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Chapter 1

Introduction

Image segmentation is the process of partitioning an image by assigning a label or class
to each of its pixels to represent the image meaningfully [1]. For example, an automated
driving system may find it helpful to label objects in its environment, like street signs and
pedestrians, to assist with the driving process. Other examples of image segmentation may
exist in content-based image retrieval systems [2], medical imaging [3], object detection
[4], surveillance [5], and biometric security systems [6].

This paper will explore methods and tools for image segmentation, specifically in the
context of paper documents and especially with handwritten records from before the twen-
tieth century. For the previously mentioned applications of image segmentation, there are
many distinguishing features between different objects like color and brightness. How-
ever, in historical documents, there are no color or contrast differences between parts of the
document. There only exist logical differences that can be inferred from markings on the
page, which are created inconsistently between records over time and are often degraded
[7]. Thus, the segmentation of paper documents may necessitate different methods than the
segmentation of other types of data. Furthermore, the range of desired analysis on paper
documents is extremely expansive, so it is important to consider the specific dataset used

for this paper and the problem that this analysis was originally intended to help solve.

1.1 Motivation

The motivation for this paper comes from the Slave Societies Digital Archive (SSDA),
which is hosted at Vanderbilt University. Slave societies are defined as civilizations that
slave labor and/or trade is an essential part of their economies, politics, and lives as a

whole. The SSDA preserves documents related to African people and their descendants



in slave societies, mostly in the Iberian New World. According to the SSDA website [8],
“SSDA holdings include more than 700,000 digital images drawn close to 2,000 unique
volumes dating from the sixteenth through twentieth centuries that document the lives of
an estimated four to six million individuals.”

The majority of the documents in the SSDA are Catholic Church documents, which
mandated the baptism of African slaves and their descendants. With baptisms additionally
comes the eligibility for marriage and burial with the Catholic Church. Since the Catholic
Church is a centralized, hierarchical organization, there is a large level of consistency be-
tween documents that have been created in different parts of the world and at different
periods in time. Although the quality and the layout of documents may be different be-
tween record keepers, there are a base set of facts that remain consistent throughout the
documents. These facts include names, locations, dates, and the names of family members
[8]. These common facts between documents create a structure that lends itself to algo-
rithmic analysis rather than attempting to analyze each of the 700,000 images manually.
However, it is not yet feasible to simply extract the characters from the page using OCR
technology [7] and subsequently analyze the text. Thus, one must try to derive information
from other features to create a meaningful analysis of this archive.

The ultimate goal of this project is to develop a model for the procedural creation of
family trees based on the images in the SSDA. Using each record of baptisms, marriages,
and deaths, it may be possible to match the names, locations, and dates to create a story
that follows the genealogical progression of the descendants of African slaves in the Iberian
New World. Ideally, this tool may be used by a descendant of African slaves who knows
or can infer the name of an ancestor who appears in these documents, opening up a new
chapter of his or her ancestral history that wouldn’t have been uncovered otherwise.

To perform the analysis, the following approach was planned. First, the records must
be separated from each image. Every image in the SSDA contains at least one record,

empty page space, and extraneous parts of the image that do not provide useful information



Figure 1.1: Images from the SSDA

These are two example images found in the Slave Societies Digital Archive [9]. These images
display extraneous objects such as fingers and glimpses of the surface that the book is resting on.
Additionally, there are differences in lighting and page orientation between these two pages. Finally,
smudging and bleed-through between pages are also clearly evident.

such as parts of a table or fingers. Thus, it is necessary to isolate the records as blocks of
text from the SSDA images to analyze the data more efficiently. Since OCR technology
is not yet sufficiently advanced to directly glean character information from such degraded
images [7], another approach must be taken to match the names. Most likely, this approach
would have involved treating the written names as patterns and matching them with other
names that appear similar to surpass the idiosyncrasies of handwriting between different
record keepers. Finally, after matching the records by name, a family tree structure may
begin to emerge and unlock the ancestral history of millions around the world.

The first leg of the approach, separating records from the rest of their images, requires
using image segmentation. While segmentation research has grown tremendously in recent
years, research revolving around the segmentation of documents has not seen expansion.
However, the dhSegment [10] model and toolkit have demonstrated promising success in
this domain using generic computer vision models rather than document segmentation-

specific tools.



