
Complexity and Avoidance

By

Hayden Robert Jananthan

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Mathematics

June 30th, 2021

Nashville, Tennessee

Approved,

Douglas H. Fisher, Ph.D.

Alexander Y. Olshanskii, Ph.D.

Denis V. Osin, Ph.D.

Stephen G. Simpson, Ph.D.

Constantine Tsinakis, Ph.D.

Copyright © 2021 by Hayden Robert Jananthan

All Rights Reserved

ii

Dedicated to Lekha

iii

ACKNOWLEDGEMENTS

My utmost thanks is to my advisor, Steve Simpson, who has guided me through this nearly five-year journey,
starting all the way back to the our first independent studies course in my second semester. Steve’s support,
knowledge, and direction has been invaluable in my growth as a mathematician, and I know I’ve been lucky
to have him as my advisor.

I would also like to thank my fellow graduate students and my instructors during my time here at
Vanderbilt. Overall, the Vanderbilt Mathematics Department has proven to be a welcoming and tight-knit
community. Between breath-taking hikes in the mountains, costume parties and soirees, and the simple
satisfaction of drinks at KayBob’s or food at McDougal’s (among many other things), I know that I’ve made
wonderful friends and wonderful memories here. Special thanks should be given to my roommate, Dumindu
De Silva, who has never complained about me regularly mulling about our apartment at absurd hours of the
night and morning.

Thanks is due to some of my colleagues, mentors, and instructors at MIT. My first forays into research,
publishing, and supervising are thanks to Dr. Jeremy Kepner and Dr. Vijay Gadepally, and I continue to
learn countless things from them and the Lincoln Laboratory Supercomputing Center as a whole. I must
also thank Prof. Henry Cohn, who’s brilliant instruction of 18.510 secured my interest in logic early in my
academic journey, and Prof. Michael Sipser, who gave me my first taste of computability theory in 18.404.

I would like to thank my family, all of whom have been supportive throughout the process and have put
up with many a mathematical jargon-filled phone call. Finally, I want to give my deepest thanks to my wife
Lekha, a beautiful person inside and out who has been a rock that has anchored me over these years. I’m
not sure where I would be without her support, and I look forward to a bright future.

iv

TABLE OF CONTENTS

Page

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . viii

Chapter

I Introduction . 1

I.1 Summary of Chapters . 2

I.2 Basic Conventions and Notation . 5

I.3 Computability - Definitions, Notation, and Conventions . 11

I.3.1 (Partial) Recursive Functions and Sets . 11

I.3.2 Enumerations of the Partial Recursive Functions . 13

I.3.3 Partial Recursive Functionals . 16

I.3.4 The Arithmetical Hierarchy . 17

I.3.5 Recursive Reals and Real-Valued Functions . 17

I.4 Reducibility Notions . 19

I.4.1 Turing Reducibility . 19

I.4.2 Mass Problems and Weak, Strong Reducibility . 21

I.4.3 Ew and the Embedding Lemma . 23

II Complexity, Avoidance, and Depth . 26

II.1 Algorithmic Randomness and Complexity . 27

II.1.1 Martin-Löf Randomness . 27

II.1.2 Partial Randomness . 29

II.1.3 Randomness and Complexity as Mass Problems . 31

II.1.4 Properties of Prefix-Free Complexity . 32

II.2 DNR and Avoidance . 33

II.2.1 Linearly Universal Avoidance . 35

II.2.2 Properties of Linearly Universal Partial Recursive Functions 36

II.3 Fast & Slow-Growing Order Functions . 40

II.3.1 Bounding Sequences of Fast & Slow-Growing Order Functions 40

II.3.2 More about Recursive Sums . 46

II.3.3 The Fast and Slow-Growing LUA Hierarchies . 48

v

II.4 Depth . 50

II.4.1 Depth and Difference Randoms . 52

II.4.2 Depth and Strong Reducibility . 53

II.4.3 Depth and Weak Reducibility . 54

II.4.4 Depth for non-r.b. Π0
1 Sets . 56

III Complexity and Fast-Growing Avoidance . 58

III.1 Extracting Fast-Growing Avoidance from Complexity . 60

III.2 Extracting Complexity from Fast-Growing Avoidance . 62

III.3 Finding Complexity Above Fast-Growing Avoidance . 63

IV Complexity and Slow-Growing Avoidance . 71

IV.1 Partial Randomness in hN . 72

IV.1.1 f -randomness and f -complexity . 73

IV.1.2 Strong f -Randomness . 76

IV.1.3 Relationships between randomness notions . 81

IV.2 Randomness in hN versus {0,1}N . 82

IV.2.1 Randomness in [0,1] versus {0,1}N . 83

IV.2.2 Randomness in hN versus [0,1] . 84

IV.2.3 Improving Greenberg & Miller’s Conclusion . 88

IV.3 Quantifying the Reduction of Avoidance to Complexity – Preliminary Case 90

IV.4 Quantifying the Reduction of Avoidance to Complexity – General Case 95

IV.5 Open Questions . 103

V Generalized Shift Complexity . 104

V.1 δ-Shift Complexity as a Mass Problem . 106

V.1.1 Shift Complexity and Depth . 107

V.1.2 Shift Complexity and Avoidance . 113

V.2 Generalized Shift Complexity . 115

V.3 Generalized Shift Complexity and Depth . 116

V.3.1 Relating Generalized Shift Complexity and Complexity 121

V.3.2 Extracting Generalized Shift Complexity from Sublinear Complexity 123

V.3.3 Strong Shift Complexity and Depth . 125

V.4 Open Questions . 128

VI Avoidance – Slow-Growing versus Fast-Growing . 130

VI.1 Bushy Trees . 131

vi

VI.2 Avoidance of Individual Universal Partial Recursive Functions 135

VI.3 Avoidance of Well-Behaved Families of Universal Partial Recursive Functions 141

VI.4 Implications for LUAslow . 143

VI.5 Replacing Slow-Growing with Depth . 144

VI.6 Open Problems . 146

VII Structure of the Deep Region of Ew . 148

VII.1 The infimum of all deep degrees . 148

VII.2 The Filter of Pseudo-Deep Degrees . 150

VII.3 The Filter of Deep Degrees in Ew and Difference Randoms 151

VII.4 Open questions about the filter of pseudo-deep degrees . 153

REFERENCES . 155

vii

LIST OF FIGURES

I.1 Summary of general reductions between the hierarchies of interest. Within each row, the con-

ditions listed in the right-most column are assumed for the given reduction. In addition, all

functions are assumed to be order functions, f sub-identical, and p fast-growing. Rrec is the set

of recursive reals. 6

I.2 Summary of specific examples of reductions between the hierarchies of interest. Within each

row, the conditions listed in the right-most column are assumed for the given reduction. 6

I.3 Collected result and section references related to reductions of the form P ≤w Q or P ≰w Q,

where P is a member of the hierarchy corresponding to the row and Q is a member of the

hierarchy corresponding to the column. The COMPLEX row also contains references related

to (non)negligibility and depth. 7

I.4 Collected open question references related to reductions of the form P ≤w Q or P ≰w Q,

where P is a member of the hierarchy corresponding to the row and Q is a member of the

hierarchy corresponding to the column. The COMPLEX row also contains references related

to (non)negligibility and depth. 7

I.5 Visual representation of Ew and the relationships between the hierarchies of interest within. p

denotes a slow-growing order function, q denotes a slow-growing order function, f denotes a

sub-identical order function, g denotes an order function satisfying ∑
∞
m=0 g(2

m)/2m < ∞, and δ

denotes a rational number in (0,1). 8

viii

CHAPTER I

INTRODUCTION

A subset P of NN may be considered a ‘problem’ whose ‘solutions’ are its elements, as in the problems “Find

a completion of PA” or “Find a 1-random infinite binary sequence”, corresponding to the subsets CPA and

MLR, respectively. In this context, we call P a mass problem. To compare the ‘degree of unsolvability’ of

two mass problems P and Q, one approach is to use weak reducibility, where P ≤w Q if and only if every

member of Q computes a member of P .

Two well-studied hierarchies of mass problems are the complexity and diagonally non-recursive hierar-

chies. The former consists of the sets

COMPLEX(f) ∶= {X ∈ {0,1}N ∣ KP(X↾n) ≥ f(n) −O(1) for all n}

where f ∶N → [0,∞) is an unbounded, nondecreasing, computable function (an order function) and KP is

prefix-free Kolmogorov complexity. In other words, COMPLEX(f) consists of all infinite binary sequences

whose first n bits cannot be described with less than f(n) bits of information, up to addition of a constant.

The latter hierarchy consists of the sets

DNR(p) ∶= {X ∈ NN
∣X(n) ≄ ϕn(n) and X(n) < p(n) for all n}

where p∶N → (1,∞) is a nondecreasing, computable function and ϕn is the n-th 1-place partial recursive

function. In other words, DNR(p) consists of all p-bounded infinite sequences which avoid the diagonal of a

fixed enumeration of the 1-place partial recursive functions.

Although the two hierarchies are quite different in presentation, the connections between them have been

widely studied. Among them is a result of Kjos-Hanssen, Merkle, & Stephan [17, Theorem 2.3] which shows

that the complexity and diagonally non-recursive hierarchies are tightly coupled when going downward:

Theorem. [17, Theorem 2.3] Suppose X ∈ {0,1}N. Then the following are equivalent.

(i) X ∈ COMPLEX(f) for some order function f ∶N→ [0,∞).

(ii) There exists an order function p∶N→ (1,∞) and a Y ∈ DNR(p) such that Y is computable from X.

Two other connections were proven by Greenberg & Miller [9], relating the diagonally non-recursive

hierarchy to the upper levels of the complexity hierarchy. The former says that regardless of how slow-

growing an order function p is, there is an X ∈ DNR(p) which cannot compute a maximally complex infinite

1

binary sequence (an element of COMPLEX(idN)), while the latter gives an upshot that if p is sufficiently

slow-growing then any X ∈ DNR(p) computes highly complex infinite binary sequences.

Theorem. [9, Theorem 5.11] If p∶N→ (1,∞) is an order function, then there exists X ∈ DNR(p) such that

X computes no member of COMPLEX(λn.n).

Theorem. [9, Theorem 4.9] For all sufficiently slow-growing order functions p∶N → (1,∞), every X ∈

DNR(p) computes a member of ⋂0≤δ<1 COMPLEX(λn.δn).

In [29], Simpson introduced a variation of DNR, LUA (Linearly Universal Avoidance)1, to remove its

dependence on any specific choice of enumeration of the partial recursive functions as well as to more closely

tie the growth rate of p to the degree of unsolvability of the class LUA(p). For any order function p there are

order functions p+ and p− such that any X ∈ DNR(p+) computes a member of LUA(p) and any Y ∈ LUA(p)

computes a member of DNR(p−), so all of the aforementioned results linking the complexity and diagonally

non-recursive hierarchies translate to the LUA hierarchy.

An observation made by Bienvenu & Porter [2], Greenberg, Miller [19], and Slaman is that the behavior of

DNR(p) (for specific types of enumerations of the partial recursive functions) changes significantly depending

on whether the series ∑
∞
n=0 p(n)

−1 converges (in which case p is called fast-growing) or diverges (in which

case p is called slow-growing), and this observation applies to LUA as well [29, Theorem 5.4]. Thus, we

may consider the LUA hierarchy as being made up of two sub-hierarchies, the fast-growing LUA hierarchy

(consisting of LUA(p) for fast-growing p) and the slow-growing LUA hierarchy (consisting of LUA(p) for

slow-growing p).

Within Ew (where our degrees of interest lie) there is a subregion in its upper reaches consisting of so-called

‘deep degrees’. The slow-growing LUA hierarchy lies in this subregion, while both the fast-growing LUA and

complexity hierarchies lies in its complement. The notion of ‘shift complexity’ provides a randomness notion

lying in that deep region, providing another way to study the connections between the slow-growing LUA

hierarchy and randomness/complexity notions.

Our goal is to explore the relationships between the complexity, fast-growing LUA, shift complexity, and

slow-growing LUA hierarchies, expanding existing relationships and providing explicit bounds on the growth

rates of the corresponding order functions.

I.1 Summary of Chapters

Each chapter is summarized below. Additionally, Figure I.1 summarizes the main general reductions proven,

Figure I.2 summarizes specific examples of reductions, and Figures I.3 and I.4 collect references to the results,

1The notation used by Simpson in [29] was LDNR, standing for Linearly Diagonally Non-Recursive.

2

sections, and questions pertaining to each of the explored relationships between the hierarchies of interest.

Figure I.5 gives a visual representation of Ew and how the hierarchies of interest sit within it.

Chapter I

The remainder of this chapter covers notation, conventions, and terminology. Section I.2 covers basic notions,

such as notation and terminology for number systems, set theoretic functions & relations, strings over a set,

the Cantor & Baire spaces, and various encoding functions. Section I.3 gives a brief overview of the relevant

notation and terminology from computability theory. Finally, Section I.4 briefly reviews the Turing, weak,

& strong reducibility notions and the classes of mass problems we will be principally interested in.

Chapter II

This chapter serves to introduce many of the main notions discussed within the remainder of the document.

We start by giving a brief overview of partial randomness, reviewing the notation, terminology, and some basic

results. Following that, we discuss DNR and its dependence on a choice of an enumeration of the partial

recursive functions, using its definition to motivate the definition of the class Avoidψ(p) for a recursive

p∶N → (1,∞) and a partial recursive ψ ∶ ⊆N → N. After defining the family of linearly universal partial

recursive functions, we define LUA(p), covering some of the basic reducibility results between those classes.

The fast-growing, slow-growing dichotomy is examined, where we state and prove several technical results

used later. Finally, we define depth and discuss the weak degrees of deep Π0
1 classes, the basic structure of

the region of deep degrees in Ew and its relation to the fast-growing LUA and slow-growing LUA hierarchies.

Chapter III

This chapter is centered around the relationships between the complexity and fast-growing LUA hierarchies.

One way in which we do this is by strengthening [17, Theorem 2.3], addressing the problems “given f , find q

such that LUA(q) ≤w COMPLEX(f)” and “given p, find g such that COMPLEX(g) ≤w LUA(p)” and giving

explicit bounds for each. In particular, one of our main theorems is the following.

Theorem III.0.5. To each sub-identical order function f ∶N→ [0,∞) there is a fast-growing order function

q∶N → (1,∞) such that LUA(q) ≤s COMPLEX(f), and to each fast-growing order function p∶N → (1,∞)

there is a sub-identical order function g∶N→ [0,∞) such that COMPLEX(g) ≤s LUA(p).

We also address the ‘upward’ problem “given p fast-growing, find sub-identical g such that LUA(p) ≤w

COMPLEX(g)”, giving a partial answer.

3

Theorem III.3.3. If p∶N → (1,∞) is a fast-growing order function such that ∑
∞
n=0 p(n)

−1 is a recursive

real, then there exists a convex sub-identical order function g such that LUA(p) ≤s COMPLEX(g) ≠MLR.

Chapter IV

In this chapter we address the problem “given f , find q such that COMPLEX(f) ≤w LUA(q)”, giving a

partial answer and providing explicit bounds for those cases. Our main results are the following.

Theorem IV.4.10. Given an order function ∆∶N→ [0,∞) such that limn→∞ ∆(n)/
√
n = 0 and any rational

ε ∈ (0,1),

COMPLEX(λn.n −
√
n ⋅∆(n)) ≤w LUA(λn. exp2((1 − ε)∆(log2 log2 n))).

More generally, COMPLEX(λn.n −
√
n ⋅∆(n)) ≤w LUA(q) for any order function q satisfying

q (exp2((1 − ε)
−1
⋅ [(n + 1)2

− (n + 1) ⋅∆((n + 1)2
)] ⋅ `(n))) ≤ `(n)

for almost all n ∈ N, where `(n) = exp2 ((1 − ε)[(n + 1) ⋅∆((n + 1)2) − n ⋅∆(n2)]).

Chapter V

In this chapter we examine classes of ‘shift complex’ sequences – in which the prefix-free complexity of all seg-

ments of a sequence X are quantified rather than only the initial segments – with respect to (non)negligibility

and depth, as well as relationships with the complexity and LUA hierarchies. Our main results are the fol-

lowing.

Theorem V.1.8. (Corollary of Theorem V.1.7) Fix a rational ε > 0. For all rational δ ∈ (0,1) we have

SC(δ) ≤w LUA(λn.(log2 n)
1−ε).

Theorem V.3.12. Suppose f is a sub-identical order function such that ∑
∞
m=0 f(2

m)/2m converges to

a recursive real. Then there is an order function g such that SC(f) ≤s COMPLEX(g) and for which

limn→∞ g(n)/n = 0.

Chapter VI

This chapter focuses on the relationships between the fast and slow-growing LUA subhierarchies and their

structures, with applications to the depth properties of the boundaries of the slow-growing LUA hierarchy

and relationships with the shift complexity hierarchy. Our main results are the following.

Theorem VI.2.1. For all order functions p1∶N → (1,∞) and p2∶N → (1,∞), there exists a slow-growing

order function q∶N→ (1,∞) such that LUA(p1) ≰w LUA(q) ≰w LUA(p2).

4

In particular, for any order function p∶N → (1,∞), there exists a slow-growing order function q∶N → (1,∞)

such that LUA(p) and LUA(q) are weakly incomparable.

Theorem VI.4.1. LUAslow is not of deep degree.

Theorem VI.4.2. There is no order function q∶N→ (1,∞) such that LUAslow ≡w LUA(q).

Theorem VI.4.3. SC ≰w LUAslow.

Chapter VII

Using results of the previous chapters, we further explore the structure of the region of deep degrees in Ew

and a larger region consisting of ‘pseudo-deep’ degrees in Ew. Our main result is the following.

Theorem VII.0.1. Define

Fdeep ∶= {p ∈ Ew ∣ p a deep degree}.

Fpseudo ∶= {p ∈ Ew ∣ p = inf C for some C ⊆ Fdeep}.

Fdiff ∶= {p ∈ Ew ∣ ∀P ∈ p∀X ∈MLR (∃Y ∈ P (Y ≤T X) → (0′ ≤T X))}.

Then Fpseudo is a principal filter while Fdeep and Fdiff are nonprincipal filters. Consequently, Fdeep ⊂−−

Fpseudo ⊂−− Fdiff .

I.2 Basic Conventions and Notation

N is the set of natural numbers (including 0). Z is the set of integers. Q is the set of rational numbers.

R is the set of real numbers. Open, closed, and half-open intervals in R are written (a, b), [a, b], and

[a, b), (a, b], respectively, for any −∞ ≤ a ≤ b ≤ ∞. If F is any one of N, Z, Q, or R and a ∈ F, then we write

F≥a ∶= {x ∈ F ∣ a ≤ x} and F>a ∶= {x ∈ F ∣ a < x}.

n mod m is the remainder after dividing n by m. mn denotes the m-th tetration of n. logk2 denotes the

composition of k-many base-2 logarithms. ⌈−⌉ and ⌊−⌋ denote the ceiling and floor functions, respectively.

When it would increase readibility, we write expa(n) = a
n for a > 0.

Set containment is denoted by ⊆ and proper containment is denoted by ⊂ or ⊂−−. P(S) denotes the power

set of S, while Pfin(S) denotes the set of finite subsets of S. BA denotes the set of all functions with domain

A and codomain B.

Ordered n-tuples (or just ‘n-tuples’) are denoted using angled brackets, as in ⟨x0, x1, x2, . . . , xn−1⟩.

We assume that if ⟨x0, x1, x2, . . . , xn−1⟩ = ⟨y0, y1, y2, . . . , ym−1⟩, then n = m. We sometimes identify an

n-tuple ⟨x0, x1, x2, . . . , xn−1⟩ with the set {⟨0, x0⟩, ⟨1, x1⟩, ⟨2, x2⟩, . . . , ⟨n − 1, xn−1⟩} and with the function

5

Figure I.1: Summary of general reductions between the hierarchies of interest. Within each row, the con-
ditions listed in the right-most column are assumed for the given reduction. In addition, all functions are
assumed to be order functions, f sub-identical, and p fast-growing. Rrec is the set of recursive reals.

III.1.2 LUA(λn. exp2((f
inv

○ h)(n) + 1)) ≤s COMPLEX(f)
∞
∑
n=0

1
2h(n)

∈ Rrec

III.2.1 COMPLEX((λn.∑i<r(n)⌊log2 p(i)⌋)
inv

) ≤s LUA(p) lim
n→∞

r(n)
2n

= ∞

III.3.4 LUA(p) ≤s COMPLEX(λn. log2 p̃(p
inv

(2n+1
) − 1))

∞
∑
n=0

1
p̃(n) ∈ Rrec,

lim
n→∞

p(n)
p̃(n+3) = ∞

IV.4.10 COMPLEX(λn.n −
√
n ⋅∆(n)) ≤w LUA(λn. exp2((1 − ε)∆(log2 log2 n)))

0 < ε < 1,

lim
n→∞

∆(n)√
n

= 0

V.1.8 SC(f) ≤w LUA(λn.(log2 n)
1−ε) lim supn

f(n)
n

< 1,
0 < ε < 1

V.3.9 SC(f) ≤s COMPLEX(δ)

∞
∑
m=0

f(2m)
2m

< ∞,

0 < δ ≤ 1

Figure I.2: Summary of specific examples of reductions between the hierarchies of interest. Within each row,
the conditions listed in the right-most column are assumed for the given reduction.

III.1.6 LUA(λn.4
δ

√

n ⋅ log2 n⋯ logk−1
2 n ⋅ (logk2 n)

(1+ε)) ≤s COMPLEX(δ)
0 < δ ≤ 1,
k ∈ N, 0 < ε

III.1.7 LUA(λn.4 exp2(
α
√

(1 + ε) log2 n)) ≤s COMPLEX(λn.nα)
0 < α ≤ 1,

0 < ε

III.1.8 LUA(λn.4 exp2(n
(1+ε)/β)) ≤s COMPLEX(λn.β log2 n)

0 < β,
0 < ε

III.2.2 COMPLEX(λn.(1/2 − ε) log2 n) ≤s LUA(λn.2n) 0 < ε < 1/2

IV.3.1 COMPLEX(λn.n − (1 + ε)
√
n log2 n) ≤w LUA(λn.(log2 n)

1/2−ε) 0 < ε < 1/2

V.1.8 SC(δ) ≤w LUA(λn.(log2 n)
1−ε)

0 < δ < 1,
0 < ε < 1

V.3.10 SC(λn.nα) ≤s COMPLEX(λn.nα+ε)
0 < α < 1,

0 < ε ≤ 1 − α

V.3.11 SC(λn.n/(log2 n)
α+1+ε) ≤s COMPLEX(λn.n/(log2 n)

α)
0 < α,
0 < ε

6

Figure I.3: Collected result and section references related to reductions of the form P ≤w Q or P ≰w Q, where
P is a member of the hierarchy corresponding to the row and Q is a member of the hierarchy corresponding
to the column. The COMPLEX row also contains references related to (non)negligibility and depth.

COMPLEX LUAfast LUAslow SC

COMPLEX II.4.12(a), III.0.2,
III.0.5, §III.2

II.4.12(b), II.4.21,
IV.2.21, §IV.3,
§IV.4, VI.4.1

§V.1.1, §V.3.3

LUAfast III.0.2, III.0.5,
§III.1, §III.3

II.2.16 II.2.16, §II.3.3,
VI.2.1

LUAslow II.3.14 II.2.16, II.3.14,
VI.2.1, VI.4.2

SC V.3.1, V.3.2 VI.4.3, VI.4.4

Figure I.4: Collected open question references related to reductions of the form P ≤w Q or P ≰w Q, where P
is a member of the hierarchy corresponding to the row and Q is a member of the hierarchy corresponding to
the column. The COMPLEX row also contains references related to (non)negligibility and depth.

COMPLEX LUAfast LUAslow SC

COMPLEX IV.5.3, IV.5.4 IV.5.1, IV.5.2 V.4.5, V.4.9

LUAfast III.3.12 VI.6.1

LUAslow VI.6.1, VI.6.2,
VI.6.3

V.4.10

SC V.4.11 V.1.2, VI.6.6 V.4.1, V.4.2, V.4.3,
V.4.4, V.4.6

7

Figure I.5: Visual representation of Ew and the relationships between the hierarchies of interest within. p
denotes a slow-growing order function, q denotes a slow-growing order function, f denotes a sub-identical
order function, g denotes an order function satisfying ∑

∞
m=0 g(2

m)/2m < ∞, and δ denotes a rational number
in (0,1).

Dw

Ew

1= supEw

dq

sδ

dslow

degw(L)

r1

dp
rf

sg

drec

0 = infDw

=
?

x

x
x

: Ew

: deep region of Ew

dr: degw(LUA(r))

drec: degw(LUArec)=degw(COMPLEX)

dslow: degw(LUAslow)

sh: degw(SC(h))

rh: degw(COMPLEX(h))

L: ⋃{deep Π0
1 P ⊆ {0,1}N}

→ : − >w −

: ∃ ≥w-relations

x : ≤w-incomparable

8

f ∶ {0,1,2, . . . , n − 1} → {x0, x1, x2, . . . , xn−1} defined by f(i) ∶= xi for each i ∈ {0,1,2, . . . , n − 1}. More

generally, we identify a function f ∶A→ B with its graph {⟨a, b⟩ ∈ A ×B ∣ b = f(a)}.

Given a function f ∶A → B, we write dom f = A and cod f = B. Given subsets A0 ⊆ A and B0 ⊆ B, we

write f[A0] ∶= {f(a) ∣ a ∈ A0} and f−1[B0] ∶= {a ∈ A ∣ f(a) ∈ B0} for the preimage of B0. im f is defined to be

equal to f[A]. f↾A0 denotes the restriction of f to A0. If dom f = N, then we write f↾n for the restriction

f↾ {0,1,2, . . . , n − 1}.

If f ∶N→ R is nondecreasing, we define f inv∶R→ N by f inv(x) ∶= least m such that f(m) ≥ x.

Given functions f, g∶N → R, we write f ≤dom g, read “g dominates f” or “f is dominated by g” to mean

that f(n) ≤ g(n) for almost all n ∈ N.

A partial function f ∶ ⊆A → B is a function f ∶A0 → B for some A0 ⊆ A. Given a ∈ A, then f(a) is said

to be defined or to converge, written f(a)↓, if a ∈ dom f , otherwise f(a) is said to be undefined or diverge,

written f(a)↑. If f ∶a↦ b, we sometimes write f(a)↓ = b. If f and g are partial functions ⊆A→ B and a ∈ A,

then we write f(a) ≃ g(a) to mean that either a ∈ dom f ∩ dom g and f(a) = g(a) (i.e., f(a) and g(a) both

converge and are equal) or that a ∉ dom f ∪dom g (i.e., f(a) and g(a) both diverge). f is total if dom f = A.

Given a set S, a string over S – or simply a string if S is understood – is any element of Sn for some

n ∈ N. S∗ is the set of all strings over S, i.e., S∗ = ⋃n∈N S
n. Given a string σ ∈ S∗, its length ∣σ∣ is the unique

n ∈ N for which σ ∈ Sn. Given k < ∣σ∣, σ(k) is the k-th coordinate of σ, so that ⟨σ(0), σ(1), . . . , σ(∣σ∣−1)⟩ = σ.

If σ = ⟨s0, s1, . . . , sn⟩ and τ = ⟨t0, t1, . . . , tm⟩ are strings over S, their concatenation σ⌢τ is given by

σ⌢τ = ⟨s0, s1, . . . , sn, t0, t1, . . . , tm⟩.

Given σ ∈ S∗ and n ≤ ∣σ∣, σ↾n denotes the string ⟨σ(0), σ(1), . . . , σ(n − 1)⟩. Given σ, τ ∈ S∗, then σ is an

initial segment of τ (equivalently, τ is an extension of σ) if σ = τ↾ ∣σ∣, written σ ⊆ τ . σ is a proper initial

segment of τ (equivalently, τ is a proper extension of σ) if σ ⊆ τ and σ ≠ τ , written σ ⊂ τ . σ and τ are

compatible if either σ ⊆ τ and τ ⊆ σ, otherwise they are incompatible. A set of strings A ⊆ S∗ is prefix-free if

σ ⊈ τ for all distinct elements σ, τ in A. If ≤ is a partial order on S, then the lexicographical ordering ≤lex

on S∗ is defined by setting σ ≤lex τ if σ ⊆ τ or σ(k) < τ(k) for the least index k at which σ(k) ≠ τ(k). The

shortlex ordering ≤slex on S∗ is defined by setting σ ≤slex τ if ∣σ∣ < ∣τ ∣ or if ∣σ∣ = ∣τ ∣ and σ ≤lex τ , i.e., we order

by length first, then lexicographically.

Suppose σ ∈ S∗ and f ∶N→ S are given. σ is an initial segment of f (equivalently, f is an extension of σ)

if f↾ ∣σ∣ = σ. σ and f are incompatible if σ ⊄ f . Finally, we define σ⌢f ∶N→ S by

(σ⌢f)(n) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

σ(n) if n < ∣σ∣,

f(n − ∣σ∣) otherwise.

9

The Baire space NN is endowed with the topology with basic open sets

JσK ∶= {f ∈ NN
∣ σ ⊂ f}

for σ ∈ N∗. NN, with this topology, is a non-empty zero-dimensional perfect polish space whose compact

subsets have empty interior (with these properties characterizing NN up to homeomorphism).

The Cantor space {0,1}N is endowed with the subspace topology coming from NN. Alternatively, it has

the topology with basic open sets

JσK2 ∶= {X ∈ {0,1}N ∣ σ ⊂X}

for σ ∈ {0,1}∗. {0,1}N, with this topology, is a non-empty zero-dimensional compact perfect Polish space

(with these properties characterizing {0,1}N up to homeomorphism). We make the usual identification

between elements of {0,1}N and subsets of N. The fair coin measure λ is the outer measure on {0,1}N

induced by the assignments λ(JAK2) ∶= ∑
n
i=1 2−∣σi∣ where A = {σ1, σ2, . . . , σn} ⊆ {0,1}∗ is prefix-free.

Given f0, f1, . . . , fn−1 ∈ NN, we define f0 ⊕ f1 ⊕⋯⊕ fn−1 ∈ NN by

(f0 ⊕ f1 ⊕⋯⊕ fn−1)(x) ∶= fx mod n(⌊x/n⌋).

E.g., (f0 ⊕ f1)(2x) = f0(x) and (f0 ⊕ f1)(2x + 1) = f1(x). The assignment ⟨f0, f1, . . . , fn−1⟩ ↦ f0 ⊕ f1 ⊕

⋯⊕ fn−1 defines a homeomorphism (NN)n → NN, and restricting to ({0,1}N)n also yields a homeomorphism

({0,1}N)n → {0,1}N.

For k ≥ 2, the functions π(k)∶Nk → N denote the bijections defined recursively by

π(2)
(x, y) ∶= 2x(2y + 1) − 1,

π(k+1)
(x1, x2, . . . , xk, xk+1) ∶= π

(2)
(π(k)

(x1, x2, . . . , xk), xk+1).

We additionally define π(1)∶N→ N and π(0)∶ {⟨⟩} → N by setting π(1) ∶= idN and π(0)(⟨⟩) ∶= 0.

We define a bijection str∶N→ {0,1}∗ by

str(n) = σ ⇐⇒ n + 1 =
k−1

∑
i=0

σ(i) ⋅ 2i + 2k.

Note that n ≤m if and only if str(n) ≤slex str(m).

We define a bijection #∞∶N∗ → N by setting

#∞(σ) ∶=
∣σ∣−1

∑
i=0

exp2(σ(0) + σ(1) +⋯ + σ(i) + i).

for each σ ∈ N∗. Note that if σ ⊆ τ , then #∞(σ) ≤ #∞(τ).

If D is an understood domain of discourse and S ⊆ D, then the characteristic function for S is the function

10

χS ∶D→ {0,1} defined by

χS(x) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if x ∈ S,

0 otherwise.

I.3 Computability - Definitions, Notation, and Conventions

Here we briefly review the definitions of recursiveness/computability for various objects. With the possible

exception of notation given in Section I.2 and through the remaining chapters, we have attempted to adhere

to standard notation and terminology whenever possible, so the reader is encouraged to consult any of the

standard references (e.g., [21], [31], [27], etc.) for additional background.

I.3.1 (Partial) Recursive Functions and Sets

We define the collections of elementary, primitive, or partial recursive functions as the smallest collections

of partial functions ⊆Nk → N closed under particular operations.

Definition I.3.1.

• The initial functions consist of the zero function Z ∶N → N (∀x (Z(x) ∶= 0)), the successor function

S∶N → N (∀x (S(x) ∶= x + 1)), and for each k ∈ N>0 and j ∈ {0,1, . . . , k − 1} the projection πkj ∶Nk → N

(∀x0, x1, . . . , xk−1 (πkj (x0, x1, . . . , xk−1) ∶= xj)).

• Given f k-ary and g1, g2, . . . , gk each n-ary, their generalized composition is the n-ary function h where

for x ∈ Nn we have

h(x) ∶= f(g1(x), g2(x), . . . , gk(x)).

• Given f (k+1)-ary, its bounded sum and bounded product are the k-ary functions g and h, respectively,

where for n ∈ N and x ∈ Nk we have

g(n,x) ∶=
n

∑
i=0

f(i,x) and h(n,x) ∶=
n

∏
i=0

f(i,x).

• Given f (k + 2)-ary and g k-ary, the result of primitive recursion applied to f and g is the (k + 1)-ary

function h defined recursively for n ∈ N and x ∈ Nk by

h(0,x) ∶= g(x)

h(n + 1,x) ∶= f(n,h(n,x),x).

11

• Given f (k + 1)-ary, its minimization is the k-ary function g where for x ∈ Nk we have

g(x) ∶= least y such that f(y,x) = 1.

Definition I.3.2. The collection of . . .

. . . elementary recursive functions is the smallest collection C of total functions of the form Nk → N containing

the initial functions and the function �∶N2 → N defined by x � y ∶= max{x − y,0} and closed under

generalized composition and taking bounded sums and products.

. . . primitive recursive functions is the smallest collection C of total functions of the form Nk → N containing

the initial functions and closed under generalized composition and primitive recursion.

. . . partial recursive functions is the smallest collection C of partial functions of the form ⊆Nk → N containing

the initial functions and closed under generalized composition, primitive recursion, and minimization

of its total members.

. . . total recursive functions is the collection of total partial recursive functions.

Remark I.3.3. There are many other characterizations of the above classes. Regarding the partial recursive

functions (which are exactly the partial functions computed by Turing machine programs or by register ma-

chine programs) Church’s Thesis claims that any reasonable characterization of the ‘effectively computable’

partial functions is equivalent to being partial recursive.

The notion of recursiveness is extended to subsets of Nk:

Definition I.3.4 (recursive predicate). A predicate S ⊆ Nk is recursive if its characteristic function χS ∶Nk →

{0,1} is recursive.

To extend the notion of partial recursiveness to partial functions whose domains or codomains are not

Nk for some k, we make use of Gödel numbers.

Definition I.3.5. Suppose S and T are countable sets S and T and then fix injections #S ∶S → N and

#T ∶T → N for which im #S and im #T are both recursive subsets of N, which we informally call Gödel

numberings of S and T , respectively. Then a partial function f ∶ ⊆S → T is partial recursive (with respect

to #S and #T) if the partial function #T ○ f ○#−1
S ∶ ⊆N→ N is partial recursive.

Convention I.3.6. Unless stated otherwise, we assume the following Gödel numberings:

• Nk is Gödel numbered by π(k).

12

• {0,1}∗ is Gödel numbered by #2 ∶= str−1.

• N∗ is Gödel numbered by #∞.

• If #∶S → N is a Gödel numbering of S, then S∗ is Gödel numbered by setting #(⟨s0, s1, . . . , sk−1⟩) ∶=

#∞(⟨#(s0),#(s1), . . . ,#(sk−1)⟩).

• If #∶S → N is a Gödel numbering of S, then Pfin(S) is Gödel numbered by setting #(T) ∶=

#(⟨s0, s1, . . . , sk−1⟩), where T = {s0, s1, . . . , sk−1} and #(s0) < #(s1) < ⋯ < #(sk−1).

• Z is Gödel numbered by setting #Z(n) ∶= 2n if n ≥ 0 and #Z(n) ∶= 2n + 1 if n < 0.

• Q is Gödel numbered by setting #Q(r) ∶= π
(2)(n,m), where if r = p/q with gcd(p, q) = 1 and q ≥ 1 then

n = #Z(p) and q is the m-th positive integer coprime with p.

Remark I.3.7. Under any reasonable Gödel numberings, such as in Convention I.3.6, relevant operations and

relations on the Gödel numbered objects yield recursive operations and relations on their Gödel numbers.

E.g., for strings (either in N∗ or {0,1}∗), this includes for operations the length and concatenation functions

and for relations the the lexicographical ordering, the shortlex ordering, and ⊆; for integers and rationals, this

includes virtually all number theoretic operations, the standard total orderings, and the divisibility relation.

In some cases our choices of Gödel numberings are purposeful, as in the cases of π(k) and #2. Unless

otherwise stated, we have chosen particular Gödel numberings for the remaining cases solely for exactness,

and in principle the reader may substitute them with their preferred encodings.

I.3.2 Enumerations of the Partial Recursive Functions

Thanks to their connection to effective algorithms, a partial recursive function θ ∶ ⊆Nk → N can be described

by a single natural number e which we may think of as encoding an algorithm computing θ.

Definition I.3.8 (effective enumeration). An enumeration ϕ0, ϕ1, ϕ2, . . . of the k-place partial recursive

functions is any surjection from N onto the set of all k-place partial recursive functions θ ∶ ⊆Nk → N. Such

an enumeration is effective if the partial function Φ(e, x1, x2, . . . , xk) ≃ ϕe(x1, x2, . . . , xk) is partial recursive.

Convention I.3.9. Unless otherwise specified, ϕ0, ϕ1, ϕ2, . . . will be an enumeration of the 1-place partial

recursive functions. For concision, ϕ● will denote an enumeration ϕ0, ϕ1, ϕ2,

Given an enumeration ϕ● and k ∈ N≥1, we denote by ϕ
(k)
● the enumeration of the k-place partial recursive

functions defined by ϕ
(k)
e (x1, . . . , xk) ≃ ϕe(π

(k)(x1, . . . , xk)) for all e, x1, . . . , xk ∈ N.

13

For many purposes, an enumeration ϕ● satisfying stronger properties than simply being effective is

required. An example of such a property is that the Smn Theorem holds:

Property I.3.10 (Smn Theorem). For all m,n ∈ N there exists a primitive2 recursive function Smn ∶Nm+1 → N

such that ϕ
(n)
Smn (e,x1,...,xm)(y1, . . . , yn) ≃ ϕ

(m+n)
e (x1, . . . , xm, y1, . . . , yn) for all e, x1, . . . , xm, y1, . . . , yn ∈ N.

A weaker version that often suffices for application (and does for our uses) is the following.

Property I.3.11 (Parametrization Theorem). For any partial recursive function θ ∶ ⊆N2 → N, there exists

a total recursive function f ∶N→ N such that ϕf(e)(x) ≃ θ(e, x) for all e, x ∈ N.

The Parametrization Theorem has further implications.

Proposition I.3.12. (well-known) Suppose ϕ● is an effective enumeration for which the Parametrization

Theorem holds.

(a) For all m,n ∈ N there exists a total recursive function Smn ∶Nm+1 → N such that

ϕ
(n)
Smn (e,x1,...,xm)(y1, . . . , yn) ≃ ϕ

(m+n)
e (x1, . . . , xm, y1, . . . , yn)

for all e, x1, . . . , xm, y1, . . . , yn ∈ N.

(b) Recursion Theorem: For any partial recursive function θ ∶ ⊆Nn+1 → N there exists an e ∈ N such that

ϕ
(n)
e (x1, . . . , xn) ≃ θ(e, x1, . . . , xn) for all x1, . . . , xn ∈ N.

The Parametrization Theorem is stated as a property of a enumeration rather than a feature of all

effective enumerations due to the following observation.

Definition I.3.13 (admissible enumeration). An enumeration ϕ● is admissible if it is effective and for which

the Parametrization Theorem holds.

Proposition I.3.14. [20, following Definition 3] There exists an effective enumeration ϕ● which is not

admissible.

In [20], Rogers examines the relationships between different enumerations of the partial recursive func-

tions3. There, an enumeration is defined as a surjection ρ from a recursive subset Dρ of N onto the set of all

1-place partial recursive functions. ‘Effectiveness’ is defined as above, and the only modification necessary

for ‘admissibility’ is that the total recursive function f in the statement of the Parametrization Theorem

take values in Dρ.

2It is essential that π(k)∶Nk → N be primitive recursive for each k so that the fulfillment of the Sm
n Theorem (particularly,

the primitive recursiveness of Sm
n) does not depend on the choice of π(k) for k ∈ N.

3Within [20], Rogers uses the term ‘numbering’ where we use ‘enumeration’ and ‘semi-effective’ where we use ‘effective’.

14

Definition I.3.15. Suppose ρ and τ are enumerations. We write ρ ⪯ τ if there is a recursive function

g∶Dρ →Dτ such that ρ = τ ○ g.

Lemma I.3.16. ⪯ is a preorder on the set of all effective enumerations.

Proposition I.3.17. [30, Exercise 5.10] Suppose τ is an admissible enumeration. Then τ is admissible if

and only if ρ ⪯ τ for any effective enumeration ρ.

Proof. Suppose ρ is an effective enumeration. It suffices to show that if τ is admissible, then (i) ρ ⪯ τ , and

(ii) if τ ⪯ ρ, then ρ is admissible.

Suppose τ is admissible. ρ is an effective enumeration, so the partial function Φ(e, x) ≃ ρ(e)(x) is

recursive. Because τ is admissible, there exists a total recursive function f ∶N → Dτ such that τ(f(e))(x) ≃

Φ(e, x) for all e, x ∈ N, or equivalently that τ ○ f = ρ. Thus, ρ ⪯ τ .

Now suppose τ ⪯ ρ, so that there is a total recursive function g∶Dτ → Dρ such that τ = ρ ○ g. Suppose

θ ∶ ⊆N2 → N is any partial recursive function. Because τ is admissible, there exists a total recursive function

f ∶N → N such that τ(f(e))(x) ≃ θ(e, x) for all e, x ∈ N. But then ρ((g ○ f)(e))(x) ≃ θ(e, x) for all e, x ∈ N,

showing ρ is admissible.

Corollary I.3.18. Let E denote the set of effective enumerations, let ≅ be the equivalence relation induced

by ⪯ (i.e., ρ ≅ τ if and only if ρ ⪯ τ and τ ⪯ ρ), and let ≤ be the partial order on E/≅ induced by ⪯ (i.e.,

ρ/≅ ≤ τ/≅ if and only if ρ ⪯ τ). Then the poset (E/≅,≤) has a maximum, and that maximum is equal to the

set of all admissible enumerations.

Remark I.3.19. All standard enumerations of the 1-place partial recursive functions are admissible.

Convention I.3.20. Unless otherwise specified, any effective enumeration ϕ● used is assumed to be admis-

sible. Given a partial recursive θ, an index for θ is any e ∈ N for which θ = ϕe.

Many admissible enumerations have a natural way to interpret the statement, “ϕe(x) converges to y

within s steps.”

Notation I.3.21. Given an admissible enumeration ϕ● of the k-place partial recursive functions, the no-

tation ϕe,s(x1, x2, . . . , xk) is used to denote the output of a partial recursive function ⟨e, x1, x2, . . . , xk, s⟩ ↦

ϕe,s(x1, x2, . . . , xk) satisfying the following properties:

(a) ϕe(x1, x2, . . . , xk)↓ if and only if ϕe,s(x1, x2, . . . , xk)↓ for some s ∈ N, in which case ϕe(x1, x2, . . . , xk) =

ϕe,s(x1, x2, . . . , xk).

(b) If s < t and ϕe,s(x1, x2, . . . , xk)↓, then ϕe,t(x1, x2, . . . , xk)↓ = ϕe,s(x1, x2, . . . , xk).

15

(c) The set {⟨e, x1, x2, . . . , xk, s⟩ ∣ ϕe,s(x1, x2, . . . , xk)↓} is recursive.4

I.3.3 Partial Recursive Functionals

Although {0,1}N and NN cannot be Gödel numbered, reasoning about initial segments of sequences in {0,1}N

and NN allows us to talk about partial recursiveness for partial functions involving these spaces.

Proposition I.3.22. (well-known) Suppose Ψ ∶ ⊆NN → NN is given. The following are equivalent.

(i) There exists a partial recursive function Γ1 ∶ ⊆N∗ ×N→ N such that

∀σ∀σ′∀x∀y ((⟨σ,x, y⟩ ∈ Γ1 ∧ σ ⊆ σ′) Ô⇒ ⟨σ′, x, y⟩ ∈ Γ1)

for which Ψ(X) ≃ Y if and only if ∀x∃n ⟨X↾n,x, Y (x)⟩ ∈ Γ1.

(ii) There exists a partial recursive function Γ2 ∶ ⊆N∗ ×N→ N such that

∀σ∀σ′∀x ((⟨σ,x⟩ ∈ dom Γ2 ∧ ⟨σ′, x⟩ ∈ dom Γ2 ∧ σ ⊆ σ′) Ô⇒ σ = σ′)

for which Ψ(X) ≃ Y if and only if ∀x∃x ⟨X↾n,x, Y (x)⟩ ∈ Γ2.

(iii) There exists a partial recursive function Γ3 ∶ ⊆N∗ → N∗ such that

∀σ∀σ′∀τ∀τ ′ ((⟨σ, τ⟩ ∈ Γ3 ∧ ⟨σ′, τ ′⟩ ∈ Γ3 ∧ σ ⊆ σ′) Ô⇒ (τ ⊆ τ ′ ∨ τ ′ ⊆ τ))

for which Ψ(X) ≃ Y if and only if Y ≃ ⋃{τ ∣ ∃σ ⊂X (⟨σ, τ⟩ ∈ Γ3)}.

Definition I.3.23 (partial recursive functional). A partial functional Ψ ∶ ⊆NN → NN is partial recursive if

any (equivalently, all) of the conditions in Proposition I.3.22 hold.

Notation I.3.24. We will implicitly identify a partial recursive functional Ψ with a partial recursive function

ΓΨ ∶ ⊆N∗ → N∗ as in Proposition I.3.22(iii). We define:

ΨX
∶= ⋃{τ ∈ N∗

∣ ∃σ ⊂X (⟨σ, τ⟩ ∈ ΓΨ)} for X ∈ NN,

Ψ−1
(σ) ∶= {X ∈ NN

∣ ΨX
⊇ σ} = J{τ ∈ N∗

∣ ∃σ′ ⊇ σ (⟨τ, σ′⟩ ∈ ΓΨ)}K for σ ∈ N∗, and

Ψ−1
(S) ∶= ⋃

σ∈S
Ψ−1

(σ) for S ⊆ N∗.

Note that ΨX is a member of N∗∪NN, and that ΨX ∈ NN if and only if X ∈ dom Ψ, in which case Ψ(X) = ΨX .

4In contrast, {⟨e, x1, x2, . . . , xk⟩ ∣ ϕe(x1, x2, . . . , xk)↓} is nonrecursive and in fact {π(k+1)(e, x1, x2, . . . , xk) ∣
ϕe(x1, x2, . . . , xk)↓} is many-one equivalent to the Halting Problem.

16

For partial functions of the form Ψ ∶ ⊆ (NN)k ×N` → (NN)m×Nn (k,m ≥ 1) to be partial recursive, we may

either make appropriate adjustments to the above definitions, or reduce to the case ⊆NN → NN by associating

a tuple ⟨X0,X1, . . . ,Xk−1, x0, x1, . . . , x`−1⟩ with ⟨x0, x1, . . . , x`−1⟩
⌢(X0 ⊕X1 ⊕⋯⊕Xk−1).

I.3.4 The Arithmetical Hierarchy

The arithmetical hierarchy provides one stratification of the complexity of subsets of (NN)k×N`, and although

we will only be interested in very low levels of that hierarchy, it is more convenient to define the general

notion than those individual levels separately.

Definition I.3.25 (arithmetical hierarchy). A subset S ⊆ (NN)k ×N` is Σ0
0 and Π0

0 if S is recursive. Given

Σ0
n and Π0

n have been defined, we say that S is Σ0
n+1 if there exists a Π0

n subset R ⊆ (NN)k ×N`+1 such that

S(X1, . . . ,Xk, y1, . . . , y`) ≡ ∃mR(X1, . . . ,Xk, y1, . . . , y`,m).

for all X1, . . . ,Xk ∈ NN and y1, . . . , y` ∈ N. Likewise, S is Π0
n+1 if there exists a Σ0

n subset R ⊆ (NN)k ×N`+1

such that

S(X1, . . . ,Xk, y1, . . . , y`) ≡ ∀mR(X1, . . . ,Xk, y1, . . . , y`,m)

for all X1, . . . ,Xk ∈ NN and y1, . . . , y` ∈ N.

Other names are given to the lowest nontrivial level of the arithmetical hierarchy for subsets of Nk.

Definition I.3.26 ((co-)recursively enumerable). A subset X ⊆ Nk is recursively enumerable, or r.e., if X

is Σ0
1, and co-recursively enumerable, or co-r.e., if X is Π0

1.

Remark I.3.27. More generally, we can extend the use of ‘r.e.’ and ‘co-r.e.’ to sets of objects which are

Gödel numbered. In particular, it makes sense to speak of a set of strings S ⊆ N∗ being r.e. or co-r.e.

Often we are interested in sequences of sets each of which is at the same level of the arithmetical hierarchy

in a uniform way.

Definition I.3.28 (uniformly Σ0
n/Π0

n). A sequence ⟨Si⟩i∈I of subsets Si ⊆ (NN)k × N` is uniformly Σ0
n

(respectively, uniformly Π0
n) if it is Σ0

n (resp., Π0
n) when considered as a subset of (NN)k ×N`+1.

I.3.5 Recursive Reals and Real-Valued Functions

Like {0,1}N and NN, although R cannot be Gödel numbered, we can reason about real-valued functions by

approximating real outputs by recursive sequences of rational numbers.

17

Definition I.3.29 (recursive/computable real). α ∈ R is left recursively enumerable, or left r.e., if there is a

recursive sequence ⟨pn⟩n∈N of rational numbers converging monotonically to α from below.

α is right recursively enumerable, or right r.e., if there is a recursive sequence ⟨qn⟩n∈N of rational numbers

converging monotonically to α from above.

If α is both left r.e. and right r.e., then α is recursive or computable.

Lemma I.3.30. (well-known) Suppose α is a real number.

(a) α is recursive if and only if there exists a monotone recursive sequence ⟨αk⟩k∈N of rational numbers

such that ∣α − αk ∣ ≤ 2−k for each k ∈ N.

(b) α is left r.e. if and only if there exists a sequence ⟨αk⟩k∈N of uniformly recursive reals αk ≤ α converging

to r.

(c) α is right r.e. if and only if there exists a sequence ⟨αk⟩k∈N of uniformly recursive reals αk ≥ α converging

to α.

Proof. Straight-forward.

Definition I.3.31 (recursive/computable real-valued function of a discrete variable). f ∶N → R is left re-

cursively enumerable, or left r.e., if there is a recursive function p−,−∶N2 → Q such that for each x ∈ N, the

sequence ⟨pn,x⟩n∈N converges monotonically to f(x) from below.

f is right recursively enumerable, or right r.e., if there is a recursive funciton q−,−∶N2 → Q such that for

each x ∈ N, the sequence ⟨qn,x⟩n∈N converges monotonically to f(x) from above.

If f is both left r.e. and right r.e., then f is recursive or computable.

Remark I.3.32. In the definitions of left r.e., right r.e., and recursive functions f ∶N → R, we may replace N

with any set S which can be Gödel numbered, associating a function g∶S → R with the function g○#−1∶N→ R,

where #∶S → N is a Gödel numbering.

One of the principal ways in which recursive real-valued functions appear is to quantify growth rate.

Definition I.3.33 (order function). An order function is a function f ∶N → R which is nondecreasing,

unbounded, and computable.

Now we describe what it means for a real-valued function of a real variable to be computable.

Definition I.3.34 (recursive/computable real-valued function of a real variable). A function χ∶N → Q

represents x ∈ R if ∣χ(n) − x∣ ≤ 2−n for all n ∈ N.

18

Suppose I ⊆ R is an interval. A function f ∶ I → R is recursive or computable if there exists a partial

recursive functional Ψ ∶ ⊆QN → QN such that whenever χ∶N → Q represents x ∈ I and imχ ⊆ I, Ψ(χ)↓ and

Ψ(χ) represents f(x).

Remark I.3.35. By ‘interval’ we include both the bounded intervals (a, b), [a, b), (a, b], [a, b], and the

unbounded intervals (−∞,∞), [a,∞), (−∞, b], (a,∞), (−∞, b).

We will assume the following basic facts concerning computable real-valued functions of a real variable.

Proposition I.3.36. (well-known)

(a) The functions x ↦ α, x ↦ xβ, x ↦ log2 x, x ↦ 2x, and x ↦ ⌊x⌋ are computable, where each function

has its natural domain and α ∈ R and β ∈ R≥0 are computable.

(b) If f ∶N→ R is computable, then the piecewise-linear extension f ∶ [0,∞) → R defined by f(x) ∶= (f(⌊x⌋+

1) − f(⌊x⌋))(x − ⌊x⌋) + f(⌊x⌋) for each x ∈ [0,∞) is computable.

(c) If f ∶ [0,∞) → R is computable, then f↾N is computable.

(d) If f ∶ I → R is computable and J is an interval whose endpoints are either infinite or finite, computable

reals, then f↾ (I ∩ J) is computable.

(e) If f, g∶ I → R are computable, then f + g and f ⋅ g are computable.

