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Chapter 1: Campaign Spending in Senate Elections: A Structural Analysis of a Two-Stage

Election with Endogenous Candidate Entry

1.1 Introduction

The effect of money on electoral outcomes has attracted much attention across the U.S. society,

among policy makers and journalists to the voters at large. In 2018, the spending of elections for

Congress topped $5.7 billion, according to CNN politics, creating the most expensive midterm as the

political battle for the control over the House and Senate. In line with a poll of representative U.S.

adults conducted by the Pew Research Center in 2018, 77% supported limits on political campaign

spending.1 Given these concerns, it becomes increasingly critical to understand to what extent campaign

spending can facilitate or impede electoral competition, especially in a representative democracy where

competitive elections are of fundamental importance.

On the other hand, politicians are strategic when deciding to seek election (Copeland (1989)).

This choice is based on a decision calculus, which incorporates the value of office, the probability of

winning, the risks and/or costs involved in seeking it, and other political and/or policy factors (see,

e.g., Jacobson and Kernell (1981), Abramson, Aldrich, and Rohde (1987), and Meserve, Pemstein,

and Bernhard (2009)). As a result, ignoring politicians’ decisions about whether to run for election

can lead to biased estimates of the influence of campaign spending. As noted by Diermeier, Keane,

and Merlo (2005), the endogenous entry of politicians is important because the selection bias induced

by politicians’ decisions whether to run for office is not negligible when studying the returns to

congressional careers. However, the existing literature rarely takes into account or analyzes formally

the role of politicians’ endogenous entry when analyzing the effect of campaign spending on elections.

This paper fills the gap, through developing and estimating a two-stage game-theoretic model to

characterize the strategic interactions among candidates and quantify the impact of campaign spending

on the U.S. Senate elections, where candidates’ participation and spending behavior is modeled as

an equilibrium result from a contest with incomplete information and endogenous entry. Therefore, I

explicitly model the entry stage by assuming that candidates strategically decide to participate in the

race (whom I call “potential candidates”). This is the first and the most important contribution of this

paper, which is to provide new evidence on how the strategic interactions among political candidates

1 The Pew Research Center reported Americans said new laws would be effective in reducing role of money in politics.

1

https://www.pewresearch.org/fact-tank/2018/05/08/most-americans-want-to-limit-campaign-spending-say-big-donors-have-greater-political-influence


affect the composition and the level of competitiveness of elections, conditioning on candidates

choosing their entry decisions endogenously.

I also model voters’ decisions using a latent utility model that combines the within-party primaries

and general elections together and that depends on candidates’ campaign spending, demographic and

economic covariates, and importantly, the election-level unobserved heterogeneity. The voter model

describes how campaign spending translates into votes, thus determining the winning probabilities of

candidates. The campaign spending, as an equilibrium outcome from the two-stage contest model,

can be potentially endogenous in the voter model. Hence, the failure to account for the unobserved

heterogeneity in the estimation of the voter model can lead to biased estimates.

Using data on the U.S. Senate elections from 1994 to 2018, I find that incumbents are more likely to

run, and upon entry they will make strictly positive spending and spend more in campaigns, compared

to challengers. Further, more campaign spending translates to larger latent utility for voters, then

leads to more votes for candidates, especially in the primary elections. The findings indicate that if

an election is more competitive with more candidates choosing to enter, these candidates that enter

will make less campaign spending since their winning probabilities are smaller relative to a contest

with fewer candidates. When deciding whether to run, more potential candidates are associated with a

larger entry cost on average and more candidates choosing to run in the following election.

The second contribution of this paper is to demonstrate the important role of primaries in the

U.S. Senate elections. The structural model allows me to characterize the role of candidate entry by

accounting for candidates’ strategic interactions in both participation and election stages. The results

show that the effect of the number of potential candidates on candidate behavior and electoral outcomes

depends on which party’s number being changed. Increasing numbers of potential candidates in both

the incumbent and opposition parties has a negative effect on campaign spending, the vote share of

incumbents in the primary, and the probability of entry, regardless of the asymmetry in the size of

the primary between two parties. However, its effect on the winning chance of incumbents in the

general or the probability of having an open-seat election is not monotonic. If letting the incumbent

be unopposed in the primary, increasing the number of potential candidates in the opposition party

does not have notable effect on the behavior of incumbents. In contrast, increasing the number of

potential candidates in the incumbent party can reduce the relative strength of incumbents, in terms of

less campaign spending, smaller winning probability in both primary and general elections, and higher

propensity of having an open-seat election. This implies that the primary election of the incumbent’s

2



party can be important in terms of improving electoral competition.

With the structural model, I also evaluate an alternative election institution, such as a top-two

primary system being used in California and Washington.2 As the third contribution of this paper, I

emphasize that incorporating the endogenous entry significantly alters the assessment of the counter-

factual format. If one ignores the participation behavior of potential candidates and treats entry as

fixed, the simulated campaign spending is larger and the winning probability of incumbents is smaller

in a top-two primary. However, once I account for strategic entry, I find that the alternative top-two

primary mechanism creates a slightly less competitive election with the entry proportion dropping by

1% compared to the within-party primary system. Moreover, although incumbents will spend relatively

more, challengers will spend much less, and total spending will fall in equilibrium by 10 percent point.

In consequence, although the top-two primary system potentially reduces the spending by candidates,

it impedes the competition level of elections to a certain degree. The failure to take into account the

strategic entry decisions of potential candidates can produce misleading implications.

Lastly, the fourth contribution of this paper lies in the structural approach, which controls for

the election-specific unobserved heterogeneity when estimating the entry and election models. The

endogeneity of campaign spending (or advertising as a main part of the spending) has drawn much

attention, when studying the effect of campaign spending on electoral outcomes, see Green and Krasno

(1988), Erikson and Palfrey (1998), Gerber (1998), Erikson and Palfrey (2000), Lau and Pomper (2002),

Gordon and Hartmann (2016), and Sovey and Green (2011) for a survey on the instrumental variables

estimation in political science, among others. In this paper, the endogeneity of candidates’ campaign

spending in the voter model is accounted for via the election-specific unobserved heterogeneity. I

introduce additional variables and possible unobserved ones that can explain electoral heterogeneity

and candidates’ participation/spending behavior, using identification strategies such as Matzkin (2003)

and Guerre, Perrigne, and Vuong (2009). Specifically, I use lagged campaign spending by Senate

incumbents and challengers, constructed by summing the spending by candidates in the previous

Senate general election in the state.

This paper is related to several branches of the literature on empirical games and political economy.

First of all, the model of candidates’ endogenous entry builds on an extensive literature on the

2 In the top two primary system, all candidates who participate in the primary election are listed on the same ballot
regardless of their party affiliations, and the top two winners of the primary proceed to the general election and compete
for office.

3



structural analysis of auction models with entry, see Li and Zheng (2009), Athey, Levin, and Seira

(2011), Krasnokutskaya (2011), Roberts and Sweeting (2013), and Gentry and Li (2014), among others.

However, political competition contest models are fairly under-developed. Theoretically papers by Fu,

Jiao, and Lu (2015) and Gu, Hehenkamp, and Leininger (2019) model players’ entry in contest models

with complete information. On the empirical side, this paper is the first one to construct a two-stage

contest model with the first stage of entry and use it to analyze the campaign spending, to the best of

my knowledge. Prior studies either treat the entry decision as an auxiliary component (Kawai and

Sunada (2015)), or use the reduced-form analysis to study political entry (Avis, Ferraz, Finan, and

Varjão (2017)).

This study also relates to a large literature on the effects of campaign spending on electoral

outcomes (e.g., Jacobson (1978), Green and Krasno (1988), Levitt (1994), Gerber (1998), Erikson and

Palfrey (2000), and Sovey and Green (2011)). Although the aforementioned findings are mixed, most

work on estimating the effect of campaign spending on elections relies on reduced-form analyses. This

paper improves our understanding of how campaign spending affects electoral competition by using a

structural estimation to account for the impact of endogenous candidate entry in a two-stage election.

More broadly, this paper builds on an extensive literature studying contests and all-pay auctions in

the context of political lobbying, campaigning, and advertising, including theoretical comparison of

the lottery and all-pay auction models of lobbying (Fang (2002)) and empirical analyses regarding

campaign spending in the U.S. House of Representatives election (He and Huang (2018)), firms’

lobbying expenditures and policy enactment (Kang (2016)), as well as advertising decisions in the U.S.

presidential elections (Gordon and Hartmann (2016)).3 Relative to the previous literature, this paper

fits in the framework of incomplete information contest model and incorporates both the endogenous

entry and primary election, in order to obtain a more complete picture of the political contest.

This paper also adds to the research using structural models to study political phenomena. For

instance, Diermeier, Eraslan, and Merlo (2003) examine the impacts of institutional features on the

government formation process and the stability of the government in West European parliamentary

democracies. Deltas, Herrera, and Polborn (2016) analyze the trade-off between learning and co-

ordination among voters, through estimating a sequential election model in the U.S. presidential

primary system. There is a growing literature studying a class of dynamic games to evaluate electoral

3 For nonparametric identification of Bayesian games, see Li, Zhang, and Zhao (2020).
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competition, e.g., Sieg and Yoon (2017) who investigate term limits in the U.S. gubernatorial elections

and Acharya, Grillo, Sugaya, and Turkel (2019) who estimate the popularity process of politicians.

This paper assumes away the dynamic evolution of campaign financing and builds a static model. By

doing so, I can focus my attention on campaign spending in the presence of candidates’ endogenous

entry and both primary and general elections, which are relatively under-studied components but of

great importance.

The rest of the paper is organized as follows. In Section 1.2, I introduce the background and the

data, along with the main variables I use for the later empirical analysis. Section 1.3 characterizes the

two-stage game-theoretic model and establishes existence of the model equilibrium. Section 1.4 is

devoted to the structural analysis of the data. Section 1.5 provides a set of counterfactual analyses.

Section 1.6 concludes. Mathematical proofs, the detailed estimation approach, and various sensitivity

analyses are gathered in the Appendix.

1.2 Background and Data

1.2.1 Data

The U.S. Senate elections are held for one class of the Senate every two years, when approximately

one third of the 100 Senators face election or reelection.4 A Senator is elected based on the plurality

rule in a general election that includes candidates from all qualified parties. Most states also hold

primary elections to decide which candidates can be on the ballot in the general election for each party.

In these states, winning office requires winning both the primary and general elections.5 Candidates’

campaign spending plays an important role in this election process.6

To determine the effects of campaign spending and candidate entry on elections, two main sources

of data are matched to each other. First, I collect the electoral results of Senate elections in the U.S.

states between 1994 and 2018, documented by the Federal Election Commission (FEC).7 This data

contains information on candidates’ vote shares in the primary and general elections, the state and

the year, as well as the incumbent status of the candidates. If there is no incumbent in a Senate

election, it is an open-seat election. I call individuals who decide to run for the Senate election the

4 Article I, section 3 of the Constitution requires that the Senate to be divided into three classes for purposes of elections.

5 I assume that candidates are office-motivated (see Adams and Merrill (2008)).

6 Here I refer to the aggregate campaign spending by candidates, thus do not differentiate between the amounts spent in the
primary and general elections. This is due to the data limitation that I only observe a total value of campaign spending.