1.2  Contribution

The contribution of this paper will build on the idea from the dhSegment paper that
generic computer vision models can effectively perform document segmentation. We will
do this by evaluating generic computer vision models other than the ResNet50-based model
used in dhSegment and explore what other models may help advance this domain further.
We will do this based on the success of these models on the images found in the SSDA. We
hypothesize that the success of ResNet50 in classification tasks will allow it to be the most
successful generic building block used for constructing segmentation models compared to
other common convolutional neural networks.

While this paper does not propose a comprehensive model that solves the first leg of the
eventual family tree problem, it will lay the foundation for future attempts of this problem
and many others that lie adjacent to it. In Figure 1.1, it is evident that there are many
difficulties in the quality of historical document data. Between the confounding issues like
extraneous objects and page bleed-through, more research must be conducted to advance
this domain of analysis further. Thus, we will explore new avenues of research and potential
analyses that may help to further the success of historical document segmentation. Finally,
the appendices of this paper will introduce a comprehensive review of the state-of-the-art
techniques that are most successful in the segmentation of ancient documents and how they
work at a fundamental level, such that anyone who wishes to pursue research in this domain

can use this paper as a high-level overview.



Chapter 2

Related Work

2.1 Convolutional Neural Networks

Since image processing is a ubiquitous field with extreme variation between different
types of images and tasks, there is a significant number of segmentation methods that one
can use for any given task. We will focus primarily on segmentation using convolutional
neural networks (CNNs), although a review of classical segmentation methods and other
artificial intelligence methods can be found in the appendix.

One of the main CNNs that first made it to the academic community was AlexNet
[11, 12]. AlexNet’s main innovation was its unique implementation of a CNN that allowed
it to be trained more efficiently, bringing the cost down and raising the amount of data
learned. Some of these techniques include using Rectified Linear Units (ReLUs) as activa-
tion layers, custom GPU optimized algorithms for convolutions and training, and pooling
outputs together [12].

Building on top of AlexNet was the advent of the Visual Geometry Group (VGG) [13].
The VGG model incorporated the smallest possible convolutions to the earliest layers of
the model, allowing for quicker training than its predecessors. Convolutions allow feature
maps to be created from input data [14], so using the smallest possible convolutions allows
for the parameters of the convolutions to be more easily determined. Thus, using smaller
convolutions may have allowed for the most efficient creation of useful feature maps.

The next significant model discussed is GoogLeNet. GoogleNet used the insight that
the way to theoretically reduce parameter count and use of resources while training is to
go from densely-connected networks to sparsely-connected networks. However, the under-
lying hardware for modern computations is extremely inefficient in working with sparse

calculations. This paper was able to approximate sparse structures with existing dense



components, allowing for good results with less expensive networks [15].

An incredibly significant model to discuss is ResNet [16]. ResNet provided break-
throughs in training extremely deep networks by adding skip connections between layers.
These skip connections allow the training of the model to ensure that skipped layers are per-
forming meaningful tasks, creating a more efficient training process. This is an extremely
promising approach that has advanced the field of computer vision significantly.

Next, we have SqueezeNet [17]. SqueezeNet’s authors sought out AlexNet level accu-
racy with their network but wanted to use significantly less space. They did this with the
idea that convolutions that operate on every input channel use extremely large amounts of
space, so they created 1x1 convolutions to squeeze all the input channels into larger convo-
lutions that now require fewer parameters. Additionally, they used compression techniques
like Deep Compression [18] to make their model even smaller while still maintaining ac-
curacy.

Finally, we have DenseNet [19]. DenseNet uses the same principle the ResNet operates
with to add skip connections between layers. However, DenseNet adds from one layer to
every subsequent layer, rather than adding connections between every other (or third) layer.
Additionally, DenseNet uses fewer convolutional filters per layer due to the large amount
of information being passed between layers. The authors’ analysis on DenseNet shows that
early features that are extracted are still used by layers closer to the end of the model, which
is an extremely interesting result and poses questions about how low-level features can be

combined with higher-level features.

2.2 Using CNNs for Segmentation

The main architecture we discuss to adapt CNNs for segmentation is the U-Net [20].
The U-Net builds on top of the encoder-decoder architecture, which uses convolutional
layers to encode low-resolution maps of fundamental features in images and subsequently

decodes the feature maps to labels for each pixel using upsampling operations like pooling



and deconvolution [21]. U-Net uses this architecture but adds skip connections between
corresponding downsampling and upsampling layers. So, during the decoding process,
the upsampled data is combined with data that is never fully convolved, thus maintaining
information about high-level features in a given image. This allows the model to combine
the low-level knowledge about how to classify pixels with the high-level data such as where
these pixels may be located in the image. This base model architecture is heavily built upon
and significantly advanced the field of image segmentation.

