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1 Introduction 

1.1 Monitoring musculoskeletal dynamics: the scientific, societal, and clinical opportunities 

 
Multi-scale biomechanics involves connecting our understanding of whole-body movement to 
underlying musculoskeletal dynamics inside the body. The ability to estimate musculoskeletal 
dynamics (e.g., forces, stress and motion of individual muscles, bones and tendons) provides 
numerous scientific, societal, and clinical opportunities. For instance, a musculoskeletal-level 
understanding of the mechanisms underlying human movement helps scientists gain insight on how 
and why our bodies move the way they do, connecting the form of different musculoskeletal 
structures to the function they serve as we walk, run, go up and down stairs, lift objects, etc. [1]–[3]. 
These scientific insights can then be translated into injury prevention and performance enhancement 
tools and devices, improving the health and mobility of society and pushing the capabilities of human 
movement [4]–[8]. Furthermore, the ability to monitor musculoskeletal dynamics offers many 
opportunities for gaining clinical insights on recovery and treatment strategies, helping individuals 
return to work, play, and life more efficiently [9]. There is significant value to being able to measure 
and monitor human movement at the musculoskeletal level.    
 
Traditionally, musculoskeletal dynamics are measured in two ways: 1) using implantable sensors [10]–
[12] or 2) using motion analysis laboratory-based measurement systems (e.g., motion capture, force 
plates, and electromyography (EMG)) in combination with physics-based musculoskeletal modeling 
[13]–[15]. While implantable sensors offer value as a direct measurement on the musculoskeletal 
structure, they are invasive and typically impractical for wide scale or long term monitoring. While the 
motion analysis and musculoskeletal modeling approach is non-invasive, it is typically constrained to a 
lab environment and this indirect estimate involves a number of modeling limitations and 
assumptions. While each approach (implantable sensors and musculoskeletal modeling) has benefits 
and drawbacks, neither is particularly well suited for longitudinal (long-term) testing, for widespread 
daily monitoring or for applied situations outside the lab. 
   
Over the past few decades, additional measurement modalities have enhanced capabilities for 
monitoring human movement and musculoskeletal dynamics. For example, imaging modalities allow 
for personalized anatomical and physiological parameters to be incorporated into musculoskeletal 
models or for the dynamics of musculoskeletal structures to be estimated using image processing 
[16]–[18]. Additionally, non-invasive wearable sensors allow for human movement to be estimated 
unconstrained and outside the lab. Collectively, these non-invasive imaging and wearable 
measurement modalities open new opportunities for understanding musculoskeletal dynamics, 
providing tools for long-term and/or widespread monitoring in applied situations [19]–[21].  
 
However, the excitement and desire to apply these new imaging and wearable measurement 
modalities, in both research and commercial settings, has in some cases outpaced the careful 
validation work that is needed to ensure they are being used and interpreted properly within the 
context of monitoring musculoskeletal dynamics [22]–[24]. There is risk that measurements from 
imaging modalities and wearable sensors may be misapplied or may lead to misinterpretation of what 
dynamics are being estimated, which can hamper our ability to infer bone, muscle, and tendon 
function. There are key knowledge gaps regarding the validation, application, and interpretation of 
measurements from these non-invasive imaging and wearable measurement modalities. Further, 
there are opportunities to use imaging and wearables in novel ways to expand on the capabilities of 
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these measurement modalities for monitoring musculoskeletal dynamics.  
 
In this dissertation, I first elucidate the limitations of two musculoskeletal monitoring approaches 
(using ultrasound to monitor muscle-tendon dynamics and using ground reaction force metrics to infer 
bone force and associated overuse injury risk). Second, I develop new approaches from combining 
wearables, musculoskeletal biomechanics and machine learning to more accurately estimate loading 
on structures inside the body. By both identifying limitations of current musculoskeletal monitoring 
tools and inventing new tools to overcome these limitations, I have expanded our capabilities for 
monitoring internal loading in applied situations. These new capabilities provide research 
opportunities to gain a deeper understanding of internal loading during movement tasks, with 
applications in improved workplace productivity, enhanced sport performance, and overuse injury 
prevention.  
 

1.2 Dissertation Contributions 

 

1.2.1 Chapter 2 Contributions 

 
Chapter 2 explores using ultrasound imaging to non-invasively estimate tendon dynamics in vivo 
during human movement. Biomechanics researchers typically use ultrasound imaging methods to 
track a feature of a muscle tendon unit (MTU), map this experimental data onto a conceptual model of 
the MTU, and finally use tendon dynamic estimates to draw conclusions about the function of tendon. 
However, ultrasound-based tendon estimates remain challenging to validate, and it was previously 
unknown which ultrasound-based estimation methods are most accurate, and under what MTU force 
or displacement conditions do these methods yield reliable estimates of tendon dynamics. 
 
The primary contribution of my work in this chapter is the discovery that two commonly-used 
ultrasound based methods for estimating tendon dynamics yielded unrealistic shortening of tendon 
when the ankle plantarflexes beyond neutral. Specifically, I used B-mode ultrasound to image the 
gastrocnemius muscle fascicles and the gastrocnemius Achilles tendon muscle-tendon junction of 
eight healthy participants, while synchronously collecting motion capture and ground reaction forces, 
during three tasks involving different high/low MTU force and high/low MTU displacement. Next, I 
compare experimental muscle and tendon length changes to our expectations, using a common MTU 
model of a linear extension spring (tendon) acting in series with an actuator (muscle). During ankle 
dorsiflexion / plantarflexion with the foot in the air and during a standing heel raise, we unexpectedly 
estimated the Achilles tendon to shorten (by an average of 20 and 9 mm, respectively), inconsistent 
with expectations. Further, for the heel raise tasks, Achilles tendon length change estimates were 
different between the two ultrasound methods.  
 
My discovery that current ultrasound based methods yielded unexpected shortening of tendon when 
the ankle plantarflexes exposes a key knowledge gap in how the scientific community experimentally 
estimates and/or conceptually models MTU dynamics in vivo. Identifying this knowledge gap is 
particularly important because many locomotor tasks of interest involve ankle plantarflexion beyond 
neutral (e.g. walking, running). As first author, I published “Ultrasound estimates of Achilles tendon 
exhibit unexpected shortening during ankle plantarflexion” in Journal of Biomechanics in 2018. 
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1.2.2 Chapter 3 Contributions 

 
Chapter 3 explores the relationship between ground reaction force (GRF) metrics and tibia bone 
loading during running across speeds and slopes. It is common for both researchers and wearable 
device developers to assume, report, or interpret GRF metrics to signify increased bone loading or 
associated injury risk. While it is established that the GRF is not equivalent to the force experienced by 
structures inside the body, it was unknown if running is a special case, such that increases in GRF are 
strongly correlated with increases in tibial bone load.  
 
The primary contribution of my work in this chapter is identifying that GRF metrics should not be 
assumed to be a surrogate for tibia bone loading or associated overuse injury risk while running 
across speeds and slopes. Specifically, 10 runners participated in a motion analysis study in which four 
vertical GRF metrics (impact peak, loading rate, active peak, impulse) and two tibial force metrics 
(peak, impulse) are estimated across a range of running speeds and slopes. Most correlations between 
GRF metrics and tibial metrics were negligible, weak, or moderate. For instance, correlating GRF 
impact peak and loading rate (two metrics commonly used in the biomechanics / sports / wearable 
device communities to infer injury risk) with peak tibial load resulted in average correlations of r = -
0.29±0.37 and r = -0.20±0.35 (inter-subject mean and standard deviation), respectively. 
 
My discovery that GRF metrics should not be assumed to be an indicator of tibia bone load highlights 
the need for more targeted attempts to monitor loading on specific internal structures in order to 
more effectively monitor overuse injury risks in daily life. As first author, I published “Ground reaction 
force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: 
Implications for science, sport and wearable tech” in PLoS ONE in 2019.  
 

1.2.3 Chapter 4 Contributions 

 
Chapter 4 explores using wearable sensors to monitor tibia bone loading when running across speeds 
and slopes. As highlighted in Chapter 3, many metrics from wearable sensors are generally not 
indicative of, or strongly correlated with, the loads experienced by most musculoskeletal structures in 
the body. Given the exciting opportunities wearables provide for daily non-invasive monitoring of 
human movement, a key question to address is: How can we combine data from a few wearable 
sensors to more accurately estimate tibia bone loading?  
 
The primary contribution of my work in this chapter is that I developed and validated a novel 
method for fusing wearable sensor data to more accurately estimate peak tibial bone force, 
compared to conventional methods using a single wearable metric. Using idealized wearable data, or 
lab-based data distilled to the types of signals feasibly measured with wearables, I develop a physics-
based algorithm that reduces force estimation error by a factor or two, and a machine learning 
algorithm that reduced force estimation error by a factor of four, compared to approaches that use 
GRF loading rate of other single variable metrics. These algorithms would require just three pieces of 
wearable sensor hardware: a pressure sensing insole and inertial measurement units on the foot and 
shank. 
 
By creating these algorithms that combine wearables, musculoskeletal biomechanics and machine 
learning, I provide a foundation for developing more accurate tools for monitoring musculoskeletal 
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loading in applied situations. As first author, I published “Combining wearable sensor signals, machine 
learning and biomechanics to estimate tibial bone force and damage during running” in Human 
Movement Science in 2020. A patent related to this work titled “wearable device to monitor 
musculoskeletal loading, estimate tissue microdamage and provide injury risk biofeedback” was filed 
in 2019.  

 

1.2.4 Chapter 5 Contributions 

 
Chapter 5 explores developing a practical and accurate wearable solution for monitoring low back 
loading during manual lifting tasks. To supplement time-consuming ergonomic assessment and 
provide tools for personalized daily monitoring of injury risk, there remains a need for automated, 
unconstrained, and widespread monitoring of low back loading in workplace environments.  
 
The primary contribution of my work in this chapter is that I identify, develop, and validate a 
practical and accurate tool for monitoring low back loading with wearable sensors. Using idealized 
wearable data, I identify a promising reduced subset of wearable sensors (trunk inertial measurement 
unit and pressure-sensing insoles) that when combined with a machine learning algorithm can capture 
key trends in lumbar moment across a broad range of manual lifting tasks. This solution accurately 
captures changes in low back loading when lifting objects of varying masses, providing added 
capabilities over single sensor solutions that emphasize posture and motion. Additionally, this chapter 
provides benchmark results using real wearable sensors and I identify that additional signal processing 
or hardware development may be necessary to leverage signals from pressure sensing insoles for this 
application.  
 
The algorithms I create for monitoring low back loading offer a unique, wearable tool for building our 
understanding of low back loading during strenuous and repetitive tasks, for monitoring overuse injury 
risk in real world environments, and for developing new interventions. These findings will be 
submitted to Sensors Special Issue "Advances in Design and Integration of Wearable Sensors for 
Ergonomics” in late December 2020.  A provisional patent related to this work titled “System and 
Method for Monitoring Back Loading or Damage, and Providing Biofeedback or Injury Risk 
Assessment” was submitted in 2020.  
 

1.2.5 Summary of Contribution Deliverables  

 
Manuscripts 

 
Matijevich, E. S., Branscombe, L. M. and Zelik, K. E. (2018). Ultrasound estimates of Achilles 
tendon exhibit unexpected shortening during ankle plantarflexion. J Biomech. 72, 200-206. 
https://doi.org/10.1016/j.jbiomech.2018.03.013 
 
Matijevich E. S., Branscombe L. M., Scott L. R., Zelik K. E. (2019). Ground reaction force metrics 
are not strongly correlated with tibial bone load when running across speeds and slopes: 
Implications for science, sport and wearable tech. PLoS ONE 14(1): e0210000. 
 
Matijevich, E. S., Scott, L. R., Volgyesi, P., Derry, K. H., & Zelik, K. E. (2020). Combining wearable 
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sensor signals, machine learning and biomechanics to estimate tibial bone force and damage 
during running. Human Movement Science. 74: 102690. 
 
Matijevich, E. S., Volgyesi, P., & Zelik, K. E. Estimating low back loading over a range of manual 
lifting tasks using a small number of wearable sensors. Planned Submission.  

 
Conference Abstracts 

 
Matijevich, E. S., Branscombe, L. M. and Zelik, K. E. Are ultrasound-based estimates of Achilles 
tendon kinematics consistent with the expected behavior of a passive elastic tissue in series 
with muscle? International Society of Biomechanics, July 2017, Brisbane, Australia & American 
Society of Biomechanics, August 2017, Boulder, CO, USA. 
 
Matijevich, E. S., Branscombe, L. M., Scott, L. R., and Zelik, K. E. Beyond Ground Reaction 
Forces: Towards Wearable Tech to Monitor Bone Loading & Prevent Injury. American Society 
of Biomechanics Annual Conference, August 2018, Rochester, MN, USA. 
 
Matijevich, E. S., Branscombe, L. M., Scott, L. R., and Zelik, K. E. Beyond Ground Reaction 
Forces: Towards a Wearable Device for Monitoring Bone Stress, Preventing Stress Fractures. 
American Congress of Rehabilitation Medicine, September 2018, Dallas, TX, USA. 
 
Matijevich, E. S., Branscombe, L. M., Scott, L. R., and Zelik, K. E. Wearables and injury 
prevention: the pitfalls and opportunities for monitoring musculoskeletal loading. ISB/ASB 
Conference, August 2019, Calgary, Canada & Footwear Biomechanics Symposium, July 2019, 
Calgary, Canada. 
 
Matijevich, E. S., Scott, L. R., Volgyesi, P., Derry, K. H., & Zelik, K. E., Multi-sensor fusion 
algorithms offer a promising approach for monitoring tibia bone damage over multiple 
workouts. Mid-South Movement Biomechanics Conference, February 2020, Memphis, TN, 
USA.  

 
Patent Applications  

 
Wearable device to monitor musculoskeletal loading, estimate tissue microdamage and provide 
injury risk biofeedback.  PCT/US2019/029790 
 
System and Method for Monitoring Back Loading or Damage, and Providing Biofeedback or 
Injury Risk Assessment. U.S. provisional patent application no. 63/058,066 (2020).  
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2 Ultrasound estimates of Achilles tendon exhibit unexpected shortening during ankle 
plantarflexion 

 

2.1 Abstract 

 
The purpose of this study was to investigate Achilles tendon (AT) length changes during a series of 
tasks that involved combinations of higher/lower force, and larger/smaller length changes of the 
medial gastrocnemius muscle-tendon unit (MTU). We sought to determine if common ultrasound-
based estimates of AT length change were consistent with expectations for a passive elastic tendon 
acting in series with a muscle. We tested 8 healthy individuals during restricted joint calf contractions 
(high force, low displacement), ankle dorsi-/plantar-flexion (DF/PF) with the foot in the air (low force, 
high displacement), and heel raises (high force, high displacement). We experimentally estimated AT 
length change using two ultrasound methods, one based on muscle-tendon junction (MTJ) tracking 
and one based on muscle fascicle (MF) tracking. Estimates of AT length change were consistent with 
model expectations during restricted calf contractions, when the MTU underwent minimal length 
change. However, estimates of AT length changes were inconsistent with model expectations during 
the ankle DF/PF and heel raise tasks. Specifically, the AT was estimated to shorten substantially, often 
10-20 mm, when the ankle plantarflexed beyond neutral position, despite loading conditions in which 
a passive, stiff spring would be expected to either lengthen (under increasing force) or maintain its 
length (under low force). These unexpected findings suggest the need for improvements in how we 
conceptually model and/or experimentally estimate MTU dynamics in vivo during motion analysis 
studies, particularly when the ankle plantarflexes beyond neutral. 
 

2.2 Introduction 

 
The Achilles tendon (AT) is a passive elastic structure that facilitates safe [25], [26] and economical 
[27]–[32] locomotion, and which informs the development of assistive and rehabilitative interventions 
[33], [34]. Ultrasound provides a means to non-invasively estimate AT kinematics in vivo during human 
movement. AT kinematics have also been combined with estimates of AT force to compute tendon 
energy storage and return, which provides additional insights on the functional benefits of tendons, 
and their interplay with muscle mechanics [35]–[38]. Although these ultrasound-based tendon 
estimates have been employed for decades, estimating AT kinematics and kinetics in vivo remains 
challenging to validate [39], [40], which can confound scientific interpretation of movement 
biomechanics. Critical questions remain, including: which (of several) ultrasound-based estimation 
methods are most accurate, and under what circumstances do these methods yield reliable estimates 
of tendon dynamics. 
  
Multiple ultrasound tracking methods have been developed and employed on humans and animals to 
study the AT and other MTU dynamics. Certain methods estimate the distance from the muscle-
tendon junction (MTJ) to the tendon’s distal insertion [36], [41]–[44]. Other methods seek to track 
muscle fascicle (MF) length, then subtract muscle length from estimates of overall muscle-tendon unit 
(MTU) length [45], [46] to approximate tendon kinematics [35], [40]–[42], [47]–[51]. Yet other 
methods quantify local elongations of the tendon [52]–[55]. While the tracking methods themselves 
rely on slightly different methodological assumptions, researchers typically map experimental data 
onto a similar conceptual model of the MTU and adopt a similar set of assumptions when interpreting 
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the results. Several common model assumptions include: the AT acts longitudinally in series with 
muscle [30], [49], [56], [57], individual MTUs can be analyzed in isolation [56], and MTU length is 
primarily a function of joint angle [45], [46]. 
 
A variety of methodological factors can affect ultrasound estimates of tendon dynamics [40]. 
Experimental inconsistencies (e.g., in stiffness and hysteresis, [39]) and oddities (e.g., AT estimated to 
return more energy than it stores, despite being a passive structure, [47], [58]) in the published 
literature suggest that ultrasound estimates may be prone to errors. Ultrasound methods, or model 
assumptions, may begin to breakdown under different mechanical loading conditions or movement 
tasks, but this has not explicitly been tested. Therefore, the purpose of this study was to investigate a 
series of movement tasks that involved combinations of higher or lower MTU force, and larger or 
smaller MTU length changes of the medial gastrocnemius (MG), to determine if common ultrasound-
based estimates of AT kinematics were consistent with expectations for a passive spring-like tendon 
acting in series with a muscle. In this study, we estimated AT kinematics using two common 
ultrasound-based tracking methods, MTJ and MF (summarized above, and detailed in Methods); thus, 
a secondary aim was also to compare the consistency of results between these methods. 

 

2.3 Methods 

 

2.3.1 Subjects 

 
Eight healthy subjects participated (5 M / 3 F, age = 21 ± 2 years, mass = 77 ± 12 kg, height = 1.79 ± 
0.04 m). Each subject performed a series of movement tasks while lower-body kinematics and ground 
reaction forces, as well as B-mode ultrasound of the MG MFs and MG-AT MTJ were collected (Figure 
2.1). Electromyography (EMG) of the MG, lateral gastrocnemius (LG), soleus (SOL), and tibialis anterior 
(TA) was also recorded (further detailed in Chapter 2 Supplemental Material). All subjects gave 
informed consent to the protocol, which was approved by the Institutional Review Board at Vanderbilt 
University. 
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Figure 2.1 Experimental methods. (a) B-mode ultrasound was collected synchronously with motion 
capture, electromyography (EMG), and ground reaction force data. (b) MTJ tracking. The ultrasound 
transducer (gray box) was placed over the MTJ of the MG muscle and AT. AT length change was 
estimated as changes in the straight-line distance from the MTJ to the calcaneus. (c) MF tracking. The 
transducer was placed over the MG muscle belly. Longitudinal MG length change was calculated from 
MF length (dotted white line) corrected by the cosine of the pennation angle. Pennation angle was 
defined as the angle between MF and the superficial fascia (solid white line). MTU length change was 
estimated from a regression equation based on joint angles.  
 

2.3.2 Experimental Protocol 

 
Subjects performed tasks that involved combinations of high or low force on the MTU, and large or 
small MTU length changes. The terms “high” or “low” force and “large” or “small” length change are 
used to signify magnitudes relative to other tasks tested. Restricted joint calf contractions involved 
high force and small length changes of the MTU (Figure 2.2a). Ankle dorsiflexion/plantarflexion 
(DF/PF) with the foot in the air involved low force and large length changes of the MTU (Figure 2.2b). 
Heel raises involved high force and large length changes of the MTU (Figure 2.2c). Prior to data 
collection, each subject walked ~300 steps to pre-condition their AT [43]. For each task, about 10 
cycles were performed to a metronome, paced at 40 beats per minute, to ensure a slow and smooth 
motion with minimal soft tissue dynamics. 
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Figure 2.2 Experimental tasks. (a) Restricted joint calf contractions, involving high force and small 
MTU length change (ΔMTU). Subjects were seated on a stool with a rigid bar affixed above their knees, 
restricting both ankle and knee rotation. The stool and rigid bar were positioned such that the knee 

was flexed about 90 and the ankle was in the neutral (90) position. The subject was relaxed, then 
contracted their calf muscles to push upward against the bar, then returned to a relaxed state. Gray 
arrows indicate ankle joint angle (θ) and knee joint angle (ϕ) conventions (b) Ankle DF/PF with foot in 
the air, involving low force and large ΔMTU. Subjects stood on their left foot with their right foot off 
the ground. Subjects began with their ankle in neutral position, then dorsiflexed their ankle, then fully 
plantarflexed their ankle, then returned to neutral. (c) Heel raises, involving high force and large 
ΔMTU. Subjects stood flat-footed with normal posture, then contracted their calf muscles to rise up 
off their heels, then relaxed to return to the flat-footed posture. Green arrows indicate motion.  
 

2.3.3 Kinematics 

 
Kinematics were collected at 100 Hz (Vicon), then low pass filtered at 6 Hz (3rd order, zero-lag 
Butterworth) prior to computing joint angles. 4 markers were placed bilaterally on the pelvis, and 2 
bilaterally on the greater trochanters. Additional markers were placed unilaterally on the right limb: 4 
on each segment (thigh, shank, foot), 2 on the lateral and medial femoral epicondyles, and 2 on the 
lateral and medial malleoli. Functional joint centers were computed using C-Motion Visual3D software 
and joint angles were calculated using the convention described in [45]; neutral ankle position (foot 

orthogonal to shank) was defined as 90, and fully extended knee was defined as 0. Increasing ankle 
angles indicated increasing dorsiflexion, and increasing knee angles indicated increasing flexion (Figure 
2.2a). 
 

2.3.4 Kinetics 

 
Ground reaction forces were collected independently under each foot at 2000 Hz during heel raises 
only, using a force-instrumented split-belt treadmill (Bertec). Forces were low-pass filtered at 15 Hz 
(3rd order, zero-lag Butterworth). 
 
 

2.3.5 Ultrasound 
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B-mode ultrasound was used to image the MG-AT MTJ or the MG MFs (Figure 2.1b,c). Images were 
collected at approximately 60 Hz in B-mode with a 60 mm field of view and 50 mm depth (Echo Blaster 
128, LV7.5/60/128Z-2 transducer, Telemed). Ultrasound data were synchronized with the other 
measurement modalities via an analog trigger (Figure 2.1a), using time stamp data and a 
synchronization time delay that was quantified in preliminary experiments (similar to Rousseau et al., 
2006). The ultrasound transducers were localized (position and orientation) in the lab reference frame 
using a custom 3D-printed fixture with motion capture markers [60]. For subjects 1-4, a single 
ultrasound transducer was positioned to track the MTJ, and each task was performed. Directly 
afterwards, tasks were repeated with the transducer positioned to track the MG MFs. Prior to data 
collections on subjects 5-8, a second (identical) ultrasound system was acquired, and for these 
subjects, MFs and MTJ were imaged simultaneously. 
 

2.3.6 Data Analysis 

 
Muscle, AT and MTU length changes of the MG were estimated using established MTJ tracking 
methods [36], [41], [42], and MF tracking methods [35], [40]–[42], [47]–[51]. The MG MTU length 
change was estimated from a regression equation based on ankle and knee kinematics [45]. Via the 
MTJ tracking method, AT length change was estimated using the straight-line distance from the MTJ 
(tracked in the ultrasound images, then localized in the motion capture reference frame) to the 
calcaneus (tracked with motion capture, Figure 2.1b). MG muscle length change was then estimated 
by subtracting AT length change from the overall MTU length change. Via the MF tracking method, MG 
muscle length change was estimated from MF length changes corrected by pennation angle. AT length 
change was then estimated by subtracting MG length change from MTU length change (Figure 2.1c). 
See Chapter 2 Supplemental Material for further details on these tracking methods. AT force was 
estimated for the heel raise task using standard inverse dynamics to estimate ankle moment, then 
assuming a constant AT moment arm to estimate AT force, similar to [35], [38].  
 
To address the primary aim of this study, AT length change waveforms were qualitatively compared 
against expectations for a passive tendon acting in series with a muscle (expectations detailed below). 
Ultrasound and force data were each resampled to 100 Hz to match motion data. Data from each task 
cycle were normalized to 1000 data points (representing 0-100% cycle). For each task, on a subject-
specific basis, data were averaged over five sequential cycles. Muscle, AT and MTU length changes 
were non-dimensionalized (divided by subject-specific shank length to account for size differences 
between subjects) before computing inter-subject means and standard deviations. For reporting 
purposes, length change results were re-dimensionalized by multiplying by average subject shank 
length (424 mm). Maximum AT lengthening and maximum AT shortening over an average cycle were 
computed as summary metrics for each task. 
 
To address the secondary aim, we computed the Pearson correlation between average AT length 
change waveforms estimated from MTJ and MF tracking methods. Correlation coefficients were 
computed for each task and averaged across subjects. 

2.4 Model Expectations 

 
A common MTU model was used to determine the expected AT behaviors during each task. This 
simple model is comprised of a passive linear extension spring (representing tendon) acting in series 
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with an actuator (representing muscle). Here we briefly summarize expectations (Figure 2.3). See 
Chapter 2 Supplemental Material for detailed rationale. During the restricted calf contraction (high 
MTU force, small MTU length change), the AT was expected to lengthen, with magnitude roughly 
equal to longitudinal muscle shortening. During the ankle DF/PF task (low MTU force, large MTU 
length change), the AT was expected to exhibit negligible length change. During heel raises (high MTU 
force, large MTU length change), the AT was expected to lengthen as MTU force increased; albeit with 
a double-peak length change profile that followed the expected AT loading profile. 
 

2.5 Results 

 

2.5.1 Restricted Joint Calf Contractions  

 
As expected, we estimated AT lengthening and MG muscle shortening for all subjects and both 

tracking methods (Figure 2.3, top row). On average, the AT lengthened a maximum of 5.4  3.1 mm 

for the MTJ method and 8.4  3.1 mm for the MF method (Table 2.1, N=7). Muscle shortening 
magnitude was typically slightly larger than AT lengthening (Figure 2.3, top row). One subject was 
omitted from analysis of this task due to negligible MG activation and length change. AT length 

changes were strongly correlated between MTJ and MF methods (r = 0.90 0.07, with min = 0.83, max 
= 0.99, N=7). 
 

2.5.2 Ankle DF/PF with Foot in the Air  

 
Contrary to expectations, we estimated substantial AT shortening for all subjects (Figure 2.3, middle 

row). Maximum shortening was 19.4  8.8 mm for the MTJ method, and 19.7  5.6 mm for the MF 

method (Table 2.1, N=8). AT shortening was roughly proportional to ankle angle for angles <90 

(Figure 2.4, left column). For ankle angles >90, AT length changes were small, typically less than a few 
millimeters, as expected. AT length changes were strongly correlated between MTJ and MF tracking 

methods (r = 0.91  0.10, with min = 0.71, max = 0.98, N=8). 
 

