
Byzantine Resilient Consensus, Learning, and Optimization in Distributed Multi-Agent Systems

By

Jiani Li

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

May 31, 2021

Nashville, Tennessee

Approved:

Xenofon Koutsoukos, Ph.D.

Abhishek Dubey, Ph.D.

D. Mitchell Wilkes, Ph.D.

Gautam Biswas, Ph.D.

Waseem Abbas, Ph.D.

To my grandparents.

ii

Acknowledgments

My deep gratitude goes first to my PhD advisor, Dr. Xenofon Koutsoukos, who supported my study and

research for the last five years. The accomplishment of this thesis would not have been possible without his

motivation, expertise, and guidance.

Besides my advisor, I would like to thank Dr. Gautam Biswas, Dr. Abhishek Dubey, Dr. D. Mitchell

Wilkes, and Dr. Waseem Abbas, for being members of my thesis committee. In addition, I would like to

thank my coauthors for the help and insights they provided when conducting research together. In particular,

I would like to thank Dr. Waseem Abbas, Feiyang Cai, Chandreyee Bhowmick, and Weihan Wang. My

sincere thank also goes to my other colleagues at Vanderbilt University and Institute for Software Integrated

Systems for their insightful comments and useful feedback during group meetings.

Finally, thank you Weihan, for taking risks to travel back to the U.S. during Covid-19, for the patience

and company, and for bringing me love and happiness.

iii

Table of Contents

Dedication . ii

Acknowledgments . iii

List of Tables . ix

List of Figures . x

Notation and Symbols . xiv

1 Introduction . 1

1.1 Motivation . 1

1.2 Challenges . 2

1.3 Contributions . 3

1.4 Organization . 6

1.5 Main Concepts . 7

2 Related Work . 9

2.1 Resilient Distributed Approximate Consensus . 9

2.1.1 Resilient Distributed Consensus over Scalar States 10

2.1.2 Resilient Distributed Consensus over Vector States 10

2.2 Resilient Distributed Learning and Optimization . 12

2.2.1 Consensus-based Resilient Cooperation . 13

2.2.2 Distributed Multi-Task Learning and Clustering . 15

2.2.3 Task Similarity-based Resilient Cooperation . 16

2.3 Resilient Distributed Reinforcement Learning . 17

2.3.1 Distributed Reinforcement Learning in Independent MDPs 19

2.3.2 Distributed Reinforcement Learning in A Shared MDP 21

2.3.3 Resilience in Distributed Reinforcement Learning 21

2.4 Comparison to This Dissertation . 22

3 Resilient Vector Consensus in Multi-Agent Networks Using Centerpoints 23

3.1 Introduction . 23

3.2 Notations and Preliminaries . 25

3.3 Background and Approximate Distributed Robust Convergence (ADRC) Algorithm 26

3.3.1 How Can We Improve the Resilience of ADRC? 27

iv

3.4 ADRC Using Centerpoints . 28

3.4.1 Safe Point and the Interior Centerpoint . 28

3.4.2 Centerpoint-based Resilient Consensus in 2-D . 30

3.4.3 Computing Centerpoint in 2-D . 30

3.4.4 Centerpoint-based Resilient Consensus in 3-D . 31

3.4.5 Centerpoint-based Resilient Consensus in d-dimensions for d > 3 32

3.5 Evaluation . 33

3.6 Resilient Asynchronous Approximate Vector Consensus Using Centerpoints 34

3.6.1 Iterative Algorithms and Resilience Bounds . 35

3.6.2 Iterative Algorithms Using Centerpoints . 36

3.6.3 Evaluation . 37

3.7 Conclusion . 38

4 Byzantine Resilient Distributed Learning in Multi-Robot Systems Using Centerpoints 39

4.1 Introduction . 39

4.2 Related Work . 41

4.3 Problem Formulation . 43

4.3.1 Distributed Learning . 43

4.3.2 Byzantine Attacks and Resilient Distributed Learning 44

4.4 Resilient Distributed Learning . 45

4.5 Resilient Aggregation . 49

4.5.1 The Safe Region . 50

4.5.2 Centerpoint-based Resilient Vector Consensus . 51

4.6 Evaluation . 53

4.6.1 Target Pursuit . 53

4.6.1.1 Background . 54

4.6.1.2 Static Target . 54

4.6.1.3 Time-Varying Target . 56

4.6.1.4 Experiments on Robotarium . 56

4.6.2 Pattern Recognition . 58

4.7 Discussion and Conclusion . 61

5 Byzantine Resilient Distributed Diffusion in Least-Mean-Square (LMS) Algorithms for Multi-Task

Networks . 62

v

5.1 Introduction . 62

5.2 Related Work . 64

5.3 Preliminaries . 65

5.4 Problem Formulation . 68

5.4.1 Single Node Attack Model . 68

5.4.2 Network Attack Model . 69

5.4.3 Resilient Distributed Diffusion . 69

5.5 Single Node Attack Design . 70

5.5.1 Gradient-based Attack Design . 70

5.5.2 Sufficient Conditions and Convergence Analysis 71

5.6 Network Attack Design . 73

5.6.1 Impact of Compromised Nodes on Normal Nodes 73

5.6.2 Minimum Set of Compromised Nodes to Attack the Entire Network 75

5.7 Resilient Distributed Diffusion . 76

5.7.1 Resilient Diffusion Algorithm (R-DLMSAW) . 76

5.7.2 Trade-off Between Resilience and MSD Performance 79

5.8 Evaluation . 80

5.8.1 Strong Attacks . 82

5.8.2 Resilient Diffusion for Strong Attacks . 84

5.9 Weak Attacks . 85

5.9.1 Evaluation . 88

5.10 Conclusion . 90

5.A Proofs . 91

5.A.1 Proof for Lemma 5.1 . 91

5.A.2 Proof for Lemma 5.2 . 91

5.A.3 Proof for Lemma 5.3 . 92

5.A.4 Proof for Proposition 5.1 . 92

5.A.4.1 Stationary state estimation . 93

5.A.4.2 Non-stationary state estimation . 93

6 Byzantine Resilient Distributed Multi-Task Learning . 96

6.1 Introduction . 96

6.2 Related Work . 98

vi

6.3 Distributed Multi-Task Learning . 99

6.4 Problem Formulation . 100

6.5 Loss-based Online Weight Adjustment . 101

6.5.1 Weight Optimization . 101

6.5.2 Filtering for Resilience . 103

6.5.3 Computational Complexity . 104

6.6 Byzantine Resilient Convergence Analysis . 104

6.7 Evaluation . 107

6.7.1 Datasets and Simulation Setups . 108

6.7.2 Results . 112

6.8 Conclusion . 112

7 Distributed Clustering for Cooperative Multi-Task Learning Networks 114

7.1 Introduction . 114

7.2 Related Work . 116

7.3 Clustered Multi-Task Network . 117

7.4 Adaptive Clustering . 118

7.4.1 Clustering Hypothesis . 118

7.4.2 Convergence and Learning Performance . 120

7.4.3 Optimal Combination Weights . 123

7.5 Evaluation . 124

7.5.1 Target Localization . 125

7.5.2 Digit Classification . 127

7.6 Conclusion . 128

8 Byzantine Resilient Aggregation in Distributed Reinforcement Learning 129

8.1 Introduction . 129

8.2 Related Work . 130

8.3 Background . 131

8.4 Problem Formulation . 132

8.5 Resilient Aggregation in Distributed RL . 133

8.6 Evaluation . 134

8.6.1 Simulation Setup . 136

8.6.2 Simulation Results . 137

vii

8.7 Conclusion . 137

9 Adaptive Learning from Peers for Distributed Actor-Critic Algorithms 138

9.1 Introduction . 138

9.2 Distributed Actor-Critic in Multi-Agent Networks . 140

9.3 Adaptive Learning in Distributed Actor-Critic Algorithms 142

9.3.1 In the Case of Linear Function Approximations . 142

9.3.2 Generalize the Method to Neural Networks . 143

9.4 Convergence Analysis . 145

9.5 Evaluation . 146

9.6 Conclusion . 151

9.A Proofs . 152

9.A.1 Proof for Lemma 9.1 . 152

9.A.2 Proof for Lemma 9.3 . 153

9.A.3 Proof for Theorem 9.1 . 153

9.A.4 Proof for Theorem 9.2 . 154

10 Conclusion . 156

Bibliography . 178

viii

List of Tables

Table Page

2.1 Resilient distributed approximate consensus algorithms. 11

2.2 Summary of related work on resilient consensus. 12

2.3 Consensus-based resilient aggregation rules for distributed learning algorithms. 15

2.4 Summary of related work on resilient distributed learning. 18

6.1 CNN architecture of digit classification . 110

9.1 Max average return for TD3. 147

9.2 Max average return for DDPG. 147

9.3 Max average return for SAC. 148

ix

List of Figures

Figure Page

2.1 Resilient aggregation rules in distributed learning algorithms. 19

2.2 Distributed reinforcement learning algorithms. 20

3.1 (a) Five normal (blue) and a single adversarial node. Shaded area is the convex hull of nor-

mal nodes. (b) Tverberg partition consisting of two subsets, out of which one contains only

normal nodes. Convex hulls of both subsets have a non-empty intersection, corresponding to

a Tverberg region. (c) Intersection of Tverberg region and the convex hull of normal nodes. . 27

3.2 S is partitioned into X,Y, Z each of which contains n/3 points. If there are n/3 adversarial

nodes then points in either of these three sets can all be adversarial. We require that an nf -

safe point must lie in the convex hull of normal nodes for all three possibilities. This is not

possible because intersection of three possible sets of normal nodes X ∪ Y , Y ∪Z, Z ∪X is

empty. Therefore, there is no nf -safe point in this case. 29

3.3 One iteration illustration of replacing points in L ∩ U , L ∩ D, R ∩ U , and R ∩ D by their

Radon points: (a) point set of 100 points, (b) intersections of the four half-planes, and (c)

replacement of points in the intersections by their Radon point. 31

3.4 (a) Initial positions of robots. (b) Final positions of robots using approximate Tverberg parti-

tion based algorithm. (c) Final positions using centerpoint based algorithm. 33

3.5 Positions of normal robots as a function of iterations using (a) approximate Tverberg partition

based, and (b) centerpoint based algorithms. 34

3.6 Asynchronous approximate vector consensus: (a) Initial positions of robots. (b) Final po-

sitions of robots using approximate Tverberg partition based algorithm. (c) Final positions

using centerpoint based algorithm. 36

3.7 Asynchronous approximate vector consensus: positions of normal robots as a function of

iterations using (a) approximate Tverberg partition based, and (b) centerpoint based algorithms. 37

4.1 Aggregating 9 points including 2 Byzantine points using different aggregation rules: all the

aggregated results fall outside of the convex hull (blue polygon) of the normal points. 40

4.2 Illustration of Safe1(S) (shaded region) for a set of five points in (a). In (b)–(f), black nodes

are normal, red nodes are Byzantine, and the area spanned by thick lines is the convex hull of

the normal nodes. 50

x

4.3 Network connectivity (blue nodes: normal agents, red nodes: Byzantine agents). 53

4.4 Mobile network’s final deployment for static target (from left to right: noncooperative SGD,

cooperative SGD with average/CM/GM/centerpoint-based aggregation). 55

4.5 Static target estimates θk,i (1st dimension). From left to right: noncooperative SGD, cooper-

ative SGD with average/CM/GM /centerpoint-based aggregation 55

4.6 Estimation accuracy ‖θk,i − θ∗‖2 for k ∈ N with different aggregation rules for static target

(lines are the average values, and shaded area is the range). 56

4.7 Mobile network’s final deployment for time-varying target (from left to right: noncooperative

SGD, cooperative SGD with average/CM/GM/centerpoint-based aggregation) 57

4.8 Time-varying target estimates θk,i (1st dimension). From left to right: noncooperative SGD,

cooperative SGD with average/CM/GM/centerpoint-based aggregation. 57

4.9 Estimation accuracy ‖θk,i−θ∗‖2 for k ∈ N with different aggregation rules, for time-varying

target (lines are the average values, and shaded area is the range). 58

4.10 Network deployment under no attack for the multi-robot target pursuit. 58

4.11 Network deployment with five Byzantine robots for the multi-robot target pursuit. 58

4.12 (a) Real data distribution, (b)-(d) data with outliers received by normal agents. 59

4.13 Decision boundary achieved by different aggregation rules when 3 out of 10 agents are Byzan-

tine. 59

4.14 Test loss on 500 test data samples from the real data distribution without outliers (Normal

agents receive training data with uniform outlier rate 20%). 60

4.15 Test loss on 500 test data samples from the real data distribution without outliers. (Normal

agents receive training data with different outlier rates from 10% to 30%). 60

5.1 Illustration of target localization. 81

5.2 Network topologies in the case of DLMSAW algorithm. 83

5.3 Estimation dynamics for stationary target localization by DLMSAW. 83

5.4 Average state dynamics of compromised nodes’ neighbors (under strong attack). 84

5.5 Steady-state MSD levels in non-cooperative LMS and DLMSAW (under strong attack). . . . 84

5.6 Network topologies at the end of R-DLMSAW under strong attack (stationary targets) for

various values of F . 86

5.7 Estimation dynamics for stationary target localization by R-DLMSAW under strong attack. . 86

5.8 A comparison of MSD performance of non-cooperative LMS, DLMSAW, and R-DLMSAW

under strong attack. 87

xi

5.9 Network topologies at the end of simulation under weak attack. 89

5.10 Sate estimation precision. 89

5.11 Steady-state MSD comparison under weak attack. 89

5.12 Estimation dynamics for stationary target localization by DLMSAW under weak attack. . . . 90

5.13 Estimation dynamics for stationary target localization by R-DLMSAW under weak attack. . 90

6.1 Target localization: network topology and loss of streaming data for normal agents. 107

6.2 Human action recognition: average testing loss and accuracy for normal agents. 107

6.3 Human action recognition: average training loss and accuracy for normal agents. 108

6.4 Human action recognition: average training/testing loss and accuracy for normal agents with

29 Byzantine agents. 108

6.5 Examples of the digit classification dataset . 110

6.6 Digit classification: average testing loss and accuracy for normal agents in group 1. 110

6.7 Digit classification: average testing loss and accuracy for normal agents in group 2. 110

6.8 Digit classification: average testing loss and accuracy for normal agents, with 8 Byzantine

agents (four for each group). 111

6.9 Digit classification: average training loss and accuracy for normal agents in group 1. 111

6.10 Digit classification: average training loss and accuracy for normal agents in group 2. 111

6.11 Digit classification: average training loss and accuracy for normal agents, with 8 Byzantine

agents (four for each group). 111

7.1 Example of an undesired outcome due to clustering using hypothesis testing (7.6): (a) k

identifies l to be in the same cluster; (b) θk,i as a combination of θ̂k,i and θ̂l,i moves away

from θ∗k,i rendering rk(θk,i) > rk(θ̂k,i). 119

7.2 Target localization (nodes in the same color share the same target): (a) Initial network; (b)

Final network by Algorithm 4; (c) Final network by the distance-based clustering method. . 125

7.3 Target localization: average weight matrix over time 1
T+1

∑T
i=0 alk(i). 125

7.4 Target localization: learning loss for different methods. 126

7.5 Target localization: estimation θk,i (1st dimension) of every agent k (each line represents an

agent) for different methods. 127

7.6 Digit classification: average weight matrix over time 1
T+1

∑T
i=0 alk(i). 128

7.7 Digit classification: learning performance for different methods. 128

8.1 30 homogeneous agents running DQN for Cartpole. 135

xii

8.2 30 heterogeneous agents running DQN for Cartpole. 135

8.3 10 homogeneous agents running DQN for Pong. 135

8.4 10 heterogeneous agents running DQN for Pong. 135

8.5 30 homogeneous agents running DDPG for Pendulum. 135

8.6 30 heterogeneous agents running DDPG for Pendulum. 136

9.1 Training curves for DDPG, SAC, and TD3 (HalfCheetah). 149

9.2 Training curves for DDPG, SAC, and TD3 (Walker2d). 149

9.3 Training curves for DDPG, SAC, and TD3 (Multitask). 149

9.4 Training curves for normal agents when certain agents are under FGSM attack (TD3, HalfChee-

tah). 150

9.5 Training curves for normal agents when certain agents are under FGSM attack (TD3, Ant). . 150

xiii

Notation and Symbols

R Field of real numbers.

1 Column vector with all its entries equal to one.

IM Identity matrix of size M ×M .

|x| Absolute value of a real number x or cardinality of a set x.

‖x‖ Euclidean norm or `2-norm of a vector x.

E[·|ξ] Expected value of a random variable ξ; E[·] is used when context is clear.(
n
m

)
The number of possible combinations of m objects from a set of n objects.

[n] Set {1, 2, . . . , n}.

[alk] A matrix with (l, k)-th entry alk.

col{a,b} Column vector with entries a and b.

diag{a,b} Diagonal matrix with entries a and b.

X ∩ Y Intersection of sets X and Y .

X\Y Relative complement of set Y in set X .

(M)> Transpose of matrix M .

Tr(M) Trace of matrix M .

(M)−1 Inverse of matrix M .

A
⊗
B Kronecker product of matrices A and B.

∇xF Gradient vector of function F relative to x.

α = O(µ) |α| 6 c |µ| for some constant c > 0.

lim sup
n→∞

a(n) Limit superior of the sequence a(n).

xiv

Chapter 1

Introduction

1.1 Motivation

With the ever-growing technological explosion of the world, distributed systems are becoming more and

more widespread and spawning numerous applications in multi-agent systems including sensor networks,

cloud computing, swarm robotics, and intelligent systems [10–14]. In particular, distributed learning and

optimization techniques have attracted increasing attention due to the rapid growth of machine learning ap-

plications in multi-agent networks, such as mobile phones, wearable devices, and smart homes [15]. In such

methods, multiple agents operate in a distributed and cooperative manner to achieve a common learning task.

Typically, agents communicate their model parameters with their local neighbors without the sharing of user

data. Such cooperation has been demonstrated to help improve the learning performance over the network

while not compromising data privacy [16]. Consider a concrete example of learning the behavior of users

in a cellular network based on data generated using various mobile applications. Each user may generate

data that follows a distinct distribution and it is common to learn separate models for each user. However,

people may exhibit similar behaviors and relatedness among models commonly exists [15]. Hence, coopera-

tion among agents could be leveraged to promote the learning performance over the network. Compared to

a centralized approach, distributed methods offer multiple advantages that include robustness to drifts in the

statistical properties of the data, scalability, relying on local data and fast response among others.

Although cooperation among agents benefits the operation of the system, it is also susceptible to attacks

where non-cooperative or adversarial neighbors sharing wrong information can disrupt the normal operation

of the entire network. In particular, it has been shown that cooperation through averaging is not resilient

to even one non-cooperative agent. For example, in both distributed consensus and distributed learning

systems, a single non-cooperative agent sending a constant value to its neighbors can lead the entire network

to converge to this value being transmitted by the non-cooperative agent [2, 17, 18]. Multiple detection

approaches based on a statistical analysis of normal states have been presented in the literature [19–21] to

cope with attacks. However, detection methods are susceptible to false alarms and the attacker can always

change its attacking strategy to adapt to such detection rules, thus making these methods not able to provide

strong resilience guarantees. As a result, it is important to come up with resilient cooperation mechanisms

that can eliminate the possible damage caused by non-cooperative agents and ensure the resilience of the

1

information aggregation in distributed systems.

1.2 Challenges

The notion of resilience is broad and relates to the concepts of fault-tolerance, reliability, safety, and

robustness. In most of the cases, it refers to the ability of the system to withstand adversaries and bounce

back to a state of normal operation. A typical practice in the literature dealing with the design and analysis

of resilient distributed algorithms is to obtain bounds on the number of adversarial agents in the network and

achieve the desired objective as long as the number of adversaries in the network is less than the obtained

bounds. Such a setup poses some limitation as we need to assume that the number of adversarial agents

cannot be greater than the values indicated in the bounds. However, despite this limitation, these bounds

could be useful as they provide insight into the resilience or the ability of the network to perform normally

even in the presence of adversarial agents. On the other hand, it is indeed a challenge to develop methods and

techniques that do not rely on the knowledge and assumption on the maximum number of adversaries in the

network to achieve the desired performance in a resilient manner.

The resilience of distributed consensus, learning and optimization algorithms has been widely studied in

the literature. It has been well established that methods such as using the Tverberg partitions and the safe area

can achieve resilient vector consensus, yet with a high computational time complexity growing exponentially

in the dimension of the states [22, 23]. When applying resilient consensus algorithms into distributed learning

and optimization, one immediately faces the dilemma that 1) resilient scalar consensus algorithms cannot

guarantee resilient vector consensus for high-dimensional model parameters, and 2) it is not practical to

use resilient vector consensus algorithms given its exponential computational complexity in the dimension.

As a compromise, resilient consensus algorithms for scalar states are frequently used for achieving resilient

aggregation in distributed learning and optimization with high-dimensional model parameters, sacrificing the

strong resilience to adversaries. Hence, there is a major challenge in balancing the trade-off between the

resilience and the computational complexity in achieving resilient aggregation in distributed learning and

optimization algorithms.

Finally, to design resilient consensus, learning and optimization algorithms in distributed multi-agent

systems and analyze their performance, realistic attack methods being used to model the damage of cyber-

attacks on the system are needed. Therefore, it poses a challenge in obtaining the attack strategy that is not

restrictive and can adequately represent the worst-case attack one could realize in the real world to examine

the resilience of the system.

2

1.3 Contributions

The focus of our contributions is on carefully examining the vulnerabilities of a variety of distributed

consensus, learning, and optimization systems, and designing resilient cooperation mechanisms in such dis-

tributed systems to eliminate the damage caused by non-cooperative or adversarial agents. Our results are

supported by theoretical analysis as well as numerical implementations. Codes for the numerical implemen-

tations can be found at https://github.com/JianiLi. The detailed contributions of this thesis are listed below.

Chapter 3

In this chapter, we study the resilient vector consensus problem and a recently proposed solution referred to

as the Approximate Distributed Robust Convergence (ADRC) algorithm. The main contributions are:

• We show that the resilience of ADRC algorithm can be improved by using the notion of centerpoint instead

of Tverberg partition. We discuss these improvements in two, three and higher dimensions separately.

• Using centerpoints, we show that |Ni| ≥ nfi(d+1)+1 is not only sufficient but also necessary to compute

a safe point, which is a key step in the ADRC algorithm. Here nfi is the number of adversaries in the

neighborhood of a normal node i. We also provide an overview of various algorithms reported in the

literature to compute centerpoints in different dimensions.

• We compare and numerically evaluate our results with the existing algorithm by simulating resilient vector

consensus in multirobot networks.

Chapter 4

In this chapter, we study the problem of the resilient convergence of distributed learning algorithms for multi-

robot systems in the presence of Byzantine adversaries. We make the following contributions:

• We analyze the sufficient condition to achieve Byzantine resilient convergence of distributed learning al-

gorithms, which is to guarantee that the aggregated state lies inside the convex hull of the normal states.

When the sufficient condition is satisfied, we show that normal agents are guaranteed to converge towards

the global optimum state with O(1/i) convergence rate using appropriate stepsize, where i is the time

iteration.

• We propose a centerpoint-based aggregation rule and show that it guarantees the resilient convergence of

the distributed learning algorithms whenever each normal agent k in the network has f ≤ d nkd+1e − 1

Byzantine neighbors.

3

https://github.com/JianiLi

• We evaluate our results using the examples of target pursuit and pattern recognition in multi-robot systems.

We compare the proposed centerpoint-based aggregation rule with the average, coordinate-wise median,

and geometric median-based rules. The simulation results show that our approach is resilient to d nkd+1e − 1

Byzantine neighbors, and the cooperation improves the average learning performance over the network

than the non-cooperative case, while the other approaches are not resilient in the same scenarios.

Chapter 5

In this chapter, we study the resilient distributed diffusion Least-Mean-Square (LMS) problem in the multi-

task networks. Specifically, we make the following contributions:

• By exploiting the adaptive weights that aim to cope with fixed-value Byzantine attacks, we develop time-

dependent attack models that drive normal agents to converge to states selected by an attacker. The attack

models can be used to deceive a specific node or the entire network and are applicable to both stationary

and non-stationary state estimation. Although the attack models are based on a strong knowledge of the

system, we show the attack can also succeed without such knowledge to demonstrate the practicality of the

proposed attack. This for the first time dispels the myth that baseline diffusion multi-task LMS by itself is

resilient to adversarial attack.

• We develop a resilient distributed diffusion algorithm that can achieve resilience to up to F compromised

nodes in one normal agent’s neighborhood. By selecting an appropriate F , the proposed algorithm guaran-

tees normal agents will converge to their actual targets under any data falsification attacks. If the parameter

F selected by the normal agents is large, the resilient distributed diffusion algorithm degenerates to non-

cooperative estimation. Thus, we also analyze trade-off between the resilience of distributed diffusion and

its performance degradation in terms of MSD.

• We evaluate the proposed attack models and the resilient estimation algorithm using both stationary and

non-stationary multi-target localization. The simulation results are consistent with our theoretical analysis

and show that the approach provides resilience to attacks while incurring performance degradation which

depends on the assumption about the number of compromised nodes.

Chapter 6

In this chapter, we extend the work in Chapter 5 and study the resilient distributed multi-task learning problem

for general convex loss functions. In particular, we make the following contributions:

4

• We propose an efficient Byzantine resilient online weight adjustment rule for distributed multi-task learn-

ing. We measure similarities among agents based on the accumulated loss of an agent’s data and the models

of its neighbors. In each iteration, a normal agent computes the weights assigned to its neighbors in time

that is linear in the size of its neighborhood and the dimension of the data.

• We show that aggregation with the proposed weight assignment rule always results in an improved expected

regret than the non-cooperative case, and normal agents converge resiliently towards the global minimum.

Even when all the neighbors are Byzantine, a normal agent can still resiliently converge to the global

minimum bounded by the same expected regret as without any cooperation with other agents, achieving

resilience to an arbitrary number of Byzantine agents.

• We conduct three experiments for both regression and classification problems and demonstrate that our ap-

proach yields good empirical performance for non-convex models, such as convolutional neural networks.

Chapter 7

In this chapter, we extend the work in Chapter 6 and study the distributed clustered multi-task learning

problem. In particular, we make the following contributions:

• We propose an adaptive clustering method in distributed multi-task learning networks that allows agents to

perform the optimization task while simultaneously learn which neighbors are suitable for cooperation.

• We analyze the convergence and learning performance for the proposed method.

• We propose the optimal combination weights for aggregating the neighbors’ model parameters after recog-

nizing which neighbors to cooperate with using the proposed clustering method that optimize the network

learning performance.

• We evaluate the proposed method for both linear regression and classification problems and compare the

results with existing distributed clustering methods. The evaluation results show that the proposed method

significantly improves the learning performance compared to the non-cooperative approach by correctly

estimating the clustering structure. In contrast, other methods fail to achieve the clustering information and

exhibit inferior learning performance.

Chapter 8

In this chapter, we study the resilient distributed reinforcement learning problem in the presence of Byzantine

agents. In particular, we make the following contributions:

5

• We propose a Byzantine resilient aggregation method for distributed reinforcement learning algorithms

and analyze the convergence of RL algorithms towards the optimal solution in the presence of an arbitrary

number of Byzantine agents when linear approximations are applied.

• We evaluate the proposed method using multiple RL tasks for both value-based and policy-based RL with

non-linear function approximations, such as Deep Q-learning and Deep Deterministic Policy Gradient

(DDPG). The evaluation results show that the proposed method exhibits better or similar learning per-

formance (measured by the accumulated reward over the network) than no-cooperation with or without the

presence of Byzantine agents.

Chapter 9

In this chapter, we extend the work in Chapter 8 and propose efficient adaptive learning methods for dis-

tributed actor-critic algorithms that have linear time complexity and are resilient in the presence of attacks.

We make the following contributions:

• We propose efficient adaptive learning methods for distributed actor-critic algorithms that allow agents to

learn which neighbors to cooperate with in a fully-decentralized network.

• We analyze the convergence of distributed actor-critic algorithms with the proposed method when linear

function approximations are applied.

• We evaluate the proposed method for multiple actor-critic algorithms including Deep Deterministic Policy

Gradient (DDPG), Soft Actor-Critic (SAC), Twin Delayed DDPG (TD3). The evaluation results show that

the proposed method greatly improves the learning performance than the non-cooperative case in all the

scenarios. Besides, when all the agents share the common learning task, the efficiency and performance of

the proposed method matches that of averaging method. Moreover, the proposed method results in superior

performance in multi-task networks and in the presence of attacked agents – it is resilient even when all

one’s neighbors are attacked, which matches the performance of the non-cooperative case.

1.4 Organization

The technical contributions of this thesis are in Chapter 3-9. This thesis is organized as follows.

• Chapter 2 reviews the related work in resilient distributed consensus, learning, and optimization algorithms.

• Chapter 3 studies the problem of resilient approximate vector consensus.

6

• Chapter 4 applies the results in Chapter 3 to distributed learning algorithms for resilient convergence of

networked agents in the learning systems.

• Chapter 5 studies the resilient distributed diffusion LMS problem in multi-task networks.

• Chapter 6 generalizes the results of Chapter 5 to general convex loss functions for resilient distributed

multi-task learning.

• Chapter 7 extends the results of Chapter 6 to the distributed clustered multi-task learning problem.

• Chapter 8 studies the resilient distributed reinforcement learning problem.

• Chapter 9 proposes the adaptive learning methods for distributed actor-critic algorithms that enable net-

worked agents to learn resiliently in the presence of attacks.

• Chapter 10 concludes this thesis.

1.5 Main Concepts

We introduce the following concepts used throughout this thesis.

• Capacity and knowledge of normal agents. Normal agents are the ones that always update their states

(estimates) according to a prescribed updating rule. For a normal agent k, all agents in its neighborhood

are indistinguishable, that is, k cannot identify which of its neighbors are adversaries.

• Synchronicity of the system. We consider two types of systems: synchronous and asynchronous. In

synchronous systems, there is a global clock assumed to produce time reference for all the agents. And

it is assumed that every agent starts and operates simultaneously. In asynchronous systems, every agent

operates according to its internal clock. Clocks may arbitrarily differ from each other.

• Distributed systems. Generally, two types of distributed systems are considered in the literature. One

is composed of a central server and multiple distributed workers and the workers communicate only with

the central node. The other is the peer-to-peer system where agents are fully decentralized and they com-

municate with their one-hop neighbors. Unless otherwise noted, the second model is considered in this

thesis.

• Scope of threats. Other than the normal agents, agents that could be subverted and controlled by an

adversary is usually referred to as non-cooperative or adversarial agents. The scope of threats confines the

behavior of the adversary. There are several threat models considered in the literature including the crash

[24], non-colluding [19], malicious [17, 19, 25] and Byzantine [18, 22, 26–29] nodes. Crash nodes are

7

those could stop their updates and possibly communication. Non-colluding nodes do not know the network

topology, the identity of other misbehaving nodes, or the states of non-neighboring nodes. Malicious nodes,

however, have full knowledge of the networked system. Byzantine nodes differ from malicious nodes in

the way that it can transmit different information to different neighbors, whereas malicious nodes must

transmit the same information to each neighbor. Byzantine nodes are the most powerful threats that are

usually assumed in the literature and is of particular interest in this thesis.

• Effect of attacks. False data injection attacks are usually employed to result in the following outcomes

on the distributed consensus, learning and optimization networks: 1) preventing the network from reaching

a consensus, 2) slowing down the convergence of the network, and 3) making the network converges to a

wrong state.

8

Chapter 2

Related Work

In this chapter, we review the related works of distributed consensus and learning algorithms in coop-

erative multi-agent systems, with a special focus on the vulnerabilities, attacks and resilience design of the

cooperation in such systems. We begin with the problem of resilient distributed (approximate) consensus in

multi-agent systems in Section 2.1. In Section 2.2, we review the resilient distributed learning and optimiza-

tion problems. Then, in Section 2.3, we discuss the problem of distributed reinforcement learning (RL) and

review existing work on resilient distributed RL. Finally, in Section 2.4, we make a comparison between our

contributions to the existing work in the literature.

2.1 Resilient Distributed Approximate Consensus

A fundamental problem in distributed systems is to have networked agents reach a state of consensus,

where the state can be either a scalar or a vector. The resilient distributed (approximate) consensus problem

initiated in [30] addresses such a problem when the states are composed of reals and is widely studied in the

robotics and control systems community [17, 22, 28, 31–34]. The main objective is to ensure that all normal

agents in a network satisfy the safety and agreement conditions in the presence of Byzantine agents [22, 28]

by exchanging and updating their states via local interaction. The safety condition requires normal agents to

update their states such that they are always inside the convex hull of normal agents’ initial states. Agreement

means that eventually, all normal agents’ states are very close to each other, that is, within an arbitrary ε > 0

distance from one another. Although it is often assumed that agents can exchange messages with all of their

one-hop neighbors, the gossip-based randomized consensus algorithms are also considered in the literature

where an agent chosen randomly wakes up, contacts a neighbor randomly within its connectivity radius, and

exchanges the state variable for an update of the state [35]. In this thesis, we focus on the first cooperation

mechanism where agents exchange information with all of their neighbors. In the following, we first discuss

the studies on resilient distributed consensus over scalar states, followed by the related work on resilient

distributed consensus over vector states.

9

2.1.1 Resilient Distributed Consensus over Scalar States

For scalar sates, the goal is to guarantee the convergence of normal agents to a common state x̄ ∈

[xmin(0), xmax(0)] where xmin(0) and xmax(0) are the minimum and maximum of the initial values of

normal nodes respectively. The Weighted-Mean Subsequence Reduced (W-MSR) algorithm proposed in [17]

guarantees convergence in the presence of adversaries under certain robustness conditions on the underlying

network graph. It is assumed in W-MSR that at most f of a normal agent’s neighbors may be misbehaving.

To achieve resilient consensus, each agent removes the f smallest and f largest extreme values with respect

to its own value when updating its state. After removing the extreme values, the normal agent uses the av-

erage of the remaining values to be its updated state. This method requires an assumption of the number

f of Byzantine agents. And by increasing f , the W-MSR algorithm is resilient to more Byzantine agents.

The maximum value of f = dn2 e − 1, where n is the total number of states to be aggregated with. In other

words, when setting f = dn2 e − 1, the algorithm can be resilient when less than half of the total number

of agents are Byzantine. Different variations of the W-MSR algorithms for scalar consensus have also been

proposed [36–38]. Further, the median-based consensus protocol was proposed [31, 39, 40] such that instead

of updating the state as an (weighted) average of neighbors’ states, it uses the median of the neighbors’ states

to be the aggregated state. Compared to the average value, the median is inherently robust to the presence of

outliers as a statistical measure. The nice robustness property the median has guarantees that as long as more

than dn2 e points are in [−r, r] for r ∈ R, then the median must be in [−r, r] no matter where the other points

locate. This ensures that as long as the majority of the points are benign, the median is sure to be inside the

bounds of the benign points. The median-based updating rule is resilient to up to dn2 e − 1 Byzantine nodes.

Note that by setting f = dn2 e − 1, the W-MSR algorithm is equivalent to the median.

Resilience can also be achieved via fault detection and isolation (FDI). For instance, [19] studies the FDI

problem for linear consensus networks via high connectivity networks and global knowledge of the network

structure by each agent. [20] considers a similar FDI problem for second-order systems. Authors in [21]

presents a distributed detection method for consensus+innovation algorithms via local observations of agents

only. However, detection approaches are usually deficient in providing strong resilience guarantees given that

they are susceptible to false alarms.

2.1.2 Resilient Distributed Consensus over Vector States

The problem is more challenging when the state vectors are in Rd where d ≥ 2. And the objective of

resilient consensus for vector states is to ensure that normal agents converge at some point in the convex hull

of their initial states. A simple approach could be to run d instances of resilient consensus algorithms over

10

scalar states (such as the W-MSR or median-based updating rule), one for each dimension. For instance,

the approach of running the W-MSR algorithm multiple times for d dimensions has been applied to mobile

multi-robot systems for resilient formation control [41] and resilient flocking [42]. However, as a result of

this approach, normal agents might converge at a point outside of the convex hull of their initial states, as

discussed in [22]. The trade-off between resilience and accuracy has been studied in [6]. Resilient vector

consensus based on Tverberg partition has been proposed in recent years that guarantees the safety and

agreement conditions given the number of Byzantine agents is bounded by a fraction of the total number

of agents [22, 33]. The idea is to partition the points into a series of point sets (Tverberg partitions) each

containing n− f points, where n is the total number of points and f is the upper bound of adversarial points.

Then, there must be at least one partition containing only the normal points since at most f points can be

adversarial. As a result, the intersection of the partitions must lies inside the convex hull of the normal

points. And agents move towards somewhere inside the intersection of the Tverberg partitions thus ensuring

the safety condition. It should be noted that the computational complexity for computing a Tverberg point (a

point inside the intersection of the Tverberg partitions) is high, especially for large dimensions, which requires

O(nd) where d is the dimension [43]. Further, a similar idea based on the concept of “safe area” that is the

intersection of any partition of size n− f was proposed in [28]. The safe area can be can computed in O(nd)

time using linear programming since the safe area is the intersection of O(nd) half-spaces. Notably, there

exists a trade-off between resilience and computational time. A recent work [44] provides a more efficient

algorithm following the idea of Tverberg partition with an assumption of a set of known normal agents and

an upper bound of the number of Byzantine agents. Moreover, an approximate solution for computing an

approximate Tverberg point was used in [32] that reduces the computational time from O(nd−1) to O(n),

yet also reducing the resilience bound from d n
d+1e − 1 to d n

2d
e − 1.

A summary of the resilient distributed approximate consensus algorithms we review is given in Table 2.1.

And Table 2.2 provides a summary of the resilient consensus algorithms.

Table 2.1: Resilient distributed approximate consensus algorithms.

Algorithm State Type Resilience Condition Computational Complexity

W-MSR [17] Scalar n ≥ 2f + 1 O(nd)

Median [31] Scalar n ≥ 2f + 1 O(nd)

Tverberg point [22] Vector n ≥ (d+ 1)f + 1 O(nd)

Safe area [23] Vector n ≥ (d+ 1)f + 1 O(nd)

Approximate Tverberg point [32] Vector n ≥ 2df + 1 O(nd)

11

Table 2.2: Summary of related work on resilient consensus.

Communication Protocol State Type Exchanging Messages With

Paper Synchronous Asynchronous Scalar Vector All Neighbors Randomized Neighbor

[17, 31, 36–40] X - X - X -
[32, 41, 42] X - - X X -

[22] X X - X X -
[33, 44] X - - X X -

[28] - X - X X -
[45] - X - X - X

[46, 47] - X X - - X

2.2 Resilient Distributed Learning and Optimization

Distributed learning and optimization has attracted increasing attention due to the growth of machine

learning (ML) applications in distributed devices within multi-agent networks, such as mobile phones, wear-

able devices, and smart homes [48–51]. In such networks, multiple agents operate in a distributed and coop-

erative manner to achieve a learning task. For example, consider learning the behavior of users in a cellular

network based on data generated using various mobile applications. Each user may generate data that follows

a distinct distribution and it is common to learn separate models for each user. However, people may ex-

hibit similar behaviors and similarities among models commonly exist [15]. In this case, cooperation among

agents could be leveraged to promote the learning performance over the network.

Given data privacy concerns, cooperation among agents in a network relies typically on exchanging model

parameters instead of data. In a distributed learning network, an agent communicates model parameters with

its local neighbors and also updates these parameters by incorporating the neighbors’ information [16]. A

variety of frameworks has been proposed in the literature for distributed learning and optimization. For

example, [18, 52–54] considers a network consisting of one central server with multiple distributed learners

(agents) connected to the server. At each iteration, learners sample data and compute the gradient of the

local empirical loss. And the parameter server collects and aggregates the gradients from the learners and

updates the model that will be sent to the learners for the next iteration’s gradient computation. In contrast, a

fully-decentralized network was considered in [2, 55–57] such that each agent communicates only with their

one-hop neighbors for information exchanging. Different underlying models being learned by the network

are also studied in the literature. In most cases [52, 58–60], discriminative models, such as linear regression,

SVM, or neural networks are used, whereas a generative model based on Bayesian learning is considered in

[61]. Besides, there are different messages to be aggregated, including gradients [54, 59, 62–64] and model

parameters [55–58]. In addition, it is usually assumed in the literature that every agent in the network is access

12

to data from the same distribution [18, 52–54], which is also referred to as the single-task model; however,

there is a particular field in distributed learning [55, 56, 59, 60] adopts the multi-task setting where agents

learn from distinct but related data distributions. Further, both synchronous and asynchronous communication

among agents are considered in the literature [65–68].

Although cooperation among agents helps improve the overall learning performance [69], it is also sus-

ceptible to attacks where non-cooperative or adversarial neighbors sharing wrong information can disrupt

the convergence of the algorithm. Average-based information aggregation rules have been widely used in

distributed learning [69–71], yet it has been shown that a single misbehaving agent can adversely impact the

convergence of the average-based aggregation rules [1, 72]. Therefore, it is crucial to design resilience in dis-

tributed learning that can ensure the convergence of normal agents towards their target models. The problem

of achieving resilient cooperation in distributed learning networks is a hot topic in recent years and there are

extensive works in this field. In general, approaches solving this problem fall into two categories. One is by

resilient consensus algorithms that assumes a majority of the agents are normal and computes the resilient

aggregated result as a linear combination of the normal messages. The other approach tries to measure the

similarities among agents and aggregates the information by how much agents are related. While the second

approach can be used in either the single-task or the multi-task setup, the consensus-based (majority-based)

resilient aggregation rules are not directly applicable to the multi-task networks since each agent fits a distinct

model and agents might not form a majority group in such a network. Later in this section, we will review

some classic and widely used methods for the two major approaches.

2.2.1 Consensus-based Resilient Cooperation

The objective in resilient distributed learning is to ensure that every normal agent converges to its actual

target model. In a typical setup, agents are deployed in a fully-decentralized network, and they solve a

network optimization problem with access to local data sets and exchanging model parameters with neighbors

[73]. To achieve resilient distributed learning, one needs to ensure that the aggregated model parameter is

not influenced by any adversarial agent. One approach is to discard cooperation with possible Byzantine

neighbors using the idea of trimming. In such an approach, it is assumed that a maximum of f Byzantine

agents can be present in the neighborhood of a normal agent. Algorithms are then designed for a normal

agent to rank its neighbors based on some trust criteria and a normal agent discards the values from its f least

trusted neighbors. Such a setup poses some limitation as one needs to assume that the number of adversarial

agents cannot be greater than the a given bound. Despite this limitation, these bounds could be useful as they

provide insight into the resilience or the ability of the network to perform normally even in the presence of

13

adversarial agents. Various metrics have been proposed in the literature to evaluate a agent’s trustworthiness,

including metrics based on the product of the weight and the loss [1, 2], model parameters [57], gradients and

their norms [54, 74], and a combination of gradient and model parameters [75]. For example, [57] proposes

a trimming algorithm where agents reject received values that are too large or too small, which follows the

idea of the W-MSR algorithm; and [54] presents a screening algorithm called Zeno that ranks the scores of

the aggregated gradients as the measurements of their trustworthiness and discards f largest scores.

Moreover, various majority-based aggregation rules have been proposed, similar to the median-based

approach used in resilient scalar consensus, that preclude states far away from the cluster of the normal

agents’ states to achieve the resilience of distributed learning. Well-known majority-based aggregation rules

include the coordinate-wise median [52, 63, 64], coordinate-wise trimmed mean [52, 57], geometric median

[58, 62], Krum and multi-Krum [72], Bulyan and multi-Bulyan [76, 77]. For instance, coordinate-wise

median [52] computes the medians for each dimension of the aggregated parameters. It is designed to be

resilient when less than half of the agents are adversarial. Similarly, coordinate-wise trimmed mean [52]

follows the idea of the W-MSR algorithm that trims f largest and smallest values and computes the mean

of the remaining values for each dimension, which is designed to be resilient to up to f adversarial agents.

[62] uses the geometric median and approximate geometric median as the aggregation result, which is a

generalization of the median in higher dimensions. The geometric median guarantees the aggregated state to

lie inside the Euclidean ball of radius r blowed up by a constant factor only as long as there are the majority

of points inside the Euclidean ball, thus guarantees that the geometric median is close to the majority of the

normal points when less than half of the agents are adversarial. Similarly, [18] proposes a method called

Krum that tries to preclude the vectors that are too far away. To find the points that are far away from the

majority of the points, they compute the sum of the squared distances between each point and its n − f − 2

closest points, where n is the number of aggregated states and f is the upper bound of the quantity of the

adversarial agents. It then computes the aggregation result to be the point that has the minimum value of

the summed squared distance. This guarantees that all the points that are far from the cluster of the majority

of the points are discarded. Krum is considered to be resilient if n > 2f + 2. A variant of Krum, namely

multi-Krum, selects m points instead of only one point that score the best, and computes the average of these

points as the aggregation result [18]. It can be easily found that the cases m = 1 and m = n correspond

to Krum and averaging respectively. When selecting m = n − f , multi-Krum achieves the same resilience

as Krum does. Further, Bulyan and multi-Bulyan are proposed on top of Krum [76, 77]. Instead of ranking

and filtering out the suspicious messages, these rules differ from the ranking methods in the way that they

do not need the ranking step and the aggregation result directly precludes states far away from the cluster of

the majority of the states by the intrinsic properties of the aggregation rules. However, studies have already

14

reported all of the above-mentioned methods are not resilient to attacks under certain conditions [78–80]. We

summarize the consensus-based resilient distributed learning algorithms in Table 2.3.

Note that instead of manipulating the aggregation rules, one can also use computation redundancy to

realize resilient convergence for distributed learning algorithms, which typically involves coding theory and

algorithmic redundancy [81–83]. An example of such a framework is DRACO [81] in which the parameter

server uses redundant gradients received from agents to eliminate the effects of adversarial updates. Another

algorithm proposed recently is the RSA algorithm that introduces an `p-norm regularization term into the

objective function for the resilience purpose [84]. It eliminates the effect caused by the magnitudes of ma-

licious messages sent by the Byzantine agents, as a result, only the number of Byzantine agents, but not the

magnitude, influence the model update, making the algorithm robust to large outliers.

Table 2.3: Consensus-based resilient aggregation rules for distributed learning algorithms.

Aggregation Algorithms Resilience Condition Computational Complexity

W-MSR [57] n ≥ 2f + 1 O(nd)

Coordinate-Wise Trimmed Mean [52] n ≥ 2f + 1 O(nd)

Coordinate-Wise Median [52, 63, 64] n ≥ 2f + 1 O(nd)

Zeno [54] n ≥ f + 1 O(nd)

Geometric Median [58, 62] n ≥ 2f + 1 O(n2d)

Krum [18] n ≥ 2f + 3 O(n2d)

Multi-Krum [18] n ≥ 2f + 3 O(n2d)

Bulyan [76] n ≥ 4f + 3 O(n2d)

Multi-Bulyan [77] n ≥ 4f + 3 O(n2d)

2.2.2 Distributed Multi-Task Learning and Clustering

Multi-task learning (MTL) deals with the problem of learning multiple related tasks simultaneously to

improve the generalization performance of the models learned by each task with the help of the other auxiliary

tasks [85, 86]. The extensive literature in MTL can be broadly categorized into two categories based on how

the data is collected. The centralized approach assumes the data is collected beforehand at a centralized

entity. Many successful MTL applications with deep networks, such as in natural language processing and

computer vision, fall into this category [87–90]. This approach usually learns multiple objectives from a

shared representation by sharing layers and splitting architecture in the deep networks. An example is to learn

the depth and semantics from RGB images simultaneously [86]. On the other hand, the distributed approach

assumes data is collected separately by each task in a distributed manner. This approach is naturally suited

to model distributed learning in multi-agent systems such as mobile phones, autonomous vehicles, and smart

15

cities [49–51].

Although it is often assumed that a clustered, sparse, or low-rank structure among tasks is known a priori

[91–93], such information may not be available in many real-world applications. Learning the relatedness

among tasks online from data to promote effective cooperation is a principle approach in MTL when the rela-

tionships among tasks are not known a priori. There has been extensive work in online relationship learning

that can be broadly categorized into centralized and distributed methods. The first group assumes that a cen-

tralized server collects the task models and utilizes a convex formulation of the regularized MTL optimization

problem over the relationship matrix, which is learned by solving the convex optimization problem [94–96].

The second group relies on a distributed architecture in which agents learn relationships with their neighbors

based on the similarities of their models and accordingly adjust weights assigned to neighbors [60, 97–99].

Typical similarity metrics, such as H divergence [55, 56, 100] and Wasserstein distance [56, 101], can be

used in MTL in the same way they are used in domain adaptation, transfer learning, and adversarial learning.

However, such metrics are mainly designed for measuring the divergence in data distributions and are not

suitable for online relationship learning due to efficiency and privacy concerns in data sharing.

Distributed clustering is a relevant problem in the scope of MTL. Clustering is a well-known unsuper-

vised learning technique for grouping a set of data points [102]. Compared to the traditional clustering

problem, distributed clustering deals with the problem of grouping a set of networked agents in a multi-task

network running individual optimization tasks into clusters by their tasks relatedness [60, 97, 103, 104]. In

a distributed clustering network, agents perform local tasks while simultaneously learning which neighbors

they should cooperate with by measuring their similarities. Compared to traditional clustering, distributed

clustering is more challenging since any clustering error could lead an agent towards an undesired model.

Measuring the Euclidean distance between the model parameters of agents is a principle method used in dis-

tributed clustering. For example, in [103], if the Euclidean distance is less than a pre-defined threshold, then

the two agents will be clustered into the same group. Similarly, in [104], an accumulated Euclidean distance

within a time-based sliding window is used. In addition, adaptive weights based on Euclidean distance are

used in [97] and [60] for distributed clustering.

2.2.3 Task Similarity-based Resilient Cooperation

Distributed learning and optimization over networks rely on in-network processing and cooperation

among neighboring agents. However, cooperation is beneficial only when agents share a common objec-

tive. Under the MTL setup, agents may belong to different clusters that pursue different objectives. And as

a result, indiscriminate cooperation will damage the learning of agents and lead to an undesired outcome.

16

Thus, an effective clustering scheme is needed that enables agents to identify which cluster of neighbors to

cooperate with and which other neighbors they should ignore, in order to benefit from the cooperation with

neighbors. For instance, [60] proposes a method that assigns adaptive weights based on the similarity be-

tween models measured by Euclidean distance. Neighbors estimating a similar model with small Euclidean

distance are assigned large weights while those with large Euclidean distance are assigned small weights. By

doing so, only agents pursuing similar objectives cooperate, which the cooperation to be beneficial. Several

variants focusing on adaptive weights using Euclidean distance in multi-task networks can be found in [97,

103–105]. However, it was studied in [1, 2] that measuring model similarity using Euclidean distance actu-

ally introduces other vulnerabilities that can be exploited by adversaries. Byzantine agents can employ the

property of adaptive weights to send similar models to normal agents in order to gather a large weight. And

by doing so, Byzantine agents can lead normal agents to converge to anywhere desired by the adversary via

gradient-based attacks. Other similarity metrics, such as H divergence [55, 56, 100], Wasserstein distance

[56, 101], cosine similarity [59] and Kullback–Leibler divergence [106] were proposed in the literature as a

measurement of the similarity between two data distributions, which are widely used in multi-task learning,

robust learning, domain adaptation, transfer learning, privacy preserving, and so on. In particular, the H

divergence between the two distributions is measured to be large, if a predictor that performs well on one

and badly on the other exists, whereas if all functions in the hypothesis class perform similarly on both of the

distributions, then the H divergence is measured to be small [56]. The intuition behind Wasserstein distance

is the optimal transport problem that for a distribution of mass on a space, to transport the mass in such a

way that it is transformed into another distribution on the same space with the minimum cost, which is the

amount of mass it needs to transport times the mean distance it has to be moved [56]. The cosine similarity

measures the relative direction between two gradients. Consider the simple case when a server aggregates

two workers’ gradients to update its model. In a stationary solution, the server has a zero aggregated gradient.

This is either when the two gradients are zero or the two gradients are of the same norm and point into oppo-

site directions. Cosine similarity is used to check if the two points to opposite directions and therefore could

resiliently cluster the gradients [59]. A summary of the resilient distributed learning algorithms we review in

this section is given in Figure 2.1 and Table 2.4.

2.3 Resilient Distributed Reinforcement Learning

With recent exciting achievements of deep learning benefiting from big data, powerful computation, and

new algorithmic techniques, we have been witnessing the renaissance of reinforcement learning (RL), espe-

cially combined with deep neural networks. As a data-driven method, RL provides solutions for controlling

17

Table 2.4: Summary of related work on resilient distributed learning.