7 The FEC website: www.fec.gov.
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set of actual candidates. Second, I obtain the data on campaign spending by candidates for the same

period, from a different source collected by FEC.8 This data provides candidates’ campaign finance

information including money raised, money spent, cash on hand and debt, together with the election

years, incumbent status, and party affiliations for every individual who raises more than $5,000 for a

race.9 Note that not every individual who appears in this data actually runs for office, because it is

required that every ongoing committee and new campaigns that raise or spend $5,000 or more must

file quarterly reports and this applies even if the candidate plans to retire, withdraws from the race

prior to the primary election, or drops out of the race prior to the general election. I call individuals

who intend to run for the election and raise at least $5,000 the set of potential candidates. As a result,

the second spending data nests the first vote data, since potential candidates may decide not to enter

into the election.

I match the vote data with the spending data by the candidates’ full names, the state and the year, as

well as the party affiliation, in order to generate the vote-spending data for the structural analysis. Since

this study mainly focuses on the Senate election in which the Democratic and the Republican parties

have within-party primaries to decide the general election’s nominations, I exclude the states where a

top-two primary system is adopted including California, Louisiana, and Washington.10 When a state

has both full-term and special elections in the same year, the corresponding spending data only has a

combined group of candidates who may attend either one of the elections, thus I cannot differentiate

between the potential groups of candidates for the full-term and special elections. In this case, I delete

both elections from the data. Some states rely on party conventions to nominate the candidates for the

general election (e.g., Connecticut), which are also removed from the data.

It is also possible that some actual candidates lack the financial data, I replace the missing spending

data by the same candidates’ spending data from two years ago or two years later. This is valid because

in the spending data it appears that the consecutive election years of each candidate have at least a

four-year gap. This implies that in general one candidate will not prepare for both Senator offices in

8 For details, see https://www.fec.gov/data/browse-data/?tab=candidates.

9 FEC defines the spending (or expenditure) as a purchase, payment, distribution, loan, advance, deposit or gift of money
or anything of value to influence a federal election. However in the finance data, I only observe the disbursement reported
by campaigns, which is a broader term that covers both the spending and other kinds of payments (those not made to
influence a federal election). Since I lack the data on the spending itself, I use the disbursement as a proxy.

10 Further, I exclude the elections with run-offs after the primary or the general elections (e.g., Alabama in some years), the
elections with electoral fusion where two or more parties on a ballot list the same candidate and such candidate’s votes
are pooled together (e.g., New York), and the elections with candidates who drop out from the race prior to the general
election that induces a replacement of one candidate in the general election (e.g., Vermont in some years).
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one state, which in turn indicates that the financial data two years before or later can serve the election

in this year, given that this candidate actually runs for this election. Lastly, since I concentrate on the

two major parties, I remove candidates from third parties (e.g., the Libertarian Party, the Green Party,

the Constitution Party) and write-in candidates.

In the end, this data set consists of 2283 potential candidates, 1679 actual candidates, and 306

elections. I complement the main vote-spending data with a collection of state-year level covariates

drawn from a variety of sources. I include: (1) local political preferences; (2) demographic and

economic variables; (3) variables that affect voters’ turnout decisions.

First, the Cook Partisan Voting Index (PVI) is a measure of how strongly a state leans toward the

Democratic or Republican party relative to the country as a whole. PVIs are calculated by comparing a

state’s average Democratic or Republican Party share of the two-party presidential vote in the past two

presidential elections to the national average share for these elections. I also include an indicator for

whether the incumbent governor’s party is the same as the President’s.

Second, I add a set of demographic and economic variables for each election year. I use the

state-level percentage of the population in three age bins (i.e., 25-44, 45-64, 65 and up) from the U.S.

Census Bureau, the state-level unemployment rate from the U.S. Bureau of Labor Statistics, and the

state-level median household income from the U.S. Census Bureau.

Third, for the sensitivity analysis where voters’ turnout is taken into account, I include variables

that should solely affect voters’ decisions to turnout in the general election. I use the data on the

state-level voting eligible population (VEP) to calculate the voter turnout, from the U.S. Elections

Project conducted by Michael P. McDonald at University of Florida. I also include the state-level

estimates of rain and snowfall on the general election dates, by taking averages of the precipitation and

snowfall from all stations within one state on the general election dates from the National Centers for

Environmental Information. Furthermore, I use a dummy variable to indicate if a presidential election

occurs in the same year.

Lastly, I correct for the endogeneity of campaign spending when estimating the voter model

by controlling for the election-specific unobserved heterogeneity, because the failure to account for

the unobserved heterogeneity will lead to biased estimates.11 In order to identify the unobserved

11 One can think of some reasons that spending levels are influenced by the unobserved electoral conditions including: the
corruption level of the local government might influence the underlying fundraising environment, which in turn affects
candidates’ spending levels; or if the state voters hold expectations of the victory, these expectations will drive spending
decisions, see Erikson and Palfrey (2000).
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heterogeneity following the identification strategies in Matzkin (2003) and Guerre, Perrigne, and

Vuong (2009), I introduce additional variable or instrumental variable (IV): lagged campaign spending,

with the exact variable being the total spending by candidates in the previous Senate general election

in the same state.12 Due to the staggered nature of the Senate elections, Senators in one state are

elected to six-year terms. Thus, the previous Senate election in one state for the other Senate seat

rarely involves the same incumbent or challenger as the current race. Therefore, the lagged campaign

spending affects the candidates’ entry and spending behavior only through the correlation between this

lagged variable and the latent fundraising environment or the underlying political climate in one state.

Table 1.1 presents the summary statistics of the data. Around 69% candidates have strictly positive

campaign spending.13 The average amount of campaign spending is about $4 million, which includes

all disbursements by a representative candidate during the election. The entry proportion, calculated as

the ratio of the number of actual candidates to the number of potential candidates for each election, is

about 0.78 on average, meaning that on average more than three quarters of the potential candidates will

decide to run for the elections. Among all 306 elections in the data, only 18% are open-seat elections,

implying that incumbents are more likely to participate in the elections. The variable PVI is assigned

positive (negative) value if the state under investigation leans toward the Republican (Democratic)

party. The lagged spending variable has a larger sample mean than the spending variable, which makes

sense because the lagged spending is defined as the sum of campaign spending by the general election

candidates in the same state’s previous Senate election, while the spending is defined for all candidates.

1.2.2 Stylized Facts

The campaign spending of actual candidates and the entry decisions of potential candidates are of

primary interest of this paper. Therefore I provide some stylized facts to indicate the patterns regarding

the behavior of candidates.

Figure 1.1 presents the (unconditional) spending distributions of incumbents and challengers in

incumbent-challenger elections and that of candidates in open-seat elections. In incumbent-challenger

elections, the spending density of incumbents is shifted rightward from that of challengers, indicating

12 This is similar to the variable used in Gerber (1998) being the lagged campaign spending by Senate incumbents and
challengers in the previous election of a state. However, this is different from the variable used by Green and Krasno
(1988), which is a candidate’s own lagged spending.

13 Candidates with zero campaign spending still receive strictly positive (but small) vote shares. When modeling candidates’
spending behavior in Section 1.3, I assume that candidates can choose not to spend if they find it unprofitable, even
though they still have a strictly positive winning chance.
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Table 1.1: Summary statistics of candidate- and election-specific variables

Observations Mean SD

Non-zero spending 1679 0.6945 0.461

Spending 1166 4.2521 7.261

No. of potential candidates 306 7.4608 4.766

No. of actual candidates 306 5.4869 3.659

Entry proportion 306 0.7785 0.211

Open-seat election 306 0.1830 0.387

PVI 306 2.0163 7.913

Governor partisanship 306 0.4379 0.497

% Aged 25-44 306 0.3071 0.030

% Aged 45-64 306 0.2782 0.061

% Aged 65 and up 306 0.1563 0.039

Unemployment rate 306 5.2964 1.870

Median household income 306 0.0589 0.009

VEP 306 3.6125 3.224

Rain (in.) 306 0.1147 0.198

Snowfall (in.) 306 0.0562 0.248

Same day as presidential election 306 0.4706 0.500

Lagged spending 306 11.8170 11.246

Notes: PVI stands for the state-year-level Cook Partisan Voting index with negative (posi-
tive) value meaning Democratic (Republican) leaning. VEP is the state-year-level voting
eligible population. The means and SDs of the variables spending, median household
income, VEP, and lagged spending are scaled down by 106.
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a higher level of campaign spending by incumbents relative to challengers on average. In open-seat

elections, the spending density of candidates is slightly shifted rightward from that of challengers

and shifted leftward from that of incumbents in incumbent-challenger elections. This implies that

candidates in open-seat elections tend to make larger campaign spending than challengers in incumbent-

challenger elections on average. However, unlike incumbents, candidates in open-seat elections and

challengers in incumbent-challenger elections have positive probabilities of making zero spending.

Figure 1.1: Spending distributions of incumbents and challengers in incumbent-challenger elections,
as well as candidates in open-seat elections

Turning to the entry behavior of potential candidates, Table 1.2 shows the means and standard

deviations of entry decisions for incumbents and challengers, where the entry decision is a dummy

that equals 1 if a potential candidate decides to run for the race and 0 otherwise. Clearly, reelection

probabilities in the Senate are indeed high, even unconditionally. However, there is still substantial

selection among challengers in terms of who run for office.

Although these observations regarding the entry and spending behavior of candidates are important,

they call for a further structural analysis if one wants to unfold the private information of actual and

potential candidates, such as their private values of holding the office and entry costs of running for

10



Table 1.2: Summary statistics of entry dummies for incumbents and challengers

Observations Mean SD

Incumbent 306 0.8170 0.387

Challenger 1977 0.7228 0.448
Notes: The entry decision of a potential candidates is a dummy variable
that equals 1 if this candidates decides to run for office and 0 otherwise.

office, and examine the impacts of covariates. By estimating a structural model, I can not only verify

the patterns, but implement counterfactual analyses as well.

1.3 The Model

I propose a two-stage game-theoretic model for the Senate election that incorporates both the entry

stage of potential candidates and the election stage of actual candidates. Hence this model describes the

strategic interactions among candidates. I also model decisions of voters in the sense that voters treat

candidates like products in a differentiated goods market. Assume there are N Democratic potential

candidates and M Republican potential candidates, corresponding to 1 ≤ n ≤ N Democratic actual

candidates and 1≤ m≤M Republican actual candidates in a generic election.

Denote the election-level heterogeneity as (X ,u), where X is the vector of observed covariates and

u is the unobserved heterogeneity.14 Throughout this section, the distributions of the entry cost and

the private value are conditional on (X ,u), but to economize on notations, I suppress the conditional

set. In the entry stage, each potential candidate holds a private entry cost for office, denoted by c.15

In the election stage, each actual candidate has a private value for office, denoted by v.16 Suppose

the distribution of the entry cost is H(·) over the support [c, c̄]⊂ R+, from which potential candidates

draw their entry costs independently at the beginning of the entry stage of one election. Suppose the

distribution of the private value is F(·) over the support [v, v̄]⊂R+, from which actual candidates draw

their private values independently prior to the election stage upon entry.17 I assume that conditional on

14 The election I refer to here is defined as the state-year-level race including both the primary and general elections.

15 I define the entry cost for a potential candidate as a reservation value (or opportunity cost suggested by Lu (2009)), with
which she compares the expected payoff of winning the election to decide whether to run for the race. Hall (2019) also
states that the cost of running for office includes the amount of salary a candidate forgoes while running. This provides a
simple way to conceptualize the endogenous entry decisions of potential candidates.