2.5.3 Heel Raises 

 

For the MTJ method, the AT was estimated to lengthen slightly (3.4  1.7 mm) at the beginning of the 

movement cycle, and then to shorten substantially (9.3  5.6 mm, Table 2.1, N=8). This large 
shortening was inconsistent with the expected behavior of the AT under these loading conditions 
(Figure 2.3, bottom row and Supplemental Figure 2.5). For most subjects, we again observed a 

roughly linear relationship between AT length change and ankle angles for angles <90 (Figure 2.4, 
right column). For the MF method, AT length change estimates varied greatly across subjects. Some 
subjects exhibited primarily tendon lengthening and others primarily tendon shortening 
(Supplemental Figure 2.6). Comparing MTJ vs. MF methods, we found high inter-subject variability 

and that AT length changes were only weakly correlated, on average (r = 0.44  0.45, with min = -0.60, 
max = 0.80, N=8, Supplemental Figure 2.6).  
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See Chapter 2 Supplemental Material for kinematics and EMG results. 
 

 

 
Figure 2.3 Expected vs. subject-averaged results. Rows indicate each task. (a) Expected behaviors of 
the MG muscle (dashed red), AT (thick blue) and MTU (thin black) based on a simple model of the 
MTU, consisting of a passive extension spring (tendon) acting in series with an actuator (muscle). 
Expectations are qualitative, so no units are provided on axes. Experimental results from the (b) MTJ 
tracking method and (c) MF tracking method. Depicted are inter-subject means (lines) and standard 
deviations (shaded regions). Length change waveforms (in mm) are plotted as a percentage of each 
movement cycle.  
 
 
 
 
Table 2.1 Maximum and minimum AT length changes for each task.Positive values indicate tendon 
lengthening and negative values indicate tendon shortening compared to length at 0% cycle. Data 
were non-dimensionalized (divided by subject-specific shank length), then averaged across subjects, 
and finally re-dimensionalized (multiplied by average shank length across subjects) for reporting 

purposes. All values are in mm, mean  standard deviation. 
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 restricted joint (N=7) ankle DF/PF (N=8) heel raises (N=8) 

 MTJ MF MTJ MF MTJ MF 

AT max 5.4  3.1 8.4  3.1 1.4  1.0 1.8  1.9 3.4  1.7 9.5  7.1 

AT min -0.5  0.4 -0.4  0.5 -19.4  8.8 -19.7  5.6 -9.3  5.6 -5.3  5.5 

 
 

 
Figure 2.4. AT length change and ankle angle data for a representative subject. Results for the MTJ 
tracking method are shown for ankle DF/PF task (left column) and heel raises (right column). (a) AT 
(thick blue), muscle (dashed red) and MTU (thin black) length changes vs. movement cycle. (b) Ankle 
angle vs. movement cycle. 90° signifies neutral position, and decreasing angles indicate plantarflexion. 
(c) AT length change vs. ankle angle plotted only when the ankle was plantarflexed beyond neutral 
(<90°, white background of (b)). During these periods, the AT shortened proportionally (roughly 
linearly, dashed line) with decreasing ankle angle.   

2.6 Discussion 

 
We found that AT kinematics were highly inconsistent with model expectations when the MTU 
underwent large length changes due to ankle plantarflexion beyond neutral. For instance, the AT was 
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estimated to shorten substantially during the ankle DF/PF task (by an average of about 20 mm, Figure 
2.3, middle row), despite being a stiff passive structure under low force. Although ultrasound-based 
estimates of AT kinematics were consistent with our model-based expectations when the MTU 
underwent minimal length changes, scenarios in which the ankle joint is restricted are of limited utility 
for studying locomotion. The observed incongruence between the experimental estimates of AT 
length change and the model-based expectations represents a key obstacle to the research field in 
terms of confidently interpreting tendon function during movement tasks that involve non-negligible 
ankle plantarflexion. These non-intuitive findings call attention to a pressing need, and important 
opportunity, to develop improved experimental estimation methods and/or conceptual models of 
MTU dynamics.  
 

2.6.1 Unexpected Tendon Shortening  

 
The most striking and unexpected observation was that substantial AT shortening was estimated as 

the ankle plantarflexed beyond the neutral position. At ankle angles <90, there was a surprisingly 
linear relationship between ankle angle and AT length change, such that with more plantarflexion the 
AT shortened proportionally (Figure 2.4). This relationship was observed consistently for all subjects 
during the ankle DF/PF task, and for about half of the subjects during the heel raise task. Our 
observations were qualitatively consistent with [61] who estimated AT shortening of up to 13 mm 

when the ankle plantarflexed 20 beyond neutral. At ankle angles >90 (i.e., more dorsiflexed), the AT 
length change estimates in our study were more consistent with model-based expectations (i.e., small 
length changes under low force, Figure 2.3, middle row). 
 
These findings have potential implications for the interpretation of AT function during locomotor tasks 
that involve substantial ankle plantarflexion. During walking, energy storage occurs primarily at ankle 

angles >90, i.e., ankle angles in this study when we observed expected AT elongations. However, 

energy return occurs over a larger range of motion that includes angles <90 [35], [47], [50], i.e., ankle 
angles when we observed unexpected AT shortening. It may be that AT shortening (and therefore 
energy return) is overestimated when employing the ultrasound methods described in this study. It is 
often presumed that the AT accounts for the vast majority of positive ankle work near the end of 
stance in human gait (e.g.  [27], [29], [62], [63]). However, it has also been documented that common 
ultrasound-based methods can estimate 2-5 times more AT energy return than energy storage, which 
is implausible for a passive tendon [58]. Based on findings our current study, and also observations 
from other researchers (using separate lines of reasoning and observation, e.g. [64]), it may be 
necessary to further explore the relative contribution of the AT to ankle work generation in human 
gait. 
 
It is challenging to pinpoint the precise reason(s) for the unexpected AT shortening estimates, though 
primary source(s) of error may reside in the assumed MTU model and/or experimental methods. 
Collecting data and mapping results onto a model requires many choices (e.g., which features of the 
musculoskeletal system to track and how to associate measurements with model features). A 
simplified model of the MTU must also be assumed to fuse ultrasound, motion and force data. A 
variety of methodological choices and/or model assumptions could contribute to unexpected AT 
length change estimates. The impact of these choices may be highly dependent on the task, MTU 
range of motion or loading pattern. Interestingly, the ankle DF/PF task had consistent results between 
methods (Figure 2.3), suggesting errors may reside in a shared assumption between methods. On the 
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contrary, inconsistent results in the heel raise task (Figure 2.3) suggest errors may be in assumptions 
unique to each method. Unexpected AT shortening in both the ankle DF/PF and the heel raise task 
(Figure 2.4) may further suggest errors in the shared conceptual model. Follow-up studies are needed 
to unmask the primary culprit(s).  
 

2.6.2 Where Might the Simplified Conceptual Model Go Wrong? 

 
A foundational assumption of the MTU model is that a tendon is loaded in series with a muscle. 
However, some researchers have argued against this assumption, noting that the actual loading 
behavior may be complex and highly non-intuitive [65], [66]. Thus, the 1-dimensional, in-series model 
may fail to capture important dynamics. Another implicit model assumption is that MTUs can be 
studied in isolation, ignoring forces from adjacent MTUs. There is some evidence suggesting that 
muscle loading is borne primarily along individual tendon fascicles [55], [67]. However, there also exist 
intermuscular interactions via epimuscular linkages [68], as well as sheet-like aponeuroses and other 
connective tissues that interconnect the plantarflexors, and thus transverse forces and biaxial strain 
may affect tendon dynamics [69], [70]. 
 

2.6.3 Where Might the Experimental Methods Go Wrong? 

 
Each method provides a partial snapshot of the MTU. Various assumptions in relating features of the 
ultrasound images to actual tissue motion could introduce errors. For the MF method, correcting 
localized muscle fascicle length change by pennation angle is assumed to provide a reasonable 
approximation of overall muscle length change, however this may not always be valid [71], [72]. For 
the MTJ method, it is assumed that the junction feature tracked in each ultrasound frame is 
representative of the overall MTJ displacement. However, the MTJ is a complex 3D interweaving of 
muscle and tendinous tissues [72], making it difficult to precisely track the same feature in each frame, 
or to comprehensively capture tissue dynamics. For both methods, the AT is assumed to have a linear 
connection between the MTJ and calcaneus, but this assumption begins to break down if the tendon 
curves due to muscle bulging or wrapping around the calcaneus, or if the tendon becomes slack. See 
Chapter 2 Supplemental Material for extended discussion of these potential confounds and how 
much of the unexpected tendon shortening they might explain. 
 

2.6.4 MTJ vs. MF Tracking Methods 

 
As evident in Figure 2.3, and confirmed via correlation analysis, the MTJ and MF methods yielded 
similar AT length change estimates during restricted joint calf contraction and ankle DF/PF tasks. 
However, notable differences in AT length change were observed for most subjects during heel raises 
(Figure 2.3, bottom row and Supplemental Figure 2.6). The inconsistent results during the heel raise 
task (high force, large MTU displacement) suggest that using different methods to estimate AT 
behavior during other tasks involving high force and large MTU displacement may lead to disparate 
results. Indeed, prior studies of walking [58], running [42] and other plantarflexor tasks [73] provide 
more direct evidence supporting this implication. 
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2.6.5 Limitations 

 
This study evaluated the consistency between simple model expectations and experimental estimates 
of AT length change. We did not collect ground truth tendon length change or force data, as these 
would require invasive sensor implantation, and non-invasively partitioning individual muscle forces 
remains a grand challenge in the field. Experimental tasks were carefully selected to avoid the need for 
precise ground truth measures. Results were interpreted in the context of whether the AT lengthened 
or shortened under higher or lower loading conditions. Methodological limitations related to the MTJ 
and MF methods were discussed above and have been well-documented in prior literature [40], [58]. 
For Subjects 1-4, the MFs and MTJs were not imaged simultaneously; therefore the task performance 
varied slightly. 
 

2.7 Conclusion 

 
Our ability to correctly infer muscle and tendon function depends on using well-validated methods 
that can map experimental data onto a model, and employing a model that adequately captures the 
salient features and dominant dynamics of the physiological MTU being studied. The AT is often 
conceptualized as an extension spring acting in series with muscle, and ultrasound imaging provides a 
non-invasive means of peering underneath the skin at these tendon dynamics. However, here we 
observed simple movement tasks in which the AT was empirically estimated to shorten despite loading 
conditions in which a passive spring would be expected to either stretch (under increasing force) or 
maintain its length (under low force). These unexpected findings suggest the need for improvements 
in how we conceptually model and/or experimentally estimate MTU dynamics in vivo during motion 
analysis studies, particularly when the ankle plantarflexes beyond neutral. 
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2.8 Abbreviations 

 
AT – Achilles tendon 
DF/PF – dorsiflexion/plantarflexion 
MF – muscle fascicle 
MG – medial gastrocnemius 
MTJ – muscle-tendon junction  
MTU – muscle-tendon unit 
GRF – ground reaction force 
EMG - electromyography 
LG – lateral gastrocnemius 
SOL – soleus 
TA - tibialis anterior 
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2.9 Chapter 2 Supplemental Material  

 

 
Supplemental Figure 2.5. Heel raise kinematics and kinetics.   (a) Ankle angle vs. movement cycle. (b) 
Estimated AT force vs. movement cycle. AT force (FAT) was estimated by dividing ankle moment (from 
standard inverse dynamics) by AT moment arm about the ankle and expressed as percentage of body 
weight (%BW). Depicted are inter-subject means and standard deviations (shaded regions). (c) 
Simplified moment balance about the ankle joint. The double-peaked AT force profile occurs because 
the AT has a roughly constant moment arm about the ankle whereas there is a dynamically-changing 
moment arm from the ankle to the center of pressure (the point of application of the ground reaction 
force, FGRF).  
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Supplemental Figure 2.6. Subject-specific results. AT (thick blue), MG muscle (dashed red) and MTU 
(thin black) length changes vs. movement cycle. Major columns are tasks. Unshaded columns show the 
MTJ method results and shaded columns show the MF method results. The top row represents the 
mean and standard deviation across subjects. Remaining rows each represent subject-specific average 
results.  
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2.9.1 MTJ Tracking Methods 

 
We estimated AT, muscle, and MTU length changes using previously published MTJ tracking methods 
[36], [41], [42]. The ultrasound transducer was placed over the MG-AT MTJ, then securely affixed to 
the shank using HypaFix® retention tape and ACE bandages (Figure 2.1b). To approximate AT origin, 
the characteristic “Y” of the MTJ was manually tracked in each ultrasound image. A calcaneus motion 
capture marker approximated AT insertion. A custom 3-D printed fixture attached to the transducer 
allowed tracking of its position and orientation with respect to the lab reference frame. The 
ultrasound field of view was assumed to be perpendicular to the longitudinal plane of the transducer. 
AT length was estimated as the straight-line 3D distance from the calcaneus to the MTJ. MG muscle 
length change was then approximated as the difference between MTU length change (from a 
regression equation based on ankle and knee angles,  [45]) and AT length change.  
 

2.9.2 MF Tracking Methods  

 
We estimated AT, muscle, and MTU length changes using previously published MF tracking methods 
[35], [40]–[42], [47]–[51]. The transducer was placed over the MG muscle belly, then securely affixed 
to the shank using HypaFix® retention tape and ACE bandages (Figure 2.1c). An automated affine flow 
algorithm was used to estimate time-varying length of an individual MG muscle fascicle [74]. Manual 
corrections of the fascicle endpoints were made for frames in which the automated calculation did not 
track the fascicle well, based on visual inspection of a trained researcher. If the fascicle extended 
beyond the field of view, the endpoint locations were estimated via linear extrapolation (i.e., by 
extending the lines of the fascicle and aponeuroses beyond the field of view and finding the 
intersection point). Pennation angle was calculated for each frame as the angle between the 
superficial fascia and the muscle fascicle. Changes in fascicle length were then corrected for pennation 
angle to approximate changes in MG muscle length along the muscle’s line of action. AT length change 
was then estimated as the difference between MTU length change (from a regression equation based 
on ankle and knee angles, 
 [45]), and MG length change.  
 

2.9.3 EMG Data Collection & Analysis  

 
EMG data were collected to supplement primary outcome measures, and used to confirm that muscle 
activity was consistent with loading expectations for each task. Surface EMG sensors (Delsys Trigno) 
were placed unilaterally on the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL), 
and tibialis anterior (TA). EMG signals were demeaned, high-pass filtered at 150 Hz, rectified, and low-
pass filtered at 10 Hz, and then normalized based on the maximum muscle activation magnitude that 
occurred during the three recorded tasks [75], [76]. The resulting EMG envelopes from each cycle 
were normalized to 1000 data points (representing 0 to 100% of the cycle). For each task, on a subject-
specific basis, EMG envelopes were averaged over five sequential cycles (Supplemental Figure 2.7b). 
For subjects in which MTJ and MF tracking trials were performed separately, EMG is only reported for 
the MF tracking trials.  
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Supplemental Figure 2.7. Kinematics and subject-specific EMG. (a) Ankle (solid green) and knee 
(dashed green) joint angles vs. movement cycle, averaged across eight subjects. (b) Medial 
gastrocnemius (MG, red), lateral gastrocnemius (LG, green), soleus (SOL, blue), and tibialis anterior 
(TA, orange), muscle activation vs. movement cycle. EMG magnitudes are reported as a percentage of 
the maximum activation observed during these three tasks. Each column is a task. Each row represents 
subject-specific average results.  
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2.9.4 Explanation of Model Expectations for Each Task  

 
Below we summarize the expected behaviors of a common MTU model: a passive linear extension 
spring (representing the AT and associated aponeurosis) acting in series with an actuator (representing 
the muscle). In this study the model represents the MG MTU, which spans distally from the calcaneus 
(heel), posteriorly across the ankle and knee joints, and then connects proximally to the thigh 
segment. Since experimental tasks were performed slowly (quasi-statically) dynamic effects due to 
inertia were ignored for this simple model. It was assumed that the extension spring remained linear 
and did not become slack (see Extended Discussion below on slack length). 
 
The restricted joint calf contraction task is akin to fixing each end of the MTU model, then ramping 
up/down the actuator force. As force increased, we expected that the actuator would shorten and the 
series spring would lengthen by an equal magnitude (Figure 2.3a, top row). Experimentally this task 
was achieved by affixing a rigid bar above the knee and thigh. All subjects, except one, showed 
activation of the MG, LG, and SOL that was in accordance with muscle forces ramping up and then 
down (i.e., the loading pattern assumed in order to derive model expectations). All subjects, except 
one (Supplemental Figure 2.7b, column 1), showed negligible TA activation, indicating that 
antagonistic muscle contraction was not a significant confounding factor. Subjects also exhibited 
minimal change in ankle angle (Supplemental Figure 2.7a, column 1), as expected due to the rigid bar. 
However, due to soft tissue deformation against the rigid bar, it was not possible to completely restrict 
joint motion [44], [77]. Nonetheless, the simplified model and experiment task were qualitatively 
consistent, each capturing the same main muscle and tendon length change behaviors. 
 
The ankle DF/PF with foot in air task was modeled by fixing the MTU at the proximal end, hanging a 
small mass at the distal end, then slowly driving the actuator to lift and lower the mass. With the foot 
in the air, relatively low AT force was expected, i.e., only force needed to counteract torque due to the 
mass of the foot about the ankle joint and to overcome any passive resistance from antagonistic 
MTUs.  The mass of the biological foot is about 1 kg and the center of mass of the foot is about 60 mm 
anterior to the ankle in neutral position. Assuming an anthropometric AT moment arm of about 50 
mm [38], [78], <<1 Nm of torque is needed to support the mass of the foot. Passive joint moments 
have been estimated to be relatively small across a range of ankle angles. For example, passive ankle 

moments are expected to be <5 Nm at ankle angles <90, and <10 Nm for the maximum dorsiflexion 
angles reached during this task (based on [79]). Again assuming an anthropometric AT moment arm, 
AT forces would typically be <100 N, and at most be about 200 N (which is only about 7% of the force 
experienced by the AT during walking at moderate speed, Bogey et al., 2005). Consistent with the 
expectation of low loading, EMG from the MG and other plantarflexors was relatively low throughout 
the entire DF/PF ankle range of motion (Supplemental Figure 2.7, column 2). Also, the TA exhibited 
activity during dorsiflexion beyond neutral, but was inactive during plantarflexion beyond neutral 
(Supplemental Figure 2.7b, column 2). Additional forces due to joint friction were assumed to be 
negligible, since experiments involved young, healthy subjects. AT stiffness values in literature are on 
the order of 130-470 N/mm [36], [63], [77], [81, p. 200], [82]. Due to these relatively low forces acting 
on a relatively stiff tendon, we expected AT length change to be small (i.e., less than a few mm) 
throughout the movement cycle of this DF/PF task (Figure 2.3a, middle row). 
 
Heel raises were modeled by fixing the MTU at one end, with the distal end free to move as the 
actuator shortened/lengthened under relatively large force. We assumed that there was low loading 
on the actuator and series spring at the beginning of the cycle, then forces increased. One might intuit 
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that the MTU force profile over the heel raise cycle would increase monotonically (as one lifts up from 
the flat footed posture), then plateau at some higher force while the heel was off the ground, then 
decrease force as a person returned back to foot-flat. The AT force profile is actually somewhat more 
complex: it is double-peaked due to the dynamically-changing moment arm from the ankle joint to the 
center of pressure (COP), the point of application of the ground reaction force (GRF). Beginning from 
foot-flat, as the calf muscles increase their force and lift the heels off the ground, the COP shifts 
anteriorly towards the distal end of the foot, increasing the ankle-to-COP moment arm and causing a 
peak in AT force. Then, as the foot rotates about the metatarsophalangeal joints, the ankle shifts 
anteriorly, decreasing the ankle-to-COP moment arm, and reducing the AT force. As the heel lowers, 
the cycle is reversed creating a second AT force peak. We confirmed this double-peaked force profile 
experimentally using motion and ground reaction force data (Supplemental Figure 2.5). AT moment 

arm varies slightly with ankle angle and muscle activation level, but for the ~30 of ankle plantarflexion 
during the heel raise task, the AT moment arm is expected to increase by less than 10 mm [78], [83]. 
Even with a 10 mm increase in moment arm, the AT force at peak plantarflexion (~50% cycle) would 
only be about 15% (~110 N) less than that estimated with a constant moment arm. Based on AT 
stiffness values in literature [36], [63], [77], [81, p. 200], [82], this reduction in tendon force would 
reduce tendon length by <1 mm. Regardless of the precise force profile, the key model takeaway is 
that we would expect the spring to lengthen proportionally with increasing MTU force (Figure 2.3a, 
bottom row). For the heel raise task, EMG results confirmed that all subjects increased activation of 
the MG, LG, and SOL as the heel began lifting off the ground (Supplemental Figure 2.7b, column 3), 
consistent with the model loading expectations summarized above. 
 

2.9.5 Post-Hoc Corrections to AT Length Change Estimate  

 
For most subjects, as they plantarflexed their ankle beyond neutral in the ankle DF/PF task we 
observed a roughly linear decrease in AT length (Figure 2.3, middle row). It was initially tempting to 
use this DF/PF task to derive an AT length change correction factor based on ankle angle to remove 
this trend; however, this approach may be ill-advised until the source of error is better understood; for 
reasons summarized below. Numerically, we could approximate a proportional relationship between 
ankle angle and AT length change (Figure 2.4, left column) during this low force task, and treat it as a 
correction factor. We could apply this correction factor, a function of ankle angle, by subtracting it 
from the AT estimates. As a result, AT length changes would become small throughout the entire 
DF/PF cycle (qualitatively consistent with model expectations). The correction factor derived from the 
low force task could also be used to adjust AT length change estimates from the heel raise task (Figure 
2.4, right column). This would shift the AT behavior towards lengthening, which would again make the 
experimental results more consistent with model expectations. However, this type of post-hoc 
adjustment to AT length change would also necessitate adjusting our estimate of either the muscle or 
MTU length change to compensate, in order to ensure that muscle length change plus tendon length 
change was still equivalent to overall MTU length change. Presently it is not clear if, or justified why, 
either the muscle or MTU estimate should be adjusted post hoc. Therefore, before applying any such 
correction factors we advise that it would be prudent to first discern why this AT length change vs. 
ankle angle trend exists at all. We anticipate that this deeper understanding will inform our conceptual 
model of MTU dynamics, or motivate specific refinements in the empirical methods used to estimate 
AT length change. 
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2.9.6 Extended Discussion of Slack Length & Straight-Line Tendon Assumption 

 

Slackening of the MG and/or AT ([49], [84], [85]) have been estimated to occur at about 20-40 of 

plantarflexion beyond neutral (i.e., at 50-70 in Figure 2.4), when the ankle is passively rotated. Thus, 
AT slackening may degrade the accuracy of tendon length estimates during the DF/PF task, a low force 

ankle rotation task, when ankle angle is less than about 50-70; highlighting the importance of 
considering slack length for certain tasks. However, slack length does not seem to explain the 

substantial tendon shortening (~10 mm) as the ankle plantarflexed from 90 to 70 in the DF/PF task, 
nor similar shortening reported in prior literature on passive ankle rotation [61]. Furthermore, slack 
length would not seem to explain the shortening observed during heel raises when the MG was 
actively contracting (Supplemental Figure 2.7b, column 3). Regression-based estimates of overall MTU 
length [45], [46] are based on cadaver studies, assuming straight-line approximations and that MTU 
length is only a function of joint angles [86]. Prior studies [87], [88], found that when using a linear 
approximation, the AT appeared to shorten by 3 mm more than when using an estimate that 

accounted for curvature (for 30 of plantarflexion beyond neutral). However, this 3 mm error was 

small compared to the 15 mm of AT shortening we observed for a similar 30 of plantarflexion (during 
ankle DF/PF, Figure 2.3, middle row). To approximate the effect of curvature on our estimates, we 
added a virtual waypoint 50 mm posterior to the ankle joint center that rotated with the foot 
segment. We then used the calcaneus, waypoint, and MTJ positions to calculate a piecewise tendon 
length. Using this piecewise tendon estimate accounted for less than 40% of the total shortening for 
both the ankle DF/PF and heel raise task at peak plantarflexion, indicating that curvature alone does 
not appear to explain the majority of the tendon shortening. Potential confounds discussed above do 
not reflect a comprehensive list. Other potential estimation issues have been described in prior 
literature (e.g., [40], [58], [66], [89]). 
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3 Ground reaction force metrics are not strongly correlated with tibial bone load when running 
across speeds and slopes: implications for science, sport and wearable tech 

 

3.1 Abstract 

 
Introduction: Tibial stress fractures are a common overuse injury resulting from the accumulation of 
bone microdamage due to repeated loading. Researchers and wearable device developers have sought 
to understand or predict stress fracture risks, and other injury risks, by monitoring the ground reaction 
force (GRF, the force between the foot and ground), or GRF correlates (e.g., tibial shock) captured via 
wearable sensors. Increases in GRF metrics are typically assumed to reflect increases in loading on 
internal biological structures (e.g., bones). The purpose of this study was to evaluate this assumption 
for running by testing if increases in GRF metrics were strongly correlated with increases in tibial 
compression force over a range of speeds and slopes. Methods: Ten healthy individuals performed 
running trials while we collected GRFs and kinematics. We assessed if commonly-used vertical GRF 
metrics (impact peak, loading rate, active peak, impulse) were strongly correlated with tibial load 
metrics (peak force, impulse). Results: On average, increases in GRF metrics were not strongly 
correlated with increases in tibial load metrics. For instance, correlating GRF impact peak and loading 
rate with peak tibial load resulted in r=-0.29±0.37 and r=-0.20±0.35 (inter-subject mean and standard 
deviation), respectively. We observed high inter-subject variability in correlations, though most 
coefficients were negligible, weak or moderate. Seventy-six of the 80 subject-specific correlation 
coefficients computed indicated that higher GRF metrics were not strongly correlated with higher 
tibial forces. Conclusions: These results demonstrate that commonly-used GRF metrics can mislead our 
understanding of loading on internal structures, such as the tibia. Increases in GRF metrics should not 
be assumed to be an indicator of increases in tibial bone load or overuse injury risk during running. 
This has important implications for sports, wearable devices, and research on running-related injuries, 
affecting >50 scientific publications per year from 2015-2017. 

 

3.2 Introduction 

 
Tibial stress fractures are a common type of overuse injury, associated with the accumulation of bone 
microdamage due to repeated submaximal loading that causes mechanical fatigue [90], [91]. There is a 
high prevalence of tibial stress fractures in military recruits [92], recreational and elite runners [93], 
[94], and other athletes [95]–[97]. Tibial stress fractures result in pain, healthcare costs and reduced 
physical activity [97], [98]. Moreover, because recovery from tibial stress fracture typically requires 
rest and/or ankle immobilization (often for 6-12 weeks), this injury commonly results in missed work, 
decreased productivity, and physiological distress [99].   
 
Factors that influence bone stress injury risk include the bone load intensity (magnitude, direction and 
duration of load), the rate of bone remodeling (influenced by length of activity and length of rest), and 
intrinsic factors (age, gender, bone density, geometry, mineral content, etc.) [9]. One potential way to 
reduce the incidence of bone stress injuries may be to monitor one or more of these risk factors in 
daily life, use bone fatigue models to estimate the damage accumulation, and then preemptively alert 
individuals of excessive damage accumulation. This approach might empower individuals, for instance 
runners, to modify training and allow the bone time to remodel and recover before an injury occurs. 
The challenge lies in how to implement this preventative solution, since direct measurements of bone 
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load intensity, bone remodeling, and intrinsic factors are impractical in daily life. In the context of tibial 
stress fractures, monitoring load intensity might be realized via indirect estimates: using wearable 
sensors that are capable of estimating tibial bone force. 
 