Param. Exchanged Task Type Network Topology

Paper Model Gradient Single Multiple Central Server Fully-decentralized

[18, 52–54, 62–64] - X X - X -
[58] X - X - X -
[57] X - X - - X

[1, 2, 55, 56, 60, 97, 103–105] X - - X - X

[59] - X - X X -

agents in complex environment without the need of developing high-fidelity physical models, and is capable

of dealing with subtle considerations.

Markov decision processes (MDPs) are widely used for modeling RL problems. MDPs can be described

formally as a tuple M = 〈S,A, P,R〉, where S is the state space, A is the set of action, P : S × A → S

is the transition function and R : S × A × S → R represents the reward function [107]. In RL, a learning

agent interacts with an unknown environment modeled by a MDP in discrete time step. At each step t,

the agent receives an observation st from the environment, and takes an action at ∈ A, resulting in the

environment moves to next state st+1 with probability P (st, at, st+1), and the agent gets an immediate

reward rt+1 = R(st, at, st+1) associated with the transition. The return (discounted long-term reward)

R =
∑∞
t=0 γ

trt, where γ is the discounted factor that determines how much future rewards are counted.

The general objective of RL algorithms is to learn an optimal policy π ∈ Π : S → A that maximize the

expectation of the return: maxπ∈Π Eπ(R).

The technique of training multiple RL agents distributedly for a common objective has been extensively

studied in recent years. Related work in distributed RL can be broadly grouped into two categories. In the

first category, multiple agents operate in similar but independent MDPs whose actions do not affect each other

[108, 109]. Such an approach is widely used in recent RL techniques for parallel exploration and computation

to accelerate exploration and speed up learning, especially combined with deep neural networks. It is also

naturally suited to be used in multi-agent networks where networked agents perform similar RL tasks in

independent environments. We will discuss this approach in detail in Section 2.3.1. The second category

considers training RL algorithms for multiple agents in a single MDP, which can be further divided into

team learning and concurrent learning [110]. Team learning, using a single learner to learn the behaviors

for the entire team, is not a distributed learning approach and is out of the scope of this thesis. In contrast,

concurrent learning deals with the problem of making each agent learn in a shared MDP concurrently. There

are limitations to both of the two approaches. Team learning suffers from the scalability issues when the

number of agents is large; yet for concurrent learning, multiple learners taking actions in the same MDP

18

Resilient
Aggregation Rules

Task Similarity-based

Kullback–Leibler
Divergence [106]

Cosine Similarity [59]

Wasserstein Dis-
tance [56, 101]

H divergence
[55, 56, 100]

Euclidean Distance
[60, 97, 103–105]

Consensus-based

Bulyan, Multi-Bulyan
Bulyan [76, 77]

Krum, Multi-Krum [18]

Geometric Median
[58, 62]

Zeno [54]

Coordinate-wise Me-
dian [52, 63, 64]

Coordinate-wise
Trimmed Mean [52, 57]

Figure 2.1: Resilient aggregation rules in distributed learning algorithms.

will cause the environment to be non-stationary, thus violating the assumptions behind the traditional RL

algorithms. Many emerging techniques have been proposed for concurrent learning which we will discuss in

detail in Section 2.3.2. A taxonomy of the distributed RL problems considered in the literature is given in

Figure 2.2.

2.3.1 Distributed Reinforcement Learning in Independent MDPs

The technique of training multiple RL workers in independent MDPs in parallel to expand experience

memory and improve learning efficiency has been widely used, especially combined with deep neural net-

works. A major body of such works considers using a centralized parameter server for model updates and

multiple actors to execute in multiple instances of the environment in parallel to collect state-action pairs.

For example, [109] considers the parallel training of a distributed Deep Q Network (DQN) where a single

parameter server collects the gradients of the Q network from distributed actors and updates the parameters

of the Q network; and the distributed actors explore in independent MDPs and store the collected state-action

19

Multi-Agent
Distributed RL

Learn in A Shared MDP
Concurrent Learning
(Multiple Learners

Learn Concurrently)

Team Learning (Single
Learner Learns the

Behavior of the Team)

Learn in Inde-
pendent MDPs

Distributed Learners
with Distributed Actors

Centralized Learner
with Distributed Actors

Figure 2.2: Distributed reinforcement learning algorithms.

pairs in the same experience replay memory and compute the gradients of the model. Another well-known

instance of such a paradigm termed A3C (Asynchronous Advantage Actor-Critic) is proposed in [111] where

they present an asynchronous variant of the actor-critic algorithm using asynchronous actors. Distributed RL

in fully-decentralized networks has also been studied in the literature [108, 112–114]. For example, [112]

proposes a distributed implementation of Q-learning called QD-learning where every normal agent collabo-

ratively updates tabular Q-values that being shared with their neighbors. Further, [108] proposes a distributed

parallel RL method for policy evaluation with linear value function approximation. Moreover, [113] proposes

a distributed actor-critic framework that aims to learn a policy that performs well on average for the whole set

of tasks. Most of these works assume a single-task network, whereas [114] considers multi-task RL where

each agent is trained to solve its own task while constrained to stay close to the shared policy.

Besides the advantages of expanding the replay memory and speed up learning, training distributed RL

algorithms distributedly in independent MDPs has many practical applications in multi-agent networks, es-

pecially for recommender systems [115–117]. Although personalizing customer interactions at scale through

the data analysis of users’ online behavior patterns has been realized by machine learning, recommending

special content types such as news and online short videos is still challenging. Reasons are that user pref-

erences in topics change frequently and the features of those contents are dynamic by nature and become

rapidly irrelevant. RL, in particular, can be fit into such scenarios in real-time. For example, consider learn-

ing the behavior of users using RL algorithms in a cellular network based on data generated using various

mobile applications. Each user may generate data that follows a distinct distribution and it is common to

learn separate models for each user. However, people may exhibit similar behaviors and similarities among

models commonly exist [15]. In this case, cooperation among agents could be leveraged. However, given

data privacy concerns, cooperation among agents in a network relies typically on exchanging model param-

eters instead of data. As a result, sharing experience memory by storing the state-action pairs in a common

20

memory accessible to each agent [109] is not applicable to such privacy-sensitive real-world applications. In

a distributed learning network, an agent communicates model parameters with its local neighbors and also

updates these parameters by incorporating the neighbors’ information [16]. It has been demonstrated that

such cooperation enables improved learning performance over the network [73].

2.3.2 Distributed Reinforcement Learning in A Shared MDP

Another line of research in distributed RL is the concurrent learning problem, also known as the multi-

agent reinforcement learning (MARL) problem, where multiple interactive agents work collaboratively or

competitively in the same environment modeled by a single MDP. One straightforward method in solving

this problem is to learn an individual policy for each agent by their individual actions without considering

the other agents’ actions, which has been successfully applied to the two-player pong game [118]. However,

multiple agents taking actions in the environment rendering the environment non-stationary, making the ex-

perience buffer obsolete frequently and leading to convergence problems. To address such problems, several

methods have been proposed, such as by taking other agents’ actions into account when updating one’s critic

network [119], or using importance sampling to naturally decay obsolete data in experience buffer [120].

For example, [119] proposes a multi-agent policy gradient algorithm where agents learn a centralized critic

network based on the observations and actions of all agents. Their method has better empirical results than

traditional RL algorithms, such as DQN, Actor-Critic, a first-order implementation of Trust Region Policy

Optimization (TRPO), and Deep Deterministic Policy Gradient (DDPG), in a variety of cooperative and

competitive multi-agent environments. In addition, [121] proposes a two-stage multi-goal multi-agent policy

gradient approach where at the first stage, a single agent learns for their goal attainment; and at the second

stage, a credit assignment method is used to learn a centralized policy by the cooperation among agents.

Moreover, algorithms that use parameter sharing among agents in MARL can be found in [122–125], where

communication among agents contributes to improved overall performance.

2.3.3 Resilience in Distributed Reinforcement Learning

Although research in Byzantine resilient aggregation for distributed learning algorithms is very broad,

studies focusing on resilient distributed RL are limited. A recent work presented in [126] uses trimmed

mean to achieve resilience, where a centralized server exists in the network. In addition, a resilient version

of QD-learning in a full-decentralized network has been proposed in [127], which is based on the W-MSR

algorithm.

21

2.4 Comparison to This Dissertation

The work presented in this thesis addresses multiple resilient consensus, learning and optimization prob-

lems in distributed multi-agent systems through designing resilient cooperation mechanisms and aggregation

rules. Specially, we seek to develop efficient aggregation rules for distributed consensus, learning and op-

timization systems with strong resilience guarantees that can secure the system from Byzantine attacks. In

particular, compared to the previous work that directly applies consensus algorithms into distributed learn-

ing and optimization systems for resilient cooperation purpose, which faces the dilemma that 1) resilient

scalar consensus algorithms cannot guarantee resilient vector consensus, and 2) it is not practical to use

resilient vector consensus algorithms for high-dimensional model parameters given its exponential compu-

tational complexity in the dimension, we propose resilient aggregation methods for distributed learning and

optimization by measuring the similarities among agents, which addresses the dilemma between resilience

and computational complexity. In addition, we study the cooperation in fully-decentralized multi-agent learn-

ing and optimization systems and provide analytical and empirical evidence to demonstrate the benefits from

such cooperation, in distributed supervised learning, clustering, and reinforcement learning networks.

22

Chapter 3

Resilient Vector Consensus in Multi-Agent Networks Using Centerpoints 1

In this chapter, we study the resilient vector consensus problem in multi-agent networks and improve

resilience guarantees of existing algorithms. In resilient vector consensus, agents update their states, which

are vectors in Rd, by locally interacting with other agents some of which might be adversarial. The main

objective is to ensure that normal (non-adversarial) agents converge at a common state that lies in the convex

hull of their initial states. Currently, resilient vector consensus algorithms, such as approximate distributed

robust convergence (ADRC) are based on the idea that to update states in each time step, every normal node

needs to compute a point that lies in the convex hull of its normal neighbors’ states. To compute such a point,

the idea of Tverberg partition is typically used, which is computationally hard. Approximation algorithms for

Tverberg partition negatively impact the resilience guarantees of consensus algorithm. To deal with this issue,

we propose to use the idea of centerpoint, which is an extension of median in higher dimensions, instead of

Tverberg partition. We show that centerpoint provides a better characterization of the necessary and sufficient

conditions guaranteeing resilient vector consensus and is computationally more efficient. We analyze these

conditions in two, three, and higher dimensions separately. We also numerically evaluate the performance of

our approach.

3.1 Introduction

Resilient consensus in a network of agents, some of which might be adversarial or faulty, has several ap-

plications in multirobot networks, distributed computing, estimation, learning and optimization (for instance,

see [2, 27, 32, 128, 129]). The main goal of resilient consensus is to ensure that all normal agents in a net-

work agree on a common state despite the presence of some adversarial agents, which aim to prevent normal

nodes from consensus and whose identities are unknown to normal agents. Resilient consensus is achieved

if appropriate state update laws are designed for normal agents and the underlying network topology satisfies

certain connectivity and robustness conditions. For instance, when agents’ states are scalars, [130] presents a

resilient distributed algorithm guaranteeing convergence of normal nodes to a common state.

If agents’ states are vectors or points in Rd, d ≥ 2, then the resilient consensus objective is to ensure that

1©2020 IEEE. Adapted with permission, from [Mudassir Shabbir, Jiani Li, Waseem Abbas and Xenofon Koutsoukos, ”Resilient
Vector Consensus in Multi-Agent Networks Using Centerpoints,” 2020 American Control Conference (ACC), 2020, pp. 4387-4392,
doi: 10.23919/ACC45564.2020.9147441].

23

normal agents converge at some point in the convex hull of their initial states. A simple approach could be to

run d instances of scalar resilient consensus, one for each dimension. However, as a result of this approach,

normal agents might converge at a point outside of the convex hull of their initial states, as discussed in [22].

Thus, we cannot rely on resilient scalar consensus algorithms to achieve resilient vector consensus. Various

solutions have been proposed to achieve resilient vector consensus, which has been an active research topic,

for instance see [22, 28, 32–34].

In this chapter, we study the resilient vector consensus problem and a recently proposed solution referred

to as the Approximate Distributed Robust Convergence (ADRC) algorithm in [32]. We show that the resilience

of the algorithm, in terms of the number of adversarial agents whose presence does not prevent normal agents

from converging to a common state in the desired convex hull, is improved with some simple modification.

In particular, if normal agents implement ADRC as in [32], then consensus is guaranteed if the number of

adversarial agents in the neighborhood of a normal agent i is nfi ≤
⌈
|Ni|
2d

⌉
− 1, where |Ni| is the number of

nodes in the neighborhood of i, and d is the dimension of state vector. We show that in the case of d = 2, 3,

consensus is guaranteed if nfi ≤
⌈
|Ni|
d+1

⌉
− 1, and for d > 3 if nfi ≤

⌈
|Ni|
d

r
r−1

⌉
− 1 where r can be any integer.

ADRC is an iterative algorithm, and in each iteration, a normal node needs to compute some point in

the convex hull of points corresponding to its normal neighbors’ states. To compute such a point, which is

referred to as the safe point, authors in [32] utilize the idea of Tverberg partition of points in Rd (discussed

in Section 3.3). We argue that instead of computing Tverberg partition, it is much better to use the notion

of centerpoint in Rd to compute safe points. The notion of centerpoint and its properties have been an

active research topic in discrete geometry [131, 132]. A centerpoint essentially extends the notion of median

in higher dimensions. We show that safe points, as used in ADRC algorithm, are essentially the interior

centerpoints. This perspective provides a complete characterization of safe points, and hence allows us to

improve the resilience bound of the algorithm.

• We show that the resilience of ADRC algorithm can be improved by using the notion of centerpoint instead

of Tverberg partition. We discuss these improvements in two, three and higher dimensions separately.

• Using centerpoints, we show that |Ni| ≥ nfi(d+1)+1 is not only sufficient but also necessary to compute

a safe point, which is a key step in the ADRC algorithm. Here nfi is the number of adversaries in the

neighborhood of a normal node i. We also provide an overview of various algorithms reported in the

literature to compute centerpoints in different dimensions.

• We compare and numerically evaluate our results with the existing algorithm by simulating resilient vector

consensus in multirobot networks.

24

The rest of the chapter is organized as follows: Section 3.2 introduces notations and preliminaries. Section

3.3 provides an overview of the ADRC algorithm. Section 3.4 discusses the notion of centerpoint for ADRC

and presents main results in the chapter. Section 3.5 gives a numerical evaluation of our results, and Section

3.7 concludes the chapter.

3.2 Notations and Preliminaries

We consider a network of agents modeled by a directed graph G = (V, E) with self-loops allowed, where

V represents agents and E represents interactions between agents. Each agent i ∈ V has a d-dimensional

state vector whose value is updated over time. The state of each agent i at time t is represented by a point

xi(t) ∈ Rd. An edge (j, i) means that i can observe the state value of j. The neighborhood of i is the set of

nodes Ni = {j ∈ V|(j, i) ∈ E}. For a given set of points X ⊂ Rd, we denote its convex hull by conv(X).

A set of points in Rd is said to be in general positions if no hyperplane of dimension d − 1 or less contains

more than d points. A point x ∈ Rd is an interior point of a set X ⊂ Rd if there exists an open ball centered

at x which is completely contained in X . We use terms agents and nodes interchangeably, and similarly use

terms points and states interchangeably.

Normal and Adversarial Agents. There are two types of agents in the network, normal and adversarial.

Normal agents are the ones that interact with their neighbors synchronously and always update their states

according to a pre-defined state update rule, that is the consensus algorithm. Adversarial agents are the ones

that can change their states arbitrarily and do not follow the pre-defined state update rule. Moreover, an

adversarial node can transmit different values to its different neighbors, which is referred to as the Byzantine

model. The number of adversarial nodes in the neighborhood of a normal node i is denoted by nfi . For

a normal node i, all nodes in its neighborhood are indistinguishable, that is, i cannot identify which of its

neighbors are adversarial.

Resilient Approximate Vector Consensus. The goal of the resilient vector consensus is to ensure the fol-

lowing two conditions:

• Safety – Let X(0) = {x1(0), x2(0), · · · , xn(0)} ⊂ Rd be the set of initial states of normal nodes, then

at each time step t, and for any normal node i, the state value of i, denoted by xi(t) should be in the

conv(X(0)).

• Agreement – For every ε > 0, there exists some tε, such that for any normal node pair i, j, ||xi(t)−xj(t)|| <

ε, ∀t > tε.

25

3.3 Background and Approximate Distributed Robust Convergence (ADRC) Algorithm

In this section, first we provide an overview of a resilient vector consensus algorithm known as the approx-

imate distributed robust convergence, recently proposed in [32]. Then, we discuss improvement in resilience

guarantees of the algorithm by reconsidering its computational aspects.

The ADRC is an iterative algorithm, in which a normal node i gathers the state values of its neighbors in

each iteration t, and then computes a point that lies in the interior of the convex hull of its normal neighbors’

states. After computing this point, which is referred to as the safe point si(t), node i updates its state as

follows:

xi(t+ 1) = αi(t)si(t) + (1− αi(t))xi(t), (3.1)

where, αi(t) is a dynamically chosen parameter in the range (0 1].2 It is shown in [32] that if all normal

nodes follow this procedure, they converge at a common point and achieve resilient consensus (satisfying

safety and agreement conditions stated in the previous section).

Computation of a safe point in each iteration is the key step in the algorithm. For this, [32] utilizes results

from discrete geometry, in particular the idea of Tverberg partitions [133] and related results. We first state

the main result regarding the partitioning of points in Rd, and then discuss the application of this result, as

adapted in [32], for computing safe points.

Proposition 3.1. ([134–136]) If we have a set X of n points in general positions in Rd, where n ≥ (r −

1)(d + 1) + 1 and d ≤ 8, then it is possible to partition X into r pairwise disjoint subsets X1, X2, · · · , Xr

such that the intersection of convex hulls of these r subsets is non-empty and is at least d-dimensional.

Such a partition is a Tverberg partition. Now, consider a normal node i in our network having n neighbors

in its neighborhood out of which at most nf are adversarial.3 Each node corresponds to a point in Rd.

The goal for a node i is to compute an interior point in the convex hull of n − nf normal points. If n ≥

nf (d + 1) + 1, then by Proposition 3.1, we will have a partition of n points into nf + 1 subsets such that

the intersection of convex hulls of these subsets is non-empty and is d-dimensional. We call this intersection

region as Tverberg region. Since there are at most nf adversarial nodes and we have nf + 1 subsets in the

partition, one of these subsets consists of points corresponding to normal nodes only. Let us denote this

subset by X∗. Note that the Tverberg region lies in the convex hull of X∗, and conv(X∗) itself lies in the

convex hull of all normal nodes points. Consequently, every interior point in the Tverberg region is a safe

point. Thus, to compute a safe point, a normal node i computes a Tverberg partition, which is possible if
2The choice of αi(t) depends on applications, for instance, in multirobot systems, it is selected such that the physical constraints

including maximum allowable displacement by a robot is not violated.
3For the ease of notation, we drop the subscript i from ni and nfi denoting the total number of neighbors and the number of

adversarial neighbors of node i respectively from here onward. Note that, in general these values can be different for different nodes.

26

n ≥ nf (d+ 1) + 1. In other words, a normal node can compute a safe point in the presence of nf adversarial

neighbors if nf ≤ d n
d+1e − 1. Figure 3.1 gives an illustration of these ideas.

v1
v2

v3

v4v5

v6

(a) (b) (c)

Figure 3.1: (a) Five normal (blue) and a single adversarial node. Shaded area is the convex hull of normal
nodes. (b) Tverberg partition consisting of two subsets, out of which one contains only normal nodes. Convex
hulls of both subsets have a non-empty intersection, corresponding to a Tverberg region. (c) Intersection of
Tverberg region and the convex hull of normal nodes.

However, computing a Tverberg partition in general is an NP-hard problem. The best known algorithm

that computes it in a reasonable run time is an approximate algorithm [137], which has a time complexity of

dO(1)n. The algorithm is approximate in a sense that to have a partition of n points into r subsets, n ≥ 2dr

(as compared to n ≥ (r − 1)(d + 1) + 1 in Proposition 3.1). Consequently, to compute a safe point in the

presence of nf adversarial neighbors, a normal node needs to have at least n ≥ (nf + 1)2d nodes in its

neighborhood. In other words, with a total of n neighbors, a node i can compute a safe point, and hence

achieve resilient consensus (using ADRC) if there are nf adversarial nodes in its neighborhood, where

nf ≤
⌈ n

2d

⌉
− 1. (3.2)

Note that (3.2) indicates resilience of the ADRC algorithm that relies on approximate Tverberg partitions to

compute safe points. For instance, the algorithm guarantees resilient consensus in R2 if for every normal

node, less than 25% of its neighbors are adversarial.

3.3.1 How Can We Improve the Resilience of ADRC?

Here, we ask if it is possible to improve the resilience of the ADRC algorithm? What modifications will

allow us to guarantee consensus even if the number of adversarial nodes in the neighborhood of a normal node

is greater than d n
2d
e − 1? Next, we show that it is possible to achieve a better resilience bound if we use a

slightly different way of computing safe points, that is by using the notion of centerpoint instead of Tverberg

partition. Moreover, centerpoint provides a better characterization of necessary and sufficient conditions for

computing safe points.

27

3.4 ADRC Using Centerpoints

In this section, we explain the notion of a centerpoint and its relation to safe point. Then, we discuss that

computing a safe point through centerpoint is more desirable as it results in improving the resilience of the

ADRC algorithm.

3.4.1 Safe Point and the Interior Centerpoint

The notion of safe point is pivotal in the ADRC algorithm, so we define nf -safe point as in [32] below.

Definition 3.1. (nf -Safe point) Given a set of n points in d dimensions, of which at most nf correspond to

adversarial nodes, an nf -safe point is a point that lies in the relative interior of the convex hull of (n− nf)

normal points. We refer to a (d n
d+1e − 1)-safe point in Rd as an optimal safe point or just safe point.

As we discussed in the last section, a point that lies in the interior of the Tverberg region of (nf+1) subsets

is always an nf -safe point Here, we provide a better characterization of nf -safe point using centerpoint,

which is defined below.

Definition 3.2. (Centerpoint) Given a set S of n points in Rd in general positions, a centerpoint p is a point,

not necessarily from S, such that any closed half-space4 of Rd that contains p also contains at least d n
d+1e

points from S.

Intuitively, a centerpoint lies in the “center region” of the point cloud, in the sense that there are enough

points of S on each side of a centerpoint. A centerpoint, essentially, extends the notion median to higher

dimensions. A related notion of centerpoint depth is defined as follows:

Definition 3.3. For a given pointset, centerpoint depth or simply depth of a point q is the maximum number

α such that every closed halfspace containing q contains at least α points.

Thus, a centerpoint has depth at least d n
d+1e. The existence of such a point for any given set S is guaran-

teed by the famous Centerpoint Theorem (see [138, 139]).

Theorem 3.1. (Centerpoint Theorem) For any given point set in general positions in an arbitrary dimension,

a centerpoint always exists.

A centerpoint doesn’t need to be unique, in fact, there can be infinitely many centerpoints. The set of all

centerpoints constitutes the centerpoint region or simply the center region. It is known that center region is

closed and convex. We observe that the safe point from [32] is actually an interior centerpoint.

4Recall that closed half-space in Rd is a set of the form {x ∈ Rd : aT x ≥ b} for some a ∈ Rd \ {0}.

28

Theorem 3.2. For a given set of points S in Rd, an nf -safe point is equivalent to an interior centerpoint for

nf = d n
d+1e − 1.

Proof: See [3].

Theorem 3.2 provides a complete characterization of a safe point in the presence of nf adversarial nodes.

Here, we would also like to note that nf = 1
d+1 − 1 is the best possible fraction, that is, there exist general

node positions where allowing more adversary nodes would mean that there is no safe point at all.

Proposition 3.2. For a set of n nodes in general positions, if nf ≥ d n
d+1e, then there exist general examples

in which an nf -safe point does not exist.

Proof. Imagine d + 1 copies of n
d+1 points at the vertices of a non-degenerate d-simplex. If there are n

d+1

adversarial nodes whose identities are unknown, then there is no point that lies in the convex hull of remaining

points. Note that points in this examples can be arbitrarily perturbed to ensure that general positions condition

is not violated.

Figure 3.2 demonstrates Proposition 3.2 for the planar case. Further, we note that every point in the

intersection of an appropriate Tverberg partition is a centerpoint and thus, also a safe point. However, the

converse is not true; a centerpoint or a safe point need not be a Tverberg point in general.

X

Y Z

Figure 3.2: S is partitioned into X,Y, Z each of which contains n/3 points. If there are n/3 adversarial
nodes then points in either of these three sets can all be adversarial. We require that an nf -safe point must
lie in the convex hull of normal nodes for all three possibilities. This is not possible because intersection of
three possible sets of normal nodes X ∪ Y , Y ∪ Z, Z ∪X is empty. Therefore, there is no nf -safe point in
this case.

In [32], normal nodes compute safe points using approximate Tverberg partitions [137], which deteriorate

the resilience of ADRC algorithm from nf ≤ d n
d+1e − 1 to nf ≤ d n2d e − 1. However, with this new

characterization, we can use centerpoints to compute safe points. Thus, if we are able to compute centerpoint

exactly (in a reasonable run time), then we are able to improve the resilience of ADRC algorithm, that is,

nf ≤
⌈

n

d+ 1

⌉
− 1 (3.3)

29

as compared to (3.2).

Next, we discuss the existence and computation of interior centerpoints in two, three and higher dimen-

sions separately.

3.4.2 Centerpoint-based Resilient Consensus in 2-D

In [32], authors show that an nf -safe point can be found in R2 when the number of adversarial nodes nf

is at most min
(
dn4 e, b

n
3 c
)
− 1 where n is total number of nodes in the neighborhood of a normal node. As

is evident, this is a loose bound on the resilience of such a consensus algorithm. Unfortunately, that is the

best that can be hoped for if one is to seek a safe-point using an approximate Tverberg partition. Tverberg

partitions are, in general, thought to be computationally expensive. However, we have showed in Theorem 3.2

that safe points and the interior centerpoints always coincide, and in the following subsection, we summarize

a well-known linear time algorithm to find a centerpoint in the plane. It should be pointed out that complexity

of finding a centerpoint in general dimensions is unknown, although computing centerpoint depth of a given

point is coNP-Complete. In this section, we propose the following result to compute a safe point in the plane:

Theorem 3.3. Given a set of n points in two dimensions in general positions, an nf -safe point exists when-

ever the number of adversarial nodes is nf ≤ dn3 e − 1. Moreover, such a safe point can be computed in

linear time.

Proof: See [3].

Remark 3.4. The set of Tverberg points is a subset of the centerpoint region. Thus, the existence of an

interior centerpoint in the plane, as shown above, is also implied by the existence of an interior Tverberg

point in dimensions two to eight. We hope that the alternative proof above may help extend this result to

dimensions greater than 8 for which the existence of an interior centerpoint and interior Tverberg point are

unknown.

3.4.3 Computing Centerpoint in 2-D

Here we address the computational aspects of the centerpoint in two dimensions. Due to a seminal result

in [140], it is possible to find a centerpoint for a non-degenerate pointset in the optimal O(n) time. We

remark that this result is also significant because it makes finding a centerpoint in linear time possible even

when checking whether a point is a centerpoint can not be done in better than Ω(n log n) time. Here, we

briefly outline this method to compute a centerpoint of a set of points; the details can be found in [140].

30

The algorithm is based on the idea that by pruning or replacing some of the “marginal points”, a center-

point of the remaining points is still a centerpoint of the original pointset. In each iteration one can compute

the points that are to be discarded or replaced, which will reduce the size of the set by a fraction. We continue

the pruning procedure until the size of the set becomes smaller than a fixed constant, one can then compute

a centerpoint by any straightforward brute-force method. Pruning of points is a pivotal step in the algorithm.

Given a set of n points P , we start by defining four half-planes, named L, U , R, and D (representing Left,

Up, Right, and Down, respectively), such that each of them contains less than dn3 e−1 points (this ensures that

they don’t contain any centerpoint) and their closures contain at least dn3 e points. And the closure of each of

the setsL∩U , L∩D,R∩U , andR∩D contains at least
(
dn3 e − d

n
4 e
)

points. It is, then, argued that either one

can discard the points of a triangle on three points from three of the four intersections or substitute four points

from the four intersection sets by their Radon point5. This reduces the size of P by a significant fraction and

a centerpoint of the remaining point set is also a centerpoint of the original point set. The pruning process, as

illustrated in Figure 3.3, is repeated until the number of points is less than a small constant, and then one can

compute the centerpoint by a brute-force method. The construction of halfplanes with the prescribed number

of points in their intersection is achieved by the famous ham-sandwich cut algorithm [141].

(a) (b) (c)

Figure 3.3: One iteration illustration of replacing points in L ∩U , L ∩D, R ∩U , and R ∩D by their Radon
points: (a) point set of 100 points, (b) intersections of the four half-planes, and (c) replacement of points in
the intersections by their Radon point.

3.4.4 Centerpoint-based Resilient Consensus in 3-D

The resilience bound that we get from the results in [32] guarantee an nf -safe point in three dimensions

whenever nf ≤ dn8 e-1 adversarial nodes. From the centerpoint theorem, we know that a safe point exists in

the interior of centerpoint region in 3-D even in the presence of (n/4) − 1 adversarial nodes. In context of

Theorem 3.2, this property can be leveraged to present a better resilience guarantee.

5Any set of 4 points in R2 can be partitioned into two disjoint sets whose convex hulls intersect. A point in the intersection of these
convex hulls is called a Radon point of the set.

31

Theorem 3.5. An
(
dn4 e − 1

)
-safe point exists for every pointset in general positions in R3. Such a point can

be computed in O(n2) expected time.

Proof. We know that an
(
dn4 e − 1

)
-safe point is an interior centerpoint by Theorem 3.2, and [135] implies

that an interior centerpoint must exist in three dimensions. A randomized algorithm by Chan can be used

to compute a centerpoint in three dimensions in O(n2) expected time [142]. We proceed by running Chan’s

algorithm four times, and compute the centroid of the four centerpoints returned to get an interior centerpoint.

Next, we provide a brief overview of Chan’s algorithm in which he computes a centerpoint of a non-

degenerate pointset in O(nd−1) time [142]. He first solves the decision version of the problem: does there

exist a point of depth k for a given k? If the answer is yes, then a point of given depth is reported as well.

This decision version is solved using a randomized Linear Program solver by dualizing the pointset: given

points S are dualized to a set S∗ of hyperplane and a point of given depth dualizes to special hyperplane

that has at least k hyperplanes from S∗ above or below it. The problem of finding this hyperplane is solved

by partitioning the space and solving sub-problems in each smaller region. The partitioning is done by the

famous Cutting Lemma [143]. For further details, we refer to the chapter [142].

3.4.5 Centerpoint-based Resilient Consensus in d-dimensions for d > 3

In higher dimensions, current methods to compute either a desirable Tverberg partition or a centerpoint

for a given pointset become computationally impractical. It is known deciding whether a point lies in the

intersection of a Tverberg partition is NP-Complete and deciding whether a point is centerpoint is coNP-

Complete. Various approximations are employed to compute these points in practice. In [32], authors use a

“lifting-based” approximation that finds an nf -safe point in presence of nf ≤ n
2d
− 1 adversarial nodes. In

the following, we outline an algorithm by Miller and Sheehy to compute an approximate centerpoint [144].

The point returned by this algorithm has a centerpoint depth of n
dr/r−1 for any integer r ≥ 2. For r = 3, this

gives an nf -safe point when the number of adversarial nodes is at most n
d3/2

. By increasing r, the quality of

approximation, and hence the bound on the number of adversarial nodes improves. However, it comes at the

cost of increasing time complexity as the runtime of the algorithm is O(rdd) for an integer r > 1.

Miller and Sheehy centerpoint-approximation algorithm is based on the technique of Radon’s theorem

which states that for any given set of at least d+2 points, there exists a partition into two sets with intersecting

convex hulls; a point in the intersection of the two said sets is called a Radon point. They improve upon a

classic algorithm that starts by partitioning a given pointset S into groups of d + 2 points and computing

Radon point for each group. The set of d |S|d+2e Radon points returned in the previous iteration are assumed to

32

be the new pointset and centerpoint for these points is recursively computed. An approximate centerpoint is,

thus, found in at most logd+2 |S| iterations. Miller and Sheehy showed that they can create groups of larger

sizes (of multiples of d + 2 points) and reduce the number of iterations. Details of their algorithm, anyalsis

and proof of correctness is available in [144]. As a consequence, we have the following result:

Theorem 3.6. For a given pointset in Rd in general positions, a
(

n
dr/r−1

)
-safe point exists and can be

computed in time O(rdd) for any integer r > 1.

Thus, using approximate centerpoint in dimension d, consensus is guaranteed if the number of adversarial

nodes in the neighborhood of every normal node is nf ≤ n
dr/r−1 for an integer r > 1, which is better than

the resilience achieved by using approximate Tverberg partition, where nf ≤ n
2d
− 1.

(a) (b) (c)

Figure 3.4: (a) Initial positions of robots. (b) Final positions of robots using approximate Tverberg partition
based algorithm. (c) Final positions using centerpoint based algorithm.

3.5 Evaluation

We perform simulations6 to compare resilient consensus in multirobot systems in two dimensions using

centerpoint and approximate Tverberg partition [32]. At each iteration t of the multi-robot consensus algo-

rithm, a normal robot i computes a safe point si(t) of its neighbors’ positions (using centerpoint or approxi-

mate Tverberg partition), and calculates its new position using (3.1). In our experiments, we set αi(t) = 0.8.

We consider stationary adversarial nodes, and assume that the network graph is undirected and fixed.7 A

group of 45 robots of which 5 are adversarial is distributed in a planar regionW = [−1, 1] × [−1, 1] ∈ R2

as shown in Figure 3.4(a). All normal robots have at most
(
d |Ni|3 e − 1

)
adversaries in their neighborhood,

which means resilient consensus is guaranteed by the centerpoint based algorithm. However, a couple of

normal robots (depicted in yellow color) have nfi adversaries in their neighborhood, where
(
d |Ni|4 e − 1

)
<

nfi ≤
(
d |Ni|3 e − 1

)
. For the two robots in yellow, they have 7 and 8 neighbors, and both of them have 2

6Our code is available at https://github.com/JianiLi/MultiRobotsRendezvous
7For additional experiments with disk graphs and moving adversaries, see [3].

33

https://github.com/JianiLi/MultiRobotsRendezvous

0 15 30 45 60 75 90
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Po
sit

io
n
(X
)

0 15 30 45 60 75 90
Iteration

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75
Po

sit
io
n
(Y
)

(a)

0 15 30 45 60 75 90
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Po
sit

io
n
(X
)

0 15 30 45 60 75 90
Iteration

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Po
sit

io
n
(Y
)

(b)

Figure 3.5: Positions of normal robots as a function of iterations using (a) approximate Tverberg partition
based, and (b) centerpoint based algorithms.

adversarial neighbors in their respective neighborhoods. Consequently, the resilient consensus condition for

the approximate Tverberg partition based algorithm is not satisfied, and consensus is not guaranteed. Figures

3.4(b) and (c) show final positions of robots for both algorithms. It is clear that consensus is achieved with

the centerpoint based algorithm, whereas robots fail to converge at a common point using the approximate

Tverberg partition based algorithm. Figure 3.5 illustrates positions of robots as a function of iterations and

demonstrates the same results.

3.6 Resilient Asynchronous Approximate Vector Consensus Using Centerpoints

The approximate vector consensus problem in Byzantine asynchronous systems has been extensively

studied, e.g., in [22, 23, 28]. In this section, we extend the proposed resilient synchronous approximate

consensus method using centerpoints to the asynchronous systems in complete graphs based on [28]. In

a synchronous system, operations are coordinated by one, or more, centralized clock signals. In contrast,

there is no global clock in an asynchronous system and no upper bound on relative speeds of messages or

on message delay is required. As a result, it is not possible to distinguish between a faulty agent that has

halted and a normal one that is simply slow to respond [28]. For incomplete graphs, agents connected to

different Byzantine agents may end up in different consensus states. As a result, in the case of incomplete

graphs, resilient asynchronous approximate vector consensus relies on some robustness conditions on the

34

connectivity graphs [33], which is not considered in this section.

3.6.1 Iterative Algorithms and Resilience Bounds

It has been well established in [28] that the iterative algorithm given in Algorithm 1 can be used for any

normal agent in multiple discrete iterations to achieve resilient asynchronous approximate vector consensus

in a complete graph.

Algorithm 1: Resilient Asynchronous Approximate Vector Consensus

1 for iteration t ≥ 0 do
2 for every agent i do
3 1. Broadcast its current state;
4 2. Receive multiple states from the other agents (including its own), never waiting for more

than n− nf states since nf states might have crashed, where n is the total number of agents
and nf is the upper bound for the number of Byzantine agents in the network;

5 3. Update its current state to a particular point inside a ”safe area” in Rd, guaranteed to be in
the convex hull of the normal inputs, where d is the dimension of the states.

It needs to be assumed in Algorithm 1 that communication channels are point-to-point reliable (all mes-

sages are eventually delivered), complete (any pairwise communication is possible), and FIFO (first-in, first-

out). The agents can reliably identify the sender of any message. Besides, agents use two communication

primitives, namely the reliable broadcast and the witness technique [28], to support the communication among

agents, such that

• the reliable broadcast technique eliminates the situation when Byzantine agents convey different messages

to different normal agents, and

• the witness technique results in normal agents having n− nf common states.

The two techniques are essential for the correctness of the algorithm to ensure the unique consensus point.

The details of the two techniques as well as how they guarantee the correctness of the resilient asynchronous

approximate vector consensus algorithm in Algorithm 1 are thoroughly discussed in [28].

The only difference between the above algorithm for asynchronous approximate vector consensus and the

iterative algorithm for synchronous approximate vector consensus is in the second step where agents never

wait for more than n − nf states in the asynchronous system yet wait for n total states in the synchronous

system, which results in a different resilience bound between the two systems [23]. In particular, with com-

plete communication graphs, the necessary and sufficient condition to solve the resilient approximate vector

consensus problem is (1) n > (d + 1)nf , in synchronous systems; and (2) n > (d + 2)nf in asynchronous

systems [23].

35

3.6.2 Iterative Algorithms Using Centerpoints

The insight of our method lies in step 3 of Algorithm 1, where we compute a centerpoint of nacp = n−nf

accepted states as a point in the ”safe area”. As we discuss in Section 3.4, this point is guaranteed to be inside

the convex hull of the normal inputs (safety condition) if the number of Byzantine points in nacp accepted

points is upper bounded by dnacpd+1 e − 1. Since nacp accepted points may contain all the Byzantine points,

it follows that the safety condition is guaranteed if nf ≤ dn−nfd+1 e − 1, which is equivalent to n − nf ≥

(nf + 1− 1)(d+ 1) + 1. Rearranging the terms and it yields that n ≥ (d+ 2)nf + 1, which is consistent to

the results in [23]. Therefore, using centerpoint for computing a point in the ”safe area” in step 3 of Algorithm

1, we could achieve resilient approximate vector consensus for asynchronous systems if n ≥ (d+ 2)nf + 1.

Note that the difference between the resilience bounds for synchronous and asynchronous systems results

from the different number of accepted states for aggregation.

Compare our method with the method used in [23, 28] for computing a point in the safe area. In [23, 28],

they use linear programming for deterministically obtain a point inside the safe area. The linear program uses

a total of
(

n
n−nf

)
(d+ 1 +n−nf) constraints in d+

(
n

n−nf
)
(n−nf) variables. It can be found that the linear

program cannot be solved in polynomial time for nf = d n
d+2e−1 with the number of variables and constraints

that are not polynomial in n. However, using centerpoints, we observe O(n) and O(n2) computation time

for d = 2 and d = 3 respectively as we discussed in 3.4. Note that d ≤ 3 in many practical applications.

Hence, the centerpoint-based method for computing a point in the safe area offers more advantages in terms

of computational complexity and characterization.

(a) (b) (c)

Figure 3.6: Asynchronous approximate vector consensus: (a) Initial positions of robots. (b) Final positions
of robots using approximate Tverberg partition based algorithm. (c) Final positions using centerpoint based
algorithm.

36

0 4 8 12 16 20 24 28
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Po
sit

io
n
(X

)

0 4 8 12 16 20 24 28
Iteration

−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

Po
sit

io
n
(Y
)

(a)

0 4 8 12 16 20 24 28
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Po
sit

io
n
(X

)

0 4 8 12 16 20 24 28
Iteration

−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

Po
sit

io
n
(Y
)

(b)

Figure 3.7: Asynchronous approximate vector consensus: positions of normal robots as a function of itera-
tions using (a) approximate Tverberg partition based, and (b) centerpoint based algorithms.

3.6.3 Evaluation

We perform simulations8 to compare resilient asynchronous approximate vector consensus in multirobot

systems using Algorithm 1 in two dimensions with centerpoint and approximate Tverberg partition [32] for

computing a point in the ”safe area”. To realize asynchronous communication, we simulate each agent as

a thread with no global clock. In our simulation, we do not implement the reliable broadcast and witness

technique in order to make the Byzantine agents convey the same messages to all the normal agents and all

the normal agents have n − nf common messages. However, we achieve the same purpose by forcing the

Byzantine agents broadcast the same messages to all the other agents and assigning time sequence of agents

for broadcasting and receiving messages at each iteration.

Following Algorithm 1, at each iteration t of the multi-robot consensus algorithm, a normal robot i broad-

casts its current position, computes a safe point si(t) of the first n− nf positions they receive from the other

agents (using centerpoint or approximate Tverberg partition), and calculates its new position using (3.1). In

our experiments, we set αi(t) = 1. We consider non-stationary Byzantine nodes, such that each Byzantine

node changes its position by moving right, down, left, and up with length 0.2 constantly for four consecutive

iterations starting from the first iteration. We assume that the network graph is modeled by a complete graph.

A group of 17 robots of which 4 are adversarial is distributed in a planar regionW = [−1, 1]× [−1, 1] ∈ R2

8Our code is available at https://github.com/JianiLi/asyncConsensus

37

https://github.com/JianiLi/asyncConsensus

as shown in Figure 3.6(a), where blue nodes are normal agents and red nodes are Byzantine agents, and the

gray polygon is the convex hull of the initial positions of the normal agents. From the discussion in Section

3.6.2, using centerpoints in the third step of Algorithm 1, we achieve resilient asynchronous approximate vec-

tor consensus if n ≥ (d+2)nf +1. Since 17 ≥ (2+2)×4+1, the resilient asynchronous approximate vector

consensus is guaranteed by the centerpoint based algorithm. Figures 3.6(b) and (c) show the final positions

of robots for consensus using approximate Tverberg partition and centerpoint, respectively. It is clear that

the resilient consensus is achieved with the centerpoint based algorithm, where agents end up in a common

position within the convex hull of their initial positions. However, robots fail to converge at a common point

in the convex hull of their initial positions using the approximate Tverberg partition based algorithm. Figure

3.7 illustrates positions of robots as a function of iterations and demonstrates the same results.

3.7 Conclusion

The task of ensuring consensus in the convex hull of vector states for a set of nodes, a fraction of which

may be under the influence of an adversary, is a challenging problem. In this chapter, we present a geometric

characterization of an optimal point, in the form of a centerpoint, in the convex hull of normal nodes when

the number of adversarial nodes is limited to a 1/(d+ 1) fraction of the size of the neighborhood of a node.

It also follows that the upper bound on the number of adversarial nodes is best possible in the worst case. We

propose to use well-known efficient algorithms to compute exact centerpoints in two and three dimensions.

For higher dimensions, we use an approximate centerpoint algorithm proposed in [144], and improve previous

bound on the number of adversarial nodes.

It follows from our results that if the fraction of adversarial nodes in the neighborhood of every normal

node is at least d/(d+ 1), then adversarial nodes can make normal nodes converge to any point they desire in

the synchronous systems. At the same time, if their fraction is less than 1/(d+1), then the resilient consensus

is guaranteed. In addition, in the asynchronous systems, this bound is reduced to 1/(d + 2). In future, we

aim to study and characterize the effect of adversarial nodes if their fraction in the neighborhood of a normal

node is between the above two numbers.

38

Chapter 4

Byzantine Resilient Distributed Learning in Multi-Robot Systems Using Centerpoints 1

Distributed machine learning algorithms are increasingly used in multi-robot systems and are prone to

Byzantine attacks. In this chapter, we consider a distributed implementation of the Stochastic Gradient De-

scent (SGD) algorithm in a cooperative network, where networked agents optimize a global loss function

using SGD on the local data and by aggregating the estimates of immediate neighbors. Byzantine agents

can send arbitrary estimates to their neighbors, which may disrupt the convergence of normal agents to the

optimum state. We show that if every normal agent combines its neighbors’ estimates (states) such that the

aggregated state is in the convex hull of its normal neighbors’ states, then the resilient convergence is guar-

anteed. To assure this sufficient condition, we propose a resilient aggregation rule based on the notion of

centerpoint, which is a generalization of the median in the higher-dimensional Euclidean space. We evaluate

our results using examples of target pursuit and pattern recognition in multi-robot systems. The evaluation

results demonstrate the cases where distributed learning with the average, coordinate-wise median, and geo-

metric median-based aggregation rules fail to converge to the optimum state, whereas the centerpoint-based

aggregation rule is resilient in the same scenario.

4.1 Introduction

There is a growing trend towards collaboratively training machine learning models on distributed devices

to deal with the rapid increase of data and privacy and security concerns. In this chapter, we consider the

problem of distributed machine learning (DML) in a fully decentralized network [69, 70, 145]. In such a

network, agents interact with each other without a centralized server and leverage the shared information to

benefit their learning performance. Such a decentralized framework also addresses the single point of failure

problem as well as scalability issues and is naturally suited for applications in multi-robot systems, including

spectrum sensing in cognitive networks [146], target localization and tracking [147], distributed clustering

[148], and biologically inspired designs for mobile networks [149].

Although cooperation among agents helps improve the overall learning performance [69], it is also sus-

ceptible to attacks where non-cooperative or adversarial neighbors sharing wrong information can disrupt the

1©2020 RSS. Adapted with permission, from [Jiani Li, Waseem Abbas, Mudassir Shabbir, and Xenofon Koutsoukos. “Resilient
Distributed Diffusion for Multi-Robot Systems Using Centerpoint”. In: Proceedings of Robotics: Science and Systems (RSS). Corvalis,
Oregon, USA, July 2020. DOI: 10.15607/RSS.2020.XVI.021].

39

Figure 4.1: Aggregating 9 points including 2 Byzantine points using different aggregation rules: all the
aggregated results fall outside of the convex hull (blue polygon) of the normal points.

convergence of the algorithm. Average-based information aggregation rules have been widely used in DML

[69–71]; however, a single misbehaving agent can adversely impact the convergence of the average-based

aggregation rules [1, 72]. Many robust aggregation rules have also been proposed to cope with outliers in

data or Byzantine adversaries, including the coordinate-wise median [52, 63, 64], coordinate-wise trimmed

mean [52, 57], geometric median [58, 62], Krum and multi-Krum [72], Bulyan, and multi-Bulyan [76, 77].

However, studies have already reported successful attacks in Byzantine systems using the rules mentioned

above [78–80].

In this chapter, we study the problem of the resilient convergence of DML for multi-robot systems in the

presence of Byzantine adversaries. We show that in the aggregation step, if every normal agent in the network

combines its neighbors’ states such that the aggregated result is in the convex hull of normal neighbors’ states,

then the resilient convergence of DML is guaranteed. We observe that most of the aggregation rules used in

the literature do not satisfy this condition, as illustrated in Figure 4.1. The primary challenge here is that

an agent cannot distinguish between its normal or Byzantine neighbors; hence, it cannot simply discard the

information from Byzantine neighbors to satisfy the above condition. To address this, we propose a resilient

aggregation rule based on the notion of safe region. For a normal agent k with nk neighbors, of which

any f can be Byzantine agents, a safe region is the set of states that always lie in the convex hull of agent

k’s normal neighbors’ states. We show that a normal agent can always find a state in the safe region by

computing a centerpoint of its neighbors’ states if f ≤ d nkd+1e − 1, where d is the dimension of states. Thus,

the centerpoint-based aggregation guarantees the resilient convergence of DML in the Byzantine system.

Our main contributions are:

• We analyze the sufficient condition to achieve Byzantine resilient convergence in distributed learning algo-

40

rithms. The condition guarantees that the state obtained due to the aggregation step lies inside the convex

hull of the normal agents’ states. When the sufficient condition is satisfied, we show that normal agents

converge to the global optimum state with O(1/i) convergence rate using appropriate stepsizes, where i

denotes the time index.

• We propose a centerpoint-based aggregation rule and show that it guarantees the resilient convergence of

the distributed learning algorithms whenever each normal agent k in the network has f ≤ d nkd+1e − 1

Byzantine neighbors.

• We evaluate our results using the examples of target pursuit and pattern recognition in multi-robot systems.

We compare the proposed centerpoint-based aggregation rule with the average, coordinate-wise median,

and geometric median-based rules. The simulation results show that our approach is resilient to d nkd+1e − 1

Byzantine neighbors, and the cooperation improves the average learning performance over the network

than the non-cooperative case, while the other approaches are not resilient in the same scenarios.

The rest of the chapter is organized as follows: Section 4.2 discusses the related work. Section 4.3 formulates

the resilient distributed learning problem. Section 4.4 analyzes the sufficient condition to achieve resilient

convergence in distributed learning. Section 4.5 introduces the resilient aggregation rule based on the center-

point, which satisfies the sufficient condition and further guarantees the resilient convergence in distributed

learning. Section 4.6 gives an evaluation of the results. Finally, Section 4.7 provides a discussion of the

proposed method and concludes the chapter.

4.2 Related Work

Approximate Byzantine Consensus. The approximate Byzantine consensus problem initiated in [30] is

widely studied in the robotics and control systems community and is very relevant to resilient distributed

learning and optimization. The main objective is to ensure that all normal agents in a network satisfy the

safety and agreement conditions in the presence of Byzantine agents [22, 28]. Safety condition requires

normal agents to update their states such that they are always inside the convex hull of normal agents’ initial

states. Agreement means that eventually, all normal agents’ states are very close to each other, that is, within

an arbitrary ε > 0 distance from one another. The Mean Subsequence Reduced (MSR) algorithms [17, 150,

151] and the median-based algorithms [31, 39, 40] were proposed for the approximate Byzantine consensus

over scalar states. The problem is more challenging when the state vectors are in Rd where d ≥ 2. For vector

consensus, Tverberg partition [22, 33, 44], safe area [28], and centerpoint-based [3] approaches have been

proposed. The resilient vector consensus has various applications in multi-robot systems for fault-tolerant

41

rendezvous [152], formation control [41], flocking [42], secure localization [153, 154], and target pursuit [4].

Some of these works rely on coordinate-wise resilient scalar consensus, which does not necessarily achieve

resilient vector consensus. Note that in the resilient consensus problem, the connectivity and robustness of the

underlying network play an important role in the convergence of the iterative algorithms. In order to achieve

resilient consensus, the underlying network should satisfy certain robustness conditions that in turn guarantee

the redundant information needed by agents to ensure consensus in the presence of adversarial agents [17,

151]. Different than the consensus problem, in distributed learning, agents learn to converge to their target

using the adaptation step in addition to the aggregation of the neighbors’ states. We will show in Section

4.4 that the normal agents converge towards the optimum state as long as the safety condition is satisfied in

the aggregation step of distributed learning, regardless of the robustness of the underlying, which is different

from the case of resilient consensus.

Resilient Aggregation in DML. To achieve resilient convergence in DML, one approach is to discard co-

operation with possible Byzantine neighbors using the idea of trimming, similar to the MSR approach used

in resilient scalar consensus. In such an approach, it is assumed that a maximum of f Byzantine agents

can be present in the neighborhood of a normal agent. Algorithms are then designed for a normal agent

to rank its neighbors based on some trust criteria and a normal agent discards the values from its f least

trusted neighbors. Various metrics have been proposed in the literature to evaluate a agent’s trustworthiness,

including metrics based on the product of the weight and the loss [1], model parameters [57], gradients and

their norms [54, 74], and a combination of gradient and model parameters [75]. Moreover, various majority-

based aggregation rules have been proposed, similar to the median-based approach used in resilient scalar

consensus. Well-known majority-based aggregation rules include the coordinate-wise median [52, 63, 64],

coordinate-wise trimmed mean [52, 57], geometric median [58, 62], Krum and multi-Krum [72], Bulyan and

multi-Bulyan [76, 77]. Instead of ranking and filtering out the suspicious messages, these rules differ from

the ranking methods in the way that they do not need the ranking step and the aggregation result directly

precludes states far away from the cluster of the majority of the states by the intrinsic properties of the aggre-

gation rules. However, studies have already reported all of the above-mentioned methods are not resilient to

attacks under certain conditions [78–80].