(f) If f ∶ I → R and g∶J → R are computable and im f ⊆ J , then their composition g ○ f is computable.

Proof. Cumbersome but routine.

I.4 Reducibility Notions

I.4.1 Turing Reducibility

The principal way to measure the ‘degree of unsolvability’ of an infinite sequenceX ∈ NN is Turing reducibility.

Theorem I.4.1. (well-known) Suppose X,Y ∈ NN. The following are equivalent.

(i) X is a member of the smallest collection of partial functions ⊆Nk → N containing the initial functions,

containing Y , and closed under generalized composition, primitive recursion, and minimization.

(ii) There exists an oracle Turing machine which computes X given an oracle for Y .

(iii) There exists an oracle register machine program which computes X given an oracle for Y .

19

(iv) There exists a recursive functional Ψ ∶ ⊆NN → NN such that Ψ(Y)↓ =X.

Definition I.4.2 (Turing reducibility). Given X,Y ∈ NN, we say that X is Turing reducible to Y , written

X ≤T Y , if any of the equivalent conditions in Theorem I.4.1 hold. We may also say that X is Y -computable,

Y -recursive, or that Y computes X.

If X ≤T Y and Y ≤T X, then we say that X and Y are Turing equivalent and write X ≡T Y .

≤T is a preorder, and hence ≡T is an equivalence relation.

Definition I.4.3 (Turing degree). The Turing degree of an infinite sequence X ∈ NN is the ≡T-equivalence

class containing X, written degT(X).

The collection of all Turing degrees is written DT. ≤T induces a partial order ≤ on DT defined by setting

degT(X) ≤ degT(Y) if and only if X ≤T Y .

Example I.4.4. 0 is the Turing degree of any recursive X ∈ NN. It is the minimum of DT.

Example I.4.5. Consider the following subsets of N, which we tacitly identify with their characteristic

functions:

H1 ∶= {e ∈ N ∣ ϕe(0)↓},

H2 ∶= {e ∈ N ∣ ϕe(e)↓},

H3 ∶= {e ∈ N ∣ ϕi(n)↓, where π(2)
(i, n) = e}.

All three Turing equivalent to one another. Firstly, H1 ≤T H3 because e ∈ H1 if and only if π(2)(e,0) ∈ H3;

likewise, H2 ≤T H3 because e ∈ H1 if and only if π(2)(e, e) ∈ H3. For the opposite direction, consider the

partial recursive function θ(π(2)(i, n),m) ≃ ϕi(n); the Parametrization Theorem yields a total recursive

function f ∈ NN such that ϕf(e)(m) ≃ θ(e,m) for all e,m ∈ N. Then

e ∈H3 ⇐⇒ f(e) ∈H1 ⇐⇒ f(e) ∈H2,

showing H3 ≤T H1 and H3 ≤T H2. H3 is the Halting problem, though thanks to the above equivalences we

may also refer to H1 or H2 as the Halting problem. The Turing degree of H1 ≡T H2 ≡T H3 is called 0′ and

X ∈ NN is said to be complete if 0′ ≤ degT(X).

Some simple facts about Turing degrees include the following:

Lemma I.4.6. Suppose X,Y ∈ NN are given.

(a) degT(X ⊕ Y) = sup{degT(X),degT(Y)}. Consequently, (DT,≤) is a join semi-lattice.

20

(b) There exists Z ∈ {0,1}N such that X ≡T Z.

Proof. Straight-forward.

In analogy with admissible enumerations of the k-place partial recursive functions we may also consider

admissible enumerations of the k-place partial recursive functionals ⊆NN ×Nk → N.

Definition I.4.7 (admissible enumeration of partial recursive functionals). An admissible enumeration of

the k-place partial recursive functionals ⊆NN ×Nk → N is a sequence Φ0,Φ1,Φ2, . . . of such functionals such

that:

(i) For every partial recursive functional Ψ ∶ ⊆NN ×Nk → N there is e ∈ N such that Ψ = Φe.

(ii) The partial functional Φ(e,X,x1, x2, . . . , xk) ≃ Φe(X,x1, x2, . . . , xk) is partial recursive.

(iii) For any partial recursive functional Θ ∶ ⊆NN × Nk+1 → N there exists a total recursive g∶N → N such

that, for all f ∈ NN and e, x1, x2, . . . , xk ∈ N,

Φg(e)(f, x1, x2, . . . , xk) ≃ Θ(f, e, x1, x2, . . . , xk).

Notation I.4.8. The notation ⟨X,e, x1, x2, . . . , xk⟩ ↦ ϕXe (x1, x2, . . . , xk) will often be used to denote an

(admissible) enumeration of the k-place partial recursive functionals ⊆NN ×Nk → N.

The notation ϕτe,s(x1, x2, . . . , xk) is used to denote the output of a partial recursive function

⟨e, x1, x2, . . . , xk, s, τ⟩ ↦ ϕτe,s(x1, x2, . . . , xk) satisfying the following properties:

(i) For every X ∈ NN, ϕXe (x1, x2, . . . , xk)↓ if and only if ϕX↾ se,s (x1, x2, . . . , xk)↓ for some s ∈ N, in which case

ϕXe (x1, x2, . . . , xk) = ϕ
X↾ s
e,s (x1, x2, . . . , xk).

(ii) If σ ⊆ τ , s ≤ t, and ϕσe,s(x1, x2, . . . , xk)↓, then ϕτe,t(x1, x2, . . . , xk)↓ = ϕ
σ
e,s(x1, x2, . . . , xk).

(iii) The set {⟨e, x1, x2, . . . , xk, s, τ⟩ ∣ ϕ
τ
e,s(x1, x2, . . . , xk)↓} is recursive.

I.4.2 Mass Problems and Weak, Strong Reducibility

When measuring the ‘degree of unsolvability’ of a subset of NN there are two notions of reducibility we

consider.

Definition I.4.9 (weak reducibility). Given P,Q ⊆ NN, P is weakly reducible to Q, written P ≤w Q, if for

every Y ∈ Q there exists X ∈ Q such that X ≤T Y .

If P ≤w Q and Q ≤w P , then P and Q are weakly equivalent , written P ≡w Q.

21

Definition I.4.10 (strong reducibility). Given P,Q ⊆ NN, P is strongly reducible to Q, written P ≤s Q, if

there exists a recursive functional Ψ∶Q→ P .

If P ≤s Q and Q ≤w P , then P and Q are strongly equivalent , written P ≡s Q.

Remark I.4.11. Weak reducibility is also called Muchnik reducibility, and strong reducibility is also called

Medvedev reducibility.

An interpretation of a subset P ⊆ NN is as a problem (and within this context subsets of NN are sometimes

called mass problems) whose elements are its solutions. If P ≤w Q, then any solution to Q computes a solution

to P , though this is not necessarily a uniform procedure. If P ≤s Q, then there is a uniform procedure to

turn a solution to Q into a solution to P . See [25] and [24] for additional information and motivation.

As with Turing reducibility, both weak and strong reducibility are preorders on P(NN) and ≡w and ≡s

define equivalence relations on P(NN).

Definition I.4.12 (weak and strong degrees). Suppose P ⊆ NN. The weak degree of P , degw(P), is the

≡w-equivalence class containing P , and the strong degree of P , degs(P), is the ≡s-equivalence class containing

P .

The set of all weak degrees is denoted by Dw, while the set of all strong degrees is denoted by Ds.

Here we collect some simple facts about Dw and Ds that we use repeatedly and often implicitly.

Proposition I.4.13. (well-known) Let P and Q be mass problems and let Q a family of mass problems.

(a) P ≤s Q implies P ≤w Q.

(b) Q ⊆ P implies P ≤s Q.

(c) P ≡w P ≤T , where P ≤T ∶= {Y ∈ NN ∣ ∃X ∈ P (X ≤T Y)} is the Turing upward closure of P .

(d) inf{degw(P) ∣ P ∈ Q} = degw (⋃Q).

(e) sup{degw(P) ∣ P ∈ Q} = degw (⋂{P ≤T ∣ P ∈ Q}).

(f) ⟨Dw,≤⟩ is a completely distributive lattice.

(g) inf{degs(P),degs(Q)} = degs(P ×Q), where P ×Q ∶= {X ⊕ Y ∣X ∈ P ∧ Y ∈ Q}.

(h) sup{degs(P),degs(Q)} = degs({⟨0⟩
⌢X ∣X ∈ P} ∪ {⟨1⟩⌢Y ∣ Y ∈ Q}).

(i) REC ≤s P ≤s ∅, where REC = {X ∈ NN ∣X is recursive}.

(j) ⟨Ds,≤⟩ is a bounded distributive lattice.

22

(k) For all X,Y ∈ NN, X ≤T Y if and only if {X} ≤w {Y }, and if and only if {X} ≤s {Y }. Consequently,

degT(X) ↦ degw({X}) and degT(X) ↦ degs({X}) define embeddings of ⟨DT,≤⟩ into ⟨Dw,≤⟩ and

⟨Ds,≤⟩, respectively.

(l) P ≡w REC if and only if P ∩REC ≠ ∅.

Examples of mass problems, weak reductions, and strong reductions will be encountered throughout the

remainder of this thesis, though we give one example presently which is neither empty nor weakly or strongly

equivalent to {f} for some f ∈ NN.

Example I.4.14. Suppose P ∩REC = ∅. Then P ⊆ RECc, so RECc
≤s P . It follows that degw(RECc

) and

degs(RECc
) are immediate successors of the minimum of Dw and Ds, respectively.

That RECc
≢w {X} (and consequently RECc

≢s {X}) for any X ∈ NN follows from the fact that there

exist incomparable minimal nonrecursive Turing degrees.

I.4.3 Ew and the Embedding Lemma

Particular attention is given to the weak degrees of nonempty Π0
1 subsets of {0,1}N, which we call Π0

1 classes,

serving a similar role in Dw as the collection ET of r.e. Turing degrees (i.e., Turing degrees of r.e. sequences)

in DT.

Definition I.4.15. Ew ∶= {degw(P) ∣ P ⊆ {0,1}N is Π0
1}.

One motivation for Ew in comparison to ET is that specific, natural examples of weak degrees in Ew can

be given while there are no known specific, natural r.e. degrees aside from 0 and 0′. See [25] and [24] for

additional details.

Proposition I.4.16. Suppose P ⊆ {0,1}N is given. The following are equivalent.

(a) P is Π0
1.

(b) There exists a recursive tree T ⊆ {0,1}∗ such that P is the set of paths through T .

(c) There exists e ∈ N such that P = {X ∈ {0,1}N ∣ ϕXe (0)↑}.

Although our interests lie chiefly within Ew, the weak degrees we consider are often most naturally

represented by mass problems which are not Π0
1 subsets of {0,1}N. The following result shows that this issue

can be side-stepped as long as the mass problem is sufficiently low in the arithmetical hierarchy.

Proposition I.4.17 (Embedding Lemma). [27, Lemma 17.1] Suppose P is a nonempty Π0
1 subset of {0,1}N

and S is a Σ0
3 subset of NN. Then there exists a nonempty Π0

1 subset Q of {0,1}N such that Q ≡w P ∪ S.

23

One particular case which is especially well-behaved is with recursively bounded Π0
1 classes.

Definition I.4.18. Suppose h∶N→ (0,∞) is a computable function. We write

hn ∶= {σ ∈ Nn ∣ ∀i < n (σ(i) < h(i))},

h∗ ∶= {σ ∈ N∗
∣ ∀i < ∣σ∣ (σ(i) < h(i))} = ⋃

n∈N
hn,

hN ∶= {X ∈ NN
∣ ∀i (X(i) < h(i))}.

In other words, hn is the set of h-bounded strings of length n, h∗ is the set of all h-bounded strings, and

hN is the set of h-bounded infinite sequences.

Lemma I.4.19. The subspace topology on hN ⊆ NN has a basis {JσKh ∣ σ ∈ h∗}, where for σ ∈ h∗ we define

JσKh ∶= {X ∈ hN ∣ σ ⊂X}.

Proof. For all σ ∈ h∗, hN ∩ JσK = JσKh. If σ ∈ N∗ ∖ h∗, then hN ∩ JσK = ∅.

Proposition I.4.20. (well-known) hN is recursively homeomorphic to {0,1}N.

Proof. Define ψ∶h∗ → {0,1}∗ recursively as follows: ψ(⟨⟩) = ⟨⟩ and given ψ(σ) has been defined, let

ψ(σ⌢⟨i⟩) ∶= ψ(σ)⌢⟨1⟩i⌢⟨0⟩ for each i < h(∣σ∣) − 1 and ψ(σ⌢⟨h(∣σ∣) − 1⟩) ∶= ψ(σ)⌢⟨1⟩h(∣σ∣)−1. We make the

following observations: (i) for all σ,σ′ ∈ h∗, σ ⊆ σ′ if and only if ψ(σ) ⊆ ψ(σ′), and (ii) for all σ ∈ h∗,

Jψ(σ)K2 = ⋃i<h(∣σ∣) Jψ(σ⌢⟨i⟩)K2.

Now define Ψ∶hN → {0,1}N by Ψ(X) ∶= ⋃n∈N ψ(X↾n). Observation (i) above implies Ψ is well-defined and

injective, while observation (ii) implies Ψ is surjective. Given τ ∈ {0,1}∗, Ψ−1[JτK2] = ⋃{JσKh ∣ ψ(σ) ⊇ τ},

showing Ψ is continuous. Conversely, given σ ∈ h∗, Ψ[JσKh] = Jψ(σ)K2 – that Ψ[JσKh] ⊆ Jψ(σ)K2 is immediate,

while the reverse inclusion follows from observation (ii) above – and hence Ψ is an open map. Since Ψ is

clearly recursive, it is a recursive homeomorphism.

Definition I.4.21 (recursively bounded). P ⊆ NN is recursively bounded, or r.b., if there exists an recursive

function h∶N→ (1,∞) such that P ⊆ hN.

In particular, a recursively bounded Π0
1 class, or a r.b. Π0

1 class, is a recursively bounded and Π0
1 subset

of NN.

Proposition I.4.22. [24, Theorem4.7] Suppose P is a r.b. Π0
1 class and that Ψ∶P → NN is a recursive

functional.

(a) The image Ψ[P] is recursively bounded and Π0
1.

24

(b) Ψ extends to a total recursive functional Ψ̃∶NN → NN.

Corollary I.4.23. Suppose P is a r.b. Π0
1 class. Then there exists a Π0

1 subset Q of {0,1}N which is

recursively homeomorphic to P .

Proof. Let Ψ be the recursive homeomorphism defined in the proof of Proposition I.4.20. Then Proposi-

tion I.4.22(a) shows that the image Q of P under Ψ is another Π0
1 class.

25

CHAPTER II

COMPLEXITY, AVOIDANCE, AND DEPTH

In Chapter I we gave brief definitions of COMPLEX(f) and DNR(p) for f an order function and p a

nondecreasing computable function, as well as alluded to a variation on DNR which we termed LUA.

In Section II.1, we define Martin-Löf randomness through three paradigms as a precursor to their general-

izations which give rise to f -randomness and strong f -randomness for any computable function f ∶ {0,1}∗ → R,

with Martin-Löf randomness corresponding to (λσ.∣σ∣)-randomness. The classes COMPLEX(f) are defined

and shown to lie in Ew. Finally, we list some of the properties of prefix-free and conditional prefix-free

complexity that we will use later.

In Section II.2, we show that the effect of the growth rate of p on degw DNR(p) depends explicitly

on the choice of admissible enumeration used, and motivate the definition of the class Avoidψ(p) for any

computable p∶N→ (1,∞) and partial recursive ψ. Linearly universal partial recursive functions are defined,

followed by defining LUA(p) as the union of the classes Avoidψ(p) as ψ ranges over those linearly universal

partial recursive functions. Basic and technical results are covered for the linearly universal partial recursive

functions, LUA(p), and Avoidψ(p) more generally.

In Section II.3, we formally define the notion of being fast-growing and slow-growing for an order function

and address the problem “Given a recursive sequence of fast-growing (resp., slow-growing) order functions

⟨pk⟩k∈N, find fast-growing (resp., slow-growing) order functions q+ and q− such that pk ≤dom q+ and q− ≤dom pk

for all k ∈ N.” Towards that end, for the slow-growing case we prove that such a q− always exists and that a

q+ exists with additional hypotheses on ⟨pk⟩k∈N (Proposition II.3.2), but that a q+ need not exist in general

(Example II.3.3). On the other hand, for the fast-growing case we can prove that q+ always exists and that

q− exists with additional hypotheses on the pk’s and the sequence ⟨pk⟩k∈N (Proposition II.3.5).

To better understand the extra hypothesis of requiring ∑
∞
n=0 p(n)

−1 not only be finite but also recursive,

we prove the following equivalence:

Proposition II.3.10. Suppose p∶N → (0,∞) is a fast-growing order function and let p∶ [0,∞) → (0,∞) be

any continuous nonincreasing extension of p. Then ∑
∞
n=0 p(n)

−1 is a recursive real if and only if ∫
∞

0 p(x)−1 dx

is a recursive real.

Section II.4 introduces the notion of depth for r.b. Π0
1 classes, of which our interest is based on strong

general properties of deep r.b. Π0
1 classes and the fact that the classes LUAp are deep exactly when p is

slow-growing. Depth is shown to be well-behaved with respect to ≤s while slightly less well-behaved for ≡w.

26

We end the section with a discussion of the applicability of ‘depth’ to subsets of NN which are not r.b. Π0
1

classes.

II.1 Algorithmic Randomness and Complexity

Downey & Hirschfeldt identify three paradigms through which one can attempt to make precise the idea of

‘algorithmic randomness’ or ‘algorithmic complexity’. [6, Chapter 6]

The measure-theoretic paradigm: If X ∈ {0,1}N is ‘random’, then it should pass all ‘statistical tests’ (e.g.,

X should obey the Law of Large Numbers, the Law of the Iterated Logarithm, etc.). Any ‘statistical

test’ should be such that the set of sequences failing that statistical test should be ‘effectively null’ (so

X should not fall into any effectively null subset of {0,1}N).

The computational paradigm: If X ∈ {0,1}N is ‘random’, then the initial segments of X should be ‘maximally

difficult’ to describe, in the sense that we should need to know roughly n bits of information in order

to describe X↾n.

The unpredictability paradigm: If X ∈ {0,1}N is ‘random’ and we imagine that each bit of X represents the

result of a coin flip whose outcome we are betting on, then there shouldn’t be any strategy by which

we make arbitrarily high earnings.

There are several ways to make precise the notion of randomness from any of these three paradigms

(some of them inequivalent), and our interest will not solely be on ‘randomness’ but on notions of ‘partial

randomness’. Quantifying ‘how random’ a partially random sequence is yields the complexity hierarchy.

II.1.1 Martin-Löf Randomness

Martin-Löf randomness is among the most standard ways to capture the notion of a sequence being algo-

rithmically random, and our definitions of partial randomness will be generalizations of those for Martin-Löf

randomness.

The first definition we give comes from the within the measure-theoretic paradigm.

Definition II.1.1 (Martin-Löf randomness). A Martin-Löf test, or ML test, is a sequence ⟨Ui⟩i∈N of uni-

formly Σ0
1 subsets of {0,1}N such that λ(Ui) ≤ 2−i for each i ∈ N. Such an ML test covers X ∈ {0,1}N

if X ∈ ⋂i∈NUi. X ∈ {0,1}N is Martin-Löf random (or 1-random) if no ML test covers X. The set of all

Martin-Löf random sequences is denoted by MLR.

27

The computational paradigm involves measuring the ‘complexity’ of initial segments of an X ∈ {0,1}N.

There are two relevant notions of complexity, that of prefix-free complexity and a priori complexity.

First, prefix-free complexity:

Definition II.1.2 (prefix-free machine). A machine is a partial recursive function M ∶ ⊆ {0,1}∗ → {0,1}∗. A

machine M is prefix-free if domM is prefix-free. A prefix-free machine U is said to be universal if whenever

M is another prefix-free machine there is a ρ ∈ {0,1}∗ such that U(ρ⌢τ) ≃M(τ) for all τ ∈ {0,1}∗.

Lemma II.1.3. [6, Proposition 3.5.1.(ii)] There exists a universal prefix-free machine.

Definition II.1.4 (prefix-free complexity). Fix a universal prefix-free machine U . Given σ ∈ {0,1}∗, its

prefix-free complexity (with respect to U) is defined by

KP(σ) = KPU(σ) ∶= min{∣τ ∣ ∣ U(τ)↓ = σ}.

The second notion of complexity we use is that of a priori complexity, which has a more pronounced

measure-theoretic leaning than that of prefix-free complexity:

Definition II.1.5 (continuous semimeasure). A continuous semimeasure is a function ν∶ {0,1}∗ → [0,1]

such that ν(⟨⟩) = 1 and ν(σ) ≥ ν(σ⌢⟨0⟩) + ν(σ⌢⟨1⟩) for all σ ∈ {0,1}∗. A continuous semimeasure ν is left

recursively enumerable, or left r.e., if it is left r.e. in the usual sense. A left r.e. continuous semimeasure M is

universal if whenever ν is another left r.e. continuous semimeasure there is a c ∈ N such that ν(σ) ≤ c ⋅M(σ)

for all σ ∈ {0,1}∗.

Lemma II.1.6. [6, Theorem 3.16.2] There exists a universal left r.e. continuous semimeasure.

Definition II.1.7 (a priori complexity). Fix a universal left r.e. continuous semimeasure M. Given σ ∈

{0,1}∗, its a priori complexity (with respect to M) is defined by

KA(σ) = KAM(σ) ∶= − log2 M(σ).

The complexity of an X ∈ {0,1}N can be quantified by the growth rate of the complexities of its initial

segments.

Definition II.1.8 ((strong) 1-complexity). X ∈ {0,1}N is 1-complex if there exists c ∈ N such that KP(X↾n) ≥

n − c for all n ∈ N, and is strongly 1-complex if there exists c ∈ N such that KA(X↾n) ≥ n − c for all n ∈ N.

The predictability paradigm includes supermartingales as one way to capture a notion of betting.

Definition II.1.9 (supermartingale and success). A supermartingale is a function d∶ {0,1}∗ → [0,∞) such

that 2d(σ) ≥ d(σ⌢⟨0⟩)+d(σ⌢⟨1⟩) for all σ ∈ {0,1}∗. A supermartingale d is left recursively enumerable, or left

28

r.e., if it left r.e. in the usual sense. A left r.e. supermartingale d succeeds on X ∈ {0,1}N if lim supn d(X↾n) =

∞.

Each of these approaches (among several others) ultimately give the same notion of an X ∈ {0,1}N being

‘algorithmically random’.

Proposition II.1.10. [6, Chapter 6] Suppose X ∈ {0,1}N. The following are equivalent.

(i) X is Martin-Löf random.

(ii) X is 1-complex.

(iii) X is strongly 1-complex.

(iv) No left r.e. supermartingale succeeds on X.

II.1.2 Partial Randomness

Even if X ∉ MLR, X may still exhibit some degree of randomness. Partial randomness can be approached

from the measure-theoretic, computational, and predictability paradigms just as in the case of Martin-

Löf randomness, though the resulting definitions need not be equivalent in general. Notions of ‘partial

f -randomness’ can be motivated by interpreting Martin-Löf randomness as corresponding to the choice

f(σ) ∶= ∣σ∣ for σ ∈ {0,1}∗.

Notation II.1.11. Unless otherwise specified, f denotes a computable function f ∶ {0,1}∗ → R.

Concerning the measure-theoretic paradigm, the map σ ↦ 2−f(σ) no longer induces a pre-measure on the

algebra of basic open subsets of {0,1}N; given a Σ0
1 subset U ⊆ {0,1}N, it matters how U is expressed as a

union of basic open sets. For this reason, our emphasis is on r.e. subsets of {0,1}∗ instead of Σ0
1 subsets of

{0,1}N. Moreover, we consider two distinct ways to capture the idea of the ‘f -weight’ of a subset of {0,1}∗.

Definition II.1.12 (direct and prefix-free f -weight). The direct f -weight of a set of strings S ⊆ {0,1}∗ is

defined by

dwtf(S) ∶= ∑
σ∈S

2−f(σ).

Its prefix-free f -weight is defined by

pwtf(S) ∶= sup{dwtf(A) ∣ prefix-free A ⊆ S}.

Definition II.1.13 ((strong) f -randomness). Suppose ⟨Si⟩i∈N is a sequence of uniformly r.e. subsets of

{0,1}∗. ⟨Si⟩i∈N is a f -ML test if dwtf(Si) ≤ 2−i for each i ∈ N and a weak f -ML test if pwtf(Si) ≤ 2−i for

29

each i ∈ N. ⟨Si⟩i∈N covers X ∈ {0,1}N if X ∈ ⋂i∈N JSiK. X ∈ {0,1}N is f -random if no f -ML test covers X and

strongly f -random if no weak f -ML test covers X.

Replacing the map σ ↦ ∣σ∣ with f quickly generalizes the notion of 1-complexity and strong 1-complexity:

Definition II.1.14 ((strong) f -complexity). X ∈ {0,1}N is f -complex if there exists c ∈ N such that

KP(X↾n) ≥ f(X↾n) − c for all n ∈ N, and is strongly f -complex if there exists c ∈ N such that KA(X↾n) ≥

f(X↾n) − c for all n ∈ N.

For supermartingales and success, we generalize the notion of success.

Definition II.1.15 (f -success). A left r.e. supermartingale d f -succeeds on X ∈ {0,1}N if

lim sup
n

(d(X↾n) ⋅ 2n−f(X↾n)) = ∞.

Unlike when f(σ) ∶= ∣σ∣, these notions are no longer all necessarily equivalent, instead forming two groups.

In summary:

Proposition II.1.16. [10, Theorem 2.6, Theorem 2.8] [13, Theorem 4.1.6, Theorem 4.1.8, Theorem 4.2.3]

Suppose X ∈ {0,1}N and f ∶ {0,1}∗ → R is computable.

(a) X is f -random if and only if it is f -complex.

(b) X is strongly f -random if and only if it is strongly f -complex, and if and only if no left r.e. super-

martingale f -succeeds on X.

Remark II.1.17. In [13], Hudelson generalizes the supermartingale approach to partial randomness by mod-

ifying the definition of a supermartingale, defining a left r.e. f -supermartingale to be a left r.e. function

d∶ {0,1}∗ → [0,∞) such that

2−f(σ) ⋅ d(σ) ≥ 2−f(σ
⌢⟨0⟩)

⋅ d(σ⌢⟨0⟩) + 2−f(σ
⌢⟨1⟩)

⋅ d(σ⌢⟨1⟩)

for all σ ∈ {0,1}∗, with d succeeding on X ∈ {0,1}N if lim supn d(X↾n) = ∞. For every X ∈ {0,1}N, there

exists an f -supermartingale d succeeding on X if and only if there exists a supermartingale d̃ f -succeeding

on X.

Our choice to use ordinary supermartingales and f -success follows the approaches used for f of the form

f(σ) ∶= δ ⋅ ∣σ∣ for δ ∈ (0,1] in [5] and [9].

Although f -randomness does not in general imply strong f -randomness (see, e.g., [13, Theorem 4.3.2]),

if g grows sufficiently faster than f , then g-randomness will imply strong f -randomness:

30

Proposition II.1.18. [10, Theorem 3.5] Suppose f, g∶ {0,1}∗ → R are computable functions and X ∈ {0,1}N

is g-random. If there exists a nondecreasing h∶R → R such that ∑
∞
n=1 2−h(n) < ∞ and for which g(σ) ≥

f(σ) + h(f(σ)) for all σ ∈ {0,1}∗, then X is strongly f -random.

Corollary II.1.19. [10, Theorem 3.6] Suppose k > 0 and ε > 0, and let g = f + log2 f + log2 log2 f + ⋯ +

logk−1
2 f + (1 + ε) logk2 f . Then any g-random X ∈ {0,1}N is strongly f -random.

II.1.3 Randomness and Complexity as Mass Problems

For each computable f ∶ {0,1}∗ → R there is an associated mass problem consisting of all X ∈ {0,1}N which

are f -complex (equivalently, f -random). We use the following notation:

Definition II.1.20. Suppose f ∶ {0,1}∗ → R is computable and c ∈ N. Then

COMPLEX(f, c) ∶= {X ∈ {0,1}N ∣ ∀n (KP(X↾n) ≥ f(X↾n) − c)},

COMPLEX(f) ∶= {X ∈ {0,1}N ∣X is f -complex} =
∞
⋃
c=0

COMPLEX(f, c).

Notation II.1.21. Given δ ∈ (0,1], define f ∶ {0,1}∗ → R by f(σ) ∶= δ∣σ∣. We write COMPLEX(δ, c) for

COMPLEX(f, c) and COMPLEX(δ) for COMPLEX(f).

Proposition II.1.22. The sets COMPLEX(f, c) are Π0
1, uniform in c. Thus, COMPLEXf is Σ0

2 and

consequently degw(COMPLEX(f)) ∈ Ew whenever COMPLEX(f) ≠ ∅.

Proof. Suppose X ∈ {0,1}N and c ∈ N. Fix a universal prefix-free machine U and let e be such that U(τ) ≃ σ

if and only if ϕe(str
−1(τ)) ≃ str−1(σ). Then

X ∈ COMPLEX(f, c) ⇐⇒ ∀n∀s∀τ (ϕe,s(str
−1

(τ))↓ = str−1
(X↾n) → ∣τ ∣ ≥ f(X↾n) − c).

The uniformity of the above predicate shows that COMPLEX(f) is Σ0
2.

If COMPLEX(f) ≠ ∅, then COMPLEX(f, c) ≠ ∅ for some c ∈ N. In particular, COMPLEX(f) contains

a nonempty Π0
1 subset of {0,1}N. Thus, the Embedding Lemma implies degw(COMPLEX(f)) ∈ Ew.

Often f(σ) depends only on ∣σ∣; such f are said to be length-invariant and correspond exactly with

computable functions of the form N→ R. We extend our notation for COMPLEX(f) to such functions.

Notation II.1.23. If f ∶N → R is a computable function and c ∈ N, then COMPLEX(f, c) stands for

COMPLEX(f̃ , c), where f̃ ∶ {0,1}∗ → R is defined by f̃(σ) ∶= f(∣σ∣) for σ ∈ {0,1}∗.

Because we are often interested in partial randomness and in light of Theorem II.4.12, we often only

consider f satisfying the following condition:

31

Definition II.1.24 (sub-identical). A function f ∶ {0,1}∗ → [0,∞) is sub-identical if limn→∞ (n − f(X↾n)) =

∞ for every X ∈ {0,1}N.

Likewise, a function f ∶N→ [0,∞) is sub-identical if limn→∞ (n − f(n)) = ∞.

Thanks to the presence of c in the definition COMPLEX(f) = ⋃c∈N COMPLEX(f, c), if f(n) = g(n) for

almost all n, then COMPLEXf = COMPLEXg.

Convention II.1.25. Given f ∶ ⊆N→ R, suppose f↾N≥a is a total, computable, nondecreasing, unbounded

function for some a ∈ N. Define f̃ ∶N→ R by f̃(n) ∶= f(n) for n ≥ a and f̃(n) ∶= f(a) otherwise. Then f̃ is an

order function, and we let COMPLEX(f) denote the class COMPLEX(f̃). This allows us to make sense of

something like, e.g., COMPLEX(log2).

II.1.4 Properties of Prefix-Free Complexity

Here we collect some of the results concerning prefix-free complexity we make use of later. Several of these

results involve conditional prefix-free complexity.

Definition II.1.26 (oracle prefix-free machine). An oracle prefix-free machine is a partial recursive func-

tion M ∶ ⊆ {0,1}∗ × {0,1}∗ → {0,1}∗ such that (i) if Mτ(σ)↓ and τ ⊆ τ ′, then Mτ ′(σ)↓ = Mτ(σ) and

(ii) {σ ∣ ⟨σ, τ⟩ ∈ domM} is prefix-free for every τ ∈ {0,1}∗. An oracle prefix-free machine U is universal if for

every oracle prefix-free machine M there exists ρ ∈ {0,1}∗ such that Uτ(ρ⌢σ) ≃Mτ(σ) for all σ ∈ {0,1}∗.

Lemma II.1.27. [6, Section 3.2] There exists a universal oracle prefix-free machine U .

Definition II.1.28 (conditional prefix-free complexity). [6, Section 3.2] Fix a universal oracle prefix-free

machine U . Given σ, τ ∈ {0,1}∗, the conditional prefix-free complexity of σ given τ (with respect to U) is

defined by

KP(σ ∣ τ) = KPU(σ ∣ τ) ∶= min{∣ρ∣ ∣ Uτ(ρ)↓ = σ},

where τ = ⟨τ(0), τ(0), τ(1), τ(1), . . . , τ(∣τ ∣ − 1), τ(∣τ ∣ − 1),0,1⟩.

Notation II.1.29. Temporarily write σ⃗ ∶= str(π(k)(str−1(σ1), str
−1(σ2), . . . , str

−1(σk))) for σ1, σ2, . . . , σk ∈

{0,1}∗. Then given σ1, σ2, . . . , σk, τ1, τ2, . . . , τm ∈ {0,1}∗, we define

KP(σ1, σ2, . . . , σk) ∶= KP(σ⃗),

KP(σ1, σ2, . . . , σk ∣ τ1, τ2, . . . , τm) ∶= KP(σ⃗ ∣ τ⃗).

Notation II.1.30. Given functions f, g∶S → R, we write f ≤+ g to mean that there exists c ∈ N such that

f(x) ≤ g(x) + c for all x ∈ S. We write f =+ g if f ≤+ g and g ≤+ f . By an abuse of notation, we may write

32

f(x) ≤+ g(x) or f(x) =+ g(x) where x is an indeterminate to indicate that f ≤+ g or f =+ g, respectively.

Proposition II.1.31.

(a) [6, Theorem 3.6.1 & Corollary 3.6.2] Kraft-Chaitin: Suppose (di, τi)i∈N is a recursive sequence of pairs

(di, τi) ∈ N × {0,1}∗ such that ∑
∞
i=0 2−di ≤ 1. Then there exists a prefix-free machine M and strings σi

such that ∣σi∣ = di and M(σi) = τi for all i ∈ N and domM = {σi ∣ i ∈ N}. Consequently, KP(τi) ≤
+ di.

(b) [6, Proposition 3.5.4] If f ∶ {0,1}∗ → {0,1}∗ is computable, then KP(f(σ)) ≤+ KP(σ) for all σ ∈ {0,1}∗.

(c) [6, Corollary 3.7.5] For any k and ε > 0, KP(σ) ≤+ ∣σ∣ + log ∣σ∣ + log log ∣σ∣ + ⋯ + (1 + ε) logk ∣σ∣.

(d) [6, Proposition 3.7.13] For all σ, τ ∈ {0,1}∗, KP(σ⌢τ) ≤ KP(σ, τ) ≤+ KP(σ) +KP(τ).

(e) [6, Theorem 3.10.2] KP(σ, τ) =+ KP(σ) + KP(τ ∣ σ,KP(σ)) =+ KP(σ) + KP(τ ∣ σ∗), where σ∗ is the

lexicographically least τ such that U(τ)↓ = σ in s stages for the least possible s.

Corollary II.1.32. Suppose f ∶ ({0,1}∗)k → {0,1}∗ is computable. Then for all σ1, σ2, . . . , σk,

KP(f(σ1, σ2, . . . , σk)) ≤
+ KP(σ1) +KP(σ2) + ⋯ +KP(σk).

II.2 DNR and Avoidance

The diagonally non-recursive (or DNR) hierarchy consists of the sets DNR(p) for p∶N→ (1,∞) computable,

where ‘diagonally non-recursive’ is with respect to a fixed admissible enumeration ϕ●.

Definition II.2.1 (diagonally non-recursive). The set of diagonally non-recursive sequences, DNR ⊆ NN, is

defined by DNR ∶= {f ∈ NN ∣ ∀n (f(n) ≄ ϕn(n))}. Additionally, given a recursive p∶N→ (1,∞), we define:

DNR(p) ∶= {X ∈ NN
∣X ∈ DNR ∧ ∀n (X(n) < p(n))}.

The weak degree of DNR(p) has a dependence on the growth rate of p. At one extreme, 1 ∶= degw(DNR(2))

is the maximum weak degree in Ew [27, Theorem 14.6]. As the growth rate of p rises the weak degree of

DNR(p) falls; [17, Theorem 2.3] shows that the class DNRrec ∶= ⋃{DNR(p) ∣ p recursive} is weakly equiv-

alent to the class COMPLEX ∶= ⋃{COMPLEX(f) ∣ f recursive}. Several results (e.g., [9], [15]) show that

for certain properties of interest, every element of DNR(p) computes an infinite sequence with that desired

property if p is sufficiently slow-growing.

If we wish to replace ‘sufficiently slow-growing’ with explicit bounds, we quickly run into problems –

the weak degree of DNR(p) depends not only on p, but also on the particular admissible enumeration ϕ●

33

used in the definition of DNR(p), a fact that has been observed in [24, Remark 10.6], [2, §7.3], and [19]. In

particular, we can show:

Proposition II.2.2. There exist admissible enumerations ϕ● and ϕ̃● such that the weak degree of DNR(λn.n)

differs when defined with respect to ϕ● and ϕ̃●.

Proof. [2] shows that there exist admissible enumerations ϕ● for which DNR(p) ≰w MLR (where DNR(p) is

defined with respect to that particular choice of enumeration ϕ●) if and only if ∑
∞
n=0 p(n)

−1 = ∞.1 Let ϕ● be

such an admissible enumeration.

We define a new admissible enumeration ϕ̃●. Given x ∈ N, define

ϕ̃e(x) ≃

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ϕn(x) if e = 2n,

↑ otherwise.

It is straight-forward to check that ϕ̃● is an admissible enumeration.

Write DNR(1) to mean DNR with respect to the enumeration ϕ● and DNR(2) to mean DNR with respect

to the enumeration ϕ̃●. Our assumption about ϕ● implies DNR(1)
(λn.n) ≰w MLR while DNR(1)

(λn.2n) ≤w

MLR. However, DNR(2)
(λn.n) ≡s DNR(1)

(λn.2n) and hence DNR(2)
(λn.n) ≤w MLR and so DNR(1)

(λn.n)

and DNR(2)
(λn.n) are not weakly equivalent.

With this dependence in mind, if we wish to discuss the weak degrees of the classes DNRp, then the

notation ‘DNR’ should be replaced with one explicitly acknowledging the choice of admissible enumeration

implicit in ‘DNR’. By definition X ∈ DNR if and only if X avoids the diagonal ψ(e) ≃ ϕe(e), i.e., X ∩ψ = ∅.

In particular, a more precise observation is that DNR depends only on the choice of ψ, where ψ is chosen

among the diagonals of admissible enumerations. The constraint that ψ be the diagonal of an admissible

enumeration can be lifted to give a more general notion.

Definition II.2.3 (avoidance). Suppose ψ ∶ ⊆N → N is a partial recursive function. The class Avoidψ is

defined by Avoidψ ∶= {X ∈ NN ∣X ∩ ψ = ∅}. Additionally, given any recursive p∶N→ (1,∞), we define:

Avoidψ(p) ∶= {X ∈ NN
∣X ∩ ψ = ∅ ∧ ∀n (X(n) < p(n))}.

In this more general framework, the analogs of the diagonals of admissible enumerations are the universal

partial recursive funcitons.

Definition II.2.4 (universal partial recursive function). A partial recursive function ψ ∶ ⊆N→ N is universal

if for every partial recursive function θ ∶ ⊆N→ N there is a total recursive function f such that ψ ○ f = θ.

1This fact has also been independently observed by Greenberg, Miller [19], and Slaman.

34

This is based on the fact that the diagonal of any admissible enumeration ϕ● is universal.

Proposition II.2.5. The diagonal of any admissible enumeration is universal.

Proof. Let ϕ● be an admissible enumeration and ψ its diagonal, and let θ ∶ ⊆N → N be any partial recursive

function. Let χ ∶ ⊆N3 → N be defined by χ(e, x, y) ≃ ϕe(x) for e, x, y ∈ N. By the Parametrization Theorem,

there exists a total recursive function g∶N2 → N such that ϕg(e,x)(y) ≃ χ(e, x, y) ≃ ϕe(x) for all e, x, y ∈ N.

Let e ∈ N satisfy ϕe(x) ≃ θ(x) for all x ∈ N, and let f ∶N→ N be defined by f(x) ∶= g(e, x). Then

(ψ ○ f)(x) ≃ ϕg(e,x)(g(e, x)) ≃ ϕe(x) ≃ θ(x).

As θ was arbitrary, it follows that ψ is universal.

II.2.1 Linearly Universal Avoidance

As with DNR(p), Avoidψ(p) still depends on the choice of universal partial recursive function ψ. To remove

the dependence on a single choice of universal partial recursive function we instead choose a collection of

universal partial recursive functions.

Definition II.2.6. Suppose C is a collection of partial recursive functions and p∶N → (1,∞) is recursive.

We define

AvoidC(p) ∶= ⋃
ψ∈C

Avoidψ(p).

The choice of C we make follows the convention introduced by [29], motivated by [2] and [19].

Definition II.2.7 (linearly universal partial recursive function). A linearly universal partial recursive func-

tion is a partial recursive function ψ ∶ ⊆N → N such that for any partial recursive θ ∶ ⊆N → N there exist

a, b ∈ N such that ψ(ax + b) ≃ θ(x) for all x ∈ N.

Definition II.2.8. Given a recursive p∶N→ (1,∞) we define LUA(p) ∶= AvoidLU(p), where LU is the family

of linearly universal partial recursive functions.

Remark II.2.9. The approach used in [2] and [19] is to use Avoidψ(p), where ψ is the diagonal of a ‘linear

enumeration’, i.e., an admissible enumeration ϕ● for which there is a total recursive `∶N2 → N satisfying the

following conditions: (i) For all e, x ∈ N, ψ(`(e, x)) ≃ ϕe(x) and (ii) for each e ∈ N there exist a, b ∈ N such

that `(e, x) ≤ ax + b for all x ∈ N.

35

II.2.2 Properties of Linearly Universal Partial Recursive Functions

Every linearly universal partial recursive function ψ produces an effective enumeration ϕ● of the partial

recursive functions by setting

ϕe(x) ≃ ψ((e)0x + (e)1)

for e, x ∈ N, where (−)i ∶= πi ○ (π
(2))−1 for i ∈ {0,1} (so π(2)((n)0, (n)1) = n for all n ∈ N). This enumeration

ϕ● is admissible.

Proposition II.2.10 (Parametrization Theorem for Linearly Universal Partial Recursive Functions). Sup-

pose ψ is a linearly universal partial recursive function and θ ∶ ⊆Nk+1 → N is a partial recursive function.

There exist elementary recursive functions A,B∶Nk → N such that

ψ(A(x)y +B(x)) ≃ θ(x, y)

for all x ∈ Nk and y ∈ N.

Proof. Because ψ is linearly universal, there exists a, b ∈ N such that ψ(aπ(k+1)(x, y) + b) ≃ θ(x, y) for all

x ∈ Nk and y ∈ N. Thus, defining A,B∶Nk → N by

A(x) ∶= a2π
(k)(x)+1 and B(x) ∶= a(2π

(k)(x)
− 1) + b

gives

ψ(A(x)y +B(x)) ≃ ψ(a2π
(k)(x)+1y + a(2π

(k)(x)
− 1) + b)

≃ ψ(a(2π
(k)(x)

(2y + 1) − 1) + b)

≃ ψ(aπ(k+1)
(x, y) + b)

≃ θ(x, y)

for all x ∈ Nk and y ∈ N.

Corollary II.2.11. Suppose ψ is a linearly universal partial recursive function. Then the effective enumer-

ation ϕ● defined by ϕe(n) ∶= ψ((e)0n + (e)1) is admissible.

Corollary II.2.12 (Recursion Theorem for Linearly Universal Partial Recursive Functions). Suppose ψ is

a linearly universal partial recursive function and θ ∶ ⊆Nk+2 → N is a partial recursive function. Then there

exist a, b ∈ N such that

ψ(aπ(k)
(x) + b) ≃ θ(a, b,x)

for all x ∈ Nk.

36

Proof. Let θ̃ ∶ ⊆Nk+1 → N be defined by

θ̃(c,x) ≃ θ((c)0, (c)1,x)

for all c ∈ N and x ∈ Nk. Corollary II.2.11 and Proposition I.3.12 show that that there exists an e ∈ N such

that

ψ((e)0π
(k)

(x) + (e)1) ≃ ϕ
(k)
e (x) ≃ θ̃(e,x) ≃ θ((e)0, (e)1,x)

for all x ∈ N. Thus, we may let a = (e)0 and b = (e)1.

Moreover, the diagonal of ϕ● is linearly universal.

Proposition II.2.13. If ψ0 is a linearly universal partial recursive function, then the partial function ψ

defined by ψ(e) ≃ ψ0((e)0e + (e)1) for e ∈ N is also linearly universal partial recursive.

Proof. Suppose θ ∶ ⊆N→ N is a partial recursive function. There are a and b such that ∀x (ψ0(ax+b) ≃ θ(x)).

For any x ∈ N, π(2)(0, x) = 20(2x + 1) − 1 = 2x, so

ψ(2x) ≃ ψ(π(2)
(0, x)) ≃ ψ0(0 ⋅ x + x) = ψ0(x).

It follows that ψ is linearly universal.

Together, Corollary II.2.11 and Proposition II.2.13 allow us to enjoy the benefits of linearly universal

partial recursive functions and of admissible enumerations simultaneously, e.g., having access to the par-

ticularly nice versions of the Parametrization and Recursion Theorems in the forms of Proposition II.2.10

and Corollary II.2.12, respectively.

Another convenient property of linearly universal partial recursive functions is that we may we edit any

finite number of values without affecting the linear universality.

Proposition II.2.14. Suppose ψ,χ are partial recursive functions such that ψ(n) ≃ χ(n) for almost all

n ∈ N. Then ψ is linearly universal if and only if χ is linearly universal.

Proof. Suppose ψ is linearly universal. Let N ∈ N be such that ψ(x) ≃ χ(x) for all x ≥ N . Consider the

partial recursive function θ ∶ ⊆N→ N defined by

θ(x) ≃

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ψ(x −N) if x ≥ N ,

↑ otherwise.

Because ψ is linearly universal, there are a, b ∈ N such that ψ(ax + b) ≃ θ(x) for all x ∈ N. θ is nonconstant,

37

so a ≠ 0 and hence ax + b ≥ x for all x ∈ N. Thus, for all x ∈ N,

χ(ax + (aN + b)) ≃ ψ(ax + (aN + b)) ≃ ψ(a(x +N) + b) ≃ θ(x +N) ≃ ψ(x),

showing χ is linearly universal.

Convention II.2.15. Given p ∶ ⊆N → R, suppose p↾N≥a is a total, computable, nondecreasing, unbounded

function with image in (1,∞) for some a ∈ N. Define p̃∶N→ (1,∞) by p̃(x) ∶= p(x) for x ≥ a and p̃(x) ∶= p(a)

otherwise. Then p̃ is an order function, and we let LUA(p) denote the class LUA(p̃). This allows us to make

sense of something like, e.g., LUA(log2).

II.2.2.1 Basic Properties of the LUA Hierarchy

The regularity of the manner in which linearly universal partial recursive functions express their universality

allows us to prove some simple but useful strong and weak reductions.

Proposition II.2.16. Let p, q∶N→ (1,∞) be recursive functions.

(a) If q(x) = p(ax + b) for some a ∈ N>0 and b ∈ N for all x ∈ N, then LUA(p) ≡w LUA(q).

(b) If X ∈ LUA(p), Y ∈ pN, and X(x) = Y (x) for almost all x ∈ N, then Y ∈ LUA(p).

(c) If p ≤dom q, then LUA(q) ≤s LUA(p).

(d) If for all a, b ∈ N we have q(ax + b) ≤ p(x) for almost all x ∈ N and ψ0 is a partial recursive function,

then Avoidψ0(p) ≤w LUA(q).

Proof.

(a) Let ψ be a linearly universal partial recursive function. If X ∈ Avoidψ(p), then X ∈ Avoidψ(q) ⊆ LUA(q)

since p(x) ≤ q(x) for all x ∈ N. Thus, the recursive functional X ↦X shows LUA(q) ≤s LUA(p).

Conversely, if X ∈ Avoidψ(q), define ψ̃ by

ψ̃(y) ≃

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ψ(x) if y = ax + b,

↑ otherwise.

Because ψ̃(ax + b) ≃ ψ(x), it follows that ψ̃ is linearly universal partial recursive. Similarly define

X̃ ∈ NN by

X̃(y) ≃

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

X(x) if y = ax + b,

0 otherwise.

38

If X ∩ψ = ∅ and X is q-bounded, then X̃ ∩ ψ̃ = ∅ and X̃ is p-bounded. Thus, the recursive functional

X ↦ X̃ shows LUA(p) ≤s LUA(q).

(b) Let ψ be a linearly universal partial recursive function and suppose X ∈ Avoidψp . Let N ∈ N be such

that X(x) = Y (x) for all x ≥ N and define ψ̃ by

ψ̃(x) ≃

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ψ(x) if x ≥ N ,

↑ otherwise,

so Y ∈ Avoidψ̃(p). By Proposition II.2.14, ψ̃ is linearly universal, so Y ∈ LUA(p).

(c) Suppose p(x) ≤ q(x) for all x ≥ N . Given X ∈ NN, let X̃ be defined by

X̃(x) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

X(x) if x ≥ N

c otherwise,

where c is a rational number such that 1 < c < q(0). If X is p-bounded, then X̃ is q-bounded. (b) above

then shows that X̃ ∈ LUA(q). This process defines a total recursive functional Ψ, so LUA(q) ≤s LUA(p).

(d) Let ψ be a linearly universal partial recursive function and suppose X ∈ Avoidψ(q). Let a, b ∈ N be

such that ψ(ax+ b) ≃ ψ0(x) for all x ∈ N and let X̃ be defined by X̃(x) ∶=X(ax+ b). Then X̃ ∩ψ0 = ∅

and X̃(x) =X(ax + b) < q(ax + b) ≤ p(x) shows that X̃ ∈ Avoidψ0(p).

Some other general basic reductions we make use of are given below.

Proposition II.2.17. Let ψ ∶ ⊆N→ N and p∶N→ (1,∞) be given.

(a) Suppose q∶N→ (1,∞) is an order function dominating p. Then Avoidψ(q) ≤s Avoidψ(p).

(b) Suppose u∶N→ N is recursive. Then Avoidψ○u(p ○ u) ≤s Avoidψ(p).

Proof.

(a) Suppose p(n) ≤ q(n) for all n ≥ N . Let τ ∈ {0,1}N be any string such that τ(n) ≄ ψ(n) for all

n < N . Then the recursive functional X ↦ τ⌢ (X↾ [N,∞)) gives a strong reduction from Avoidψ(q) to

Avoidψ(p).

(b) The recursive functional X ↦X ○ u gives a strong reduction from Avoidψ(p) to Avoidψ○u(p ○ u).

39

As our interest lies in Ew, we must show that degw(LUA(p)) ∈ Ew for any recursive p.

Lemma II.2.18. There is an effective enumeration of the linearly universal partial recursive functions.

Proof. Let ϕ● be an admissible enumeration of the partial recursive functions, let ψ0 be a fixed linearly

universal partial recursive function, and let e0 be such that ψ0 = ϕe0 .

The central observation we make is that for any partial recursive ψ, ψ is linearly universal if and only

if there are a, b ∈ N such that ψ(ax + b) ≃ ψ0(x) for all x ∈ N. With this in mind, we modify ϕ● to

produce an enumeration of the linearly universal partial recursive functions as follows: given a, b, e ∈ N,

define ψπ(3)(a,b,e) ∶ ⊆N→ N by

ψπ(3)(a,b,e)(x) ≃

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ψ0(y) if ay + b = x,

ϕe(x) otherwise.

Then ψ is linearly universal if and only if there exist a, b, e ∈ N such that ψ = ψπ(3)(a,b,e), so ψ● gives an

effective enumeration of the linearly universal partial recursive functions.

Proposition II.2.19. Suppose p is a recursive function. Then LUA(p) is Σ0
2. Consequently, degw(LUA(p)) ∈

Ew.

Proof. By Lemma II.2.18, there exists an effective enumeration ψ● of the linearly universal partial recursive

functions. Let ϕ● be any admissible enumeration; the Parametrization Theorem implies there is a total

recursive function f ∶N→ N such that ϕf(e) = ψe for all e ∈ N. Then

X ∈ LUA(p) ≡ ∃e∀n∀s∀m (ϕf(e),s(n)↓ =m→m ≠X(n)) ∧ ∀n(X(n) < p(n))

shows that LUA(p) is Σ0
2. The Embedding Lemma then implies degw(LUA(p)) ∈ Ew.

II.3 Fast & Slow-Growing Order Functions

An important dividing line concerning how the growth rate of p determines where in Ew the weak degree of

LUA(p) falls is whether the series ∑
∞
n=0 p(n)

−1 converges or not.

Definition II.3.1 (fast & slow-growing order functions). Suppose p∶N→ (0,∞) is nondecreasing and com-

putable. p is fast-growing if ∑
∞
n=0 p(n)

−1 < ∞ and slow-growing otherwise.

II.3.1 Bounding Sequences of Fast & Slow-Growing Order Functions

Given a recursive sequence of slow-growing order functions, we can effectively find a slow-growing lower

bound (in the sense of ≤dom). Under some additional conditions on the sequence, we can also effectively find

40

a slow-growing upper bound.

Proposition II.3.2. Suppose ⟨pk⟩k∈N is a recursive sequence of slow-growing order functions.

(a) There is a slow-growing order function q− such that q− ≤dom pk for all k ∈ N.

(b) Suppose, additionally, that pk ≤dom pk+1 for all k ∈ N. Then there is a slow-growing order funciton q+

such that pk ≤dom q+ for all k ∈ N.