In the scientific literature, a number of lab-based motion analysis studies have sought to understand 
and predict overuse injury risks (to the tibia and other internal structures) by monitoring ground 
reaction force (GRF), as measured by a force plate under the foot [100], [101]. Increases in GRF 
metrics are routinely assumed to reflect increases in internal structure loading (e.g., tibial bone 
loading). In an attempt to apply this approach outside of the laboratory, a growing number of 
consumer wearable devices – targeted largely towards runners and athletes – have been developed 
that use sensors capable of capturing features or correlates of the GRF. Commonly, wearable devices 
use one or more of the following: (i) pressure-measuring insoles, which capture localized forces acting 
normal to the surface of each sensor, and can be summed to estimate a component of the GRF, (ii) 
accelerometers mounted on the foot or shank, which can provide a correlate of GRF impact peaks 
[102], [103] or loading rates [104], or (iii) accelerometers mounted on the pelvis, which can be 
analyzed to approximate the GRF active peak that occurs in midstance of running [20], [105]. 
Commercial wearable devices then attempt to use these GRF-correlated signals to provide 
musculoskeletal loading or injury risk feedback to the user.   
 
One limitation of current wearable devices (i.e., research and consumer wearables), as well as with the 
scientific running literature motivating them, is that they aim to understand, predict or prevent 
overuse injury risks solely by monitoring GRFs (or GRF correlates). However, GRF (the force between 
the shoe and the ground) is not the force experienced by structures inside the body, such as bones, 
muscles or joints [10], [13], [14], [106], [107]; and therefore GRF is not necessarily reflective of the 
actual repetitive loading that causes overuse injury to these internal structures. From a biomechanical 
perspective, there are several reasons why monitoring GRF to understand tibial bone loading or risk of 
tibial stress fracture is potentially problematic, a few of which are summarized below.  
 
First, the load on the tibial bone is generally much larger than the GRF. This is because the vast 
majority of bone loading is due to muscle contractions during locomotion, not due to GRF; a 
fundamental insight derived from the work of Giovanni Borelli in the 17th century [106]. During 
running, peak GRFs are typically 2-3 times body weight, whereas peak forces on the distal end of the 
tibia are typically 6-14 times body weight, as evidenced by gait analysis ([10], [13], Figure 3.1a) and 
modeling studies [14], [108]. Likewise, a cadaver study that simulated walking using a robotic gait 
simulator found peak GRFs of 1.1 times body weight, measured with a force platform under the foot, 
and peak tibial compression force of 4.1 times body weight, measured with a force transducer directly 
in series with the tibia [107]. 
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Figure 3.1 Examples of GRFs vs. tibial bone loading.  (a) Tibial bone compression force (green) is much 
larger than GRF (blue) during running due to forces from muscle contractions (red); adapted from [13]. 
Forces are reported in body weights (BWs). (b) Peaks in tibial force (at the ankle joint, green) do not 
temporally coincide with peaks in GRF (blue) during the triple jump; adapted from [109]. Note, the 
GRF impact peak is not depicted here because it was not reported in this prior study, but it would have 
occurred at 0% of the cycle. (c) Standing flat footed vs. standing on one's toes results in the same GRF 
(blue), but different tibial forces, due to calf muscle contraction force (red) [110].  
 
Second, peaks in GRF often do not coincide temporally with peaks in bone force. A GRF peak in 
running and jump landing often occurs at foot contact (impact peak), but tibial bone loading is typically 
small at this time. This is evidenced by in vivo bone stress and strain measurements [11], instrumented 
cadavers [107], musculoskeletal models [14], gait analysis studies [13], [111] and data from 
instrumented joint implants [112]. Peak tibial load in running generally occurs later in the movement 
cycle, near midstance, and is closer in timing to (though not necessarily coincident with) the second 
peak of the GRF (often termed active peak). In the triple jump, two peaks in ankle joint (distal tibia) 
contact force have been estimated to happen at very different times than the impact and active peaks 
in the vertical GRF during the hop phase, due to muscle forces around the joint (Figure 3.1b, [109]).  
 
Third, increases in tibial bone forces can occur without increases in GRF [113]. For example, standing 
flat-footed vs. standing on one’s toes results in the same GRF magnitude, but the latter can have much 
higher bone force due to calf muscle forces (Figure 3.1c, [110]). The GRF and tibial force are related 
through equations of motion [13], [14] which depend on other time-varying factors such as the center-
of-pressure under the foot, segment orientations, muscle contraction forces, and the direction of the 
GRF vector. There may be a subset of activities when increases in GRF metrics are indicative of 
increases in tibial bone loading; however, this is only expected in very special cases (e.g., if all the 
other terms in the equation of motion are constant, or nearly constant, or if changes in terms uniquely 
offset each other as to have negligible effect on total bone loading for a given subset of activities). 
 
Despite these limitations, the use of GRF metrics (e.g., peaks, loading rates) or correlates from 
wearable sensors (e.g., tibial shock) remains popular amongst researchers and commercial device 
developers aimed at identifying and reducing overuse injury risks. The advantage of using GRF metrics 
is that they are easy to measure non-invasively in the lab using force plates, or outside the lab with 
portable wearable devices (which are relatively cheap and easy to integrate into shoes and clothing). 
However, a key question remains unanswered: is running a special case, such that increases in GRF are 
strongly correlated with increases in tibial bone load? If so, then GRF metrics (or GRF-correlates from 
pressure-insoles or accelerometers) may indeed serve as a useful tool for monitoring tibial bone 
loading changes during running, supporting the approaches currently used in scientific research and 
commercial wearable devices. If not, then it would dissuade the use of GRFs as a surrogate for tibial 
bone loading, and suggest the need to move beyond GRF measures (and GRF-correlates) alone in 
order to effectively monitor overuse injury risks in daily life. The purpose of this study was to 
determine if higher GRFs were indicative of (i.e., strongly correlated with) higher tibial bone loads 
when running over a range of speeds and ground slopes. Because of the complex relationship between 
GRF and internal bone loading, we hypothesized that increases in common GRF metrics (impact peak, 
loading rate, active peak, impulse) would not be strongly correlated with increases in tibial bone load 
metrics (peak force and impulse) across this range of running conditions (i.e., r<0.8). 
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3.3 Methods 

 
Ten healthy subjects participated who each reported that they run a minimum of 10 miles per week (5 
male, 5 female; age: 24±2.5 years; height: 1.7±0.1 m; mass: 66.7±6.4 kg). All subjects gave written 
informed consent to the protocol, which was approved by the Institutional Review Board at Vanderbilt 
University. 
 
We selected a subset of running conditions that a recreational runner might encounter on a daily run. 
A fully comprehensive condition set (i.e., all plausible combinations of speed, ground slope, step 
frequency, footstrike pattern, footwear, terrain stiffness, fatigue level, etc.) was not feasible to test in 
lab. Thus, we had to select a subset of conditions to explore. We note that typical speeds and slopes 
will be different for each individual runner and across different runs/days (based on their fitness, 
training environment, etc.). Since there are no definitive criteria by which to select the subset of 
conditions, we chose a range of speeds and slopes that we felt was reasonable, practical and relevant 
based on the recreational runners we planned to test (Figure 3.2a). In an effort to maximize 
generalizability, each runner performed the same set of conditions. At slower speeds (2.6-3.0 m/s), we 
swept across the broadest range of slopes, from -9 to +9 degrees (Figure 3.2a). The highest speeds 
(3.4-4.0 m/s) were only performed on level ground to ensure all runners could complete the same 
conditions, to help limit the total number of conditions and to mitigate confounds due to fatigue 
(which we considered an interesting but separate investigation). Subjects wore their own personal 
running shoes. Each condition was performed on a treadmill for at least 30 seconds; ~10 seconds to 
adjust to the speed and slope, then data were recorded for 20 seconds. Breaks were taken between 
trials to adjust the treadmill slope, or if the subject requested a break for any reason. 
 
 
 

 
Figure 3.2 Summary of methods. (a) Each subject performed 30 running trials at a combination of 
speeds and slopes. (b) Experimental protocol involved subjects running on a force-instrumented 
treadmill while GRFs (blue vector) and lower-limb kinematics were recorded (white circles represent 
motion capture markers).  
 
We collected lower-limb kinematics and GRFs (Figure 3.2b). Kinematics were collected at 100 Hz 
(Vicon), then low pass filtered at 10 Hz (3rd order, zero-lag Butterworth). Four markers were placed on 
each segment (thigh, shank, foot), 2 on the lateral and medial femoral epicondyles, and 2 on the 
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lateral and medial malleoli. Functional joint centers, segment angles, and joint moments were 
computed using C-Motion Visual3D software. The GRFs under each foot were collected at 1000 Hz 
using a force-instrumented treadmill (Bertec). The GRFs were low-pass filtered at 15 Hz (3rd order, 
zero-lag Butterworth) prior to computing inverse dynamics, similar to [114]. However, to avoid 
smoothing out GRF impact transients, these data were low-pass filtered at 45 Hz (3rd order, zero-lag 
Butterworth) for extracting GRF metrics, similar to [115]. For each trial, individual stance phases were 
parsed out, outcome metrics (as detailed below) were computed on a step-by-step basis, and then 
averaged.  
 
We computed four vertical GRF metrics that are commonly reported in the running literature, with 
vertical defined with respect to the absolute lab reference frame (i.e., parallel to the gravity vector): 
Fvgrf,active (vertical GRF active peak), Fvgrf,impact (vertical GRF impact peak), VALR (vertical GRF average 
loading rate) and Jvgrf (vertical GRF impulse) (Figure 3.3a). Fvgrf,active was defined as the maximum 
vertical GRF during 40-60% stance. Fvgrf,impact was defined as the local maximum peak of vertical GRF 
between foot contact and Fvgrf,active. Foot contact was defined as when vertical GRF increased above 20 
N. If an impact peak was absent in more than half of the gait cycles for a trial, then average Fvgrf,impact 
was not calculated for that running condition. The number of running conditions for which a subject 
did display an impact peak in more than half the gait cycles was also recorded. The VALR was 
estimated as the change in vertical GRF for the first 25 ms after reaching a threshold of 50 N, a method 
that does not rely on the presence of an impact peak [116], [117]. Jvgrf was calculated as the time 
integral of the vertical GRF over stance. 
 

 
Figure 3.3 Outcome metrics. (a) Four commonly-used vertical GRF metrics: Fvgrf,impact: impact peak; 
VALR: vertical average loading rate; Fvgrf,active: active peak; Jvgrf: total vertical impulse. (b) Two tibial 
bone force metrics: Ftibia,max: maximum tibial compression force; Jtibia: tibial compression force impulse. 
Two additional force estimates are shown for reference: Fext: the contribution of the external GRF to 
tibial compression; Fint: the contribution of internal muscle force to tibial compression.  
 
Tibial bone load over the stance phase of gait was calculated as the longitudinally compressive force 
on the distal end of the tibia, a common location for stress fractures in runners [118]. The total force 
on the ankle (i.e., distal tibia) was calculated using a lower limb model, similar to prior studies (e.g., 
[13]): by summing the net force on the ankle (Fext) plus an estimate of force from the calf muscles 
generating torque about the ankle (Fint). Ankle force was assumed to be indicative of tibial bone 
loading [119]. Net force on the ankle was estimated as the 3D GRF projected onto the long axis of the 
tibia, estimated as the vector connecting the ankle joint to the knee joint. In this calculation, foot mass 
and inertia were assumed to be negligible to avoid underestimating contributions from the GRF due to 
measurement errors in modeling or tracking foot segment motion; though net ankle force estimates 
using an anthropometric foot mass are very similar (typically within ~0.1 body weight based on an 
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informal sensitivity analysis of our own data). Calf muscle force contribution was estimated as the 
sagittal plane ankle moment divided by the Achilles tendon moment arm, assumed constant (5 cm, [1], 
[120]). We used this simplified model because it has been previously shown to yield Achilles force 
estimates during running that were similar to Achilles force estimates from a musculoskeletal model 
using 300 muscles with static optimization that minimized sum of muscle forces (e.g., peak tendon 
forces within ~4%, [121]). Studies that included other muscle groups when estimating tibial 
compression found a small tibial compressive force contribution from dorsiflexors (<0.5 body weight, 
[14], [108]), but this force only existed for 0-20% and 90-100% stance, and a small compressive force 
contribution from other plantarflexors (<0.35 body weight, [14]). The lower limb model used has 
produced results that are qualitatively consistent with in vivo tibial strain measurements [11] and 
direct tibial bone load measurements in cadavers [107]. 
 
We then computed two tibial bone load summary metrics: Ftibia,max (maximum tibial compression 
force), Jtibia (tibial compression force impulse) (Figure 3.3b). Ftibia,max was defined as the peak tibial bone 
force over stance phase. Jtibia was calculated as the time integral of the tibial bone force over stance. 
These metrics were selected because of their relevance to the load intensity (magnitude and time 
duration of loading): maximum force magnitude is relevant to cyclic fatigue and force impulse is 
relevant to creep damage accumulation or cumulative load over time or distance [90], [122]–[128].  
 
The Pearson correlation coefficient (r) was computed for each GRF metric versus each tibial force 
metric on a subject-by-subject basis across all running conditions. The inter-subject range of 
correlation coefficients was identified and average correlation coefficients across subjects were 
computed using Fisher’s z transformation [129]. Force data were normalized by subject body weight 
for reporting purposes. A strong positive correlation was defined here as r≥0.8, moderate positive 
correlation as 0.5≤r<0.8, weak positive correlation as 0.3≤r<0.5, negligible correlation as -0.3<r<0.3, 
weak negative correlation as -0.5<r≤-0.3, moderate negative correlation as -0.8<r≤-0.5, and a strong 
negative correlation as r≤-0.8. 
 

3.4 Results 

 
On average, none of the GRF metrics were strongly correlated to tibial force metrics (Table 3.1, Figure 
3.4); nor were there any GRF metrics for which the majority of subjects exhibited strong positive 
correlations with either of the two tibial load metrics. 
 



 

 
30 

 

 
Figure 3.4 Regression results for GRF metrics vs. tibial bone load metrics across 30 running trials. 
Results for a single subject (Subject 1) Each gray dot represents a single condition (i.e., a given speed 
and slope from Figure 3.2), and n indicates number of running conditions that exhibited a measurable 
GRF impact peak for Subject 1. The correlation coefficient (r) was computed for Subject 1 across all 
running speeds and slopes. Note that no single subject should be considered representative given the 
large inter-subject variability observed. For instance, the one strong correlation shown for this subject 
(r = 0.89) was as low as r = 0.16 for another subject. The correlation coefficients for each individual 
subject are reported in Table 3.1.  
 
 
Table 3.1 Correlation coefficients (r) between GRF metrics and tibial bone load metrics Results across 
all trials within a subject.Ten rows represent the 10 subjects (F=female, M=male). Within a subject, (n) 
indicates the number of running conditions (of 30 total conditions) that exhibited a measurable GRF 
impact peak (i.e., evident in more than half the gait cycles). Mean and standard deviation (std) were 
computed using Fisher’s z transformation.  

Subject 
Fvgrf,active Fvgrf,impact VALR Jvgrf Fvgrf,active Fvgrf,impact VALR Jvgrf 

Ftibia,max Jtibia 

1 (F) 0.89 -0.64, n=29 -0.63 -0.68 0.42 -0.87, n=29 -0.84 -0.34 

2 (F) 0.84 -0.47, n=27 0.23 -0.02 0.58 -0.78, n=27 -0.10 0.12 

3 (F) 0.72 -0.06, n=10 0.01 -0.36 -0.17 -0.62, n=10 -0.80 -0.17 

4 (M) 0.90 0.27, n=19 0.13 -0.20 0.60 -0.14, n=19 -0.27 -0.20 

5 (F) 0.72 -0.33, n=24 -0.30 -0.66 0.13 -0.87, n=24 -0.80 -0.48 

6 (F) 0.58 -0.45, n=19 0.13 -0.49 -0.60 0.30, n=19 -0.91 0.07 

7 (M) 0.85 -0.24, n=22 -0.44 -0.68 0.47 -0.78, n=22 -0.81 -0.53 

8 (M) 0.26 0.34, n=15 -0.24 -0.36 -0.54 -0.13, n=15 -0.72 -0.07 

9 (M) 0.16 -0.46, n=16 -0.65 -0.84 -0.65 -0.10, n=16 -0.80 -0.34 

10 (M) 0.63 -0.64, n=17 0.00 0.19 0.09 -0.14, n=17 -0.62 0.74 

mean±std 0.72 ± 0.42 -0.29 ± 0.37 -0.20 ± 0.35 -0.46 ± 0.40 0.03 ± 0.51 -0.51 ± 0.53 -0.72 ± 0.41 -0.11 ± 0.41 

[min max] [0.16 0.90] [-0.64 0.34] [-0.65 0.23] [-0.84 0.19] [-0.65 0.60] [-0.87 0.30] [-0.91 -0.10] [-0.53 0.74] 
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3.4.1 Active Peak 

 
Fvgrf,active was positively or negligibly correlated with Ftibia,max in all subjects (0.72 ± 0.42): two exhibited 
negligible correlations, four individuals exhibited moderate correlations, and four exhibited strong 
correlations. Fvgrf,active had an inconsistent relationship with Jtibia (0.03 ± 0.51): four subjects showed a 
moderate positive correlation, three showed a moderate negative correlation, and three showed 
negligible correlation.  
 

3.4.2 Impact Peak 

 
Fvgrf,impact was on average negatively correlated with Ftibia,max (-0.29 ± 0.37): three subjects exhibited a 
negligible correlation, four exhibited a weak negative correlation, one exhibited a weak positive 
correlation, and two exhibited moderate negative correlations. Fvgrf,impact was on average negatively 
correlated with Jtibia (-0.51 ± 0.53): four subjects showed a negligible correlation, one showed a positive 
moderate correlation, three showed a moderate negative correlation, and two showed a strong 
negative correlation. On average, measurable GRF impact peaks were only observed for 20 ± 6 
conditions for each subject. The majority of subjects were rearfoot strikers and had measurable GRF 
impact peaks during level and decline running; however, most individuals changed their footstrike 
pattern on more inclined slopes and the impact peaks tended to disappear. Across all subjects, 
measurable GRF impact peaks were present during 71 of 80 level running trials and during 98 of 110 
decline trials, but only during 29 of 110 incline trials.  
 

3.4.3 Loading Rate 

 
The correlation between VALR and Ftibia,max was generally weak or negligible, but varied considerably 
between subjects (-0.20 ± 0.35): six subjects exhibited a negligible correlation, two exhibited a weak 
negative correlation, and two exhibited a moderate negative correlation. The VALR and Jtibia were 
negatively or negligibly correlated in all subjects (-0.72 ± 0.41): two subjects showed a negligible 
correlation, two showed a moderate negative correlation, and six showed a strong negative 
correlation. 
 

3.5 Impulse 

 
The correlation between Jvgrf and Ftibia,max varied across subjects (-0.46 ± 0.40): three subjects exhibited 
a negligible correlation, two a weak negative correlation, four a moderate negative correlation, and 
one a strong negative correlation. The correlation between Jvgrf and Jtibia also varied across subjects (-
0.11 ± 0.41): five subjects showed a negligible correlation, four showed a moderate negative 
correlation and one showed a moderate positive correlation.  
 

3.6 Discussion 

 
We found that increases in GRF metrics were not strongly correlated with increases in tibial bone 
loading metrics during running across speeds and slopes (Table 3.1); rather most correlations were 
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negligible, weak, or moderate. Although there was high inter-subject variability in the strength of 
correlation, 76 of the 80 subject-specific correlation coefficients supported our hypothesis. The only 
strong positive correlations were in 4 of 10 subjects between Ftibia,max and Fvgrf,active. Also of note, 2 
subjects showed a strong negative correlation between Jtibia and Fvgrf,impact, and 6 showed a strong 
negative correlation between Jtibia and VALR.  
 
Isolating effects due to speed and slope provides some insights into why GRF metrics were not 
strongly correlated with tibial loading (Figure 3.5). When runners encountered a change in ground 
slope, relationships between GRF and tibial loading often changed drastically. For instance, Fvgrf,impact 
and VALR were often positively correlated as speed increased on level ground, but typically switched 
to having a negative correlation across a range of slopes when speed was held constant (Figure 3.5). 
Fvgrf,impact and VALR metrics both decreased with increasing ground slope (similar to [130]), however 
Ftibia,max increased due to higher muscle forces. Likewise, Jvgrf and Jtibia were positively correlated as 
speed increased on level ground, but were negatively correlated when slope changed at a single fixed 
speed.  
 
These findings highlight that there are only limited special cases when GRF metrics are strong 
indicators of tibial bone load. When ground slope was held constant at zero degrees (level), then as 
speed increased all subjects showed a strong positive correlation between Fvgrf,active and Ftibia,max (r=0.97, 
inter-subject mean computed in post-hoc analysis). Further, Ftibia,max was also moderately to strongly 
correlated to Fvgrf,impact (r=0.90) and VALR (r=0.90) in all subjects during running on the zero-degree 
slope. However, even at this fixed slope, some runners exhibited weak relationships between GRF 
metrics and Jtibia. When looking at level and decline running conditions together, the correlation 
between Ftibia,max and Fvgrf,impact (r=-0.19) and between Ftibia,max and VALR (r=0.45) became negligible and 
weak; though Fvgrf,active and Ftibia,max remained strongly correlated (r=0.94). Once level, decline, and 
incline conditions were all analyzed together the correlation between Fvgrf,active and Ftibia,max became 
moderate (r=0.72). Note that the special cases when GRF metrics were strongly correlated to tibial 
bone load are not necessarily well-suited for real-world outdoor running, in which a runner who 
encounters a decline generally also encounters an incline if they aim to start and end at the same 
location. 
 
From this very simple set of running conditions (i.e., varying only speed and slope), it is evident why 
increases in GRF metrics generally should not be assumed to be a surrogate for, or indicator of, 
increases in tibial bone loading. During real-world training, additional confounds such as changes in 
muscle coordination or running pattern (e.g., due to fatigue, soreness, terrain, shoe properties, 
footstrike pattern, etc.), may further alter the relationship between GRF and tibial bone load. 
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Figure 3.5 Force trends due to changing speed vs. changing slope. Results for a single subject (Subject 
1). Lines represent regression results for GRF metrics vs. tibial bone load metrics when only speed or 
slope was varied. Dark orange dots represent conditions when speed was varied while running on a 
fixed slope (level ground). Light blue dots represent conditions when ground slope was varied while 
speed is held constant (at 2.6 m/s). Small gray dots are all remaining parameter sweep conditions.  
 

3.6.1 Key implications & and discussion related to scientific research 

 
The lack of strong correlations in this study suggest that GRFs provide limited insight into tibial bone 
loading during running across speeds and slopes, and therefore may provide limited utility for 
understanding or predicting overuse injury risk associated with this repetitive internal structure 
loading. Running GRFs have been analyzed in many ways in the scientific literature over the last 
several decades – extracting impact peaks, loading rates, active peaks, and impulses from vertical GRF, 
analyzing peaks from fore-aft GRFs, quantifying GRF frequency content, etc. – in the hopes that some 
feature of this force between the foot and ground might indicate injury risk, such as tibial stress 
fracture risk. However, GRFs provide an incomplete perspective on musculoskeletal loading and may 
be the wrong signal to be monitoring/analyzing if we seek to understand tibial bone load or assess 
overuse injury risk. This is of broad concern to the research field given the substantial time and 
resources invested into gait analysis and epidemiological studies that seek to relate bone stress injury 
to GRF metrics (or GRF correlates, e.g., based on accelerometers or pressure insoles), and given the 
pervasive influence these GRF metrics have had on sport science (e.g., comparisons of footwear or 
running patterns), training, coaching and product development (e.g., running shoes).  
 
Results from this study reinforce previous experimental evidence and theoretical arguments against 
using or interpreting GRF impacts and loading rates to identify overuse injury risks [111], [131]–[134]. 
Although some epidemiological studies have observed an association between high impacts or loading 
rates and running-related injuries [116], [135]–[138], there are many studies that have failed to find 
such a correlation [113], [139]–[144]. These conflicting results also exist between prospective studies 
(e.g., [135], [136], [143]–[146]) . Several textbooks, review articles and commentaries further highlight 
this conflicting evidence [100], [101], [111], [134], [147], [148]. Nevertheless, the use of higher GRF 
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impact peaks and loading rates to infer injury risk remains extremely common in the scientific 
literature. Based on a literature search of articles published between 2015-2017, we discovered that 
during this period more than 50 peer-reviewed publications per year assume, report or interpret GRF 
impact peaks or loading rates to signify increased injury risk.  
 
The reason for the sustained popularity of GRF metrics is likely multifaceted, but may stem partly from 
measurement convenience, or from people’s intuition based on how we as humans perceive external 
(vs. internal) loads on the body (though such intuitions can often be misleading in biomechanics, e.g., 
[106]), or simply from the GRF impact paradigm being deeply embedded in the running literature over 
recent decades. Another contributing factor may be related to misinterpretation and misapplication of 
prior bone mechanics studies [149], [150]. Studies on rabbits and guinea pigs have shown that 
repeated impulsive loading can cause bone microdamage [151], [152, p. 197]. However, this finding 
has been applied in running-related injury studies to support a subtly but significantly different 
contention: that higher impact peaks (impulsive loading) are associated with higher injury risk (e.g., 
due to more microdamage accumulation) [115], [153], [154]. The critical thing to highlight is that this 
contention is only valid if we also assume that during running the impact loading is the primary cause 
of bone microdamage. To our knowledge, there is no evidence to support this assumption. During 
running, the majority of the tibial force is due to muscle contraction (Figure 3.1a). Note that the 
commonly-cited impulsive loading studies [151], [152, p. 197] did not compare damage due to impact 
forces relative to damage due to muscle forces, and therefore provide no experimental evidence that 
GRF impacts are the primary cause of bone microdamage. The relationship between the magnitude of 
force on a biological structure and the microdamage caused by the force is non-linear [90], [155]. 
According to Miner’s rule, microdamage is roughly proportional to force to the C exponent (i.e.,     
force C) [9], where C is a bone-specific constant found experimentally via mechanical fatigue studies. 
We can apply this well-established relationship to estimate the relative amount of damage caused by 
forces at different parts of the gait cycle (e.g., impact vs. midstance). As depicted in Figure 3.1, the GRF 
impact peak is ~2 body weights, whereas the peak tibial force in midstance is ~8 body weights (which 
includes muscle contraction forces). Using the empirically-derived exponent for cortical bone of C=7 
[122], [125], [133], we estimate that on every step the peak tibial force at midstance would be 
expected to cause about sixteen thousand (87/27 ≈ 16,000) times more microdamage to bone than the 
GRF impact peak. Thus, the relative damage due to the impact forces may be trivially small regardless 
of whether impacts are slightly larger or smaller (e.g., 1.8 vs. 1.55 body weights, as reported in [156]). 
This evidence contradicts the prevailing belief that impacts are the source of overuse injuries, and 
further highlights why it generally should not be assumed that increases in GRF impact peak are 
reflective of increased injury risk.  
 