The most interesting approach found specifically for the domain of historical document
segmentation is called dhSegment [10], which applies common deep learning architectures
and standard image processing techniques to perform pixel-wise segmentation. The dhSeg-
ment architecture implemented consists of a model that is extremely similar to a base U-Net
except that it uses a ResNet50 model as the encoder and utilizes standard upsampling and
concatenation of encoder features as its decoder.

The main insight from the dhSegment paper is that the authors built a highly successful
model for document segmentation using a generic, pretrained encoder-decoder structure.
This model can be trained on a variety of different tasks regarding document segmentation
such as page extraction, layout analysis, and line detection. Since the variety of tasks that
can be performed on documents is so expansive, the authors additionally used many differ-
ent types of image processing techniques to further improve the accuracy of their model.
These image processing techniques such as thresholding or shape vectorization are standard
processes that do not require machine learning analyses. Thus, the task-specific application
of post-processing techniques on a general model opens the door for a large, generalizable
tool for document segmentation that does not require much training, but rather requires the
domain knowledge to construct accurate results using simple processing techniques on its
output. The success that comes from dhSegment using only generic deep learning models
as building blocks is extremely impressive, so we will further evaluate the viability of other

generic building blocks in their applications to the segmentation of historical documents.



Chapter 3

Model Implementation and Training

3.1 Dataset

The dataset used for this analysis is a collection of documents from the SSDA that
consists of the baptismal records of people of color from the Iglesia de San Agustin in
Ceiba Mocha, Cuba from 1872 to 1892 [9]. Each image in the dataset is a photograph of
a page that contains one or more records. As seen in Figure 1.1, these images also contain
extraneous information, such as a hand that is holding the page flat or the table that the
record book is resting on. The images are labeled such that the two categories of records
to be extracted are different colors from the rest of the image, including the blank page
space, table, and other extraneous information. This data archive is available publicly on
the SSDA website; however, there are no labels for the data. For the sake of time and cost,
a dataset of only around 100 images was created to train and evaluate the performance of a

model.

3.2 dhSegment

We use the pre-trained dhSegment model to form a baseline measure of success by
which we can evaluate other models. The dhSegment model implementation is included in
the paper and can be found on GitHub [10]. The model is implemented as an API wrapped
around a deep learning model built with TensorFlow and Keras. Since the provided dhSeg-
ment model was trained for document-specific segmentation tasks by its authors, its pre-
trained weights allow for quick and efficient training. Using the built-in training method
from the dhSegment API, the model can predict the correct pixel value 92% of the time.
However, the mloU accuracy, which is more reflective of the success of the model, is only

about 70.7%. Given the fact that the training dataset is only around 80 images, this per-



Figure 3.1: Training Data

This is an example of the data used in the training and test set: an image from the SSDA (left) and
its corresponding segmentation mask (right). The red masks represent the main-body blocks of text
while the green masks represent column blocks of text.

formance is extremely impressive and demonstrates that the power of this architecture is
quickly learning how to analyze ancient documents.

After the initial round of training, the out-of-the-box results were extremely promising.
However, with about 70% mloU accuracy, there is room for improvement. By the nature of
how the dhSegment toolbox is constructed, the ability to look inside the model and make
improvements is restricted. There is a wrapper class that is created around pure Tensorflow.
However, this wrapper did not include functionality such as built-in GPU-optimized data
augmentation or the ability to experiment with different loss functions. Thus, dhSegment
provides an extremely solid proof-of-concept that a convolutional neural network can label
these historical documents sufficiently well, so we construct other generic models in the

fastai framework and evaluate their performance.



3.3 Fastai

3.3.1 Implementation

FastAl [22] provides much of the custom functionality necessary to experiment and
augment the results that dhSegment did not provide. For example, it gives ways to easily
change the loss function of the model during training. Another benefit is the ability to add
data augmentation when loading the dataset and perform it on the fly with GPU optimiza-
tions. These additions allow for the relatively quick tuning of hyperparameters that can
allow the model to perform better.

One extremely important feature of fastAl is the function ‘unet_learner’. This function
allows the user to pass in an architecture of a standard, pre-trained convolutional neural
network for use as the encoder of a U-Net model that can then be trained and tested. Ad-
ditionally, fastAl provides a custom implementation of the cross-connections among the
encoding and decoding passes of the U-Net such that it can operate with any encoder ar-
chitecture that is passed in.

