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Chapter 1

Introduction

1.1 Motivation

Image-guided surgery provides surgeons, either robotic or human, the ability to incor-

porate patient-specific preoperative surgical plans intraoperatively in ways never before

imagined. Virtual fixtures or “no-fly zones” can be created around surgical boundaries to

prevent the surgeon from moving the robot into an unintended area, or they may be designed

to assist the surgeon in following the preoperative plan. Augmented or virtual reality can

give the surgeon visual access to subsurface features while performing complex operations.

Autonomous robotic systems can preoperatively plan entire portions of a procedure based

on three-dimensional medical images and then perform those plans in the operating room

on the patient.

The goal of this dissertation is to advance patient personalization of preoperative sur-

gical planning for image-guided robotic procedures. In particular, a method is proposed

for generating patient-specific three-dimensional surgical tool path plans for autonomous

robotic bone milling. Additionally, two algorithms are presented that allow a surgeon to

mitigate the danger posed by registration error to specific critical structures throughout an

image-guided procedure.

1.2 Background

1.2.1 Tool Path Planning in Autonomous Bone Milling

Tool path planning is a well studied problem in CNC machining [7–10]. Unfortunately,

these planners are mainly designed for machining homogeneous materials where the design

of the part may be modified to facilitate the planned tool path. Many of these planners are
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designed to provide the highest feed rate possible given known material and cutter prop-

erties. These types of path planner are not well suited for autonomous bone milling. Not

only are the materials heterogeneous, but their densities vary from patient to patient. Work-

piece fixation is an issue that is relatively easily solved in machining, but is not as easily or

rigidly accomplished in surgery. One of the more common methods of securing the skull is

to use a Mayfield Clamp. A Mayfield clamp, while effective at securing the patient’s head,

is relatively invasive and can lead to complications [11]. An added difficulty is that bone

milling is often performed in close proximity to critical structures that, if damaged, could

leave the patient permanently disabled [12]. This is to say that while extensive literature

exists in CNC path planning, the application of that literature in surgery has been sparse

because the goals of CNC machining and the goals of autonomous surgical bone milling

are different.

Tool path planning for autonomous robotic bone milling has evolved significantly since

1994 when Taylor et al. [13] published a paper describing the ROBODOC system. This

planner was initially designed to mill pockets that receive surgical implants for total hip

arthroplasty (THA) though that would later include total knee arthroplasty (TKA) as well.

The cutter (an end mill) is oriented parallel to the long axis of the implant. Bone is removed

one layer at a time by moving the cutter along successive linear paths whose separation

distance is determined in relationship to the diameter of the cutter. This kind of layer by

layer milling is commonly referred to as 2.5D milling because it achieves a 3D pocket

by partitioning the volume into a set of approximately planar subvolumes (layers). These

subvolumes are then milled in an ordered sequence from highest to lowest.

Several years later the world would see its first force controlled surgical robot for

otoneurosurgery, Federspil et al. [1]. While the path plans that were tested on this robot

were all 2.5D plans (Figure 1.1), the force exerted by the robot for several different 2.5D

strategies was measured and compared and an optimal strategy chosen. This ranking of the

path planning strategies by the magnitude of force required was an important step forward
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Figure 1.1: Several path planning strategies are seen in the figure. (a) horizontal milling,
(b) vertical milling, (c) spiral horizontal milling, and (d) zigzag horizontal milling. Figure
from Federspil et al. [1].

in designing tool path plans specific to the force requirements of the bone being milled. It

should be noted that for this system the milling was carried out with a surgical spherical

cutting burr and the tool shaft approximately perpendicular to the test surface throughout

the milling process.

The next autonomous robotic milling path planner to be described is innovative in that

it is not actually an image-guided system, Abraham et al. and Wolf et al. [14, 15]. This

choice was made to simplify the preoperative planning. The path planner takes advantage

of the known geometric properties of the knee implants’ design to mill the bone surfaces to

match those implants features. Another advance in this planner is that though it is a 2.5D

planner, it uses a cell based decomposition to break the volume of bone to be removed into

several smaller segments that more easily accommodate the simpler tool paths.

Sugita et al. presented a new innovation for total knee arthroplasty in the form of an

image-guided tool path planner [2] whose path is planned under the constraint that the

motion of the tool shaft is restricted to pass through a relatively small incision on the front

of the knee to perform its 2.5D milling path (Figure 1.2). This purpose of the restriction
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Figure 1.2: Minimally invasive total knee arthroplasty drilling strategy. From Sugita et al.
[2].

of the motion of the tool shaft is so that it can be used in minimally invasive total knee

arthroplasty. Note that though this planner restricts the movement of the shaft to pass

through a small incision, it does not model the drill shaft or interactions between it and the

patient.

At the same time as Sugita et al. a tool path planner that takes a different approach to

2.5D milling was created for the CRANIO robot by Cunha-Cruz et al. [3]. This planner

was designed to perform an autonomous craniotomy (later the project would move to a

cooperatively controlled system). Since the bone to be removed was a thin section of the

skull with a typically strong curvature, the standard 2.5D path planner had to be altered.

The planner is still a 2.5D planner, but its layers are curves approximating the exterior

surface of the skull (Figure 1.3). These curves are projected down into the skull and are

deformed to match the curvature of the interior of the skull as the planner approaches the

bottom layer. This modification of the typical 2.5D layer by layer algorithm made milling

volumes with inherent curvatures far more efficient.
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Figure 1.3: The deformation of the curves used by the path planner proposed by Cunha-
Cruz et al. for milling a craniotomy. Figure from Cunha-Cruz et al. [3].

The limitation placed on a tool path planner by a 2.5D algorithm is that it must mill all

of the bone on the current layer before proceeding further down into the pocket. This layer

by layer approach makes checking for interactions between the tool shaft and the unmilled

bone fairly simple, because the only bone that needs to be checked for interaction with the

tool shaft is the boundary of the finished pocket. If the milled pocket is relatively shallow

and the tool shaft stays close to perpendicular to the milled surface such interactions need

not be modeled at all. Moving layer by layer also means that when milling arbitrarily

shaped pockets, as is often required in robotic bone milling, the tool tip is prevented from

following a small segment of pocket boundary that leaves the current plane, and the planner

will have to come all the way back to that portion of the next layer down to remove that

bone. Another limitation is that a planner may be able to keep more of the cutting burr

engaged by leaving the current layer, but again it is prevented from doing so by the basic

milling strategy. Revisiting the idea of force control, it is possible to model the surgical

forces involved with bone milling as is often done in haptic simulations [16, 17]. If such

a simulation was incorporated in a 2.5D tool path planner and a point requiring a lower

force to access was available one layer below the current cutting depth, the planner could

not choose that point. These are some of the motivations for creating a 3D path planner.

The only true 3D path planner for autonomous robotic bone milling is the inspiration

for the work in Chapter 2. This planner was designed by Danilchenko et al. to perform

an autonomous mastoidectomy [4]. In this 3D planner, every voxel targeted for removal
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Figure 1.4: A visualization of a 2D slice of the “greedy” path planner’s closest neighbor
behavior described by Danilchenko et al. From Danilchenko et al. [4].

by the planner is ranked by its distance from the starting voxel. The tool then proceeds in

a “greedy” manner from voxel to voxel always choosing to move to the next neighboring

targeted voxel that is closest to the tool’s starting position (Figure 1.4). An additional in-

novation is that this planner also relies on preprocessing the segmented medical images to

account for the diameter of the spherical cutting burr used by the system. This preprocess-

ing step removes the need for mathematically computing the offset from the edge of the

planned pocket associated with the thickness of the cutter being used.

A preliminary version of the path planner presented in Chapter 2 appears in Dillon et

al. [18].

1.2.2 Quantifying Risk to Critical Patient Structures in Image-Guided Robotic Surgery in

the Presence of Rigid Registration Error

To use an example from the previous section, what if an autonomous bone milling

robot needed to work in close proximity to structures that were vital to the patient’s quality

of life or survival? What assurance would the patient have that the structures would not

be damaged during the procedure? These are the types of questions that the algorithms
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described in this background section seek to answer.

While computing the spatial error associated with various registration modalities has

been extensively studied for the last several decades, relatively little work has been done to

allow the surgeon to specify the safety level of specific critical structures in the planning

stage of a surgery performed under image guidance. In fact, many times safety margins

used in image-guided surgery are uniformly thick margins whose dimensions are based on

intuition.

There have been two different types of answers given to questions posed at the begin-

ning of this section. The first solution was proposed by Haidegger et al. [5], that models

the error associated with an instantaneous position of the tip of a tracked tool in real time

via Monte Carlo simulation (Figure 1.5). This error distribution is used to determine the

probability that the tool tip is in violation of a virtual fixture put in place around a critical

structure (the eighth cranial nerve, the acoustic nerve, during a vascular decompression to

treat hemifacial spasm via a suboccipital approach). This result can be used to protect the

critical structure by informing the surgeon (robotic or human) when the danger of violating

that boundary reaches an unacceptable level. While an important first step toward specify-

ing the safety level of critical structures during a procedure, this method is limited by only

supplying instantaneous estimates of danger to the critical structures.

The second solution, extends the idea of a danger probability associated with a critical

structure from an instantaneous event to a probability associated with the duration of the

procedure. Noble et al. [19] created an algorithm that analyzes a linear bone drilling path in

close proximity to critical structures in the middle and inner ear. The probability of the drill

colliding with the critical structures is estimated by randomly varying the positions of the

start and end of the proposed drilling trajectory. These varied plans are then checked to see

if they collided with the critical structures. Probabilities of collision with the critical struc-

tures are computed from the collision counts. This is the first time a damage probability for

critical structures has been created that was valid for the duration of the procedure.
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Figure 1.5: This figure from Haidegger et al. highlights the type of instantaneous probabil-
ity of violating virtual fixtures their algorithm provides [5]. “The POI [Point of Interest]
(tooltip) transformed to the coordinate space of the patient. Purple stars show where the
overall RMS error is larger than 0.2 mm and red squares mark the region where the error
is over 0.4 mm. The exact probability of the POI being beyond the VF [Virtual Fixture] is
0.438 and 0.214 for the 0.2 and 0.4 mm VF, respectively. Red dot shows the theoretical
position, black dot represents the effect of the registration errors.”

Building on these results, the algorithm created in Chapter 3 uses the combination of a

theoretical result from the field of fiducial registration error and Monte Carlo simulation to

create safety margins that envelop an arbitrarily shaped critical structure that are spatially

varying and that guarantee safety to the critical structure for the duration of the entire

surgery. After the publication of Chapter 3, that work was extended by Dillon et al. [6]

to include several additional error sources pertinent to the specific application of robotic

mastoidectomy performed by the Acoustic Neuroma Surgical Robot [18] (Figure 1.6). The

addition of these error sources highlights the value of the algorithm by giving the surgeon

the ability to set a statistical guarantee of safety to individual structures in a patient before

the surgery takes place.

1.3 Dissertation Contributions

The goal of this dissertation is to advance patient personalization of preoperative surgi-

cal planning for image-guided robotic procedures. This advancement is achieved by focus-

ing on two specific problems: (1) tool path planning for autonomous robotic bone milling,

and (2) the danger posed to specific critical structures by the registration error present in

image-guided robotic procedures over the duration of an invasive procedure.
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Figure 1.6: (a) The final safety margins for several critical structures. Portions of the
original target volume (in red) are removed where the safety margins overlap the volume
originally identified for removal by the surgeon. (b) A schematic of the risk of drilling
points surrounding the facial nerve and its current safety margin at one iteration of the
algorithm. At each iteration, a percentage of the highest risk voxels are added to the safety
margin to bring the probability of preserving the structure closer to the desired threshold.
From Dillon et al. [6].

1.3.1 Tool Path Planning Algorithm for Autonomous Robotic Bone Milling

Autonomous robotic bone milling is a common application of surgical robotics because

of the inherent rigidity of the bone and the repeatability of robotic manipulators. Up to this

point, the primary methods for planning tool path trajectories have been layer by layer

2.5D planners [1–3, 13, 15]. Path planners not limited to removing bone in a layer by

layer fashion have the potential to incorporate many additional patient-specific factors in

the shape of the planned path. One 3D autonomous bone milling tool path planner has

been demonstrated [4]. The implementation of a 3D autonomous bone milling algorithm

significantly complicates the interactions between the tool shaft and the unmilled tissue

during the procedure.

Chapter 2 of this dissertation is inspired by the path planner presented in [4] and con-

tributes new functionality in two separate areas. The first and primary contribution pre-

sented in Chapter 2 is the ability to model and incorporate tool shaft and cutting burr inter-

actions with unmilled bone tissue into the creation of a true 3D path planner. A secondary

contribution presented in Chapter 2 is the ability to easily vary the cutting depth of the
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planned path in a true 3D path planner. Control over the cutting depth is possible because

of a novel reapplication of the concept of a “supervoxel” from image and video processing

literature [20–22]. The ability to control the cutting depth of such an algorithm decreases

the operating time of the robot and increases the speed of the 3D path’s computation such

that the plan can be created intraoperatively.

1.3.2 Creating Spatially Varying Margins that Encapsulate Critical Structures Within the

Patient via Analysis of Registration Error

Previous work has analyzed the instantaneous danger posed to a critical structure by

a tracked tool in an image-guided system in the presence of registration error [5]. Addi-

tionally, the danger posed by bone drilling in the presence of registration error to a given

critical structure has been analyzed for entire linear bone drilling paths [19]. This disser-

tation builds on these results by generalizing these safety analyses to extend to a critical

patient structure of arbitrary shape, throughout the duration of the procedure. Chapter 3’s

primary contribution is to create the first spatially varying safety margins enveloping crit-

ical structures based on a statistical analysis of fiducial point-based registration error. If

preserved throughout the procedure, these safety margins provide a statistical guarantee

that the contained structures will remain undamaged. Chapter 4’s primary contribution

is to create statistically guaranteed safety margins with registration modalities other than

fiducial point-based registration. The algorithm was simulated with surface based iterative

closest point registration. An additional contribution of Chapter 4 is to reconceptualize the

safety margins to represent tissue that must be removed. The specific application is a can-

cerous tumor, and the safety margin defines the volume of tissue that must be fully removed

to ensure that the tumor is fully removed, given registration uncertainty.
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Chapter 2

A Robust Tool Path Planner for Autonomous Robotic Bone Milling Based on Preoperative

Imaging

2.1 Introduction

Bone milling is an excellent example of a class of procedures that benefits greatly from

advanced patient personalization. The volumes of bone to be removed in a wide variety of

procedures from craniotomy implants, to mastoidectomies, to knee and hip replacements

all have aspects of the procedure that can be custom tailored to the individual patient. Of

course the volumes of bone to be removed must be planned for the individual patient, and

these unique pocket dimensions present their own set of challenges. Beyond the shape

of the pocket such considerations as minimizing milling forces around critical structures

uniquely placed in each patient, modeling heat buildup around nerves embedded in the

bones to avoid damage, choosing a tool path that optimizes cutter orientation to improve

the efficiency of the milling, and simply finding a shorter tool path that a standard 2.5D

zigzag planner will yield and save the patient time in the operating room. These patient-

specific considerations and many other possibilities are able to be accounted for by the

algorithm presented in this chapter.

Bone milling is also an ideal target for surgical robotics because of the rigidity of the

bone. In less rigid tissue, preoperative plans must be adapted as the tissue deforms. Com-

pensating for this tissue deformation is a relatively difficult task. The rigidity of bone elimi-

nates the need for deformation modeling and greatly simplifies preoperative planning. This

rigidity is a primary reason that bone milling was one of the first applications of surgical

robotics [23–25].

Note that a distinction is being drawn between bone milling and bone drilling. Bone

milling is being defined as the removal of a multi-faceted volume of bone, which is distinct
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from bone drilling, the removal of bone tissue along a direct linear path. It should also be

noted that this bone milling is often performed via a surgical drill; therefore, references

will be made to a surgical drill performing bone milling.

Knee [26], hip [27], skull and skull base [28, 29] surgeries have all benefited from

the accuracy and repeatability that robotic bone milling provides. For example, in total

knee arthroplasty (TKA) Siebert el al. [30] found that the average difference between the

planned and achieved tibio-femoral alignment was 0.8◦ for robotically treated patients and

2.6◦ in the standard of care group; however, it remains unclear how significant a benefit

the additional accuracy is to long term patient outcomes [31]. In total hip arthroplasty

(THA), Wu et al. performed a comparison between robotic and manual preparation of the

femoral cavity [32]. In this study, they found that only 61% of the implant is in contact with

the bone in their manually performed procedures, and that the maximum gap between the

implants and the manually broached hole was 2.97 mm with an average gap of 0.77 mm. In

comparison, their robotically performed procedures revealed that the average gap between

implant and cavity was only 9% of that left by the manual group. In a craniotomy, one

benefit of robotic procedures is the ability to model the volume of the removed skull tissue

so that an accurate, well-fitting implant may be manufactured before the surgery takes place

[33]. In mastoidectomy, a skull base surgery, there are several critical structures embedded

in close proximity to the volume of bone that is to be removed. Damage to these structures

(e.g. facial nerve, chorda tympani, sigmoid sinus, etc.) could range from permanent facial

paralysis to severe bleeding [12]. Robotic bone milling allows the removed volume of bone

to be planned such that it does not endanger the patient-specific critical structures in close

proximity to the relevant bone tissue [34].

The first commercialized orthopedic surgical robot was ROBODOC (Curexo, Inc.,

Seoul, South Korea) [13] which ultimately was used clinically for both hip and knee re-

placement surgeries. ROBODOC performed the bone removal autonomously based on a

preoperative plan. Computer Assisted Surgical Planning and Robotics (CASPAR) was a

12



commercial system that also worked in knee and hip surgery performing bone milling au-

tonomously. CASPAR was a part of a German company URS Ortho GmbH and Company

KG [35]. MAKO’s RIO system is a clinically used cooperatively controlled robot designed

for hip and knee surgery. RIO enforces constraints on the surgeon’s tool path in real time so

that unintended bone is not removed. In this kind of surgeon/robot partnership the surgeon

performs the procedure while the robot ensures the safety of the patient and the accurate

adherence to the planned removal of bone. Other robotic bone milling systems for hip and

knee surgery include Mini Bone-Attached Robotic System for joint arthroplasty (MBARS)

[15], MBARS2 [36], and Active Constraints Robot (ACROBOT) [37].

Bone milling robot systems also exist in skull and skull base surgeries such as cran-

iotomy and mastoidectomy. The Robot and Computer-Assisted Craniotomy (CRANIO)

system [3] is a system designed to perform a robotically assisted craniotomy. This system

started as an autonomous bone milling system and progressed to a cooperatively controlled

milling system. The Acoustic Neuroma Surgical Robot (ANSR) robot [18] is a compact,

bone-attached, 4 degree of freedom robot that autonomously performs a mastoidectomy.

The system implemented by Xia et al. [38] is a cooperatively controlled robot designed for

skull base surgery. The systems described by Lim et al. [39] and Danilckenco et al. [40] are

autonomous systems for mastoidectomy. Danilckenko’s work is a precursor to the ANSR

system described by Dillon et al. [18].

There are two distinct approaches to bone milling. In the first approach, the robot

autonomously executes a preplanned trajectory based on the preoperative imaging. RO-

BODOC, CASPAR, MBARS, and ANSR all fall into this category. The second approach

utilizes preoperative imaging to create virtual fixtures or “no-fly zones” [41, 42]. The robot

then is driven by a surgeon. In this case, the robot does not have a planned trajectory

and its added safety is provided by enforcement of spatial boundaries that do not allow

the surgeon to remove unintended bone tissue. MAKO RIO, and ACROBOT fall into this

category. CRANIO started as an autonomous preplanned robot and has transformed into a
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cooperative control system.

Many different aspects of bone milling have been explored. Several examples include,

methods to determine what type of bone is being milled in real time [43]. There are meth-

ods to detect breakthrough into non-bony tissue [44]. Optimal milling angles have been

determined from preoperative data [45]. Temperature and force related to bone milling

have been modeled from preoperative imaging [46].

Limited detail has been published about planning the trajectory that the mill traverses

through the removed bone tissue. The most thorough treatments are given in [1, 2, 15].

In Sugita et al. [2] the path plan of a 5 axis floor standing robot is planned for a mini-

mally invasive knee surgery. Most of the complication involved in the system relates to the

system having to operate through a relatively small incision while achieving the desired

trajectory. Note that this planner does not model the drill shaft or interactions between it

and the patient. Federspil et al. [1] tested several 2.5D approaches with force control on

an industrial robot. Of the layer by layer methods tested a “spiral” trajectory minimized

the force applied to the cutting burr and was deemed the best tested method. It should be

noted that in Federspil et al. the milling was carried out with a spherical drill tip and the

tool shaft was approximately perpendicular to the test surface. Wolf et al.’s [15] MBARS

robot utilizes knowledge of the implant’s design to aid in planning the milling path. A

cell decomposition technique is used to partition the volumes of bone to be removed into

subvolumes. Then, a layer by layer approach is used to remove the tissue in the partitioned

cells.