Resilient DML via Computation Redundancy. One can also use computation redundancy to achieve re-

silient convergence in DML, which typically involves coding theory and algorithmic redundancy [81–83].

An example of such a framework is DRACO [81] in which the parameter server uses redundant gradients

received from agents to eliminate the effects of adversarial updates. Another algorithm proposed recently is

the RSA [84] that introduces an `p-norm regularization term into the objective function for the resilience pur-

42

pose. It eliminates the effect caused by the magnitudes of malicious messages sent by the Byzantine agents,

as a result, only the number of Byzantine agents, but not the magnitude, influence the model update, making

the algorithm robust to large outliers.

4.3 Problem Formulation

In this section, we describe the problem of distributed learning in networks in an adversarial setting.

4.3.1 Distributed Learning

Consider a network of n agents2 modeled by an undirected graph G = (V, E), where V represents agents

and E represents interactions between agents. A bi-directional edge (l, k) ∈ E means that agents k and l

can exchange information with each other. Since each agent also has its own information, we have (k, k) ∈

E ,∀k ∈ V . The neighborhood of k is the setNk = {l ∈ V|(l, k) ∈ E}. Each agent k has data
{

(xik, y
i
k)
}
i∈Sk

sampled randomly from the distribution generated by the random variable ξk, where xik ∈ Rd, yik ∈ R, and

Sk is the sample set. We consider a convex prediction function (model) ϕk(xik) = θ>k x
i
k, where θk ∈ Rd is

the model parameter (or state). We use `k(·) to denote a convex loss function associated with the prediction

function for agent k, and fk(·) to denote the convex (expected) risk function fk(θk) = E [`k(θk; ξk)].

The objective of the network of n agents is to estimate the parameter vector θ∗ in a distributed and

cooperative manner, that minimizes a global cost function of the following form:

min
θ

{
J(θ) ,

1

n

n∑
k=1

fk(θ)

}
. (4.1)

Stochastic gradient descent (SGD) can be used to optimize the global cost function (4.1) given the stochastic

gradient of J(θ). Since such a value is not available, we consider a distributed solution for each agent, known

as cooperative SGD, which takes the following two steps in synchronized rounds of communication between

agents [69]:

θ̂k,i = θk,i−1 − αk,i−1∇`k(θk,i−1; ξi−1
k), (SGD) (4.2)

θk,i = Aggr
({
θ̂l,i : l ∈ Nk

})
. (Aggregation) (4.3)

In cooperative SGD, at each iteration i, agent k minimizes the individual risk using SGD given local data, fol-

lowed by an aggregation step that aggregates neighboring estimates. Here, αk,i is the stepsize,∇`k(θk,i−1; ξi−1
k)

is the gradient using the instantaneous realization ξi−1
k of the random variable ξk,Nk is the neighborhood set

of agent k, and Aggr(·) denotes an aggregation function. An example of aggregation functions is the convex

2We use terms agent and robot interchangeably.

43

combination of the neighbors’ states, i.e.,

Aggr
({
θ̂l,i : l ∈ Nk

})
,
∑
l∈Nk

alk(i)θ̂l,i,

where alk(i) denotes the weight assigned by agent k to l at iteration i, and satisfies the following:

alk(i) ≥ 0,
∑
l∈Nk

alk(i) = 1, alk(i) = 0 if l 6∈ Nk. (4.4)

4.3.2 Byzantine Attacks and Resilient Distributed Learning

In distributed learning, the issue of resilience against Byzantine agents has received much attention re-

cently [29, 52, 58, 62, 155]. Since Byzantine agents can send incorrect information (state values) to their

neighbors, the aggregation step is susceptible to cyber-attacks. In particular, normal agents communicating

with Byzantine neighbors and updating their states using the Byzantine messages in the aggregation step may

converge to a point desired by the attacker [1].

We assume two types of agents in the network, normal and Byzantine. Normal agents are the ones that

interact with their neighbors synchronously and always update their estimates according to the prescribed

update rule. Byzantine agents are the ones that can change their states arbitrarily and do not follow the

prescribed update rule. Moreover, a Byzantine agent can transmit different values to its different neighbors.

Further, we assume that the identities of normal and Byzantine agents are not changing. Since Byzantine

agents that stop sending messages can be easily identified in a synchronous network, we assume Byzantine

agents always send messages during communication. For a normal agent k, all agents in its neighborhood

are indistinguishable, that is, k cannot identify which of its neighbors are Byzantine. Further, we use the

following notation:

N set of normal agents;

F set of Byzantine agents (|N |+ |F| = n);

Nk set of neighbors of agent k;

N+
k set of normal neighbors of agent k;

N−k set of Byzantine neighbors of agent k, such that

|N+
k |+ |N

−
k | = |Nk|;

f upper bound on the number of Byzantine neighbors

of a normal agent, i.e., |N−k | ≤ f .

44

In the presence of Byzantine agents, the objective of the normal agents should be rewritten as follows:

min
θ

{
F (θ) ,

1

|N |
∑
k∈N

fk(θ)

}
. (4.5)

We make the following assumption about the global objective function in (4.5).

Assumption 4.1. (Strong convexity) The global objective function F is strongly convex in that there exists

a constant c > 0 such that

F (y) ≥ F (x) +∇F (x)>(y − x) +
c

2
‖y − x‖2,∀x, y.

Hence, F has a unique minimizer, denoted as θ∗ with F ∗ , F (θ∗).

This chapter aims to address the problem of resilient distributed learning in the presence of Byzantine

agents. The goal is to ensure that all the normal agents in the network using the cooperative SGD algorithm

to optimize (4.5) achieve resilient convergence, formally stated below.

Definition 4.1. (Resilient Convergence) The network is said to achieve resilient convergence if

lim
i→∞

E
[
‖θk,i − θ∗‖2

]
= 0,∀k ∈ N , (4.6)

thereby ensuring that all normal agents converge to the globally optimum state in expectation. Here, θ∗ is

the minimizer of (4.5).

4.4 Resilient Distributed Learning

In this section, we propose a sufficient condition to guarantee the resilient convergence of the cooperative

SGD algorithms. We also discuss the possible outcome when this condition is not satisfied. Later in Sec-

tion 4.5, we propose an aggregation rule that satisfies the sufficient condition, which further guarantees the

resilient convergence of the cooperative SGD.

Sufficient condition. At each iteration i ∈ N and for every normal agent k ∈ N , the outcome of the

aggregation step θk,i is a convex combination of the estimates of the normal neighbors of k, i.e.,

θk,i =
∑
l∈N+

k

alk(i)θ̂l,i,∀i ∈ N, k ∈ N ,

s.t. alk(i) ≥ 0,∀l ∈ N+
k , and

∑
l∈N+

k

alk(i) = 1.
(4.7)

45

In other words, at each iteration i, a normal agent k aggregates its neighbors’ estimates such that the output

of the aggregation θk,i is in the convex hull of normal neighbors’ state estimates regardless of the estimates

from Byzantine neighbors3.

Next, we prove the resilient convergence when the sufficient condition is satisfied (Theorem 4.1). To

facilitate the analysis, we list the following assumptions and lemma.

Assumption 4.2. (Lipschitz-continuous gradients) The global objective function F is continuously differen-

tiable and∇F is Lipschitz continuous with Lipschitz constant L > 0, i.e.,

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖,∀x, y.

Assumption 4.3. (First and second moment limits) The objective function F and the sequence of θk,i for

k ∈ N and i ∈ N, obtained by implementing the cooperative SGD algorithm satisfy the following:

(i) F (θk,i) ≤ Finf for some scalar Finf .

(ii) There exist scalars µG ≥ µ > 0 such that,

∇F (θk,i)
>Eξik [∇`k(θk,i; ξ

i
k)] ≥ µ‖∇F (θk,i)‖2 and

‖Eξik [∇`k(θk,i; ξ
i
k)]‖ ≤ µg‖∇F (θk,i)‖,∀k ∈ N and i ∈ N.

(iii) There exist scalars Mk ≥ 0 and Vk ≥ 0 such that

Eξik [‖∇`k(θk,i; ξ
i
k)‖2]− ‖Eξik [∇`k(θk,i; ξ

i
k)]‖2 ≤Mk + Vk‖∇F (θk,i)‖2,∀k ∈ N and i ∈ N.

Lemma 4.1. Under Assumptions 1-3 and stepsize 0 < αk,i ≤ µ
LGk

, where Gk , Vk + µ2
g , for all k ∈ N ,

i ∈ N, the iterates of SGD (step (4.2)) satisfy the following inequalities:

E[F (θ̂k,i+1)− F ∗] ≤ (1− αk,icµ)E[F (θk,i)− F ∗] +
1

2
α2
k,iLMk.

Proof. Our proof is based on the convergence proof of SGD (Theorem 4.6) in [156]. Since F has an L-

3The convex hull of a set of points S = {p1, p2, . . . , pn} in Rd is the smallest convex set containing S. Any point p inside the
convex hull of S has the property that p =

∑n
k=1 λkpk , where 0 ≤ λk ≤ 1 and

∑n
k=1 λk = 1. And no point outside of the convex

hull has such representation.

46

Lipschitz continuous gradient, it holds that

F
(
θ̂k,i+1

)
− F (θk,i) ≤ ∇F (θk,i)

>(θ̂k,i+1 − θk,i) +
1

2
L‖θ̂k,i+1 − θk,i‖2.

Given the SGD step (4.2), we have

F
(
θ̂k,i+1

)
− F (θk,i) ≤ −αk,i∇F (θk,i)

>∇`k(θk,i; ξ
i
k) +

1

2
α2
k,iL‖∇`k(θk,i; ξ

i
k)‖2. (4.8)

Take the expected value of the above equation with respect to the random variable ξik. Since θ̂k,i+1 depends

on ξik, whereas θk,i does not, we obtain

Eξik
[
F
(
θ̂k,i+1

)]
− F (θk,i) ≤ −αk,i∇F (θk,i)

>Eξik [∇`k(θk,i; ξ
i
k)] +

1

2
α2
k,iLEξik [‖∇`k(θk,i; ξ

i
k)‖2].

Given Assumption 4.3, it follows that

Eξik
[
F
(
θ̂k,i+1

)]
− F (θk,i)

≤− µαk,i‖∇F (θk,i)‖2 +
1

2
α2
k,iLEξik [‖∇`k(θk,i; ξ

i
k)‖2]

≤− µαk,i‖∇F (θk,i)‖2 +
1

2
α2
k,iL

(
Mk + (Vk + µ2

g)‖∇F (θk,i)‖2
)

=−
(
µ− 1

2
αk,iLGk

)
αk,i‖∇F (θk,i)‖2 +

1

2
α2
k,iLMk,

(4.9)

where Gk , Vk + µ2
g .

Given that F is strongly convex, there exists 0 < c ≤ L such that

‖∇F (θ)‖2 ≥ 2c (F (θ)− F ∗) for all θ.

Also, since αk,i ≤ µ
LGk

, it holds that αk,iLGk ≤ µ. Following (4.9), We have

Eξik
[
F
(
θ̂k,i+1

)]
− F (θk,i) ≤ −

1

2
αk,iµ‖∇F (θk,i)‖2 +

1

2
α2
k,iLMk ≤ −αk,icµ (F (θk,i)− F ∗) +

1

2
α2
k,iLMk

Subtracting F ∗ from both sides of (4.9) and taking total expectations over the joint distribution ξk,i for

all k ∈ N , i ∈ N, we have

E[F (θ̂k,i+1)− F ∗] ≤ (1− αk,icµ)E[F (θk,i)− F ∗] +
1

2
α2
k,iLMk,

which completes the proof.

47

Denote ∆k,i , E [F (θk,i)− F (θ∗)] as the expected optimality gap. Using the cooperative SGD algo-

rithm satisfying the sufficient condition, ∆k,i can be bounded as given in Theorem 4.1, which guarantees its

resilient convergence as given in Proposition 4.1.

Theorem 4.1. If the sufficient condition (4.7) and Assumptions 1-3 are satisfied, and all normal agents

implement the cooperative SGD algorithm with the same diminishing stepsize sequence αk,i = αi given by

αi =
β

γ + i
for some β >

1

cµ
and γ > 0 s.t. 0 < α1 ≤

µ

LḠk
, (4.10)

where Ḡk , maxk∈N Gk, then for all i ∈ N, k ∈ N , the expected optimality gap satisfies

∆k,i ≤
ν

γ + i
, where ν = max

{
β2L

2(βcµ− 1)
max
l∈N

Ml, (γ + 1)∆k,1

}
. (4.11)

Proof. Given (4.7) and the convexity of F , using Jensen’s inequality, we have

F (θk,i) ≤
∑
l∈N+

k

alk(i)F (θ̂l,i). (4.12)

Given (4.10), αk,i = αi ≤ α1 ≤ µ
LḠk

≤ µ
LGk

, for all k ∈ N . Thus, following Lemma 4.1, it holds that

∆k,i+1 ≤
∑
l∈Nk

alk(i)

[
(1− αicµ)∆l,i +

1

2
α2
iLMl

]
. (4.13)

The following proof is based on the convergence proof of SGD (Theorem 4.7) in [156]. When i = 1, it is

obvious that (4.11) holds given the definition of ν. We now prove (4.11) by induction. Assume (4.11) holds

for some i ≥ 1, then it follows from (4.13) that

∆k,i+1 ≤
∑
l∈Nk

alk(i)

[
(1− βcµ

î
)
ν

î
+
β2LMl

2̂i2

]
=
∑
l∈Nk

alk(i)

[(
î− βcµ
î2

)
ν +

β2LMl

2̂i2

]

=
î− 1

î2
ν −

∑
l∈Nk

alk(i)

[
βcµ− 1

î2
ν − β2LMl

2̂i2

]
︸ ︷︷ ︸
nonnegative by the definition of ν

≤ ν

î+ 1
,

where î :, γ + i, and the last inequality follows since î2 ≥ (̂i+ 1)(̂i− 1), which completes our proof.

48

Remark 4.2. It immediately follows from Theorem 4.1 that normal agents achieve O(1/i) convergence rate

since E[F (θk,i)− F (θ∗)] ≤ ν
γ+i with constants ν > 0 and γ > 0.

Proposition 4.1. If the sufficient condition (4.7) and Assumptions 1-3 are satisfied, and all normal agents

implement the cooperative SGD with the same diminishing stepsize sequence defined in (4.10), then the

network achieves resilient convergence as defined in Definition 4.1.

Proof. Given the expected optimality gap (4.11) obtained in Theorem 4.1, and the fact that limi→∞ ν
γ+i = 0

with constants ν > 0 and γ > 0, it follows that

lim
i→∞

E [F (θk,i)− F (θ∗)] = 0,∀k ∈ N .

Using the strong convexity of F , it yields that

lim
i→∞

E
[
‖θk,i − θ∗‖2

]
≤ c

2
lim
i→∞

E [F (θk,i)− F (θ∗)] = 0,

∀k ∈ N , which completes the proof.

The above discussion establishes that if the aggregation result is a convex combination of the normal

neighbors’ states, then the resilient convergence is guaranteed. Now, we consider a scenario in which the

condition (4.7) is not satisfied and θk,i in an aggregation step of a normal node k lies outside the convex hull

of θ̂j,i, where j ∈ N+
k . Then, it is possible that after aggregation the distance from θk,i to θ∗ is larger than the

distance of any of the normal neighbors’ states to θ∗. This means the aggregation step indeed makes the state

of the normal agent k deviate from θ∗. As the number of iterations increases, the deviation from the target

state might also increase and normal agents might converge to a wrong state. We further demonstrate this in

Section 4.6, where the aggregation rules, such as average, coordinate-wise median, and geometric median, do

not satisfy the sufficient condition, and normal agents fail to achieve resilient convergence using such rules.

4.5 Resilient Aggregation

The sufficient condition in Section 4.4 requires that in the aggregation step, a normal agent computes a

point that lies in the convex hull of points corresponding to normal neighbors’ states. Computing such a point

is a challenging task as a normal agent cannot distinguish between its normal and Byzantine neighbors. Our

goal in this section will be to propose an efficient way to compute such a point in the aggregation step. For

this, we will utilize the notion of safe region as defined below.

49

4.5.1 The Safe Region

Let S denote a set of nk points, and S′ be a subset of S containing exactly (nk − f) points. There are(
nk

nk − f

)
possibilities of S′ and one such possibility corresponds to the set of normal points. Let S be the

family of all
(

nk
nk − f

)
possibilities of S′. If one could somehow show that the intersection of convex hulls

of members of S is nonempty, then every point in this intersection is guaranteed to lie inside the convex hull

of normal points. We call this intersection set a safe region.

Definition 4.2. (Safe Region) For a set S of nk points in Rd, of which any f points can be Byzantine, the

safe region of S is

Safef (S) =
⋂

S′⊂S,|S′|=nk−f
Conv(S′),

where Conv(S′) denotes the convex hull of S′.

It is immediately implied from the above definition that Safef (S), if it exists, is always in the convex

hull of the (nk − f) normal points, regardless of the selection of the f Byzantine points, as illustrated by

the example in Figure 4.2. There are nk = 5 points and f = 1, which means there are five possibilities to

choose a point corresponding to a Byzantine agent. The gray shaded area is the safe region Safe1(S). We

note that the safe region always lies in the convex hull of four normal points regardless of the selection of the

Byzantine point, as illustrated in Figures 4.2(b)–4.2(f).

(a) (b) (c) (d) (e) (f)

Figure 4.2: Illustration of Safe1(S) (shaded region) for a set of five points in (a). In (b)–(f), black nodes are
normal, red nodes are Byzantine, and the area spanned by thick lines is the convex hull of the normal nodes.

The existence of the safe region depends on the number of Byzantine agents (points) f . For example, if

f > nk/2, then a safe region may not exist even in dimension d = 1, because two potential sets of normal

points, (leftmost, and rightmost intervals of nk − f points) are non-overlapping, and the intersection will be

empty. For dimension d = 2, if there are nk/3 Byzantine points, then all possibilities for 2nk/3 normal

points might not have a common point. In other words, no matter which point we choose for aggregation,

there is always a chance that it lies outside the convex hull of normal points in R2. Thus, the number of

allowed Byzantine points can not be more than n/3 in a plane. The condition of the existence of a nonempty

safe region has been studied in [28] (Lemma 3.6, 3.10), which is given in the following.

50

Lemma 4.2. For a set S of nk points in Rd, of which any f points could be Byzantine, if f < nk
d+1 , then

Safef (S) is necessarily nonempty; and if f ≥ nk
d+1 , then Safef (S) might be empty.

Based on Lemma 4.2, the maximum number of Byzantine agents the system is resilient to is f = d nkd+1e−

1 and the safe region is nonempty in this case. For computing a point in the safe region when f = d nkd+1e−1,

we use the notion of centerpoint, which we explain next.

4.5.2 Centerpoint-based Resilient Vector Consensus

In the following, we define the notion of a centerpoint, and show that every centerpoint lies inside

Safef (S) for f = d nkd+1e − 1.

Definition 4.3. (Centerpoint) Given a set S of nk points in Rd in general positions,4 where nk ≥ d + 1, a

centerpoint p is a point, not necessarily from S, such that any closed half-space5 of Rd that contains p also

contains at least d nkd+1e points from S.

Intuitively, a centerpoint lies in the ”center region” of the set of points, in the sense that there are enough

points of S on each side of a centerpoint. A centerpoint extends the notion of median to higher dimensions,

and is an active topic of study in discrete geometry [3, 132, 139, 157]. Note that centerpoint is not unique, in

fact, there can be infinitely many centerpoints. The set of all centerpoints constitutes the convex safe region.

We have studied the connection between the centerpoint and the safe region in [3]. In particular, we have the

following result.

Lemma 4.3. Let S be a set of nk points in Rd, C(S) be the corresponding centerpoint region (set of all

centerpoints) and f = d nkd+1e − 1, then

Safef (S) ≡ C(S).

An immediate consequence of Lemma 4.2 and Lemma 4.3 is that for a set S of nk points in Rd, of which

any f = d nkd+1e − 1 points could be Byzantine, a centerpoint of S is always inside the convex hull of the

(nk − f) normal points, regardless of the selection of the f Byzantine points.

Now that the existence of a point in the safe region for optimal number of Byzantine neighbors is guar-

anteed, one has to actually find such a point to aggregate to. It is easy to compute a centerpoint in lower

dimensions. In two dimensions, the time complexity for computing a centerpoint is O(nk) using a prune and

search algorithm in [140]. The algorithm iteratively removes a fraction of points from a given point set while

ensuring that the centerpoint of the remaining points is also a centerpoint of the original point set. When

4A set of points in Rd is said to be in general positions if no hyperplane of dimension d− 1 or less contains more than d points.
5Recall that closed half-space in Rd is a set of the form {x ∈ Rd : aT x ≥ b} for some a ∈ Rd \ {0}.

51

the number of points becomes smaller than a constant, the algorithm uses a brute force method to compute a

centerpoint [140]. In three dimensions, we can use Chan’s algorithm in [142] to find a centerpoint in O(n2
k)

time. [142] basically provides a randomized algorithm to some geometric linear program in O(n2
k) and uses

this framework to find a geometric Tukey median of a given point set, which is guaranteed to be a centerpoint

also. We have given an overview of these methods in our previous work [3]. We note that d ≤ 3 is the case

in many practical applications in robotics. For higher dimensions, i.e., d > 3, the time bound to compute a

centerpoint is O(nd−1
k) [142], which is impractical for very large d. However, in such cases, algorithms exist

to compute an approximate centerpoint [144]. These approximations degrade the optimal bound on the num-

ber of Byzantine agents. For instance, given a set of nk points, of which at most
(

nk
dr/r−1

)
are Byzantine and

the remaining are normal points, we can compute a point that is in the convex hull of normal points in time

O(nc log d
k (rd)d), where r is any integer greater than 1, and c is some positive constant. By increasing r, the

quality of approximation, and hence the bound on the number of Byzantine agents improves and approaches

n
d ; however, this also leads to an increase in the time complexity. Moreover, the method proposed in [158]

generates approximate centerpoint in linear time complexity for any dimension. However, this will reduce

the upper bound on Byzantine tolerance from d nkd+1e − 1 to d nk
4(d+1)3 e − 1.

Proposition 4.2. If f ≤ d |Nk|d+1 e − 1, Assumptions 1-3 are satisfied, and all normal agents implement the

cooperative SGD with the same diminishing stepsize sequence defined in (4.10) using the centerpoint-based

aggregation rule in the aggregation step, i.e.,

Aggr
({
θ̂l,i : l ∈ Nk

})
, C

({
θ̂l,i : l ∈ Nk

})
,

then the network achieves resilient convergence as defined in Definition 4.1.

Proof. Since f ≤ d |Nk|d+1 e − 1, given Lemma 4.3 and Definition 4.2, it follows that

Aggr
({
θ̂l,i : l ∈ Nk

})
∈ Conv(

{
θ̂j,i : j ∈ N+

k

}
),

which satisfies the sufficient condition in (4.7). Then, the resilient convergence is guaranteed given the results

provided in Proposition 4.1.

52

4.6 Evaluation

In this section, we evaluate the proposed centerpoint-based aggregation rule for the cooperative SGD

algorithm using target pursuit and pattern recognition as case studies6. We compare it with other commonly

used aggregation rules including the average (alk = 1
|Nk| for l ∈ Nk), coordinate-wise median (CM), and

geometric median (GM), as well as the non-cooperative SGD (non-coop SGD). We define the coordinate-wise

median and geometric median below.

• Coordinate-wise median: Let med(·) be the one-dimensional median, then the coordinate-wise median

Median(·) of vectors {xk ∈ Rd, k ∈ [n]} is defined to be xMed , Median{xk : k ∈ [n]} with the j-th

coordinate to be (xMed)j , med{xjk : k ∈ [n]} for each j ∈ [d].

• Geometric median: The geometric median GM(·) of vectors {xk ∈ Rd, k ∈ [n]} is defined to be GM{xk :

k ∈ [n]} , arg minx∈Rd
∑n
k=1 ‖x− xk‖.

We show in multiple cases that the cooperative SGD algorithm using centerpoint-based aggregation al-

ways outperforms the non-cooperative SGD in achieving a better average learning performance over the

network at convergence, with or without the presence of Byzantine agents. However, the other rules either

fail to converge to θ∗ or exhibit a worse learning performance than the non-cooperative SGD, showing that

such cooperation could be harmful to the overall network’s performance.

4.6.1 Target Pursuit

In this example, we consider a mobile adaptive network [149] of n agents that move collectively in pursuit

of a target located at θ∗ ∈ Rd that can be either static or time-varying.

(a) No attack (b) With 5 Byzantine agents

Figure 4.3: Network connectivity (blue nodes: normal agents, red nodes: Byzantine agents).

6Simulation code can be found at https://github.com/JianiLi/resilient distributed learning centerpoint.

53

https://github.com/JianiLi/resilient_distributed_learning_centerpoint

4.6.1.1 Background

Suppose the location of agent k at time i is denoted by xk,i ∈ Rd. The distance dok(i) ∈ R between agent

k and the target at time i can be expressed as

dok(i) = uok,i
>(θ∗ − xk,i),

where uok,i ∈ Rd denotes the unit direction vector pointing from xk,i to θ∗. Suppose agents have only noisy

observations {dk(i), uk,i} of the distance and the unit direction vector, i.e.,

dk(i) = dok(i) + ηdk(i), uk,i = uok,i + ηuk,i,

where ηuk,i ∈ Rd and ηdk(i) ∈ R denote noise terms. Let ηk(i) = −ηuk,i
>(θ∗ − xk,i) + ηdk(i), d̂k(i) =

dk(i) + u>k,ixk,i, we have

d̂k(i) = u>k,iθ
∗ + ηk(i).

To optimize θ∗, consider

min
θ

{
F loc(θ) ,

1

|N |
∑
k∈N

E‖d̂k(i)− u>k,iθ‖2
}
. (4.14)

4.6.1.2 Static Target

In our simulation, we consider a network of n = 20 agents with d = 2. Figure 4.3 shows the initial

deployment of agents with and without Byzantine attacks and their connectivity network. Agents are located

in [0, 1] × [0, 1] region initially and agents connected with links are neighbors. The average neighborhood

size is
∑n
k=1 |Nk|/n ≈ 13.9 and the underlying connectivity topology does not change throughout the

simulation. The regression vector uk,i has uniform covariance matrix Ru,k = σ2
u,kI2, σ2

u,k ∈ [0, 1.0] where

I2 is the identity matrix of size 2. The noise variance of distance σ2
d,k ∈ [1.0, 2.0],∀k ∈ N . The time-varying

stepsizes for updating location and velocity estimates are both αk,i = 2
i+10 for k ∈ N . Further, λ = 0.5,

β = 0.1, s = 1 and ∆t = 0.2s. The target location is denoted by θ∗ = (5, 5). In the case of attack, we

randomly select 5 agents as the Byzantine agents. For any normal agent k ∈ N , it is guaranteed that the

number of its Byzantine neighbors is upper bounded by d |Nk|3 e − 1. Thus, the centerpoint-based aggregation

should be resilient in such a network.

We run the non-cooperative SGD and cooperative SGD with average/CM/GM/centerpoint-based aggre-

54

(a) No attack

(b) With 5 Byzantine agents

Figure 4.4: Mobile network’s final deployment for static target (from left to right: noncooperative SGD,
cooperative SGD with average/CM/GM/centerpoint-based aggregation).

gation rules to estimate the target location θk,i and the velocity vgk,i. In the case of attack, Byzantine agents

continuously send (0, 0) to all normal agents as their current estimates of the target location and velocity.

Figure 4.4 shows the final deployment of agents after 500 iterations, where the yellow star represents the

target.

(a) No attack

(b) With 5 Byzantine agents

Figure 4.5: Static target estimates θk,i (1st dimension). From left to right: noncooperative SGD, cooperative
SGD with average/CM/GM /centerpoint-based aggregation .

In the case of no attack, we find all the four aggregation rules—average, CM, GM and centerpoint—

converge to the target as shown in Figure 4.4(a). However, in the presence of Byzantine agents, only the

centerpoint-based cooperative SGD converges to the target as shown in Figure 4.4(b). Figure 4.5 illustrates

the state estimates as a function of time, where each line represents the estimates of a normal agent k. The

learning accuracy (mean and range) measured by ‖θk,i − θ∗‖2, for k ∈ N is illustrated in Figure 4.6, where

lines are the average values, and shaded area is the range between the minimum and the maximum values

55

(a) No attack (b) With 5 Byzantine agents

Figure 4.6: Estimation accuracy ‖θk,i−θ∗‖2 for k ∈ N with different aggregation rules for static target (lines
are the average values, and shaded area is the range).

among the network. We observe that cooperative SGD with all the four aggregation rules achieve a better

average learning accuracy at convergence (measured by
∑
k∈N ‖θk,i − θ∗‖2/|N |) than the non-cooperative

SGD under no attack, whereas only the centerpoint-based aggregation achieves a better average learning

accuracy than the non-cooperative SGD under attack.

4.6.1.3 Time-Varying Target

We next consider the case when the target is time-varying. Using time-varying target can make robots

follow a desired trajectory, which can be used in swarm robotics. The location of the time-varying target is

given by (5 + cos(0.01i), 5 + sin(0.01i)). The noise variance of distance σ2
d,k ∈ [2.0, 3.0],∀k ∈ N . And

we use fixed stepsize αk,i = 0.05, for k ∈ N , i ∈ N. The other setups and Byzantine attacks are the same as

in Section 4.6.A.2.

Figure 4.7 shows the final deployment of agents after 1000 iterations, where the yellow dashed circle

represents the time-varying target trajectory and the yellow star represents the current target. Figure 4.8

illustrates the state estimates as a function of time. And the learning accuracy measured by ‖θk,i − θ∗‖2 are

illustrated in Figure 4.9. The simulation shows similar results to the case of static target.

4.6.1.4 Experiments on Robotarium

In addition to the numerical simulations, we carried out similar experiments using real robots on Robo-

tarium [159], a multirobot testbed developed at the Georgia Institute of Technology. The robots are 11 cm

wide, 10 cm long, and operate on a 3m x 2m area. We denote the bottom-left corner of the arena to be the

original point with coordinates (0, 0) and the upper-right corner to be (3, 2).

We consider a network of 11 normal robots. Parameters are selected to be s = 1,∆t = 1s. The target

location is set to be θ∗ = (2.4, 1.7). The regression vector uk,i has uniform covariance matrixRu,k = σ2
u,kI2,

56

(a) No attack

(b) With 5 Byzantine agents

Figure 4.7: Mobile network’s final deployment for time-varying target (from left to right: noncooperative
SGD, cooperative SGD with average/CM/GM/centerpoint-based aggregation) .

(a) No attack

(b) With 5 Byzantine agents

Figure 4.8: Time-varying target estimates θk,i (1st dimension). From left to right: noncooperative SGD,
cooperative SGD with average/CM/GM/centerpoint-based aggregation.

σ2
u,k ∈ [0.1, 0.5]. The noise variance of distance σ2

d,k ∈ [0.5, 5.0]. Both σ2
d,k and σ2

u,k decrease linearly as the

distance to the target decreases. The fixed stepsize is 0.2. In the case of attack, five more Byzantine robots are

introduced making the total number of robots to be 16. We consider the network to be modeled by a complete

graph where every agent is the neighbor of every other agent. Since the centerpoint-based aggregation rule is

resilient up to d 16
3 e − 1 = 5 Byzantine robots, we expect it to be resilient in the experiment.

Figures 4.10 and 4.11 show the network deployments using CM/GM/centerpoint-based cooperative SGD

under no attack and with attack, respectively. The Byzantine robots are indicated by the red circle, and the

target location is highlighted by the blue star. Byzantine robots stay stationary throughout the experiment and

continuously send wrong estimates of the target location (0, 0) and velocity vector (0, 0) to normal robots.

We adopt the collision avoidance mechanism implemented by Robotarium in our experiment.

57

(a) No attack (b) With 5 Byzantine agents

Figure 4.9: Estimation accuracy ‖θk,i − θ∗‖2 for k ∈ N with different aggregation rules, for time-varying
target (lines are the average values, and shaded area is the range).

The results are similar to the simulation results. Without attacks, robots with CM/GM/centerpoint-based

aggregation rules all converge to the target. However, in the presence of Byzantine agents, only robots using

the centerpoint-based aggregation rule converge to the target.

(a) Initial deployment (b) Final deployment (CM) (c) Final deployment (GM) (d) Final deployment (cen-
terpoint)

Figure 4.10: Network deployment under no attack for the multi-robot target pursuit.

(a) Initial deployment (b) Final deployment (CM) (c) Final deployment (GM) (d) Final deployment (cen-
terpoint)

Figure 4.11: Network deployment with five Byzantine robots for the multi-robot target pursuit.

4.6.2 Pattern Recognition

In the second case study, we consider the case when robots perform a pattern recognition or detection

task using sensor readings. We consider a network of 10 agents modeled by a complete graph where every

agent is the neighbor of every other agent. Agents collect two-dimensional features (sensor readings) to

perform binary classification. The real data distribution is given in Figure 4.12(a). The label-0 data has

58

mean (1, 1) and covariance ((0.1468, 0.9233), (0.1863, 0.3456)) and label-1 data has mean (−1,−1) and

covariance ((0.4170, 0.7203), (0.0001, 0.3023)). We assume outliers in the training data such that the labels

of the outliers are inverted – from 0 to 1 or from 1 to 0. The data distribution with 10% − 30% outliers is

illustrated in Figures 4.12(b)–4.12(d). We use logistic regression to classify the data. The global cost function

has the following form:

min
θ

{
F (θ) ,

1

|N |
∑
k∈N
−E

{
yik log

(
g
(
θ>xik

))
+
(
1− yik

)
log
(
1− g

(
θ>xik

))}}
, (4.15)

where g(z) = 1
1+e−z . The cooperative SGD algorithm in (4.2) and (4.3) can be used to optimize the above

cost function. The time-varying stepsize is αk,i = 1
i+10 for k ∈ N .

(a) Real distribution (b) 10% Outliers (c) 20% Outliers (d) 30% Outliers

Figure 4.12: (a) Real data distribution, (b)-(d) data with outliers received by normal agents.

(a) Average (b) CM (c) GM (d) Centerpoint

Figure 4.13: Decision boundary achieved by different aggregation rules when 3 out of 10 agents are Byzan-
tine.

We consider two scenarios. In the first scenario, every normal agent receives data with uniform outlier rate

20%. This simulates the case in which agents receive similar data resulting in similar learning performance.

We compute the test loss of normal agents over 500 data samples from the real data distribution without

outliers by (4.15). In the case of attack, we randomly pick 3 out of 10 normal agents as Byzantine agents that

continuously send (1,−1) as their estimates to the other normal agents. The test loss for the non-cooperative

59

SGD, cooperation using average, CM, GM, and centerpoint is plotted in Figure 4.14. Since we consider

a complete graph, normal agents receive the same messages in cooperation and therefore their aggregation

results are the same. As a result, normal agents share the same test loss in the cooperative cases, which is also

the mean of their test losses. We find the centerpoint-based aggregation outperforms the other cooperative

aggregation rules as well as the non-cooperative SGD. When there is an attack, only the centerpoint-based

aggregation converges with a better learning performance measured by the average test loss than the non-

cooperative SGD. Figure 4.13 illustrates the decision boundary achieved by different aggregation rules under

attack.

In the second scenario, every normal agent receives data from the real data distribution with different

outlier rate of 10%−30%. This simulates the case in which agents receive different data resulting in different

learning performance. Figures 4.15 illustrates the learning results. We observe that the results are similar to

the previous example.

(a) No attack (b) With 3 Byzantine agent

Figure 4.14: Test loss on 500 test data samples from the real data distribution without outliers (Normal agents
receive training data with uniform outlier rate 20%).

(a) No attack (b) With 3 Byzantine agents

Figure 4.15: Test loss on 500 test data samples from the real data distribution without outliers. (Normal
agents receive training data with different outlier rates from 10% to 30%).

60

4.7 Discussion and Conclusion

The major computational step in the the proposed approach is the computation of a point in the safe

region Safef (S). We do so by computing a centerpoint of a set of points S in dimension d. If we have a

set of N points (i.e., |S| = N), then a centerpoint can be computed in O(N) time in d = 2, and O(N2)

time in d = 3. Since in robotic applications, the position vector is in two or three dimensions, the case of

centerpoint computation in d = 2, 3 is of particular interest. In general, the problem of checking whether

a point is a centerpoint of a given set of points or not is a co-NP-complete problem. In higher dimensions

(d ≥ 4), the complexity of finding a centerpoint is unknown. However, there exist approximation algorithms

and randomized algorithms that compute approximate centerpoints. We also note that a point in a safe region

Safef (S) can also be computed using other techniques, for instance, through linear programming [23]. The

linear program uses a total of
(
n

n−f
)
(d+ 1 +n− f) constraints in d+

(
n

n−f
)
(n− f) variables, which cannot

be solved in polynomial time for f = d n
d+1e − 1 with the number of variables and constraints that are not

polynomial in n. However, centerpoint-based computation of a point in Safef (S) offers more advantages in

terms of computational complexity and characterization.

In this work, we studied the resilient aggregation rules for distributed machine learning algorithms. We

showed that the commonly used coordinate-wise median and geometric median-based aggregation methods

do not guarantee resilient convergence for distributed learning. We proposed a centerpoint-based aggregation

rule that generalizes the resilience property of the median into higher dimensions. The centerpoint-based

aggregation rule guarantees that the distributed learning algorithms converge to the optimum state if the

number of Byzantine agents in a normal agent’s neighborhood is less than d nkd+1e, where nk is the number of

agents in the neighborhood, and d is the dimension of the state vector of the agents. Finally, we note that the

framework and the corresponding methods and analysis can be easily generalized to federated learning. We

aim to explore the trade-off between the computational cost for resilient aggregation and the degradation in

learning performance for future work.

61

Chapter 5

Byzantine Resilient Distributed Diffusion in Least-Mean-Square (LMS) Algorithms for Multi-Task

Networks 1

In this chapter, we study resilient distributed diffusion for multi-task estimation in the presence of adver-

saries where networked agents must estimate distinct but correlated states of interest by processing streaming

data. We show that in general diffusion strategies are not resilient to malicious agents that do not adhere to the

diffusion-based information processing rules. In particular, by exploiting the adaptive weights used for dif-

fusing information, we develop time-dependent attack models that drive normal agents to converge to states

selected by the attacker. We show that an attacker that has complete knowledge of the system can always drive

its targeted agents to its desired estimates. Moreover, an attacker that does not have complete knowledge of

the system including streaming data of targeted agents or the parameters they use in diffusion algorithms, can

still be successful in deploying an attack by approximating the needed information. The attack models can be

used for both stationary and non-stationary state estimation. In addition, we present and analyze a resilient

distributed diffusion algorithm that is resilient to any data falsification attack in which the number of com-

promised agents in the local neighborhood of a normal agent is bounded. The proposed algorithm guarantees

that all normal agents converge to their true target states if appropriate parameters are selected. We also

analyze trade-off between the resilience of distributed diffusion and its performance in terms of steady-state

mean-square-deviation (MSD) from the correct estimates. Finally, we evaluate the proposed attack models

and resilient distributed diffusion algorithm using stationary and non-stationary multi-target localization.

5.1 Introduction

Diffusion Least-Mean Squares (DLMS) is a powerful algorithm for distributed state estimation [16]. It

enables networked agents to interact with neighbors to process streaming data and diffuse information across

the network to perform the estimation tasks. Compared to a centralized approach, distributed diffusion offers

multiple advantages including robustness to drifts in the statistical properties of the data, scalability, reliance

on local data, and fast response among others. Applications of distributed diffusion include spectrum sensing

in cognitive networks [160], target localization [161], distributed clustering [60], and biologically inspired

1©2020 IEEE. Adapted with permission, from [Jiani Li, Waseem Abbas and Xenofon Koutsoukos, ”Resilient Distributed Diffusion
in Networks With Adversaries,” in IEEE Transactions on Signal and Information Processing over Networks, vol. 6, pp. 1-17, 2020, doi:
10.1109/TSIPN.2019.2957731].

62

designs for mobile networks [162].

Diffusion strategies are known to be robust to node and link failures as well as to high noise levels [11,

163–165]. However, it is possible that a single adversarial agent that does not update its estimates according

to the diffusion-based information processing rules, for instance by retaining a fixed value throughout, can

fail other agents to converge to their true estimates. Resilience of diffusion-based distributed algorithms in the

presence of such fixed-value Byzantine attacks has been studied in [16, 60]. A general approach to counteract

such attacks is to allow agents to fuse information collected from other agents in local neighborhoods using

adaptive weights instead of fixed ones. By doing so, only neighbors estimating a similar state will be assigned

large weights so as to eliminate the influence of a fixed-value Byzantine adversary.

In this chapter, we consider distributed diffusion for multi-task estimation where networked agents must

estimate distinct, but correlated states of interest by processing streaming data. Agents use adaptive weights

when diffusing information with neighbors since adaptive weights have been successfully applied to multi-

task distributed estimation problems. However, we are interested in understanding if adaptive weights in-

troduce vulnerabilities that can be exploited by Byzantine adversaries. The first problem we consider is to

analyze if it is possible for an attacker to compromise a node, and make other nodes in its neighborhood

converge to a state selected by the attacker. Then, we consider a network attack and determine a minimum

set of nodes to compromise to make all nodes within the network converge to attacker’s desired state.

We assume a strong attack model, that is, the attacker has complete knowledge of the network topology,

streaming data of targeted agents and their parameters used in the diffusion algorithm. A strong attacker can

know the topology by monitoring the network, streaming data of agents by stealthily compromising their sen-

sors/controllers and establishing backdoor channels, and diffusion parameters by doing reverse engineering.

We note that having complete knowledge is a strong assumption, however, it is common to assume a strong

attacker with complete knowledge of the system to examine the resilience of distributed networks [17, 18,

166–168]. In addition to this strong attack model, we also consider a weak attack model in which the attacker

has no knowledge of streaming data of targeted agents or their parameters. We show that such an attacker

can also be successful in preventing normal agents from converging to true estimates by approximating their

states.

As a result, we show that DLMS, which was considered to be resilient against Byzantine agents by itself

([11, 16, 60]), is in fact, not resilient. A Byzantine agent sharing incorrect estimates whose values are not

fixed and change over time (time-dependent Byzantine attack) can manipulate the normal agents to converge

to incorrect estimates. On the one hand, adaptive weights improve the resilience of diffusion algorithms to

fixed-value Byzantine attacks, but on the other hand, introduce vulnerabilities that can be exploited by time-

dependent attacks. We analyze this issue in detail and propose a resilient diffusion algorithm that ensures

63

that normal agents converge to true final estimates in the presence of any data falsification attack. The main

contributions of the chapter are summarized below:

• By exploiting the adaptive weights, we develop attack models that drive normal agents to converge to states

selected by an attacker. The attack models can be used to deceive a specific node or the entire network and

are applicable to both stationary and non-stationary state estimation. Although the attack models are based

on a strong knowledge of the system, we also show that the attack can succeed without such knowledge.

• We propose a resilient distributed diffusion algorithm parameterized by a positive integer F . We show

that if there are at most F compromised agents in the neighborhood of a normal agent, then the algorithm

guarantees that normal agents converge to their actual goal states under any data falsification attack. If the

parameter F selected by the normal agents is large, the resilient distributed diffusion algorithm degener-

ates to non-cooperative estimation. Thus, we also analyze trade-off between the resilience of distributed

diffusion and its performance degradation in terms of the steady-state MSD.

• We evaluate the proposed attack models for both strong and weak attacks and the resilient distributed dif-

fusion algorithm using both stationary and non-stationary multi-target localization. The simulation results

are consistent with our theoretical analysis and show that the approach provides resilience to attacks while

incurring performance degradation which depends on the assumption about the number of compromised

agents.

The rest of the chapter is organized as follows: Section 5.3 briefly introduces distributed diffusion. Section

5.4 presents the attack and resilient distributed diffusion problems. Sections 5.5 and 5.6 discuss single node

attack and network attack models respectively. Section 5.7 presents and analyzes the resilient distributed

diffusion algorithm. Section 5.8 provides simulation results evaluating our approaches with multi-target

localization. Section 5.9 discusses and evaluates the attack model that does not require complete knowledge

of the system. Section 5.2 gives a brief overview of the related work and Section 5.10 concludes the chapter.

5.2 Related Work

Many distributed algorithms are vulnerable to cyber attacks. The existence of an adversarial agent may

prevent the algorithm from performing the desired task. Distributed consensus and diffusion based strategies

are often employed to resolve distributed estimation and optimization problems, for instance see [16, 169–

173]. Resilience of consensus-based distributed algorithms in the presence of malicious nodes has received

considerable attention in recent years. In particular, the approaches presented in [17, 174–176] consider the

consensus problem for scalar parameters in the presence of attackers, and resilience is achieved by leveraging

64

high connectivity. Resilient consensus in the case of special network structures, such as triangular networks

for distributed robotic applications [38], has also been studied. To achieve resilience in sparse networks,

[36] presents the idea of employing few trusted nodes, which are hardened nodes that cannot be attacked.

Resilience for concensus+innovation problems have also been studied by [14, 177, 178] in a fully-distributed

way via agents’ local observations and high network connectivity. Resilience can also be achieved via fault

detection and isolation (FDI). For instance, [19] studied the FDI problem for linear consensus networks via

high connectivity networks and global knowledge of the network structure by each agent. [20] considered a

similar FDI problem for second-order systems. Authors in [21] presented distributed detection method for

consensus+innovation algorithms via local observations of agents only. For attacks, typical approaches usu-

ally consider Byzantine adversaries with fixed target different than the true value [17] or with updates without

time-dependent intention [14, 21] and assume that the goal of the attacker is to disrupt the convergence (stabil-

ity) of the distributed algorithm. In contrast, this work focuses on attacks that do not disrupt convergence but

drive normal agents to converge to states selected by the attacker. Moreover, in our attack model, the attacker

continuously changes its values over time as compared to the fixed value attacks considered previously.

Resilience of diffusion-based distributed algorithms has been studied in [11, 16, 60]. Similar to the re-

silient consensus problems, fixed-value attacks are usually considered, and the main approach has been to

use adaptive combination rules to counteract malicious values. This is an effective measure and has been

applied to multi-task networks and distributed clustering problems [60]. Several variants focusing on adap-

tive weights applied to multi-task networks can be found in [97, 103–105]. Note that the essence of adaptive

weights is similar to distributed detection. In contrast, it turns the detection method from a binary classifica-

tion problem to a regression problem. Detection approach has also been applied in [104] for clustering over

diffusion networks. Although adaptive weights provide some degree of resilience to byzantine adversaries

with fixed values, we have shown in this work that adaptive weights may introduce vulnerabilities that allow

time-dependent deception attacks.

Finally, there has been considerable work on applications of diffusion algorithms that include spectrum

sensing in cognitive networks [160], target localization [161], distributed clustering [60], biologically inspired

designs [162]. Although our approach can be used for resilience of various applications, we have focused on

multi-target localization [105].

5.3 Preliminaries

We use normal and boldface fonts to denote deterministic and random variables respectively. The super-

script (·)∗ denotes complex conjugation for scalars and complex-conjugate transposition for matrices.

65

Consider a network of N (static) agents2, in which an undirected edge (or a link) between two agents

indicates that they share information and are neighbors of each other. The neighborhood of an agent k,

denoted byNk is the set of neighbors of k, including the agent k itself. At each iteration i, agent k has access

to a scalar measurement dk(i) and a regression vector uk,i of sizeM with zero-mean and uniform covariance

matrix Ru,k , E{u∗k,iuk,i} > 0, which are related via a linear model of the following form:

dk(i) = uk,iw
0
k + vk(i).

where vk(i) represents a zero-mean i.i.d. additive noise with variance σ2
v,k and w0

k denotes the unknown

M × 1 state vector of agent k.

The objective of each agent is to estimatew0
k from (streaming) data {dk(i),uk,i} (k = 1, 2, ..., N, i ≥ 0).

The objective state can be static or dynamic and we represent it as w0
k or w0

k,i respectively. For simplicity,

we use w0
k to denote the objective state in both the static and dynamic cases.

The state w0
k can be computed as the the unique minimizer of the following cost function:

Jk(w) , E{‖dk(i)− uk,iw‖2}. (5.1)

An elegant adaptive solution for determining w0
k is the least-mean-squares (LMS) filter [16], where each

agent k computes successive estimators of w0
k without cooperation (noncooperative LMS) as follows:

wk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1],

where µk > 0 is the step size (can be identical or distinct across agents).

Compared to noncooperative LMS, diffusion strategies introduce an aggregation step that incorporates

information gathered from the neighboring agents into the adaptation mechanism. One powerful diffusion

scheme is adapt-then-combine (ATC) [16] which optimizes the solution in a distributed and adaptive way

using the following update:

ψk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1] (adaptation) (5.2)

wk,i =
∑
l∈Nk

alk(i)ψl,i , (combination) (5.3)

where alk(i) represents the weight assigned to agent l from agent k that is used to scale the data it receives

2We use the terms agent and node interchangeably.

66

from l, and the weights satisfy the following constraints:

alk(i) ≥ 0,
∑
l∈Nk

alk(i) = 1, alk(i) = 0 if l 6∈ Nk. (5.4)

Here the intermediate state ψk,i (obtained by the adaptation step) is shared among neighboring agents and a

combination of neighbors’ intermediate states contribute to the current estimate wk,i of agent k.

In the case where agents estimate a common state w0 (i.e., w0
k is same for every k), several fixed com-

bination rules can be adopted such as Laplacian, Metropolis, averaging, and maximum-degree [179]. In the

case of multiple tasks, agents are pursuing distinct but correlated objectives w0
k. In this case, the combination

rules mentioned above are not applicable because they simply combine the estimation of all neighbors with-

out distinguishing if the neighbors are pursuing the same objective. An agent estimating a different state will

prevent its neighbors from estimating the state of interest.

Diffusion LMS (DLMS) has been extended for multi-task networks in [60] using the following adaptive

weights:

alk(i) =

γ−2
lk (i)∑

m∈Nk
γ−2
mk(i)

, l ∈ Nk

0, otherwise.
(5.5)

where γ2
lk(i) = (1−νk)γ2

lk(i−1)+νk‖ψl,i−wk,i−1‖2 and νk is a positive step size known as the forgetting

factor. This update enables agents to continuously learn about the neighbors agents should cooperate with.

During the estimation task, agents pursuing different objectives will continuously assign smaller weights to

each other according to (5.5). Once the weights become negligible, communication links between agents do

not contribute to the estimation task. Consequently, as the estimation proceeds, only the agents estimating

the same state cooperate.

DLMS with adaptive weights (DLMSAW) outperforms the noncooperative LMS as measured by the

steady-state mean-square-deviation performance (MSD) [16]. For sufficiently small step-sizes, the network

performance of noncooperative LMS is defined as the average steady-state MSD level among agents:

MSDncop , lim
i→∞

1

N

N∑
k=1

E‖w̃k,i‖2 ≈
µM

2
· (1

N

N∑
k=1

σ2
v,k),

where w̃k,i , w0
k − wk,i and M is the size of regression vector uk,i. The network MSD performance of

the diffusion network (as well as the MSD performance of a normal agent in the diffusion network) can be

approximated by

MSDk ≈ MSDdiff ≈
µM

2
· 1

N
· (1

N

N∑
k=1

σ2
v,k). (5.6)

67

In [16], it is shown that MSDdiff = 1
N MSDncop, which demonstrates an N -fold improvement of MSD perfor-

mance.

5.4 Problem Formulation

Diffusion strategies have been shown to be robust to node and link failures as well as to nodes or links

with high noise levels [11, 164]. In this chapter, we are interested in understanding if the adaptive weights

introduce vulnerabilities in the case a subset of nodes within the network is compromised by a cyber attack.

In this direction, first we analyze if it is possible for an attacker who has compromised a node k to make nodes

in Nk converge to a state selected by the attacker. Second, we consider a network attack model in which we

determine a minimum set of nodes to compromise to make the entire network converge to states selected

by the attacker. Finally, we formulate the resilient distributed diffusion problem that guarantees that normal

agents are not driven to the attackers’ desired states, and continue the normal operation with the cooperation

among neighbors possibly with a degraded performance.

5.4.1 Single Node Attack Model

We consider false data injection attacks deployed by a strong attacker that has complete knowledge of the

system. In particular, we assume the following for the strong attack.