One of the notable discussion points of the dhSegment is that the architecture that they
created was a combination of generic building blocks. The authors of dhSegment used
a ResNet50 architecture for training and evaluation, but their work opened the door to
say that many other generic architectures can work for similar functions. The fastAl li-
brary is compatible with any of the models available in the torchvision [23] library. Thus,
the dhSegment architecture can be recreated with any CNN as its encoder and its per-
formance evaluated. These torchvision models include the ones discussed before such as
AlexNet, VGG, GoogLeNet, and ResNet. Additionally, the torchvision library includes
many slightly different alterations of these models that can also be evaluated. We will now

use fastai to construct these altered U-Net models and evaluate them on the SSDA dataset.
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3.3.2 Training

To train and evaluate different generic building blocks in place of a ResNet50 as the
encoder of a U-Net, we used the built-in torchvision models that were available in fas-
tai. These models are different variations of ResNet, SqueezeNet, DenseNet, VGG, and
AlexNet. After the U-Net architecture was created using these pretrained models as the
encoder, we decided to use the cross-entropy loss function [24]. In the initial round of
training, we performed segmentation into the three classes seen in Figure 3.1: main text,
column text, and not text. However, we found that the training process resulted in models
that minimized the amount of “not text” that was labeled incorrectly, rather than labeling
it correctly as “main text” or “column text”. With a larger dataset, we could have used a
weighted cross-entropy loss function to account for the imbalance text classes, but with the
limited amount of data we elected to combine “main text” and “column text”. Thus, we
performed a binary classification on “text” or “not text” with relatively balanced classes, so
a cross-entropy loss function was an appropriate function to minimize.

The hyperparameters were selected to be either the default or through cross-validation
schemes. fastAl’s built-in function to find the optimal learning rates, ‘find_Ir’, was used.
Additionally, each training epoch was performed with the built-in ‘fine_tune’ function,
which includes training defaults specifically used for transfer learning.

The actual training process consisted of training each model between 26 to 30 epochs
and evaluating their accuracy on the testing dataset at several checkpoints. This large
amount of epochs relative to the amount of training data was done to train each model
to its best performance and to observe how quickly its performance may degrade due to
overfitting. To train each model, we began by solely training its last layer in the first set of
epochs. Then, the entire model was unfrozen and trained. Subsequently, we progressively
froze the earlier layers and continued training until either the models overfit or around 30

epochs were completed.
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Chapter 4
Results and Discussion

Following are the results of our evaluation of different the different base encoders of
the UNet on the given segmentation task. Figure 4.1 represents the mloU accuracy over
each checkpoint epoch for the different ResNet models evaluated. Figure 4.2 represents
the mloU accuracy for each of the SqueezeNet and DenseNet models evaluated. Figure
4.3 represents the mIoU accuracies achieved for the VGG and AlexNet models throughout

their training. Finally, Figure 4.4 displays the same data between the best of each type of

model.
ResNet mIoU Accuracy by Epoch
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Figure 4.1: ResNet-Encoder Comparison
The testing accuracy for each U-Net with a ResNet encoder at given epochs. The accuracy was
measured at epoch 5, epoch 10, and every other epoch until the model was determined to sufficiently

overfit. The ResNet101 base seems like it does not overfit, but it never fit in the first place and its
relative success was deemed to be random by visual inspection.

In Figure 4.1, it can be seen that the most successful models used resnet50 and resnet18
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SqueezeNet and DenseNet mIoU Accuracy by Epoch
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Figure 4.2: SqueezeNet-Encoder and DenseNet-Encoder Comparison

The testing accuracy for each U-Net with either a SqueezeNet or DenseNet encoder. The accuracy
was measured at epochs 5, 10, and every other epoch thereafter. The models, after learning what
the targets for segmentation were, did not improve or worsen significantly after many epochs.

as their encoders. The model with resnet34 performed the worst by far, whereas the models
with resnet101 and resnet152 performed relatively well initially but did not improve very
much. This demonstrates how a CNN can experience tradeoffs as a result of increasing the
number of layers. When there are more layers in a CNN, there are more extracted features
as the result of convolutions, but the question remains whether these features can be used
efficiently and effectively. As the size of the model grows, the complexity and thus the
number of parameters used also increases. Thus, training the models requires changing
more parameters. This increases the possibility of overfitting. This seemed especially
true with resnet101 and resnet152, as they both had very high training accuracies, but had
essentially random guesses on the testing set. The most interesting part of this tradeoff is
how it operated when going up from 18 layers to 50 layers. Since 18 layers are relatively

few, the tendency to overfit was lesser, which allowed the model that is based in resnet50
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VGG and AlexNet mloU Accuracy by Epoch
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Figure 4.3: VGG-Encoder and AlexNet-Encoder Comparison

