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CHAPTER 1

INTRODUCTION

1.1 Research Motivation

All quasi-brittle materials experience degradation in mechanical properties due to dam-

age accumulation at the microscopic level caused by debonding of atoms as well as nucle-

ation, or growth and bridging of microcracks and/or microvoids, prior to the development

of macroscale cracks. A continuum damage representation utilizes homogeneous models in

which microcracks and microvoids are represented by continuous variables that correspond

to the mechanical behavior of continua. Furthermore, accumulation of damage resulting

from manufacturing defects is common in materials that are utilized in structural applica-

tions. Engineers are required to model the damage process in quasi-brittle materials in order

to reduce the risk of sudden failures in which the material does not show sufficient signs

that failure is imminent. Unlike elastic-plastic and pure brittle failures, quasi- brittle failure

processes involve characteristics that resemble both of these types of failure. This requires

that methods of both plasticity and damage mechanics be combined to model quasi-brittle

failures. Over the last two decades, a number of discrete numerical tools based on X-FEM,

mesh-free, and cohesive-zone methods have been developed to address the need for quasi-

brittle models of failure. For applications like damage modeling of laminated fiber composites

in aircraft, there is no single technique that engineers can utilize to provide confidence in

failure prediction due to mathematical intricacies and deficiencies in the current techniques

to enable mechanics based calibration of model parameters using experimental data. Lately,

researchers are making significant strides to implement advanced simulation techniques in

commercial software.

The design and certification of aerospace composite structures require extensive use of

experimental data over a range of specimens and loading scenarios, from coupons to full-scale

components. In addition to being expensive and time-consuming, this approach may lead to

over-conservative designs. Specifically, the lack of a full understanding of damage initiation

and growth at the microscopic level culminating into failure at the macroscopic or structural
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level in composites prevents the use of the damage tolerant approaches commonly used in

the design of metallic aerospace structures. As a result, conventional composite airframe

designs cannot fully capitalize on the weight and performance gains that are possible with

composites. As the potential benefits are being recognized of incorporating predictive failure

modeling and simulation in aircraft design, certification, and maintenance processes, there

is significant effort aimed at improving predictive computational methods, as exemplified

by the works of the U.S. DoD [22] and NASA [57, 52]. A validated predictive modeling

capability is critical to rapid and economical aircraft design and certification processes using

new composite materials.

1.2 Literature Review

In the case of composites, loss of strength may be the result of mesoscale phenomena like

matrix fracture, fiber-matrix debonding, matrix crushing, fiber breakage, inter-fiber inter-

action, and so on. Of these mesoscale manifestations of material damage, the first two

sources of damage (matrix fracture and fiber-matrix debonding) are of primary concern to

engineers. Damage processes are often associated with the release of mechanical energy. In

cross-plied laminates, the failure paths in an angle ply are often aligned along the orien-

tation of the fiber. For accurate prediction of the failure process in such composites, the

development of three-dimensional failure criteria for fiber composites is an important step to-

wards developing a mechanics-based progressive damage model. But these failure criteria are

more phenomenological than mechanics-based in nature and, hence, have limited usefulness

in mechanical performance prediction in the context of a multiscale modeling framework.

From 1980 through 1990, continuum damage mechanics has advanced considerably in mod-

eling progressive degradation, as presented in Krajcinovic [43]; Chaboche [13, 14]; Simo and

Ju [76]. Continuum damage mechanics offers a framework for modeling initiation, growth

and coalescence of microcracks and microvoids that is consistent with the scale of the damage

phenomena involved. These advances have provided a framework from which to develop a

model of distributed damage in quasi-brittle materials. This framework offers computational

efficiency without loss of accuracy. The work presented here assumed deformations are small

and elastic in nature. Temperature change and fatigue loading effects are not considered in

this study.

1.2.1 Damage Modeling Techniques

Within the continuum framework, material cracking is often modeled with either the discrete

crack concept using the principles of fracture mechanics or the smeared crack concept using

2



continuum mechanics. Hillerborg et al. [37] applied a cohesive zone approach, which was

introduced by Dugdale [23] and Barenblatt [4], to quasi-brittle materials. In the Cohesive

Zone Model (CZM), fracture formation is regarded as a phenomenon in the growth of a

crack across an extended crack tip and is resisted by cohesive tractions. CZM is usually

classified as extrinsic or intrinsic. Extrinsic CZM assumes interface separation only after

exceeding the cohesive strength as described in Camacho et al. [11] and Zhang et al. [90]. In

the extrinsic CZM case, the model is implemented by adaptive insertion of interface elements

with zero-thickness as damage progresses. On the other hand, intrinsic methods rely on the

assumption of gradual increase of cohesive traction, as proposed by Xu and Needleman [89].

These authors described a concept of adaptive insertion between the continuum elements

following a potential-based traction–separation law . This approach is implemented by a

priori insertion of interface elements within the finite element mesh, along all potential crack

paths as described by Park et al. [63]. A major disadvantage of the CZM approach is its

computational cost. A different modeling approach, which is straightforward to implement

and computationally more efficient, is based on a smeared crack concept. In this approach,

the fracture process is modeled by a banded region of fixed width. It assumes accumulation

of microvoids, and (or) microcracks within a band, which later evolves as a macro crack. This

approach is referred to as the local approach in the continuum model. Unlike for CZM, no

special elements, e.g. interface elements, need to be incorporated in the local approach. The

failure path for a continuum damage model evolves based on the thermomechanical prop-

erties of the constituent material(s). A thorough treatment of continuum damage modeling

with different damage potential functions is provided by Geers [30]. Notwithstanding var-

ious differences in formulations, strength prediction by continuum damage mechanics- and

fracture mechanics-based models is a function of the model used. In practice, analysts find

it more convenient to use methods based on a continuum damage model, which is a rapidly

emerging predictive tool suited to design environments (see, for example, Lemaitre [47],

Lemaitre and Dufailly [49], Krajcinovic [44], Lemaitre and Desmorat [48], and Voyiadjis and

Kattan [88]).

1.2.2 Numerical Regularization Techniques

The accumulation of damage within a material leads to strain softening. Local continuum

damage models are strain softening models that obey the principle of local action i.e. the

constitutive behavior at a local point does not depend upon any action/variables at a distance

(neighboring points). The problem with the local behavior of a softening model is that as

soon as a material point starts to soften, it takes up all the deformation. Since all deformation
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occurs at the material point, damage only grows in that point, resulting in further softening.

If damage models are included in the constitutive behavior in a finite element analysis, then

after localization all the deformation accumulates in one element (or one row of elements).

This makes the analysis mesh size dependent. If the mesh size is selected to be infinitely

small then the energy dissipated in the localized band will approach to zero. In reality,

damage consists of voids and/or cracks. Therefore, physically, damage cannot continue to

grow at a local material point. In a real material, damage spreads over a finite length.

It is known that the results from continuum damage mechanics-based constitutive mod-

els demonstrate pathological mesh size dependence. This is purely a numerical issue arising

out of loss of ellipticity in local equilibrium equations, as identified by de Borst et al. [21].

Several regularization techniques have been proposed to alleviate this sensitivity to mesh

size. Bažant and Oh [6] proposed the fracture energy based crack band model that links

the energy dissipation process with finite element size in a local framework. The paper rea-

soned that for a quasi-brittle material, microcracks span a region with a characteristic length

scale quantifying the extent of the process zone. It is, therefore, physically appropriate to

model localization as a crack band. The formulation related the fracture energy (typically

experimentally characterized) to the energy dissipated within the crack band. In the context

of numerical analysis, the crack band width is taken as the element size parameter, which

is used to adjust the failure parameters. The major advantage of this formulation is that

the formulation remains local and the algorithmic structure of FE code requires minor ad-

justment. This method was previously employed by several researchers (e.g. [65, 39, 59])

for single-scale models. These studies focused on comparing methodologies to estimate the

element size parameter based on the geometry of the discretization.

Subsequently, several nonlocal damage models were developed in the 1980s and 1990s.

These non-local models can be categorized into two groups: (1) nonlocal or integral damage

models of Bažant [5], Pijaudier-Cabot and Bažant [66], Jirásek [38] and (2) the gradient

enrichment approach by de Borst and Muhlhaus [20], Peerlings et al. [64], Jirásek and Rol-

shoven [40, 41]. The nonlocal damage models incorporate the nonlocal effect of damage using

either an equivalent strain or a damage measure averaged over the domain of interest. The

difference between the nonlocal integral and enrichment gradient approach depends solely

on their methods of implementation. But both these methods are computationally expen-

sive. On the other hand, the crack band model is more straightforward to implement in the

finite element framework because it does not need weighted averaging of the damage at each

increment. Many researchers have employed the crack band method primarily for numerical

regularization. This approach guarantees mesh size objective results because the dissipation

of fracture energy is regularized by a characteristic length parameter ensuring mesh size
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objective results. The engineering research community has embraced the crack band model

for simulating quasi-brittle materials like concrete (Jirásek and Bauer [39]; Slobbe et al. [78];

Cervenka et al. [87]) and fiber composite laminates (Pinho et al. [70]; Reinoso et al. [71];

Pineda et al. [67]; Heinrich and Waas [35]; Maimi et al. [54, 55]). For this reason, most of the

commercial nonlinear finite element software packages are incorporating this model. They

have addressed the issue of estimating critical mesh size for different modes of failure of the

composite.

1.2.3 Progressive Damage Analysis of Fiber Composites

Progressive Damage Analysis (PDA) is a terminology that applies to all modeling techniques

that allow for the prediction of the initiation and evolution of damage. Several material con-

stitutive models are proposed in the existing literature. Pinho et al. [69, 70] presented a

physically-based failure criteria to model fiber kinking in laminated composites. In addition,

their study has the ability to capture 3D effects and a generic non-linear shear behavior.

The physical model for matrix compression failure is based on the Mohr-Coulomb failure

criterion and also predicts the fracture angle. Ridha et al. [72] and Su et al. [81] mod-

eled carbon fiber reinforced epoxy composite open-hole laminates under using failure criteria

under tensile and compressive loading. Leone et al. [50] used used a continuum damage as-

sumption to model intra-ply damage. For interply delamination and adhesive damage, they

implemented cohesive elements. In addition to continuum damage models, computational

modeling involving the use of cohesive zone modeling is also presented in the literature,

such as in Higuchi et al. [36], van Dongen et al. [84]. PDA in the context of multiscale

modeling is presented in Laurin et al. [46], Pineda et al. [68], and Massarwa et al. [56]. In

PDA the researchers predominantly use a continuum damage model, which is straightfor-

ward to implement computationally. In addition, application of a mechanics-based model

is more physically meaningful compared to a failure criteria. In the proposed Eigenstrain-

based Reduced-Order Homogenization Method (ERHM) based modeling approach presented

herein, a hierarchical multiscale method due to Fish [27] is used. In this method, the nucle-

ation and propagation of damage within the composite are tracked at the level of constituent

materials using a continuum damage model without applying any phenomenological failure

criterion at the macroscale.

In ERHM the microstructural information like localization operators, concentration ten-

sors, and influence functions are precomputed before undertaking the progressive damage

analysis at the macroscale. The microstructural analyses are performed over a Representative

Unit Cell (RUC), which is coupled with the structural analysis at the macroscale. The com-
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putational cost of homogenization is reduced by developing a reduced-order microstructural

geometry. The microstructural analyses are concurrently performed during PDA. ERHM

can account for progressive debonding between the fiber and the matrix at the scale of the

microstructure, and ERHM is equipped with an adaptive model improvement capability to

hierarchically increase model fidelity as discussed by Oskay and Fish [60] and Crouch and

Oskay [17]. A symmetric version of ERHM (S-ERHM) was employed in the prediction of

failure under static loading for open hole specimens by Crouch et al. [18] and Bogdanor and

Oskay [9]. In all these studies, an arctangent type damage potential was used.

Composite materials under shear loading exhibit a nonlinear stress-strain response prior

to failure. Evidence of shear nonlinearity in laminated composites containing high strength

fibers embedded in an epoxy resin was discussed in Soutis et al. [79], Gilat et al. [32],

Littell et al. [51], Park et al. [62], and Salavatian et al. [74]. This nonlinear plane shear

response of composite materials is well known, and there are several approaches to consider

this effect in material modeling, e.g., such as the approaches by Paepegem et al. [85] and

Lomakin et al. [53]. Computational considerations are discussed in Paepegem et al. [86] and

Fedulov et al. [25]. In contrast, brittle failure is observed in composites under pure uniaxial

loading. In damage mechanics-based models, the ductility of a material is controlled by

model parameters that are meant to capture the damage evolution process. A novel weighting

approach for the damage evolution model is proposed in this to account for the differences

in damage evolution of composites under purely normal and purely shear loads. Earlier, in

Bogdanor and Oskay [9], the range of strain triaxiality varied from pure hydrostatic to pure

shear loading. No experimental evidence is available to validate the general shape of the

failure surface employed; however, a discussion is provided that gives a rational explanation

for the observed nature of the failure surface. The lack of experimental data is due to the

fact that the constitutive model represents the behavior of the in-situ resin.

1.3 Research Goal and Objectives

Research goal: Develop a mesh size independent multiscale computational framework

to model progressive damage in carbon fiber reinforced polymer composites. The matrix

constituent is 977-3 epoxy resin, which demonstrates brittle failure under uniaxial loading

and ductile failure under shear dominated loading. In particular, the focus of this dissertation

is on unidirectional carbon-fiber reinforced polymer composites under quasi-static loading.

Based on the research goal for the dissertation, the following objectives were identified

to accomplish the goal.
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1. Develop a constitutive model to predict microscale damage propagation leading to

laminate failure in CFRP composites under mixed-mode loading.

2. Develop a mesh size independent multiscale computational framework for modeling

damage and failure of CFRP structural components.

3. Incorporate uncertainty in progressive damage modeling arising from epistemic uncer-

tainty.

1.4 Organization of the Dissertation

The ERHM multiscale model used in this dissertation is presented in Chapter 2. The treat-

ment of alleviating spurious residual stiffness is described. The computational implementa-

tion of the microscale analysis using parallel computing is presented. The development of

the continuum damage mechanics based constitutive relation for carbon fiber and polymer

matrix material is described in Chapter 3. A new parameter weighting approach to capture

the disparate damage evolution characteristics under pure uniaxial and pure shear loading

is presented. The novel contribution towards constitutive model development is its ability

to predict strength under multi-axial loading. Calibration of constitutive model parameters

under epistemic uncertainty is described in Chapter 4. For this purpose properties of lami-

nated composite IM7/977-3 is used. The second objective of this dissertation, alleviation of

spurious mesh size dependence, is presented in Chapter 5. Formulation of a novel multiscale

crack band model and its implementation in commercial software, Abaqus, is presented.

The new constitutive model is applied to multiscale modeling framework for the purpose of

validation. The results in Chapter 6 represent the three different composite laminates with

unnotched and open-hole specimens. The validation study is conducted under tension and

compression load. Finally, conclusions from this research and suggestions for future research

are provided in Chapter 7.
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CHAPTER 2

MULTISCALE MODELING FRAMEWORK

In this chapter, the multiscale modeling framework used in the proposed research is discussed.

An eigenstrain based reduced-order model is implemented. A new constitutive function is

defined to model the effects of damage accumulation and expressions for model calibration

based on experimental data are derived in the mechanics-based approach.

During numerical modeling of heterogeneous materials the microstructure is often pre-

sented using unit cell with periodic microstructure [58, 82]. In reality, most of the materials

do not possess material periodicity. It has been proven [82, 91] that even for non-periodic

materials, the microstructural analysis based on periodic boundary conditions lead to satis-

factory effective responses. In multiscale analysis, a domain comprising of three-dimensional

fiber composite having fine (F) and coarse (C) effects can be denoted by Ω = Ω(F) ∪Ω(C).

This leads to the problem of defining a representative unit cell with locally periodic bound-

ary conditions over which the averaging is performed [31, 83, 45]. This is followed by the

construction of numerical models of its heterogeneity under the assumption of local peri-

odicity. Consider a three-dimensional macroscopic fiber composite domain, Ω ⊂ R3, made

up of heterogeneous but locally periodic repeating representative unit cell, Θ ⊂ R3. The

multiscale structure of the material is schematically illustrated in Figure 2.1.