Proof.

(a) We simultaneously define the values q−(n) and natural numbers Mn by recursion. We start by setting

q−(0) ∶= p0(0) and M0 ∶= 0.

Given q−(0), q−(1), . . . , q−(n) and M0,M1, . . . ,Mn have been defined, let Mn+1 equal Mn+1 if Mn+1 ≤

min0≤k≤Mn+1 pk(n + 1) and otherwise equal to Mn. Then define

q−(n + 1) ∶= min{p0(n + 1), p1(n + 1), . . . , pMn+1(n + 1),Mn+1 + 1}.

We now claim that q− is a slow-growing order function dominated by each pk.

Nondecreasing. Given n ∈ N,

q−(n) = min{p0(n), p1(n), . . . , pMn(n),Mn + 1}

≤ min{p0(n + 1), p1(n + 1), . . . , pMn+1(n + 1),Mn + 1}

≤ min{p0(n + 1), p1(n + 1), . . . , pMn+1(n + 1),Mn+1 + 1}

= q−(n + 1)

as pk is nondecreasing for each k.

Unbounded. It suffices to show that limn→∞Mn = ∞. Suppose for the sake of a contradiction that

limn→∞Mn < ∞, so that Mn is eventually constant, say to M . For Mn to be eventually con-

stant, it must be the case that M > min0≤k≤M pk(n + 1) for all n ∈ N. But p0 is unbounded, so

min0≤k≤M pk(n + 1) is unbounded as a function of n, yielding a contradiction.

Dominated by pk. Given k, there exists n ∈ N such that Mn ≥ k. Then q−(n) ≤ pk(n) for all n ≥Mn.

Slow-Growing. As ∑
∞
n=0 p0(n)

−1 = ∞ and q− is dominated by p0, it follows by Direct Comparison that

∑
∞
n=0 q

−(n)−1 = ∞.

Recursive. The uniform recursiveness of the pk’s implies that the simultaneous construction of q− and

the sequence ⟨Mn⟩n∈N is recursive.

41

(b) We start by recursively defining natural numbers Nm ∈ N. Let N0 = 0, and given Nm has been defined,

define Nm+1 to be the least natural number greater than Nm such that

Nm+1−1

∑
n=Nm

pm(n)−1
≥ 1

and for which pm(Nm+1 − 1) ≤ pm+1(Nm+1). This is possible because pm is slow-growing and pm ≤dom

pm+1. We define q+∶N→ (0,∞) as follows: given n ∈ N, let m be the unique natural number for which

Nm ≤ n < Nm+1, and define

q+(n) ∶= pm(n).

We claim that q+ is a slow-growing order function dominating each pk.

Nondecreasing. By definition, q+ is nondecreasing on the interval Nm ≤ n < Nm+1 since it agrees with

the nondecreasing function pm on that interval. Thus, to show that q+ is nondecreasing, it suffices

to show that q+(Nm+1 − 1) ≤ q+(Nm+1) for each m ∈ N. But by the definition of Nm+1 and q+, we

have q+(Nm+1 − 1) = pm(Nm+1 − 1) ≤ pm+1(Nm+1) = q
+(Nm+1).

Unbounded. By definition, p0(n) ≤ q+(n) for all n ∈ N. Since p0 is unbounded, it follows that q+ is

unbounded.

Slow-Growing. For each m ∈ N, by the definition of ⟨Nm⟩m∈N and q+ we have

Nm−1

∑
n=0

q+(n)−1
=
N1−1

∑
n=0

p0(n)
−1
+
N2−1

∑
n=N1

p1(n)
−1
+⋯ +

Nm−1

∑
n=Nm−1

pm(n)−1
≥m.

Thus, ∑
∞
n=0 q

+(n)−1 = limm→∞∑
Nm−1
n=0 q+(N)−1 = limm→∞m = ∞, so q+ is slow-growing.

Dominates pk. By the definition of ⟨Nm⟩m∈N and q+, for each k ∈ N we have q+(n) ≥ pk(n) for all

n ≥ Nk, so q+ ≥dom pk.

Recursive. The uniform recursiveness of the pk’s implies that the sequence ⟨Nm⟩m∈N is recursive, and

subsequently that the function q+ is recursive.

Without the additional hypotheses in Proposition II.3.2(b), an upper bound may not exist, however:

Example II.3.3. We simultaneously define two slow-growing order functions p1, p2∶N→ (0,∞) and a strictly

increasing sequence ⟨Nm⟩m∈N. The role of ⟨Nm⟩m∈N will be that the behaviors of p1 or p2 will be consistent

between Nm and Nm+1 − 1, with those behaviors switching upon incrementing m. We start by defining

p1(0) = p2(0) ∶= 1, N0 ∶= 0, and N1 ∶= 1. Suppose Nm has been defined and that p1(n) and p2(n) have been

defined for all n < Nm. We split into two cases, depending on whether m is even or not.

42

Case 1: m even. Let Nm+1 be the least natural number greater than Nm such that ∑
Nm−1
n=0 p1(n)

−1+(Nm+1−

Nm) ⋅ p1(Nm − 1)−1 ≥m + 1, then define

p1(n) ∶= p1(Nm − 1),

p2(n) ∶= n
2,

for Nm ≤ n < Nm+1.

Case 2: m odd. Identical to the case where m is even, but with p1 and p2 switched.

In other words, we continually switch between being constant and being equal to the square function,

with p1 and p2 having the opposite behavior of the other. By construction, both p1 and p2 are slow-growing

order functions, but max{p1(n), p2(n)} = n2 for every n ∈ N>0, so there is no slow-growing order function

q∶N→ (0,∞) which dominates both p1 and p2 since ∑
∞
n=1

1
n2 < ∞.

For the fast-growing case, an upper bound always exists, but the existence of a lower bound requires an

additional hypothesis. Unlike in the slow-growing case, this additional hypothesis is not only on the form of

the sequence ⟨pk⟩k∈N, but on the constituent pk’s themselves.

Lemma II.3.4. Suppose p∶N→ (0,∞) is a fast-growing order function. Then ∑
∞
n=0 p(n)

−1 is a left r.e. real.

Proof. ⟨∑
k
n=0 p(n)

−1⟩
k∈N is a sequence of uniformly recursive reals converging monotonically to ∑

∞
n=0 p(n)

−1

from below.

Proposition II.3.5. Suppose ⟨pk⟩k∈N is a recursive sequence of fast-growing order functions pk ∶N→ (0,∞).

(a) There is a fast-growing order funciton q+ such that pk ≤dom q+ for all k ∈ N.

(b) Suppose, additionally, that ⟨∑
∞
n=0 pk(n)

−1⟩k∈N is a sequence of uniformly recursive reals. Then there is

a fast-growing order function q− such that q− ≤dom pk for all k ∈ N and for which ∑
∞
n=0 q

−(n)−1 is a

recursive real.

Proof.

(a) For n ∈ N we define

q+(n) ∶= max
k≤n

pk(n).

We claim that q+ is a fast-growing order function dominating each pk.

Nondecreasing. For all n ∈ N, that each pk is nondecreasing implies

q+(n) = max
k≤n

pk(n) ≤ max
k≤n

pk(n + 1) ≤ max
k≤n+1

pk(n + 1) = q+(n + 1).

43

Unbounded. By construction, q+(n) ≥ p0(n) for all n ∈ N. Because p0 is unbounded, q+ is as well.

Fast-Growing. By construction, q+(n) ≥ p0(n) for all n, so Direct Comparison shows ∑
∞
n=0 q

+(n)−1 < ∞

since p0 is fast-growing.

Dominates pk. Given k ∈ N, for all n ≥ k we have q+(n) = maxm≤n pm(n) ≥ pk(n). Thus, pk ≤dom q+.

Recursive. The uniform recursiveness of the pk’s immediately shows that q+ is recursive.

(b) We start by recursively defining natural numbesr Nm ∈ N. Let N0 ∶= 0, and given Nm has been defined,

define Nm+1 to be the least natural number greater than Nm such that

m+1

∑
k=0

∞
∑

n=Nm+1

1

pk(n)
≤

1

2m+1

which exists since pk is fast-growing for each k.

Now define q− as follows. Given n ∈ N, let m be the unique natural number for which Nm ≤ n < Nm+1.

Then define

q−(n) ∶= min
k≤m

pk(n).

We claim that q− is a nondecreasing, unbounded, fast-growing function which is dominated by each

pk.

Nondecreasing. For n ∈ N, let m be such that Nm ≤ n < Nm+1. Then

q−(n + 1) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

mink≤m pk(n + 1) if Nm ≤ n + 1 < Nm+1,

mink≤m+1 pk(n + 1) if Nm+1 ≤ n + 1,

≥ min
k≤m

pk(n + 1) ≥ min
k≤m

pk(n) = q
−
(n).

Unbounded. Observe that if Nm ≤ n, then pk(n) ≥ m for all k ≤ m + 1. Thus, if Nm ≤ n < Nm+1, we

have

q−(n) = min
k≤m

pk(n) ≥m.

It follows that q− is unbounded.

Fast-Growing. By the definition of Nm for m ≥ 1,

m

∑
k=0

Nm+1−1

∑
n=Nm

pk(n)
−1

≤
m

∑
k=0

∞
∑

n=Nm
pk(n)

−1
≤ 2−m.

Thus,

∞
∑
n=0

q−(n)−1
=
N1−1

∑
n=0

q−(n)−1
+

∞
∑
m=1

Nm+1−1

∑
n=Nm

max
k≤m

pk(n)
−1

≤
N1−1

∑
n=0

q−(n)−1
+

∞
∑
m=1

m

∑
k=0

Nm+1−1

∑
n=Nm

pk(n)
−1

44

≤
N1−1

∑
n=0

q−(n)−1
+

∞
∑
m=1

2−m

=
N1−1

∑
n=0

q−(n)−1
+ 1

< ∞.

Dominated by pk. By construction, for each k, q−(n) ≤ pk(n) for all n > Nk.

If the both the functions pk and the reals αk ∶= ∑
∞
n=0 pk(n)

−1 are uniformly recursive, then the function

m↦ Nm is recursive since Nm+1 is the least natural number greater than Nm such that

m+1

∑
k=0

⎛

⎝
αk −

Nm+1−1

∑
n=Nm

pk(n)
−1⎞

⎠
≤ 2−m.

The recursiveness of the map m↦ Nm then implies that q− is recursive.

Finally, we show that β ∶= ∑
∞
n=0 q

−(n)−1 is a recursive real. Define, for i ≥ 1,

βi ∶=
Ni−1

∑
n=0

q−(n)−1
+ 2−(i−1).

We claim that ⟨βi⟩i∈N≥1 is a recursive sequence of uniformly recursive reals converging monotonically

to β from above. Since limi→∞∑
Ni−1
n=0 q−(n)−1 = β and limi→∞ 2−(i−1) = 0, an argument analogous to

the proof that q− was fast-growing shows limi→∞ βi = β. Additionally, ⟨βi⟩i∈N≥1 is nonincreasing:

βi+1 =
Ni−1

∑
n=0

q−(n)−1
+
Ni+1−1

∑
n=Ni

q−(n)−1
+ 2−(i+1)

≤
Ni−1

∑
n=0

q−(n)−1
+ 2−(i+1)

+ 2−(i+1)
=
Ni−1

∑
n=0

q−(n)−1
+ 2−i = βi.

Thus, β is right r.e. and hence recursive.

Corollary II.3.6. Suppose p∶N → (0,∞) is a fast-growing order function such that ∑
∞
n=0 p(n)

−1 is recur-

sive. Then there exists a fast-growing order function q such that p(n)/q(n) ↗ ∞ as n → ∞ and for which

∑
∞
n=0 q(n)

−1 is recursive.

Proof. Let α ∶= ∑
∞
n=0 p(n)

−1 and let pm denote the function defined by pk(n) ∶= p(n)/2
k for k,n ∈ N. Note

that ∑
∞
n=0 pk(n)

−1 = 2kα is recursive, and the sequences ⟨pk⟩k∈N and ⟨2kα⟩k∈N are uniformly recursive.

By Proposition II.3.5(b), there exists a fast-growing order function q such that q ≤dom pk for all k ∈ N

and where ∑
∞
n=0 q(n)

−1 is a recursive real. Moreover, the proof of Proposition II.3.5(b) shows that there is

such a q for which p(n)/q(n) ↗ ∞ as n→∞.

45

II.3.2 More about Recursive Sums

The extra hypothesis that ∑
∞
n=0 p(n)

−1 be not only finite but additionally recursive does not hold for all

fast-growing order functions p, so it is a strictly stronger hypothesis than just being fast-growing:

Example II.3.7. Let α be any real in (0,1) which is left r.e. but not recursive (e.g., α = ∑ϕe(0)↓ 2−e) and let

⟨αk⟩k∈N be a recursive sequence of rational numbers converging monotonically to α from below. Without loss

of generality, we may assume ⟨αk⟩k∈N is strictly increasing. We simultaneously define a strictly increasing

recursive function k ↦ Nk and an order function p∶N→ N with the following additional properties:

(i) N0 = 0.

(ii) For all k ∈ N, p is constant on {Nk,Nk + 1, . . . ,Nk+1 − 1}.

(iii) For all k ∈ N, αk ≤ ∑n<Nk+1 p(n)
−1 < αk+1.

Define N0 ∶= 0, let m0 be the least positive integer such that 1
m0

< α1−α0, and let N1 be the least natural

number for which α0 ≤
N1

m0
. The minimality of N1 and m imply N1

m0
< α1.

Now suppose Nk+1 and p(n) for n < Nk+1 have been defined such that αk ≤ ∑n<Nk+1 p(n)
−1 < αk+1. Let

mk be the least natural number greater than p(Nk+1 − 1) such that 1
mk

< αk+2 −αk+1, define Nk+2 to be the

least natural number for which αk+1 ≤ ∑n<Nk+1 p(n)
−1 + (Nk+2 −Nk+1) ⋅

1
mk

, and finally let p(n) =mk for all

n ∈ {Nk+1,Nk+1 + 1, . . . ,Nk+2 − 1}. By definition, αk+1 ≤ ∑n<Nk+2 p(n)
−1. To see that ∑n<Nk+2 p(n)

−1 < αk+2,

observe that the minimality of Nk+2 would implies ∑n<Nk+2−1 p(n)
−1 < αk+1, so if ∑n<Nk+2 p(n)

−1 ≥ αk+2 we

would have m−1 ≥ αk+2 − αk+1, contradicting the choice of mk.

By construction, p is an order function for which αk ≤ ∑
Nk+1−1
n=0 p(n)−1 < α for all k ∈ N, so ∑

∞
n=0 p(n)

−1 = α

is left r.e. but not recursive.

We cover two results that assist in finding examples of fast-growing order functions p for which∑
∞
n=0 p(n)

−1

is a recursive real. The first shows that if a series converges at least as quickly as a series converging to a

recursive real, then the first series converges to a recursive real.

Proposition II.3.8. Suppose f, g∶N → (0,∞) are recursive functions such that f ≤dom g and ∑
∞
n=0 g(n) is

a recursive real. Then ∑
∞
n=0 f(n) is a recursive real.

Proof. We assume without loss of generality that f(n) ≤ g(n) for all n ∈ N.

By the Direct Comparison Test, ∑
∞
n=0 f(n) converges. Let αi = ∑

i
n=0 f(n), α = ∑

∞
n=0 f(n), βi = ∑

i
n=0 g(n),

and β = ∑
∞
n=0 g(n). Because f(n) ≤ g(n) for all n,

α − αi =
∞
∑
n=i+1

f(n) ≤
∞
∑
n=i+1

g(n) = β − βi

46

and hence α ≤ αi + (β − βi). Then the sequence ⟨αi + (β − βi)⟩i∈N converges monotonically to α from above,

showing that α is right r.e. and hence recursive by Lemma II.3.4.

Corollary II.3.9. If p and q are order functions, p ≤dom q, and ∑
∞
n=0 p(n)

−1 is a recursive real, then

∑
∞
n=0 q(n)

−1 is a recursive real.

Our second tool is a reduction of the recursiveness of ∑
∞
n=0 p(n)

−1 to that of an improper integral

∫
∞

0 p(x)−1 dx for a continuous recursive nondecreasing extension p of p.

Proposition II.3.10. Suppose p∶N → (0,∞) is a fast-growing order function and let p∶ [0,∞) → (0,∞) be

any continuous recursive nondecreasing extension of p. Then ∑
∞
n=0 p(n)

−1 is a recursive real if and only if

∫
∞

0 p(x)−1 dx is a recursive real.

Proof. We make two initial observations:

(1) Just as ∑
∞
n=0 p(n)

−1 is always left r.e., so is ∫
∞

0 p(x)−1 dx. Thus, for either quantity to be recursive it

suffices to show that that quantity is right r.e.

(2) The reals ∫
k+1
k p(x)−1 dx are uniformly recursive in k ∈ N.

Suppose ∫
∞

0 p(x)−1 dx is a recursive real. By the Integral Test, for each k ∈ N we have ∑
∞
n=k+1 p(n)

−1 ≤

∫
∞
k p(x)−1 dx ≤ ∑

∞
n=k p(n)

−1 and hence

0 ≤ (
k

∑
n=0

p(n)−1
+ ∫

∞

k
p(x)−1 dx) −

∞
∑
n=0

p(n)−1
≤ p(k)−1.

Thus,

⟨
k

∑
n=0

p(n)−1
+ ∫

∞

0
p(x)−1 dx − ∫

k

0
p(x)−1 dx⟩

k∈N

is a sequence of uniformly recursive reals converging to∑
∞
n=0 p(n)

−1 from above, hence right r.e. by Lemma I.3.30.

Now suppose ∑
∞
n=0 p(n)

−1 is a recursive real. By the Integral Test, for each k ∈ N we have ∫
∞
k+1 p(x)

−1 dx ≤

∑
∞
n=k+1 p(n)

−1 ≤ ∫
∞
k p(x)−1 dx and hence

0 ≤ (
∞
∑

n=k+1

p(n)−1
+ ∫

k+1

0
p(x)−1 dx) − ∫

∞

0
p(x)−1 dx ≤ ∫

k+1

k
p(n)−1 dx ≤ p(k)−1.

Thus,

⟨
∞
∑
n=0

p(n)−1
+ ∫

k+1

0
p(x)−1 dx −

k

∑
n=0

p(n)−1
⟩

k∈N

is a sequence of uniformly recursive reals converging to ∫
∞

0 p(x)−1 dx from above, hence right r.e. by

Lemma I.3.30.

Using Proposition II.3.10 allows us to show that many of the usual convergent series give recursive sums.

47

Corollary II.3.11. Given k ∈ N and a recursive real α ∈ (1,∞), then

∞
∑
n=k2

(n ⋅ log2 n ⋅ log2
2 n⋯ logk−1

2 n ⋅ (logk2 n)
α)

−1

is a recursive real.

Proof. Define p∶N≥k2 → R and p∶ [k2,∞) → R by

p(n) ∶= n ⋅ log2 n ⋅ log2
2 n⋯ logk−1

2 n ⋅ (logk2 n)
α,

p(x) ∶= x ⋅ log2 x ⋅ log2
2 x⋯ logk−1

2 x ⋅ (logk2 x)
α,

for n ∈ N and x ∈ [k2,∞).

For each k ≥ 1,

∫

∞

k2

1

x ⋅ log2 x ⋅ log2
2 x⋯ logk−1

2 x ⋅ (logk2 x)
α

dx = (ln 2)∫
∞

k−12

1

u ⋅ log2 u⋯ logk−2
2 u ⋅ (logk−1

2 u)α
du.

so by induction on k we may show

∫

∞

k2

1

x ⋅ log2 x ⋅ log2
2 x⋯ logk−1

2 x ⋅ (logk2 x)
α

dx =
(ln 2)k

α − 1
,

so ∫
∞
k2 p(x)

−1 dx is a recursive real. Then Proposition II.3.10 shows ∑
∞
n=k2 p(n)

−1 is a recursive real.

Corollary II.3.12. If p∶N → (0,∞) is an order function such that there is a k ∈ N and a recursive real

α ∈ (1,∞) for which n ⋅ log2 n ⋅ log2
2 n⋯ logk−1

2 n ⋅ (logk2 n)
α ≤ p(n) for almost all n ∈ N≥k2, then ∑

∞
n=0 p(n)

−1

is a recursive real.

Proof. This follows from Corollary II.3.11 and Corollary II.3.9.

II.3.3 The Fast and Slow-Growing LUA Hierarchies

The dichotomy between fast-growing and slow-growing allows us to split the LUA hierarchy into two sub-

hierarchies.

Definition II.3.13 (fast-growing and slow-growing LUA hierarchies). The fast-growing LUA hierarchy is

the collection of the classes LUA(p) where p is a fast-growing order function, and the slow-growing LUA

hierarchy is the collection of the classes LUA(q) where q is a slow-growing order function.

The fast-growing LUA hierarchy is downwards closed, while the slow-growing LUA hierarchy is upwards

closed, so the two hierarchies are separated:

Proposition II.3.14. Suppose p and q are order functions such that LUA(p) ≤w LUA(q).

48

(a) If p is slow-growing, then q is slow-growing.

(b) If q is fast-growing, then p is fast-growing.

Proof. [29, Theorem 5.4] (see also Theorem II.4.12) shows that LUA(q) ≤w MLR if and only if q is fast-

growing. If q is fast-growing, then LUA(p) ≤w LUA(q) ≤w MLR, showing p is fast-growing.

The infimum of the slow-growing LUA hierarchy lies in Ew.

Proposition II.3.15. Define

LUAslow ∶= ⋃{LUA(q) ∣ q a slow-growing order function}.

LUAslow is Σ0
3 and hence degw(LUAslow) ∈ Ew.

Proof. Let f be as in the proof of Proposition II.2.19, so that f is a total recursive function and ϕf(●) is an

enumeration of the linearly universal partial recursive functions. Then

X ∈ LUAslow ≡ ∃i (∃e∀n∀s∀m∀k ((ϕf(e),s(n)↓ =m ∧ ϕi,s(n)↓ = k) → (m ≠X(n) ∧X(n) < k))

∧ ∀n∃s (ϕi,s(n)↓))

shows that LUAslow is Σ0
3. The Embedding Lemma then implies degw(LUAslow) ∈ Ew.

In Chapter VI we will prove the following result:

Theorem VI.2.1. For all order functions p1 and p2, there exists a slow-growing order function q such that

LUA(p1) ≰w LUA(q) ≰w LUA(p2). In particular, for any order function p, there exists a slow-growing order

function q such that LUA(p) and LUA(q) are weakly incomparable.

In particular, it is not the case that for every fast-growing p and slow-growing q that q ≤dom p. It is

interesting to note, however, that there exist slow-growing order functions q such that LUA(p) ≤w LUA(q)

for all fast-growing order functions p – in fact, we may take q = idN.

Lemma II.3.16. Suppose p is a fast-growing order function. Then idN ≤dom p.

Proof. Suppose n > 0 satisfies p(n) ≤ n, and let m ∈ N be the largest natural number such that 2m ≤ n. Then

p(2m) ≤ p(n) ≤ n ≤ 2m+1, so

1

2
=

2m

2m+1
≤

2m

p(2m)
.

Thus, if p(n) ≤ n for infinitely many n ∈ N, then infinitely many of the terms of the series ∑
∞
m=0 2mp(2m)−1

are bounded below by 1/2, implying the series diverges. But an application of the Cauchy Condensation

Test shows that the convergence of the series ∑
∞
n=0 p(n)

−1 (since p is fast-growing) implies the convergence

of ∑
∞
m=0 2mp(2m)−1, a contradiction.

49

Proposition II.3.17. LUA(p) ≤w LUA(idN) for every fast-growing order function p.

Proof. This follows immediately from Lemma II.3.16.

Although there is no fast-growing order function p such that LUA(p) ≤w LUA(q) for all slow-growing

order functions q, to every slow-growing q there is a fast-growing p for which LUA(p) ≤w LUA(q).

Proposition II.3.18. For every slow-growing order function q there exists a fast-growing order function p

such that LUA(p) ≤w LUA(q).

Proof. Given q, define p by setting p(n) ∶= q(n) + 2n for each n ∈ N.

II.4 Depth

The notion of depth is a strengthening of the condition of being negligible.

Definition II.4.1 (negligibility). P ⊆ {0,1}N is negligible if λ(P ≤T) = 0. Equivalently, λ(Ψ−1[P]) = 0 for

every partial recursive functional Ψ ∶ ⊆ {0,1}N → {0,1}N.

Depth strengthens this by requiring additional uniformity and was first defined in [2] for subsets of {0,1}N,

as with negligibility. However, because certain weak degrees in Ew are best represented with subsets of NN,

it is more convenient to generalize the definition given by Bienvenu & Porter.

Definition II.4.2 (continuous semimeasure on N∗). A continuous semimeasure on N∗ is a map ν∶N∗ → [0,1]

such that ν(⟨⟩) = 1 and ∑
∞
i=0 ν(σ

⌢⟨i⟩) ≤ ν(σ) for all σ ∈ T .

ν is left recursively enumerable, or left r.e., if it is left r.e. in the usual sense. A left r.e. continuous

semimeasure M on N∗ is universal if for every left r.e. continuous semimeasure ν on N∗ there exists a c ∈ N

such that ν(σ) ≤ c ⋅M(σ) for all σ ∈ N∗.

The left r.e. continuous semimeasures on N∗ can be characterized in terms of partial recursive functionals

Ψ ∶ ⊆ {0,1}N → NN.

Proposition II.4.3. [32, Theorem 3.1, essentially]

(a) If Ψ ∶ ⊆ {0,1}N → NN is a partial recursive functional, then the map ν∶N∗ → [0,1] defined by ν(σ) ∶=

λ(Ψ−1(σ)) = λ({X ∈ {0,1}N ∣ ΨX ⊇ σ}) is a left r.e. continuous semimeasure on N∗.

(b) If ν is a left r.e. continuous semimeasure on N∗, then there is a partial recursive functional Ψ ∶ ⊆ {0,1}N →

NN such that ν(σ) = λ(Ψ−1(σ)) = λ({X ∈ {0,1}N ∣ ΨX ⊇ σ}) for all σ ∈ N∗.

50

Remark II.4.4. The existence of a universal left r.e. continuous semimeasure on N∗ can be shown by appro-

priately modifying proofs for the case of {0,1}∗ (e.g., in [6, Theorem 3.16.2] consider monotone machines of

the form M ∶ ⊆ {0,1}∗ → N∗).

Notation II.4.5. Given P ⊆ NN and n ∈ N, P ↾n denotes the set {X↾n ∣X ∈ P}.

Definition II.4.6 (depth). Let M be a universal left r.e. continuous semimeasure on N∗. A mass problem

P ⊆ NN is deep (with respect to M) if it is a r.b. Π0
1 class and there exists an order function r∶N → N such

that M(P ↾ r(n)) ≤ 2−n for all n ∈ N. Such an r is a modulus of depth for P .

Despite the added generality, this more general notion of depth gives the same notion as that of Bienvenu

& Porter.

Lemma II.4.7. Let M{0,1} be a universal left r.e. continuous semimeasure on {0,1}∗, and MN is a universal

left r.e. continuous semimeasure on N∗. Given P ⊆ {0,1}∗, P is deep with respect M{0,1} if and only if P is

deep with respect to MN.

Proof. First suppose P is deep with respect to M{0,1}, so that there is an order function r{0,1}∶N → N such

that M{0,1}(P ↾ r{0,1}(n)) ≤ 2−n for all n ∈ N. Let ν be the restriction of MN to {0,1}∗ and observe that ν

is a left r.e. continuous semimeasure on {0,1}∗. By the universality of M{0,1}, there exists a c ∈ N such that

MN(σ) = ν(σ) ≤ c ⋅ M{0,1}(σ) for all σ ∈ {0,1}∗. Let m ∈ N be such that c ≤ 2m and define rN∶N → N by

rN(n) ∶= r{0,1}(n +m). Then for each n ∈ N,

MN(P ↾ rN(n)) ≤ c ⋅M{0,1}(P ↾ r{0,1}(n +m)) ≤ c ⋅ 2−(n+m)
≤ 2−n.

Thus, P is deep with respect to MN.

Now suppose P is deep with respect to MN, so that there is an order function rN∶N → N such that

MN(P ↾ rN(n)) ≤ 2−n for all n ∈ N. Let ν be the extension of M{0,1} to N∗ by setting ν(σ) ∶= 0 for

any σ ∉ {0,1}∗ and ν(σ) = M{0,1}(σ) otherwise. The universality of MN implies there is a c ∈ N such that

ν(σ) ≤ c⋅MN(σ) for all σ ∈ N∗. Letm ∈ N be such that c ≤ 2m and define r{0,1}∶N→ N by r{0,1}(n) ∶= rN(n+m).

Then for each n ∈ N,

M{0,1}(P ↾ r{0,1}(n)) = ν(P ↾ r{0,1}(n)) ≤ c ⋅MN(P ↾ rN(n)) ≤ c ⋅ 2
−(n+m)

≤ 2−n.

Thus, P is deep with respect to M{0,1}.

Remark II.4.8. Lemma II.4.7 additionally shows that the definition of depth does not depend on the choice

of universal left r.e. semimeasure on N∗.

51

The classes LUA(p) for p a slow-growing order function provide a plethora of examples of deep r.b. Π0
1

classes.

Theorem II.4.9. [2, Theorem 7.6], [29, Theorem 2.2, Theorem 4.4] Suppose p∶N → (1,∞) is an order

function and ψ is a linearly universal partial recursive function.

(a) If p is fast-growing, then Avoidψ(p) ≤w MLR. In particular, Avoidψ(p) is non-negligible.

(b) If p is slow-growing, then Avoidψ(p) is deep.

II.4.1 Depth and Difference Randoms

One of the principal properties of deep Π0
1 classes relates deep Π0

1 classes to difference random sequences.

Definition II.4.10 (difference random). X ∈ {0,1}N is difference random if it is Martin-Löf random but

incomplete (i.e., 0′ ≰T X).

A theorem of Sacks [6, Corollary 8.12.2] shows that λ({0′}≤T) = 0, so almost all members of MLR are

difference random in the measure-theoretic sense.

Theorem II.4.11. [2, Theorem 5.3] Suppose P ⊆ {0,1}N is a deep Π0
1 class. If X ∈ {0,1}N is difference

random, then X computes no member of P .

A direct application is the following:

Theorem II.4.12. [29, Theorem 5.4] Suppose p∶N→ (1,∞) is an order function.

(a) If p is fast-growing, then LUA(p) <w MLR.

(b) If p is slow-growing, then LUA(p) and MLR are weakly incomparable.

Proof.

(a) Suppose p is fast-growing. Theorem II.4.9(a) shows that for any linearly universal partial recursive ψ

that Avoidψ(p) ≤w MLR. As Avoidψ(p) ⊆ LUA(p), it follows then that LUA(p) ≤w MLR. That this is

strict follows from [9, Theorem 5.11].

(b) Supose p is slow-growing. If LUA(p) ≤w MLR, then in particular there is an X ∈ LUA(p) and a

difference random Y such that X ≤T Y . But X being a member of LUA(p) means that X ∈ Avoidψ(p)

for some linearly universal partial recursive function ψ, meaning that Y computes a member of the

deep (Theorem II.4.9(b)) Π0
1 class Avoidψ(p), contradicting Theorem II.4.11.

The opposite direction, i.e., that MLR ≰w LUA(p), follows from [9, Theorem 5.11].

52

II.4.2 Depth and Strong Reducibility

We used Corollary I.4.23 to show that despite our interests laying in {0,1}N, considering r.b. Π0
1 classes was

safe. We show depth behaves similarly by showing that depth is preserved under recursive homeomorphisms.

Lemma II.4.13. Suppose P is a r.b. Π0
1 class and that Ψ∶P → NN is a recursive functional. Then there

exist nondecreasing recursive functions ψ∶N∗ → N∗ and j∶N → N such that Ψ(X)↾n = ψ(X↾ j(n)) for all

X ∈ P .

Proof. By Proposition I.4.22, Ψ extends to a total recursive functional Ψ̃∶NN → NN. Let e ∈ N be an index for

Ψ̃ (i.e., so that ϕXe (n) ≃ Ψ̃(X)(n) for all X ∈ NN and n ∈ N). Let h∶N→ (1,∞) be a nondecreasing recursive

function for which P ⊆ hN.

By the compactness of hN, for each n ∈ N there is a sn such that ϕX↾ sne,sn (n)↓ for all X ∈ hN, and such an

sn can be found effectively as a function of n, so define j(n) ∶= max{s0, s1, s2, . . . , sn}.

Given σ ∈ h∗, let n be the largest natural number for which j(n) ≤ ∣σ∣ and define

ψ(σ) ∶= ⟨ϕσe,j(n)(0), ϕ
σ
e,j(n)(1), . . . , ϕ

σ
e,j(n)(n)⟩ .

For σ ∈ N∗ ∖ h∗, let ψ(σ) = σ. Then ψ(X↾ j(n)) = Ψ̃(X)↾n for all X ∈ hN, and in particular ψ(X↾ j(n)) =

Ψ(X)↾n for all X ∈ P .

Proposition II.4.14. Suppose P is a r.b. Π0
1 class and that Ψ∶P → NN is a recursive functional. If Ψ[P]

is deep, then P is deep.

Proof. Let Q = Ψ[P] and let r be a modulus of depth for Q. Without loss of generality, assume Ψ is a total

recursive functional.

Let ψ∶N∗ → N∗ and j∶N→ N be as in the proof of Lemma II.4.13, so that they are nondecreasing recursive

functions such that Ψ(X)↾n = ψ(X↾ j(n)) for all X ∈ NN and that if ∣σ∣ = j(n), then ∣ψ(σ)∣ = n. For τ ∈ N∗,

let ψ−1
min[{τ}] denote the set of minimal elements of ψ−1[{τ}], and observe that ψ−1

min[{τ}] = ψ
−1[{τ}]∩Nj(∣τ ∣).

Define ν∶N∗ → [0,1] by

ν(τ) ∶= M(ψ−1
[{τ}]) = ∑

ψ(σ)=τ
M(σ).

Assume at the present that ν is a left r.e. continuous semimeasure so that there is a c ∈ N such that

N(τ) ≤ c ⋅M(τ) for all τ ∈ N∗. Letting m ∈ N be such that c ≤ 2m, for each n ∈ N we have

M(P ↾ j(r(n +m))) ≤ M(ψ−1
[Q↾ r(n +m)]) = ν(Q↾ r(n +m)) ≤ c ⋅M(Q↾ r(n +m)) ≤ c ⋅ 2−(n+m)

≤ 2−n

so the function n↦ j(r(n +m)) is a modulus of depth for P .

53

Now we show that ν is a left r.e. continuous semimeasure. For any τ ∈ N∗ and i < i′, we have

ψ−1[{τ⌢⟨i⟩}]∩ψ−1[{τ⌢⟨i′⟩}] = ∅. Additionally, every element of ψ−1[{τ⌢⟨i⟩}] has length j(∣τ ∣+1) (so elements

of ψ−1[{τ⌢⟨i⟩}] are pairwise incompatible) and extends a member of ψ−1[{τ}]. Thus, ∑
∞
i=0 M(ψ−1[{τ⌢⟨i⟩}]) ≤

M(ψ−1[{τ}]) and so ν is a continuous semimeasure. For each τ ∈ N∗, the set ψ−1[{τ}] is recursive since ψ

is recursive, nondecreasing, and ∣σ∣ = j(n) implies ∣ψ(σ)∣ = n. Thus, along with the fact that M is left r.e.

we see that ν is left r.e., as desired.

Corollary II.4.15. Suppose P and Q are recursively homeomorphic r.b. Π0
1 classes. Then P is deep if and

only if Q is deep.

This well-behavedness of depth with partial recursive functionals can be summarized nicely:

Proposition II.4.16. [2, Theorem 6.4] The collection of deep r.b. Π0
1 classes forms a filter with respect to

strong reducibility. I.e., for all r.b. Π0
1 classes P and Q:

(a) If P ≤s Q and P is deep, then Q is deep.

(b) If P and Q are deep, the ⟨0⟩⌢P ∪ ⟨1⟩⌢Q is deep.

Proof. Let P and Q be r.b. Π0
1 classes. If P is deep and P ≤s Q, then Proposition II.4.14 shows that Q is

deep.

Now suppose P and Q are both deep and let r0 and r1 be moduli of depth for P and Q, respectively.

For i ∈ {0,1}, define νi∶N∗ → [0,1] by νi(σ) ∶= M(⟨i⟩⌢σ). νi is a left r.e. continuous semimeasure, so there

exists ci ∈ N such that νi(σ) ≤ ci ⋅M(σ) for all σ ∈ N∗. Let m ∈ N be such that max{c0, c1} ≤ 2m−1, and define

r∶N→ N by r(n) ∶= max{r0(n +m), r1(n +m)} + 1. Then

M([⟨0⟩⌢P ∪ ⟨1⟩⌢Q]↾ r(n)) = M([⟨0⟩⌢P]↾ r(n)) +M([⟨1⟩⌢Q]↾ r(n))

= ν0(P ↾ (r(n) − 1)) + ν1(Q↾ (r(n) − 1))

≤ c0 ⋅M(P ↾ r0(n)) + c1 ⋅M(Q↾ r1(n))

≤ 2−n−1
+ 2−n−1

= 2−n.

II.4.3 Depth and Weak Reducibility

Proposition II.4.14 shows that depth is especially well-behaved with respect to strong reducibility. However,

depth is not as well-behaved with respect to weak reducibility.

54

Proposition II.4.17. [2, Theorem 4.7] For any Π0
1 class P ⊆ {0,1}N there exists a Π0

1 class Q ⊆ {0,1}N

which is weakly equivalent to P but not deep.

There is an analog of Proposition II.4.16 if we consider weak degrees of deep Π0
1 classes.

Definition II.4.18 (deep degree in Ew). A weak degree p ∈ Ew is a deep degree (in Ew) if there exists a deep

nonempty Π0
1 class P for which degw(P) = p.

P ⊆ NN is of deep degree if degw(P) is a deep degree in Ew.

Proposition II.4.19. The collection of deep degrees in Ew forms a filter in ⟨Ew,≤⟩. I.e., for all p,q ∈ Ew:

(a) If p ≤ q and p is a deep degree, then q is a deep degree.

(b) If p and q are deep degrees, then inf{p,q} is a deep degree.

Proof. Let P and Q be Π0
1 classes for which p = degw(P) and q = degw(Q).

If p is a deep degree, then we may assume without loss of generality that P is deep. Then P ×Q = {X⊕Y ∣

X ∈ P ∧Y ∈ Q} is deep by Proposition II.4.16 since P ≤s P ×Q. Because P ≤w Q, degw(P ×Q) = degw(Q) = q,

so q is a deep degree.

Now suppose both p and q are deep degrees, and assume without loss of generality that P and Q

are both deep. Proposition II.4.16 shows that ⟨0⟩⌢P ∪ ⟨1⟩⌢Q is deep. Because inf{p,q} = degw(P ∪Q) =

degw(⟨0⟩⌢P ∪ ⟨1⟩⌢Q), inf{p,q} is a deep degree.

Lemma II.4.20. Suppose p∶N→ (1,∞) is nondecreasing, a ∈ N>0, and b ∈ N. Then ∑
∞
n=0 p(n)

−1 < ∞ if and

only if ∑
∞
n=0 p(an + b)

−1 < ∞.

Proof. We may assume without loss of generality that b = 0. Because p is nondecreasing,

a ⋅ p(a ⋅ (n + 1))−1
≤
a−1

∑
i=0

p(an + i)−1
≤ a ⋅ p(an)−1,

so

a ⋅
k+1

∑
n=1

p(an)−1
≤

a(k+1)−1

∑
n=0

p(n)−1
≤ a ⋅

k

∑
n=0

p(an)−1.

Because p is a positive-valued function, each of the above summations is nondecreasing as a function of k,

so if ∑
∞
n=0 p(n)

−1 < ∞, Monotone Convergence would imply ∑
∞
n=0 p(an)

−1 < ∞ and vice-versa.

Corollary II.4.21. Suppose p∶N→ (1,∞) is an order function. Then LUA(p) is of deep degree if and only

if p is slow-growing.

Proof. Fix a linearly universal partial recursive function ψ0. Given a, b ∈ N, let pa,b denote the function

defined by pa,b(x) ∶= p(ax + b) for x ∈ N. By Lemma II.4.20, the sequence ⟨pa,0⟩a∈N is a recursive sequence

55

of slow-growing order functions. Moreover, pa,0 ≤dom pa+1,0 for every a ∈ N, so Proposition II.3.2(b) shows

there is a slow-growing order function q such that pa,0 ≤dom q for all a ∈ N. For any a, b ∈ N, we have

pa,b ≤dom pa+1,0, so we have pa,b ≤dom q more generally.

Given a linearly universal partial recursive ψ, there are a, b ∈ N such that ψ0(x) ≃ ψ(ax + b) for all

x ∈ N. For such a, b ∈ N, Avoidψ0(pa,b) ≤s Avoidψ(p) by Proposition II.2.17(b). Because pa,b ≤dom q, we have

Avoidψ0(q) ≤s Avoidψ0(pa,b) by Proposition II.2.17(a). Thus, Avoidψ0(q) ≤w LUA(p). Avoidψ0(q) is a deep

r.b. Π0
1 class by Theorem II.4.9, so Proposition II.4.19 implies LUA(p) is of deep degree.

If p were fast-growing, then for any linearly universal partial recursive function ψ, we would have

LUA(p) ≤s Avoidψ(p) ≤w MLR.

Theorem II.4.11 extends to P ⊆ NN of deep degree.

Proposition II.4.22. Suppose P ⊆ NN is of deep degree. If X ∈ {0,1}N is difference random, then X

computes no member of P .

Proof. Because P is of deep degree, there exists a deep Π0
1 class Q such that P ≡w Q. If Y ≤T X for

some Y ∈ P , then the fact that P ≡w Q implies there is a Z ∈ Q such that Z ≤T Y ≤T X, contradicting

Theorem II.4.11.

II.4.4 Depth for non-r.b. Π0
1 Sets

Nothing in our definition of depth necessitates that P be a r.b. Π0
1 class in order for the definition to make

sense. However, there are two reasons for our restriction to only r.b. Π0
1 classes. The first is that our interest

in depth is ultimately relegated to r.b. Π0
1 subsets of NN. The second is that it is unclear whether ‘depth’

is a useful notion for arbitrary subsets of NN, and if so, whether the verbatim extension of the definition of

depth to any subset of NN provides the ‘right’ definition.

In fact, we can show that extending our definition of depth even to only Π0
1 subsets of NN or Π0

2 subsets

of {0,1}N causes us to lose the guarantee of Theorem II.4.11 that no difference random computes a member

of a ‘deep set’.

Lemma II.4.23. Suppose X ∈ {0,1}N and X ≤T 0′. Then X is a Π0
2 singleton, i.e., {X} is Π0

2.

Proof. X ≤T 0′ implies X (as a subset of N) is ∆0
2, so there are recursive predicates R and S such that

x ∈X ⇐⇒ ∀n∃mR(x,n,m) ⇐⇒ ∃n∀mS(x,n,m).

Then

{X} = {Y ∈ {0,1}N ∣ ∀x ((x ∈ Y → ∀n∃mR(x,n,m)) ∧ (∃n∀mS(x,n,m) → x ∈ Y))}

56

shows that X is a Π0
2 singleton.

Proposition II.4.24. There exists a subset P ⊆ NN which is deep in the sense that there is an order function

r such that M(P ↾ r(n)) ≤ 2−n for all n ∈ N, but for which there are difference random sequences that compute

members of P . Moreover, P may be taken to either be a Π0
2 subset of {0,1}N or a Π0

1 subset of NN.

Proof. Let Q = {X ∈ {0,1}N ∣ ∀n KA(X↾n) ≥ n − c}, where c is sufficiently large so that Q ≠ ∅. By the Low

Basis Theorem [14] there is an A ∈ Q such that A <T 0′. Lemma II.4.23 then implies A is a Π0
2 singleton,

but being an incomplete Martin-Löf random sequence means that it is also difference random. Since A ∈ Q,

we also know that M(A↾ (n + c)) ≤ 2c ⋅ 2−(n+c) = 2−n for all n ∈ N. Thus, {A} is deep in the extended sense,

but the difference random A computes a member of {A}.

Being a Π0
2 singleton, there is a recursive predicate R such that A is the only sequence X satisfying

∀n∃mR(X,n,m). Define f ∶N→ N by

f(n) ∶= least m such that ⟨A,n,m⟩ ∈ R.

Then define B ∈ NN by B(n) ∶= π(2)(A(n), f(n)). Given X ∈ NN and i ∈ {0,1}, let (X)i be defined by

(X)i(n) = (X(n))i for n ∈ N, where (π(2)(n0, n1))i = ni. Then {B} = {X ∣ ∀nR((X)0, n, (X)1(n))} is Π0
1

and recursively homeomorphic to {A}.

Let Ψ∶NN → NN be the total recursive functional defined by Ψ(X) ∶= (X)0 for X ∈ NN. By Proposi-

tion II.4.3, there is a partial recursive functional Ψ0 ∶ ⊆ {0,1}N → NN such that M(σ) = λ(Ψ−1
0 (σ)). Then

define ν to be the left r.e. continuous semimeasure corresponding to the partial recursive functional Ψ ○Ψ0,

i.e.,

ν(σ) = λ({Z ∈ {0,1}N ∣ (Ψ ○Ψ0)
Z
⊇ σ}).

By the universality of M, there is a c ∈ N such that ν(σ) ≤ c′ ⋅M(σ) for all σ ∈ {0,1}∗. Let m ∈ N be such

that 2c
′

≤m. Then

M({B}↾ (n + c +m)) = λ({Z ∈ {0,1}N ∣ ΨZ
0 ⊇ B↾ (n + c +m)})

≤ λ({Z ∈ {0,1}N ∣ (Ψ ○Ψ0)
Z
⊇ A↾ (n + c +m)})

= ν(A↾ (n + c +m))

≤ c′ ⋅M(A↾ (n + c +m))

≤ 2−n.

Thus, {B} is a Π0
1 subset of NN which is deep in the extended sense, but the difference random A computes

a member of {B}.

57

CHAPTER III

COMPLEXITY AND FAST-GROWING AVOIDANCE

Looking downward, the COMPLEX and LUA hierarchies are closely coupled based on the following reseult

of Kjos-Hanssen, Merkle, and Stephan:

Theorem. [17, Theorem 2.3.2] Suppose X ∈ {0,1}N. The following are equivalent.

(i) X ∈ COMPLEX.

(ii) There is a total recursive functional Ψ∶ {0,1}N → NN such that Ψ(X) ∈ DNR.

In terms of the mass problems COMPLEX and DNRrec ∶= ⋃{DNR(p) ∣ p recursive}, [17, Theorem 2.3.2]

implies:

Corollary III.0.1. COMPLEX ≡w DNRrec.

Proof. Suppose X ∈ DNRrec, so that there is an order function p such that X ∈ DNRp. Let Ψ∶ {0,1}N → pN

be a recursive homeomorphism. Then Ψ(Ψ−1(X)) = X shows that Ψ−1(X) ∈ COMPLEX by [17, Theorem

2.3.2]. This shows COMPLEX ≤w DNRrec.

Now supposeX ∈ COMPLEX. By [17, Theorem 2.3.2], there is a total recursive functional Ψ∶ {0,1}N → NN

such that Y ∶= Ψ(X) ∈ DNR. Lemma II.4.13 shows that there exist nondecreasing recursive functions

ψ∶ {0,1}∗ → N∗ and j∶N→ N such that Y ↾n = ψ(X↾ j(n)). Let p∶N→ N be defined by p(n) ∶= max{ψ(σ)(n) ∣

σ ∈ {0,1}j(n+1)} + 1, so that Y (n) < p(n) for all n ∈ N. p is recursive, showing Y is recursively bounded, i.e.,

Y ∈ DNRrec. This shows DNRrec ≤w COMPLEX.

Let LUArec ∶= ⋃{LUA(p) ∣ p recursive}.

Corollary III.0.2. COMPLEX ≡w LUArec.

Proof. By Corollary III.0.1, it suffices to show that LUArec ≡w DNRrec. Because [17, Theorem 2.3.2] (and

by extension Corollary III.0.1) holds with DNR defined with respect to any admissible enumeration ϕ●, we

may assume without loss of generality that DNR is interpreted with respect to an admissible enumeration ϕ●

whose diagonal ψ is linearly universal, so that DNRrec ⊆ LUArec and hence LUArec ≤w DNRrec. Conversely,

given X ∈ LUArec, there is a linearly universal partial recursive function ψ̃ and an order function p such that

X ∈ Avoidψ̃(p). Because ψ̃ is linearly universal, there exist a, b ∈ N such that ψ̃(an + b) ≃ ψ(n) for all n ∈ N.

Let Y ∈ NN be defined by Y (n) ∶= X(an + b) for n ∈ N. Then Y ∈ Avoidψ(λn.p(an + b)) ⊆ DNRrec, showing

DNRrec ≤w LUArec.

58

Knowing COMPLEX ≡w LUArec alone does not reveal how the complexity and fast-growing LUA hier-

archies intertwine (if at all) when going downward, prompting the following questions.

Question III.0.3. Given a sub-identical order function f ∶N → [0,∞), is there a fast-growing order function

q∶N→ (1,∞) such that LUA(q) ≤w COMPLEX(f)?

Question III.0.4. Given a fast-growing order function p∶N → (1,∞), is there a sub-identical order function

g∶N→ [0,∞) such that COMPLEX(g) ≤w LUA(p)?

We will answer Questions III.0.3 and III.0.4 in the affirmative, proving:

Theorem III.0.5. To each sub-identical order function f ∶N→ [0,∞) there is a fast-growing order function

q∶N → (1,∞) such that LUA(q) ≤s COMPLEX(f), and to each fast-growing order function p∶N → (1,∞)

there is a sub-identical order function g∶N→ [0,∞) such that COMPLEX(g) ≤s LUA(p).

Theorem III.0.5 will follow as a direct consequence of the following theorems, which additionally provide

explicit bounds on q and g in terms of f and p, respectively.

Theorem III.1.1. Suppose f ∶N → [0,∞) is a sub-identical order function, k is a nonzero natural number,

and ε > 0 is a rational number. Then

LUA(λn. exp2(f
inv

(log2 n + log2
2 n +⋯ + logk−1

2 n + (1 + ε) logk2 n) + 1)) ≤s COMPLEX(f).

Theorem III.2.1. Suppose p∶N→ (1,∞) is an order function, and let r∶N→ N be any order function such

that limn→∞ r(n)/2n = ∞. Then

COMPLEX((λn.∑i<r(n)⌊log2 p(i)⌋)
inv

) ≤s LUA(p).

Less is known in the opposite direction.

Question III.0.6. Given a sub-identical order function f ∶N → [0,∞), is there a fast-growing order function

q∶N→ (1,∞) such that COMPLEX(f) ≤w LUA(q)?

Question III.0.7. Given a fast-growing order function p∶N → (1,∞), is there a sub-identical order function

g∶N→ [0,∞) such that LUA(p) ≤w COMPLEX(g)?

While we have no general answer to Question III.0.6, we will give a partial affirmative answer to Ques-

tion III.0.7.

Theorem III.3.3. If p∶N → (1,∞) is a fast-growing order function such that ∑
∞
n=0 p(n)

−1 is a recursive

real, then there exists a convex sub-identical order function g such that LUA(p) ≤s COMPLEX(g) ≠MLR.

Theorem III.3.3 follows from a more general result:

59

Theorem III.3.4. Suppose p∶N → (1,∞) is a fast-growing order function such that ∑
∞
n=0 p(n)

−1 is a re-

cursive real. Then for any order function p̃∶N → (1,∞) such that p(n)/p̃(n) ↗ ∞ as n → ∞ and for which

∑
∞
n=0 p̃(n)

−1 is a recursive real,

LUA(p) ≤s COMPLEX(λn. log2 p̃(p
inv

(2n+1
) − 1)).

Moreover, such a p̃ exists and for any such p̃ the function λn. log2 p̃(p
inv(2n+1)−1) is dominated by a convex

sub-identical recursive function g∶N→ [0,∞).

III.1 Extracting Fast-Growing Avoidance from Complexity

In the direction LUA(p) ≤w COMPLEX(f), we have the following:

Theorem III.1.1. Suppose f ∶N → [0,∞) is a sub-identical order function, k is a nonzero natural number,

and ε > 0 is a rational number. Then

LUA(λn. exp2(f
inv

(log2 n + log2
2 n +⋯ + logk−1

2 n + (1 + ε) logk2 n) + 1)) ≤s COMPLEX(f).

We prove Theorem III.1.2 by deducing it from a more general technical result:

Theorem III.1.2. Suppose f ∶N → [0,∞) is a sub-identical order function and h, ĥ∶N → [0,∞) are order

functions such that ∑
∞
n=0 2−h(n) < ∞, ∑

∞
n=0 2−ĥ(n) < ∞, and limn→∞ (h(n) − ĥ(n)) = ∞. Then

LUA(λn. exp2((f
inv

○ h)(n) + 1)) ≤s COMPLEX(f).

The role of the condition ∑
∞
n=0 2−h(n) < ∞ comes from the following result:

Lemma III.1.3. [6, Lemma 3.12.2] Suppose h∶N→ R is recursive. The following are equivalent.

(i) ∑
∞
n=0 2−h(n) < ∞.

(ii) There exists a c ∈ N such that KP(n) ≤ h(n) + c for all n ∈ N.

Proof of Theorem III.1.2. Suppose X ∈ COMPLEX(f). Define Y ∈ NN by setting

Y (n) ∶= str−1
(X↾ (f inv

○ h)(n))

for n ∈ N. We claim that Y ∈ LUA(λn. exp2((f
inv ○h)(n)+1)). Because X is f -complex, there is c0 ∈ N such

that for every n ∈ N we have

KP(strY (n)) = KP(X↾ (f inv
○ h)(n)) ≥ f((f inv

○ h)(n)) − c0 ≥ h(n) − c0.