Planning strategies are briefly described in system overview papers for an early version

of ROBODOC [13], CRANIO [3], and ANSR [18]. The description in [13] indicates that it

followed a zigzag plan where parallel lines are traversed until no material is left on the first

layer. This process is repeated on the next layer down and so forth until the desired volume

of bone is removed. It is a reasonable assumption that a more involved tool path planner

was implemented as the planning system, Orthodoc [47], matured, but they did not publish
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the details of an updated tool path planner. It is not a large step to assume that plans were

likely developed for each specific implant used by the system since the characteristics of

the implants are known and are independent of the patient. The path planner described for

the CRANIO robot is a 2.5D projection of a tracing of the surface of the bone that is to be

removed. This tracing deforms as the trajectory reaches the interior wall of the skull [3].

The path planner described for the ANSR robot [18] is a preliminary version of the planner

detailed in this work.

Tool path planning is a well studied problem in CNC machining [7–10]. CNC planners

are generally not well suited for bone milling. A large number of these planners focus

on generating the highest feed rate possible given known material and cutter properties. In

bone milling, not only are the materials heterogeneous, but they vary from patient to patient.

Workpiece fixation is an issue that is relatively easily solved in machining, but is not as

easily or rigidly accomplished in surgery. One common and effective method of securing

the skull, a Mayfield Clamp, is also relatively invasive and can lead to complications [11].

An added difficulty is that bone milling is often performed in close proximity to critical

structures that, if damaged, could leave the patient permanently disabled [12].

This chapter presents a voxelized framework novel to robotic bone milling that enables

the simple implementation of a wide range of tool path planning algorithms using either

4 or 5 DOF manipulators. This framework models not only the drill’s cutting burr, but

also the drill’s shaft to avoid potential interactions between the shaft and bone tissue that

would impact the ability of the system to accurately follow the preoperative plan. The

framework relies heavily on the re-interpretation of a “supervoxel”. Supervoxels are a

common concept in image segmentation [20–22]. The concept is extended in this chapter to

greatly increase the efficiency of the path planning framework. Finally, this chapter details

a true 3D surgical bone milling path planner that is easily customized for the procedure or

the individual patient’s needs.

The algorithm is demonstrated on several mastoidectomy procedures. It was imple-
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mented and tested on the 4 DOF Acoustic Neuroma Surgical Robot (ANSR) [18]. The

algorithm may be applied to any surgical milling procedure whose planning is based on

voxelized preoperative images.

2.2 Developing a Voxelized Framework

The voxelized framework requires a 3D medical image (e.g. a CT scan) that has been

segmented to highlight the different volumes that concern the planning process. These

segmented regions are as follows: bone that is to be preserved (protected bone), bone that

is to be removed (targeted bone), and air. An example of these segmentations can be seen in

Figure 2.1. The other pieces of information required by the path planner are the dimensions

of the drill shaft, the diameter of the spherical drill tip, and the dimensions of the voxels.

The voxelized framework is built around two parallel simulations. One simulation is carried

out in a modified version of the segmented 3D medical scan.

The modified simulation is used to plan the sequence of Cartesian positions that the

spherical cutting burr will traverse as it mills the targeted bone. The modified simulation

takes place in the modified volume because the modified volume has been designed such

that the center of the spherical cutting burr may be positioned at the center of any tar-

geted bone voxel in the modified volume without the spherical cutting burr removing any

untargeted bone voxels.

The unmodified simulation is performed in parallel with the modified simulation. It

takes place in the unmodified volume, that is to say the original segmented 3D medical

image. The unmodified simulation is used to determine the appropriate drill shaft orienta-

tions, if any exist, that do not collide with unmilled bone tissue for a cutting burr position

chosen in the modified simulation. This separate simulation is necessary because the di-

ameter of the spherical cutting burr will typically be much larger than the diameter of the

drill shaft. The modified volume accounts for the diameter of the spherical cutting burr.

Therefore the much smaller targeted voxel segmentation present in the modified volume
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Figure 2.1: 3D visualizations of a segmented CT scan are shown in the figure. Part (a) is air.
Part (b) is targeted bone. Part (c) is protected bone that remains unmilled throughout the
procedure. Part (d) combines all of three of the segmentations into a single visualization.
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does not allow accurate calculation of the angles by which the targeted bone voxels may be

accessed. Table 2.1 contains a glossary of frequently used terms.

Term Definition

Immediately adjacent

All voxels in one segmentation (e.g. Targeted Bone,

Protected Bone, etc.) that share a vertex with any voxel in the

other segmentation (26-connected) are considered to be

immediately adjacent to the other segmentation.

Supervoxel

A supervoxel as used in this algorithm is a cubic structuring

element with odd dimensions (e.g. 3 x 3 x 3 or 5 x 5 x 5)

whose center is coincident with the center of the cutting burr.

During path planning as the supervoxel moves through the

unmodified volume, targeted bone voxels that overlap the

non-central voxels within it are counted as milled. Targeted

bone boundary voxels in the modified volume are counted as

milled only when they are overlapped by the central voxel of

the supervoxel. In the modified simulation the center voxel of

the supervoxel may not occupy a protected bone voxel, but

non-central voxels within the supervoxel may occupy voxels

labeled as protected bone.

Protected bone

This is bone that is to be preserved throughout the milling

procedure. The protected bone contains critical structures

whose damage would cripple the patient.

Targeted bone

This is bone that is to be removed by the milling procedure.

In the modified volume, this bone is marked as removed after

contact with any portion of the supervoxel. In the unmodified

volume, this bone is marked as removed after contact with

any portion of the cutting burr’s structuring element.
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Targeted bone

boundary

This is targeted bone that is immediately adjacent to the

protected bone. Voxels assigned this label are only marked as

removed by the center of the supervoxel. This segmentation

does not exist in the unmodified volume.

Unmodified volume

This 3D array is the original segmentation of the 3D medical

scan. This voxelized region has been segmented with values

corresponding to protected bone, targeted bone, and air.

Modified volume

This 3D array is a copy of the unmodified region that has

been resegmented. The volume of the targeted bone

segmentation has been reduced by a morphological erosion

using a structuring element representing the spherical cutting

burr. The voxels removed from the targeted bone

segmentation have been added to protected bone

segmentation in the modified volume. The modified volume

also contains a new label differentiating between targeted

bone and targeted bone that is immediately adjacent to the

protected bone. The generation of this volume is described in

Section 2.2.1.

Modified simulation

This simulation is used to determine the positions of the path

as it is developed. This simulation takes place in the modified

volume.

Unmodified

simulation

This simulation is used to determine the permissible

orientations of the drill shaft. In the algorithm, this

simulation is also useful for developing a more detailed

fitness metric as described in Section 2.3.5.

Table 2.1: A glossary of terms that are frequently used in this chapter.

19



2.2.1 Preprocessing the Segmented 3D Medical Image: Creating the Modified Volume

This framework is designed to perform the milling with surgical drills already in use

in the operating room. These surgical drills use spherical cutting burrs to remove bone

tissue. The diameter of the chosen burr impacts the path planner. To illustrate this situation,

consider a plan created via a CT scan whose voxels represent 0.4 mm cubes. If this milling

plan is created for a 5 mm diameter spherical cutting burr, each time the cutting burr is

centered on a single voxel, it will cover many additional voxels. This situation can be seen

in Figure 2.2.

r
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Voxel Dimensions
0.4 x 0.4 x 0.4mm

Spherical cutting burr
diameter 5mm

Figure 2.2: A two dimensional comparison between the size of an example spherical cutting
burr and voxel size is shown in the figure. The cutting burr shown is 5 mm in diameter.
The voxels shown are 0.4 mm cubes. The large number of voxels covered by the cutting
burr in this example illustrates why the size of the cutting burr needs additional modeling,
both for the preparation of the modified region and in the simulated milling in the modified
simulation.
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This relationship proves problematic when the cutting burr is commanded to a location

near the edge of the volume of bone that is segmented to be removed. If the center of the

cutting burr is commanded to a position centered on a voxel near the border of the protected

bone, the radius of the spherical cutting burr will reach into the protected bone even though

the center of the spherical cutting burr has not left the targeted bone segmentation. This

removal of protected bone happens because the diameter of the cutting burr is larger than

the voxels that partition the volume. To account for this relationship, a voxelized structur-

ing element that encompasses the entire burr is created. Such a structuring element would

contain all voxels overlapped by the circle in Figure 2.3a. A morphological erosion oper-

ation is performed on the targeted bone (Figure 2.3b). After this erosion is complete, the

center of the cutting burr may be safely commanded to the centers of the voxels remaining

following this erosion. Note that there is an additional region in Figure 2.3b, Eroded Tar-

get: Unreachable Bone. These voxels represent bone that cannot be removed by a burr of

the chosen diameter without removing bone that is to be preserved. From this point on, the

eroded target and the eroded target: unreachable bone are considered protected bone, and

the remaining smaller targeted bone is the region containing voxels that are to be visited by

the center of the spherical cutting burr.

After the targeted bone has been reduced to compensate for the cutting burr’s diameter,

the modified targeted bone is dilated into the air using the same structuring element as

before. The purpose of this dilation is to compensate for the cutting burr’s radius when it

is milling the top surface of the bone. Without this dilation the first voxel targeted would

require the cutting burr to be cutting bone with its entire radius for every targeted bone

voxel immediately adjacent to the air. This is illustrated in Figure 2.4. The new volume

created by this preprocessing is the modified volume and will form the basis of the modified

simulation that determines the cutting burr’s positions throughout the path. The modified

volume is shown in Figure 2.5.
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Figure 2.3: Part (a) shows the initial segmented medical scan. Part (b) shows the process
of modifying the segmented scan so that each targeted voxel may be visited by the drill’s
center. Part (c) shows the final modified volume. Part (d) is a legend for the different regions
highlighted in parts (a) - (c). It should be noted that Eroded Target and Eroded Target:
Unreachable Bone are removed from the modified target the same way. The distinction is
that the Eroded Target: Unreachable Target region represents voxels that could never have
been reached without removing protected bone because of the dimensions of the cutting
burr.
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Figure 2.4: Part (a) shows a two dimensional vertical slice of the modified region. Part (b)
shows the same slice after the target has been dilated into the air region.

2.2.2 Modeling the Cutting Burr in the Unmodified Simulation: Structuring Element

This portion of the framework takes place in the unmodified volume, and is a part of

the unmodified simulation. The model of the cutting burr in the unmodified volume is sim-

ply the structuring element that was used to create the modified volume. This structuring

element may be placed at any voxel position within the unmodified volume and any voxel

that the structuring element covers is considered to be milled.

2.2.3 Modeling the Drill Shaft and Collision Detection

This portion of the framework takes place in the unmodified volume, and is a part of the

unmodified simulation. The drill shaft of the surgical drill chosen for use in the Acoustic

Neuroma Surgical Robot has three distinct diameters. There is the barrel of the drill, the

chuck or gripper, and the shaft which leads up to the cutting burr. The modeling of the

23



(a) (b)

(c) (d)
PSfrag replacements

Targeted Bone
Protected Bone

Air
Target Boundary

Figure 2.5: 3D visualizations of a preprocessed segmented CT scan are shown in the figure.
Part (a) is air. Part (b) is targeted bone including the targeted bone boundary. Part (c) is
protected bone that remains unmilled throughout the procedure. Part (d) combines all three
of the segmentations into a single visualization.
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Drill shaft
modeled diameters

Cutting burr

Figure 2.6: The figure shows the cutting burr at the tip of the drill shaft mounted in the
drill. The combination of these three sections of the drill will be referred to as the drill
shaft. Because of the restrictions of the robot used for experimental validation, additional
portions of the shaft do not need to be modeled because they cannot physically interfere
with the procedure.

drill and the collision detection methods outlined in this section are the only differences

between the voxelized framework’s 4 DOF and 5 DOF variations.

In the 4 DOF version of the framework, a simplifying approximation can be made. The

rotational axis is aligned parallel to one of the scan’s axes. This orientation choice means

that the drill axis is always parallel to one of the voxel planes. The information stored in

the several-voxel-thick region containing the drill shaft can then be collapsed into a single

voxel thickness.

This collapsing of the slices is accomplished by comparing the voxels along the dimen-

sion being reduced. If any such voxel is unmilled bone (either protected or targeted), the

voxel in the collapsed slice is counted as unmilled bone, if all voxels along the dimension

being reduced are segmented either as air, or as having been previously milled, those voxels

are counted as air in the collapsed slice. This method of collapsing the unmilled or pro-
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tected bone voxels and air or milled bone voxels from several slices of the modified volume

into a single slice is illustrated in Figure 2.7.

Line segments that correspond to sides of the drill that exist within the collapsed slice

are then generated. These line segments are generated for each of the drill’s three radii.

These line segments that represent the sides of the drill for each of the three drill shaft’s

radii are shown in Figure 2.6. The resulting line segments are checked for intersections

with unmilled bone tissue in the collapsed slice. The line segments are swept through the

possible angles that the robot could achieve and a range of accessible angles for the tested

voxel location is stored in the path plan. A sample of a modeled drill shaft being checked

against a collapsed slice of the CT scan is illustrated in Figure 2.7.

In the 5 DOF version of the framework, it is necessary to use a much more computation-

ally expensive simplification of the unmodified volume. A tree based spatial partitioning

method was chosen because the boundaries of the volume of partially milled bone being

checked for interactions with the shaft of the drill are quite complex. Since the unmodified

volume is already partitioned into uniform cubes (voxels), an octree was chosen to partition

the unmodified volume (Figure 2.8). An octree may be used as a method for partitioning

R3 space for efficient searches. In principal, an octree starts out with the smallest box that

contains all points of interest. This box is divided into eight equally sized “child” boxes,

hence the name “octree”. These subdivisions continue recursively until the dimensions of

the smallest child boxes correspond to the desired level of precision. A modification to the

standard octree was necessary. The original parent box needed to be sized and positioned

such that its finest resolution child boxes would be voxel sized cubes concentric with the

segmented voxels. An additional consideration was made because of the size of the octree.

Even a partitioned search for collisions with the number of voxels relevant to the milling

was impractical. Instead of modeling the entire volume of both protected and targeted bone

tissue in the octree, a one voxel thick surface of bone (both protected and targeted) is mod-

eled. In this way, every interface that the drill shaft could collide with is modeled and many
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Figure 2.7: This figure demonstrates the simplification that allows for rapid collision de-
tection in the 4 DOF voxelized framework. Part (a) shows several vertical 2D slices of a
sample drilling. Part (b) shows the information in all of these slices combined into a single
voxel thick slice. The combination is carried out such that if a voxel was unmilled bone
(targeted or protected) in any of the slices, then in the combined slice it is represented as un-
milled bone. Part (c) shows an example of checking a drill shaft’s orientation for collision
with the single combined slice from Part (b).
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unnecessary calculations are avoided.

In the 5 DOF voxelized framework, the drill is modeled as three approximate cylinders,

one for each of the three diameters shown in figure 2.6. Any drill pose may be checked for

collision with unmilled bone by comparing the three cylinders that contain the drill with

the octree representing the top layer of bone tissue via the Gilbert–Johnson–Keerthi (GJK)

algorithm [48]. Sample shafts being checked for interactions with the bone’s surface are

shown in Figure 2.9.

2.2.4 Modeling the Cutting Burr in the Modified Simulation: Defining the Supervoxel

This portion of the voxelized framework relates to the modified volume and the modi-

fied simulation. Given the previous sections, the cutting burr’s center may be safely com-

manded to all target voxels in the modified region. Interactions between the drill shaft and

the unmilled bone may also be anticipated and avoided. Another issue arises if the cutting

burr’s center is commanded to pass through each voxel in the modified volume’s targeted

voxels before considering that voxel to be removed. Using the previous example, if the

cutting burr’s diameter is 5 mm and the voxels are 0.4 mm cubes, the cutting burr will be

commanded to make cuts of at most 0.4 mm deep. This is inefficient, and leads to long

paths and extra computation time.

The presented solution is to extend the idea of a supervoxel. A typical supervoxel

is simply the expansion of a voxel to include some set of its neighbors sharing similar

characteristics. This supervoxel’s dimensions are defined based on the voxels’ dimensions

and the desired cutting depth. For instance, if each voxel represents a 0.4 x 0.4 x 0.4

mm cube and an approximate cutting depth of 1 mm is desired, then the supervoxel will

consist of a volume of 5 x 5 x 5 voxels centered on the cutting burr’s center. Given these

dimensions, the supervoxel will reach out 2.5 voxels, or 1 mm, in each direction from

the center of the supervoxel. Thus in the modified simulation all voxels segmented as

targeted bone within 1 mm of the center of the supervoxel will be counted as milled. The
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Figure 2.8: A sample octree of the unmilled surface of bone during path planning is shown
in the figure. Each color box represents a different level of the octree. The highest octree
level is the single box that surrounds the whole volume. The lowest level is composed of the
black boxes. These black boxes are chosen to correspond to the unmilled bone surface at a
given point in the simulated milling (unmodified simulation). To test for collision between
a drill shaft with the unmilled bone surface (black boxes) the drill shaft is first compared
with the highest level (largest box pictured). If this highest level is in collision with the
drill shaft, the shaft is then checked against the 8 blue boxes (the next level in the octree).
This proceeds hierarchically until the drill shaft is checked against only the unmilled sur-
face voxels (black boxes) that are nearest the drill shaft. This octree representation allows
for fast and accurate collision detection between the modeled drill shaft and the unmilled
surface of bone (the black cubes).
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Figure 2.9: This figure shows an example of a drill shaft being checked for collision with
an unmilled surface of bone. Part (a) shows a drill shaft not in collision with the unmilled
bone surface. Part (b) show a drill shaft that is in collision with the unmilled bone surface.

supervoxel’s dimensions will vary depending on the medical image being used, the density

of the bone being milled, and the diameter of the cutting burr. An example supervoxel can

be seen in Figure 2.10.

The introduction of the supervoxel requires the addition of two new features to the

voxelized framework. These features are outlined in Sections 2.2.5 and 2.2.6.

2.2.5 Defining the Target Boundary Segmentation

This portion of the voxelized framework relates to the modified volume and the mod-

ified simulation. The first feature required by the introduction of the supervoxel is related

to ensuring the entire volume of targeted bone is removed. The targeted bone voxels in the

modified volume were created by an erosion operation where the cutting burr structuring

element was applied to the target voxels in the unmodified volume (Section 2.2.1). This

erosion was performed so that the center of the cutting burr may be commanded to the

boundary of the targeted bone in the modified simulation without the edge of the cutting
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Figure 2.10: A example of a supervoxel is shown in this figure. Note that the type of the
voxels contained within the supervoxel are also shown in the legend.

burr removing any protected bone. By defining a supervoxel that counts voxels not covered

by the center of the cutting burr as milled, a situation has been created where a target voxel

in the modified volume that is situated on the boundary with the protected bone may be

marked as milled without the center of the supervoxel reaching that voxel. Figure 2.11

was created to illustrate this situation. Figure 2.11 contains a simulation of a 2D path cho-

sen purely for example. If the 5x5 supervoxel traverses the white path in Figure 2.11b,

then every targeted bone voxel present in the modified simulation will have been marked

as milled. Figure 2.11c and 2.11d represent the unmodified simulation running in parallel

with the modified simulation shown in Figure 2.11a and 2.11b. There is a 1-1 correspon-

dence between voxel positions in the modified and unmodified simulations. Note that in

the figure the modified simulation has been cropped to highlight its details. This has been

done because all voxels outside the shown area would be labeled as protected bone.

The band of unmilled voxels present in Figure 2.11d demonstrates that if voxels adja-

cent to protected bone in the modified simulation are marked as milled by any part of the
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Figure 2.11: Parts (a) and (c) of the figure show 2D slices of a point in the modified sim-
ulation in parallel with the unmodified simulation. Note the distance between the upper
left portion of the “removed” region and the targeted bone in (c). Parts (b) and (d) also
represent 2D slices of the simultaneous modified and unmodified simulations and contain
a sample path. Note that in part (b) all targeted voxels have been removed, and in part (d)
a band of targeted bone was not removed. Ensuring the removal of this band of unmilled
targeted bone requires the introduction of an additional voxel label.
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supervoxel other than the center voxel, targeted bone in the unmodified simulation (and

subsequently the physical space) may be unmilled at the end of the planned path. There-

fore, all of the targeted bone voxels adjacent to the protected bone in the modified region

must be visited by the supervoxel’s center. To overcome this difficulty, an additional label

is added to the modified volume. The new segmentation consists of each of the voxels that

share faces with (6-connected) the protected bone segmentation in the modified volume.