Macroscale structure Microstructure domainPeriodic representative volumes

Figure 2.1: Schematic representation of Macro- and Micro-scale problem in CFRP

Due to heterogeneity in fiber composites, the displacement fields fluctuate at the scale of
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the microstructure, Θ. A scaled coordinate system, y = x/ζ, is introduced to capture the

scale of material heterogeneity. The scaling parameter, ζ, satisfies the condition 0 < ζ � 1.

The representative volume, Θ, in terms of the y coordinate. Any response field Ξ and its

macroscopic spatial gradient can then be expressed as

Ξζ(x) = Ξ(x,y(x)); ∇xΞζ(x) = ∇xΞ(x) +
1

ζ
∇yΞ(x,y) (2.1)

The macroscale stress (σ) and strain (ε) are obtained by spatial averaging of the stresses

and strains, as shown below.

σ(x, t) =
1

|Θ|

∫
Θ

σ(x,y, t) dy (2.2)

ε(x, t) =
1

|Θ|

∫
Θ

ε(x,y, t) dy (2.3)

in which |Θ| is the volume of the representative volume element. The equilibrium equations

at two different scales, namely, O(ζ−1) and O(1) are represented as:

O(ζ−1) : ∇y ·
[
C(x,y) :

(
ε̄(x, t) +∇yu

1(x,y, t)− µ(x,y, t)

)]
= 0 (2.4)

O(1) : ∇x · σ(x,y, t) = 0 (2.5)

in which the tensor of elastic moduli, C, is considered to vary as a function of the microscopic

coordinate (y) only, µ are the inelastic strains in the microstructure due to damage and u1 is

the locally fluctuating displacement. Equation (2.4) constitutes the microscale equilibrium

equation applied over the domain of the representative volume, Θ. Equation (2.5) is averaged

over Θ to obtain the macroscopic equilibrium equation defined over the problem domain, Ω.

2.1 Eigenstrain-based Reduced Order Modeling

Implementation of mathematical homogenization using Equations (2.4) and (2.5) leads to the

standard computational homogenization (also known as FE2) method as proposed by Feyel

and Chaboche [26]. As the direct implementation of the FE2 approach is computationally

expensive, eigenstrain based Reduced Order Model (ROM) is developed herein following

Oskay and Fish [60] and Crouch and Oskay [17]. For completeness, a concise overview of

the reduced-order modeling approach for computational homogenization is presented here.

In a heterogeneous microstructure, the microscale displacement field (u1) is defined by the

macroscopic applied strains, (ε), and the inelastic strains at the microscale, (µ), as given
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below.

u1(x,y, t) = H(y) : ε(x, t) +

∫
Θ

h(y, ŷ) : µ(x, ŷ, t)dŷ ; y, ŷ ∈ Θ (2.6)

where H and h are third order tensors representing the elastic influence function and part

damage induced influence function, respectively. These influence functions are obtained from

the elastic behavior of the microstructure both in the absence and presence of damage.

For reduced-order modeling, the microstructure response is described using a reduced

number of degrees of freedom. By precomputing the coefficient tensors for displacement in

the representative volume, the reduced-order modeling approach economizes the computa-

tional cost, as discussed by Oskay and Fish [60]. The representative volume domain, Θ,

is partitioned into n non-overlapping subdomains, Θ(ξ), referred to as the failing part or

damaged part, where ξ = 1, 2, . . . n indicates the part number. Mathematically, it can be

expressed as given by,

Θ ≡
n⋃
ξ=1

Θ(ξ) ; Θ(ξ)
⋂

Θ(δ) ≡ ∅ ∀ ξ 6= δ (2.7)

The reduced-order model is partitioned to avoid parts with no intersecting constituent phase,

as shown in Equation (2.8). The parts of the representative volume are partitioned to enable

grouping of the similar regions of the microstructure corresponding to the macroscopic failure

modes.

Θ(ξ)
ι

⋂
Θ(ξ)
% ≡ ∅ ∀ ι 6= % (2.8)

In this equation, the subscripts ι and % identify the constituent phases in a subdomain Θ(ξ) or

damaged part, ξ . Implementation of a reduced order model for a unidirectionally reinforced

fiber composite is described in Section 5.3.

Shape functions, N (ξ), are defined as piecewise constant functions, which form a partition

of unity in the characteristic volume (i.e. N (ξ) = 1 if y ∈ Θ(ξ) and 0 otherwise). The reduced

basis representation for damage fields, ω and damage induced inelastic fields, µ, of nth order

reduced basis are represented as follows,

ω(x,y, t) =
n∑
ξ=1

N (ξ)(y)ω(ξ)(x, t) (2.9)

µ(x,y, t) =
n∑
ξ=1

N (ξ)(y)µ(ξ)(x, t) (2.10)
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In Equation (2.6), the microscale displacement field is decomposed into linear and damage-

induced components. (Ref. Crouch and Oskay [17]). The governing equation of the repre-

sentative volume takes the form:∫
Θ

(
1− ω(x,y, t)

)
g(y, ŷ) C(y) ·

[
A(y) : ε(x, t) + ε̃(x,y, t)

]
dy = 0 (2.11)

where the fourth-order damage polarization tensor, g, is given by

g(y, ŷ) = ∇s
yh(y, ŷ) (2.12)

The fourth-order elastic strain concentration tensor, A, is expressed as:

A = I + G(y) (2.13)

where I is the fourth order identity tensor and G is the elastic polarization tensor, evaluated

as:

G = ∇s
yH (2.14)

The damage induced strain, ε̃, can be explicitly expressed as:

ε̃ = ∇s
yũ =

n∑
ξ=1

P̃(ξ)(y) : µ(ξ)(x, t)

where,

P̃(ξ)(y) =

∫
Θ(ξ)

g(y, y̌)N (ξ)(y̌) dy̌ ; y, y̌ ∈ Θ (2.15)

2.2 Macroscale Boundary Value Problem

The macroscale equilibrium and kinematic equations as well as boundary conditions under

quasi-static conditions are as follows:

∇ · σ(x, t) + b(x) = 0; t ∈ [0, tf] (2.16)

ε(x, t) = ∇sū(x, t) (2.17)

ū = û(x, t) x ∈ Γu σ · n = t̂(x, t) x ∈ Γt (2.18)

where σ is the homogenized Cauchy stress field and b is the body force. The spatial and

temporal coordinates are x and t. ū is the macroscale displacement field. The displacement
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and traction boundary are denoted as û and t̂, respectively. ∇ · (·) and ∇s(·) are the

divergence and symmetric gradient operators, respectively.

2.3 Microscale Boundary Value Problem

Given the macroscale strain state, ε̄, and damage measure, ω(ξ), in each damaged part,

ξ, of the microstructure defined by the evolution equations for part-averaged damage, the

evolution of microscopic damage is described by continuum damage mechanics based on

the history-dependent strain state in each damaged part and is stored as an internal state

variable in the macroscale model. The unknown eigenstrains in each damaged part, µ(ξ), are

obtained using Equation (2.19):

n∑
∆=1

{(
1− ω(ξ)

)[
B(δ∆) : ε+

n∑
ξ=1

F(δ∆ξ) : µ(ξ)

]}
= 0 ∀ δ = 1, 2, . . . , n (2.19)

Here, n is the number of damaged parts in Θ. The homogenized macroscopic stress is

computed as a function of part averaged damage and eigenstrain coefficients, as given below:

σ =
n∑
ξ=1

(
1− ω(ξ)

)[
L

(ξ)
: ε+

n∑
δ=1

P
(δξ)

: µ(δ)

]
(2.20)

In Equations (2.19) and (2.20), B(δ∆), F(δ∆ξ), L
(ξ)

and P
(δξ)

are coefficient tensors due to

Bhattacharyya and Basu [7] defined as follows:

B(δ∆) =

∫
Θ(∆)

P̃(δ)(y) : C(y) : A(y)N (∆) dy (2.21)

F(δ∆ξ) =

∫
Θ(∆)

P̃(δ)(y) : C(y) : P̃(ξ)N (∆) dy (2.22)

L
(ξ)

=
1

|Θ|

∫
Θ(ξ)

C(y) : A(y) N (ξ) dy (2.23)

P
(δξ)

=
1

|Θ|

∫
Θ(δ)

C(y) : P̃(ξ)(y) N (δ) dy (2.24)

Since the microstructural morphology and elastic constants of the constituents are treated

as deterministic, the coefficient tensors are also deterministic. The homogenized macro-

scopic stress in Equation (2.20) constitutes a stress update in the solution for the macroscale

boundary value problem.
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2.4 Numerical Implementation of Microscale Boundary Value Problem

In this section, implementation at microscale is discussed in detail. The governing equa-

tions for mathematical homogenization were discussed in the previous section. The weak

form of these governing equations and corresponding finite element approximation for three

dimensional simulation are presented here.

2.4.1 The Reduced Order Model

Progressive damage evaluation of the composite involves analysis at two different scales - mi-

cro and macro. These two analyses are undertaken separately. The Graphical User Interface

(GUI) in the commercially available software Abaqus 6.14 is used for creating the morphol-

ogy of the representative unit cell and the macroscale coupons. The microscale analysis is

performed using the in-house CoefTensCompute, developed by Crouch and Oskay [17]. The

macroscale analysis was undertaken using the user-defined material model subroutine capa-

bility of Abaqus. The microscale analysis of a composite representative volume is performed

prior to the simulation as a preprocessing step. The geometry of the microstructure and

corresponding reduced-order model parts are generated first.

Fiber damage Delamination damage

Matrix cracking damage Interaction damage

Reduced Order Model

Figure 2.2: Partitioning of the representative volume and Reduced Order Model
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The inputs to the microstructural analysis are the morphology of the representative vol-

ume (e.g. cell type, fiber volume fraction) and the constituent material elastic parameters.

In this study a square packed fiber composite microstructure is assumed. Accordingly a rep-

resentative volume consisting of the matrix and fiber material phases is modeled to represent

the microstructure of the unidirectionally reinforced composite of approximately 65% fiber

volume fraction. The microstructure domain of size 10µm × 10µm × 10µm is discretized

with 1640 hexahedron (also referred as C3D8) elements and 2035 nodes. This representa-

tive volume is then partitioned ( Figure 2.2) into 4 self-uniform damaged parts correspond

to the macroscale failure modes of the composite, namely, fiber failure, transverse matrix

cracking, and delamination. The ‘interaction damage’ part represents the maximum damage

accumulated in either, transverse matrix cracking or, delamination. The ‘fiber damage’ part

consists of 960 elements and 1243 nodes. The ‘matrix cracking’ and ‘delamination’ parts

consist of 320 elements and 594 nodes. The ‘interaction part’ part consists of 40 elements

and 176 nodes. Unlike Crouch and Oskay [17] and Bogdanor and Oskay [9], perfect bonding

is assumed at the interface and no additional interfacial properties between the fiber and

matrix within the representative volume were considered. For microscale analysis all 8 vertex

nodes are assigned as fixed in all three directions. In the next step periodicities in the rep-

resentative volume are identified. The periodicity of displacements on the boundaries of the

representative volume are accounted for by identifying edge periodicity and face periodicity.

The resulting following two steps solely for computational convenience.

1. Edge periodicity: In the representative volume element there are 4 edges parallel

to each spatial coordinate. Considering one spatial direction (e.g. Z-direction) one

among the four edges is assigned as ‘master edge’ and rest three edges are assigned as

the ‘slave edges’. An injective mapping is performed for ‘master edge nodes’ to ‘slave

edge nodes’. In Figure 2.3a, the nine nodes marked with solid blue circles on the edge

highlighted with a blue line which is parallel to the Z-axis are termed as master nodes.

The remaining three edges parallel to z-axis are marked with nine open red circles and

are termed as slave edge nodes. Likewise, master and slave nodes are identified in

remaining eight edges, parallel to x- and y-axes. The edges parallel to x-axis is marked

in red and the ones parallel to y-axis in pink. Master-slave node pairing is also done

for the edges parallel to X and Y directions.

2. Face periodicity: In face periodicity 3 pairs of faces are parallel to XY, YZ and

ZX planes. As for example, Z- plane face periodicity is shown in Figure 2.3b. All the

nodes on the back faces of the cube are considered as ‘face master node’. Corresponding

slave nodes on the front face in XY plane are marked with orange circles. Similar face
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periodicity is evident for the other two pair of planes. In mathematical sense, this

again is injective mapping.

These definitions ensured the periodicity of the representative volume during coefficient

tensor computation. In this step, Abaqus compatible input file (Input filename.inp) is

Corner nodes

Master edge 

nodes

Slave edge 

nodes

Slave edge 

nodes

(a) Edge periodicity scheme

Back face master nodes

Front 

face slave 

nodes

(b) Face periodicity scheme for Z-plane

Figure 2.3: Pictorial representation of the concept of periodicity

converted to an in-house code ‘CoefTensCompute’ compatible file (MicroInput.inp) using a

Python script (named as AbaInp2MicroInp conversion.py) written for the purpose. Node

and element sets are predefined in the Abaqus compatible input file. All the node and

element descriptions are processed first. Next, the assembled element and node sets are

identified. Finally, the representative volume discretized with 1640 finite elements, and four

damage parts, as shown in Figure 2.2, is efficiently analyzed as a reduced order model.

2.4.2 Solving the Unit Cell Problems

The first step in the homogenization process is the evaluation of elastic and phase influence

functions, which are third-order tensors. To solve these problems the governing equations

need to be written in the weak form. Let Θ̂ be an arbitrary subdomain of Θ and w ∈ W is

the weight function; and W =
{
w ∈ H1(Θ)

∣∣∣w is Θ− periodic
}

, where H is a Hilbert space.

The weak-form for elastic influence function problem can be written as Eq. 2.25, as detailed

in Ref. [34].∫
Θ

∇yw(y) : C(y) : G(y, ŷ) : ε(x) dΘ +

∫
Θ

∇yw(y) : C(y) : ε(x) dΘ = 0 (2.25)
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The trial function w and the elastic influence function H are approximated as:

w(y) = N(y) C (2.26)

H(y) = N(y) d (2.27)

where, N is the element shape function matrix. d and C denote nodal degrees of freedom of

trial and weight functions. The strain-displacement relationship matrix, B, can be written

as:

B(y) = ∇yN(y) (2.28)

The elastic polarization tensor, G is:

G(y) = B(y)d (2.29)

Finally the, discrete form of the governing elastic influence function problem is solved for d

as shown below: [
K
]{

d
}

= −
{
f
}

(2.30)

where,

K =

∫
Θ

Bᵀ(y) : C(y) : B(y) dΘ (2.31)

and

f =

∫
Θ

Bᵀ(y) : C(y) dΘ (2.32)

For microscale analysis, all eight corner nodes are assumed as fixed in all three directions. In

matrix notation, the degrees of freedom for corner nodes dc is set as dc = 0. Thereafter, the

periodicities in the representative unit cell are identified. The periodicity of displacements on

the boundaries of the representative cell are enforced. In the RUC there are 4 edges parallel

to each spatial coordinate. Considering one spatial direction (say, y3-direction), one of the

four edges is designated as the ‘master edge’ and the remaining three parallel edges are

designated as ‘slave edges’. An injective mapping is performed from ‘master edge nodes’ to

‘slave edge nodes’. In Fig. 2.4, the nine nodes marked with solid blue circles on the edge

highlighted with a blue line which is parallel to the y3-axis are termed as master nodes. The

remaining three edges parallel to y3-axis marked with nine open red circles are termed as

slave edge nodes. Likewise, master and slave nodes are identified in the remaining eight

edges, parallel to y1- and y2-axes. The edges parallel to y1-axis is marked in red and the

ones parallel to y2-axis in pink. Master-slave node pairing is also done for the edges parallel

to y1 and y2 directions. In addition to the edges, 3 pairs of faces parallel to y1y2, y2y3 and
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Corner nodes

Master nodes

Slave nodes

Slave nodes

md

cd

sd

sd

Internal nodes

id

Figure 2.4: Pictorial representation of the concept of periodicity

y3y1 planes are considered. All the nodes on the back faces of the domain in Fig. 2.4 are

considered as ‘face master nodes’. Corresponding slave nodes are on the front face in the

y1y2 plane. Similar face periodicities are identified for the faces corresponding to y2- and y3-

planes. In mathematical sense, this again is injective mapping.