60

Suppose ψ is any partial recursive function. There is c1 ∈ N such that KP(strψ(n)) ≤ KP(strn) + c1 for

all n ∈ domψ. By Lemma III.1.3 there is an c2 ∈ N such that KP(n) ≤ ĥ(n)+ c2 for all n ∈ N. Thus, for every

n ∈ domψ we have

KP(strψ(n)) ≤ ĥ(n) + (c1 + c2).

For every n ∈ domψ such that ψ(n) = Y (n) we have

h(n) − c0 ≤ KP(strY (n)) = KP(strψ(n)) ≤ ĥ(n) + (c1 + c2).

Because limn→∞ (h(n) − ĥ(n)) = ∞, it follows that ∣Y ∩ ψ∣ is finite. When ψ is linearly universal, Proposi-

tion II.2.16(b) shows that Y ∈ LUA.

It remains to put a uniform upper bound on Y . By definition,

Y (n) =X(0) +X(1) ⋅ 2 +X(2) ⋅ 22
+⋯ +X((f inv

○ h)(n) − 1) ⋅ 2(f inv○h)(n)−1
+ 2(f inv○h)(n)

so Y (n) < exp2((f
inv ○ h)(n) + 1) and hence Y ∈ LUA(λn. exp2((f

inv ○ h)(n) + 1))

Corollary III.1.4. Suppose f ∶N→ [0,∞) is a sub-identical order function and h∶N→ R is an order function

such that ∑
∞
n=0 2−h(n) is a recursive real. Then

LUA(λn. exp2((f
inv

○ h)(n) + 1)) ≤s COMPLEX(f).

Proof. By Corollary II.3.6, there exists a fast-growing, recursive order function ĥ∶N→ R such that

limn→∞ 2h(n)/2ĥ(n) = ∞, or equivalently that limn→∞ (h(n) − ĥ(n)) = ∞. Theorem III.1.2 now applies.

Using Theorem III.1.2 and Corollary III.1.4 we can prove the special case of Theorem III.1.1.

Proof of Theorem III.1.1. Define h∶N→ [0,∞) by setting h(n) ∶= log2 n+ log2
2 n+⋯+ logk−1

2 n+ (1+ ε) logk2 n

for n ≥ k2 and h(n) ∶= log2(2 ⋅
22 ⋅ 32⋯ k2) for n < k2. Then 2h(n) = n ⋅ log2 n ⋅ log2

2 n⋯ logk−2
2 n ⋅ (logk−1

2 n)1+ε

for all n ≥ k2 and 2h(n) = 2 ⋅ 22 ⋅ 32⋯ k2 for n < k2. By Corollary II.3.11, ∑
∞
n=0 2−h(n) is a recursive real, so

Corollary III.1.4 applies.

Remark III.1.5. Let ϕ● be an admissible enumeration and take X ∈ COMPLEX(f, c), where f is a sub-

identical order function and c ∈ N. The element Y ≤T X of NN defined in the proof of Theorem III.1.2 is

shown to eventually avoid not just linearly universal partial recursive functions, but all partial recursive

functions. Moreover, at what point Y begins avoiding ϕe is predictable: the partial function ψ(e, n) ≃ ϕe(n)

is partial recursive, so there exists d ∈ N (depending on e) such that KP(ϕe(n)) ≤ h(n) + d. Then for all

n ∈ N such that h(n) − c > ĥ(n) + d we have Y (n) ≄ ϕe(n).

61

Example III.1.6. Fix a rational δ ∈ (0,1), k ∈ N, and a rational ε > 0. Let f be defined by f(n) ∶= δn for

each n ∈ N, so f inv(n) = ⌈ 1
δ
n⌉ for each n ∈ N. Observe that

exp2(⌈δ
−1
⋅ (log2 n + log2

2 n +⋯ + logk2 n + (1 + ε) logk+1
2 n)⌉ + 1)

≤ exp2(δ
−1
⋅ (log2 n + log2

2 n +⋯ + logk2 n + (1 + ε) logk+1
2 n) + 2)

≤ 4
δ

√

n ⋅ log2 n⋯ logk−1
2 n ⋅ (logk2 n)

(1+ε).

Thus, Theorem III.1.1 implies LUA(λn.4
δ

√

n ⋅ log2 n⋯ logk−1
2 n ⋅ (logk2 n)

(1+ε)) ≤s COMPLEX(δ).

Example III.1.7. Fix rational numbers α ∈ (0,1) and ε > 0. Let f be defined by f(n) ∶= nα for each n ∈ N,

so f inv(n) = ⌈n1/α⌉ for each n ∈ N. Observe that

⌈((1 + ε) log2 n)
1/α

⌉ + 1 ≤ ((1 + ε) log2 n)
1/α

+ 2

so Theorem III.1.1 implies LUA(λn.4 exp2(
α
√

(1 + ε) log2 n)) ≤s COMPLEX(λn.nα).

Example III.1.8. Fix rationals β ∈ (0,∞) and ε > 0. Let f be defined by f(n) ∶= β log2 n for each n ∈ N, so

f inv(n) = ⌈2n/β⌉ for each n ∈ N. Observe that

⌈exp2((1 + ε)(log2 n)/β)⌉ + 1 ≤ n(1+ε)/β
+ 2

so Theorem III.1.1 implies LUA(λn.4 exp2(n
(1+ε)/β

)) ≤s COMPLEX(λn.β log2 n).

III.2 Extracting Complexity from Fast-Growing Avoidance

In the direction COMPLEX(g) ≤w LUA(p), we have the following:

Theorem III.2.1. Suppose p∶N→ (1,∞) is an order function, and let r∶N→ N be any order function such

that limn→∞ r(n)/2n = ∞. Then

COMPLEX((λn.∑i<r(n)⌊log2 p(i)⌋)
inv

) ≤s LUA(p).

Proof. Suppose X ∈ LUA(p), and let ψ be a linearly universal partial recursive function for which X ∈

Avoidψ(p). Define q∶N→ N by setting q(n) ∶= ∑i<n ⌊log2 p(i)⌋ for each n ∈ N.

Define Y ∈ {0,1}N to be the unique real for which X(n) = ∑i<⌊log2 p(n)⌋ Y (q(n) + i) ⋅ 2i. We claim that

there is c ∈ N such that Y ∈ COMPLEX((λn.q(c ⋅ 2n))inv).

Let U ∶ ⊆ {0,1}∗ → {0,1}∗ be the universal prefix-free machine for which KP = KPU . Then define θ ∶ ⊆N3 →

N by setting

θ(u, v, n) ≃ ∑
i<⌊log2 p(un+v)⌋

U(strn)(q(un + v) + i) ⋅ 2i

62

for u, v, n ∈ N. θ is partial recursive, so Corollary II.2.12 implies there are a, b ∈ N such that

ψ(an + b) ≃ ∑
i<⌊log2 p(an+b)⌋

U(strn)(q(an + b) + i) ⋅ 2i

for all n ∈ N. By hypothesis, X ∩ ψ = ∅, so for all n ∈ N we have

∑
i<⌊log2 p(an+b)⌋

Y (q(an + b) + i) ⋅ 2i ≄ ∑
i<⌊log2 p(an+b)⌋

U(strn)(q(an + b) + i) ⋅ 2i.

In other words, for all n ∈ N either U(strn)↑, ∣U(strn)∣ < q(an + b + 1), or U(strn) is incompatible with

Y ↾ q(an + b + 1). Note that for any σ ∈ {0,1}∗ we have str−1 σ ≤ 2∣σ∣+1. Thus, for σ ∈ {0,1}≤n we find that

either U(σ)↑, ∣U(σ)∣ < q(an+ b+ 1), or U(σ) is incompatible with Y ↾ q(a ⋅ 2n+1 + b+ 1). Consequently, for all

n ∈ N we have

KP(Y ↾ q(a ⋅ 2n+1
+ b + 1)) > n

so Y ∈ COMPLEX((λn.q(a ⋅ 2n+1 + b + 1))inv). If limn→∞ r(n)/2n = ∞, then λn.q(a ⋅ 2n+1 + b + 1) ≤dom

λn.(q ○ r)(n) and hence (λn.(q ○ r)(n))inv ≤dom (λn.q(a ⋅ 2n+1 + b + 1))inv. Thus, Y ∈ COMPLEX((λn.(q ○

r)(n))inv).

Example III.2.2. Fix a rational ε > 0, then let p and r be defined by p(n) ∶= 2n and r(n) ∶= ⌊2(1+ε)n⌋ for each

n ∈ N. Let q be as in proof of Theorem III.2.1, so that q(n) = n(n−1)
2

for all n ∈ N. Then (q ○ r)(n) ≤ 22(1+ε)n

for almost all n ∈ N. Thus, Theorem III.2.1 implies COMPLEX(λn. 1
2+ε log2 n) ≤s LUA(λn.2n). for any

rational ε > 0.

Remark III.2.3. Combining Examples III.1.8 and III.2.2 shows that for any rational ε > 0 we have

LUA(λn. exp2(n
2+ε)) ≤s COMPLEX(λn. 1

2+ε log2 n) ≤s LUA(λn.2n).

III.3 Finding Complexity Above Fast-Growing Avoidance

In one of the upward directions, we can give a partial answer to Question III.0.7. In addition to being

sub-identical, a common additional hypothesis put on order functions f ∶N→ [0,∞) is that f be convex (see,

e.g., [13] and [12]).

Definition III.3.1 (convex). A nondecreasing function f ∶N → R is convex if f(n + 1) − f(n) ≤ 1 for all

n ∈ N.

There is a simple characterization of convexity by putting functions into the form λn.n − j(n).

Proposition III.3.2. Suppose f ∶N→ R is a nondecreasing function, and define j∶N→ R by j(n) ∶= n−f(n)

for each n ∈ N. Then f is convex if and only if j is nondecreasing.

63

Proof. For each n ∈ N,

f(n + 1) − f(n) ≤ 1 ⇐⇒ ((n + 1) − j(n + 1)) − (n − j(n)) ≤ 1

⇐⇒ 1 + j(n) − j(n + 1) ≤ 1

⇐⇒ j(n) ≤ j(n + 1).

Theorem III.3.3. If p∶N → (1,∞) is a fast-growing order function such that ∑
∞
n=0 p(n)

−1 is a recursive

real, then there exists a convex sub-identical order function g such that LUA(p) ≤s COMPLEX(g) ≠MLR.

Theorem III.3.3 follows immediately from the following more general result, which makes use of the

downward result Theorem III.2.1.

Theorem III.3.4. Suppose p∶N → (1,∞) is a fast-growing order function such that ∑
∞
n=0 p(n)

−1 is a re-

cursive real. Then for any order function p̃∶N → (1,∞) such that p(n)/p̃(n) ↗ ∞ as n → ∞ and for which

∑
∞
n=0 p̃(n)

−1 is a recursive real,

LUA(p) ≤s COMPLEX(λn. log2 p̃(p
inv

(2n+1
) − 1)).

Moreover, such a p̃ exists and for any such p̃ the function λn. log2 p̃(p
inv(2n+1)−1) is dominated by a convex

sub-identical recursive function g∶N→ [0,∞).

It will be convenient to assume that p is strictly increasing. The following lemma shows that we may

assume this without loss of generality.

Lemma III.3.5. If p∶N→ (1,∞) is a fast-growing order function such that ∑
∞
n=0 p(n)

−1 is a recursive real,

then there exists a fast-growing order function p̂∶N → (1,∞) such that ∑
∞
n=0 p̂(n)

−1 is a recursive real, p̂ is

strictly increasing, and p̂ ≤dom p.

Proof. Let ⟨εn⟩n∈N be any strictly decreasing, recursive sequence of positive rational numbers such that

1 < p(0) − ε0. Define p̂∶N→ (1,∞) by setting p̂(n) = p(n) − εn for each n ∈ N.

p̂ is recursive. Immediate.

p̂ is strictly increasing. Because ⟨εn⟩n∈N is strictly decreasing, for every n ∈ N we have

p̂(n) = p(n) − εn < p(n + 1) − εn+1 = p̂(n + 1).

64

∑
∞
n=0 p̂(n)

−1 is a recursive real. We start by observing that

1

p̂(n)
=

1

p(n)
+

1

p(n)(ε−1
n p(n) − 1)

and that

1

p(n)(ε−1
n p(n) − 1)

≤
1

p(n)

for all sufficiently large n. By Proposition II.3.8, the recursiveness of ∑
∞
n=0 p(n)

−1 implies that

∑
∞
n=0 (p(n)(ε−1

n p(n) − 1))
−1

is recursive. Thus, ∑
∞
n=0 p̂(n)

−1 converges and

∞
∑
n=0

p̂(n)−1
=

∞
∑
n=0

p(n)−1
+

∞
∑
n=0

(p(n)(ε−1
n p(n) − 1))

−1

is recursive, being the sum of two recursive reals.

p̂ ≤dom p. Immediate since εn > 0 for each n ∈ N.

Lemma III.3.6. For any order function p∶N→ (1,∞) and n,m ∈ N, pinv(n) >m if and only if p(m) < n.

Proof. Straight-forward.

Proof of Theorem III.3.4. By Lemma III.3.5, we may assume without loss of generality that p is strictly

increasing. Moreover, the proof of Lemma III.3.5 shows that the property that limn→∞
p(n)
p̃(n+3) = ∞ is

preserved. (Note that Corollary II.3.6 implies there is such a p̃.)

Let p∶ [0,∞) → [0,∞) be the continuous extension of p which is defined linearly on the intervals [n,n+1]

for n ∈ N, so its inverse p−1∶ [p(0),∞) → [0,∞) exists.

Define h and f by setting h(n) ∶= log2 p̃(n) and f(n) ∶= log2 p̃(p
inv(2n+1) − 1) for each n ∈ N. Since

∑
∞
n=0 2−h(n) = ∑

∞
n=0 p̃(n)

−1 is a recursive real, Corollary III.1.4 implies LUA(λn. exp2(f
inv(h(n)) + 1)) ≤s

COMPLEX(f). For almost all n ∈ N, applying Lemma III.3.6 shows

f inv
(h(n)) = f inv

(log2 p̃(n)) = least m such that f(m) ≥ log2 p̃(n)

= least m such that log2 p̃(p
inv

(2m+1
) − 1) ≥ log2 p̃(n)

≤ least m such that pinv
(2m+1

) − 1 ≥ n

= least m such that pinv
(2m+1

) > n

= least m such that p(n) > 2m+1

= least m such that log2 p(n) − 1 >m

≤ ⌊log2 p(n) − 1⌋ + 1

65

≤ log2 p(n).

Thus,

LUA(p) ≤s LUA(λn. exp2(f
inv

(h(n)) + 1)) ≤s COMPLEX(f).

Let p̃ be the continuous extension of p̃ which is defined linearly on the intervals [n,n+1] for n ∈ N. Then,

observing that pinv(n) = ⌈p−1(n)⌉, we have

f(n) = log2 p̃(p
inv

(2n+1
) − 1)

= log2 p̃(⌈p
−1

(2n+1
)⌉ − 1)

≤ log2 p̃(p
−1

(2n+1
))

= log2 (p(p−1
(2n+1

))
p̃(p−1(2n+1))

p(p−1(2n+1))
)

= n + 1 − log2 (
p(p−1(2n+1))

p̃(p−1(2n+1))
)

for all n ∈ N. Because p(n)/p̃(n) ↗ ∞ as n → ∞, we additionally have p(x)/p̃(x) ↗ ∞ as x → ∞, so

log2 (
p̃(p−1(2n+1))
p(p−1(2n+1))) − 1 is a nondecreasing, unbounded function of n, and hence the function g∶N → [0,∞)

defined by

g(n) ∶= n + 1 − log2 (
p(p−1(2n+1))

p̃(p−1(2n+1))
)

is convex by Proposition III.3.2. Since g is also an order function, this completes the proof.

Proof of Theorem III.3.3. By Theorem III.3.4, since such a p̃ exists there is a convex sub-identical order

function g such that LUA(p) ≤s COMPLEX(g).

It remains to show that COMPLEX(g) ≠ MLR. [13, Corollary 4.3.5] shows that there is an X which is

strongly g-complex (hence X ∈ COMPLEX(g)) such that limn→∞ (KA(X↾n) − g(n)) ≠ ∞. Suppose for the

sake of a contradiction that COMPLEX(g) = MLR, so that X is Martin-Löf random. Then there is a c ∈ N

such that KA(X↾n) ≥ n − c for all n ∈ N. g being sub-identical means that limn→∞ (n − g(n)) = ∞, so

lim inf
n

(KA(X↾n) − g(n)) ≥ lim inf
n

(n − g(n) − c) = ∞.

This implies limn→∞ (KA(X↾n) − g(n)) = ∞, a contradiction.

Corollary II.3.11 allows us to answer Question III.0.7 for a nice collection of fast-growing order functions

which, at least in an aesthetic sense, approach the boundary between fast-growing and slow-growing:

Example III.3.7. Given k ∈ N and a rational α ∈ (1,∞), take any natural number ` > k and any rational

66

β ∈ (1,∞). Define p, p̃ by setting

p(n) ∶= n ⋅ log2 n⋯ logk−1
2 n ⋅ (logk2 n)

α,

p̃(m) ∶=m ⋅ log2m⋯ log`−1
2 m ⋅ (log`2m)

β

for n ≥ k2 (otherwise set p(n) = 2 ⋅ 22 ⋅ 32⋯ k2) and m ≥ `2 (otherwise set p̃(m) = 2 ⋅ 22 ⋅ 32⋯ `2), respectively.

Corollary II.3.11 shows both series ∑
∞
n=0 p(n)

−1 and ∑
∞
n=0 p̃(n)

−1 converge to recursive reals. Moreover,

lim
n→∞

p(n)

p̃(n + 3)
= lim
n→∞

(logk2 n)
α−1

logk+1
2 (n + 3) ⋅ logk+2

2 (n + 3) ⋯ log`−1
2 (n + 3) ⋅ (log`2(n + 3))β

= ∞.

Then Theorem III.3.4 implies

LUA(p) ≤s COMPLEX(λn. log2 p̃(p
inv

(2n+1
) − 1)).

Although Theorem III.3.3 answers Question III.0.7 as stated for order functions p∶N→ (1,∞) with recur-

sive sum ∑
∞
n=0 p(n)

−1, g being convex sub-identical does not immediately imply that COMPLEX(g) <w MLR,

though it is necessarily the case that COMPLEX(g) ≠MLR. This prompts a refinement of Question III.0.7:

Question III.3.8. Given a fast-growing order function p∶N → (1,∞), is there a sub-identical order function

g∶N→ [0,∞) such that LUA(p) ≤w COMPLEX(g) <w MLR?

By examining the form of g in the proof of Theorem III.3.4, we can give a sufficient condition on p for

there to be an affirmative answer to Question III.3.8.

Lemma III.3.9. Suppose α > 1 and p∶N → (1,∞) is a fast-growing order function. Then there exists a

fast-growing order function p̂∶N → (1,∞) such that p̂ ≤dom p and p̂(n + 1)/p̂(n) ≤ α for all n ∈ N. Moreover,

if ∑
∞
n=0 p(n)

−1 is a recursive real, then p̂ can be chosen so that ∑
∞
n=0 p̂(n)

−1 is a recursive real as well.

Proof. Without loss of generality we may assume α is rational. We define p̂ recursively as follows:

p̂(0) ∶= p(0),

p̂(n + 1) ∶= min{αp̂(n), p(n + 1)}.

p̂ is an order function dominated by p, so it just remains to show that p̂ is fast-growing and that if ∑
∞
n=0 p(n)

−1

is a recursive real then ∑
∞
n=0 p̂(n)

−1 is a recursive real.

Define I ∶= {n ∈ N ∣ p̂(n) = p(n)}. Note that I is a recursive nonempty subset of N. We consider two

cases:

Case 1: I finite. Let n0 = max I. By the definition of p̂ we then have p̂(n) = αn−n0p(n0) for all n ≥ n0. Thus,

∞
∑
n=0

p̂(n)−1
=
n0−1

∑
n=0

p̂(n)−1
+

1

p(n0)

∞
∑
n=n0

1

αn−n0
=
n0−1

∑
n=0

p̂(n)−1
+

1

p(n0)
⋅
α

α − 1
< ∞.

67

Moreover, we quickly see that ∑
∞
n=0 p̂(n)

−1 is a recursive real.

Case 2: I infinite. Let ⟨nk⟩k∈N be the strictly increasing enumeration of I. Then

∞
∑
n=0

p̂(n)−1
=

∞
∑
k=0

(1 +
1

α
+

1

α2
+⋯ +

1

αnk+1−nk−1
)

1

p(nk)
≤

α

α − 1

∞
∑
k=0

1

p(nk)
≤

α

α − 1

∞
∑
n=0

p(n)−1
< ∞.

Now suppose ∑
∞
n=0 p(n)

−1 is a recursive real, so that there is a nondecreasing recursive sequence

⟨Nm⟩m∈N such that ∑
∞
n=Nm p(n)

−1 ≤ 2−m for all m ∈ N. Let j be minimal such that α
α−1

≤ 2j . We

now define a recursive sequence ⟨km⟩m∈N by setting km to be the least k such that Nm+j ≤ nk. Then

∞
∑

n=nkm
p̂(n)−1

=
∞
∑
k=km

(1 +
1

α
+

1

α2
+⋯ +

1

αnk+1−nk−1
)

1

p(nk)

≤
α

α − 1

∞
∑
k=km

1

p(nk)

≤
α

α − 1

∞
∑

n=nkm
p(n)−1

≤
α

α − 1

∞
∑

n=Nm+j

p(n)−1

≤
α

α − 1

1

2m+j

≤
1

2m
.

It follows that ∑
∞
n=0 p̂(n)

−1 is recursive.

Proposition III.3.10. Suppose p∶N → (1,∞) is an order function. If there exists a computable, nonde-

creasing function h∶ [1,∞) → (0,∞) such that the series ∑
∞
n=1

1
nh(n) and ∑

∞
n=0

h(p(n))
p(n) converge to recursive

reals and supx∈[1,∞) h(2x)/h(x) < ∞, then there exists a convex sub-identical order function g∶N → [0,∞)

such that LUA(p) ≤s COMPLEX(g) <w MLR.

Proof. Suppose there is such a computable, nondecreasing h∶ [1,∞) → (0,∞) and let p̃∶N → R be defined

by p̃(n) ∶= p(n)/h(p(n)) for each n ∈ N. By Lemma III.3.9, we may assume without loss of generality that

p(n + 1)/p(n) ≤ 2 for all n ∈ N.

That p and h are nondecreasing and unbounded (p by hypothesis, h because ∑
∞
n=1

1
nh(n) < ∞) implies

p(n)/p̃(n) = h(p(n)) ↗ ∞ as n→∞. With this choice of p̃, let g be as in the proof of Theorem III.3.4, i.e.,

g(n) ∶= n + 1 − log2 (
p(p−1(2n+1))

p̃(p−1(2n+1))
)

for each n ∈ N, so Theorem III.3.4 implies LUA(p) ≤s COMPLEX(g).

68

It remains to show that COMPLEX(g) <w MLR. By [12, Theorem 5.1], it suffices to show that

∑
∞
n=0 2⌈g(n)⌉−n is a recursive real. Because 2⌈g(n)⌉−n ≤ 2g(n)−n+1 for all n ∈ N, Proposition II.3.8 shows

that it suffices to show that ∑
∞
n=0 2g(n)−n is a recursive real, or in other words that

∞
∑
n=0

p̃(p−1(2n+1))

p(p−1(2n+1))
=

∞
∑
n=1

2n
p̃(p−1(2n))

(2n)2

is a recursive real. By the Cauchy Condensation Test, ∑
∞
n=1 2n p̃(p

−1(2n))
(2n)2 converges if and only if∑

∞
n=0

p̃(p−1(n))
n2

converges; moreover, a simple analysis of the standard proof of the Cauchy Condesation Test and an appeal

to Proposition II.3.8 shows that we can replace both instances of ‘converges’ with ‘converges to a recursive

real’ in the previous statement. Given x ∈ [1,∞), we compare p̃(x) to p(x)
h(p(x)) . Let n = ⌊x⌋; then

p̃(x)

p(x)/h(p(x))
= h(p(x))

(
p(n+1)

h(p(n+1)) −
p(n)

h(p(n))) (x − n) + p(n)
h(p(n))

(p(n + 1) − p(n))(x − n) + p(n)

=
h(p(x))

h(p(n))

(
h(p(n))
h(p(n+1))p(n + 1) − p(n)) (x − n) + p(n)

(p(n + 1) − p(n))(x − n) + p(n)

=
h(p(x))

h(p(n))

⎛
⎜
⎝

1 +
(
h(p(n))
h(p(n+1)) − 1)p(n + 1)(x − n)

(p(n + 1) − p(n))(x − n) + p(n)

⎞
⎟
⎠

≤
h(p(n + 1))

h(p(n))
(1 +

p(n + 1)

p(n)
)

≤ 3
h(2p(n))

h(p(n))

≤ 3 sup
y∈[1,∞)

h(2y)

h(y)

< ∞.

Thus, for some positive rational α and almost all n ∈ N, we have

p̃(p−1(n))

n2
≤ α

p(p−1(n))

n2h(p(p−1(n)))
= α

1

nh(n)
.

Since ∑
∞
n=1

1
nh(n) is a recursive real by hypothesis, Theorem III.3.4 implies ∑

∞
n=1 2n p̃(p

−1(2n))
(2n)2 is a recursive

real, completing the proof.

Example III.3.11. Fix a rational ε > 0. Then

LUA(λn.n(log2 n)
2+ε

) ≤w COMPLEX(g) <w MLR

for some convex sub-identical order function g∶N → [0,∞) as the hypotheses of Proposition III.3.10 are

69

satisfied with p∶N→ (1,∞) and h∶ [1,∞) → (0,∞) defined by

p(n) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2 if n = 0 or n = 1,

n(log2 n)
2+ε otherwise,

and h(x) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if x ∈ [1,2),

(log2 x)
1+ε/2 otherwise.

The extra hypothesis in Theorem III.3.3 that ∑
∞
n=0 p(n)

−1 be a recursive real prompts the question as to

whether a full affirmative answer to Question III.0.7 can be provided.

Question III.3.12. Does there exist a fast-growing order function p such that ∑
∞
n=0 p(n)

−1 is nonrecursive

and for which there is no sub-identical order function g such that LUA(p) ≤w COMPLEX(g)?

70

CHAPTER IV

COMPLEXITY AND SLOW-GROWING AVOIDANCE

The results of Chapter III explore the relationships between the complexity and fast-growing LUA hierarchies,

giving full affirmative answers to Questions III.0.3 and III.0.4 which examine the downward direction while

in the upward direction we only gave a partial affirmative answer to Question III.0.7 and no answer to

Question III.0.6. In this chapter, we address the following generalization of Question III.0.6.

Question IV.0.1. Given a sub-identical order function f , is there an order function q such that COMPLEX(f) ≤w

LUA(q)?

In particular, Question IV.0.1 drops the condition in Question III.0.6 that q be fast-growing. Allowing q

to be slow-growing, we give a partial affirmative answer to Question IV.0.1 for f of the form λn.n−
√
n ⋅∆(n)

(and all sub-identical order functions dominated by a function of that form).

Theorem IV.4.10. Given an order function ∆∶N→ [0,∞) such that limn→∞ ∆(n)/
√
n = 0 and any rational

ε ∈ (0,1),

COMPLEX(λn.n −
√
n ⋅∆(n)) ≤w LUA(λn. exp2((1 − ε)∆(log2 log2 n))).

More generally, COMPLEX(λn.n −
√
n ⋅∆(n)) ≤w LUA(q) for any order function q satisfying

q (exp2((1 − ε)
−1
⋅ [(n + 1)2

− (n + 1) ⋅∆((n + 1)2
)] ⋅ `(n))) ≤ `(n)

for almost all n ∈ N, where `(n) = exp2 ((1 − ε)[(n + 1) ⋅∆((n + 1)2) − n ⋅∆(n2)]).

Our approach in proving Theorem IV.4.10 is motivated by techniques used by Greenberg & Miller to

prove a connection between the DNR hierarchy and effective Hausdorff dimension. The effective Hausdorff

dimension of Y ∈ {0,1}N is defined by dim(Y) ∶= sup{δ ∣ Y ∈ COMPLEX(δ)}.

Theorem. [9, Theorem 4.9] For all sufficiently slow-growing order functions q∶N→ (0,∞) and all Z ∈ DNRq,

there is Y ∈ {0,1}N such that Y ≤T Z and dim(Y) = 1.

The statement that dim(Y) = 1 is equivalent to the statement that Y ∈ ⋂δ∈(0,1)∩Q COMPLEX(δ), so [9,

Theorem 4.9] gives a affirmative answer to Question IV.0.1 when f(n) ≤ δn for almost all n, where δ ∈ (0,1)

is rational.

Theorem IV.4.10 improves [9, Theorem 4.9] in two ways: first by strengthening dim(Y) = 1 to Y ∈

COMPLEX(λn.n −
√
n ⋅∆(n)) and second by replacing ‘sufficiently slow-growing’ with an explicit bound.

One of the main ideas employed by Greenberg & Miller is to consider partial randomness in the space

71

hN = {X ∈ NN ∣ ∀n (X(n) < h(n))} for an order function h∶N → N≥2, show that Z ∈ DNRq computes an

X ∈ hN for which dimh
(X) = 1 (with respect to effective Hausdorff dimenion in hN) and then show that

X computes a Y ∈ {0,1}N with dim(Y) = 1. The benefit of working with randomness in hN instead of

randomness in {0,1}N is that when constructing Y we may do so one entry at a time, whereas a direct

construction of X would likely require we construct it in segments whose lengths grow as the construction

progresses.

In Section IV.1, we generalize our notions of partial randomness to hN. In Section IV.2, we give technical

conditions under which partially random elements of hN compute partially random elements of {0,1}N. In

Section IV.3, we examine [9, Theorem 4.9], using our generalizations and performing a careful analysis of

the growth rates inherent to the construction to prove Theorem IV.3.1:

Theorem IV.3.1. For rationals α ∈ (1,∞) and β ∈ (0,1/2), we have

COMPLEX(λn.n − α
√
n log2 n) ≤w LUA(λn.(log2 n)

β
).

More generally, if q∶N → N is an order function such that q(2(3/2+ε)n2

) ≤ n + 1 for almost all n and some

ε > 0, then COMPLEX(λn.n − α
√
n log2 n) ≤w LUA(q).

Finally, in Section IV.4, we prove a technical result (Theorem IV.4.1) which implies Theorem IV.4.10.

IV.1 Partial Randomness in hN

The measure-theoretic structure on hN can be defined similarly to that of the fair-coin measure λ on {0,1}N:

Definition IV.1.1. Given a finite prefix-free S ⊆ h∗, define

µh(JSKh) ∶= ∑
σ∈S

1

∣h∣σ∣∣
.

The above assignment defines a premeasure on the collection of finite unions of basic open sets, so more

generally we let µh be the outer measure induced by those assignments.

Convention IV.1.2. When h is understood, we write µ for µh and J−K for J−Kh. Additionally, given σ ∈ h∗

or a finite prefix-free S ⊆ h∗, we write µ(σ) and µ(S) for µ(JσK) and µ(JSK), respectively.

Let f ∶ {0,1}∗ → R be a computable function. Two versions of partial randomness in hN will be relevant,

f -randomness and strong f -randomness.

A quantity that regularly appears is µ(σ)1/∣σ∣ for σ ∈ h∗.

Definition IV.1.3. Define γ∶h∗ → [0,1] by setting γ(σ) ∶= µ(σ)1/∣σ∣ when σ ≠ ⟨⟩ and γ(⟨⟩) ∶= 1.

72

Remark IV.1.4. One interpretation of γ(σ) is as the geometric mean of the conditional probabilities

Prob(X(k) = σ(k) ∣X↾k = σ↾k) for k < ∣σ∣.

Within {0,1}∗ we have γ(σ) = 1/2 for each σ ∈ {0,1}∗ ∖ {⟨⟩}.

IV.1.1 f -randomness and f -complexity

According to the measure-theoretic paradigm, X ∈ {0,1}N is Martin-Löf random if no uniformly r.e. sequence

⟨Si⟩i∈N of subsets of {0,1}N for which λ(Si) ≤ 2−i for each i ∈ N covers X. A direct translation suggests

defining X ∈ hN to be Martin-Löf random in hN if no uniformly r.e. sequence ⟨Si⟩i∈N of subsets of hN for

which µh(Si) ≤ 2−i for each i ∈ N covers X.

More generally, given a recursive function f ∶ {0,1}∗ → R, X ∈ {0,1}N is f -random if whenever ⟨Si⟩i∈N is

a uniformly r.e. sequence of subsets of {0,1}∗ such that ∑σ∈Si 2−f(σ) ≤ 2−i for each i ∈ N, then X ∉ ⋂i∈N JσK2.

It is less obvious how to translate this to the realm of hN. One way would be to use it verbatim (though

with dom f = h∗ now), but a consequence would be that Martin-Löf randomness in hN would correspond to

f(σ) ∶= log2 ∣h∣σ∣∣. Another approach makes use of the observation that 1
2
= λ(σ)1/∣σ∣ for any σ ∈ {0,1}∗∖{⟨⟩}.

Definition IV.1.5 (direct f -weight in h∗). Suppose S ⊆ h∗. The direct f -weight (in h∗) dwtf(S) of S is

defined by

dwtf(S) = dwthf(S) ∶= ∑
σ∈S

γ(σ)f(σ).

Definition IV.1.6 (f -randomness in hN). An f -ML-test (in hN) is a uniformly r.e. sequence ⟨Sk⟩k∈N of

subsets Sk ⊆ h
∗ such that dwtf(Sk) ≤ 2−k for all k ∈ N.

An f -ML test ⟨Sk⟩k∈N covers X ∈ hN if X ∈ ⋂k∈N JSkK. If X is covered by an f -ML-test, then X is said

to be f -null (in hN), and otherwise is f -random (in hN).

Like in {0,1}N, there is an equivalent characterization of f -randomness in terms of complexity. The

definition of a prefix-free machine M ∶ ⊆ {0,1}∗ → h∗ in h∗ is analogous to that of a prefix-free machine

M ∶ ⊆ {0,1}∗ → {0,1}∗.

Definition IV.1.7 (prefix-free machines in h∗). A prefix-free machine is a partial recursive function

M ∶ ⊆ {0,1}∗ → h∗ such that domM is prefix-free.

A prefix-free machine U is universal if for any prefix-free machine M there exists ρ ∈ {0,1}∗ such that

U(ρ⌢τ) ≃M(τ) for all τ ∈ {0,1}∗.

Proposition IV.1.8. There exists a universal prefix-free machine U ∶ ⊆ {0,1}∗ → h∗.

Proof. The proof given in [26, Theorem 6.2.3] easily generalizes to h∗.

73

Definition IV.1.9 (prefix-free complexity in h∗). Fix a universal prefix-free machine U . Then the

prefix-free complexity of σ ∈ h∗ is defined by

KP(σ) = KPhU(σ) ∶= min{∣τ ∣ ∣ U(τ) ≃ σ}.

Many of the standard properties or facts about prefix-free complexity in {0,1}∗ continue to hold in h∗.

Proposition IV.1.10.

(a) If U and V are universal prefix-free machines, then there exists c ∈ N such that ∣KPU(σ)−KPV (σ)∣ ≤ c

for all σ ∈ h∗.

(b) Kraft’s Inequality: ∑σ∈h∗ 2−KP(σ) ≤ 1.

(c) KC Theorem: Suppose ⟨dk, σk⟩k∈N is a recursive sequence of pairs ⟨dk, σk⟩ ∈ N×h∗ such that ∑
∞
k=0 2−dk ≤

1. Then there is a recursive sequence ⟨τk⟩k∈N of binary strings such that ∣τk ∣ = dk.

Consequently, there exists c ∈ N such that KP(σk) ≤ dk + c for all k ∈ N.

Proof.

(a) The universality of U implies there is a ρ ∈ {0,1}∗ such that U(ρ⌢σ) ≃ V (σ) for all σ ∈ {0,1}∗. Fix

τ ∈ h∗. If σ ∈ {0,1}∗ is such V (σ) ≃ τ and ∣σ∣ = KPV (τ), then U(ρ⌢σ) ≃ τ shows KPU(τ) ≤ KPV (τ)+∣ρ∣,

or equivalently KPU(τ)−KPV (τ) ≤ ∣ρ∣, with this final inequality being independent of τ . By symmetry,

there is a ρ′ ∈ {0,1}∗ such that KPV (τ) −KPU(τ) ≤ ∣ρ′∣ for all τ ∈ h∗, so we may set c = max{∣ρ∣, ∣ρ′∣}.

(b) To each τ ∈ h∗ there is a (not necessarily unique) σ ∈ domU such that U(σ) = τ and ∣σ∣ = pwt(τ). This

observation shows that ∑τ∈h∗ 2−KP(τ) ≤ ∑σ∈domU 2−∣σ∣. Because domU is prefix-free, we have

∑
τ∈h∗

2−KP(τ)
≤ ∑
σ∈domU

2−∣σ∣ ≤ 1.

(c) The proof of [6, Theorem 3.6.1] shows that there exists a recursive sequence ⟨τk⟩k∈N of pairwise-

incompatible binary strings τk with ∣τk ∣ = dk.

To show the “consequently” statement holds, define M ∶ ⊆ {0,1}∗ → h∗ by setting M(τk) = σk for

k ∈ N and M(τ)↑ for all other τ . Then M is a prefix-free machine, so there is ρ ∈ {0,1}∗ such that

U(ρ⌢τ) ≃M(τ) for all τ ∈ {0,1}∗. In particular, U(ρ⌢τk) = σk, so

KP(σk) ≤ ∣ρ⌢τk ∣ = dk + ∣ρ∣.

74

Given X ∈ hN, it makes sense to consider how the prefix-free complexity of an initial segment of X grows

as a function of length. Within {0,1}N, X is f -complex if there is c ∈ N such that KP(X↾n) ≥ f(n) − c for

all n ∈ N. It can be shown [10, Theorem 2.6] that f -randomness and f -complexity in {0,1}N are equivalent,

so a natural question is whether this continues to hold in hN once we define ‘f -complexity’ in hN. For the

equivalence to go through an additional factor (depending on h) must be introduced.

Definition IV.1.11 (f -complexity in hN). X ∈ hN is f -complex (in hN) if there exists c ∈ N such that, for

all n ∈ N,

KP(X↾n) ≥ (log1/2 γ(X↾n)) ⋅ f(X↾n) − c.

Adapting [10, Theorem 2.6] yields the equivalence between f -randomness and f -complexity in hN.

Theorem IV.1.12. For all X ∈ hN, X is f -random in hN if and only if it is f -complex in hN.

Proof. For i ∈ N, let Si = {σ ∈ h∗ ∣ KP(σ) < (log1/2 γ(X↾n)) ⋅f(σ)− i}. We claim that ⟨Si⟩i∈N forms an f -ML

test. Indeed, for each i ∈ N we have

dwtf(Si) = ∑
σ∈Si

γ(σ)f(σ) < ∑
σ∈Si

γ(σ)(KP(σ)+i)⋅logγ(σ)(1/2) = ∑
σ∈Si

2−KP(σ)
⋅ 2−i ≤ 2−i.

where the final inequality follows from Proposition IV.1.10(b). If X is f -random, then ⟨Si⟩i∈N does not cover

X, meaning there is an i ∈ N such that KP(X↾n) ≥ (log1/2 γ(X↾n)) ⋅ f(X↾n) − i for all n ∈ N and hence X

is f -complex.

Conversely, suppose X is not f -random, and let ⟨Si⟩i∈N be an f -ML test covering X. Then

∞
∑
i=0

∑
σ∈S2i

exp2(−((log1/2 γ(σ)) ⋅ f(σ) − (i + 1))) =
∞
∑
i=0

2iγ(σ)f(σ) ≤
∞
∑
i=0

2i+1
⋅ 2−2i

=
∞
∑
i=0

2−i−1
= 1.

Suppose gi∶N→ S2i is a recursive surjection for each i ∈ N and let g∶N→ ⋃i∈N S2i be defined by g(π(2)(i, j)) ∶=

gi(j). Write σk = g(k) and dk = ⌈(log1/2 γ(σk)) ⋅ f(σk) − (i + 1)⌉. Then Proposition IV.1.10(c) implies there

exists c ∈ N such that

KP(σk) ≤ ⌈(log1/2 γ(σk)) ⋅ f(σk) − (i + 1)⌉ + c ≤ (log1/2 γ(σk)) ⋅ f(σk) − i + c

for all k ∈ N. Because ⟨Si⟩i∈N covers X, ⟨S2i⟩i∈N does as well. Thus, for every i ∈ N, there exists an n ∈ N

such that KP(X↾n) ≤ (log1/2 γ(X↾n)) ⋅ f(X↾n) − i + c, so X is not f -complex.

Corollary IV.1.13. There exists a universal f -ML test, i.e., an f -ML test ⟨Si⟩i∈N such that X ∈ hN is

f -random if and only if X is not covered by ⟨Si⟩i∈N.

Proof. The proof of Theorem IV.1.12 shows that setting Si = {σ ∈ h∗ ∣ KP(σ) < (log1/2 γ(X↾n)) ⋅ f(σ) − i}

yields a universal f -ML test.

75

Corollary IV.1.14. Suppose f(σ) = f̃(σ) for almost all σ. Then f -randomness in hN is equivalent to

f̃ -randomness in hN.

Proof. Suppose f(σ) = f̃(σ) for all σ ∈ h∗ for which ∣σ∣ > N . Let d = maxσ∈h∗,∣σ∣≤N KP(σ). Then KP(σ) ≥

(log1/2 γ(σ)) ⋅ f(σ) − c if and only if KP(σ) ≥ (log1/2 γ(σ)) ⋅ f̃(σ) − c for all σ ∈ h∗. It follows that f -

complexity and f̃ -complexity are equivalent, and so Theorem IV.1.12 shows f -randomness and f̃ -randomness

are equivalent.

Prior to defining f -randomness in hN, an alternate definition was suggested in which the definition of

direct f -weight was unmodified when passing from {0,1}∗ to h∗ aside from changing the domain of f .

Likewise, an alternative definition of f -complexity can be given in which the factor log1/2 γ(σ) is removed,

more closely resembling f -complexity in {0,1}N.

Passing between these alternative definitions can be done in a uniform manner:

Proposition IV.1.15. Suppose f, g∶h∗ → R are computable and g(σ) = (log1/2 γ(σ)) ⋅ f(σ) for all σ ∈ h∗.

(a) X ∈ hN is f -random if and only if there exists no uniformly r.e. sequence ⟨Sk⟩k∈N such that ∑σ∈Sk 2−g(σ) ≤

1/2k for each k ∈ N and X ∈ ⋂k∈N JSkK.

(b) X ∈ hN is f -complex if and only if there exists a c ∈ N such that KP(X↾n) ≥ g(X↾n) − c for all n ∈ N.

Proof. Straight-forward.

IV.1.2 Strong f -Randomness

A related variant of partial randomness can be defined similarly. First, from the measure-theoretic paradigm:

Definition IV.1.16 (prefix-free f -weight in h∗). The prefix-free f -weight of a set of strings S ⊆ h∗ is defined

by

pwtf(S) ∶= sup{dwtf(A) ∣ prefix-free A ⊆ S}.

Definition IV.1.17 (strong f -randomness in hN). A weak f -ML-test (in hN) is a uniformly r.e. sequence

⟨Ak⟩k∈N of subsetes Ak ⊆ h
∗ such that pwtf(Ak) ≤ 2−k for all k ∈ N.

A weak f -ML-test ⟨Ak⟩k∈N covers X ∈ hN if X ∈ ⋂k∈N JAkK. If X is covered by no weak f -ML-test, then

X is strongly f -random (in hN).

Like in {0,1}N, strong f -randomness in hN is associated with an analog of a priori complexity in h∗.

76

Definition IV.1.18 (continuous semimeasure on h∗). A continuous semimeasure on h∗ is a function ν∶h∗ →

[0,1] such that ν(⟨⟩) = 1 and for every σ ∈ h∗,

ν(σ) ≥ ∑
i∈<h(∣σ∣)

ν(σ⌢⟨i⟩).

A continuous semimeasure ν is left recursively enumerable, or left r.e., if it is left r.e. as a function h∗ → R.

A left r.e. continuous semimeasure ν is universal if for every left r.e. continuous semimeasure ξ on h∗ there

exists c ∈ N such that ξ(σ) ≤ c ⋅ ν(σ) for all σ ∈ h∗.

Proposition IV.1.19. There exists a universal left r.e. semimeasure M on h∗.

Proof. The proof given in [6, Theorem 3.16.2] easily generalizes to h∗.

Definition IV.1.20 (a priori complexity in h∗). Fix a universal left r.e. semimeasure M. The a priori

complexity of a string σ ∈ h∗ is defined by

KA(σ) = KAM(σ) ∶= − log2 M(σ).

Akin to the well-definedness of prefix-free complexity, if N were another universal left r.e. semimeasure,

then KAM and KAN differ by at most a constant.

Definition IV.1.21 (strong f -complexity in hN). X ∈ hN is strongly f -complex (in hN) if there exists a c ∈ N

such that, for all n ∈ N,

KA(X↾n) ≥ (log1/2 γ(X↾n)) ⋅ f(X↾n) − c.

We will show that strong f -complexity is equivalent to strong f -randomness. Before doing so, we intro-

duce a third approach to defining strong f -randomness/complexity, this time in terms of supermartingales

as in the unpredictability paradigm.

Definition IV.1.22 (supermartingale). A supermartingale (over h∗) is a function d∶h∗ → [0,∞) such that

∑
i<h(∣σ∣)

d(σ⌢⟨i⟩) ≤ h(∣σ∣)d(σ)

for all σ ∈ h∗.

A supermartinagle d is left recursively enumerable, or left r.e., if it is left r.e. as a function h∗ → [0,∞).

Definition IV.1.23 (f -success). Suppose d is a left r.e. supermartingale and X ∈ hN. d is said to f -succeed

on X if

lim sup
n

(d(X↾n) ⋅ γ(X↾n)n−f(X↾n)) = ∞.

77

The following lemma reveals the close connection between continuous semimeasures ν and supermartin-

gales d such that d(⟨⟩) = 1.

Lemma IV.1.24. Given ν∶h∗ → [0,1], let dν ∶h
∗ → [0,∞) be defined by dν(σ) ∶= ∣h∣σ∣∣ ⋅ ν(σ) for σ ∈ h∗.

(a) ν is left r.e. if and only if dν is left r.e.

(b) ν is a continuous semimeasure if and only if dν is a supermartingale.

(c) ν is a universal left r.e. continuous semimeasure if and only if dν is a universal left r.e. supermartinagle,

in the sense that if d were another left r.e. supermartingale then there is a c ∈ N such that d(σ) ≤ c⋅dν(σ)

for all σ ∈ h∗.

Proof.

(a) This follows from the fact that h is recursive.

(b) Given σ ∈ h∗, we have

∑
i<h(∣σ∣)

dν(σ
⌢
⟨i⟩) = ∑

i<h(∣σ∣)
∣h∣σ⌢⟨i⟩∣

∣ ⋅ ν(σ⌢⟨i⟩) = ∣h∣σ∣+1
∣ ⋅ ∑
i<h(∣σ∣)

ν(σ⌢⟨i⟩) = h(∣σ∣) ⋅
⎛

⎝
∣h∣σ∣

∣ ⋅ ∑
i<h(∣σ∣)

ν(σ⌢⟨i⟩)
⎞

⎠
.

By comparing the first and last expressions with the definitions of what it means for dν to be a

supermartingale or for ν to be a continuous semimeasure shows that dν is a supermartinagle if and

only if ν is a continuous semimeasure.

(c) Straight-forward.

Lemma IV.1.25. Suppose S and T are subsets of h∗.

(a) If S ⊆ T , then dwtf(S) ≤ dwtf(T) and pwtf(S) ≤ pwtf(T).

(b) dwtf(S ∪ T) = dwtf(S) + dwtf(T) − dwtf(S ∩ T).

(c) pwtf(S ∪ T) ≤ pwtf(S) + pwtf(T), with equality if the strings in S and T are pairwise incompatible.

Proof.

(a) Straight-forward.

(b) Straight-forward.

78

(c) If P ⊆ S ∪ T is prefix-free, then P ∩ S and P ∩ T are prefix-free subsets of S and T , respectively, so

dwtf(P) ≤ dwtf(P ∩ S) + dwtf(P ∩ T) ≤ pwtf(S) + pwtf(T).

Taking the supremum among all prefix-free P ⊆ S ∪ T yields pwtf(S ∪ T) ≤ pwtf(S) + pwtf(T).

If the strings in S and T are pairwise incompatible, then given prefix-free subsets A ⊆ S and B ⊆ T ,

A ∩B = ∅ and A ∪B is a prefix-free subset of S ∪ T , so

dwtf(A) + dwtf(B) = dwtf(A ∪B) ≤ pwtf(S ∪ T).

Taking the supremum among all prefix-free A ⊆ S and B ⊆ T yields pwtf(S)+pwtf(T) ≤ pwtf(S ∪T).

Theorem IV.1.26. Suppose X ∈ hN. The following are equivalent.

(i) X is strongly f -random.

(ii) X is strongly f -complex.

(iii) dh does not f -succeed on X, where dh is the universal left r.e. supermartingale corresponding to M as

in Lemma IV.1.24.

(iv) No left r.e. supermartingale f -succeeds on X.

Proof.

(i) ⇐⇒ (ii) Suppose X is strongly f -random. Let Si = {σ ∈ h∗ ∣ KA(σ) < (log1/2 γ(σ)) ⋅ f(σ)− i}. If P ⊆ Si

is prefix-free, then

dwtf(P) = ∑
σ∈P

γ(σ)f(σ) ≤ ∑
σ∈P

γ(σ)(KA(σ)+i)⋅(logγ(σ) 1/2)
≤

1

2i
∑
σ∈P

M(σ) ≤
1

2i
M(⟨⟩) ≤

1

2i
.

Thus, ⟨Si⟩i∈N forms a weak f -ML test. Because X is strongly f -random, X is not covered by ⟨Si⟩i∈N

and so there is an i ∈ N such that X ∉ JSiK, i.e., for every n ∈ N we have KA(X↾n) ≥ (log1/2 γ(X↾n)) ⋅

f(X↾n) − i, so X is strongly f -complex.

If X is not strongly f -random, then there is a weak f -ML test ⟨Si⟩i∈N which covers X. Uniformly in

i ∈ N, we let νi be defined by νi(σ) = pwtf({τ ∈ Si ∣ τ ⊇ σ}). νi is a continuous semimeasure; using

Lemma IV.1.25 we have

νi(σ) = pwtf({τ ∈ Si ∣ τ ⊇ σ})

≥ pwtf({τ ∈ Si ∣ τ ⊃ σ})

79

= pwtf
⎛

⎝
⋃

j<h(∣σ∣)
{τ ∈ Si ∣ τ ⊇ σ

⌢
⟨j⟩}

⎞

⎠

= ∑
j<h(∣σ∣)

pwtf({τ ∈ Si ∣ τ ⊇ σ
⌢
⟨j⟩})

= ∑
j<h(∣σ∣)

νi(σ
⌢
⟨j⟩).

That νi is left r.e. follows from the fact that Si is r.e. Observe that for τ ∈ Si we have dwtf(τ) ≤ νi(τ).

Because νi(⟨⟩) = pwtf(Si) ≤ 2−i for each i, the map ν∶h∗ → [0,1] defined by

ν(σ) ∶=
∞
∑
i=0

2iν2i(σ)

for σ ∈ h∗ is a left r.e. semimeasure, and hence there is a c ∈ N such that ν(σ) < c ⋅M(σ) for all σ ∈ h∗.

Then for σ ∈ S2i, we have

exp2(i − (log1/2 γ(σ)) ⋅ f(σ)) = 2i dwtf(σ) ≤ 2iν2i(σ) ≤ ν(σ) < c ⋅M(σ) = exp2(−(KA(σ) + log1/2 c))

and hence

KA(σ) + i + log1/2 c < (log1/2 γ(σ)) ⋅ f(σ).

Being covered by ⟨Si⟩i∈N and hence by ⟨S2i⟩i∈N as well, X is not strongly f -complex.

(ii) ⇐⇒ (iii) Let dh be the universal left r.e. supermartingale corresponding to M, as in Lemma IV.1.24.

Now observe that for any X ∈ hN and n ∈ N,

dh(X↾n) ⋅ µ(X↾n)1−f(X↾n)/n
= M(X↾n) ⋅ µ(X↾n)−1

⋅ µ(X↾n)1−f(X↾n)/n

= exp2(−(KA(X↾n) − (log1/2 γ(X↾n)) ⋅ f(X↾n))).

Thus,

lim sup
n

d0(X↾n) ⋅ µ(X↾n)
1−f(X↾n)/n

= ∞ ⇐⇒ ∀c∃n (KA(X↾n) < (log1/2 γ(X↾n)) ⋅ f(X↾n) − c.

In other words, dh f -succeeds on X if and only if X is not strongly f -complex.

(iii) ⇐⇒ (iv) If no left r.e. supermartingale f -succeeds on X, then in particular dh does not f -succeed

on X. Conversely, if dh does not f -succeed on X, then the universality of dh shows that no left r.e.

supermartingale f -succeeds on X.

Corollary IV.1.27. There exists a universal weak f -ML test, i.e., a weak f -ML test ⟨Si⟩i∈N such that

X ∈ hN is strongly f -random in hN if and only if X is not covered by ⟨Si⟩i∈N.