The voxels in this new, targeted bone boundary, segmentation are not counted as removed

unless the they are visited by the single voxel representing the center of the cutting burr. A

sample trajectory utilizing this new target boundary label is shown in Figure 2.12.

2.2.6 Defining a Simple Objective Planner

This portion of the voxelized framework relates to the modified volume and the modi-

fied simulation. The second feature required by the introduction of the supervoxel is related

to safety and the size of the supervoxel. By expanding the supervoxel to include a volume

of additional voxels, it is now possible that some of those voxels within the supervoxel will

be protected bone. Since any targeted bone voxel within the supervoxel has been marked

as milled, any path planning algorithm using this supervoxel will be forced to consider

voxels exterior to the supervoxel as candidates for the next tool position. Since voxels not

immediately adjacent to the voxel representing the current center of the spherical cutting

burr (also the center of the supervoxel) are being considered for the next tool position, and

since collisions between the drill shaft and unmilled bone are calculated for voxels that rep-

resent candidate next tool positions, the distance that the drill will travel between checks

for collision between unmilled bone tissue and the drill shaft has been increased.

These two considerations led us to develop a simple planner that would generate a path

through consecutive voxels leading from the supervoxel’s current center to its desired next

position. This simple planner works by analyzing a subvolume of voxels where the targeted

voxel and the current center of the supervoxel occupy two opposite corners. The voxels in

33



PSfrag replacements

Modified simulation
Supervoxel start of path

(a)

PSfrag replacements

Modified simulation
Supervoxel end of path

(b)

PSfrag replacements

Unmodified simulation

Cutting burr end of path

(c)

PSfrag replacements

Unmodified simulation

Cutting burr end of path

(d)

PSfrag replacements

Targeted Bone
Protected Bone
Removed Target

Cutting Burr/
Supervoxel Center Supervoxel

Cutting Burr
Target Boundary

Figure 2.12: Parts (a) and (c) of the figure show 2D slices of a point in the modified simu-
lation in parallel with the unmodified simulation. Note the new segmented target boundary
in Part (a). Parts (b) and (d) also represent 2D slices of the simultaneous modified and
unmodified simulations and contain a sample path. Comparing Part (d) to Figure 2.11 (d),
it is observed that the entire region of targeted bone has been removed now that the target
boundary has been included in the modified simulation.
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the subvolume are labeled with integers corresponding to their Manhattan distance from

the current voxel center. Since it is possible for protected bone voxels to be within the

supervoxel, and it is impossible for the supervoxel’s center to be commanded to a protected

bone voxel, it is possible that a desired position exterior to the supervoxel is walled off

from the center of the supervoxel by protected bone voxels. Because of this possibility, a

check is made that each integer step between the current center voxel and the target voxel

exists in the subvolume. If this check is confirmed, the algorithm proceeds to step to lower

labeled voxels while checking for shaft collisions with unmilled target and backtracking

when necessary. Ties between equal voxel labels are broken randomly. This labeling and a

sample path are seen in Figure 2.13.

In this way it is ensured that the largest step taken without checking for collisions

between the drill shaft and the unmilled bone corresponds directly to the voxel size. Note

that if this voxel size is too large, the segmented volumes may be upsampled to ensure

patient safety. The simple objective planner algorithm is outlined in Figure 2.14.

2.3 Description of 3D Path Planning Algorithm

This section presents the true 3D path planning algorithm that has been created to run

in the voxelized framework defined by the previous section. This algorithm requires the

definition of both the modified and unmodified simulations. These simulations are run in

parallel in the modified and unmodified volumes respectively. The modified simulation

will be used to evaluate the candidate cutting burr positions at each step of the algorithm.

The unmodified simulation is necessary to determine the accessibility of of the candidate

positions at each step of the algorithm. The position of the center of the supervoxel in

the modified simulation, and the position of the cutting burr’s structuring element in the

unmodified simulation are synchronized between the two parallel simulations.

The path planner proceeds using this pattern:

1. Preprocessing: segmented CT scans
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Figure 2.13: This figure shows examples of the short path mechanism used by the voxelized
framework to plan paths to the targets within or immediately adjacent to the supervoxel.
Part (a) shows a 2D representation of a supervoxel that needs to move to a target adjacent
to the supervoxel. The short path algorithm chooses neighbors with values that are smaller
than the current voxel’s value for its next step. Part (b) shows a 3D representation of the
supervoxel and the path that is chosen through the example shown in 2D in Part (a).
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Figure 2.14: The figure shows the flowchart associated with the simple objective planner
outlined in Section 2.2.6.

Create the modified and unmodified segmented volumes as described in Section

2.2.1. These volumes will form the basis for the Modified Simulation and the Un-

modified Simulation in the following steps.

2. Preprocessing: modeling the spherical cutting burr

Modified simulation: Define a supervoxel (Section 2.2.4) to represent the cutting

burr in the modified simulation. The dimensions of this supervoxel are chosen to

limit the cutting depth of the milling strategy.

Unmodified simulation: Define a structuring element to represent the physical di-

mensions of the spherical cutting burr in the modified simulation.

3. Taking the first step

Modified simulation: Place the center of the supervoxel created in Step 2 on a

voxel on the surface of the targeted bone segmentation. Mark the voxels within the

supervoxel as milled according to Section 2.2.4.
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Unmodified simulation: Place the center of a structuring element also defined in

Step 2 on the voxel that corresponds to the initial voxel chosen in the modified vol-

ume. Mark the voxels contained within the structuring element as milled. Check for

the angles from which the voxel is accessible using the methods defined in Section

2.2.3.

4. Identify candidate next steps

Modified simulation: Identify unmilled target voxels that are candidates for the next

drill pose from the set of voxels within and immediately adjacent to the supervoxel.

5. Check candidate next steps for accessibility

Unmodified simulation: Evaluate the accessibility of those candidates by compar-

ing a model of the drill shaft with the surface of unmilled bone (either protected or

targeted) as described in Section 2.2.3.

6. Possibility: no accessible candidates

Modified simulation: If there are no accessible candidates, plan a direct path to the

nearest accessible target voxel using an extension of the simple objective planner

presented in Section 2.2.6.

7. Possibility: there are accessible candidates. Rank them by fitness

Modified simulation: Evaluate and rank the accessible candidate poses by a prede-

fined fitness metric.

8. Plan the length of the step

Modified simulation: If there are no protected bone voxels present within the su-

pervoxel, a single step is taken directly to the chosen candidate voxel position. Oth-

erwise, a short path is planned to the candidate avoiding any preserved bone or inac-

cessible voxels present in the supervoxel via the methods described in Section 2.2.6.
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9. Move the cutting burr

Modified simulation: Place the supervoxel in its new position. Mark the center

voxel of the supervoxel as removed. Mark all target voxels within the supervoxel

that are not directly adjacent to the protected bone as removed.

Unmodified simulation: Place the cutting burr’s structuring element centered on

the new position in the unmodified volume. Mark all voxels within the cutting burr’s

structuring element as removed.

10. Repeat steps 4-9 until no more valid candidate voxels remain.

11. Modified simulation: Use the simple objective planner described in Section 2.2.6 to

plan a path back to the starting position.

It should be noted that, depending on the physical application, it may be desirable to

mill the volume multiple times with different diameter cutting burrs to increase the effi-

ciency of the milling process. This algorithm can easily accommodate such successive

millings by being applied first to the unmilled volume with the larger cutting burr. Then,

the results of that first plan are used as the initial state of the second plan for the smaller

cutting burr. This can be repeated as many times as the individual situation requires.

2.3.1 Preprocessing the Segmented Medical Image

In addition to the steps described in Section 2.2, each targeted bone voxel undergoes

an initial accessibility check. This is done to identify targeted bone voxels that cannot

be reached by the spherical cutting burr because of severe overhangs of unmilled bone.

These identified voxels are then marked as inaccessible. This preprocessing accessibility

check is simply an application of the methods presented in Section 2.2.3 to every voxel

in the targeted bone segmentation. This accessibility check compares only drill shaft and

protected bone, since it is designed to remove from consideration voxels that could never

be reached by the cutting burr because of the pocket’s shape.
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2.3.2 Identify Candidates

Modified simulation: The supervoxel is placed in the segmented medical image at the

cutting burr’s current position. The segmentation values of the voxels within and immedi-

ately adjacent to the supervoxel are identified. All of these voxels representing unmilled

targeted bone or targeted bone boundary are analyzed to determine if they are accessible to

the drill.

2.3.3 Evaluate Accessibility

Unmodified simulation: This accessibility check is the only difference between the 4

and 5 DOF versions of this algorithm. Both checks are performed as described in Section

2.2.3. It is necessary not only to find the accessible voxels, but also to rank the various

candidate voxels based on the angles by which they can be accessed. This desire is moti-

vated by earlier studies performed by Dillon et al. relating to the efficiency of cutting with

a spherical burr [45]. By determining many different accessible angles, the algorithm may

now modify the planned path based on the projected efficiency of the cutter at the candidate

positions.

For the 4 DOF case, the first and last angles representing the range of orientations

from which the voxel may be approached by the drill shaft are stored. This range is then

checked for sufficient overlap with the current position’s range of accessible angles. If a

candidate voxel’s accessibility window has a sufficiently large range of accessible angles,

and a sufficient overlap with current voxel’s accessibility window, then the voxel is marked

accessible and the range of accessible angles are stored (Figure 2.15).

For the 5 DOF case, a discretized range of poses is analyzed as a concession to the

computational intensity of the collision detection. These drill shaft poses are then checked

against the octree representing the surface of the unmilled and protected bone as described

in Section 2.2.3. If a threshold percentage of the evaluated poses are accessible, then the
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Figure 2.15: The 2D slice shown in the figure is the collapsed slice created in Figure 2.7. α

and β are the angles stored by the algorithm to give an range of accessible angles for that
particular voxel.

pose is marked accessible and the angles that define the position of the shaft whose cutting

burr is best aligned with the targeted bone’s surface is saved corresponding to that voxel’s

position.

2.3.4 Plan Short Path

Modified simulation: If no accessible candidate voxels exist, then a search of all un-

milled target left in the modified volume is performed. The unmilled targeted bone is sorted

based on its Euclidean distance from the cutting burr’s current position. These voxels are

checked for accessibility and a path is planned to the closest accessible voxel (Section

2.2.6). The process then restarts at Section 2.3.2.

2.3.5 Rank Candidate Voxels

Modified simulation: If accessible candidate voxels do exist, then they are subjected

to a fitness metric and ranked accordingly. Using this fitness metric to guide the drill tip

is the source of the flexibility of the algorithm presented in this chapter. Any number of
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(a) (b)

(c)

Figure 2.16: This figure shows an example of a drill shaft being checked for collision with
an unmilled surface of bone. Part (a) shows a drill shaft not in collision with the unmilled
bone surface. Part (b) show a drill shaft that is in collision with the unmilled bone surface.
Part (c) shows a range of shafts being tested for collision with the unmilled bone surface.
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Figure 2.17: This figure shows the ranking of candidate voxels that the algorithm will
choose between for the next step in the planned path. Part (a) shows a 3D visualization of
the volume surrounding the supervoxel with the targeted voxels highlighted. Part (b) shows
a 3D visualization of the supervoxel surrounded by the candidate steps and the candidates
are ranked by fitness from low to high.

conditions may be scaled and added to the normalized metric. For example, because of

the geometry of the spherical cutting burr, it does not perform well when plunging along

the drill shaft’s axis to make deep cuts. This poor performance is because the robot uses a

spherical cutting burr that is far less efficient at removing material with the bottom or near

the top of the cutting burr. This cutting efficiency is of course dependent on the angle of

the drill shaft as well, though the simplifying assumption that the cutting burr is aligned

with the z axis has been made. To consider this physical limitation of the spherical cutting

burr in the unmodified simulation, the number of target voxels present in the top half of the

cutting burr is calculated for every candidate voxel. This number is then scaled and added

to the fitness metric used in the modified simulation. Thus a preference for candidates

with fewer voxels in the top half of the cutting burr is built into the implementation of this

algorithm. The fitness metric used in this chapter’s experiments will be included in the

simulations Section 2.4.1. A visual example of this ranking can be seen in Figure 2.17.
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2.3.6 Move Cutting Burr

Modified simulation: The supervoxel is moved to the voxel location corresponding to

the highest fitness metric. The center voxel of the supervoxel is marked as removed. All

unmilled targeted bone voxels within the supervoxel that are not adjacent to protected bone

voxels are marked as removed. The process then restarts at Section 2.3.2 until all accessible

targeted bone has been removed.

Unmodified simulation: The cutting burr’s structuring element is moved to the same

coordinates as the supervoxel, but in the unmodified volume. All voxels contained within

the cutting burr’s structuring element in the unmodified volume are marked as removed.

The parallel movement of the supervoxel and cutting burr through the modified and un-

modified simulations respectively can be seen in Figure 2.18.

2.3.7 Plan Path to Start Voxel

Modified simulation: When all accessible targeted voxels have been milled, use the

simple objective planner described in Section 2.2.6 to plan a path back to the starting po-

sition. Note that there may still be a small volume of targeted bone left unmilled. This

volume represents voxels that cannot be approached with enough overlap between the ac-

cessibility windows described in Section 2.3.3.

2.4 Results

2.4.1 Simulations

The algorithm was evaluated by applying both its 4 DOF and 5 DOF variations to

36 cadaver CT scans that had been segmented for robotic mastoidectomy. These scans

were performed on one of two xCAT ENT portable CT scanners (Xoran Technologies,

Ann Arbor, MI, USA). The voxel size of these scanners is set to 0.4 mm cube. The scan

volume is either 640 x 640 x 355 or 548 x 548 x 312 voxels. The scans were segmented
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Figure 2.18: This figure shows an example of the simultaneous modified and unmodified
simulations. Part (a) shows the first step of simulated milling on a given 2D slice. Part (b)
shows step two in the same simulation. Part (c) shows the same simulation after several
steps have been performed.
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into three different areas: targeted bone, protected bone, and air. The preprocessing steps

described in Section 2.2 were applied to each of these scans. A 5 mm diameter cutting burr

was modeled. A supervoxel of size 5 x 5 x 5 was used to correspond to an approximate

cutting depth of 1 mm. The three modeled shaft diameters for the Midas Rex Legend

surgical drill (Medtronic, Minneapolis, MN) used for physical experiments were 2.4 mm,

6.8 mm, and 11.6 mm. After the preprocessing, the algorithm described in Section 2.3

was applied to the segmented regions. The metric, Fm for determining which steps were

chosen next at each point along the planned path as described in Section 7 is a normalized

combination of five different considerations: (1) preserving the current planar direction of

the cutting burr’s movement, (2) covering as many voxels as possible on the next step, (3)

placing the center of the supervoxel on a target boundary voxel, (4) limiting the volume of

targeted bone within the top half of the cutting burr, and (5) adding a bias toward upward

movements of the cutting burr. These metrics are individually normalized and combined

with the following weights before the final metric is normalized, Fm = (1)+(2)+10(3)+

5(4)+(5).

Additionally, using the voxelized framework described in Section 2.2, a simple, 2.5D

zigzag, path planner was developed for comparison with the 3D algorithm. The necessarily

arbitrary shape of the targeted bone volumes is difficult for such a simple planner to cover,

so two small modifications were made: (1) The planner was allowed to identify additional

pockets of unmilled targeted bone and move to them if possible. (2) After the zigzag portion

of the drilling was completed for a layer, the algorithm would make a circuit around any

reachable undrilled target present on the boundaries of the slice. This mimics traditionally

separate rough and finish cuts because the 3D algorithm presented in this chapter also

combines those into one step. The results of these 4 and 5 DOF simulated 2.5D and 3D

path plans are compared in the following section.

For the 4 DOF version of the 3D planner, a joint trajectory plan for the Acoustic Neu-

roma Surgical Robot (ANSR) previously developed by Dillon et al [18] was also simulated.
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Simulated joint trajectories were also generated for the baseline 4 DOF zigzag planner.

This will be the same robot and joint trajectory planner used in the experiments described

in Section 2.4.3.

The robot joint trajectory planner required a minimum and maximum cutting burr speed

because the planner analyzes the CT scan of the milling to estimate the bone density being

milled at each step of the planned cutting burr trajectory. This approximated bone volume

removed per robot step is used to modify the cutting burr’s linear speed throughout the

milling process. This minimum and maximum cutting burr speed were set to 0.5 mm/s and

5 mm/s respectively. These speeds are comparable to cutting burr speeds chosen by other

bone milling path planners [2, 3, 45]. Note that the speed is lower than Sugita et al. This

choice was made because the robot described in that paper mills on the knee and does not

work in close proximity to critical structures such as those embedded in the temporal bone.

(e.g. facial nerve, chorda tympani, sigmoid sinus, etc.)

2.4.2 Simulation Results

A path plan is shown within the segmented targeted bone in Figure 2.19. Also shown is

the simulated volume of bone that has been removed by the drill traversing that path. Note

that it has not drilled any unintended volume, and that some volume has been left behind

as inaccessible to the drill bit, either because a cutting burr of that size could not fit into the

space required to remove some targeted bone without removing some protected bone, or

because the targeted bone voxels could not be reached by the shaft of the drill bit without

the shaft touching undrilled bone.

These algorithms were both implemented in MATLAB utilizing the parallel computing

toolbox and executed on a custom built machine designed around an Intel Corei9 9900k

processor with 8 cores running at 4.8 GHz with 64 GB of memory. Thirty-six separate

cadaver scans were used for simulation of both the 3D and the baseline zigzag path planner

for both the 4 DOF and 5 DOF algorithms. Complete simulation results are shown in Tables
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Figure 2.19: The left side of the figure shows a planned path (blue line) placed within the
modified region. The call out on the right hand side isolates the path for better visualization.
Note the how the final planned path freely travels along the vertical axis.

A.1, A.2, A.3, and A.4. A visualization of a planned path in a modified region appears in

Figure 2.19.

2.4.3 Experiments

A set of experiments to validate the simulation results was designed. These experiments

were conducted using the Acoustic Neuroma Surgical Robot (ANSR) presented in Dillon et

al. [18]. This robot was designed to autonomously mill a mastoidectomy as a component of

a translabyrinthine approach for acoustic neuroma (a.k.a. vestibular schwannoma) removal.

The ability of the ANSR system to accurately remove segmented pockets of bone has been

previously established by Dillon et al. [49]. ANSR is a 4 DOF robot, so only the 4 DOF

simulations will be validated by this set of experiments; though, the 4 DOF and 5 DOF

algorithms are identical except for their collision detection methods (Section 2.2.3).
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Zigzag 4 DOF Simulation Average Results
means 722 719 1.3e-02 1.2e-01 3.15 133 1937 3.7 0.66 8.0 238
± 236 235 4.2e-03 3.9e-02 1.03 44 633 1.2 0.22 2.6 78

3D 4 DOF Simulation Average Results
means 656 600 1.8e-04 1.0e-01 3.15 653 1342 4.6 0.08 32.9 227
± 214 196 5.9e-05 3.4e-02 1.03 213 438 1.5 0.03 10.7 74

Zigzag 5 DOF Simulation Average Results
means 718 - 2.4e-02 1.0e-01 3.10 8125 - - 0.7 7.96 241.0
± 234 - 7.9e-03 3.3e-02 1.01 2654 - - 0.2 2.60 78.7

3D 5 DOF Simulation Average Results
means 641 - 1.7e-02 9.3e-02 3.10 60592 - - 0.1 32.34 223.0
± 209 - 5.7e-03 3.1e-02 1.01 19794 - - 0.0 10.56 72.8

Table 2.2: Simulation results averaged over all 36 segmentations based on cadaver CT
scans that were evaluated for this study. These results are from both the zigzag and the 3D
path planning algorithms and both 4 and 5 DOF versions of each algorithm. All means are
reported with 95% confidence intervals. The full simulation results are found in Appendix
A, Tables A.1, A.2, A.3, and A.4. Note that several columns of the 5 DOF table are empty.
These are related to the milling simulations and physical millings that were conducted with
the ANSR robot. Since the ANSR robot is a 4 DOF robot, this data was not generated for
5 DOF.
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The 3D milling algorithm presented in Section 2.3 and the zigzag algorithm designed

for Section 2.4.1 were applied to a set of 15 cadaveric temporal bones fixed in resin. This

fixation is necessary to provide enough surface area to attach the robot to the temporal

bones. These temporal bones had been cut off at the level of the facial nerve. This will

limit the physical millings to mastoidectomies instead of the much deeper mastoidectomies

combined with the translabyrinthine approach for acoustic neuroma removal, such as those

simulated in all of the cadaver head scans in the previous section.

The CT scans were obtained previously for the simulations performed in Section 2.4.1.