The degrees of freedom for master and slave nodes are denoted by dm and ds respectively.

All degrees of freedom other than dc, dm and ds are considered as internal degrees of freedom

and denoted by di. After imposing the corner node fixity boundary condition by setting

dc = 0, the degrees of freedom are rearranged in the following form:

d = {dm,ds,di}ᵀ (2.33)

The microscale mesh periodicity requires enforcing another boundary condition:

ds = dm (2.34)

Applying variational principle, the energy functional, Π(d), becomes:

Π(d) =
1

2
dᵀKd− dᵀf + λᵀ(dm − ds) (2.35)

where, λ is the Lagrange multiplier. The minimum energy equations can now be obtained

by taking the derivative of Eq. 2.35 with respect to d and set to zero. The set of equations

so obtained are:

Kmmdm + Kmsds + Kmidi − fm + λᵀ = 0 (2.36)

Ksmdm + Kssds + Ksidi − fs + λᵀ = 0 (2.37)
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Kimdm + Kisds + Kiidi − fi = 0 (2.38)

Applying static condensation and enforcing mesh periodicity (Eq. 2.34), a set of discrete

equations are obtained as in Eq. 2.39. These equations can be solved simultaneously to

obtain dm and di.[
(Kmm + Kms + Ksm + Kss) (Kmi + Ksi)

(Kmi + Ksi) Kii

]{
dm

di

}
=

{
fm + fs

fi

}
(2.39)

From this solution the elastic polarization function, H, can be extracted. Similarly, the weak-

form for the phase damage influence function problem is written as Eq. 2.40 and solved for

g.∫
Θ

∇yw(y) : C(y) : g(y, ŷ) : ε(x) dΘ +

∫
Θ̂

∇yw(y) : C(y) : ε(x) dΘ = 0; ŷ ∈ Θ̂ (2.40)

2.4.3 Computation of Coefficient Tensors

The coefficient tensors for the composite reduced order model are computed using CoefTensCompute

as described below.

i) The geometrical features of the representative volume domain and elastic material

parameters are the input.

ii) Elastic and part damage polarization functions are computed using Equations (2.12)

and (2.14). Coefficient tensors A and P̃ are also computed in this step using Equa-

tions (2.13) and (2.15).

iii) Partitioning of damaged part for the representative volume is constructed.

iv) Coefficient tensors B, F, L and P are obtained using Equations (2.21) to (2.24).

v) Finally, all the coefficient tensors are transferred to an output file.

2.5 Alleviation of Spurious Residual Stiffness

The reduced order microstructure problem constitutes a full nonlinear system that is used

to evaluate the microstructural behavior. If low order models are used, this approach has

been shown to demonstrate a significant post-peak residual stiffness Crouch and Oskay [17]

and Bogdanor and Oskay [9]. The residual stiffness is spurious and must be alleviated to

ensure accurate load redistribution in a failure propagation scenario. This issue has been
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tied to the concept of the incompatibility of the eigenstrains as described in Furuhashi and

Mura [29] and Fish et al. [28]. The coefficient tensors with degraded constituent properties

in the damage path represents cracking across the microstructural domain, which in turn

eliminates the corresponding stiffness properties of the composite material in the appropriate

loading direction. The identification of failure path and implementation of modified coeffi-

cient tensors for the reduced order model is described in depth in Sparks and Oskay [80].

For the sake of brevity, minimally required mathematical details are presented. In addi-

tion, implementation of a generalized “m-th order” failure path approach is considered. The

proposed approach needs storage of m additional sets of modified coefficient tensors, which

are also computed prior to the macroscale analysis. This implementation poses insignificant

additional computational cost at the macroscale.

Figure 2.5: One element model for verification

The capability of the proposed approach is demonstrated with only “first order” numerical

verification study. A unidirectionally reinforced composite subjected to uniaxial loading

along the vertical (transverse) direction is considered. The geometry of the verification

example is illustrated in Figure 2.5. The boundary conditions are chosen to be symmetric on

three sides of the domain. As shown in Figure 2.2, the reduced order model used in this study

consist of four parts. The macroscale discretization consists of a single linear hexahedron.

The analyses were performed using both full integration and reduced integration elements.

The nodes on the right side face of the geometry are subjected to displacement controlled

loading with the maximum amplitude of 0.50 mm.

In this analysis the predominant failure mode is matrix cracking (i.e., the failure in matrix

damage part). The stress vs. strain plot corresponding to stated loading direction is shown

in Figure 2.6a. The figure clearly demonstrates an irregular stress pattern beyond failure in

the matrix cracking part of the reduced order model and residual stress for the macroscale

element. The origin of the irregular stress pattern can be attributed to the presence of

residual stresses.
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Figure 2.6: Structural scale stress-strain plots under unidirectional loading

Despite the failure observed in the matrix-cracking part, on further loading of the re-

mainder of the fiber and delamination damage parts, residual stresses continue to persist

due to spurious stiffness effect ultimately culminating into failure. The progressive failure

of the remainder of the damage parts results in a prolonged failure process. To remove the

post-failure residual stresses, modified coefficient tensors are computed corresponding to de-

lamination damage prior to macroscale analysis. The stress vs. strain plots in Figure 2.6b

shows that both irregular stress patterns and residual stresses are effectively removed. This

approach is further enhanced within the model for failure of each damage part as well as in

the failure of combination of several damaged parts.

2.6 Enhancement of Computational Efficiency

The hierarchical multiscale framework used in this research follows a sequential algorithmic

structure. The numerical problem at microscale, as described in Section 2.4, is solved in the

following steps.

1. Preprocessing of input data

2. Solution of the Elastic Unit Cell problem

3. Solution of the Part damage Unit Cell problem

4. Evaluation of Elastic polarization function

5. Evaluation of Part polarization function
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6. Computation of coefficient tensors

Among these steps, solving the Part damage Unit Cell problem consumes a much higher

computing time in comparison with the other steps. To improve the computational cost,

parallel programming is used. Fundamentally, parallel programming is more involved than

sequential programming.
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Figure 2.7: Computer architecture for parallel computing on a cluster

2.6.1 Parallel Computing Framework

In order to realize the OpenMP like that of Ref. [19], the API is implemented to en-

able multi-threaded, shared memory parallelism, because of three major advantages. First,

OpenMP is high-level API to automate multi-threading. Second, unlike Pthreads which is

thread based, OpenMP is task-based that allocates the same number of threads as the avail-

able number of cores. Finally, OpenMP has an important advantage over MPI which makes

it possible to start with a sequential code, and transform it by incremental parallelization.

These three aspects of OpenMP will lead to an efficient, scalable and effective solution. A

common setup of clusters uses distributed memory nodes, where each node contains sev-

eral sockets, which share memory. This suggests that MPI allows communicate between the

nodes (inter-node communication) and OpenMP invokes parallelism on the nodes (intra-node

communication). Based on these considerations,the microscale analysis is undertaken on a

cluster as shown in Fig. 2.7. Several OpenMP directives were used within the Fortran code
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for microstructure analysis. OpenMP implementation for phase damage polarization function

evaluation is created as a pseudo-code as shown in Listing 2.1. The processors assigned re-

quired number of threads to perform the calculations. An alternative way would have been

the replacement of the omp do (in line 6) by specifically assigning the number of elements

to each thread for computation. In that case, the sheared variables should also be assigned

accordingly. In the first approach the original structure of the sequential program remains

unaffected. Finally, the thread safety was verified by comparing the result with sequential

program.

1 USE omp lib

2 s t a r t t i m e = omp get wtime ( )

3 ALLOCATE ( Pol Ph (ndim , ndim∗ nel , ngp , ne l ) )

4 ! $omp p a r a l l e l p r i v a t e ( t id , i , m, igp , PDp) shared (Node , ElConn )

5 t i d=omp get thread num ( )

6 ! $omp do

7 DO i e l = 1 , ne l

8 nen = SIZE ( ElConn ( i e l )%nodes )

9 ngp = SIZE ( ElConn ( i e l )%DetJ , DIM = 1)

10 ALLOCATE (PDp ( nen∗nsd , ndim∗ ne l ) )

11 DO k = 1 , nen

12 PDp( ( k−1)∗nsd+1:k∗nsd , : ) = Node ( ElConn ( i e l )%nodes ( k ) )%PDp ( : , : )

13 END DO

14 DO igp = 1 , ngp

15 Pol Ph ( : , : , igp , i e l ) = MATMUL ( ElConn ( i e l )%B Mat ( : , : , igp ) ,PDp)

16 END DO

17 DEALLOCATE (PDp)

18 END DO

19 ! $omp end do

20 ! $omp end p a r a l l e l

21 end time = omp get wtime ( )

22 WRITE (∗ , ’ (A20 , F20 . 4 ) ’ ) ’ Pol Ph time : ’ , end time−s t a r t t i m e

Listing 2.1: Evaluation of phase damage polarization function

2.6.2 Evaluation of Computational Efficiency

The effectiveness of implementing parallel computing tool is quantified in terms of speedup

and computational efficiency. In this study the communication overhead for synchronizing

processors is ignored. Let Tn and T1 denote the wall time between the start and end of the
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computation on a machine that has Np processors and single processor respectively. It is

evident that Tn ≤ T1. The gain in computing speed made by parallel execution compared

to sequential execution is referred to as speedup ratio (Sp).

Sp =
T1

Tn
(2.41)

A perfect liner speedup can be obtained when Sp = Np. In practice, a super-linear speedup,

i.e. Sp ≤ Np can also be achieved due to memory hierarchy effect. An algorithm which

demonstrates linear speedup is said to be scalable. The efficiency is the measure of speedup

per processor and calculated as:

Efficiency =
Sp
Np

× 100% (2.42)

The computational efficiency of the stochastic multiscale modeling framework proposed in

this paper is presented in Sec. 2.6.3.

2.6.3 Computational Efficiency

The performance of the microscale analysis code, CoefTensCompute, was tested on three

different computers having different hardware configurations, designated as MC-1, MC-2

and MC-3. The configurations of all three computers are given in Table 2.1. For the purpose

Table 2.1: Configuration of computing resources

Configuration MC-1 MC-2 MC-3
Processor Intel i5-2400 AMD Opteron Intel Xeon E5
RAM (GB) 8 64 256
CPU 4 32 64
Thread per core 1 2 2
Core per socket 4 8 16
Socket 1 2 2
L3 cache memory (MB) 6 16 40

of parallel computing only 4 cpus were available on MC-1; whereas 32 cpus were used on

both MC-2 and MC-3. The wall time was used as the metric of computation time.

2.6.3.1 Microscale computation time
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Wall time (in minutes) is recorded for solving phase damage unit cell problem, evaluat-

ing phase damage polarization function and computing the coefficient tensors as shown in

Fig 2.8. The results shown in this figure are corresponding to single microscale realization.

It is evident that with increased number of CPUs the computing time reduced significantly.

This example problem demonstrates that significant improvement in computing time can be

achieved by using OpenMP on MC-2 and MC-3.
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Figure 2.8: Computing time for each block on different computers

Adding the time for preprocessing and postprocessing of data, the total wall time (in

hours) for the code CoefTensCompute is given in Fig. 2.9. The results show that on MC-2,

the computing time for sequential simulation was close to 3 hours. Using parallel computing

with 32 cpus, the total run time could be reduced to nearly 15 minutes. Due to higher con-

figuration, the computer MC-3 ran the sequential program in about an hour. Using parallel

computing the run time was reduced to 5 minutes. In the case of a sampling based analysis

using the stochastic framework, such performance represents significant improvement.
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Figure 2.9: Total computing time for microscale numerical specimen

24



The speedup ratio and efficiency (as defined in Eqs. 2.42 and 2.41) for the microscale

problem using parallel computing are presented in Table 2.2. Each of the cases is compared

with the sequential code ran on the corresponding machine. It can be seen that in all the

cases the speedup factor is less than the number of cpus used for multithreading. Relatively

Table 2.2: Computational speed up and efficiency for RUC using different hardware config-
urations

Computer MC-1 MC-2 MC-3
No. of CPUs 4 4 8 16 32 4 8 16 32

Speedup ratio

Solving part damage UCP 3.7 3.2 7.0 11.9 19.5 3.8 7.4 13.3 22.9
Evaluating part damage
polarization tensor

3.3 3.4 6.5 11.4 18.8 3.9 7.2 13.1 19.6

Computing coefficient tensors 3.3 3.1 4.4 5.3 5.8 3.1 4.4 5.0 5.2
Efficiency (%)

Solving part damage UCP 93.2 79.1 87.9 74.6 60.8 95.2 92.6 82.8 71.5
Evaluating part damage
polarization tensor

82.7 84.0 80.6 71.5 58.7 96.7 90.0 81.8 61.3

Computing coefficient tensors 81.3 77.1 55.4 32.9 18.0 76.9 54.5 31.3 16.3

lesser efficiency is realized in the case of coefficient tensor computation, compared to solving

the unit cell problem and evaluating the phase damage polarization function. This lower

efficiency can be attributed to relatively lower computing time involved in coefficient tensor

computation, as shown in Fig. 2.8.
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CHAPTER 3

DEVELOPMENT OF CONSTITUTIVE RELATIONSHIP

In this chapter a rate-independent continuum damage evolution potential is proposed. The

development of the continuum damage model is restricted to isotropic and transversely

isotropic materials only. Employing the conventional formulation for continuum damage

mechanics, the stress-strain relationship in each reduced-order model damage part ξ is ex-

pressed using Equation (3.1):

σ(ξ)(x, t) =
(

1− ω(ξ)(x, t)
)

C(ξ) : ε(ξ)(x, t) (3.1)

in which σ(ξ) and ε(ξ) denote the part-averaged stress and strain tensors for each damage

part, respectively; and C(ξ) is the tensor of elastic moduli for the constituent (i.e., fiber

or matrix) that occupies the damaged part, ξ. Damage accumulation in each constituent

damaged part is driven by the phase damage equivalent strain, υ(ξ),

υ(ξ) =

√
1

2
(F̂(ξ)ε̂(ξ))T : C(ξ) : (F̂(ξ)ε̂(ξ)) (3.2)

where F̂(ξ) and ε̂(ξ) represent the strain weighting matrix and the principal strain vector

within damaged part ξ. The superscript T indicates the transpose operation. The strain

weighting matrix is computed as:

F̂(ξ)(x, t) =

ĥ
(ξ)
1 0 0

0 ĥ
(ξ)
2 0

0 0 ĥ
(ξ)
3

 (3.3)

ĥ(ξ)
ι =


1 if ε̂

(ξ)
ι > 0

c(ξ) otherwise

for ι = 1, 2, 3 (3.4)
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in which c(ξ) is a material parameter that represents the damage anisotropy of the tensile

and compressive loading in the principle directions. The part damage field, ω(ξ), satisfies

Eq. 3.5.