A similar misinterpretation issue may underlie the use of loading rate (and strain rate) findings from 
bone mechanics studies. One commonly-cited study by Schaffler et al. [157] concluded that “cyclic 
loading at a higher physiological strain rate causes more damage than cyclic loading at a lower strain 
rate.” However, upon careful inspection of the results we discovered that this conclusion was not 
substantiated by the statistical analysis performed. The study compared the effects of high strain rate 
vs. an unloaded control, and the effects of low strain rate vs. an unloaded control; however, it did not 
directly compare the high vs. low strain rate groups. When we performed statistical analyses using the 
study results presented in the paper we failed to find significant differences between high vs. low 
strain rate groups for any of the reported outcome metrics; namely, bone stiffness loss (p=0.07), 
number of microcracks (p=0.32), density of microcracks (p=0.28) and length of microcracks (p=0.48). 
We compared bone stiffness loss using the Mann Whitney U test (the primary statistical test employed 
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in the original study) since a table of specimen-specific results were provided. For the remaining 
metrics we performed a two-sample t-test using the mean ± standard error results reported in the 
publication (since specimen-specific results were not provided to perform a Mann Whitney U test). 
Inspection of the estimated 95% confidence interval for the difference in means of each outcome 
metric further substantiated our take-away that from these published data one cannot conclude that 
the higher loading rate caused more damage than the lower loading rate. Significance level of 0.05 was 
used for our interpretation, consistent with the threshold set in the original publication. Meanwhile, a 
more recent cyclic loading study on bone specimens found that high loading rates associated with GRF 
impacts in running had little effect on bone fatigue [133]. Likewise, bone samples loaded at higher 
rates have been observed to take more cycles to failure, suggesting less damage accumulation per 
cycle [90], [122], [128]. Collectively, this evidence seems to call into question the common assumption 
that higher loading rates indicate higher bone damage accumulation (or injury risk). 
 
In summary, there are substantive concerns about how impulsive bone loading studies are commonly 
interpreted [149], [150] , and how this may misguide the use of GRF metrics like impact peak and 
loading rate. The field would benefit from a clear and careful synthesis of bone mechanics studies, to 
ensure this knowledgebase is being appropriately interpreted and applied in the assessment of 
overuse injury risks. 
 

3.6.2 Key implications & and discussion related to wearable devices 

 
While motion analysis and musculoskeletal modeling methods have allowed researchers in the lab to 
estimate forces on certain internal structures, recreating these estimates outside the lab with non-
invasive, low-cost, and portable sensors remains a grand challenge in the biomechanics field. Most 
commercial devices use GRF-correlated metrics (e.g., tibial shock) from accelerometers and/or 
pressure insoles to provide loading or injury risk feedback to the user. A key underlying assumption of 
these devices is that increases in GRF metrics reflect increases in loading inside the body. For instance: 
(i) IMeasureU outputs a “bone load” metric that increases with “the size of the [ground] impact 
derived from each individual step,” based on the stated rationale that impact peaks “can function as a 
surrogate measure of the loads experienced by the underlying musculoskeletal tissue” [158], [159], (ii) 
Runscribe outputs “Impact Gs” and indicates that lower “Impact Gs” at footstrike may help prevent 
injuries [160], (iii) MileStone states that a “low rate of impact… is optimal and can help prevent injury” 
[161], (iv) Stridalyzer states that “ ‘Pounding’ [the foot] during landing… can increase impact forces, 
which over time leads to injuries” [162], and (v) Sensoria provides an "Impact Score,” stating it is “a 
quantitative relative measure, on a scale from 1 to 10, driven by the impact forces generated when 
your foot hits the ground while your run. In order to reduce likelihood of injury, you want to keep your 
impact score as low as possible [163]" However, the key assumption underlying each of these 
statements/claims remains unsubstantiated for running, both experimentally and from a theoretical 
standpoint. Tibial acceleration may be correlated with tibial load around impact (i.e., over the first ~40 
ms after foot-ground contact [164]) when forces are relatively low (Figure 3.1a). However, as shown in 
this study, commonly-use GRF metrics (e.g., impact peak, loading rate) are not necessarily reflective of 
the much larger tibial bone forces experienced later in the gait cycle, nor is there a biomechanical 
rationale or consistent epidemiological evidence to support interpretations of these GRF metrics or 
correlates like tibial shock as indicators of injury risk. 
 
Presently there is a lack of transparency and validation amongst consumer wearables [22]. Many 
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commercial devices selectively cite studies that support their chosen outcome metric, while omitting 
published counter evidence. Others simply fail to provide scientific evidence that their outcomes are 
indicative of increased loading or injury risk to specific internal structures. As a result, biofeedback 
from existing wearable devices may be misleading users. Wearable devices often employ ambiguous 
terminology such as “limb load”, “step intensity” or “biomechanical load” – terms which do not specify 
which individual structure in the body, if any, experience the purported load. Some devices employ 
misleading terminology such as “bone load,” which has been defined as a weighted sum of impact 
peaks [158] . As seen in this study, footstrike impact peaks are not the main source of bone loading, 
and cannot be used as a surrogate to infer the peak force or force impulse experienced by the tibia. 
Some commonly-used metrics – like impact peaks and loading rates – may even be negatively 
correlated with bone loading during running (Figure 3.4, Table 3.1). This means the current 
interpretation of these values in wearable devices may be leading to the wrong conclusions about the 
accumulation of microdamage to a bone such as the tibia. Further ambiguity is introduced when 
commercial device metrics refer or allude to overall injury risk (i.e., to structures throughout the 
body). The idea of having a single or small number of output metrics that can capture overall injury 
risk is appealing to consumers, clinicians, researchers and wearable device manufacturers alike. 
However, there is no guarantee, nor theoretical basis, that this global injury metric is embedded 
within the GRF waveform (i.e., hidden within this relatively small force magnitude between the foot 
and ground).  
 
The wearable device field would benefit from more deliberate and targeted attempts to monitor 
loading on specific internal structures at high risk of injury, with less emphasis on GRF metrics. There 
have been a number of innovative advances in sensing that provide estimates of loading on a given 
muscle or internal structure (e.g., [165]). These more targeted approaches offer the opportunity to 
better understand structure-specific loading, such that we can more confidently associate forces on a 
given structure (bone, muscle, tendon, etc.) with overuse injuries that may eventually develop in said 
structure. Moreover, estimating the time-varying force experienced by specific structures (as opposed 
to only computing discrete summary metrics related to peaks or impulses) may offer a more promising 
avenue of identifying and understanding specific injury risks in running and other activities. Given the 
complexity of human movement, and difficulty of measuring internal forces non-invasively, data from 
multiple wearable sensors may need to be fused in order to monitor load on certain internal 
structures in situ. 

3.6.3 Potential utility of GRF metrics 

 
There may be situations when GRFs still provide some utility for understanding bone loading or 
overuse injuries. For instance, a given GRF metric might be useful in situations when the metric has 
been validated to be a strong indicator of loading on a specific internal structure (e.g., tibial bone) for 
a given individual (or subset of individuals) and for a given subset of activities (e.g., running over a 
specified range of speeds, slopes, etc.). However, at present, the majority of published studies seem to 
use and interpret GRF metrics without adequate subject- or activity-specific validation.  
 
One potential use of GRF metrics might be for lab-based experiments performed only on level ground 
(or potentially a flat track, though we did not assess curvilinear running in this study), given that we 
found strong correlations with Ftibia,max for all 10 subjects (as detailed earlier in Discussion). However, in 
post-processing of our data we found that running speed itself was also strongly correlated with 
Ftibia,max on level ground (r=0.97, similar to the correlation between Fvgrf,active and Ftibia,max). In many cases 
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it may be preferable and easier to monitor speed than GRF. 
 
A second potential use of GRF metrics might be for an individual runner who is studied extensively to 
establish that over a specified set of running conditions (speeds, slopes, terrains, levels of fatigue, 
etc.), a given GRF metric is a good indicator of load on a specific bone. For example, two subjects in 
our study (Subjects 1 and 7) showed a strong positive correlation between Fvgrf,active and Ftibia,max and a 
strong negative correlation between VALR and Jtibia (Table 3.1). For these two subjects, increases in 
Fvgrf,active strongly indicated increases in Ftibia,max, and increases in VALR strongly indicated decreases in 
Jtibia over the range of speeds and slopes tested. These two subjects demonstrate a scenario when 
specific GRF metrics might be utilized to indicate bone load, but only when (i) the relationship was 
validated for that subject and that subset of conditions, and (ii) the relationship was identified as being 
strongly positive or strongly negative for a given GRF metric. Subject-specific validation may be 
feasible for elite runners, but would likely be impractical or prohibitively expensive for many 
recreational runners due to the amount of instrumented gait analysis required to perform this 
validation.  
 
A third potential use of GRF metrics would be for testing hypotheses in which there is an indirect 
relationship between GRFs and loading on specific internal structures. Here we summarize one 
example: Studies suggest that larger GRF impacts cause more energy to be dissipated through 
wobbling of muscles in the legs [166]. To maintain a given running speed, when energy is dissipated 
then it must be offset by positive work performed through active muscle contraction. This additional 
muscle work could be achieved by either higher peak muscle forces and/or applying muscle forces 
over longer periods of time. It therefore might be hypothesized that increases in GRF impacts lead to 
more energy dissipation, which then leads to increased loading magnitude or duration of certain 
muscles or bones. Note that in this example the GRF impact peak is not the source of high internal 
structure loading, as commonly assumed. Rather, large GRF impacts might conceivably help explain a 
mechanism by which higher internal structure loading could result (potentially at a different time in 
the stride cycle). As such, GRF metrics could be useful in situations when they are a core part of a 
testable hypothesis.  
  
One additional consideration worth noting is that impact peaks were not present in about one third of 
the running conditions in our study (mostly on inclines), which may limit the utility of this metric in 
comparing across a broad range of conditions. Relatedly, estimating GRF loading rate from running 
strides with vs. without impact peaks may be capturing slightly different aspects of the gait dynamics 
[167]. This may also limit practical applications and interpretations of this metric across different 
running conditions, particularly those in which footstrike pattern changes. Finally, we remind that this 
discussion is in relation to overuse injury risk, specifically tibial stress fracture risk. There are of course 
many other situations and applications when GRFs are extremely useful (e.g., computing inverse 
dynamics), and more broadly, GRFs remain one of the most important measurements in the field of 
biomechanics. 
 

3.6.4 Limitations  

 
The scope of this study was limited to estimating changes in bone load within each subject. As 
discussed in the introduction, additional factors also affect stress fracture risk. To assess injury risk 
between subjects, additional subject-specific information on bone remodeling and intrinsic factors 
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(age, gender, bone density, geometry, nutrition, mineral content, etc.) may also be necessary. A 
limitation of this study (and nearly all gait analysis studies) is that we are unable to directly measure 
tibial bone loading. However, there is strong converging evidence from cadaver [107], implanted 
sensor [10], [11] and musculoskeletal modeling studies [14], [108] that the non-invasive estimates 
used provide a reasonable approximation of tibial bone loading. In particular, we have confidence in 
the trends predicted with changing speed and slope, and would not expect imperfect bone load 
estimates to alter any of the major conclusions or interpretations. Another limitation is that we only 
performed linear, univariate regression analysis because this appears to be the most common way 
that prior scientific studies and current wearable devices are using GRF metrics (or correlates) to infer 
musculoskeletal loads or injury risks. Another limitation is that we only quantified tibial compression 
load. In future studies, it would also be interesting to estimate bending, shear or torsional loads [13], 
[14], [168] which contribute to the stress/strain of the tibia, or to use advanced modeling techniques 
to estimate local stress/strain concentrations [90], [124], [168], [169]. These loading patterns are all 
highly influenced by muscle forces; therefore, GRF metrics should not be assumed to reflect these 
loads either, unless validated for a given subset of activities. Because there are currently no wearable 
devices that can track tibial bone load (or localized stress) longitudinally in daily life it is not yet known 
(e.g., from prospective studies) which of these bone loading directions or metrics might be most 
useful. Given the large magnitude of the tibial compression load this seems like a reasonable 
candidate to explore, and more informative of bone loading than GRFs. A final limitation is that in 
order to make this study and analysis tractable we focused on a single bone and a single overuse 
injury. The specific conclusions drawn are all related to whether changes in GRF metrics are reflective 
of changes in loading on this particular bone. However, stress fracture and overuse injuries commonly 
occur in several other internal structures in the lower limb as well (e.g., calcaneus bone, Achilles 
tendon). The broader implication of our study is that loading on these other bones, muscles and 
tendons in the body -- perhaps even loading on the vast majority of structures in the body -- may be 
poorly understood by monitoring changes in GRF or GRF correlates alone. 

 

3.7 Conclusion 

 
In summary, increases in GRF metrics should not be assumed to correlate with increases in bone 
loading, nor assumed to signify increased risk for tibial stress fractures. The high inter-subject 
variability in correlations further strengthens this general conclusion. For any individual, both subject- 
and task-specific validation would be needed to assess if GRFs provide useful insight on loading of the 
tibial bone, or other internal structures. This study has important implications for scientific research on 
running-related injuries, and for the development and validation of current and future wearable 
devices. Specifically, these findings demonstrate that the way GRF metrics are commonly interpreted 
as indicators of musculoskeletal loading and injury risk in literature is often flawed, and the application 
of these GRF metrics in scientific research, sports and wearable devices can be highly misleading. 
Although GRF metrics may be convenient to measure and may seem to intuitively "make sense" as a 
way to monitor loading on the musculoskeletal system, the results here and in prior literature reveal 
that commonly-used GRF metrics may provide very limited insight on, and may even mislead our 
understanding of, internal structure loading such as to the tibial bone. The GRF may simply be the 
wrong signal to be monitoring/analyzing if we seek to understand or predict overuse injury risk to the 
tibia, or to other bones, joints, muscles and tendons in the body. Summarized poetically: 

 
You go for a run down the street. 
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You feel the ground force on your feet. 
   You may think these reveal 
   The bone loads that you’ll feel,  
But this thinking is just incomplete.  
 
The force due to ground reaction  
May be a stress fracture distraction. 
   Don’t assume force on shoe 
   To mean tibia load too 
Since bone load’s mostly from muscle contraction.  
 

3.8 Abbreviations 

 
GRF – ground reaction force 
VALR – vertical average loading rate  
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4 Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone 
force and damage during running 

 

4.1 Abstract 

 
There are tremendous opportunities to advance science, clinical care, sports performance, and 
societal health if we are able to develop tools for monitoring musculoskeletal loading (e.g., forces on 
bones or muscles) outside the lab. While wearable sensors enable non-invasive monitoring of human 
movement in applied situations, current commercial wearables do not estimate tissue-level loading on 
structures inside the body. Here we explore the feasibility of using wearable sensors to estimate tibial 
bone force during running. First, we used lab-based data and musculoskeletal modeling to estimate 
tibial force for ten participants running across a range of speeds and slopes. Next, we converted lab-
based data to signals feasibly measured with wearables (inertial measurement units on the foot and 
shank, and pressure-sensing insoles) and used these data to develop two multi-sensor algorithms for 
estimating peak tibial force: one physics-based and one machine learning. Additionally, to reflect 
current running wearables that utilize running impact metrics to infer musculoskeletal loading or 
injury risk, we estimated tibial force using a commonly measured impact metric, the ground reaction 
force vertical average loading rate (VALR). Using VALR to estimate peak tibial force resulted in a mean 
absolute percent error of 9.9%, which was no more accurate than a theoretical step counter that 
assumed the same peak force for every running stride. Our physics-based algorithm reduced error to 
5.2%, and our machine learning algorithm reduced error to 2.6%. Further, to gain insights into how 
force estimation accuracy relates to overuse injury risk, we computed bone damage expected due to a 
given loading cycle. We found that modest errors in tibial force translated into large errors in bone 
damage estimates. For example, a 9.9% error in tibial force using VALR translated into 104% error in 
estimated bone damage. Encouragingly, the physics-based and machine learning algorithms reduced 
damage errors to 41% and 18%, respectively. This study highlights the exciting potential to combine 
wearables, musculoskeletal biomechanics and machine learning to develop more accurate tools for 
monitoring musculoskeletal loading in applied situations. 

 

4.2 Introduction 

 
Monitoring loads on musculoskeletal structures inside the body is challenging in the laboratory, and 
remains an unsolved grand challenge in applied situations outside the lab. Inside the lab, 
musculoskeletal loads (e.g., forces, moments, stresses, strains) are typically estimated in one of two 
ways: (i) using implantable or percutaneous instrumentation to directly monitor tissue stress or strain 
(e.g., [10], [11]) or (ii) using non-invasive instrumentation such as motion capture and force plates 
along with musculoskeletal modeling to indirectly estimate tissue loads (e.g., [13], [14], [108]). While 
these two approaches have fueled decades of musculoskeletal biomechanics research, they can be 
impractically invasive and/or require sophisticated instrumentation and expertise. Thus, these 
approaches are typically limited to small sample sizes and infrequent data collections, which severely 
restricts collection of movement data in applied situations (i.e., real-world or daily activities).  
 

There are many practical applications if non-invasive monitoring of musculoskeletal loads was possible 
in applied situations [19], [22]–[24], [170]–[172]. Musculoskeletal load monitoring in combination with 
other information could provide transformative new health monitoring tools. For instance, an injury 
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risk monitoring tool that monitors musculoskeletal loading in combination with other risk factors could 
help athletes coordinate training and rest days accordingly. Similarly, a clinical tool that monitors 
musculoskeletal loading in combination with other patient specific physiological measures (e.g., tissue 
quality, diet, menstrual cycles, sleep/rest information) could help researchers investigating overuse 
injury etiology. A biofeedback tool that combines musculoskeletal monitoring and specified thresholds 
or targets could help clinicians, trainers or ergonomists deliver objective biofeedback training to help 
ensure safe and efficient return to play or return to work after an injury. Finally, a solely 
musculoskeletal load monitoring tool could enable researchers, assistive device developers, or 
footwear/sports accessory designers to evaluate the effect of interventions on specific 
musculoskeletal loads outside the lab and over much longer time scales than is currently practical.  
 

Small, portable, inexpensive wearable sensors along with accompanying software algorithms and user 
interfaces (together termed wearables) provide exciting opportunities for non-invasive monitoring of 
human movement in applied situations without the need for sophisticated lab equipment. Wearables 
often contain sensors such as inertial measurement units (IMUs), global positioning systems (GPS), or 
pressure or strain sensors. These wearables typically track spatiotemporal metrics (such as cadence, 
speed, number of steps taken, or time spent being active), body segment motions (such as 
accelerations or orientations), or interaction forces between the person and the environment (such as 
insole pressures or ground reaction forces, GRF). These metrics, particularly GRF metrics, are then 
often used to evaluate injury risk to structures inside the body. However, GRF metrics are generally 
not indicative of loads experienced by musculoskeletal structures in the body (e.g., tibial force), nor is 
there consistent epidemiological evidence to support the use of GRF metrics as indicators of bone 
stress injury [173]. See Matijevich et al., 2019 and Vigotsky et al., 2019 for extended discussions on the 
widespread misuse of GRF metrics to infer internal tissue loading and associated injury risk in both 
scientific research and commercial wearables. To date there are only a very limited number of 
wearables (mostly non-commercial, in-development) that have demonstrated validity or reported 
accuracy in estimating the mechanical loading on specific structures inside the body (e.g., [165]). 
 

There are numerous knowledge gaps surrounding how to more accurately estimate musculoskeletal 
loads with wearables. Many inter-related choices must be made in order to develop a new wearable, 
for instance: What type(s) of wearable sensor(s) to use? What algorithm(s) to employ to fuse multi-
sensor data? Which musculoskeletal loading metrics to track, and what level of accuracy is desired? 
There are innumerable approaches for tackling the many intertwined and open-ended questions, 
making this an interesting opportunity for exploratory research that combines wearables, 
musculoskeletal biomechanics and machine learning. To manageably explore these choices, we 
targeted a specific musculoskeletal structure and movement: the tibial (shin) bone during running. We 
were motivated to monitor tibial force because tibial overuse injuries (e.g., bone stress fractures) are a 
common debilitating injury amongst runners, athletes and cadets [92]–[94], [96], [97], [175]; however, 
we believe the risk of injury can be reduced if tibial forces can be monitored in daily life. Further, there 
are established and validated methodologies for non-invasively estimating tibial compression force 
using lab-based instrumentation and modeling [13], [14], [108], giving us confidence in our target bone 
force metric.  
 

The objective of this study was to develop multi-sensor algorithms for estimating tibial force using 
idealized wearable sensor signals, quantify the accuracy of each algorithm, and then compare the 
accuracy of these algorithms to approaches that rely on ground reaction force metrics or other single 
variable surrogates to try to gain insight on internal loading or injury risk. Here we summarize the 
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development of two promising multi-sensor algorithms (one physics-based and one using machine 
learning) for estimating peak tibial force across various running speeds and slopes. For reference, we 
also report two other algorithms (single variable linear regression and group mean), which were 
intended to reflect the current state-of-the-art for commercial wearables. 
 

4.3 Methods 

 

4.3.1 Data collection 

 
In this study we re-analyzed an existing dataset from our prior publication [173], in which ten 
recreational runners performed 30 running conditions where for each condition the running speed and 
slope was varied. These data are publicly archived [173]. The dataset includes 5 males and 5 females 
(age: 24±2.5 years; height: 1.7±0.1 m; mass: 67±6 kg) all of whom reported running a minimum of 10 
miles per week. All participants gave written informed consent to the original protocol, which was 
approved by the Institutional Review Board at Vanderbilt University. To briefly summarize methods, 
30-s trials were collected across a range of speeds (2.6 to 4.0 m/s) and slopes (-9 to +9 degrees), while 
runners wore their own personal running shoes. Ground reaction forces were collected at 1000 Hz on 
a force-instrumented treadmill (Bertec), synchronously with unilateral lower-limb kinematics at 100 Hz 
(Vicon). For further details on the experimental protocol or rationale underlying the running 
conditions see [173]. 
 

4.3.2 Lab-based data analysis 

 
Data were analyzed to estimate tibial compression force as detailed in [173], thus only briefly 
summarized below. Lower-body segmental kinematics were estimated based on optical motion 
capture data and rigid-body inverse kinematics. GRF and kinematics were combined via rigid-body 
inverse dynamics to estimate joint kinetics (C-Motion, Visual3D). The time-series compression force 
acting on the distal end of the tibia during the stance phase of running was then estimated using a 
simple musculoskeletal model [173]; by summing estimates of the net force on the ankle and the 
compression force from plantarflexor calf muscles (Figure 4.1). We chose peak tibial force of each 
running condition as our target metric because maximum force is a key factor that contributes to cyclic 
fatigue of bone and resulting damage accumulation (see [173] for additional discussion). Peak tibial 
force was estimated as the maximum force across stance on a step-by-step basis, and then averaged 
to compute the mean for each condition (𝐹𝑚𝑎𝑥), reported in units of body weight (BW). 



 

 
43 

 

 
Figure 4.1 Tibial compression force was computed from motion capture and ground reaction force 
data using musculoskeletal modeling: by summing the net force on the ankle and the compression 
force from plantarflexor calf muscles. Peak tibial force (𝐹𝑚𝑎𝑥) in bodyweights (BW) during stance was 
computed for each running condition. The lab-based estimate of 𝐹𝑚𝑎𝑥 is the target load metric that we 
are interested in monitoring with wearable sensors.  
 

4.3.3 Candidate wearable sensor signal identification and data preparation 

 
Before developing and training algorithms to estimate our target load metric (peak tibial force, 𝐹𝑚𝑎𝑥) 
we first identified candidate wearable sensor signals to use as algorithm inputs. Candidate wearable 
sensor signals were selected because they could feasibly be collected with existing commercial 
wearable sensors (e.g., pressure-sensing insoles, IMUs) and we expected them to be important to the 
estimation of tibial force based on mechanics (e.g., signals typically used in inverse dynamics and 
musculoskeletal models of the lower limb). The four candidate sensor signals we selected were foot 
and shank orientations, vertical GRF and center of pressure (CoP, the point of application of the GRF 
vector under the foot).  
 
We considered two options for using wearable sensor signals to develop tibial force estimation 
algorithms: (i) performing new experiments where we collect data from multiple wearable sensors 
synchronously with lab-based instrumentation, or (ii) converting lab-based data into the types of 
signals that could be feasibly obtained with existing commercial wearables (e.g., simplifying the three 
dimensional GRF vector into a one dimensional normal force, which represents the type of signal that 
can be estimated from a pressure-sensing insole). We chose the second option and termed these 
signals idealized wearable signals. Idealized wearable signals were beneficial for this feasibility study 
because they allowed us to not be limited by the quality or accuracy of existing wearables. In reality, 
sensor hardware, algorithms and signal quality are constantly improving; for example, sophisticated 
filtering has improved the quality of absolute angle estimates from IMUs [176]. Further, idealized 
wearable signals allowed us to explore a broader combination of sensor signals from our pre-existing 
dataset, and eliminated the need to select and integrate a specific sensor set and carry out new 
experiments before knowing which subset of sensors were actually needed.  
 

In Table 4.1, we summarize how we converted lab-based data into idealized wearable signals. 
Algorithms used either time-series idealized wearable signals as inputs or discrete features extracted 
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from these signals as inputs. Discrete features were computed as follows: Vertical GRF features – 
vertical average loading rate (VALR), active peak, impulse – were extracted using established 
methodologies as detailed in [173]. Foot/shank minimum and maximum angles were the minimum 
and maximum sagittal plane angles during the stance phase of running. Foot/shank angles at 
midstance were the sagittal plane angles at the time of the vertical GRF active peak. CoP at midstance 
was the medial-lateral and anterior-posterior position of the CoP at the time of vertical GRF active 
peak. Stance time was the time from foot contact to toe off. Stride time was the time from foot 
contact to the next ipsilateral foot contact. All idealized wearable signals and discrete features were 
computed on a step-by-step basis, and then averaged to compute the mean for each running 
condition. Condition means were used in algorithm development and evaluation, and were computed 
from approximately 25-30 strides for each condition. 
 
 
Table 4.1 Idealized wearable signals. Summary of our selected idealized wearable signals, existing 
wearable sensors that can estimate these types of signals, how lab-based data were converted into 
idealized wearable signals, and which discrete features were extracted from these signals.  
Idealized 
wearable signal  

Wearable sensors 
examples of existing sensor 
hardware that can be used 
to estimate each signal 

Data conversion  
how lab-based signals were 
converted into idealized 
wearable signals 

Discrete features 
features extracted from 
the idealized wearable 
signals 

Shank angle 
(sagittal) 

IMU on the shank Inverse kinematics 
processed to output shank 
orientation in the lab frame 

Min angle, max angle, 
angle at midstance 

Foot angle 
(sagittal) 

IMU on the foot/shoe Inverse kinematics 
processed to output foot 
orientation in the lab frame 

Min angle, max angle, 
angle at midstance 

Vertical GRF Pressure-sensing insole 3D GRF† transformed into 
foot’s coordinate frame &  
projected into 1D GRF 
normal to the ground 

VALR, active peak, 
impulse, stance time, 
stride time 

CoP Pressure-sensing insole  GRF and motion capture 
used to transform treadmill 
CoP into the foot’s 
coordinate frame 

Medial-lateral & anterior-
posterior CoP at midstance 

Speed IMU or GPS Used treadmill speed Mean running speed 

Slope IMU Used treadmill slope Ground slope 
†Prior to extracting GRF metrics, the data were low-pass filtered at 45 Hz (3rd order, zero-lag 
Butterworth) to avoid filtering out foot impact and loading rate dynamics.  
 