The minimum and maximum linear speeds for the cutting burr were set to 0.5 mm/s to

5 mm/s to agree with the simulations reported in the previous section. The segmentation

and algorithm preprocessing steps were identical to the corresponding simulations. Of the

15 temporal bones that were milled, seven of them were milled using the zigzag milling

strategy and eight of them were milled using the 3D milling strategy. The results of these

2.5D and 3D milling strategies are reported in the following section.

2.4.4 Experimental Results

The algorithms were implemented in MATLAB utilizing the parallel computing tool-

box and executed on a custom built Intel Corei9-9900k 8-core machine water cooled and

set at 4.8 GHz across all cores. The machine has 64 GB of ram and an m.2 SSD hard drive

for fast access to large data sets. Experimental results appear in Table 2.3.

2.5 Discussion and Future Work

2.5.1 Simulations

The average simulation results found in Table 2.2, show that on average the true 3D al-

gorithm presented in this chapter generated a path plan that was linearly 9.1% shorter than

that the simple zigzag planner that was implemented for comparison. Beyond that when
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Milled with Zigzag Milled with 3D
TB01 4.3 1607 2782 2910 4 TB03 2.4 1479 1045 1159 10
TB05 1.3 634 884 934 6 TB04 1.7 1092 807 884 9
TB09 2.2 1046 1471 1559 6 TB06 1.9 1146 860 937 9
TB10 1.1 678 908 971 7 TB07 2.1 1372 978 1061 8
TB12 4.6 1774 2820 2953 5 TB11 4.0 2720 1729 1861 7
TB13 4.8 1970 3009 3159 5 TB14 1.0 590 656 724 10
TB16 6.0 2277 3441 3626 5 TB15 2.6 1649 1126 1219 8

TB17 3.5 2342 1555 1679 8
means 3.5 1427 2188 2302 5 means 2.4 1549 1094 1191 9
± 0.3 110 168 177 0.4 ± 0.2 119 84 92 0.7

Table 2.3: Results from milling 15 temporal bones with both the 3D and zigzag algorithms.
Means are reported with 95% confidence intervals.
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the average predicted milling time for the 4 DOF implementations of the 3D and zigzag

algorithms applied to the exact same cadaver scans is examined, a 30.7% reduction in pre-

dicted milling time is achieved. It is necessary to note that the ANSR joint trajectory path

planner internally simplifies the planned paths which accounts for an approximately 8.5%

reduction in the 3D planner’s path length and a much smaller 0.4% reduction of the zigzag

planner’s path length. This reduction in length is caused by the ANSR joint trajectory plan-

ner rounding off corners of the Manhattan distance based path plans generated by the 3D

path planner. Since the zigzag path planner’s trajectory consists mainly of long straight

lines, there are far fewer such corners to round off. The remainder of the reduction in time

is created by the ANSR joint trajectory planner analyzing every step of the planned path

and comparing it to the pre-operative CT scan to determine what density of bone is being

removed during each step of the trajectory. This data is used to inform the instantaneous

linear speed of the cutting burr throughout the planned path. From the data in Table 2.2,

the average percentage of the steps of the zigzag path planner and the 3D path planner that

are in contact with unmilled bone are 66% and 8% respectively. Additionally, when only

considering path steps that are in contact with the cutting burr, the zigzag planner and the

3D planner on average remove 8.0 and 32.9 voxels per step in contact with unmilled bone

respectively. The disparity between these numbers leads to the conclusion that the zigzag

planner is in far more constant contact with the surface of the bone than the 3D planner.

Fewer steps in contact with the bone under the 3D planner allows the robot to move with

a far greater linear speed through the portions of the path where bone is not being milled.

For plans generated by the 3D planner, the ANSR joint trajectory planner does have to

slow down to mill the bone more aggressively once it is in contact with bone. Comparing

the average linear speed of the cutting burr over the exact same set of mastoidectomy target

volumes, the 3D planner and the zigzag planner yield 4.65 mm/s and 3.7 mm/s respectively.

Analyzing the individual predicted milling times for the 4 DOF zigzag and 3D path

planners reported in Tables A.1 and A.2 shows not only large variation in the predicted
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gains, but that for temporal bone 14 the zigzag milling path is predicted to be 66s faster

than the 3D milling path. Temporal bone 14 is also the smallest mastoidectomy volume

planned in these simulations at 0.99 cm3. The next smallest is temporal bone 10 at an

initial modified volume of 1.12 cm3. The predicted simulation time for the 3D tool path

planner is 230 s faster than the zigzag planner. The relationship between predicted milling

time and initial target volume is analyzed further in Figure 2.20. The plot also contains the

predicted simulation times for each 4 DOF milling strategy vs the initial modified target

volume the planned tool path traverses.

The modified target volume is used for analysis because, as discussed in Section 2.2.1,

there are voxels in the unmodified volume that could never be milled by the cutting burr

without removing unintended bone. These voxels that cannot be milled by either the zigzag

or 3D path planners should not be part of the efficiency calculations presented in this sec-

tion. Therefore, the modified volume is used for these comparisons.

It should be noted that while both the 3D and zigzag planners removed the vast majority

of the bone segmented as target in the CT scans, the 3D planner consistently removed more

of the intended target volume than the zigzag planner. It is believed this is because the 3D

planner can access a voxel from any of several directions, while the zigzag planner is often

limited by the row that it is moving along.

The advantages gained by the 3D path planner to come at a computational cost. The

average simulation time for the 4 DOF 3D planner is 653s while on average the zigzag

planner only took 133s. It is noteworthy that both planners are implemented in Matlab for

ease of implementation and modification. It is reasonable to assume that the time required

for either algorithm to execute would be clinically acceptable if these algorithms were

implemented in a faster, compiled language such as C++.

Given the 0.5% and 2.3% percent differences between the mean predicted path lengths

of the 4 DOF and 5 DOF zigzag and 3D path planners respectively, it is reasonable to expect

the results from the 5 DOF algorithm simulations found in Table 2.2 to be fairly close to
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Figure 2.20: For each algorithm the relationship between predicted milling times and initial
modified target volumes is shown. Since the slope of the line fitted to the 3D data set is
lower than the slope of the line fitted to the zigzag data set, it is clear that the advantages of
the 3D algorithm over the zigzag algorithm become more pronounced as the volume of the
removed bone increases.
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the data collected from the 4 DOF algorithm, and that is largely the case. There are two

exceptions that require discussion.

First, the average ratio of initial to final modified volume for the 3D planner is 1.8e−4

cm3 and 1.7e−2 cm3 in the 4 DOF and 5 DOF 3D planners respectively. In one sense, these

two volumes of unmilled bone are so negligible compared to the average of all the modified

initial target volumes, 3.15 cm3, as reported in table A.1 and A.2 that the point is moot.

Still, it would be expected that the 5 DOF 3D algorithm would be able to consistently reach

more volume than the 4 DOF path planner. The likely cause for this counter intuitive result

is the limited number of 5 DOF shafts being sampled in the collision detection (Section

2.2.3). Since the 5 DOF collision detection was very computationally expensive, a lim-

ited number of shafts were tested for each step (324 shafts). These shafts were sampled

from shaft orientations within 2.5◦ of the shaft’s current location. This relatively course

discretization may cause accessible voxels to be marked as inaccessible. As a result, those

voxels would remain unmilled.

Second, the simulation time is significantly higher for the 5 DOF path planner than for

the 4 DOF. The average simulation time for the 3D 5 DOF planner is so high, 60592 s,

that it is impractical when programmed in this un-compiled language on this desktop com-

puter. There are modifications that could reasonably be expected to increase the speed of

the 5 DOF algorithm. The only difference between the 4 DOF and 5 DOF algorithms is

their means of collision detection to determine what drill shaft angles are achievable by the

robot and do not collide with unmilled bone (Section 2.2.3). Therefore, the computational

complexity of the 5 DOF collision detection should be reduced. The 5 DOF algorithm cur-

rently samples a grid of shafts centered on the current drill shaft orientation and extending

radially 2.5◦ from the current shaft location in both rotational DOFs. This 5◦ x 5◦ window

is populated with 18 shafts along each rotational DOF (182 = 324). It is very likely that as

the cutting burr descends into the target volume that a large portion of the 5◦ x 5◦ window

that is being sampled is obscured by unmilled bone and therefore inaccessible. It may be

55



possible to perform the simplified estimate used for the 4 DOF algorithm for each rota-

tional axis. The result of such a preprocessing collision detection step would be to create

new limits for the possible angle windows in both rotational DOFs. These new limits would

restrict the number of shafts tested significantly by shrinking the currently set 5◦ x 5◦ sam-

pling window for a large percentage of the targeted points in the modified volume. Testing

that many fewer drill shafts for collision with the unmilled bone would greatly reduce the

computational time required for the 5 DOF algorithm.

2.5.2 Experiments

Analysing the results from the physical experiments is far more straightforward than

those from the previous section. The parameter being tracked in this set of experiments

was the actual time the mastoidectomy millings required. Examining the results from Ta-

ble 2.3 reveals that the percent difference between the predicted and actual milling times

were 5±0.4% and 9±0.7% for the zigzag and 3D planners respectively. The consistently

longer than predicted milling times are intuitive since the ANSR trajectory planner does

not account for resistance at the cutting burr when creating the estimated milling duration.

Also, the longer milling times for the 3D planner are easily explained by the fundamen-

tal differences between the zigzag and 3D milling strategies. The zigzag planner consists

largely of long segments of path that are in contact with a small volume of bone. The 3D

planner spends far less time in contact with the bone. When it does contact the bone, it is in

contact with several times the volume of bone as discussed in the previous subsection. This

higher volume removed per step implies a higher force is applied to the cutting burr. Since

the time estimate does not account for such forces, it is intuitive that the percent differ-

ence between the zigzag planned simulations and experiments would be lower than that of

the 3D planned experiments and simulations. It should be noted that the underestimations

are very consistent, which implies that the predicted milling times are still a useful metric

for comparison of the larger data set simulated in the previous section. A visualization of
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Figure 2.21: Similarly to Figure 2.20, for each algorithm the relationship between exper-
imental milling times and initial modified target volumes is shown. Note that the fitted
curves are only interpolations of the experimental data.

the data reported in Table 2.3 that relates the predicted milling times to the experimental

milling times and compares them to the initial modified target volume similarly to Figure

2.20 can be seen in Figure 2.21.

From the data reported in these two figures, a comparison may be made between the

simulated versus experimental relationship between initial modified target volume and the

time taken to mill the pocket. Both slopes are larger than the simulations predicted. The

milling times for the zigzag planner are increasing at a rate of approximately 577 s/cm3

for the experimental data and the 3D planner’s are increasing at a rate of approximately

405 s/cm3. The percent difference between the zigzag and 3D planners simulated and

experimental rates of increase are 8.4% and 18.6% respectively. The percent difference for
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the 3D path planner is approximately double that of the zigzag planner which is similar to

the discrepancy between the percent difference of the average predicted and experimental

milling times reported in Table 2.3.

2.5.3 Conclusions and Future Work

This chapter has shown that while zigzag planners are common in bone milling appli-

cations, they are not well suited to the irregular pocket shapes present in the application of

a mastoidectomy. The computational time was higher for the 3D path planner. Given that

the average predicted milling time of the true 3D 4 DOF planed paths was approximately

30.7% shorter than those generated the zigzag path planner for the exact same data set, the

extra computation seems justifiable.

This chapter has presented a robust voxelized framework that allows a wide variety of

tool path planning algorithms to implemented in image-guided surgery with the same level

of accuracy as the medical scan that is used for guidance. A true 3D tool path planner for

bone milling using this framework has also been implemented and evaluated. The algo-

rithm’s efficacy in removing the desired tissue via a shorter path than a simple 2.5D zigzag

planner has been demonstrated. The benefits of such an algorithm go beyond straightfor-

ward path length and milling time comparisons. Using this path planner, it is now possible

to incorporate any modeled quantity relevant to the procedure into the milling plan. Ad-

ditional factors determining the planned path could include modeling the force applied to

the robot for each point based on the CT scan and choosing locations that minimize the

force applied to the cutting burr on each step of the plan. These factors could also involve

modeling regions around especially critical structures embedded in the bone to mill them

in a manner that reduces the danger of violating those structures. The work of Dillon et al.

[45] to determine optimal cutting angles for bone milling with surgical cutting burrs could

be incorporated into the fitness metric to use the cutting burr more efficiently. What has

been created in this voxelized framework and 3D algorithm is a novel and efficient tool
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path planning algorithm designed specifically for bone milling. This novel 3D path planner

has made customizing the tool path planning algorithm for specific surgical applications

far easier than it has been.
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Chapter 3

Safety Margins in Robotic Bone Milling: From Registration Uncertainty to Statistically

Safe Surgeries

This chapter is adapted from ”Safety margins in robotic bone milling: from registration

uncertainty to statistically safe surgeries” published in The International Journal of Medical

Robotics and Computer Assisted Surgery and has been reproduced with the permission of

the publisher and my co-authors Neal P. Dillon, Loris Fichera, Robert F. Labadie, Robert

J. Webster, III, and J. Michael Fitzpatrick.

3.1 Introduction

In this chapter, the focus will be on creating safety margins specific not only to the

individual patient’s anatomy, but also specific to the registration being used to guide the

robotic bone milling procedure. The major benefit of this level of patient personalization

of the preoperative planning is an increased confidence, both for the surgeon and the patient,

that critical structures will be preserved throughout the duration of the procedure.

Bone milling was one of the first applications considered in surgical robotics [23–25]

due to the similarity to computer-assisted manufacturing processes. Examples of systems

that have been commercialized and used clinically include the ROBODOC (Curexo, Inc.,

Seoul, South Korea), RIO Robotic Arm Interactive (Mako Surgical Inc., Ft. Lauderdale,

FL, USA), and the Computer Assisted Surgical Planning and Robotics (CASPAR) system

(URS Ortho GMBH & Co. KG, Rastatt, Germany). These platforms are examples of two

different ways that robotic bone milling can be accomplished. ROBODOC is a fully au-

tonomous system that plans the cutting burr’s path preoperatively before it is carried out.

In contrast, RIO is a cooperatively controlled robotic arm that uses preoperative planning

to enforce “no fly zones” called virtual fixtures or active constraints [41, 42], ensuring that
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the surgeon removes only the desired volume, while leaving the surgeon in control of the

exact path the robot traverses. Both approaches rely on accurate registration between the

preoperative images to the patient in the operating room. Any errors in registration make

it so that locations in the surgeon’s preoperative plan, which is made in CT image space,

will not perfectly align with corresponding locations in the patient. As imaging resolu-

tion and registration techniques have improved, it has become possible to apply robotic

bone drilling and milling to applications that require higher accuracy than the orthopedic

surgeries addressed by the commercial systems mentioned above. Skull base surgeries

are particularly well suited for the use of image guidance and robotics because of their

high accuracy requirements and the frequency with which the procedures are performed

and this has motivated several research groups to pursue such solutions [1, 38–40, 50–55].

One example procedure is mastoidectomy, i.e. bone removal in the mastoid portion of the

temporal bone, to gain access to the underlying anatomy of the ear. Mastoidectomy is per-

formed approximately 120,000 times annually in the United States alone (extrapolating the

results of [56] to the current population and to include both inpatient and outpatient pro-

cedures). It is performed as a preliminary step in more complex procedures of the middle

and inner ear and to remove abnormal bone tissue arising from mastoiditis, cholesteatoma

or other diseases. Critical structures are present within or near the surgical field during

mastoidectomy that must be preserved during milling, including the facial nerve (damage

causes facial paralysis), the chorda tympani (damage causes impaired sense of taste), the

sigmoid sinus (damage causes bleeding), and the internal auditory canal (contains the au-

ditory, vestibular, and facial nerves which may be irreparably damaged leading to hearing

loss, balance disorders, and/or facial paralysis). Avoiding damage to these critical struc-

tures is challenging. The surgeon must first locate them using visual and tactile feedback

while milling nearby bone then carefully remove the necessary bone. An example of a com-

plex otologic procedure that requires a mastoidectomy is acoustic neuroma tumor removal

surgery. Acoustic neuromas, more properly called vestibular schwannomas, are benign tu-
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mors which arise within or in close proximity to the internal auditory canal. While benign,

their growth causes local compressive damage including hearing loss, balance disturbances,

facial paralysis, and – in rare cases when they grow to large sizes – death from intracra-

nial complications (e.g. intracranial bleeding, compression of the brainstem suppressing

respiratory drive). Treatment options include radiation therapy and surgical removal with

the most common surgical approach being a translabyrinthine approach which consists of

a mastoidectomy followed by deeper bone milling to remove the labyrinth, including the

semicircular canals, allowing access to the internal auditory canal. Figure 3.1 shows a pre-

operative segmentation of a translabyrinthine approach with critical structures annotated.

The translabyrinthine approach is a strong candidate for image-guided robotic assistance

for two reasons. First, from a surgical perspective, mastoidectomy and labyrinthectomy

involve bulk removal of bone and are currently done by a human surgeon over several

hours to reach the internal auditory canal following which the surgeon must change tasks

to delicately handle exposed neural tissue in removing the tumor. Second, from a tech-

nological standpoint, since the anatomy is rigid and thus does not deform relative to the

preoperative image, a robot that is guided by a path planned in a preoperative image could

be programmed to remove the necessary bone while avoiding the critical anatomy. This

chapter focuses on improving safety in robotic bone milling for otologic surgery with a

specific emphasis on mastoidectomy and acoustic neuroma tumor removal surgery. No

method currently exists to provide statistical confidence that the inevitable small registra-

tion errors will not lead to accidental damage to critical structures. Thus, the purpose of

this work is to describe an algorithm that can provide such statistical confidence for sys-

tems that make use of point-based registration. The algorithm provides this confidence by

establishing safety margins of bone around each critical structure that will not be targeted

in the planned path. With a stiff robot and tool, milling up to the boundary of these safety

margins will enable the cutting burr to come as close to the critical structure as possible,

based on registration error statistics and a surgeon-specified safety level for each structure.
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Figure 3.1: Mastoidectomy involves the removal of the bone volume highlighted in yel-
low. Several critical structures lie near the volume to be milled, including the facial nerve,
chorda tympani, internal auditory canal, sigmoid sinus, etc. Damage to these critical struc-
tures causes complications for the patient. Note: the segmentation on the right has been
rotated for ease of visualization.

For example, the surgeon might wish to be 99.9% sure that the system does not acciden-

tally contact the facial nerve. These safety levels are ensured by choosing an appropriately

sized and shaped safety margin, which is determined using numerical simulation and target

registration error (TRE) theory [57]. Separate safety margins are obtained for each critical

structure so that individual safety levels can be specified.

Examples of prior work that are most similar to that presented here are that of Haidegger

et al. [5], and Noble et al. [19]. Haidegger et al. estimated the instantaneous level of danger

to critical structures for an optically tracked tool [5]. In contrast, this chapter seeks a global

approach that analyzes the entire procedure before any milling commences. Noble et al.

estimated the danger to critical structures posed by a linear drill path for minimally invasive

cochlea access [19]. In this chapter, the danger estimates are generalized to nonlinear

tool paths. A preliminary version of this work was presented in [58]. The present work

encompasses those results, which have not previously been published in archival form,
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and also extends them by providing a more accurate approach to collision detection and a

more extensive numerical evaluation that includes simulations on five cadaver specimens,

additional critical structures to avoid, and a comparison against constant thickness safety

margins.

3.2 Materials and Methods

The workflow for robotic mastoidectomy previously developed by Dillon et al. [18]

constitutes the general framework of this study. Briefly, the target volume is defined by

the surgeon in a preoperative computed tomography (CT) scan and then used to generate a

milling path for the robot. In the operating room, the preoperative plan is registered to the

patient using point-based registration of bone-implanted fiducial markers that are localized

in an intraoperative CT scan. This chapter’s goal is to calculate safety margins around vital

patient anatomy to limit the risk of accidental collisions with the robotic milling tool caused

by registration error. Critical structures involved in a typical mastoidectomy procedure

include the facial nerve, the chorda tympani, the sigmoid sinus and the internal auditory

canal. Safety margins will be iteratively grown around these structures to define a region

in which the robot will not be allowed to operate (Figure 3.2).