ω(ξ) = Φ(υ(ξ)(t)) ;
∂Φ(υ(ξ)(t))

∂υ
≥ 0 (3.5)

The hardening segment of the constituent is modeled using an arctangent evolution function,

whereas the softening segment is derived to follow a linear function. This damage model

is referred to as the Arctangent Hardening Linear Softening (AHLS) model. A schematic

stress-strain diagram is presented in Figure 3.1. The transition strain, ε
(ξ)
tr , for damaged part,

ξ, is defined as a strain corresponding to the ultimate stress or a strain in the vicinity of

the strain corresponding to the ultimate stress. This parameter is depends on the transition

damage equivalent strain, υ
(ξ)
tr , which is an algorithmic parameter:

Figure 3.1: A typical representation of the stress-strain diagram for constituent

The new damage potential function is defined by two different evolution functions as

given in Equation (3.6):

Φ(υ(ξ)) =



0 if υ(ξ) ≤ υ
(ξ)
0

atan(α(ξ)〈υ(ξ) − υ(ξ)
0 〉 − β(ξ)) + atan(β(ξ))

π

2
+ atan(β(ξ))

if υ
(ξ)
0 < υ(ξ) ≤ υ

(ξ)
tr

υ
(ξ)
tr

υ(ξ)

[
Φ
(
υ

(ξ)
tr

)
−
(

1 + A
(ξ)
f

)]
+
(

1 + A
(ξ)
f

)
if υ

(ξ)
tr < υ(ξ) < υ

(ξ)
f

1 if υ(ξ) ≥ υ
(ξ)
f

(3.6)

in which the damage evolution parameters, α(ξ) and β(ξ), control the nonlinearity and

strength of a damage part, ξ, depending upon the constituent material. υ
(ξ)
0 is the value

of the damage equivalent strain at the initiation threshold for damage, υ
(ξ)
tr is the damage
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equivalent strain value at the transition point, and υ
(ξ)
f is the damage equivalent strain value

at failure. In addition to α(ξ) and β(ξ), this model is characterized by these three damage

equivalent strain parameters. A
(ξ)
f is the slope of the linear function in the softening regime.

3.1 Modeling Hardening Regime

One of the primary objectives of this constitutive model for the polymer matrix is to capture

the strain triaxiality present in pure shear loading. The new triaxiality factor, kb, is proposed

in Bhattacharyya and Basu [7] in the form defined by Equation 3.7.

kb =

〈(
3 + ν

)
(1− ν)

[
γmax(

γmax

2
+ εmax

) − 2(1 + ν)

(3 + ν)

]〉
+

(3.7)

where ν is the Poisson’s ratio of the polymer matrix, and 〈·〉+ denote the Macaulay brackets.

The numerical value of kb for pure uniaxial loading is 0 and for pure shear loading it is 1.

This new expression for triaxiality factor is expected to ease parametric calibration based

on experimental data. Here, γmax is the maximum engineering shear strain and εmax is the

maximum absolute principal strain. For the sake of simplicity, the superscript (ξ) has been

dropped. The parameters controlling damage evolution in any damaged part, ξ, are weighted

as a function of the maximum principal strain, (εmax), and maximum shear strain, (γmax),

as defined below:

εmax = max
{
|ε̂1|, |ε̂2|, |ε̂3|

}
(3.8)

γmax

2
=

max{ε̂} −min{ε̂}
2

(3.9)

The derivation of this new triaxiality factor is shown in Appendix A.

The variables of damage evolution under an arbitrary loading state are expressed as

a function of this triaxiality factor. The parameters are calibrated based on pure shear

(subscript S) and pure uniaxial (subscript N) load states, as shown in Equations (3.15)

to (3.17). Based on the triaxiality state of the stress, the weighting factor kb is evaluated

using Equation (3.7). Then the damage evolution parameters, α(ξ) and β(ξ), are weighted

using the triaxiality factor, kb. The weighting parameter η is specific to a given material.

These two triaxiality parameters dictate the values of parameters, α and β, which together

control the extent of ductility in the hardening regime as well as the ultimate strength of

the material.

α = (kb)
ηαS +

(
1− η

√
kb
)
αN (3.10)

β = (kb)
ηβS +

(
1− η

√
kb
)
βN (3.11)
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Here, αN, βN are the damage model parameters for pure uniaxial loading. On the other

hand, αS, βS denote the damage model parameters for pure shear loading. Note that in

these equations, the subscript N becomes T for tension and C for compression. For a specific

strain state, the direction of axial loading is evaluated first and the parameters are selected

accordingly. These four damage model parameters can be calibrated directly with the exper-

iment data. In this proposed damage model, the damage evolution for each loading condition

(either, pure uniaxial or, pure shear) depends on the corresponding three damage equivalent

strain parameters. These parameters can be obtained using Equations (3.12) and (3.13).

The details of formulation and evaluation of the damage equivalent strain parameters are

given in Appendix B.

υ
(T)
(·) = ε

(T)
(·)

√
E

2(1 + ν)(1− 2ν)

√
1− ν + 2ν2(c2 − 2c) = ε

(T)
(·) χ

(m)
T (3.12)

υ
(S)
(·) = ε

(S)
(·)

√
E

2(1 + ν)(1− 2ν)

√
(1 + c2)(1− ν)− 2νc = ε

(S)
(·) χ

(m)
S (3.13)

υ
(C)
(·) = ε

(C)
(·)

√
E

2(1 + ν)(1− 2ν)

√
c2(1− ν) + 2ν2(1− 2c) = ε

(C)
(·) χ

(m)
C (3.14)

In Equations (3.12) to (3.14), E is the Young’s modulus of the constituent polymer ma-

trix material. The subscript (·) is a generalized representation of the damage initiation,

transition and failure of the constituent matrix. The damage equivalent strain parameters

corresponding to damage initiation, transition and failure under pure uniaxial loading are

denoted by υ
(N)
0 , υ

(N)
tr and υ

(N)
f , respectively. Similarly, damage equivalent strain parameters

corresponding to damage initiation, transition and failure under pure shear loading are de-

noted by υ
(S)
0 , υ

(S)
tr and υ

(S)
f , respectively. Under a mixed mode state of strain loading, the

parameters for damage initiation, transition and failure are evaluated using Equations (3.15)

to (3.17).

υ0 = (kb)
ηυ

(S)
0 +

(
1− (kb)

η
)
υ

(N)
0 (3.15)

υtr = (kb)
ηυ

(S)
tr +

(
1− (kb)

η
)
υ

(N)
tr (3.16)

υf = (kb)
ηυ

(S)
f +

(
1− (kb)

η
)
υ

(N)
f (3.17)

By extending the AHLS damage model to the case of transversely isotropic fiber, the ex-

pression for damage equivalent strain parameters is given by Equations (3.18) and (3.19).

υ
(T)
(·) = ε

(T)
(·)

√
C33 + 2c2ν2

31(C11 + C12)− 4cν31C13

2
= ε

(T)
(·) χ

(f)
T (3.18)
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υ
(C)
(·) = ε

(C)
(·)

√
c2C33 + 2ν2

31(C11 + C12)− 4cν31C13

2
= ε

(C)
(·) χ

(f)
C (3.19)

where, C11, C12, C13 and C33 are components of the tensor of elastic moduli for transversely

isotropic carbon fiber. These components are given by:

C11 =
E11(1− ν13ν31)

1− ν2
12 − 2ν13ν31 − 2ν12ν13ν31

(3.20)

C12 =
E11(ν12 + ν13ν31)

1− ν2
12 − 2ν13ν31 − 2ν12ν13ν31

(3.21)

C13 =
E11(ν31 + ν12ν31)

1− ν2
12 − 2ν13ν31 − 2ν12ν13ν31

(3.22)

C33 =
E33(1− ν2

12)

1− ν2
12 − 2ν13ν31 − 2ν12ν13ν31

(3.23)

Here, E33 is the longitudinal Young’s modulus, E11 is the transverse Young’s modulus, ν12

is the longitudinal Poisson’s ratio and ν31 is the transverse Poisson’s ratio. The derivation

of above mentioned expressions is shown in Appendix C.

3.1.1 Modeling of softening regime

The underlying assumption in the damage potential model of Equation (3.6) is that the

softening behavior of each reduced-order part can be modeled using a linear stress-strain law,

which allows nonlinear damage evolution within the hardening regime. The damage evolution

law derived here corresponds to linear softening and follows C0 continuity. The spatial (not

temporal) stress rate tensor in terms of strain-rate tensor is computed using Equation (3.24).

σ̇ = (1− ω)C : ε̇− ω̇C : ε (3.24)

In order to ensure continuity, the damage model must satisfy the following constraints:

1. Damage parameter reaches unity,(i.e. complete loss of load carrying capacity) at failure

strain Φ(υf) = 1.

2. Stress remains continuous at the transition point: Φ(υ−tr) = Φ(υ+
tr)

The solutions of the differential equations for a polymer matrix constituent under pure

uniaxial and pure shear loading are presented in Equations (3.25) and (3.26), respectively.

ω(N) =
υ

(N)
tr

υ

[
Φ(υ

(N)
tr )−

(
1 + A

(N)
f

)]
+
(
1 + A

(N)
f

)
(3.25)
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ω(S) =
υ

(S)
tr

υ

[
Φ(υ

(S)
tr )−

(
1 + A

(S)
f

)]
+
(
1 + A

(S)
f

)
(3.26)

In Equations (3.25) and (3.26),

A
(N)
f =

σmax

E
(
ε

(N)
f − ε(N)

tr

) ; A
(S)
f =

τmax(1 + ν)

E
(
ε

(S)
f − ε

(S)
tr

)
where, σmax and τmax are ultimate stress under pure uniaxial and pure shear loading. The

elastic tensor in the softening regime is based on the weighted sum of the elastic contributions

in pure uniaxial and pure shear loading, as shown in Equation (3.27):

Af = kbA
(S)
f + (1− kb)A(N)

f (3.27)

The constituent carbon fiber is assumed to demonstrate brittle failure under uniaxial loading.

The mathematical expression for damage evolution in fiber is same as Equation (3.25), with

A
(N)
f =

σmax

C33(εf − εtr)
(3.28)

The derivation of linear softening damage expression is in Appendix D.
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CHAPTER 4

MODEL PARAMETER CALIBRATION UNDER

UNCERTAINTY

Once the constitutive model is developed as in Chapter 3, for accurate prediction of ultimate

strength the model parameters need to be calibrated. The calibration process involves quan-

tifying the errors and estimating the unknown model parameters to minimize the difference

between model predictions and experimental observations. For this purpose error models

need to be built as the knowledge about the state of a composite laminate and the governing

damage evolution process suffer from lack of completeness and/or accuracy [15]. In case of

a mechanics-based model, the source of uncertainty in model prediction arises due to (1)

aleatory uncertainty and (2) epistemic uncertainty. Aleatory uncertainty address the issues

of natural variability, which is irreducible and modeled by assigning probability distributions

to the variables. On the other hand, epistemic uncertainty addresses uncertainty in model

form errors, model parameters, and errors in solution approximations [75]. In the calibra-

tion of model parameters with input-output data, three approaches are often used: least

squares, maximum likelihood, and Bayesian calibration. In case of the Bayesian calibration,

both prior information and experimental data are combined to quantify the epistemic un-

certainty in the calibration result. During Bayesian calibration, Kennedy and O’Hagan [42]

proposed the idea of including a discrepancy function between the model prediction and the

experimental data. Inclusion of appropriate model discrepancy functions has been shown

to improve the calibration of model parameters [10]. In this dissertation only the effect of

epistemic uncertainty is considered.

4.1 Constitutive model parameters

The constitutive relation is characterized by 11 material parameters and 4 algorithmic pa-

rameters. Algorithmic parameters are appropriately defined to ensure desired performance

of the model. Table 4.1 lists the algorithmic parameters and procedures for evaluating the

parameters are given in Appendices B and C.
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Table 4.1: Algorithmic parameters and their execution

Name of parameter Execution
Transition strain for uniaxial tension , εNtr Automated
Transition strain for pure shear loading, εStr Automated
Transition strain for uniaxial compression, εCtr Automated
Triaxiality weighting parameter, η Smooth transition in failure envelope

The constituent material parameters are calibrated for IM7/977-3 graphite epoxy com-

posite with approximately 65% fiber volume fraction. The elastic material parameters for

polymer matrix and carbon fiber are listed in Tables 4.2 and 4.3 respectively.

Table 4.2: Polymer matrix material

Parameter Value

Elastic modulus, E(m) (GPa) 3.72

Poisson’s ratio, ν(m) 0.37
Compression-Tension anisotropy, c 0.85
Strain to initial damage, ε0 0.0055
Failure strain under uniaxial tensile loading, εNf 0.14
Failure strain under pure shear loading, εSf 0.16
Failure strain under pure uniaxial compression loading, εCf 0.10

Table 4.3: Carbon fiber material

Parameter Value

Longitudinal elastic modulus, E
(f)
33 (GPa) 257.40

Transverse elastic modulus, E
(f)
11 (GPa) 12.45

Shear modulus, G
(f)
13 (GPa) 14.60

Longitudinal Poisson’s ratio, ν
(f)
12 0.291

Transverse Poisson’s ratio, ν
(f)
31 0.206

Compression-Tension anisotropy, c 1.4481
Strain to initial damage in tension, ε0 0.0098
Strain to initial damage in compression, ε0 0.0055
Failure strain under uniaxial loading, εNf 0.0275

Standardized ASTM uniaxial tension [1], uniaxial compression [3],and V-notch shear [2]

tests were conducted at Air Force Research Laboratory. Calibration of the material pa-

rameters is accomplished using experimental data from Clay and Knoth [16]. Since the

elastic material parameters can be either measured in experiments or computed from other

physics models, these are considered as the model input (X) for the computational model.
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Consider a computational model, Ymodel = G(X,θ), with parameters θ, and output Ymodel.

This model is constructed to predict the ultimate strength of laminate, Y , which is observed

through experiments. In contrast to X, the constitutive model parameter set θ is consid-

ered unknown due to the lack of direct measurement or physical knowledge. The objective of

model parameter calibration is to estimate these parameters based on available input–output

observations. The model calibrations is schematically shown in Figure 4.1.

Computational model

Model
parameters

θ

Mechanics
Model

ω(X,θ)

Surrogate
Model

G(X,θ)

Inputs

X

Model
prediction

Ymodel

Observation

Yobs

Model
discrepancy

δ(X)

Observation
error
εobs

Figure 4.1: Schematic representation of model parameter calibration

Following the idea of the Kennedy-O’Hagan framework, the relationship between exper-

imental observation Yobs, true value of the quantity Y , and model output Ymodel is described

as:

Yobs = Y + εobs (4.1)

Y = Ymodel + δ = G(Xobs,θ) + δ(Xobs) (4.2)

where εobs represents measurement uncertainty and is often treated as a zero-mean Guassian

random variable with variance σ2
obs. Uncertainty due to model inadequacy is represented by

a model discrepancy term δ. Since σobs and δ are unknown, they also need to be calibrated.

Here, Yobs is treated as a random variable in Equation (4.1). The samples of Yobs are the

actual observation data of Y . Assuming p samples of Yobs (denoted as Y
(1)

obs , Y
(2)

obs , · · · , Y
(p)

obs )

are collected for a single input setting Xobs, the unknown parameters θ, σobs, and δ can be

calibrated using a least square based approach.

4.2 Construction of surrogate model

To quantify the effect of multiple uncertainty sources on the prediction of ultimate strength,

the computational model needs to be run repeatedly by varying the model parameters.

However, the computational model mentioned in Chapter 3 is computationally expensive.

To alleviate the computational cost a surrogate model, which is inexpensive approximations
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of the original model, need to be built to replace the mechanics-based simulation model

for the purpose of uncertainty quantification analysis. Based on the loading condition and

composite layup configuration, five surrogate models need to be developed. The models

and corresponding parameters are shown in Table 4.4. In the model name the superscript

indicates constituent material and the subscript indicates loading condition. The fiber angle

orientation is denoted as ϕ. The tensile and compressive loading in the laminates are written

as fT and fC , respectively.

Table 4.4: Model parameters for calibration

Model Input Parameters Experiments

G(f)
C fC , ϕ = 0◦ α

(f)
C , β

(f)
C Uniaxial compression: [0◦]8s

G(f)
T fT , ϕ = 0◦ α

(f)
T , β

(f)
T Uniaxial tension: [0◦]4s

G(m)
C fC , ϕ = 90◦ α

(m)
C , β

(m)
C Uniaxial compression: [90◦]12s

G(m)
T fT , ϕ = 90◦ α

(m)
T , β

(m)
T Three point bending: [90◦]8s

G(m)
S fT , ϕ = ±45◦ α

(m)
S , τ

(m)
parm Uniaxial tension loading: [±45◦]4s

Constructing surrogate models for composite laminate analysis is not straightforward

since the constitutive model parameters have a range, beyond which the numerical solution

is not possible. Hence, at first numerically feasible ranges of constituent model parameters

are evaluated. Each mechanics model is ran for the corresponding range of model parameters.