80

Proof. The proof of Theorem IV.1.26 shows that letting Si = {σ ∈ h∗ ∣ KA(σ) < (log1/2 γ(σ)) ⋅f(σ)− i} yields

a universal weak f -ML test.

Corollary IV.1.28. Suppose f(σ) = f̃(σ) for almost all σ. Then strong f -randomness is equivalent to

strong f̃ -randomness.

Proof. Suppose f(σ) = f̃(σ) for all σ ∈ h∗ for which ∣σ∣ > N . Let c = maxσ∈h∗,∣σ∣≤N KA(σ). Then for every

i ∈ N, KA(σ) ≥ (log1/2 γ(σ)) ⋅ f(σ) − c − i if and only if KA(σ) ≥ (log1/2 γ(σ)) ⋅ f̃(σ) − c − i for all σ ∈ h∗.

It follows that strong f -complexity and strong f̃ -complexity are equivalent, and so Theorem IV.1.26 shows

strong f -randomness and strong f̃ -randomness are equivalent.

Remark IV.1.29. All of the above results hold with µ replaced by any computable measure on hN for which

µ(σ) > 0 for all σ ∈ h∗, with one adjustment – a supermartingale d f -succeeds on X with respect to µ if and

only if

lim sup
n

(d(X↾n) ⋅ γ(X↾n)−f(X↾n) ⋅ ∣hn∣−1) = ∞.

IV.1.3 Relationships between randomness notions

[9, Proposition 2.5] and [10, Theorem 3.5] show that (in {0,1}N) if g grows sufficiently faster than f , then

g-randomness implies strong f -randomness. This prompts the following question:

Question IV.1.30. Suppose h is an order function and f ∶h∗ → [0,∞) is a nondecreasing computable function

such that limx→∞ (x − f(x)) = ∞. For what nondecreasing computable functions g∶h∗ → [0,∞) such that

g-randomness implies strong f -randomness?

Although we will not make use of it, an analog of [9, Proposition 2.5] and [10, Theorem 3.5] holds for hN

with the growth rate of h factoring heavily into how much faster g must grow than f .

A simplifying assumption we will make is that f is of the form f ∶h∗ → [0,∞).

Proposition IV.1.31. Suppose f ∶h∗ → R is a recursive function. Then there exists a recursive function

f̂ ∶h∗ → [0,∞) such that (strong) f -randomness is equivalent to (strong) f̂ -randomness.

Proof. Let f̂(σ) ∶= max{0, f(σ)}. For K representing either KP or KA, K(σ) ≥ 0 for all σ ∈ h∗, so K(σ) ≥

(log1/2 γ(σ)) ⋅ f(σ) − c implies

K(σ) ≥ max{0, (log1/2 γ(σ)) ⋅ f(σ) − c} ≥ (log1/2 γ(σ)) ⋅max{0, f(σ)} − c = (log1/2 γ(σ)) ⋅ f̂(σ) − c.

Conversely, if K(σ) ≥ (log1/2 γ(σ)) ⋅ f̂(σ) − c, then

K(σ) ≥ (log1/2 γ(σ)) ⋅ f̂(σ) − c ≥ (log1/2 γ(σ)) ⋅ f(σ) − c.

81

This suffices to show that (strong) f -randomness is equivalent to (strong) f̂ -randomness.

Notation IV.1.32. Let γ0 = γ(⟨⟩) = 1 and γn = γ(0
n) = ∣hn∣−1/n for n ≥ 1.

Convention IV.1.33. f will denote a computable, unbounded function of the form f ∶h∗ → [0,∞) such

that for every X ∈ hN the sequence ⟨γ(X↾n)f(X↾n)⟩n∈N is eventually decreasing. g and variations of f and

g will similarly denote such functions unless otherwise specified.

Proposition IV.1.34. Suppose f, g∶h∗ → [0,∞) are recursive functions and there exists a nondecreasing

function j∶N → [0,∞) such that g(σ) ≥ f(σ) + j(∣σ∣) for all σ ∈ h∗ and for which ∑
∞
n=0 γ

j(n)
n < ∞. Then

g-randomness implies strong f -randomness.

Proof. We start by showing that there is a c > 0 such that dwtg(S) ≤ c ⋅ pwtf(A) for all A ⊆ h∗. This allows

us to convert a weak f -ML test ⟨Si⟩i∈N into a g-ML test by taking a tail of ⟨Si⟩i∈N. Noting that S ∩ hn is a

prefix-free subset of S for each n ∈ N, we have

dwtg(S) = ∑
σ∈S

γ(σ)g(σ) ≤
∞
∑
n=0

∑
σ∈S∩hn

γ(σ)f(σ)+j(n)

=
∞
∑
n=0

γj(n)n ⋅ ∑
σ∈S∩hn

γ(σ)f(σ)

≤
∞
∑
n=0

γj(n)n ⋅ pwtf(S)

= (
∞
∑
n=0

γj(n)n) ⋅ pwtf(S).

Thus, we may let c = ∑
∞
n=0 γ

j(n)
n , which is finite by hypothesis.

Corollary IV.1.35. Fix a rational ε > 0, a k ∈ N≥1, and a computable f ∶ {0,1}∗ → [0,∞). Then for any

computable g∶ {0,1}∗ → [0,∞) satisfying

f(σ) + (logγ∣σ∣ 1/2) ⋅ (log2 ∣σ∣ + log2
2 ∣σ∣ + ⋯ + logk−1

2 ∣σ∣ + (1 + ε) logk2 ∣σ∣) ≤ g(σ)

for all σ ∈ h∗, if X ∈ hN is g-random, then X is strongly f -random.

Remark IV.1.36. Proposition IV.1.34 can be generalized to the case of an arbitrary computable measure µ

for which µ(σ) > 0 for all σ ∈ h∗ by requiring j to satisfy ∑
∞
n=0 γ

h(n)
n < ∞, where γn = maxσ∈hn γ(σ).

IV.2 Randomness in hN versus {0,1}N

Algorithmic randomness and complexity is traditionally done within {0,1}N, and our use of partial random-

ness in hN for an order function h is ultimately a tool in proving facts about partial randomness in {0,1}N.

To facilitate that, we want to translate randomness in hN to randomness in {0,1}N. In general, h(n) is

82

not necessarily a power of two for each n ∈ N. For that reason, if we wish to relate randomness in hN with

randomness in {0,1}∗, it is more convenient to pass through [0,1] on the way to {0,1}N where we may

associate a string σ ∈ h∗ with a closed subinterval of [0,1] having rational endpoints.

IV.2.1 Randomness in [0,1] versus {0,1}N

For the translation to and from [0,1] and {0,1}N, the ‘obvious’ approach works.

Definition IV.2.1. Suppose x ∈ [0,1]. bin(x) is the unique infinite binary sequence such that x =

∑
∞
i=0 bin(x)(i) ⋅ 2−i−1 which does not end in an infinite sequence of 1’s except for in the case where x = 1.

Suppose X ∈ {0,1}N. 0.X denotes the real number ∑
∞
i=0X(i) ⋅ 2−i−1. Given σ ∈ {0,1}∗, 0.σ denotes the

real number ∑
∣σ∣−1
i=0 X(i) ⋅ 2−i−1.

The map X ↦ 0.X is a surjection but not an injection, with x = 0.X = 0.Y for distinct X and Y if and

only if x is a dyadic rational in (0,1) and X and Y are the binary representations of x, one ending in an

infinite sequence of 0’s and the other in an infinite sequence of 1’s.

Definition IV.2.2. Suppose I ⊆ [0,1] is a closed interval with rational endpoints. The norm of I is defined

by

∣I ∣ ∶= − log2(max I −min I) = − log2 λ(I).

J denotes the set of closed subintervals I ⊆ [0,1] with rational endpoints for which ∣I ∣ ∈ N (equivalently,

max I−min I is a nonnegative power of 1/2). Given I ∈ J , a code for I is a 4-tuple ⟨a, b, c, d⟩ ∈ N×N≥1×N×N≥1

where [a/b, c/d] = I.

Given S ⊆ J , write JSK ∶= ⋃S. S ⊆ J is recursively enumerable, or r.e., if the set of codes of elements

of S is recursively enumerable. A sequence ⟨Si⟩i∈N of subsets of J is uniformly r.e. if the set of all 5-tuples

⟨a, b, c, d, i⟩ where i ∈ N and ⟨a, b, c, d⟩ is a code for an element of Si is r.e.

To make sense of direct f -weight of an interval I ∈ J , we will require that f be length invariant, i.e.,

∣σ∣ = ∣τ ∣ implies f(σ) = f(τ) for σ, τ ∈ h∗. Thus, the map n↦ f(0n) completely characterizes f . Considering

only the length invariant case allows us to use f regardless of whether we are working within {0,1}N, hN, or

[0,1].

Convention IV.2.3. Unless otherwise specified, from this point forward we will assume that the ‘f ’ in

(strong) f -randomness is of the form f ∶N→ [0,∞).

Definition IV.2.4 (direct f -weight & f -randomness in [0,1]). Given S ⊆ J , its direct f -weight is defined

83

by

dwtf(S) ∶= ∑
I∈S

2−f(∣I ∣) = ∑
I∈S

(λ(I)∣I ∣)f(∣I ∣).

An f -ML test (in [0,1]) is a uniformly r.e. sequence ⟨Si⟩i∈N of subsets of J such that dwtf(Si) ≤ 1/2i for

each i ∈ N. Such an f -ML test covers x ∈ [0,1] if x ∈ ⋂i∈N JSiK. x ∈ [0,1] is f -random (in [0,1]) if no f -ML

test in [0,1] covers x.

Lemma IV.2.5. [12, Lemma 6.1] There is a partial recursive function ψ ∶ ⊆N4 → ({0,1}∗)2 such that if

⟨a, b, c, d⟩ is a code for I ∈ J , then ψ(a, b, c, d)↓ = ⟨σ, τ⟩ where I ⊆ {0.X ∣ σ ⊂X ∨ τ ⊂X} and ∣σ∣ = ∣τ ∣ = ∣I ∣.

Proposition IV.2.6. [12, Lemma 6.2, essentially] Suppose x ∈ [0,1]. Then x is f -random in [0,1] if and

only if bin(x) is f -random in {0,1}N.

Proof. Let ψ be as in Lemma IV.2.5.

Suppose I ∈ J is given, and let ⟨a, b, c, d⟩ be a code for I. Define bin(I) ∶= {σ, τ}, where ψ(a, b, c, d)↓ =

⟨σ, τ⟩, and observe that for any x ∈ I we have bin(x) ∈ bin(I) and that

dwtf({σ, τ}) ≤ 2−f(∣σ∣) + 2−f(∣τ ∣) = 2 ⋅ 2−f(∣I ∣) = 2 dwtf({I}).

Given S ⊆ J , we define bin(S) ∶= ⋃{bin(I) ∣ I ∈ S}. Then dwtf(bin(S)) ≤ 2 ⋅ dwtf(S); the uniformity of

the assignment S ↦ bin(S) implies that if S is r.e. then bin(S) is r.e., and if ⟨Si⟩i∈N is uniformly r.e. then

⟨bin(Si)⟩i∈N is uniformly r.e. Moreover, if x ∈ JSK then bin(x) ∈ Jbin(S)K, so if x is covered by an f -ML test

then bin(x) is covered by an f -ML test. Thus, if bin(x) is f -random in {0,1}N then x is f -random in [0,1].

Conversely, given σ ∈ {0,1}∗, let Iσ = {0.X ∣ σ ⊂ X}. If σ = ⟨⟩ then Iσ = [0,1]. Otherwise, Iσ =

[0.σ⌢⟨0,0, . . .⟩,0.σ⌢⟨1,1, . . .⟩]. Observe that ∣σ∣ = ∣Iσ ∣, so 2−f(∣σ∣) = 2−f(∣I ∣). Additionally, Iσ = Iτ if and only if

σ = τ . Given S ⊆ {0,1}∗, let 0.S = {Iσ ∣ σ ∈ S}. Then dwtf(S) = dwtf(0.S); the uniformity in the assignment

S ↦ 0.S implies that if S is r.e. then 0.S is r.e., and if ⟨Si⟩i∈N is uniformly r.e. then ⟨0.Si⟩i∈N is uniformly r.e.

Moreover, if X ∈ JSK then 0.X ∈ J0.SK, so if X is covered by an f -ML test in {0,1}N, then 0.X is covered by

an f -ML test in [0,1]. Thus, if x is f -random in [0,1] then bin(x) is f -random in {0,1}N.

IV.2.2 Randomness in hN versus [0,1]

The map X ↦ 0.X from {0,1}N to [0,1] can be described in a different way. With Iσ as in the proof of

Proposition IV.2.6, 0.X is the unique element of ⋂n∈N IX↾n. Said another way, [0,1] is split into two intervals

of length 1/2 corresponding to ⟨0⟩ and ⟨1⟩, each of those intervals are split into two intervals of length 1/4

corresponding to ⟨0,0⟩, ⟨0,1⟩, ⟨1,0⟩, and ⟨1,1⟩, and so on, then we take the intersection of the intervals

corresponding to the initial segments of X to get 0.X.

84

Repeating this methodology for h∗ produces closed subintervals of [0,1] with rational endpoints, but not

necessarily elements of J . For that reason, we let I be the set of all closed intervals I ⊆ [0,1] with rational

endpoints.

Definition IV.2.7. Given σ ∈ h∗, define πh(σ) ∶= [k/∣h∣σ∣∣, (k + 1)/∣∣σ∣∣], where k = ∑
∣σ∣−1
i=0 σ(i) ⋅ ∣hi∣; in other

words, πh(⟨⟩) = [0,1] and, for σ ∈ h∗ and 0 ≤ i < h(∣σ∣), πh(σ⌢⟨i⟩) is the i-th subinterval of πh(σ) after

splitting πh(σ) into h(∣σ∣)-many consecutive closed subintervals of equal length 1/∣h∣σ∣+1∣.

The map πh∶hN → [0,1] is then defined by setting, for X ∈ hN,

πh(X) ∶= unique element of ⋂
n∈N

πh(X↾n).

Lemma IV.2.8. πh is a measure-preserving surjection of hN onto [0,1]. However, πh is not injec-

tive, and for distinct X,Y ∈ hN, πh(X) = πh(Y) if and only if there is σ ∈ h∗ such that {X,Y } =

{σ⌢⟨0,0, . . .⟩, σ⌢⟨h(∣σ∣) − 1, h(∣σ∣ + 1) − 1, . . .⟩}.

Proof. Straight-forward.

For an interval I ∈ I, we wish to consider f(∣I ∣), although ∣I ∣ ∈ N only for I ∈ J , requiring the following

convention:

Convention IV.2.9. Given f ∶N → [0,∞), we implicitly extend f to a function [0,∞) → [0,∞) by letting

f(x) = (f(⌊x⌋ + 1) − f(⌊x⌋))(x − ⌊x⌋) + f(⌊x⌋).

We extend the definition of dwtf to I and P(I) in the obvious manner, and the definitions of f -ML tests

and by extension f -randomness can likewise be extended. We will term these extended definitions by adding

the prefix ‘extended’, as in, “x ∈ [0,1] is extended f -random in [0,1] if no extended f -ML test covers x.”

An additional assumption we must make regards f and the sequence ⟨f(n)/n⟩n∈N≥1 . Later we will

strengthen this assumption further.

Convention IV.2.10. Given f , we assume ⟨f(n)/n⟩n∈N≥1 is nondecreasing. As such, the function x ∈

(0,∞) ↦ f(x)/x ∈ [0,∞) is nondecreasing as well.

Notation IV.2.11. Let s∶N→ [0,∞) be the unique nondecreasing computable function such that s(0) = 1

and for which ∣hn∣ = 2n⋅s(n) for all n ∈ N. Consequently, ∣πh(σ)∣ = n ⋅ s(n) for all σ ∈ hn.

Proposition IV.2.12. For any S ⊆ h∗, the set πh[S] = {πh(σ) ∣ σ ∈ S} satisfies dwtf(π
h[S]) ≤ dwtf(S).

Moreover, if S is r.e. then πh[S] is r.e.

85

Proof. Because πh is measure preserving, µh(σ) = λ(π
h(σ)). Given σ ∈ hn, n ≤ n ⋅ s(n) implies f(∣σ∣)/∣σ∣ ≤

f(∣πh(σ)∣)/∣πh(σ)∣, and consequently s(n) ⋅ f(n) ≤ f(n ⋅ s(n)). In particular,

2−f(∣π
h(σ)∣)

= 2−f(n⋅s(n)) ≤ 2−s(n)⋅f(n) = (2−n⋅s(n))f(n)/n = γ(σ)f(∣σ∣).

Thus, dwtf(π
h[S]) ≤ dwtf(S). That πh[S] is r.e. if S is r.e. is immediate.

Corollary IV.2.13. If πh(X) ∈ [0,1] is extended f -random in [0,1], then X ∈ hN is f -random in hN.

Proof. The uniformity of the assignment S ↦ πh[S] implies that if ⟨Si⟩i∈N is a uniformly r.e. sequence of

subsets of h∗, then ⟨πh[Si]⟩i∈N is a uniformly r.e. sequence of subsets of [0,1]. With Proposition IV.2.12, it

follows that if ⟨Si⟩i∈N is an f -ML test in hN then ⟨πh[Si]⟩i∈N is an extended f -ML test in [0,1].

The proof of Proposition IV.2.12 suggests that if wish to convert a extended f -ML test in [0,1] into an

f -ML test in hN then we want to pull intervals in I back into strings in h∗. However, the map πh∶h∗ → I

is not surjective, so given I ∈ I we must instead cover I with intervals of the form πh(σ) for σ ∈ h∗. This

procedure must be sufficiently regular for an extended f -ML test in [0,1] to be pulled back to a g-ML test

in hN for some appropriate g.

Definition IV.2.14. Given f ≤dom g, then we say that the regularity condition (∗)(g, f) holds for h if

sup
n∈N

exph(n−1)(1 − f(n ⋅ s(n)) ⋅ (n ⋅ s(n))
−1)

exp2(s(n) ⋅ g(n) − f(n ⋅ s(n)))
< ∞. (∗)(g, f)

Remark IV.2.15. In [9], the regularity condition (∗)(g, f) is simplified by the fact that f is linear, and hence

f(n⋅s(n))
n⋅s(n) simplifies into an expression independent of n or s(n).

Proposition IV.2.16. Suppose (∗)(g, f) holds for h and let

α = 3 ⋅ sup
n∈N

exph(n−1)(1 − f(n ⋅ s(n)) ⋅ (n ⋅ s(n))
−1)

exp2(s(n) ⋅ g(n) − f(n ⋅ s(n)))
.

Then for each I ∈ I there exists Ĩ ⊆ h∗ such that I ⊆ ⋃πh[Ĩ] and dwtg(Ĩ) ≤ α ⋅ 2
−f(∣I ∣). Moreover, Ĩ can be

uniformly computed from a code for I.

Proof. We start by setting notation. For each I ∈ I, let nI be the unique n ≥ 1 such that ∣hn∣−1 < λ(I) ≤

∣hn−1∣−1 and kI be the greatest integer k such that k/∣hnI ∣ ≤ λ(I). Then kI < h(nI − 1) and there is a set

Î ⊆ πh[hnI] computable from a code of I of size ≤ kI + 2 such that I ⊆ ⋃ Î, namely the intervals in πh[hnI]

intersecting I nontrivially (i.e., intervals which intersect I at more than just an endpoint).

Suppose I ∈ I is given, and let n = nI and k = kI . Because k/∣hn∣ ≤ λ(I), we have ∣hn∣−1/λ(I) ≤ k. Given

86

J ∈ Î, λ(J) ≤ λ(I) and so ∣I ∣ ≤ ∣J ∣ = n ⋅ s(n). Then

dwtg(Ĩ) = ∑
σ∈Ĩ

γ−g(n)n ≤ (k + 2)2−s(n)⋅g(n)

≤ 3k ⋅ exp2(−(s(n) ⋅ g(n) − f(n ⋅ s(n)))) ⋅ (λ(I)/k)
f(n⋅s(n))⋅(n⋅s(n))−1

≤ 3 ⋅
expk(1 − f(n ⋅ s(n)) ⋅ (n ⋅ s(n))

−1)

exp2(s(n) ⋅ g(n) − f(n ⋅ s(n)))
⋅ λ(I)f(n⋅s(n))⋅(n⋅s(n))

−1

≤ 3 ⋅
exph(n−1)(1 − f(n ⋅ s(n)) ⋅ (n ⋅ s(n))

−1)

exp2(s(n) ⋅ g(n) − f(n ⋅ s(n)))
⋅ λ(I)f(∣I ∣)/∣I ∣

≤ α ⋅ 2−f(∣I ∣).

Corollary IV.2.17. Suppose (∗)(g, f) holds for h and let X ∈ hN. If X is g-random in hN then πh(X) is

generalized f -random in [0,1].

Proof. Let α be as in the statement of Proposition IV.2.16. Given I ∈ I, let Ĩ and Î be as in the statement

and proof of Proposition IV.2.16. Given S ⊆ I r.e., let Ŝ = ⋃{Î ∣ I ∈ S} and S̃ = ⋃{Ĩ ∣ I ∈ S}. Then S̃ is r.e.

and dwtg(S̃) = dwtg(Ŝ) ≤ α ⋅ dwtf(S).

Suppose for the sake of a contradiction that πh(X) is not generalized f -random in [0,1], and so let

⟨Si⟩i∈N be a generalized f -ML test covering πh(X). Let m ∈ N satisfy α ≤ 2m. That Ĩ can be computed

uniformly from a code for I implies ⟨S̃i+m⟩i∈N is uniformly r.e. Then ⟨S̃i+m⟩i∈N is a g-ML test covering X,

contradicting the hypothesis that X is g-random in hN.

Corollary IV.2.18. Suppose x ∈ [0,1]. Then x is f -random in [0,1] if and only if x is generalized f -random

in [0,1].

Proof. Being generalized f -random in [0,1] clearly implies being f -random in [0,1].

In the opposite direction, suppose x is f -random in [0,1], so that bin(x) is f -random in {0,1}N by

Proposition IV.2.6. With h(n) ∶= 2 for all n ∈ N we have s(n) = 1, so ∣πh(σ)∣ = ∣σ∣ for all σ ∈ h∗ = {0,1}∗.

The condition (∗)(g, f) for h is then the statement that

sup
n∈N

exp2(1 − f(n)/n)

exp2(g(n) − f(n))
< ∞.

Then we may observe that (∗)(f, f) holds for h, and so Corollary IV.2.17 implies πh(bin(x)) = x is generalized

f -random in [0,1].

87

Corollary IV.2.19. Suppose limn→∞
s(n−1)
s(n) = 1 and ε > 0. If f(n) = n− j(n) and g(n) = n− (1− ε) j(n⋅s(n))

s(n)

then (∗)(g, f) holds for h. Consequently, if X is g-random in hN then πh(X) is f -random in [0,1].

Proof. If ∣hn∣ = n ⋅ s(n), then h(n − 1) = ∣hn∣/∣hn−1∣ = 2n⋅s(n)−(n−1)⋅s(n−1). Then

log2 (
exph(n−1)(1 − f(n ⋅ s(n)) ⋅ (n ⋅ s(n))

−1)

exp2(s(n) ⋅ g(n) − f(n ⋅ s(n)))
) = (n ⋅ s(n) − (n − 1) ⋅ s(n − 1)) ⋅ (1 −

f(n ⋅ s(n))

n ⋅ s(n)
)

− s(n) ⋅ g(n) + f(n ⋅ s(n))

= n ⋅ s(n) − (n − 1) ⋅ s(n − 1) − f(n ⋅ s(n))

+
(n − 1) ⋅ s(n − 1)

n ⋅ s(n)
⋅ (n ⋅ s(n) − j(n ⋅ s(n)))

− s(n) ⋅ (n − (1 − ε)
j(n ⋅ s(n))

s(n)
) + f(n ⋅ s(n))

= ((1 − ε) −
n − 1

n

s(n − 1)

s(n)
) ⋅ j(n ⋅ s(n)).

Because limn→∞
s(n−1)
s(n) = 1 by hypothesis, for all sufficiently large n we have 1 − ε < n−1

n
s(n−1)
s(n) and hence

((1 − ε) − n−1
n

s(n−1)
s(n)) ⋅ j(n ⋅ s(n)) < 0. It follows that (∗)(g, f) holds for h.

Remark IV.2.20. The condition that limn→∞
s(n−1)
s(n) = 1 is equivalent to limn→∞

log2 ∣hn∣
log2 ∣hn−1∣ = 1, which is

equivalent to limn→∞
log2 h(n−1)

log2 ∣hn∣ = 0.

IV.2.3 Improving Greenberg & Miller’s Conclusion

The motivating theorem [9, Theorem 4.9] proceeds by showing that for any sufficiently slow-growing DNR

function Z, Z computes an X ∈ hN which is (λn.δn)-random in hN for each rational δ < 1, where h(n) =

(n+1) ⋅2n. By showing that limn→∞
log2 ∣hn∣

log2 ∣hn−1∣ = 1 and noting that δn⋅s(n)
s(n) = δn, Corollary IV.2.19 shows that

πh(X) is (λn.δn)-random in [0,1] (and hence bin(πh(X)) is (λn. δn)-random in {0,1}N) for each rational

δ < 1. To arrange for X being (λn.δn)-random in hN for each rational δ < 1, X is constructed entry by

entry so that dh(X↾n) ≤ n! for all n, where dh is a fixed universal r.e. supermatingale dh∶h∗ → [0,∞). By

carefully examining the relevant calculations and using the full power of Corollary IV.2.19, it can be shown

that πh(X) exhibits more partial randomness than just having effective Hausdorff dimension 1.

Theorem IV.2.21. Let h(n) ∶= (n + 1) ⋅ 2n.

(a) limn→∞
log2 ∣hn∣

log2 ∣hn−1∣ = 1.

(b) Suppose X ∈ hN satisfies dh(X↾n) ≤ n! for all n ∈ N. Then X is (λn.n−β log2 n)-random in hN for all

β > 2. Consequently, πh(X) is (λn.n − α
√
n log2 n)-random in [0,1] for all α > 1.

Proof.

88

(a) To aid in finding the corresponding s(n), recall Stirling’s Approximation:

Lemma IV.2.22 (Stirling’s Approximation).

lim
n→∞

n!
√

2πn(n/e)n
= lim
n→∞

n!

exp2(n log2 n + n log2 e +
1
2

log2 n + log2

√
2π)

= 1.

Then log2 ∣hn∣ ≈ n ⋅ (n−1
2
+ log2 n + log2 e +

1
2

log2 n
1/n + log2(2π)

2/n), so limn→∞
s(n−1)
s(n) = 1.

(b) We start by computing d(X↾n)µh(X↾n)
1−g(n)/n:

d(X↾n)µh(X↾n)
1−g(n)/n

≤ n! ⋅ (n!2n(n−1)/2
)
g(n)
n −1

= (n!)
g(n)
n ⋅ 2

(g(n)n −1)⋅n(n−1)2

≈ exp2 (
g(n)

n
(n log2 n + n log2 e +

1

2
log2 n + log2

√
2π)

+ (
g(n)

n
− 1) ⋅

n(n − 1)

2
)

= exp2 (g(n) (
n − 1

2
+ log2 (n1+1/n

⋅ e ⋅
2n
√

2π)) −
n(n − 1)

2
) .

We want this last expression to be bounded above, so there must be a c ∈ N for which

g(n) (n − 1 + 2 log2 (n1+1/n
⋅ e ⋅

2n
√

2π)) ≤ n2
− n + c.

Writing g(n) = n − j̃(n), we find that if

j̃(n) ≥
2 log2 (n1+1/n ⋅ e ⋅ 2n

√
2π) − c

n

1 − 1
n
+ 2
n

log2 (n1+1/n ⋅ e ⋅ 2n
√

2π)

then X is g-random. Hence, for any β > 2, X is g-random for g(n) = n − β ⋅ log2 n.

By Corollary IV.2.19, if X is (λn.n − (1 − ε) j(n⋅s(n))
s(n))-random in hN then πh(X) is (λn.n − j(n))-

random in [0,1]. To show that πh(X) is (λn.n − α
√
n log2 n)-random in [0,1] for any α > 1, it suffices

to show that there is β > 2 and ε > 0 such that n − β log2 n ≥ n − (1 − ε)
α
√
n⋅s(n) log2(n⋅s(n))

s(n) for all

sufficiently large n, or equivalently that β log2 n ≤ (1 − ε)
α
√
n⋅s(n) log2(n⋅s(n))

s(n) for all sufficiently large n.

Using the approximations 1
2
n ≤ s(n) ≤ (1

2
+ δ)n for δ > 0, we have

(1 − ε)
α
√
n ⋅ s(n) log2(n ⋅ s(n))

s(n)
≥ (1 − ε)

α
√
n ⋅ 1

2
n log2(n ⋅

1
2
n)

(1
2
+ δ)n

≥ 2(1 − ε)

√
1/2

√
1/2 + δ

α log2 n − (1 − ε)

√
1/2

√
1/2 + δ

α.

Thus, it suffices for there to be β > 2, ε > 0, and δ > 0 such that β < 2(1 − ε)
√

1/2√
1/2+δ

α. This is possible

whenever α > 1.

89

IV.3 Quantifying the Reduction of Avoidance to Complexity – Preliminary Case

Theorem IV.2.21 addresses the question of the degree of partial randomness we may extract within the proof

of [9, Theorem 4.9] and serves as a precursor to a more general result putting a lower bound on which order

functions f have slow-growing order functions q for which COMPLEX(f) ≤w LUA(q). Our precursor to

addressing the growth rate of such q is the following refinement of [9, Theorem 4.9]:

Theorem IV.3.1. For rationals α ∈ (1,∞) and β ∈ (0,1/2), we have

COMPLEX(λn.n − α
√
n log2 n) ≤w LUA(λn.(log2 n)

β
).

More generally, if q∶N → N is an order function such that q(2(3/2+ε)n2

) ≤ n + 1 for almost all n and some

ε > 0, then COMPLEX(λn.n − α
√
n log2 n) ≤w LUA(q).

We start by fixing some notation and definitions.

Definition IV.3.2. For a, b, c ∈ N, the class P b,ca is defined by

P b,ca ∶= {F ∶N→ [a]b ∣ ∀n∀j < c (j ∈ domϕn → ϕn(j) ∉ F (n))}

where [a]b ∶= {S ⊆ {0,1,2, . . . , a − 1} ∣ ∣S∣ = b}.

In particular, P 1,c
a = {F ∶N→ a ∣ ∀n∀j < c (j ∈ domϕn → ϕn(j) ≠ F (n))}.

Given a ∈ N, P 1,1
a = {X ∈ aN ∣ ∀n (F (n) ≄ ϕn(0))}. By the Parametrization Theorem, there is a total

recursive f ∶N2 → N such that ϕf(e,x)(y) ≃ ϕe(x) for all e, x, y ∈ N. Then given X ∈ P 1,1
a , the sequence Y ∈ aN

defined by Y (n) ∶=X(f(n,n)) is a member of DNR(a). Conversely, given Y ∈ DNR(a), the sequence X ∈ aN

defined by X(n) ∶= Y (f(n,0)) is a member of P 1,1
a . It is also relevant to observe that in both directions,

each entry of the output sequence depends on only a single entry of the input sequence. Moreover, this

one-to-one correspondence is uniform in a.

Convention IV.3.3. DNR(a) will be identified with P 1,1
a .

[9, Corollary 4.6] shows that P 1,c
ca ≤s DNR(a), uniformly in a, c ∈ N. In order to analyze a related result

of Khan [15, Theorem 6.3] (see Section V.1.2), in 2020 Simpson performed a detailed analysis of this strong

reduction with an eye towards generalization and to put an explicit and uniform bound on the number of

entries of an element of DNR(a) are needed to compute a given bit of the corresponding element of P b+1,c
ca+b .

90

Proposition IV.3.4. Uniformly in a, b, c ∈ N, there is a recursive functional Ψ∶DNR(a) → P b+1,c
ca+b and a

recursive function U ∶N → Pfin(N) such that for every X ∈ DNR(a), Ψ(X)(n) depends only on X↾U(n).

Moreover, ∣U(n)∣ ≤ c(ca+b
a

) for all n ∈ N.

Proof. With the identification of DNR(a) with P 1,1
a , the reduction P b+1,c

ca+b ≤s DNR(a) will result from a

sequence of strong reductions

P b+1,c
ca+b ≤s P

d+1,1
a+d ≤s P

1,1
a ,

where d = (c − 1)a + b. These reductions result from the following lemmas:

Lemma IV.3.5. P d+1,c
a+d ≤s P

1,c
a , uniformly in a ≥ 2, d ≥ 0, and c ≥ 1.

Proof. The partial function θ ∶ ⊆N∗ ×N2 → N defined by

θ(σ,n, j) ≃ min{i < ∣σ∣ ∣ ϕn(j)↓ = σ(i)}

for each σ ∈ N∗ and n, j ∈ N is partial recursive, so there exists a total recursive function f ∶N∗ × N → N

such that ϕf(σ,n)(j) ≃ θ(σ,n, j) for all σ ∈ N∗ and n, j ∈ N. Given S ⊆ N with ∣S∣ = a, let σS ∈ Na be the

enumeration of S in increasing order.

Suppose X ∈ P 1,c
a . Recursively in d, we define Fd ∈ P

d+1,c
a+d .

Base Case. For d = 0, F0 =X.

Induction Step. Given Fd ∈ P
d+1,c
a+d has been defined, let Fd+1(n) = Fd(n)∪{σS(X(f(σS , n)))} for each n ∈ N,

where S = (a + d + 1) ∖ Fd(n) (note that ∣S∣ = a). Because X ∈ P 1,c
a , for all j < c

X(f(σS , n)) ≄ ϕf(σS ,n)(j) ≃ θ(σS , n, j) ≃ min{i < a ∣ ϕn(j)↓ = σS(i)}.

Thus, σS(X(f(σS , n))) ≄ ϕn(j) for all j < c, and so Fd+1 ∈ P
d+2,c
a+d+1.

Lemma IV.3.6. Let d = (c − 1)a + b. Then P c+b,c+eca+b ≤s P
d+1,e+1
a+d , uniformly in a ≥ 2, c ≥ 1, b ≥ 0, and e ≥ 0.

Proof. Suppose F ∈ P d+1,e+1
a+d . Because a + d = ca + b, for every n ∈ N and j < e + 1 we have ϕn(j) ∉ F (n) ∈

[ca + b]d+1. The partial function θ ∶ ⊆N3 → N defined by

θ(n, j, y) ≃ ϕn(j)

for each n, j, y ∈ N is partial recursive, so there exists a total recursive function g∶N2 → N such that ϕg(n,j)(y) ≃

ϕn(j) for all n, j, y ∈ N. In particular, ϕn(j) ≃ ϕg(n,j)(0) ∉ F (g(n, j)) for all n, j ∈ N.

91

Define H(n) ∶= F (n)∩⋂i<c−1 F (g(n, e + i + 1)), so that for all j < e+1 we have ϕn(j) ∉ F (n) ⊇H(n), and

for all i < c−1 we have ϕn(e+i+1) ∉ F (g(n, e+i+1)) ⊇H(n). Thus, for every j < c+e we have ϕn(j) ∉H(n).

The only obstacle to H being a member of P c+b,c+eca+b is that H need not be of size c + b. However, as long as

∣H(n)∣ ≥ c+ b for every n ∈ N then we can let G(n) consist of the first c+ b elements of H(n). To that effect,

∣(ca + b) ∖H(n)∣ = ∣[(ca + b) ∖ F (n)] ∪ ⋃
i<c−1

[(ca + b) ∖ F (g(n, e + i + 1))]∣

≤ c ⋅ ((ca + b) − (d + 1))

= c(a − 1)

so ∣H(n)∣ ≥ (ca + b) − c(a − 1) = b + c. With G(n) consisting of the first c + b elements of H(n), we have

G ∈ P c+b,c+eca+b .

In the proof of Lemma IV.3.5, for each n ∈ N Fd(n) depends only on the values X(f(σS , n)) for certain

S ∈ [a+ d]a. In the proof of Lemma IV.3.6, H(n) (and hence G(n)) depends on F (n) and F (g(n, e+ i+ 1))

for i < c − 1. Thus, in the reduction X ∈ P 1,1
a ↦ Fd ∈ P

d+1,1
a+d ↦ G ∈ P b+1,c

ca+b , G(n) is determined by X↾U(n),

where

U(n) = {f(σS , n) ∣ S ∈ [a + d]a} ∪ {f(σS , g(n, i + 1)) ∣ S ∈ [a + d]a, i < c − 1}

and ∣U(n)∣ ≤ c(a+d
a

) = c(ca+b
a

).

Proof of Theorem IV.3.1. Let h(n) = (n + 1)2n and let d = dh be a universal left r.e. supermartingale for

hN. As d is left r.e., uniformly in σ ∈ h∗ we can simultaneously and uniformly approximate d(σ⌢⟨i⟩) from

below for all i < h(n). Thus, there is a total recursive function σ ↦ mσ such that for all σ ∈ h∗ and

x < 2∣σ∣, ϕmσ(x) ↓= i if and only if σ⌢⟨i⟩ is the x-th immediate successor τ of σ found with respect to the

aforementioned procedure with d(τ) > (n + 1)!.

Let #∶h∗ → N be the inverse of the enumeration of h∗ according to the shortlex ordering. In particular,

for σ ∈ hn,

#(σ) ≤ ∣h0
∣ + ∣h1

∣ + ⋯ + ∣hn∣ =
n

∑
i=0

i! ⋅ 2i(i−1)/2.

By potentially modifying our enumeration ϕ0, ϕ1, ϕ2, . . . of partial recursive functions, we can assume without

loss of generality that mσ = 2#(σ). Fix ε > 0 and let m∗
n = 2(1/2+ε)n2

, so that

1 + sup{mσ ∣ σ ∈ hn} ≤m∗
n,

which follows from the computations:

1 + 2 ⋅#(σ) ≤ 1 + 2 (∣h0
∣ + ∣h1

∣ + ⋯ + ∣hn∣)

92

= 1 + 2
n

∑
i=0

(i! ⋅ 2i(i−1)/2)

≤ n ⋅ (n! ⋅ 2n(n−1)/2)

≈ exp2(n
2
/2 + n log2 n + n(log2 e − 1/2) + (1/2) log2 n + log2

√
2π + 1)

< 2(1/2+ε)n2

.

Proposition IV.3.4 shows that, uniformly in n, there is a recursive functional Ψn∶DNR(n + 1) → P 1,2n

h(n)

and recursive function Un∶N → Pfin(N) such that for any Z ∈ DNR(n + 1) and i ∈ N, Z↾Un(i) determines

Ψn(Z)(i) and ∣Un(i)∣ ≤ 2n((n+1)2n
n+1

).

We are principally interested in initial segments ρ of elements of P 1,2n

h(n) of length m∗
n (in fact, we are only

concerned with the values at the inputs mσ for σ ∈ hn), so that:

(1) ρ(mσ) < h(n) = h(∣σ∣).

(2) For all x < 2n, if ϕmσ(x)↓, then ρ(mσ) ≠ ϕmσ(x).

Define U ∶N → Pfin(N) by U(n) ∶= ⋃i<m∗
n
Un(i) for each n ∈ N and subsequently define u∶N → N recursively

by

u(0) ∶= 0,

u(n + 1) ∶= u(n) + ∣U(n)∣.

Finally, define ψ ∶ ⊆N→ N by letting

ψ(u(n) + j) ≃ ϕj-th element of U(n)(0)

for each n ∈ N and j < ∣U(n)∣. By construction, for any Z ∈ Avoidψ(n+1), Z↾u(n+1) can be used to compute

an initial segment of an element of P 1,2n

h(n) of length m∗
n, and this is uniform in n.

If p∶N→ N is an order function satisfying

p(u(n + 1)) ≤ n + 1

for all n ∈ N, then uniformly in n and Z ∈ Avoidψ(p), Z↾u(n+ 1) can be used to compute an initial segment

of an element of P 1,2n

h(n) of length m∗
n. Given Z ∈ Avoidψ(p), define G ∈ NN by setting the value of G(mσ)

according to this uniform process for each σ ∈ h∗; for n not of the form mσ (which can be recursively checked)

set G(n) ∶= 0. Then define X ∈ hN recursively by

X(0) ∶= G(m⟨⟩),

X(n + 1) ∶= G(m⟨X(0),X(1),...,X(n)⟩).

93

In particular, for all x < 2n, if ϕmX↾n(x) ↓= i (which is equivalent to X↾n⌢⟨i⟩ being the x-th immediate

successor of X↾n found such that d(X↾n⌢⟨i⟩) ≥ (n + 1)!) then X(n + 1) = G(mX↾n) ≠ i. We make the

following observation: if d(σ) ≤ n! for some σ ∈ hn, then there at most 2n many immediate successors τ of σ

such that d(τ) ≥ (n + 1)! since

n! ≥ d(σ) ≥
1

h(n)
∑

k<h(n)
d(σ⌢⟨k⟩) =

1

(n + 1)2n
∑

k<h(n)
d(σ⌢⟨k⟩).

Thus, by induction on n we find that d(X↾n) ≤ n! for all n ∈ N. Theorem IV.2.21 then implies that

Y = bin(πh(X)) ∈ {0,1}N is f -random.

It remains to finish the analysis of q. Suppose q∶N → N is an order function such that for each a, b ∈ N

we have q(an + b) ≤ p(n) for almost all n. Then Avoidψ(p) ≤w LUA(q). So if q is such that for all a, b ∈ N

we have q(au(n + 1) + b) ≤ n + 1 for almost all n ∈ N, then COMPLEX(f) ≤w LUA(q). We show that if

q(2(3/2+ε)n2

) ≤ n + 1 for almost all n ∈ N, then q satisfies this aforementioned condition.

First, we must find an upper bound of u. Recall that ∣Un(i)∣ ≤ 2n((n+1)2n
n+1

) for all n, i ∈ N, so

∣U(n)∣ ≤ ∑
i<m∗

n

∣Un(i)∣

≤ ∑
i<m∗

n

2n ⋅ (
(n + 1)2n

n + 1
)

=m∗
n ⋅ 2

n
⋅ (

(n + 1)2n

n + 1
)

≤ 2(1/2+ε)n2

⋅ (
(n + 1) ⋅ 2n

n + 1
)

≤ 2(1/2+ε)n2

⋅ exp2(n
2
+ (1 + log2 e)n + log2 e)

= exp2((3/2 + ε)n
2
+ (1 + log2 e)n + log2 e).

By slightly increasing ε, we find ∣U(n)∣ ≤ 2(3/2+ε)n2

. Next, u(n + 1) = ∑m≤n ∣U(m)∣ ≤ (n + 1)∣U(n)∣, so

a ⋅ u(n + 1) + b ≤ a(n + 1)∣U(n)∣ + b ≤ 3a ⋅ n ⋅ ∣U(n)∣ for all sufficiently large n. As before, a slight increase in ε

allows us to absorb the 3an term, so that

au(n + 1) + b ≤ 2(3/2+ε)n2

.

Thus, if q(2(3/2+ε)n2

) ≤ n + 1, then

q(au(n + 1) + b) ≤ q(2(3/2+ε)n2

) ≤ n + 1.

If α is a positive rational less than 1/2 then for almost all n we have (log2(2
(3/2+ε)n2

))α ≤ n + 1, proving

the ‘in particular’ statement.

94

Remark IV.3.7. We assumed without loss of generality that mσ = 2 ⋅ #(σ) by choosing an appropriate

enumeration of the partial recursive functions. In general, if θ∶N → N is a total recursive, injective function

with recursive coinfinite image (as in the case of n ↦ 2n), then for any total recursive function g∶N → N

there is an admissible enumeration ϕ̃0, ϕ̃1, . . . such that ϕ̃θ(e) ≃ ϕg(e) for all e ∈ N.

IV.4 Quantifying the Reduction of Avoidance to Complexity – General Case

Within the proof of Theorem IV.3.1, how much does our result depend on the particular choice of h?

Use I. For σ ∈ h∗, we defined mσ = 2#(σ) (where #(σ) is the enumeration of h∗ according to the shortlex

ordering) and assumed without loss of genearlity that ϕmσ(x) ↓= k if and only if σ⌢⟨k⟩ is the x-th

immediate successor τ of σ such that d(τ) ≥ (n + 1)!.

Use II. The reduction P 1,2n

h(n) ≤s DNR(n + 1), uniform in n, is used to define the recursive function u∶N → N

and the partial recursive function ψ∶N → N such that, uniformly in n, Z↾u(n + 1) can be used to

compute an initial segment of an element of P 1,2n

h(n) of length m∗
n given any Z ∈ Avoidψ(n + 1).

Use III. For p∶N→ (1,∞) a recursive order function satisfying p(u(n+1)) ≤ n+1, a Z ∈ Avoidψ(p) computes

an X ∈ hN such that d(X↾n) ≤ n! for all n, based on the observation that if d(σ) ≤ n! for some σ ∈ hn,

then there are at most 2n many immediate successors τ of σ such that d(τ) ≥ (n + 1)!.

Use IV. Using the fact that d(X↾n) ≤ n! for all n, show that d(X↾n)µh(X↾n)1−g(n)/n is bounded above for

any g of the form g(n) = n − β log2 n for β > 2. Hence, X ∈ hN is (strongly) g-random in hN.

Use V. Because limn→∞
log2 ∣hn∣

log2 ∣hn−1∣ = 1 and for each α > 1 there are β > 2 and ε > 0 such that β log2 n ≤

(1− ε) (α
√
n ⋅ s(n) log2(n ⋅ s(n))) ⋅ s(n)

−1 for almost all n (where 2n⋅s(n) = ∣hn∣ for all n ∈ N), it follows

that Y = bin(πh(X)) is (λn.n − α
√
n log2 n)-random in {0,1}N.

By analyzing the necessary and sufficient conditions for an h of the form h(n) = k(n) ⋅ `(n) to satisfy

the properties corresponding to each Use and subsequently choosing k and ` satisfying those conditions with

specific f and g in mind, we can prove the following technical result:

Theorem IV.4.1. Suppose j∶N → (1,∞) is an order function such that limn→∞ j(n)/n = 0 and for which

the function f ∶N → (1,∞) defined by f(n) ∶= n − j(n) for n ∈ N is an order function. Given s∶N → [1,∞)

and a rational ε > 0, define

j̃(n) ∶= (1 − ε)
j(s(n) ⋅ n)

s(n)
,

`(n) ∶= exp2(j(s(n + 1) ⋅ (n + 1)) − j(s(n) ⋅ n))1−ε,

95

h(n) ∶= exp2(s(n + 1) ⋅ (n + 1) − s(n) ⋅ n).

If there are s∶N→ [1,∞) and rational ε > 0 such that (i) imh ⊆ N, (ii) limn→∞ s(n + 1)/s(n) = 1, and (iii) j̃

is an order function, then COMPLEX(f) ≤w LUA(q) for any order function q∶N → [0,∞) such that, for

almost all n ∈ N,

q (exp2((1 − ε)
−1
⋅ [s(n + 1) ⋅ (n + 1) − j(s(n + 1) ⋅ (n + 1))] ⋅ `(n))) ≤ `(n).

For the remainder of this subsection, we use the following notation:

Notation IV.4.2. k and ` denote recursive functions N→ [1,∞). h, K, L, and H are defined by, for n ∈ N,

h(n) ∶= k(n) ⋅ `(n) and

H(n) ∶= h(0) ⋅ h(1) ⋯ h(n − 1), K(n) ∶= k(0) ⋅ k(1) ⋯ k(n − 1), L(n) ∶= `(0) ⋅ `(1) ⋯ `(n − 1).

It is most convenient for h to take image in N so that ∣hn∣ =H(n), so we make the following conventions:

Convention IV.4.3. k and ` will always be such that h is an order function of the form N→ N. As a result,

∣hn∣ =H(n) =K(n) ⋅L(n).

Additionally, if α ∈ (1,∞), then DNR(α) = {X ∈ NN ∣ ∀n (X(n) < α ∧X(n) ≄ ϕn(n))} = DNR(⌈α⌉).

Notation IV.4.4. dh is a fixed universal left r.e. supermartingale on hN.

Among the explicit uses of h in the proof of Theorem IV.3.1, Uses I, II, and III only depended on writing

h in the form h(n) = k(n) ⋅ `(n) = 2n ⋅ (n + 1) and observing that if dh(σ) ≤ n! for some σ ∈ hn, then there

are at most 2n many immediate successors τ of σ such that dh(τ) ≥ (n + 1)!. This last observation holds in

general:

Proposition IV.4.5. For all n ∈ N and all σ ∈ hn such that dh(σ) ≤ L(n), there are at most k(n)-many

immediate extensions τ of σ such that dh(τ) > L(n + 1).

Proof. Suppose for the sake of a contradiction that there are more than k(n) immediate extensions τ of σ

such that dh(τ) > L(n + 1). Thus,

∑
i<h(n)

dh(σ⌢⟨i⟩) > k(n) ⋅L(n + 1) = h(n) ⋅L(n) ≥ h(n) ⋅ dh(σ)

which contradicts the fact that dh is a supermartingale.

Now we turn our attention to Use IV.

Proposition IV.4.6. Let g∶N→ [0,∞) be an order function. Then X ∈ hN is g-random in hN if the following

two conditions hold:

96

(i) L(n) ≤K(n)
n−g(n)
g(n) for almost all n.

(ii) dh(X↾n) ≤ L(n) for almost all n.

Proof. It suffices to show that dh does not g-succeed on X, i.e., that lim supn d
h(X↾n) ⋅ ∣hn∣

g(n)
n −1 < ∞. For

all sufficiently large n,

L(n) ≤K(n)
n
g(n)

−1
⇐⇒ L(n) ≤K(n)

1−g(n)/n
g(n)/n

⇐⇒ L(n)g(n)/n ≤K(n)1−g(n)/n

⇐⇒
L(n)g(n)/n

K(n)1−g(n)/n ≤ 1

⇐⇒
L(n)

g(n)
n −1+1

K(n)−(
g(n)
n −1)

≤ 1

⇐⇒ L(n)(K(n)L(n))
g(n)
n −1

≤ 1

⇐⇒ L(n)∣hn∣
g(n)
n −1

≤ 1

Ô⇒ dh(X↾n) ⋅ ∣hn∣
g(n)
n −1

≤ 1.

Thus, lim supn d
h(X↾n) ⋅ ∣hn∣

g(n)
n −1 < ∞, as desired.

Given f(n) = n − j(n), Corollary IV.2.19 suggests we find a g of the form g(n) = n − (1 − ε) j(s(n)⋅n)
s(n) for

some ε > 0, where ∣hn∣ = H(n) = 2s(n)⋅n. Proposition IV.4.6 suggests that if we wish for the X ∈ hN we

construct to be (strongly) g-random, then we might as well start with K and define L by

L(n) ∶=K(n)
n−g(n)
g(n) .

k and ` are then defined by k(n) ∶= K(n + 1)/K(n) and `(n) ∶= L(n + 1)/L(n) for n ∈ N. Note that

H(n) =K(n)L(n) =K(n)n/g(n) for all n ∈ N.

Lemma IV.4.7. If t∶N → [0,∞) is an order function, then the function ∶N → [0,∞) defined by r(n) ∶=

(n + 1) ⋅ t(n + 1) − n ⋅ t(n) for n ∈ N is a recursive function which dominates an order function.

Proof. That r is recursive is immediate. For all n ∈ N,

r(n) = (n + 1) ⋅ t(n + 1) − n ⋅ t(n) = n ⋅ (t(n + 1) − t(n)) + t(n + 1).

Since t is nondecreasing, n ⋅(t(n+1)−t(n)) ≥ 0, and so t(n+1) ≤ r(n) for all n ∈ N. The function t̃∶N→ [0,∞)

defined by t̃(n) ∶= t(n + 1) for n ∈ N is an order function such that t̃ ≤dom r.

Proposition IV.4.8. Let j, f , s, ε, and j̃ satisfy the conditions of Theorem IV.4.1. Let g(n) ∶= n − j̃(n)

and K(n) = 2s(n)⋅g(n).

97

(a) For all n ∈ N, k(n), `(n), h(n) ≥ 1.

(b) ` and h dominate order functions.

(c) If X ∈ hN is such that dh(X↾n) ≤ L(n) for almost all n, then X is strongly g-random in hN.

(d) If X ∈ hN is g-random in hN, then πh(X) ∈ [0,1] is f -random in [0,1].

Proof. The functions K,L,H, k, `, h can all be written as powers of two whose exponents involve s, g, and j̃:

K(n) = 2s(n)⋅g(n), k(n) = exp2(s(n + 1) ⋅ g(n + 1) − s(n) ⋅ g(n)),

L(n) = 2s(n)⋅j̃(n), `(n) = exp2(s(n + 1) ⋅ j̃(n + 1) − s(n) ⋅ j̃(n)),

H(n) = 2s(n)⋅n, h(n) = exp2(s(n + 1) ⋅ (n + 1) − s(n) ⋅ n).

Condition (iii) of Theorem IV.4.1 implies j̃ is an order function. The hypothesis that j(n) ≤ n for all n ∈ N

implies j̃(n) ≤ n for all n ∈ N as well, so g is a nondecreasing function such that g(n) ≤ n for all n ∈ N.

Condition (i) implies imh ⊆ N.

(a) That s, g, and j̃ are all nondecreasing implies that k, `, and h are bounded below by 1.

(b) Lemma IV.4.7 shows that h and ` each dominate order functions.

(c) This is simply Proposition IV.4.6.

(d) Using Condition (ii) of Theorem IV.4.1, this is simply Corollary IV.2.19.

It remains to generalize the construction of X in Theorem IV.3.1 and establish our bounds on q as a

function of j.