The testing accuracy for each U-Net with either a VGG or AlexNet encoder. AlexNet had very high
accuracy in the beginning but fell off after training. This is not due to chance, as this happened
multiple times when training from scratch.

to become accurate very quickly without deriving newer features in its layers. Then, the
model containing a resnet34 encoder may have had too many layers such that it overfit, but
not enough layers to derive any high-level features that may have helped its performance.
Finally, the model with a resnet50 encoder had enough parameters such that it may easily
overfit, but the added layers gave an extra level of depth that allowed it to work out newer
features and gain accuracy with more training than resnet18 required.

Figure 4.2 shows how both variations with SqueezeNet encoders had the best accuracy
out of all of the out-of-the-box models available on fastAl. Additionally, DenseNet en-
coders performed extremely well. It is interesting to note how both of these base encoder
architectures created models that performed very accurately without much training but did
not significantly increase their levels of accuracy or begin to overfit after excessive training.

One such explanation for why these models perform better than ResNet is that they both
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mloU Accuracy by Epoch
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Figure 4.4: Inter-Model Comparison

The testing accuracy for the best from each model type. Two types of ResNet models were included
since they performed nearly equally, which is notable and will be discussed later. This comparison
of different model types allows for easy visualization of relative accuracy and variability.

have significantly fewer parameters than ResNets, which is consistent with the same logic
that allows the model based on the resnet18 encoder to perform well.

Figure 4.3 demonstrates how AlexNet required very little training to perform well while
VGG did not change its performance even after training extensively. AlexNet, being one of
the more successful yet extremely early CNNs, is composed of very few layers compared
to the CNNs that have been created since. The fact that it is much smaller and has fewer
parameters can help to explain how it quickly picked up the important features in training
but also how further training without the depth required to make complex features allowed
for overfitting.

Figure 4.4 provides an overview of how all the types of models compare against each
other. It is very interesting to see how ResNet-based encoders provide much more vari-

ability in the model. The model may be basing its decision-making on features that, when
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Target/Prediction Target/Prediction
Figure 4.5: SqueezeNet and ResNet Outputs

The real and predicted output of a test set image for both squeezenetl_1 (left) and resnet50 (right)
encoder-based models. By visual inspection, the SqueezeNet based model encapsulates the logic of
where text blocks may occur better than the ResNet-based model.

slightly altered, provide very different results. Additionally, another very notable result
in this chart is how several of the tested CNN encoders create models that do not per-
form much better or worse after training than before. Finally, the fact that SqueezeNet
and DenseNet encoders perform better than the other models for a majority of the training
and evaluation process opens the door for further research into these architectures and their
applicability in document analysis. It is especially interesting to note that the SqueezeNet
output in Figure 7 seems to be more block-based than the ResNet, which may help to

explain how SqueezeNet can encapsulate blocks of text with success.
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Chapter 5

Conclusion

Due to the nature of the historical documents, their segmentation is a different type
of task than what most of the pre-trained state-of-the-art CNNs are built to do. While
there is not an extensive amount of literature on document segmentation since the rise in
popularity of CNNs, some research is beginning to push the envelope. The dhSegment
paper and library provided an extremely interesting approach and toolkit that can be used
for the segmentation of historical documents. They demonstrated that it is possible to use
general computer vision models and standard post-processing techniques to outperform
specifically dedicated systems that were built for document segmentation. The dhSegment
authors did this by inserting a ResNet50 encoder into the U-Net architecture. We build on
their discoveries by training and evaluating other general-use computer vision models as
the encoders in the U-Net architecture.

With a small amount of data, we were able to train and evaluate several important CNNs
such as other ResNets, SqueezeNet, DenseNet, and more. Our initial hypothesis that a
ResNet50 encoder would perform the best on segmentation tasks rather than other generic
building blocks is not supported by our experimental evidence. Due to the lack of diversity
within the dataset and the small number of images analyzed, our results are not conclusive
that any of these given models work better than ResNet. However, we demonstrate that
other models like SqueezeNet and DenseNet perform better on our specialized dataset and
should be considered targets for further research in the context of document segmentation.