The range of model parameters considered in this study is given in Table 4.5. The response of

the predicted laminate ultimate strengths are plotted with respect to the model parameters.

Table 4.5: Range of model parameters

Model Range of α Rage of β Range of τparm

G(f)
C 1.50 – 2.10 1.50 – 2.50 –

G(f)
T 0.50 – 0.75 3.50 – 4.50 –

G(m)
C 1.45 – 2.00 5.00 – 5.85 –

G(m)
T 1.50 – 2.50 2.00 – 4.00 –

G(m)
S 0.30 – 0.38 – 84 – 94

Response surface, Polynomial chaos expansion, Gaussian process models, radial basis

functions, support vector machine, neural networks, etc. are some of the popular surrogate

models. In this work, response surface based regression type surrogate model is used. For

each mechanics model, the extremum values of model parameters (α and β) are discretized

with 10 point having 9 equal intervals. The combination of the model parameters are used
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to run the mechanics model and predict the ultimate strength. Based on each set of model

parameters the response surface of the model prediction is constructed. The response sur-

face for ultimate strength of fiber constituent under tension and compression are shown

in Figure 4.2.
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Figure 4.2: Response surface of ultimate strength of fiber dominated laminate failure

Similarly, the polymer matrix dominated laminate failure response surface are shown

in Figure 4.3. In case of pure shear loading there are three mechanistic prediction points

which do not lie on the flat response surface.
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Figure 4.3: Response surface of ultimate strength of matrix dominated laminate failure

As the response surfaces of the ultimate strength output primarily show a flat surface,

the regression model is developed as a linear combination of the two model parameters

with a constant term. The mathematical expressions for models G(f)
C , G(f)

T , G(m)
C , G(m)

T are

shown in Equation (4.3). The model, G(m)
S , considering shear loading aspect is represented

in Equation (4.4). The simulation data are used to train each surrogate model.

Ymodel = b0 + b1α + b2β (4.3)
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Ymodel = b0 + b1α + b2 τparm (4.4)

Finally, values of the regression model coefficients and coefficient of determination (R2) are

shown in Table 4.6. All these surrogate models are acceptable as the value of R2 is greater

than 0.95.

Table 4.6: Coefficients of surrogate models

Model b0 b1 b2 R2

G(f)
C 1979.343 -221.123 86.0415 0.9973

G(f)
T 2670.5 -576.677 138.65 0.9875

G(m)
C 217.5355 -102.2869 32.5543 0.9909

G(m)
T 158.588 -53.6932 27.9172 0.9987

G(m)
S 0.0478 21.0565 0.9135 0.9649

Prior to applying the surrogate models, a global sensitivity analysis of the model pa-

rameters are performed. The results showing total sensitivity of the model parameters are

shown in Figure 4.4.
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Figure 4.4: Global sensitivity analysis for surrogate model parameters

4.3 Model calibration

Once the surrogate model construction is complete, the model is ready for calibration. For

this purpose, Equation (4.3) is substituted in Equations (4.1) and (4.2) to get the final
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expression for the calibration as in Equation (4.5):

Ŷobs =


(
b0 + b1α + b2β

)
+ εobs + δ for G(f)

C ,G(f)
T ,G(m)

C ,G(m)
T(

b0 + b1α + b2 τparm

)
+ εobs + δ for G(m)

S

(4.5)

b0 + b1α + b2 τparm where, Ŷobs is the the random variable of observation obtained from the

prediction model. Based on Equation (4.5), two model parameters, measurement error (σobs)

and model discrepancy (δ) need to be calibrated. In the presence of experimentally observed

data, the error (ε) between the each observation and observation random variable from the

prediction model can be calculated. The range of the model discrepancy and the standard

deviation for measurement error are given in Table 4.7.

Table 4.7: Range of uncertainty parameters

Model Range of σobs Rage of δ

G(f)
C 80 – 100 -50 – 40

G(f)
T 80 – 110 -50 – 40

G(m)
C 8 – 16 -15 – 20

G(m)
T 5 – 10 -10 – 5

G(m)
S 10 – 20 -25 – 20

To obtain the estimate of the 4 parameters a least square based approach is used and

the sum of squares of the errors are minimized. Mathematically, the optimization problem

is described as:

ε(i) = Ŷobs − Y (i)
obs where, i = 1, 2, · · · , p (4.6)

min
∑(

ε(i)
)2

(4.7)

Due to presence of random measurement error in the prediction model, it is not possible to

obtain unique combination of estimated parameters. Therefore, each model is run for 10,000

times to obtain the minimum value of the objective function. The estimated parameters for

the surrogate model is given in Table 4.8.
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Table 4.8: Estimate of model parameters

Model α β or τ σobs δ

G(f)
C 1.8185 1.7513 88.9954 -4.7684

G(f)
T 0.69008 4.1074 95.1039 -6.8263

G(m)
C 1.4507 5.5591 12.4853 -5.3176

G(m)
T 1.9689 3.0175 7.4399 -2.516

G(m)
S 0.33994 88.9963 14.9787 -2.0014

These parameters are used in Chapter 6 to validate the prediction of the constitutive

model.
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CHAPTER 5

DEVELOPMENT OF MULTISCALE CRACK BAND MODEL

Mesh sensitivity issues can be resolved using approaches such as integral type non-local for-

mulation [39], gradient type enhancement [40, 41] and crack band modeling [6]. Considering

the computational needs in a structural scale simulation, the crack band model has been

identified as an appropriate approach to be incorporated and implemented within the ex-

isting multiscale framework [8]. The mathematical formulation of the implementation of a

multiscale crack band model is presented in Section 5.1.

5.1 Formulation of Multiscale Crack Band Model

The crack band model (CBM) needs to be incorporated in the current multiscale framework

to facilitate the implementation of the weighted approach to model damage evolution in

composites. The primary objective here is to ensure that the fracture energy is computed as

a function of individual constituent deformation and that the failure process is consistent,

regardless of macroscopic discretization. While the mesh bias issue (i.e., the propensity of

the failure to follow the mesh lines) has been partially addressed by previous researchers

using the CBM approach, but such efforts were focused solely on alleviating sensitivity to

mesh size.

In the context of the current multiscale framework, there are three length scales to account

for: (1) size of the microscopic crack band as defined by the width of the microstructural

failure parts (w); (2) size of the unit cell (l); and (3) size of the macroscopic finite element

(h). The fracture energy computed at the scale of the material microstructure can then be

related to the macroscale mesh size parameter, h (as in the case of classical CBM) as well

as w and l.

Let Gf be the fracture energy necessary to form all microcracks per unit (microscale)

area within the composite material, so that

G̃f(εf) =

∫ εf

0

σ
(ξ)
⊥ : dε

(ξ)
⊥ (5.1)
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in which, σ
(ξ)
⊥ and ε

(ξ)
⊥ are the components of the part-averaged stress tensor (of part ξ) along

a direction normal to the part, and εf denotes the ductility of the constituent. The total

fracture energy per unit cell within the element is then wG̃f , where w is the width of a

microstructural failure part. Employing the concept of periodicity, the total fracture energy

within the coarse finite element can be related to the part fracture energy by:

Gf =
wh

l
G̃f

(
εf
)

(5.2)

The fracture strain can then be expressed as a function of the unit cell fracture energy as:

εf(h) = G̃−1
f

(
l

wh
Gf

)
(5.3)

in which, G̃f is taken to be a smooth and invertible function. Within the finite element

discretization of the macroscopic structure, the value of the failure strain, εf, which is a

parameter of the damage model, as explained below, is different and dictated by the size

parameter of the element.

Analytical expressions for the fracture energy as well as the failure strain parameter are

needed to efficiently implement the Multiscale Crack Band Model (MsCBM), such as[
G̃

(1)
f + G̃

(2)
f

(
εf
)] wh

l
= Gf (5.4)

where, G̃
(1)
f and G̃

(2)
f represent fracture energy in hardening and softening regimes, respec-

tively, at the microscale, and under uniaxial loading. Considering the hardening part of the

curve under uniaxial loading and the second condition on the right hand side of damage

evolution Eq. 3.6, G̃
N(1)
f can be shown to take the following form:

G̃
N(1)
f =

ε
(N)
tr∫

0

σdε =
(1− dN)E(εNtr)

2

2
+ ĈN

βN ln[(α̂Nε
N
tr − βN)2 + 1]− βN ln(1 + (βN)2)

2(α̂N)2
+

ĈN
[(α̂Nε

N
tr)

2 + (βN)2 + 1]atan(βN − α̂Nεtr)− [1− (βN)2]atan(βN)

2(α̂N)2
+ ĈN

εNtr
2α̂N

(5.5)

where,

α̂N = αNχN, ĈN =
E

π

2
+ atan(βN)

, dN =
atan(βN)

π

2
+ atan(βN)

(5.6)

Here, the superscript N represents normal loading. The analytical expression for the second
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part of the fracture energy using the third condition on the right hand side of damage

evolution Eq. 3.6 is:

G̃
N(2)
f =

εNf∫
εNtr

σdε = −E
[
AN

f

(εNf )2 − (εNtr)
2

2
+
[
Φ(υN

tr)− (1 + AN
f )
]υN

tr

χN

(εNf − εNtr)
]

(5.7)

Fracture energy for the first and second parts under pure shear loading can be obtained

similarly. Finally, the dissipated energy adjusted constituent failure strain can be defined

as:

εNf = εNtr + 2

1

c̃1

(
h0

h
− 1

)
G̃

N(1)
f +

[
1 +

1

c̃1

(
h0

h
− 1

)]
G̃

N(2)
f[

1− Φ(υN
tr)
]
EεNtr

(5.8)

εSf = εStr + 2(1 + ν)

1

c̃2

(
h0

h
− 1

)
G̃

S(1)
f +

[
1 +

1

c̃2

(
h0

h
− 1

)]
G̃

S(2)
f[

1− Φ(υS
tr)
]
EεStr

(5.9)

where, c̃1 and c̃2 are the fracture energy scaling parameters. The reference and arbitrary

mesh sizes are denoted by h0 and h, respectively. The derivation of the multiscale crack

band model expression is given in Appendix E.

Here, it is worth noting that the proposed crack band model regularization scheme can

be extended to any microstructure morphology. The present study focuses on a square unit

cell geometry with single fiber. In the case of a unit cell containing multiple fibers, all the

‘damage parts’ need to be identified first. Based on the morphology of newly identified

‘damage parts’, the development of a new reduced order model geometry will be necessary.

The coefficient tensors for the new reduced order geometry can then be applied.

5.2 Computation of Dissipated Energy for Reduced Order Model

The performance of the multiscale crack band approach can be considered in the context of

two macroscopic properties: (1) the overall strength of a macroscopic specimen, and (2) the

amount of energy dissipated during the damage process. Given the macroscopic stress states

from S-ERHM, the assessment of the energy dissipation characteristics requires

i. derivation of the dissipation energy density equation directly from the S-ERHM sys-

tems,

ii. implementation of the dissipation energy computation in the existing S-ERHM soft-

ware, and
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iii. verification of the S-ERHM computations under simplified conditions.

For brevity, only the thermodynamic treatment of isotropic damage is given here. Based on

the strain-based continuum damage theory, the Helmholtz’s free energy density is expressed

as Eq. 5.10.

Ψ(ε, ω) = (1− ω)Ψe(ε) (5.10)

For small deformations, elastic free energy density is given by Ψe(ε) =
1

2
ε : C : ε. The

constitutive equation and thermodynamics force (i.e. damage energy release rate) are given

as Eqs. 5.11 and 5.12, respectively.

σ =
∂Ψ(ε, ω)

∂ε
= (1− ω)C : ε (5.11)

Y = −∂Ψ(ε, ω)

∂ω
= −Ψe(ε) (5.12)

In order for the macroscale variables, stress (σ) and strain (ε), to be admissible in the

macroscale constitutive relation, the Hill-Mandel lemma for macrohomogeneity condition

must be satisfied:

σ : ε̇ =
1

|Θ|

∫
Θ

σ : ε̇ dθ (5.13)

where, σ and ε on the right hand side represent the microscale field variables for stress and

strain, respectively. The left hand term corresponds to strain energy density rate which is

equal to macroscopic internal power density in the absence of temperature change, signifying

an open system. Using the Truesdell-Noll inequality, the inner product σ : ε̇ can be decom-

posed into elastic and damage induced inelastic parts; the latter of which is dissipated as

heat. Applying the decomposition principle and Truesdell-Noll inequality, the macroscopic

dissipation can be expressed as:

Φ̇ =
1

|Θ|

∫
Θ

Y ω̇ dθ (5.14)

The discretization for damage field, ω and damage induced inelastic field, µ for the existing

reduced order model are given by Eqs. 2.9 and 2.10. In the incremental form of Eq.5.14,

these equations can be expressed as:

∆Φ =
1

|Θ|

∫
Θ

Y ∆ω dθ =
n∑
γ=1

1

|Θ|

∫
Θ(ξ)

Y dθ ∆ω (5.15)

∆ω =
n∑
γ=1

N (ξ)(y)∆ω(ξ) (5.16)
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where, ∆ω(ξ) = ω
(ξ)
n+1 − ω(ξ)

n .

Finally, the incremental dissipated energy within the reduced order model becomes:

∆Φ =
1

2

( n∑
γ=1

ε̄ : Ĉ(ξ) : ε̄ ∆ω(ξ) +
n∑
ξ=1

n∑
γ=1

ε̄ : B̂(ξγ) : µ(ξ) ∆ω(ξ)

+
n∑
γ=1

n∑
ξ=1

n∑
δ=1

µ(ξ) : F̂(ξγδ) : µ(δ) ∆ω(ξ)

) (5.17)

where,

Ĉ(ξ) =
1

|Θ|

∫
Θ(ξ)

A(ξ)(y) : C(ξ)(y) : A(ξ)(y) N (ξ) dy (5.18)

B̂(ξγ) =
1

|Θ|

(
B(ξγ) + (B(ξγ))ᵀ

)
(5.19)

F̂(ξγδ) =
1

|Θ|F
(ξγδ) (5.20)

5.3 Computational Algorithm and Implementation

The computational aspects of numerical implementation of the multiscale crack band model

are presented in this section. The concept of ‘characteristic length’ and its computation

is presented first. The implementation of characteristic length calculation for macroscale

analysis of fiber composite lamina is also considered.

5.3.1 Characteristic Length Formulation

Characteristic length of an element is the projected length of an element onto the direction

of a crack vector. This concept is useful for calculating the crack band width. Two major

types of crack bandwidth formulations are possible: (1) those based on element area or

volume [5, 73], and (2) those based on element projection [12]. Computation of characteristic

length was first proposed by Oliver [59], and later by Govindjee et al. [33]. The difference

between Oliver’s and Govindjee’s methods was tested by Slobbe [78, 77] on a (non-square)

rectangular element with one integration point. The crack band widths were computed

for crack angles varying over 0 ≤ ϕ ≤ π
2
. According to Oliver, the crack band width can

be interpreted as the distance between the sides of the element in a direction normal to

the crack; whereas, in Govindjee et al.the crack band width is interpreted as the distance

between the two farthest corner nodes of an element measured in a direction normal to the

crack. In this research, the method proposed by Govindjee et al.is adapted in the context
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of multiple microscale failure modes. The direction of a single failure path in the global

coordinate system can be defined as:

ni(x) = T n̂i(x̂) (5.21)

where, T is the transformation matrix from local coordinate system (x̂) to global coordinate

system (x). The crack orientation for a 3-dimensional element is given by Eq. 5.22.

n̂(x) =


sin (ϕ) sin (ψ)

cos (ψ)

cos (ϕ) sin (ψ)

 (5.22)

where, ϕ and ψ are the azimuthal and polar angles in the local coordinate system. The

projection of the element onto the crack vector direction can then be obtained by Eq. 5.23.

p̂i = [(xi − xc) · n(x)] (5.23)

where, xi and xc correspond to the corner nodal points and center point of the corresponding

element, respectively. Based on the projected length value, a scaling is performed to yield

an indicator function I as

Ii =
[(xi − xc) · n(x)]− p̂min

p̂max − p̂min

(5.24)

Finally the characteristic length, h∗, is calculated using Eq. 5.25.

h∗ =

([ nnode∑
i=1

∂Ni(x)

∂x
Ii
]
· n(x)

)−1

(5.25)

The steps for characteristic length computation are presented in Algorithm 1. The MATLAB

implementation of this Algorithm 1 for single scale analysis is given in Appendix F. This

algorithm was tested with multiple 3D solid elements of different sizes. Specific to this study,

the transformation matrix appearing in Eq. 5.21 takes the following form:

T =


cos(ϕ) 0 sin(ϕ)

0 1 0

−sin(ϕ) 0 cos(ϕ)

 (5.26)

where, ϕ represents the rotation angle between local to global coordinate in the x1x3-plane.