Proof of Theorem IV.4.1. Fix a rational ε > 0 and observe that fulfillment of the conditions on s, j, and ε

do not depend the value of ε.

dh is left r.e., so uniformly in σ ∈ h∗ we can simultaneously and uniformly approximate d(σ⌢⟨i⟩) from

below for all i < h(n). Uniformly in σ ∈ hn, let mσ be such that for all x < k(n), ϕmσ(x) ↓= i if and only if

σ⌢⟨i⟩ is the x-th immediate successor τ of σ found with respect to the aforementioned procedure such that

d(τ) > L(n).

Let #∶h∗ → N be the inverse of the enumeration of h∗ according to the shortlex ordering. In particular,

for almost all n ∈ N and all σ ∈ hn,

#(σ) ≤ ∣h0
∣ + ∣h1

∣ + ⋯ + ∣hn∣ =
n

∑
i=0

2s(i)⋅i < (n + 1) ⋅ 2s(n)⋅n.

98

By potentially modifying our enumeration ϕ0, ϕ1, ϕ2, . . . of partial recursive functions, we can assume without

loss of generality that mσ = 2#(σ). Let m∗
n = (n+ 1) ⋅ 2s(n)⋅n+1, so that 1+ sup{mσ ∣ σ ∈ hn} ≤m∗

n for almost

all n.

Let Ψn∶DNR(`(n)) → P
1,k(n)
h(n) be uniformly recursive functionals realizing the reductions P

1,k(n)
h(n) ≤s

DNR(`(n)) from Proposition IV.3.4, and let Un∶N → Pfin(N) be the associated recursive functions (so that

∣Un(i)∣ ≤ k(n)(
h(n)
`(n))). We are principally interested in initial segments ρ of elements of length m∗

n (in fact,

we are only concerned with the values at the inputs mσ for σ ∈ hn), so that:

(1) ρ(mσ) < h(n) = h(∣σ∣).

(2) For all x < k(n), if ϕmσ(x)↓, then ρ(mσ) ≠ ϕmσ(x).

Define U ∶N→ Pfin(N) by setting U(n) ∶= ⋃i<m∗
n
Un(i) for n ∈ N and subsequently define u∶N→ N by

u(0) ∶= 0,

u(n + 1) ∶= u(n) + ∣U(n)∣.

Finally, define ψ ∶ ⊆N→ N by letting, for n ∈ N and j < ∣U(n)∣,

ψ(u(n) + j) ≃ ϕj-th element of U(n)(0).

By construction, for any Z ∈ Avoidψ(`(n)), Z↾u(n + 1) can be used to compute an initial segment of an

element of P
1,k(n)
h(n) of length m∗

n, and this is uniform in n.

If p∶N→ N is a recursive order function satisfying

p(u(n + 1)) ≤ `(n)

for almost all n, then uniformly in n and Z ∈ Avoidψ(p), Z↾u(n+1) can be used to compute an initial segment

of P
1,k(n)
h(n) of length m∗

n. Given Z ∈ Avoidψ(p), define G∶N → N by setting the value of G(mσ) according

to this uniform process for each σ ∈ h∗; for n not of the form mσ (which can be recursively checked), set

G(n) ∶= 0. Then define X ∈ hN recursively by

X(0) ∶= G(m⟨⟩),

X(n + 1) ∶= G(m⟨X(0),X(1),...X(n)⟩).

We claim that dh does not g-succeed on X. We start by showing that dh(X↾n) ≤ L(n) by induction.

For n = 0, this follows since dh(X↾n) = dh(⟨⟩) = 1. Now suppose for our induction hypothesis that d(X↾n) ≤

L(n). By construction, for x < k(n), if ϕmX↾n(x)↓ = i then X(n + 1) = G(mX↾n) ≠ i; in combination with

99

the induction hypothesis and Proposition IV.4.5, it follows that d(X↾ (n + 1)) ≤ L(n + 1). By our definition

of L and Proposition IV.4.6, dh does not g-succeed on X. Equivalently, X is (strongly) g-random in hN.

Proposition IV.4.8 shows that πh(X) = Y ∈ [0,1] is f -random. In other words, COMPLEX(f) ≤w

Avoidψ(p). By Proposition IV.4.8, ` dominates an order function, and hence there exists a recursive order

function p satisfying p(u(n+ 1)) ≤ `(n). If q∶N→ N is a recursive order function such that for all a, b ∈ N we

have q(an + b) ≤ p(n) for almost all n, then

COMPLEX(f) ≤w Avoidψ(p) ≤w LUA(q).

To get a more explicit condition on q, we find an upper bound for au(n + 1) + b. For all n and i,

∣Un(i)∣ ≤ k(n)(
h(n)

`(n)
) ≤ k(n)(

h(n)e

`(n)
)

`(n)

= e`(n)k(n)`(n)+1
= exp2((log2 k(n) + log2 e)`(n) + log2 k(n)).

Thus, for all n,

∣U(n)∣ ≤ ∑
i<m∗

n

∣Un(i)∣

≤m∗
n ⋅max

i
Un(i)

≤ (n + 1) ⋅ 2s(n)⋅n+1
⋅ exp2((log2 k(n) + log2 e)`(n) + log2 k(n))

≤ exp2 (log2H(n) + (log2 k(n) + log2 e)`(n) + log2 k(n) + log2(n + 1) + 1) .

For any a and b and almost all n,

log2(au(n + 1) + b) = log2(a ∑
m≤n

∣U(m)∣ + b)

≤ log2(a(n + 1) ⋅ ∣U(n)∣ + b)

≤ log2(3an ⋅ ∣U(n)∣)

≤ log2H(n) + (log2 k(n) + log2 e)`(n) + log2 k(n) + 2 log2(n + 1) + log2(3a) + 1.

Substituting log2H(n) and log2 k(n) with expressions in terms of s, g, and j̃ gives

log2(au(n + 1) + b) = s(n) ⋅ n + (s(n + 1) ⋅ g(n + 1) − s(n) ⋅ g(n) + log2 e) ⋅ `(n) + s(n + 1) ⋅ g(n + 1)

− s(n) ⋅ g(n) + 2 log2(n + 1) + log2(3a) + 1

≤ 2s(n) ⋅ g(n + 1) + (s(n + 1) ⋅ g(n + 1) − s(n) ⋅ g(n) + log2 e) ⋅ `(n) + s(n + 1) ⋅ g(n + 1)

− s(n) ⋅ g(n) + s(n) ⋅ g(n + 1) + log2(3a) + 1

≤ s(n + 1) ⋅ g(n + 1) ⋅ (`(n) + 4)

100

= s(n + 1) ⋅ (n + 1 − (1 − ε)
j(s(n + 1) ⋅ (n + 1))

s(n + 1)
) ⋅ (`(n) + 4)

≤ (s(n + 1) ⋅ (n + 1) − (1 − ε)j(s(n + 1) ⋅ (n + 1))) ⋅ (`(n) + 4)

≤
1

1 − ε
(s(n + 1) ⋅ (n + 1) − j(s(n + 1) ⋅ (n + 1))) ⋅ `(n)

=
1

1 − ε
f(s(n + 1) ⋅ (n + 1)) ⋅ `(n)

for almost all n, where the final line follows from the fact that limn→∞ j(n)/n = 0. Thus, if q satisfies

q (exp2((1 − ε)
−1
⋅ f(s(n + 1) ⋅ (n + 1)) ⋅ `(n))) ≤ `(n)

then COMPLEX(f) ≤w LUA(q).

Example IV.4.9. Suppose j(n) =
√
n log2 n and let s(n) = n. Simplifying ` gives

`(n) = exp2 (2(1 − ε) (
√

(n + 1)2 log2(n + 1) −
√
n2 log2 n))

= exp2 (2(1 − ε) log2 ((n + 1) ⋅ (1 +
1

n
)

n

))

= ((n + 1) ⋅ (1 +
1

n
)

n

)

2(1−ε)
.

This provides the bounds

(n + 1)2(1−ε)
≤ `(n) ≤ (n + 1)2(1−ε)

⋅ e2(1−ε)

and consequently

(1 − ε)−1
⋅ f((n + 1)2

) ⋅ `(n) ≤ (1 − ε)−1
⋅ [(n + 1)2

− 2(n + 1) log2(n + 1)] ⋅ (n + 1)2(1−ε)
⋅ e2(1−ε)

≤
e2(1−ε)

1 − ε
⋅ (n + 1)2(2−ε)

≤ (n + 1)4−2ε.

Thus, Theorem IV.4.1 implies COMPLEX(λn.n −
√
n log2 n) ≤w LUA(q) whenever

q (exp2((n + 1)2(2−ε)
)) ≤ (n + 1)2(1−ε).

In particular, we may take q(n) ∶= (log2 n)
β

for any β < 1/2. In other words, whereas Theorem IV.3.1 shows

that COMPLEX(λn.n−α
√
n log2 n) ≤w LUA(λn.(log2 n)

β) for any α > 1 and β < 1/2, Theorem IV.4.1 shows

that for the same order functions q, we in fact are able to compute (λn.n −
√
n log2 n)-complex sequences.

Example IV.4.9 can be generalized further to address functions of the form f(n) = n −
√
n ⋅∆(n):

Theorem IV.4.10. Given an order function ∆∶N→ [0,∞) such that limn→∞ ∆(n)/
√
n = 0 and any rational

101

ε ∈ (0,1),

COMPLEX(λn.n −
√
n ⋅∆(n)) ≤w LUA(λn. exp2((1 − ε)∆(log2 log2 n))).

More generally, COMPLEX(λn.n −
√
n ⋅∆(n)) ≤w LUA(q) for any order function q satisfying

q (exp2((1 − ε)
−1
⋅ [(n + 1)2

− (n + 1) ⋅∆((n + 1)2
)] ⋅ `(n))) ≤ `(n)

for almost all n ∈ N, where `(n) = exp2 ((1 − ε)[(n + 1) ⋅∆((n + 1)2) − n ⋅∆(n2)]).

Proof. Let s(n) ∶= n and j(n) ∶=
√
n ⋅∆(n) for all n ∈ N. We show that the conditions of Theorem IV.4.1 are

fulfilled with these choices of s and j:

(i) (n + 1)2 − n2 = 2n + 1 and 22n+1 ∈ N for all n ∈ N.

(ii) Immediate.

(iii) j(n2)
n

=

√
n2⋅∆(n2)

n
= ∆(n2) shows that the function n↦ j(s(n) ⋅ n)/s(n) is an order function.

The condition given by Theorem IV.4.1 requires that for some ε > 0 and almost all n

q (exp2((1 − ε)
−1
⋅ [(n + 1)2

− (n + 1) ⋅∆((n + 1)2
)] ⋅ `(n))) ≤ `(n),

where `(n) = exp2((1−ε)((n+1) ⋅∆((n+1)2)−n ⋅∆(n2))). Rearranging the exponent of `(n) gives a simple

lower bound:

log2 `(n) = (1 − ε) ⋅ (∆((n + 1)2
) + n ⋅ (∆((n + 1)2

) −∆(n2
))) ≥ (1 − ε) ⋅∆((n + 1)2

) ≥ (1 − ε)∆(n2
).

Concerning the exponent of q’s argument, we have the following: for almost all n,

(1 − ε) ⋅ [(n + 1)2
− (n + 1) ⋅∆((n + 1)2

)] ⋅ `(n) ≤ (1 − ε) ⋅ (n + 1)2
⋅ exp2 ((1 − ε) ⋅ (n + 1) ⋅∆((n + 1)2

)) ≤ 2n
2

.

Thus, COMPLEX(λn.n −
√
n ⋅ ∆(n)) ≤w LUA(q) if q(exp2 exp2 n

2) ≤ exp2((1 − ε)∆(n2)) and hence if the

following stronger condition holds:

q(n) ≤ exp((1 − ε)∆(log2 log2 n)).

Remark IV.4.11. Setting q(n) ∶= exp2((1−ε)∆(log2 log2 n)) can be very inefficient; when ∆(n) = log2 n, this

gives q(n) = (log2 log2 n)
1−ε

, significantly slower than the lower bound on q established in Example IV.4.9.

A better bound can be given for well-behaved ∆ which are dominated by log2. Suppose ∆ ≤dom log2 and

that

c ∶= lim
n→∞

n[∆((n + 1)2
) −∆(n2

)] < ∞.

102

Then we may give the following lower and upper bounds for `: for almost all n,

exp2((1 − ε)∆((n + 1)2
)) ≤ `(n) ≤ exp2((1 − ε)∆((n + 1)2

) + c) ≤ 2c ⋅ (n + 1)2(1−ε).

Consequently, COMPLEX(λn.n −
√
n ⋅∆(n)) ≤w LUA(q) whenever q is such that, for almost all n,

q(n) ≤ exp2 ((1 − ε)∆ ([(1 − ε) ⋅ 2−c ⋅ log2 n]
1/(2−ε)

)) .

IV.5 Open Questions

Theorems IV.4.1 and IV.4.10 only provide partial answers to Question IV.0.1, leaving that question open in

general.

It is unclear what the full extent of the coverage of Theorem IV.4.1 is, suggesting the following question:

Question IV.5.1. For what sub-identical order functions f is there a computable function s∶N → [1,∞)

satisfying the conditions of Theorem IV.4.1?

E.g., does such an s exist when f = λn.n − log2 n, or even when f = λn.n − 3
√
n?

Questions about the optimality of q in Theorems IV.4.1 and IV.4.10 also remain:

Question IV.5.2. For a given sub-identical order function f , can we provide an upper bound on how slowly

q must grow for COMPLEX(f) ≤w LUA(q) to hold?

An affirmative answer to Question III.0.6 would put a strong bound on how slow-growing q must be.

Question IV.5.3. Is there a fast-growing order function q such that COMPLEX(λn.n −
√
n) ≤w LUA(q)?

Currently, there is little in the direction of answering Question III.0.6 or Question IV.5.3. In fact, the

following specific – seemingly tame – instance of Question III.0.6 remains open:

Question IV.5.4. Does there exist a fast-growing order function p for which COMPLEX(1/2) ≤w LUA(p)?

103

CHAPTER V

GENERALIZED SHIFT COMPLEXITY

COMPLEX(f) is non-negligible for every order function f such that lim supn (f(n) − n) < ∞. One notion

of complexity with corresponding weak degrees that lies in the deep region of Ew is that of shift complexity.

Definition V.0.1 (shift complexity). X ∈ {0,1}N is. . .

. . . ⟨δ, c⟩-shift complex (where δ ∈ (0,1) and c ∈ N) if KP(τ) ≥ δ∣τ ∣ − c for every substring τ of X. The set of

all ⟨δ, c⟩-shift complex sequences is denoted by SC(δ, c).

. . . δ-shift complex if X is ⟨δ, c⟩-shift complex for some c ∈ N. The set of all δ-shift complex sequences is

denoted by SC(δ).

. . . shift complex if X is δ-shift complex for some δ ∈ (0,1). The set of all shift complex sequences is denoted

by SC.

For f an order function satisfying lim supn (f(n) − n) < ∞, we know that COMPLEX(f) ≠ ∅ since

λ(COMPLEX(f)) = 1. In contrast, it is nontrivial that SC(δ) ≠ ∅. The existence of a 1/3-shift complex

sequence was first shown by Durand, Levin, & Shen in [7, Lemma 1] in an investigation about complex

tilings. Later, in a paper of the same name, Durand, Levin, & Shen proved more generally the existence of a

δ-shift complex sequence for each δ ∈ (0,1) ([8, Lemma 1]) by explicitly constructing such a δ-shift complex

real segment by segment, using prefix-free symmetry of information at each stage of the construction. In

[22, Proposition 2], Rumyantsev & Ushakov gave a probabilistic approach to the existence of δ-shift complex

sequences, using the Lovasz Local Lemma to prove that arbitrarily long finite δ-shift complex strings (defined

in the obvious way) exist and then appealing to compactness to show that a δ-shift complex sequence exists.

Yet another approach by Miller & Khan ([18, Corollary 2.4], [15, Corollary 3.3]) proves existence from the

perspective of subshifts.

In [23], Rumyantsev observes that the proof in [8, Lemma 1] actually gives a stronger existence result:

Theorem. [7, Lemma 1, essentially] [23, Lemma 2] For each δ ∈ (0,1), there exists X ∈ {0,1}N and c ∈ N

such that

KP(⟨X(k),X(k + 1), . . . ,X(k + n − 1)⟩ ∣ k,n) ≥ δn − c

for all k,n ∈ N.

In light of the above theorem and the results Theorem V.3.3 and Theorem V.3.14, we propose the

following definition:

104

Notation V.0.2. Suppose X ∈ {0,1}N and i ≤ j are natural numbers. Define X([i, j)) to be the string

⟨X(i),X(i + 1), . . . ,X(j − 1)⟩ of length j − i.

Definition V.0.3 (strong shift complexity). X ∈ {0,1}N is. . .

. . . strongly ⟨δ, c⟩-shift complex (where δ ∈ (0,1) and c ∈ N) if KP(X([k, k + n)) ∣ k,n) ≥ δn−c for all k,n ∈ N.

The set of all strongly ⟨δ, c⟩-shift complex sequences is denoted by SSC(δ, c).

. . . strongly δ-shift complex if X is strongly ⟨δ, c⟩-shift complex for some c ∈ N. The set of all strongly δ-shift

complex sequences is denoted by SSC(δ).

. . . strongly shift complex if X is strongly δ-shift complex for some δ ∈ (0,1). The set of all strongly shift

complex sequences is denoted by SSC.

In Section V.1, we examine the mass problems SC(δ), showing that degw(SC(δ)) ∈ Ew and examining

where in Ew the weak degrees degw(SC(δ)) lie. To that end, we prove:

Theorem V.1.3. [23, Theorem 3, essentially] SC(δ, c) is a deep Π0
1 class for all rational δ ∈ (0,1) and c ∈ N.

Our proof of Theorem V.1.3 follows the proof of [23, Theorem 3] and the remark of Bievenu & Porter

that Rumyantsev’s proof exhibits the uniformity necessary to prove depth instead of just negligibility, but

providing further detail. Another known fact about degw(SC(δ)) is the following:

Theorem. [15, Theorem 6.3] For each rational δ ∈ (0,1) there is an order function h such that SC(δ) ≤w

DNR(h).

We improve [15, Theorem 6.3] by replacing DNR with LUA and providing explicit bounds:

Theorem V.1.7. Given rational numbers 0 < δ < α < 1, define π∶N → (0,∞) by π(n) ∶= 2(α−δ)n. Then

SC(δ) ≤w LUA(q) for any order function q such that q(2(n+1)⋅π(n)) ≤ π(n) for almost all n ∈ N.

Corollary V.1.8. Fix a rational ε > 0. For all rational δ ∈ (0,1) we have SC(δ) ≤w LUA(λn.(log2 n)
1−ε).

In Section V.2, we provide generalizations of the notions of δ-shift complexity and strong δ-shift complex-

ity in analogy with that of COMPLEX(f), giving rise to the class SC(f) and SSC(f) for f a sub-identical

order function.

In Section V.3, we give a detailed proof of a result of Rumyantsev ([23, Theorem 4]) that shows that for

certain sufficiently slow-growing order functions f , SC(f) is non-negligible. This is strengthened to build a

relationship between SC(f) and COMPLEX(g) for another sub-identical order function g.

Theorem V.3.7. Suppose f and g are sub-identical order functions such that ∑
∞
m=0 f(2

m)/2m < ∞ and

there is a recursive sequence ⟨εm⟩m∈N of positive rationals for which ∑
∞
m=0 εm < ∞ and such that

lim inf
m

g(2mεm) − f(2 ⋅ 2m)

m
> 1.

105

Then SC(f) ≤s COMPLEX(g).

We also show that for sufficiently slow-growing order functions f there is an order function g such that

SC(f) ≤s COMPLEX(g) and which is sublinear (i.e., limn→∞ g(n)/n = 0):

Theorem V.3.12. Suppose f is a sub-identical order function such that ∑
∞
m=0

f(2m)
2m

converges to a recursive

real. Then there is a sublinear order function g such that SC(f) ≤s COMPLEX(g).

In contrast, Rumyantsev has shown ([23, Theorem 5]) that for every order function f , SSC(f) is negligible.

We give a careful and detailed presentation of Rumyantsev’s proof to give a slightly stronger result:

Theorem V.3.14. SSC(f, c) is a deep Π0
1 class for any order function f satisfying lim supn

f(n)
n

< 1 and

any c ∈ N.

V.1 δ-Shift Complexity as a Mass Problem

The weak degrees of SC(δ, c), SC(δ), and SC all lie in Ew.

Proposition V.1.1. Suppose δ ∈ (0,1) is rational and c ∈ N. Then SC(δ, c) is Π0
1, uniformly in δ, c.

Consequently, degw(SC(δ, c)) (for c sufficiently large), degw(SC(δ)), and degw(SC) all lie in Ew.

Proof. Let U be the universal prefix-free machine for which KP = KPU and then let e ∈ N be such that

ϕe(str
−1 σ) ≃ str−1U(σ) for all σ ∈ {0,1}∗. Then

SC(δ, c) = {X ∈ {0,1}N ∣ ∀n∀k∀σ∀s (ϕe,s(str
−1 σ)↓ =X↾n→ ∣σ∣ > δn − c)}

shows SC(δ, c) is Π0
1. For all sufficiently large c, SC(δ, c) is nonempty, so for such c we have degw(SC(δ, c)) ∈

Ew.

SC(δ, c) being Π0
1 (uniformly in δ and c) implies SC(δ) = ⋃c∈N SC(δ, c) and SC = ⋃n,c∈N SC(2−n, c) are

both Σ0
2, so the Embedding Lemma implies degw(SC(δ)) and degw(SC) both lie in Ew.

The same is true of SSC(δ, c), SSC(δ), and SSC.

Proposition V.1.2. Suppose δ ∈ (0,1) is rational and c ∈ N. Then SSC(δ, c) is Π0
1, uniformly in δ, c.

Consequently, degw(SSC(δ, c)) (for c sufficiently large), degw(SSC(δ)), and degw(SSC) all lie in Ew.

Proof. Let U be the universal oracle prefix-free machine for which conditional prefix-free complexity is defined

with respect to. Let e ∈ N be such that ϕτe(str
−1 σ) ≃ str−1Uτ(σ) for all σ ∈ {0,1}∗. Then

SSC(δ, c) = {X ∈ {0,1}N ∣ ∀n∀k∀σ∀s (ϕstrπ(2)(n,k)
e,s (str−1 σ)↓ =X↾n→ ∣σ∣ > δn − c)}

106

shows SSC(δ, c) is Π0
1. For all sufficiently large c, SSC(δ, c) is nonempty, so for such c we have degw(SSC(δ, c)) ∈

Ew.

SSC(δ, c) being Π0
1 (uniformly in δ and c) implies SSC(δ) = ⋃c∈N SSC(δ, c) and SSC = ⋃n,c∈N SSC(2−n, c)

are both Σ0
2, so the Embedding Lemma implies degw(SSC(δ)) and degw(SSC) both lie in Ew.

V.1.1 Shift Complexity and Depth

Unlike COMPLEX(δ, c), SC(δ, c) is a deep Π0
1 class for every computable δ ∈ (0,1) and c ∈ N. Our proof

is essentially a more detailed presentation of the proof given by Rumyantsev in [23, Theorem 3, essentially]

plus the uniformity observation by Bienvenu & Porter given in [2].

Theorem V.1.3. [23, Theorem 3, essentially] SC(δ, c) is a deep Π0
1 class for all rational δ ∈ (0,1) and c ∈ N.

To prove Theorem V.1.3, we make use of the following probabilistic lemma:

Lemma V.1.4. [23, Lemma 6] Suppose δ ∈ (0,1) is rational. For every rational ε > 0 and n0 ∈ N there exist

natural numbers n < N and random variables An,An+1, . . . ,AN such that

(i) Ai is a subset of {0,1}i of size at most 2δi,

(ii) for every string σ ∈ {0,1}N , the probability that σ has no substring in ⋃Ni=nAi is less than ε, and

(iii) n ≥ n0.

Moreover, the natural numbers n,N ∈ N and the (probability distributions of the) random variables An,An+1,

. . . ,AN can be found effectively as functions of ε and n0.

Proof. Let m ≥ 2 be such that δ > 1
m

. We define natural numbers

n = n1 < n2 < ⋯ < nm = N

satisfying the following properties:

(i) nk divides nk+1 for all k ∈ {1, . . . ,m − 1}.

(ii) δnk ∈ N for all k ∈ {1, . . . ,m}. (Assuming (i) holds, it suffices for δn to be a natural number.)

When i is not of the form nk for k ∈ {1, . . . ,m}, we will define Ai to take the constant value ∅, leaving only

Ank to define. Roughly speaking, we will define the random variables Ank to address strings σ which exhibit

relatively few substrings of increasingly greater lengths.

Suppose σ is a string of length p, q divides p, and α ∈ (0,1) satisfies αq ∈ N. If σ has less than 2αq

substrings of length q, then we may encode σ in the following way. Writing σ = σ1
⌢σ2

⌢⋯⌢σp/q where ∣σk ∣ = q,

107

our hypothesis implies ∣{σ1, σ2, . . . , σp/q}∣ < 2αq (our hypothesis is much stronger than this, but is the natural

hypothesis for the remaining arguments in the proof). Let ρ be a string encoding, in lexicographical order,

the distinct elements of {σ1, σ2, . . . , σp/q}; for exactness, we may encode a finite sequence ν1, . . . , νn of strings

by

ν0
1
⌢
⟨1,1⟩⌢ν0

2
⌢
⟨1,1⟩⌢⋯⌢ν0

n
⌢
⟨1,1⟩

where ν0
i denotes the string ⟨νi(0),0, νi(1),0, νi(2),0, . . . , νi(∣νi∣ − 1),0⟩. Then we may encode σ by

τ = τ1
⌢τ2

⌢
⋯
⌢τp/q

⌢ρ

where τi is the binary representation of the index of σi in ρ (regarding ρ as a finite sequence of strings). It

is convenient to ensure τ has a length depending only on p and q, so we appropriately pad each τi by 0’s to

ensure that ∣τi∣ = αq (ρ encodes at most 2αq − 1 strings and hence requires at most αq bits to describe) and

appropriately pad ρ by 1’s to ensure that ∣ρ∣ = 2(q + 1)(2αq − 1) (the length of ρ if it encodes the maximum

number of 2αq − 1 strings). Thus, to each such string σ of length p we associate with it a unique string τ of

length αp + 2(q + 1)(2αq − 1).

Supposing nk has already been defined and nk divides i, we say that a string σ of length i is k-sparse

if it has less than 2
m−k
m nk substrings of length nk. As observed above, we may encode a k-sparse σ with a

string of length m−k
m

∣σ∣ + 2(nk + 1)(2
m−k
m nk − 1). For simplicity, we write ck+1 ∶= 2(nk + 1)(2

m−k
m nk − 1).

We may now define nk and the associated random variable Ank for k ∈ {1, . . . ,m}.

k = 1. Let n1 = n be the least natural number greater than n0 such that δn ∈ N and

(1 −
1

2n/m
)

2δn

< ε.

Note that such an n exists as

(1 −
1

2n/m
)

2δn

= (1 −
1

2n/m
)

2n/m⋅2(δ−1/m)n

=
⎛

⎝
(1 −

1

2n/m
)

2n/m⎞

⎠

2(δ−1/m)n

≈ (
1

e
)

2(δ−1/m)n

with both the approximation getting tighter and the final expression tending toward 0 as n→∞.

Then An1 = An is defined to be randomly chosen uniformly among all subsets of {0,1}n of size 2δn

(i.e., each such subset of {0,1}n of size 2δn has an equal probability (
2n

2δn
) of being the value of An).

1 < k <m. Suppose nk−1 has been defined. Then nk is the least multiple of nk−1 such that

(1 −
1

2nk/m+ck
)

2δnk

=
⎛

⎝
(1 −

1

2nk/m+ck
)

2nk/m+ck
⎞

⎠

2(δ−1/m)nk−ck

< ε.

(That such an nk exists is analogous to the case where k = 1.)

108

Then Ank is defined to be randomly chosen uniformly among all subsets of {0,1}nk of size 2δnk which

consist only of (k − 1)-sparse strings.

k =m. Let nk = nm = N to be the least multiple of nm−1 such that 1
m
N + cm < δN (by hypothesis, 1/m < δ

and cm is constant with respect to N , so there is such an N).

Then AN is defined to be constantly equal to the set of all (m − 1)-sparse strings of length N (note

that an (m−1)-sparse string is described uniquely by a string of length m−(m−1)
m

N + cm = 1
m
N + cm, so

∣AN ∣ ≤ 2N/m+cm < 2δN).

Finally, we show that for every σ ∈ {0,1}N ,

Prob(Ai has no substring of σ for all i ∈ {n, . . . ,N}) < ε.

It suffices to show that Prob(Ai has no substring of σ) < ε for at least one i ∈ {n, . . . ,N}.

Case 1: Suppose σ is not 1-sparse, so that σ has at least 2
m−1
m n substrings of length n. Because of

the definition of the output distribution of An, the probability that σ has no substring in An is

at most the probability that σ has no substring among 2δn strings chosen uniformly and indepe-

dently at random (the latter probability may be higher because we allow duplicates). The inde-

pendence and uniformity of those 2δn random choices means that the latter probability is equal

to Prob(τ ∈ {0,1}n is not a substring of σ)2δn . Prob(τ ∈ {0,1}n is not a substring of σ) is at most the

probability that a random τ ∈ {0,1}n (chosen uniformly) is not in a set of size 2
m−1
m n. Thus,

Prob(An has no substring of σ)

≤ Prob(2δn random strings of length n are not substrings of σ)

≤ Prob(random string of length n is not substring of σ)2δn

≤ (1 −
2
m−1
m n

2n
)

2δn

= (1 −
1

2n/m
)

2δn

< ε.

Case 2: Suppose σ is 1-sparse but is not k-sparse for some k ∈ {2, . . . ,m − 1}. Assume k is minimal with

that property, so σ is not k-sparse (and hence has at least 2
m−k
m nk substrings of length nk) but is

(k − 1)-sparse. As in Case 1, we have

Prob(Ank has no substring of σ)

109

≤ Prob(2δnk random (k − 1)-sparse strings of length nk are not substrings of σ)

≤ Prob(random (k − 1)-sparse string of length nk is not substring of σ)2δnk .

The probability Prob(random (k − 1)-sparse string of length nk is not substring of σ) is of the form

Prob(E∖F), where E = {τ ∈ {0,1}nk ∣ τ is (k − 1)-sparse} and F = {τ ∈ {0,1}nk ∣ τ is a substring of σ}.

Observe that F ⊆ E: if a substring of σ is not (k − 1)-sparse, then it contains at least 2
m−(k−1)

m nk−1

substrings of length nk−1, and hence σ does as well, contrary to the hypothesis that σ is (k−1)-sparse.

Because E is finite, we have Prob(E ∖F) = 1− ∣F ∣
∣E∣ . To get an upper bound on Prob(E ∖F), it suffices

to have an upper bound on ∣E∣ and a lower bound on ∣F ∣. Thus,

Prob(random (k − 1)-sparse string of length nk is not substring of σ)2δnk

≤ (1 −
2
m−k
m nk

2
m−k+1
m nk+ck

)

2δnk

= (1 −
1

2nk/m+ck
)

2δnk

< ε.

Case 3: Suppose σ is k-sparse for all k ∈ {1, . . . ,m− 1}. In particular, σ is (m− 1)-sparse and so an element

of AN . Thus, Prob(AN has no substring of σ) = 0 < ε.

Proof of Theorem V.1.3. With M a universal left r.e. continuous semimeasure on {0,1}∗, by Proposition II.4.3

there is a partial recursive functional Ψ such that for every σ ∈ {0,1}∗,

M(σ) = λ(Ψ−1
(σ)) = λ({X ∈ {0,1}N ∣ ΨX

⊇ σ}).

Say that Y ∈ {0,1}∗ ∪ {0,1}N avoids a k-tuple of finite sets of strings ⟨A1,A2, . . . ,Ak⟩ if ∣Y ∣ ≥ max{∣σ∣ ∣

σ ∈ ⋃
k
i=1Ai} and no substring of Y is an element of ⋃ki=1Ai. Finite sets of strings in {0,1}∗ are implicitly

Gödel numbered by some recursive bijection Pfin({0,1}∗) → N.

Our approach, roughly, involves us finding natural numbers n < N and sets An,An+1, . . . ,AN satisfying

the following conditions:

(i) Ai is a subset of {0,1}i of size at most 2δi for each i ∈ {n,n + 1, . . . ,N} and

(ii) λ({X ∈ {0,1}N ∣ Ψ(X) avoids An,An+1, . . . ,AN}) < ε.

The claim is then that each element τ of ⋃Ni=nAi satisfies KP(τ) < δ∣τ ∣−c, so Ψ(X) being ⟨δ, c⟩-shift complex

110

implies that Ψ(X) avoids the sets An,An+1, . . . ,AN . Then

λ({X ∈ {0,1}N ∣ Ψ(X) ∈ SC(δ, c)}) ≤ λ({X ∈ {0,1}N ∣ Ψ(X) avoids An,An+1, . . . ,AN}) < ε.

There are two issues that we must work around, the first being that Ψ(X) need not be an element of

{0,1}N, and the second of which is that an element τ of ⋃Nj=nAj need not necessarily satisfy KP(τ) < δ∣τ ∣−c.

We start with addressing the first issue. Our use of avoidance only requires that ∣ΨX ∣ ≥ N . Lemma V.1.4

shows that as a recursive function of ⟨n0,m⟩ ∈ N2, we can find natural numbers n < N and random variables

An,An+1, . . . ,AN such that:

(i) n ≥ n0,

(ii) Ak is a subset of {0,1}k of size at most 2δk/3 (the use of δ/3 instead of δ will become apparent when

dealing with the second issue) for each k ∈ {n,n + 1, . . . ,N}, and

(iii) for every string σ ∈ {0,1}N , the probability that σ has no substring in ⋃Ni=nAi is less than 2−m.

Fix n0 and m and let n < N and An,An+1, . . . ,AN be as above.

Let S ∶= {X ∈ {0,1}N ∣ ∣ΨX ∣ ≥ N}. S is Σ0
1, so there exists a recursive sequence ⟨σn⟩n∈N of pairwise

incompatible strings such that S = ⋃n∈N JσnK2. Let α ∶= λ(S), so that ⟨λ(⋃k≤n JσkK2)⟩n∈N is a recursive

sequence converging monotonically to α from below. For i ∈ N, let αi ∶= i ⋅ 2
−m/3, and let i0 be the largest i

for which αi < α, so that α − αi0 < 2−(m+1). Finally, define

S̃ ∶= ⋃
k≤p

JρkK2

where p is the smallest natural number for which λ(S̃) ≥ αi0 . S̃ is a recursive subset of S and λ(S ∖ S̃) <

2−(m+1). By virtue of being a subset of S, ∣ΨX ∣ ≥ N for all X ∈ S̃. S̃ is recursive and an index for S̃ can be

computed from n0, m, and i0. Define a probability measure µ on {0,1}N by setting

µ({σ}) ∶= λ(S̃)−1
⋅ λ({X ∈ {0,1}N ∣X ∈ S̃ and ΨX

⊇ σ})

for each σ ∈ {0,1}N . µ is a computable measure and an index for µ can be computed from n0, m, and i0.

Let ν be the probability measure on P({0,1}n) × P({0,1}n+1) ×⋯ ×P({0,1}N) defined by

ν({⟨An,An+1, . . . ,AN ⟩}) ∶= Prob(Ai = Ai for each i ∈ {n,n + 1, . . . ,N})

(i.e., the joint probability distribution made up of the output distributions of the random variables An,An+1,

. . . ,AN). Write

E ∶= {⟨X, ⟨An, . . . ,AN ⟩⟩ ∈ {0,1}N ×
N

∏
i=n
P({0,1}i) ∣X ∈ S̃ and ΦX avoids An, . . . ,AN}.

111

By Fubini’s Theorem,

∫ (∫ χE(X, (An, . . . ,AN))dλ) dν = (λ × ν)(E)

= ∫ (∫ χE(X, (An, . . . ,AN))dν) dλ

≤ ∫ 2−(m+1) dλ

= 2−(m+1).

If ∫ χE(X, (An, . . . ,AN))dλ ≥ 2−(m+1) for every ⟨An, . . . ,AN ⟩ ∈ ∏
N
j=nP({0,1}j), we reach a contradiction.

Thus, there is a least one tuple ⟨An, . . . ,AN ⟩ ∈ ∏
N
i=nP({0,1}n) with the desired property, i.e., that

λ({X ∈ {0,1}N ∣X ∈ S̃ and ΨX avoids An, . . . ,AN}) < 2−(m+1),

and hence

λ({X ∈ {0,1}N ∣X ∈ S and ΨX avoids An, . . . ,AN}) < 2−(m+1)
+ 2−(m+1)

= 2−m.

Let c1 ∈ N be such that KP(n) ≤ 2 log2 n + c1 for all n ∈ N. The recursiveness of S̃ allows us to effectively

find such a tuple ⟨An, . . . ,AN ⟩ for which λ({X ∈ {0,1}N ∣ X ∈ S̃ and ΨX avoids ⟨An, . . . ,AN ⟩}) < 2−(m+1).

As noted before, an index for S̃ can be found effectively from n0, m, and i. As such, there is c′1 such that

KP(An, . . . ,AN) ≤ KP(n0) +KP(m) +KP(i) + c′2.

Although i cannot be found recursively from n0 and m in general, we regardless have the bound have the

bound i ≤ (2−m/3)−1 = 3 ⋅ 2m. Thus,

KP(i) ≤ max
0≤k≤⌊3⋅2m⌋

KP(k) ≤ max
0≤k≤⌊3/ε⌋

(2 log2 k + c1) ≤ 2m + 2 log2 3 + c1.

Let c2 = 2 log2 3 + c1 + c
′
2, so that for every ⟨n0,m⟩ we have

KP(An, . . . ,AN) ≤ KP(n0) +KP(m) + 2m + c2.

Now we address the second issue. Let c3 ∈ N be such that, where τi is the i-th element of A∣τi∣ ordered

lexicographically,

KP(τi) ≤ KP(∣τi∣) +KP(i) +KP(An,An+1, . . . ,AN) + c3.

Then for any τ ∈ ⋃Nj=nAj we have

KP(τ) ≤ KP(∣τ ∣) +KP(index of τ in A∣τ ∣) +KP(An, . . . ,AN) + c2

≤ (2 log2 ∣τ ∣ + c1) + (2 log2(index of τ in A∣τ ∣) + c1) + (KP(n0) +KP(m) + 2m + c2) + c3

112

≤ (2 log2 ∣τ ∣ + c1) + ((2/3)δ∣τ ∣ + c1) + (2 log2 n0 + 2 log2m + 2m + 2c1 + c2) + c3

=
2

3
δ∣τ ∣ + 2 log2 ∣τ ∣ + 2 log2 n0 + 2 log2m + 2m + (4c1 + c2 + c3).

Note that d ∶= 4c1 + c2 + c3 is independent of ⟨n0,m⟩. For ∣τ ∣ sufficiently large, 2
3
δ∣τ ∣ + 2 log2 ∣τ ∣ + 2 log2 n0 +

2 log2m+2m+d < δ∣τ ∣−c. Thus, define n0 = n0(m) to be the least n such that 2
3
δn+4 log2 n+2 log2m+2m+d <

δn − c. Finally, define r∶N→ N by r(m) ∶= N(n0(m),m).

If Ψ(X) is ⟨δ, c⟩-shift complex, then Ψ(X) = ΨX ∈ {0,1}N (therefore X ∈ S) and KP(τ) ≥ δ∣τ ∣−c for every

substring τ of Ψ(X). Then

M(SC(δ, c)↾ r(m)) = λ({X ∈ {0,1}N ∣ ∣ΨX
∣ ≥ r(m) and ΨX

↾ r(m) is ⟨δ, c⟩-shift complex})

≤ λ({X ∈ {0,1}N ∣ ∣ΨX
∣ ≥ r(m) and ΨX

↾ r(m) avoids An, . . . ,AN})

<
1

2m
.

Hence, SC(δ, c) is deep.

Corollary V.1.5. No difference random computes a shift complex sequence. Consequently, SC ≰w MLR.

Remark V.1.6. X ∈ {0,1}N is Kurtz random if X ∉ P for any Π0
1 class P with λ(P) = 0. [15, Theorem

6.7] shows that for every δ ∈ (0,1) there is a Y ∈ SC(δ) such that Y computes no Kurtz random. Every

Martin-Löf random sequence is Kurtz random, so this shows MLR ≰w SC(δ) for every δ ∈ (0,1).

V.1.2 Shift Complexity and Avoidance

[15, Theorem 6.3] shows that for each rational δ ∈ (0,1) there is an order function h such that SC(δ) ≤w

DNR(h). Using the same techniques as we employed in order to quantify the growth rate of q in Theo-

rem IV.3.1, we can similarly strengthen [15, Theorem 6.3] by giving explicit bounds.

Theorem V.1.7. Given rational numbers 0 < δ < α < 1, define π∶N → (0,∞) by π(n) ∶= exp2((α − δ)n).

Then SC(δ) ≤w LUA(q) for any order function q such that q(exp2((n + 1) ⋅ π(n))) ≤ π(n) for almost all

n ∈ N.

We may also find an order function q which works for all δ ∈ (0,1):

Corollary V.1.8. Fix a rational ε > 0. For all rational δ ∈ (0,1) we have SC(δ) ≤w LUA(λn.(log2 n)
1−ε).

Proof. Define q by q(n) ∶= (log2 n)
1−ε for n ≥ 2 and q(0) = q(1) = 1. Let α be any rational such that δ < α < 1.

Then

(log2 2(n+1)⋅π(n)
)
1−ε

= ((n + 1) ⋅ 2(α−δ)⋅n)
1−ε

= (n + 1)1−ε
⋅ 2(α−δ)⋅(1−ε)⋅n

< 2(α−δ)⋅n

113

for almost all n, so SC(δ) ≤w LUA(q) by Theorem V.1.7.

Proof of Theorem V.1.7. The main idea of the proof follows that of Khan & Miller in their proof of [15,

Theorem 6.3].

Let Bn ∶= {σ ∈ {0,1}n ∣ KP(σ) < δn} and Sn ∶= {Sn ⊆ {0,1}n ∣ Bn ⊆ Sn ∧ ∣Sn∣ ≤ 2α⋅n}. Fix an admissible

enumeration ϕ● and recall that we previously defined

P b,ca ∶= {F ∶N→ [a]b ∣ ∀n∀j < c (j ∈ domϕn → ϕn(j) ∉ F (n))}

where [a]b ∶= {S ⊆ {0,1,2, . . . , a − 1} ∣ ∣S∣ = b}. As in Section IV.3, we identify DNR(a) with P 1,1
a .

Proposition IV.3.4 shows that, uniformly in n, there is a recursive functional Ψn∶DNR(π(n)) →

P
2n−2α⋅n+1,π(n)
2n and recursive function Un∶N→ Pfin(N) such that for any X ∈ DNR(π(n)) and i ∈ N, X↾Un(i)

determines Ψn(X)(i) and ∣Un(i)∣ ≤ 2δn ⋅ (2n

π(n)). Given X ∈ DNR(π(n)), G ∶= Ψn(X) is a function G∶N →

[2n]2
n−2α⋅n+1 such that ϕm(j) ∉ G(m) for all j < 2δn and all m ∈ N. Bn is of cardinality ∣Bn∣ ≤ 2δn and

uniformly recursively enumerable, so let s∶N→ N be a primitive recursive function for which Bn = {ϕs(n)(j) ∣

j < 2δn} for all n ∈ N. Then Bn ∩G(s(n)) = ∅, so letting Sn ∶= {0,1}n ∖G(s(n)) ∈ Sn. Moreover, this process

is uniform in n and depends only on X↾Un(s(n)).

Define U ∶N → Pfin(N) by U(n) ∶= Un(s(n)) for each n ∈ N and subsequently define u∶N → N recursively

by

u(0) ∶= 0,

u(n + 1) ∶= u(n) + ∣U(n)∣.

Finally, define ψ ∶ ⊆N→ N by letting

ψ(u(n) + j) ≃ ϕj-th element of U(n)(0)

for each n ∈ N and j < ∣U(n)∣. By construction, uniformly in n ∈ N and X ∈ Avoidψ(π(n)), X↾u(n + 1) can

be used to compute an element of Sn ∈ Sn.

If p∶N→ N is an order function satisfying

p(u(n + 1)) ≤ π(n)

for all n ∈ N, then uniformly in n and X ∈ Avoidψ(p), X↾u(n + 1) can be used to compute an element of

Sn ∈ Sn. In other words, for such order functions p, we have ∏n∈N Sn ≤w Avoidψ(p). [15, Corollary 6.9]

shows that SC(δ) ≤w ∏n∈N Sn, so SC(δ) ≤w Avoidψ(p).

Suppose q∶N → N is an order function such that for each a, b ∈ N we have q(an + b) ≤ p(n) for almost all

114

n ∈ N.Then Avoidψ(p) ≤s LUA(q). In other words, if q is such that for all a, b ∈ N we have q(au(n + 1) + b) ≤

π(n) for almost all n ∈ N, then SC(δ) ≤w LUA(q). We show that if q(exp2((n+ 1) ⋅π(n))) ≤ π(n) for almost

all n, then q satisfies this aforementioned condition.

First, we find an upper bound of u. Recall that ∣Un(i)∣ ≤ 2δn ⋅(2n

π(n)) for all n, i ∈ N, so ∣U(n)∣ = ∣Un(s(n))∣ ≤

2δn ⋅ (2n

π(n)). Next, u(n + 1) = ∑m≤n ∣U(m)∣ ≤ (n + 1) ⋅ ∣U(n)∣, so for almost all n ∈ N,

a ⋅ u(n + 1) + b ≤ a(n + 1) ⋅ ∣U(n)∣ + b ≤ 3a ⋅ n ⋅ 2δn ⋅ (
2n

π(n)
) ≤ 3a ⋅ n ⋅ 2δn ⋅ (2n)π(n) ≤ 2(n+1)⋅π(n).

Thus, if q(2(n+1)⋅π(n)) ≤ π(n) for almost all n, then SC(δ) ≤w LUA(q).

Because SC(δ, c) is deep for each rational δ ∈ (0,1) and c ∈ N, if SC(δ) ≤w LUA(q) then q must be slow-

growing. In Theorem VI.4.3, we shall show that SC ≰w LUAslow, showing that there are is a slow-growing

order function q and an X ∈ LUA(q) such that X computes no shift complex sequence.

V.2 Generalized Shift Complexity

Just as COMPLEX(f) for f a sub-identical order function generalizes the case of COMPLEX(δ) for δ ∈ (0,1],

we can replace the map τ ↦ δ∣τ ∣ with any sub-identical order function τ ↦ f(∣τ ∣). Sequences X satisfying

KP(τ) ≥ f(∣τ ∣) − c for all substrings τ of X or KP(X([k, k + n)) ∣ k,n) ≥ f(∣τ ∣) − c for all k,n ∈ N have been

considered by Rumyantsev [23], but not give any explicit name to those properties, nor does there seem to

be any existing terminology in the literature in that direction. Thus, we propose the following definitions:

Let f ∶N→ [0,∞) be an order function.

Definition V.2.1 (f -shift complexity). X ∈ {0,1}N is . . .

. . . ⟨f, c⟩-shift complex if KP(τ) ≥ f(∣τ ∣) − c for every substring τ of X. The set of all ⟨f, c⟩-shift complex

sequences is denoted by SC(f, c).

. . . f -shift complex if X is ⟨f, c⟩-shift complex for some c ∈ N. The set of all f -shift complex sequences is

denoted by SC(f).

. . . generalized shift complex if X is f -shift complex for some order function f .

Definition V.2.2 (strong f -shift complexity). X ∈ {0,1}N is. . .

. . . strongly ⟨f, c⟩-shift complex if KP(X([k, k + n)) ∣ k,n) ≥ f(n) − c for all k,n ∈ N. The set of all strongly

⟨f, c⟩-shift complex sequences is denoted by SSC(f, c).

. . . strongly f -shift complex if X is strongly ⟨f, c⟩-shift complex for some c ∈ N. The set of all strongly

f -shift complex sequences is denoted by SSC(f).

115

. . . generalized strongly shift complex if X is strongly f -shift complex for some order function f .

We start by addressing the existence or nonexistence of (strongly) f -shift complex sequences. If δ ∶=

lim supn
f(n)
n

< 1, then SSC(f) ≠ ∅ since every strongly δ-shift complex sequence is strongly f -shift complex.

If δ ≥ 1, on the other hand, then we can show SC(f) = ∅.

Proposition V.2.3. Suppose f ∶N→ [0,∞) is an order function. Let δ ∶= lim supn
f(n)
n

.

(a) If δ < 1, then SSC(f) ≠ ∅.

(b) If δ ≥ 1, then SC(f) = ∅.

Proof. Suppose δ ≥ 1. If X is f -shift complex, then lim supn
X↾n
n

≥ 1. But if X is f -shift complex, then 0n

cannot be a substring of X for infinitely many n since there is c ∈ N such that KP(0n) ≤ 2 log2 n + c and

lim supn
f(n)
n

≥ 1 implies that for infinitely many n we have f(n) > 1
2
n > 2 log2 n + c. [15, Proposition 3.6]

shows that ifX does not contain every string as a substring, then lim supn
X↾n
n

< 1, giving a contradiction.

Just as SC(δ, c) and SSC(δ, c) for a recursive δ ∈ (0,1) and c ∈ N are Π0
1, SC(f, c) and SSC(f, c) are Π0

1,

and consequently degw(SC(f, c)), degw(SC(f)), degw(SSC(f, c)), and degw(SSC(f)) lie in Ew for any order

function satisfying lim supn
f(n)
n

< 1.

Proposition V.2.4. Suppose f is an order function and c ∈ N. Then SC(f, c) and SSC(f, c) are Π0
1, both

uniformly in δ, c. Consequently, degw(SC(f, c)) (for c sufficiently large), degw(SC(f)), degw(SSC(f, c)),

and degw(SSC(f)) all lie in Ew if lim supn
f(n)
n

< 1.

Proof. Analogous to Proposition V.1.1 and Proposition V.1.2.

V.3 Generalized Shift Complexity and Depth

The depth of SC(δ, c) for any recursive δ ∈ (0,1) suggests the following question.

Question V.3.1. Suppose f ∶N→ [0,∞) is an order function. Under what conditions on f is SC(f, c) deep?

Question V.3.2. Suppose f ∶N→ [0,∞) is an order function. Under what conditions on f is SSC(f, c) deep?

Partial answers to Question V.3.1 exist, showing non-negligibility for sufficiently slow-growing, well-

behaved order functions f . On the other hand, Question V.3.2 can be completely answered: SSC(f, c) is

always deep.

Theorem V.3.3. [23, Theorem 4] Suppose ⟨am⟩m∈N is a recursive sequence of nonnegative rational numbers

such that ∑
∞
m=0 am < ∞. Define f ∶N→ [0,∞) by f(0) ∶= 0 and f(n) ∶= a⌊log2 n⌋n for n ∈ N>0. Then SC(f) is

non-negligible.

116

Proof. We may assume without loss of generality that am2m ∈ N for allm: Givenm ∈ N, consider the sequence

⟨
⌈am2m⌉

2m
⟩m∈N. As 0 ≤ ⌈am2m⌉ − am2m ≤ 1, it follows that 0 ≤

⌈am2m⌉
2m

− am ≤ 1
2m

. In particular, ∑
∞
m=0 am

converges if and only if ∑
∞
m=0

⌈am2m⌉
2m

converges. Letting g∶N → R be defined by g(n) ∶=
⌈a⌊log2n⌋2

⌊log2 n⌋⌉
2⌊log2 n⌋

n, we

have SC(g) ⊆ SC(f). Thus, non-negligibility of SC(g) implies non-negligibility of SC(f), so by potentially

replacing ⟨am⟩m∈N with ⟨
⌈am2m⌉

2m
⟩m∈N, we may assume that am2m ∈ N for each m ∈ N.

Define ⟨bm⟩m∈N by setting bm ∶= 2am+
m2

2m
for m ∈ N. Note that ∑

∞
m=0 bm converges if and only if ∑

∞
m=0 am

converges, and that 2mbm ∈ N for each m ∈ N. The role of ⟨bm⟩m∈N will be to account for several subtleties

arising later.

We define a real Ψ(X) in stages.

Stage s = 0. Let m0 be the least natural number m for which ∑
∞
k=m bk ≤ 1. Because ∑

∞
m=0

m2

2m
= 6, m0 > 0.

Split N into arithmetic progressions with constant difference 2m0 , i.e., consider the 2m0 sequences

⟨i + k2m0⟩k∈N for 0 ≤ i < 2m0 .

For 0 ≤ i < bm02m0 and k ∈ N, define

Ψ(X)(i + k2m0) ∶=X(i).

Note that 2m0 − bm02m0 = (1− bm0)2
m0 > 0 of the 2m0 arithmetic progressions with constant difference

2m0 remain.

Stage s > 0. Suppose (1−(bm0+bm0+1+⋯+bm0+s−1))⋅2
m0+s−1 arithmetic progressions with constant difference

2m0+s−1 remain. These yield N = (1− (bm0 + bm0+1 +⋯+ bm0+s−1)) ⋅ 2
m0+s arithmetic progressions with

constant difference 2m0+s (an arithmetic progression ⟨a+ bk⟩k∈N with constant difference b can be split

into two arithmetic progressions ⟨a + 2bk⟩k∈N and ⟨a + b + 2bk⟩k∈N with constant difference 2b). Let

0 ≤ i0 < i1 < ⋯ < iN−1 < 2m0+s be such that ⟨ij +k2m0+s⟩k∈N enumerates those N arithmetic progressions

with constant difference 2m0+s which remain as j ranges over {0,1,2, . . . ,N − 1}.