3.2.1 Algorithm Overview

The proposed algorithm takes as input a three-dimensional voxelized representation

of the patient’s anatomy wherein critical structures have been segmented. An example is

shown in Figure 3.1. For each critical structure, individual spatially varying safety margins

of minimal volume are determined using the four-step iterative process illustrated in Figure

3.3. The safety margin is initialized to include zero voxels, and is progressively expanded

by including voxels that surround the critical structure. In the first step of the algorithm,

a high number of imperfect registrations between the preoperative plan and the patient’s

anatomy in the operating room are simulated. These simulations are used to determine
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Figure 3.2: (a) An illustration of a segmented volume, with critical structures and a volume
to be milled. (b) The same volume superimposed with safety margins. (c) The final result
after the intersection of the safety margins and the volume to be milled has been removed
from the volume to be milled. This reduced volume to be milled may now be milled with
statistical assurance that the protected structures are safe from registration error.

the “overall damage risk” which is defined as the risk of accidental overlap between the

critical structure and the voxels that surround the critical structure which, if milled, would

cause damage to the critical structure. Registrations are simulated by generating fiducial

locations from repeated sampling of the distribution of Fiducial Localization Error (FLE),

which is a property of the imaging system and fiducial markers. If the Overall Damage

Risk does not meet the tolerance level specified by the surgeon, the safety margin is grown

by including neighboring voxels. Priority is given to those voxels that, if reached during

the milling procedure, would pose a higher threat to the critical structure. Such a threat

is quantified using a metric called “point damage risk”. This process is iterated until the

overall damage risk falls below the threshold specified by the surgeon. Table 3.1 contains

a glossary of frequently used terms.
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Term Definition
Image Space The coordinate system associated with the preoperative scan

Physical Space
The coordinate system associated with patient in the
operating room

Fiducial Localization
Error (FLE)

Positional error in the fiducial markers’ locations caused by
the inability to consistently determine their locations in both
the physical and image spaces.

Target Registration
Error (TRE)

The difference in the positions of an arbitrary point (not a
fiducial location) in physical space and image space after
registration.

Critical Structure
An anatomical structure in the patient that is also represented
by a set of voxels in a medical image.

Safety Margin
A set of voxels surrounding the critical structure. This set is
enlarged iteratively until the specified value of the overall
damage risk is reached.

Overall Damage Risk
The probability that the critical structure in the patient will be
damaged if all voxels surrounding the union of the critical
structure and the safety margin were to be milled.

Neighboring Voxels
Voxels that share at least one common vertex. Each voxel has
26 neighbors.

Analyzed Shell
Voxels that share a voxel vertex with the union of the critical
structure and the safety margin.

Point Damage Risk

The probability that the critical structure in the patient will be
damaged if an individual voxel neighboring the analyzed
shell were to be milled. This value is calculated for each
voxel in the analyzed shell.

Transfer Percentage
The percentage of the analyzed shell that is transferred into
the safety margin during a given iteration.

Table 3.1: A glossary of terms that are frequently used in this chapter.
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Figure 3.3: A flow chart is shown outlining the method employed to generate the safety
margins surrounding the critical structures.

3.2.2 Overall Damage Risk

The overall damage risk is determined via numerical simulation. To perform this sim-

ulation, covariance matrices are estimated to describe the FLE distributions for each of the

fiducial markers used during registration. These error distributions are then sampled to

simulate imperfect fiducial locations that are used in a rigid registration to obtain a trans-

formation from image space to physical space. This transformation is used to transform

the voxels exterior to the safety margin from image space to physical space, where a check

is performed for overlap with the critical structure. Note that because of the computational

intensity of this approach, only those voxels directly neighboring the outer boundary of

the safety margin (voxels are considered as neighboring if they share a vertex, and as a

result each voxel has 26 neighbors) are considered. This outer shell of voxels is called the

“analyzed shell” and is updated as the safety margin is “grown” through algorithm itera-

tions. The overlap check is performed by discretizing faces of the voxels on the interior

of the analyzed shell into a set of points (voxel corners). If, after registration, any point

from this set lies within the critical structure, a collision has occurred. Figure 3.4 shows
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an example of such a registration. In Figure 3.4(a), the true critical structure is black and

the safety margin is cyan. Figure 3.4(b) shows the set of points associated with the inte-

rior faces of the voxels in the analyzed shell. Figure 3.4(c) shows a 3D rendering and 2D

slices taken from the rendering of Figure 3.4(a) and (b) registered together. Here, the green

points are on the face of the analyzed shell and are external to the critical structure. The

red points are on the face of the analyzed shell and are within the critical structure after

registration. This simulation is repeated Nr (typically thousands) times. Nr is chosen by

running the algorithm on a sample scan many times for various Nr values and recording the

resulting damage probabilities. An acceptable Nr value is found when the variation of the

trials falls below a given threshold (i.e. a value is selected that yields consistent results but

is not overly computationally intensive). The Overall Damage Risk is finally calculated as

the fraction of those registrations containing overlap between the critical structure and the

analyzed shell.

3.2.3 Point Damage Risk

If the overall damage risk is above the safety level originally specified by the surgeon,

additional voxels will be included in the safety margin. One simple approach would be

to include the voxels closest to the critical structure. However, because of the anisotropic

nature of the target registration error (TRE) this would produce a sub-optimal safety mar-

gin, i.e. a margin with uniform thickness but highly varying risk at the margin boundary.

Here a different approach is used, in which each voxel is individually evaluated based on

the probability that, after registration, the critical structure would be damaged if the voxel

was targeted by the robotic mill. This probability is the “point damage risk”. Given the

FLE covariances described in Section 3.2.3, the approach of Danilchenko and Fitzpatrick

is used to determine the covariance of the TRE distribution at any point [57]. This covari-

ance can be used to determine point damage risk. This risk is determined by considering

the smallest Mahalanobis distance between the point under consideration and a set of points
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Figure 3.4: The effect of simulated registration error. (a) The true location of the critical
structure (dark gray) and the safety margin (cyan) in physical space. (b) A set of points
located on the faces of the analyzed shell voxels that are neighbors of the union of the
critical structure and the safety margin in image space. (c) Superposition of (a) and (b)
after they have been registered together. The error in registration from image space to
physical space is due to fiducial localization error (FLE) that is added to the true fiducial
positions in both spaces before registration. Red stars represent points on the analyzed shell
that lie within the critical structure, and green dots represent points on the analyzed shell
that are external to the critical structure. Computing many such simulated registrations and
tabulating the fraction of registrations that contain at least one red point yields the “overall
damage risk.”
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on the surface of the critical structure. Mahalanobis distance is a multidimensional gener-

alization of the standard deviation and can be related to Euclidean distance by applying a

“whitening transformation” (so-called because of an analogy with “white” noise in visible

images), which is an affine transformation dependent on the TRE covariance matrix. The

TRE distribution in the whitened space is isotropic so the Mahalanobis distance and Eu-

clidean distances are equivalent. The probability that the point under consideration actually

lies outside a sphere due to registration error (illustrated as a circle in Figure 3.5(c)) can

be calculated by evaluating a three-degree-of-freedom Chi-Squared cumulative distribution

function at the Mahalanobis distance squared. This computation yields the probability that

despite registration error the point will remain within the sphere in any direction, not neces-

sarily the direction that would cause damage to the critical structure. Thus, the complement

of this probability is a conservative estimate of the point damage risk. Note that because

of the anisotropic nature of the TRE distribution, the point damage risk of the point under

consideration in Figure 3.5 is higher than would have been assumed looking at only the

Euclidean distance (red line in Figure 3.5 (b)). As explained above, the point damage risk

is inversely related to the shortest Mahalanobis distance between the point and the critical

structure. This distance is calculated for each voxel in the analyzed shell and is used to rank

the voxels based on their point damage risk. A visualization of the risk level of the voxels

within an analyzed shell surrounding a critical structure and its safety margin is shown in

Figure 3.6. It is important to note that even though these individual probability estimates

are conservative, they will not lead to an oversized safety margin because the overall dam-

age risk, calculated via the simulation method described in Section 3.2.2, is the final arbiter

on how many voxels are included.

3.2.4 Growing the Safety Margin

The safety margin is expanded by transferring a percentage of the voxels in the analyzed

shell associated with high risk to the critical structure (as identified in Section 3.2.3) into the
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Figure 3.5: An illustration of the Mahalanobis distance calculation. (a) A critical structure
(black), safety margin (cyan), and analyzed shell (gray) are shown. The risk to the crit-
ical structure of milling a specific point (yellow star) is examined. The shortest distance
between it and the critical structure is shown in red. (b) “Whitened” space, formed by ap-
plying the whitening transformation. The shortest distance is shown in yellow. (c) In the
whitened space, the probability that the point is within the yellow circle is easily obtained.
The complement of this probability is a conservative estimate of the probability that the
registration error could cause the center of a mill bit at the center of the circle to fall within
the critical structure.
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Figure 3.6: All the voxels surrounding a portion of a critical structure and its safety margin
are shown. These voxels are color coded by the relative risk posed by each voxel to the
critical structure in the patient, if that voxel location were to be milled. Several 2D cross
sections of the region of interest can be seen on either side of the 3D rendering.

current safety margin. This transfer is repeated as illustrated in Figure 3.7. The percentage

of high-risk voxels moved into the safety margin at each iteration (transfer rate) is the

key parameter of this process: a low transfer rate results in a high number of algorithm

iterations, thereby increasing computation time; by contrast, a high transfer rate ensures

quick convergence of the algorithm, but may result in unnecessarily thick margins. To

address this tradeoff, the transfer rate is adapted as the algorithm progresses: it is initially

set to a fixed value and then linearly decreases as the overall damage risk approaches the

value specified by the surgeon (as illustrated in Figure 3.8). It should be noted that the final

result will always be conservative, since, while it is possible for slightly too many voxels to

be transferred through this process, it is not possible for too few to be transferred to match

the surgeon’s desired safety threshold. Numerical simulations in Section 3.3.2 will show

that the overshoot is small, when using the transfer percentage function illustrated in Figure

3.8.
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Figure 3.7: One iteration in the process of growing a safety margin around a critical struc-
ture is shown. The 2D slices are taken from the indicated plane of the 3D rendering (a).
(b) 2D slice at the beginning of the iteration. (c) High-risk voxels in red surrounding the
critical structure + current safety margin. (d) The high-risk voxels have been transferred to
the safety margin, and the analyzed shell surrounding the union of the critical structure +
safety margin has been updated. This result is the start of the next iteration.

Figure 3.8: The linear interpolation by which transfer percentage is reduced is illustrated.
Note that the overall damage risk is being reduced each time the algorithm iterates; there-
fore, the current overall damage risk moves from right to left along the figure’s horizontal
axis.
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3.3 Results

3.3.1 Experiments

The algorithm was evaluated by applying it to the preoperative planning of mastoidec-

tomy. The facial nerve chorda tympani, internal auditory canal, external auditory canal,

and the sigmoid sinus are the critical structures for which safety margins are generated in

this example. The procedure summarized in Figure 3.2.1 has been applied to five cadaver

specimens. The scans were obtained using a xCAT ENT portable CT scanner (Xoran Tech-

nologies, Ann Arbor, MI, USA) whose voxel is a 0.4 mm cube with a scan volume of 640

x 640 x 355 voxels. For comparison, a second set of scans was created by upsampling

each of the five scans such that the voxels became 0.2 mm cubes. The volume of bone to

be removed, the internal auditory canal, and the sigmoid sinus were manually segmented,

and the chorda tympani, facial nerve, and external auditory canal were automatically seg-

mented via methods described by Noble et al. [59]. A configuration of six bone-implanted

fiducials unique to each specimen was located roughly 20 mm above the volume of bone to

be removed (Figure 3.9). These fiducials were localized in the image [60], and also serve as

the attachment points for the robot to the patient [18, 52]. Fiducial localization errors were

generated for the computer simulations by selecting error displacements from true fiducial

positions from an isotropic distribution. The distribution was normal with zero mean and

standard deviation equal to 0.176/
√

3 = 0.1016 mm, which produces a root-mean-square

three-dimensional error length, FLE, of 0.176 mm. This value is the average of the re-

sults of a detailed analysis of FLE for several scanners and localization methods [61]. The

localization error was also “homogeneous”, meaning that the same distribution was used

for each fiducial. For each registration in Section 3.2.2, a random value was selected from

this distribution for each component of each fiducial in each space. The 3D renderings of

the initial segmentations can be seen in Figure 3.9. The parameters associated with two

of the critical structures and their acceptable overall damage risks were taken from Noble
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et al., [19], as follows: facial nerve = 0.001, and the external auditory canal = 0.05. For

the other structures, the acceptable overall damage risks were chosen with input from a

surgeon as follows: chorda tympani = 0.05, internal auditory canal = 0.01, and the sigmoid

sinus = 0.01. It was determined via simulation that the number of simulated registrations,

Nr, required in order for these probabilities to be achieved to three decimal places was

Nr = 25000. The initial transfer percentage (Figure 3.8) was 20%. The overall damage

risk threshold values after which the transfer percentage begins to decay (Figure 3.8) were

0.3 for the facial nerve, 0.4 for the chorda tympani, 0.5 for the internal auditory canal, 1.0

for the sigmoid sinus, and 0.5 for the external auditory canal. To further validate the final

safety margins generated by the algorithm, a shell of voxels that shared voxel faces with

the union of the final safety margin and the critical structure was generated. The average

and standard deviation of the minimum Mahalanobis distances between the centers of the

voxels in this final shell and the same set of discretized points on exterior of the critical

structure used in Section 3.2.3 were recorded. The algorithm was also run with the Ma-

halanobis distance in the point damage risk calculation in Section 3.2.3. replaced with a

Euclidean distance. This caused the algorithm to generate safety margins that were uni-

formly distributed around their respective critical structures. These uniformly thick safety

margins are then compared to the spatially varying safety margins developed by spatially

varying algorithm.

3.3.2 Results

The results for each specimen can be found in Table 3.2. Figure 3.9 shows scan 4 before

the algorithm is applied (solid black critical structures), and after the TRE safety margins

have been generated (transparent cyan safety margins). The simulation was written in

MATLAB (with the Mahalanobis Distance calculation in a mex file) and the workload was

distributed in parallel among six CPUs using MATLAB’s parallel loop processing facility.

The simulations were run on a Dell Precision 5810 with a six-core 3.5 GHz Intel Xenon
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Figure 3.9: A cadaver scan is shown with six fiducial locations (red spheres), target region,
critical structures, and the safety margins that the spatially varying algorithm generated.
After the removal of the intersection of the safety margins and the target region, the result-
ing reduced target region can be milled with statistical assurance of safety from registration
error.

processor and 16 GB of ram.

Voxel Size

0.43 mm3

Spatially

Varying

Safety

Margins

Voxel Size

0.43 mm3

Uniformly

Thick Safety

Margins

Voxel Size

0.23 mm3

Spatially

Varying

Safety

Margins

Voxel Size

0.23 mm3

Uniformly

Thick Safety

Margins

Facial Nerve

Volume of Safety

Margin (mm3)

229.13±

19.55

262.46±

21.45

140.18±

24.53

162.66±

15.25

Final Damage

Probability

(Acceptable = 0.001)

6.56E−04±

3.81E−04

4.64E−04±

4.06E−04

6.88E−04±

4.88E−04

6.16E−04±

2.99E−04
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Average

Mahalanobis

Distance From Final

Shell Voxels to

Critical Structure

7.70±0.49 8.95±0.55 5.59±0.82 6.71±0.48

Standard Deviation

of Mahalanobis

Distances From Final

Shell Voxels to

Critical Structure

1.07±0.14 2.40±0.24 0.52±0.04 1.77±0.18

Chorda Tympani

Volume of Safety

Margin (mm3)
69.17±9.87 47.80±7.21 24.94±2.20 26.71±3.53

Final Damage

Probability

(Acceptable = 0.05)

0.0105±

0.0269

0.0068±

0.0119

0.0486±

0.0019

0.0368±

0.0131

Average

Mahalanobis

Distance From Final

Shell Voxels to

Critical Structure

7.77±0.61 6.52±0.28 4.32±0.09 4.89±0.12

Standard Deviation

of Mahalanobis

Distances From Final

Shell Voxels to

Critical Structure

1.17±0.20 1.94±0.41 0.51±0.11 1.42±0.24
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Internal Auditory Canal

Volume of Safety

Margin (mm3)

227.39±

56.00

222.96±

55.25

142.39±

26.46

158.28±

27.24

Final Damage

Probability

0.0012±

0.0014

0.0059±

0.0053

0.0078±

0.0054

0.0071±

0.005

Average

Mahalanobis

Distance From Final

Shell Voxels to

Critical Structure

7.34±0.19 7.57±1.55 4.84±0.48 5.57±0.59

Standard Deviation

of Mahalanobis

Distances From Final

Shell Voxels to

Critical Structure

1.15±0.15 1.93±0.57 0.55±0.13 1.32±0.35

Sigmoid Sinus

Volume of Safety

Margin (mm3)

646.57±

184.37

661.26±

265.14

470.96±

154.14

514.44±

174.98

Final Damage

Probability

(Acceptable = 0.01)

0.0024±

0.0043

0.0051±

0.0054

0.0075±

0.0052

0.0034±

0.0038

Average

Mahalanobis

Distance From Final

Shell Voxels to

Critical Structure

7.35±0.19 7.56±1.29 5.24±0.67 5.76±0.38
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Standard Deviation

of Mahalanobis

Distances From Final

Shell Voxels to

Critical Structure

1.03±0.09 1.73±0.45 0.56±0.05 1.04±0.14

External Auditory Canal

Volume of Safety

Margin (mm3)

426.98±

65.60

347.70±

39.15

241.88±

29.13

262.82±

17.77

Final Overall

Damage Risk

(Acceptable = 0.05)

0.0203±

0.0283

0.0105±

0.0162

0.0477±

0.0022

0.0407±

0.0064

Average

Mahalanobis

Distance From Final

Shell Voxels to

Critical Structure

7.39±0.46 6.56±0.49 4.44±0.30 4.99±0.20

Standard Deviation

of Mahalanobis

Distances From Final

Shell Voxels to

Critical Structure

1.16±0.18 1.93±0.66 0.51±0.12 1.22±0.17

Time (min) 3.85±1.79
14.87±

11.46

108.70±

40.76

137.49±

82.23

Table 3.2: The results (with 95% confidence intervals) from running the TRE compensation
algorithm on five cadaver scans.
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3.4 Discussion

These results indicate that, using the method described in this chapter, critical struc-

tures may now be given statistical safety guarantees with respect to registration uncertainty

throughout robotic bone milling. This work is the first to generate safety margins that

compensate for registration error by preserving critical structures (e.g. vasculature, nerves,

etc.) to a specified safety level throughout the duration of a robotic surgical procedure.

The safety levels were selected based on estimated complication rates in the conventional

approaches as well as prior work in planning image-guided otologic surgery near vital

anatomy. However, it is important to note that the values can be selected by the surgeon

according to a variety of factors, including weighing the importance of the structure with

the importance of removing nearby bone. Every application of the algorithm was success-

ful in that for each structure in each cadaver scan the acceptable overall damage risk values

were satisfied. The similarity of the final overall damage risk values to their predefined

acceptable values demonstrates the effectiveness of varying the analyzed shell transfer per-

centage. The calculation of instantaneous tool damage probabilities is an important first

step toward increasing patient safety, as so aptly pointed out by Haidegger et al [5]. How-

ever, it is noteworthy that the average point damage risks of the shell of voxels that share at

least one face with the union of the final safety margin and critical structure are on the order

of 10−7 or smaller. This value is several orders of magnitude smaller than any of the final

overall damage probabilities. Such a large disparity indicates that determining the safety of

a critical structure based solely on instantaneous tool damage probabilities may greatly un-

derestimate the danger presented to the critical structure. This observation underscores the

need to generate damage probabilities for the entire path traversed by the cutting burr, rather

than relying on damage probability estimates that account only for the burr’s instantaneous

positions. The final overall damage risks of the upsampled regions are much closer to

the acceptable overall damage risks. The standard deviation of the Mahalanobis distances

from the final shell voxels to the critical structure from the upsampled scans are smaller

80



than those calculated for the original scans. These observations imply that the higher res-

olution of the upsampled volumes enables the shape of the optimal safety margins to be

more closely approximated than they are in the original scans. The significantly smaller

standard deviations of the Mahalanobis distances in the spatially varying safety margins

coupled with their smaller safety margin volumes implies that the spatially varying safety

margins are more optimally shaped than the safety margins of uniform thickness. There-

fore, upsampling the input medical scan is an effective method to improve the volumetric

efficiency of the safety margins generated by this algorithm. In this work, the guarantees

are based on the assumption that rigid point-based registration is the sole source of error.

While this assumption is imperfect, other error sources whose statistics are known could

be incorporated as well. These sources could include robot-specific physical errors such

as calibration errors, joint positioning errors, system compliance, etc. Initial work toward

modeling and incorporating these additional system errors into the safety margin algorithm

is presented in [6]. The relative contribution of registration and other error sources is spe-

cific to a given system. Like registration error, other system error sources are typically

spatially varying and anisotropic; thus, simulations like those described in this chapter are

necessary to account for patient-specific conditions related to each error source. Note that

all of these errors represent positional uncertainty and potential damage to the underlying

structure via direct contact with the cutting burr. Damage to sensitive anatomy such as

nerves can also occur as a result of excessive heat [62]. In mastoidectomy, the open cavity

can be irrigated throughout the procedure, minimizing the risk of thermal damage. How-

ever, in other procedures, such as minimally invasive drilling for cochlear implantation,

irrigation is difficult and thermal damage to nerves needs to be considered. In this case,

the heat rise can be modeled in a manner similar to that of Feldmann et al. [63] and in-

cluded in the generation of safety margins. While the use of this algorithm has now been

demonstrated on a system for robotic mastoidectomy previously developed by Dillon et al.