In summary, the most notable lessons learned are listed:

* Deep learning may outperform mature, classical methods of document analysis. The
lack of ubiquity of a single or subset of classical methods used for image-based

document analysis demonstrates that the existing tools are not sufficient to create

17



meaningful analyses. Deep learning is a relatively new technique and is already

making significant progress in its ability to create successful document analysis [11].

* Generic deep learning techniques, rather than specialized document analysis sys-
tems, are very successful in historical document segmentation. With the advent of the
dhSegment toolbox [10], it was shown that the combination of generic deep learning
building blocks, ResNet and U-Net architectures, shows promising results in histori-

cal document analysis.

* Other unspecialized deep learning building blocks have the potential to improve on
dhSegment’s original architecture. We show that other generic CNN-based architec-
tures, especially using SqueezeNet [17] and DenseNet [19], were able to outperform
ResNet50 on our specific dataset. This result is not definitive due to the limited size

and scope of the data used, but it is nonetheless an interesting outcome.

In the future, we would explore the performance of these architectures on larger datasets
and incorporate them into a toolbox with the post-processing techniques mentioned by the
dhSegment authors. Additionally, we would explore the intricacies of the training process
concerning the variability seen in training the ResNet models and the lack thereof within the
training of the DenseNet models and others. Finally, the use of the transformer-based mul-
tidimensional long-short-term-memory [25], another type of artificial intelligence model,

is a promising technique for document analysis that we would also like to explore.
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Chapter 6

Appendix A: Alternate Segmentation Tools and Methods

6.1 Classical Image Segmentation Techniques

Classical image segmentation techniques can be defined as processing techniques that
are either algorithmically based or that are based on classical machine learning or statistical
methods. Some examples of these techniques are edge-based, partial differential equation
(PDE) based, threshold-based, region-based, clustering-based, or fuzzy theory-based [26].

Edge-detection can be defined as labeling pixels as either on-edge or off-edge, where
an edge is a boundary between two adjacent parts of an image [27]. Edges are useful in
a variety of diverse applications, so it is difficult to create a formal definition of an edge.
Thus, there are many different ways to go about discovering edges based on the different
requirements of an edge. One such algorithm that is considered the benchmark for edge
detection is the Canny edge-detection algorithm [28]. The Canny algorithm uses Gaussian
convolutions to reduce noise, finds edge strength and direction using the Sobel operator,
and uses further statistical methods to clean up and connect edges. The Sobel operator is
loosely defined as a convolutional operation on an image that uses two kernels to calculate
the vertical and horizontal derivatives at a given pixel and determine if it is an edge [29].
While there are other edge-detection algorithms, we only discuss the Canny to provide an
introduction into how edges may be found programmatically. After edges are discovered,
they can then be used to separate the images into discrete categories to fulfill the goal of
segmentation.

Threshold-based segmentation is one of the simpler kinds of image segmentation. Us-
ing either intensity or the greyscale value, one can create a binary partition of the image
based on a selected threshold value. A threshold can be calculated with a histogram-based

technique, where each pixel value is inputted into a histogram. The threshold value can
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then be determined from an average of the histogram peaks, a minimum between peaks, or
other attributes that may be found in the chart. This can be done globally, where one thresh-
old is used for the entire image. This can also be done locally by splitting the image into
sub-images and calculating a threshold value for each of these sub-images. This is because
different parts of the images may have different amounts of lighting, so a single threshold
may not effectively capture the correct labeling schema. Thus, under the assumption that
smaller image regions are more likely to have a more approximately uniform light distri-
bution, splitting up the image will help to determine more effective thresholds [30]. After
each pixel is compared to its threshold, the resulting image is segmented into its predicted
categories.

Partial differential equation-based segmentation methods are mostly used for quick cal-
culations and image enhancement. They can be used to enhance the edges of an image
and remove the noise [26]. They are based on topological theory, where the intensity or
color values of pixels are converted into curves, and these curves are analyzed by topo-
logical tools to determine their homogeneity and other properties, allowing pixels to be
categorized and thus segmented [31].

Region-based segmentation methods are those that separate the image into different
regions based on similar characteristics. There are two types of region-based methods:
growing and merging. Region growing methods begin with an initial seed in one location
of the image. Then, all of the neighboring pixels that belong to the categorical group of
the seed, based on a specific condition or thresholded value, are added to the seed, forming
a region. Then, the process is repeated at the edges of the region until the region can no
longer grow. This final region represents a segment that may be derived from the image.
On the other hand, region merging methods start by partitioning the image many times and
merging the individual partitions until they satisfy some conditions [32].