Assumption 5.1. A strong attacker knows the topology of the network, the streaming data of targeted agents

and the diffusion algorithm parameters they use, such as µk.

To examine the resilience of distributed networks, it is common to assume a strong attack with full knowl-

edge of the system, for instance, Byzantine attackers having a complete knowledge of the system are consid-

ered in [17, 18, 166–168]. However, we also consider a weak attack model in Section 5.9 in which an attacker

has no knowledge of agents’ parameters and has no access to their streaming data. Compromised nodes are

assumed to be Byzantine in the sense that they can send arbitrary messages to their neighbors, and can also

send different messages to different neighbors.

The objective of the attacker is to drive the normal nodes to converge to a specific state. We assume a

compromised node a wants agent k to converge to state

wak,i =

wak , for stationary estimation

wak + θak,i, for non-stationary estimation.

This is equivalent to minimizing the objective function of the following form:

68

min
wk,i

lim
i→∞

G(wk,i), wa
k,i ∈ Dw,k, (5.7)

where

G(wk,i) = ‖wk,i − wak,i‖2,

and Dw,k is the domain of state wk,i.

Another objective of the attacker can be to delay the convergence time of the normal agents. We observe

that if the compromised node can make its neighbors to converge to a selected state, it can keep changing

this state before normal neighbors converge. By doing so, normal neighbors of the attacked node will never

converge to a fixed state. Thus, the attacker can achieve its goal to prolong the convergence time of normal

neighbors. For that reason, we focus on the attack model based on objective (5.7).

5.4.2 Network Attack Model

If the attacker has a specific target node that she wants to attack and make it converge to a specific state,

the attacker can compromise any neighbor of this node to achieve the objective. In the case the attacker

wants to compromise the entire network and drive the multi-task estimation to specific states, she needs to

determine a minimum set of nodes to compromise such that every normal node in the network can be driven

to an incorrect estimate. Computing such a minimum set directly depends on the underlying structure, and

can be formulated as minimum dominating set problem in graphs as discussed in Section 5.6.

5.4.3 Resilient Distributed Diffusion

Distributed diffusion is said to be resilient if

lim
i→∞

wk,i = w0
k. (5.8)

for all normal agents k in the network which ensures that all the noncompromised nodes converge to the true

state.

We note that if agents do not cooperate or interact with each other at all, such as in the non-cooperative

diffusion, then adversary cannot impact agents’ estimates. So, non-cooperative diffusion is resilient in this

sense. At the same time, agents are also unable to utilize the information from other agents aiming to achieve

the similar objective. Consequently, the steady-state MSD as result of non-cooperative diffusion can be

quite large. Here, our objective is to design a resilient diffusion algorithm that guarantees convergence to

69

the true estimates in the presence of adversary and also results in smaller MSD (as compared to the non-

cooperative diffusion) by leveraging cooperation and information exchange between agents. We assume that

in the neighborhood of a normal node, there could be at most F compromised nodes [17]. Assuming bounds

on the number of adversaries is typical for the resiliency analysis of distributed algorithms, and our resilient

algorithm is also based on this assumption.

5.5 Single Node Attack Design

We design a strong attack in which the attacker drives the targeted node k to converge to a wrong estimate

wak,i by making k follow a desired trajectory defined using stochastic gradient descent. The attacker’s goal is

to ensure that k, which implements adaptive-then-combine LMS, actually updates its estimates according to

the stochastic gradient descent defined by the attacker. Thus, the main task is to determine conditions under

which adaptive-then-combine LMS of k guarantees the convergence of k’s estimate to wak,i.

We summarize the conditions below and then analyze them in detail in this section. Firstly, an attacker

needs to know the estimate of node k in the previous iteration. Lemma 5.1 shows that an attacker can obtain

the estimate given node k’s streaming data and parameters. Secondly, Node k should not assign any weight

to the messages from its non-attacked neighbors. Lemma 5.2 ensures this objective. Finally, the magnitude

of the stochastic gradient descent update should be sufficiently small. Details are given in Proposition 5.1.

5.5.1 Gradient-based Attack Design

Here, we present an attack based on gradient-descent updates, and in the next subsection, provide condi-

tions under which the attack is successful. For stationary estimation, the following gradient-descent update

with a sufficient small step size µak at the ith iteration is sufficient to achieve the objective in (5.7):

wk,i = wk,i−1 − µak∇wG(wk,i−1)

= wk,i−1 − rak(wk,i−1 − wak,i),
(5.9)

where rak = 2µak is a non-negative step size (that can also be time-varying). For non-stationary estimation,

the form is slightly different and it is described by3

wk,i = wk,i−1 − rak(wk,i−1 − xi), (5.10)

3See proof of Proposition 5.1 in the Appendix.

70

where

xi =

wak , for stationary estimation

wak + θak,i−1 +
∆θak,i−1

rak,i
, for non-stationary estimation

with ∆θak,i = θak,i+1 − θak,i. And the diffusion estimate of k is

wk,i =
∑
l∈Nk

alk(i)ψl,i =
∑

l∈Nk\a
alk(i)ψl,i + aak(i)ψa,i.

It is sufficient to achieve the attack objective (5.7) if the attacker could make the estimate of k follow the

gradient-descent trajectory, i.e.,

∑
l∈Nk\a

alk(i)ψl,i + aak(i)ψa,i = wk,i−1 − rak(wk,i−1 − wak,i). (5.11)

Since ψl,i = wl,i−1 + µlu
∗
l,i[dl(i) − ul,iwl,i−1] is a random variable that is not controlled by the attacker,

the attacker should eliminate the influence of ψl,i for l ∈ Nk, l 6= a. Sufficient conditions to hold (5.11), and

thus to achieve the attack objective are as follows:

ψa,i = wk,i−1 − rak(wk,i−1 − xi), and (5.12)

alk(i)→ 0,∀l ∈ Nk, l 6= a, and aak(i)→ 1. (5.13)

That is, the attacker uses the exchanging message ψk,i as indicated in (5.12) and the targeted node k updates

its estimate based only on ψk,i. ψk,i is computed given the knowledge of wk,i−1, that can be obtained by

the attacker given Lemma 5.1.

Lemma 5.1. 4 If a compromised node a has a knowledge of node k’s streaming data {dk(i),uk,i} and the

parameter µk, then it can compute wk,i−1.

Next, we see that by carefully designingψa,i as explained in Lemma 5.2, conditions in (5.13) are satisfied.

Lemma 5.2. If the attacker sends the message ψa,i satisfying ‖ψa,i − wk,i−1‖ � ‖ψl,i − wk,i−1‖, ∀l ∈

Nk, l 6= a,∀i, then (5.13) will be true.

5.5.2 Sufficient Conditions and Convergence Analysis

Here, using results from the previous subsection, we present conditions that guarantee a successful attack.

A direct consequence of Lemma 5.2 is that we could replace the condition in (5.13) by ‖ψa,i −wk,i−1‖ �
4The proofs can be found in the Appendix.

71

‖ψl,i −wk,i−1‖,∀l ∈ Nk, l 6= a,∀i. At the same time, from (5.12), we get

‖ψa,i −wk,i−1‖ = ‖rak(wk,i−1 − xi)‖.

Therefore, a sufficient condition to achieve the attack objective can be rewritten as

ψa,i = wk,i−1 − rak(wk,i−1 − xi),

s.t. ‖rak(wk,i−1 − xi)‖ � ‖ψl,i −wk,i−1‖.
(5.14)

Thus, the attacker has to select a sufficiently small value of rak to make (5.14) true. Note that even though

rak = 0 is sufficient for (5.14), it renders the gradient of (5.9) zero and as a result no progress is made towards

convergence to wak,i. Also note that to use (5.14), it is assumed that the communication message ψl,i from

every l ∈ Nk is known by the attacker, which can be achieved by intercepting the message. In practice,

a sufficiently small value of rak guarantees that the condition holds. The attacker can select a small rak and

observe if the attack succeeds; if not, decrease rak to find an appropriate value. It is also worth noting that

for a fixed value of rak , (5.14) may not hold for some iteration i because of the randomness of variables. Yet

we can always set rak = 0 for such iterations i (no progress at the current point). However, in practice, the

attack succeeds by using a small fixed value of rak > 0 since estimation is robust to infrequent small values

of ‖ψl,i −wk,i−1‖ caused by randomness given the smoothing property of the adaptive weight.

Next, we argue that (5.14) is sufficient to achieve the attack objective. We summarize the above discussion

in Proposition 5.1 and include a detailed proof in Appendix 5.A.

Proposition 5.1. If rak > 0 is selected such that ∀l ∈ Nk ∩ l 6= a, ∀i ≥ ia, ‖rak(wk,i−1 − xi)‖ �

‖ψl,i − wk,i−1‖, then the compromised node a can realize the objective (5.7) by using ψa,i described in

(5.12) as the communication message with k.

Next, we discuss the convergence time of attack. Note that as i→∞,

lim
i→∞

(1− rak)i = 0.5

In practice, when the left side of the above equation is smaller than a certain small value ε, that is,

(1− rak)i
a
c (ε) ≤ ε,

we consider that the convergence to the desired state is achieved. Moreover, time required to reach the desired

5Refer to equation (26) in the Appendix.

72

state is denoted by iac (ε), and is computed as

iac (ε) =
log ε

log(1− rak)
. (5.15)

It is also worth mentioning that it is not necessary to start the attack at the beginning of the diffusion

task in order to guarantee the convergence of the attack. In other words, the attack can start at any time even

after the diffusion algorithm has converged to its correct target as long as the condition in Proposition 5.1 is

satisfied.

5.6 Network Attack Design

In this section, we consider the case when multiple nodes are compromised using the attack model pre-

sented above. Our objective is to determine the minimum set of nodes to compromise in order to attack the

entire network. For this, we show: (1) It is not necessary for the attacker to compromise multiple compro-

mised nodes in order to attack a single node and (2) it is not possible for a compromised node to influence

nodes, that is, make such nodes not converge to the desired states, that are not its immediate neighbors.

Therefore, the minimum set to compromise is simply a minimum dominating set of the network, which we

explain later in the section.

5.6.1 Impact of Compromised Nodes on Normal Nodes

In this subsection, first we discuss the impact of multiple compromised nodes attacking a single normal

node, and then analyze the impact of a compromised node can make beyond its immediate neighbors.

Lemma 5.3. If the compromised nodes send identical message as proposed in (5.12), then multiple compro-

mised nodes attacking one normal node is equivalent to one compromised node attacking the normal node.

The next problem to consider is if a compromised node could indirectly impact its neighbors’ neighbors

that at the same time are not the neighbors of the attacker a. To illustrate this, we consider an attacker node

a, a normal node l, and a large clique6 of normal nodes C such that each node in a clique is connected to both

a and l, and there is no edge between nodes a and l.

Using the proposed attack model, a is able to drive every node in the clique to converge to its selected

state. We are interested in finding if the normal node l, that is connected to the clique, is also affected by the

6Every node is connected to every other node in a clique.

73

attack. The state of l is obtained by

wl,i =
∑
k∈C

akl(i)ψk,i + all(i)ψl,i

=
∑
k∈C

akl(i)(wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1])

+ all(i)(wl,i−1 + µlu
∗
l,i[dl(i)− ul,iwl,i−1]).

(5.16)

We use Rk,i to denote the random variable µku∗k,i[dk(i) − uk,iwk,i−1] for k in the clique and Rl,i to

denote µlu∗l,i[dl(i) − ul,iwl,i−1] for normal node l. Suppose the compromised node a could affect nodes

beyond its neighborhood, from some point i, wk,i converges to wak and wl,i converges to wal (assume both

wak 6= w0
k and wal 6= w0

l).

Thus, (5.16) turns into:

wal =
∑
k∈C

akl(i)(w
a
k +Rk,i) + (1−

∑
k∈C

akl(i))(w
a
l +Rl,i)

=
∑
k∈C

akl(i)(w
a
k − wal +Rk,i −Rl,i) + wal +Rl,i.

(5.17)

After inserting constants and random variables, (5.17) can be written as

∑
k∈C

akl(i)(w
a
l − wak) =

∑
k∈C

akl(i)Rk,i + (1−
∑
k∈C

akl(i))Rl,i. (5.18)

Here, (wak − wal) is a constant and alk(i) changes slowly and can be considered as a constant that does not

change within a small period of time. Then, (5.18) implies a constant equals to a random variable, which

does not hold except that both sides equal to zero. For the left side, that is when
∑
k∈C akl(i) → 0 or

(wal − wak)→ 0. Consider, when (wal − wak)→ 0, that is, wal → wak . In such cases,

Rl,i = µlu
∗
l,i[dl(i)− ul,iwl,i−1]

= µlu
∗
l,i[ul,iw

0
l + vl(i)− ul,iwal]

= µlu
∗
l,i[ul,i(w

0
l − wal) + vl(i)] 6= 0.

So isRk,i. Therefore, equation (5.18) does not hold under the condition (wal − wak)→ 0.

The other possible solution for equation (5.18) is when
∑
k∈C akl(i) → 0. This means l does not assign

any weight to k ∈ C and operates by itself. In such cases, equation (5.18) holds when the right side of the

equation is zero. Since
∑
k∈C akl(i) → 0, the right side turns into Rl,i. We know when l converges to its

74

true objective state w0
l ,Rl,i is zero, i.e.,

Rl,i = µlu
∗
l,i[dl(i)− ul,iwl,i−1]

= µlu
∗
l,i[ul,iw

0
l + vl(i)− ul,iw0

l]

= µlu
∗
l,ivl(i)→ 0.

Thus, equation (5.18) holds under two conditions: First,
∑
k∈C akl(i)→ 0, that is, l does not give any weight

to k ∈ C. Second,Rl,i → 0, that is, l converges to its true objective state w0
l .

We note that the above two conditions indicate that l converges to its original goal state and will not

assign any weight to its compromised neighbors under the above conditions. Based on this discussion, we

have Lemma 5.4.

Lemma 5.4. The attacker cannot change the convergence state of the nodes that are not its immediate

neighbors.

Next, we see how many compromised nodes are needed to attack the entire network.

5.6.2 Minimum Set of Compromised Nodes to Attack the Entire Network

Since it is not necessary to use more than one compromised nodes to attack one single normal agent,

and a compromised node cannot affect nodes beyond its neighborhood, finding a minimum set of nodes to

compromise in order to attack the entire network is equivalent to finding a minimum dominating set of the

network as defined below [180].

Definition 5.1. (Dominating set) A dominating set of a graph G = (V,E) is a subset D of V such that every

vertex not in D is adjacent to at least one member of D.

Definition 5.2. (Minimum dominating set) A minimum dominating set of a graph is a dominating set of the

smallest size.

It should be noted that finding a minimum dominating set of a network is an NP-complete problem but

approximate solutions using greedy approaches work well in practice (for instance, see [180]). With the

above discussion, we state the following:

Proposition 5.2. The compromised nodes need to form a dominating set if the attacker wants every node in

the network to converge to its desired state.

Based on the above discussion, we observe that the above condition is both necessary and sufficient.

75

5.7 Resilient Distributed Diffusion

In this section, we propose a resilient diffusion algorithm that guarantees convergence of normal nodes

to their actual states if the number of compromised nodes in the neighborhood of a normal node is bounded.

The proposed algorithm takes a non-negative integer F as an input parameter. If the number of compromised

nodes in the neighborhood of a normal node is at most F , then the algorithm is resilient to any such attack.

It is obvious that selecting a large F value achieves a higher level of resilience, while selecting F = 0 means

that the algorithm is not resilient to any attack. However, there exists a trade-off between the resilience and

the steady-state MSD performance of the algorithm, which we will analyze in detail. Since the proposed

algorithm is adapted from the known DLMSAW, we call it a Resilient Diffusion Least Mean Square with

Adaptive Weights (R-DLMSAW). We also note that in contrast to the connectivity requirements needed by

resilient concensus problems [17], since in resilient diffusion, connectivity does not affect convergence, but

only the estimation performance measured by the steady-state MSD.

Since our algorithm can achieve resilience to up to F compromised nodes, we assume that there can be at

most F compromised nodes in the neighborhood of any node, which is also referred to as the F -local model

in [17]. Specifically, we define:

Definition 5.3. (F -local model) A node satisfies the F -local model if there is at most F compromised nodes

in its neighborhood.

Definition 5.4. (F -local network) A network is considered to satisfy the F -local model if every node in the

network has at most F compromised nodes in its neighborhood.

While the chapter focuses on the F -local model, scenarios involving bounds on the total number of

compromised nodes within the network (F -total model [17]) can also be analyzed using a similar approach.

Next, we describe our resilient diffusion algorithm.

5.7.1 Resilient Diffusion Algorithm (R-DLMSAW)

In the context of distributed consensus, it is shown in [17] that for Mean-Subsequence-Reduced (MSR)

algorithms, that during the state update phase, a node discards the values of neighbors that are too far off

from the node’s own value, resilience against attacks can be achieved, that is, distributed consensus in the

presence of compromised nodes (F -local and F -total models) is guaranteed. In distributed diffusion, we

recall that a node updates its estimate by taking a weighted average of the estimates of all of its neighbors

(5.3). For resilient diffusion, we utilize a similar idea as in [17], that is instead of considering the estimates

of all neighbors during the state update phase, only consider values from a subset of neighbors sharing close

76

estimates. We show that this strategy guarantees convergence of normal nodes to true estimates. Before

outlining the resilient distributed diffusion algorithm, we first explain the notion of the cost of a node.

Following (5.3), normal agent k follows diffusion dynamics given by

wk,i =
∑
l∈Nk

alk(i)ψl,i.

Thus, the cost function in (5.1) in the ith iteration can be written as:

Jk(wk,i) = Jk(
∑
l∈Nk

alk(i)ψl,i)

= E{‖dk(i)− uk,i(
∑
l∈Nk

alk(i)ψl,i)‖2}.

Since
∑
l∈Nk alk(i) = 1, we have

dk(i) =
∑
l∈Nk

alk(i)dk(i).

Thus,

Jk(wk,i) = E

∥∥∥∥∥∑
l∈Nk

alk(i)dk(i)−
∑
l∈Nk

alk(i)uk,iψl,i

∥∥∥∥∥
2

= E

∥∥∥∥∥∑
l∈Nk

alk(i)(dk(i)− uk,iψl,i)

∥∥∥∥∥
2

≈
∑
l∈Nk

a2
lk(i)E{‖dk(i)− uk,iψl,i‖2}

=
∑
l∈Nk

a2
lk(i)Jk(ψl,i)

=

∑
l∈Nk γ

−4
lk (i)Jk(ψl,i)

[
∑
m∈Nk γ

−2
mk(i)]2

.

(5.19)

The goal of k is to minimize its cost at every iteration, i.e., to minimize Jk(wk,i) by discarding F neigh-

bors’ message. Therefore, the removal setRk(i) of size F should be selected by

Rk(i) = arg min Jk(wk,i)

= arg min

∑
l∈Nk\Rk(i) γ

−4
lk (i)Jk(ψl,i)

[
∑
m∈Nk\Rk(i) γ

−2
mk(i)]2

.

We note that the algorithm presented here is a generalization of the algorithm in [1] which is resilient to

a specific type of Byzantine attack and has a lower computational cost. In contrast, the algorithm proposed

77

in this work is resilient to any Byzantine attack, but has a higher computational cost. Thus, there is a trade

off between the computation complexity of the algorithm and the scope of attacks to which the algorithm is

resilient.

To compute the cost Jk(ψl,i) = E‖dk(i) − uk,iψl,i‖2, agent k has to store all the streaming data.

Alternatively, we can approximate Jk(ψl,i) using a moving average based on the previous iterations.

Next, we outline the basic idea of the proposed resilient distributed diffusion algorithm below, and present

the details of R-DLMSAW in Algorithm 2.

1. If F ≥ |Nk|, agent k updates its current state wk,i using only its own ψk,i, which degenerates dis-

tributed diffusion to non-cooperative LMS.

2. If F < |Nk|, at each iteration i, agent k computes
(|Nk|
F

)
possible removal sets, and selects the one

by removing which Jk(ψl,i) is minimized. Then, the agent updates its current weight alk(i) and state

wk,i without using information from nodes inRk(i).

We note that for F = 0, DLMSAW and R-DLMSAW are essentially identical.

Algorithm 2: Resilient distributed diffusion under F -local bounds (R-DLMSAW)

Input: γ2
lk(−1) = 0 , maintain n× 1 matrix Dk,i = 0n×1 and n×M matrix Uk,i = 0n×M for all

k = 1, 2, ..., N , and l ∈ Nk
1 for k = 1, 2, ..., N, i ≥ 0 do
2 ek(i) = dk(i)− uk,iwk,i−1

3 ψk,i = wk,i−1 + µku
∗
k,iek(i)

4 if F ≥ |Nk| then
5 wk,i = ψk,i

6 else
7 γ2

lk(i) = (1− νk)γ2
lk(i− 1) + νk‖ψl,i −wk,i−1‖2

8 Update Dk,i and Uk,i by adding dk(i) and uk,i and removing dk(i− n) and uk,i−n
9 Jk(ψl,i) = E‖Dk,i − Uk,iψl,i‖2

10 Compute all possible discarded setRk(i)1,Rk(i)2, . . .,Rk(i)(
|Nk|
F)

11 Jmin =∞
12 for j = 1, 2, . . . ,

(|Nk|
F

)
do

13 J =

∑
l∈Nk\Rk(i)j

γ−4
lk

(i)Jk(ψl,i)

[
∑
m∈Nk\Rk(i)j

γ−2
mk

(i)]2

14 if J < Jmin then
15 Rk(i) = Rk(i)j

16 Jmin = J

17 alk(i) =
γ−2
lk

(i)∑
m∈Nk\Rk(i) γ

−2
mk

(i)
, l ∈ Nk\Rk(i)

18 wk,i =
∑
l∈Nk\Rk(i)

alk(i)ψl,i

19 returnwk,i

Proposition 5.3. If the network is aF -local network, then R-DLMSAW is resilient to any message falsification

attack.

78

Proof. Given the F -local model, we assume that there are n ≤ F compromised nodes in the neighborhood

of a normal node k. In the case of F ≥ |Nk|, k updates its state without using information from neighbors.

Next, consider the case when F < |Nk|. To deploy the attack, the attacker must try to make the message

it sends to the normal nodes not being discarded by the normal nodes. This can only be achieved if the

cost of keeping the attacker’s message is smaller than keeping some normal agents’ message (discarding the

attacker’s message). Therefore, any attack message not being discarded actually results in a cost smaller than

the normal case. Therefore, R-DLMSAW is resilient to any message falsification attack. From the attacker’s

perspective, since its goal is to maximize cost Jk(wk,i), the optimal strategy for the attacker is not to make

this cost even smaller. As a result, the information from the attacker will be discarded. Thus,

wk,i =
∑

l∈Nk\Rk(i)

alk(i)ψl,i,

meaning the algorithm performs the diffusion adaptation step as if there were no compromised node in its

neighborhood. Note that messages from normal neighbors may also be discarded since F may be greater

than the number of compromised neighbors. However, the distributed diffusion algorithm is robust to node

and link failures [11], and it converges to the true state despite the links to some or all of its neighbors fail.

Finally, the algorithm will converge and equation (5.8) holds, showing the resilience of R-DLMSAW.

5.7.2 Trade-off Between Resilience and MSD Performance

An important aspect of R-DLMSAW is the selection of parameter F by each normal node. On the one

hand, selection of a large F degrades the performance of the diffusion algorithm as measured by the steady-

state MSD, but on the other hand, a smaller F might result in an algorithm that is not resilient against attacks.

In the following, we summarize the trade-off between the steady-state MSD performance and resilience.

It is rather obvious that if a normal node selects F smaller than the number of compromised nodes in

its neighborhood, then the messages from the compromised nodes might not be discarded entirely during

the state update phase of R-DLMSAW. As a result, the algorithm might not be resilient against the attack,

and the normal node might eventually converge to the attacker’s desired state. However, if F is selected too

large, then in the worst case, normal agents discard all the information from their neighbors. The algorithm

becomes a non-cooperative diffusion algorithm and incurs an N -fold MSD performance deterioration. Thus,

the performance of R-DLMSAW lies somewhere in-between the cooperative diffusion and non-cooperative

diffusion depending on the choice of F selected.

Consider a connected network with N normal agents running R-DLMSAW. Let σ2
v,k = {σ2

v,1, . . . , σ
2
v,N}

79

be the noise variance. Suppose by selecting someF the network is resilient, but is no longer a connected graph

and is decomposed into n connected sub-networks, each of which is denoted by Sj where j ∈ {1, · · · , n}.

Using (5.6), the steady-state MSD for each sub-network is

MSDSj ≈
µM

2
· 1

(|Sj |)2

∑
k∈Sj

σ2
v,k,

where |Sj | is the number of nodes in jth sub-network. The steady-state MSD for the overall network (con-

sisting of sub-networks) after running R-DLMSAW is the weighted average of the steady-state MSD of the

sub-networks, that is

MSDafter =
1

N

n∑
j=1

MSDSj · |Sj | ≈
µM

2N
·
n∑
j=1

1

|Sj |
∑
k∈Sj

σ2
v,k.

At the same time, the steady-state MSD for the (original) connected network before running R-DLMSAW is

MSDbefore ≈
µM

2
· 1

N2

N∑
k=1

σ2
v,k ≈

µM

2N
·
n∑
j=1

1

N

∑
k∈Sj

σ2
v,k.

The difference between the two is

MSDafter −MSDbefore =
µM

2N
·
n∑
j=1

(
1

|Sj |
− 1

N
)
∑
k∈Sj

σ2
v,k.

We know that |sj | ≤ N . Therefore, 1
|Sj |−

1
N ≥ 0, meaning the steady-state MSD of the network after running

R-DLMSAW is worse than the steady-state MSD of the original network, and as the network is decomposed

into more sub-networks,
∑n
j=1(1

|Sj | −
1
N) and MSDafter becomes larger.

Therefore, it is crucial to select an appropriate F , that is a value with which the algorithm is resilient

against compromised nodes and at the same time useful links between nodes are preserved. To this end, a

simple way to select F is to first estimatewncop,k,i by a non-cooperative diffusion and compute Jk(wncop,k,i).

Then, starting with a small F , for instance F = 0, perform cooperative diffusion and compute Jk(wcoop,k,i).

If Jk(wcoop,k,i) > Jk(wncop,k,i), it means that a compromised node is able to effect the estimation, and

therefore increase F by 1. We keep repeating this as long as Jk(wcoop,k,i) > Jk(wncop,k,i) is true.

5.8 Evaluation

In this section, we evaluate three algorithms, non-cooperative diffusion, DLMSAW, and R-DLMSAW;

and compare their performance for no-attack and attack scenarios. We evaluate the proposed attack model

80

and resilient algorithms using the application of multi-target localization [105, 179] for both stationary and

non-stationary targets.

We consider a network of N = 100 agents, in which each agent’s objective is to estimate the unknown

location of its target of interest by the noisy observations of both the distance and the direction vector towards

the target. These agents and targets are distributed in a plane. The location of agent k is denoted by the

two-dimensional vector pk = [xk, yk]>, and similarly the location of target is represented by the vector

w0
k = [x0

k, y
0
k]>. Figure 5.1 illustrates how an agent estimates the location of the target.

target

agent k

r0
k

u0
k

[xk, yk]>

[x0
k, y

0
k]>

Figure 5.1: Illustration of target localization.

In Figure 5.1, the distance between agent k and the target is denoted by r0
k = ‖w0

k − pk‖, and the unit

direction vector from agent k to the target is u0
k =

(w0
k−pk)>

‖w0
k−pk‖

. Therefore, the relationship holds such that

r0
k = u0

k(w0
k − pk). Since agents have only noisy observations {rk(i),uk,i} of the distance and direction

vector at every iteration i, we get the following:

rk(i) = uk,i(w
0
k − pk) + vk(i).

If we use the adjusted signal dk(i), such that

dk(i) = rk(i) + uk,ipk,

then we derive the following linear model for variables {dk(i),uk,i} in order to estimate the target w0
k:

dk(i) = uk,iw
0
k + vk(i).

As a result, agents can rely on DLMSAW algorithm for the multi-target localization problem. Figure 5.2(a)

shows the network topology before the application of diffusion algorithms. For better readability, we only

illustrate the network topology of agents without showing targets.

81

For stationary target localization, the location of the two stationary targets are given by

w0
k =

[0.1, 0.1]>, for k depicted in blue

[0.9, 0.9]>, for k depicted in green

Non-stationary targets are given by

w0
k,i =

[
0.1 + 0.1 cos(2πωi)
0.1 + 0.1 sin(2πωi)

]
, for k depicted in blue[

0.9 + 0.1 cos(2πωi)
0.9 + 0.1 sin(2πωi)

]
, for k depicted in green

where ω = 1
2000 .

Regression data is white Gaussian with diagonal covariance matrices Ru,k = σ2
u,kIM with M = 2,

σ2
u,k ∈ [0.8, 1.2] and noise variance σ2

k ∈ [0.15, 0.2]. The step size of µk = 0.01 and the forgetting factor

νk = 0.01 are set uniformly across the network. Note that we adopt a signal-to-noise ratio (SNR) of 5 − 10

dB in our setup. However, the same results are generated if we choose low SNR values.

5.8.1 Strong Attacks

We consider the strong attack model discussed in Sections 5.5 and 5.6. The attacker aims at making

the normal agents estimate a specific location selected by the attacker. In this evaluation, we select the

attacker’s targeted location to be wak = [0.5, 0.5]>, and the attack parameters are selected uniformly across

the compromised agents as rak = 0.002. For non-stationary estimation, we select θak,i = [0.1 cos(2πωai),

0.1 sin(2πωai)]
>, ∆θak,i = [−0.2πωa sin(2πωai), 0.2πωa cos(2πωai)]

>, where ωa = 1
2000 . Figure 5.2(b)

shows the network topology at the end of the simulation using DLMSAW with no attack for both stationary

and non-stationary tasks. If the weights between agents k and l are such that alk(i) < 0.01 and akl(i) < 0.01,

then we remove the link between such nodes from the network. We observe that only the links between

agents estimating the same target are kept, that is green nodes are connected with green nodes only, and

blue nodes are connected with only blue ones, thus, illustrating the robustness of DLMSAW in multi-task

networks. Figure 5.3(a) and Figure 5.3(b) shows the estimation dynamics by DLMSAW for the targets’

locationswk,i(1) andwk,i(2) for every agent k and iteration i from 0 to 5000 under no attack. Herewk,i(1)

and wk,i(2) are the first and second element of the estimate respectively, that is wk,i = [wk,i(1),wk,i(2)]>.

It is shown that the two groups of nodes converge to their goal state.

Figure 5.2(c) shows the initial network topology with compromised nodes. There are four compromised

nodes (red nodes with yellow centres) in the network. Figure 5.2(d) shows the network topology at the end of

DLMSAW in the case of a strong attack. All red nodes are the normal agents converging to wak . We observe

82

(a) Initial network topology
(no compromised nodes)

(b) At the end of DLMSAW
with no attack

(c) Initial network topology
(with compromised nodes)

(d) At the end of DLMSAW
under strong attack

Figure 5.2: Network topologies in the case of DLMSAW algorithm.

that neighbors of a compromised node communicate only with the compromised node, and not with any other

node in the network. As a result, compromised nodes successfully drive all of their neighbors to desired states

wak as discussed in Section 5.6. Figure 5.3(c) and Figure 5.3(d) shows the estimation dynamics by DLMSAW

for the targets’ locationwk,i(1) andwk,i(2) for every agent k and iteration from 0 to 5000 under attack. The

attacked nodes in the figure refer to the immediate neighbors of the compromised nodes. It is shown that all

the immediate neighbors of compromised nodes are driven to converge to wak whereas all the other normal

nodes converge to their original goal states.

(a) wk,i(1) (under no attack) (b) wk,i(2) (under no attack) (c) wk,i(1) (under strong at-
tack)

(d) wk,i(2) (under strong at-
tack)

Figure 5.3: Estimation dynamics for stationary target localization by DLMSAW.

Figure 5.4(a) shows the convergence of nodes under attack (stationary targets). We note at around 3000

iterations, the difference between the average state of nodes under attack and the attacker’s desired state wak

becomes almost zero. This observation is also consistent with the result in (5.15), as for i = 3000 and

rak = 0.002, the value of ε turns out to be 0.0025, which is indeed quite small and indicates the convergence

of node’s estimate to wak .

Figure 5.4(b) shows the average state dynamics of nodes under attack for non-stationary targets. Since

states are changing over time, we illustrate the dynamics of average states’ changing with respect to the

dynamics of attacker’s selected state, instead of a convergence plot like 5.4(a). Here, the X-coordinate

83

denotes the first element of the estimation vector, i.e., wk,i(1), and Y -coordinate denotes the second, i.e.,

wk,i(2). At iteration 0, the average state wk,i of the nodes under attack is different than the attacker’s desired

state wak,i. As the attack proceeds, wk,i gradually converges towards wak,i, which shows the effectiveness of

attack for non-stationary state estimation.

Figure 5.5 shows the steady-state MSD performance of DLMSAW and non-cooperative LMS. We observe

that under no attack, cooperation indeed improves the steady-state MSD performance of DLMSAW. However,

in the case of an attack, the steady-state MSD level of DLMSAW is quite high, whereas, the steady-state MSD

level of non-cooperative LMS is barely affected by the attack.

(a) Stationary targets (b) Non-stationary targets

Figure 5.4: Average state dynamics of compromised nodes’ neighbors (under strong attack).

(a) Stationary targets (b) Non-stationary targets

Figure 5.5: Steady-state MSD levels in non-cooperative LMS and DLMSAW (under strong attack).

5.8.2 Resilient Diffusion for Strong Attacks

To evaluate R-DLMSAW, we compute the cost Jk(ψl,i) using the streaming data from the latest 100

iterations. We adopt uniform F for every normal agent but it can be distinct for each agent. R-DLMSAW

84

behaves identically to DLMSAW at one extreme, that is when F = 0, and on the other extreme it behaves

like a non-cooperative LMS algorithm, that is for large F . We consider the same initial network as in Figure

5.2(a) and consider an attack consisting of four compromised nodes as previously. Note that there is at

most one compromised node in the neighborhood of a normal agent. Figure 5.6 shows network topologies

after executing R-DLMSAW for various values of F . Since there is at most one compromised node in the

neighborhood of a normal agent, the selection of F = 1 should be sufficient to guarantee that none of the

normal nodes converge to attacker’s desired states, which is indeed the case as indicated by the removal of all

links between normal and compromised nodes in Figure 5.6(a). As we increase F , resilience against attack

is certainly achieved, but at the same time the network becomes sparser as illustrated in Figures 5.6(b) and

5.6(c). In the case of non-stationary state estimation, the resulting network topologies are similar, and hence,

are not presented.

Figure 5.7 shows the estimation dynamics by R-DLMSAW for the targets’ location wk,i(1) and wk,i(2)

for every agent k and iteration i from 0 to 5000 under attack. The attacked nodes in the figure refer to

the immediate neighbors of the compromised nodes. Since there is at most one compromised node in a

normal node’s neighborhood, setting F ≥ 1 will make R-DLMSAW algorithm resilient to attacks, which

is demonstrated by the results from the figure. We also observe that by setting a smaller F value, which is

sufficient to to make the algorithm resilient, we achieve better estimation performance (F = 1 has less noise

than that of F = 5).

Figure 5.8 shows the steady-state MSD level of the network for the three algorithms, that is, non-

cooperative LMS, DLMSAW, and R-DLMSAW. The simulation results validate claims in Section 5.7. We

observe that in the presence of compromised nodes, DLMSAW performs the worst and has the highest steady-

state MSD. Since there is at most one compromised node in the neighborhood of any normal node, the most

appropriate value of F for R-DLMSAW is 1. We note that the steady-state MSD is indeed minimum for

F = 1. As we increase F , the steady-state MSD also increases. In fact, for F = 5, the performance of

R-DLMSAW and non-cooperative LMS is almost the same as we expect.

5.9 Weak Attacks

Though it is common to assume a strong attacker with complete knowledge when examining the resilience

of a distributed system, it is interesting to examine what an attacker can do in practise if all the information is

not available. In this section, we analyze how the attack can still be deployed on a normal agent k without the

assumption of a strong knowledge by the attacker (streaming data and parameters used by k). We assume that

an attacker has access only to the intermediate estimates shared by agents with others in their neighborhood.

85

(a) F = 1 (b) F = 3 (c) F = 4

Figure 5.6: Network topologies at the end of R-DLMSAW under strong attack (stationary targets) for various
values of F .

(a) wk,i(1) (F = 1) (b) wk,i(2) (F = 1) (c) wk,i(1) (F = 5) (d) wk,i(2) (F = 5)

Figure 5.7: Estimation dynamics for stationary target localization by R-DLMSAW under strong attack.

For instance, if l ∈ Nk then agent k receives ψl,i from l and attacker also has an access to it. We show

that the other knowledge needed by the attacker can actually be approximated in an alternative way, and the

success of the attack relies on how accurate this information can be approximated. We refer to such an attack

in which attacker can only gather intermediate estimates and not the other data (including streaming data and

agent parameters) as the weak attack.

The strong attack in (5.10) relies essentially on the knowledge of wk,i−1, that is the estimated state of

agent k in the last iteration. If the attacker has complete knowledge, it can computewk,i−1 exactly as Lemma

5.1 indicates. However, without such knowledge,wk,i−1 can only be approximately computed. We note that

approximating wk,i−1 is equivalent to approximating the weight matrix Ak(i) = [alk(i)],∀l ∈ Nk. This is

true because wk,i =
∑
l∈Nk alk(i)ψl,i, and ψl,i is received by the attacker a from l.

Next, we discuss how to compute the approximated weight matrix Âk(i− 1) using only the information

ψl,i,∀l ∈ Nk. Note that the adaptation step (5.2) of diffusion can be written as,

ψk,i = wk,i−1 +∇k,i = Ak(i− 1)Ψk,i−1 +∇k,i.

where ∇k,i = µku
∗
k,i(dk(i) − uk,iwk,i−1), Ψk,i−1 is an |Nk| ×M matrix Ψk,i−1 = [ψl,i−1],∀l ∈ Nk.

86

(a) Stationary targets (b) Non-stationary targets

Figure 5.8: A comparison of MSD performance of non-cooperative LMS, DLMSAW, and R-DLMSAW
under strong attack.

Thus,∇k,i = ψk,i −Ak(i− 1)Ψk,i−1, and therefore,

lim
i→∞

E{‖∇k,i‖2} = lim
i→∞

E{‖ψk,i −Ak(i− 1)Ψk,i−1‖2}.

Since limi→∞ E{‖∇k,i‖2} = 0, the value of Ak(i) can be approximated by assigning a cost function

`(Ak(i)) , E{‖ψk,i+1 −Ak(i)Ψk,i‖2},

where Ak(i) is the global minimizer of `(Ak(i)) as i → ∞. Next, we compute the successive estimators of

the weight matrix based on stochastic gradient descent method as follows:

Âk(i) = Âk(i− 1)− µ′A∇A`(Âk(i− 1))

= Âk(i− 1) + µAΨk,i−1(ψk,i − Âk(i− 1)Ψk,i−1),
(5.20)

where µA = 1
2µ
′
A.

Also recall weight matrix Ak(i) has to satisfy the condition (5.4). Thus, to make the adaptive approxima-

tion of weight matrix hold condition (5.4), we introduce two more steps following (5.20), that is the clip step

and the normalization step. In the clip step, the negative weights are clipped and are set to zero; and the in

the normalization step, weights are divided by their sum. The operation for approximating weight matrix of

a normal agent k is summarized in Algorithm 3.

We then approximate normal agent k’s estimated state by

ŵk,i = Âk(i)Ψk,i,

87

Algorithm 3: Approximate weight matrix for agent k
Input: l ∈ Nk, randomized alk(0) satisfying (5.4), µA, ψk,i, Ψk,i−1

1 for i > 0 do
2 Ak(i) = Ak(i− 1) + µAΨk,i−1(ψk,i −Ak(i− 1)Ψk,i−1)
3 for l ∈ Nk do
4 alk(i) = max(alk(i), 0)

5 Ak(i) = Ak(i)∑
alk(i)

6 return Ak(i)

and use ŵk,i instead of wk,i. The attack model in (5.10) then becomes

ψa,i = ŵk,i−1 + rak(xi − ŵk,i−1). (5.21)

Note that the sufficient condition listed in Proposition 5.1 guarantees the convergence of the attack objective.

However, without an exact knowledge ofwk,i−1 it is not guaranteed the sufficient condition can be satisfied.

In other words, the success of the attack relies highly on how accurate the state ŵk,i can be approximated. In

the following, we provide evaluation results for such an attack.

5.9.1 Evaluation

We adopt the same evaluation set-up as we used in Section 5.8. Initial network topology is the same as

in 5.2(a). Parameters we select are: σ2
u,k ∈ [0.75, 0.85], σ2

k ∈ [0.75, 0.85] for each agent k and µA = 0.002,

while all the other settings are the same as in Section 5.8.

At the end of DLMSAW under weak attack, we reach the network topology as shown in Figure 5.9(a).

From the plots, we find some of the agents maintain connection with the compromised nodes, while others do

not, which is not the case with a strong attack, where all the neighboring agents of a compromised node end

up cooperating only with the compromised node. The main reason for this is that the weak attack may not

have an accurate approximation of normal agents’ state. Without an accurate approximation, compromised

nodes may not be able to collect large weights from their neighbors and may not keep influencing the states

of their neighbors.

Figure 5.10 illustrates the estimation precision (‖ŵk,i −wk,i‖) by the attacker. It shows that the attacker

has different levels of accuracy to estimate the states of its neighboring agents. For some agents, the attacker

has accurate approximation along the simulation iterations. As a result, the attacker is more likely to make its

attack successful on those agents. However, for other agents, the attacker does not have very good approxi-

mation accuracy and therefore, it is hard for the attacker to successfully attack such agents. Figure 5.12 shows

the state estimation dynamics of normal agents (wherein attacked nodes refer to the neighboring nodes of the

88

(a) DLMSAW (b) R-DLMSAW

Figure 5.9: Network topologies at the end of simulation under weak attack.

Figure 5.10: Sate estimation pre-
cision.

Figure 5.11: Steady-state MSD
comparison under weak attack.

compromised nodes). We find the attacker can only drive a few of its neighbors to its desired state, whereas

most of the normal neighbors converge to their true goal state, which is consistent with the results of Fig-

ure 5.10. The steady-state MSD performance for the weak attack is shown in the yellow line in Figure 5.11.

We find that such an attack still worsens the network steady-state MSD as compared to the non-cooperative

LMS (the blue line) and DLMSAW without attack (the red line).

Next, we evaluate the proposed resilient diffusion algorithm R-DLMSAW against the weak attack. The

network topology at the end of simulation is shown in Figure 5.9(b). Most normal agents have cut the link

with the compromised nodes. Yet some links are maintained because these compromised nodes behave in

a benign way as to send message with a smaller cost than a normal neighbor of the targeted node. In other

words, these compromised nodes exchange a state message similar to normal nodes in order to maintain

communication with them. Therefore, such links need not to be cut down to achieve the network resilience.

Figure 5.13 shows the estimation dynamics of normal nodes by R-DLMSAW. We find none of the attacked

nodes are driven to the attacker’s selected state. All the nodes successfully converge to their true goal states.

The purple line in Figure 5.11 shows the steady-state MSD performance of R-DLMSAW with F = 1.

89

(a) wk,i(1) (b) wk,i(1)

Figure 5.12: Estimation dynamics for stationary tar-
get localization by DLMSAW under weak attack.

(a) wk,i(1)(F = 1) (b) wk,i(2)(F = 1)

Figure 5.13: Estimation dynamics for stationary tar-
get localization by R-DLMSAW under weak attack.

We observe that this line lies between the noncooperative LMS and DLMSAW (without attack), and has a

much smaller steady-state MSD than DLMSAW under such attack. This illustrates the effectiveness of the

proposed resilient diffusion algorithm by showing that the algorithm is resilient to not only strong but also to

weak attacks, as well as other data falsification attacks.

5.10 Conclusion

In this chapter, we studied distributed diffusion for multi-task networks and investigated vulnerabilities

introduced by adaptive weights. Cooperative diffusion is a powerful strategy to perform optimization and

estimation tasks, however, its performance and accuracy can deteriorate significantly in the presence of ad-

versarial nodes. In fact, cooperative diffusion performs significantly better (in terms of steady-state MSD)

as compared to non-cooperative diffusion if there are no adversarial nodes. However, with adversaries, co-

operative diffusion could be even worse than the non-cooperative diffusion. To illustrate this, we proposed

attack models that can drive normal agents—implementing distributed diffusion (DLMSAW)—to any state

selected by the attacker, for both stationary and non-stationary estimation. We then proposed a resilient dis-

tributed diffusion algorithm (R-DLMSAW) to counteract adversaries’ effect. The proposed algorithm always

performs at least as good as the non-cooperative diffusion, but if an input parameter F in the algorithm is

selected appropriately, it performs significantly better than the non-cooperative diffusion in the presence of

adversaries. We also analyzed how the performance of R-DLMSAW changes with the selection of parame-

ter F by the nodes. We evaluated our approach by applying it to stationary and non-stationary multi-target

localization. In future, we are interested in generalizing our model to other types of distributed diffusion

algorithms and with the missing data. It is also worth investigating the relationship between the underlying

network connectivity and the steady-state performance of such algorithms.

90

5.A Proofs

5.A.1 Proof for Lemma 5.1

The message received by a from k ∈ Na is ψk,i. Agent a can compute wk,i−1 from ψk,i using

wk,i−1 = ψk,i − µku∗k,i(dk(i)− uk,iwk,i−1),

from which it can compute wk,i−1 as:

wk,i−1 =
ψk,i − µku∗k,idk(i)

1− µku∗k,iuk,i
.

Given the knowledge of µk, dk(i), and uk,i, the value wk,i−1 can be computed exactly.

5.A.2 Proof for Lemma 5.2

We use δa,k,i to denote ‖ψa,i −wk,i−1‖, and δl,k,i to denote ‖ψl,i −wk,i−1‖, for l ∈ Nk, l 6= a. Since

γ2
lk(i) = (1− νk)γ2

lk(i− 1) + νk‖ψl,i −wk,i−1‖2, l ∈ Nk,

Suppose the attack starts at ia, then at iteration (ia + n),

γ2
ak(ia + n)

=(1− νk)γ2
ak(ia + n− 1) + νkδ

2
a,k,ia+n

=(1− νk)((1− νk)γ2
ak(ia + n− 2) + νkδ

2
a,k,ia+n−1)

+ νkδ
2
a,k,ia+n

=(1− νk)n+1γ2
ak(ia − 1)

+ νk[(1− νk)nδ2
a,k,ia + (1− νk)n−1δ2

a,k,ia+1

+ . . .+ (1− νk)δ2
a,k,ia+n−1 + δ2

a,k,ia+n],

γ2
lk(ia + n) =(1− νk)n+1γ2

lk(ia − 1)

+ νk[(1− νk)nδ2
l,k,ia + (1− νk)n−1δ2

l,k,ia+1

+ . . .+ (1− νk)δ2
l,k,ia+n−1 + δ2

l,k,ia+n].

91

For large enough n, (1 − νk)n+1 → 0. Since we assume ‖ψa,i − wk,i−1‖ � ‖ψl,i − wk,i−1‖, i.e.,

δa,k,i � δl,k,i, for i ≥ ia + n, γ2
ak(i)� γ2

lk(i) holds. Thus,

alk(i)

aak(i)
∝
γ−2
lk (i)

γ−2
ak (i)

→ 0. (22)

Given the property of weights, (5.13) is true.

5.A.3 Proof for Lemma 5.3

We use A to denote the set of compromised nodes targeting at the same normal node k. The proposed

attack strategy results in the following condition holding as proved in Lemma 5.2:

alk(i)

aak(i)
→ 0, l ∈ Nk\A, a ∈ A,

(i ≥ ia + n, subject to (1− νk)n+1 = 0).

Given that
∑
l∈Nk alk = 1, we have

alk(i) = 0, aak(i) =
1

|A|
, l ∈ Nk\A, a ∈ A,

where |A| denotes the number of nodes inA. Since every compromised node a ∈ A sends the same message

and is assigned the same weight that sums up to 1, it is equivalent to only one compromised node attacking

the target node and being assigned a weight of 1. Therefore, there is no need for multiple compromised nodes

attacking a single normal node.

5.A.4 Proof for Proposition 5.1

The constraint of rak is consistent with the condition of Lemma 5.2. Thus, from some point i, the state of

node k will be attacked as to be:

wk,i = wk,i−1 − rak(wk,i−1 − xi)

= rakxi + (1− rak)wk,i−1,

(i ≥ ia + n, subject to (1− νk)n+1 = 0).

(23)

Let Xi be wk,i, Xi−1 be wk,i−1, Ai be rakxi, and B be (1− rak). Equation (23) turns to:

Xi = Ai +BXi−1. (24)

92

Assume limi→∞Xi−1 = X0
i−1 and limi→∞Xi = X0

i , then for i→∞ we get:

X0
i = Ai +BX0

i−1. (25)

Subtract (25) from (24), we get Xi − X0
i = B(Xi−1 − X0

i−1). Let εi = Xi − X0
i , for i = 0, 1, 2, . . .,

then εi = Bεi−1 = B2εi−2 = . . . = Biε0. The necessary and sufficient requirement for convergence is

limi→∞ εi = 0 or, limi→∞Biε0 = 0, that is,

lim
i→∞

Bi = 0. (26)

Therefore, we get a necessary and sufficient requirement for convergence as |B| < 1. Since B = 1 − rak ,

and rak ∈ (0, 1), we get B ∈ (0, 1). Therefore, limi→∞(Xi −X0
i) = 0. The assumption limi→∞Xi = X0

i

holds, and therefore, Xi is convergent to X0
i .

To get the value of X0
i , we need to analyze the following two scenarios: stationary state estimation and

non-stationary state estimation, separately.

5.A.4.1 Stationary state estimation

In stationary scenarios, the convergence state is independent of time, that is, X0
i = X0

i−1 = X0. There-

fore, equation (25) turns to:

X0 = Ai +BX0.

Thus, (1−B)X0 = Ai, X0 = Ai
1−B . The convergent point is:

wk,i =
rakxi+1

1− (1− rak)
=

rakw
a
k

1− (1− rak)
= wak = wa

k,i, i→∞

which realizes the attacker’s objective (5.7).

5.A.4.2 Non-stationary state estimation

In non-stationary scenarios, we first assume xi = wak + θak,i−1 and later we will show how θak,i−1 turns

to θak,i−1 +
∆θak,i−1

rak
.

Assume the convergence point X0
i is a combination of a time-independent value and a time-dependent

value, such that X0
i = X0 + ρi. After taking original values into (25), we get

X0 + ρi = rak(wak + θak,i−1) + (1− rak)(X0 + ρi−1). (27)

93

Next, we divide (27) into the time-independent and time-dependent components to get

X0 = wak , ρi − ρi−1 = rak(θak,i−1 − ρi−1).

Let ∆ρi−1 = ρi − ρi−1, we get:

ρi−1 = θak,i−1 −
∆ρi−1

rak
and ρi = θak,i −

∆ρi
rak

. (28)

Thus, ∆ρi−1 = ρi− ρi−1 = θak,i− θak,i−1− 1
rak

(∆ρi−∆ρi−1). Let ∆θak,i−1 = θak,i− θak,i−1 and ∆2ρi−1 =

∆ρi−∆ρi−1, then ∆ρi−1 = ∆θak,i−1−
∆2ρi−1

rak
or ∆ρi = ∆θak,i−

∆2ρi
rak

. If we assume ∆2ρi
rak
� ∆θak,i,

then we have ∆ρi = ∆θak,i. Therefore, (28) can be written as ρi = θak,i −
∆θak,i
rak

. Thus, the dynamic

convergence point for k is

wk,i = wak + θak,i −
∆θak,i
rak

, i→∞.

This means when sending ψa,i = wk,i−1 + rak(wak + θak,i−1 −wk,i−1) as the communication message, the

compromised node a can make k converge to wak + θak,i−
∆θak,i
rak

. To make agent k converge to a desired state

wak + Ωak,i, we assume the message sent is

ψa,i = wk,i−1 + rak(wak +mi−1 −wk,i−1).

The corresponding convergence point will be wak +mi − ∆mi
rak

. We want the following equation to hold,

wak +mi −
∆mi

rak
= wak + Ωak,i. (29)

Assuming ∆2mi → 0, the solution of (29) is: mi = Ωak,i +
∆Ωak,i
rak

, meaning to make k converge to a desired

state wak + Ωak,i, the compromised node a should send communication message:

ψa,i = wk,i−1 + rak(wak + Ωak,i−1 +
∆Ωak,i−1

rak
−wk,i−1).