(Figure 3.10h), there are several other robotic systems designed for skull base surgery that
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could benefit from this approach as well. Examples include freestanding or table mounted

systems that optically track either the entire procedure or a tool that is used to register

the patient to the robot (Figure 3.10a-e) [1, 38–40, 51] and bone-attached robots (Figure

3.10f-h) [18, 50, 52]. These systems are designed to perform skull base bone milling for

otologic surgery (Figure 3.10a,b,d,h) and neurosurgery (Figure 3.10), and linear drilling

for minimally invasive cochlear implantation (Figure 3.10e-g). The accuracy and technical

requirements of skull base bone milling and minimally-invasive cochlear implantation are

similar since both involve removing bone in close proximity to critical structures to provide

access to anatomy deep beneath the surface of the skull. These requirements suggest that

any of these systems would benefit from the application of the algorithm presented in this

work. All that is required to use the algorithm is segmentations of the vital anatomy in the

medical image, knowledge of the locations of the fiducial markers relative to the anatomy,

and estimates of the FLE, which can be used to generated estimates of registration error

distributions near the anatomy. FLE of a given marker imaged with a particular scanner

can be determined experimentally using geometric precise phantoms (see [61, 64]).

Additionally, the algorithm described in this chapter has the potential to be applied

to other surgical procedures substantially different from those previously discussed. The

algorithm can be applied to any procedure that is reliant on a registration method whose

TRE may be estimated statistically, and it provides a way to convert surgeon-specified

safety thresholds into non-uniform margin thicknesses that provide a statistical assurance

of safety. For example, in the placement of a deep-brain stimulation electrode, registration

is typically accomplished via either bone-implanted fiducial markers or surface registra-

tion. The algorithm presented in this chapter could be used in this application to ensure

the preservation of critical structures such as those listed by Bériault: “surface veins, ar-

teries running within the sulci, ventricles, critical motor and sensory cortices, and deep

nuclei such as the caudate nucleus” [65]. Thermal ablation of cancerous tumors and needle

placement for biopsy are also procedures that might benefit from this algorithm. It is also
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Figure 3.10: Several robotic systems developed for skull base surgery. Systems (a-d) are
free standing robots used to mill portions of the skull base under guidance of an external
tracking system. Systems (a) and (b) are autonomous robots while systems (c) and (d)
are cooperatively controlled by the surgeon. Systems (e)-(g) are robots that drill a tunnel
through the mastoid for minimally invasive cochlear implantation. System (e) mounts to
the patient’s bed and is guided by an external tracking system while systems (f) and (g)
are attached directly to the patient. Finally, system (h) is a bone-attached milling robot for
mastoidectomy. All of these systems served as inspiration for the present work.
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possible that this algorithm will enable the aforementioned procedures to be targeted in a

safer manner by methods utilizing non-linear trajectories such as steerable needles. By de-

veloping this algorithm for generally shaped regions of interest, safety margins based only

on intuition have been replaced with a statistically sound approach that has the potential to

increase the safety in a broad range of surgeries.
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Chapter 4

Registration Based Safety Margins in Robotic Partial Nephrectomy: From Intuition Based

Margins to Statistically Safe Surgeries

4.1 Introduction

This chapter takes the safety margins that were personalized to the individual patient

and surgery in the last chapter and alters them in two important areas. First, the margins

developed in the last chapter were only valid under fiducial point-based registrations. The

algorithm presented in this chapter removes that restriction and will generate statistically

valid safety margins for any registration modality. Second, this chapter reconceptualizes the

purpose of the safety margin. In Chapter 3, the safety margins were put in place to prevent

damage to critical structures throughout the duration of a bone milling procedure. In this

chapter, the safety margin concept will be extended to include a volume of tissue that must

be entirely removed. Specifically, the margins in this chapter will be grown surrounding an

individual patient’s kidney tumor during a partial nephrectomy. The margins generated by

the new algorithm will represent all of the tissue that must be removed for the surgeon to

be confident that no positive margin was left in the patient.

The number of reported cases of renal cancer is dramatically rising. A 23% increase in

diagnoses was reported globally between 1990 and 2013 [66]. The United States is esti-

mated to have 73,820 new cases and 14,770 deaths in 2019 alone [67]. One of the several

factors thought to contribute to this increase is more prevalent screening. This includes

detection of renal masses while imaging the patient for other reasons. These incidental re-

nal cancer diagnoses account for up to 50 percent kidney cancer cases in western countries

[66, 68]. These masses that are often found inadvertently and by increased access to med-

ical imaging, they are often found earlier than if they were detected after the patient had

become symptomatic. This early detection has led to an increase in incidence of small renal
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masses, where small renal masses are defined as having a largest cross sectional distance

of 4 cm or less [68]. This increase in incidence of small renal masses has led to an increase

in the number of cases eligible for partial nephrectomy as opposed to radical nephrectomy.

Surgery is an effective treatment for renal cancer. Radical nephrectomy, or the removal

of the entire kidney, is the most common treatment [69]. Unfortunately, radical nephrec-

tomy leaves patients with an increased risk of chronic kidney disease, elevated cardiovascu-

lar risk, and increased mortality [70, 71]. Partial nephrectomy, or the removal of a portion

of the kidney including and surrounding the renal mass, mitigates these long term risks by

sparing as much renal tissue as possible. Partial nephrectomy is an underutilized proce-

dure because it is more difficult to perform in a minimally invasive setting, and because

it is associated with a higher rate of such complications as urine leakage or postoperative

hemorrhage [69, 72].

A major contributor to the complexity of laparoscopic partial nephrectomy is the dif-

ficulty of performing tasks that require complex manipulation laparoscopically (e.g. sutur-

ing). This technical difficulty has limited the adoption of this technique to relatively few

highly skilled laparoscopic surgeons [72]. The da Vinci Surgical System’s (Intuitive Surgi-

cal, Inc. Sunnyvale, CA) wristed tools and stereoscopic vision provide additional dexterity

and visualization that prove useful in performing the complex tasks associated with laparo-

scopic partial nephrectomy [73]. This assistance in performing complex intracorporeal

tasks is valuable because the need for extreme skill and specialization is significantly re-

duced. Link et al. reported procedure time continuing to decrease for a single surgeon after

178 cases of laparoscopic partial nephrectomy [72]. The authors suppose their result to be

an underestimate of the actual learning curve because the complexity of the cases increased

along with the volume. This laparoscopic learning curve is in striking contrast to Deane et

al.’s study of one surgeon’s initial 11 robotically assisted partial nephrectomy cases. In this

study, both the procedure time and the hospital stay were reduced in the surgeon’s initial 11

robot assisted cases when compared to an expert surgeon’s 11 laparoscopic cases [74]. It
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should be noted that the surgeon performing the robotically assisted partial nephrectomies

had performed more than 200 robot-assisted laparoscopic radical prostatectomies.

Robotic assistance also benefits the expert laparoscopic surgeon. Benway et al. per-

formed a retrospective study of three expert surgeons at high volume centers, 118 consec-

utive laparoscopic partial nephrectomies, and 129 consecutive robotically assisted partial

nephrectomies [75]. All robotically assisted partial nephrectomies were performed with the

da Vinci robot. Even with expert surgeons performing both the traditional laparoscopic and

robot assisted surgeries several advantages of robot assistance emerged: (1) Hospital stays

were shorter for the robotically assisted cases (2.4 vs 2.7 days). (2) Tumor complexity had

no effect on the overall operative time for the robotically assisted cases, while tumor com-

plexity had a significant impact on the overall operative time for the laparoscopic cases.

(3) Warm ischemic time was significantly lower (30%) for the robotically assisted cases.

Perhaps the result reported by Benway et al. most pertinent to this study is that, though not

statistically significant, 5 of the 129 (3.9%) robotically assisted cases yielded positive mar-

gins as opposed to 1 of 118 (0.8%) of the laparoscopic cases. The authors suppose that the

higher precision available to the surgeon during a robotic procedure might lead the surgeon

to attempt to resect a smaller margin than the surgeon would in a laparoscopic surgery.

Assuming that Benway et al.’s supposition is correct, this is an excellent example of

the dangers of an increase in precision without an associated increase in accuracy. The

most intuitive way to increase the accuracy of the procedure is to provide the surgeon with

accurate visualization of the preoperative surgical plan during the procedure. Utilizing

preoperative data is difficult in robotic assisted partial nephrectomy, requiring the surgeon

to visualize 2D slices of preoperative images mentally in the operative field. Currently

a robotically assisted surgeon examines 2D slices of preoperative imagery. During the

procedure the surgeon attempts to mentally map the relevant information from the slices

onto the surgical field with nothing more than occasionally looking at the slices to verify

details of the renal mass and critical structures’ subsurface locations.
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The need for surgeon access to accurate real-time visualization of preoperative imaging

has driven significant research interest in this area. Goals of these systems include increas-

ing the safety of robotically assisted partial nephrectomy, and increasing the accessibility

of the procedure to patients by reducing the burden on the surgeon [76–80]. Additionally,

Medical Engineering and Discovery Lab (MEDLab) research collaborators at Vanderbilt

University and Vanderbilt University Medical Center have done extensive examination of

system components including registration requirements [81–83] and the accuracy of the da

Vinci Surgical System [84, 85]. Methods exist to compensate for the relative inaccuracy of

the encoders on the da Vinci robot’s setup arms where necessary [84–86]. One component

common to each of these systems is a registration from preoperative imaging to the surgical

space. Registration error is inherent to registration.

This chapter presents a method to create statistically valid spatially varying safety mar-

gins that compensate for the error inherent to registration. These safety margins are patient

specific and the acceptable level of risk that a structure protrudes beyond the boundary of

its safety margin is specified by the surgeon prior to the generation of the safety margins.

This chapter uses the partial nephrectomy procedure and iterative closest point (ICP) sur-

face registration [87] for an example of the generation of these safety margins. However,

the methods created here are applicable to any procedure requiring accurate spatial local-

ization of critical structures defined in a preoperative plan. Additionally, this new algorithm

may utilize any registration modality that can be simulated many times to generate the error

distributions required by the algorithm. Practically, the limit placed on which registration

modalities are available to this algorithm is set by the execution time of the required simu-

lations.

Prior works similar to the methods presented here are Haidegger et al. [5], Noble et al.

[19], Siebold et al. [34], and Dillon et al. [6]. Haidegger et al. estimated the instantaneous

level of danger to critical structures for an optically tracked tool [5]. Nobel et al. estimated

the probability of damage that a surgical drill traversing a linear path would damage critical

88



Term Definition

Critical Structure
An anatomical structure in the patient that is also represented
by a set of voxels in a medical image.

Safety Margin
A set of voxels surrounding the critical structure. This set is
enlarged iteratively until the specified value of the overall
damage risk is reached.

Overall Damage Risk
The probability that the critical structure in the patient will be
damaged if all voxels surrounding the union of the critical
structure and the safety margin were to be removed.

Analyzed Shell
Voxels that are exterior to the union of the safety margin and
critical structure that have been overlapped by the simulated
tumor registration process outlined in Section 4.2.4.

Point Damage Risk

The probability that the critical structure in the patient will be
damaged if an individual voxel neighboring the union of the
critical structure and the safety margin were to be removed.
This value is calculated for each voxel in the analyzed shell.

Transfer Percentage
The percentage of the analyzed shell that is transferred into
the safety margin during a given iteration.

Table 4.1: A glossary of terms that are frequently used in this chapter.

structures in close proximity to that path. Most similar to this work are Siebold et al. and

Dillon et al. [6, 34]. Siebold et al. provides the inspiration for this work and outlines the

development of a similar algorithm for a procedure based on point based fiducial registra-

tion in the context of mastoidectomy. Dillon et al. was an extension of Siebold et al. that

considered additional error sources inherent to the robotic mastoidectomy robot designed

by Dillon et al. [18]. It should be noted that a similar extension is possible for the algorithm

presented in this chapter. Such an extension designed for a specific robot and procedure

would allow all error sources that can be modeled to be included in the generation of the

safety margins. A specific efficiency improvement to Siebold et al.’s method is also in-

cluded in the presented algorithm. A glossary of terms used in this chapter is seen in Table

4.1.
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tumor margin

Figure 4.1: The upper half of the figure shows the da Vinci robot arms in relation to a
phantom kidney with an implanted tumor. The lower half of the figure shows the display
of the robot arms in relationship to the tumor and kidney segmentations from preoperative
imaging.

4.2 Materials and Methods

Ferguson et al. in the Medical Engineering and Discovery Lab is developing a method

for intraoperative visualization of the tumor and vasculature in a partial nephrectomy [83].

This project seeks to place a 3D visualization of the surgeon’s tools interacting with the

segmented preoperative 3D medical images (e.g. Computed Tomography (CT), Magnetic

Resonance Imaging (MRI), etc.) in the surgeon’s field of view as a real time simulation

displayed in the da Vinci’s surgical console via Tile-Pro.

The goal of this real time simulation is to enable the surgeon to quickly and accurately

localize and resect the tumor. The algorithm described here generates safety margins sur-

rounding the tumor and additional desired vasculature. These safety margins allow the

surgeon to be confident that, in a procedure guided by these visualizations, the tumor will

be removed with no positive margins and that all possible vasculature will be spared. These

safety margins are illustrated in Figure 4.6. The portion of the basic workflow of the da
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Vinci visualization project relevant to this algorithm is as follows: (1) Segment a medical

image to show the tumor and basic vasculature. (2) Using the da Vinci manipulator, swab

the exposed surface of the kidney. The points in R3 that the manipulator arm’s end effector

passes through during the surface swab are stored. This set of points is used to register the

preoperative plan to the patient in the operating room. (3) The representation of the cur-

rent location of the surgeon’s instruments relative to the preoperatively segmented medical

image is displayed in the da Vinci surgeon console via Tile-Pro.

4.2.1 Algorithm Overview

The algorithm presented here fits between steps (2) and (3) and takes as input: (1) the

segmented 3D medical image, (2) the surface tracing of the kidney in the operating room,

and (3) the acceptable risk levels associated with each critical structure (e.g. tumor, vascu-

lature, etc.). The output of the algorithm is a medical image where the critical structures

have been augmented with safety margins that ensure the risk posed to those structures

does not rise above acceptable levels. These augmented critical structures are displayed to

the surgeon in the da Vinci console via Tile-Pro. The algorithm proceeds as follows:

1. Perform a large set of registrations and store the resulting transformations (Section

4.2.2).

2. Determine overall damage risk (Section 4.2.3).

3. Check overall damage risk against surgeon defined risk tolerance for the critical

structure.

4. Determine the voxels with the highest point damage risk (Section 4.2.4).

5. Add highest risk voxels to the safety margin (Section 4.2.5).

6. Repeat steps 2 - 5 until the overall damage risk has reached the acceptable level

chosen by the surgeon.
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The structure of this algorithm is similar to that presented by Siebold et al. [34]. Two

major differences in the algorithm’s structure are: (1) Moving the performance of registra-

tions outside of the loop (Section 4.2.2) and storing the resulting homogeneous transfor-

mations for later use in Sections 4.2.3 and 4.2.4. This modification increases the efficiency

of the algorithm. (2) A new method is required for estimating the risk level of the voxels

surrounding the union of the safety margin and the critical structure (Section 4.2.4). This

modification is required by the change in registration modality. Previously, the algorithm

relied on a closed form solution to estimate the error covariance matrices of the individual

voxels surrounding the critical structure and safety margin. This formula is valid only for

rigid point-based fiducial registration. Extending the algorithm to utilize additional regis-

tration modalities requires an alternative method to estimate these risk levels.

4.2.2 Perform Registrations

Before the algorithm starts its iterative process, Nr registrations are performed and the

resulting homogeneous transformations, Hi ∀ i ∈ [1, ...,NR], are stored for later use. These

registrations are between the surface swab of the kidney, and the surface of the segmented

kidney. The segmentation of the kidney is accomplished in 3D Slicer (www.slicer.org) [88,

89], a medical imaging software suite developed and maintained specifically for medical

and medical robotics research. In 3D Slicer, the segmentation is converted into an STL,

which is a file containing the surface mapping of the segmented volume consisting of a set

of vertices on the segmentation’s surface which are connected into triangles to represent

faces of the surface. The vertices are extracted and used as the bases for an iterative closest

point (ICP) registration with the surface swab of the kidney. This surface swab of the

kidney is registered to the kidney in the medical image. The registered surface swab is then

perturbed randomly in both position and orientation to simulate different initializations

of the ICP algorithm. Each of these Nr perturbed swabs is registered to the point cloud

obtained by randomly downsampling the vertices of the STL representing the surface of
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the kidney. Each of these registrations yields a homogeneous transformation, Hi. This

collection of transformations will be used in Sections 4.2.3 and 4.2.4.

4.2.3 Overall Damage Risk

The overall damage risk is the risk of damage to the critical structure if the tissue con-

tained in every voxel neighboring that structure were to be removed. This is a worst case

damage metric. To calculate the overall damage risk, the critical structure is perturbed

many times by simulating registration error. This perturbation is accomplished by applying

one of the homogeneous transformations, Hi, calculated in Section 4.2.2 to a set of points

lying on the surface of the critical structure. A check is then made to determine if any

portion of this registered shell extends outside the critical structure and safety margin after

the registration. This check for a critical structure lying outside of the safety margin after

registration is illustrated in Figure 4.2. This process is repeated for all Nr of the Hi’s that

were stored in Section 4.2.2. A simple ratio is calculated of perturbed critical structures

that protrude from the safety margin over the number of registrations. This ratio is the

overall damage risk.

4.2.4 Point Damage Risk

The point damage risk is the risk that an individual voxel outside the critical structure

and safety margin will overlap the critical structure after registration. The point damage

risk is determined by performing a set of registrations similar to that used to determine the

overall damage risk in Section 4.2.3. A set of discrete points from the exterior surface of

the critical structure is sampled. The registrations’ transformations are then applied to this

set of points representing the surface of the critical structure. If any of these registered

surface points then overlap voxels exterior to the safety margin and critical structure, then

those overlapped voxels’ coordinates are recorded and one violation is recorded for each

overlapped voxel. We define Np to be the number of registrations preformed to determine
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PSfrag replacements

(a) (b)

(c)

Safety Margin

Critical Structure

Registered tumor points
inside safety margin
Registered tumor points
outside safety margin

Figure 4.2: Part (a) shows a critical structure and its associated safety margin. Part (b)
shows the collection of points on the surface of the critical structure. The left side of part
(c) shows the two registered together and the protrusion of points on the registered surface
of the critical structure outside of the safety margin. The right side of part (c) shows a one
voxel thick layer pulled from the 3D portion on the right to better illustrate the registration.
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the point damage risk. If the number of violated voxels does not outnumber the number of

voxels to be transferred by a factor of Rs, the process is repeated for another Np registrations

until the number of violated voxels does outnumber the number of voxels to be transferred

into the safety margin. Since the number of violations has been counted for each voxel,

a ranking of voxels most dangerous to the critical structure has been established. By per-

forming only a sufficient number of registrations to determine the voxels to be transferred

into the safety margin one iteration at a time, voxels violated by outlying registrations could

become part of the safety margin. Voxels covered by such outlying registrations would not

pose a high enough point damage risk to be included in the safety margin were all the reg-

istrations required by the point damage risk calculation performed at once. Performing all

of the registrations required by the point damage risk calculation is not possible since the

total number of registrations required by the point damage risk calculation is unknown until

the final result of the algorithm. Therefore, to prevent gross misregistrations from impact-

ing which voxels are added to the safety margin, a threshold value, Tr is defined. This Tr

value represents the number of simulated registrations in which the registered tumor must

overlap a voxel before it can be included in the safety margin. Also, it is possible that by

discretizing only the exterior of the critical structure some voxels immediately adjacent to

the critical structure may have been overlooked. These voxels will be accounted for when

the safety margin is grown in Section 4.2.5.

Note that this process results in an approximation of the point damage risks associated

with voxels exterior to the critical structure and the safety margin. The overall damage

risk is the metric that determines the ending of the growth of the safety margin. The point

damage risk is only used to determine which voxels are moved into the safety margin next,

so it has no direct affect on the final safety level of the safety margin. An example of the

resulting ranked voxels surrounding the critical structure and safety margin is shown in

Figure 4.3.
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Figure 4.3: The figure shows an analyzed shell ranked by its point damage risk. The
analyzed shell surrounds the safety margin which surrounds the critical structure.