The schematic representation of characteristic length for a macroscale specimen is shown in
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Algorithm 1 Computation of characteristic length

Require: nnodes, x, n̂, T
Ensure: h∗

1: Evaluate center of element, xc

2: Compute the direction of crack in global coordinate: n(x) = T n̂(x̂)
3: for i = 1 · · ·nnodes do
4: Compute projection on crack direction: p̂i = [(xi − xc) · n(x)]
5: Compute indicator function, I:

Ii =
[(xi − xc) · n(x)]− p̂min

p̂max − p̂min

6: Evaluate characteristic length for the crack path with vector n:

h∗ =

([ nnode∑
i=1

∂Ni(x)

∂x
Ii
]
· n(x)

)−1

7: end for

Fig. 5.1. The advantage of using this approach is that the failure paths of the reduced order

x3

x1

hz

hx



*h

( )n x

Figure 5.1: Characteristic length for a typical element

model are always known a-priori. Therefore, crack vectors for the reduced order model in

the local coordinate can be defined as:

n̂1(x̂) =


0

0

1

 ; n̂2(x̂) =


1

0

0

 ; n̂3(x̂) =


0

1

0

 (5.27)

The variation of the macroscopic characteristic length with orientation angle ϕ for a failure

path vector n̂2 is shown in Fig. 5.2. It is clear from the computed characteristic lengths
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shown in the figure that if the crack lies in the x1x3-plane only, the characteristic length

does not vary with thickness, which is measured in the x2-Direction.

0.5x1x2 0.5x2x2x1x3

x2

1x1x2

1x2x2

2x1x2

2x2x2

Figure 5.2: Fiber orientation angle vs. macroscale characteristic length plot

5.3.2 Characteristic Length Computation

In the case of multiple instances of a partition, the elements and nodes needed to be renum-

bered. To explain it further, an example problem is considered. In Fig. 5.3, a three part

Abaqus model is created. Part-1 has only one instance namely Part-1-1. On the other hand,

Parts 2 and 3 have two instances each, namely, Part-2-1, Part-2-2 and Part-3-1, Part-3-2.

The meshing is done on each part, so that Part 1 contains 2 elements, Part 2 contains 4

elements and Part 3 contains 320 elements. Table 5.1 describes how does the geometry in-

formation (e.g. node and element numbers) for a user-defined function differs from standard

Abaqus input file.
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Part 1-1

Part 2-1

Part 3-1

Part 3-2

Part 2-2

Figure 5.3: Abaqus model with multiple parts no discretization (left), with
discretization (right)

Table 5.1: Geometric information of the model

Instance Angle
Abaqus input file For user-defined subroutine New

sequenceNode no.# Element no.# Node no.# Element no.#
Part-1-1 30◦ 1, · · · , 12 1, 2 1, · · · , 12 1, 2 1
Part-2-1 0◦ 1, · · · , 18 1, 2, 3, 4 13, · · · , 30 3, 4, 5, 6 2
Part-3-1 45◦ 1, · · · , 543 1, · · · , 320 49, · · · , 591 11, · · · , 330 4
Part-3-2 45◦ 1, · · · , 543 1, · · · , 320 592, · · · , 1134 331, · · · , 650 5
Part-2-2 0◦ 1, · · · , 18 1, 2, 3, 4 31, · · · , 48 7, 8, 9, 10 3

A Python wrapper, called MeshInfo.py, was used to parse the information from Abaqus

input file, e.g. jobname.inp. The part geometry information like nodal coordinates, element

connectivity table, and orientation were parsed from Abaqus input file. The renumbering

scheme is presented as steps 6 to 16 in Algorithm 2. Once renumbering is complete, the

element list is ready for characteristic length calculation using Algorithm 1. Characteristic

length for all 3 failure paths are calculated for every element using the crack path vector.

The outputs are stored as a list of element number and characteristic lengths in a file called

jobname meshinfo.ic.
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Algorithm 2 Computing characteristic length for a multi-instance Abaqus model

1: Number of parts in model: npart

2: Number of instances for each part: ninstance

3: Orientation for each instance : ϕ
4: Instance translation vector, V̂
5: Start global numbering of elements and nodes for an instance
6: nprt ← 0
7: for i = 1 · · ·npart do
8: ninst ← 0
9: for j = 1 · · ·ninstance do

10: Update node numbers:
(
1 + nprt× ninst× n(j)

)
· · · · · ·

(
n(j) + nprt× ninst× n(j)

)
11: Update element numbers:

(
1+nprt×ninst×m(j)

)
· · · · · ·

(
n(j)+nprt×ninst×m(j)

)
12: Update nodal coordinates: x + V̂
13: ninst = ninst + j
14: end for
15: nprt = nprt + i
16: end for
17: Total elements: nelm

18: for all i such that i = 1 · · ·nelm do
19: for j = 1 · · ·ncrack do
20: Perform Algorithm 1
21: end for
22: Obtain characteristic length based on microscale failure path
23: end for

5.4 Macroscale Analysis

The coefficient tensors obtained from microscale analysis is used for micro-macro bridging

of local effect within the material. These precomputed coefficient tensors along with dam-

age model parameters are stored as an input companion file. The external database is read

in Abaqus at the beginning of the analysis, using the User-defined EXTERNAL DataBase

(UEXTERNALDB) subroutine. The characteristic lengths of elements are stored in a file

jobname meshinfo.ic. The microscale problem is solved at each quadrature point through-

out the macroscale analysis using User-defined MATerial subroutine (UMAT). The damage

model parameters are evaluated within UEXTERNALDB, at the beginning of the analy-

sis. The reduced order model problem is solved at each integration point of the macroscale

numerical specimen as shown in Figure 5.4.
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Figure 5.4: Macroscale analysis with reduced order model

The steps employed for macroscale analysis are presented below. Python script is utilized

to post-process the information in the Abaqus output data files generated from the numerical

simulation. The stress and strain information are extracted from this file to create the stress-

strain plots. The steps followed in macroscale analysis are as below.

I) The numerical specimen configurations (i.e. layup, orientations, and mesh) are the

inputs for macroscale finite element analysis using Abaqus.The constitutive model

parameters for each element are evaluated corresponding to reference mesh size.

II) Displacement controlled loading applied to the numerical specimen is assumed to be

monotonic. In the event of cyclic loading, the effects of load reversal will require

appropriate modification of AHLS model.

III) The solution of the micro-problem is performed at each integration point of the macroscale

finite element. The precomputed coefficient tensors expedited the macrostructural

analysis, as on-the-fly evaluation of the microscale model could be undertaken for the

reduced order model (with reduced number of parts), without fully resolved microstruc-

ture.

IV) At each increment, the triaxiality parameter, kb, is evaluated for all three reduced

order damaged parts, such as ‘transverse matrix cracking’, ‘delamination’, and ‘fiber

cracking’. Accordingly, appropriate damage model parameter is evaluated to capture

the damage state, using Equations (3.15) to (3.17).
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V) The shape parameters are weighted using Equations (3.10) and (3.11). Once the mate-

rial starts to soften, damage evolution is governed by the parameters, υtr and Af, only,

as in Equation (3.6).

VI) Since damage is considered directly at the scale of the constituents, damaged parts

are the consequence of the microscale response, which is explicitly evaluated within

the multiscale model. The damage within each part of the reduced order model is

computed using Eq. 5.17. For each increment, the computed dissipation energy density

is evaluated at each integration point.

VII) Ensurance of convergence of the solution for the reduced order model problem for

each macroscale finite element. The UMAT computes the homogenized secant stiffness

tensor and stress components at each integration point based on the macroscale strains

obtained by the finite element solver.

VIII) At each incremental step, for a macroscale element the damages and damage-induced

strains within each reduced order part are passed on to Abaqus as state variables.

IX) Once the macroscale analysis is completed, Python script is used to post-process the

information in the Abaqus output data (.odb) file generated from the numerical simu-

lation. The element volume, Vi, and the incremental dissipation energy density Ei(t)-
history of the i-th element are extracted using the Python script.

X) The total analytical dissipation energy history of the macroscale structure is computed

as DEanl(t) =
nelm∑
i=1

Ei(t)Vi(t), where nelm represents the number of elements.

Information on stresses and strains are extracted from the resulting file to create the

stress-strain plots. In this study, eight-noded hexahedron (C3D8R) elements with reduced

integration points were used for domain discretization. In the case of angle plies inside a

laminate, the mesh was aligned in the direction of the fiber to avoid mesh bias in the solution.

The computational scheme followed the flowchart shown in Fig. 5.5.
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Figure 5.5: Computational implementation of the multiscale crack band model in S-ERHM
framework
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5.5 Numerical Verification of Multiscale Crack Band Model

In this section, verification of the proposed multiscale crack band model is presented using

macroscale numerical specimens. The elastic material parameters used for polymer matrix

and carbon fiber are shown in Tables 5.2 and 5.3, respectively. The calibration process of

constitutive model parameters for polymer matrix and carbon fiber are discussed in Bhat-

tacharyya and Basu [7].

Table 5.2: Polymer matrix elastic material parameters

Parameter Value

Elastic modulus (in tension), E(m) (GPa) 3.98
Elastic modulus (in compression), E(m) (GPa) 3.69
Poisson’s ratio, ν(m) 0.375

Table 5.3: Carbon fiber elastic material parameters

Parameter Value

Longitudinal elastic modulus (in tension), E
(f)
33 (GPa) 252.00

Longitudinal elastic modulus (in compression), E
(f)
33 (GPa) 210.50

Transverse elastic modulus, E
(f)
11 (GPa) 12.45

Shear modulus, G
(f)
13 (GPa) 13.20

Longitudinal Poisson’s ratio, ν
(f)
12 0.291

Transverse Poisson’s ratio, ν
(f)
31 0.206

5.5.1 Verification of Multiscale Crack Band Model for Unit Cube

A mesh sensitivity study was performed on a uniformly loaded unidirectional composite

cube of size 10 mm × 10 mm × 10 mm, subjected to a uniaxial loading, resembling mode-

I loading. This loading caused failure of delamination damage part within the reduced

order model. The macroscale numerical specimen was tested for 6 different discretizations.

Within the macroscale unit cube domain, the number of elements was varied along the

direction of loading using 1, 2, 3, 4, 6 and 8 elements. The numerical specimens discretized

with one element and eight elements are shown in Fig. 5.6. The eight element case was

considered as the reference case and all six cases were executed. It was found that as the

number of elements in the model increased, the stress-strain behavior exhibited a steeper

softening slope, as shown in Fig. 5.7a, and the models showed damage localization, which

is an indication of mesh sensitivity. To study mesh objectivity, the multiscale crack band
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One element Eight element

Figure 5.6: Abaqus models for testing mesh sensitivity

model (MsCBM) was applied to same six discretizations. The stress-strain results shown in

Fig. 5.7b clearly indicate that the post-peak softening slope has been regularized. Thus, the

MsCBM is successfully verified for the unit cube macroscopic model. The uniaxial loading

energy scaling parameter c̃ for constituent fiber and matrix were calibrated as 2.75 and 1.052,

respectively.
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Figure 5.7: Six discretization of the unit cube macroscale numerical specimens

5.5.2 Verification of Multiscale Crack Band Model for Open-hole Ply

A second verification study was undertaken on more complex macroscale numerical mod-

els comprising of 90◦ and 0◦ open-hole ply specimens. The size of the numerical model is

80 mm×38.1 mm×0.125 mm with a hole of diameter 6.35 mm. Appropriate boundary con-

ditions were imposed to capture the failure of the open-hole specimen under tensile loading.
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The primary purpose of using an open-hole specimen is to evaluate the method’s ability to

capture the damage caused by stress concentrations near the hole. In this case, the models

were tested for 5 discretizations with element size varying from 0.80 mm to 0.30 mm. For

computational efficiency, only one layer of element was stacked along through the thickness

direction. The mesh was refined uniformly all over the specimen, as shown in Fig. 5.8.

38.1 

mm

80 mm

x1

x3

Figure 5.8: Abaqus model for open hole numerical specimen geometry and mesh

5.5.2.1 90◦ open-hole ply simulation

At first, a mesh-sensitivity study was undertaken on all five numerical specimens without

using MsCBM. The specimen strength was found to degrade with increasing mesh refinement,

signifying that the stress-concentration near the hole was being captured correctly by model

refinement. The corresponding strain vs. stress plot results are shown in Fig. 5.9.

The energy for the reference mesh size is shown in solid black line. It is clear from

Fig. 5.10a that wide variations of energy are observed without the MsCBM. On the other

hand, MsCBM simulation results in Fig. 5.10b show that the dissipation energy values to

coalesce with the reference mesh dissipation energy.

55



0 0.5 1 1.5 2 2.5

Macroscopic strain (%)

0

30

60

90

M
ac

ro
sc

op
ic

 s
tr

es
s 

(M
P

a)

h=0.30
h=0.40
h=0.50
h=0.60
h=0.80

(a) no multiscale crack band model

0 0.5 1 1.5 2 2.5

Macroscopic strain (%)

0

30

60

90

M
ac

ro
sc

op
ic

 s
tr

es
s 

(M
P

a)

h=0.30
h=0.40
h=0.50
h=0.60
h=0.80

(b) with multiscale crack band model

Figure 5.9: Strain vs. stress for 90◦ numerical specimens with and without MsCBM
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Figure 5.10: Comparative dissipated energy for 90◦ numerical specimens
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By comparing the peak strengths of the specimens it has been confirmed that not only

the strength of the specimens is regularized (Fig. 5.11a), but also the energy is conserved

for different mesh sizes (Fig. 5.11b). The small discrepancies in the result can, possibly, be

attributed to use of extremely small mesh size.
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Figure 5.11: Results for 90◦ numerical specimens with and without MsCBM

All the 90◦ numerical models faithfully captured the progressive damage path within the

specimen caused by stress concentration near the hole, followed by matrix cracking. No fiber

damage was noticed in the simulation. Localized damage propagated along the width into

the ligaments of the open hole specimens. The damage contours for different discretizations

of the specimens are shown in Fig. 5.12. The reference mesh size is omitted in this figure
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Figure 5.12: Matrix cracking damage of open hole 90◦ specimens
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as no regularization is induced for the reference mesh size. Darker shades indicate more

damage; whereas, the progressively lighter ones indicate lesser to no damage state. It is

also observed that the specimens subjected to energy regularization show smoother failure

pattern compared to the diffused damage pattern obtained with no regularization.

5.5.2.2 0◦open-hole ply specimen

Following the 90◦ layup simulations, implementation of MsCBM was verified for 0◦ open-

hole ply specimens. Similar to 90◦ ply, the mesh was refined uniformly all over the specimen

domain. It was observed that without MsCBM the specimen strength reduced with refine-

ment of discretization. However, with MsCBM the specimen strength remained within a

reasonable bound (Fig. 5.13a). In terms of dissipated energy, the smallest mesh size has very

high energy, as shown in Fig. 5.13b. This increase in the dissipated energy is contributed by

the damage model used, which assumes no shear strength of the fiber constituent.