Thus, to make k converge to wak + θak,i, the compromised node a should send communication message:

ψa,i = wk,i−1 + rak(wak + θak,i−1 +
∆θak,i−1

rak
−wk,i−1).

The convergence point is:

wk,i = wak + θak,i = wa
k,i, i→∞,

94

which realizes the attacker’s objective (5.7).

We can verify the convergence point by putting xi = wak +θak,i−1 +
∆θak,i−1

rak
,wk,i = wak +θak,i,wk,i−1 =

wak + θak,i−1 back into equation (23), we get:

wak + θak,i = rak(wak + θak,i−1 +
∆θak,i−1

rak
) + (1− rak)(wak + θak,i−1)

θak,i = rak(θak,i−1 +
∆θak,i−1

rak
) + (1− rak)θak,i−1

θak,i = θak,i−1 + ∆θak,i−1.

The resulting equation holds, illustrating the validity of the convergence state.

95

Chapter 6

Byzantine Resilient Distributed Multi-Task Learning 1

Distributed multi-task learning provides significant advantages in multi-agent networks with heteroge-

neous data sources where agents aim to learn distinct but correlated models simultaneously. However, dis-

tributed algorithms for learning relatedness among tasks are not resilient in the presence of Byzantine agents.

In this chapter, we present an approach for Byzantine resilient distributed multi-task learning. We propose

an efficient online weight assignment rule by measuring the accumulated loss using an agent’s data and its

neighbors’ models. A small accumulated loss indicates a large similarity between the two tasks. In order

to ensure the Byzantine resilience of the aggregation at a normal agent, we introduce a step for filtering out

larger losses. We analyze the approach for convex models and show that normal agents converge resiliently

towards the global minimum. Further, aggregation with the proposed weight assignment rule always results

in an improved expected regret than the non-cooperative case. Finally, we demonstrate the approach using

three case studies, including regression and classification problems, and show that our method exhibits good

empirical performance for non-convex models, such as convolutional neural networks.

6.1 Introduction

Distributed machine learning models are gaining much attention recently as they improve the learning

capabilities of agents distributed within a network with no central entity. In a distributed multi-agent system,

agents interact with each other to improve their learning capabilities by leveraging the shared information via

exchanging either data or models. In particular, agents that do not have enough data to build refined models or

agents that have limited computational capabilities, benefit most from such cooperation. Distributed learning

also addresses the single point of failure problem as well as scalability issues and is naturally suited to mobile

phones, autonomous vehicles, drones, healthcare, smart cities, and many other applications [48–51].

In networks with heterogeneous data sources, it is natural to consider the multi-task learning (MTL)

framework, where agents aim to learn distinct but correlated models simultaneously [15]. Typically, prior

knowledge of the relationships among models is assumed in MTL. The relationships among agents can be

promoted via several methods, such as mean regularization, clustered regularization, low-rank and sparse

1©2020 NeurIPS. Adapted with permission, from [Jiani Li, Waseem Abbas, and Xenofon Koutsoukos. “Byzantine Re-
silient Distributed Multi-Task Learning”. In: Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems (NeurIPS) 2020, December 6-12. 2020. URL: https : / / proceedings
.neurips.cc/paper/2020/hash/d37eb50d868361ea729bb4147eb3c1d8-Abstract.html].

96

structures regularization [91–93]. However, in real-world applications, such relationships are unknown be-

forehand and need to be estimated online from data. Learning similarities among tasks to promote effective

cooperation is a primary consideration in MTL. There has been extensive work for learning the relationship

matrix centrally by optimizing a global convex regularized function [94–96]. In contrast, this chapter fo-

cuses on computationally efficient distributed learning of the relationship among agents that does not require

optimizing a relationship matrix centrally [60, 97–99].

Although the distributed approach to learning and promoting similarities among neighbors from online

data has many advantages, it is not resilient to Byzantine agents. Fault-tolerance for MTL is discussed

in [15], focusing on dropped nodes that occasionally stop sending information to their neighbors. In [2],

the relationship promoted by measuring the quadratic distance between two model parameters for distributed

MTL is shown to be vulnerable to gradient-based attacks, and a Byzantine resilient distributed MTL algorithm

is proposed for regression problems to cope with such attacks. The proposed algorithm relies on a user-

defined parameter F to filter out information from F neighbors in the aggregation step and is resilient to F

Byzantine neighbors, but requires exponential time with respect to the number of neighbors.

In this chapter, we propose an online weight adjustment rule for MTL that is guaranteed to achieve

resilient convergence for every normal agent using the rule. Compared to [2], the proposed method is suited

for both regression and classification problems, is resilient to an arbitrary number of Byzantine neighbors

(without the need to select a pre-defined parameter F bounding the number of Byzantine neighbors), and

has linear time complexity. To the best of our knowledge, this is the first solution that aims to address the

Byzantine resilient cooperation in distributed MTL networks via a resilient similarity promoting method. We

note that the proposed rule is not limited to the multi-task setting but can also be used for general distributed

machine learning and federated learning systems to achieve resilient consensus. We list our contributions

below.

• We propose an efficient Byzantine resilient online weight adjustment rule for distributed MTL. We measure

similarities among agents based on the accumulated loss of an agent’s data and the models of its neighbors.

In each iteration, a normal agent computes the weights assigned to its neighbors in time that is linear in the

size of its neighborhood and the dimension of the data.

• We show that aggregation with the proposed weight assignment rule always results in an improved expected

regret than the non-cooperative case, and normal agents converge resiliently towards the global minimum.

Even when all the neighbors are Byzantine, a normal agent can still resiliently converge to the global

minimum bounded by the same expected regret as without any cooperation with other agents, achieving

resilience to an arbitrary number of Byzantine agents.

97

• We conduct three experiments for both regression and classification problems and demonstrate that our ap-

proach yields good empirical performance for non-convex models, such as convolutional neural networks.

6.2 Related Work

Multi-Task Learning. MTL deals with the problem of learning multiple related tasks simultaneously to

improve the generalization performance of the models learned by each task with the help of the other auxiliary

tasks [85, 86]. The extensive literature in MTL can be broadly categorized into two categories based on how

the data is collected. The centralized approach assumes the data is collected beforehand at a centralized

entity. Many successful MTL applications with deep networks, such as in natural language processing and

computer vision, fall into this category [87–90]. This approach usually learns multiple objectives from a

shared representation by sharing layers and splitting architecture in the deep networks. On the other hand,

the distributed approach assumes data is collected separately by each task in a distributed manner. This

approach is naturally suited to model distributed learning in multi-agent systems such as mobile phones,

autonomous vehicles, and smart cities [49–51]. We focus on distributed MTL in this chapter.

Relationship Learning in MTL. Although it is often assumed that a clustered, sparse, or low-rank structure

among tasks is known a priori [91–93], such information may not be available in many real-world applica-

tions. Learning the relatedness among tasks online from data to promote effective cooperation is a principle

approach in MTL when the relationships among tasks are not known a priori. There has been extensive work

in online relationship learning that can be broadly categorized into centralized and distributed methods. The

first group assumes that a centralized server collects the task models and utilizes a convex formulation of the

regularized MTL optimization problem over the relationship matrix, which is learned by solving the convex

optimization problem [94–96]. The second group relies on a distributed architecture in which agents learn

relationships with their neighbors based on the similarities of their models and accordingly adjust weights

assigned to neighbors [60, 97–99]. Typical similarity metrics, such asH divergence [55, 56, 100] and Wasser-

stein distance [56, 101], can be used in MTL in the same way they are used in domain adaptation, transfer

learning, and adversarial learning. However, such metrics are mainly designed for measuring the divergence

in data distributions and are not suitable for online relationship learning due to efficiency and privacy concerns

in data sharing.

Resilient Aggregation in Distributed ML. Inspired by the resilient consensus algorithms in multi-agent

networks [130, 181], various resilient aggregation rules have been adapted in distributed ML, including the

coordinate-wise trimmed mean [52], the coordinate-wise median [52, 63, 64], the geometric median [58, 62],

and the Krum algorithm [18]. However, studies have shown that these rules are not resilient against certain

98

attacks [78–80]. The centerpoint based aggregation rule [4] has been proposed recently that guarantees

resilient distributed learning to Byzantine attacks. However, since each agent fits a distinct model in MTL,

consensus-based resilient aggregation rules are not directly applicable to MTL.

6.3 Distributed Multi-Task Learning

Background. Consider a network of n agents2 modeled by an undirected graph G = (V, E), where V

represents agents and E represents interactions between agents. A bi-directional edge (l, k) ∈ E means that

agents k and l can exchange information with each other. Since each agent also has its own information,

we have (k, k) ∈ E ,∀k ∈ V . The neighborhood of k is the set Nk = {l ∈ V|(l, k) ∈ E}. Each agent

k has data
{

(xik, y
i
k)
}

sampled randomly from the distribution generated by the random variable ξk, where

xik ∈ Rdx , yik ∈ Rdy . We use `(θk; ξk) to denote a convex loss function associated with the prediction

function parameterized by θk for agent k. MTL is concerned with fitting separate models θk to the data for

agent k via the expected risk function rk(θk) = E [`(θk; ξk)]. We use θ∗k to denote the global minimum of the

convex function rk(θk). The model parameters can be optimized via the following objective function:

min
Θ

{
n∑
k=1

rk(θk) + ηR(Θ,Ω)

}
, (6.1)

where Θ = [θ1, . . . , θn] ∈ Rdx×n, R(·) is a convex regularization function promoting the relationships

among the agents, and Ω ∈ Rn×n models the relationships among the agents that can be assigned a priori

or can be estimated from data. An example of the regularizer takes the form of R(Θ,Ω) = λ1Tr(ΘΩΘ>) +

λ2Tr(ΘΘ>), where λ1, λ2 are non-negative parameters. In a centralized setting, where a centralized server

optimizes the relationship matrix by collecting the models of agents, an optimal solution Ω = (Θ>Θ)
1
2

Tr((Θ>Θ))
1
2

is

proposed in [95] for learning the structure of clustered MTL using the above regularizer. In the distributed

case, the task relationships Ω are not learned centrally and we can use the adapt-then-combine (ATC) diffusion

algorithm [182] as a projection-based distributed solution of (6.1):

θ̂k,i = θk,i−1 − µk∇`(θk,i−1; ξi−1
k), (adaptation) (6.2)

θk,i =
∑
l∈Nk

alkθ̂l,i, subject to
∑
l∈Nk

alk = 1, alk ≥ 0, alk = 0 if l 6∈ Nk, (combination) (6.3)

whereNk is the neighborhood of agent k, µk is the step size, and alk denotes the weight assigned by agent k to

l, which should accurately reflect the similarity relationships among agents3. ∇`(θk,i−1; ξi−1
k) is the gradient

using the instantaneous realization ξi−1
k of the random variable ξk. At each iteration i, agent k minimizes

2Each agent is modeled as a separate task, thus, the terms agent and task are used interchangeably.
3µk and alk can be time-dependent, but when context allows, we write µk,i as µk and alk(i) as alk for simplicity.

99

the individual risk using stochastic gradient descent (SGD) given local data followed by a combination step

that aggregates neighboring models according to the weights assigned to them. The weights {alk} are free

parameters selected by the designer and they serve the same purpose as Ω in a centralized formulation.

Thus, there is no need to design Ω in the case of distributed MTL that utilizes ATC diffusion algorithm for

aggregation [105].

Online Weight Adjustment Rules. Without knowing the relationships a priori, one can assume the existence

of similarities among agents and can learn these similarities online from data. The approach is based on the

distance between the model parameters of agents, where a small distance indicates a large similarity [60, 97,

183, 184]. A common approach to learning similarities between two agents online is given by

alk(i) =
‖θ̃∗k − θ̂l,i‖−2∑

p∈Nk ‖θ̃
∗
k − θ̂p,i‖−2

, (6.4)

where θ̃∗k is an approximation of θ∗k since θ∗k is unknown. Examples include using the current model θ̃∗k =

θk,i−1, and one-step ahead approximation θ̃∗k = θ̂k,i + µk∇`(θ̂k,i; ξi−1
k). Although the `2 norm is widely

used, this formulation of weights can be generalized to `p norm as well.

6.4 Problem Formulation

Byzantine agents can send arbitrary different information to different neighbors usually with a malicious

goal of disrupting the network’s convergence. It has been shown in [2] that normal agents assigning weights

according to (6.4) are vulnerable to Byzantine agents. Particularly, by sending ‖θ̂b,i − θ̃∗k‖ � ‖θ̂k,i − θ̃∗k‖,

a Byzantine agent b can gain a large weight from k and continuously drive its normal neighbor k towards a

desired malicious point.

To address the vulnerabilities of the online weight adjustment rules derived from (6.4), this chapter aims

to design an efficient resilient online weight assignment rule in the presence of Byzantine agents for MTL.

Let the expected regret E[rk(θk,i)− rk(θ∗k)] be the value of the expected difference between the risk of θk,i

and the optimal decision θ∗k. We aim to design weights Ak = [a1k, . . . , ank] ∈ R1×n for a normal agent k

that satisfy the following conditions:

Resilient Convergence. It must be guaranteed that using the computed weights Ak, every normal agent k

resiliently converges to θ∗k, even in the presence of Byzantine neighbors.

Improved Learning Performance. Cooperation among agents is meaningful only when it improves the

learning performance. Hence, it is important to guarantee that for every normal agent, the combination

step using the computed weights Ak always results in an improved expected regret, even in the presence of

100

Byzantine agents, i.e.,

E[rk(θk,i)− rk(θ∗k)] ≤ E[rk(θ̂k,i)− rk(θ∗k)],∀k ∈ N+, i ∈ N (6.5)

Computational Efficiency. At each iteration, a normal agent k needs to compute the weights Ak in time that

is linear in the size of the neighborhood of k and the dimension of the data, i.e., in O(|Nk|(dx + dy)) time.

6.5 Loss-based Online Weight Adjustment

6.5.1 Weight Optimization

We follow a typical approach of learning the optimal weight adjustment rule [60, 97, 183, 184] in which

the goal is to minimize the quadratic distance between the aggregated model θk,i and the true model θ∗k over

the weights, i.e., minAk ‖θk,i − θ∗k‖2. Using (6.3), we get an equivalent problem:

min
Ak

∥∥∥∥∥∑
l∈Nk

alkθ̂l,i − θ∗k

∥∥∥∥∥
2

, subject to
∑
l∈Nk

alk = 1, alk ≥ 0, alk = 0 if l 6∈ Nk,

where
∥∥∥∑l∈Nk alkθ̂l,i − θ

∗
k

∥∥∥2

=
∑
l∈Nk

∑
p∈Nk alkapk(θ̂l,i−θ∗k)>(θ̂p,i−θ∗k).As in a typical approximation

approach, we consider ∥∥∥∥∥∑
l∈Nk

alkθ̂l,i − θ∗k

∥∥∥∥∥
2

≈
∑
l∈Nk

a2
lk

∥∥∥θ̂l,i − θ∗k∥∥∥2

. (6.6)

The weight assignment rule (6.4) is an optimal solution of (6.6) using the approximation of θ∗k, which as

we discuss above, can be easily attacked. To avoid the use of the distance between model parameters as a

similarity measure, we introduce a resilient counterpart, which is the accumulated loss (or risk). Assume risk

functions rk to be m-strongly convex4, then it holds that

rk(θ̂l,i)− rk(θ∗k) ≥ 〈∇rk(θ∗k), θ̂l,i − θ∗k〉+
m

2
‖θ̂l,i − θ∗k‖2,

where rk(θ̂l,i) = E
[
`(θ̂l,i; ξk)

]
. Since∇rk(θ∗k) = 0, we obtain

‖θ̂l,i − θ∗k‖2 ≤
2

m

(
rk(θ̂l,i)− rk(θ∗k)

)
. (6.7)

Instead of directly minimizing the right side of (6.6), we consider minimizing its upper bound given in (6.7).

Later in Section 6.6, we show that this alternate approach facilitates the resilient distributed MTL, which

4See Definition 6.2.

101

cannot be achieved by minimizing the distance between models directly. Hence, by combining (6.6) and

(6.7), we consider the following minimization problem:

min
Ak

∑
l∈Nk

a2
lk

(
rk(θ̂l,i)− rk(θ∗k)

)
subject to

∑
l∈Nk

alk = 1, alk ≥ 0, alk = 0 if l 6∈ Nk.

This optimization problem indicates that if a neighbor l’s model has a small regret on agent k’s data distri-

bution, then it should be assigned a large weight. Since θ∗k is unknown, one can use rk(θk,i) to approximate

rk(θ∗k). Alternatively, since rk(θ∗k) is small compared to rk(θl,i), we could simply assume rk(θ∗k) = 0 and

consider the following minimization problem:

min
Ak

∑
l∈Nk

a2
lkrk(θ̂l,i) subject to

∑
l∈Nk

alk = 1, alk ≥ 0, alk = 0 if l 6∈ Nk. (6.8)

Let λ be the Lagrange multiplier. We define the Lagrangian of (6.8) given the constraints on the weights

as

L(alk, λ) =
∑
l∈Nk

a2
lkrk(θ̂l,i) + λ(1−

∑
l∈Nk

alk).

Set∇alk,λL(alk, λ) =
(
∂L
∂alk

, ∂L∂λ

)
= 0, i.e.,

2alkrk(θ̂l,i)− λ = 0,∀l ∈ Nk,

1−
∑
l∈Nk alk = 0.

Thus, alk = λ
rk(θ̂l,i)

,∀l ∈ Nk and
∑
l∈Nk alk = 1. We have λ

∑
l∈Nk

1
rk(θ̂l,i)

= 1 and hence λ =

1∑
l∈Nk

rk(θ̂l,i)
−1 . Using the Lagrangian relaxation, we obtain the optimal solution of (6.8) as

alk(i) =
rk(θ̂l,i)

−1∑
p∈Nk rk(θ̂p,i)

−1 . (6.9)

We can approximate rk(θ̂l,i) using the exponential moving average ϕilk = (1−νk)ϕi−1
lk +νk`(θ̂l,i; ξk),where

νk is the forgetting factor. Given E[ϕilk] = (1− νk)E[ϕi−1
lk] + νkE[`(θ̂l,i; ξk)], we obtain limi→∞ E[ϕilk] =

limi→∞ E[`(θ̂l,i; ξk)] = limi→∞ rk(θ̂l,i), which means ϕilk converges (in expectation) to limi→∞ rk(θ̂l,i).

Hence, we can use ϕilk to approximate rk(θ̂l,i). Note that in addition to the smoothing methods, one can use

the average batch loss to approximate rk(θ̂l,i) when using the (mini-) batch gradient descent in the place of

SGD for adaptation.

102

6.5.2 Filtering for Resilience

Let N+
k denote the set of k’s normal neighbors with |N+

k | ≥ 1. We assume there are q Byzantine

neighbors in the set B = Nk\N+
k . In the following, we examine the resilience of the cooperation using (6.9)

in the presence of Byzantine agents.

Lemma 6.1. The following condition holds for the combination step (6.3) using weights (6.9):

E [rk(θk,i)− rk(θ∗k)] ≤ 1

|Nk|
∑
l∈Nk

E
[
rk

(
θ̂l,i

)
− rk(θ∗k)

]
.

Proof. Given (6.3), rk(θk,i) = rk

(∑
l∈Nk alk(i)θ̂l,i

)
. Using Jensen’s inequality, we have

rk(θk,i) ≤
∑
l∈Nk

alk(i)rk

(
θ̂l,i

)
. (6.10)

Subtracting rk(θ∗k) from both sides of (6.10) and taking expectations over the joint distribution ξk, we obtain

E [rk(θk,i)− rk(θ∗k)] ≤
∑
l∈Nk

E[alk(i)]E
[
rk

(
θ̂l,i

)
− rk(θ∗k)

]

≤

∑
l∈Nk E

[
rk(θ̂l,i)

]−1

E
[
rk

(
θ̂l,i

)
− rk(θ∗k)

]
∑
p∈Nk E

[
rk(θ̂p,i)

]−1 .

(6.11)

We next prove the right-hand side of (6.11) is less than 1
|Nk|

∑
l∈Nk E

[
rk(θ̂l,i)− rk(θ∗k)

]
. For succinctness,

we use χl,i to denote E
[
rk

(
θ̂l,i

)]−1

, and ∆l,i to denote E
[
rk

(
θ̂l,i

)
− rk(θ∗k)

]
. And we aim to prove∑

l∈Nk
χl,i∆l,i∑

p∈Nk
χp,i

≤ 1
|Nk|

∑
l∈Nk ∆l,i, or equivalently, |Nk|

∑
l∈Nk χl,i∆l,i ≤

∑
p∈Nk χp,i

∑
l∈Nk ∆l,i.

When |Nk| = 1, one can easily validate that this condition holds. When |Nk| ≥ 2, let li1 be the one with

the smallest risk rk
(
θ̂li1,i

)
= minl∈Nk rk

(
θ̂l,i

)
and li2 be the one with the second smallest risk rk

(
θ̂li2,i

)
=

minl∈Nk\li1 rk
(
θ̂l,i

)
. Hence, χli1,i ≥ χli2,i ≥ χl,i, and ∆li1,i

≤ ∆li2,i
≤ ∆l,i for l ∈ Nk\{li1, li2}. Thus,

|Nk|
∑
l∈Nk

χl,i∆l,i −
∑
p∈Nk

χp,i
∑
l∈Nk

∆l,i =
∑
l∈Nk

χl,i

|Nk|∆l,i −
∑
p∈Nk

∆p,i

=χli1,i

(|Nk| − 1) ∆li1,i
−

∑
l∈Nk\li1

∆l,i

+
∑

l∈Nk\li1,i
χl,i

|Nk|∆l,i −
∑
p∈Nk

∆p,i

≤χli1,i

(|Nk| − 1) ∆li1,i
−

∑
l∈Nk\li1

∆l,i

+ χli2,i

 ∑
l∈Nk\li1

|Nk|∆l,i − (|Nk| − 1)
∑
p∈Nk

∆p,i

=χli1,i

(|Nk| − 1) ∆li1,i
−

∑
l∈Nk\li1

∆l,i

+ χli2,i

 ∑
l∈Nk\li1

∆l,i − (|Nk| − 1) ∆li1,i

103

|Nk|
∑
l∈Nk

χl,i∆l,i −
∑
p∈Nk

χp,i
∑
l∈Nk

∆l,i =
(
χli1,i − χli2,i

)(|Nk| − 1) ∆li1,i
−

∑
l∈Nk\li1

∆l,i

=
(
χli1,i − χli2,i

) ∑
l∈Nk\li1

(
∆li1,i

−∆l,i

) ≤ 0.

Therefore,
∑
l∈Nk

χl,i∆l,i∑
p∈Nk

χp,i
≤ 1
|Nk|

∑
l∈Nk ∆l,i. Put it back to (6.11), we obtain

E [rk(θk,i)− rk(θ∗k)] ≤ 1

|Nk|
∑
l∈Nk

E
[
rk

(
θ̂l,i

)
− rk(θ∗k)

]
,

which completes the proof.

Since l can be a Byzantine agent, it is possible that E
[
rk

(
θ̂l,i

)
− rk(θ∗k)

]
is a large value. Consequently,

we cannot compute a useful upper bound on the value of E [rk(θk,i)− rk(θ∗k)] given Lemma 6.1 and cannot

provide further convergence guarantees. To facilitate the resilient cooperation, we consider a modification of

(6.9) as follows.

alk(i) =

rk(θ̂l,i)

−1∑
p∈N≤

k

rk(θ̂p,i)
−1 , if rk(θ̂l,i) ≤ rk(θ̂k,i),

0, otherwise,

(6.12)

where N≤k denotes the set of neighbors with rk(θ̂l,i) ≤ rk(θ̂k,i). This implies that the cooperation filters

out the information coming from the neighbors incurring a larger risk and cooperate only with the remaining

neighbors. In the next section, we show how this modification benefits learning and guarantees the resilient

convergence of MTL.

6.5.3 Computational Complexity

It takes O(dx + dy) time to compute `(θ̂l,i; ξik). Using the exponential moving average method for

approximating rk(θ̂l,i), for a normal agent k, at each iteration i, the total time for computing Ak(i) with the

proposed rule (6.12) is O(|Nk|(dx + dy)).

6.6 Byzantine Resilient Convergence Analysis

We make the following general assumptions for the convergence of SGD [156] to derive our results.

Definition 6.1. (L-Lipschitz continuous gradient). A differentiable convex function f is said to have an

L-Lipschitz continuous gradient, if there exists a constant L > 0, such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀x, y.

104

If f has an L-Lipschitz continuous gradient, then it holds that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2,∀x, y.

Definition 6.2. (m-strongly convex). A differentiable convex function f is said to be m-strongly convex if

there exists a constant m > 0, such that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2,∀x, y.

If f is m-strongly convex and has an L-Lipschitz continuous gradient, then it is obvious that m ≤ L.

Assumption 6.1. For every normal agent k, the risk function rk(·) ism-strongly convex and has L-Lipschitz

continuous gradient.

Assumption 6.2. For every normal agent k, the stochastic gradient ∇`(θk,i; ξik) is an unbiased estimate of

∇rk(θk,i), i.e., E[∇`(θk,i; ξik)] = ∇rk(θk,i), for all i ∈ N.

Assumption 6.3. For every normal agent k, there exists ck ≥ 1, such that for all i ∈ N, E[‖∇`(θk,i; ξik)‖22] ≤

σ2
k + ck‖∇rk(θk,i)‖22.

Given these assumptions, the convergence of a normal agent running SGD is guaranteed with appro-

priate step size [156]. Using the proposed rule (6.12), under these assumptions, we further guarantee the

convergence of the normal agents running the ATC diffusion algorithm in Theorem 6.1.

Theorem 6.1. A normal agent k which runs the ATC diffusion algorithm using the loss-based weights (6.12)

converges towards θ∗k with limi→∞ E [rk (θk,i)− rk(θ∗k)] ≤ µkLσ
2
k

2m , for fixed stepsize µk ∈ (0, 1
Lck

], in the

presence of an arbitrary number of Byzantine neighbors. Further, it holds that

E[rk(θk,i)− rk(θ∗k)] ≤ E[rk(θ̂k,i)− rk(θ∗k)],∀k ∈ N+, i ∈ N.

Proof. Let E[·] denote the expected value taken with respect to the joint distribution of all random variables

ξk and ξl for l ∈ N≤k , i.e.

E [·] = EξkE{ξl|l∈N≤k } [·] .

Similar to the proof for Lemma 6.1, using N≤k in the place of Nk, with rule (6.12), we obtain

E [rk(θk,i)− rk(θ∗k)] ≤ 1

|N≤k |

∑
l∈Nk

E
[
rk

(
θ̂l,i

)
− rk(θ∗k)

]
. (6.13)

105

For every l ∈ N≤k , we have rk(θ̂l,i) ≤ rk(θ̂k,i) and hence

1

|N≤k |

∑
l∈Nk

E
[(
rk(θ̂l,i)− rk(θ∗k)

)]
≤ E

[(
rk(θ̂k,i)− rk(θ∗k)

)]
.

Put it back to (6.13), we obtain

E [rk (θk,i)− rk(θ∗k)] ≤ 1

|N≤k |

∑
l∈N≤k

E
[
rk

(
θ̂l,i

)
− rk(θ∗k)

]
≤ E

[
rk

(
θ̂k,i

)
− rk(θ∗k)

]
,∀k ∈ N+, i ∈ N,

(6.14)

which yields (6.5).

We next prove the convergence of the algorithm with the proposed weight assignment rule. Given As-

sumptions 1-3, we obtain from [156] that using constant step size µk ∈ (0, 1
Lck

], it holds that

E
[
rk

(
θ̂k,i

)
− rk(θ∗k)

]
− µkLσ

2
k

2m
≤ (1− µkm)

(
E [rk (θk,i−1)− rk(θ∗k)]− µkLσ

2
k

2m

)
.

Combined with (6.14), we obtain

E [rk (θk,i)− rk(θ∗k)]− µkLσ
2
k

2m
≤ (1− µkm)

(
E [rk (θk,i−1)− rk(θ∗k)]− µkLσ

2
k

2m

)
. (6.15)

Given µk ∈ (0, 1
Lck

], with ck ≥ 1, m ≤ L, it holds that (1 − µkm) ∈ [0, 1). Applying (6.15) repeatedly

through iteration i ∈ N, we obtain

E [rk (θk,i)− rk(θ∗k)] ≤ µkLσ
2
k

2m
+ (1− µkm)i

(
rk (θk,0)− rk(θ∗k)− µkLσ

2
k

2m

)
i→∞−→ µkLσ

2
k

2m
.

This means θk,i converges towards θ∗k with the expected regret bounded by µkLσ
2
k

2m .

Theorem 6.1 indicates that cooperation using weights in (6.12) is always at least as good as the non-

cooperative case, as measured by the expected regret, which satisfies the conditions lsited in Section 6.4.

Note that even when all the neighbors of a normal agent are Byzantine, one can still guarantee that the

agent’s learning performance as a result of cooperation with neighbors using (6.12) will be same as the non-

cooperative case.

Discussion. We assume convex models to carry out the analysis, which is typical in the literature. However,

the intuition behind the approach is — to measure the relatedness of a neighbor to itself, a normal agent

evaluates the loss of the neighbor using the neighbor’s model parameters and its own data, and cuts down

106

the cooperation if this loss is larger than the agent’s own loss — and the same idea should also apply to

non-convex models. In the next section, we also evaluate our methods on non-convex models, such as CNNs,

which generates experimental results similar to those produced by convex models.

6.7 Evaluation

In this section, we evaluate the resilience of the proposed online weight adjustment rule (6.12) with

the smoothing method discussed in Section 6.5, and compare it with the non-cooperative case, the average

weights (alk = 1
|Nk|), and the quadratic distance-based weights (6.4) (with θ̃∗k = θk,i−1 and use the same

smoothing method φilk = (1−νk)φi−1
lk +νk‖θ̃∗k− θ̂l,i‖2 in the place of ‖θ̃∗k− θ̂l,i‖2, with the same forgetting

factor νk used for (6.12)). We use three distributed MTL case studies, including the regression and classifi-

cation problems, with and without the presence of Byzantine agents. Although the convergence analysis in

Section 6.6 is based on convex models and SGD, we show empirically that the weight assignment rule (6.12)

performs well for non-convex models, such as CNNs and mini-batch gradient descent. Our code is available

at https://github.com/JianiLi/resilientDistributedMTL.

(a) Network topology (b) No attack (c) 20 Byzantine agents (d) 99 Byzantine agents

Figure 6.1: Target localization: network topology and loss of streaming data for normal agents.

(a) No attack (b) 10 Byzantine agents

Figure 6.2: Human action recognition: average testing loss and accuracy for normal agents.

107

https://github.com/JianiLi/resilientDistributedMTL

(a) No attack (b) 10 Byzantine agents

Figure 6.3: Human action recognition: average training loss and accuracy for normal agents.

(a) Training (b) Testing

Figure 6.4: Human action recognition: average training/testing loss and accuracy for normal agents with 29
Byzantine agents.

6.7.1 Datasets and Simulation Setups

• Target localization: Target localization is a widely-studied linear regression problem [185]. The task is to

estimate the location of the target by minimizing the squared error loss of noisy streaming sensor data. We

consider a network of 100 agents with four targets as shown in Figure 6.1(a). Agents in the same color share

the same target, however, they do not know this group information beforehand. The four target locations

in R2 are: (10.84, 10.76), (20.42, 20.26), (20.51, 10.40), (10.78, 20.30). Agents’ locations are indicated in

Figure 6.1(a). An edge between two agents means they are neighbors. At each iteration, every agent k has

a noisy observation (streaming data) of the distance dk(i) and the unit direction vector uk,i pointing from

xk to its target based on built-in sensors. Let θk ∈ R2 denote the estimation of the target location for agent

k, then the loss is computed as `k(θk,i; ξ
i
k) = ‖dk(i)− (θk−xk)>uk,i‖2, and the agent estimates θk using

the SGD algorithm as well as the ATC diffusion algorithm with different weight assignment rules. The

distance measurement data has noise variance σ2
d,k ∈ [0.1, 0.2], and the unit direction vector has additive

white Guassian noise with diagnonal covariance matrices Ru,k = σ2
u,kI2, with σ2

u,k ∈ [0.01, 0.1] for

different k. We tune the step-sizes and forgetting factors from the interval (0, 1) and find the best empirical

performance by setting them to be µk = 0.1 and νk = 0.1 for every normal agent k. ϕ−1
lk and φ−1

lk are

initialized to be zero for all l ∈ Nk. Byzantine agents are designed to continuously send random values for

each dimension from the interval [15, 16] at each iteration.

108

• Human activity recognition5: Mobile phone sensor data (accelerometer and gyroscope) is collected from

30 individuals performing one of six activities: {walking, walking-upstairs, walking-downstairs, sitting,

standing, lying-down}. The goal is to predict the activities performed using 561-length feature vectors for

each instance generated by the processed sensor signals [49]. We model each individual as a separate task

and use a complete graph to model the network topology. We use linear model as the prediction function

with cross-entropy-loss. We randomly split the data into 75% training and 25% testing for each agent.

During training, ten of the thirty agents are randomly selected to have access to much less data (about

1
10 th) than the other agents at each epoch. This is to model the realistic scenario in which some of the

agents may have less data samples and they may learn slowly than others. We use mini-batch gradient

descent with batch size of 10. We tune the step-sizes and forgetting factors from the interval (0, 1) and find

the best empirical performance by setting them to be µk = 0.01 and νk = 0.05 for every normal agent k.

ϕ−1
lk and φ−1

lk are initialized to be zero for all l ∈ Nk. Byzantine agents are designed to send a model with

very small noisy elements for each dimension from the interval [0, 0.1] at each iteration.

• Digit classification: We consider a network of ten agents performing digit classification. Five of the ten

agents have access to the MNIST dataset6 [186] (group 1) and the other five have access to the synthetic

dataset7 (group 2) that is composed by generated images of digits embedded on random backgrounds [187].

All the images are preprocessed to be 28 × 28 grayscale images. We model each agent as a separate task

and use a complete graph to model the network topology. An agent does not know which of its neighbors

are performing the same task as the agent itself. We use a CNN model of the same architecture for each

agent and cross-entropy-loss. The preprocessed examples of the two datasets are given in Figure 6.5. The

details of the CNN architecture is given in Table 6.1. For each group, we consider that agents have access

to uneven sizes of training data. Specifically, for each agent, we randomly feed 200 − 2000 training data

and 400 testing data from the corresponding dataset for each epoch. We use mini-batch gradient descent

with batch size of 64. We tune the step-sizes and forgetting factors from the interval (0, 1) and find the

best empirical performance by setting them to be µk = 0.001 and νk = 0.05 for every normal agent. ϕ−1
lk

and φ−1
lk are initialized to be zero for all l ∈ Nk. Byzantine agents are designed to send a model with very

small noisy elements for each dimension from the interval [0, 0.1] at each iteration.

5https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
6http://yann.lecun.com/exdb/mnist
7https://www.kaggle.com/prasunroy/synthetic-digits

109

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
http://yann.lecun.com/exdb/mnist
https://www.kaggle.com/prasunroy/synthetic-digits

Table 6.1: CNN architecture of digit classification

Layer (type) Output Shape Param #

Conv2d-1 [-1, 32, 28, 28] 320
ReLU-2 [-1, 32, 28, 28] 0

MaxPool2d-3 [-1, 32, 14, 14] 0
Conv2d-4 [-1, 64, 14, 14] 18,496

ReLU-5 [-1, 64, 14, 14] 0
MaxPool2d-6 [-1, 64, 7, 7] 0

Conv2d-7 [-1, 64, 7, 7] 36,928
ReLU-8 [-1, 64, 7, 7] 0

MaxPool2d-9 [-1, 64, 3, 3] 0
Linear-10 [-1, 128] 73,856
ReLU-11 [-1, 128] 0
Linear-12 [-1, 10] 1,290

(a) MNIST (b) Synthetic digits

Figure 6.5: Examples of the digit classification dataset

(a) No attack (b) 2 Byzantine agents

Figure 6.6: Digit classification: average testing loss and accuracy for normal agents in group 1.

(a) No attack (b) 2 Byzantine agents

Figure 6.7: Digit classification: average testing loss and accuracy for normal agents in group 2.

110

(a) Group 1 (b) Group 2

Figure 6.8: Digit classification: average testing loss and accuracy for normal agents, with 8 Byzantine agents
(four for each group).

(a) No attack (b) 2 Byzantine agents

Figure 6.9: Digit classification: average training loss and accuracy for normal agents in group 1.

(a) No attack (b) 2 Byzantine agents

Figure 6.10: Digit classification: average training loss and accuracy for normal agents in group 2.

(a) Group 1 (b) Group 2

Figure 6.11: Digit classification: average training loss and accuracy for normal agents, with 8 Byzantine
agents (four for each group).

111

6.7.2 Results

We plot the mean and range of the average loss of every normal agent for the target localization problem

in Figure 6.1(b)–d. Similarly, we plot the mean and range of the average training/testing loss and classifi-

cation accuracy of every normal agent for human action recognition in Figure 6.2 - Figure 6.4, and for digit

classification in Figure 6.6 - Figure 6.11. At each iteration, Byzantine agents send random values (for each

dimension) from the interval [15, 16] for target localization, and [0, 0.1] for the other two case studies.

In all of the examples, we find that the loss-based weight assignment rule (6.12) outperforms all the other

rules and the non-cooperative case, with respect to the mean and range of the average loss and accuracy

with and without the presence of Byzantine agents. Hence, our simulations validate the results indicated by

(6.5) and imply that the loss-based weights (6.12) have accurately learned the relationship among agents.

Moreover, normal agents having a large regret in their estimation benefit from cooperating with other agents

having a small regret. We also consider the extreme case in which there is only one normal agent in the

network, and all the other agents are Byzantine. In such a case, the loss-based weight assignment rule (6.12)

has the same performance as the non-cooperative case, thus, showing that it is resilient to an arbitrary number

of Byzantine agents.

Comparing the results between groups 1 and 2 for digit classification reveals that cooperation is most

beneficial when there is a substantial divergence in agents’ learning performances. Given limited training

data, agents in group 1 are able to build refined models. It is harder for agents receiving less training data in

group 2 to achieve a high learning performance as the synthetic digit classification is a more challenging task

than the MNIST digit classification. Using the weight assignment rule (6.12), those agents receiving less data

(and therefore, struggling to learn a good model), are able to benefit from the cooperation with the neighbors

having learned a refined model. At the same time, agents exhibiting high learning performance will not be

negatively affected by such cooperation.

6.8 Conclusion

In this chapter, we propose an efficient online weight adjustment rule for learning the similarities among

agents in distributed multi-task networks with an arbitrary number of Byzantine agents. We argue that a

widely used approach of measuring the similarities based on the distance between two agents’ model param-

eters is vulnerable to Byzantine attacks. To cope with such vulnerabilities, we propose to measure similarities

based on the (accumulated) loss using an agent’s data and its neighbors’ models. A small loss indicates a

large similarity between the agents. To eliminate the influence of Byzantine agents, a normal agent filters out

the information from neighbors whose losses are larger than the agent’s own loss. With filtering, aggregation

112

using the loss-based weight adjustment rule results in an improved expected regret than the non-cooperative

case and guarantees that each normal agent converges resiliently towards the global minimum. The experi-

ment results validate the effectiveness of our approach.

Broader Impact

The problem of Byzantine resilient aggregation of distributed machine learning models has been actively

studied in recent years; however, the issue of Byzantine resilient distributed learning in multi-task networks

has received much less attention. It is a general intuition that MTL is robust and resilient to cyber-attacks

since it can identify attackers by measuring similarities between neighbors. In this chapter, we have shown

that some commonly used similarity measures are not resilient against certain attacks. With an increase

in data heterogeneity, we hope this chapter could highlight the security and privacy concerns in designing

distributed MTL frameworks.

113

Chapter 7

Distributed Clustering for Cooperative Multi-Task Learning Networks

Distributed learning enables collaborative training of machine learning models across multiple agents by

exchanging model parameters without sharing local data. Each agent generates data from distinct but related

distributions and multi-task learning can be effectively used to model related tasks. This chapter focuses on

clustered multi-task learning where agents are partitioned into clusters with distinct objectives, and agents in

the same cluster share the same objective. The structure of such clusters is unknown apriori. Cooperation

with the agents in the same cluster is beneficial and improves the overall learning performance. However,

indiscriminate cooperation of agents with different objectives leads to undesired outcome. Accurately captur-

ing the clustering structure benefits the cooperation and offers many practical benefits, for instance, it helps

advertising companies better target their ads. In this chapter, we propose an adaptive clustering method that

allows distributed agents to learn the most appropriate neighbors to collaborate with and form clusters. We

prove convergence of every agent towards its objective and analyze the network learning performance using

the proposed clustering method. Further, to determine how one should aggregate the neighbors’ model pa-

rameters after the clustering step, we present the optimal combination weights that optimize the network’s

learning performance. The theoretical analysis is well-validated by the evaluation results using target local-

ization and digit classification, showing that the proposed clustering method outperforms existing methods as

well as the case where agents do not cooperate with each other.

7.1 Introduction

Distributed learning has attracted increasing attention due to the growth of machine learning (ML) ap-

plications in distributed devices within multi-agent networks, such as mobile phones, wearable devices, and

smart homes [48–51]. In such networks, multiple agents can operate in a distributed and cooperative manner

to achieve a learning task. For example, consider learning the behavior of users in a cellular network based

on data generated using various mobile applications. Each user may generate data that follows a distinct

distribution and it is common to learn separate models for each user. However, people may exhibit similar

behaviors and similarities among models commonly exist [15]. In this case, cooperation among agents could

be leveraged to promote the learning performance over the network.

Given data privacy concerns, cooperation among agents in a network relies typically on exchanging model

114

parameters instead of data. In a distributed learning network, an agent communicates model parameters with

its local neighbors and also updates these parameters by incorporating the neighbors’ information [16]. It

has been demonstrated that such cooperation enables improved learning performance over the network [73].

Compared to federated learning [188], distributed learning with fully-decentralized networked agents does

not require a central server, thus addressing single-point-of-failure and scalability issues.

It is natural to model a distributed learning network using clustered multi-task learning in which agents

with similar interests are grouped in the same cluster, and different clusters represent distinct interests [185].

We note that if there are no similarities among the agents, then the clustered multi-task network reduces to a

non-cooperative network. At the same time, if all agents in the network are similar, then the network reduces

to a single-task cooperative network. Agents should not be aware of the clustered structure beforehand, and

the clustering scheme should adapt to changes and also accommodate any new agents. Clustered multi-

task learning offers significant practical benefits. For instance, in a mobile application network, people with

similar age or profession may exhibit similar preferences for particular content. Further, such preferences may

deviate from the preferences of people with different age or profession. Advertising companies, in particular,

use such strategies to better target and manage their advertisements. Adaptive clustering allows agents to

perform local optimization tasks while learning from neighbors with similar objectives. As a result, an agent

is allocated to an appropriate cluster without knowing the clustering structure a priori [60, 97, 103, 104,

189]. Agents can then cooperate with others in the same cluster, thus, making cooperation more beneficial

and meaningful. However, as we show in Section 7.4, existing methods typically rely on comparing the

Euclidean distance between model parameters to measure their similarities and could result in two agents

from different clusters starting cooperation during learning. In particular, such cooperation may continue and

agents could be driven to converge to a wrong cluster. Our evaluation in Section 7.5 also shows that such an

approach could fail in learning the correct clustering structure.

To address such problems, we propose an adaptive clustering method by comparing the losses of two

agents. The main idea is that agents sharing similar objectives have similar underlying data distributions,

and hence their models should fit each other’s data distributions. Moreover, to make the cooperation lead

to a better learning performance (smaller loss), it is appropriate for an agent to cooperate only with those

neighbors who incur a smaller loss than the agent itself. To measure similarity between an agent and its

neighbor, we propose that an agent computes the loss by fitting its neighbor’s model to its data and then

compares this loss to the one obtained by fitting the data to its own model. The agent cooperates with a

neighbor only if the loss with the neighbor’s model is no greater than the agent’s own loss. In doing so, it is

guaranteed that the loss is reduced in expectation by the cooperation, and agents converge to the objective of

the cluster.

115

The main contributions of the chapter are:

• We propose an adaptive clustering method in distributed multi-task learning networks that allows agents to

perform the optimization task while simultaneously learn which neighbors are suitable for cooperation.

• We analyze the convergence and learning performance for the proposed method.

• We propose the optimal combination weights for aggregating the neighbors’ model parameters after recog-

nizing which neighbors to cooperate with using the proposed clustering method that optimize the network

learning performance.

• We evaluate the proposed method for both linear regression and classification problems and compare the

results with existing distributed clustering methods. The evaluation results show that the proposed method

significantly improves the learning performance compared to the non-cooperative approach by correctly

estimating the clustering structure. In contrast, other methods fail to achieve the clustering information and

exhibit inferior learning performance.

7.2 Related Work

Multi-Task Learning. Multi-task learning (MTL) deals with the problem of solving multiple related opti-

mization tasks simultaneously to improve the overall performance of the models learned by each task with

other auxiliary tasks [85]. There is a large body of related work in the area of MTL with different variations.

One area of work is related to deep learning, with the aim of learning multiple objectives from a shared repre-

sentation by sharing layers and splitting architecture in the deep neural networks [87–90]. Such a framework

usually assumes that data sets are collected from all the tasks in a central server and uses a single model to

do the learning. An example is to learn the depth and semantics from RGB images simultaneously [86]. In

contrast, in this chapter, we consider distributed multi-task learning where networked agents maintain sepa-

rate data sets and models without a central server [7, 182]. While the first MTL framework is widely used

in deep learning, e.g., computer vision and natural language processing, the second framework considered

in this chapter is naturally suited for distributed learning in multi-agent systems, such as mobile phones,

autonomous vehicles, and smart cities [48–51].

Distributed Clustering over Networks. Clustering is a well-known unsupervised learning technique for

grouping a set of data points [102]. In contrast, this chapter deals with the distributed clustering problem of

a set of networked agents running individual optimization tasks [60, 97, 103, 104]. In such methods, agents

perform local tasks while simultaneously learning which neighbors they should cooperate with by measuring

their relatedness. Compared to traditional clustering, distributed clustering is more challenging since any

116

clustering error could lead an agent towards an undesired model. Measuring the Euclidean distance between

the model parameters of agents is a principle method used in distributed clustering. For example, in [103], if

the Euclidean distance is less than a pre-defined threshold, then the two agents will be clustered into the same

group. Similarly, in [104], an accumulated Euclidean distance within a time-based sliding window is used.

Adaptive weights based on Euclidean distance are used in [97] and [60] for distributed clustering. As we dis-

cuss in Section 7.4, measuring similarities relying on comparing the Euclidean distance between two model

parameters could lead agents to converge to a wrong cluster, as illustrated in our evaluation (Section 7.5) as

well. In contrast, the proposed method can capture the accurate clustering information and guarantees that

agents cooperate only with the neighbors sharing the same task. This, in turn, ensures that agents converge

to their global minimizers resulting in an improved overall learning performance than without cooperation.

7.3 Clustered Multi-Task Network

We consider a network of N agents modeled by an undirected graph G = (V,E), where V represents

agents and E represents interactions between agents. A bi-directional edge (l, k) ∈ E means that agents k

and l can exchange information with each other. Note that (k, k) ∈ E,∀k ∈ V . The neighborhood of k is

the set Nk = {l ∈ V |(l, k) ∈ E}. Every agent is associated with a loss function rk(θ) : Rd×1 → R. It

is assumed that each rk(θ) is strongly-convex and is minimized at the unique point θ∗k. Agents can then be

categorized into Q ∈ [1, N] mutually-exclusive clusters {Cq; q = 1, 2, . . . , Q}, such that agents in the same

cluster share the same minimizer for their individual loss functions. Denote the unique minimizer for cluster

Cq as θoq , then θ∗k = θoq for all k ∈ Cq . We also assume that the underlying network topology is connected and

clusters are inter-connected so that agents may have neighbors from different clusters. Note that agents do

not know which of the neighbors belong to the same cluster as themselves. Agents are interested in solving

the following optimization problem:

min
{θq}Qq=1

Q∑
q=1

∑
k∈Cq

rk(θq). (7.1)

To solve (7.1) in a distributed and cooperative way, we use the adapt-then-combine (ATC) diffusion algorithm

[182] with a clustering step in-between, which takes the following iterative steps for an agent k at iteration i:

θ̂k,i = θk,i−1 − µk∇̂rk(θk,i−1), (adaptation) (7.2)

Obtain N+
k,i by clustering, (clustering) (7.3)

θk,i =
∑
l∈N+

k,i

alk(i)θ̂l,i, (combination) (7.4)

117

where µk is the step-size, N+
k,i is the set of neighbors belonging to the same cluster as agent k at iteration

i, ∇̂rk(θk,i−1) is the stochastic gradient of the loss function rk(·) at θk,i−1, and alk(i) denotes the weight

assigned by agent k to l at iteration i that satisfies the following constraints:

∑
l∈N+

k,i

alk(i) = 1, alk(i) ≥ 0, alk(i) = 0 if l 6∈ N+
k,i. (7.5)

The ATC algorithm indicates that at each iteration i, agent k minimizes the individual loss function using

stochastic gradient descent (SGD) given local data followed by a combination step that aggregates the model

parameters of the neighbors in the same cluster according to the weights assigned to them.

The goal of this chapter is to solve the optimization problem (7.1) in a distributed and cooperative way

using the ATC diffusion algorithm in (7.2)-(7.4) by designing the clustering and optimal combination weights

(7.5) that agents use for cooperation. Cooperation among agents can improve learning if they share common

objectives. However, when agents pursue different objectives, indiscriminate cooperation leads to undesired

outcomes [105]. Therefore, it is important for the agents to use an accurate clustering method that allows

them to learn which neighbors are sharing similar objectives. By doing so, agents only cooperate with the

neighbors in the same cluster and stop cooperating with those from different clusters, thus ensuring that the

cooperation is beneficial.

7.4 Adaptive Clustering

In this section, we first propose a distributed clustering method that allows agents to learn which neighbors

are in the same cluster. Next, we analyze the convergence and learning performance using the proposed

clustering method. Finally, we propose the optimal combination weights to aggregate the model parameters

of the neighbors belonging to the same cluster that solves (7.1).

7.4.1 Clustering Hypothesis

Distributed clustering methods are based on measuring similarities among agents. Existing methods

rely on comparing the Euclidean distance between two agents’ model parameters to determine whether they

belong to the same cluster [60, 97, 103, 104]. For example, in [103], the following hypothesis test is used for

agent k to determine whether a neighbor l belongs to the same cluster:

‖θ̂l,i − θ̂k,i‖2
H0
<
>
H1

d2
k,l, (7.6)

118

where H0 denotes the hypothesis that l ∈ N+
k,i and H1 denotes the hypothesis that l /∈ N+

k,i, and dk,l > 0 is

a predefined threshold.

We find that methods based on Euclidean distance between model parameters may lead agents to cooper-

ate with neighbors from another cluster which could prevent agents from converging. Consider the example

shown in Figure 7.1. Assume that k has only one neighbor l, and at iteration i, agent k identifies l to be in

the same cluster as ‖θ̂l,i − θ̂k,i‖2 < d2
k,l. If ‖θ̂l,i − θ̂∗k‖2 > ‖θ̂k,i − θ∗k‖2, then θk,i as a combination of θ̂k,i

and θ̂l,i (given (7.4)) will move away from θ∗k rendering rk(θk,i) > rk(θ̂k,i). If l is from another cluster that

moves away from θ∗k yet keeps falling into hypothesis H0 for agent k, then k will continue to cooperate with

l and will fail to converge to θ∗k.

(a) (b)

Figure 7.1: Example of an undesired outcome due to clustering using hypothesis testing (7.6): (a) k identifies
l to be in the same cluster; (b) θk,i as a combination of θ̂k,i and θ̂l,i moves away from θ∗k,i rendering rk(θk,i) >

rk(θ̂k,i).

To ensure that agents converge to their global minimizers using clustering-based cooperation, we propose

an alternative hypothesis test as follows:

r̂k(θ̂l,i)− r̂k(θ̂k,i)
H0
≤
>
H1

0, (7.7)

where H0 denotes the hypothesis that l ∈ N+
k,i and H1 denotes the hypothesis that l /∈ N+

k,i, and r̂k(·) is

the approximation of rk(·) with E [r̂k(θ)] = E [rk(θ)]. The approximation r̂k(·) can be performed using

stacked data received in the previous iterations. Alternatively, if we use (mini-) batch gradient descent in the

adaptation step, then the batch loss can be used as r̂k(·).