4.3.4 Algorithm development 

 
We developed two multi-sensor algorithms for more accurately estimating peak tibial force using 
idealized wearable sensor signals: one physics-based and one using machine learning. Additionally, we 
report two other algorithms: single variable linear regression and group mean. These were intended to 
reflect the current state-of-the-art for commercial wearables, which typically rely on VALR (or 
correlated metrics like impact peaks and lower limb peak accelerations) and/or step counters to 
provide musculoskeletal loading and injury risk feedback. See [173] for an extended discussion (and 
specific examples) on the widespread misuse of GRF metrics to signify bone loading and associated 
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injury risk in both scientific research and commercial wearables. For each algorithm, one or more of 
the idealized wearable signals or discrete features were used as inputs, and the output was an 
estimate of peak tibial force (in units of BW). To develop each algorithm, we used k-fold validation by 
runner, a commonly-used technique to assess the generalizability of an algorithm [170]. In other 
words, we used data from nine runners to train the model (i.e., optimize model parameters), and then 
tested the model on the remaining runner. This train-test process was repeated for all ten 
combinations. Summary statistics were then calculated on accuracy. Below we first overview the 
algorithms themselves, followed by a description of how algorithm estimates were evaluated vs. lab-
based estimates of tibial force. An overview of the lab-based data analysis and algorithm evaluation is 
provided in Figure 4.2. 
 
 

 
Figure 4.2 Lab-based data analysis and algorithm evaluation overview.  (Lower, Lab) Lab-based data 
were collected (motion capture and GRFs) and standard inverse kinematics and inverse dynamics 
analyses were performed. A musculoskeletal model was used to calculate peak tibial force (𝐹𝑚𝑎𝑥), 
which was treated as ground truth bone load for the purposes of this study. (Upper, Wearable) Lab-
based signals were converted to idealized wearable signals, representing the types of signals that can 
be obtained with existing commercial wearable sensors. Algorithms used idealized wearable signals 
and discrete features that were extracted from these signals as inputs. Algorithms output estimates of 

peak tibial force (𝐹̂𝑚𝑎𝑥). Errors between the algorithm estimates and lab-based estimates of peak tibial 
force were computed. 
 

4.3.4.1 Single variable linear regression 

 
To reflect the current state-of-the-art in commercial wearables, we report an estimate of peak tibial 

force (𝐹̂𝑚𝑎𝑥) based on the common assumption/misconception that VALR can serve as a surrogate for 
tibial force and/or injury risk [100], [101]. VALR and lab-based estimates of peak tibial force (𝐹𝑚𝑎𝑥) 

were used to find linear scaling coefficients by k-fold validation to estimate peak tibial force (𝐹̂𝑚𝑎𝑥). 
We selected VALR, in part, because unlike impact peak, it can be computed for every step regardless 
of the presence of a transient peak in the GRF [173]. Based on our own curiosity, we also generated 
additional single variable linear regression models using other commonly tracked metrics: GRF active 
peak, GRF impulse, running speed and ground slope. 
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4.3.4.2 Group mean approach 

 
As another point of reference, we assumed that peak tibial force was constant for every step, 
regardless of speed or slope. Practically speaking, this approach represents what we would expect if 
we tried to use only a step counter (pedometer) to monitor bone injury risk. With this naïve modeling 

approach, we assumed that peak tibial force (𝐹̂𝑚𝑎𝑥) for all conditions for a given runner was equal to 
the mean peak tibial force across the remaining runners and conditions. 
 

4.3.4.3 Physics-based algorithm 

 
We implemented a physics-based algorithm (Supplemental Material 4.7.1) using four idealized 
wearable sensor signals (Table 4.1). This algorithm is similar to how we estimate musculoskeletal 
forces in the laboratory using inverse dynamics and biomechanical modeling. However, the key 
difference is that wearable sensors only provide limited signals (e.g., one dimensional normal GRF 
rather than three-dimensional GRF), which are insufficient to compute the full equations of motion. 
There are innumerable ways to deal with incomplete data, including simplifying the equations of 
motion themselves (e.g., removing terms that are expected to have small effects or terms that are 
impractical to collect with wearables), or using available data to estimate the missing terms (e.g., using 
regression equations to approximate the complete 3D GRF vector using data from multiple insole 
pressure sensors [177], [178]). Here, we used the former approach to provide a physics-based 
estimate of peak tibial force. 
 

4.3.4.4 Machine learning algorithm 

 
For the machine learning algorithm, we used 13 discrete features from our idealized wearable sensor 
signals to estimate peak tibial force (Table 4.1, discrete features). This set of discrete features was 
based on preliminary exploration of data – by analyzing time series signals, scatter plots and 
correlation values. Feature pruning was necessary to avoid overfitting the model with a limited dataset 
[170] and to speed up the hyperparameter search process. Features were normalized to z-scores prior 
to model training. We explored a variety of supervised machine learning techniques for multi-variable 
regression, including generalized linear models, ensemble methods, neural networks and support 
vector regression. Ultimately, we selected LASSO (Least Absolute Shrinkage and Selection Operator) 
regression, a least squares linear model with a L1 regularization. This regularization penalizes the sum 
of the absolute values of the coefficients and forces a subset of learned coefficient weights to zero, 
effectively selecting a sparser subset of features. In addition to providing estimates of peak tibial force 

(𝐹̂𝑚𝑎𝑥), the resulting feature weights are used to rank the relative importance of each discrete feature. 
 

4.3.5 Algorithm evaluation 

 
To evaluate each algorithm, we computed the mean absolute percent error (MAPE) between 𝐹𝑚𝑎𝑥  and 

𝐹̂𝑚𝑎𝑥 across all conditions for each runner, and report the inter-runner mean, standard deviation, and 
range. In some instances, we also computed root mean square error (RMSE) in units of BW for 
reference. 
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4.4 Results 

 
MAPE results for the single variable linear regression and multi-sensor algorithms are shown in Figure 
4.3 and Table 4.2. Results in RMSE for reference: The single variable linear regression algorithm that 

used VALR to estimate peak tibial force (𝐹̂𝑚𝑎𝑥) resulted in a RMSE of 0.97 ± 0.32 BWs (Figure 4.3A, 
Table 4.2). The physics-based algorithm resulted in a RMSE of 0.48 ± 0.09 BWs (Figure 4.3B, Table 
4.2). The multivariable machine learning algorithm resulted in a RMSE of 0.25 ± 0.07 BWs (Figure 4.3C, 
Table 4.2).   
 
 

 
Figure 4.3 Comparison of force estimation algorithms. The plots depict the lab-based estimate of 

peak tibial force (𝐹𝑚𝑎𝑥) vs. wearable sensor algorithm estimates of peak tibial force (𝐹̂𝑚𝑎𝑥), in units of 
BW. Estimates are from A) single variable linear regression using VALR, B) physics-based algorithm, 
and C) machine learning algorithm. Colors represent 10 runners. Each point represents a single 
running speed-slope combination (30 conditions per runner). A line with a slope of one is added to 
visualize a perfect correspondence between lab-based and wearable estimates. 
 
 
Table 4.2 Average errors of force estimation algorithms.  This table reports MAPE for algorithm 

estimates of peak tibial force (𝐹̂𝑚𝑎𝑥) relative to lab-based estimates of peak tibial force (𝐹𝑚𝑎𝑥). Shown 
are the inter-runner means, standard deviations and ranges (N=10). The physics-based algorithm and 
machine learning algorithm exhibited lower force estimation errors than single variable linear 
regression algorithm using VALR (p=0.004 and p<0.001 respectively, based on Wilcoxon signed-rank 
test on the k-fold cross-validation error results). 

 Single variable linear 
regression (VALR) 

Physics-based Machine learning 

mean  std 9.9  3.5 % 5.2  1.3 % 2.6  0.8 % 

[min max] [4.5% 15.0%] [3.8% 8.1%] [1.5% 4.4%] 
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Other single variable linear regression estimates resulted in average MAPE of about 8-11% (Figure 4.4 
and Table 4.3). Results in RMSE for reference: Using GRF active peak resulted in a RMSE of 0.77 ± 0.12 
BWs (Figure 4.4A, Table 4.3). Using GRF impulse resulted in a RMSE of 1.03 ± 0.38 BWs (Figure 4.4B, 
Table 4.3). Using ground slope resulted in a RMSE of 0.79 ± 0.33 BWs (Figure 4.4C, Table 4.3). Using 
running speed resulted in a RMSE of 0.91 ± 0.38 BWs (Figure 4.4D, Table 4.3). Using the group mean 
algorithm approach (i.e., assuming peak tibial force for a given runner was the same for every running 
condition) resulted in a RMSE of 0.99 ± 0.38 BWs (Figure 4.4E, Table 4.3). 

 
 

 
Figure 4.4 Comparison of additional single variable linear regression force estimation algorithms, 
and the group mean approach.  The plots depict the lab-based estimate of peak tibial force (𝐹𝑚𝑎𝑥) vs. 

single variable linear regression estimates of peak tibial force (𝐹̂𝑚𝑎𝑥), in units of BW. Single variable 
linear regression results used A) vertical GRF active peak, B) vertical GRF impulse, C) ground slope, and 
D) running speed. Peak tibial force estimates using E) the group mean force (i.e., a constant peak tibial 
force) are also plotted for reference. Colors represent 10 runners. Each point represents a single 
running speed-slope combination (30 conditions per runner). A line with a slope of one is added to 
visualize a perfect correspondence between lab-based and wearable estimates. 
 
 
Table 4.3 Average errors of additional single variable linear regression force estimation algorithms, 
and the group mean approach.  The table reports MAPE for algorithm estimates of peak tibial force 

(𝐹̂𝑚𝑎𝑥) relative to lab-based estimates of peak tibial force (𝐹𝑚𝑎𝑥). Shown are the inter-runner means, 
standard deviations and min/max ranges (N=10).  

 Single variable linear regression 
Group mean 

force 
 Vertical GRF 

active peak 
Vertical GRF 

impulse 
Slope Speed 

mean  std 8.2  1.6 % 10.5  3.9 % 8.5  3.4 % 9.6  4.2 % 10.3  4.0 % 

[min max] [5.6% 10.4%] [5.3% 15.2%] [4.0% 16.1%] [4.1% 15.9%] [5.1% 15.8%] 

 

4.5 Discussion 

 
Here we demonstrate two multi-sensor algorithms that provide improved estimates of peak tibial 
force during running across speeds and slopes, as compared to conventional approaches used by 
current wearables. On average, the physics-based algorithm had 5% error and the machine learning 
algorithm has a 3% error, compared to the single variable linear regression approach using VALR or 
other GRF and single variable metrics that had average errors ranging from 8-11%. These findings 
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highlight that multi-sensor algorithms offer a promising and feasible approach for more accurately 
estimating musculoskeletal loads, like tibial force, using wearable sensors in applied situations.  
 

4.5.1 Encouraging implications for using existing wearable sensors with improved algorithms 

 
Fortunately, all the sensor signals and discrete features used in these algorithms can be obtained from 
existing wearable sensor hardware. This suggests that there are opportunities to achieve more 
accurate musculoskeletal load estimates solely by selecting appropriate sensors and accompanying 
software algorithms. Specifically, the physics-based algorithm used time series shank angle, foot angle, 
GRF magnitude, and anterior-posterior CoP under the foot, which could be obtained with IMUs placed 
on the shoe and shank and a pressure-sensing insole/shoe. For the machine learning algorithm, all 
discrete features could be estimated from signals obtained from the same IMUs and pressure-sensing 
insole/shoe.  

 
While our reported machine learning algorithm used discrete features, which could be obtained from 
three wearable sensors, we also explored how reducing the number of sensors used in the algorithm 
to just one or two would influence algorithm estimates (Table 4.4). Three interesting insights we 
observed were: (i) Adding the shank IMU features to the pressure insole and foot IMU features had 
minimal effect on the tibial force estimation error. This was corroborated by outputs from the LASSO 
algorithm as after training the original machine learning model, the shank features were all ranked as 
low importance. (ii) Relatedly, the models including both the pressure insole and foot IMU resulted in 
the lowest errors. This was also consistent with LASSO outputs, as the original model ranked three 
features from these sensors as the highest importance: GRF active peak, anterior-posterior CoP at 
midstance, and the foot angle at midstance. (iii) Each of these iterations used more than a single 
feature to estimate peak tibial force and three of the combinations resulted in an error less than our 
single variable linear regression estimates or group mean approach, and three of the combinations 
resulted in an error equal to our single variable linear regression estimates or group mean approach 
(Table 4.3 vs. Table 4.4). While it would be extremely convenient if a single metric/feature was a 
strong indicator of tibial force, we show that by combining just a few data features we are able to 
improve our peak tibial force estimates (average error of <3% compared to ~10% using a single 
metric). While not reported here, a similar exploration of resulting algorithm estimates using different 
sensor combinations could be repeated for the physics-based approach.  
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Table 4.4 Errors in tibial force estimates for machine learning algorithms using different sensor 

combinations. The table reports MAPE of wearable algorithm estimates of peak tibial force (𝐹̂𝑚𝑎𝑥) 
compared to lab-based estimates of peak tibial force (𝐹𝑚𝑎𝑥). Each iteration used a different 
combination of wearable sensors providing a different number of discrete features. Refer to Table 4.1 
for an explanation of which discrete features were available from each idealized wearable sensor. 
Reported are the inter-runner means and standard deviations (N=10). Note: The first combination is 
equivalent to the subset used in our presented machine learning mode (equivalent to Figure 4.3 and 
Table 4.2) and is included here for reference.  

 Wearable sensors used  
(f = total number of discrete features used) 

MAPE mean  std 
(N=10) 

pressure insole + foot IMU + shank IMU (f=13) 2.6  0.8 % 

pressure insole + foot IMU (f=10) 2.6  0.6 % 

pressure insole (f=7) 4.7  1.7 % 

foot IMU + shank IMU (f=9) 8.3  4.9 % 

shank IMU (f=5) 8.0  2.9 % 

foot IMU (f=5) 7.9  2.3 % 

 

4.5.2 Opportunities for advancement of wearables that monitor musculoskeletal loads 

 
There are numerous opportunities for further exploration and improvement of the two algorithms 
presented here. First, now that candidate sensors and signals/features have been identified in this 
study, a fully portable/wearable system could be developed and its accuracy could be assessed. It is 
important to remind that idealized wearable signals allowed us to identify the most promising signals 
and features; however, in many instances a given signal or feature could be estimated from multiple 
different types of sensors. For example, GRF active peak could be estimated either with a pressure 
insole, or with a waist-mounted accelerometer [20], [105]. Thus, there may be opportunities to 
strategically select sensor hardware to accommodate application constraints (e.g., a footwear 
developer may opt to measure GRF active peak with an insole, whereas an apparel developer may opt 
to integrate an accelerometer into the waistband of shorts).  
 
Second, an additional algorithm approach is to fuse the physics-based and machine learning 
algorithms, each of which has its own benefits and challenges. The physics-based algorithm is based 
on equations of motion that describe the system (the runner’s tibial bone), which theoretically should 
estimate force accurately beyond the running conditions tested here. However, as detailed in 
methods, current wearable sensors provide limited signals that are insufficient to compute the full 
equations of motion. The LASSO machine learning algorithm is advantageous because it uses a small 
set of idealized wearable sensor features and develops a model that minimizes tibial force estimation 
error in the training data. However, the final model is dependent on the training data and should not 
be assumed to extrapolate to running conditions beyond the training set. Potentially, one could first 
estimate tibial force using the physics-based algorithm and then use these results, in addition to other 
wearable features, as inputs to the machine learning model. This would leverage the strengths of each 
algorithm. Another interesting and yet unexplored research direction is to build and train non-linear 
neural network models with internal structures influenced by the physics-based equations – 
effectively embedding the domain knowledge (biomechanics) into the network architecture. For 
example, if from inverse dynamics we know that CoP will be multiplicatively related to GRF (to 
estimate ankle moment), we could add that non-linearity into the neural network model structure.  
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Third, as new sensor hardware is developed, it is expected to further enhance musculoskeletal load 
estimation accuracy. For instance, future commercial pressure insoles may be able to measure the 
anterior-posterior GRF, providing more complete input signals for physics-based algorithms, and 
additional candidate features for machine learning. Ultimately, the desired estimation accuracy will 
vary based on the intended application as there is some tradeoff between hardware complexity and 
estimation accuracy. 
 

4.5.3 Discouraging implications for VALR and other single variable surrogates for musculoskeletal 
load 

 
VALR was a poor predictor of tibial bone force. The average force errors from VALR (9.9%, 0.97 BWs) 
were nearly the same as using the naive group mean approach (10.3%, 0.99 BWs), which simply 
assumes a constant peak tibial force for every step. These findings suggest that if our goal is to 
monitor peak force on the tibial bone, then tracking VALR may be no more accurate than simply using 
a pedometer (step counter) and assuming a constant mean force for every step. Of note, for the group 
mean approach presented here to emulate a step counter, we chose to use the group mean of peak 
tibial force, but any other average metrics (median, mode, etc.) would similarly result in estimates that 
do not capture trends in tibial force (Figure 4.4E).  
 
The machine learning algorithm results provide further evidence of the limited utility of VALR. VALR 
was the one and only discrete feature for which the LASSO machine learning algorithm drove the 
weighting factor to zero, indicating that VALR was not needed or used in model predictions. These 
findings may be surprising to some readers given the fact that VALR (or correlated signals like GRF 
impact peak, peak foot/shank accelerations ([103], [104], [179], etc.) is commonly assumed in sport 
science, biomechanics and related disciplines to signify athlete workload, internal loading or injury 
risk. However, as discussed in [173] and [174], we believe these assumptions/interpretations reflect 
fundamental misconceptions in the field regarding the relationship between external forces (between 
the foot and the ground), the loads experienced inside the body by musculoskeletal structures (e.g. 
Figure 4.3A), and the resulting damage and injury risk. Thus, we continue to urge vigilance in how 
VALR and other impact-related metrics are used and interpreted within the context of sport science 
and injury risk assessment. 
 

4.5.4 Important insights gained from estimating tibial damage 

 
The methods above describe how we assessed the bone force estimation accuracy of each algorithm, 
which enables us to evaluate relative performance of algorithms. However, an open question in the 
research field is: what level of musculoskeletal force estimation accuracy is needed for assessing 
overuse injury risk? It is impossible to know definitively at this stage and deciding when a model is 
accurate enough is a known challenge in the field (see [170] and Section 4.5.5 below). Nevertheless, 
one way to gain insight is to consider the relationship between bone force and bone microdamage, 
since overuse injuries are believed to result from an accumulation of microdamage [9]. Here we use 
the word damage to refer to the mechanical fatigue-induced microstructural damage to bone tissue 
[9]. 
 
There is extensive experimental evidence that material (e.g., bone) damage is exponentially related to 
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the force applied (Damage  Force7, [9], [90], [123], see Supplement 4.7.2 for additional details). As an 
example of how even modest errors in force estimates result in enormous errors in bone damage 
estimates, 8-11% errors in tibial force estimates based on single variable linear regressions would 
translate, on average, to bone damage errors of about 70-120% (Supplemental Figure 4.2 & 
Supplemental Figure 4.3, Supplemental Table 4.1 & Supplemental Table 4.2). Alternatively, 5% errors 
in tibial force estimated using the physics-based algorithm would translate to about 41% error in bone 
damage and 3% errors in tibial force estimated using the machine learning algorithm would translate 
to about 18% error in bone damage (Supplemental Figure 4.2, Supplemental Table 4.1). See 
Supplement 4.7.2 for full bone damage results.  
 
To gain intuition into how errors in our force and damage estimates may accrue over a series of 
loading cycles (i.e., over multiple running strides), we also estimated cumulative damage, using both 
our lab-based estimate of peak tibial force and our algorithm estimates of peak tibial force, over 
simulated five-mile running sessions. For brevity of the main text, these cumulative damage methods 
and full results are presented in Supplement 4.7.2, with one finding presented here:  
 
When comparing 25 simulated running workouts of differing intensity (varying number of running 
strides at different combinations of speeds and slopes), our lab-based estimates of cumulative damage 
resulted in different amounts of cumulative bone damage per run (Figure 4.5). If the runner used the 
VALR linear regression based estimates of cumulative damage, they would be misguided about how 
much damage their tibial bone experiences during each workout, with some workouts being largely 
overestimated and some being largely underestimated. There are important consequences to severely 
over- or under-estimating damage to the bone. Large overestimates of bone damage may result in 
wearables that advise to sideline an athlete unnecessarily, while large underestimates of damage may 
result in a failure to notify an athlete of heightened risk before an injury occurs. Alternatively, 
estimating cumulative damage per run with the physics-based or machine learning algorithm more 
accurately estimates the bone damage per run (Figure 4.5); capturing key trends in higher vs. lower 
damage workouts. These two multi-sensor algorithms offer an exciting and powerful tool for capturing 
important trends in bone damage and potentially overuse injury risk (due to microdamage 
accumulation). 
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Figure 4.5 Example of how each algorithm performs across 25 simulated running workouts of 
varying intensity. This plot highlights how the physics-based (medium blue line) and machine learning 
(dark blue line) algorithms are able to track trends in tibial bone damage per workout over multiple 
running workouts. The green band represents lab-based estimates of bone damage +/- a small margin 
of error. Using VALR (light blue line) to track bone damage across multiple runs fails to provide the 
runner with accurate or useful information about which workouts expose them to higher vs. lower 
amounts of cumulative bone damage and associated injury risk.  
 

 
Considering bone damage when developing musculoskeletal load monitoring tools theoretically takes 
us one step closer to the mechanical mechanism underlying bone overuse injuries. While it is not yet 
clear what level of accuracy is sufficient for different applications (e.g., longitudinal research studies, 
athlete injury risk monitoring), our findings highlight the importance of considering tissue damage (in 
this case bone damage), not only force, when developing musculoskeletal loading and injury 
prevention tools. 
 

4.5.5 Path from new tools to scientific understanding and societal impact 

 
There are a couple common questions regarding monitoring bone load, damage and overuse injury 
risk that we have received since sharing initial results and a preprint of this study, namely: How do we 
know that estimates of peak bone force or associated damage will be good indicators of injury risk? 
How do we know which specific bone loading metric(s) to track? How do we know how accurate 
estimates of bone loading or damage need to be? The simple answer: We don't. This would be akin to 
asking: Before the invention of the pulse oximeter, how did medical device developers know this tool 
could be used to screen neonates for Critical Congenital Heart Disease, know the precise oximetry 
metrics to track, and know what level of estimation accuracy of these metrics was necessary? They 
didn't. Often when envisioning a new screening, diagnostic or health monitoring tool, the first versions 
are developed based on the state of scientific and clinical evidence at that time. Pulse oximeter 
developers used existing knowledge that monitoring oxygen saturation could potentially provide 
useful insight about physiological function and health. After developing an oxygen saturation 
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estimation tool, and performing a series of research studies to refine the hardware, analytics and 
clinical insights, device developers were then able to use this new and validated tool to monitor 
neonatal (and other clinical) health and improve care, resulting in a huge societal impact. 
 
Similarly, when envisioning a new bone stress injury risk monitoring tool, we were motivated by the 
current state of scientific evidence on the etiology of bone stress injuries. Specifically, we were 
motivated by evidence that bone stress injuries are consistent with mechanical fatigue processes due 
to tissue damage accumulation resulting from repetitive bone loading ([9], [91]). Interestingly, a risk 
assessment tool has previously been developed to estimate tissue damage to the low back due to 
repeated lifting, and this tool has been validated against two occupational epidemiological injury 
databases (i.e., shown to explain 72-95% of the deviance in low back disorders, [180]). Thus, there is 
both a strong scientific motivation and risk assessment precedence (from the occupational health 
field) for using tissue load monitoring in the way we propose and envision. 
 
However, currently there is a critical technical gap: we lack the ability to monitor tibial bone loading 
outside the lab, which inhibits the evaluation of these mechanical fatigue processes in real world 
environments for runners or other individuals. Development of a novel wearable bone load (and 
damage) monitoring tool will enable researchers and clinicians to collect longitudinal prospective data 
on bone loading while also tracking injury incidence. Examining these data can then allow for testing 
hypotheses about the role of bone loading in the development of bone stress injuries, potentially 
identifying new bone health and injury risk predictive metrics. Proper measurement tools must be 
developed and deployed before injury risk predictive metrics will be discovered and validated. Of note, 
bone load and damage monitoring will likely not be used in isolation. Rather, these data may be 
combined with other physiologically relevant information (e.g., sleep duration, diet, bone geometry, 
demographics, bone bending moments) to develop deeper insights into bone health and overuse 
injury mechanisms. Much remains unknown about which metrics are key, how to combine them to 
most effectively monitor bone health or injury risk, and what accuracy of each metric is needed for 
different applications. What is known is that developing a wearable bone load and damage monitoring 
tool will provide researchers and clinicians with unique new capabilities to gain a deeper scientific 
understanding of bone health. Expanding knowledge related to bone stress injury mechanisms and 
prevention has huge potential for improving societal health, happiness, and productivity. This study 
represents a tangible step towards this goal. 
 

4.5.6 Additional limitations and opportunities 

 
First, we focused on one specific musculoskeletal structure (the tibia), direction of loading (tibial 
compression), and range of conditions which were all treated with equal weight in algorithm 
development (treadmill running across a range of speeds and slopes). The presented algorithms were 
developed within these bounds, and any additional musculoskeletal structure, direction of loading, or 
range of conditions would necessitate additional validation studies. Nevertheless, the same analysis 
could be used to investigate other musculoskeletal structures (e.g., lumbar loading for individuals at 
risk of back overuse injury). Our outlined process can help identify candidate sensors and signals, 
develop algorithms, and begin to establish expectations for levels of accuracy that might be achievable 
with existing types of sensors.  
 
Second, algorithm development required us to choose which method of estimating tibial force (and 
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resulting damage) was considered our ground truth. As described previously [173], we have 
confidence in lab-based estimates of tibial compression force. There is less agreement in the literature 
about other loading directions (e.g., tibial bending, [13], [14], [168], [169], [181]–[183]). Nevertheless, 
there may be value to exploring algorithms for estimating these other loading directions, or for 
estimating damage due to the combined loading from axial compression and bending (see 
Supplement 4.7.2 Limitations for additional discussion). However, it should be emphasized that these 
other loading directions are also highly dependent on muscles forces, and it is again unlikely that a 
single variable metric (e.g., VALR) would be an accurate predictor of internal loading.  

Third, these algorithms were developed using idealized wearable signals. Actual wearable sensor 
signals are expected to exhibit additional noise, errors, or drift, and therefore the results presented 
here should be interpreted as best case expectations for wearables utilizing the sensor/signal sets 
described here. Future studies could use actual wearable sensor signals as model inputs, or apply 
noise, errors, or drift to current idealized wearable signals. However, previous validation experiments 
have shown good agreement between pressure insoles and the vertical GRF [184] and IMU-based 
kinematics and lab-based motion capture kinematics [176]. Additionally, sensor hardware, algorithms 
and signal quality are constantly improving, bringing wearable sensor measurements closer to lab-
based measurements. 