0.2 0.4 0.6 0.8 1

Mesh size (mm)

1200

1300

1400

1500

1600

1700

1800

P
ea

k 
st

re
ng

th
 (

M
P

a)

no MsCBM
MsCBM

(a) Variation of peak force with mesh size

0.2 0.4 0.6 0.8 1

Mesh size (mm)

0

1

2

3

4

5

6
D

is
si

pa
te

d 
en

er
gy

 (
J)

no MsCBM
MsCBM

(b) Variation of dissipated energy with mesh size

Figure 5.13: Results for 0◦ numerical specimens with and without MsCBM

Unlike 90◦ open hole specimen, 0◦ one undergoes both fiber damage and matrix cracking

near the hole. Also, matrix splitting was observed in the specimens. The fiber damage

contours for different discretizations of the specimens are presented in Fig. 5.14. It is worth

noting that in the case of simulations without regularization, the damage progression is not

monotonic. On the other hand, the damage accumulation in energy regularized specimens

show smoother progression of damage.
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Figure 5.14: Fiber damage for open hole 0◦ specimens

5.5.3 Verification of Multiscale Crack Band Model for Laminates

Finally, the multiscale crack band model was evaluated for laminate level simulation. For

this purpose, cross-ply laminate [90◦2/0
◦
2]s with open-hole geometry was chosen. This example

demonstrated the performance of multiscale crack band model for a laminate with multiple

plies and nonuniform mesh. Four different discretizations were considered. In this study,

the mesh size, h = 1.25 mm was assumed as the reference mesh size. The refined mesh sizes

38.1 

mm

80 mm

Uniform mesh

Graded 

mesh

x1

x3

Figure 5.15: Abaqus model for cross-ply specimen geometry with non uniform mesh

considered were for h = 1.00 mm, h = 0.75 mm and h = 0.50 mm. In contrast with the

study described in Section 5.5.2, the region of stress concentration only was discretized with
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refined mesh; whereas, the domain far from the open hole was discretized with transitional

mesh. The geometry and meshing of the laminate are shown in Fig. 5.15.

In Fig. 5.16, the peak strength and dissipated energy is found to decrease with mesh

refinement. The simulation results with multiscale crack band models demonstrated regu-

larization of peak strength of the laminate. Only marginal increase in dissipated energy is

observed for numerical specimens with MsCBM.
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Figure 5.16: Results for cross-ply numerical specimens with and without MsCBM

The possible reason for increase in dissipated energy can be attributed to the increase

in failure strain parameters of the fibers specific to 0◦ ply. Qualitatively the matrix damage

appears to be very close to the results of CFRP cross-ply composites, as documented in

O’Higgins [61].
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5.5.3.1 Computing times comparison for open-hole plies and cross-ply laminates

To this end, the computing time is compared for the numerical specimens with HPC re-

sources. The simulation of the numerical specimens was undertaken on the computer MC-2.

Each simulation was performed on a single compute node using 8 cpus in a shared memory

parallel configuration. Simulation run times are compared in Table 5.4.

Table 5.4: Comparison of computation times for open-hole plies and cross-ply specimens

Lay up orientation
Mesh size

(mm)
Total elements

Wall time
(hh:mm:ss)

no MsCBM with MsCBM

90◦

0.80 4788 00:09:22 00:09:24
0.60 8404 00:14:27 00:16:14
0.50 12100 00:30:18 00:22:03
0.40 18831 00:48:57 00:31:13
0.30 33456 01:20:17 00:50:34

0◦

0.80 4788 00:09:14 00:07:11
0.60 8404 00:13:28 00:14:32
0.50 12100 00:18:41 00:19:51
0.40 18831 00:27:39 00:29:55
0.30 33456 00:46:12 00:49:01

[90◦2/0
◦
2]s

1.25 7280 00:09:30 00:09:30
1.00 10228 00:13:39 00:14:29
0.75 23904 00:49:46 00:49:13
0.50 47522 01:51:39 01:35:27
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CHAPTER 6

VALIDATION OF PROGRESSIVE DAMAGE MODEL

The unnotched specimens used for validation had a width of 25.4 mm. The length of specimen

in tension was 250 mm and in compression it was 140 mm. The thickness of each ply

for validation layup was 0.127 mm. In the case of open-hole specimens, the diameter of

the central hole was 6.35 mm. The stress in the laminate is computed for the numerical

specimens as the sum of the reactive forces at the pinned end of the specimen divided by

the gross cross-sectional area of the specimen. The strain computations closely followed the

method the strains were measured in the experiments using extensometers in the case of

open-hole specimens and strain-gages for unnotched specimens. For instance, two nodes in

the mesh for the outer ply in each numerical specimen were identified corresponding to the

gage points of the extensometer. Then the computed strain is obtained as the change in the

distance between these two nodes divided by gage length.

6.1 Numerical Specimens in Tension

In this case, all the laminates are subjected to uniaxial tensile loading along the longitudi-

nal direction. It is apparent that the constitutive model predicts the initial stiffness quite

accurately. The results for [0, 45, 90,−45]2s, [60, 0,−60]3s and [30, 60, 90,−60,−30]2s under

uniaxial tension are presented in Figures 6.1, 6.3 and 6.5. In the case of [0, 45, 90,−45]2s

unnotched and open-hole numerical specimens, the predicted stiffness is exactly same as

observed in experiments. A small variation is noted in the ultimate strength prediction for

open-hole specimen shown in Figure 6.1a. However, the constitutive model is able to capture

the nonlinearity observed near peak.
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Figure 6.1: Stress vs. strain for [0, 45, 90,−45]2s quasi-isotropic specimens under tension

Gray scale damage contours of the [0, 45, 90,−45]2s quasi-isotropic open-hole specimen for

the layups up to the plane of symmetry are shown in Figure 6.2. The darker shades indicate

higher damage whereas the lighter ones indicate low to no damage state. The damage in the

0◦ plies are contributed by fiber damage, matrix cracking and delamination. On the other

hand, 90◦ and 45◦ plies observed significant matrix-cracking near the hole.
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Figure 6.2: Damage contour for [0, 45, 90,−45]2s quasi-isotropic specimen under tension

In the case of [60, 0,−60]3s unnotched and open-hole numerical specimens, the stiffness

and ultimate strength predictions are quite accurate. Also, the constitutive model is able to
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capture the expected nonlinearity near the ultimate strength.
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Figure 6.3: Stress vs. strain for [60, 0,−60]3s specimens under tension

The damage contour for the [60, 0,−60]3s open-hole laminate specimen is shown in Fig-

ure 6.4. The 0◦ plies demonstrated fiber damage, matrix cracking and delamination. In the

60◦ plies fiber splitting and very small delamination are observed. The −60◦ ply matrix-

cracking is predominant in other failure modes.
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Figure 6.4: Damage contour for [60, 0,−60]3s specimen under tension

In the case of [30, 60, 90,−60,−30]2s unnotched and open-hole ‘soft ply’ specimens, the

stiffness predictions are also quite accurate. The numerical predictions in Figures 6.5a
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and 6.5b closely follow the experimental data. The damage contour for the [30, 60, 90,−60,−30]2s

0 0.5 1 1.5 2 2.5 3
Strain (%)

0

100

200

300

400

500

600

S
tr

es
s 

(M
P

a)

Simulation
Expt1
Expt2
Expt3
Expt4

(a) Unnotched specimens

0 0.5 1 1.5 2 2.5 3
Strain (%)

0

100

200

300

400

500

S
tr

es
s 

(M
P

a)

Simulation
Expt1
Expt2
Expt3
Expt4

(b) Open hole specimens

Figure 6.5: Stress vs. strain for [30, 60, 90,−60,−30]2s specimens under tension

laminate specimen shows mostly matrix-cracking in the 60◦ plies, as shown in Figure 6.6.

No significant fiber damage or delamination is observed.
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Figure 6.6: Damage contour for [30, 60, 90,−60,−30]2s specimen under tension
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6.2 Numerical Specimens in Compression

In this case, all the laminates are subjected to uniaxial compressive loading in the longi-

tudinal direction. It is observed that the initial stiffness predicted by the proposed model

closely follows the experimental data. The results for [0, 45, 90,−45]2s, [60, 0,−60]3s and

[30, 60, 90,−60,−30]2s under uniaxial compression are presented in Figures 6.7, 6.9 and 6.11.

It should be noted that in all the open-hole compression cases, the experimental data was

found to be noisy, confirming the findings in Clay and Knoth [16].
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Figure 6.7: Stress vs. strain for [0, 45, 90,−45]2s quasi-isotropic specimens under compression

The unnotched compression prediction of [0, 45, 90,−45]2s follows the experimentally ob-

served data. However, the experimental data is beset with significant variance, as shown

in 6.7a. The prediction for [0, 45, 90,−45]2s open-hole numerical specimen demonstrates

higher strength. It is reported by ARFL (see Ref. [24]) that some of the experimental spec-

imen failed prematurely due to buckling. Such second-order phenomenon is not considered

in this study.

In the [0, 45, 90,−45]2s quasi-isotropic open-hole specimen under compression the damage

contour shows failure of plies in all three failure modes, as shown in Figure 6.8.
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Figure 6.8: Damage contour for [0, 45, 90,−45]2s specimen under compression

In the case of [60, 0,−60]3s unnotched specimen the numerical model underpredicts the

strength of the laminate.
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Figure 6.9: Stress vs. strain for [60, 0,−60]3s specimens under compression

The possible reasons can partly be attributed to the reduced order modeling process and

partly to significant uncertainty in the experimental data, as evident from Figure 6.9a. In

the open-hole case, the numerical predictions shown in Figure 6.9b tend to exactly follow the

experimental data. In the [60, 0,−60]3s open-hole layup fiber splitting is observed in the 60◦

plies. Matrix-cracking observed in 0◦ plies is higher than 60◦ plies as shown in Figure 6.10.
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Figure 6.10: Damage contour for [60, 0,−60]3s specimen under compression

Compression stiffness of [30, 60, 90,−60,−30]2s unnotched specimen initially tended to

follow the stiffness observed in the experiment. But the reported strength for the layups were

suspiciously too high for a soft layup like [30, 60, 90,−60,−30]2s. In the case of open-hole

compression, the predictions agree well with experimental data except near the tail end, ,

where the experimental data was reported to be very noisy, and the coupon specimens were

loaded till 90% of the ultimate load.
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Figure 6.11: Stress vs. strain for [30, 60, 90,−60,−30]2s specimens under compression

In the case of the [30, 60, 90,−60,−30]2s open-hole layup, damage accumulation due to
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matrix cracking was observed in the case of 30◦ and 60◦ angle plies, as evidenced in Fig-

ure 6.12. In addition, no fiber damage or delamination is observed. This could be another

reason for high strength predictions observed in Figure 6.11b.
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Figure 6.12: Damage contour for [30, 60, 90,−60,−30]2s specimen under compression

To this end, a summary of the predicted strengths is presented in Table 6.1 along with the

simulation wall clock time on the cluster computer. The unnotched tension and compression

is denoted as UNT and UNC respectively. Similarly, the open-hole specimens under tension

and compression are denoted as OHT and OHC, respectively.

Table 6.1: Summary of simulation wall time and predicted strengths of IM7/977-3 laminates

Layup Type Wall
clock
time
(hh:mm)

AHLS
model
(MPa)

AFRL
Mean
(MPa)

AFRL
St.
Dev
(%)

[0, 45, 90,−45]2s

UNT 00 : 48 980.67 866 1.48
OHT 03 : 20 600.77 554 1.29
UNC 00 : 47 638.08 603 1.41
OHC 04 : 48 470.29 341 0.78

[60, 0,−60]3s

UNT 01 : 25 1056.6 1005 1.64
OHT 04 : 04 533.95 543 1.09
UNC 01 : 58 630.42 765 2.03
OHC 05 : 47 358.69 358 0.92

[30, 60, 90,−60,−30]2s

UNT 01 : 13 503.30 473 1.38
OHT 01 : 12 414.06 409 1.44
UNC 01 : 12 506.45 392 1.26
OHC 01 : 45 404.4 295 1.01
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

The research presented in this dissertation demonstrates significant addition to the state

of the art in the computational modeling of the mechanical behavior for CFRP composite

materials. This study incorporates multiscale constitutive modeling from both deterministic

and probabilistic points of view. The primary goal of this dissertation was to develop a

novel constitutive relationship under uncertainty alleviating spurious mesh sensitivity from

the ERHM framework.

In Chapter 2, the ERHM multiscale modeling framework is described. Development

of a new reduced order model partitioning using the Representative Unit Cell morphology

is demonstrated. The treatment of alleviating the post failure spurious residual stiffness

is presented followed by verification. Finally, enhancement of computational efficiency of

the coefficient tensor computation using parallel computing is shown. The speed up and

efficiency of the computation is quantified for the purpose of verification. Utilization of

parallel computing reduced the computing time significantly.

Chapter 3 presents the mechanics-based formulation of the constitutive relation for the

polymer matrix and carbon fiber reinforcement. The damage evolution potential for the

softening regime is derived such that the material fails consistently following a linear stress-

strain law. The proposed model is derived based on the thermodynamics of material damage.

The damage evolution potential to model the material in the softening regime is derived and

verified. A new triaxiality factor is derived to indicate the complex strain state. The consti-

tutive relation is incorporated in the multiscale framework to model progressive damage in

CFRP composite laminates. The novel contribution of this part of the research is the ability

to capture the failure envelope of composites under multi-axial loading. The parameters for

the constitutive model are calibrated using experimental data obtained at laminate scale.

The calibration process considering epistemic uncertainty is presented in Chapter 4.

The development and implementation of the multiscale crack band model is given in Chap-
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ter 5. The objective of this work was to alleviate spurious mesh sensitivity using numerical

regularization of dissipated energy. First, the performance of the proposed model is exam-

ined for unit cube composite specimen with various levels of discretization. Then, the model

is verified for composite single ply and laminates. The model has shown its capability to

alleviate mesh sensitivity. Finally, the mesh independent multiscale modeling framework is

validated using three laminates with different configurations and loading. The validation

study is presented in Chapter 6.

7.2 Future Research

In this dissertation the multiscale framework and constitutive relationship is employed as-

suming no effect of change in temperature. However, during service condition an aircraft

experiences a wide range of temperature conditions. The mechanical properties of constituent

materials of a composite can vary significantly with temperature. These effects can be taken

into account within the constitutive relation. In addition, temperature field could also be

incorporated within the multiple spatial scale framework for thermo-mechanical analysis of

composites. An extension of the present multiscale framework to thin shell structure would

allow more accurate representation of aircraft skin structures.

In PDA of bolted joints, contact between lamina brings additional complexity in the

failure mechanisms. A thorough investigation can be done using contact mechanics. In this

direction single or double lap joints with different types of fasteners (e.g. countersunk or

protruded bolt) can be studied. Additionally, joints involving composites to metallic material

is a challenging problem in aircraft structural design.

Modeling mechanical behavior of composite laminates under fatigue and impact are still

maturing. To simulate more realistic service condition of an aircraft the above ideas should be

applied to a multi-temporal framework. There are still open areas to develop computationally

efficient multi-temporal model for high cycle fatigue. Although high performance computing

infrastructure is used for macroscale analysis yet it is still expensive. A numerical approach

could be developed to reduce the problem size of the reduced order model.

The studies in this dissertation are restricted to Representative Unit Cell with no defect.

Although quality control techniques are utilized by manufactures, there are sources of vari-

ability within the material both at the micro and the structural scales. At the microscale,

uncertainty is present due to variation in geometrical and constituent material properties.

The effect of aleatory uncertainty arising from spatial variability needs to be incorporated

both at microscale and macroscale.
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ture. In H.L. Dryden, Th. von Kármán, G. Kuerti, F.H. van den Dungen, and

L. Howarth, editors, The Mathematical Theory of Equilibrium Cracks in Brittle Frac-

ture, volume 7 of Advances in Applied Mechanics, pages 55 – 129. Elsevier, 1962. doi:

https://doi.org/10.1016/S0065-2156(08)70121-2. URL http://www.sciencedirect.

com/science/article/pii/S0065215608701212.
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Appendix A

Derivation of the proposed triaxiality factor

The concept of triaxiality factor is to control the constitutive model parameters to capture

the nonlinear shear behavior to brittle uniaxial behavior. The old definition of triaxiality

factor was given by Equation (A.1).

kold
b =

γmax(
γmax

2
+ εmax

) ∈ [0, 1] (A.1)

In this work, the range of triaxiality is varied from purely uniaxial to pure shear loading.