Clustering-based segmentation methods split the image into clusters of pixels that have

similar characteristics. One example of a method that does this is the k-means method [33].
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This method selects k initial clusters center and categorizes each pixel by which cluster
center it is closest to. In this algorithm, distance can be defined by any characteristic of
the pixel, such as color or intensity. Then, the cluster centers are all recalculated to be the
average of all of the pixels in its cluster. This recategorization and reclustering continue
until pixel labels no longer change. This method thus leaves the image in k segments,
distinguished by a chosen characteristic, rather than by their region. Fuzzy theory-based
methods build upon the previously mentioned cluster methods by realizing that decision-
boundaries are not always clearly defined. This uses statistical methods to calculate the
probability of pixels belonging to each class, rather than solely labeling them as a single
class [34].

Many of the mentioned methods operate based on similar characteristics of individual
pixels or groups of pixels to perform segmentation. While this may be effective for images
that have a distinctly defined foreground and background or have high contrast between
classes, this may not be suitable for operating on documents. Since documents are usually
monochrome, locating different parts of the document will rely less on individual pixel

values and more on the logical significance of certain markings.

6.2 Using CNNs for Segmentation (cont.)

Due to the success of CNNs for classification tasks, their applications to segmentation
were explored [11]. The first significant development in this application comes from using
Fully Convolutional Networks (FCNs) [35]. FCNs are similar to CNNs, except that they
only contain convolutional layers. Using FCNs allowed models to create feature hierarchies
that can utilize the underlying indicators of a feature to produce a per-pixel classification
schema [11]. Building off of the original FCN for segmentation, the encoder-decoder ar-
chitecture for segmentation was created.

The encoder-decoder architecture first uses an encoder to create low-resolution maps of

fundamental features that exist in the image processing task [21]. It does this with multiple
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sequences of convolutional layers, batch normalization, and ReLUs. After the encoding of
underlying features is completed, the decoder maps the underlying features to labels for
each pixel. This is called upsampling, which can either be done with pooling functions or

deconvolutions.

6.3 Document Segmentation

Document segmentation is growing ever more important as data moves from the phys-
ical world to the virtual world. Volumes of paper documents will be uploaded digitally,
and while humans can read them easily, machines have a much harder time doing so. The
ability to automatically extract and process regions of documents can revolutionize both
current workforce processes and the analysis of documents made before the era of digital
data.

Before the recent advancements in artificial intelligence, classical algorithms had been
used to try to tackle this problem of document segmentation. Documents had either been
segmented with a top-down or a bottom-up approach [36]. A top-down approach begins
with the whole document and divides it into logical subsections until no further divisions
can be made, while a bottom-up approach begins with small elements of the document such
as pixels. For more defined and clearer documents than the ones of the SSDA archive, some
algorithms focus on a few geometric features such as straight lines or by using filtering
techniques such as a run-length-smearing-algorithm [37]. Then, other algorithms may use
classical machine learning techniques like clustering or function analysis. These algorithms
discover features in the dataset but need to be trained to make sense of the data and how to
interpret what features may mean.

Finally, recent advances in artificial intelligence and computer vision have allowed
neural networks to attempt the segmentation problem on documents. They approach this
through a pixel-by-pixel approach of classification into one of the segmented classes. Doc-

uments, especially historical ones, are extremely difficult to segment due to their degraded
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nature and inconsistent layouts [38]. For a complicated visual task like this, it has been
found that convolutional neural networks and U-Net style architectures have been very ef-
fective [10]. Another type of architecture that can be used for document segmentation is the
multidimensional long-short-term-memory model (MDLSTM). A long-short-term memory
model (LSTM) is extremely good at sequence processing [25], and one can treat an image
as a sequence of pixels. An MDLSTM is similar to an LSTM except that it can process
data that exists in multiple dimensions, such as an image. Thus, it can still reap the benefits
of an LSTM’s sequence processing but can do so in a way that treats an image as a two-
dimensional sequence. This allows the model to notice patterns between pixels that may
not be adjacent to each other. This model can help capture the dependencies of pixels on
indicating features that may be far away on the page [39]. For example, a column marker
can begin on the left side of the page and the column can extend to the right side, but one
can only know that this column can still be classified as such by noticing the marker on the
left. Experiments with MDLSTMs have shown that even with a relatively simple model,
one can still derive success in segmentation tasks on old documents, even when they may

include a lot of noise and degradation.
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Chapter 7