Fourth, with advances in sensor hardware and sensor integration techniques, the potential for 
development and adoption of musculoskeletal load monitoring tools into daily life will also evolve. 
Sensor integrated clothing, footwear, insoles, textiles, etc. are becoming increasingly common and the 
use of multiple sensors is becoming increasingly practical. In fact, there are already multiple 
commercial wearables available that contain a pressure-insole and an IMU (a combination of sensors 
yielding the lowest bone force estimation error in this study, Table 4.4). The results of this study 
demonstrate the potential pay-offs of leveraging a multi-sensor approach. It is important to remember 
that there was a time when walking around with a phone in your pocket seemed almost unimaginable. 
But now it is routine to walk around all day with a pocket full of sensors -- smartphones that fit 
seamlessly into our daily lives enhance our productivity, connectedness, health monitoring, etc. in 
ways that were previously unthinkable. Similarly, we expect that the limiting factor of musculoskeletal 
load monitoring tools will not be the number or cost of sensors, or the size of batteries, but rather the 
limiting factor will be our imagination, our vision, and the ability to combine data science (e.g., 
machine learning) and domain knowledge (e.g., biomechanics) to provide actionable and scientifically 
validated insights that improve societal health and well-being. 
 
Finally, we note that the analysis here was performed on stride-averaged data. However, we expect all 
the same conclusions to hold true for stride-by-stride analysis, since the variability within a running 
condition was small relative to the variability across conditions. 

 

4.6 Conclusion 

 
Here we demonstrate two multi-sensor algorithms – one physics-based and one machine learning – 
that offer promising solutions for estimating peak tibial force with wearable sensors. We show that by 
harnessing signals from existing wearable sensors, and applying multi-sensor algorithms, it is feasible 
to drastically improve the estimation accuracy of peak tibial force (by two or four fold relative to the 
current state-of-the-art in commercial wearables). This study highlights the exciting potential to 
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combine wearables, musculoskeletal biomechanics and machine learning to develop more accurate 
tools for monitoring musculoskeletal loading in applied situations. 
 

4.7 Chapter 4 Supplemental Material  

 

4.7.1 Physics-based Algorithm Methods  

 
Equation 4.1 describes the lab-based estimate of tibial force (𝐹(𝑡)) as the summation of the net force 
on the ankle and the force from the plantarflexor calf muscles (𝐹𝑚). 
 
 
 𝐹(𝑡) = |𝑮𝑹𝑭| ∙ cos(𝛽) +  𝐹𝑚 Equation 4.1 
 
 

Where 𝛽 is the 3D angle between the 𝑮𝑹𝑭 and long-axis of the lower leg segment, and 𝐹𝑚 was 
estimated by dividing the net sagittal plane ankle moment by the Achilles tendon moment arm 
(assumed constant, 5 cm, (Matijevich et al., 2019)). From 𝐹(𝑡) we extracted 𝐹𝑚𝑎𝑥, the maximum tibial 
force during stance. Vectors are bolded, and scalars are non-bolded. 
 

To estimate tibial force from the available idealized wearable signals (𝐹̂(𝑡)) we created a modified 
version of Equation 4.1. We approximated both the net force on the ankle and the force from 
plantarflexor calf muscles (Equation 4.2). The net force on the ankle was estimated by projecting the 
normal force under the foot (𝐺𝑅𝐹𝑛𝑜𝑟𝑚𝑎𝑙) onto an estimate of the long axis of the tibia. The force from 
the plantarflexor calf muscles was estimated by approximating the net ankle moment, then dividing by 
Achilles tendon moment arm length (𝑟𝐴𝑇, assumed constant, 5 cm, [173]). To approximate the net 
ankle moment, we computed 𝐶𝑜𝑃𝑎𝑝 ∙ 𝐺𝑅𝐹𝑛𝑜𝑟𝑚𝑎𝑙, where 𝐶𝑜𝑃𝑎𝑝 was the anterior-posterior center of 

pressure distance relative to the ankle joint position. The ankle joint position was assumed 5 cm 
anterior to the heel of the foot, based on a typical Achilles tendon moment arm length. Summing 

these approximations in Equation 4.2 yields an unscaled estimate of tibial force 𝐹̂′(𝑡). From 𝐹̂′(𝑡) we 

extracted 𝐹̂′
𝑚𝑎𝑥, the maximum unscaled tibial force during stance. 

 
 
 

𝐹̂′(𝑡) =  𝐺𝑅𝐹𝑛𝑜𝑟𝑚𝑎𝑙 ∙ cos(𝛽̂) +
(𝐶𝑜𝑃𝑎𝑝) ∙ 𝐺𝑅𝐹𝑛𝑜𝑟𝑚𝑎𝑙

𝑟𝐴𝑇
 

Equation 4.2 

   

Where 𝛽̂ is the approximate angle between 𝐺𝑅𝐹𝑛𝑜𝑟𝑚𝑎𝑙 and the long-axis of the lower leg segment. 𝛽̂ 
is estimated as  90° − 𝜃𝑓𝑜𝑜𝑡 + 𝜃𝑠ℎ𝑎𝑛𝑘, where 𝜃𝑓𝑜𝑜𝑡 and 𝜃𝑠ℎ𝑎𝑛𝑘 are foot and shank angles in the sagittal 

plane relative to the horizontal. 
 
Of note, Equation 4.2 assumes that 𝐶𝑜𝑃𝑎𝑝 and 𝐺𝑅𝐹𝑛𝑜𝑟𝑚𝑎𝑙  are perpendicular to each other, neglects 

moment and reaction force contributions from the anterior-posterior and mediolateral GRFs and is 
devoid of a true ankle joint center estimate. We therefore anticipated this physics-based algorithm 
might systematically under- or over-estimate tibial force; thus why we refer to this initial estimate as 
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unscaled. To account for this, linear scaling coefficients were calculated using k-fold validation, then 

applied to arrive at a scaled estimate of peak tibial force (𝐹̂𝑚𝑎𝑥). 
 

4.7.2 Extended methods and results for estimating bone damage and cumulative bone damage 
over simulated running sessions 

 
Appendix B provides extended methods and results for estimating bone damage and cumulative bone 
damage over simulated running sessions. We evaluated both the bone damage per running stride and 
the cumulative bone damage accrued over simulated five-mile running sessions, to supplement our 
analysis of force estimation accuracy. 
 

4.7.2.1 Methods: Bone damage per running stride 

 
Bone damage per running stride was estimated using an established inverse power law for bone 

damage (𝐷 = 𝑐𝐹𝑚𝑎𝑥
𝑒 and 𝐷̂ = 𝑐𝐹̂𝑚𝑎𝑥

𝑒
) that describes the life-stress relationship of materials under 

cyclic loading, where 𝑒 is an empirically-derived exponential constant for bone of seven [122], [125], 
[133]. Here, 𝑐 is set equal to unity such that our cumulative damage are dimensionless units of relative 
cumulative damage. A different constant 𝑐 and additional modeling factors would be needed to 
translate 𝐷 into physical representations of mechanical fatigue (e.g., number of cycles until bone 
failure or probability of failure, [123], [124]). For each algorithm, we computed the MAPE between 𝐷 

and 𝐷̂ across all conditions for each runner. 
 

4.7.2.2 Methods: Cumulative damage and simulated running session 

 
We estimated cumulative damage over a series of loading cycles (i.e., over multiple steps). We created 
1000 simulated runs that were each approximately five miles. The series of loading cycles was 
constructed by randomly assigning a speed-slope combination in half mile increments, constrained by 
speed-slope combinations we collected in our experiment (one example in Supplemental Figure 4.1). 
To generate a plausible running session, for each subsequent increment, the slope was constrained to 

change by either +3, 0, or -3, and the speed was randomly assigned. The number of steps taken at 
each half mile increment was estimated based on a previously reported speed-cadence relationship 
[185]. We estimated cumulative damage over each simulated run using Miner’s rule of cumulative 
fatigue over a series of loading cycles at different peak forces (Equation 4.3, Equation 4.4, [9], [90]),   
 

 

Σ𝐷 =  ∑ 𝑛𝑖 ∙ 𝐹𝑚𝑎𝑥,𝑖
7

10

𝑖=1

 Equation 4.3 

   

 

Σ𝐷̂ =  ∑ 𝑛𝑖 ∙ 𝐹̂𝑚𝑎𝑥,𝑖
7

10

𝑖=1

 Equation 4.4 

 
Where 𝑖 represents the half mile increment, 𝑛𝑖 is the number of steps taken in that half mile increment 

based on the speed assigned, and 𝐹𝑚𝑎𝑥,𝑖 and 𝐹̂𝑚𝑎𝑥,𝑖 represent the peak force for the speed-slope 
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combination assigned to that half mile increment (see Supplemental Figure 4.1  for one example). 

For each runner, the cumulative damage Σ𝐷 vs. Σ𝐷̂ was plotted for all 1000 simulated runs. We then 
computed the MAPE for each runner. Finally, we calculated the inter-runner average and range of 
MAPE. 
 
 
 

 
Supplemental Figure 4.1 Example of one five-mile simulated running session. The embedded table 
shows our lab-based estimates of peak tibial force (𝐹𝑚𝑎𝑥,𝑖) for our tenth runner. 
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4.7.2.3 Results & Discussion: Bone damage per running stride 

 
Below are the figures and tables that support the Discussion section 4.5.4. 
 
 
 

 
Supplemental Figure 4.2 Comparison of bone damage based on force estimation algorithms. Bone 
damage estimated using lab-based peak tibial force (𝐷) vs. damage estimated using wearable sensor 

algorithm peak tibial force (𝐷̂). Damage is reported in dimensionless units. Algorithm estimates are 
from A) single variable linear regression using VALR, B) physics-based algorithm, and C) machine 
learning algorithm. Colors represent 10 runners. Each point represents a single running speed-slope 
combination (30 conditions per runner). A line with a slope is added to visualize a perfect 
correspondence between lab-based and wearable estimates. See Figure 4.3 for accompanying force 
estimation results.  

 
 
Supplemental Table 4.1 Average errors in bone damage estimates based on force estimation 

algorithms. The table reports MAPE of 𝐷 vs. 𝐷̂. Reported are the inter-runner means and standard 
deviations (N=10). The physics-based algorithm and machine learning algorithm exhibited lower 
damage estimation errors than single variable linear regression algorithm using VALR (p=0.02 and 
p<0.001 respectively, based on Wilcoxon signed-rank test on the k-fold cross-validation error results 
translated into estimates of damage). See Table 4.2 for accompanying force estimation results.  

 Single variable linear 
regression (VALR) 

Physics-based Machine learning 

mean  std 104  70 % 41  16 % 18  5 % 

[min max] [25% 242%] [25% 81%] [11% 27%] 
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Supplemental Figure 4.3 Comparison of bone damage based on additional single variable linear 
regression force estimation algorithms, and the group mean approach. The plots depict bone 
damage based on lab-based estimates of peak tibial force (𝐷) vs. damage based on single variable 

linear regression estimates of peak tibial force (𝐷̂). Damage is reported in dimensionless units. Single 
variable linear regression results used A) vertical GRF active peak, B) vertical GRF total impulse, C) 
ground slope, and D) running speed. Damage estimates based on E) the group mean approach are also 
plotted in for reference. Colors represent 10 runners. Each point represents a single running speed-
slope combination (30 conditions per runner). A line with a slope of one is added to visualize a perfect 
correspondence between lab-based and wearable estimates. See Figure 4.4 for accompanying force 
estimation results. 
 
 
Supplemental Table 4.2 Errors in bone damage estimates based on additional single variable linear 
regression force estimation algorithms, and the group mean approach. The table reports MAPE of 𝐷 

vs. 𝐷̂. Reported are the inter-runner means and standard deviations (N=10). See Table 4.3 for 
accompanying force estimation results. 

 Single variable linear regression 
Group mean 

force 
 Vertical GRF 

active peak 
Vertical GRF 

impulse 
Slope Speed 

mean  std 73  36 % 127  93 % 71  35 % 103  73 % 121  84 % 

[min max] [39% 132%] [33% 304%] [24% 133%] [28% 234%] [38% 261%] 

 

4.7.2.4 Results & Discussion: Cumulative damage and simulated running session  
 

Cumulative damage calculated using the single variable linear regression that scales VALR to estimates 

of peak tibial force resulted in an average MAPE of 85  59 % across runners (Supplemental Figure 
4.4D, Supplemental Table 4.3). Cumulative damage estimated using our physics-based algorithm 

estimates of peak tibial force resulted in a MAPE of 31  12 % (Supplemental Figure 4.4E, 
Supplemental Table 4.3). Cumulative damage estimated using our machine learning algorithm 

estimates of peak tibial force resulted in a MAPE of 13  5 % (Supplemental Figure 4.4F, Supplemental 
Table 4.3).  
 
To help visualize how errors in force translate to errors in damage, we plotted force and damage 
results together for a single runner (Supplemental Figure 4.4). We first plotted lab-based estimates of 
peak tibial force across 30 running conditions vs. wearable sensor algorithm estimates (Supplemental 
Figure 4.4A-C). We then plotted lab-based estimates of cumulative damage across 1000 simulated 
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runs vs. wearable sensor estimates (Supplemental Figure 4.4D-F) directly underneath for the same 
runner. 
        
 

 
Supplemental Figure 4.4 Cumulative damage from simulated runs for a single example runner.  A-C) 
These plots depict lab-based estimates of peak tibial force (𝐹𝑚𝑎𝑥) vs. wearable sensor algorithm 

estimates of peak tibial force (𝐹̂𝑚𝑎𝑥) for an example runner for 30 running conditions. D-F) These plots 
depict lab-based estimates of cumulative damage over 1000 simulated runs (∑ 𝐷) vs. wearable sensor 

algorithm estimates of cumulative damage (∑ 𝐷̂). Force is reported in units of BW and damage is 
reported in dimensionless units. Using VALR, a 8.5% error in tibial force translated to a 77% error in 
cumulative damage. Using the physics-based algorithm, a 6.8% error in force translated to a 38% error 
in cumulative damage. Using the machine learning algorithm, a 2.1% error in force translated to a 10% 
error in cumulative damage. A line with a slope of unity is added to visualize a perfect correspondence 
between lab-based and wearable estimates.  
 
Supplemental Table 4.3 Average errors in relative cumulative damage from simulated runs.  The 

table reports MAPE of ∑ 𝐷 vs. ∑ 𝐷̂. Reported are the inter-runner means and standard deviations 
(N=10).   

 Single variable linear 
regression (VALR) 

Physics-based Machine learning 

mean  std  85  59 % 31  12 % 13  5 % 

[min max]  [25% 213%] [17% 57%] [7% 22%] 
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To contextualize the consequences of misestimating bone damage, we imagined a runner with a 
history of tibial stress fractures who wanted to monitor bone damage across multiple days of running, 
in order to understand which workouts lead to more or less wear and tear on her tibia. This runner 
would need a wearable that could be worn daily and could track bone damage for each workout, so 
she could evaluate when rest and recovery days are needed to help avoid a reoccurrence of the 
overuse injury.  While this runner doesn’t need a perfect estimate of bone damage, she does need the 
estimate to be within some reasonable margin of error. This is because if a wearable largely 
overestimates the cumulative damage to the bone, she may think she is at heightened injury risk, and 
sideline herself unnecessarily (Supplemental Figure 4.5 Example of how each algorithm performs 
across nine workouts of increasing bone damage. Supplemental Figure 4.5). If a wearable 
underestimates the cumulative damage to the bone, she may not be notified of heightened injury risk 
in time, and fail to take rest days before an overuse injury occurs (Supplemental Figure 4.5). 

 
 

 
Supplemental Figure 4.5 Example of how each algorithm performs across nine workouts of 
increasing bone damage.  From our 1000 simulated 5-mile runs, we selected nine runs that spanned 
from low to high bone damage. The green line represents the lab-based estimates of bone damage per 
run. The green band is a visual reminder that for any application there would be some acceptable 
margin of error. Blue circles, triangles, and squares represent wearable estimates of bone damage 
using VALR, the physics-based, and the machine learning algorithms, respectively. For this subset of 
runs, VALR severely overestimates the damage to the bone for seven of the nine workouts. In contrast, 
the physics-based algorithm only underestimates the damage to the bone for one workout, and the 
machine learning algorithm did not yield any estimates outside the depicted margin of error.  
 
To further illustrate how a wearable that misestimates cumulative damage may affect our imagined 
runner, we did the following: From our 1000 simulated five-mile running sessions, we selected a 
subset of 25 runs, each with a different amount of lab-based cumulative damage per run. This 
illustration is presented in Discussion of the main text and Figure 4.5. This example also provides an 
important reminder that even though runs may be the same distance (5 miles), they can result in 
hugely different amounts of cumulative bone damage per run. 
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4.7.2.5 Limitations  

 
These cumulative damage estimates do not account for bone remodeling and adaptation [90] that 
would occur over time between these simulated workouts as our goal was only to compare damage 
accrued during each simulated running workout due to repeated bone loading. Interestingly, bone 
remodeling and adaptation are also influenced by bone load [9], and therefore using estimates based 
on single-variable linear regression (e.g., VALR) may also limit estimation and understanding  of these 
processes. While a wearable tool for tracking long-term bone health will likely include a composite 
model that combines estimates of bone damage, remodeling, adaptation, and other processes and risk 
factors, a reasonable estimate of bone load is foundational to estimating many of these components. 
 
Additionally, the damage estimate here was based solely on compressive (axial) force. Future 
algorithms could be developed to estimate other loading directions (e.g., bending moment) and/or 
resulting bone stresses, and future estimates of damage may be obtained using these combined loads 
and/or stresses. 
 
We note that even if we did add additional remodeling processes and/or loading directions to our 
estimates of damage, it would not alter the conclusions drawn here: (i) that the use of single-variable 
linear regression (e.g., VALR) leads to inaccurate tibial force and damage estimates, and (ii) that more 
accurate estimates of tibial force (e.g. using the physics-based and machine learning algorithms 
introduced in this study) can improve our estimates of tibial damage. 
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5 A promising wearable solution for practical and accurate monitoring of low back loading in 
manual material handling  

 

5.1 Abstract 

  
(1) Background: Low back disorders are a leading cause of missed work and physical disability in manual 
material handling due to repetitive lumbar loading and overexertion. Ergonomic assessments are often 
performed to understand and mitigate the risk of musculoskeletal overexertion injuries. Wearable 
sensor solutions for monitoring low back loading have the potential to improve the quality, quantity, 
and efficiency of ergonomic assessments and to expand opportunities for the personalized, continuous 
monitoring of overexertion injury risk. However, existing wearable solutions using a single inertial 
measurement unit (IMU) are limited in how accurately they can estimate back loading when objects of 
varying mass are handled, and alternative solutions in the scientific literature require so many 
distributed sensors that they are impractical for widespread workplace implementation. We therefore 
explored new ways to accurately monitor low back loading using a small number of wearable sensors. 
(2) Methods: We synchronously collected data from laboratory instrumentation and wearable sensors 
to analyze 10 individuals each performing about 400 different material handling tasks. We explored 
dozens of candidate solutions that used IMUs on various body locations and/or pressure insoles. (3) 
Results: We found that the two key sensors for accurately monitoring low back loading are a trunk IMU 
and pressure insoles. Using signals from these two sensors together with a Gradient Boosted Decision 
Tree algorithm has the potential to provide a practical (relatively few sensors), accurate (up to r2 = 
0.89), and automated way (using wearables) to monitor time series lumbar moments across a broad 
range of material handling tasks. The trunk IMU could be replaced by thigh IMUs, or a pelvis IMU, 
without sacrificing much accuracy, but there was no practical substitute for the pressure insoles. The key 
to realizing accurate lumbar load estimates with this approach in the real world will be optimizing force 
estimates from pressure insoles. (4) Conclusions: Here, we present a promising wearable solution for 
the practical, automated, and accurate monitoring of low back loading during manual material handling. 
 

5.2 Introduction 

 
Low back disorders are a leading occupational health problem, ranging from lumbar (low back) pain to 
muscle strains to herniated spinal discs. Physical pain, missed work, decreased productivity, healthcare 
costs, short- and long-term disability, and psychological distress due to these low back disorders are 
substantial and persistent burdens on our society. Back disorders account for about 40% of all work-
related musculoskeletal disorders [186], and about one in four workers reports dealing with low back 
pain [187], [188]. Individuals working in manual material handling jobs (and other jobs with similar 
physical demands) are at particularly high risk for low back disorders due to repetitive lifting and 
bending, which can lead to musculoskeletal overexertion (overuse) injuries [186]. 
 
Overexertion injuries result from an accumulation of microdamage caused by repetitive loading to 
musculoskeletal tissues (e.g., muscles, tendons, ligaments, bones, discs). Overexertion injuries are 
consistent with a fatigue failure process: the weakening and eventual failure of a material due to 
repeated loading [9], [180], [189]. When modeling this fatigue failure process, both the number of 
loading repetitions and the magnitude of loading on the musculoskeletal tissues are important for 
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approximating the cumulative damage to the tissue. There are multiple opportunities to use 
musculoskeletal loading and fatigue failure insights to understand and reduce the risk of overexertion 
injuries, such as through ergonomic assessments or continuous, personal monitoring of injury risk. 
 

5.2.1 Ergonomic assessments 

 
Ergonomic risk assessment tools that evaluate low back loading and assess injury risk using fatigue 
failure principals have shown potential for predicting the incidence of low back disorders. For example, 
the Lifting Fatigue Failure Tool (LiFFT) estimates cumulative tissue damage to the low back using an 
estimate of lumbar moment. Cumulative damage across a series of lifting tasks estimated with LiFFT has 
been shown to explain 72–95% of the deviance in low back disorders from epidemiological databases 
[180]. Ergonomic risk assessments are traditionally performed via direct observation by a trained 
professional. For instance, to perform an ergonomic assessment using LiFFT (or other assessment tools 
like the NIOSH Lifting Equation [190]), an ergonomist or safety professional would monitor a single 
worker during their shift, or over a subset of representative job tasks, to manually record how much 
each lifted object weighed and how far away each lifted object was from the body, then input how many 
times each type of lift is performed during a shift. The time spent observing a worker depends on the 
variability of job tasks (e.g., short- vs. long-cycle jobs), but is often in the order of 1–8 hours per job. 

 
While these valuable ergonomic assessments and injury risk profiles can inform the use of ergonomic 
controls to minimize the risk to workers, the assessments can be time-consuming and costly. 
Assessments can become prohibitively expensive when there are a large variety of jobs at a given 
workplace or when job functions are remote, unobservable, highly variable, or infrequent. Moreover, 
this kind of time-intensive professional observation is impractical for the personalized, continuous 
monitoring of injury risk over long durations or across an entire workforce. Video-based solutions that 
leverage advances in computer vision and machine learning have the potential to address some of these 
challenges by providing a semi-automated analysis of jobs. However, this approach is impractical for 
highly dynamic jobs (e.g., a construction worker moving all over a construction site), or jobs where visual 
obstructions occur (e.g., an aerial porter climbing in and out of arriving planes) and is not intended for 
personalized monitoring across an entire workforce. To efficiently evaluate ergonomic risk across a wide 
range of workers, high-risk jobs, and workplace environments, there remains a need for tools that 
enable the automated, unconstrained, and widespread monitoring of musculoskeletal loading and 
damage, particularly to the lower back.  
 

5.2.2 Wearable sensors at a single body location for ergonomic assessment or continuous 
monitoring  

 
Small, inexpensive, wearable sensors offer a promising solution for the unconstrained monitoring of job 
demands, including in confined spaces or during dynamic jobs. Wearable solutions could automate 
traditional job analysis or ergonomics assessments by replacing time-consuming observations and 
manual measurements with automated analytics from wearable sensor data, potentially improving the 
quality (e.g., consistency, accuracy) and quantity of data (e.g., the amount of assessment time per 
worker, the number of workers evaluated). Further, wearables can be practical for continuous 
monitoring, providing new opportunities to perform ergonomics assessments for remote and long-cycle 
duration jobs or for personalized, daily injury risk monitoring that could inform ergonomic controls. 
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Continuous monitoring also has the long-term potential to usher in a new era of preventative 
occupational safety and health that transforms how musculoskeletal risk is managed and insured. 
 
While wearable sensors offer an exciting tool for monitoring low back loading and overexertion risks, 
current commercial and research technologies have some key limitations. Current commercial products 
(e.g., StrongArm Fuse, Soter Analytics Clip&Go, Kinetic Reflex, and Modjoul Smartbelt) use a single 
inertial measurement unit (IMU) mounted on the waist, back, or chest and analyze motion data (e.g., 
trunk orientation or acceleration) and the frequency of lifting/bending. We refer to these types of 
devices as wearable sensors at a single body location (or single wearable solutions, for short). We use 
this terminology because they each use hardware placed on one body location, although this hardware 
unit may contain multiple different sensors that measure numerous signals (e.g., IMUs are generally 
composed of accelerometers, gyroscopes, and magnetometers). 
 
These single wearable solutions are relatively practical to implement in the workplace and may be most 
amenable to job analyses that characterizes postures and task frequency, but less well-suited for 
ergonomic assessments that quantitatively assess injury risk based on musculoskeletal loading and 
fatigue failure principals. This is because low back loading is dependent on factors beyond the 
kinematics of a single body segment, including the mass of the object being lifted and how far away the 
object is from the body. So, while these single wearable solutions can use segmental motion data to 
identify when a worker performs a deep forward bend, they are generally unable to distinguish, for 
instance, if the worker lifted a 5 lb vs. a 45 lb box. The heavier mass in this example is expected to result 
in 65× more tissue damage (based on LiFFT, and assuming boxes are located 25 inches anterior to the 
lumbar spine). There are some use cases where single wearable solutions are expected to estimate low 
back loading fairly well (e.g., if the objects lifted are of known mass and are in a fairly consistent location 
relative to the body). However, there are cases where single wearable solutions are likely to be 
insufficient because they do not account for varying object masses, object locations, or other external 
forces on the body. In these cases, single wearable solutions could potentially provide inaccurate or 
misleading information about loading and cumulative damage to the low back, or unreliable insight on 
low back injury risk for a specific job, task, or worker.  
 

5.2.3 Distributed wearable sensors for ergonomic assessment or continuous monitoring 

 
Using multiple wearable sensors at distributed locations on the body has the potential to provide better 
estimates of low back loading by capturing and integrating additional dynamics data (e.g., body segment 
motions or orientations, forces or moments, muscle activity). These distributed sensor solutions are 
conceptually similar to what is done in motion analysis labs when data from cameras, force plates, 
and/or other measurement modalities are combined with biomechanical models to compute the 
loading on the back. An example of a commercial distributed wearable sensor system is the Xsens 
system that uses up to 17 IMUs on different body segments to track motion. These data can then be 
passed through analytics software (e.g., Scalefit, AnyBody) to estimate musculoskeletal loading on the 
back. However, similar to single sensor solutions, distributed IMU systems cannot automatically 
distinguish the mass of the object being lifted. Often, this additional information must be entered 
manually, or additional sensor modalities must be added, which increases the complexity of data 
collection and analysis. Thus, distributed IMU systems may only partially automate ergonomic 
assessments, or they may provide inaccurate estimates of low back loading if analytics software simply 
assume a default object mass. 
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To fully automate back load monitoring, several research studies suggest that adding force-
instrumented shoes or pressure insoles along with distributed IMUs over the upper and/or lower body is 
promising [21], [191]–[193]. For instance, [21] showed that by combining 8–17 IMUs and force-sensing 
shoes, lumbar moments could be estimated within 10–20% of peak extension moments. [191] found 
corroborating results, showing that with 12 IMUs and pressure insoles the peak axial load on the L5/S1 
joint could be estimated with errors <5%. 
 
