
49 j o i n tAng l e s ( i , 5 ) = j o i n t S o l u t i o n (17) . J o i n tPo s i t i on ;
50 j o i n tAng l e s ( i , 6 ) = j o i n t S o l u t i o n (18) . J o i n tPo s i t i on ;
51 j o i n tAng l e s ( i , 7 ) = j o i n t S o l u t i o n (19) . J o i n tPo s i t i on ;
52 j o i n tAng l e s ( i , 8 ) = j o i n t S o l u t i o n (20) . J o i n tPo s i t i on ;
53 end
54 %%
55 %Build a GP−Manifold , draw some t r a j e c t o r i e s
56 X = coord ina t e s ;
57 Y = jo in tAng l e s ;
58 numPoints = s i z e (X, 1 ) ;
59 alpha = [ 1 , 1 , 1 ] ;
60 f = @(x ) LikelihoodRBFParam (x ,X,Y) ;
61 %Xf la t = X0 ( : ) ’ ;
62
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63 optionFwd = opt imopt ions ( ’ fminunc ’ , ’ Algorithm ’ , ’ t rus t−r eg i on ’ , ’
Spec i fyObjec t iveGrad i ent ’ , true , . . .

64 ’ MaxIterat ions ’ ,100 , ’ Display ’ , ’ i t e r ’ ) ;
65

66

67 alpha = fminunc ( f , alpha , optionFwd ) ;
68 alpha = exp ( alpha ) ;
69 [ ~ , invK ,~ ,~]= GPrbfKernel (X, alpha ) ;
70 [ toManifold , manifoldDer ] = wrapGPrbf (X,Y, invK , alpha ) ;
71

72 %Solve some t r a j e c t o r i e s
73 g eod e s i c s = c e l l (30) ;
74 j o in tPaths = c e l l (30) ;
75 planTime = ze ro s (30 ,1 ) ;
76 f i g u r e (1 )
77 hold o f f
78 s c a t t e r (X( : , 1 ) ,X( : , 2 ) ,5 , ’b ’ ) ;
79 hold on
80 f o r i = 1 :30
81 startCoord = [ 0 . 2 5∗ rand ( ) , 0 .5∗ rand ( ) −0 .25 ] ;
82 s t a r tPo in t = startCoord ;%basePoint+orthoVec1∗ startCoord (1 )+orthoVec2∗

startCoord (2 ) ;
83 endCoord = [ 0 . 2 5∗ rand ( ) , 0 .5∗ rand ( ) −0 .25 ] ;
84 endPoint = endCoord ;%basePoint+orthoVec1∗endCoord (1 )+orthoVec2∗

endCoord (2 ) ;
85 [ geoPath , time ] = generateGeodes i c ( s ta r tPo int , endPoint ,X,Y, alpha , t rue ) ;
86 planTime ( i ) = time ;
87 g eod e s i c s { i } = geoPath ( : , 1 : 2 ) ;
88 p lo t ( geoPath ( : , 1 ) , geoPath ( : , 2 ) , ’ k ’ ) ;
89 j o in tPaths { i } = toMani fo ld ( geoPath ( : , 1 : 2 ) ) ;
90 end
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