∑
∞
m=m0

bm ≤ 1 implies N − bm0+s ⋅ 2
m0+s = (1−(bm0 + bm0+1 +⋯+ bm0+s−1 + bm0+s)) ⋅ 2

m0+s > 0. Thus, for

0 ≤ j < bm0+s ⋅ 2
m0+s and k ∈ N, define

Ψ(X)(ij + k2m0+s) ∶=X(j).

Note that N − bm0+s ⋅ 2
m0+s = (1 − (bm0 + bm0+1 +⋯ + bm0+s−1 + bm0+s)) ⋅ 2

m0+s arithmetic progressions

with constant difference 2m0+s remain.

Ψ(X) is an element of {0,1}N, as at Stage s, Ψ(X) is defined at (among other indices) the least index

at which Ψ(X) was undefined previously. The above procedure is uniformly recursive in X, so Ψ is a total

117

recursive functional.

We must now show that KP(Ψ(X)([k, k + n))) ≥ a⌊log2 n⌋n − c for some c ∈ N and all k,n ∈ N.

Suppose k,m ∈ N and m0 ≤m, and consider the substring Ψ(X)([k, k + 2m)). By the construction above,

from Ψ(X)([k, k + 2m)), k mod 2m, and m, one can recursively recover X↾ bm2m, so there is a c1 ∈ N such

that

KP(Ψ(X)([k, k + 2m))) +KP(k mod 2m) +KP(m) ≥
+ KP(X↾ bm2m)

for all k,m ∈ N. If X is Martin-Löf random, then there is a c2 ∈ N such that KP(X↾ bm2m) ≥ bm2m − c2 for

all m ∈ N, and consequently

KP(Ψ(X)([k, k + 2m))) +KP(k mod 2m) +KP(m) ≥ bm2m − (c1 + c2)

for all k,m ∈ N.

Now we use the definition of ⟨bm⟩m∈N to make our desired conclusion about ⟨am⟩m∈N. Noting that

KP(k mod 2m) ≤ max
0≤k<2m

KP(k) ≤ 2m + c3,

KP(m) ≤ 2 log2m + c4,

for some c3, c4 ∈ N and all k,m ∈ N, then for m ≥m0 and k ∈ N we have

KP(Ψ(X)([k, k + 2m))) ≥ bm2m −KP(k mod 2m) −KP(m) − (c1 + c2)

≥ (2am +m2
/2m)2m − 2m − 2 log2m − (c1 + c2 + c3 + c4)

= am2m+1
+m2

− 2m − 2 log2m − (c1 + c2 + c3 + c4).

m2 − 2m − 2 log2m ≥ −3 for all m ∈ N, so with c = c1 + c2 + c3 + c4 + 3, for all k and all m ∈ N we have

KP(Ψ(X)([k, k + 2m))) ≥ am2m+1
− c ≥ am2m − c.

In other words, if τ is a substring of Ψ(X) whose length n = ∣τ ∣ is a power of 2, then

KP(τ) ≥ 2alog2 nn − c ≥ alog2 nn − c. (∗)

Now suppose τ is an arbitrary substring of Ψ(X). Let τ ′ be the longest initial segment of τ whose length

is a power of 2, say 2m. Let n = ∣τ ∣. Note that ⌊log2 n⌋ =m and n ≤ 2m+1. Because τ ′ can be found recursively

from τ and using Equation ((∗)), there is a c5 ∈ N independent of τ such that

KP(τ) ≥ KP(τ ′) − c5 ≥ am2m+1
− (c + c5) ≥ a⌊log2 n⌋n − (c + c5).

Since the term c + c5 is independent of the choice of τ , we find that Ψ(X) ∈ SC(f).

118

As X was an arbitrary Martin-Löf random real, it follows that the Turing upward closure of SC(f) has

measure 1, hence SC(f) is non-negligible.

We shall continue to use the total recursive functional Ψ defined in the proof of Theorem V.3.3, so we

give an illustrative example:

Example V.3.4. SC(λn.
√
n) is non-negligible, applying Theorem V.3.3 with am ≈ 1

2m/2 (technically, am =

1
2⌊n/2⌋−2 , so that a⌊log(n)⌋n ≥

√
n for n > 0).

We walk through the proof of Theorem V.3.3 in this case. Let am =
⌈
√

2m⌉
2m

. For simplicity, we ignore

some of the technical adjustments indicated in the proof. In this case, m0 = 4, i.e., ∑
∞
m=4 am ≤ 1. Given

X ∈ {0,1}N, the construction of Ψ(X) proceeds as follows:

At Stage 0, we split N into arithmetic progressions of constant difference 24 = 16, of which there are

24 = 16 such arithmetic progressions. We then take the first 1
24/2 24 = 22 = 4 such arithmetic progressions (i.e.,

⟨i + 16k⟩k∈N for i ∈ {0,1,2,3}) and for k ∈ N set

Ψ(X)(0 + 16k) =X(0),

Ψ(X)(1 + 16k) =X(1),

Ψ(X)(2 + 16k) =X(2),

Ψ(X)(3 + 16k) =X(3).

In particular, at Stage 0 we define Ψ(X) at 1
4
= 1

24/2 of its inputs.

There are 16 − 4 = 8 arithmetic progressions of constant difference 16 remaining, namely ⟨i + 16k⟩k∈N for

i ∈ {4,5, . . . ,15}. This yields 2 ⋅ 8 = 16 arithmetic progressions of constant difference 2 ⋅ 16 = 32, namely

⟨i + 32k⟩k∈N for i ∈ {4,5, . . . ,15} ∪ {20,21, . . . ,31}. At Stage 1, we now take the first ⌈ 1
25/2 25⌉ = ⌈25/2⌉ = 6 of

these arithmetic progressions (i.e., ⟨i + 32k⟩k∈N for i ∈ {4,5,6,7,8,9}) and for k ∈ N set

Ψ(X)(4 + 32k) =X(0),

Ψ(X)(5 + 32k) =X(1),

⋮

Ψ(X)(9 + 32k) =X(5).

In particular, at Stage 1, we define Ψ(X) at 6
32

= 3
16

of its inputs, so that Ψ(X) has been defined at 1
4
+ 3

16
= 7

16

of its inputs in total up to this point.

There are 16 − 6 = 10 arithmetic progressions of constant difference 32 remaining, namely ⟨i + 32k⟩k∈N

for i ∈ {10,11, . . . ,15} ∪ {20,21, . . . ,31}. This yields 2 ⋅ 10 = 20 arithmetic progressions of constant difference

119

2 ⋅ 32 = 64, namely ⟨i + 64k⟩k∈N for i ∈ {10,11, . . . ,15} ∪ {20,21, . . . ,31} ∪ {42,43, . . . ,47} ∪ {52,53, . . . ,63}.

At Stage 2, we take the first 1
26/2 26 = 26/2 = 8 of these arithmetic progressions (i.e., ⟨i + 64k⟩k∈N for i ∈

{10,11,12,13,14,15,20,21}) and for k ∈ N set

Ψ(X)(10 + 64k) =X(0),

Ψ(X)(11 + 64k) =X(1),

⋮

Ψ(X)(21 + 64k) =X(7)

In particular, at Stage 2, we define Ψ(X) at 8
64

= 1
8

of its inputs, so that Ψ(X) has been defined at 1
4
+ 3

16
+ 1

8

of its inputs in total up to this point.

The definition of Ψ(X) continues in this way forever. At Stage s, we define Ψ(X) at ⌈
√

24+s⌉
24+s ≈ 1√

24+s

of its inputs. Worth noting is that although ∑
∞
m=4

⌈
√

2m⌉
2m

≤ ∑
∞
m=4

1√
2
m + ∑

∞
m=4

1
2m

=
1/4

1−1/
√

2
+ 1

8
≈ 0.98 < 1,

Ψ(X)(i) is defined for every i ∈ N, since at each Stage s we define Ψ(X) at (among other indices) the least

index at which Ψ(X) was undefined previously.

Remark V.3.5. The negligibility of SC implies that there are X which are λn.
√
n-shift complex which are

not δ-shift complex for any δ ∈ (0,1).

Remark V.3.6. In the proof of Theorem V.3.3, at Stage s + 1 we encode X↾ bs+12m0+s+1 even though

X↾ bs2
m0+s has already been encoded, so that in a certain sense we continually retread old ground. A

more conservative approach would be to encode X↾ [b02m0 + b12m0+1 + ⋯ + bs2
m0+s, b02m0 + b12m0+1 + ⋯ +

bs2
m0+s + bs+12m0+s+1) at Stage s + 1, so that for some c ∈ N and all k,m ∈ N,

KP(Ψ(X)([k, k + 2m))) ≥ a02m0 + a12m0+1
+⋯ + am2m − c,

≥ (
a0

2m−m0
+

a1

2m−m0−1
+⋯ +

am
20

)2m − c.

Let cm = (a0
2m−m0

+ a1
2m−m0−1

+⋯ + am
20), defined for m ≥m0. Then

m−m0

∑
k=0

cm0+k = cm0 + cm0+1 +⋯ + cm

= a0 + (
a0

2
+ a1) + (

a0

4
+
a1

2
+ a2) +⋯ + (

a0

2m−m0
+

a1

2m−m0−1
+⋯ + am)

=
m

∑
k=0

(2 −
1

2m−m0+1−k)ak

It follows that∑
∞
k=0 cm0+k converges. In particular, this ‘conservative’ approach does not produce any stronger

general conclusion.

120

V.3.1 Relating Generalized Shift Complexity and Complexity

The total recursive functional Ψ defined in the proof of Theorem V.3.3 can be used to provide stronger

results about the location of degw(SC(f)) in Ew for order functions f satisfying ∑
∞
m=0

f(2m)
2m

< ∞.

Theorem V.3.7. Suppose f, g∶N → [0,∞) are sub-identical order functions such that ∑
∞
m=0 f(2

m)/2m < ∞

and for which there is a recursive sequence ⟨εm⟩m∈N of positive rationals such that ∑
∞
m=0 εm < ∞ and

lim inf
m

g(2mεm) − f(2 ⋅ 2m)

m
> 1.

Then SC(f) ≤s COMPLEX(g).

Proof. Suppose ⟨εm⟩m∈N satisfies the hypotheses of the theorem. Let α be a rational number such that

1 < α < lim infm
g(2mεm)−f(2⋅2m)

m
, so that g(2mεm) − αm ≥ f(2 ⋅ 2m) for almost all m ∈ N.

Now define Ψ as in the proof of Theorem V.3.3, using ⟨am⟩m∈N = ⟨εm⟩m∈N. As in that proof, there is a c1

such that for all k ∈ N and m ≥m0, we have

KP(Ψ(X)([k, k + 2m))) +KP(k mod 2m) +KP(m) ≥ KP(X↾2mεm) − c1.

If X ∈ COMPLEX(g), then there is a c2 such that KP(X↾2mεm) ≥ g(2mεm)−c2 for all m ∈ N. Consequently,

for all k,m ∈ N we have

KP(Ψ(X)([k, k + 2m))) +KP(k mod 2m) +KP(m) ≥ g(2mεm) − (c1 + c2).

Additionally, noting that 1 < 1+α
2

, there are c3, c4 ∈ N such that

KP(k mod 2m) ≤ max
0≤k<2m

KP(k) ≤ (1+α
2

)m + c3,

KP(m) ≤ 2 log2m + c4,

for all m ∈ N, so that for all k,m ∈ N we have

KP(Ψ(X)([k, k + 2m))) ≥ g(2mεm) − ((1+α
2

) ⋅m − 2 log2m) − (c1 + c2 + c3 + c4).

For sufficiently large m, (1+α
2

) ⋅m + 2 log2m ≤ αm, and hence αm − ((1+α
2

)m − 2 log2m) is bounded from

below, say by c5. Let c = c1 + c2 + c3 + c4 + c5. Then for all k and all m ∈ N,

KP(Ψ(X)([k, k + 2m))) ≥ f(2 ⋅ 2m) − c ≥ f(2m) − c.

In other words, if τ is a substring of Ψ(X) whose length ∣τ ∣ is a power of 2, then

KP(τ) ≥ f(2 ⋅ ∣τ ∣) − c ≥ f(∣τ ∣) − c. (∗)

121

Now suppose τ is an arbitrary substring of Ψ(X). Let τ ′ be the longest initial segment of τ whose length

is a power of 2, say 2m. Let n = ∣τ ∣. Note that ⌊log2 n⌋ =m and n ≤ 2m+1. Because τ ′ can be found recursively

from τ , that f is monotonic, and using (∗), there is a c6 ∈ N independent of τ such that

KP(τ) ≥ KP(τ ′) − c6 ≥ f(2 ⋅ ∣τ
′
∣) − (c + c6) = f(2

m+1
) − (c + c6) ≥ f(n) − (c + c6).

Remark V.3.8. The requirement that ∑
∞
m=0

f(2m)
2m

converges is necessary for Theorem V.3.7 to yield any

useful information – the existence of a convergent series ∑
∞
m=0 εm such that 2mεm − f(2m+1) ≥ 0 (so g is the

identity function) implies ∑
∞
m=0

f(2m+1)
2m

converges, which is equivalent to the convergence of ∑
∞
m=0

f(2m)
2m

=

f(1) + 1
2 ∑

∞
m=0

f(2m+1)
2m

.

Despite the technicality of the condition in Theorem V.3.7, we can deduce several nice relationships:

Corollary V.3.9. Suppose f ∶N → [0,∞) is a sub-identical order function such that ∑
∞
m=0

f(2m)
2m

converges.

Then for every rational δ ∈ (0,1], SC(f) ≤s COMPLEX(δ).

Proof. Define g by setting g(n) ∶= δn for n ∈ N and define ⟨εm⟩m∈N by setting εm ∶= 1
δ
(
f(2m+1)

2m
+ m2

2m
) for

m ∈ N. Then

lim
m→∞

g(2mεm) − f(2m+1)

m
= lim
m→∞

f(2m+1) +m2 − f(2m+1)

m

= lim
m→∞

m

= ∞

> 1,

so Theorem V.3.7 shows COMPLEX(α) = COMPLEX(g) ≥s SC(f).

Corollary V.3.10. Suppose 0 < α < β ≤ 1 are rational numbers. Then SC(λn.nα) ≤s COMPLEX(λn.nβ).

Proof. Define f , g, and ⟨εm⟩m∈N by setting f(n) ∶= nα, g(n) ∶= nβ , and εm ∶=m−1/β for each n,m ∈ N. Then

∑
∞
m=0

f(2m)
2m

= ∑
∞
m=0

1
mβ

< ∞ and

lim
m→∞

g(2mεm) − f(2m+1)

m
= lim
m→∞

2β⋅m/m − 2α⋅mm

= lim
m→∞

2β⋅m − 2α⋅mm2

m2

= ∞

> 1,

so Theorem V.3.7 shows SC(λn.nα) ≤s COMPLEX(λn.nβ).

122

Corollary V.3.11. Suppose 0 < α + 1 < β and rational numbers. Then

SC(λn.n/(log2 n)
β
) ≤s COMPLEX(λn.n/(log2 n)

α
).

Proof. Define f , g, and ⟨εm⟩m∈N by setting f(n) ∶= n/(log2 n)
β , g(n) ∶= n/(log2 n)

α, and εm ∶= 1/m(log2m)2

for each m,n ∈ N. Then

lim
m→∞

g(2mεm) − f(2m+1)

m
= lim
m→∞

1

m
(

2mm−1(log2m)−2

(log2(2
mm−1(log2m)−2))α

−
2m+1

mβ
)

= lim
m→∞

2m (
1

mα+2(1 − (log2m)/m − 2(log2 log2m)/m)α(log2m)2
−

2

mβ+1
)

= ∞

> 1,

so Theorem V.3.7 shows SC(λn.n/(log2 n)
β) ≤s COMPLEX(λn.n/(log2 n)

α).

V.3.2 Extracting Generalized Shift Complexity from Sublinear Complexity

Corollaries V.3.10 and V.3.11 show for certain sufficiently slow-growing and well-behaved order functions f

there is another order function g such that COMPLEX(g) ≥s SC(f) which is sublinear. We can show that

this holds more generally given that ∑
∞
m=0

f(2m)
2m

not only converges, but converges to a recursive real.

Theorem V.3.12. Suppose f ∶N → [0,∞) is a sub-identical order function such that ∑
∞
m=0

f(2m)
2m

converges

to a recursive real. Then there is a sublinear order function g∶N→ [0,∞) such that SC(f) ≤s COMPLEX(g).

To prove Theorem V.3.12, we start by making several observations concerning recursive series of positive

rational numbers.

Lemma V.3.13. Suppose ⟨εm⟩m∈N is a recursive sequence of positive rational numbers such that ∑
∞
m=0 εm

converges to a recursive real. Then there exists a nondecreasing, recursive sequence ⟨γm⟩m∈N of positive

integers such that ∑
∞
m=0 εmγm converges to a recursive real and limm→∞ γm = ∞.

Proof. Let ε ∶= ∑
∞
m=0 εm, which is a recursive real by hypothesis. Recursively define a strictly increasing

sequence ⟨nk⟩k∈N by setting n0 ∶= 0 and, given nk has been defined, let nk+1 be the largest n > nk such that

∑
n
m=nk+1 εm ≤ ε

2k+1
. Note, then, that ∑

n
m=nk+1 (k + 1)εm ≤

(k+1)ε
2k+1

.

We define sequences of positive integers ⟨γm⟩m∈N and ⟨δm⟩m∈N recursively. Start by setting γm ∶= δm = 1

for 0 = n0 ≤ m < n1, let γn1 ∶= 1, and let δn1 be the largest integer such that ∑
n1
m=n0

εmδm ≤ ε/2 – because

∑
n1
m=n0

εm ≤ ε/2 by our definition of n1, we know δn1 ≥ 1. Analogously, given γm and δm have been defined

for m ≤ nk, let γm ∶= δm ∶= k + 1 for nk + 1 ≤ m < nk+1, let γnk+1 = k + 1, and let δnk+1 be the largest integer

123

such that ∑
nk+1
m=0 εmδm ≤ ∑

k+1
j=1

j
2j

– because ∑
n
m=nk+1 (k + 1)εm ≤

(k+1)ε
2k+1

by our definition of nk+1, it follows

that δnk+1 ≥ k + 1.

By construction, ∑
∞
m=0 εmδm converges to the recursive real ∑

∞
k=1

kε
2k

= 2ε (here, we use the fact that

limk→∞ εnk = 0 so that the difference ∑
k+1
j=1

j
2j
− ∑

nk+1
m=0 εmδm is made arbitrarily small as k → ∞). Because

ε is a recursive real, the above construction is also recursive, so the sequences ⟨γm⟩m∈N and ⟨δm⟩m∈N are

recursive. As observed above, γm, δm ≥ k + 1 for nk + 1 ≤m ≤ nk+1, so limm→∞ δm = ∞.

By construction, 0 < εmγm ≤ εmδm for all m ∈ N, so the convergence of ∑
∞
m=0 εmδm to the recursive

real 2ε implies that ∑
∞
m=0 εmγm also converges to a recursive real by Proposition II.3.8. Finally, ⟨γm⟩m∈N is

nondecreasing by construction.

Proof of Theorem V.3.12. First, ∑
∞
m=0

f(2m)
2m

converging to a recursive real implies that ∑
∞
m=0

f(2m+1)
2m

=

2 (∑
∞
m=0

f(2m+1)
2m+1 − f(1)) converges to a recursive real. Then ∑

∞
m=0

f(2m+1)+1
2m

= ∑
∞
m=0

f(2m+1)
2m

+ 2 converges

to a recursive real, so Proposition II.3.8 implies that ∑
∞
m=0

⌈f(2m+1)⌉
2m

converges to a recursive real.

Applying Lemma V.3.13 to ⟨⌈f(2 ⋅ 2m)⌉/2m⟩m∈N yields a nondecreasing, recursive sequence ⟨γm⟩m∈N of

positive integers tending towards infinity such that ∑
∞
m=0

⌈f(2m+1)⌉
2m

γm converges. Note that the proof of

Lemma V.3.13 shows that we may assume without loss of generality that γm ≤m + 1 for all m ∈ N.

Define εm =
⌈f(2m+1)⌉

2m
γm + 2m2

2m
γm. By the definition of ⟨γm⟩m∈N, ∑

∞
m=0

⌈f(2m+1)⌉
2m

γm converges. Because

γm ≤ m + 1, ∑
∞
m=0

2m2

2m
γm also converges. Thus, ∑

∞
m=0 εm converges. Additionally, both ⟨2mεm⟩m∈N and

⟨2mεmγ
−1
m ⟩m∈N are strictly increasing, recursive sequences of natural numbers.

Define g∶N→ [0,∞) by setting

g(n) ∶=
2m+1εm+1γ

−1
m+1 − 2mεmγ

−1
m

2m+1εm+1 − 2mεm
(n − 2mεm) + 2mεmγ

−1
m

for 2mεm ≤ n < 2m+1εm+1. For 0 ≤ n < ε0, let g(n) ∶= γ−1
0 n. In other words, we set g(0) ∶= 0 and

g(2mεm) ∶= 2mεmγ
−1
m for m ∈ N, then take g to be defined linearly between consecutive points in the

sequence ⟨0,0⟩, ⟨ε0, ε0γ
−1
0 ⟩, ⟨2ε1,2ε2γ

−1
1 ⟩, We make the following observations:

• By the definition of g above, g is recursive.

• Because the sequences ⟨2mεm⟩m∈N and ⟨2mεmγ
−1
m ⟩m∈N are both strictly increasing, g is nondecreasing.

• To show that limn→∞
g(n)
n

= 0, the piecewise linearity of g means that it suffices to show that

limm→∞
g(2mεm)

2mεm
= 0. Indeed,

lim
m→∞

g(2mεm)

2mεm
= lim
m→∞

2mεmγ
−1
m

2mεm
= lim
m→∞

γ−1
m = 0.

124

• g(2mεm) ≥ f(2m+1) + 2m:

g(2mεm) = 2mεmγ
−1
m

= ⌈f(2m+1
)⌉γmγ

−1
m + 2m2γmγ

−1
m

≥ ⌈f(2m+1
)⌉ + 2m

≥ f(2m+1
) + 2m.

Thus, g is an order function and

lim inf
m

g(2mεm) − f(2 ⋅ 2m)

m
≥ 2 > 1.

Theorem V.3.7 then implies COMPLEX(g) ≥s SC(f).

V.3.3 Strong Shift Complexity and Depth

Although there exist order functions f for which SC(f) is negligible, the situation for generalized strong

shift complexity is more favorable with respect to depth, completely answering Question V.3.2.

Theorem V.3.14. [23, Theorem 5, essentially] SSC(f, c) is a deep Π0
1 class for any order function f

satisfying lim supn
f(n)
n

< 1 and any c ∈ N.

Proof. With M a universal left r.e. continuous semimeasure on {0,1}∗, by Proposition II.4.3 there is a partial

recursive functional Ψ such that for every σ ∈ {0,1}∗,

M(σ) = λ(Ψ−1
(σ)) = λ({X ∈ {0,1}N ∣ ΨX

⊇ σ}).

For a fixed n ∈ N, say Y ∈ {0,1}∗∪{0,1}N avoids a τ⃗ = ⟨τ0, τ1, . . . , τN−1⟩ if ∣Y ∣ ≥ N+n−1 and Y ([k, k + n)) ≠

τk for all k ∈ {0,1,2, . . . ,N − 1}.

Our approach, roughly, involves us finding, for a fixed length n, a sequence τ⃗ of ‘forbidden’ strings

τ0, τ1, . . . , τN−1 (where N = N(n,m)) of length n such that

λ({X ∈ {0,1}N ∣ Ψ(X) avoids τ⃗}) < 2−m.

By showing that such a τ⃗ can be chosen so that KP(τk ∣ k,n) is bounded for all k,n, it will follow that it is

exceeded by f(n)− c for all sufficiently large n. Hence, if an output Y of Ψ is strongly f -shift complex, then

it avoids τ⃗ , and λ(Ψ−1[SSC(f, c)]) < 2−m.

125

As in the proof of Theorem V.1.3, an arbitrary output of Ψ need not be in {0,1}N. However, also like in

Theorem V.1.3, we only need ∣ΨX ∣ ≥ N + n − 1 for the notion of avoiding σ⃗ ∈ ({0,1}n)N to be well-defined.

As such, define

S ∶= {X ∈ {0,1}N ∣ ∣ΨX
∣ ≥ N + n − 1}

where N = N(n,m) is the smallest natural number for which

(1 −
1

2n
)

N

< 2−(m+1).

S is Σ0
1, so there exists a recursive sequence ⟨σn⟩n∈N of pairwise incompatible strings such that S = ⋃n∈N JσnK.

Let α = λ(S), so that ⟨λ (⋃k≤n JρkK)⟩n∈N converges monotonically to α from below. Let i0 be the largest

natural number i such that αi ∶= i ⋅ 2
−m/3 < α, so that α − αi0 < 2−(m+1). Then let p be the smallest natural

number such that λ (⋃k≤p JσkK) ≥ αi0 and finally define

S̃ ∶= ⋃
k≤p

JσkK.

S̃ is a recursive subset of S and λ(S ∖ S̃) < 2−(m+1). By virtue of being a subset of S, ∣ΨX ∣ ≥ N + n − 1

for all X ∈ S∗. Define µ on {0,1}N+n−1 by

µ(τ) ∶= λ(S̃)−1
⋅ λ({X ∈ {0,1}N ∣X ∈ S̃ and ΨX

⊇ τ}).

µ is a probability measure on {0,1}N+n−1, and the recursiveness of S̃ implies µ is computable.

For a fixed Y ∈ {0,1}≥N+n−1, the probability that τ⃗ ∈ ({0,1}n)N is avoided by Y (taken with respect to the

uniform probability measure ν on ({0,1}n)N , or equivalently the N -fold product of the uniform probability

measures on {0,1}n) is equal to

(1 −
1

2n
)

N

<
ε

2
.

Write

E ∶= {⟨X, τ⃗⟩ ∈ {0,1}N × ({0,1}n)N ∣X ∈ S̃ and ΦX avoids τ⃗}.

By Fubini’s Theorem,

∫ (∫ χE(X, τ⃗)dλ) dν = (λ × ν)(E)

= ∫ (∫ χE(X, σ⃗)dν) dλ

= ∫ (1 − 2−n)N dλ

= (1 − 2−n)N

< 2−(m+1).

126

If ∫ χE(X, τ⃗)dλ ≥ 2−(m+1) for every τ⃗ ∈ ({0,1}n)N , we reach a contradiction. Thus, there is a least one

sequence τ⃗ ∈ ({0,1}n)N with the desired property, i.e., for which

λ({X ∈ {0,1}N ∣X ∈ S̃ and ΨX avoids τ⃗}) < 2−(m+1),

and hence

λ({X ∈ {0,1}N ∣X ∈ S and ΨX avoids τ⃗}) < 2−(m+1)
+ 2−(m+1)

= 2−m.

Let c1 ∈ N be such that KP(σ) ≤ 2 log2 ∣σ∣ + c1 for all σ ∈ {0,1}∗. An index for S̃ can be found effectively

as a function of n, m, and i0, and such an index can be used to compute a τ⃗ = ⟨τ0, τ1, . . . , τN−1⟩ for which

λ({X ∈ {0,1}N ∣ X ∈ S̃ and ΨX avoids τ⃗}) < 2−(m+1). As such, there is a constant c2 ∈ N (independent of k,

n, m, and i0) such that KP(τk ∣ k,n, i0) ≤ KP(m) + c2 for all k, n, and i0. Although i0 cannot in general be

found recursively as a function of ⟨n,m⟩, we have the bound i0 ≤ (2−m/3)−1 = 3 ⋅ 2m. Thus,

KP(i0) max
0≤i≤3⋅2m

KP(i) ≤ max
0≤i≤3⋅2m

(2 log2 i + c1) ≤ 2m + 2 log2 3 + c1.

Finally, there is c3 ∈ N such that for all σ, ρ1, ρ2, ρ3 ∈ {0,1}∗ we have KP(σ ∣ ρ1, ρ2) ≤ KP(σ ∣ ρ1, ρ2, ρ3) +

KP(ρ3) + c3. Thus,

KP(τk ∣ k,n) ≤ KP(τk ∣ k,n, i0) +KP(i0) + c3

≤ (KP(m) + c2) + 2m + 2 log2 3 + c1 + c3

≤ (2 log2m + c1 + c2) + 2m + 2 log2 3 + c1 + c3

= 2m + 2 log2m + (2 log2 3 + 2c1 + c2 + c3).

Let d = 2 log2 3 + 2c1 + c2 + c3 and let n = n(m) be the least such that

f(n) − c > 2m + 2 log2m + d.

Suppose Ψ(X) is strongly (f, c)-shift complex, so that ΨX = Ψ(X) ∈ {0,1}N (therefore X ∈ S) and

KP(Ψ(X)([k, k + n)) ∣ k,n) ≥ f(n) − c for all n, k. For a sufficiently large n,

KP(Ψ(X)([k, k + n)) ∣ k,n) ≥ f(n) − c > KP(σk ∣ k,n)

so Ψ(X)([k, k + n)) ≠ σk, hence Ψ(X) avoids σ⃗. Define r∶N → N by r(m) ∶= N(n(m),m) + n(m) − 1, which

is a recursive function. Then

M(SSC(f, c)↾ r(m)) ≤ λ({X ∈ {0,1}N ∣ ∣ΨX
∣ ≥ r(m) and ΨX

↾ r(m) is strongly (f, c)-shift complex})

≤ λ({X ∈ {0,1}N ∣X ∈ S and ΨX avoids τ⃗})

127

< 2−m.

Hence, SSC(f, c) is deep.

V.4 Open Questions

There are a great many open questions concerning shift complexity and generalized shift complexity. Just

focusing on the classes SC(δ) and SSC(δ), basic questions about their weak degrees remain open, such as

separating SC(α) and SC(β) when α ≠ β:

Question V.4.1. Are there rational numbers 0 < α < β < 1 such that SC(α) ≡w SC(β)? SC(α) <w SC(β)?

Question V.4.2. Are there rational numbers 0 < α < β < 1 such that SSC(α) ≡w SSC(β)? SSC(α) <w SSC(β)?

The relationship between the classes SC(α) and SSC(β) is especially unclear. We know that SC(α) ≤s

SSC(α), but not much more than that is known.

Question V.4.3. Is there a rational δ ∈ (0,1) such that SC(δ) ≡w SSC(δ)?

If Question V.4.3 is answered in the negative (so SC(δ) <w SSC(δ) for all δ ∈ (0,1)), we might turn to

comparing SSC(α) and SC(β) for some 0 < α < β < 1.

Question V.4.4. Given a rational 0 < β < 1, does SSC(α) ≤w SC(β) hold for all rationals 0 < α < β? If not,

for some α < β?

Although SC(δ, c) is deep for every rational δ ∈ (0,1) and c ∈ N, it is unclear if SC(δ) is of deep degree –

while COMPLEX(α, c) ≤w COMPLEX(β) for any 0 < α < β such that COMPLEX(α, c) ≠ ∅, it is unclear if

this holds when complexity is replaced with shift complexity.

Question V.4.5. Are SC(δ) or SSC(δ) of deep degree in Ew for every rational δ ∈ (0,1)?

More generally, we may ask similar questions with generalized shift complexity:

Question V.4.6. Given order functions f ∶N→ [0,∞) and g∶N→ [0,∞), when do we have SC(f) <w SC(g)?

Partial answers to Question V.4.6 exist. For example, Corollary V.3.10 allows us to separate the weak

degrees degw(SC(λn.nα)):

Proposition V.4.7. If 0 < α < β < 1 are rational numbers, then SC(λn.nα) <w SC(λn.nβ).

Proof. Corollary V.3.10 shows

SC(λn.nα) ≤w COMPLEX(λn.n(α+β)/2
) <w COMPLEX(λn.nβ) ≤w SC(λn.nβ).

128

A variant of Question V.4.6 can be phrased as an existence question:

Question V.4.8. Given an order function f ∶N→ [0,∞) for which lim supn
f(n)
n

< 1, for which order functions

g∶N→ [0,∞) can we guarantee that SC(f) ∖ SC(g) ≠ ∅?

The depth and/or negligibility of SC(f, c) for f satisfying lim supn
f(n)
n

= 0 is only partially addressed by

Theorem V.3.12.

Question V.4.9. Does there exist an order function f ∶N→ [0,∞) such that lim supn
f(n)
n

= 0 but SC(f, c) is

deep for all c ∈ N? Negligible?

A particular instance of Question V.4.9 asked by Rumyantsev is for f defined by f(n) ∶= n/ log2 n, where

∑
∞
m=0

f(2m)
2m

= ∑
∞
m=0

2m/m
2m

= ∑
∞
m=0

1
m
= ∞ and hence not addressed by Theorem V.3.12.

There are still open questions about the relationship between (generalized) shift complexity and (gener-

alized) strong shift complexity with the slow-growing LUA hierarchy.

Question V.4.10. Does there exist any rational δ ∈ (0,1) and c ∈ N such that LUAslow ≤w SC(δ, c)?

Likewise, there are still many open questions about the relationship between generalized shift complexity

and complexity.

Question V.4.11. For what order functions f ∶N→ [0,∞) is there a sub-identical order function g∶N→ [0,∞)

such that SC(f) ≤w COMPLEX(g)?

129

CHAPTER VI

AVOIDANCE – SLOW-GROWING VERSUS FAST-GROWING

A result of Khan & Miller using bushy tree forcing shows that the classes DNR(p) do not cleanly stack one

atop the other as p ranges through the order functions:

Theorem. [16, Theorem 3.11] Given any order function p∶N → (1,∞), there is an order function q∶N →

(1,∞) such that DNR(p) and DNR(q) are weakly incomparable.

Our aim in this chapter is to lift this result to the LUA hierarchy with further generality and adding the

guarantee that q can be chosen to be slow-growing:

Theorem VI.2.1. For all order functions p1∶N → (1,∞) and p2∶N → (1,∞), there exists a slow-growing

order function q∶N → (1,∞) such that LUA(p1) ≰w LUA(q) ≰w LUA(p2). In particular, for any order

function p∶N → (1,∞), there exists a slow-growing order function q∶N → (1,∞) such that LUA(p) and

LUA(q) are weakly incomparable.

In Section VI.1 we cover the necessary combinatorial tools, those of k-bushy trees and the associated

notions of being k-big or k-small above a string.

In Section VI.2, we prove the following variant of Theorem VI.2.1 where avoidance is taken with respect

to individual partial recursive functions.

Theorem VI.2.2. Suppose p1∶N→ (1,∞) and p2∶ (1,∞) are order functions, u∶N→ N is a strictly increasing

order function, ψ1 and ψ2 are universal partial recursive functions, and ψ3 and ψ4 are partial recursive

functions. Then there exists a order function q∶N→ (1,∞) such that q ○ u is slow-growing and

Avoidψ1(p1) ≰w Avoidψ3(q) and Avoidψ2(q ○ u) ≰w Avoidψ4(p2).

In Section VI.3, we deduce from Theorem VI.2.2 a generalization in which Avoidψ1(p1) and Avoidψ2(q○u)

are replaced with AvoidC1(p1) and AvoidC2(q ○ u), respectively, where C1 and C2 may be are families of

universal partial recursive functions satisfying a condition we term “translationally bounded from above”,

of which the family of linearly universal partial recursive functions is included.

Theorem VI.3.7. Suppose p1∶N → (1,∞) and p2∶N → (1,∞) are order functions, u∶N → N is a strictly

increasing order function, C1 and C2 are nonempty families of universal partial recursive functions which are

each translationally bounded from above, and ψ1 and ψ2 are partial recursive functions. Then there exists an

130

order function q∶N→ (1,∞) such that q ○ u is slow-growing and for which

AvoidC1(p1) ≰w Avoidψ1(q) and AvoidC2(q ○ u) ≰w Avoidψ2(p2).

Theorem VI.2.1 is then an easy consequence of Theorem VI.3.7.

In Section VI.4, we use Theorem VI.2.1 to deduce the following implications concerning LUAslow.

Theorem VI.4.1. LUAslow is not of deep degree.

Theorem VI.4.2. There is no order function q∶N→ (1,∞) such that LUAslow ≡w LUA(q).

Theorem VI.4.3. SC ≰w LUAslow.

In Section VI.5, we prove the following variant of Theorem VI.2.2 where q being slow-growing is strength-

ened to Avoidψ2(q ○ u) being of deep degree.

Theorem VI.5.1. Suppose p1∶N → (1,∞) and p2∶N → (1,∞) are order functions, u∶N → N is a strictly

increasing order function, ψ1 and ψ2 are universal partial recursive functions, and ψ3 and ψ4 are partial

recursive functions. Then there exists a order function q∶N → (1,∞) such that Avoidψ2(q ○ u) is of deep

degree and

Avoidψ1(p1) ≰w Avoidψ3(q) and Avoidψ2(q ○ u) ≰w Avoidψ4(p2).

VI.1 Bushy Trees

The main tool we use in the proof of Theorem VI.2.1 and Theorem VI.2.2 is bushy tree forcing, which was

developed by Kumabe in 1993 to answer affirmatively a question of Sacks which asked if there were DNR

reals of minimal Turing degree. The proof was never published, but a draft was in private circulation in

1996. The technique in its current form was introduced in a 2009 publication by Kumabe and Lewis to give

a simplified version of Kumabe’s original proof.

Bushy tree forcing has since become a standard tool when working with DNR and has been described [1]

as, “the canonical forcing notion used in the study of DNR functions.”

Definition VI.1.1 (n-bushy above σ). Suppose σ ∈ N∗. A tree T ⊆ N∗ is n-bushy above σ if every element

of T is compatible with σ and every τ ∈ T which extends σ is either a leaf or else has at least n immediate

extensions in T . σ is known as the stem of T .

Subsets A of N∗ for which we have many ways of extending σ to an element of A are ‘big’. Otherwise,

they are ‘small’.

Definition VI.1.2 (n-big, n-small above σ). Suppose σ ∈ N∗. A set B ⊆ N∗ is n-big above σ if there is a

finite tree T which is n-bushy tree above σ and for which its leaves lie in B.

131

If B is not n-big above σ, then B is said to be n-small above σ.

Our arguments are based on the idea that there are ‘bad’ sets of strings which we wish to avoid. If we

can ensure that those ‘bad’ sets of strings are sufficiently small, then we can construct a real X ∈ NN none

of whose initial segments lie in those ‘bad’ sets.

In [16] several fundamental combinatorial lemmas are identified which are reproduced below, sometimes

with minor modifications suited to our needs.

Lemma VI.1.3 (Concatenation Property). [16, Lemma 2.6] Suppose A ⊆ N∗ is n-big above σ and ⟨Aτ ⟩τ∈A

is a family of subsets of N∗ indexed by A. If Aτ is n-big above τ for every τ ∈ A, then ⋃τ∈T Aτ is n-big above

σ.

Proof. For each τ ∈ A, let Tτ be a finite n-bushy tree above τ all of whose leaves lie in Aτ . Let T be a finite

n-bushy tree above σ all of whose leaves lie in A. Define T̂ to be the tree obtained by taking the union of

T with the trees Tτ where τ is a leaf of T in A. We claim that T̂ is n-bushy above σ. Because every string

in T̂ extends an element of T , it follows that every string in T̂ extends σ. Now suppose ρ is a string in T̂

extending σ and which is not a leaf. We consider three cases:

Case 1: If ρ is a member of T and not a leaf of T , then the fact that T is n-bushy above σ implies it has at

least n immediate extensions in T ⊆ T̂ .

Case 2: If ρ is a leaf of T , then ρ = τ for some τ ∈ A; τ extends itself (improperly), so Tτ being n-bushy

above τ implies it is either a leaf of Tτ (and hence of T̂) or it has at least n immediate extensions in

Tτ ⊆ T̂ .

Case 3: If ρ is not a member of T , then ρ ∈ Tτ for some τ ∈ A. The argument then follows exactly as in Case

2.

It only remains to show that the leaves of T̂ lie in ⋃τ∈AAτ . Indeed, the leaves of T̂ are exactly the leaves of

Aτ for all τ ∈ A, which each lie in Aτ , respectively, and hence in ⋃τ∈AAτ .

Lemma VI.1.4 (Smallness Preservation Property). [16, Lemma 2.7] Suppose that B,C ⊆ N∗, m,n ∈ N, and

σ ∈ N∗. If B is m-small above σ and C is n-small above σ, then B ∪C is (n +m − 1)-small above σ.

Proof. Suppose for the sake of a contradiction that B∪C is not (n+m−1)-small above σ, i.e., (n+m−1)-big

above σ. Then there exists a finite tree T which is (n+m−1)-bushy above σ all of whose leaves lie in B ∪C.

We will label each element of T by either a ‘B’ or a ‘C’, starting with leaves and working our way towards

the stem σ. Label a leaf of T ‘B’ if it lies in B and ‘C’ otherwise. If an extension τ of σ in T has not been

132

labeled but all of its proper extensions have been, then label τ ‘B’ if at least m of its immediate successors

have ‘B’ label, and ‘C’ otherwise (by the pigeonhole principle, there must be at least n immediate successors

labeled ‘C’). Continue in this way until σ itself has been labeled.

If σ has been labeled ‘B’, then the set TB of all extensions of σ (along with the initial segments of σ)

labeled ‘B’ is a finite tree which is m-bushy above σ. Otherwise, the set TC of all extensions of σ (along with

the initial segments of σ) labeled ‘C’ is n-bushy above σ. In either case, we reach a contradiction.

Lemma VI.1.5 (Small Set Closure Property). [16, Lemma 2.8, essentially] Suppose B ⊆ N∗ is k-small above

σ. Let C = {τ ∈ N∗ ∣ B is k-big above τ}. Then C is k-small above σ and is k-closed, i.e., if C is k-big above

a string ρ, then ρ ∈ C.

Moreover, the upward closure of C is k-small above σ and k-closed.

Proof. Suppose for the sake of a contradiction that C is k-big above σ. Then, by Lemma VI.1.3, B is k-big

above σ, yielding a contradiction.

The same reasoning can be applied to show that if C is k-big above a string ρ, then B is k-big above ρ

and hence ρ ∈ C.

Now consider the upward closure C↑ ∶= {ρ ∈ {0,1}∗ ∣ ∃τ ∈ C (τ ⊆ ρ)} of C. The following lemma shows

that C↑ is similarly k-small above σ and k-closed.

Lemma VI.1.6. Suppose B ⊆ N∗ and σ ∈ N∗. Then B is k-big above σ if and only if its upward closure B↑

is k-big above σ.

Proof. If B is k-big above σ, then any finite k-bushy tree T above σ realizing this also shows that B↑ is k-big

above σ.

Conversely, suppose B↑ is k-big above σ, and let T be a finite k-bushy tree above σ whose leaves are

within B↑. Let

T̃ = {τ ∈ T ∣ τ ∈ B↑ ∧ τ↾ (∣τ ∣ − 1) ∉ B↑}.

T̃ is a tree, as if τ ∈ T and σ ⊂−− τ , then σ is an element of T ∖B↑, and B↑ being upward closed implies no

initial segment of σ is in B↑, so σ ∈ T̃ .

Definition VI.1.7 (k-Closure). If B ⊆ N∗ is k-small above σ, then its k-closure is the upward closure of

the set {τ ∈ N∗ ∣ B is k-big above τ}.

In addition to the above lemmas, we also collect a series of facts which either follow quickly from those

above lemmas or else follow immediately from the definitions.

133

Lemma VI.1.8. Suppose σ ∈ N∗ and B,C ⊆ N∗ are given.

(a) If B is `-big above σ and k < `, then B is k-small above σ.

(b) If B is k-small above σ and k < `, then B is `-small above σ.

(c) If B = B1 ∪B2 ∪⋯∪Bn is n ⋅ k-big above σ and n, k > 0, then there exists i ∈ {1,2, . . . , n} such that Bi

is k-big above σ.

(d) If B ⊆ C and B is k-big above σ, then C is k-big above σ.

(e) If B ⊆ C and C is k-small above σ, then B is k-small above σ.

(f) If B is k-small above σ and k-closed and C is k-big above σ, then there exists a τ ∈ C∖B which extends

σ.

Proof.

(a) If T is a finite tree which is `-bushy above σ and all of whose leaves lie in B, then T is k-bushy above

σ. Thus, B is k-big above σ.

(b) If B is `-big above σ, then (a) above shows that B is k-big above σ, a contradiction.

(c) Suppose for the sake of a contradiction that Bi is k-small above σ for every i ∈ {1,2, . . . , n}. By

repeated applications of Lemma VI.1.4 we find that B is n ⋅ k − (n − 1) = (n ⋅ (k − 1) + 1)-small above

σ. n ⋅ (k − 1) + 1 < n ⋅ k, so (a) above gives a contradiction.

(d) A finite k-bushy tree above σ whose leaves are in B is a finite k-bushy tree above σ whose leaves are

in C ⊇ B.

(e) If B is k-big above σ, then (d) above implies C is k-big above σ, a contradiction.

(f) Suppose for the sake of a contradiction that there is no τ ∈ C ∖ B extending σ. Because C is k-big

above σ, there exists a k-bushy tree T above σ all of whose leaves lie in C. But every leaf of T is an

extension of σ in C, which by hypothesis implies it lies in B, so T is a k-bushy tree above σ all of

whose leaves lie in B, contradicting the hypothesis that B is k-small above σ.

134

VI.2 Avoidance of Individual Universal Partial Recursive Functions

We wish to use what Khan & Miller term ‘basic’ bushy tree forcing [16] – in which we approximate our

generic real with finite strings – to prove the following result.

Theorem VI.2.1. For all order functions p1∶N → (1,∞) and p2∶N → (1,∞), there exists a slow-growing

order function q∶N → (1,∞) such that LUA(p1) ≰w LUA(q) ≰w LUA(p2). In particular, for any order

function p∶N → (1,∞), there exists a slow-growing order function q∶N → (1,∞) such that LUA(p) and

LUA(q) are weakly incomparable.

While our aim is to prove Theorem VI.2.1 – a statement about LUA, i.e., avoidance of the family of

linearly universal partial recursive functions – we first establish the case of avoidance of individual universal

partial recursive functions.

Theorem VI.2.2. Suppose p1∶N → (1,∞) and p2∶N → (1,∞) are order functions, u∶N → N is a strictly

increasing order function, ψ1 and ψ2 are universal partial recursive functions, and ψ3 and ψ4 are partial

recursive functions. Then there exists a order function q∶N→ (1,∞) such that q ○ u is slow-growing and

Avoidψ1(p1) ≰w Avoidψ3(q) and Avoidψ2(q ○ u) ≰w Avoidψ4(p2).

In order to make use of tools like the Parametrization and Recursion Theorems, we start by proving the

following technical result, in which the instances of Avoidψ1(p1) and Avoidψ2(q○u) are replaced with DNR(p1)

and DNR(q ○ u), respectively, where DNR may be defined with respect to any admissible enumeration.

Theorem VI.2.3. Suppose p1∶N → (1,∞) and p2∶N → (1,∞) are order functions, u∶N → N is a strictly

increasing order function, and ψ1, ψ2 are partial recursive functions. Then there exists an order function

q∶N→ (1,∞) such that q ○ u is slow-growing and

DNR(p1) ≰w Avoidψ1(q) and DNR(q ○ u) ≰w Avoidψ2(p2).

Theorem VI.2.3 shows that we can construct our desired order function q in such a way that we address

the (potentially faster-growing) function q○u concurrently, no matter how fast-growing u may be. Within the

context of deriving Theorem VI.2.2, u encapsulates the ‘translation’ from one universal function to another.

This intuition will be helpful later when we examine the situation of (sufficiently well-behaved) families

universal partial recursive functions in the place of ψ1 and ψ2 within Theorem VI.2.2, including in particular

the family of linearly universal partial recursive functions.

Proof of Theorem VI.2.2. Let ϕ● be the admissible enumeration with which DNR is defined with respect to,

and let ψ be its diagonal.

135

Because ψ1 is universal, there exists a total recursive function u1∶N → N such that ψ1 ○ u1 = ψ. u1 is

unbounded (as ψ = ψ1 ○ u1 is universal) but not necessarily nondecreasing, so let ũ1 be defined by ũ1(x) ∶=

maxi≤x u1(x). Then p1 ○ ũ1 is an order function such that p1(x) ≤ p1(ũ1(x)) for all x ∈ N, so

Avoidψ(p1 ○ ũ1) ≤s Avoidψ(p1 ○ u1) ≤s Avoidψ1(p1).

If q is found such that Avoidψ(p1 ○ ũ1) ≰w Avoidψ3(q), then Avoidψ1(p1) ≰w Avoidψ3(q).

Likewise, ψ2 being universal implies there is a total recursive function u2∶N → N such that ψ2 ○ u2 = ψ.

With ũ2(x) ∶= maxi≤x u2(x), for any order function q we have

Avoidψ(q ○ u ○ ũ2) ≤s Avoidψ(q ○ u ○ u2) ≤s Avoidψ2(q ○ u).

If q∶N→ (1,∞) is found such that Avoidψ(q ○u○ ũ) ≰w Avoidψ4(p2), then Avoidψ2(q ○u) ≰w Avoidψ4(p2). By

potentially replacing ũ2 with ũ2+ idN, we may assume without loss of generality that ũ2 is strictly increasing,

so that u ○ ũ2 is also strictly increasing.

Applying Theorem VI.2.3 to the order functions p1 ○ ũ1, p2, and u○ ũ2 and partial recursive functions ψ3,

ψ4 yields an order function q∶N→ (1,∞) such that Avoidψ(p1 ○ ũ1) ≰w Avoidψ3(q) and Avoidψ(q ○ u ○ ũ) ≰w

Avoidψ4(p2), which by our above observation is enough to complete the proof.

Consider the special case of Theorem VI.2.3 where p1 = p2 = p and ψ1 = ψ2 = ψ is the diagonal of the

admissible enumeration ϕ● with respect to which DNR is defined. q must be a slow-growing function which

cannot dominate p and also cannot be dominated by p. This suggests an approach to defining q in which

q alternates between two phases, one in which q grows slowly in comparison to p and one in which q grows

fastly in comparison to p. To ensure q ○ u is slow-growing, whenever we enter a slow-growing phase we stay

within that phase long enough to work towards ∑
∞
n=0 q(n)

−1 diverging.

In fact, our construction of q will alternate between two actions. The first action involves keeping q

constant for a sufficiently long time so that the bushy tree forcing arguments within p∗2 go through. In the

second action, q makes a sudden jump so that q passes certain watermarks infinitely often, allowing the

bushy tree forcing arguments within q∗ to go through. By staying constant sufficiently long, we can ensure

that q ○ u is slow-growing.

Proof of Theorem VI.2.3. Suppose p1 and p2 are order functions and ψ1, ψ2 are partial recursive functions.

Let ϕ● be an admissible enumeration and let ψ be its diagonal. Let ⟨Γi⟩i∈N be an effective enumeration of all

partial recursive functions Γi ∶ ⊆N∗ ×N→ N as in Proposition I.3.22(i), and assume without loss of generality

that if Γτi (n)↓ then it does so within ∣τ ∣-many steps, so that the predicate R(i, τ, n) ≡ Γτi (n)↓ is recursive.

Given X ∈ NN, ΓXi is the partial function defined by ΓXi (n) ≃ m if and only if there exists s ∈ N such that

136

ΓX↾ si (n)↓ =m.

Step 1: Defining auxiliary functions. We will define total recursive functions θ1∶N∗ × N2 → N and

θ2∶N∗ × N3 → N which will be used in the definition of q. In anticipation of using the Recursion Theorem,

one of the arguments of θ1 and θ2 will be reserved for an index e which will eventually be an index of q.

Define the partial recursive function χ1 ∶ ⊆N∗ ×N3 → N so that on input ⟨σ, i, e, x⟩, χ1 searches for a finite

tree T such that:

(i) For every τ ∈ T and every j ≤ ∣τ ∣, ϕe(j)↓ and τ(j) < ϕe(j) when j < ∣τ ∣.

(ii) T is k-bushy above σ for some k < ϕe(∣σ∣).

(iii) Γτi−1(x) converges to a common value j < p1(x) for every leaf τ of T . (For the case of i = 0, set

Γ−1 = Γ0.)

χ1(σ, i, e, x) is equal to that common value of Γτi (x) for the first such tree T found, whenever such a tree

exists. χ1 is partial recursive, so by the Parametrization Theorem, there exists a total recursive function

θ1∶N∗ ×N2 → N such that ϕθ1(σ,i,e)(x) ≃ χ1(σ, i, e, x) for all σ ∈ N∗ and i, e, x ∈ N.

Similarly, the partial recursive function χ2 ∶ ⊆N∗ × N4 → N is defined so that on input ⟨σ, i, e, x,N⟩, χ2

first attempts to compute ϕe(N), followed by verifying that N ∈ imu (denoting by n the unique element of

u−1[{N}]), then finds the least k > n such that p2(k) ≥ (ϕe(N) + 1) ⋅ p2(n), and finally searches for a finite

tree T such that:

(i) For every τ ∈ T and every j < ∣τ ∣, τ(j) < p2(j).

(ii) T is p2(n)-bushy above σ.

(iii) Γτi (x) converges to a common value j < ϕe(N) for every leaf τ of T .

χ2(σ, i, e, x,N) is equal to that common value of Γτi (x) for the first such tree T found, whenever such a tree

exists. θ2∶N∗ × N3 → N is then a total recursive function for which ϕθ2(σ,i,e,N)(x) ≃ χ2(σ, i, e, x,N) for all

σ ∈ N∗ and i, e, x,N ∈ N. We may assume without loss of generality that θ2(σ, i, e,N) ≥ ∣σ∣ for all σ ∈ N∗ and

i, e,N ∈ N.

Step 2: Defining q. Having defined θ1 and θ2, we are in a position to define q by way of a partial recursive

function Q ∶ ⊆N2 → N. To aid in its construction, we simultaneously define three other partial recursive

functions s, i,N ∶ ⊆N2 → N — s takes values in {0,1}, indicating which type of action we perform next, while

i and N keep track of our progress for one of those two actions. Write θ1(e, x) ∶= maxj<x,σ∈(ϕe)x θ1(σ, j, e),

assuming ϕe(j)↓ for all j < x.