16 The private value is interpreted by Baron (1989) as the expected stream of benefits associated with winning office and
any future election opportunities if successful, which include the monetary value of winning the office, the ability to
implement preferred policies, and/or simply the “hunger” for office (see Gordon and Hartmann (2016)).

17 This implies that candidates pay the entry costs to learn their private values.
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the election-level heterogeneity (X ,u), each candidate’s entry cost and private value are independent

from each other.

1.3.1 Voters

I model the voters’ behavior to derive the winning probability of an actual candidate, assuming

that all voters vote sincerely. This winning probability is called the Contest Success Function (CSF)

in the contest literature. Let Di, i = 1, · · · ,n denote the candidates in Democratic primary, and Rk,

k = 1, · · · ,m denote the candidates in Republican primary. A representative voter receives the latent

utility, expressed as MD(Di)+ ιDi , from a Democratic candidate Di in the Democratic primary, and

the latent utility, expressed as MR(Rk) + ιRk , from a Republican candidate Rk in the Republican

primary. Turning to the general election, an arbitrary voter receives the latent utility MG(Di)+ ιDi

from a Democratic candidate Di given that she wins the Democratic primary, and the latent utility

MG(Rk)+ ιRk from a Republican candidate Rk given that she wins the Republican primary. A voter

will choose the most preferred candidate by ranking all candidates’ latent utilities.

The unmeasured components, ιDi and ιRk , capture the candidates’ ideological characteristics that

determine the policy positions during the election, which the candidates do not know at the time they

choose their campaign spending. I assume that a candidate reveals her ideological preference during

the primary, and thus this unmeasured component is identical for the primary and the general election.

The ιs are assumed to be i.i.d. and follow type-1 extreme-value distribution.18 Without loss

of generality, I focus on a representative actual candidate in the Democratic primary Di, where

i ∈ {1, · · · ,n}, and use P(DiRk) to represent the probability that this candidate Di wins the Democratic

primary and the general election with the candidate Rk as the general election opponent who wins the

Republican primary, where k ∈ {1, · · · ,m}. This probability has a closed-form expression (see Adams

and Merrill (2008)), which can be written as:

P(DiRk) =
1

∑
n
j 6=i exp(−WD j)+1+ exp(−WG)

[
∑

m
l 6=k exp(−WRl)+1

] · 1
∑

m
l 6=k exp(−WRl)+1

, (1.3.1)

where I define the differences as

WD j ≡MD(Di)−MD(D j), f or j = 1, · · · , i−1, i+1, · · · ,n;

18 This assumption is widely used in both empirical studies of voting behavior (Whitten and Palmer (1996); Gordon and
Hartmann (2016)) and theoretical models of elections (Schofield and Sened (2005); Schofield and Sened (2006); and
Adams and Merrill (2008)).
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WRl ≡MR(Rk)−MR(Rl), f or l = 1, · · · ,k−1,k+1, · · · ,m;

WG ≡MG(Di)−MG(Rk),

and the detailed derivation can be found in Appendix 1.7.1.19

The probability of a Democratic candidate Di winning both the Democratic primary and the

general election with the Republican candidate Rl as the opponent who wins the Republican primary,

denoted as P(DiRl), has similar expression, for l 6= k and l ∈ {1, · · · ,m}. Therefore the probability

of winning the final office for the Democratic candidate Di is P(Di) ≡ ∑
m
k=1 P(DiRk), given that all

these events are disjoint. As manifested in the particular forms of MD(Di) and MG(Di) (MR(Rk)

and MG(Rk)), in Section 1.4 I specify these functions to depend on the campaign spending of the

candidate eDi (eRk), coupled with the election-level heterogeneity (X ,u). Further, suppose that each

voter’s latent utility from electing a candidate is increasing with diminishing returns in the candidate’s

campaign spending.20 Finally, the probability of the candidate Di winning the office is denoted as

CSF(eDi;e−Di) = P(Di), meaning this is a CSF that depends on this candidate’s campaign spending

eDi and the spending profile of the rest actual candidates in the Democratic and Republican parties

e−Di .

1.3.2 Candidates: Election Stage

Because the entry decision of a potential candidate is based on the pre-entry expected profit, I begin

by characterizing the spending strategy in the election stage. I apply a contest model with incomplete

information to the election stage. Without loss of generality, as in the previous subsection, I consider a

representative actual candidate in the Democratic party Di with the realization of the private value vDi ,

where i ∈ {1, · · · ,n}. The Bayesian Nash equilibrium (BNE) notion is adopted. This candidate chooses

how much she wants to spend in order to alter the electoral result, which is the equilibrium strategy

given her private value vi. Recall that the CSF derived in the previous subsection is CSF(eDi;e−Di),

which determines the probability of this Democratic candidate winning the office. I define a cost

function g(·) that describes the effective cost of the campaign spending with g(0) = 0, g′(·)> 0, and

19 I also derive the probability where the turnout of voters in the general election is taken into account (see Appendix 1.7.1).

20 Thus campaign spending can “impress” the voters directly, see Grossman and Helpman (1996), Pastine and Pastine
(2002), and Gordon and Hartmann (2016).
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g′′(·)≥ 0. Thus her maximized expected payoff when she spends ei can be written as:

πDi(vDi|a−Di)≡max
eDi

vDi ·Ee−Di
[CSF(eDi;e−Di)|vDi;a−Di]−g(eDi), (1.3.2)

where, as before, eDi denotes the campaign spending of this Democratic candidate, the expectation

is taken over the campaign spending profile of the rest of actual candidates in the Democratic and

Republican parties e−Di , and

a−Di ∈ A−Di ≡ {(αD j) j 6=i, j∈N ,(αRk)k∈M}

being one possibility of the composition of the entry behavior of N−1 potential Democratic candidates

and M potential Republican candidates, where αD j = 1 (αRk = 1) if a potential candidate in the

Democratic (Republican) party decides to run for office.21

I consider a continuously differentiable and pure-strategy BNE, eDi = sDi(vDi). This Democratic

candidate has the following first-order condition (FOC) for the maximization problem:

vDi ·Ee−Di

[
∂CSF(sDi(vDi);e−Di)

∂eDi

∣∣∣∣∣vDi;a−Di

]
≤ g′(sDi(vDi)), (1.3.3)

where the derivative of CSF is with respect to the first argument and both interior and corner solutions

are allowed. When the inequality holds, the candidate will spend zero thus eDi = 0. One can think of

the private value vDi as a structural parameter translating the probability of winning into monetary

units, which places both sides of the condition (1.3.3) in equivalent terms.22 Intuitively, the FOC

balances the (monetary) value of increase in the winning probability relative to the marginal cost of

campaign spending.

1.3.3 Candidates: Entry Stage

In the beginning of the entry stage, each potential candidate knows her own entry cost, the

distribution of the entry cost H(·), and the distribution of the private value F(·). Without loss of

generality, I again focus on the potential candidate from the Democratic party Di with the entry cost

cDi , where i ∈ {1, · · · ,N}. Define the pre-entry expected payoff of this candidate as ΠDi , which is

21 In practice, it is rare that a general election only has one candidate who is unopposed. Thus when I estimate this game-
theoretic model, I assume that there is at least one actual candidate in both parties’ primary elections.

22 Alternatively, the private value vDi can be viewed as the candidate’s financial strength, which is a policy-invariant
parameter being independent of campaign fundraising (see Gordon and Hartmann (2016)).
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written as:

ΠDi ≡ ∑
a−Di∈A−Di

EvDi
[πDi(vDi|a−Di)] ·Pr(a−Di|αDi = 1),

where I integrate out the private value vDi because this candidate only draws the realization upon

entry. Pr(a−Di|αDi = 1) is the probability of the composition a−Di of entry behavior of the potential

candidates other than the candidate Di, conditional on this candidate Di entering into the election stage.

Note that this probability depends on the entry probabilities of all potential candidates. Therefore, in

equilibrium, the entry probability of this candidate, denoted by pDi is given by pDi = Pr(CDi < ΠDi).

1.3.4 Equilibrium

The equilibrium of the model consists of two parts: entry equilibrium and spending equilibrium.

The following proposition establishes existence of the model equilibrium.23

Proposition 1 In the two-stage game-theoretic model with incomplete information and endogenous

entry, there exists a pure-strategy Bayesian Nash equilibrium in continuous and strictly increasing

strategy for the election stage. There also exists a Bayesian Nash equilibrium for the entry stage, where

each potential candidate enters into the election following a threshold rule.

Proof. See Appendix 1.7.2.

To prove the existence results in Proposition 1, I follow Wasser (2013) and Ewerhart (2014) who

apply Athey (2001) for the election stage, by showing that the expected payoff of the actual candidate

exhibits decreasing differences in the private value and the campaign spending, together with the

continuity of the expected payoff. Furthermore, the existence of the entry equilibrium is equivalent

to the existence of the entry probabilities, which is shown through applying Brouwer’s fixed point

theorem (see Li and Zhang (2015)).

1.4 Structural Analysis

I estimate the game-theoretic model proposed in the previous section using data on the vote shares

of actual candidates and the campaign spending of potential candidates in the U.S. Senate elections

during 1994 and 2018. The goals are to recover the entry cost distribution H(·) and the private value

distribution F(·) in the candidate model, and to estimate the voter model. I adopt a fully parametric

23 The uniqueness of the model equilibrium is hard to prove. As in Krasnokutskaya (2011) and Gordon and Hartmann
(2016), I verify the uniqueness of the equilibrium within the estimation routine by trying different initial values to see
whether I obtain similar results.
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approach, and assume that I have an i.i.d. sample of elections, indexed by l for l ∈ {1, · · · ,L}.

1.4.1 Specifications

I use the type-2 tobit model to specify the log of campaign spending by actual candidates, taking

into consideration that the campaign spending of some candidates can be zero. The campaign spending

is modeled as following:

Iil ,l = X ′l α +ul + ε1,il ,l, il = 1, · · · ,nl,log(eil ,l) = Z′il ,lβ +ul + ε2,il ,l i f Iil ,l > 0,

eil ,l = 0 i f Iil ,l ≤ 0

where I pool the candidates in the election l together regardless of their party affiliations, with

the total number of actual candidates being nl . ul is the election-level unobserved heterogeneity.

Suppose that (ε1,il ,l,ε2,il ,l) follows a bivariate normal distribution with zero mean, variances being

σ2
1 and σ2

2 , and σ12 as the covariance, where σ1 is normalized to be 1. In the selection equation

Iil ,l = X ′l α +ul +ε1,il ,l , Xl contains the election-level covariates: a dummy variable to indicate whether

the election is open-seat (OPEN), two variables to measure the local political preference including

the Cook Partisan Voting index (PVI) and a dummy for wether the state governor is in the same

party as the President (GOV), three variables to denote the population percentage falling into three

age bins (25-44: YOUNG-PER; 45-64: MID-PER; 65 and up: OLD-PER), the state-year level

unemployment rate (UNEMP), the log of state-year level median household income (LOGINC), the

total number of potential candidates (PNCAN), and the total number of actual candidates (ANCAN).

In the log(spending) equation log(eil ,l) = Z′il ,lβ +ul + ε2,il ,l , other than the election-level covariates

in the selection equation, I include an additional dummy equal to 1 for incumbents and 0 for others

(INCUM) into Zil ,l .
24 Therefore, conditional on being strictly positive, the campaign spending of a

candidate is specified as a log-normal distribution truncated from below at zero.25

The cost function of the campaign spending g(·) in the expected payoff expression (1.3.2) is

assumed to be a linear function such that g(e) = e, as in He and Huang (2018). This leads to a cost

24 It turns out that in the data, all incumbents who run for office have non-zero campaign spending. Thus I do not include
INCUM for the selection equation.