However, there are a couple of critical limitations of these approaches. First, many of these solutions 
were developed and evaluated on a limited range of manual material handling tasks. For instance, [21] 
only evaluated four lifting tasks, all with a 10 kg box. It therefore remains unclear if these combinations 
of wearable sensors and/or algorithms are accurate and generalizable to a broad range of complex 
manual material handling motions performed in real world environments. Second, these wearable 
solutions require a large number of sensors distributed across the body, which introduces practical 
challenges related to technology implementation, ease of use, acceptance, and adoption. For scientific 
research or infrequent ergonomic assessment, the burden of distributed instrumentation may be an 
acceptable trade-off for increased accuracy. However, using numerous sensors requires longer donning 
and doffing times and more complexity, which presents a pragmatic barrier for workplace adoption. To 
enable more efficient and widespread ergonomic assessments or continuous monitoring of injury risk, 
there remains a need for a solution that requires a smaller number of wearable sensors (to be practical) 
and provides validated estimates of low back loading for a wide range of work-relevant tasks (to ensure 
accuracy). 
 

5.2.4 Key requirements for fully automated ergonomics assessment or continuous monitoring 

 
Based on our review of commercial technologies and scientific literature and our conversations and 
observations with manual material handlers and safety professionals across a range of industries (e.g., 
logistics, manufacturing, retail, agriculture, construction, military), we identified what we believe to be a 
key technological gap and unmet industry need related to ergonomic assessment and continuous 
personal monitoring of low back overexertion injury risk. Specifically, we found that a portable wearable 
sensor tool with the following characteristics and capabilities does not currently exist, but if it did we 
believe it could be game-changing for low back injury risk assessment, monitoring, and prevention in 
various industries: 
 

1. The tool is practical to don, doff, and wear in unconstrained environments for prolonged 
periods of time by virtue of using only a small number of sensors at different body locations. 
This is important for industrial acceptance, adoption, and implementation. Of note, there is no 
simple limit for the maximum number of sensors or body locations that is practical, but this 
consideration helped motivate the approach we took in this research (as detailed in Methods). 

2. The tool provides accurate, validated, and automated estimates of low back loading for a 
broad range of manual material handling tasks. This is important to ensure the system will be 
reliable during use in the real world and can distinguish differences in back loading that result 
from lifting objects of different weights without the need for professional observation or 
manually inputting object weights or other data. 

 
The overarching question we sought to address in this study was: if we can only use a small number of 
wearable sensors to monitor low back loading, then which sensors should we use, where should we 
place them, what type of algorithm should we employ to fuse the sensor data, and how accurately can 
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we monitor low back loading during manual material handling tasks? To address this exploratory, multi-
faceted, open-ended question, we collected synchronized data from laboratory instrumentation and 
wearable sensors across a broad range of lifting tasks and combined domain expertise in biomechanics 
with techniques from machine learning to develop musculoskeletal load estimation algorithms, similar 
to the approach we previously took to develop a wearable sensor system for monitoring bone loading 
and overexertion injury risks in the legs of runners [194]. The Methods section provides details on our 
exploratory approach and rationale. 
 

5.3 Methods 

 

5.3.1 Summary of approach 

 
Here, we briefly summarize our exploratory research approach, followed by detailed methodology 
below: 
 
First, we identified a candidate set of wearable sensors (number, type, and location of sensors). We 
bounded our candidate sensors based on biomechanical insight, prior literature [21], [191]–[193], and 
expected practicality for implementation in the real world. We selected IMUs placed on body segments 
(feet, shanks, thighs, pelvis, trunk) and pressure insoles placed inside the shoes (capable of estimating 
the interaction force and center of pressure between the foot and shoe) as our candidate sensors. These 
types of sensors are mature, and for years have been used in clinical and consumer devices that are 
worn daily; for instance, IMUs are ubiquitous in fitness trackers and phones, and pressure insoles are 
used for clinical screening (e.g., Orpyx) and to track running/sport performance (e.g., ARION, ReTiSense, 
NURVV). We elected not to use surface electromyography (EMG) due to practical challenges of 
implementing in the real world, such as their sensitivity to sweat, hair, and sensor placement, and 
reliability issues over days/weeks [195]. We also elected not to use any implanted or percutaneous 
sensors, or any emerging sensor technologies that have not yet been proven to be practical, reliable, 
affordable, and scalable in the real world. Focusing on mature, proven sensor technologies was with the 
hope and intention of arriving at a solution that would be feasible to translate into a product for real 
world use in the near future (e.g., next 2–5 years). 
 
Second, we synchronously collected data from lab-based instrumentation and from real wearable 
sensors across 10 participants each performing about 400 different manual material handling tasks, 
which encompassed many different postures, movements, and object masses that a worker may 
encounter in the real world. 
 
Third, we developed wearable sensor algorithms using various combinations of wearable sensor signals 
(algorithm inputs) and our lab-based gold-standard estimates of low back loading (algorithm target). We 
first used idealized wearable sensor signals [194], which consisted of lab-based data we converted into 
the types of signals reasonably obtained with wearables, to develop and evaluate algorithms. An 
example of an idealized wearable sensor signal is that we mapped the three-dimensional ground 
reaction force (GRF) vector from an in-ground force plate onto a one-dimensional force normal to the 
bottom of the foot to represent the type of signal that can be estimated from a pressure insole. This 
allowed us to explore algorithms for low back load estimation without worrying if the sensor or signal 
quality from a particular wearable sensor we used was a limiting factor. Next, we used real wearable 



 

 
69 

 

sensor signals to separately develop and evaluate algorithms, benchmark the accuracy of current 
wearable sensor technologies, and assess how these may or may not limit low back load monitoring 
tools. We use the terminology idealized wearable sensor signals and real wearable sensor signals to 
distinguish these two complementary approaches. Throughout, we also use the terms idealized 
wearable sensors and real wearable sensors to refer to physical sensors or sensor combinations, with 
idealized wearable sensors referring to the sensor that would be needed to measure the particular 
signals used. See [194] (as well as the Discussion of this paper) for more rationale on the value of using 
idealized wearable sensor signals when exploring new solutions for musculoskeletal load monitoring. 
 
Finally, by applying various machine learning techniques to various subsets of idealized and real 
wearable sensor signals, we: (1) quantified how the number of sensors used influenced the algorithm 
estimation accuracy, (2) identified the most important types and locations of sensors for low back load 
estimation, and (3) benchmarked how much using real vs. idealized wearable sensor signals influenced 
the estimation accuracy. Below, we describe the human participant experiment and data analysis, 
followed by algorithm exploration, development, and evaluation. 
 

5.3.2 Experiment overview 

 
Ten healthy individuals participated in the study: 3 females and 7 males (age: 25 ± 3 years; height: 1.8 ± 
0.1 m; mass: 79 ± 14 kg). All the participants gave written informed consent to the protocol, which was 
approved by the Institutional Review Board at Vanderbilt University (IRB # 141697). 
 
This study involved participants each performing about 400 manual material handling tasks in a motion 
analysis lab. Tasks covered a broad range of bending, turning, twisting, squatting, stooping, and reaching 
postures while lifting and moving boxes of 5–23 kg, which were representative of tasks commonly 
performed by manual material handlers (e.g., case pickers in a warehouse, retail workers stocking 
shelves, or logistics workers at a sort facility). For instance, tasks involved moving boxes from high to low 
shelves, low to high shelves, from a lateral to a forward position, diagonally between shelves, and much 
more to obtain a rich, diverse, realistic, and work-relevant data set (see Video S1 for example videos of 
tasks). The data collection space was outfitted with various shelves at 3 heights with labeled locations 
(see Figure 1A for an example setup). Box masses, shelf heights, and actions were informed by manual 
lifting and ergonomics guidelines [196]. For each task, participants were given instructions such as 
“move the box from position 3 to 4” (Figure 1A) and were told to use any safe strategy to complete the 
task. Each task was performed once and the participants were given rest breaks intermittently 
throughout the protocol.  
 



 

 
70 

 

 
Figure 5.1 Experimentation and wearable algorithm development overview. A) Lab-based (green) and 
wearable sensor (real: orange, idealized: blue) measurements were collected synchronously in a motion 
analysis lab while participants performed about 400 manual lifting tasks. B) Lab-based analysis yielded a 
gold-standard estimate of lumbar extension moment (𝑀𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛). Wearable analysis and algorithm 
development yielded wearable sensor estimates of lumbar extension moment (𝑀′𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛). The 
wearable algorithm development was done twice, once using idealized wearable sensors as inputs 
(Analysis 1) and once using real wearable sensors as inputs (Analysis 2).  
 

5.3.2.1 Lab-based measurement modalities 

 
We collected full body kinematics and ground reaction forces (GRFs). Kinematics were collected at 200 
Hz (Vicon), then low pass filtered at 6 Hz (3rd order, zero-lag Butterworth). Four markers were placed on 
each thigh, shank, arm, and forearm, 5 markers were placed on each foot, 6 markers were placed on the 
pelvis, and 4 were placed on the trunk. Additional markers were placed on the lateral and medial 
femoral epicondyles, the lateral and medial malleoli, each acromion, the lateral and medial humeral 
epicondyles, and the distal radius and ulna. The GRFs under each foot were collected at 1000 Hz using 
in-ground force plates (AMTI). The GRFs were low-pass filtered at 10 Hz (3rd order, zero-lag 
Butterworth).  
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5.3.2.2 Wearable measurement modalities  

 
We synchronously collected IMU-based lower body and trunk kinematics (Xsens) and plantar pressures 
(Novel pedar-x, with 99 pressure sensors per insole). Kinematics were collected at 100 Hz using the 
standard Xsens “lower body + trunk” configuration. Scaling, calibration, and data pre-processing were 
performed by the Xsens software, providing a built-in anatomical model. Plantar pressures were 
collected bilaterally at 100 Hz and the total (normal) force and center of pressure were exported using 
the Novel software. Synchronization of all measurement modalities was achieved through recorded 
analog triggers, and any delays between measurement modalities were accounted for through temporal 
alignment/calibration algorithms based on pilot testing.  
 

5.3.3 Wearable algorithm development 

 
A visual overview of the lab-based data analysis and algorithm evaluation workflow is provided in Figure 
5.1B. 
 

5.3.3.1 Lab-based data analysis (algorithm target) 

  
We selected the lumbar extension moment as our target musculoskeletal loading metric because it can 
be used to estimate cumulative tissue damage to the low back using a fatigue failure analysis [9], [180], 
[189]. We sought to estimate the time series lumbar extension moment (as opposed to just peak 
moment) because this enables us to identify bending/lifting frequency, to partition out individual 
movement cycles, and to better understand and distinguish cyclic lifts vs. prolonged bending. Time 
series data enables the assessment of loading and cumulative risk across all tasks, as well as the ability 
to perform task-specific load and risk assessment. 
 
Lower-body segmental and joint kinematics were estimated based on optical motion capture data and 
rigid-body inverse kinematics. GRF and kinematics were combined via rigid-body inverse dynamics to 
estimate joint kinetics (C-Motion, Visual3D). Time series lab-based lumbar moment was estimated using 
bottom-up inverse dynamics in Visual3D. Moments are reported in units of body weight × body height 
(BW × BH). 
 

5.3.3.2 Wearable sensor signal data preparation (algorithm inputs) 

 
We used time series wearable sensor signals as inputs to the algorithm. Idealized wearable sensor 
signals are summarized in Table 5.1. Real wearable sensor signals are summarized in Table 5.2. The 
algorithm development workflow was completed twice, once using idealized wearable sensor signals as 
the inputs, and once using real wearable sensor signals as the inputs (Analysis 1 and Analysis 2, Figure 
5.1B). The lab-based target, idealized wearable sensor signals, and real wearable sensor signals were all 
resampled to 100 Hz. Input signals were normalized to z-scores during algorithm development [170].  
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Table 5.1 Idealized wearable sensor signals.    

Idealized wearable sensors Idealized wearable sensor signals # of signals 

8 idealized IMUs (trunk, pelvis, R/L thigh, R/L shank. R/L foot) 
Segments (8): pelvis, trunk, R/L thigh, R/L shank. R/L foot 
Joints (7): lumbar, R/L hip, R/L knee, R/L ankle 

XYZ motion capture segment kinematics 
(Euler angles) 

24 

XYZ motion capture joint kinematics 21 

Idealized pressure insoles 3D force plate GRF transformed into foot’s 
coordinate frame and projected in 1D 
normal force 

2 

force plate center of pressure transformed 
into foot’s X/Y coordi nate frame 

4 

Total  51 

 
 
Table 5.2 Real wearable sensor signals.  

Real wearable sensors  Real wearable sensor signals # of signals 
8 IMUs (sternum, pelvis, R/L thigh, R/L shank. R/L foot) 
Human model:  
Segments (11): pelvis, L5, L3, T12, T8, R/L thigh, R/L shank. R/L foot 
Joints (10): L5S1, L4L3, L1T12, T9T8, R/L hip, R/L knee, R/L ankle 

XYZ segment kinematics (Euler angles) 33 

segment kinematics (quaternions) 44 

XYZ segment velocities 33 

XYZ segment accelerations 33 

XYZ joint kinematics 30 

Pressure insoles Total normal force 2 

X/Y center of pressure 4 

Total 179 

 

5.3.3.3 Algorithm Development 

 
We explored supervised machine learning algorithms (e.g., generalized linear models, support vector 
machines, neural networks) for multiple variable regression to predict the lumbar extension moment 
(Mextension) focusing on techniques that could provide instantaneous predictions, where wearable signals 
from a given time sample are used to estimate the target load metric for that same time sample. 
Ultimately, we achieved the most promising results with Gradient Boosted Decision Trees, a popular 
technique in machine learning and well-suited to handle missing values and redundant or non-predictive 
inputs [197], [198]. The number of input signals (tens or hundreds) also fits this approach. Furthermore, 
by using a histogram-based decision tree building algorithm influenced by LightGBM [199], we 
dramatically decreased the algorithm training time (to a few seconds with a few million time samples) 
without a noticeable degradation in the prediction accuracy. Briefly, this algorithm estimates the target 
load metric by building an ensemble of decision trees in a stage-wise fashion, where in each stage the 
new tree tries to estimate (and thus, remove) the residual error after combining the predictions of the 
previous trees. Our current results are based on ensembles of approximately 100 trees. We used the 
scikit-learn library and Amazon SageMaker, a cloud-based machine learning platform for algorithm 
development, model training, and evaluation. 
 
To develop the algorithm, we used k-fold validation by participant (n = 10), a commonly used technique 
to assess the generalizability of an algorithm [170]. In other words, we used data from nine participants 
to train the algorithm (i.e., select hyperparameters), and then evaluated the algorithm accuracy on data 
from the remaining participant. This process was repeated for all ten participants to yield wearable 
algorithm estimates of the lumbar extension moment (M’extension) for the entire dataset. 
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The algorithm workflow was first performed using all our candidate wearable sensor signals; we termed 
this the distributed sensor algorithm. Next, to evaluate the feasibility of using a reduced number of 
sensors for estimating lumbar moments, we developed additional algorithms using a reduced number of 
sensor signals (termed reduced sensor algorithms). While we explored 10 candidate wearable sensors 
(R/L pressure insoles, R/L foot IMUs, R/L shank IMUs, R/L thigh IMUs, pelvis IMU, trunk IMU), when 
iterating through potential reduced sensor algorithms we assumed that a final solution would have 
symmetrical bilateral sensors (e.g., if the wearable included a right insole, then it would also include a 
left insole). Thus, our 10 candidate wearable sensors actually corresponded to 6 candidate sensor 
locations: trunk, pelvis, thigh, shank, and foot IMUs, and the pressure insoles. The algorithm workflow 
was repeated to develop 62 additional algorithms that each used a reduced set of 1 to 5 sensor 
locations (see Supplemental Figure 5.1 for an overview of all combinations).  
 

5.3.3.4 Algorithm Evaluation 

 

We evaluated the accuracy of different sensor combinations in two stages. First, we computed the 
coefficient of determination (r2) to identify the most promising reduced sensor combinations and 
computed relative wearable sensor signal importance to identify the most important sensors. Then, we 
identified promising or interesting sensor combinations, reviewed wearable algorithm results using 
scatter plots and participant-specific results, and computed additional accuracy metrics to better 
understand the performance and limitations of each sensor combination. 
 
We computed r2 for each participant across all time samples [200] for all candidate sensor combinations. 
Based on our prior work on wearables for musculoskeletal load monitoring [173], [194], we have found 
r2 to be useful for this initial sensor combination selection process (i.e., down selection from 62 sensor 
combinations here) because it provides insight into how well wearable estimates correlate with lab-
based gold-standard estimates across the full range of lumbar moments observed. This research is early 
stage, so there is no precise r2 threshold that we can define as the minimum viable, but to benchmark 
high algorithm accuracy we used r2 > 0.8 as a threshold for promising solutions. 
 
As a complementary analysis to evaluate which sensors were most important for algorithm estimates, 
we applied the permutation feature importance method [201]. Feature importance values represent the 
drop in model accuracy (∆r2) when an input signal is randomly shuffled, with larger values indicating that 
the algorithm is more dependent on that signal. Of note, the permutation feature importance method 
was used rather than the impurity-based feature importance approach because the latter approach had 
some undesirable biases (e.g., favoring high cardinality features) and is not supported with histogram-
based estimators. 
 
Once a subset of promising sensor combinations was identified, we inspected participant-specific results 
with scatter plot data to understand the performance and limitations of each. We were particularly 
interested in how each sensor combination performed across the range of lumbar moment magnitudes 
observed (e.g., did certain sensor combinations perform better at low magnitudes vs. high magnitudes). 
We also computed the root mean square error (RMSE). In this data set, most samples are at relatively 
low lumbar moment magnitudes, but larger moments are the most damaging and dangerous to 
musculoskeletal tissues. We therefore also looked specifically at algorithm performance constrained to 
higher lumbar moments using mean absolute percent error (MAPE). We leveraged the benefits of both 
relative (r2 and MAPE) and absolute (RMSE) accuracy metrics, along with biomechanics knowledge of 
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key factors that influence cumulative damage and overexertion injury risk, to make informed 
suggestions about using wearable sensors to monitor back loading across work-relevant lifting tasks. 
 

5.4 Results 

 

5.4.1 Results from idealized wearable sensors 

 
As expected, maximum algorithm accuracy increased with the number of sensor locations (Figure 5.2). 
There were no single sensor solutions that yielded r2 > 0.8 (i.e., coefficient of determination greater than 
0.8 between idealized wearable sensor algorithm estimates and lab-based lumbar moment estimates). 
However, there was a noticeable jump in accuracy when moving from one to two sensor locations 
(maximum r2 = 0.74 to r2 = 0.89, Figure 5.2, Table 5.3). When increasing the number of sensors beyond 
two locations there were only small additional improvements in maximum algorithm accuracy (from r2 = 
0.89 using two sensor locations to r2 = 0.92 using all six sensor locations, the maximum number of 
distributed sensor locations in this study). 
 

 
Figure 5.2 Maximum algorithm accuracy increased with number of sensor locations. Average accuracy 
using idealized wearable sensors summarized here using the average coefficient of determination (r2) 
across all participants. Orange dots represent the distributed sensor algorithm (right) and the highest 
accuracy algorithms using 1 (left) and 2 (center) sensor locations. All algorithms here were developed 
with idealized wearable sensor signals and the target was lumbar extension moment. The top three 
algorithms using one and two sensor locations are reported in Table 5.3. A detailed summary of all 
algorithm accuracies and the exact sensor combinations for each algorithm is included in Supplemental 
Figure 5.1.  
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Table 5.3 Algorithm accuracy for a subset of idealized wearable algorithms. Average accuracy for the 
distributed sensor algorithm and the top three algorithms requiring one or two sensor locations. 
Accuracies reported here correspond to data points in Figure 5.2 and Supplemental Figure 5.1.  

 
 
The two most important signals for estimating lumbar extension moments identified during algorithm 
development were sagittal trunk angle and vertical GRFs (Figure 5.3). Consistent with this, the best 
solution using two sensor locations is the one that combined a trunk IMU and pressure insoles (r2 = 0.74, 
Figure 5.2, Table 5.3). This combination was of highest interest to us because of its potential to be 
practical and accurate.  
 

 
Figure 5.3 Sagittal trunk angle and vertical GRFs are the most important signals for estimating lumbar 
moments. Signal importances are from the idealized wearable sensor algorithm for estimating lumbar 
extension moments. R = right; L = left.  
 
The trunk IMU (alone) and fully distributed sensor sets were also of interest for further analysis. The 
trunk IMU provides a point of reference for the potential accuracy of existing commercial wearables that 
use a single IMU to monitor lumbar loading, while the distributed sensor set provides insight on 
accuracy gains with higher instrumentation coverage. Therefore, we report participant-specific results 
and additional accuracy summary metrics (RMSE and MAPE) for these three different sensor 
combinations (Figure 5.4). 
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Figure 5.4 Algorithm accuracies for three different idealized wearable sensor algorithms. A) Lab-based 
(gold standard) lumbar extension moment vs. idealized wearable algorithm estimates of lumbar 
moment for all time samples for an example participant (participant 8*). Positive moments correspond 
to lumbar extension moments. A line with a slope of one is added to visualize a perfect correspondence 
between lab-based and wearable estimates. BW × BH = body weight × body height. B) Coefficient of 
determination (r2) for each participant. Average results (avg, bottom) are equivalent to accuracies in 
Figure 2. The trunk IMU algorithm was less accurate than the trunk IMU plus pressure insoles algorithm, 
and then the distributed sensors algorithm (p<0.001 and p<0.001, respectively, based on Wilcoxon 
signed-rank test of the k-fold cross validation accuracy results). Comparing accuracy from the trunk IMU 
and pressure insoles algorithm vs. the distributed sensors algorithm yielded p=0.054. Average RMSE was 
converted into units of Nm (using mean participant height and weight) and included for reference.  
 
The distributed sensor algorithm resulted in an average RMSE of approximately 17 Nm (Figure 5.4B), 
equivalent to about a 241 N (0.3 BW) error in spine compression force (assuming a 7 cm lumbar muscle 
extensor moment arm, [202]). The trunk IMU and pressure insole algorithm resulted in an average RMSE 
of approximately 20 Nm, equivalent to about a 282 N (0.4 BW) error in spine compression force. The 
trunk IMU algorithm resulted in an average RMSE error of approximately 31 Nm, equivalent to about a 
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444 N (0.6 BW) error in spine compression force. As one additional point of reference, the NIOSH Lifting 
Equation recommends limiting spine compression force to less than 3400 N (4.4 BW), so these RMSE 
values are about 7%, 9%, and 14% of this limit, respectively. Given the sensitivity of MAPE when target 
values are close to zero, we also computed the MAPE for all samples when the target load metric was 
greater than 0.05 BW*BH (which encompassed about half of all time samples of data for each 
participant). Average MAPE for the upper range of lumbar moments was 13%, 15% and 25% for the 
distributed sensor, trunk IMU and pressure insole, and trunk IMU algorithms, respectively.   
 
We also observed that if the trunk IMU were substituted with thigh IMUs, then correlations only 
decreased slightly from r2 = 0.74 to r2 = 0.68 with a single sensor, and from r2 = 0.89 to r2 = 0.86 for the 
two sensor combination (Table 5.3). If the trunk IMU were substituted with a pelvis IMU, then 
correlations decreased slightly more from r2 = 0.74 to r2 = 0.61 with a single sensor, and from r2 = 0.89 to 
r2 = 0.81 for the two sensor combination (Table 5.3). All of the two sensor location solutions that 
achieved r2 > 0.8 included GRFs from pressure insoles. 
 
Participant-specific results (Figure 5.4) corroborated and strengthened the average results (Figure 5.2, 
Figure 5.3, Table 5.3). For instance, all ten participants exhibited high algorithm accuracies (r2 ranging 
from 0.86 to 0.95) using the distributed (six sensor location) algorithm. When moving from a single trunk 
IMU to using a trunk IMU and pressure insoles, every participant exhibited an increase in r2 value (Figure 
5.4). Scatter plot data for each participant indicated that the improvement in r2 going from one to two 
sensor locations was driven by both a decrease in the variation of data about the unity regression line 
and improved estimates at higher magnitude lumbar moments (see example participant data in Figure 
5.4A). When moving from two to six sensor locations the variation of data about the regression line 
decreased more, but only slightly (Figure 5.4A). We also note that for two participants (numbers 1 and 
4), going from two to six sensor locations did not increase r2 at all (Figure 5.4B). 
 

5.4.2 Results from real wearable sensors 

 
Figure 5.5 is analogous to Figure 5.3, and Figure 5.6 is analogous to Figure 4, except that Figure 5.5 and 
Figure 5.6 are based on real wearable sensors rather than idealized wearable sensors. Real wearable 
sensor results confirm that the most important sensor signals for estimating lumbar extension moments 
are sagittal trunk angle from a trunk IMU and vertical GRFs from pressure insoles (Figure 5.5). However, 
it is noteworthy that trunk angle signal importance was much higher than vertical GRFs in the analysis of 
the real wearable sensors (Figure 5.5), whereas with idealized signals these signal importances were of 
similar magnitude (Figure 5.3). 
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Figure 5.5 Sagittal trunk angle and vertical GRFs are the most important signals for estimating lumbar 
moments. Signal importances are from real wearable sensor algorithm for estimating lumbar extension 
moments. These results are consistent with the findings from idealized wearable sensor analysis in 
Figure 5.3. R = right; L = left.  
 
Participant-specific results (Figure 5.6) again corroborated and strengthened the average results from 
real wearable sensor algorithms. Compared to idealized wearable sensor algorithms, there was no 
discernible increase in r2 value when moving from one sensor location (trunk IMU, r2 = 0.79) to two 
sensors locations (trunk IMU and pressure insoles, r2 = 0.80). The increase in r2 from two to six sensor 
locations also remained relatively small, similar to what was observed in the idealized wearable sensor 
analysis (Figure 5.4). 
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Figure 5.6 Algorithm accuracies for three different real wearable sensor combinations. A) Lab-based 
(gold standard) lumbar moment vs. real wearable sensor algorithm estimates lumbar moment for all 
time samples for an example participant (participant 8*). Positive moments correspond to lumbar 
extension moments. Moment in units of bodyweight × bodyheight (BW × BH). A line with a slope of one 
is added to visualize a perfect correspondence between lab-based and wearable estimates. B) 
Coefficient of determination (r2) for each participant. Both reduced sensor algorithms yielded accuracies 
that were lower than the distributed sensor combination (p=0.011 and p=0.014 for the trunk IMU, and 
trunk IMU and insole algorithms, respectfully; based on Wilcoxon signed-rank test of the k-fold cross 
validation accuracy results), but the accuracy of the two reduced sensor algorithms shown here were 
not different from each other (p=0.571).  
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5.4.3 Comparison of results from idealized vs. real wearable sensors 

 
Figure 5.7 provides a side-by-side comparison of algorithm performance using idealized versus real 
wearable sensor signals. These plots are visualizations of the tabular results reported in Figure 5.4B and 
Figure 5.6B, and provided for clarity and to assist with interpretation. The key takeaway is that while the 
idealized wearable sensor analysis resulted in a noticeable jump in accuracy when moving from one to 
two sensors, a similar improvement was not observed in the real wearable sensor analysis (Figure 5.7). 
The Discussion section digs into why. 
 

 
Figure 5.7 Side-by-side comparison of algorithm performance using idealized versus real wearable 
sensor signals. Gray lines are each of the 10 participants' accuracy results, and colored lines are the 
average (and standard deviation) across the 10 participants. Results using idealized wearable sensors 
are shown on the left (orange) and results using real wearable sensors are shown on the right (blue).  
 