4.2.5 Growing the Safety Margin

To grow the safety margin, a percentage of voxels ranked in Section 4.2.4 are trans-

ferred into the safety margin. The number of voxels transferred into the safety margin is a

percentage of the total number of voxels immediately adjacent (26-connected) to the safety

margin and critical structure. Prior to transfer, the voxels in the analyzed shell are sorted

by point damage risk and only the voxels associated with the highest point damage risk are

transferred in to the safety margin. A morphological close operation is performed on the

union of the safety margin and critical structure to ensure that any voxels between the new

safety margin voxels and the existing critical structure and safety margin are included in

the updated safety margin. This process is illustrated in Figure 4.4.

To reduce the number of iterations that the algorithm must execute, a variable transfer

percentage is used. This transfer percentage starts out relatively high and is reduced linearly

as the overall damage risk approaches the acceptable damage risk. This linear decay of the
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Figure 4.4: Part (a) shows a critical structure and safety margin with the highest risk voxels
in the analyzed shell highlighted in red. Part (b) shows the state of the selected one voxel
thick slice of Part (a) at the beginning of the algorithm’s current iteration. Part (C) shows a
slice of Part (a). Part (d) show the result of the current iteration of the algorithm where the
high risk voxels from the analyzed shell have been transferred into the safety margin.

transfer percentage is shown in Figure 4.5.

4.3 Results

4.3.1 Experiments

To evaluate the algorithm, it was applied to the preoperative planning of four partial

nephrectomies. The algorithm developed a safety margin surrounding the scanned tumor

present in each kidney or phantom. This safety margin indicated minimum volume of

tissue that must be removed to maintain the given confidence level that the tumor boundary

will not be violated during the procedures. The tumors were manually segmented, and

the patches used for registration were obtained by tracing the surface of the kidney with

one of the arms of the da Vinci and recording the tool tip position throughout the tracing

process. A portion covering roughly half of the top surface of each kidney was chosen as

suggested by [81]. Initial swab poses were generated for the series of Nr registrations by
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Figure 4.5: The figure shows the relationship between the number of voxels transferred
into the safety margin each iteration and the current overall damage risk.

registering the point clouds obtained from the da Vinci’s tool tip via GoICP [90]. GoICP

is a variant of ICP that optimally registers a point cloud to a surface without needing a

relatively accurate initial pose. These initial poses were perturbed by inserting normally

distributed positional noise with a standard deviation of 5 mm in x, y, and z. Rotational

error was introduced by estimating a normal vector for the center of the patch. Normally

distributed rotations away from that vector were generated with a standard deviation of 5◦.

This value is chosen such that approximately 99.7% of the angular variation would fall with

±30◦ of the approximated normal. Additionally, safety margins were generated for a range

of positional and rotational errors to test the sensitivity of the volumes output to the size of

the error input. The range of standard deviation values tested was all combinations of 5 mm,

3.33 mm, and 2.5 mm of positional error and 5◦, 3.33◦, and 2.5◦ of rotational error. The

results of these tests are reported in Appendix B. A final acceptable overall damage risk was

chosen to be 0.01, Np was chosen to be 5000, and the number of simulated registrations was
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5000. The final overall damage risk was chosen to roughly agree with the rates observed by

Benway et al. [75]. The number of simulations was chosen by generating a safety margin

for each of the four specimens using Nr = 35000. The overall damage risk of this safety

margin was tested for Nr values varying from 1000 to 10000 in steps of 1000. Each Nr was

tested 50 times and 95% confidence intervals were calculated for the 50 overall damage

risks generated for each Nr. An Nr equal to 5000 yielded a confidence interval of below

0.5e−3 for each of the four specimen. The maximum transfer of voxels from the analyzed

shell into the safety margin was 0.5 multiplied by the number of voxels that share a vertex

(26-connected) with the exterior of the safety margin. The transfer rate was set to decay

starting at an overall damage risk of 0.1. A minimum transfer rate of 150 voxels was used.

The results of the spatially varying safety margins are compared to constant thickness

safety margins generated for the same kidney and tumor with the same surface swab. These

safety margins of constant thickness are generated by applying the algorithm, but calculat-

ing the point damage risk as simply the closest Euclidean distance between each voxel

surrounding the critical structure and the surface of the critical structure.

4.3.2 Results

The simulation results are reported in Table 4.2 and the simulated safety margin as-

sociated with tumor 2 can be seen in Figure 4.6. The bulk of the simulation was written

in MATLAB while a non-parallelizable portion of the point damage risk calculation was

written into a mex file for faster computation. A custom built 44-core dual socket Xeon

E5-2696v4 machine with 128 GB of ram was used to compute the reported results. MAT-

LAB’s parallel toolbox was used to distribute the workload of the simulation onto all 44

available cores.
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Figure 4.6: The figure shows a segmented preoperative scan of a kidney with a tumor
placed at one end. The light blue region surrounding the tumor is the safety margin created
by this algorithm. The green points are from the da Vinci tool tip tracing of the kidney’s
surface. These are the points used for the Nr registrations.
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Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Margin
Volume

(cm3)
2.2e+4 6.3e+4 8.0e+3 1.3e+4 7.5e+4 1.3e+5 2.0e+4 3.9e+4

Final
Damage

Probability
1.1e-2 9.0e-3 9.4e-3 8.0e-3 1.0e-2 1.0e-2 1.0e-2 1.0e-2

Mean
M-Dist to
Surround-

ing
Voxels

1.87 4.37 2.12 2.69 2.05 3.07 2.39 3.36

STDev of
M-Dists to
Surround-

ing
Voxels

0.40 1.89 0.54 0.66 0.33 1.28 0.95 1.33

time (min) 35.4 61.3 17.5 4.8 100 110 28.6 53.9

Table 4.2: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance.
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4.4 Discussion and Future Work

Assuming that the point damage risks are normally distributed, the results seen in Ta-

ble 4.2 show that the standard deviations of the Mahalanobis distances are lower for the

spatially varying safety margin. This implies that the point damage risks of the voxels

immediately adjacent to the final safety margin are more consistent with each other for

the margin created by the spatially varying algorithm as opposed to the uniform thickness

margins.

As expected, all of the final spatially varying safety margins were smaller than their

constant thickness counterparts. This is also true for the larger set of tests reported in

Appendix B. It is interesting to note from the larger set of results reported in Appendix

B, that the positional error has a greater impact on the volume of the safety margins than

the rotational error. Beyond that observation the results from the additional testing were

wholly predictable. All spatially varying margins were smaller than the corresponding

uniformly thick margins. Also, all of the standard deviations of the Mahalanobis distances

between the exterior of the tumor and the points exterior to the margin were smaller for the

spatially varying margins. This implies that the level of danger posed by the voxels exterior

to the spatially varying safety margins is more uniform than for the uniformly thick safety

margins.

Safety margins were successfully generated surrounding both natural and simulated tu-

mors in four CT scans of both human and phantom kidneys. This is the first time such

spatially varying safety margins have been generated using surface registration. An im-

portant observation is that the algorithm easily incorporates any registration modality. The

level of safety provided by this margin can be set as desired by the surgeon for the specific

critical structure (e.g. lesion, vasculature, etc.). It should be noted that these safety margins

were created under the assumption that registration error was the only source of error in the

system. This assumption is a first step for generating general safety margins. Other error

sources that can be modeled may be incorporated into the safety margins created by this
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algorithm. Dillon, et al. performed a similar extension of the fiducial based safety margins

created in [34, 58]. Several additional error sources were modeled by the extended algo-

rithm including error contributions from the CT scanner and physical robot. These error

contributions were specific to the individual application of that paper. Similar extensions

to this work are possible for any specific physical system with error sources that can be

modeled.

Beyond simulation, Ferguson et al. in the Medical Engineering and Discovery Lab has

created a platform for image guidance using the da Vinci robot [83]. A set of experiments

where an expert user resects several phantoms with injected “lesions” has been planned.

One set is to be performed with image guidance and no safety margins, the other set will

be performed using both image guidance and the safety margins created by this algorithm.

The results of this experiment are expected to demonstrate the utility of the margins created

by this algorithm.

This chapter presents a robust algorithm to generate statistically guaranteed safety mar-

gins for any registration modality where repeated registrations may be assumed to be inde-

pendent events. This method may be extended to incorporate other error sources specific to

the systems to which it is applied. This algorithm is the first to provide the ability to create

a system where the surgeon may specify the level of safety for specific structures unique

to individual patients where the source of error is any registration modality. These safety

guarantees are valid throughout the duration of the procedure.

103



Chapter 5

Future Work and Conclusions

The novel algorithms presented in this dissertation enhance the patient personalization

of preoperative surgical planning. The specific areas of preoperative planning that are ad-

dressed here are: tool path planning for autonomous robotic bone milling, and the creation

of optimal safety margins surrounding critical structure for a wide range of surgical appli-

cations. These algorithms were shown to be effective by applying them to the tool path

planning of a robotically performed mastoidectomy, the creation of safety margins to in-

form the preoperative planning of the volume of bone to be removed in a mastoidectomy,

and the creation of safety margins surrounding cancerous tumors to inform the surgeon’s

resection of healthy tissue in partial nephrectomy. In each case the algorithms performed

the desired tasks yielding shorter tool paths and smaller safety margins when compared

to standard approaches, such as a 2.5D tool path planning algorithm or a uniformly thick

safety margin. The major contributions of this dissertation are found in autonomous robotic

tool path planning and in automatic safety margin creation and are as follows:

Tool path planning: Up to this point, the primary methods for planning tool path

trajectories have been layer by layer 2.5D planners [1–3, 13, 15]. The implementation of a

3D autonomous bone milling algorithm significantly complicates the interactions between

the tool shaft and the unmilled tissue during the procedure. This dissertation has extended

the 3D path planner presented by Danilchenko in [4] in two separate areas.

• The modeling and incorporation of drill shaft and cutting burr interactions with un-

milled bone tissue at every point along a true 3D path (Chapter 2).

• The creation of a method to control the cutting depth of the true 3D planned path

via a reapplication of the “supervoxel” concept. Controlling this cutting depth also

shortens the generated paths such that they are able to be calculated quickly enough
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to be generated intraoperatively (Chapter 2).

Safety margins: Both instantaneous danger posed to a critical structure by a tracked

tool in an image-guided system in the presence of registration error [5], and the danger

posed to a given critical structure by drilling a linear trajectory through bone in the presence

of registration error [19] have been analyzed. This dissertation builds on these results by

generalizing these safety analyses to extend to a critical patient structure of arbitrary shape

for the duration of the procedure. First, safety margins are created for rigid point-based

registration (Chapter 3, [34]). Second, safety margins are created for Iterative Closest

Point surface registration (Chapter 4). This new method for building margins under surface

registration error can incorporate any registration modality. Specific contributions are as

follows.

• The creation of the first spatially varying safety margins enveloping critical structures

based on a statistical analysis of fiducial point-based registration error. If preserved

throughout the procedure, these safety margins provide a statistical guarantee that

the contained structures will remain undamaged (Chapter 3, [34]).

• The creation of statistically guaranteed spatially varying safety margins via regis-

tration modalities other than fiducial point-based registration. The algorithm was

simulated with surface based iterative closest point registration (Chapter 4).

• The reconceptualization of the safety margins to represent tissue that must be re-

moved as opposed to protected. The specific application is a cancerous tumor that

must be fully removed to prevent regrowth of the tumor.

5.1 Future Work in Path Planning for Autonomous Bone Milling

The new 3D tool path planning algorithm presented in this dissertation creates the op-

portunity to design many different approaches to the preoperative planning of image-guided
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robotic bone milling. These possibilities include planning a milling trajectory based on the

ability of the cutting burr to perform more efficiently on that path. For more delicate pro-

cedures, it is possible to predict force required to pass the cutter through the unmilled bone

such as is often simulated in haptic bone milling simulation [16, 17]. Such a prediction

of required forces could be used to inform a trajectory that minimizes the force required

for each step of the cutting burr’s trajectory. For procedures that require work near easily

damaged critical structures, a gradient of labels could be created that leads away from those

structures. By utilizing that gradient in the planner algorithm’s fitness metric the bone sur-

rounding those critical structures could be milled last so that all forces exerted by the bone

tissue on the cutter pointed away from the critical structure. Another possible use of the

fitness metric would be to incorporate Dillon et al.’s work analyzing optimal milling angles

in bone milling [45]. This work could be used in the fitness metric to mill the voxels in an

order such that at every step the optimal milling angle was used. This would naturally lead

to lower force throughout the milled path. It should also be possible to include Abdul et

al.’s work in temperature modeling of bone milling [46] to create tool paths that optimize

the temperature generated while milling the volume. The flexible metric that prioritizes

each next step in the path can be used to incorporate any quantity that can be modeled into

the tool path plan. This metric then opens up any number of future explorations that have

been unachievable to this point.

5.2 Future Work in Spatially Varying Safety Margins

The novel algorithm to generate statistically guaranteed spatially varying safety margins

in Chapter 3 was presented using only registration error and with only fiducial point-based

registration. With the new algorithm presented in Chapter 4 the possibilities for additional

applications increase many times over. Though this algorithm was evaluated with iterative

closest point surface registration, safety margins can now be generated for any registration

modality. Applying the algorithm to these additional modalities will greatly increase its
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impact on the safety of image-guided surgical procedures. Additionally, the interpretation

of the safety margins may change. In this dissertation, safety margins have been used

to prevent a drill from entering critical structures and to prevent a surgeon from crossing

the boundary of a tumor during a partial nephrectomy. Another possible application for a

safety margin grown surrounding a critical structure could be ensuring coverage of planned

ablation zones during cancer treatment. The safety margin concept could be altered so

that the margins are grown into the critical structure ensuring that any position within the

margin was within the critical structure. This type of shrunken safety margin could ensure:

a needle hits its desired target for tumor biopsy, accurate placement of radioactive seeds in

the treatment of prostate cancer, or accurate needle placement in a Deep Brain Stimulation

(DBS) surgery.

Experimental validation of this algorithm is planned to be performed using the image-

guided partial nephrectomy system developed by Ferguson et al. [83]. These experiments

would include several “lesions” that would be injected into phantoms. These phantoms

would then have the simulated lesions removed under image guidance. Half of the simu-

lated lesions would have safety margins grown around them via the methods described in

Chapter 4. The other half would be encased in constant thickness margins. From preop and

postop CT scans, the volume of removed tissue would be determined for each simulated

lesion. This data would allow the determination of number of tumors with positive mar-

gins and the volume removed in each surgery. These results should validate the safety and

volumetric savings presented in the simulation results in Section 4.3.2.

Additional error sources may be included in this algorithm. Dillon et al. [6] has al-

ready applied the algorithm presented in Chapter 3 to include 10 additional error sources

in the generation of safety margins under rigid point-based registration for an autonomous

mastoidectomy. Similar extensions can be created for a wide variety of systems. Now that

such safety margins can be generated for any registration modality, the number of specific

systems that could benefit from the safety margins generated in Chapter 4 increases dra-
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matically. Any number of these systems will have additional error sources that could be

included in the generation of the safety margins in a manner similar to Dillon et al. [6]. For

example, given the ICP based registration used as an example in Chapter 4, it is possible to

easily incorporate the error of the digitizer that generates the point cloud used in the regis-

tration. All one would need is a characterization of the error associated with the digitizer

and sample that error distribution many times for each point. These sampled points could

be used to run the algorithm in Chapter 4 many times, once for each set of sampled points.

The union of the resulting many safety margins would constitute a safety margin that ac-

counted not only for registration error, but for the physical error associated with tracing the

kidney’s surface.

Additionally, all applications of the algorithm attempted to this point have been under

the assumption of a rigid surgical field. Future work with this algorithm could include

modeled tissue deformation in the creation of the safety margins to account for the effect

that deformation has on image guidance.

5.3 Conclusion

The main contributions of this dissertation are: In Chapter 2, the ability to model and

incorporate tool shaft and cutting burr interaction with unmilled bone tissue in the creation

of a true 3D tool path planner, and the ability to easily vary the cutting depth in a 3D path

plan via a reapplication of the “supervoxel” from image and video processing. In Chapter

3, the creation of the first spatially varying safety margins that allow a surgeon to specify

the acceptable level of risk a critical structure may be exposed to for the duration of a

procedure. In Chapter 4, the creation of the first statistically guaranteed safety margins

with registration modalities other than point based registration. Additionally, the safety

margin was altered such that it represented a volume of tissue that must be removed rather

than as a volume that must be persevered.

Each of these contributions directly advances the state of the art in preoperative patient
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specific image-guided robot surgical planning. Robotic image-guided surgery is an area

that offers incredible benefits both to the surgeon and to the patient. It will continue to

redefine what is possible in surgery by making what were once prohibitively complex pro-

cedures more widely available to patients. This availability is accomplished by easing the

burden on the surgeon performing the procedure either by robotically performing delicate

and physically taxing portions of the procedure or by offering easy and accurate intraoper-

ative access to preoperative scan data in ways that have never before been possible.
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CH01 491 491 7.8e-3 2.4e-1 2.19 93 1303 3.8 0.67 8.2 224

CH02 626 626 4.5e-3 1.3e-1 2.70 97 1628 3.8 0.72 8.1 232

CH03 451 451 3.5e-3 1.7e-1 1.50 67 1110 4.1 0.61 8.5 300

CH04 1072 1072 6.8e-3 1.5e-1 5.38 200 2783 3.9 0.63 7.8 199

CH05 1001 1001 4.6e-3 7.4e-2 4.42 209 2533 4.0 0.67 7.9 226

CH06 634 634 1.8e-3 1.1e-1 2.33 124 1568 4.0 0.65 8.1 273

CH07 1058 1058 1.8e-3 8.8e-2 4.67 228 2752 3.8 0.67 7.8 227

CH08 1049 1049 4.1e-3 9.2e-2 4.67 254 2821 3.7 0.66 7.6 224

CH09 705 705 2.7e-3 4.7e-2 3.15 110 1801 3.9 0.71 7.5 224

CH10 289 289 1.5e-3 1.9e-1 1.16 42 864 3.3 0.60 8.4 249

CH11 381 379 3.8e-3 1.4e-1 1.16 106 1013 3.7 0.62 8.9 329

CH12 1181 1181 3.2e-3 6.3e-2 5.88 231 3300 3.6 0.65 7.4 201

CH13 1112 1112 3.5e-3 5.0e-2 5.50 253 2721 4.1 0.66 7.2 202
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CH14 1023 1023 2.4e-3 3.2e-2 4.78 188 2784 3.7 0.70 7.1 214

CH15 889 889 2.7e-3 3.7e-2 3.54 166 2412 3.7 0.62 7.3 251

CH16 949 949 1.5e-3 3.6e-2 4.23 181 2514 3.8 0.65 7.3 225

CH17 1000 1000 2.6e-3 4.2e-2 4.38 183 2655 3.8 0.66 7.4 228

CH18 663 619 6.7e-4 4.7e-2 2.49 105 1565 4.0 0.65 7.5 267

CH19 407 407 2.8e-2 1.3e-1 1.51 65 1066 3.8 0.65 8.2 269

TB01 949 949 3.7e-4 8.3e-2 4.34 144 2782 3.4 0.66 7.6 219

TB02 294 294 2.5e-2 3.5e-1 1.42 61 798 3.7 0.65 10.0 208

TB03 530 530 4.2e-3 6.1e-2 2.41 71 1479 3.6 0.71 8.7 220

TB04 407 407 5.9e-3 1.5e-1 1.71 56 1092 3.7 0.71 8.5 238

TB05 317 317 4.0e-3 2.4e-1 1.28 45 884 3.6 0.67 8.8 247

TB06 434 434 3.7e-3 1.6e-1 1.89 65 1146 3.8 0.70 8.3 230

TB07 517 508 5.7e-3 8.2e-2 2.08 71 1372 3.7 0.66 8.1 248

TB08 748 747 4.7e-3 9.7e-2 2.94 134 2051 3.6 0.66 7.9 254

TB09 552 552 9.3e-3 9.6e-2 2.15 77 1471 3.8 0.67 8.1 257

TB10 345 345 1.8e-2 1.2e-1 1.12 51 908 3.8 0.63 8.8 309

TB11 946 946 6.5e-3 9.0e-2 3.96 182 2720 3.5 0.65 8.1 239

TB12 983 983 1.9e-3 5.2e-2 4.63 187 2820 3.5 0.69 7.6 212

TB13 1069 1047 4.6e-3 7.9e-2 4.77 191 3009 3.5 0.65 7.9 224

TB14 217 217 2.5e-1 4.9e-1 0.99 33 590 3.7 0.61 9.0 220

TB15 596 596 2.4e-2 1.2e-1 2.58 99 1649 3.6 0.67 8.6 231

TB16 1252 1221 6.1e-3 7.3e-2 6.00 276 3441 3.5 0.65 7.6 209

TB17 850 850 1.4e-3 5.5e-2 3.48 153 2342 3.6 0.66 7.7 244

means 722 719 1.3e-02 1.2e-01 3.15 133 1937 3.7 0.66 8.0 238

’± 236 235 4.2e-03 3.9e-02 1.03 44 633 1.2 0.22 2.6 78

Table A.1: Simulation results for the baseline 4 DOF zigzag algorithm. Means are reported
with 95% confidence intervals.
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CH01 476 426 5.9e-4 2.3e-1 2.19 542 922 4.6 0.08 31.3 218