137

Q(e,0). Define Q(e,0) ∶= 3 and s(e,0) = i(e,0) = N(e,0) ∶= 0.

Q(e, x) (x > 1). On input ⟨e, x⟩, Q attempts to compute ϕe(j), Q(e, j), s(e, j), i(e, j), and N(e, i(e, j)) for

each j < x. If and when it has done so successfully, the computation proceeds in one of two ways

depending on the value of s(e, x − 1).

Case 1: s(e, x − 1) = 0. Compute θ1(e, x) ∶= maxj<x,σ∈(ϕe)x θ1(σ, j, e), and then set

Q(e, x) ∶= p1(θ1(e, x)) ⋅Q(e, x − 1) +Q(e, x − 1) + 2.

Additionally set s(e, x) ∶= 1 and i(e, x) ∶= i(e, x − 1).

Case 2: s(e, x − 1) = 1. Write i ∶= i(e, x − 1) and Ni ∶= N(e, i). If Ni ∉ imu, then Q(e, x), s(e, x),

and i(e, x) all diverge. Otherwise, let ni ∶= u
−1(Ni). As in the definition of χ2, let k > ni be

the least natural number such that p2(k) ≥ (ϕe(Ni) + 1) ⋅ p2(ni) (k is defined because ϕe(Ni)↓

and Ni ∈ imu). Let M be the least natural number such that (I) M > maxσ∈pk2 u(θ2(σ, i, e,Ni)),

(II) M ∈ im(u), (III) and ∑Ni<u(j)<M Q(e,Ni)
−1 ≥ 1.

If the inequality Ni < x <M fails, then Q(e, x), s(e, x), and i(e, x) all diverge. Otherwise:

Subcase 1. If x <M −1, then set Q(e, x) ∶= Q(e, x−1), s(e, x) ∶= s(e, x−1), and i(e, x) ∶= i(e, x−1).

Subcase 2. If x = M − 1, then set Q(e, x) ∶= Q(e, x − 1), s(e, x) ∶= 0, i(e, x) ∶= i(e, x − 1) + 1, and

N(e, i(e, x)) ∶=M .

By the Recursion Theorem, there exists an e ∈ N such that Q(e, x) ≃ ϕe(x) for all x ∈ N. From the

construction of Q, if Q(e, j) is defined for all j < x then Q(e, x) is defined; along with the fact that Q(e,0) is

defined, it follows that ϕe is a total recursive function. The construction of N also ensures that N(e, i) ∈ imu

for all i ∈ N. We will write

q ∶= ϕe, s(x) ∶= s(e, x), i(x) ∶= i(e, x), Ni ∶= N(e, i), ni ∶= u
−1(Ni),

θ1(σ, i) ∶= θ1(σ, i, e), θ1(x) ∶= max
j<x,σ∈qx

θ1(σ, j, e), θ2(σ, i) ∶= θ2(σ, i, e,Ni).

Each of these are total recursive functions.

Both s(x) = 0 and s(x) = 1 occur for infinitely many x ∈ N. That Case 1 (s(x − 1) = 0) occurs infinitely

often implies that q is unbounded. That Case 2 (s(x − 1) = 1) occurs infinitely often implies that q ○ u is

slow-growing. In both Case 1 and Case 2, the definition of Q enforces that q(x) ≤ q(x+ 1) for all x ∈ N, so q

and q ○ u are slow-growing order functions.

Step 3: Showing Avoidψ(p1) ≰w Avoidψ1(q). We use basic bushy tree forcing. Let P be the set of all pairs

⟨σ,B⟩ ∈ q∗×P(q∗) where σ ≠ ⟨⟩ and B is k-small above σ, k-closed, and upward closed for some k ≤ q(∣σ∣−1).

138

⟨τ,C⟩ extends ⟨σ,B⟩ if σ ⊆ τ and B ⊆ C. For i ∈ N, let Di denote the set of ⟨σ,B⟩ ∈ P such that for all

X ∈ JσKq ∖ JBKq, ΓXi ∉ Avoidψ(p1).

Claim 1. For each m, Tm = {⟨σ,B⟩ ∈ P ∣ ∣σ∣ ≥m} is dense open in P.

Proof. Tm is clearly open in P. To show that Tm is dense in P, let C = {τ ∈ q∗ ∣ ∣τ ∣ ≥m}. For any string

σ, C is k-big above σ if and only if k ≤ q(∣σ∣). In particular, C is k-big above σ for all k ≤ q(∣σ∣ − 1).

Suppose ⟨σ,B⟩ ∈ P; let k ≤ q(∣σ∣ − 1) be such that B is k-small above σ and k-closed. If ∣σ∣ ≥ m, then

we are done. Otherwise, let τ be any string in C ∖B extending σ. Because B is k-closed and τ ∉ B, B

is k-small above τ . Then ⟨τ,B⟩ is an extension of ⟨σ,B⟩ in Tm.

Claim 2. If G is any filter on P, then for all ⟨σ,B⟩ ∈ G, XG ∶= ⋃{τ ∈ q∗ ∣ ∃C ⊆ q∗(⟨τ,C⟩ ∈ G)} has no initial

segment in B.

Proof. Suppose otherwise, so that there is τ ∈ B which is an initial segment of XG . By the definition of

XG , there must be a ⟨ρ′,C ′⟩ ∈ G such that ρ′ extends τ . Let ⟨ρ,C⟩ be a common extension of ⟨ρ′,C ′⟩

and ⟨σ,B⟩. Because B is upward-closed, ρ ∈ B. But B ⊆ C, so ρ ∈ C and hence C is k-big above ρ for

every k, a contradiction.

Claim 3. For all i ∈ N, Di is dense open in P.

Proof. Di is clearly open in P, so it must remains to show that Di is dense in P.

Suppose ⟨σ,B⟩ ∈ P; let k ≤ q(∣σ∣ −1) be such that B is k-small above σ. By potentially extending to an

element of Tm for an appropriate m, we can assume that ∣σ∣ > i and that in the computation of q(∣σ∣),

Case 2 occurs. Let x = ∣σ∣ and define

A = {τ ∈ q∗ ∣ Γτi (θ1(σ, i))↓ < p1(θ1(σ, i))}.

There are two cases:

Case I. Suppose A is p1(θ1(σ, i)) ⋅ q(x−1)-small above σ. Let c = p1(θ1(σ, i)) ⋅ q(x−1)+k−1, so A∪B

is c-small above σ by Lemma VI.1.4. Let C be the c-closure of A ∪ B (note that although this

c-closure is taken in N∗, A ∪B being c-big above τ implies τ ∈ q∗, so C ⊆ q∗). By definition, C is

c-small above σ, c-closed, and upward closed.

Since q(x) = p(θ1(σ, i)) ⋅ q(x−1)+ q(x−1)+2 > c and q is nondecreasing, {τ ∈ qx+1 ∣ σ ⊆ τ} is c-big

above σ. Thus, there is a string τ in qx+1 ∖ C extending σ. Because C is c-closed, it is c-small

139

above τ , and hence ⟨τ,C⟩ ∈ P (here we are also using the fact that C is upward closed). Because

A ⊆ C, ⟨τ,C⟩ ∈ D
ψ
i by virtue of Γgi being partial for any g ∈ JτKq ∖ JCKq. Because B ⊆ C and σ ⊆ τ ,

⟨τ,C⟩ extends ⟨σ,B⟩.

Case II. If A is p1(θ1(σ, i))⋅q(x−1)-big above σ, then Lemma VI.1.8(c) implies {τ ∈ q∗ ∣ Γτi (θ1(σ, i))↓ =

k} is q(x − 1)-big above σ for some k < p1(θ1(σ, i)). This implies ϕθ1(σ,i)(θ1(σ, i)) is defined. Let

τ be an extension of σ in q∗ ∖ B such that Γτi (θ1(σ, i)) = ϕθ1(σ,i)(θ1(σ, i)). Then ⟨τ,B⟩ is an

element of Di extending ⟨σ,B⟩.

Let BAvoidψ1(q) be the set of all strings in q∗ which cannot be extended to an element of Avoidψ1(q). Let

σ0 be a string of length 1 such that σ0(0) ≄ ψ1(0), if ψ1(0)↓. BAvoidψ1(q) is 2-small above σ0, upward closed,

and 2-closed, so ⟨σ0,BAvoidψ1(q)⟩ ∈ P. Let G be a filter containing ⟨σ0,BAvoidψ1(q)⟩ which meets Tm and Di

for all m, i ∈ N. Claim 1 shows that XG ∈ ∏ q, Claim 2 shows that XG ∈ Avoidψ1(q), and Claim 3 shows that

XG computes no element of Avoidψ(p1). In other words,

Avoidψ(p1) ≰w Avoidψ1(q).

Step 4: Showing Avoidψ(q ○ u) ≰w Avoidψ2(p2). We define a sequence ⟨σi,Bi⟩i∈N such that:

(i) σi ∈ p
ni
2 ∖Bi.

(ii) Bi ⊆ p
∗
2 is p2(ni)-small above σi.

(iii) For all i ∈ N, σi ⊆ σi+1 and Bi ⊆ Bi+1.

Let B1 = BAvoidψ2(p2) and σ1 an arbitrary element of pn1

2 ∖B1. (Note that p2(1) ≥ 2 and B1 is 2-small above

σ1, so in particular p2(1)-small above σ1.) Suppose σi,Bi have been constructed. Let k be as in Case 2 of

the construction of Q and let ρ be an extension of σi in pk2 ∖Bi (k ≥ ni, so pk2 is p2(ni)-big above σi). For

j < (q ○ u)(θ2(ρ, i)), let

Aj = {τ ∈ p∗2 ∣ Γτi−1(θ2(ρ, i))↓ = j}.

We have two cases, depending upon whether Aj is p2(ni)-big above ρ for some j or not.

Case 1. If Aj is p2(ni)-big above ρ for some j, then ϕθ2(ρ,i)(θ2(ρ, i)) is defined. In that case, let j′ =

ϕθ2(ρ,i)(θ2(ρ, i)), so there is a τ ∈ Aj′ ∖Bi extending ρ such that

Γτi−1(θ2(ρ, i)) = j
′
= ϕθ2(ρ,i)(θ2(ρ, i)).

Let Bi+1 = Bi and let σi+1 be any extension of τ in pni+12 ∖Bi+1.

140

Case 2. If Aj is p2(ni)-small above ρ for all j, then ⋃j Aj is (p2(ni)⋅(q○u)(θ2(ρ, i))−(q○u)(θ2(ρ, i))+1)-small

above ρ. Let

c = p2(ni) ⋅ ((q ○ u)(θ2(ρ, i)) + 1) − (q ○ u)(θ2(ρ, i))

Then C = ⋃j Aj ∪Bi is c-small above ρ.

We claim that (q○u)(ni) = (q○u)(θ2(ρ, i)). First we note the inequality k = ∣ρ∣ ≤ θ2(ρ, i) by the definition

of θ2, so thatNi < u(k) = u(∣ρ∣) ≤ θ2(ρ, i). By the definition ofNi+1, we additionally have θ2(ρ, i) < Ni+1.

The definition of q then gives q(Ni) = q(u(θ2(ρ, i))), or equivalently (q ○ u)(ni) = (q ○ u)(θ2(ρ, i)).

As a result,

p2(k) ≥ p2(ni) ⋅ ((q ○ u)(ni) + 1)

= p2(ni) ⋅ ((q ○ u)(θ2(ρ, i)) + 1)

≥ c,

so that C is p2(k)-small above ρ. Because k ≤ ni+1, C is also p2(ni+1)-small above ρ. Finally, let

Bi+1 = C and let σi+1 be any extension of ρ in pni+12 ∖Bi+1.

This completes the construction of the sequence ⟨σi,Bi⟩i∈N. Let Y ∶= ⋃i∈N σi. By construction, Y ∈

Avoidψ2(p2). Observe that within the above construction, falling into Case 1 at stage i implies ΓYi is not a

member of Avoidψ(q). In other words,

Avoidψ(q ○ u) ≰w Avoidψ2(p2).

This completes the proof.

VI.3 Avoidance of Well-Behaved Families of Universal Partial Recursive Functions

Now we turn to families of universal partial recursive functions, with the prototypical example being the

family of linearly universal partial recursive functions.

Definition VI.3.1 (translation). If ψ1 and ψ2 are universal partial recursive functions, then a translation

from ψ1 to ψ2 is a total recursive function u such that ψ1 ○ u = ψ2.

Definition VI.3.2 (translationally bounded). Fix a universal partial recursive function ψ0. We say that

a family C ⊆ NN of universal partial recursive functions is translationally bounded if there exists an order

function U ∶N→ N such that for every ψ ∈ C there is a translation from ψ to ψ0 which is dominated by U .

141

Remark VI.3.3. Being translationally bounded from above does not depend on the choice of universal partial

recursive function ψ0: Suppose C is translationally bounded with respect to ψ0, witnessed by U , and ψ1 is

another universal partial recursive function. Let v be a translation from ψ1 to ψ0, and let v be the order

function defined by v(x) ∶= maxi≤x v(i). Then U ○ v witnesses C being translationally bounded with respect

to ψ1.

Example VI.3.4. The family LU of linearly universal partial recursive functions is translationally bounded,

witnessed by the order function U = λn.n2. The same function also shows the family of the diagonals of

linear admissible enumerations of the partial recursive functions is also translationally bounded.

Example VI.3.5. Suppose F is a set of total recursive functions such that there is a recursive function U

dominating every member of F . Temporarily say that a universal partial recursive function ψ is F-universal

if for every partial recursive function θ ∶ ⊆N → N there exists a u ∈ F such that ψ ○ u = θ. Then the family C

of all F-universal partial recursive functions is translationally bounded, witnessed by U .

Particular examples include the set of linear functions, the set of recursive linearly bounded functions,

or the set of primitive recursive functions.

Lemma VI.3.6. Suppose C is a nonempty family of universal partial recursive functions which is transla-

tionally bounded, witnessed by the order function U ∶N → N. Then for all order functions p∶N → (1,∞) and

all universal partial recursive functions ψ0, Avoidψ0(p ○U) ≤w AvoidC(p).

Proof. Let X be an element of AvoidC(p), so that there is a ψ ∈ C such that X ∈ Avoidψ(p). By hypothesis,

there exists a total recursive function u∶N → N such that ψ ○ u = ψ0 and which is dominated by U . Then

Avoidψ0(p ○U) ≤s Avoidψ0(p ○ u) ≤s Avoidψ(p), so X computes a member of Avoidψ0(p ○U).

Theorem VI.3.7. Suppose p1∶N → (1,∞) and p2∶N → (1,∞) are order functions, u∶N → N is a strictly

increasing order function, C1 and C2 are nonempty families of universal partial recursive functions which

are each translationally bounded, and ψ1 and ψ2 are partial recursive functions. Then there exists an order

function q∶N→ (1,∞) such that q ○ u is slow-growing and for which

AvoidC1(p1) ≰w Avoidψ1(q) and AvoidC2(q ○ u) ≰w Avoidψ2(p2).

Proof. Let ψ be the diagonal of an acceptable enumeration of the partial recursive functions. By hypothesis,

there are order functions U1∶N → N and U2∶N → N witnessing the fact that C1 and C2 are translationally

bounded, respectively. Applying Theorem VI.2.3 to p1 ○ U1, p2, and u ○ U2 yields an order function q∶N →

(1,∞) such that q ○ u ○ U2 is slow-growing (and hence q ○ u as well), Avoidψ(p1 ○ U1) ≰w Avoidψ1(q), and

Avoidψ(q○u○U2) ≰w Avoidψ2(p2). By Lemma VI.3.6, Avoidψ(p1○U1) ≤w AvoidC1(p1) and Avoidψ(q○u○U2) ≤w

142

AvoidC2(q○u), so Avoidψ(p1○U1) ≰w Avoidψ1(q) implies AvoidC1(p1) ≰w Avoidψ1(q) and Avoidψ(q○u○U2) ≰w

Avoidψ2(p2) implies AvoidC2(q ○ u) ≰w Avoidψ2(p2).

Theorem VI.2.1 is then an easy consequence:

Proof of Theorem VI.2.1. Let p1 and p2 be order functions, u ∶= idN, C1 = C2 ∶= LU , and ψ1 = ψ2 ∶= ψ any

linearly universal partial recursive function. By Theorem VI.3.7, there is a slow-growing order function

q∶N→ (1,∞) such that LUA(p1) ≰w Avoidψ(q) and LUA(q) ≰w Avoidψ(p2). Since Avoidψ(q) ⊆ LUA(q) and

Avoidψ(p2) ⊆ LUA(p2), we find that LUA(p1) ≰w LUA(q) ≰w LUA(p2).

VI.4 Implications for LUAslow

Theorem VI.2.1 allows us to make several deductions concerning LUAslow. The first is that LUAslow is not

of deep degree:

Theorem VI.4.1. LUAslow is not of deep degree.

Proof. Suppose for the sake of a contradiction that LUAslow is weakly equivalent to a deep r.b. Π0
1 class P . We

may assume without loss of generality that P ⊆ {0,1}N. Because P is deep, taking the inverse of a modulus

of depth for P gives us an order function r∶N → N such that M(P ↾n) ≤ 2−r(n) for all n ∈ N. In particular,

M(X↾n) ≤ 2−r(n) for every X ∈ P and n ∈ N, or equivalently KA(X↾n) ≥ r(n) for every X ∈ P and n ∈ N,

i.e., every X ∈ P is strongly r-random. Thus, every X ∈ P is r-random, so P ⊆ COMPLEX(r) and hence

COMPLEX(r) ≤s P . Theorem III.1.1 shows there exists a fast-growing order function p∶N → (1,∞) such

that LUA(p) ≤s COMPLEX(r). Applying Theorem VI.2.1 yields a slow-growing order function q∶N→ (1,∞)

such that LUA(p) and LUA(q) are weakly incomparable. But LUA(q) ⊆ LUAslow and hence

LUA(p) ≤s COMPLEX(r) ≤s P ≡w LUAslow ≤s LUA(q)

giving a contradiction.

Likewise, we can show that LUAslow ≢w LUA(q) for every slow-growing order function q:

Theorem VI.4.2. There is no order function q∶N→ (1,∞) such that LUAslow ≡w LUA(q).

Proof. Suppose for the sake of a contradiction that LUAslow ≡w LUA(q). By Theorem VI.2.1, there exists a

slow-growing order function p∶N → (1,∞) such that LUA(p) and LUA(q) are weakly incomparable. But p

being slow-growing implies LUA(p) ≥s LUAslow ≡w LUA(q), a contradiction.

Similarly, we can show that SC ≰w LUAslow.

143

Theorem VI.4.3. SC ≰w LUAslow.

Proof. For each rational δ ∈ (0,1), COMPLEX(δ) ≤s SC(δ). Since
√
n ≤ δ ⋅n for almost all n, it follows that

COMPLEX(λn.
√
n) ≤w SC(δ) for all rational δ ∈ (0,1), so COMPLEX(λn.

√
n) ≤w SC. By Corollary III.1.4

there exists a fast-growing order function p∶N → (1,∞) such that LUA(p) ≤w COMPLEX(λn.
√
n). Theo-

rem VI.2.1 implies there is a slow-growing order function q∶N → (1,∞) such that LUA(p) and LUA(q) are

weakly incomparable. Thus, if SC ≤w LUAslow, then we would have

LUA(p) ≤w COMPLEX(λn.
√
n) ≤w SC ≤w LUAslow ≤w LUA(q),

yielding a contradiction.

Corollary VI.4.4. There exists a slow-growing order function q∶N→ (1,∞) such that SC ≰w LUA(q).

VI.5 Replacing Slow-Growing with Depth

The proof of Proposition II.2.2 produced admissible enumerations ϕ● and ϕ̃● such that DNR
(1)
λn.2n ≡s DNR

(2)
λx.x,

where DNR(1) is DNR defined with respect to ϕ● and DNR(2) is DNR defined with respect to ϕ̃●. For this

reason, the implications of q being ‘slow-growing’ on the weak degree of Avoidψ(q) are dependent on the

choice of ψ. In the case where ψ is linearly universal partial recursive, q is slow-growing if and only if

Avoidψ(q) is a deep r.b. Π0
1 class. With that motivation in mind, we strengthen Theorem VI.2.2, with the

depth of Avoidψ2(q ○ u) replacing slow-growing.

Theorem VI.5.1. Suppose p1∶N → (1,∞) and p2∶N → (1,∞) are order functions, u∶N → N is a strictly

increasing order function, ψ1 and ψ2 are universal partial recursive functions, and ψ3 and ψ4 are partial

recursive functions. Then there exists a order function q∶N → (1,∞) such that Avoidψ2(q ○ u) is of deep

degree and

Avoidψ1(p1) ≰w Avoidψ3(q) and Avoidψ2(q ○ u) ≰w Avoidψ4(p2).

Requiring that Avoidψ2(q ○ u) is deep is a stronger condition than simply requiring that q ○ u be slow-

growing.

Proposition VI.5.2. Suppose ψ is a universal partial recursive function and q∶N → (1,∞) is an order

function. If Avoidψ(q) is of deep degree, then q is slow-growing.

A benefit of working with linearly universal partial recursive functions rather than the diagonals of linear

admissible enumerations is that if ψ is linearly universal and ψ̃ is univeral, then we may take the translation

u from ψ to ψ̃ to be strictly increasing. Moreover, Lemma II.4.20 showed that composition with a linear

map does not affect whether an order function is fast-growing or slow-growing.

144

Proof of Proposition VI.5.2. Suppose ψ0 is a linearly universal partial recursive function and Avoidψ(q) is

of deep degree. There are a, b ∈ N such that ψ0(ax + b) ≃ ψ(x) for all x ∈ N, so let u∶N → N be defined by

u(x) ∶= ax + b for x ∈ N. Then ψ0 ○ u = ψ. Because ψ is universal, a must be nonzero (otherwise, ψ would

either be constant or undefined everywhere depending on whether ψ0(b) converges or diverges, respectively).

u is hence a strictly increasing order function.

We extend q and u to real-valued functions q∶ [0,∞) → (1,∞) and u∶ [0,∞) → [0,∞), respectively, by

letting q be linear between ⟨x, q(x)⟩ and ⟨x + 1, q(x + 1)⟩ for all x ∈ N and likewise with u. To be exact, we

define

q(x) ∶= (q(⌊x⌋ + 1) − q(⌊x⌋))(x − ⌊x⌋) + q(⌊x⌋),

u(x) ∶= (u(⌊x⌋ + 1) − u(⌊x⌋))(x − ⌊x⌋) + u(⌊x⌋).

u is strictly increasing, so its inverse u−1∶ [b,∞) → [0,∞) is defined. Finally, define q̃∶N→ (1,∞) by

q̃(x) ∶= ⌊q(u−1
(x))⌋

for all x ∈ N. q̃ ○ u is dominated by q, so Avoidψ(q) ≤w Avoidψ0(q̃).

Proposition II.4.19 implies Avoidψ0(q̃) is of deep degree, so Theorem II.4.9 implies q̃ must be slow-

growing. u−1 is a linear map, so q̃ being slow-growing implies q̃ ○u is also slow-growing by Lemma II.4.20. q

is dominated by q̃ ○ u + 1, so q is slow-growing as well.

Proof of Theorem VI.5.1. Let ψ0 be a linearly universal partial recursive function, let ϕ● be the admissible

enumeration corresponding to ψ0 as in Section II.2.2, and let ψ be the diagonal of ϕ●. Define DNR with

respect to ϕ● (i.e., so that DNR = Avoidψ). Let v∶N → N be a translation from ψ2 to ψ and let ṽ∶N → N be

a strictly increasing order function dominating v (e.g., ṽ(x) ∶= max−i ≤ xv(i) + x for x ∈ N).

Theorem VI.2.2 shows there is an order function q∶N → (1,∞) such that q ○ (u ○ ṽ) is slow-growing,

Avoidψ1(p1) ≰w Avoidψ3(q), and Avoidψ(q ○ (u ○ ṽ)) ≰w Avoidψ4(p2). Because q ○ (u ○ ṽ) is slow-growing and

ψ is linearly universal, it follows that Avoidψ(q ○ (u ○ ṽ)) is deep. Using Proposition II.4.16 and observing

that

Avoidψ(q ○ (u ○ ṽ)) ≤s Avoidψ(q ○ (u ○ v)) = Avoidψ2○v((q ○ u) ○ v) ≤s Avoidψ2(q ○ u)

shows Avoidψ2(q ○ u) is deep. Avoidψ(q ○ (u ○ ṽ)) ≰w Avoidψ4(p2) implies Avoidψ2(q ○ u) ≰w Avoidψ4(p2), so

we have found the desired q.

145

VI.6 Open Problems

Although Theorem VI.2.1 significantly expands our understanding of the relationships between the fast and

slow-growing LUA hierarchies as well as the structure of the slow-growing LUA hierarchy itself, there remain

many open problems concerning these two subjects.

For example, Theorem VI.2.1 shows that to each order function p there is a q such that LUA(p) and

LUA(q) are weakly incomparable, and hence we must have p ≰dom q and q ≰dom p, but what more can be

said?

Question VI.6.1. Given an order function p∶N→ (1,∞), what can be said about how the growth rates of the

slow-growing order functions q∶N→ (1,∞) for which LUA(p) and LUA(q) are weakly incomparable compare

to the growth rate of p? In particular, for the q defined in the proof of Theorem VI.2.1 alternates between

staying constant and making large jumps, but can we quantify the lengths of those constant periods or the

size of those jumps?

Although Theorem VI.4.2 shows that there is no slow-growing order function q for which LUAslow ≡w

LUA(q), it does not eliminate the possibility that there exist slow-growing order functions q for which

degw(LUA(q)) is minimal among the weak degrees of the slow-growing LUA hierarchy.

Question VI.6.2. Given a slow-growing order function q∶N → (1,∞), does there exist a slow-growing order

function q+∶N → (1,∞) such that LUA(q+) <w LUA(q)? If so, can we take q+ so that q ≤dom q+, and if that

is true, can we quantify how much faster-growing q+ must be than q for LUA(q+) <w LUA(q) to hold?

A related question which would address Question VI.6.2 if answered affirmative is the following:

Question VI.6.3. Given slow-growing order functions p1∶N → (1,∞) and p2∶N → (1,∞), is there a slow-

growing order function q∶N→ (1,∞) such that LUA(q) ≤w LUA(p1) ∪ LUA(p2)?

An affirmative answer to Question VI.6.3 would provide an affirmative answer to the first half of Ques-

tion VI.6.2 thanks to Theorem VI.2.1. In Question VI.6.3, we cannot add the requirement that q dominate

both p1 and p2, as there exist slow-growing order functions p1 and p2 such that max{p1, p2} is fast-growing.

A positive answer to Question VI.6.3 for p1 = idN:

Proposition VI.6.4. Suppose p is a slow-growing order function. Then There exists a slow-growing order

function q such that LUA(q) ≤s LUA(p) ∪ LUA(λn.n).

Proof. It suffices to show that q ∶= max{p, idN} is slow-growing. Define A ∶= {n ∈ N ∣ p(n) ≤ n}. If A is

finite, then idN ≤dom p, so max{p(n), n} = p(n) for almost all n, hence q is slow-growing. So suppose A

is infinite. Given n ∈ A, let m be maximal such that 2m ≤ n, so that p(2m) ≤ p(n) ≤ n ≤ 2m+1. Thus,

146

2m ⋅ 1
p(2m) ≥

1
2
. It follows that ∑

∞
m=0 2m ⋅ 1

max{p(2m),2m} = ∞. By the Cauchy Condensation Test, this implies

∑
∞
n=0 q(n)

−1 = ∞.

Corollary VI.6.5. There exists a slow-growing order function q such that LUA(q) <w LUA(λn.n).

Proof. By either Theorem VI.2.1 or combining [16, Theorem 3.11] and Lemma II.3.16, there exists a slow-

growing order function p such that LUA(p) is weakly incomparable with LUA(λn.n). By Proposition VI.6.4,

there is a slow-growing q such that LUA(q) ≤w LUA(p) ∪ LUA(λn.n), hence LUA(q) <w LUA(idN).

Theorem VI.4.3 suggests the following question:

Question VI.6.6. Can we give a natural and specific slow-growing function q∶N → (1,∞) such that SC ≰w

LUA(q)?

147

CHAPTER VII

STRUCTURE OF THE DEEP REGION OF EW

Two results stated in Section II.4 that gave some idea of the structure of the collection of deep degrees in

Ew were Proposition II.4.19, which showed that the collection forms a filter in ⟨Ew⟩, and Proposition II.4.22,

which shows that no difference random computes a member of any representative of a deep degree. The goal

of this chapter is to examine the structure of the filter of deep degrees further. Our main goal is to prove

the following main theorem.

Theorem VII.0.1. Define

Fdeep ∶= {p ∈ Ew ∣ p a deep degree}.

Fpseudo ∶= {p ∈ Ew ∣ p = inf C for some C ⊆ Fdeep}.

Fdiff ∶= {p ∈ Ew ∣ ∀P ∈ p∀X ∈MLR (∃Y ∈ P (Y ≤T X) → (0′ ≤T 0′))}.

Then Fpseudo is a principal filter while Fdeep and Fdiff are nonprincipal filters. Consequently, Fdeep ⊂−−

Fpseudo ⊂−− Fdiff .

In Section VII.1, we show that the infimum of the collection of deep degrees degw(L) lies in Ew but is

not a deep degree itself, showing the filter of deep degrees is nonprincipal.

Proposition VII.1.1. The union L of all deep Π0
1 classes is Σ0

3. Consequently, degw(L) ∈ Ew.

Theorem VII.1.2. degw(L) is not a deep degree in Ew.

In Section VII.2, we define the collection of pseudo-deep degrees in Ew and characterize it as the principal

filter generated by degw(L).

Theorem VII.2.4. {p ∈ Ew ∣ p pseudo-deep} is equal to the principal filter generated by degw(L) in ⟨Ew,≤⟩.

In Section VII.3, we show that the filters of deep degrees and pseudo-deep degrees cannot be characterized

by the property that no difference random computes a member of any representative of those degrees.

Theorem VII.3.1. There exists a Π0
1 class P which is not of pseudo-deep degree but for which no difference

random computes an element of P .

VII.1 The infimum of all deep degrees

An important observation about the collection of deep degrees is that its infimum is in Ew.

148

Proposition VII.1.1. The union L of all deep Π0
1 classes is Σ0

3. Consequently, degw(L) ∈ Ew.

Proof. Let M be a fixed universal left r.e. continuous semimeasure on N∗, and let the map ⟨s, σ⟩ ↦Ms(σ)

realize the left recursive enumerability of M, i.e., it is a recursive function N×N∗ → Q such that ⟨Ms(σ)⟩s∈N

converges monotonically to M(σ) from below for each σ ∈ N. Given e, s ∈ N, let Pe,s ∶= {X ∈ {0,1}N ∣

ϕX↾ se,s (0)↑}; ⟨Pe,s⟩s∈N is a sequence of uniformly recursive subsets whose intersection is Pe.

Claim 1. The predicate {⟨e,m, q⟩ ∣ M(Pe↾m) ≤ q} is a Π0
2 subset of N2 ×Q≥0.

Proof. The predicate {⟨e,m, q, s⟩ ∣ Ms(Pe,s↾m) ≤ q} is recursive, so it suffices to show that

M(Pe↾m) ≤ q ⇐⇒ ∀t∃s (t < s ∧Ms(Pe,s↾m) ≤ q).

This follows essentially from the observation that the sequence ⟨Ms(Pe,s↾m)⟩s∈N is eventually nonde-

creasing for all e,m ∈ N.

In the forward direction, suppose M(Pe↾m) ≤ q. Pe↾m is a finite set equal to ⋂s∈N Pe,s, so there

exists an t ∈ N such that Pe,s↾m = Pe↾m for all s > t. Thus, there are arbitrarily large s such that

Ms(Pe,s↾m) ≤ Ms(Pe↾m) ≤ q.

In the opposite direction, assume ∀t∃s (t < s ∧ Ms(Pe,s↾m) ≤ q) and suppose for the sake of a con-

tradiction that M(Pe↾m) > q. Let t be large enough so that Pe,s↾m = Pe↾m and Ms(Pe↾m) > q

for all s > t. But then for all s > t we have Ms(Pe,s↾m) > q, contradicting our assumption. Thus,

M(Pe↾m) ≤ q is a Π0
2 subset of N2 ×Q.

Claim 2. The predicate {i ∈ N ∣ ϕi is total} is a Π0
2 subset of N.

Proof. ϕi being total is equivalent to ∀n∃sϕi,s(n)↓.

Claim 3. The predicate {e ∈ N ∣ Pe is deep} is a Σ0
3 subset of N.

Proof. Pe is deep if and only if ∃i((ϕi is total)∧∀n(M(Pe↾ϕi(n)) ≤ 2−n)). By Claim 1, this is Σ0
3.

Finally,

L = ⋃{Pe ∣ Pe is deep}

= {X ∈ {0,1}N ∣ ∃e((Pe is deep) ∧X ∈ Pe)}

shows L is Σ0
3. Since L contains a nonempty Π0

1 class, the Embedding Lemma implies degw(L) ∈ Ew.

149

That LUAslow (Theorem VI.4.1) is not of deep degree shows that L is not of deep degree, further clarifying

the structure of the filter of deep degrees in Ew:

Theorem VII.1.2. degw(L) is not a deep degree in Ew.

Proof. Suppose for the sake of a contradiction that degw(L) is a deep degree in Ew. Then

degw(L) = inf{degw(P) ∣ P ⊆ {0,1}N is nonempty, deep}

≤ inf{degw(LUA(p)) ∣ p slow-growing order function}

= degw(LUAslow).

Because degw(L) is a deep degree in Ew, Proposition II.4.19 shows that degw(LUAslow) is a deep degree in

Ew, contradicting Theorem VI.4.1.

Corollary VII.1.3. The filter of deep degrees in Ew is nonprincipal.

Corollary VII.1.4. For any deep degree p ∈ Ew, there exists a deep degree q ∈ Ew such that q < p.

VII.2 The Filter of Pseudo-Deep Degrees

Motivated by L, LUAslow, and SC, we define:

Definition VII.2.1 (pseudo-deep degree in Ew). A weak degree p ∈ Ew is a pseudo-deep degree (in Ew) if p

is an infimum of deep degrees in Ew, or equivalently that there is a collection C of deep Π0
1 classes such that

p = degw(⋃C).

P ⊆ NN is of pseudo-deep degree if degw(P) is a pseudo-deep degree in Ew.

Proposition II.4.22 continues to hold for P ⊆ NN of pseudo-deep degree.

Proposition VII.2.2. Suppose P ⊆ NN is of pseudo-deep degree. If X ∈ {0,1}N is difference random, then

X computes no member of P .

Proof. Because P is of pseudo-deep degree, there is a collection C of deep Π0
1 classes such that P ≡w ⋃C.

If Y ≤T X for some Y ∈ P , then the fact that P ≡w ⋃C implies there is a Q ∈ C and a Z ∈ Q such that

Z ≤T Y ≤T X, contradicting Theorem II.4.11.

Notation VII.2.3. Let

Fdeep ∶= {p ∈ Ew ∣ p is a deep degree},

Fpseudo ∶= {p ∈ Ew ∣ p is a pseudo-deep degree}.

150

Just as Fdeep is a filter, Fpseudo also forms a filter – in fact, it is the principal filter generated by degw(L).

Theorem VII.2.4. Fpseudo is equal to the principal filter generated by degw(L) in ⟨Ew,≤⟩.

Proof. Suppose p is a pseudo-deep degree in Ew. Let C be a collection of deep Π0
1 classes such that p =

degw(⋃C). Then L ⊇ ⋃C, so degw(L) ≤ p. This shows that every pseudo-deep degree in Ew lies in the filter

generated by degw(L) in ⟨Ew,≤⟩.

Conversely, suppose degw(L) ≤ p ∈ Ew. Let P be a Π0
1 class for which p = degw(P). (Dw,≤) is completely

distributive (Proposition I.4.13(f)), so

degw(P) = sup{degw(P),degw(L)}

= sup{degw(P), inf{degw(Pe) ∣ Pe is deep}}

= inf{sup{degw(P),degw(Pe)} ∣ Pe is deep}

= inf{degw(P × Pe) ∣ Pe is deep}.

Thus, p is pseudo-deep.

Corollary VII.2.5. There is no minimal element of Fpseudo ∖ {degw(L)}..

Proof. By Theorem VII.2.4, if p is a pseudo-deep degree distinct from degw(L) then degw(L) <w p. The

Density Theorem for Ew [4, Theorem 2] shows that there exists q ∈ Ew such that degw(L) <w q <w p. A

second application of Theorem VII.2.4 shows q is a pseudo-deep degree, and hence p is not a minimal element

of Fpseudo ∖ {degw(L)}.

VII.3 The Filter of Deep Degrees in Ew and Difference Randoms

Proposition VII.2.2 shows that no difference random computes a member of any P ⊆ NN of pseudo-deep

degree. However, we can show that this does not characterize the pseudo-deep degrees.

Theorem VII.3.1. There exists a Π0
1 class P which is not of pseudo-deep degree but for which no difference

random computes an element of P .

Notation VII.3.2. Let Fdiff be the collection of all weak degrees degw(P) in Ew such that no difference

random computes a member of P .

Proposition VII.3.3. Fdiff is a filter.

Proof. Given p,q ∈ Ew, let P and Q be Π0
1 classes such that degw(P) = p and degw(Q) = q.

151

Suppose p ∈ Fdiff and p ≤ q ∈ Ew. If Y ≤T X for some Y ∈ Q, then p ≤ q implies Z ≤T Y for some Z ∈ P ,

from which we find Z ≤T X, a contradiction. Thus, q ∈ Fdiff .

Now suppose p,q ∈ Fdiff . inf{p,q} = degw(P ∪Q). As no difference random computes any member of P

or Q, no difference random computes any member of P ∪Q, i.e., inf{p,q} ∈ Fdiff .

We can show that Fpseudo ⊂−− Fdiff by showing that Fdiff is non-principal.

Theorem VII.3.4. Fdiff is non-principal.

To prove Theorem VII.3.4 we make use of the notion of KP-triviality.

Definition VII.3.5 (KP-trivial). X ∈ {0,1}N is KP-trivial if there exists c ∈ N such that KP(X↾n) ≤

KP(n) + c for all n ∈ N.

Proof of Theorem VII.3.4. Suppose q ∈ Fdiff , and let Q be a Π0
1 class such that q = degw(Q). By [3, Lemma

2], there exist r.e. sets A,B ⊆ N such that 0 <T A,B <T 0′, A ∩B = ∅ and A ∪B = 0′, and for which neither

A nor B compute any member of Q. Note that A⊕B ≡T 0′.

Lemma II.4.23 implies {A} and {B} are Π0
2, so that Q∪{A} and Q∪{B} are each Π0

2. Both sets contain

a nonempty Π0
1 class (namely, Q), so the Embedding Lemma implies there are Π0

1 classes PA and PB such

that PA ≡w Q ∪ {A} and PB ≡w Q ∪ {B}. Because neither A nor B compute any member of Q, we have

PA ≡w Q ∪ {A} <w Q and PB ≡w Q ∪ {B} <w Q.

By [6, Theorem 11.6.2], if A and B are both KP-trivial, then A ⊕ B ≡T 0′ is KP-trivial, which is a

contradiction. Thus, at least one of A and B are not KP-trivial. Without loss of generality, say that A is

not KP-trivial, and let P = PA.

Suppose X is a difference random. Proposition VII.2.2 shows that X computes no member of Q, and

if A ≤T X then [11, Corollary 3.6] implies A is KP-trivial, contrary to hypothesis. Thus, X computes no

member of Q ∪ {A}, and hence computes no member of P , showing degw(P) ∈ Fdiff . As q was an arbitrary

member of Fdiff , it follows that Fdiff is non-principal.

Proof of Theorem VII.3.1. Proposition VII.3.3 and Theorem VII.3.4 show that Fdiff is a nonprincipal filter.

By Proposition VII.2.2, Fdiff ⊆ Fpseudo, but Fpseudo being principal means this inclusion must be proper.

All these facts add up to imply Theorem VII.0.1:

Proof of Theorem VII.0.1. Corollary VII.1.3 and Theorem VII.3.4 shows that the outer two are nonprincipal,

while Theorem VII.2.4 shows the middle is. This implies that the inclusions Fdeep ⊆ Fpseudo ⊆ Fdiff must

be proper.

152

VII.4 Open questions about the filter of pseudo-deep degrees

Theorem VII.2.4 and Corollary VII.2.5 give important structural information about the filter of pseudo-deep

degrees. However, there remain open questions about that structure, especially Fpseudo ∖Fdeep.

Question VII.4.1. What is the cardinality of Fpseudo ∖Fdeep? I.e., how many pseudo-deep degrees are there

which aren’t deep degrees?

Corollary VII.2.5 puts constraints on ∣Fpseudo ∖Fdeep∣.

Proposition VII.4.2. ∣Fpseudo ∖Fdeep∣ ∈ {1,ℵ0}.

Proof. Because degw(L) ∈ Fpseudo ∖ Fdeep, we know 1 ≤ ∣Fpseudo ∖ Fdeep∣. Ew is countable, so ∣Fpseudo ∖

Fdeep∣ ≤ ℵ0.

If 1 < ∣Fpseudo ∖ Fdeep∣ < ℵ0, then Fpseudo ∖ (Fdeep ∪ {degw(L)}) has a minimal element, and such a

minimal element is a minimal element of Fpseudo ∖ {degw(L)} since Fdeep is upward-closed, contradicting

Corollary VII.2.5.

Currently, the only two pseudo-deep degrees known to not be deep are degw(L) and degw(LUAslow),

though they are not known to be distinct.

Question VII.4.3. Are L and LUAslow weakly equivalent?

Something slightly stronger than asking whether L ≡w LUAslow is the following.

Question VII.4.4. Given a deep Π0
1 class P , does there exist a slow-growing order function p∶N → (1,∞)

such that LUA(p) ≤w P?

Proposition VII.4.5.

(a) An affirmative answer to Question VII.4.4 gives an affirmative answer to Question VII.4.3.

(b) An affirmative answer to Question VII.4.4 gives an affirmative answer to Question VI.6.3, i.e., for all

slow-growing order functions p∶N→ (1,∞) and q∶N→ (1,∞) there exists a slow-growing order function

r∶N→ (1,∞) such that LUA(r) ≤w LUA(p) ∪ LUA(q).

(c) An answer to Question VII.4.1 of ‘1’ gives an affirmative answer to Question VII.4.3.

An answer to Question VII.4.1 of ‘ℵ0’ suggests further structural questions about antichains in Fpseudo ∖

Fdeep and related properties.

Question VII.4.6.

(a) Do there exist weakly incomparable elements of Fpseudo ∖Fdeep?

153

(b) Do there exist infinitely many pairwise weakly incomparable elements of Fpseudo ∖Fdeep?

(c) Is degw(L) meet-irreducible? I.e., are there no pseudo-deep degrees p,q such that inf{p,q} = degw(L)?

In contrast, if ∣Fpseudo ∖Fdeep∣ = ℵ0, then Fpseudo ∖Fdeep contains infinite chains.

One possible approach to answering Question VII.4.1 would be by showing that SC is not of deep degree,

as it is of pseudo-deep degree and we know that SC ≰w LUAslow by Theorem VI.4.3.

We observe that the known lattice theoretic properties available are not enough to determine the structure

of Fpseudo ∖Fdeep.

Remark VII.4.7. Some lattices ⟨P,≤⟩ and filters F1 ⊂−− F2 ⊆ P which give some idea of how the boundary

between Fpseudo and Fdeep might look include the following:

• Consider the lattice ⟨P,≤⟩ ∶= ⟨{S ⊆ [0,1] ∣ ∣S∣ ≤ ℵ0} ∪ {[0,1]},⊇⟩ and the filters F1 ∶= {S ⊆ [0,1] ∣ ∣S∣ <

ℵ0} and F2 = P . In this case, ∣F2 ∖F1∣ = ℵ0 and the minimum of F2, [0,1], is meet-irreducible.

• Consider the lattice ⟨P,≤⟩ ∶= ⟨{S ⊆ N ∣ ∣S∣ < ℵ0 ∨ ∣N ∖ S∣ < ℵ0},⊇⟩ and the filters F1 ∶= {S ⊆ N ∣ ∣S∣ < ℵ0}

and F2 = P . In this case, ∣F2 ∖F1∣ = ℵ0 and the minimum of F2, N, is not meet-irreducible.

154

REFERENCES

[1] Laurent Bienvenu and Ludovic Patey, Diagonally non-computable functions and fireworks, 2016.

[2] Laurent Bienvenu and Christopher P. Porter, Deep Π0
1 classes, The Bulletin of Symbolic Logic 22 (2016),

no. 2, 249–286.

[3] Stephen Binns, A splitting theorem for the Medvedev and Muchnik lattices, Mathematical Logic Quar-

terly 49 (2003), no. 4, 327–335.

[4] Stephen Binns, Richard A. Shore, and Stephen G. Simpson, Mass problems and density, Journal of

Mathematical Logic 16 (2016), no. 02, 1650006.1 – 1650006.10, 10 pages.

[5] Cristian S. Calude, Ludwig Staiger, and Sebastiaan A. Terwijn, On partial randomness, Annals of Pure

and Applied Logic 138 (2006), no. 1, 20–30.

[6] Rodney G. Downey and Denis R. Hirschfeldt, Algorithmic Randomness and Complexity, Theory and

Applications of Computability, Springer-Verlag, New York, 2010, xxviii + 855 pages.

[7] Bruno Durand, Leonid Levin, and Alexander Shen, Complex tilings, Proceedings of the Thirty-Third

Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’01, Association for

Computing Machinery, 2001, pp. 732–739.

[8] Bruno Durand, Leonid A. Levin, and Alexander Shen, Complex tilings, J. Symbolic Logic 73 (2008),

no. 2, 593–613.

[9] Noam Greenberg and Joseph S. Miller, Diagonally non-recursive functions and effective Hausdorff di-

mension, Bulletin of the London Mathematical Society 43 (2011), no. 4, 636–654.

[10] Kojiro Higuchi, WM. Phillip Hudelson, Stephen G. Simpson, and Keita Yokoyama, Propagation of

partial randomness, Annals of Pure and Applied Logic 165 (2014), no. 2, 742–758.

[11] Denis R. Hirschfeldt, André Nies, and Frank Stephan, Using random sets as oracles, Journal of the

London Mathematical Society 75 (2007), no. 3, 610–622.

[12] W. M. Phillip Hudelson, Mass problems and initial segment complexity, Journal of Symbolic Logic 79

(2014), no. 1, 20–44.

[13] WM. Phillip Hudelson, Partial randomness and Kolmogorov complexity, Ph.D. thesis, 2013, URL:

https://etda.libraries.psu.edu/files/final_submissions/8355.

155

https://etda.libraries.psu.edu/files/final_submissions/8355

[14] Carl G. Jockusch and Robert I. Soare, Π0
1 classes and degrees of theories, Transactions of the American

Mathematical Society 173 (1972), 35–56.

[15] Mushfeq Khan, Shift-complex sequences, Bull. Symbolic Logic 19 (2013), no. 2, 199–215.

[16] Mushfeq Khan and Joseph S. Miller, Forcing with bushy trees, The Bulletin of Symbolic Logic 23 (2017),

no. 2, 160–180.

[17] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan, Kolmogorov complexity and the recursion

theorem, STACS 2006 (Berlin, Heidelberg) (Bruno Durand and Wolfgang Thomas, eds.), Springer Berlin

Heidelberg, 2006, pp. 149–161.

[18] Joseph S. Miller, Two notes on subshifts, Proceedings of the American Mathematical Society 140 (2012),

no. 5, 1617–1622.

[19] , Assorted results in and about effective randomness, unpublished manuscript, 27 pages, 2020.

[20] Hartley Rogers, Godel numberings of partial recursive functions, J. Symbolic Logic 23 (1958), no. 3,

331–341.

[21] Hartley Rogers, Jr, Theory of Recursive Functions and Effective Computability, McGraw-Hill Series in

Higher Mathematics, McGraw-Hill, 1967, xix + 482 pages.

[22] A. Yu. Rumyantsev and M. A. Ushakov, Forbidden substrings, kolmogorov complexity and almost peri-

odic sequences, STACS 2006 (Berlin, Heidelberg) (Bruno Durand and Wolfgang Thomas, eds.), Springer

Berlin Heidelberg, 2006, pp. 396–407.

[23] Andrey Yu. Rumyantsev, Everywhere complex sequences and the probabilistic method, 28th International

Symposium on Theoretical Aspects of Computer Science, STACS 2011, March 10-12, 2011, Dortmund,

Germany (Thomas Schwentick and Christoph Dürr, eds.), LIPIcs, vol. 9, Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2011, pp. 464–471.

[24] Stephen G. Simpson, Mass problems and randomness, Bulletin of Symbolic Logic 11 (2005), no. 1, 1–27.

[25] , An extension of the recursively enumerable Turing degrees, Journal of the London Mathematical

Society 75 (2007), no. 2, 287–297.

[26] Stephen G. Simpson, Computability, Unsolvability, Randomness, 2009, URL: http://www.personal.

psu.edu/t20/notes/cur.pdf. Last visited on 2021/02/23.

156

http://www.personal.psu.edu/t20/notes/cur.pdf
http://www.personal.psu.edu/t20/notes/cur.pdf

[27] Stephen G. Simpson, Degrees of Unsolvability. Lectures Notes for “Mass Problems”, Spring 2009 at the

Pennsylvania State University, 2009, URL: http://www.personal.psu.edu/t20/notes/dou.pdf. Last

visited on 2019/04/19.

[28] Stephen G. Simpson, Foundations of Mathematics. Lecture Notes for “Foundations of Mathematics

i”, Fall 2009 at the Pennsylvania State University, 2009, URL: http://www.personal.psu.edu/t20/

notes/fom.pdf.

[29] Stephen G. Simpson, Turing degrees and Muchnik degrees of recursively bounded DNR functions, Com-

putability and Complexity, Springer, 2017, pp. 660–668.

[30] Robert I. Soare, Recursively Enumerable Sets and Degrees, Perspective in Mathematical Logic, Springer-

Verlag, Berlin Heidelberg, 1987, xviii + 427 pages.

[31] , Turing Computability: Theory and Applications, Theory and Applications of Computability,

Springer-Verlag, Berlin Heidelberg, 2016, xxxvi + 263 pages.

[32] A. K. Zvonkin and L. A. Levin, The complexity of finite objects and the development of the concepts of

information and randomness by means of the theory of algorithms, Russian Mathematical Surveys 25

(1970), no. 6, 83–124.

157

http://www.personal.psu.edu/t20/notes/dou.pdf
http://www.personal.psu.edu/t20/notes/fom.pdf
http://www.personal.psu.edu/t20/notes/fom.pdf

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	Introduction
	Summary of Chapters
	Basic Conventions and Notation
	Computability - Definitions, Notation, and Conventions
	(Partial) Recursive Functions and Sets
	Enumerations of the Partial Recursive Functions
	Partial Recursive Functionals
	The Arithmetical Hierarchy
	Recursive Reals and Real-Valued Functions

	Reducibility Notions
	Turing Reducibility
	Mass Problems and Weak, Strong Reducibility
	Ew and the Embedding Lemma

	Complexity, Avoidance, and Depth
	Algorithmic Randomness and Complexity
	Martin-Lof Randomness
	Partial Randomness
	Randomness and Complexity as Mass Problems
	Properties of Prefix-Free Complexity

	DNR and Avoidance
	Linearly Universal Avoidance
	Properties of Linearly Universal Partial Recursive Functions

	Fast & Slow-Growing Order Functions
	Bounding Sequences of Fast & Slow-Growing Order Functions
	More about Recursive Sums
	The Fast and Slow-Growing LUA Hierarchies

	Depth
	Depth and Difference Randoms
	Depth and Strong Reducibility
	Depth and Weak Reducibility
	Depth for non-r.b. Pi01 Sets

	Complexity and Fast-Growing Avoidance
	Extracting Fast-Growing Avoidance from Complexity
	Extracting Complexity from Fast-Growing Avoidance
	Finding Complexity Above Fast-Growing Avoidance

	Complexity and Slow-Growing Avoidance
	Partial Randomness in hN
	f-randomness and f-complexity
	Strong f-Randomness
	Relationships between randomness notions

	Randomness in hN versus {0,1}N
	Randomness in [0,1] versus {0,1}N
	Randomness in hN versus [0,1]
	Improving Greenberg & Miller's Conclusion

	Quantifying the Reduction of Avoidance to Complexity – Preliminary Case
	Quantifying the Reduction of Avoidance to Complexity – General Case
	Open Questions

	Generalized Shift Complexity
	delta-Shift Complexity as a Mass Problem
	Shift Complexity and Depth
	Shift Complexity and Avoidance

	Generalized Shift Complexity
	Generalized Shift Complexity and Depth
	Relating Generalized Shift Complexity and Complexity
	Extracting Generalized Shift Complexity from Sublinear Complexity
	Strong Shift Complexity and Depth

	Open Questions

	Avoidance – Slow-Growing versus Fast-Growing
	Bushy Trees
	Avoidance of Individual Universal Partial Recursive Functions
	Avoidance of Well-Behaved Families of Universal Partial Recursive Functions
	Implications for LUAslow
	Replacing Slow-Growing with Depth
	Open Problems

	Structure of the Deep Region of Ew
	The infimum of all deep degrees
	The Filter of Pseudo-Deep Degrees
	The Filter of Deep Degrees in Ew and Difference Randoms
	Open questions about the filter of pseudo-deep degrees

	REFERENCES