5.5 Discussion  

 
These findings indicate that there is strong potential to use a small number of wearable sensors to 
create a portable tool for the practical and accurate monitoring of low back loading over a broad range 
of manual material handling tasks. We characterized the performance of over 60 different wearable 
sensor combinations and algorithms. The solution we found to be most promising combines signals from 
sensors at two body locations (an IMU on the trunk and pressure insoles under the feet) with a Gradient 
Boosted Decision Tree algorithm. While idealized wearable sensor results demonstrated promising 
proof-of-concept, the analysis of real wearable sensor signals revealed that to achieve accurate lumbar 
moment estimates in the real world, the key technological challenge will be to optimize force estimates 
and minimize variability from the pressure insoles. With further development and validation, we believe 
that this type of wearable solution has the potential to transform how ergonomic assessments are 
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performed in industry, to enhance the quality, quantity, and efficiency of occupational data collection, 
and to expand opportunities for personalized, continuous monitoring of low back injury risk. For 
example, time-series lumbar moments could be partitioned into individual lift/bend cycles and the 
magnitude and frequency of loading on the low back could be automatically input into ergonomic 
assessment tools like LiFFT to estimate injury risk. Below we discuss the major technical findings from 
this exploratory research, along with alternative solutions, key challenges, and new opportunities for 
advancement. 

 

5.5.1 Which wearable sensors and locations are most important? 

 
The trunk IMU and pressure insoles were identified in all analyses as together being the most important 
sensors for monitoring lumbar extension moments (Figure 5.2, Figure 5.3, Figure 5.5, Table 5.3). These 
results match our biomechanics intuition given that lumbar moment is strongly influenced by the weight 
of the object being lifted (which can be captured by pressure insoles) and by upper-body posture (which 
can be estimated with an IMU on the trunk). 
 
Interestingly, the trunk IMU could be replaced with thigh IMUs or a pelvis IMU with relatively little 
degradation in accuracy (Table 5.3). Of note, the reason that thigh and pelvis IMU signals appear to have 
low importance in Figure 5.3 and Figure 5.5, but can actually be useful substitutes for the trunk IMU, is 
because they are highly correlated with other signals and because of how the feature importance 
method works (see Methods). It is valuable to acknowledge these other alternatives because some 
sensor locations may be preferred for certain applications; for instance, a fall protection harness 
manufacturer may be able to integrate an IMU more easily on the trunk near the D-ring or on the thighs 
using the leg loops, whereas for a tool belt manufacturer it may be preferable to integrate the IMU at 
the waist. In contrast, there was no substitute for the pressure insoles, which provide unique force data 
that helps to distinguish if the person is lifting a heavy object vs. a light object vs. no object at all and just 
bending forward. In theory, object mass could be obtained using sensors beyond those we tested (e.g., 
measured directly using force-instrumented gloves, or estimated indirectly via muscle EMG), but these 
again introduce added complexity and practical implementation challenges may be barriers to adoption 
for many applications.  
 
We observed that using two sensor locations (trunk IMU and pressure insoles) sacrificed minimal 
accuracy compared to using more sensor locations (e.g., all six distributed sensor locations, Figure 5.4 
and Figure 5.6). This supports the idea that it may be possible to use a relatively small subset of sensors 
to make workplace implementation more practical, while still obtaining accurate estimates of back 
loading. These findings also demonstrate that more sensors, or more widely distributed sensors, should 
not be assumed to result in substantially more accurate musculoskeletal load monitoring tools. For 
monitoring lumbar loading during manual material handling there appears to be a sweet spot for 
accuracy and practicality that involves using pressure insoles and a single IMU. 

5.5.2 What types of algorithms work well for this sensor data fusion? 

 
All results presented here were developed using Gradient Boosted Decision Tree algorithms. We found 
this type of algorithm to work well during early exploration of the data. Within the Gradient Boosted 
Decision Tree framework, we utilized the histogram-based decision tree building algorithm, as it 
significantly reduces the training time with larger datasets (>10k samples), but did not noticeably 
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degrade prediction performance of our algorithms, compared to traditional Gradient Boosted Decision 
Trees. Using this approach, input signal values are separated into bins, reducing the computational 
complexity of splitting decisions and efficiently leveraging parallel computational resources [203].  
 
In pilot data analysis we also explored other categories of algorithms/models including generalized 
linear models, ensemble methods (random forests), shallow neural networks (2 hidden layers), and 
support vector regression. While most of these methods (linear, support vector regressions, forests) 
resulted in comparable prediction results to each other, Gradient Boosting consistently provided more 
accurate estimates in our preliminary data sets. Also, some of these methods (most notably, support 
vector regression) did not scale well with a large number of data points and became prohibitive to train. 
 
We did not have success with traditional neural-network models. This may have been because of 
insufficient number of layers, nodes, or the chosen activation functions. We note that the 
hyperparameter space for neural networks is significantly larger than for the other methods we tried. 
We provide this brief commentary on the explored set of machine learning algorithms for this problem 
domain to share our initial experiences. Our review and evaluation of alternative algorithm approaches 
is not exhaustive and there are certainly other applicable AI-based or statistical methods beyond this 
initial study. Such promising candidates include convolutional neural layers and recurrent neural 
networks, which may be interesting to explore in the future. 

5.5.3 How accurately can we monitor low back loading during manual material handling tasks?  

 
The idealized results demonstrate the potential for a small number of sensors to provide accurate 
estimates of low back loading. Using a trunk IMU and pressure insoles resulted in lumbar moment 
estimates that were strongly correlated with lab-based lumbar moments (r2 = 0.89, Figure 5.4B). And 
this solution performed well across the broad range of tasks and lumbar moment magnitudes captured 
(Figure 5.4A). The RMSE and MAPE accuracy results corroborated that this wearable sensor approach is 
very promising. The RMSE corresponds to less than 10% of the peak lumbar moments during heavy 
lifting. For context, we found that using just two sensor locations (trunk IMU and pressure insoles) 
during about 400 different material handling tasks exhibited similar levels of accuracy (r2 = 0.89 and 
RMSE = 20 Nm) as those reported in [21] which combined 8-17 IMUs and force-sensing shoes to 
estimate lumbar moments during 4 tasks that involved lifting and carrying a 10 kg box (r2 = 0.93 and 
RMSE < 20 Nm). 
 
Real wearable results highlighted the technological key to realizing accurate estimates of back loading in 
the real world. Combining a real wearable trunk IMU and pressure insoles resulted in lower average 
accuracy than with the idealized wearable sensors (e.g., r2 = 0.80 vs. r2 = 0.89), and only marginal 
benefits over a real trunk IMU alone (r2 = 0.80 vs. r2 = 0.79). This appears to be due to variability in insole 
force estimates compared to vertical forces estimated from idealized wearable sensors (i.e., from lab-
based force plates, Supplemental Figure 5.5B). In contrast, we found that trunk orientation from the 
real wearable sensor (trunk IMU) was a very strong indicator of trunk orientation from idealized 
wearable sensors (lab-based optical motion capture), with low variability (Supplemental Figure 5.5A). 
Together, this seems to explain why GRFs were of similar importance as the trunk IMU when using the 
idealized wearable sensors (Figure 5.3) but of much lower importance when using the real wearable 
sensors (Figure 5.5). A key technological priority should be to reduce the variability in insole force 
estimates. The good news is that there are various ways to improve these force estimates through 
advances in signal processing, calibrations, and sensor hardware, or via optimization of sensors for 
pressure/force magnitudes expected in certain tasks such as material handling. As variability in insole 
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forces is reduced, then the accuracy of algorithms developed using real wearable sensors will approach 
that observed from the idealized wearable sensors. We confirmed this to be true by replacing the real 
pressure insole data with idealized pressure insole data during algorithm development and finding 
lumbar moment estimates to have similar accuracy to our idealized wearable sensor algorithms. 
 
These insights highlight the benefits of using idealized signals when exploring new wearable sensor 
solutions. If we used real wearable sensors alone, we may have concluded that pressure insoles do not 
improve back loading estimates compared to a single wearable trunk IMU. In actuality the pressure 
insoles provide unique and highly valuable force data (Figure 5.2, Figure 5.3, Table 5.3) that can help 
distinguish when someone is lifting a heavy object vs. simply bending forward, and that can greatly 
improve capabilities for monitoring trends in low back loading (particularly at higher magnitudes). 
Overall, our complementary analyses, evaluating accuracies across a range of reduced sensor algorithms 
for both idealized and real wearable sensors, and ranking signal importances, provides a systematic and 
effective approach to identifying key sensor signals and promising wearable sensor combinations. 

5.5.4 Benefits and drawbacks of single wearable sensor solutions 
 

The results demonstrate that a single IMU solution can perform reasonably well for estimating lumbar 
moments (Table 5.3). The practical benefits were described in the Introduction (e.g., relative simplicity 
for workplace implementation). The trunk IMU, and to a slightly lesser extent thigh and pelvis IMUs, 
provided moderately high correlation coefficients up to r2 = 0.74 in idealized wearable sensor analysis, 
and up to r2 = 0.79 in the real wearable sensor analysis. The reason for the slightly stronger correlations 
with real wearable sensors for the trunk IMU algorithm is unknown, but may be due to a richer set of 
candidate signals that we input into the real vs. idealized wearable algorithms (see Table 5.1 vs. Table 
5.2), which included additional spine segment and joint angle estimates from the Xsens functional 
skeleton calibration, and IMU accelerations and velocities. These results suggest that commercial 
wearables that place an IMU on one of these segments (trunk, pelvis, or thighs) are at least monitoring 
the types of signals that can be correlated with lumbar moments (with proper algorithm development 
and training). 
 
The critical drawback of single IMU wearables is that they fail to capture increases in lumbar loading 
when different objects are lifted, and as a result they tend to perform worse for higher lumbar moments 
-- which unfortunately are the instances of highest ergonomic interest since these are most damaging to 
musculoskeletal tissues. This accuracy limitation at higher magnitudes is evident in plots of time series 
lumbar moments. For example, the trunk IMU algorithm does not capture the increase in low back 
loading peaks when a participant is picking and placing a 10 kg box (gray areas in Figure 5.8). In contrast, 
these elevated back loads from the handheld mass are captured by distributed sensor solutions that 
include pressure insoles along with at least one IMU (Figure 5.8). The time-series plots show a 
representative lifting task, while the scatter plots and ta-bles presented in the Results provide 
comprehensive results from all the participants and across all the manual material handling tasks 
collected. 
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Figure 5.8 Single IMU wearable does not capture key trends and peaks in lumbar loading when objects 
are lifted. Time-series lab-based lumbar extension moment (green) and idealized wearable algorithm 
moments developed with three different idealized wearable sensor combinations (orange). Shown is a 
subset of the hundreds of manual material handling tasks performed for an example participant; 3 pick 
and place task cycles with a 10 kg box shown. Gray areas are approximately when the participant was 
holding the 10 kg box, white areas are when the participant had no object in their hands. The trunk IMU 
tends to perform worse when the box is being held or lifted, whereas the trunk IMU plus pressure 
insoles, and distributed sensors, are able to better track key lumbar loading trends (gray areas). BW = 
body weight*body height.  
 
As another example, lifting objects of increasing mass with similar body posture causes an increase in 
peak lumbar moments (Figure 5.9). Using a trunk IMU alone completely misses the trend of increasing 
low back loading when individuals adopt similar trunk orientations (i.e., postures) for each lift, while 
using a solution that includes both pressure insoles and an IMU captures these increasing back load 
trends (Figure 5.9). These results confirm our expectations from the Introduction: while a single IMU (on 
the trunk, or elsewhere) may provide a reasonable estimate of back loading (or trends in loading) due to 
changes in general body posture, the estimation accuracy is compromised when objects of differing 
mass are handled or when other external forces are applied to the body (e.g., during pushing, pulling, or 
leaning). It may also be possible to use the trunk IMU plus pressure insoles combination during initial 
assessment of each worker, or intermittently over time, in order to better calibrate the trunk IMU 
(alone) for each worker -- in effect supplementing the minimal single senor solution to improve accuracy 
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and personalization. Of note, using the pressure insoles alone yielded fairly poor accuracy 
(Supplemental Figure 5.1), again highlighting the benefits of fusing data from multiple sensor locations. 
 
In short, caution should be taken when using a single wearable (on any body segment) to monitor low 
back loading, particularly in situations where external forces are variable, or when object masses being 
handled are not manually input (or otherwise accounted for) in algorithms. Further exploration is 
warranted to understand the implications of single IMU sensor accuracy within the context of the 
sensitivity of risk assessment tools like LiFFT. Wearable solutions that fuse data from multiple sensor 
locations (e.g., trunk IMU and pressure insoles) are expected to provide more accurate and reliable ways 
to automate ergonomic assessments or provide continuous daily risk monitoring for material handling 
jobs that involve lifting objects of varying weight; albeit with slightly more implementation complexity 
due to more sensor modalities, and presuming the variability in pressure insole force estimates can be 
adequately reduced. 
 

 
Figure 5.9 Single IMU wearable does not capture increases in lumbar loading when heavier objects are 
lifted. Shown is an illustrative example from one participant: peak lumbar moment of squat tasks when 
increasing box masses are lifted (10 kg, 15 kg, 23 kg are shown). The trunk IMU and insole algorithm, 
and also the distributed sensor algorithms capture the trend of increasing lumbar moment with heavier 
object mass. However, the trunk IMU algorithm does not; it predicts a similar peak moment with each 
lift regardless of the mass being lifted. BW = body weight × body height.  
 

5.5.5 Lateral bending lumbar moment can also be estimated with trunk IMU and insoles 

 
Lumbar extension moments have been shown to be a key metric for monitoring cumulative damage to 
the low back and resulting injury risk (see Introduction). However, there are also opportunities to 
provide a broader, multifactorial assessment of injury risk by monitoring other musculoskeletal loading 
metrics with wearables. One additional metric of interest to us was lumbar lateral bending moment, as 
increases in lateral bending moment contribute to increases in back muscle and disc compression forces 
[204], which influence cumulative damage to the low back. We therefore repeated the same algorithm 
development and evaluation process using the idealized wearable sensor data from this study, but using 
time series lumbar lateral bending moment as the target metric (Supplemental Figure 5.2, 
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Supplemental Figure 5.3, Supplemental Figure 5.4). Encouragingly, signals from the same set of 
wearable sensors (trunk IMU and pressure insoles) that were identified as most important for estimating 
lumbar extension moments were also the most important for estimating lateral bending moments 
(Supplemental Figure 5.4). Similar to our analysis of the lumbar extension moment, a single trunk IMU 
algorithm did not capture all trends in lateral bending moment, namely when the user held and moved 
objects of differing mass lateral to their body (Supplemental Figure 5.3). The trunk IMU algorithm 
resulted in an average accuracy of r2 = 0.65 (Supplemental Table 5.1). Combining the pressure insoles 
with the trunk IMU increased accuracy to r2 = 0.83 (Supplemental Figure 5.3). This again demonstrates 
how a small set of wearable sensors (trunk IMU and pressure insoles) could provide a practical and 
accurate tool for monitoring low back loading (due to both lateral and extension moments), with only a 
relatively small reduction in accuracy compared to the full set of distributed sensors tested (r2 = 0.88, 
Supplemental Figure 5.3). 

5.5.6 Limitations and future opportunities 

 
Given the exploratory nature of developing next generation wearables, there were many interesting 
additional areas of research that were beyond the scope we chose to evaluate in this study. Numerous 
other candidate wearable sensors and emerging technologies, signal processing techniques, machine 
learning algorithms, and musculoskeletal metrics of interest could be explored in future studies. 
Additionally, while we focus on evaluating a tool for monitoring low back loading in a workplace 
environment, there are many other exciting research and clinical applications of a low back monitoring 
tool. For example, a similar wearable solution might be used in a clinical setting to monitor patients 
during post-injury or post-surgery rehabilitation, track their progress, or assist with return-to-work 
decisions. 
 
Within the scope of this study we note some limitations of our approach. First, real wearable sensors 
used were research-grade instrumentation. Implementing algorithms on consumer-grade hardware, or 
any other hardware platform not tested here, would require additional algorithm calibration, validation 
and evaluation. Second, the number of participants tested was informed by our prior studies combining 
wearable sensors and machine learning [173], [194], but this kind of exploratory (non-hypothesis-
driven) research is not amenable to traditional sample size calculations. The consistency of results for 
individual participants using the k-fold validation analysis suggests our sample was adequate, but we 
acknowledge that our understanding of how much data is enough to identify promising wearable 
monitoring tools using diverse machine learning techniques is continuing to evolve. Third, we did not 
use sensors to monitor the location of the object being lifted relative to the body (e.g., spine). Although 
this distance could be estimated by tracking multiple segments of the arms, we choose not to do this for 
reasons of simplicity and practicality. For now, adding this complexity seems unnecessary given that the 
simpler trunk IMU plus pressure insole solution presented here already shows strong potential for 
estimating lumbar moments. Fourth, we focused on load monitoring as a key risk factor for low back 
disorders, but it is worth reminding that sensors like the trunk IMU capture other data such as twisting 
(spine rotation) and trunk acceleration/deceleration, which can also be useful and complementary for 
injury risk assessment. Fifth, algorithms were developed and evaluated on a broad range of movement 
tasks we identified as representative of many manual material handling tasks performed in workplace 
environments. The efficacy of using a trunk IMU and pressure insoles to monitor low back loading for 
other tasks or jobs outside of those tested would require additional validation. To our knowledge, this is 
one of the largest databases ever collected of synchronized laboratory and wearable sensors in this 
ergonomics and material handling domain. As such, we plan to use this dataset for future secondary 
analysis, and to make it available to other researchers interested in exploring additional research 
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questions. 

5.6 Conclusion 

 
Here, we present a promising wearable solution for the practical, automated, and accurate monitoring 
of low back loading during manual material handling. We found that two key sensors for accurately 
monitoring low back loading are a trunk IMU and pressure insoles. Using signals from these two sensors 
together with a Gradient Boosted Decision Tree algorithm has the potential to provide a practical 
(relatively few sensors), accurate (up to r2 = 0.89), and automated way (using wearables) to monitor 
time series lumbar moments across a broad range of material handling tasks. The trunk IMU could be 
replaced by thigh IMUs or a pelvis IMU without sacrificing much accuracy, but there was no practical 
substitute for the pressure insoles. The key to realizing accurate lumbar load estimates with this 
approach in the real world will be optimizing force estimates from pressure insoles. This promising 
wearable solution has the potential to transform low back injury risk assessment, monitoring, and 
prevention in various industries. 
 

5.7 Supplemental Material 

 

5.7.1 Algorithm accuracies for all wearable sensor combinations  

 

 
Supplemental Figure 5.1 Number of sensor locations and specific sensor combination influences 
algorithm accuracy.  (Top) Average accuracy using idealized wearable sensors summarized here using 
the average coefficient of determination (r2). Darker color bars correspond to an increasing number of 
sensor locations used in the algorithm. (Bottom) Summary of which sensor locations were used in each 
reduced sensor combination. Orange grid boxes indicate that signals from that sensor location were 
used for the algorithm. These results are equivalent to Figure 5.2 but depicted here to visualize the 
performance of each sensor combination. 
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5.7.2 Lateral Bending Lumbar Moment 

 

 
Supplemental Figure 5.2 Combining a trunk IMU and pressure insoles is also promising for estimating 
lumbar lateral bending moment. Average accuracy using idealized wearable sensors summarized here 
using the average coefficient of determination (r2). As with estimating lumbar extension moments 
(Figure 2), the maximum algorithm accuracy increased with number of sensor locations. Orange dots 
represent the distributed sensor algorithm (6 sensor locations), and a subset of algorithms using 1 and 2 
sensor locations. All algorithms here were developed with idealized wearable sensor signals and the 
target was lumbar lateral bending moment.  
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Supplemental Figure 5.3 Representative example of lumbar lateral bending moment estimates based 
on different wearable sensor combinations. Shown is lab-based (green) and algorithm-estimated 
(orange) lateral bending moments for three different sensor combinations. Depicted is a subset of the 
hundreds of manual material handling tasks performed for an example participant; 4 pick and place task 
cycles with a 5 kg box shown. These results were similar to those observed when estimating the lumbar 
extension moment (Figure 5.8): the single IMU wearable did not well estimate the higher magnitude 
lateral bending moments, but combining a pressure insole with at least one IMU improved these 
estimates. All algorithms here were developed with idealized wearable sensor signals and the target was 
lumbar lateral bending moment. BW = body weight × body height.  
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Supplemental Figure 5.4 Vertical GRFs and frontal trunk angle are the most important signals for 
estimating lumbar lateral bending moments. Signal importances are from the idealized wearable 
sensor algorithm for estimating lumbar lateral bending moment. Note that these signals can be obtained 
from the same two sensors (trunk IMU and pressure insoles) that we identified as being the most 
important for estimating lumbar extension moment. R = right; L = left.  
 
 
Supplemental Table 5.2 Algorithm accuracies when estimating lumbar lateral bending moment. 
Shown are participant-specific and average (avg) accuracy results from three different subsets of 
idealized wearable sensors: trunk IMU, trunk IMU and pressure insoles, and all distributed sensors. 
Accuracy is reported as the coefficient of determination (r2) across all time samples for a given 
participant.  
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5.7.3 Idealized wearable sensor signals vs. real wearable sensor signals 

 

 
Supplemental Figure 5.5 Trunk IMUs provided a relatively precise estimate of trunk orientation while 
pressure insoles provided more variable estimate of vertical force.  Ten scatter plots represent each 
participant, and gray dots represent each time sample. Real wearable trunk orientation from an IMU 
correlated well with idealized wearable trunk angle from lab-based motion capture (A), whereas real 
wearable vertical force from pressure insoles did not correlate as well with idealized wearable vertical 
force from lab-based force plates, and exhibited higher variability (B). A line with a slope of one is added 
to visualize a perfect correspondence between idealized and real wearable sensor signals. See Table 5.1 
and Table 5.2 for details on idealized and real wearable sensor signals. deg = degrees; BW = body 
weight.  
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6 Conclusions and Future Work  

 
This dissertation has presented several research contributions to the field of monitoring musculoskeletal 
dynamics with imaging and wearable measurement modalities. These research projects demonstrate 
the exciting potential to expand our capabilities for long-term, widespread, and unconstrained 
monitoring of musculoskeletal dynamics in applied situations outside the lab. However, many areas 
related to the validation, translation, and application of these wearable monitoring tools remain 
unexplored. The following section details possible directions for future work. 
 

6.1 Future Work for Chapter 2: Ultrasound estimates of Achilles tendon dynamics   

 
Ultrasound and image processing techniques offer an exciting opportunity to peer beneath the skin 
during human locomotion tasks and evaluate the dynamics of muscles and tendons. Given the many 
potential reasons I may have observed unexpected Achilles tendon shortening in these experiments, 
there are opportunities for additional targeted research studies that aim to evaluate if errors reside in 
the assumed musculoskeletal model and/or experimental methods. For example, to evaluate choices 
and assumptions in the musculoskeletal model, more sophisticated models could be utilized that 
account for interactions between adjacent muscle tendon units and/or connective tissues. Another area 
of future research is to identify which ultrasound method(s) are best suited for high muscle-tendon unit 
force and displacement tasks, given our inconsistent results between methods and scientific interest in 
these types of tasks (e.g. walking and locomotion).  
 

6.2 Future Work for Chapter 3:  Ground reaction forces and tibial force are not strongly correlated 

 
The work presented here focused on evaluating the correlation between ground reaction force metrics 
and peak tibial force over a range of running speeds and slopes. The relationship between other single 
variable metrics and/or other musculoskeletal metrics of interest (e.g. loading on other tissues at risk of 
overuse injury) could be evaluated in future studies. Findings could motivate or dissuade the use of 
single variable metrics in research studies and/or commercial devices aimed at evaluating overuse injury 
risk on specific musculoskeletal tissues.  
 

6.3 Future Work for Chapter 4:  Estimating tibial force with wearable sensors 

 
The work in Chapter 4 provides a promising and feasible approach for monitoring tibial loading with 
wearables. To translate this solution, additional research is needed to calibrate and validate the 
algorithm using specific device hardware and characterize the accuracy and repeatability across runners 
and across days. Once a robust, wearable tibial load monitoring tool is available for real world, repeated 
day use, there are many exciting areas for future scientific, sport and clinical research. From a clinical 
perspective, future research could use this portable tool to conduct the first prospective study that 
measures tibia bone loading continuously alongside injury incidence to gain new insights about bone 
stress injury etiology. These clinical insights can then inform scientific advancements in modeling 
longitudinal bone damage, adaptation, and remodeling, improving how we simulate, model, and predict 
bone health. In parallel, this tool can help take biomechanics and sports research outside the lab, 
allowing for widespread and unconstrained monitoring of bone loading during running, aiding the 
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evaluation of sports interventions (e.g. footwear, performance enhancing exoskeletons, etc.) in real 
world environments.  
 

6.4 Future Work for Chapter 5:  Estimating lumbar moments with wearable sensors 

 
The work in Chapter 5 provides a promising and feasible approach for monitoring low back loading with 
wearables. Similar to Chapter 4, additional research is needed to translate this technology into a robust 
solution capable of being deployed for real world use. Based on our benchmark evaluation using real 
wearables, there is a particular need for improvements in how we monitor force under the foot with 
wearables (e.g. with pressure insoles), suggesting a need for research that improves the sensor 
hardware technology and/or develops biosignal analysis techniques for improving the signal reliability 
(e.g. strategic calibrations to routinely rescale the signals). Again similar to Chapter 4, once a robust, 
wearable low back load monitoring tool is available for real world, repeated day use, there are many 
exciting areas for future scientific, occupational and clinical research. From a clinical and ergonomics 
perspective, future research could use this portable tool to conduct prospective studies that measures 
low back loading continuously alongside injury incidence to supplement previous insights on the 
relationship between low back cumulative damage and injury risk. Future occupational research could 
use this tool for automated ergonomic assessments, helping to efficiently evaluate how various 
ergonomics factors influence worker safety. Future research could also adapt this tool to evaluate injury 
prevention interventions, such as exoskeletons, and quantify how much assistance is provided to users 
while wearing the exoskeleton in real world environments. It extremely exciting the breadth and depth 
of potential research that could be fueled with accurate and practical tools for monitoring 
musculoskeletal loading.   
 

6.5 Conclusions   

 
This dissertation has provided four main contributions. Chapter 2 presents the discovery that two 
commonly-used ultrasound based methods for estimating tendon dynamics yielded unrealistic 
shortening of tendon when the ankle plantarflexes beyond neutral. Chapter 3 identifies that GRF metrics 
should not be used assumed to be a surrogate for tibia bone loading, dissuading the use GRF metrics in 
both scientific research and commercial wearables as an indicator of injury risk. Chapter 4 presents the 
design and validation of a novel method for combining biomechanics, wearables, and machine learning 
to more accurately estimate tibia bone force during running, compared to conventional methods using a 
single wearable metric. Chapter 5 presents the design and validation of a practical and accurate tool for 
monitoring low back loading with wearables across a broad range of manual lifting tasks.  
 
Imaging and wearable measurement modalities provide enhanced capabilities for monitoring human 
movement and musculoskeletal dynamics. My hope is that this dissertation provides an evaluation of 
some limitations of current methodologies for monitoring musculoskeletal dynamics, while also 
suggesting exciting new approaches for accurately monitoring musculoskeletal dynamics in real world 
environments. Together, I hope improvements in portable and wearable monitoring tools will improve 
the health, happiness, safety, and productivity of our society. 
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