CH02 601 561 0 1.2e-1 2.70 457 1256 4.5 0.08 36.8 222

CH03 429 413 0 1.7e-1 1.50 287 848 4.9 0.08 28.0 286

CH04 951 884 2.4e-5 1.3e-1 5.38 954 2048 4.3 0.09 33.9 177

CH05 912 823 7.2e-5 7.2e-2 4.42 1025 1937 4.2 0.08 36.0 206

CH06 561 500 0 1.0e-1 2.33 460 1100 4.5 0.08 33.5 241

CH07 916 847 0 8.5e-2 4.67 820 1929 4.4 0.08 40.2 196

CH08 928 829 1.4e-4 8.9e-2 4.67 883 1858 4.5 0.08 33.2 199

CH09 658 586 0 4.3e-2 3.15 408 1293 4.5 0.08 32.4 209

CH10 271 238 0 1.9e-1 1.16 157 507 4.7 0.09 25.4 234

CH11 401 387 5.5e-5 1.4e-1 1.16 254 796 4.9 0.09 25.4 347

CH12 933 854 0 5.7e-2 5.88 1064 2159 4.0 0.10 36.0 158

CH13 935 878 0 4.6e-2 5.50 1277 2068 4.2 0.09 35.7 170

CH14 886 801 0 2.6e-2 4.78 2479 1869 4.3 0.09 32.7 185

CH15 716 664 0 3.4e-2 3.54 495 1510 4.4 0.08 34.9 202

CH16 798 721 0 3.2e-2 4.23 562 1662 4.3 0.08 36.2 189

CH17 850 756 0 3.9e-2 4.38 668 1787 4.2 0.08 35.7 194

CH18 608 553 0 4.4e-2 2.49 407 1218 4.5 0.08 27.7 244
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CH19 433 405 2.8e-3 1.1e-1 1.51 537 850 4.8 0.07 28.2 286

TB01 839 748 3.0e-5 8.2e-2 4.34 584 1607 4.7 0.08 33.5 194

TB02 323 306 1.1e-3 3.5e-1 1.42 298 626 4.9 0.08 31.0 228

TB03 544 500 2.4e-4 5.8e-2 2.41 347 1045 4.8 0.10 28.9 226

TB04 422 380 3.7e-5 1.4e-1 1.71 287 807 4.7 0.08 31.0 246

TB05 328 309 1.5e-4 2.3e-1 1.28 206 634 4.9 0.06 35.1 255

TB06 419 402 0 1.5e-1 1.89 271 860 4.7 0.08 34.6 222

TB07 486 457 3.1e-5 7.3e-2 2.08 377 978 4.7 0.07 32.1 233

TB08 667 603 0 9.1e-2 2.94 537 1326 4.5 0.07 32.8 227

TB09 550 494 0 7.8e-2 2.15 330 1046 4.7 0.07 33.2 256

TB10 352 332 0 1.1e-1 1.12 203 678 4.9 0.07 31.7 315

TB11 876 773 0 8.3e-2 3.96 713 1729 4.5 0.08 34.6 221

TB12 854 793 0 4.9e-2 4.63 771 1774 4.5 0.08 39.2 184

TB13 935 864 5.4e-5 7.7e-2 4.77 763 1970 4.4 0.08 35.9 196

TB14 366 320 6.5e-5 1.8e-1 0.99 243 656 4.9 0.08 28.4 371

TB15 586 517 1.2e-3 1.1e-1 2.58 638 1126 4.6 0.07 36.2 227

TB16 1041 962 0 7.0e-2 6.00 2610 2277 4.2 0.10 33.4 173

TB17 766 724 1.8e-5 5.1e-2 3.48 576 1555 4.7 0.08 29.7 220

means 656 600 1.8e-04 1.0e-01 3.15 653 1342 4.6 0.08 32.9 227

± 214 196 5.9e-05 3.4e-02 1.03 213 438 1.5 0.03 10.7 74

Table A.2: Simulation results for the 4 DOF 3D milling algorithm. Means are reported
with 95% confidence intervals.

128



Sp
ec

im
en

Pr
ed

ic
te

d
pa

th
le

ng
th

(m
m

)

M
od

ifi
ed

fin
al

ta
rg

et
s/

in
iti

al

U
nm

od
ifi

ed
fin

al
ta

rg
et

s/
in

iti
al

M
od

ifi
ed

in
iti

al
ta

rg
et

(c
m

3 )

Si
m

ul
at

io
n

tim
e

(s
)

St
ep

si
n

co
nt

ac
t/

pa
th

le
ng

th

Av
er

ag
e

vo
xe

ls
m

ill
ed

pe
r

st
ep

in
co

nt
ac

t

R
at

io
pr

ed
ic

te
d

pa
th

le
ng

th
(m

m
/

cm
3 )

CH01 518 3.2e-2 1.9e-1 2.19 4689 0.7 8.26 236.9

CH02 600 2.1e-2 1.0e-1 2.67 5315 0.7 8.13 225.1

CH03 447 7.8e-3 9.4e-2 1.45 3833 0.6 8.29 307.9

CH04 1010 6.5e-3 5.9e-2 4.65 9867 0.6 7.48 217.0

CH05 993 1.6e-2 7.3e-2 4.42 9563 0.7 7.93 224.7

CH06 624 9.3e-3 1.3e-1 2.33 6860 0.6 7.97 268.2

CH07 1016 2.0e-2 8.8e-2 4.59 10423 0.7 7.59 221.4

CH08 927 5.9e-4 5.4e-2 3.88 11670 0.6 7.37 239.1

CH09 705 2.7e-3 4.7e-2 3.15 6090 0.7 7.47 223.6

CH10 236 3.1e-4 7.0e-2 0.83 1960 0.6 8.01 283.0

CH11 311 1.3e-1 2.4e-1 1.11 2906 0.6 8.92 280.5

CH12 1205 2.3e-3 3.3e-2 5.88 11961 0.7 7.37 204.8

CH13 1113 3.6e-3 3.9e-2 5.50 15280 0.7 7.21 202.4

CH14 1024 1.6e-3 2.8e-2 4.78 9690 0.7 7.13 214.2

CH15 889 2.6e-3 3.7e-2 3.54 10146 0.6 7.32 250.9

CH16 949 1.5e-3 3.6e-2 4.23 10995 0.7 7.33 224.5

CH17 840 1.7e-2 5.0e-2 3.84 6494 0.6 7.37 218.8

CH18 581 2.4e-3 5.1e-2 2.06 5732 0.6 7.73 282.2
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CH19 1000 2.5e-3 4.2e-2 4.38 8724 0.7 7.44 228.3

TB01 797 4.1e-2 1.3e-1 3.96 15568 0.7 8.23 201.5

TB02 341 1.3e-1 3.0e-1 1.42 3621 0.7 8.96 240.1

TB03 494 5.8e-2 1.4e-1 2.41 4947 0.7 8.68 205.1

TB04 401 3.5e-2 1.7e-1 1.71 13477 0.7 8.49 233.9

TB05 363 3.4e-2 1.3e-1 1.28 2986 0.7 8.61 282.6

TB06 447 2.1e-2 1.4e-1 1.89 20863 0.7 8.53 236.4

TB07 522 5.9e-3 7.2e-2 2.08 4091 0.7 8.10 250.9

TB08 749 4.6e-3 9.7e-2 2.93 7423 0.7 7.85 256.0

TB09 469 2.2e-2 1.1e-1 1.91 3726 0.7 8.07 245.7

TB10 326 2.2e-2 1.2e-1 1.07 3120 0.6 8.66 306.1

TB11 964 1.3e-2 9.0e-2 3.96 9995 0.7 7.96 243.3

TB12 996 1.0e-3 4.7e-2 4.59 10496 0.7 7.56 217.0

TB13 1033 1.8e-3 6.4e-2 4.39 9354 0.7 7.68 235.3

TB14 257 1.7e-1 3.7e-1 0.98 2414 0.6 9.68 261.6

TB15 648 1.5e-2 1.2e-1 2.58 6730 0.7 7.98 250.6

TB16 1190 6.5e-3 4.6e-2 5.59 12917 0.6 7.56 213.1

TB17 851 1.3e-3 5.2e-2 3.48 8560 0.7 7.71 244.7

means 718 2.4e-02 1.0e-01 3.10 8125 0.7 7.96 241.0

± 234 7.9e-03 3.3e-02 1.01 2654 0.2 2.60 78.7

Table A.3: Simulation results for the baseline 5 DOF zigzag algorithm. Means are reported
with 95% confidence intervals.
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CH01 515 2.6e-2 1.9e-1 2.19 41572 0.1 28.46 235.4

CH02 585 1.2e-2 8.7e-2 2.67 49642 0.1 36.16 219.5

CH03 426 3.8e-3 8.7e-2 1.45 32218 0.1 27.60 293.4

CH04 832 1.3e-3 5.4e-2 4.65 97969 0.1 30.35 178.8

CH05 902 1.1e-2 6.9e-2 4.42 91587 0.1 33.50 204.0

CH06 539 7.7e-3 1.3e-1 2.33 47022 0.1 33.70 231.7

CH07 875 1.8e-2 8.4e-2 4.59 82716 0.1 39.20 190.8

CH08 789 0 5.1e-2 3.88 92719 0.1 29.62 203.6

CH09 660 0 4.3e-2 3.15 54543 0.1 33.24 209.1

CH10 204 0 6.9e-2 0.83 12507 0.1 23.06 244.2

CH11 350 1.1e-1 2.2e-1 1.11 25519 0.1 24.34 316.1

CH12 976 0 2.8e-2 5.88 104354 0.1 37.97 165.9

CH13 928 0 3.6e-2 5.50 103136 0.1 35.99 168.8

CH14 894 0 2.6e-2 4.78 91496 0.1 31.47 187.0

CH15 711 0 3.4e-2 3.54 72174 0.1 29.69 200.6

CH16 795 0 3.2e-2 4.23 87075 0.1 32.63 188.1

CH17 691 0 3.2e-2 3.84 62710 0.1 33.94 180.0

CH18 469 0 5.0e-2 2.06 40618 0.1 31.18 227.8
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CH19 861 4.4e-5 3.9e-2 4.38 85391 0.1 32.32 196.5

TB01 782 3.0e-2 1.1e-1 3.96 85682 0.1 34.31 197.7

TB02 364 1.2e-1 2.8e-1 1.42 30468 0.1 31.26 256.5

TB03 521 5.2e-2 1.2e-1 2.41 36843 0.1 30.77 216.3

TB04 414 3.1e-2 1.7e-1 1.71 31792 0.1 28.70 241.9

TB05 379 3.0e-2 1.2e-1 1.28 26371 0.1 28.29 295.2

TB06 439 1.4e-2 1.3e-1 1.89 34665 0.1 36.16 232.1

TB07 488 5.2e-4 6.3e-2 2.08 30871 0.1 33.99 234.2

TB08 644 1.0e-3 9.0e-2 2.93 59941 0.1 32.19 220.3

TB09 476 0 8.0e-2 1.91 35420 0.1 33.84 249.3

TB10 327 2.8e-3 1.1e-1 1.07 21660 0.1 33.48 306.6

TB11 890 9.9e-3 7.7e-2 3.96 94036 0.1 33.04 224.7

TB12 851 0 4.5e-2 4.59 84410 0.1 39.69 185.4

TB13 845 0 6.0e-2 4.39 79904 0.1 37.42 192.4

TB14 296 1.3e-1 3.4e-1 0.98 19799 0.1 30.76 301.1

TB15 600 1.1e-2 1.2e-1 2.58 55806 0.1 36.18 232.3

TB16 977 0 4.2e-2 5.59 100483 0.1 31.40 174.8

TB17 782 7.4e-5 4.8e-2 3.48 78208 0.1 28.36 224.8

means 641 1.7e-02 9.3e-02 3.10 60592 0.1 32.34 223.0

± 209 5.7e-03 3.1e-02 1.01 19794 0.0 10.56 72.8

Table A.4: Simulation results for the 5 DOF 3D algorithm. Means are reported with 95%
confidence intervals.
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Appendix B

Partial Nephrectomy Safety Margins: Full Results

Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Initialization Error STD 5 mm and 5◦
Margin
Volume

(cm3)
2.2e+4 6.3e+4 8.0e+3 1.3e+4 7.5e+4 1.3e+5 2.0e+4 3.9e+4

Final
Damage

Probability
1.1e-2 9.0e-3 9.4e-3 8.0e-3 1.0e-2 1.0e-2 1.0e-2 1.0e-2

Mean
M-Dist to
Surround-

ing
Voxels

1.87 4.37 2.12 2.69 2.05 3.07 2.39 3.36

STDev of
M-Dists to
Surround-

ing
Voxels

0.40 1.89 0.54 0.66 0.33 1.28 0.95 1.33

time (min) 35.4 61.3 17.5 4.8 100 110 28.6 53.9

Table B.1: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance. This data was gathered by setting the randomly generated position
and rotational error standard deviations described in Section 4.3.1 to 5 mm and 5◦.
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Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Initialization Error STD 5 mm and 3.33◦
Margin
Volume

(cm3)
2.1e+4 6.1e+4 8.1e+3 1.5e+4 7.6e+4 1.2e+5 2.0e+4 4.5e+4

Final
Damage

Probability
6.5e-3 1.0e-2 9.6e-3 6.0e-3 9.8e-3 1.0e-2 9.0e-3 1.1e-2

Mean
M-Dist to
Surround-

ing
Voxels

1.99 4.30 2.19 2.81 2.06 3.04 2.41 3.58

STDev of
M-Dists to
Surround-

ing
Voxels

0.49 1.72 0.74 0.82 0.36 1.29 0.92 1.42

time (min) 23.4 32.7 12.7 6.3 116.7 77.7 33.8 91.8

Table B.2: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance. This data was gathered by setting the randomly generated position
and rotational error standard deviations described in Section 4.3.1 to 5 mm and 3.33◦.
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Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Initialization Error STD 5 mm and 2.5◦
Margin
Volume

(cm3)
2.1e+4 7.1e+4 8.3e+3 1.7e+4 7.2e+4 1.2e+5 1.9e+4 4.1e+4

Final
Damage

Probability
1.0e-2 5.5e-3 9.0e-3 1.0e-2 1.0e-2 1.0e-2 1.0e-2 1.0e-2

Mean
M-Dist to
Surround-

ing
Voxels

1.86 4.68 1.87 3.30 2.02 3.07 2.39 3.44

STDev of
M-Dists to
Surround-

ing
Voxels

0.39 1.92 0.40 0.98 0.30 1.31 0.95 1.38

time (min) 25.6 99.5 12.8 128.9 88.0 71.3 29.5 40.2

Table B.3: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance. This data was gathered by setting the randomly generated position
and rotational error standard deviations described in Section 4.3.1 to 5 mm and 2.5◦.
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Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Initialization Error STD 3.33 mm and 5◦
Margin
Volume

(cm3)
1.8e+4 3.8e+4 7.1e+3 1.4e+4 5.3e+4 8.5e+4 1.1e+4 2.0e+4

Final
Damage

Probability
7.5e-3 8.0e-3 8.0e-3 1.0e-3 1.0e-2 1.0e-2 1.0e-2 1.0e-2

Mean
M-Dist to
Surround-

ing
Voxels

1.92 3.56 2.13 3.17 2.05 2.99 2.22 3.29

STDev of
M-Dists to
Surround-

ing
Voxels

0.26 1.39 0.40 1.08 0.19 1.24 0.57 1.35

time (min) 23.7 19.5 14.8 8.9 72.3 81.5 22.6 49

Table B.4: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance. This data was gathered by setting the randomly generated position
and rotational error standard deviations described in Section 4.3.1 to 3.33 mm and 5◦.
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Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Initialization Error STD 3.33 mm and 3.33◦
Margin
Volume

(cm3)
1.6e+4 4.1e+4 6.9e+3 1.1e+4 5.4e+4 7.7e+4 1.1e+4 2.1e+4

Final
Damage

Probability
1.0e-2 8.5e-3 1.1e-2 5.0e-3 1.0e-2 1.1e-2 1.1e-2 1.0e-2

Mean
M-Dist to
Surround-

ing
Voxels

1.89 3.82 2.05 2.80 2.08 2.94 2.17 3.29

STDev of
M-Dists to
Surround-

ing
Voxels

0.30 1.47 0.53 0.93 0.20 1.31 0.53 1.32

time (min) 22.9 30.6 11.7 13.2 67.4 56.4 21.2 52.4

Table B.5: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance. This data was gathered by setting the randomly generated position
and rotational error standard deviations described in Section 4.3.1 to 3.33 mm and 3.33◦.
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Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Initialization Error STD 3.33 mm and 2.5◦
Margin
Volume

(cm3)
1.8e+4 4.6e+4 7.2e+3 1.3e+4 5.1e+4 7.6e+4 1.0e+4 1.9e+4

Final
Damage

Probability
8.8e-3 1.0e-2 7.0e-3 5.0e-4 1.0e-2 8.5e-3 1.0e-2 8.0e-3

Mean
M-Dist to
Surround-

ing
Voxels

1.96 4.07 2.11 2.75 2.08 2.89 2.17 3.22

STDev of
M-Dists to
Surround-

ing
Voxels

0.31 1.52 0.62 1.01 0.22 1.18 0.53 1.31

time (min) 25.3 107.5 12.8 4.3 54.9 66.8 14.2 34.1

Table B.6: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance. This data was gathered by setting the randomly generated position
and rotational error standard deviations described in Section 4.3.1 to 3.33 mm and 2.5◦.
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Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Initialization Error STD 2.5 mm and 5◦
Margin
Volume

(cm3)
1.5e+4 3.2e+4 6.9e+3 1.2e+4 4.1e+4 5.7e+4 8.5e+3 1.2e+4

Final
Damage

Probability
8.5e-3 8.5e-3 9.6e-3 8.5e-3 1.0e-2 9.5e-3 9.6e-3 1.0e-2

Mean
M-Dist to
Surround-

ing
Voxels

1.95 3.44 2.29 2.87 2.04 2.74 2.24 2.98

STDev of
M-Dists to
Surround-

ing
Voxels

0.23 1.21 0.57 0.93 0.16 1.01 0.40 1.17

time (min) 19.4 50.0 12.9 6.1 42.6 59.3 15.3 18.4

Table B.7: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance. This data was gathered by setting the randomly generated position
and rotational error standard deviations described in Section 4.3.1 to 2.5 mm and 5◦.
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Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Initialization Error STD 2.5 mm and 3.33◦
Margin
Volume

(cm3)
1.5e+4 3.0e+4 6.5e+3 1.2e+4 4.0e+4 5.8e+4 7.8e+3 1.3e+4

Final
Damage

Probability
1.0e-2 1.0e-2 1.1e-2 7.5e-3 1.3e-2 1.0e-2 9.8e-3 1.5e-2

Mean
M-Dist to
Surround-

ing
Voxels

1.98 3.54 2.12 3.08 2.02 2.77 2.14 3.14

STDev of
M-Dists to
Surround-

ing
Voxels

0.22 1.29 0.46 1.04 0.15 1.03 0.41 1.30

time (min) 22.8 11.3 12.8 16.0 54.7 29.5 18.9 17.8

Table B.8: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance. This data was gathered by setting the randomly generated position
and rotational error standard deviations described in Section 4.3.1 to 2.5 mm and 3.33◦.
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Tumor 1 Tumor 2 Tumor 3 Tumor 4
SV CT SV CT SV CT SV CT

Initialization Error STD 2.5 mm and 2.5◦
Margin
Volume

(cm3)
1.4e+4 2.9e+4 6.9e+3 1.3e+4 3.5e+4 5.9e+4 7.5e+3 1.1e+4

Final
Damage

Probability
6.5e-3 1.1e-2 8.0e-3 1.1e-2 1.0e-2 7.0e-3 9.6e-3 1.0e-2

Mean
M-Dist to
Surround-

ing
Voxels

1.93 3.42 2.01 2.98 1.97 2.97 2.26 2.91

STDev of
M-Dists to
Surround-

ing
Voxels

0.22 1.26 0.47 0.93 0.17 1.23 0.46 1.12

time (min) 19.8 21.4 14.0 11.1 36.5 31.3 18.2 21.0

Table B.9: Numeric results for the spatially varying (SV) margins and the constant thick-
ness (CT) margins created surrounding a tumor placed in a kidney. M-Dist refers to the
Mahalanobis distance. This data was gathered by setting the randomly generated position
and rotational error standard deviations described in Section 4.3.1 to 2.5 mm and 2.5◦.
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