The hypothesis test (7.7) indicates that the clustering is based on measuring the loss by fitting the neigh-

bor’s model to an agent’s data distribution and comparing the loss with its own loss. Therefore, we have

E [r̂k(θk,i)] = E

r̂k
 ∑
l∈N+

k,i

alk(i)θ̂l,i

 ≤ E

 ∑
l∈N+

k,i

alk(i)r̂k(θ̂l,i)

 ≤ E
[
r̂k(θ̂k,i)

]
, (7.8)

119

where the first inequality follows by Jensen’s inequality assuming r̂k(·) is convex, and the second inequality

follows by the proposed clustering hypothesis test (7.7). Since we assume that E [r̂k(θ)] = E [rk(θ)], it

follows from (7.8) that

E [rk(θk,i)] ≤ E
[
rk(θ̂k,i)

]
. (7.9)

Thus, clustering using the hypothesis test (7.7) results in a reduced loss in expectation. Later in Theorem 7.1,

we will show that this results in the convergence of every agent towards their objectives.

7.4.2 Convergence and Learning Performance

We first prove the convergence of every agent k towards its objective θ∗k using the clustering hypothesis

test (7.7), which ensures that agent k converges to the true cluster. Next, we analyze the learning performance

over the network using (7.7). Below, we list the necessary assumptions for the loss functions and gradient

noise used in our results that are standard in the literature [73, 103, 156].

Assumption 7.1. (Loss functions)

(a) Different clusters have distinct minimizers θoq 6= θor if q 6= r. Further, the difference between every

two minimizers of two distinct clusters are sufficiently large such that rk(θoq) < rk(θor) if k ∈ Cq and

k /∈ Cr.

(b) The sequence {θk,i} for every agent k is contained in an open set over which rk(·) is always upper-

bounded by a scalar rinf .

(c) Each individual loss function rk(θ) is strongly convex, twice-differentiable, and has bounded Hessian

matrix function, which also implies that it has a Lipschitz continuous gradient, i.e.,

rk(θ2) ≥ rk(θ1) + 〈∇rk(θ1), θ2 − θ1〉+
m

2
‖θ2 − θ1‖2,∀θ1, θ2, for some m > 0.

LId ≤ ∇2rk(θ) ≤ UId,∀θ, for some 0 ≤ L ≤ U <∞.

‖∇rk(θ1)−∇rk(θ2)‖ ≤ U‖θ1 − θ2‖,∀θ1, θ2.

(d) Denote the network Hessian function

∇2R(Θ) , diag{r1(θ1), . . . , rN (θN)},

120

where Θ , col{θ1, . . . , θN} ∈ RNd×1. It is assumed that∇2R(Θ) satisfies the Lipschitz condition:

∥∥∇2R(Θ1)−∇2R(Θ2)
∥∥ ≤ κ ‖Θ1 −Θ2‖ ,

for any Θ1, Θ2 ∈ RNd×1 and some κ ≥ 0.

Let’s denote the stochastic gradient noise as

sk,i(θk,i−1) , ∇̂rk(θk,i−1)−∇rk(θk,i−1). (7.10)

We stack the noise of every agent into a vector and obtain the network noise denoted by

Si(Θi−1) , col{s1,i(θ1,i−1), . . . , sN,i(θN,i−1)}.

We use the filtration {Fi; i ≥ 0} to represent the information flow that is available up to the i-th iteration of

the learning process. Then, the conditional covariance of Si(Θi−1) is denoted by

Vs,i(Θi−1) , E
[
Si(Θi−1)S>i (Θi−1)|Fi−1

]
. (7.11)

Assumption 7.2. (Gradient noise) The gradient noise satisfies the following properties:

(a) The stochastic approximations are unbiased estimates of gradients such that

E [Si(Θi−1)|Fi−1] = 0.

(b) The second-order moment of the stochastic gradient process satisfies:

E
[∥∥∥∇̂rk(θi−1)

∥∥∥2
∣∣∣∣Fi−1

]
≤ α‖∇rk(θi−1)‖2 + σ2

k.

for some α ≥ 1, σs > 0.

(c) The conditional covariance function satisfies the Lipschitz condition:

‖Vs,i(Θ∗)− Vs,i(Θi−1)‖ ≤ β ‖Θ∗ −Θi−1‖γ , (7.12)

121

for some β ≥ 0, 0 < γ ≤ 4, with

Θ∗ , col{θ∗1 , . . . , θ∗N} = col{1|Cq| ⊗ θ
o
q ; q = 1, . . . , Q}.

(d) The conditional covariance matrix at convergence Vs , limi→∞ Vs,i(Θ∗) > 0 is symmetric and

positive definite.

Theorem 7.1. Under Assumptions 1-2, given sufficiently small step-sizes µk ∈ (0, 1
Uα], every normal agent

k using the hypothesis test (7.7) for clustering converges towards θ∗k with

lim
i→∞

supE [rk (θk,i)− rk(θ∗k)] = O(µk). (7.13)

Proof. Let δk(θk,i) = E [rk(θk,i)− rk(θ∗k)]. By recursion (7.2)-(7.4) and Assumptions 1-2, using constant

step-size µk ∈ (0, 1
Uα], it follows from [156](Theorem 4.6) that the following error recursion holds for the

SGD step (7.2):

δk(θ̂k,i)−
µkUσ

2
k

2m
≤ (1− µkm)

(
δk(θk,i−1)− µkUσ

2
k

2m

)
.

The hypothesis test (7.7) requires that k cooperates only with the neighbors incurring a loss r̂k
(
θ̂l,i

)
≤

r̂k

(
θ̂k,i

)
, which results in (7.9). Thus, it follows that δk(θk,i) ≤ δk(θ̂k,i). Thus,

δk(θk,i)−
µkUσ

2
k

2m
≤ (1− µkm)

(
δk(θk,i−1)− µkUσ

2
k

2m

)
. (7.14)

Given µk ∈ (0, 1
Uα], with α ≥ 1, m ≤ U (given the property of m-strongly convex and U -Lipschitz

continuous gradient), it holds that (1 − µkm) ∈ [0, 1). Applying (7.14) repeatedly through iteration i ∈ N,

we obtain

δk(θk,i) ≤
µkUσ

2
k

2m
+ (1− µkm)i

(
δk(θk,0)− µkUσ

2
k

2m

)
i→∞−→ µkUσ

2
k

2m
, (7.15)

and (7.13) holds accordingly.

Theorem 7.1 indicates that every agent converges to the objective of its cluster θoq = θ∗k if k ∈ Cq . Given

Assumption 1(a), at convergence, rk(θoq) < rk(θor) if k ∈ Cq and k /∈ Cr for any r 6= q. For any agent l /∈ Cq ,

suppose l ∈ Cr, then it holds that rk(θ∗k) < rk(θ∗l). Then, following hypothesis test (7.7), at convergence,

agent k will not cooperate with any neighbor l from a different cluster. Therefore, the network is separated

into distinct connected sub-networks (groups) where agents in the same group are from the same cluster.

Assume that there are G ∈ [Q,N] groups, with Ng agents in group Gg such that
∑G
g=1Ng = N . Then,

the clustered multi-task network can be reduced to multiple single-task networks (groups). In each group,

122

let Ag be the Ng × Ng weight matrix with Ag , [limi→∞ alk(i); l, k ∈ Gg]. Since agents have non-trivial

self-loops (akk(i) > 0), it follows that every weight matrix Ag is a left-stochastic and primitive matrix [70].

Then, by the Perron-Frobenius theorem [73, 190], such matrix has a simple eigenvalue at one and all other

eigenvalues have magnitude strictly less than one. Moreover, let pg denote the right eigenvector of Ag that is

associated with the eigenvalue at one and normalize its entries to add up to one. Then, the entries of pg are

positive and smaller than one, such that

Agpg = pg, p
>
g 1 = 1, 0 < pg,k < 1, with pg = [pg,k; k = 1, 2, . . . , |pg|] . (7.16)

We can then obtain the average learning performance over the network as described in the following theorem.

Theorem 7.2. Under Assumptions 1-2, given sufficiently small step-sizes µk ∈ (0, 1
Uα] and the clustering hy-

pothesis test (7.7), the average learning performance of the network measured by the mean-squared-deviation

(MSD) of the estimated parameters is given by

lim
i→∞

sup
1

N
E
∥∥∥Θ̃i

∥∥∥2

=
1

2N

G∑
g=1

NgTr

∑
k∈Gg

pg,kµkHk

−1∑
k∈Gg

p2
g,kµ

2
kVk

 , (7.17)

where pg,k subjects to (7.16), and

Θ̃i , Θ∗ −Θi = col{θ̃1,i, . . . , θ̃N,i},

Hk , ∇2rk(θ∗k), Vk , lim
i→∞

E
[
sk,i(θ

∗
k)sk,i(θ

∗
k)>|Fi−1

]
.

Proof. The average MSD over the network is an average of the MSD of each groups. Then, (7.17) can be

easily derived from the results of [73] (Theorem 11.3).

7.4.3 Optimal Combination Weights

Next, we consider how to optimize the weights alk(i) in order to optimize (7.1), which equivalently

optimize each individual loss function. Given the clustering hypothesis test (7.7), at each iteration i, an agent

k clusters neighbors in H0 asN+
k,i and cooperates only with agents inN+

k,i. Using (7.4), we get an equivalent

problem:

min
Ak

∥∥∥∥∥∥∥
∑
l∈N+

k,i

alk(i)θ̂l,i − θ∗k

∥∥∥∥∥∥∥
2

, subject to (7.5),

123

whereAk = [a1k(i), . . . , a|N+
k,i|k(i)] ∈ R1×|N+

k,i|. As in a typical approximation approach [97], we consider

∥∥∥∥∥∥∥
∑
l∈N+

k,i

alk(i)θ̂l,i − θ∗k

∥∥∥∥∥∥∥
2

≈
∑
l∈N+

k,i

alk(i)2
∥∥∥θ̂l,i − θ∗k∥∥∥2

. (7.18)

Since the loss functions rk are assumed to be m-strongly convex, it follows that

‖θ̂l,i − θ∗k‖2 ≤
2

m

(
rk(θ̂l,i)− rk(θ∗k)

)
. (7.19)

Instead of directly minimizing the right side of (7.18), we consider minimizing its upper bound given in

(7.19). Hence, by combining (7.18) and (7.19), we obtain: minAk
∑
l∈N+

k,i
a2
lk(i)

(
rk(θ̂l,i)− rk(θ∗k)

)
. Since

rk(θ∗k) is small compared to rk(θl,i), we consider the following minimization problem:

min
Ak

∑
l∈N+

k,i

a2
lk(i)rk(θ̂l,i), subject to (7.5). (7.20)

Using the Lagrangian relaxation and the approxmation value r̂k(·) to replace rk(·), we obtain the optimal

solution of (7.20) as

alk(i) =
r̂k(θ̂l,i)

−1∑
p∈N+

k,i
r̂k(θ̂p,i)

−1 . (7.21)

Combined with (7.7), we conclude the algorithm for the learning and clustering over networks in Algo-

rithm 4.

Algorithm 4: Distributed learning and clustering over networks
Input: Initialize wk,−1 for k ∈ Cq and q = 1, 2, . . . , Q.

1 for i ≥ 0 do
2 for every agent k do
3 Update θ̂k,i according to (7.2).
4 Send θ̂k,i and receive θ̂l,i from neighbors.
5 Cluster neighbors using (7.7) and obtain N+

k,i.
6 Assign weights to neighbors in N+

k,i according to (7.21).
7 Aggregate neighbors’ model parameters according to (7.4).

7.5 Evaluation

In this section, we evaluate the proposed distributed clustering method with optimal weights computed

using Algorithm 4 and compare the results with the case where the agents (1) do not cooperate with each other

124

(non-cooperative case), (2) cooperate using the average weights (alk = 1
|Nk|), and (3) cooperate using the

quadratic distance-based clustering hypothesis test. To avoid the selection of the user-defined parameter dk,l

in (7.6), we instead use ‖θ̂l,i − θk,i−1‖2
H0
≤
>
H1

‖θ̂k,i − θk,i−1‖2 as proposed in [60]. We consider two distributed

learning examples: (1) target localization and (2) digit classification. For the classification problem, we use

convolutional neural networks (CNNs) that are non-convex models. We show empirically that Algorithm 4

results in better learning performance than the other methods with correct clustering structure being learned,

for both convex and non-convex models (such as CNNs).

(a) (b) (c)

Figure 7.2: Target localization (nodes in the same color share the same target): (a) Initial network; (b) Final
network by Algorithm 4; (c) Final network by the distance-based clustering method.

(a) Loss-based (b) Distance-based

Figure 7.3: Target localization: average weight matrix over time 1
T+1

∑T
i=0 alk(i).

7.5.1 Target Localization

Target localization is a linear regression problem in which the objective is to estimate the location of

a target by minimizing the squared error loss of noisy streaming sensor data [185]. We consider a net-

125

work of 100 agents randomly distributed in a planar region W = [0, 10] × [0, 10] ∈ R2 as shown in

Figure 7.2(a). An edge between two agents means that they are neighbors. Agents with index numbers

from 0-24, 25-49, 50-75, 75-99 share the same target, which are indicated using the same color. How-

ever, the agents do not know this clustering information beforehand. The four target locations in R2 are:

(100, 200), (200, 100), (100, 100), (200, 200) respectively. At each iteration, every agent k has a noisy ob-

servation (streaming data) of the distance dk(i) and the unit direction vector uk,i pointing from xk to its target

based on built-in sensors. Let θk ∈ R2 denote the estimation of the target location for agent k, then the loss

is given by rk(θk,i) = E
[
‖dk(i)− (θk,i − xk)>uk,i‖2

]
. The approximation r̂k(θk,i) is computed by the last

10 stacked streaming datapoints. The distance measurement data has noise variance σ2
d,k ∈ [0.1, 1], and the

unit direction vector has additive white Guassian noise with diagnonal covariance matrices Ru,k = σ2
u,kI2,

with σ2
u,k ∈ [0.01, 0.1] for different k. The step-size is set to be µ = 0.1 for every agent.

The results are given in Figure 7.2 - Figure 7.5. From Figure 7.2, the loss-based clustering method

(Algorithm 4) results in a clustered network at the end of the simulation (Figure 7.2(b)), and no agents in

two different clusters end up being neighbors of each other. On the other hand, the distance-based method

fails to correctly capture the clustering information (Figure 7.2(c)). Further, as shown in Figure 7.3, in the

proposed method agents cooperate only with neighbors in the same cluster. Using distance-based clustering,

the agents failed to identify those belonging to the same cluster. Figure 7.4 shows the learning loss using

different clustering methods, where solid lines are the average losses over the network and the shadow area

is the range between the minimum and the maximum loss of the networked agents. Our method achieves

the minimum average loss and the learning performance is better than the non-cooperative case. Figure 7.5

shows the target’s estimation as a function of time. It can be found that our method achieves smoother and

more accurate estimations than the non-cooperative case, whereas the average and distance-based methods

fail to learn the correct targets.

0 50 100 150 200

iteration i

10−9

10−7

10−5

10−3

10−1

101

103

105

L
os

s

no-coop

average

distance-based

loss-based

Figure 7.4: Target localization: learning loss for different methods.

126

0 100 200 300

iteration i

50

100

150

200

θ k
,i
(1

)

0 100 200 300

iteration i

50

100

150

θ k
,i
(1

)

0 100 200 300

iteration i

50

100

150

200

θ k
,i
(1

)

0 100 200 300

iteration i

50

100

150

200

θ k
,i
(1

)

(a) No-cooperation (b) Average (c) Loss-based (d) Distance-based

Figure 7.5: Target localization: estimation θk,i (1st dimension) of every agent k (each line represents an
agent) for different methods.

7.5.2 Digit Classification

We consider a network of twenty agents performing digit classification tasks. We use a complete graph

to model the network topology such that every agent is connected to all the other agents. An agent does not

know which of its neighbors are performing the same task as the agent itself. Agents indexed by 0-9 have

access to the MNIST dataset1 [186] and agents indexed by 10-19 have access to the synthetic dataset2 that

is composed by the generated images of digits embedded on random backgrounds [187]. All the images

are preprocessed to be 28 × 28 grayscale images. We use a CNN model of the same architecture for each

agent and cross-entropy-loss. The CNN architecture we use is the same as in [7]. We consider that agents

have access to uneven sizes of training data such that each agent receives 100 − 1000 training data and 200

testing data from the corresponding dataset for each iteration, similar to the real-world examples. We use

mini-batch gradient descent with batch size of 64 for MNIST and 128 for the synthetic digit dataset [156].

The approximation r̂k(·) is computed using the mini-batch loss. The step-size µ = 0.001 is set for every

agent.

The results are given in Figure 7.6 - Figure 7.7. From Figure 7.6, using the proposed method, the clus-

tering structure is correctly learned and agents cooperate only with neighbors in the same cluster and stop

cooperating with the agents from the other cluster. In the case of distance-based clustering, agents do not

cooperate with any neighbors and task is reduced to the non-cooperative case. Figure 7.7 shows the training

and testing loss using different clustering methods, where solid lines are the average losses over the network

and the shadow area is the range between the minimum and the maximum loss of the networked agents. The

proposed method achieves the minimum average training and testing loss, and the learning performance is

better than the non-cooperative case.

1http://yann.lecun.com/exdb/mnist
2https://www.kaggle.com/prasunroy/synthetic-digits

127

http://yann.lecun.com/exdb/mnist
https://www.kaggle.com/prasunroy/synthetic-digits

(a) Loss-based (b) Distance-based

Figure 7.6: Digit classification: average weight matrix over time 1
T+1

∑T
i=0 alk(i).

0250

Iteration i
0.0000.0080.0160.0240.0320.040

Tr
ai

n
lo

ss

0250

Iteration i
0

100

Tr
ai

n
ac

cu
ra

cy
 (%

)

0250

Iteration i
0.00

0.05

Te
st

 lo
ss

0250

Iteration i
0

100

Te
st

 a
cc

ur
ac

y
(%

)

no-coop average distance-based loss-based

Figure 7.7: Digit classification: learning performance for different methods.

7.6 Conclusion

Accurately capturing the clustering structure in a distributed multi-task learning network has great signifi-

cance in practice. For example, advertising companies can use such information to target clusters of potential

customers who may be interested in a particular product. This chapter proposes an adaptive clustering method

for distributed clustered multi-task learning network with fully decentralized agents. We prove the conver-

gence of agents using the proposed method for clustering towards their objectives and analyze the learning

performance. We also present the optimal combination weights for aggregating the neighbors’ model param-

eters to optimize network learning performance. In the evaluation, we show that existing clustering methods

fail to capture the correct clustering structure and result in worse learning performance. In contrast, the pro-

posed method accurately learns the clustering structure and cooperation within such clusters improves the

network learning performance compared to the case where agents do not cooperate with each other.

128

Chapter 8

Byzantine Resilient Aggregation in Distributed Reinforcement Learning

Recent distributed reinforcement learning techniques utilize networked agents to accelerate exploration

and speed up learning. However, such techniques are not resilient in the presence of Byzantine agents which

can disturb convergence. In this chapter, we present a Byzantine resilient aggregation rule for distributed

reinforcement learning with networked agents that incorporates the idea of optimizing the objective func-

tion in designing the aggregation rules. We evaluate our approach using multiple reinforcement learning

environments for both value-based and policy-based methods with homogeneous and heterogeneous agents.

The results show that cooperation using the proposed approach exhibits better learning performance than the

non-cooperative case and is resilient in the presence of an arbitrary number of Byzantine agents.

8.1 Introduction

Due to the growth of machine learning (ML) applications and increasing volumes of data, distributed

learning and adaptation methods have been receiving greater attention. In such methods, multiple agents

operate in a distributed and cooperative manner to achieve a common learning task. Typically, agents adapt

their models using local data and interact with neighbors for model aggregation. Such cooperation has been

demonstrated to help boost sample data for each agent and improve learning performance over the network

[16]. Distributed reinforcement learning (RL), in particular, has been widely studied and applied in many ap-

plications, such as sensor networks, multi-robot networks, mobile phone networks, intelligent transportation

systems, especially combined with deep neural networks [125, 191, 192].

Although cooperation in a distributed multi-agent network helps improve the learning performance, such

methods are vulnerable to Byzantine attacks. It has been shown that a single Byzantine agent could disturb

convergence of the entire network by sending malicious information to its neighbors [2, 18]. To address this

challenge, there is considerable recent research focusing on the resilient aggregation of distributed learning

algorithms in the presence of Byzantine agents. Many resilient aggregation methods for distributed learning

have been developed based on geometric properties of the model parameters such as coordinate-wise median,

trimmed-mean, geometric median, Krum, and centerpoint, among many others [4, 18, 52, 57, 62]. One

limitation of such approaches is that they are only resilient to a bounded number (usually less than half) of

Byzantine neighbors.

129

Although research in Byzantine resilient aggregation for distributed ML is very broad, studies focusing

on resilient distributed RL are limited. The recent studies in [126] and [127] use trimmed mean to achieve

resilience for distributed actor-critic and Q-learning algorithms when a bounded number of agents are Byzan-

tine. In this chapter, we propose a Byzantine resilient aggregation rule for distributed RL. Compared to the

existing methods that rely on the geometric properties to achieve resilience, the proposed method incorpo-

rates the idea of optimizing the objective function in designing the aggregation rule, and does not require a

tailored upper bound of the Byzantine agents. In order to maximize the networked rewards, agents assign

larger weights to neighbors incurring a larger reward, and stop cooperation with those incurring a smaller

reward. Byzantine agents try to disturb the convergence of normal agents by sharing model parameters re-

sulting in a small reward and thus are not taken into account by normal agents. The effectiveness of the

proposed method is well validated by the evaluation results using multiple RL tasks for both value-based and

policy-based distributed RL, such as distributed deep Q-learning and distributed Deep Deterministic Policy

Gradient (DDPG). The evaluation results show that the proposed method exhibits better or similar learning

performance (measured by the accumulated reward over the network) than no-cooperation in the presence of

an arbitrary number of Byzantine agents.

8.2 Related Work

The technique of training multiple RL agents distributedly for a common objective has been extensively

studied in recent years. Related work in distributed RL can be broadly grouped into two categories. In the

first category, multiple agents operate in similar but independent Markov decision processes (MDPs) whose

actions do not affect each other [108, 109]. Such an approach is widely used in recent RL techniques for

parallel exploration and computation to accelerate exploration and speed up learning, especially combined

with deep neural networks. It is also naturally suited to be used in multi-agent networks where networked

agents perform similar RL tasks in independent environments. The second category considers training RL

algorithms with multiple agents in a single MDP [110]. This chapter focuses on the first paradigm.

A major body of related work in training multiple agents in independent MDPs considers using a cen-

tralized parameter server for model updates and multiple workers to execute in multiple instances of the

environment in parallel to collect state-action pairs and compute gradients of the model. Examples include

the distributed deep Q-network [109] and A3C (Asynchronous Advantage Actor-Critic) [111]. Distributed

RL in fully-decentralized networks has also been studied in the literature [108, 112–114]. For example, [112]

proposes a distributed implementation of Q-learning called QD-learning where every normal agent collabo-

ratively updates tabular Q-values that being shared with their neighbors. Further, [108] proposes a distributed

130

RL method for policy evaluation with linear value function approximation. Moreover, [113] proposes a dis-

tributed actor-critic framework that aims to learn a policy that performs well on average for the whole set of

tasks.

Resilient aggregation in distributed learning is a very active research area in recent years. Many consensus-

based methods have been proposed to address the vulnerabilities of the cooperation to Byzantine attacks. Ex-

amples include coordinate-wise median, trimmed-mean, geometric median, Krum, and centerpoint, among

many others [4, 18, 52, 57, 62]. In addition, methods based on measuring the similarities between agents are

also considered in the related work, which can be found in [2, 7, 54, 74]. Although research in Byzantine re-

silient aggregation for distributed learning algorithms is very broad, studies focusing on resilient distributed

RL are limited. A recent work presented in [126] uses trimmed-mean to achieve resilience, where a cen-

tralized server exists in the network. In addition, a resilient version of QD-learning in a full-decentralized

network has been proposed in [127], which is also based on the trimming approach.

8.3 Background

Markov decision processes (MDPs) are widely used for modeling RL problems, which can be described

formally as a tupleM = 〈S,A,P, R〉, where S andA denote the (finite) state and action spaces, P(s′|s, a) :

S × A × S → [0, 1] is a state transition probability and R(s, a, s′) : S × A × S → R is the reward

function defined by R(s, a, s′) = E[rt+1|st = s, at = a, st+1 = s′] with rt+1 being the immediate reward

received at time t. The probability of taking action a in state s is defined by the policy π(a|s) : S × A →

[0, 1]. Moreover, denote the state-value function Vπ(s) = Eπ [
∑∞
t=0 γ

trt+1|s0 = s, π], with γ ∈ (0, 1) as

the discounted factor that determines how much future rewards are counted, and the action-value function

Qπ(s, a) =
∑
s′ P

a
ss′ (R(s, a, s′) + γVπ(s′)), with P ass′ = P(s′|s, a). The objective is to learn an optimal

policy π∗ that maximizes the expected long-term reward given at ∼ π(·|st) and st+1 ∼ P(·|st, at):

max
π
{J(π) = Es [Vπ(s)]} , (8.1)

To ensure the existence of solution to (8.1), bounded rewards are assumed for any time-step as |rt+1| ≤

rmax <∞,∀t. for some scalar rmax.

RL algorithms can be broadly categorized into value-based and policy-based. In the following, we briefly

introduce the main algorithms for the two types for solving (8.1).

Value-based methods aim to find a good estimate of the Q-function, and indirectly extract the optimal

policy by selecting the greedy action in each state according to the estimates of the Q-values. One of the

131

most popular value-based RL algorithms is Q-learning [193], which uses the Bellman equation as an iterative

update. Suppose Qπ(s, a) can be parametrized by some parameter w as Q(s, a;w) ≈ Qπ(s, a). Then

w can be updated by performing a gradient descent step on minw E
[
(yt −Q(st, at;wt))

2
]

where yt =

E [rt+1 + γmaxa′ Q(st+1, a
′;wt−1)|st, at] [194].

Policy-based methods directly search over the policy space to find the optimal policy instead of relying

on the Q-function. One of the most popular policy-based RL algorithms is the Policy Gradient (PG) method

[195]. In PG, the policy is parametrized by some parameter θ, and is updated by performing a gradient descent

step on maxθ J(θ) with ∇J(θ) = E [
∑∞
t=0 Ψt∇ log πθ(at|st)] . Ψt can be expressed, for example, as the

Q-function Qπ(st, at) or the advantage function Aπ(st, at) = Qπ(st, at) − Vπ(st), and can be estimated

using Monte-Carlo evaluation [196].

8.4 Problem Formulation

Consider a network of N + b agents operating in parallel based on similar but independent MDPsMk =

〈Sk,Ak,Pk, Rk〉. The agents are connected by an undirected graph G = (V, E) where V represents the

agents and E represents interactions between agents. We assume that there are b ≥ 0 Byzantine agents and

N ≥ 1 normal agents. Normal agents are those who strictly follow the prescribed algorithm in a network; and

Byzantine agents are those who do not follow the algorithm and could send arbitrary different information

to different neighbors usually with a malicious goal of disrupting the network’s convergence. Note that

Byzantine agents are indistinguishable. A bi-directional edge (l, k) ∈ E means that agents k and l can

exchange information with each other. The neighborhood of k is the set Nk = {l ∈ V|(l, k) ∈ E} ∪ {k}.

Agents share the same state and action spaces Sk and Ak but the transition probabilities Pk and the reward

function Rk could be different among agents. Since agents are based on independent MDPs, their actions do

not influence each other. Let Jk be the expected long-term reward associated with agent k. The goal is to

cooperatively learn the optimal policies πk for each normal agent k that maximize the global average reward:

max
{πk}Nk=1

{
1

N

N∑
k=1

Jk(πk)

}
. (8.2)

It is assumed that each normal agent k maintains its own parameter wk (or θk), and uses Qk(s, a;wk) (or

Jk(θk)) to be the local estimates of Qπk(s, a) (or Jk(πk)), when running value-based RL (or policy-based

RL). Agents share their local estimates of such parameters with neighbors and aggregate the estimates from

their neighbors to facilitate their learning. In this chapter, we consider that the aggregation steps take place

132

after each learning episode1. The algorithm used by each normal agent k with value-based or policy-based

method for solving (8.2) is given in Algorithm 52.

Since Byzantine agents could disturb the convergence of normal agents through exchanging malicious

messages, we are interested in finding a Byzantine resilient aggregation rule that solves (8.2) in the presence

of Byzantine agents.

Algorithm 5: Distributed reinforcement learning with model aggregation

Input: Initialize w0
k,0 for value-based RL or θ0

k,0 for policy-based RL
1 for episode i = 0, M do
2 Initialize state sik,0, set t = 0 ;
3 while sik,t is not terminal do

/* Exploration and learning */
4 Select aik,t ∼ πk(·|sik,t)) ; Execute aik,t, observe rik,t+1 and sik,t ;
5 Update wik,t if using value-based method or θk,t if using policy-based method3;
6 t = t+ 1 ;

/* Model parameters aggregation */
7 Set wik,∞ = wik,t or θik,∞ = θik,t; Exchange wik,∞ or θik,∞ with neighbors ;
8 Assign weights clk(i) according to wil,∞ or θil,∞ ;
9 Aggregate estimates wi+1

k,0 =
∑
l∈Nk clk(i)wil,∞ or θi+1

k,0 =
∑
l∈Nk clk(i)θil,∞ ;

8.5 Resilient Aggregation in Distributed RL

In this section, we present resilient aggregation rules applicable to both value-based and policy-based

distributed RL. The goal is to design non-negative weights Ck(i) = [c1k(i), . . . , c(N+b)k(i)] ∈ R1×(N+b)

for every normal agent k, with
∑
l∈Nk clk(i) = 1, and clk(i) = 0 if l /∈ Nk, such that by using Ck(i)

in Algorithm 5, and in the presence of an arbitrary number of Byzantine neighbors, (8.2) is solved. We

incorporate the idea of optimizing the objective function in designing the aggregation weights. Besides, a

softmax layer is applied to the weights in order to make the weights to be non-negative. The weights are

assigned as follows: if l /∈ N≥k , then clk(i) = 0, otherwise,

clk(i) =
eĴk(πil)∑

p∈N≥k
eĴk(πip)

, (8.3)

where l ∈ N≥k if l ∈ Nk and Ĵk(πil) ≥ Ĵk(πik); Ĵk(·) is an approximation of Jk(·) with Es[Ĵk(·)] = Jk(·).

For example, Ĵk(π) can be computed by the simulated long-term reward of one-shot Monte-Carlo policy

1An episode is a sequence of states from the start state to a terminal state.
2During learning, t increases while i remains the same; and during model aggregation, i increases while t changes from∞ to 0. To

simplify, hereafter, we omit the subscripts of t for cooperation and the superscripts of i for learning.
3Methods for updating these parameters are discussed in Section 8.3.

133

evaluation using policy π on the MDP of k. Note that πil can be either extracted from wil when using value-

based RL or can be parametrized by θil when using policy-based RL. Obviously,
∑
l∈Nk clk(i) = 1 holds

using weights (8.3). The intuition behind (8.3) is the following. One agent k can evaluate the policy of a

neighbor l on its own MDP, and a larger long-term reward resulted by a neighbor’s policy on k’s MDP implies

a better approximation of the policy and agent k should assign larger weights to such policies. In addition, it

is reasonable to cooperate with neighbors incurring better approximations but unnecessary to cooperate with

those resulting in worse approximations than oneself. As a result, we come up with the aggregation rule given

in (8.3).

Discussion of the convergence. Convergence for RL algorithms is hard to be guaranteed, especially when

combined with neural networks. In the convergence analysis of RL algorithms, it is often assumed that

the value or policy functions can be parametrized by a class of linear functions. If this is the case, the

aggregation using (8.3) results in Ĵk(πi+1
k) ≥ Ĵk(πik), given that the agent cooperates only with the neighbors

having a larger approximate reward Ĵk(πil) ≥ Ĵk(πik), and Ĵk(πi+1
k) is a linear combination of Ĵk(πil). This

means that the aggregation using (8.3) always results in a larger approximate long-term reward, i.e., a better

approximation of the policy. Further, the presence of Byzantine agents does not affect this improvement. As

a result, if agents converge to the optimal policy without cooperation, they also converge in the cooperative

case in the presence of byzantine agents. If agents do not converge to the optimal policy without cooperation,

cooperation using (8.3) could help improve their learned policy.

8.6 Evaluation

In this section, we evaluate the proposed resilient aggregation method for both value-based and policy-

based RL algorithms. We also compare the approach with the average- and median-based aggregation rules

as well as the non-cooperative case. Note that median is a special case of trimmed-mean when half of the

smallest and largest values are trimmed. In all the examples, our approach exhibits better or similar learning

performance than the non-cooperative case measured by the averaged long-term rewards over the network, in

the presence of an arbitrary number of Byzantine neighbors. When all the neighbors are Byzantine, the ap-

proach is reduced to a non-cooperative algorithm. Whereas in the same scenarios, average and median-based

methods may exist worse learning performance than the non-cooperative case, showing the vulnerabilities of

such aggregation methods in Byzantine systems.

134

0 100

episodes

0

100

200

300

400

500

600

700

re
w

ar
d

no-coop reward_softmax (ours) average median

0 25 50 75 100

episode

0

100

200

300

400

500

600

700

re
w

ar
d

(a) no attack

0 25 50 75 100

episode

0

100

200

300

400

500

600

700

re
w

ar
d

(b) 10 Byzantine agents

0 25 50 75 100

episode

0

100

200

300

400

500

600

700

re
w

ar
d

(c) 29 Byzantine agents

Figure 8.1: 30 homogeneous agents running DQN for Cartpole.

0 25 50 75 100

episode

0

100

200

300

400

500

600

700

re
w

ar
d

(a) no attack

0 25 50 75 100

episode

0

100

200

300

400

500

600

700

re
w

ar
d

(b) 10 Byzantine agents

0 25 50 75 100

episode

0

100

200

300

400

500

600

700

re
w

ar
d

(c) 29 Byzantine agents

Figure 8.2: 30 heterogeneous agents running DQN for Cartpole.

0 50 100 150

episode

20

10

0

10

20

re
w

ar
d

(a) no attack

0 50 100 150

episode

20

10

0

10

20

re
w

ar
d

(b) 5 Byzantine agents

0 50 100 150

episode

20

10

0

10

20

re
w

ar
d

(c) 9 Byzantine agents

Figure 8.3: 10 homogeneous agents running DQN for Pong.

0 50 100 150

episode

20

10

0

10

20

re
w

ar
d

(a) no attack

0 50 100 150

episode

20

10

0

10

20

re
w

ar
d

(b) 5 Byzantine agents

0 50 100 150

episode

20

10

0

10

20

re
w

ar
d

(c) 9 Byzantine agents

Figure 8.4: 10 heterogeneous agents running DQN for Pong.

0 25 50 75 100

episode

2000

1500

1000

500

0

re
w

ar
d

(a) no attack

0 25 50 75 100

episode

2000

1500

1000

500

0

re
w

ar
d

(b) 10 Byzantine agents

0 25 50 75 100

episode

2000

1500

1000

500

0

re
w

ar
d

(c) 29 Byzantine agents

Figure 8.5: 30 homogeneous agents running DDPG for Pendulum.

135

0 25 50 75 100

episode

2000

1500

1000

500

0

re
w

ar
d

(a) no attack

0 25 50 75 100

episode

2000

1500

1000

500

0

re
w

ar
d

(b) 10 Byzantine agents

0 25 50 75 100

episode

1500

1000

500

0

re
w

ar
d

(c) 29 Byzantine agents

Figure 8.6: 30 heterogeneous agents running DDPG for Pendulum.

8.6.1 Simulation Setup

Tasks. The tasks we consider are the classic control problems Cartpole and Pendulum, and the Atari game

Pong based on the OpenAI Gym [197]. Specifically, we evaluate both the value-based RL algorithm deep

Q-networks (DQN) [194] for Cartpole and Pong, and policy-based algorithm DDPG [198] for Pendulum.

Network. For the Cartpole and Pendulum tasks, we consider a network of 30 agents; and for Pong, we

consider a network of 10 agents. The connectivity of the agents is determined by their geographical location,

which is randomly drawn from a [0, 3] × [0, 3] plane. The average degree 1
N

∑N
k=1 |Nk| of the connectivity

graph with 30 agents is approximately 8.2. The network with 10 agents is modeled by a complete graph.

Attacks. Byzantine agents are designed to send random values (for each dimension) from the interval [0, 1]

to all of its neighbors.

Hyper-parameters. In all the tasks, we use ADAM optimizer [199], γ = 0.99, and ε-greedy exploration

strategy with ε annealed from 1 to 0.01 over the first 1e5 learning steps [109] for DQN. The aggregation

between the agents starts after the agents run 50 episodes’ exploration and learning independently. For

Cartpole, the batch-size is 32 and the neural network model for each agent has one hidden layer of 50 neurons.

For Pong, the batch-size is 32 and we use CNN with 3 convolutional layers of output shape [32, 20, 20],

[64, 9, 9] and [64, 7, 7], as well as a fully-connected layers of 512 neurons and an output layer. For Pendulum,

the batch-size is 128 and the actor network has 3 hidden layers with 256/128/64 neurons; The critic network

has two layers with 256/128 neurons for the state input and one layer with 128 neurons for the action input,

which then concatenates the state/action output of 256 neurons followed by a fully-connected layer of 128

neurons and an output layer. The activation functions are all ReLU. In a connected network, every agent

shares the same model architecture (and the same state/action spaces).

136

8.6.2 Simulation Results

We consider both homogeneous networks where agents use the same learning rate and environment as

well as heterogeneous networks where the agents have different learning rates and/or random noisy data being

added to each state.

Homogeneous agents. We set the same learning rate and other parameters for each normal agent. The

learning rate is 0.01 for Cartpole, 0.001 for Pendulum, and 0.0001 for Pong. Figure 8.1, 8.3 and 8.5 show the

mean and range of the evaluated accumulated reward for every normal agent in the network, in the case of no

attack, with 5/10 Byzantine agents, and with 9/29 Byzantine agents. We find that the proposed aggregation

method is resilient in all scenarios (even when there is only one normal agent in the network and the other

agents are all Byzantine) and exhibits better or similar learning performance as the non-cooperative case. The

average and median rules fail to converge in the presence of Byzantine agents. It should be noted that the

median-based aggregation may fail to converge even without Byzantine agents in the network.

Heterogeneous agents. In the heterogeneous networks, we consider a random learning rate sampled from

(0, 0.1] for Cartpole; from [0.0001, 0.0002] for Pong; and from (0, 0.01] for Pendulum. We also consider

random noise sampled from (0, 0.02] being added to each element of the state for Cartpole and Pendulum.

Figure 8.2, 8.4 and 8.6 show the results. The proposed method outperforms no-cooperation, average, and

median as measured by the average accumulated rewards over the network, with and without Byzantine

agents. Comparing to the results of the homogeneous setting, we find that in heterogeneous networks, agents

that are not able to reach a good policy by themselves could greatly improve their learning performance

by cooperating with neighbors. In general, the averaged accumulated reward over the network is greatly

improved by model aggregation using the proposed weights compared to the non-cooperative case.

8.7 Conclusion

In this chapter, we present a Byzantine resilient aggregation rule for distributed reinforcement learning

with networked agents. In order to maximize the networked rewards, agents assign larger weights to neigh-

bors incurring a larger reward and reduce cooperation with those incurring a smaller reward. Byzantine agents

try to disturb the convergence of normal agents and share a value function or policy resulting in small rewards,

and thus, they are not included in the cooperation with normal agents. We analyze the approach in the case

of linear function approximations to guarantee convergence in the presence of Byzantine agents. Finally,

we evaluate our approach using multiple RL environments, for both value- and policy- based methods, with

homogeneous and heterogeneous agents. The simulation results validate the effectiveness of our approach.

137

Chapter 9

Adaptive Learning from Peers for Distributed Actor-Critic Algorithms

Face recognition, health tracker, and recommender system are just a few of the machine learning appli-

cations built upon distributed devices. Training machine learning models over a network of users in a fully

decentralized network has great potentials in dealing with the massive amounts of data generated by such

distributed devices. Due to the privacy and security concerns, models are usually trained in a distributed fash-

ion using individual data, yet cooperation among agents by sharing and aggregating their model parameters

has been demonstrated to benefit the learning performance over the network. In this chapter, we consider the

problem of training distributed reinforcement learning models collaboratively using actor-critic algorithms.

We propose an efficient adaptive cooperation strategy by promoting the similarities among agents and assign-

ing adaptive weights in aggregating the parameters from neighbors. Further, we analyze the convergence of

the proposed method when linear function approximations are applied. Finally, extensive simulation results

are provided to validate the proposed method, showing the effectiveness of the proposed method in improving

the learning performance over the network in the case where agents are performing the same task, multi-task,

as well as when some of the agents are attacked. In contrast, other aggregation methods, such as average and

median, result in inferior learning performance in certain scenarios.

9.1 Introduction

Distributed learning has attracted increasing attention due to the growth of Machine Learning (ML) ap-

plications in multi-agent networks, such as mobile phones, wearable devices, and smart homes [48–51]. In

such networks, multiple agents operate in a distributed and cooperative manner to achieve a common learning

task. Compared to federated learning [188], distributed learning with networked agents is fully-decentralized,

without the need of a central server, thus addresses the problem of single-point-of-failure and the scalability

issues. For example, consider learning the behavior of users in a cellular network based on data generated

using various mobile applications. Each user may generate data that follows a distinct distribution and it is

common to learn separate models for each user. However, people may exhibit similar behaviors and related-

ness among models commonly exists [15]. Hence, cooperation among agents could be leveraged to promote

the learning performance over the network. Due to privacy and security concerns, agents typically commu-

nicate their model parameters with their local neighbors without sharing the user data. Such cooperation has

138

been demonstrated to help improve the learning performance over the network while not compromising data

privacy [16].

Although personalizing customer interactions at scale through the data analysis of users’ online behavior

patterns has been realized by machine learning, special learning tasks, such as news recommendation is still

challenging. The reasons are that user preferences in topics change frequently and the features of those

contents are dynamic by nature and become rapidly irrelevant. Reinforcement Learning (RL), in particular,

can be applied to address such challenges [115–117]. Fully-decentralized multi-agent RL (MARL) is still a

nascent field compared to distributed learning. Previous studies in MARL focused on the case where agents

learn in a shared Markov Decision Process (MDP) and the policy developed by each agent should take into

account the joint action made by all the other agents [125, 200]. In contrast, we are interested in the scenario

where agents learn in similar and independent MDPs. They make individual decisions and their actions do

not influence each other. The cooperation is achieved by exchanging and aggregating model parameters from

neighbors, which promotes the similarities among agents and benefits learning.

In this chapter, we consider the problem of training multiple RL agents in a fully-decentralized network

using actor-critic algorithms. Agents make individual decisions and they share their model parameters (both

actor and critic) with local neighbors for consensus that updates their parameters as a linear combination

of their neighbors’ model parameters. Average and median are commonly used as aggregation functions in

model consensus [125, 126]. However, these methods cannot be used to infer the underlying relatedness

among agents and could do harm to the overall learning performance when agents are performing different

tasks or when some agents are learning from untrusted sources. There are metrics that can be used to promote

the similarity among networked agents such as Kullback-Leibler (KL) divergence and Wasserstein distance

[56, 201]. However, these metrics are used for measuring how one probability distribution is different from

another and is restricted to stochastic policies that model actions by a probability distribution. Yet they are

not applicable to deterministic policies that map each state to a deterministic action.

To address the problem, we propose a distributed actor-critic algorithm using adaptive weights for aggre-

gating the model parameters from neighbors that incorporates the idea of optimizing the objective function

in designing the combination weights. To measure the similarity among agents, we fit the model parameters

of neighbors into the sampled data of agents. In the case of linear function approximations, the gradient

norm of the neighbors’ model parameters on one’s sampled data measures the proximity of the neighbor’s

estimate to the optimum point. As the estimate approaches the optimum point, the gradient norm converges

to zero. Measuring the gradient norm is not applicable to neural network models since many local optimums

exist in a neural network. Hence, when using neural network models, we instead compute the loss of the

actor and critic network using neighbor’s models and one’s sampled data. A smaller loss indicates a better

139

estimate and is assigned a larger weight to aggregate with. To illustrate, for the Deep Deterministic Policy

Gradient (DDPG) algorithm, the actor aims to minimize the negative expected action-value function and the

critic aims to minimize the temporal difference (TD) error. Our method scores the action-value generated by

neighbor’s policies by one’s own critic given sampled states and assigns large weights if the negative action-

value computed by the agent is small. For the critic, TD errors of neighbors are computed using the agent’s

own target critic network and neighbor’s critic network given sampled data. Larger weights are assigned to

those incurring smaller TD errors.

The contributions of the chapter are:

• We propose efficient adaptive learning methods for distributed actor-critic algorithms that allow agents to

learn which neighbors to cooperate with in a fully-decentralized network.

• We analyze the convergence of distributed actor-critic algorithms with the proposed method when linear

function approximations are applied.

• We evaluate the proposed method for multiple actor-critic algorithms including DDPG, Soft Actor-Critic

(SAC), Twin Delayed DDPG (TD3). The evaluation results show that the proposed method greatly im-

proves the learning performance than the non-cooperative case in all the scenarios. Besides, when all the

agents share the common learning task, the efficiency and performance of the proposed method matches

that of averaging method. Moreover, the proposed method results in superior performance in multi-task

networks and in the presence of attacked agents – it is resilient even when all one’s neighbors are attacked,

which matches the performance of the non-cooperative case.

9.2 Distributed Actor-Critic in Multi-Agent Networks

Markov Decision Processes (MDPs) can be characterized as a tuple 〈S,A, P, r〉, where S and A denote

the finite state and action spaces, respectively, P (s′|s, a) : S×A×S → [0, 1] is the state transition probability

from state s to the next state s′ determined by action a, and R(s, a) : S × A → R is the reward function

defined as R(s, a) = E [rt+1|st = s, at = a], with rt+1 being the immediate reward received at time t. The

agent’s action is characterized by a policy π given as a mapping π : S × A → [0, 1], representing the

probability of choosing action a at state s.

Consider a network of N connected agents modeled by an undirected graph G = (V, E) that could be

time-varying, where the set of nodes V represents the agents, and the set of edges E represents the interac-

tion between them. An edge (l, k) ∈ E , l, k ∈ V signifies that agents k and l exchange information with

each other. The neighborhood of agent k is the set of agents that it interacts with including itself, and is

140

represented as Nk = {l ∈ V|(l, k) ∈ E} ∪ {k}, which can be time-varying depending on the underlying

graph. Agents operate in similar and independent MDPs each can be modeled byMk = 〈S,A, P k, rk〉 for

k ∈ {1, 2, . . . , N}. The state action spaces S,A are the same for every agent, but the transition probabilities

and the reward function can be different. Since agents operate in independent environments, their actions do

not influence each other [108], which is a valid setup in reality, e.g., in a mobile application network. The

expected time-average return of policy π for agent k is defined as

Jk(π) = lim
T

1

T

T−1∑
t=0

E(rkt+1) =
∑
s∈S

dkπ(s)
∑
a∈A

π(s, a)Rk(s, a) (9.1)

where dkπ = limt P
k(st = s|π) is the stationary distribution of the Markov chain under policy π for agent

k. Further, we define the action-value associated with a state-action pair (s, a) under policy π for agent

k as Qkπ(s, a) =
∑
t E
[
rkt+1 − Jk(π)|s0 = s, a0 = a, π

]
. It is usually assumed that Qkπ(s, a) can be ap-

proximated by some parametrized functions Qk(·, ·;wk) with parameters wk. And the policy π can also be

parametrized by πθk with parameter θk. The objective for the networked agents is to cooperatively learn the

optimal policy that maximizes the following optimization function:

max
θ1,...,θN

{
1

N

N∑
k=1

Jk(θk)

}
. (9.2)

We consider each agent runs a separate actor-critic algorithm with a consensus step to solve (9.2). A common

actor-critic algorithm based on action-value function approximation with consensus is given below, with the

critic step (9.3) and the actor step (9.4):

µkt+1 = (1− βkw,t) · µkt + βkw,t · rkt+1, w̃
k
t = wkt + βkw,t · δkt · ∇wQkt (wkt), wkt+1 =

∑
l∈Nk

ct(k, l) · w̃lt. (9.3)

θ̃kt = θkt + βkθ,t ·Qkt (wkt) · ψkt , θkt+1 =
∑
l∈Nk

bt(k, l) · θ̃lt. (9.4)

Here, Qkt (w) , Qk(skt , a
k
t ;w), δkt = rkt+1 − µkt + Qkt (wkt) − Qkt (wkt) denotes the action-value temporal

difference (TD) error, and ψkt = ∇θ log πθkt (skt , a
k
t). Besides, βkw,t, β

k
θt
> 0 are stepsizes. The termQkt (wkt) ·

ψkt and δkt · ∇wQkt (wkt) can be regarded as the gradient of the actor and critic parameters. Note that the critic

step operates at a faster time scale to estimate the action-value function Qkt (wkt) under policy πθkt . And the

actor step improves the policy by gradient ascent at a slower time scale. There is a combination step in both

the actor and the critic updates that aggregates the neighbors’ parameter estimates with the weight matrix

Ct = [ct(k, l)]N×N and Bt = [bt(k, l)]N×N , where ct(k, l) and bt(k, l) are the row-stochastic weights

assigned from k to l at time t for critic and actor’s parameters aggregation, respectively. One can easily find

141

that (9.2) can be optimized by individual agent without cooperation. However, cooperation among agents is

beneficial in improving the network learning performance [16]. In this chapter, we are interested in finding

the optimal combination matrix Bt and Ct that solves (9.2) in a cooperative manner.

9.3 Adaptive Learning in Distributed Actor-Critic Algorithms

In this section, we propose the optimal combination weights for solving (9.2). It has been demonstrated

in the literature that when agents share common objectives, the cooperation among them will promote the

learning performance over the network. However, when agents pursue different objectives, indiscriminate

cooperation leads to undesired outcomes [103, 105]. Therefore, the combination weight matrix should be

designed such that it accurately captures the similarity among agents. Metrics such as KL divergence and

Wasserstein distance can be used to promote the similarity among probability distributions [56, 201]. How-

ever, these metrics are restrictive to stochastic policies that model actions by a probability distribution, but

not applicable to deterministic policies that map each state to a deterministic action. The intuition behind our

method is that when two agents share similar objectives, their estimated model parameters should be able to

fit to the sampled data of one another. The better one’s model fits to the other’s data, the more the model is

related to the other’s underlying task. In the following, we discuss the method for measuring how a model

fits to a sampled data of another, for linear function approximations and neural network (nonlinear) function

approximations, respectively.

9.3.1 In the Case of Linear Function Approximations

To introduce the proposed method, we make the following assumptions about the action-value and policy

functions.

Assumption 9.1. For each agent k, the action-value function is parameterized by a class of linear functions:

Qkt (w) = w>φkw(st, at) with the uniformly bounded feature vector φkw(s, a) =
[
φkw,1(s, a), . . . , φkw,dw(s, a)

]>
∈ Rdw for any s ∈ S, a ∈ A. In addition, the feature matrix Φkw ∈ R|S|·|A|×dw has full column rank, where

the j-th column of Φkw is [φkw,j(s, a), s ∈ S, a ∈ A]
>

, for j ∈ [d]. And for any u ∈ Rdw , Φkwu 6= 1.

Assumption 9.2. For each agent k, the policy function is modeled by a Gaussian function πθk(s, a) =

1
σk
√

2π
exp(− (a−µ)2

2σ2
k

) with µk(s) = θ>k φ
k
π(s) as the mean, σk > 0 as the constant variance, and φkπ(s) ∈

Rdθ as the uniformly bounded feature vector.

Define Gwk,t(w) , δkt · ∇wQ(st, at;w) and Gθk,t(θ) , Qkt (wkt) · ∇θ log πθ(st, at) as the gradient of the

action-value and policy functions. Given the above assumptions, we can write the Gwk,t(w) and Gθk,t(θ) as

142

linear functions, as described below.

Lemma 9.1. 1 Under Assumption 9.1 and 9.2, we can write Gwk,t(w) and Gθk,t(θ) as:

Gwk,t(w) = γkt + w>φkt , Gθk,t(θ) = ξkt − θ>ζkt ,

where γkt ,
(
rkt+1 − µkt

)
·φkw(st, at), φ

k
t ,

(
φkw(st+1, at+1)− φkw(st, at)

)
·φkw(st, at). And ξkt , atφ

k
π(st) ·

Qkt (wkt)

σ2
k

, ζkt , φkπ(st)φ
k
π(st) · Q

k
t (wkt)

σ2
k

.