25 In the benchmark model, I consider the case where there is no upper boundary for the campaign spending. Later in the
sensitivity analysis, I consider an extension of the benchmark model, where the campaign spending is supposed to be
bounded from above by a finite number, which is nonparametrically estimated following Guerre, Perrigne, and Vuong
(2000), see Appendix 1.7.5.
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derivative function being a constant 1 appearing in the FOC (1.3.3), which is used to back out the

private value distribution of actual candidates after obtaining the estimates of the campaign spending

distribution.26

The entry cost distribution of potential candidates is parameterized as a log-normal distribution

with mean ZC
il ,l
′
δ + ul for il = 1, · · · ,Nl with Nl potential candidates, and a constant group-specific

variance depending on whether the potential candidate is an incumbent or not, denoted as λ 2
I and λ 2

C ,

respectively.27 ZC
il ,l

includes the same covariates as Zil ,l but excluding OPEN and ANCAN, since at the

entry stage, whether the election will be open-seat or not and how many candidates will finally decide

to run have not been determined yet.

As for the voter model, I specify the latent utility for an arbitrary voter as:

uP
il ,l = γ log(1+ eil ,l)+XP

l
′
γX +ul + ιil ,l, il = 1, · · · ,nl,

for the primary election, and

uG
il ,l = ω log(1+ eil ,l)+XG

l
′
ωX +ul + ιil ,l, il = 1, · · · ,nl,

given that this candidate il wins the primary election and proceeds to the general election. Note that

adding the first three parts in the latent utility together yields MD(Di) in Section 1.3.1, taking the

Democratic candidate Di in the primary election as one example. To reduce the burden on notations,

here I pool the candidates from both parties together. In the voter model, XP
l may be different from

XG
l . An econometric issue arises when analyzing the voter model: the coefficients γX and ωX cannot

be identified. This is because when a voter compares two candidates who attend the same election

(either primary or general), the parts associated with election-level covariates are cancelled out and

only the difference of the latent utility is crucial.28 Therefore the terms XP
l
′
γX , XG

l
′
ωX , and ul being

the same for all candidates in an election are cancelled out, while I still control for the election-level

heterogeneity (both observed and unobserved).

One way to solve this issue is to introduce voters’ turnout decision in both primary and general

26 In Appendix 1.7.5, I alternatively specify a quadratic cost function as a sensitivity analysis. The results imply that
a linear cost function can characterize the structural model more accurately, because the estimated quadratic term is
essentially zero.

27 In the benchmark model, I do not distinguish between the two parties. However in the sensitivity analysis, I consider a
case with the difference between Democratic and Republican parties (see Appendix 1.7.5).

28 Recall that in Equation (1.3.1), I model the probability P(DiRk) through the differences WD j , WRl , and WG.
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elections into the voter model, as in Gordon and Hartmann (2016), in order to identify γX and ωX .29

However, this is not feasible in my case due to the data limitation that the turnout information is not

available, at least for the primary election.30 As a result, I can only identify γ and ω , which measure

how campaign spending of candidates affects their probabilities of winning in the primary and general

elections.

Last but not least, I need to control for the election-level unobserved heterogeneity ul that affects

the private value and the entry cost of candidates. This unobserved heterogeneity will in turn influence

candidates’ participation and spending behavior, and consequently the campaign spending will be

endogenous in the voter model without controlling for the unobserved heterogeneity. I use log of

lagged spending made by the candidates in the previous Senate general election in the same state as

the IV.

Denote the private value of the il-th actual candidate as vil ,l and the entry cost of the il-th potential

candidate as cil ,l in the election indexed by l. The IV being log(lagged spending)l satisfies the

exclusion restrictions: (i) vil ,l ⊥⊥ log(lagged spending)l|(Zil ,l,ul) for il = 1, · · · ,nl; and (ii) cil ,l ⊥⊥

log(lagged spending)l|(ZC
il ,l
,ul) for il = 1, · · · ,Nl . Since ul is unobserved, I follow Matzkin (2003) and

Guerre, Perrigne, and Vuong (2009) to assume that log(lagged spending)l is modeled as X IV
l
′
η +ul ,

which is strictly increasing in ul , and satisfies X IV
l ⊥⊥ ul . I additionally include two weather variables

of rain and snowfall on the general election days (PRCP and SNOW) and a dummy variable indicating

whether a presidential election occurs in the same year (PRE) in X IV
l .31

29 The data on the voter turnout in the primary elections is limited, due to three practical reasons. First, as of 2019, some
states do not ask voters to indicate their party preferences when registering, for example, Alabama, North Dakota, and
Tennessee. Thus, it is impossible to approximate the by-party voter registration figures for these states. Second, different
states adopt different types of primary elections. Some states (e.g., Arizona) use open primaries for the Senate elections,
where a voter either does not have to formally affiliate with a political party to vote in the primary, or a voter previously
affiliated with a different party can declare the party affiliation at the polls on the day of primary. Some states (e.g.,
Delaware) use closed primaries where voters have to formally affiliate with a political party before the election date
to participate in the party’s primary. Other states also use other kinds of primaries, such as semi-closed primaries and
the non-partisan top-two primaries. Thus, due to the large variations of the primary election types, even with the total
numbers of by-party voter registrations in the primaries, there is no clear rule about how to calculate the voting eligible
population for the primary elections. Third, It is also invalid to use the information on eligible voters in general elections,
since usually there are much more voters who turnout in the general elections compared to the primaries.

30 In the sensitivity analysis (see Appendix 1.7.5), I consider an extension of the benchmark model, where with the
availability of the turnout information of the voters for each state’s general election, I generate the probability of a
candidate winning both the primary and general elections, in which the parameter ωX can be identified and estimated.

31 As a reminder, a constant term is included in all specifications (CONST).

18



1.4.2 Estimation Method

In summary, I have a multi-stage structural model, which contains three parts: the voter model, the

election model, and the entry model. To estimate the election model, I account for the left-censored

campaign spending, which produces two parts: the selection part and the spending level part.

I adopt a multi-stage estimation method for the structural model, given the specifications.32

In the first step, I regress the log(lagged spending)l on X IV
l to estimate η via the ordinary linear

squares regression (OLS), and obtain the residuals as estimates for ul , the election-level unobserved

heterogeneity. In the second step, together with the estimated unobserved heterogeneity for each

election, I use the data on campaign spending of all candidates who actually run for the Senate elections

to estimate the parameters in the spending model: α , β , σ2, and σ12, through the maximum likelihood

estimation (MLE). In the third step, I use MLE to estimate the parameters in the voter model, i.e., γ and

ω . In order to recover the private value distribution, I follow Jofre-Bonet and Pesendorfer (2003) and

Athey, Levin, and Seira (2011) to estimate the value density after obtaining the pseudo private value

from the FOC (1.3.3) and the simulated campaign spending. With the estimates of the spending and

voter models, together with the estimated unobserved heterogeneity, I simulate the expected payoff for

each potential candidate at the entry stage, and follow Li and Zhang (2015) to estimate the distribution

of the entry cost, in order to get the estimates for δ and two λ s. Therefore, the parameter vector being

estimated is defined as θ = (η ;α,β ,σ2,σ12;γ,ω;δ ,λI,λC).

Only the subset of challengers is used to estimate the selection part of the campaign spending model,

because incumbents surely spend non-zero in campaigns given that they enter into the elections. For

each possible composition of actual candidates when estimating the entry model, I use 500 repetitions

to simulate the expected payoffs, where the expectation in the first-order condition is calculated with

200 simulations.

1.4.3 Estimation Results

Table 1.3 summarizes the results of the structural analysis.33 The first two columns show the

estimates for the selection part of the campaign spending model together with the covariance matrix

of the two errors, thus (α̂, σ̂2, σ̂12). The third and fourth columns correspond to the log(spending)

equation of the campaign spending model, thus β̂ . The estimated standard deviation of the error in the

32 The details of the estimation method can be found in Appendix 1.7.3.

33 The estimates of the first stage (i.e., η̂) are reported in Appendix 1.7.4, which are of second-order importance.
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log(spending) equation is about 2.47, and the estimated covariance of the two errors in the selection

equation and in the log(spending) equation is about 1.42, which yields an estimated correlation

coefficient being around 0.58. A positive correlation coefficient means that the decision of making

non-zero spending and the amount of spending of a candidate are positively correlated.

I now turn to the effects of explanatory variables. Incumbents will make non-zero campaign

spending once they decide to run for the race, and the amount of spending is larger compared

to challengers in Senate elections. If one election is open-seat, candidates tend to have a higher

probability to make non-zero spending, and the amount of such spending tends to be larger, because

candidates may think that without the incumbency advantage from the established reputation, they can

have a larger chance of winning the office. I then focus on the estimated coefficients on the number of

potential candidates and the number of actual candidates. Less actual candidates induce both a higher

probability of making non-zero spending and a larger amount of spending, because actual candidates

want to increase their winning chance in a less competitive environment where the marginal benefit of

campaign spending can be larger than the marginal cost. The coefficient on the number of potential

candidates is positive, being insignificant in the selection equation and significant in the log(spending)

equation. However, since changing the number of potential candidates will accordingly influence the

number of actual candidates, the impact of the number of potential candidates on spending remains

unclear and has to be analyzed by incorporating the entry model.

For most of the covariates I include in the spending model specification, the signs in the selection

equation and those in the log(spending) equation are the same. The only exceptions are the percent

of population aged 25-44 and the unemployment rate. However, the estimated coefficients of these

two variables are not significant. The log of median household income has a significant and positive

coefficient in the log(spending) equation, indicating that in a relatively richer economy candidates are

capable of making larger amounts of campaign spending.

The fifth and sixth columns present the estimated results for the voter model, i.e., (γ̂, ω̂). These

two parameters measure the marginal effects of campaign spending on the winning probabilities in

the primary and general elections, respectively. Both estimates being positive implies that campaign

spending has a positive effect on the candidates’ winning probabilities, which means that voters

appreciate the money candidates spend and may view it as something positively related to candidates’

ability or valence, which is unobserved in practice. Note that ω̂ > γ̂ ,meaning that in the general

election, voters appreciate campaign spending more, compared to the primary election, given the same
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amount of spending. However, since the specification of the latent utility for voters entails the log

of one plus campaign spending, one needs to compare the effect of campaign spending on votes in

the primaries to that in the general elections by taking account of the different amounts of campaign

spending made by primary and general candidates. Therefore I calculate the average marginal effects

of campaign spending on votes in the primary and general elections, which are 0.0511 and 0.0047

respectively.34 This may indicate in the primaries candidates are more substitutive relative to the

general elections, thus the campaign spending by candidates in the primary election is a bit more

effective on average.