However, the numerical range of triaxiality factor remains same. Keeping in mind the two

strain-states of interest, the expressions of new triaxiality factor is deduced.

Pure uniaxial loading:

Assuming an isotropic material, under pure uniaxial tension loading, the principal strain

vector is written as:
{
ε − νε − νε

}ᵀ
. The maximum shear strain γmax and maximum

absolute principal strain εmax are computed as Equations (A.2) and (A.3)

γmax

2
=
ε− (−νε)

2
=

(1 + ν)ε

2
(A.2)

εmax = ε (A.3)

Substituting the expressions in Equation (A.1) the triaxiality factor is computed as:

kb =
(1 + ν)ε
(1+ν)ε

2
+ ε

=
2(1 + ν)

(3 + ν)
(A.4)

In order to make kb = 0 under pure uniaxial loading the expression takes the form of Equa-

tion (A.5).

kb =

[
γmax(

γmax

2
+ εmax

) − 2(1 + ν)

(3 + ν)

]
(A.5)
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This treatment is verified to be true both for uniaxial tensile and compressive loading.

Pure shear loading:

Now the Equation (A.5) needs to be factorized by x in order to get kb = 1 under pure shear

loading. Under pure shear loading the maximum shear strain γmax and maximum absolute

principal strain εmax are computed as Equations (A.6) and (A.7)

γmax

2
=
ε− (−ε)

2
= ε (A.6)

εmax = ε (A.7)

Substituting the maximum strains in Equation (A.5) with a factor x gives the following

expression:

1 = x

[
2ε

ε+ ε
−−2(1 + ν)

(3 + ν)

]
= x

[
3 + ν − 2− 2ν

3 + ν

]
Hence, the factor x comes as:

x =
3 + ν

1− ν
The final expression for triaxiality factor takes the form of Equation (A.8).

kb =

(
3 + ν

)
(1− ν)

[
γmax(

γmax

2
+ εmax

) − 2(1 + ν)

(3 + ν)

]
(A.8)
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Appendix B

Evaluation of damage equivalent strain parameters for matrix

The damage equivalent strain at each increment of loading is evaluated using Equation (3.2).

In order to obtain the damage equivalent strain parameters (3 for pure uniaxial and 3 for pure

shear) the corresponding two strain state vectors have been used. At first the expressions

corresponding to pure uniaxial strain state is obtained. The strain vector for pure uniaxial

and pure shear loading are written as Equations (B.1) and (B.2), respectively.

εN
(·) =

ε
N
(·) 0 0

0 −νεN(·) 0

0 0 −νεN(·)

 (B.1)

εS
(·) =

 0 εS(·) 0

εS(·) 0 0

0 0 0

 (B.2)

The principal strain vectors for pure uniaxial and pure shear loading are obtained as Equa-

tions (B.3) and (B.4) respectively.

ε̂N =
{
εN(·) − νεN(·) − νεN(·)

}ᵀ
(B.3)

ε̂S =
{
− εS(·) 0 εS(·)

}ᵀ
(B.4)

Pure uniaxial loading:

Substituting the strain tensor in Equation (3.2) with the expression for principal strain

vector in Equation (B.3), the expression of damage equivalent strain parameter can be
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written as Equation (B.5)

υN
(·) =

√√√√√√√√1

2

[
h1ε

N
(·) −νh2ε

N
(·) −νh3ε

N
(·)

]λ+ 2µ λ λ

λ λ+ 2µ λ

λ λ λ+ 2µ




h1ε
N
(·)

−νh2ε
N
(·)

−νh3ε
N
(·)

 (B.5)

The final expression of υN
(·) after algebraic operation is Equation (B.6).

υN(·) = εN(·)

√
E

2(1 + ν)(1− 2ν)

√
(1− ν)(h2

1 + ν2h2
2 + ν2h2

3)− 2ν2(h1h2 + h1h3 − νh2h3)

(B.6)

Following the logic of Equation (3.4), h1 = 1 and h2 = h3 = c. Hence, the Equation (B.6)

finally takes the form of Equation (3.12).

Pure shear loading:

The development of damage equivalent strain parameters for shear loading follows the

same methodology. In this case the damage equivalent strain parameter is expressed as Equa-

tion (B.7).

υS
(·) =

√√√√√√1

2

[
−h1ε

S
(·) 0 h3ε

S
(·)

]λ+ 2µ λ λ

λ λ+ 2µ λ

λ λ λ+ 2µ


−h1ε

S
(·)

0

h3ε
S
(·)

 (B.7)

The final expression of υS
(·) after algebraic operation is Equation (B.8).

υS
(·) = εS(·)

√
E

2(1 + ν)(1− 2ν)

√
(1− ν)(h2

1 + h2
3)− 2νh1h3 (B.8)

Following the logic of Equation (3.4), h1 = c and h3 = 1. Hence, the Equation (B.8) finally

takes the form of Equation (3.13). The damage equivalent strain parameters at damage

threshold or initiation and failure are computed using experimental data.

Evaluation of transition damage equivalent strain for pure normal and pure shear loading

can be computed using the analytical expressions. The transition damage equivalent strain

is physically conceived as a strain at which (or at vicinity of which) the stress-strain diagram

reaches a peak before softening. Mathematically, this point can be obtained by making the
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gradient of stress state equals to zero ( Equation (B.9)).

dσ

dε
= (1− ω)C :

dε

dε
− dω

dε
C : ε = 0 (B.9)

Evaluation of υN
tr for pure normal loading is straightforward as there is a well-defined peak

in the stress vs. strain plot. This parameter (υN
tr) is obtained by solving Equation (B.10):

ψN(m) = E

[
(1− ω(υN

tr))−
αNυN

tr

[π
2

+ atan(βN)]
[
1 +

(
αN〈υN

tr − υ0〉 − βN
)2]
]

= 0 (B.10)
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Figure B.1: Evaluation of transition damage equivalent strain parameters

However, the above methodology can not be directly followed for pure shear loading

as there is no such peak in the hardening regime due to presence of high ductility. The

transition parameter, υS
tr for this case is obtained from maximum shear stress (τmax), which is

a parameter of this model. The Equation (B.11) is iteratively solved to obtain the transition

parameter:

ψS(m) =
atan(αS〈υS

tr − υ0〉 − βS) + atan(βS)
π
2

+ atan(βS)
+
τmax(1 + ν)χS

EυS
tr

− 1 = 0 (B.11)

Evaluation of the transition damage equivalent strain parameters using Equations (B.10)

and (B.11) are presented in Figures B.1a and B.1b respectively.
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Appendix C

Evaluation of damage equivalent strain parameters for fiber

The model parameters that describe damage evolution and transitioning from the damage

induced strain hardening regime to softening is obtained based on the analysis of the evo-

lution equations under normal loading along the direction of the fiber length (assumed as

the 3-direction in what follows). The strain tensor at initiation, transition or at final failure

under uniaxial loading is written as:

ε(·) =

−ν31ε(·) 0 0

0 −ν31ε(·) 0

0 0 ε(·)

 (C.1)

The principal strains for the pure uniaxial loading are therefore:

ε̂ =
{
− ν31ε(·) − ν31ε(·) ε(·)

}ᵀ
(C.2)

Substituting Equations (3.2) to (3.4) into the expression for principal strain vector in Equa-

tion (C.2), the expression of damage equivalent strain parameter can be written as:

υ(·) =

√√√√√√1

2

[
−ν31cε(·) −ν31cε(·) ε(·)

]C11 C12 C13

C12 C11 C13

C13 C13 C33


−ν31cε(·)

−ν31cε(·)

ε(·)

 (C.3)

Equation (C.3) can further be reduced by matrix operations:

υ(·) = ε(·)

√√√√√√1

2

[
−ν31c −ν31c 1

]−ν31cC11 − ν31cC12 + C13

−ν31cC12 − ν31cC11 + C13

−ν31cC13 − ν31cC12 + C33


= ε(·)

√
1

2

√
2ν2

31c
2C11 + 2ν2

31c
2C12 − 4ν31cC13 + C33

(C.4)
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After rearranging, the final expression of υ(·) after algebraic operation is given in the following

form as Equation (3.18):

υ(·) = ε(·)

√
C33 + 2c2ν2

31(C11 + C12)− 4cν31C13

2
= ε(·)χ

(f)
N

The final expression for Equation (B.9) to solve for υtr becomes Equation (C.5):

ψ(f) =
[
C33 − 2ν31C13

][
(1− ω(υtr))−

αυtr

[π
2

+ atan(β)]
[
1 +

(
α〈υtr − υ0〉 − β

)2]
]

= 0 (C.5)
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Appendix D

Derivation of linear damage evolution function

The assumption of deriving a linear softening damage evolution function is to have a con-

stant slope, Af for the stress gradient. As a result, for a specific component of interest Equa-

tion (3.24) is written as Equation (D.1).

(1− ω)− dω

dε
ε = −Af (D.1)

Rearranging we get,
dω

dε
ε+ ω = (1 + Af) (D.2)

This is a nonhomogeneous differential equation of order one. The integrating factor for Equa-

tion (D.2) is

exp

∫
dε

ε
= ε (D.3)

Multiplying both sides of Equation (D.2) with the integrating factor

ωε =

∫
(1 + Af)dε (D.4)

which leads to

ω = (1 + Af) +
Q

ε
(D.5)

where, Q is an integration constant. We evaluate the integration constant Q by satisfying

the constraint: Φ(υ−tr) = Φ(υ+
tr). Finally,

Q = εtr

[
Φ(υtr)− (1 + Af)

]
(D.6)

Multiplying the numerator and denominator with χ we obtain Equation (3.25) as below.

ω =
υtr

υ

[
Φ(υtr)−

(
1 + Af

)]
+
(
1 + Af

)
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Appendix E

Derivation of multiscale crack band model

In order to simplify the computation of the fracture strain, the part of the fracture energy

within the softening regime is approximated in a linear fashion:

G̃
N(2)
f (εNf ) =

1

2

(
εNf − εNtr

)[
1− Φ(υN

tr)

]
EεNtr (E.1)

G̃
S(2)
f (εSf ) =

1

2

(
εSf − εStr

)[
1− Φ(υS

tr)

]
E

(1 + ν)
εStr (E.2)

Let us consider the fracture energy for a reference mesh size h0 for any loading case L is

given as:

GL
f

∣∣∣
h0

=
wh0

l

[
G̃

L(1)
f + G̃

L(2)
f (εLf

∣∣∣
h0

)

]
(E.3)

Similarly, the fracture energy for any arbitrary mesh size h can be written as:

GL
f =

wh

l

[
G̃

L(1)
f + G̃

L(2)
f

]
(E.4)

The area in softening regime for any arbitrary mesh size h is scaled with a parameter c̃, as

the fracture energy remains conserved. Hence, for any mesh size h, the fracture energy due

to softening can be written as Equation (E.5).

G̃
L(2)
f =

1

c̃

[
l

wh
GL

f − G̃L(1)
f

]
(E.5)

Following the fact that, energy in the hardening regime remains same, we substitute G̃
L(1)
f

from Equation (E.3) to Equation (E.5) yields:

G̃
L(2)
f =

1

c̃

[
l

wh
GL

f −
l

wh0

GL
f + c̃G̃

L(2)
f

]
(E.6)
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Now, substituting GL
f from Equation (E.3) into Equation (E.6), the fracture energy under

softening for any mesh size h will be Equation (E.7).

G̃
L(2)
f =

1

c̃

h0

h
(G̃

L(1)
f + G̃

L(2)
f )−

1

c̃
(G̃

L(1)
f + G̃

L(2)
f ) + G̃

L(2)
f (E.7)

Rearranging fracture energy terms in Equation (E.7) under hardening and softening, we

obtain Equation (E.8).

G̃
L(2)
f =

1

c̃

(
h0

h
− 1

)
G̃

L(1)
f +

[
1 +

1

c̃

(
h0

h
− 1

)]
G̃

L(2)
f (εLf

∣∣∣
h0

) (E.8)

Now, for uniaxial and pure shear loading, the failure strains can be expressed in terms of

G̃
N(2)
f and G̃

S(2)
f using Equations (E.1) and (E.2) as:

εNf = 2
G̃

N(2)
f[

1− Φ(υN
tr)
]
EεNtr

+ εNtr (E.9)

εSf = 2(1 + ν)
G̃

S(2)
f[

1− Φ(υS
tr)
]
EεStr

+ εStr (E.10)
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Appendix F

MATLAB script for characteristic length computation

1 f unc t i on CElEnt=Compute Chlen ( in t p t , c rack vec , coord , cente r coord , n node )
2

3 % Gauss po in t s coo rd ina t e s on each d i r e c t i o n
4 i f i n t p t == 1
5 GaussPoint = 0 ; % Reduced i n t e g r a t i o n
6 e l s e
7 GaussPoint = [−1/ s q r t (3 ) , 1/ s q r t (3 ) ] ; % Ful l i n t e g r a t i o n
8 end
9

10 % Compute the p r o j e c t i o n on to crack d i r e c t i o n
11 pro j=ze ro s ( n node , 1 ) ;
12 f o r i =1: n node
13 pro j ( i , 1 ) =(coord ( i , : )−c en t e r coo rd ) ∗ c rack vec ;
14 end
15

16 tau max = max( pro j ) ;
17 tau min = min( pro j ) ;
18

19 % Evaluate the i n d i c a t o r func t i on at each node
20 t a u i=ze ro s ( n node , 1 ) ;
21 f o r i =1: n node
22 t a u i ( i , 1 ) =( pro j ( i , 1 )−tau min ) /( tau max−tau min ) ;
23 end
24

25 % P r e a l l o c a t e memory f o r c h a r a c t e r i s t i c l ength
26 CElEnt = 0 . ;
27

28 % Loop over each Gauss po int
29 f o r x i=GaussPoint
30 f o r eta=GaussPoint
31 f o r ze ta=GaussPoint
32 % Compute shape f u n c t i o n s d e r i v a t i v e s w. r . t canon i ca l
33 % coord ina t e s
34 dShape dCanconical = (1/8) ∗ . . .
35 [−(1− eta )∗(1− ze ta ) ,(1− eta )∗(1− zeta ) , . . .
36 (1+ eta )∗(1− zeta ) ,−(1+ eta )∗(1− ze ta ) ,−(1− eta ) ∗(1+ zeta ) , . . .
37 (1− eta ) ∗(1+ zeta ) ,(1+ eta ) ∗(1+ zeta ) ,−(1+ eta ) ∗(1+ zeta ) ; . . .
38

39 −(1−x i )∗(1− zeta ) ,−(1+ x i )∗(1− zeta ) ,(1+ x i )∗(1− ze ta ) , . . .
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40 (1− x i )∗(1− ze ta ) ,−(1− x i ) ∗(1+ zeta ) ,−(1+ x i ) ∗(1+ zeta ) , . . .
41 (1+ x i ) ∗(1+ zeta ) ,(1− x i ) ∗(1+ zeta ) ; . . .
42

43 −(1−x i )∗(1− eta ) ,−(1+ x i )∗(1− eta ) ,−(1+ x i ) ∗(1+ eta ) , . . .
44 −(1−x i ) ∗(1+ eta ) ,(1− x i )∗(1− eta ) ,(1+ x i )∗(1− eta ) , . . .
45 (1+ x i ) ∗(1+ eta ) , (1− x i ) ∗(1+ eta ) ] ;
46

47 % Compute Jacobian matrix
48 JacobianMatrix = dShape dCanconical ∗ coord ;
49

50 % Compute shape f u n c t i o n s d e r i v a t i v e s w. r . t g l o b a l
51 % coord ina t e s
52 dShape dGlobal = JacobianMatrix \dShape dCanconical ;
53

54 CElEnt = inv ( ( dShape dGlobal∗ t a u i ) ’∗ c rack vec ) ;
55 end
56 end
57 end
58

59 end
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