Observe that at convergence, the gradient norm of the actor and critic parameters converges to zero in

expectation, i.e.,
lim
t→∞

E
[∥∥Gwk,t(wkt)

∥∥] = 0, lim
t→∞

E
[∥∥Gθk,t(θkt)

∥∥] = 0. (9.5)

Since gradients can be expressed as linear functions, the solution to (9.5) is unique. Therefore, we can use

the gradient norm as a measure of the proximity of a model estimate to the optimum point. Models with

smaller gradient norms are considered to be closer to the optimum point. Note that the idea of measuring

the proximity of a point to the convergence point using gradient norm is also considered in [74]. Commonly

used norms are the `1, `2, and the `∞ norm. In this chapter, we adopt `2 norm, but the other norms can also

be used. We derive the adaptive combination weights for the critic and actor step as follows.

clk(t) =

∥∥∥Gwk,t(w̃lt)∥∥∥−1

∑
p∈N (w)≤

k

∥∥∥Gwk,t(w̃pt)∥∥∥−1
, for l ∈ N (w)≤

k , blk(t) =

∥∥∥Gθk,t(θ̃lt)∥∥∥−1

∑
p∈N (θ)≤

k

∥∥∥Gθk,t(θ̃pt)∥∥∥−1
, for l ∈ N (θ)≤

k . (9.6)

Here, l ∈ N (w)≤
k if ‖Gwk,t(w̃lt)‖ ≤ ‖Gwk,t(w̃kt)‖; And l ∈ N (θ)≤

k if ‖Gθk,t(θ̃lt)‖ ≤ ‖Gθk,t(θ̃kt)‖. For l /∈ N (w)≤
k ,

clk(t) = 0; And for l /∈ N (θ)≤
k , blk(t) = 0. The proposed method in (9.6) enables agents to weight neighbors

based on how close the neighbors’ estimates are to the optimum point of the agent using the gradient norm

measured by the sampled data of the agent and the model parameters of its neighbors. A better estimate

will have a smaller gradient norm and be assigned a larger weight. And cooperation using such combination

weights contributes in converging to the optimum point, making the cooperation beneficial to the overall

performance of the network. We will prove the convergence of the distributed actor-critic algorithm in (9.3)

and (9.4) with (9.6) in Section 9.4.

9.3.2 Generalize the Method to Neural Networks

The method in (9.6) assigns adaptive weights based on the gradient norm when gradient functions are

parametrized by a class of linear functions. For neural networks, using the method in (9.6) could cause

1All the proofs are given in the Appendix.

143

problems since parameters in a local optimum also have zero gradient norm. To address this issue, we

consider assigning adaptive weights based on the loss values instead of the gradient norms. In the case of

linear function approximations, the loss is minimized when the gradient norm is zero. Yet for neural networks,

a smaller loss means a better estimation, whereas the gradient norm is not a clear measurement of how good

the estimation is given the existence of many local optimums. As a result, the method in (9.6) can be seen as

a special example of (9.7) when using linear function approximations.

With neural network-based function approximations, the adaptive weights can be assigned as

clk(t) =
Lwk,t(w̃

l
t)
−1∑

p∈Nk
Lwk,t(w̃

p
t)
−1

, blk(t) =
exp(−Lθk,t(θ̃

l
t))∑

p∈Nk
exp(−Lθk,t(θ̃

p
t))

, for l ∈ Nk, (9.7)

where Lwk,t(w) and Lθk,t(θ) are the losses for the critic and actor for agent k at time t, with model parameter

w and θ respectively. Since Lwk,t(·) often uses mean-squared TD-error, it is guaranteed to be non-negative.

However, Lθk,t(·) could be negative values and thus we apply softmax function to it which guarantees the

weights to be non-negative. Note that in (9.6), only neighbors resulting in a better estimation are assigned

non-negative weights, which is a key step in guaranteeing the convergence of the distributed actor-critic

algorithm. However, in practice, neighbors may not be able to achieve smaller loss values than the agent itself,

rendering the weights assigned to neighbors to be zero. To ensure the cooperation takes place, we remove the

constraints that agents only cooperate with those with better estimation in (9.7). As an example, consider the

case for DDPG. In DDPG, the actor function µ(s|θ) specifies the current policy by deterministically mapping

a state to a specific action. The critic parameters are updated by minimizing the mean-squared TD error;

And the actor parameters are updated by maximizing the expected action-value E[Q(s, µ(s))], or minimizing

−E[Q(s, µ(s))], i.e.,

Lwk,t(w) =
1

B

∑
i=1,...,B

(yki −Qki (w))2, Lθk,t(θ) =
1

B

∑
i=1,...,B

(−Qki (si, µ
k(si|θ)),

where yki = rki + γQ′k(si+1, µ
′k(si+1|θ′kt);w′kt), with Q′k and µ′k as the target value function and policy

function parametrized by w′kt and θ′kt , respectively; and B is the size of the sampled minibatch of data

(si, ai, ri, si+1) at time t. And the weights can be assigned using (9.7) accordingly.

Time complexity. In order to compute the combination weights in (9.6) or (9.7), one needs to compute the

gradient norm, or the batch loss, for each neighbor with the sampled data. The computational time is linear

in the dimension of the model parameters and the neighborhood size given the size of the batch data B as a

constant. Thus, the time complexity is O(d · |Nk|) for agent k, where d = dw for critic and d = dθ for actor.

Thus, the methods proposed in (9.6) and (9.7) are as efficient as averaging.

144

9.4 Convergence Analysis

In this section, we provide a convergence analysis of the proposed method (9.6) when linear function

approximation is used. Note that the TD-learning-based policy evaluation with nonlinear function approx-

imations may fail to converge [202]. As a result, the convergence of actor-critic algorithms with nonlinear

function approximations is not clear. However, the proposed method (9.7) is applicable to nonlinear function

approximators including neural networks, as we demonstrated in our evaluation.

The standard practice in proving the convergence of actor-critic algorithms is to use the two-time-scale

stochastic approximation approach [203]. In this approach, first the convergence of the critic step is analyzed

on a faster time scale, where the policy is assumed to be fixed. Then the convergence of the policy parameters

is analyzed, upon the convergence of the critic step. Following this idea, we show the convergence of the

overall algorithm by proving the convergence of the critic step and the actor step separately. Before diving into

the convergence analysis, there are a few standard assumptions in the literature for analyzing the convergence

of actor-critic methods, as listed below.

Assumption 9.3. The transition matrix of the Markov chain {st}t≥0 induced by policy πθk , i.e., P θk(s′|s) =∑
a∈A πθk(s, a) · P k(s′|s, a),∀s, s′ ∈ S, is irreducible and aperiodic under any πθk for k ∈ [N]. Further,

πθk(s, a) > 0 for any s ∈ S, a ∈ A, θk, and πθk(s, a) is continuously differentiable with respect to θk.

Assumption 9.4. The instantaneous reward rkt is uniformly bounded for any k ∈ [N] and t ≥ 0.

Assumption 9.5. For every normal agent k ∈ [N], the stepsizes βkw,t and βkθ,t satisfy

∑
t

βkw,t =
∑
t

βkθ,t =∞,
∑
t

βkw,t
2

+ βkθ,t
2
<∞,

βkθ,t
βkw,t

→ 0, lim
t→∞

βkw,t+1 · βkw,t
−1

= 1.

Assumption 9.6. Through the whole history of the algorithm, θkt belongs to a compact set for all k and t.

And this compact set contains at least one local optimum of the problem (9.2).

Let χk(θ) denote a Lipschitz continous function that maps the policy parameter θ to the optimal value

function parameter by means of the policy evaluation algorithm.

Lemma 9.2. (In [204]). Under Assumption 9.1, 9.3-9.5, let policy parameter θk at agent k be fixed, with

{wkt } generated from (9.3) using identity weight matrix Ct = IN to evaluate this policy, i.e., the non-

cooperative case. Then, wk converges to χk(θ) almost surely (a.s.).

Lemma 9.2 establishes that each agent is able to converge to the optimal value function without the model

consensus step. Next, we show that with the consensus step, agents are still able to converge to the optimum

point. We first provide the following intermediate results.

145

Lemma 9.3. Given non-negative values x1, . . . , xn, and weight parameters c1, . . . , cn, if ci = xi
−1∑

p=1,...,n xp
−1

for i = 1, . . . , n, then
∑
i=1,...,n cixi ≤

1
n

∑
i=1,...,n xi.

Given Lemma 9.3, we are able to show that the gradient norm will be reduced as a result of aggregation.

The idea is that since a smaller gradient norm means the model is closer to the optimum point, the aggregated

model becomes a better estimation than the model before the aggregation. Since without cooperation, the

gradient norm will converge to zero, the gradient with cooperation will also converge to zero and therefore

the estimation will converge to the optimum point. We establish the convergence of the critic step as follows.

Theorem 9.1. Under Assumption 9.1, 9.3-9.5, for any policy πθ, with {wkt } generated from (9.3) using the

proposed weights in (9.6), we have limt→∞ wkt = χk(θ) almost surely for any k ∈ [N].

Next, we analyze the convergence of the actor step upon the convergence of the action-value function.

First, define the set Λk = {θk : Est∼dθk ,at∼πθk [Gθk,t(θk))] = 0}.

Lemma 9.4. (In [125]) Under Assumption 9.1, 9.3-9.6, with {θkt } generated from (9.4) using identity weight

matrix Bt = IN , i.e., the non-cooperative case, θkt converges almost surely to a point in the set Λk for any

k ∈ N .

Note that converging to a stationary point in the set Λk is the best one can achieve in the actor step [125].

Next, similar to the critic updates, we show that the aggregation step results in the gradient norm smaller than

that before the aggregation. The convergence of the actor-step is established below.

Theorem 9.2. Under Assumption 9.1-9.6, with {θkt } generated from (9.4) using the proposed weights in

(9.6), we have θkt converges almost surely to a point in the set Λk for any k ∈ [N].

9.5 Evaluation

In this section, we evaluate the proposed adaptive learning method in (9.7) for three state-of-the-art off-

policy actor-critic algorithms – DDPG [205], TD3 [206], and SAC [207] – using the suite of MuJoCo con-

tinuous control tasks [208] via OpenAI Gym interface [197], including HalfCheetah, Walker2d, Ant, and

Reacher. The goal of the evaluation is to understand how the proposed cooperative learning scheme can

improve the overall learning performance over the network than the non-cooperative case under different

conditions, including the multi-task network and the attacked scenario. We consider a network of N = 8

agents. The average degree of the connectivity graph is approximately 1
N

∑N
k=1 nk = 5.75. We compare our

method to the baselines of 1) no cooperation is placed throughout the simulation, 2) aggregation by averaging,

and 3) aggregation by median. We also consider three scenarios where the networked agents are performing

146

1) the same task, 2) multi-tasks, and 3) the same task when some of the agents are under attack. We find that

the proposed method helps improve the overall learning performance over the network in all the scenarios.

In particular, in the case when any of the agents in the network cannot learn a good policy alone, cooperation

using the proposed method helps networked agents learn a better policy than the best policy any of the agents

can achieve by itself. In contrast, cooperation using the average and median-based aggregation may lead to

worse average learning performance over the network when agents are performing multiple tasks or some of

the agents are under attack (i.e., learning from untrusted sources).

Table 9.1: Max average return for TD3.

Task Noncoop Average Median AdaLearn(Ours)

HalfCheetah 6706.49±774.00 10350.08±82.14 9626.16±80.44 10249.95±84.18
Walker2d 4180.99±463.20 4988.75±41.84 4507.01±86.61 5835.56±213.38
Ant 1490.81±671.22 3588.90±78.99 2964.49±70.53 3531.44±76.57
Reacher -6.31±0.24 -5.85±0.03 -5.87±0.06 -5.95±0.06
Multitask 4507.75±1289.29 3314.79±2336.07 2901.95±1923.04 6708.19±2184.79
HalfCheetah (25% fgsm) 6596.01±622.46 348.31±191.54 9283.08±69.68 9771.80±63.28
HalfCheetah (50% fgsm) 6467.72±704.65 510.94±47.32 3873.77±117.46 9488.09±192.31
HalfCheetah (only 1 normal) 5963.01±0.00 608.72±0.00 -2.50±0.00 5891.17±0.00
Waler2d (25% fgsm) 2648.39±803.81 415.75±300.81 4348.52±54.55 4398.11±545.71
Waler2d (50% fgsm) 2906.32±1596.26 157.65±19.40 1115.38±47.98 5345.96±163.44
Waler2d (only 1 normal) 1467.60±0.00 -16.81±0.00 -9.35±0.00 4458.48±0.00
Ant (25% fgsm) 2433.60±1440.88 990.60±5.12 3037.39±56.06 3690.67±16.59
Ant (50% fgsm) 1414.63±861.81 982.06±3.37 2104.45±49.55 3654.57±147.10
Ant (only 1 normal) 2488.00±0.00 878.62±0.00 952.24±0.00 3085.57±0.00
Reacher (25% fgsm) -6.42±0.38 -12.92±1.51 -6.36±0.08 -6.10±0.08
Reacher (50% fgsm) -6.52±0.12 -14.71±2.82 -11.89±0.52 -6.14±0.16
Reacher (only 1 normal) -6.85±0.00 -62.43±0.00 -25.73±0.00 -7.17±0.00

Table 9.2: Max average return for DDPG.

Task Noncoop Average Median AdaLearn(Ours)

HalfCheetah 4728.48±432.39 6968.39±65.85 6637.61±69.86 7734.40±97.89
Walker2d 1598.72±437.28 3278.27±184.70 1041.99±122.27 3219.94±189.01
Reacher -6.09±0.18 -5.86±0.02 -6.19±0.11 -5.87±0.02
Multitask 3302.70±1779.20 2933.86±1597.24 1058.48±346.85 5365.06±2538.90
HalfCheetah (25% attacked) 4899.95±258.43 -52.64±29.20 6045.27±49.68 7668.68±836.77
HalfCheetah (50% attacked) 4876.08±184.65 -71.81±43.45 1939.30±90.08 6361.74±727.24
HalfCheetah (only 1 normal) 4742.29±0.00 375.79±0.00 -47.44±0.00 4353.34±0.00
Waler2d (25% attacked) 1233.25±174.05 319.87±78.40 1542.28±278.48 2647.08±236.87
Waler2d (50% attacked) 1774.96±506.91 -7.49±4.30 1123.09±33.55 2422.36±757.20
Waler2d (only 1 normal) 1237.56±0.00 -10.31±0.00 -15.30±0.00 1644.62±0.00
Reacher (25% attacked) -6.18±0.22 -16.99±2.31 -6.07±0.06 -5.92±0.16
Reacher (50% attacked) -6.24±0.24 -102.32±6.59 -9.12±0.20 -6.62±0.17
Reacher (only 1 normal) -6.03±0.0 -109.00±0.00 -13.45±0.00 -6.10±0.00

In all the tasks, we use ADAM optimizer [199], γ = 0.99, learning rate is 0.001, τ = 0.005, batch-size

is 256. The other hyper-parameters and neural network architectures are the same as given in the original

algorithms [205–207]. The simulation code is based on the author’s publication in https://github.com/sfujim/

TD3 and https://github.com/haarnoja/sac.

147

https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/haarnoja/sac

Table 9.3: Max average return for SAC.

Task Noncoop Average Median AdaLearn(Ours)

HalfCheetah 6399.85±673.81 9614.02±107.70 9588.57±79.58 9931.12±125.80
Walker2d 3019.59±718.71 3662.94±60.70 3289.44±93.99 3398.29±96.57
Ant 1979.03±348.19 3720.35±62.03 3146.27±67.65 3776.56±64.48
Reacher -6.33±0.29 -6.50±0.07 -6.50±0.12 -6.20±0.13
Multitask 3938.91±1632.00 3973.77±1337.77 2958.70±1853.09 4857.24±3433.90
HalfCheetah (25% attacked) 6163.24±823.36 261.09±157.26 8616.53±89.98 8742.69±63.35
HalfCheetah (50% attacked) 5755.53±659.42 1003.12±349.58 3725.91±82.78 7885.69±39.13
HalfCheetah (only 1 normal) 6710.47±0.00 -5.97±0.00 668.58±0.00 6666.83±0.00
Waler2d (25% attacked) 3396.36±440.52 315.70±62.68 2781.80±63.98 3531.32±36.73
Waler2d (50% attacked) 3132.66±812.49 3.16±4.63 959.56±10.18 3115.22±47.73
Waler2d (only 1 normal) 2284.98±0.00 1.25±0.00 -6.22±0.00 2695.72±0.00
Ant (25% attacked) 2198.53±254.48 994.86±0.91 3022.71±71.98 3578.94±54.02
Ant (50% attacked) 1803.09±258.45 999.50±1.15 1114.05±56.17 3483.97±70.63
Ant (only 1 normal) 1383.55±0.00 692.08±0.00 576.88±0.00 1750.23±0.00
Reacher (25% attacked) -6.60±0.72 -14.09±1.10 -6.22±0.05 -6.17±0.02
Reacher (50% attacked) -6.35±0.21 -31.41±13.13 -6.47±0.09 -6.50±0.26
Reacher (only 1 normal) -6.24±0.00 -70.99±0.00 -101.27±0.00 -6.59±0.00

Agents learn in independent environments and they start with random environment seeds in OpenAI

Gym. Agents exchange and aggregate the model (actor/critic) parameters with neighbors after each learning

episode. If the algorithm includes target networks, then the target networks are updated using soft update

with τ = 0.001 [205]. The learning results for TD3, DDPG and SAC are given in Table 9.1, 9.2 and 9.3,

where maximum value for each task is bolded, and ± corresponds to a single standard deviation over the

network. In the tables, the results are when the agents are trained for 105 steps for the tasks Reacher and

the attacked Reacher, and 2 × 105 steps for the other tasks. Note that DDPG does not converge for the

task Ant and is not listed in Table 9.2. Training curves are given in Figure 9.1-Figure 9.5. Note that in the

figures, values are computed as an average of the 10 nearest values to make the curves smooth. Also, to make

the discrepancies between normal and attacked agents larger, we consider an enlarged reward for the task

Reacher in the training steps (not in the evaluation), that is, the new reward is 10× the original reward given

in OpenAI Gym.

Single-task network. In this case, all the agents in the network perform the same task. The results are given

in Figure 9.1 and Figure 9.2, where the lines represent the average return over the networked agents and the

shaded area represents the range. We find the proposed method greatly improves the learning performance

over the network as measured by the average return compared to the non-cooperative case. It also outperforms

median. Besides, the performance of the proposed method matches that of the average-based aggregation. In

certain examples, the proposed method exhibits better performance than averaging.

Multi-task network. In the Multi-Task Learning (MTL) example, 8 agents perform two different tasks –

HalfCheetah (agents 0-3) and Walker2d (agents 4-7). The MTL problem has been extensively studied in dis-

tributed multi-agent networks [182], which is a powerful tool to model the case where agents share distinct

148

� ������

����������

����

����

����

�

����

����

����

�
�
�
��
�
�
��
�
��
��

������� ��������������� ������� ������

(a) DDPG (b) SAC (c) TD3

Figure 9.1: Training curves for DDPG, SAC, and TD3 (HalfCheetah).

(a) DDPG (b) SAC (c) TD3

Figure 9.2: Training curves for DDPG, SAC, and TD3 (Walker2d).

and related tasks, e.g., in a network of users for a certain mobile application. Averaging and median are not

suitable for MTL. However, as the proposed method promotes the similarity among agents, it can be used for

such tasks. Figure 9.3 shows the learning results in the MTL network. It can be observed that the proposed

method greatly improves the performance, whereas averaging and median result in worse performance than

the non-cooperative case. The results demonstrate that the proposed method effectively promotes the sim-

ilarity among the networked agents and the cooperation by promoting such similarity improves the overall

learning performance.

(a) DDPG (b) SAC (c) TD3

Figure 9.3: Training curves for DDPG, SAC, and TD3 (Multitask).

Attacked network. In this scenario, we consider the case where some of the networked agents are under

149

attack, yet still continue to exchange parameters with the neighbors. Cooperation with such attacked agents

will cause deterioration in the learning performance, as the attacked agents are indistinguishable from the

normal agents. Average and median based model aggregation are vulnerable to such attacks. However,

using the proposed method, attacked agents will be assigned smaller weights than the normal ones given

the discrepancies in their estimates, and thus ensuring the integrity of the cooperation. We consider that

the attacked agents are receiving adversarial states by adding perturbation to their states using FGSM (Fast

Gradient Sign Method) [209]. The multiplier of the perturbation is selected to be 0.005. Figure 9.4 and

Figure 9.5 show the results when 2 (25%), 4 (50%), and 7 (only 1 normal) agents are under attack. It can

be found that averaging results in inferior performance than non-cooperation in all the attacked cases. In

addition, when the number of attacked agents is less than half of the total number of agents, median is robust

to such attack, but it fails when the number of attacked agents increases beyond that. In contrast, the proposed

method achieves better performance even in the case of increased number of attacked agents. Note that when

7 out of 8 agents are under attack, there is only one normal agent in the network and cooperation using the

proposed method results in a similar performance to the non-cooperative case, showing the resilience of the

proposed method.

(a) 2 agents under attack (b) 4 agents under attack (c) 7 agents under attack

Figure 9.4: Training curves for normal agents when certain agents are under FGSM attack (TD3, HalfChee-
tah).

(a) 2 agents under attack (b) 4 agents under attack (c) 7 agents under attack

Figure 9.5: Training curves for normal agents when certain agents are under FGSM attack (TD3, Ant).

150

9.6 Conclusion

In this chapter, we study the problem of distributed reinforcement learning using actor-critic algorithms

in a fully decentralized network. Networked agents make individual decisions and combine the models from

their neighbors for a better learning performance. We propose an efficient cooperation strategy that adaptively

assigns weights to neighbors by measuring the similarities among agents and demonstrate the convergence

of the actor-critic algorithms using the proposed method when linear function approximations are applied.

Further, extensive simulation results are presented showing that cooperation by promoting the similarity

among agents improves the learning performance over the network for actor-critic algorithms, even in the

case where agents are performing different tasks and when some of the agents are under attack (i.e, learning

from untrusted resources).

151

9.A Proofs

9.A.1 Proof for Lemma 9.1

Proof. Given Assumption 9.1,

Gwk,t(w) =
(
rkt+1 − µkt +Qkt+1(w)−Qkt (w)

)
· φkw(st, at)

=
(
rkt+1 − µkt + w>(φkw(st+1, at+1)− φkw(st, at)

)
· φkw(st, at)

=
(
rkt+1 − µkt

)
· φkw(st, at) + w>

[(
φkw(st+1, at+1)− φkw(st, at)

)
· φkw(st, at)

]
.

Define γkt and φkt as

γkt ,
(
rkt+1 − µkt

)
· φkw(st, at), φkt ,

(
φkw(st+1, at+1)− φkw(st, at)

)
· φkw(st, at).

We can write Gwk,t(w) as

Gwk,t(w) = γkt + w>φkt . (8)

Given Assumption 9.2, the derivation becomes ∇θ log πθ(s, a) =
(a−θ>φkπ(s))φkπ(s)

σ2
k

. Since the policy

function is updated in a slower time scale in actor-critic algorithms, we can considerQkt (wkt) as a fixed value.

Hence,

Gθk,t(θ) = Qkt (wkt) · ∇θ log πθ(st, at)

= Qkt (wkt) · (at − θ>φkπ(st))φ
k
π(st)

σ2
k

= atφ
k
π(st) ·

Qkt (wkt)

σ2
k

− θ>φkπ(st)φ
k
π(st) ·

Qkt (wkt)

σ2
k

Define ξkt and ζkt as

ξkt , atφ
k
π(st) ·

Qkt (wkt)

σ2
k

, ζkt = φkπ(st)φ
k
π(st) ·

Qkt (wkt)

σ2
k

.

We can write Gθk,t(θ) as

Gθk,t(θ) = ξkt − θ>ζkt . (9)

152

9.A.2 Proof for Lemma 9.3

Proof. To prove ∑
i=1,...,n

xt
−1∑

p=1,...,n xp
−1
xt ≤

1

n

∑
i=1,...,n

xt

It is equivalent to prove that

n∑
p=1,...,n xp

−1
≤ 1

n

∑
i=1,...,n

xt, or
∑

p=1,...,n

xp
−1

∑
i=1,...,n

xt ≥ n2. (10)

We prove (10) by induction. Consider the base case where n = 2. It holds that

(
1

x1
+

1

x2
)(x1 + x2) = 1 +

x2

x1
+
x1

x2
+ 1 ≥ 4 = 22.

Assume that for some n = k ≥ 2, (10) holds, i.e.,

(
1

x1
+ . . .+

1

xk
)(x1 + . . .+ xk) ≥ k2

Then, when n = k + 1, it follows that:

(
1

x1
+ . . .+

1

xk+1
)(x1 + . . .+ xk+1)

=(
1

x1
+ . . .+

1

xk
)(x1 + . . .+ xk) + xk+1(

1

x1
+ . . .+

1

xk
) +

1

xk+1
(x1 + . . .+ xk) + 1

≥(
1

x1
+ . . .+

1

xk
)(x1 + . . .+ xk) + 2

√
(

1

x1
+ . . .+

1

xk
)(x1 + . . .+ xk) + 1

≥k2 + 2k + 1 = (k + 1)2

That is, the statement also holds true for n = k + 1, establishing the inductive step, which completes the

proof.

9.A.3 Proof for Theorem 9.1

Proof. Given Lemma 9.1, we can write Gwk,t(w) as

Gwk,t(w) = γkt + w>φkt ,

where

γkt ,
(
rkt+1 − µkt

)
· φkw(st, at), φkt ,

(
φkw(st+1, at+1)− φkw(st, at)

)
· φkw(st, at).

153

Given the combination step wkt+1 =
∑
l∈Nk ct(k, l) · w̃

l
t, it follows that

γkt + wkt+1

>
φkt = γkt +

∑
l∈Nk

ct(k, l) · w̃lt>φkt =
∑
l∈Nk

ct(k, l) ·
(
γkt + w̃lt

>φkt
)
.

Thus, given (8), we have

Gwk,t(w
k
t+1) =

∑
l∈Nk

ct(k, l) ·Gwk,t(w̃lt),

Hence,

‖Gwk,t(wkt+1)‖ ≤
∑
l∈Nk

ct(k, l) · ‖Gwk,t(w̃lt)‖.

Put weights (9.6) into the above formula and given Lemma 9.3, it yields that

‖Gwk,t(wkt+1)‖ ≤ 1

|N≤k |

∑
l∈N≤k

‖Gwk,t(w̃lt)‖ ≤ ‖Gwk,t(w̃kt)‖ (11)

Using the proposed weights (9.6), (11) holds. It can be found that ‖Gwk,t(wkt+1)‖ is bounded by ‖Gwk,t(w̃kt)‖ at

each step. Given Lemma 9.2, limt→∞ wkt = χk(θ) a.s., for all k, without cooperation, i.e, when wkt+1 = w̃kt

and Gwk,t(w
k
t+1) = Gwk,t(w̃

k
t). As a result, limt→∞ ‖Gk,t(w̃tk)‖ = 0 a.s. Combining with (11), we conclude

that with {wkt } generated from (9.3) using the proposed weights (9.6), limt→∞ ‖Gk,t(wkt)‖ = 0 a.s. Thus,

limt→∞ wkt = χk(θ) a.s.

9.A.4 Proof for Theorem 9.2

Proof. Given Lemma 9.1, we can write Gθk,t(θ) as

Gθk,t(θ) = ξkt − θ>ζkt ,

where

ξkt , atφ
k
π(st) ·

Qkt (wkt)

σ2
k

, ζkt , φkπ(st)φ
k
π(st) ·

Qkt (wkt)

σ2
k

.

Given the combination step θkt+1 =
∑
l∈Nk bt(k, l) · θ̃

l
t, it follows that

ξkt − θlt
>
ζkt = ξkt −

∑
l∈Nk

bt(k, l) · θ̃lt>ζkt =
∑
l∈Nk

bt(k, l) ·
(
ξkt − θ̃lt>ζkt

)
.

154

Thus, given (9), we have

Gθk,t(θ
k
t+1) =

∑
l∈Nk

bt(k, l) ·Gθk,t(θ̃kt),

Hence,

‖Gθk,t(θkt+1)‖ ≤
∑
l∈Nk

bt(k, l) · ‖Gθk,t(θ̃kt)‖.

Put weights (9.6) into the above formula and given Lemma 9.3, it yields that

‖Gθk,t(θkt+1)‖ ≤ 1

|N≤k |

∑
l∈N≤k

‖Gθk,t(θ̃lt)‖ ≤ ‖Gθk,t(θ̃kt)‖ (12)

Using the proposed weights (9.6), (12) holds. It can be found that ‖Gθk,t(θkt+1)‖ is bounded by ‖Gθk,t(θ̃kt)‖

at each step. Given Lemma 9.4, θlt converges to a point in the set Λk a.s., for all k, without cooperation, i.e,

when θkt+1 = θ̃kt andGθk,t(θ
k
t+1) = Gθk,t(θ̃

k
t). As a result, limt→∞ ‖Gθk,t(θ̃kt)‖ = 0 a.s. Combining with (12),

we conclude that with {θkt } generated from (9.4) using the proposed weights (9.6), limt→∞ ‖Gk,kθ,t ‖ = 0 a.s.

Thus, θkt converges a.s. to a point in the set Λk.

155

Chapter 10

Conclusion

Distributed consensus, learning, and optimization algorithms are vulnerable to cyber-attacks. A single

adversarial agent exchanging malicious information with normal agents may ruin the integrity of the entire

network. This work proposes multiple solutions to address the vulnerabilities of such distributed algorithms

and provides guarantees for the resilient operation in multi-agent systems. Throughout the thesis, we study

the resilient vector consensus problem and propose a centerpoint-based consensus method that generalizes

the resilience property of the median into higher dimensions, which offers more advantages in terms of

computational complexity and characterization than the existing methods. We extend this consensus method

into distributed learning and optimization problems, particularly for robotic applications, where the position

vector is in two or three dimensions, and a centerpoint can be computed efficiently in O(n) and O(n2) time

complexity. For high-dimensional distributed learning problems, we incorporate the idea of optimizing the

objective function in designing the cooperation strategy, which is both efficient and guarantees the resilient

cooperation among normal agents in the presence of an arbitrary number of adversarial agents, without the

need of a tailored upper-bound of the adversaries. Further, we apply such an approach into distributed multi-

task learning, clustering, and reinforcement learning problems. Our results are supported by theoretical

analysis and well validated by numerical implementations and practical experiments. We hope our results

could assist people in the design and implementation of real-world applications in distributed multi-agent

systems.

156

Bibliography

[1] Jiani Li and Xenofon D. Koutsoukos. “Resilient Distributed Diffusion for Multi-task Estimation”. In:

14th International Conference on Distributed Computing in Sensor Systems (DCOSS). 2018, pp. 93–

102. DOI: 10.1109/DCOSS.2018.00020. URL: https://doi.org/10.1109/DCOSS.2018.00020.

[2] Jiani Li, Waseem Abbas, and Xenofon Koutsoukos. “Resilient Distributed Diffusion in Networks

With Adversaries”. In: IEEE Transactions on Signal and Information Processing over Networks 6

(2020), pp. 1–17. ISSN: 2373-7778. DOI: 10.1109/TSIPN.2019.2957731.

[3] Mudassir Shabbir, Jiani Li, Waseem Abbas, and Xenofon D. Koutsoukos. “Resilient Vector Consen-

sus in Multi-Agent Networks Using Centerpoints”. In: 2020 American Control Conference (ACC).

2020, pp. 4387–4392. DOI: 10.23919/ACC45564.2020.9147441.

[4] Jiani Li, Waseem Abbas, Mudassir Shabbir, and Xenofon Koutsoukos. “Resilient Distributed Diffu-

sion for Multi-Robot Systems Using Centerpoint”. In: Proceedings of Robotics: Science and Systems

(RSS). Corvalis, Oregon, USA, July 2020. DOI: 10.15607/RSS.2020.XVI.021.

[5] Jiani Li, Waseem Abbas, Mudassir Shabbir, and Xenofon Koutsoukos. “Resilient Multi-Robot Target

Pursuit”. In: Hot Topics in the Science of Security Symposium (HotSoS ’20). 2020.

[6] Waseem Abbas, Mudassir Shabbir, Jiani Li, and Xenofon D. Koutsoukos. “Interplay Between Re-

silience and Accuracy in Resilient Vector Consensus in Multi-Agent Networks”. In: 59th IEEE Con-

ference on Decision and Control, CDC 2020, Jeju Island, South Korea, December 14-18, 2020. IEEE,

2020, pp. 3127–3132. URL: https://doi.org/10.1109/CDC42340.2020.9304098.

[7] Jiani Li, Waseem Abbas, and Xenofon D. Koutsoukos. “Byzantine Resilient Distributed Multi-Task

Learning”. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems (NeurIPS) 2020, December 6-12. 2020. URL: https://proceedings.

neurips.cc/paper/2020/hash/d37eb50d868361ea729bb4147eb3c1d8-Abstract.html.

[8] Feiyang Cai, Jiani Li, and X. Koutsoukos. “Detecting Adversarial Examples in Learning-Enabled

Cyber-Physical Systems using Variational Autoencoder for Regression”. In: 2020 IEEE Security and

Privacy Workshops (SPW) (2020), pp. 208–214.

[9] Xingyu Zhou, Yi Li, Carlos A. Barreto, Jiani Li, Peter Volgyesi, Himanshu Neema, and Xenofon

Koutsoukos. “Evaluating Resilience of Grid Load Predictions under Stealthy Adversarial Attacks”.

In: 2019 Resilience Week (RWS). Vol. 1. 2019, pp. 206–212. DOI: 10.1109/RWS47064.2019.8971816.

157

https://doi.org/10.1109/DCOSS.2018.00020
https://doi.org/10.1109/DCOSS.2018.00020
https://doi.org/10.1109/TSIPN.2019.2957731
https://doi.org/10.23919/ACC45564.2020.9147441
https://doi.org/10.15607/RSS.2020.XVI.021
https://doi.org/10.1109/CDC42340.2020.9304098
https://proceedings.neurips.cc/paper/2020/hash/d37eb50d868361ea729bb4147eb3c1d8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d37eb50d868361ea729bb4147eb3c1d8-Abstract.html
https://doi.org/10.1109/RWS47064.2019.8971816

[10] S. Kar and J. M. F. Moura. “Sensor Networks With Random Links: Topology Design for Distributed

Consensus”. In: IEEE Transactions on Signal Processing 56.7 (July 2008), pp. 3315–3326. ISSN:

1053-587X. DOI: 10.1109/TSP.2008.920143.

[11] S. Chouvardas, K. Slavakis, and S. Theodoridis. “Adaptive Robust Distributed Learning in Diffusion

Sensor Networks”. In: IEEE Transactions on Signal Processing 59.10 (Oct. 2011), pp. 4692–4707.

ISSN: 1053-587X. DOI: 10.1109/TSP.2011.2161474.

[12] S. Markovich-Golan, A. Bertrand, M. Moonen, and S. Gannot. “Optimal distributed minimum-variance

beamforming approaches for speech enhancement in wireless acoustic sensor networks”. In: Signal

Processing 107 (2015), pp. 4–20.

[13] Le Xie, Dae-Hyun Choi, and Soummya Kar. “Cooperative distributed state estimation: Local observ-

ability relaxed”. In: Power and Energy Society General Meeting, 2011 IEEE. IEEE. 2011, pp. 1–

11.

[14] Yuan Chen, Soummya Kar, and José M. F. Moura. “Resilient Distributed Estimation: Exponential

Convergence Under Sensor Attacks”. In: 57th IEEE Conference on Decision and Control. Miami,

FL, December 17-19, 2018, pp. 7275–7282.

[15] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S. Talwalkar. “Federated Multi-Task

Learning”. In: Advances in Neural Information Processing Systems, Long Beach, CA, USA. 2017,

pp. 4424–4434. URL: http://papers.nips.cc/paper/7029-federated-multi-task-learning.

[16] Ali H. Sayed, Sheng-Yuan Tu, Jianshu Chen, Xiaochuan Zhao, and Zaid J. Towfic. “Diffusion Strate-

gies for Adaptation and Learning over Networks: An Examination of Distributed Strategies and Net-

work Behavior.” In: IEEE Signal Processing Magazine 30.3 (2013), pp. 155–171.

[17] Heath LeBlanc, Haotian Zhang, Xenofon D. Koutsoukos, and Shreyas Sundaram. “Resilient Asymp-

totic Consensus in Robust Networks”. In: IEEE Journal on Selected Areas in Communications 31.4

(2013), pp. 766–781.

[18] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. “Machine Learning with

Adversaries: Byzantine Tolerant Gradient Descent”. In: Annual Conference on Neural Information

Processing Systems. 2017, pp. 118–128.

[19] F. Pasqualetti, A. Bicchi, and F. Bullo. “Consensus Computation in Unreliable Networks: A System

Theoretic Approach”. In: IEEE Transactions on Automatic Control 57.1 (Jan. 2012), pp. 90–104.

ISSN: 2334-3303. DOI: 10.1109/TAC.2011.2158130.

158

https://doi.org/10.1109/TSP.2008.920143
https://doi.org/10.1109/TSP.2011.2161474
http://papers.nips.cc/paper/7029-federated-multi-task-learning
https://doi.org/10.1109/TAC.2011.2158130

[20] Iman Shames, AndrÃ© M.H. Teixeira, Henrik Sandberg, and Karl H. Johansson. “Distributed fault

detection for interconnected second-order systems”. In: Automatica 47.12 (2011), pp. 2757 –2764.

[21] Yuan Chen, Soummya Kar, and José M. F. Moura. “Adversary Detection and Resilient Distributed

Estimation of Parameters from Compact Sets”. In: IEEE Transactions on Signal Processing. 2016.

URL: https://arxiv.org/abs/1701.00878.

[22] Nitin H. Vaidya and Vijay K. Garg. “Byzantine Vector Consensus in Complete Graphs”. In: Proceed-

ings of the 2013 ACM Symposium on Principles of Distributed Computing (PODC). ACM, 2013,

pp. 65–73.

[23] Hammurabi Mendes, Maurice Herlihy, Nitin H. Vaidya, and Vijay K. Garg. “Multidimensional agree-

ment in Byzantine systems”. In: Distributed Comput. 28.6 (2015), pp. 423–441.

[24] Xavier Défago, Maria Gradinariu, Stéphane Messika, and Philippe Raipin-Parvédy. “Fault-Tolerant

and Self-stabilizing Mobile Robots Gathering”. In: Distributed Computing. Ed. by Shlomi Dolev.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 46–60. ISBN: 978-3-540-44627-9.

[25] S. Sundaram and C. N. Hadjicostis. “Distributed Function Calculation via Linear Iterative Strategies

in the Presence of Malicious Agents”. In: IEEE Transactions on Automatic Control 56.7 (July 2011),

pp. 1495–1508. ISSN: 2334-3303. DOI: 10.1109/TAC.2010.2088690.

[26] Nitin H. Vaidya, Lewis Tseng, and Guanfeng Liang. “Iterative approximate byzantine consensus in

arbitrary directed graphs”. In: PODC ’12. 2012.

[27] Lewis Tseng and Nitin Vaidya. “Iterative approximate byzantine consensus under a generalized fault

model”. In: International Conference on Distributed Computing and Networking. Springer. 2013,

pp. 72–86.

[28] Hammurabi Mendes and Maurice Herlihy. “Multidimensional approximate agreement in Byzantine

asynchronous systems”. In: 45th Annual ACM Symposium on Theory of Computing. 2013, pp. 391–

400.

[29] El Mahdi El Mhamdi, Rachid Guerraoui, Arsany Guirguis, and Sebastien Rouault. “SGD: Decen-

tralized Byzantine Resilience”. In: CoRR abs/1905.03853 (2019). arXiv: 1905 . 03853. URL: http :

//arxiv.org/abs/1905.03853.

[30] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl. “Reaching

approximate agreement in the presence of faults”. In: J. ACM 33.3 (1986), pp. 499–516. DOI: 10.

1145/5925.5931. URL: https://doi.org/10.1145/5925.5931.

159

https://arxiv.org/abs/1701.00878
https://doi.org/10.1109/TAC.2010.2088690
https://arxiv.org/abs/1905.03853
http://arxiv.org/abs/1905.03853
http://arxiv.org/abs/1905.03853
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/5925.5931

[31] H. Zhang and S. Sundaram. “A simple median-based resilient consensus algorithm”. In: 2012 50th

Annual Allerton Conference on Communication, Control, and Computing (Allerton). Oct. 2012, pp. 1734–

1741. DOI: 10.1109/Allerton.2012.6483431.

[32] Hyongju Park and Seth A Hutchinson. “Fault-tolerant rendezvous of multirobot systems”. In: IEEE

Transactions on Robotics 33 (2017), pp. 565–582.

[33] Nitin H Vaidya. “Iterative byzantine vector consensus in incomplete graphs”. In: International Con-

ference on Distributed Computing and Networking. Springer. 2014, pp. 14–28.

[34] Lili Su and Nitin H Vaidya. “Fault-tolerant multi-agent optimization: optimal iterative distributed

algorithms”. In: ACM Symposium on Principles of Distributed Computing. 2016, pp. 425–434.

[35] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. “Randomized gossip algorithms”. In: IEEE Transac-

tions on Information Theory 52.6 (June 2006), pp. 2508–2530. ISSN: 1557-9654. DOI: 10.1109/TIT.

2006.874516.

[36] Waseem Abbas, Aron Laszka, and Xenofon Koutsoukos. “Improving network connectivity and ro-

bustness using trusted nodes with application to resilient consensus”. In: IEEE Transactions on Con-

trol of Network Systems 5.4 (2018), pp. 2036–2048.

[37] Faiq Ghawash and Waseem Abbas. “Leveraging Diversity for Achieving Resilient Consensus in

Sparse Networks”. In: 8th IFAC Workshop on Distributed Estimation and Control in Networked Sys-

tems (NecSys). 2019.

[38] David Saldana, Amanda Prorok, Mario FM Campos, and Vijay Kumar. “Triangular Networks for Re-

silient Formations”. In: 13th International Symposium on Distributed Autonomous Robotic Systems.

2016.

[39] A. Pilloni, A. Pisano, M. Franceschelli, and E. Usai. “Robust distributed consensus on the median

value for networks of heterogeneously perturbed agents”. In: 2016 IEEE 55th Conference on Decision

and Control (CDC). Dec. 2016, pp. 6952–6957. DOI: 10.1109/CDC.2016.7799340.

[40] Mauro Franceschelli, Alessandro Giua, and Alessandro Pisano. “Finite-Time Consensus on the Me-

dian Value With Robustness Properties”. In: IEEE Transactions on Automatic Control 62 (2017),

pp. 1652–1667.

[41] Luis Guerrero-Bonilla, Amanda Prorok, and Vijay Kumar. “Formations for Resilient Robot Teams”.

In: IEEE Robotics and Automation Letters 2.2 (2017), pp. 841–848.

160

https://doi.org/10.1109/Allerton.2012.6483431
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1109/CDC.2016.7799340

[42] Kelsey Saulnier, David Saldana, Amanda Prorok, George J. Pappas, and Vijay Kumar. “Resilient

Flocking for Mobile Robot Teams”. In: IEEE Robotics and Automation Letters 2.2 (2017), pp. 1039–

1046. DOI: 10.1109/LRA.2017.2655142.

[43] Wolfgang Mulzer and Daniel Werner. “Approximating Tverberg Points in Linear Time for Any Fixed

Dimension”. In: CoRR abs/1107.0104 (2011). arXiv: 1107.0104. URL: http://arxiv.org/abs/1107.

0104.

[44] Xuan Wang, Shaoshuai Mou, and Shreyas Sundaram. “A resilient convex combination for consensus-

based distributed algorithms”. In: Numerical Algebra, Control & Optimization 9 (2019), p. 269.

[45] S. M. Dibaji, H. Ishii, and R. Tempo. “Resilient randomized quantized consensus”. In: 2016 American

Control Conference (ACC). July 2016, pp. 5118–5123. DOI: 10.1109/ACC.2016.7526165.

[46] Marc Casas, Wilfried N Gansterer, and Elias Wimmer. “Resilient gossip-inspired all-reduce algo-

rithms for high-performance computing: Potential, limitations, and open questions”. In: The In-

ternational Journal of High Performance Computing Applications 33.2 (2019), pp. 366–383. DOI:

10 . 1177 / 1094342018762531. eprint: https : / / doi . org / 10 . 1177 / 1094342018762531. URL: https :

//doi.org/10.1177/1094342018762531.

[47] Wilfried N. Gansterer, Gerhard Niederbrucker, Hana StrakovÃ¡, and Stefan Schulze Grotthoff. “Scal-

able and fault tolerant orthogonalization based on randomized distributed data aggregation”. In: Jour-

nal of Computational Science 4.6 (2013). Scalable Algorithms for Large-Scale Systems Workshop

(ScalA2011), Supercomputing 2011, pp. 480 –488. ISSN: 1877-7503. DOI: https://doi.org/10.1016/j.

jocs.2013.01.006. URL: http://www.sciencedirect.com/science/article/pii/S1877750313000185.

[48] Jakub Konecný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and

Dave Bacon. “Federated Learning: Strategies for Improving Communication Efficiency”. In: CoRR

abs/1610.05492 (2016). arXiv: 1610.05492. URL: http://arxiv.org/abs/1610.05492.

[49] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. “A Public

Domain Dataset for Human Activity Recognition using Smartphones”. In: 21st European Symposium

on Artificial Neural Networks, ESANN 2013, Bruges, Belgium, April 24-26, 2013. 2013. URL: http:

//www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf.

[50] Kai Yang, Tao Jiang, Yuanming Shi, and Zhi Ding. “Federated Learning via Over-the-Air Computa-

tion”. In: CoRR abs/1812.11750 (2018). arXiv: 1812.11750. URL: http://arxiv.org/abs/1812.11750.

161

https://doi.org/10.1109/LRA.2017.2655142
https://arxiv.org/abs/1107.0104
http://arxiv.org/abs/1107.0104
http://arxiv.org/abs/1107.0104
https://doi.org/10.1109/ACC.2016.7526165
https://doi.org/10.1177/1094342018762531
https://doi.org/10.1177/1094342018762531
https://doi.org/10.1177/1094342018762531
https://doi.org/10.1177/1094342018762531
https://doi.org/https://doi.org/10.1016/j.jocs.2013.01.006
https://doi.org/https://doi.org/10.1016/j.jocs.2013.01.006
http://www.sciencedirect.com/science/article/pii/S1877750313000185
https://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf
https://arxiv.org/abs/1812.11750
http://arxiv.org/abs/1812.11750

[51] Yiqiang Chen, Jindong Wang, Chaohui Yu, Wen Gao, and Xin Qin. “FedHealth: A Federated Trans-

fer Learning Framework for Wearable Healthcare”. In: CoRR abs/1907.09173 (2019). arXiv: 1907.

09173. URL: http://arxiv.org/abs/1907.09173.

[52] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. “Byzantine-Robust Distributed

Learning: Towards Optimal Statistical Rates”. In: Proceedings of the 35th International Conference

on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. 2018,

pp. 5636–5645. URL: http://proceedings.mlr.press/v80/yin18a.html.

[53] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. “Generalized Byzantine-tolerant SGD”. In:

CoRR abs/1802.10116 (2018). arXiv: 1802.10116. URL: http://arxiv.org/abs/1802.10116.

[54] Cong Xie, Sanmi Koyejo, and Indranil Gupta. “Zeno: Distributed Stochastic Gradient Descent with

Suspicion-based Fault-tolerance”. In: Proceedings of the 36th International Conference on Machine

Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. 2019, pp. 6893–6901. URL:

http://proceedings.mlr.press/v97/xie19b.html.

[55] Nikola Konstantinov and Christoph Lampert. “Robust Learning from Untrusted Sources”. In: ICML.

2019.

[56] Changjian Shui, Mahdieh Abbasi, Louis-Émile Robitaille, Boyu Wang, and Christian Gagné. “A

Principled Approach for Learning Task Similarity in Multitask Learning”. In: IJCAI. 2019.

[57] Zhixiong Yang and Waheed U. Bajwa. “ByRDiE: Byzantine-Resilient Distributed Coordinate De-

scent for Decentralized Learning”. In: IEEE Trans. Signal and Information Processing over Networks

5.4 (2019), pp. 611–627. DOI: 10.1109/TSIPN.2019.2928176. URL: https://doi.org/10.1109/TSIPN.

2019.2928176.

[58] Venkata Krishna Pillutla, Sham M. Kakade, and Zaı̈d Harchaoui. “Robust Aggregation for Federated

Learning”. In: CoRR abs/1912.13445 (2019). arXiv: 1912.13445.

[59] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. “Clustered Federated Learning: Model-

Agnostic Distributed Multi-Task Optimization under Privacy Constraints”. In: ArXiv abs/1910.01991

(2019).

[60] X. Zhao and A. H. Sayed. “Clustering via diffusion adaptation over networks”. In: 2012 3rd Interna-

tional Workshop on Cognitive Information Processing. May 2012, pp. 1–6. DOI: 10.1109/CIP.2012.

6232902.

[61] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. “Peer-to-peer Federated

Learning on Graphs”. In: ArXiv abs/1901.11173 (2019).

162

https://arxiv.org/abs/1907.09173
https://arxiv.org/abs/1907.09173
http://arxiv.org/abs/1907.09173
http://proceedings.mlr.press/v80/yin18a.html
https://arxiv.org/abs/1802.10116
http://arxiv.org/abs/1802.10116
http://proceedings.mlr.press/v97/xie19b.html
https://doi.org/10.1109/TSIPN.2019.2928176
https://doi.org/10.1109/TSIPN.2019.2928176
https://doi.org/10.1109/TSIPN.2019.2928176
https://arxiv.org/abs/1912.13445
https://doi.org/10.1109/CIP.2012.6232902
https://doi.org/10.1109/CIP.2012.6232902

[62] Yudong Chen, Lili Su, and Jiaming Xu. “Distributed Statistical Machine Learning in Adversarial

Settings: Byzantine Gradient Descent”. In: Proc. ACM Meas. Anal. Comput. Syst. 1.2 (Dec. 2017),

44:1–44:25. ISSN: 2476-1249. DOI: 10.1145/3154503. URL: http://doi.acm.org/10.1145/3154503.

[63] Haibo Yang, Xin Zhang, Minghong Fang, and Jia Liu. “Byzantine-Resilient Stochastic Gradient De-

scent for Distributed Learning: A Lipschitz-Inspired Coordinate-wise Median Approach”. In: CoRR

abs/1909.04532 (2019). arXiv: 1909.04532. URL: http://arxiv.org/abs/1909.04532.

[64] Xiangyi Chen, Tiancong Chen, Haoran Sun, Zhiwei Steven Wu, and Mingyi Hong. “Distributed

Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms”. In: CoRR abs/1906.01736

(2019). arXiv: 1906.01736. URL: http://arxiv.org/abs/1906.01736.

[65] Jeff Daily, Abhinav Vishnu, Charles Siegel, Thomas Warfel, and Vinay Amatya. “GossipGraD: Scal-

able Deep Learning using Gossip Communication based Asynchronous Gradient Descent”. In: CoRR

abs/1803.05880 (2018). arXiv: 1803.05880. URL: http://arxiv.org/abs/1803.05880.

[66] Cong Xie, Sanmi Koyejo, and Indranil Gupta. “Asynchronous Federated Optimization”. In: CoRR

abs/1903.03934 (2019). arXiv: 1903.03934. URL: http://arxiv.org/abs/1903.03934.

[67] José Pereira and Laura Ricci, eds. Distributed Applications and Interoperable Systems - 19th IFIP WG

6.1 International Conference, DAIS 2019, Held as Part of the 14th International Federated Confer-

ence on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17-21,

2019, Proceedings. Vol. 11534. Lecture Notes in Computer Science. Springer, 2019. ISBN: 978-3-

030-22495-0. DOI: 10.1007/978-3-030-22496-7. URL: https://doi.org/10.1007/978-3-030-22496-7.

[68] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. “Decentralized Collaborative Learning

of Personalized Models over Networks”. In: Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA.

2017, pp. 509–517. URL: http://proceedings.mlr.press/v54/vanhaesebrouck17a.html.

[69] Ali H. Sayed, Sheng-Yuan Tu, Jianshu Chen, Xiaochuan Zhao, and Zaid J. Towfic. “Diffusion Strate-

gies for Adaptation and Learning over Networks: An Examination of Distributed Strategies and Net-

work Behavior”. In: IEEE Signal Processing Magazine 30.3 (2013), pp. 155–171. DOI: 10 .1109 /

MSP.2012.2231991.