The last two columns give the estimates in the entry model, thus (δ̂ , λ̂ I, λ̂C). First of all, incumbents

have larger expected entry costs, compared to challengers. In footnote 15, I model the entry stage of

potential candidates by referring entry cost to reservation value. This interpretation helps explain the

higher entry probabilities by incumbents, which are consistent with the observed data. Specifically,

incumbents may hold higher expectation regarding the value of holding the office, which turns to

larger reservation value meaning that only when the expected payoff of winning the office exceeds the

reservation value, they will decide to run.35 Therefore, in Section 1.2.2, the reason that incumbents

have higher entry probabilities is not because they have lower expected entry costs, but rather they can

have higher expected payoffs if they win the office. Further, the standard deviation of entry costs for

incumbents is marginally smaller than that of challengers in the entry cost distribution, which suggests

that incumbents have a more concentrated entry cost distribution. Thus although incumbents have

larger entry costs compared to challengers, among incumbents the difference of entry costs is not as

large as that among challengers. Most of the estimated coefficients of the covariates have the expected

signs, but the effects are insignificant. Specifically, the effect of the number of potential candidates

on expected entry costs is positive (though insignificant). However since changing this number will

affect the number of actual candidates that further has a significant effect on campaign spending, which

in turn influences the entry behavior of potential candidates, it is still uncertain how the number of

potential candidates affects outcomes in the entry stage, which will be studied in Section 1.5.1.

An important component in the structural analysis is the equilibrium strategy function mapping

34 Evaluated at the means of campaign spending by primary and general candidates, which are 2.8 million and 7.4 million
respectively, the marginal effects of campaign spending on latent utilities of voters are around 5.74 and 2.98 (both scaled
up by 108) in the primary and general elections respectively.

35 This is also consistent with the outcomes in Diermeier, Keane, and Merlo (2005), stating that the returns to outside
opportunities depend on congressional experience. Hence incumbents hold higher opportunity costs.
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Table 1.3: Estimation results from structural analysis
Spending: selection equation Spending: log(spending) equation Voter Entry

Estimate Sd. error Estimate Sd. error Estimate Sd. error Estimate Sd. error

σ2 2.4708 0.073

σ12 1.4211 0.224

γ 0.1631 0.005

ω 0.2203 0.014

λI 0.4391 0.023

λC 0.5278 0.013

INCUM 4.0523 0.173 0.3627 0.112

OPEN 0.3867 0.151 1.2969 0.192

PVI −0.0082 0.009 −0.0097 0.012 0.0009 0.009

GOV −0.1739 0.133 −0.0971 0.153 0.0603 0.143

YOUNG-PER 0.8538 2.511 −1.6093 2.897 −4.0242 2.696

MID-PER −0.9982 1.675 −0.0710 2.151 2.4293 2.043

OLD-PER 0.1881 2.595 4.6085 3.364 −5.6572 3.192

UNEMP 0.0001 0.046 −0.0304 0.054 −0.0372 0.058

LOGINC 0.4749 0.555 1.8120 0.661 0.1646 0.521

PNCAN 0.0322 0.030 0.1346 0.036 0.0031 0.014

ANCAN −0.0779 0.033 −0.2865 0.040

CONST −4.4034 5.998 −7.6213 7.172 0.4723 5.770

Notes: For explanatory variables, estimated coefficients in corresponding specifications are reported. The estimated results are obtained through the estimation method described in Section 1.4.2.
Sd. errors are obtained through 500 nonparametric bootstrap at the election level.

from the private value to the campaign spending in a given Senate election. This equilibrium strategy

function can be different depending on the status of a candidate, whose private value following a

type-specific distribution. I simulate the equilibrium strategy functions and the private value densities

for the incumbent, the challenger from the opposition party, and the challenger from the incumbent

party, using 200 draws, for the election indexed 1 in the data as a representation (this is not an open-seat

election), shown in Figure 1.2. I also simulate the equilibrium strategy functions and the private value

densities for the candidates from two parties in an open-seat election (indexed 19) as shown in Figure

1.3.

Figure 1.2 presents the equilibrium strategy functions and the private value densities in an

incumbent-challenger election. Apparently, the equilibrium strategy function is strictly increasing for

all candidates. Comparing the curves for the incumbent and for the two types of challengers, it is

clear that incumbents value the office more than the challengers, and thus are willing to spend more to

raise their winning probabilities. As the sub-figure 1.2b indicates, the distribution of the opposition

party challenger’s value is slightly shifted leftward from that of the incumbent party challenger’s value,

which indicates that on average the challengers in the incumbent party have slightly larger values
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(a) Incumbent (b) Challenger

Figure 1.2: Simulated strategy functions and value distributions for incumbent and challengers in a
representative incumbent-challenger election

relative to the challengers in the opposition party probably due to a more appealing office with the

existence of the incumbent. However, the scales of private values for the two types of challengers

are similar, but the challengers from the opposition party seem to spend more. Remember that this

representative election is not an open-seat election. Therefore challengers from the incumbent party

may think they have a smaller chance of winning the primary election facing an incumbent, thus

reducing their spending.

I now turn to the open-seat election. Figure 1.3 gives the equilibrium strategy functions and

the private value distributions for candidates from the incumbent and opposition parties. Although

there is no incumbent participating in the election, I still define the parties as above for the ease of

illustration and comparison. Now the distribution of the opposition party candidate’s value is slightly

shifted rightward from that of the incumbent party challenger’s value, but the two distributions are

still comparable. This is probably because without the incumbent, the challengers from the opposition

party now have larger values in a battleground. The scales of private value and campaign spending

of candidates in an open-seat election are comparable to those of incumbents, and much bigger than

those of challengers in an incumbent-challenger election. Although there are differences between

candidates from both parties, the differences are not large proportionally when compared to the case

with the existence of an incumbent. In this representative open-seat election, it appears that candidates

in the opposition party spend relatively more than those in the incumbent party. This can be potentially

explained by the impression of candidates from the opposition party that it is possible to flip the state

if the incumbent decides not to run, because the state may be at the margin.

23



Figure 1.3: Simulated strategy functions and value distributions for candidates in a representative
open-seat election
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In Appendix 1.7.5, I conduct a series of extensive sensitivity analyses, including considering the

turnout of voters in the general elections (Appendix 1.7.5), a truncated spending distribution from

above (Appendix 1.7.5), taking into account the difference between two political parties (Appendix

1.7.5), a quadratic cost function (Appendix 1.7.5), an alternative voter model specification (Appendix

1.7.5), including time-specific constants in all specifications (Appendix 1.7.5), as well as adding a

dummy variable that is assigned one for the period of post-2008 and zero for that of pre-2008 to the

specifications in the model (Appendix 1.7.5). I find the results are robust to these sensitivity analyses.

1.4.4 Model Fit

To assess the fit of the model, I employ the in-sample prediction, where I use the estimates from

the structural analysis to simulate the data and calculate some key moments displayed in Table 1.4.

The predicted first moments of some key features of the model are reported in order to compare with

the observed counterparts through 500 simulations, together with the simulated standard errors. The

overall fit of the predicted data to the actual data is good in both the level and the trend.

Table 1.4 shows the actual and predicted moments regarding the spending model, the voter model,

and the entry model. In particular, the campaign spending distribution simulated from the estimated

structural parameters fits the observed data well. The spending made by incumbents is a bit larger

in the simulation, but in both predicted and actual data the spending of incumbents is always larger

than that of challengers. For the voter model, I simulate the moments of vote shares of incumbents

in the primary and general elections, to echo the specification where I attach importance to how

incumbents behave differently from challengers in Senate elections. The vote shares of incumbents are

on average larger in the within-party primaries, revealed in both predicted and actual data. This can

also be reflected via the ratio of incumbent-challenger elections (either primary or general) incumbents

win. I report the predicted means of the number of actual candidates, the entry proportion, and the

proportion of open-seat elections for the entry model. Typically, I predict the entry patterns well, with

slightly larger entry probabilities that lead to both bigger entry proportion and larger number of actual

candidates. The percentage of open-seat elections is predicted to be slightly smaller, because I predict

the campaign spending mean to be larger for incumbents that is associated with more expected payoff

and higher entry probability of incumbents.
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Table 1.4: Model fit results
Spending Voter Entry

Predicted Observed Predicted Observed Predicted Observed

Non-zero spending 0.6901 0.6945
(0.009)

Spending 4.6132 4.2521
(0.326)

Spending of incumbents 12.168 9.4280
(1.239)

Spending of challengers 2.8793 2.8395
(0.271)

Vote shares of incumbents 0.7925 0.8840
in primary elections (0.008)

Primary elections incumbents win 0.9144 0.9820
(0.017)

Vote shares of incumbents 0.7633 0.6016
in general elections (0.011)

General elections incumbents win 0.8966 0.8440
(0.019)

No. of actual candidates 5.8939 5.4869
(0.060)

Entry proportion 0.8227 0.7785
(0.008)

Open-seat election 0.1038 0.1830
(0.017)

Notes: The simulated standard errors are reported in parenthesis. The predicted and observed figures for spending, spending of incumbents, and
spending of challengers are scaled down by 106.
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1.5 Counterfactual Analyses

I use the estimation results to conduct two sets of counterfactual analyses to demonstrate the

importance of accounting for the endogenous entry of candidates and to compare the effects of

proposed institutional reforms.

1.5.1 The Role of Entry

In the structural analysis, the number of potential candidates is exogenous as I define potential

candidates as those who file reports about campaign financing and thus appear in the spending data.

In this counterfactual analysis, I investigate the impacts of varying the number potential candidates

on the spending, vote and entry results. To compare behavior in alternative environments, I do so for

representative elections. I first select two elections with different degrees of asymmetries between two

parties: Election one has 9 challengers in both incumbent and opposition parties (indexed 21 in the

data); Election two has 19 challengers in the incumbent party and 10 challengers in the opposition party

(indexed 107). I assess the effects of decreasing (and increasing) the numbers of potential candidates

in both incumbent and opposition parties (denoted as N and M) in the left panels of Figure 1.4 on

spending outcomes, Figure 1.5 on vote outcomes, and Figure 1.6 on entry outcomes via simulations.
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Figure 1.4: The effects of varying the number of potential candidates on spending outcomes
(scaled down by 106)
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Figure 1.5: The effects of varying the number of potential candidates on vote outcomes for
incumbents
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Despite different degrees of asymmetries between two parties in Election one and Election two, the

profiles present similar patterns regarding the spending, voting, and entry outcomes. When the numbers

of potential candidates in both incumbent and opposition parties increase, the non-zero spending ratio

and the spending level decrease on average, regardless of the candidate status, as shown in the left panel

of Figure 1.4. The reason that the non-zero spending ratio decreases is that the candidate with any level

of private type will decrease the spending, corresponding to a homogenous effect. Moreover, increasing

the numbers of potential candidates in both incumbent and opposition parties has a negative effect on

the entry proportion and a positive effect on the number of actual candidates, because more potential

candidates lead to larger entry cost and smaller entry probability on average, which in turn results

in larger number of actual candidates (thus a more competitive environment) when combined with

more potential candidates (see the left panel of Figure 1.6). In contrast, the impact on the probability

of being an open-seat election is not monotonic, reflecting the combined effects of smaller spending

by both incumbents and challengers. Turning to the vote outcomes in the left panel of Figure 1.5

where I focus on the incumbent, increasing the numbers of potential candidates in both incumbent and

opposition parties only has a decreasing effect on the vote share of the incumbent in the primary, due

to more actual candidates in the election. However, the effects on the primary winning probability,

the vote share in the general, and the general winning probability are volatile, consistent with the

non-monotonic pattern on the probability of having an open-seat election.

Next, I investigate two new elections: Election three has no challengers in the incumbent party and

13 challengers in the opposition party (indexed 29); Election four has 5 challengers in the incumbent

party and 15 challengers in the opposition party (indexed 40), and redo the above analysis. This time, I

only decrease (and increase) the number of potential candidates in the opposition party for Election

three, thus keeping the incumbent being unopposed in the primary. For Election four, I decrease (and

increase) the number of potential candidates in the incumbent party. The simulated outcomes are

exhibited in the right panels of Figure 1.4, Figure 1.5, and Figure 1.6.