Appendix B: Tuning Deep Learning Segmentation Models

7.1 Transfer Learning

While huge advances have been made in the architecture of deep learning models, they
still require massive amounts of labeled data to train [40]. To train a computer vision neural
network from scratch is to teach a computer to “see” from scratch, which is an extremely
time-consuming and costly process. Thus, deep learning networks often employ transfer
learning, which uses the domain knowledge of a model trained for one problem and applies
it to another problem [41]. For example, a model that is trained to classify a dog may also be
retrained to classify a cat much more efficiently than training a cat classifier from scratch.
The original model’s underlying domain knowledge, from low-level features such as lines
and edges to high-level features like fur and limbs, can be efficiently reutilized to train the
model to perform a new task.

When performing transfer learning, it can be efficient to only train the parameters of
the later layers since the knowledge used in the earlier layers may not change. However,
it has been shown that training can be accelerated by freezing and unfreezing layers of pa-
rameters, respectively disallowing and allowing them to change during model training [42].
A practice we employ is unfreezing the entire model’s parameters and then progressively
freezing the layers until almost all the layers besides the last few are frozen. This allows
the model to alter some of its underlying layers, and thus its underlying knowledge, to be
slightly more suitable and specialized for the given task at hand. Since earlier layers need
to change less, they are progressively frozen to make training more efficient than changing

every parameter.
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7.2 Data Augmentation

As stated before, deep learning networks require a massive amount of data to train
[40]. To overcome this issue when the size of the dataset is limited, data augmentation
can be used to increase the amount of training data available. This can be done by ei-
ther warping or oversampling [43]. Warping is altering existing data through a series of
transformations including but not limited to rotations, mirroring, cropping, noise injection,
and color space transformations. Oversampling is artificially creating new data points by
either mixing existing ones or generating fake data by other deep learning methods. Any
number of augmentations can be combined to vastly increase the size of the dataset, but
one must consider the task at hand to create reasonable augmentations. For example, in a
dog classifier, it makes sense to flip existing data horizontally but not vertically, as dogs
standing upside down does not naturally exist and thus are not in the problem space. How-
ever, with geospatial or satellite data, the orientation usually does not matter so any sort of
reflection or rotation is consistent with the range of possibilities in the data. Oversampling
is especially interesting since creating fake images is counterintuitive to the goals of data
augmentation. By mixing two images, the resulting image will look incorrect to a human
observer, but through experimentation, it has been shown that it reduces classification er-
rors, since mixed images can help the model isolate the important identifying features that

persist between different original images [43].

7.3  Loss Functions

As important as neural network architecture is in attaining good model output, one must
also use the right loss function to serve as a target to optimize in training [44]. There are
several different types of loss functions that one can choose from in a segmentation prob-
lem. First, there are cross-entropy loss functions [45]. Cross-entropy loss functions mea-

sure the difference between the probability distributions of the real output and the predicted
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output. Cross-entropy loss functions can be further altered to account for imbalances be-
tween class sizes. Additionally, cross-entropy loss functions can be altered to weigh “hard”
examples more heavily.

A different family of loss functions is based on Dice loss. This type of loss function
uses the Dice coefficient, which calculates how similar the prediction and truth images
are, and returns a loss based on that value [24]. Another type of loss function is Tversky
loss. Tversky loss is similar to Dice except that it especially weighs against false positives
and false negatives. The Tversky loss can also be extended such that it weights harder
examples more heavily. Finally, we have Sensitivity Specificity Loss [46]. This type of loss
is calculated as a proportion of positives predicted to all real positives and a proportion of
negatives predicted to all real negatives. This allows for one to account for class imbalances

as well.

7.4 Evaluation Metrics

There are five main evaluation metrics for an image segmentation problem [11]. First
is Pixel Accuracy, which only consists of the ratio of properly labeled pixels to all pixels.
Next is Mean Pixel Accuracy, which averages the Pixel Accuracy of each class. Then, there
is the mean Intersection over Union (mloU). mloU is the most common metric used in seg-
mentation and is defined as the per class ratio of true positives to the sum of true positives,
false negatives, and false positives, which is then averaged between classes. Finally, we
have the Frequency Weighted Intersection over Union, which is similar to mIoU but allows

for considerations to be made based on the relative frequency of appearance for each class.
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