[70] Ali H. Sayed. “Adaptive Networks”. In: Proceedings of the IEEE 102.4 (2014), pp. 460–497. DOI:

10.1109/JPROC.2014.2306253.

163

https://doi.org/10.1145/3154503
http://doi.acm.org/10.1145/3154503
https://arxiv.org/abs/1909.04532
http://arxiv.org/abs/1909.04532
https://arxiv.org/abs/1906.01736
http://arxiv.org/abs/1906.01736
https://arxiv.org/abs/1803.05880
http://arxiv.org/abs/1803.05880
https://arxiv.org/abs/1903.03934
http://arxiv.org/abs/1903.03934
https://doi.org/10.1007/978-3-030-22496-7
https://doi.org/10.1007/978-3-030-22496-7
http://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://doi.org/10.1109/MSP.2012.2231991
https://doi.org/10.1109/MSP.2012.2231991
https://doi.org/10.1109/JPROC.2014.2306253

[71] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. “Communication-

Efficient Learning of Deep Networks from Decentralized Data”. In: Proceedings of the 20th Inter-

national Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort

Lauderdale, FL, USA. 2017, pp. 1273–1282. URL: http://proceedings.mlr.press/v54/mcmahan17a.

html.

[72] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. “Machine Learning with

Adversaries: Byzantine Tolerant Gradient Descent”. In: Advances in Neural Information Processing

Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett. Vol. 30. Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/paper/2017/

file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf.

[73] Ali H. Sayed. “Adaptation, Learning, and Optimization over Networks”. In: Found. Trends Mach.

Learn. 7.4-5 (2014), pp. 311–801. DOI: 10 . 1561 / 2200000051. URL: https : / / doi . org / 10 . 1561 /

2200000051.

[74] Nirupam Gupta and Nitin H. Vaidya. “Byzantine Fault Tolerant Distributed Linear Regression”. In:

CoRR abs/1903.08752 (2019). arXiv: 1903.08752. URL: http://arxiv.org/abs/1903.08752.

[75] L. Su and N. H. Vaidya. “Byzantine-Resilient Multi-Agent Optimization”. In: IEEE Transactions on

Automatic Control (2020).

[76] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. “The Hidden Vulnerability of Dis-

tributed Learning in Byzantium”. In: Proceedings of the 35th International Conference on Machine

Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. 2018, pp. 3518–

3527. URL: http://proceedings.mlr.press/v80/mhamdi18a.html.

[77] El-Mahdi El-Mhamdi and Rachid Guerraoui. “Fast and Secure Distributed Learning in High Dimen-

sion”. In: CoRR abs/1905.04374 (2019). arXiv: 1905.04374. URL: http://arxiv.org/abs/1905.04374.

[78] Gilad Baruch, Moran Baruch, and Yoav Goldberg. “A Little Is Enough: Circumventing Defenses For

Distributed Learning”. In: Advances in Neural Information Processing Systems 32: Annual Confer-

ence on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancou-

ver, BC, Canada. 2019, pp. 8632–8642. URL: http://papers.nips.cc/paper/9069-a-little-is-enough-

circumventing-defenses-for-distributed-learning.

[79] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. “Fall of Empires: Breaking Byzantine-tolerant

SGD by Inner Product Manipulation”. In: Proceedings of the Thirty-Fifth Conference on Uncertainty

164

http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://doi.org/10.1561/2200000051
https://doi.org/10.1561/2200000051
https://doi.org/10.1561/2200000051
https://arxiv.org/abs/1903.08752
http://arxiv.org/abs/1903.08752
http://proceedings.mlr.press/v80/mhamdi18a.html
https://arxiv.org/abs/1905.04374
http://arxiv.org/abs/1905.04374
http://papers.nips.cc/paper/9069-a-little-is-enough-circumventing-defenses-for-distributed-learning
http://papers.nips.cc/paper/9069-a-little-is-enough-circumventing-defenses-for-distributed-learning

in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019. 2019, p. 83. URL: http://auai.

org/uai2019/proceedings/papers/83.pdf.

[80] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. “Local Model Poisoning At-

tacks to Byzantine-Robust Federated Learning”. In: CoRR abs/1911.11815 (2019). arXiv: 1911 .

11815. URL: http://arxiv.org/abs/1911.11815.

[81] Lingjiao Chen, Hongyi Wang, Zachary B. Charles, and Dimitris S. Papailiopoulos. “DRACO: Byzantine-

resilient Distributed Training via Redundant Gradients”. In: Proceedings of the 35th International

Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,

2018. 2018, pp. 902–911. URL: http://proceedings.mlr.press/v80/chen18l.html.

[82] Shashank Rajput, Hongyi Wang, Zachary B. Charles, and Dimitris S. Papailiopoulos. “DETOX:

A Redundancy-based Framework for Faster and More Robust Gradient Aggregation”. In: CoRR

abs/1907.12205 (2019). eprint: 1907.12205.

[83] Deepesh Data, Linqi Song, and Suhas N. Diggavi. “Data Encoding Methods for Byzantine-Resilient

Distributed Optimization”. In: IEEE International Symposium on Information Theory (ISIT). 2019,

pp. 2719–2723. DOI: 10.1109/ISIT.2019.8849857.

[84] Liping Li, Wei Xu, Tianyi Chen, Georgios B. Giannakis, and Qing Ling. “RSA: Byzantine-Robust

Stochastic Aggregation Methods for Distributed Learning from Heterogeneous Datasets”. In: The

Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Ap-

plications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educa-

tional Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February

1, 2019. 2019, pp. 1544–1551. DOI: 10.1609/aaai.v33i01.33011544. URL: https://doi.org/10.1609/

aaai.v33i01.33011544.

[85] Rich Caruana. “Multitask Learning”. In: Mach. Learn. 28.1 (1997), pp. 41–75. DOI: 10 .1023 /A:

1007379606734. URL: https://doi.org/10.1023/A:1007379606734.

[86] Sebastian Ruder. “An Overview of Multi-Task Learning in Deep Neural Networks”. In: CoRR abs/1706.05098

(2017). arXiv: 1706.05098. URL: http://arxiv.org/abs/1706.05098.

[87] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S. Yu. “Learning Multiple Tasks with

Multilinear Relationship Networks”. In: Advances in Neural Information Processing Systems, Long

Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob

Fergus, S. V. N. Vishwanathan, and Roman Garnett. 2017, pp. 1594–1603. URL: http://papers.nips.

cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks.

165

http://auai.org/uai2019/proceedings/papers/83.pdf
http://auai.org/uai2019/proceedings/papers/83.pdf
https://arxiv.org/abs/1911.11815
https://arxiv.org/abs/1911.11815
http://arxiv.org/abs/1911.11815
http://proceedings.mlr.press/v80/chen18l.html
1907.12205
https://doi.org/10.1109/ISIT.2019.8849857
https://doi.org/10.1609/aaai.v33i01.33011544
https://doi.org/10.1609/aaai.v33i01.33011544
https://doi.org/10.1609/aaai.v33i01.33011544
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks
http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks

[88] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. “Cross-Stitch Networks for

Multi-task Learning”. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,

NV, USA. 2016, pp. 3994–4003. DOI: 10.1109/CVPR.2016.433. URL: https://doi.org/10.1109/CVPR.

2016.433.

[89] Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. “A Joint Many-Task

Model: Growing a Neural Network for Multiple NLP Tasks”. In: Proceedings of the 2017 Confer-

ence on Empirical Methods in Natural Language Processing, Copenhagen, Denmark. Ed. by Martha

Palmer, Rebecca Hwa, and Sebastian Riedel. 2017, pp. 1923–1933. DOI: 10.18653/v1/d17- 1206.

URL: https://doi.org/10.18653/v1/d17-1206.

[90] Alex Kendall, Yarin Gal, and Roberto Cipolla. “Multi-Task Learning Using Uncertainty to Weigh

Losses for Scene Geometry and Semantics”. In: IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA. IEEE Computer Society, 2018, pp. 7482–7491. DOI: 10.1109/

CVPR.2018.00781. URL: http://openaccess.thecvf.com/content\ cvpr\ 2018/html/Kendall\ Multi-

Task\ Learning\ Using\ CVPR\ 2018\ paper.html.

[91] Theodoros Evgeniou and Massimiliano Pontil. “Regularized multi–task learning”. In: Proceedings of

the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle,

Washington, USA. 2004, pp. 109–117. DOI: 10.1145/1014052.1014067. URL: https://doi.org/10.1145/

1014052.1014067.

[92] Jiayu Zhou, Jianhui Chen, and Jieping Ye. “Clustered Multi-Task Learning Via Alternating Struc-

ture Optimization”. In: Advances in Neural Information Processing Systems, Granada, Spain. 2011,

pp. 702–710. URL: http://papers.nips.cc/paper/4292-clustered-multi-task-learning-via-alternating-

structure-optimization.

[93] Jianhui Chen, Jiayu Zhou, and Jieping Ye. “Integrating low-rank and group-sparse structures for

robust multi-task learning”. In: Proceedings of the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, San Diego, CA, USA. 2011, pp. 42–50. DOI: 10.1145/

2020408.2020423. URL: https://doi.org/10.1145/2020408.2020423.

[94] Laurent Jacob, Francis R. Bach, and Jean-Philippe Vert. “Clustered Multi-Task Learning: A Convex

Formulation”. In: Advances in Neural Information Processing Systems, Vancouver, British Columbia,

Canada. 2008, pp. 745–752. URL: http://papers.nips.cc/paper/3499-clustered-multi-task-learning-a-

convex-formulation.

166

https://doi.org/10.1109/CVPR.2016.433
https://doi.org/10.1109/CVPR.2016.433
https://doi.org/10.1109/CVPR.2016.433
https://doi.org/10.18653/v1/d17-1206
https://doi.org/10.18653/v1/d17-1206
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/CVPR.2018.00781
http://openaccess.thecvf.com/content_cvpr_2018/html/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.html
https://doi.org/10.1145/1014052.1014067
https://doi.org/10.1145/1014052.1014067
https://doi.org/10.1145/1014052.1014067
http://papers.nips.cc/paper/4292-clustered-multi-task-learning-via-alternating-structure-optimization
http://papers.nips.cc/paper/4292-clustered-multi-task-learning-via-alternating-structure-optimization
https://doi.org/10.1145/2020408.2020423
https://doi.org/10.1145/2020408.2020423
https://doi.org/10.1145/2020408.2020423
http://papers.nips.cc/paper/3499-clustered-multi-task-learning-a-convex-formulation
http://papers.nips.cc/paper/3499-clustered-multi-task-learning-a-convex-formulation

[95] Yu Zhang and Dit-Yan Yeung. “A Convex Formulation for Learning Task Relationships in Multi-Task

Learning”. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, Catalina

Island, CA, USA. 2010, pp. 733–442. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=

1\&smnu=2\&article\ id=2117\&proceeding\ id=26.

[96] Avishek Saha, Piyush Rai, Hal Daumé III, and Suresh Venkatasubramanian. “Online Learning of

Multiple Tasks and Their Relationships”. In: Proceedings of the 14th International Conference on Ar-

tificial Intelligence and Statistics, Fort Lauderdale, USA. 2011, pp. 643–651. URL: http://proceedings.

mlr.press/v15/saha11b/saha11b.pdf.

[97] J. Chen, C. Richard, and A. H. Sayed. “Diffusion LMS Over Multitask Networks”. In: IEEE Trans-

actions on Signal Processing 63.11 (June 2015), pp. 2733–2748. ISSN: 1053-587X. DOI: 10.1109/

TSP.2015.2412918.

[98] Keerthiram Murugesan, Hanxiao Liu, Jaime G. Carbonell, and Yiming Yang. “Adaptive Smoothed

Online Multi-Task Learning”. In: Advances in Neural Information Processing Systems, Barcelona,

Spain. 2016, pp. 4296–4304. URL: http://papers.nips.cc/paper/6434- adaptive- smoothed- online-

multi-task-learning.

[99] Keerthiram Murugesan and Jaime G. Carbonell. “Active Learning from Peers”. In: Advances in Neu-

ral Information Processing Systems, Long Beach, CA, USA. 2017, pp. 7008–7017. URL: http://papers.

nips.cc/paper/7276-active-learning-from-peers.

[100] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Lavi-

olette, Mario Marchand, and Victor Lempitsky. “Domain-Adversarial Training of Neural Networks”.

In: J. Mach. Learn. Res. 17.1 (Jan. 2016), 2096–2030. ISSN: 1532-4435.

[101] Yitong Li, michael Murias, geraldine Dawson, and David E Carlson. “Extracting Relationships by

Multi-Domain Matching”. In: Advances in Neural Information Processing Systems 31. Ed. by S.

Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates,

Inc., 2018, pp. 6798–6809. URL: http://papers.nips.cc/paper/7913-extracting-relationships-by-multi-

domain-matching.pdf.

[102] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and

Angela Y. Wu. “An Efficient k-Means Clustering Algorithm: Analysis and Implementation”. In: IEEE

Trans. Pattern Anal. Mach. Intell. 24.7 (2002), pp. 881–892. DOI: 10.1109/TPAMI.2002.1017616.

URL: https://doi.org/10.1109/TPAMI.2002.1017616.

167

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1\&smnu=2\&article_id=2117\&proceeding_id=26
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1\&smnu=2\&article_id=2117\&proceeding_id=26
http://proceedings.mlr.press/v15/saha11b/saha11b.pdf
http://proceedings.mlr.press/v15/saha11b/saha11b.pdf
https://doi.org/10.1109/TSP.2015.2412918
https://doi.org/10.1109/TSP.2015.2412918
http://papers.nips.cc/paper/6434-adaptive-smoothed-online-multi-task-learning
http://papers.nips.cc/paper/6434-adaptive-smoothed-online-multi-task-learning
http://papers.nips.cc/paper/7276-active-learning-from-peers
http://papers.nips.cc/paper/7276-active-learning-from-peers
http://papers.nips.cc/paper/7913-extracting-relationships-by-multi-domain-matching.pdf
http://papers.nips.cc/paper/7913-extracting-relationships-by-multi-domain-matching.pdf
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/TPAMI.2002.1017616

[103] X. Zhao and A. H. Sayed. “Distributed Clustering and Learning Over Networks”. In: IEEE Transac-

tions on Signal Processing 63.13 (July 2015), pp. 3285–3300. ISSN: 1053-587X. DOI: 10.1109/TSP.

2015.2415755.

[104] S. Khawatmi, A. M. Zoubir, and A. H. Sayed. “Decentralized clustering over adaptive networks”. In:

2015 23rd European Signal Processing Conference (EUSIPCO). Aug. 2015, pp. 2696–2700. DOI:

10.1109/EUSIPCO.2015.7362874.

[105] J. Chen, C. Richard, and A. H. Sayed. “Multitask Diffusion Adaptation Over Networks”. In: IEEE

Transactions on Signal Processing 62.16 (Aug. 2014), pp. 4129–4144. ISSN: 1053-587X. DOI: 10.

1109/TSP.2014.2333560.

[106] Mingbao Lin, Rongrong Ji, Shen Chen, Feng Zheng, Xiaoshuai Sun, Baochang Zhang, Liujuan Cao,

Guodong Guo, and Feiyue Huang. “Supervised Online Hashing via Similarity Distribution Learning”.

In: CoRR abs/1905.13382 (2019). arXiv: 1905.13382. URL: http://arxiv.org/abs/1905.13382.

[107] A. Feinberg. “Markov Decision Processes: Discrete Stochastic Dynamic Programming (Martin L.

Puterman)”. In: SIAM Review 38.4 (1996), p. 689. DOI: 10.1137/1038137. URL: https://doi.org/10.

1137/1038137.

[108] Sergio Valcarcel Macua, Jianshu Chen, Santiago Zazo, and Ali H. Sayed. “Distributed Policy Evalu-

ation Under Multiple Behavior Strategies”. In: IEEE Trans. Automat. Contr. 60.5 (2015), pp. 1260–

1274. DOI: 10.1109/TAC.2014.2368731. URL: https://doi.org/10.1109/TAC.2014.2368731.

[109] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria,

Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, Shane Legg, Volodymyr

Mnih, Koray Kavukcuoglu, and David Silver. “Massively Parallel Methods for Deep Reinforcement

Learning”. In: CoRR abs/1507.04296 (2015). arXiv: 1507.04296. URL: http://arxiv.org/abs/1507.

04296.

[110] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. “Multi-Agent Reinforcement Learning: A Selective

Overview of Theories and Algorithms”. In: CoRR abs/1911.10635 (2019). arXiv: 1911.10635. URL:

http://arxiv.org/abs/1911.10635.

[111] Maria-Florina Balcan and Kilian Q. Weinberger, eds. Proceedings of the 33nd International Confer-

ence on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. Vol. 48. JMLR

Workshop and Conference Proceedings. JMLR.org, 2016. URL: http://proceedings.mlr.press/v48/.

168

https://doi.org/10.1109/TSP.2015.2415755
https://doi.org/10.1109/TSP.2015.2415755
https://doi.org/10.1109/EUSIPCO.2015.7362874
https://doi.org/10.1109/TSP.2014.2333560
https://doi.org/10.1109/TSP.2014.2333560
https://arxiv.org/abs/1905.13382
http://arxiv.org/abs/1905.13382
https://doi.org/10.1137/1038137
https://doi.org/10.1137/1038137
https://doi.org/10.1137/1038137
https://doi.org/10.1109/TAC.2014.2368731
https://doi.org/10.1109/TAC.2014.2368731
https://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1911.10635
http://arxiv.org/abs/1911.10635
http://proceedings.mlr.press/v48/

[112] Soummya Kar, José M. F. Moura, and H. Vincent Poor. “QD-Learning: A Collaborative Distributed

Strategy for Multi-Agent Reinforcement Learning Through Consensus + Innovations”. In: IEEE

Trans. Signal Process. 61.7 (2013), pp. 1848–1862. DOI: 10.1109/TSP.2013.2241057. URL: https:

//doi.org/10.1109/TSP.2013.2241057.

[113] Sergio Valcarcel Macua, Aleksi Tukiainen, Daniel Garcı́a-Ocaña Hernández, David Baldazo, Enrique

Munoz de Cote, and Santiago Zazo. “Diff-DAC: Distributed Actor-Critic for Multitask Deep Rein-

forcement Learning”. In: CoRR abs/1710.10363 (2017). arXiv: 1710.10363. URL: http://arxiv.org/

abs/1710.10363.

[114] Yee Whye Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirkpatrick, Raia Had-

sell, Nicolas Heess, and Razvan Pascanu. “Distral: Robust multitask reinforcement learning”. In:

Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information

Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA. 2017, pp. 4496–4506. URL:

http://papers.nips.cc/paper/7036-distral-robust-multitask-reinforcement-learning.

[115] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, and Zhen-

hui Li. “DRN: A Deep Reinforcement Learning Framework for News Recommendation”. In: Pro-

ceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France,

April 23-27, 2018. Ed. by Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagio-

tis G. Ipeirotis. ACM, 2018, pp. 167–176. DOI: 10.1145/3178876.3185994. URL: https://doi.org/10.

1145/3178876.3185994.

[116] A. Bodas, B. Upadhyay, C. Nadiger, and S. Abdelhak. “Reinforcement learning for game personaliza-

tion on edge devices”. In: 2018 International Conference on Information and Computer Technologies

(ICICT). 2018, pp. 119–122. DOI: 10.1109/INFOCT.2018.8356853.

[117] M. Mehdi Afsar, Trafford Crump, and Behrouz H. Far. “Reinforcement learning based recommender

systems: A survey”. In: CoRR abs/2101.06286 (2021). arXiv: 2101.06286. URL: https://arxiv.org/

abs/2101.06286.

[118] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan

Aru, and Raul Vicente. “Multiagent Cooperation and Competition with Deep Reinforcement Learn-

ing”. In: CoRR abs/1511.08779 (2015). arXiv: 1511.08779. URL: http://arxiv.org/abs/1511.08779.

[119] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. “Multi-Agent Actor-

Critic for Mixed Cooperative-Competitive Environments”. In: Advances in Neural Information Pro-

cessing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 De-

169

https://doi.org/10.1109/TSP.2013.2241057
https://doi.org/10.1109/TSP.2013.2241057
https://doi.org/10.1109/TSP.2013.2241057
https://arxiv.org/abs/1710.10363
http://arxiv.org/abs/1710.10363
http://arxiv.org/abs/1710.10363
http://papers.nips.cc/paper/7036-distral-robust-multitask-reinforcement-learning
https://doi.org/10.1145/3178876.3185994
https://doi.org/10.1145/3178876.3185994
https://doi.org/10.1145/3178876.3185994
https://doi.org/10.1109/INFOCT.2018.8356853
https://arxiv.org/abs/2101.06286
https://arxiv.org/abs/2101.06286
https://arxiv.org/abs/2101.06286
https://arxiv.org/abs/1511.08779
http://arxiv.org/abs/1511.08779

cember 2017, Long Beach, CA, USA. 2017, pp. 6379–6390. URL: http://papers.nips.cc/paper/7217-

multi-agent-actor-critic-for-mixed-cooperative-competitive-environments.

[120] Jakob N. Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip H. S. Torr, Push-

meet Kohli, and Shimon Whiteson. “Stabilising Experience Replay for Deep Multi-Agent Reinforce-

ment Learning”. In: Proceedings of the 34th International Conference on Machine Learning, ICML

2017, Sydney, NSW, Australia, 6-11 August 2017. 2017, pp. 1146–1155. URL: http://proceedings.mlr.

press/v70/foerster17b.html.

[121] Jiachen Yang, Alireza Nakhaei, David Isele, Hongyuan Zha, and Kikuo Fujimura. “CM3: Coopera-

tive Multi-goal Multi-stage Multi-agent Reinforcement Learning”. In: CoRR abs/1809.05188 (2018).

arXiv: 1809.05188. URL: http://arxiv.org/abs/1809.05188.

[122] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. “Learning to Com-

municate to Solve Riddles with Deep Distributed Recurrent Q-Networks”. In: CoRR abs/1602.02672

(2016). arXiv: 1602.02672. URL: http://arxiv.org/abs/1602.02672.

[123] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. “Learning to Com-

municate with Deep Multi-Agent Reinforcement Learning”. In: Advances in Neural Information Pro-

cessing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December

5-10, 2016, Barcelona, Spain. 2016, pp. 2137–2145. URL: http://papers.nips.cc/paper/6042-learning-

to-communicate-with-deep-multi-agent-reinforcement-learning.

[124] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. “Networked Multi-Agent Reinforcement Learning

in Continuous Spaces”. In: 57th IEEE Conference on Decision and Control, CDC 2018, Miami, FL,

USA, December 17-19, 2018. 2018, pp. 2771–2776. DOI: 10.1109/CDC.2018.8619581. URL: https:

//doi.org/10.1109/CDC.2018.8619581.

[125] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. “Fully Decentralized Multi-

Agent Reinforcement Learning with Networked Agents”. In: Proceedings of the 35th International

Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,

2018. 2018, pp. 5867–5876. URL: http://proceedings.mlr.press/v80/zhang18n.html.

[126] Yixuan Lin, Shripad Gade, Romeil Sandhu, and Ji Liu. “Toward Resilient Multi-Agent Actor-Critic

Algorithms for Distributed Reinforcement Learning”. In: 2020 American Control Conference, ACC

2020, Denver, CO, USA, July 1-3, 2020. IEEE, 2020, pp. 3953–3958. DOI: 10.23919/ACC45564.

2020.9147381. URL: https://doi.org/10.23919/ACC45564.2020.9147381.

170

http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments
http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments
http://proceedings.mlr.press/v70/foerster17b.html
http://proceedings.mlr.press/v70/foerster17b.html
https://arxiv.org/abs/1809.05188
http://arxiv.org/abs/1809.05188
https://arxiv.org/abs/1602.02672
http://arxiv.org/abs/1602.02672
http://papers.nips.cc/paper/6042-learning-to-communicate-with-deep-multi-agent-reinforcement-learning
http://papers.nips.cc/paper/6042-learning-to-communicate-with-deep-multi-agent-reinforcement-learning
https://doi.org/10.1109/CDC.2018.8619581
https://doi.org/10.1109/CDC.2018.8619581
https://doi.org/10.1109/CDC.2018.8619581
http://proceedings.mlr.press/v80/zhang18n.html
https://doi.org/10.23919/ACC45564.2020.9147381
https://doi.org/10.23919/ACC45564.2020.9147381
https://doi.org/10.23919/ACC45564.2020.9147381

[127] Yijing Xie, Shaoshuai Mou, and Shreyas Sundaram. “Towards Resilience for Multi-Agent QD-Learning”.

In: CoRR abs/2104.03153 (2021). arXiv: 2104.03153. URL: https://arxiv.org/abs/2104.03153.

[128] Waseem Abbas, Aron Laszka, and Xenofon Koutsoukos. “Improving network connectivity and ro-

bustness using trusted nodes with application to resilient consensus”. In: IEEE Transactions on Con-

trol of Network Systems 5.4 (2017), pp. 2036–2048.

[129] Lili Su and Nitin Vaidya. “Multi-agent optimization in the presence of byzantine adversaries: Funda-

mental limits”. In: 2016 American Control Conference (ACC). IEEE. 2016, pp. 7183–7188.

[130] Heath J LeBlanc, Haotian Zhang, Xenofon Koutsoukos, and Shreyas Sundaram. “Resilient asymp-

totic consensus in robust networks”. In: IEEE Journal on Selected Areas in Communications 31.4

(2013), pp. 766–781.

[131] Mudassir Shabbir. “Some results in computational and combinatorial geometry”. PhD thesis. Rutgers

University-New Brunswick, 2014.

[132] Nabil H Mustafa, Saurabh Ray, and Mudassir Shabbir. “k-Centerpoints Conjectures for Pointsets in

d”. In: International Journal of Computational Geometry & Applications 25.03 (2015), pp. 163–185.

[133] Helge Tverberg. “A generalization of Radon’s theorem”. In: Journal of the London Mathematical

Society 1.1 (1966), pp. 123–128.

[134] John R. Reay. “An extension of Radon’s theorem”. In: Illinois J. Math. 12.2 (June 1968), pp. 184–

189. DOI: 10.1215/ijm/1256054209.

[135] Jean-Pierre Roudneff. “New cases of Reay’s conjecture on partitions of points into simplices with

k-dimensional intersection”. In: European Journal of Combinatorics 30.8 (2009), pp. 1919–1943.

[136] Jean-Pierre Roudneff. “Partitions of points into intersecting tetrahedra”. In: Discrete Mathematics

81.1 (1990), pp. 81–86.

[137] Wolfgang Mulzer and Daniel Werner. “Approximating Tverberg points in linear time for any fixed

dimension”. In: Discrete & Computational Geometry 50.2 (2013), pp. 520–535.

[138] Richard Rado. “A theorem on general measure”. In: Journal of the London Mathematical Society 1.4

(1946), pp. 291–300.

[139] Jiřı́ Matoušek. Lectures on discrete geometry. Vol. 108. Springer, 2002.

[140] Shreesh Jadhav and Asish Mukhopadhyay. “Computing a centerpoint of a finite planar set of points

in linear time”. In: Discrete & Computational Geometry 12.3 (1994), pp. 291–312.

171

https://arxiv.org/abs/2104.03153
https://arxiv.org/abs/2104.03153
https://doi.org/10.1215/ijm/1256054209

[141] Nimrod Megiddo. “Partitioning with two lines in the plane”. In: Journal of Algorithms 6.3 (1985),

pp. 430 –433. ISSN: 0196-6774.

[142] Timothy M Chan. “An optimal randomized algorithm for maximum Tukey depth”. In: Proceedings of

the 15th annual ACM-SIAM Symposium on Discrete Slgorithms (SODA). SIAM. 2004, pp. 430–436.

[143] Bernard Chazelle. “Cutting hyperplanes for divide-and-conquer”. In: Discrete & Computational Ge-

ometry 9.2 (1993), pp. 145–158.

[144] Gary L Miller and Donald R Sheehy. “Approximate centerpoints with proofs”. In: Computational

Geometry 43.8 (2010), pp. 647–654.

[145] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. “Peer-to-peer Federated

Learning on Graphs”. In: CoRR abs/1901.11173 (2019). arXiv: 1901.11173. URL: http://arxiv.org/

abs/1901.11173.

[146] Jorge Plata-Chaves, Nikola Bogdanovic, and Kostas Berberidis. “Distributed Diffusion-Based LMS

for Node-Specific Adaptive Parameter Estimation”. In: IEEE Trans. Signal Processing 63.13 (2015),

pp. 3448–3460.

[147] Reza Abdolee, Stephan Saur, Benoı̂t Champagne, and Ali H. Sayed. “Diffusion LMS localization and

tracking algorithm for wireless cellular networks”. In: IEEE International Conference on Acoustics,

Speech and Signal Processing, (ICASSP). 2013, pp. 4598–4602.

[148] Xiaochuan Zhao and Ali H. Sayed. “Clustering via diffusion adaptation over networks”. In: 3rd In-

ternational Workshop on Cognitive Information Processing (CIP). 2012, pp. 1–6. DOI: 10.1109/CIP.

2012.6232902.

[149] S. Tu and A. H. Sayed. “Mobile Adaptive Networks”. In: IEEE Journal of Selected Topics in Signal

Processing 5.4 (Aug. 2011), pp. 649–664. DOI: 10.1109/JSTSP.2011.2125943.

[150] Roger M. Kieckhafer and Mohammad H. Azadmanesh. “Reaching Approximate Agreement with

Mixed-Mode Faults”. In: IEEE Trans. Parallel Distrib. Syst. 5.1 (1994), pp. 53–63. DOI: 10.1109/71.

262588. URL: https://doi.org/10.1109/71.262588.

[151] Nitin H. Vaidya, Lewis Tseng, and Guanfeng Liang. “Iterative approximate byzantine consensus in

arbitrary directed graphs”. In: ACM Symposium on Principles of Distributed Computing, PODC ’12,

Funchal, Madeira, Portugal, July 16-18, 2012. 2012, pp. 365–374. DOI: 10.1145/2332432.2332505.

URL: https://doi.org/10.1145/2332432.2332505.

[152] Hyongju Park and Seth Hutchinson. “Fault-Tolerant Rendezvous of Multirobot Systems”. In: IEEE

Trans. Robotics 33.3 (2017), pp. 565–582.

172

https://arxiv.org/abs/1901.11173
http://arxiv.org/abs/1901.11173
http://arxiv.org/abs/1901.11173
https://doi.org/10.1109/CIP.2012.6232902
https://doi.org/10.1109/CIP.2012.6232902
https://doi.org/10.1109/JSTSP.2011.2125943
https://doi.org/10.1109/71.262588
https://doi.org/10.1109/71.262588
https://doi.org/10.1109/71.262588
https://doi.org/10.1145/2332432.2332505
https://doi.org/10.1145/2332432.2332505

[153] Zang Li, Wade Trappe, Yanyong Zhang, and Badri Nath. “Robust statistical methods for securing

wireless localization in sensor networks”. In: Proceedings of the Fourth International Symposium

on Information Processing in Sensor Networks, IPSN 2005, April 25-27, 2005, UCLA, Los Angeles,

California, USA. 2005, pp. 91–98. DOI: 10.1109/IPSN.2005.1440903. URL: https://doi.org/10.1109/

IPSN.2005.1440903.

[154] Yingpei Zeng, Jiannong Cao, Jue Hong, Shigeng Zhang, and Li Xie. “Secure localization and location

verification in wireless sensor networks: a survey”. In: J. Supercomput. 64.3 (2013), pp. 685–701.

DOI: 10.1007/s11227-010-0501-4. URL: https://doi.org/10.1007/s11227-010-0501-4.

[155] Zhixiong Yang, Arpita Gang, and Waheed U. Bajwa. “Adversary-resilient Inference and Machine

Learning: From Distributed to Decentralized”. In: CoRR abs/1908.08649 (2019). arXiv: 1908.08649.

URL: http://arxiv.org/abs/1908.08649.

[156] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. “Optimization Methods for Large-Scale Machine

Learning”. In: SIAM Rev. 60.2 (2018), pp. 223–311. DOI: 10.1137/16M1080173. URL: https://doi.

org/10.1137/16M1080173.

[157] Jesús De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil Mustafa. “The discrete yet ubiquitous

theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg”. In: Bulletin of the American Math-

ematical Society 56.3 (2019), pp. 415–511.

[158] Wolfgang Mulzer and Daniel Werner. “Approximating Tverberg Points in Linear Time for Any Fixed

Dimension”. In: Discret. Comput. Geom. 50.2 (2013), pp. 520–535. DOI: 10.1007/s00454-013-9528-

7. URL: https://doi.org/10.1007/s00454-013-9528-7.

[159] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron D. Ames, Eric Feron, and Magnus

Egerstedt. “The Robotarium: A remotely accessible swarm robotics research testbed”. In: IEEE In-

ternational Conference on Robotics and Automation (ICRA). 2017, pp. 1699–1706. DOI: 10.1109/

ICRA.2017.7989200.

[160] J. Plata-Chaves, N. Bogdanović, and K. Berberidis. “Distributed Diffusion-Based LMS for Node-

Specific Adaptive Parameter Estimation”. In: IEEE Transactions on Signal Processing 63 (2015),

pp. 3448–3460.

[161] Amin Lotfzad Pak, Azam Khalili, Md. Kafiul Islam, and Amir Rastegarnia. “A Distributed Target

Localization Algorithm for Mobile Adaptive Networks”. In: ECTI Transactions on Electrical Engi-

neering, Electronics, and Communications 14 (Aug. 2016), pp. 47–56.

173

https://doi.org/10.1109/IPSN.2005.1440903
https://doi.org/10.1109/IPSN.2005.1440903
https://doi.org/10.1109/IPSN.2005.1440903
https://doi.org/10.1007/s11227-010-0501-4
https://doi.org/10.1007/s11227-010-0501-4
https://arxiv.org/abs/1908.08649
http://arxiv.org/abs/1908.08649
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://doi.org/10.1007/s00454-013-9528-7
https://doi.org/10.1007/s00454-013-9528-7
https://doi.org/10.1007/s00454-013-9528-7
https://doi.org/10.1109/ICRA.2017.7989200
https://doi.org/10.1109/ICRA.2017.7989200

[162] Sheng-Yuan Tu and Ali H.Sayed. “Mobile Adaptive Networks”. In: IEEE J. Sel. Topics Signal Pro-

cess 5.4 (2011), pp. 649–664.

[163] J. Chen and A. H. Sayed. “Diffusion Adaptation Strategies for Distributed Optimization and Learning

Over Networks”. In: IEEE Transactions on Signal Processing 60.8 (Aug. 2012), pp. 4289–4305.

ISSN: 1053-587X. DOI: 10.1109/TSP.2012.2198470.

[164] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. “Proximal Multitask Learning Over Networks

With Sparsity-Inducing Coregularization”. In: IEEE Transactions on Signal Processing 64.23 (2016),

pp. 6329–6344.

[165] A. Rastegarnia, W. M. Bazzi, A. Khalili, and J. A. Chambers. “Diffusion adaptive networks with

imperfect communications: link failure and channel noise”. In: IET Signal Processing 8.1 (2014),

pp. 59–66.

[166] Aritra Mitra and Shreyas Sundaram. “Secure distributed observers for a class of linear time invariant

systems in the presence of byzantine adversaries”. In: 55th IEEE Conference on Decision and Control

(CDC). IEEE. 2016, pp. 2709–2714.

[167] Yudong Chen, Lili Su, and Jiaming Xu. “Distributed Statistical Machine Learning in Adversarial

Settings: Byzantine Gradient Descent”. In: POMACS 1.2 (2017), 44:1–44:25.

[168] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. “Data Poisoning Attacks on Factorization-

Based Collaborative Filtering”. In: Annual Conference on Neural Information Processing Systems.

2016, pp. 1885–1893.

[169] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. “Distributed average consensus with least-mean-

square deviation”. In: Journal of Parallel and Distributed computing 67.1 (2007), pp. 33–46.

[170] Angelia Nedic and Asuman Ozdaglar. “Distributed subgradient methods for multi-agent optimiza-

tion”. In: IEEE Transactions on Automatic Control 54.1 (2009), pp. 48–61.

[171] Usman A Khan, Soummya Kar, and José MF Moura. “Higher dimensional consensus: Learning in

large-scale networks”. In: IEEE Transactions on Signal Processing 58.5 (2010), pp. 2836–2849.

[172] Ion Matei and John S Baras. “Consensus-based linear distributed filtering”. In: Automatica 48.8

(2012), pp. 1776–1782.

[173] Jianshu Chen and Ali H Sayed. “Diffusion adaptation strategies for distributed optimization and learn-

ing over networks”. In: IEEE Transactions on Signal Processing 60.8 (2012), pp. 4289–4305.

174

https://doi.org/10.1109/TSP.2012.2198470

[174] Fabio Pasqualetti, Antonio Bicchi, and Francesco Bullo. “Consensus Computation in Unreliable Net-

works: A System Theoretic Approach”. In: IEEE Transactions on Automatic Control 57.1 (2012),

pp. 90–104.

[175] Chengcheng Zhao, Jianping He, and Jiming Chen. “Resilient Consensus with Mobile Detectors

Against Malicious Attacks”. In: IEEE Transactions on Signal and Information Processing over Net-

works 4.1 (2018), pp. 60–69.

[176] Heath J. LeBlanc and Firas Hassan. “Resilient distributed parameter estimation in heterogeneous

time-varying networks”. In: 3rd International Conference on High Confidence Networked Systems

(part of CPS Week), HiCoNS ’14, Berlin, Germany, April 15-17, 2014. 2014, pp. 19–28.

[177] Yuan Chen, Soummya Kar, and José M. F. Moura. “Resilient Distributed Estimation: Sensor At-

tacks”. In: arXiv e-prints, arXiv:1709.06156 (Sept. 2017), arXiv:1709.06156. arXiv: 1709 . 06156

[math.OC].

[178] Y. Chen, S. Kar, and J. M. F. Moura. “Attack Resilient Distributed Estimation: A Consensus+Innovations

Approach”. In: American Control Conference (ACC). 2018.

[179] Ali H. Sayed. “Diffusion Adaptation Over Networks”. In: Academic Press Library in Signal Process-

ing. Ed. by Abdelhak M. Zoubir, Mats Viberg, Rama Chellappa, and Sergios Theodoridis. Vol. 3.

Elsevier, 2014. Chap. 9, pp. 323–453.

[180] Stephen T. Hedetniemi, Renu C. Laskar, and John Pfaff. “A linear algorithm for finding a minimum

dominating set in a cactus”. In: Discrete Applied Mathematics 13.2-3 (1986), pp. 287–292.

[181] Reza Olfati-Saber, J. Alexander Fax, and Richard M. Murray. “Consensus and Cooperation in Net-

worked Multi-Agent Systems”. In: Proc. IEEE 95.1 (2007), pp. 215–233. DOI: 10 .1109 / JPROC.

2006.887293. URL: https://doi.org/10.1109/JPROC.2006.887293.

[182] Roula Nassif, Stefan Vlaski, Cédric Richard, Jie Chen, and Ali H. Sayed. “Multitask Learning Over

Graphs: An Approach for Distributed, Streaming Machine Learning”. In: IEEE Signal Process. Mag.

37.3 (2020), pp. 14–25. DOI: 10.1109/MSP.2020.2966273. URL: https://doi.org/10.1109/MSP.2020.

2966273.

[183] Danqi Jin, Jie Chen, Cédric Richard, Jingdong Chen, and Ali H. Sayed. “Affine Combination of Dif-

fusion Strategies Over Networks”. In: IEEE Transactions on Signal Processing 68 (2020), pp. 2087–

2104.

175

https://arxiv.org/abs/1709.06156
https://arxiv.org/abs/1709.06156
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/MSP.2020.2966273
https://doi.org/10.1109/MSP.2020.2966273
https://doi.org/10.1109/MSP.2020.2966273

[184] Jie Chen, Cédric Richard, Shang Kee Ting, and Ali H. Sayed. “Chapter 3 - Multitask Learning Over

Adaptive Networks With Grouping Strategies”. In: Cooperative and Graph Signal Processing. Ed. by

Petar M. Djurić and Cédric Richard. Academic Press, 2018, pp. 107 –129. ISBN: 978-0-12-813677-5.

DOI: https://doi.org/10.1016/B978-0-12-813677-5.00003-1. URL: http://www.sciencedirect.com/

science/article/pii/B9780128136775000031.

[185] J. Chen, C. Richard, and A. H. Sayed. “Diffusion LMS for clustered multitask networks”. In: IEEE

International Conference on Acoustics, Speech and Signal Processing. 2014, pp. 5487–5491.

[186] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”. In: (2010). URL: http://yann.

lecun.com/exdb/mnist/.

[187] Prasun Roy, Subhankar Ghosh, Saumik Bhattacharya, and Umapada Pal. “Effects of Degradations on

Deep Neural Network Architectures”. In: arXiv preprint arXiv:1807.10108 (2018).

[188] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. “Federated Learn-

ing of Deep Networks using Model Averaging”. In: CoRR abs/1602.05629 (2016). arXiv: 1602 .

05629. URL: http://arxiv.org/abs/1602.05629.

[189] Sheng-Yuan Tu and Ali H. Sayed. “Distributed Decision-Making Over Adaptive Networks”. In: IEEE

Trans. Signal Process. 62.5 (2014), pp. 1054–1069. DOI: 10.1109/TSP.2013.2296271. URL: https:

//doi.org/10.1109/TSP.2013.2296271.

[190] Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.

Vol. 9. Classics in Applied Mathematics. SIAM, 1994. ISBN: 978-0-89871-321-3. DOI: 10.1137/1.

9781611971262. URL: https://doi.org/10.1137/1.9781611971262.

[191] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim

Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous Methods for Deep Reinforcement

Learning”. In: ICML 2016, New York City, NY, USA, June 19-24, 2016. Vol. 48. JMLR Workshop and

Conference Proceedings. JMLR.org, 2016, pp. 1928–1937. URL: http://proceedings.mlr.press/v48/

mniha16.html.

[192] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam

Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. “IMPALA:

Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures”. In: ICML

2018, Stockholm, Sweden, July 10-15, 2018. Vol. 80. Proceedings of Machine Learning Research.

PMLR, 2018, pp. 1406–1415. URL: http://proceedings.mlr.press/v80/espeholt18a.html.

176

https://doi.org/https://doi.org/10.1016/B978-0-12-813677-5.00003-1
http://www.sciencedirect.com/science/article/pii/B9780128136775000031
http://www.sciencedirect.com/science/article/pii/B9780128136775000031
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://doi.org/10.1109/TSP.2013.2296271
https://doi.org/10.1109/TSP.2013.2296271
https://doi.org/10.1109/TSP.2013.2296271
https://doi.org/10.1137/1.9781611971262
https://doi.org/10.1137/1.9781611971262
https://doi.org/10.1137/1.9781611971262
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v80/espeholt18a.html

[193] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning. 1992, pp. 279–

292.

[194] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-

stra, and Martin A. Riedmiller. “Playing Atari with Deep Reinforcement Learning”. In: CoRR abs/1312.5602

(2013). arXiv: 1312.5602. URL: http://arxiv.org/abs/1312.5602.

[195] Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. “Policy Gradi-

ent Methods for Reinforcement Learning with Function Approximation”. In: Advances in Neural

Information Processing Systems 12, Denver, Colorado, USA. 1999, pp. 1057–1063. URL: http : / /

papers.nips.cc/paper/1713- policy- gradient- methods- for- reinforcement- learning- with- function-

approximation.

[196] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. “High-Dimensional

Continuous Control Using Generalized Advantage Estimation”. In: ICLR 2016, San Juan, Puerto

Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016.

URL: http://arxiv.org/abs/1506.02438.

[197] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and

Wojciech Zaremba. “OpenAI Gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[198] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,

David Silver, and Daan Wierstra. “Continuous control with deep reinforcement learning.” In: ICLR.

2016. URL: http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15.

[199] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: ICLR 2015,

San Diego, CA, USA, May 7-9. 2015. URL: http://arxiv.org/abs/1412.6980.

[200] Lucian Busoniu, Robert Babuska, and Bart De Schutter. “Multi-agent Reinforcement Learning: An

Overview”. In: vol. 310. July 2010, pp. 183–221. ISBN: 978-3-642-14434-9. DOI: 10.1007/978-3-

642-14435-6 7.

[201] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. “Weight Uncertainty in

Neural Networks”. In: CoRR abs/1505.05424 (2015). arXiv: 1505.05424. URL: http://arxiv.org/abs/

1505.05424.

[202] J. Chen, C. Richard, and A. H. Sayed. “Adaptive clustering for multitask diffusion networks”. In:

2015 23rd European Signal Processing Conference (EUSIPCO). Aug. 2015, pp. 200–204. DOI: 10.

1109/EUSIPCO.2015.7362373.

177

https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://arxiv.org/abs/1506.02438
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.1007/978-3-642-14435-6_7
https://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1505.05424
https://doi.org/10.1109/EUSIPCO.2015.7362373
https://doi.org/10.1109/EUSIPCO.2015.7362373

[203] Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark Lee. “Natural actor-

critic algorithms”. In: Autom. 45.11 (2009), pp. 2471–2482. DOI: 10.1016/j.automatica.2009.07.008.

URL: https://doi.org/10.1016/j.automatica.2009.07.008.

[204] Yan Zhang and Michael M. Zavlanos. “Distributed off-Policy Actor-Critic Reinforcement Learn-

ing with Policy Consensus”. In: 58th IEEE Conference on Decision and Control, CDC 2019, Nice,

France, December 11-13, 2019. IEEE, 2019, pp. 4674–4679. DOI: 10 . 1109 / CDC40024 . 2019 .

9029969. URL: https://doi.org/10.1109/CDC40024.2019.9029969.

[205] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,

David Silver, and Daan Wierstra. “Continuous control with deep reinforcement learning”. In: 4th

International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-

4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016. URL: http:

//arxiv.org/abs/1509.02971.

[206] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Function Approximation Error in

Actor-Critic Methods”. In: ICML. 2018, pp. 1582–1591. URL: http : / /proceedings .mlr.press /v80/

fujimoto18a.html.

[207] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft Actor-Critic: Off-Policy

Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor”. In: Proceedings of the

35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,

Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings of Ma-

chine Learning Research. PMLR, 2018, pp. 1856–1865. URL: http : / /proceedings .mlr.press /v80 /

haarnoja18b.html.

[208] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics engine for model-based control”. In: 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012, pp. 5026–5033. DOI:

10.1109/IROS.2012.6386109.

[209] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing Adversarial

Examples”. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.

2015. URL: http://arxiv.org/abs/1412.6572.

178

https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.1109/CDC40024.2019.9029969
https://doi.org/10.1109/CDC40024.2019.9029969
https://doi.org/10.1109/CDC40024.2019.9029969
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.1109/IROS.2012.6386109
http://arxiv.org/abs/1412.6572

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Notation and Symbols
	Introduction
	Motivation
	Challenges
	Contributions
	Organization
	Main Concepts

	Related Work
	Resilient Distributed Approximate Consensus
	Resilient Distributed Consensus over Scalar States
	Resilient Distributed Consensus over Vector States

	Resilient Distributed Learning and Optimization
	Consensus-based Resilient Cooperation
	Distributed Multi-Task Learning and Clustering
	Task Similarity-based Resilient Cooperation

	Resilient Distributed Reinforcement Learning
	Distributed Reinforcement Learning in Independent MDPs
	Distributed Reinforcement Learning in A Shared MDP
	Resilience in Distributed Reinforcement Learning

	Comparison to This Dissertation

	Resilient Vector Consensus in Multi-Agent Networks Using Centerpoints ©2020 IEEE. Adapted with permission, from [Mudassir Shabbir, Jiani Li, Waseem Abbas and Xenofon Koutsoukos, "Resilient Vector Consensus in Multi-Agent Networks Using Centerpoints," 2020 American Control Conference (ACC), 2020, pp. 4387-4392, doi: 10.23919/ACC45564.2020.9147441].
	Introduction
	Notations and Preliminaries
	Background and Approximate Distributed Robust Convergence (ADRC) Algorithm
	How Can We Improve the Resilience of ADRC?

	ADRC Using Centerpoints
	Safe Point and the Interior Centerpoint
	Centerpoint-based Resilient Consensus in 2-D
	Computing Centerpoint in 2-D
	Centerpoint-based Resilient Consensus in 3-D
	Centerpoint-based Resilient Consensus in Lg-dimensions for Lg

	Evaluation
	Resilient Asynchronous Approximate Vector Consensus Using Centerpoints
	Iterative Algorithms and Resilience Bounds
	Iterative Algorithms Using Centerpoints
	Evaluation

	Conclusion

	Byzantine Resilient Distributed Learning in Multi-Robot Systems Using Centerpoints ©2020 RSS. Adapted with permission, from [Jiani Li, Waseem Abbas, Mudassir Shabbir, and Xenofon Koutsoukos. “Resilient Distributed Diffusion for Multi-Robot Systems Using Centerpoint”. In: Proceedings of Robotics: Science and Systems (RSS). Corvalis, Oregon, USA, July 2020. DOI: 10.15607/RSS.2020.XVI.021].
	Introduction
	Related Work
	Problem Formulation
	Distributed Learning
	Byzantine Attacks and Resilient Distributed Learning

	Resilient Distributed Learning
	Resilient Aggregation
	The Safe Region
	Centerpoint-based Resilient Vector Consensus

	Evaluation
	Target Pursuit
	Background
	Static Target
	Time-Varying Target
	Experiments on Robotarium

	Pattern Recognition

	Discussion and Conclusion

	Byzantine Resilient Distributed Diffusion in Least-Mean-Square (LMS) Algorithms for Multi-Task Networks ©2020 IEEE. Adapted with permission, from [Jiani Li, Waseem Abbas and Xenofon Koutsoukos, "Resilient Distributed Diffusion in Networks With Adversaries," in IEEE Transactions on Signal and Information Processing over Networks, vol. 6, pp. 1-17, 2020, doi: 10.1109/TSIPN.2019.2957731].
	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Single Node Attack Model
	Network Attack Model
	Resilient Distributed Diffusion

	Single Node Attack Design
	Gradient-based Attack Design
	Sufficient Conditions and Convergence Analysis

	Network Attack Design
	Impact of Compromised Nodes on Normal Nodes
	Minimum Set of Compromised Nodes to Attack the Entire Network

	Resilient Distributed Diffusion
	Resilient Diffusion Algorithm (R-DLMSAW)
	Trade-off Between Resilience and MSD Performance

	Evaluation
	Strong Attacks
	Resilient Diffusion for Strong Attacks

	Weak Attacks
	Evaluation

	Conclusion
	Proofs
	Proof for Lemma 5.1
	Proof for Lemma 5.2
	Proof for Lemma 5.3
	Proof for Proposition 5.1
	Stationary state estimation
	Non-stationary state estimation

	Byzantine Resilient Distributed Multi-Task Learning ©2020 NeurIPS. Adapted with permission, from [Jiani Li, Waseem Abbas, and Xenofon Koutsoukos. “Byzantine Resilient Distributed Multi-Task Learning”. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems (NeurIPS) 2020, December 6-12. 2020. URL: https : / / proceedings .neurips.cc/paper/2020/hash/d37eb50d868361ea729bb4147eb3c1d8-Abstract.html].
	Introduction
	Related Work
	Distributed Multi-Task Learning
	Problem Formulation
	Loss-based Online Weight Adjustment
	Weight Optimization
	Filtering for Resilience
	Computational Complexity

	Byzantine Resilient Convergence Analysis
	Evaluation
	Datasets and Simulation Setups
	Results

	Conclusion

	Distributed Clustering for Cooperative Multi-Task Learning Networks
	Introduction
	Related Work
	Clustered Multi-Task Network
	Adaptive Clustering
	Clustering Hypothesis
	Convergence and Learning Performance
	Optimal Combination Weights

	Evaluation
	Target Localization
	Digit Classification

	Conclusion

	Byzantine Resilient Aggregation in Distributed Reinforcement Learning
	Introduction
	Related Work
	Background
	Problem Formulation
	Resilient Aggregation in Distributed RL
	Evaluation
	Simulation Setup
	Simulation Results

	Conclusion

	Adaptive Learning from Peers for Distributed Actor-Critic Algorithms
	Introduction
	Distributed Actor-Critic in Multi-Agent Networks
	Adaptive Learning in Distributed Actor-Critic Algorithms
	In the Case of Linear Function Approximations
	Generalize the Method to Neural Networks

	Convergence Analysis
	Evaluation
	Conclusion
	Proofs
	Proof for Lemma 9.1
	Proof for Lemma 9.3
	Proof for Theorem 9.1
	Proof for Theorem 9.2

	Conclusion
	Bibliography