The results indicate different effects of varying the number of potential candidates in the oppo-

sition or the incumbent party. If letting the incumbent be unopposed in the primary (as in Election

three), increasing the number of potential candidates in the opposition party does not have notable or

monotonic effects on the non-zero spending ratio and the average spending level. Because there is no

challenger in the incumbent party, the primary vote share and the probability of winning primary for

the incumbent remain 1 while the probability of having an open-seat election remains 0. The general
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Figure 1.6: The effects of varying the number of potential candidates on entry outcomes
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vote outcomes for the incumbent appear steady. Putting together, this implies stable entry behavior

of the incumbent. In contrast, challengers experience non-monotonically decreasing spending and

monotonically decreasing entry probability on average, resulting in decreasing entry proportion and

increasing number of actual candidates on average. In summary, varying the number of potential

candidates in the opposition party does not change the behavior of the incumbent much.

On the other hand, if holding the opposition party unchanged (as in Election four), increasing

the number of potential candidates in the incumbent party can reduce the non-zero spending ratio

and the average spending level. In terms of the scale, the incumbent’s spending decreases more

compared to challengers. This is consistent with the vote outcomes showing that the incumbent’s vote

shares and winning chances of the primary and general elections are decreasing. The entry outcomes

also corroborate the relatively stronger challengers and weaker incumbent as the number of potential

candidates in the incumbent party increases, since the entry proportion is almost unchanged but the

probability of having an open-seat election is increasing. Furthermore, more potential candidates

induce more actual candidates. In summary, a more effective way to bring in more competitiveness

to the election from more challengers who confront the incumbent is to introduce more potential

candidates in the incumbent party’s primary, but not the opposition party’s primary.36

1.5.2 Top-Two Primary

In this subsection, I implement a top-two primary system counterfactual in which all candidates

who participate in the primary election are listed on the same ballot, and the top two winners of

the primary proceed to the general election and compete for office.37 This counterfactual admits a

different form of CSF that determines the winner of the election. Under the design of this paper, the

candidate who has the highest winning probability in the primary will also possess the highest winning

probability in the general election. Thus the CSF in the top-two primary can be presented by the usual

multinomial logit form.

36 This indication complements what is found in Hirano and Snyder (2014) who emphasize the importance of the primary
election in safe constituencies where one party’s candidate will have a large advantage in the general election. I further
suggest that increasing the number of potential candidates in the incumbent party that is always the advantaged party can
bring in more competitiveness to the election.

37 Recently, several states have incorporated alternative primary system into their governing constitutions: the top-two
primaries. For example, Washington passed a new primary system in 2004 and implemented the top-two primary, which
applies to federal, state, and local elections, from 2008. Moreover, California started using the top-two primary system
(excluding presidential elections) in 2012. Louisiana also enacted the top-two primary system from as early as 1975,
which differs from those of Washington and California because if one candidate receives more than 50% of the total vote
in the primary, that candidate is declared the winner and no runoff election is held.
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As in Section 1.4.3, I present the equilibrium strategy functions for different types of candidates in

a representative incumbent-challenger election and a representative open-seat election. Using the same

incumbent-challenger election as in Figure 1.2, I draw the equilibrium strategy functions under the

counterfactual setting in Figure 1.7.38

(a) Incumbent (b) Challenger

Figure 1.7: Simulated strategy functions in the top-two primary system for incumbent and
challengers in a representative incumbent-challenger election

Figure 1.7 compares the simulated strategy functions in the counterfactual framework (lines of

dashes and dots) and in the benchmark model (solid lines). It appears that the change of the spending

behavior in the counterfactual is different depending on the candidate status. For incumbents, they

spend more under the top-two primary system; while for challengers of both types, they spend less in

the counterfactual equilibrium. The scale of change is also worth discussing. Although incumbents

tend to spend more, the increasing magnitude is not large, compared to the decreasing magnitude of

challengers, where they tend to spend much less. This is because under the top-two primary system,

voters face more choices in the primary election, thus incumbency advantage may be amplified in the

early stage of the election. Challengers from both parties think their chance of advancing to the general

election is lower with the existence of an incumbent and more candidates, and consequently reduce

their spending, because spending is less effective in the primary and they find it less beneficial to spend

too much. On the other hand, the incumbent spends a bit more, in order to lock the win. However,

38 It is valid to compare the equilibrium strategies for the same election, though the entry behavior of potential candidate may
change due to different expected payoffs under different primary systems, which leads to different composition of actual
candidates under different systems. This is because the entry equilibrium in the current model setup is characterized
by entry probabilities of potential candidates. Therefore, the observed composition in the actual data is assigned with
different probabilities under different primary systems. And this will not affect how I compare the equilibrium strategy
functions in the benchmark model and in the counterfactual analysis, given the composition of actual candidates.
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since the marginal effect of spending on winning is diminishing and the incumbent’s spending level is

already high, she will not spend too much more.

Similarly, using the same open-seat election as in Figure 1.3, I plot the equilibrium strategy

functions under the counterfactual setting in Figure 1.8.

Figure 1.8: Simulated strategy functions in the top-two primary system for candidates in a
representative open-seat election

Figure 1.8 depicts the simulated equilibrium strategy functions under the top-two primary system

that are shown in lines of dashes and dots, where the equilibriums in the benchmark model are included

via solid lines. In this case, candidates in open-seat election will spend less if the primary election

takes the form of the top-two system. However, the magnitude of change is not large relative to the

scale in the open-seat election.

I use the numerical routine to simulate the first moments of the same key features in the spending,

voter, and/or entry models as in Section 1.4.4 under two different scenarios: (i) I hold entry fixed at the

benchmark level that is observed from the data; and (ii) I allow entry to adjust with a different primary

system where potential candidates decide whether they will run for office endogenously. Table 1.5 and

Table 1.6 report the simulated results under these two scenarios.
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Table 1.5: Counterfactual: top-two primary with fixed entry

Spending Voter

Non-zero spending 0.6901
(0.031)

Spending 5.7620
(0.898)

Spending of incumbents 15.265
(2.589)

Spending of challengers 1.5780
(0.428)

Vote shares of incumbents 0.4107
in elections (0.014)

Elections incumbents win 0.8170
(0.027)

Notes: The simulated standard errors are reported in parenthesis.
The figures for spending, spending of incumbents, and spending of
challengers are scaled down by 106.

First of all, if I study the campaign spending by incumbents and challengers separately, I find that

on average incumbents spend more and challengers spend less in the counterfactual model regardless

of fixed or endogenous entry. This is consistent with Figure 1.7 and Figure 1.8 above. However, the

average campaign spending appears differently conditional on fixed or endogenous entry. With fixed

entry, the average campaign spending increases under the alternative top-two primary system; while

with endogenous entry, the average spending is smaller.39 With fixed entry, the campaign spending of

candidates regardless of the candidate status is on average larger than that when entry is endogenous.

The reason is probably that with endogenous entry, candidates can choose to not run for office if they

find it unworthy. But if entry is fixed, they can only increase their spending level more to offset some

cost because they cannot secede.

As for the voter model, note that in the counterfactual model the incumbent who wins the top-two

primary election will have the highest winning probability and receive the highest vote shares in the

39 Sparks (2018) analyzes the state legislative general elections in California and Washington, which include both two-party
and one-party elections under the top-two primary setting, and finds that increasing challenger campaign spending will
generate greater vote share per dollar spent in one-party than two-party contests, as the expenditure made by challengers
facing same-party opponents is more effective due to the absence of differentiating party labels in one-party elections.
However, in the counterfactual analysis, I do not change how voters appreciate the campaign spending by candidates
(i.e., γ̂ and ω̂).
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Table 1.6: Counterfactual: top-two primary with endogenous entry

Spending Voter Entry

Non-zero spending 0.6900
(0.029)

Spending 4.1648
(1.865)

Spending of incumbents 13.117
(0.421)

Spending of challengers 1.2405
(0.620)

Vote shares of incumbents 0.4329
in elections (0.062)

Elections incumbents win 0.8947
(0.096)

No. of actual candidates 5.8237
(0.064)

Entry proportion 0.8154
(0.008)

Open-seat election 0.1053
(0.017)

Notes: The simulated standard errors are reported in parenthesis. The figures for
spending, spending of incumbents, and spending of challengers are scaled down by
106.

36



general election, thus win the office eventually. As a result, I only report the vote shares of incumbents

in primary elections and the ratio of incumbent-challenger primary elections incumbents win, which

are more informative. Compared with the benchmark model, in the counterfactual the average vote

share of incumbents drops drastically, regardless of fixed or endogenous entry. This is because under

the new system, excess candidates reduce the votes the incumbent can obtain.40 However, the ratio of

primary elections incumbents win remains stable with endogenous entry. When entry is fixed, this ratio

decreases marginally. When entry is endogenous, since incumbents who decide to run for the race on

average have larger spending, their winning chance is still high compared to challengers, thus resulting

in similar probability that an election is won by the incumbent. When entry is fixed, those incumbents

who find entry unworthy cannot drop out and thus have lower chance of winning the primaries on

average.

I next turn to the entry model in Table 1.6. Compared with the benchmark model, the entry

proportion and the number of actual candidates are slightly smaller, while the ratio of open-seat

elections is higher, all due to the smaller entry probabilities of candidates. The differences are rather

modest compared to those in the spending model. This can be explained by the equilibrium behavior

of candidates. In the counterfactual model, the candidate who seeks to maximize her expected payoff

will adjust her spending level in order to balance between the expected chance of winning and the

cost of the spending, upon entry. Therefore, although the equilibrium spending made by the candidate

changes significantly regardless of the candidate status, the resulting change in the entry equilibrium is

attenuated because the adjusted expected payoff’s change is attenuated.

In conclusion, the top-two primary system may give voters more choices in the primary, but at the

cost of reducing their choices in the general election, where usually more voters participate. From

this perspective, the top-two primary system may not lead to more competition in the election. With

fixed entry, I find that campaign spending increases on average despite that challengers reduce their

spending levels, and that average winning probability of incumbents is marginally smaller compared

to the benchmark model. However, when endogenous entry is accounted for, the results show that

on average the top-two primary system leads to relatively less campaign spending of candidates, and

40 In Beck and Henrickson (2013), they also find that the switch to the top-two primary reduces the likelihood of having
multiple Democratic candidates in a race, but does not have a significant result on that of Republican candidates in
Washington State Legislative Primaries in 2004, 2006, 2008, and 2010. This can be explained by that since the votes in
the top-two primary are split within one party with excess candidates, that party may end up with no candidates in the
general election.
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similar winning chance of incumbents. More importantly, with endogenous entry, this primary system

seems to have a negative effect on the entry probabilities of candidates. Therefore, this implies that it

is important to take into account the endogenous entry of potential candidates.41

1.6 Conclusion

In this paper, I develop and estimate a two-stage game-theoretic contest model to quantify the effect

of campaign spending on electoral outcomes given endogenous candidate entry, using data on the

U.S. Senate elections from 1994 to 2018. The model consists of two stages, with the first entry stage

where potential candidates decide whether to run for the race, and the second election stage where

actual candidates attend a Senate election with both within-party primaries and a general election and

choose the spending in campaigns strategically. I also specify voters’ decisions via a latent utility

model that depends on candidates’ campaign spending, demographic and economic covariates, and

the election-specific unobserved heterogeneity. Taking the structural approach, I obtain estimates of

parameters in the spending model for actual candidates, which can be used to simulate the equilibrium

strategy function in the election stage. I also get the estimates of parameters in the voter model, which

indicate how the campaign spending translates into votes. The estimated entry cost distribution is

helpful to characterize the entry behavior of potential candidates.

I find that incumbents tend to have larger private values of the office, spend more in campaigns, and

enter more frequently into the election, compared to challengers. When incumbent does not participate

in the election, actual candidates have larger amount of campaign spending. I also find that a more

competitive election can induce the candidates to spend less, because they have a smaller chance to

win the office upon entry. For voters, candidates with more campaign spending are appreciated more

by voters, especially in the primary elections, thus enhancing their winning probabilities of the race.

The impact of the number of potential candidates is examined through simulations. The main insight is

that in the entry stage prior to the election, more potential candidates can generate larger entry cost on

average and more actual candidates in the following election.

Moreover, how the number of potential candidates influences campaign spending and vote outcomes

depends on which party’s number being changed. Increasing numbers of potential candidates in both

41 Although beyond the scope of this paper, the top-two primary system also affects the ideological position of the selected
winner. For example, Amorós, Puy, and Martı́nez (2016) conduct a theoretical analysis with candidate entry and both
primary and general elections and show that top-two primaries contribute to political moderation. Bullock and Clinton
(2011) find that the blanket primary appears to produce more moderate representatives only in less partisan districts in
the U.S. House of Representatives and California Assembly.
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incumbent and opposition parties has negative effects on campaign spending, the vote share of

incumbents in the primary, and entry proportion on average, regardless of the degree of asymmetry in

the size of the primary between two parties. However, its effect on the winning chance of incumbents in

the general or the probability of having an open-seat election is not monotonic. If letting the incumbent

being unopposed in the primary, increasing the number of potential candidates in the opposition party

does not have notable effect on the behavior of incumbents. In contrast, increasing the number of

potential candidates in the incumbent party can reduce the relative strength of incumbents, in terms of

less campaign spending, smaller winning probability in both primary and general, and lower propensity

of incumbent entry. This implies that the incumbent party’s primary election can be important in terms

of improving electoral competition via introducing more challengers to confront the incumbent.

I then use the structural estimates to conduct the counterfactual analysis and study the top-two

primary system. The results show that although the top-two primary system gives voters more choices

in the primary, in the general election where more voters participate the choice set is more restricted.

Because candidates have smaller entry probabilities, this alternative primary system induces less

competition in the Senate election. Further, in this counterfactual, while incumbents will spend slightly

more, challengers will spend much less in campaigns, which on average can generate a smaller amount

of campaign spending. Importantly, when the participation behavior of potential candidates is ignored

and entry is assumed to be fixed, the campaign spending appears to increase and the winning probability

of incumbents is smaller in the alternative top-two format, both compared to the benchmark results,

thus indicating opposite patterns compared to the situation with endogenous entry. This reveals the key

role of endogenous entry in the analysis.

1.7 Appendix

1.7.1 The Derivation of CSF in the Voter Model

Under the assumptions in Section 1.3.1, I show how to derive the winning probability, or the

CSF for a representative actual candidate Di from Democratic party, with Rk being the opponent in

the general election from the Republican party, where i ∈ {1, · · · ,n} and k ∈ {1, · · · ,m} (see Web

Supplement of Adams and Merrill (2008)). I use the notations appearing in the main text, and first

consider the benchmark model where the turnout of voters in the general election is ruled out.

Fix i and k. The winning probability as a joint probability is expressed as following:

P(DiRk)
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=Pr


MD(Di)+ ιDi > MD(D j)+ ιD j , j = 1, · · · , i−1, i+1, · · · ,n;

MR(Rk)+ ιRk > MR(Rl)+ ιRl , l = 1, · · · ,k−1,k+1, · · · ,m;

MG(Di)+ ιDi > MG(Rk)+ ιRk



=Pr


ιD j < ιDi +MD(Di)−MD(D j), j = 1, · · · , i−1, i+1, · · · ,n;

ιRl < ιRk +MR(Rk)−MR(Rl), l = 1, · · · ,k−1,k+1, · · · ,m;

ιRk < ιDi +MG(Di)−MG(Rk)



=Pr


ιD j < ιDi +WD j , j = 1, · · · , i−1, i+1, · · · ,n;

ιRl < ιRk +WRl , l = 1, · · · ,k−1,k+1, · · · ,m;

ιRk < ιDi +WG

 .

Given ιDi and ιRk , this joint probability can be written as:

P(DiRk|ιDi, ιRk) =

∏
n
j 6=i FD j(ιDi +WD j)×∏

m
l 6=k FRl(ιRk +WRl), if ιRk < ιDi +WG

0, otherwise
.

Integrating out ιDi and ιRk , I get the joint probability written as the following:

P(DiRk) =
∫

∞

−∞

n

∏
j 6=i

FD j(ιDi +WD j)× fDi(ιDi)×
∫

ιDi+WG

−∞

m

∏
l 6=k

FRl(ιRk +WRl)× fRk(ιRk) dιRkdιDi.

Let s = ιDi and t = ιRk , I have

P(DiRk) =
∫

∞

−∞

exp[−e−s
n

∑
j 6=i

e−WD j ] · exp[−e−s]e−s ·
∫ s+WG

−∞

exp[−e−t
m

∑
l 6=k

e−WRl ] · exp[−e−t ]e−t dtds.

I first derive the inner part of the double integral:∫ s+WG

−∞

m

∏
l 6=k

exp[−e−t
m

∑
l 6=k

e−WRl ] · exp[−e−t ]e−t dt

e−t=u
=

∫
∞

e−(s+WG)
exp[−u(

m

∑
l 6=k

e−WRl +1)] du

=
exp[−e−(s+WG)(∑m

l 6=k e−WRl +1)]

∑
m
l 6=k e−WRl +1

.

Therefore,

P(DiRk)
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=
∫

∞

−∞

exp[−e−s(
n

∑
j 6=i

e−WD j +1)] · exp[−e−se−WG(
m

∑
l 6=k

e−WRl +1)]e−sds · 1

∑
m
l 6=k e−WRl +1

=
∫

∞

−∞

exp[−e−s(
n

∑
j 6=i

e−WD j +1+ e−WG(
m

∑
l 6=k

e−WRl +1))]e−sds · 1

∑
m
l 6=k e−WRl +1

e−s=v
=

∫
∞

0
exp[−v(

n

∑
j 6=i

e−WD j +1+ e−WG(
m

∑
l 6=k

e−WRl +1))]dv · 1

∑
m
l 6=k e−WRl +1

=
1

∑
n
j 6=i exp(−WD j)+1+ exp(−WG)

[
∑

m
l 6=k exp(−WRl)+1

] · 1
∑

m
l 6=k exp(−WRl)+1

.

Next, I consider the extension where the turnout of voters in the general election is included. If

a voter does not turnout for the general election, I assume that she receives a utility of ιG0 from the

outside good. This ιG0 follows type-1 extreme-value distribution, independent from all other ιs.

In this case, the winning probability of the representative Democratic party candidate Di is then:

P(DiRk)

=Pr



MD(Di)+ ιDi > MD(D j)+ ιD j , j = 1, · · · , i−1, i+1, · · · ,n

MR(Rk)+ ιRk > MR(Rl)+ ιRl , l = 1, · · · ,k−1,k+1, · · · ,m;

MG(Di)+ ιDi > MG(Rk)+ ιRk ;

MG(Di)+ ιDi > ιG0



=Pr



ιD j < ιDi +MD(Di)−MD(D j), j = 1, · · · , i−1, i+1, · · · ,n;

ιRl < ιRk +MR(Rk)−MR(Rl), l = 1, · · · ,k−1,k+1, · · · ,m;

ιRk < ιDi +MG(Di)−MG(Rk);

ι0 < ιDi +MG(Di)



=Pr



ιD j < ιDi +WD j , j = 1, · · · , i−1, i+1, · · · ,n;

ιRl < ιRk +WRl , l = 1, · · · ,k−1,k+1, · · · ,m;

ιRk < ιDi +WG;

ιG0 < ιDi +MG(Di)


.

Given ιDi and ιRk , this joint probability can be written as:

P(DiRk|ιDi, ιRk) =

∏
n
j 6=i FD j(ιDi +WD j)×∏

m
l 6=k FRl(ιRk +WRl)××FG0(ιDi +MG(Di)), if ιRk < ιDi +WG

0, otherwise
.
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Integrating out ιDi and ιRk , I get the joint probability expressed as the following:

P(DiRk)

=
∫

∞

−∞

n

∏
j 6=i

FD j(ιDi +WD j)×FG0(ιDi +MG(Di))× fDi(ιDi)×
∫

ιDi+WG

−∞

m

∏
l 6=k

FRl(ιRk +WRl)× fRk(ιRk) dιRkdιDi.

Let s = ιDi and t = ιRk , I have

P(DiRk)

=
∫

∞

−∞

exp[−e−s
n

∑
j 6=i

e−WD j ] · exp[−e−se−MG(Di)] · exp[−e−s]e−s ·
∫ s+WG

−∞

exp[−e−t
m

∑
l 6=k

e−WRl ] · exp[−e−t ]e−t dtds.

The inner part of the double integral remains the same as before:∫ s+WG

−∞

m

∏
l 6=k

exp[−e−t
m

∑
l 6=k

e−WRl ] · exp[−e−t ]e−t dt =
exp[−e−(s+WG)(∑m

l 6=k e−WRl +1)]

∑
m
l 6=k e−WRl +1

.

Therefore,

P(DiRk)

=
∫

∞

−∞

exp[−e−s(
n

∑
j 6=i

e−WD j + e−MG(Di)+1)] · exp[−e−se−WG(
m

∑
l 6=k

e−WRl +1)]e−sds · 1

∑
m
l 6=k e−WRl +1

=
∫

∞

−∞

exp[−e−s(
n

∑
j 6=i

e−WD j + e−MG(Di)+1+ e−WG(
m

∑
l 6=k

e−WRl +1))]e−sds · 1

∑
m
l 6=k e−WRl +1

e−s=v
=

∫
∞

0
exp[−v(

n

∑
j 6=i

e−WD j + e−MG(Di)+1+ e−WG(
m

∑
l 6=k

e−WRl +1))]dv · 1

∑
m
l 6=k e−WRl +1

=
1

∑
n
j 6=i exp(−WD j)+ e−MG(Di)+1+ exp(−WG)

[
∑

m
l 6=k exp(−WRl)+1

] · 1
∑

m
l 6=k exp(−WRl)+1

.

1.7.2 Proof of Proposition 1

In order to show the existence of the election stage equilibrium, I apply results by Athey (2001),

which are also used in Wasser (2013) and Ewerhart (2014) for the private information contest models

with different forms of CSFs. Without loss of generality, as in the main text, I focus on a representative

actual candidate from the Democratic party Di, for i ∈ {1, · · · ,n}. Her expected payoff when she

spends eDi is

πDi(vDi|a−Di)≡max
eDi

vDi ·Ee−Di
[CSF(eDi;e−Di)|vDi;a−Di]−g(eDi),
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whose second order derivative ∂ 2πDi/∂vDi∂eDi is ∂Ee−Di
[CSF(eDi;e−Di)|vDi;a−Di]/∂eDi . With the

interchangeability of the integration and the differentiation, I next show that ∂CSF(eDi;e−Di)/∂eDi ≥ 0,

in order to show that ∂ 2πDi/∂vDi∂eDi ≥ 0.

Note that CSF(eDi;e−Di) =P(Di) =∑
m
k=1 P(DiRk). Thus it suffices to show that ∂P(DiRk)/∂eDi ≥

0 for k ∈ {1, · · · ,m}, where recall that

P(DiRk) =
1

∑
n
j 6=i exp(−WD j)+1+ exp(−WG)

[
∑

m
l 6=k exp(−WRl)+1

] · 1
∑

m
l 6=k exp(−WRl)+1

,

and recall that the differences are defined as

WD j ≡MD(Di)−MD(D j), f or j = 1, · · · , i−1, i+1, · · · ,n;

WRl ≡MR(Rk)−MR(Rl), f or l = 1, · · · ,k−1,k+1, · · · ,m;

WG ≡MG(Di)−MG(Rk).

I can rewrite the probability P(DiRk) as follows:

P(DiRk) =
1

∑
n
j 6=i exp(−WD j)+1+ exp(−WG)

[
∑

m
l 6=k exp(−WRl)+1

] · 1
∑

m
l 6=k exp(−WRl)+1

=
1

∑
n
j 6=i exp(−WD j)+1

· 1
∑

m
l 6=k exp(−WRl)+1

·
∑

n
j 6=i exp(−WD j)+1

∑
n
j 6=i exp(−WD j)+1+ exp(−WG)

[
∑

m
l 6=k exp(−WRl)+1

]
=

exp(MD(Di))

∑
n
j=1 exp(MD(D j))

· exp(MR(Rk))

∑
m
l=1 exp(MR(Rl))

· exp(MG(Di))

exp(MG(Di))+ exp(MG(Rk))
∑

m
l 6=k exp(−WRl )+1

∑
n
j 6=i exp(−WD j )+1

=Ppri(Di) ·Ppri(Rk) ·
exp(MG(Di))

exp(MG(Di))+ exp(MG(Rk))
Ppri(Di)
Ppri(Rk)

,

where Ppri(Di)≡ exp(MD(Di))/∑
n
j=1 exp(MD(D j)) denoting the probability of the candidate Di win-

ning the Democratic primary election, and Ppri(Rk)≡ exp(MR(Rk))/∑
m
l=1 exp(MR(Rl)) denoting the

probability of the candidate Rk winning the Republican primary election.

Therefore, the derivative ∂P(DiRk)/∂eDi can be written as follows via the total derivative rule:

∂P(DiRk)

∂eDi

=
∂P(DiRk)

∂Ppri(Di)

∂Ppri(Di)

∂exp(MD(Di))

∂exp(MD(Di))

∂eDi

+
∂P(DiRk)

∂exp(MG(Di))

∂exp(MG(Di))

∂eDi

.

Note that

∂P(DiRk)

∂Ppri(Di)
= Ppri(Rk)

 exp(MG(Di))

exp(MG(Di))+ exp(MG(Rk))
Ppri(Di)
Ppri(Rk)

2

,
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∂Ppri(Di)

∂exp(MD(Di))
=

∑ j 6=i exp(MD(D j))(
∑

n
j=1 exp(MD(D j))

)2 ,

∂exp(MD(Di))

∂eDi

= exp(MD(Di))
∂MD(Di)

∂eDi

,

∂P(DiRk)

∂exp(MG(Di))
= Ppri(Di)Ppri(Rk)

exp(MG(Rk))
Ppri(Di)
Ppri(Rk)(

exp(MG(Di))+ exp(MG(Rk))
Ppri(Di)
Ppri(Rk)

)2 ,

∂exp(MG(Di))

∂eDi

= exp(MG(Di))
∂MG(Di)

∂eDi

,

and each of the terms above is positive, by noting that the voter’s latent utility from electing a candidate

is increasing with diminishing returns in the candidate’s campaign spending thus ∂MD(Di)/∂eDi

and ∂MG(Di)/∂eDi are both positive. Hence, the Single crossing condition for games of incomplete

information in Athey (2001) is satisfied. And existence of an equilibrium in nondecreasing strategy is

established where eDi = sDi(vDi).

Next I turn to the entry stage, recall that for the representative Democratic potential candidate Di,

i ∈ {1, · · · ,N}, the entry probability is given by pDi = Pr(CDi < ΠDi), where ΠDi depends on the entry

probabilities of all potential candidates. Therefore, if I stack the entry probability decision rules of all

potential candidates together, it forms a mapping from [0,1]N+M → [0,1]N+M, which is continuous

in the vector of all entry probabilities. A fixed point of the vector of all potential candidates follows

Brouwer’s fixed point theorem.

1.7.3 Omitted Details of the Estimation Method

I derive the log-likelihood function of the non-negative campaign spending distribution for the

representative election indexed by l, where the notations follow those in Section 1.4.1:

log(Ll) =∑
nl,0

log
(
1−Φ(X ′l α +ul)

)

+∑
nl,1

logΦ


1√

1− σ2
12

σ2
2

[
X ′l α +ul +σ12σ

−2
2
(
log(eil ,l)−Z′il ,lβ −ul

)]
+∑

nl,1

φ

(
log(eil ,l)−Z′il ,lβ −ul

σ2

)
−nl,1 log(σ2)−∑

nl,1

log(eil ,l),

where nl,0 denotes the zero campaign spending, and nl,1 denotes the non-zero campaign spending in

election l; and Φ(·) and φ(·) are the CDF and PDF of the standard normal distribution. Remember
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that the incumbent always spends strictly positive amount in the data.

I next show how to estimate the voter model through MLE via a two-step procedure where the

primary voter model and the general voter model are estimated separately. First of all, for a given

election where the Democratic candidate Di and the Republican candidate Rk compete in the general

election, with Di being the winner, the probability is given by:

P(DiRk) = Ppri(Di) ·Ppri(Rk) ·
exp(MG(Di))

exp(MG(Di))+ exp(MG(Rk))
Ppri(Di)
Ppri(Rk)

,

and it is already shown in Appendix 1.7.2 that ∂P(DiRk)/∂Ppri(Di) is positive. Further,

∂P(DiRk)

∂Ppri(Rk)
= Ppri(Di)

 exp(MG(Di))

exp(MG(Di))+ exp(MG(Rk))
Ppri(Di)
Ppri(Rk)

+
exp(MG(Rk))

Ppri(Di)
Ppri(Rk)(

exp(MG(Di))+ exp(MG(Rk))
Ppri(Di)
Ppri(Rk)

)2

 ,

which is also positive. Therefore, to maximize the log-likelihood function, I first pool all the primary

elections together and maximize the corresponding log-likelihood function; I then use the estimated

winning probabilities of the primary elections and maximize the log-likelihood function for the general

elections. The log-likelihoods of the two-party primaries for the representative election are as follows:

log(Lpri,D) =
n

∑
j=1

votD j

(
γ log(1+ eD j)

)
− log

(
n

∑
j=1

exp
(
γ log(1+ eD j)

))
,

log(Lpri,R) =
m

∑
l=1

votRl (γ log(1+ eRl))− log

(
m

∑
l=1

exp(γ log(1+ eRl))

)
,

and the log-likelihood of the general election is as follows:

log(Lgen) =votDi

[
ω log(1+ eDi)− log

(
exp(ω log(1+ eDi))+ exp(ω log(1+ eRk))

Ppri(Di)

Ppri(Rk)

)]
+ votRk

[
ω log(1+ eRk)− log

(
exp(ω log(1+ eRk))+ exp(ω log(1+ eDi))

Ppri(Rk)

Ppri(Di)

)]
,

where for this representative election, the Democratic primary log-likelihood function is log(Lpri,D)

with the winner being Di and for each candidate D j the vote share is votD j and the campaign spending

is eD j ; and the Republican primary log-likelihood function is log(Lpri,R) with the winner being Rk and

for each candidate Rl the vote share is votRl and the campaign spending is eRl . For the general election,

log(Lgen) denotes the log-likelihood, where votDi and votRk represent the vote shares of the general

election candidates. Note that in the general election’s log-likelihood function, Ppri(Rk) and Ppri(Di)

can be estimated through MLE of the primary elections.
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As for the entry stage, I need to compute the equilibrium entry probabilities that are fixed points

determined by pDi = Pr(CDi < ΠDi) for a representative potential candidate Di from the Democratic

party, for example. The estimation of the entry cost distribution thus includes two loops: the inner

loop that uses fixed point finder to solve for the equilibrium entry probabilities, and the outer loop that

uses the nonlinear least squares regression (NLS) to estimate the entry model parameters, both relying

on the entry equilibrium decision rule. Since this estimation method is computationally intensive, I

follow Li and Zhang (2015) and change the loop order. For the initial values of the equilibrium entry

probabilities, I adopt a reduced-form probit model; I then estimate the parameters given the entry

probabilities, and update the entry probabilities via fixed point finder. With the new entry probabilities,

I estimate the parameters again. I repeat the above procedure until the estimates of parameters and the

equilibrium entry probabilities converge.

Lastly, for the inference, I adopt a clustered bootstrap method at the election-level following

Marmer and Shneyerov (2012), in order to correct for the multi-step estimation procedure.

1.7.4 First Stage Results

In this Appendix, I report the estimated results from the first stage regression of the IV, i.e.,

log(lagged spending) from the previous Senate election in the same state, on explanatory variables,

which is modeled as a linear function X IV
l
′
η + ul . The main purpose of this estimation stage is to

recover the pseudo unobserved heterogeneity at the election level, and the estimated coefficients η̂

are presented in Table 1.7 to demonstrate how the election-specific variables affect the log of lagged

spending from the previous Senate election.

Overall, there are some explanatory variables that exhibit significant impacts on the IV. Particularly,

the variable SNOW, constructed from averaging all reported snowfall from all stations within one

state on the general election day, has a significantly positive effect on the lagged campaign spending.

This is probably because the snowfall can reflect some geographic component related to political

reason that causes the campaign spending to be consistently lower. For instance, states that generally

snow in the beginning of November are Alaska, Colorado, Montana, Nebraska, and Wyoming without

metropolitans such as Houston, Chicago, Seattle, Boston, and Phoenix around which larger donors are

concentrated. Therefore, the lack of high contributions induces smaller campaign spending in these

states. The second reason may be that snowfall has annual dependence, meaning that the recurrence of

snow on the same day is positively correlated from one year to another. And bad weather can result
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Table 1.7: First stage IV regression results

Estimate Sd. error

OPEN −0.0955 0.117

PVI −0.0080 0.007

GOV 0.0053 0.094

PRCP 0.2221 0.199

SNOW −0.5549 0.215

PRE 0.1320 0.094

YOUNG-PER 1.3612 1.899

MID-PER 2.0341 1.243

OLD-PER 3.6003 2.024

UNEMP 0.0301 0.033

LOGINC 0.3982 0.408

PNCAN 0.0433 0.011

CONST 9.4789 4.371

Notes: Estimated coefficients in the corresponding
specification are reported. Sd. errors are obtained
through 500 nonparametric bootstrap at the election
level.
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in a smaller votes cast in the general election, thus reducing the campaign spending by candidates.

Another significant coefficient is on the percentage of the population aged 65 and up (OLD-PER) that

is positive. The reason can be that in the U.S., the oldest citizens are the most likely to cast their ballots.

Thus this group of voters have political clout beyond their numbers alone. The number of potential

candidates (PNCAN) also has a significantly positive effect on the lagged spending. This can be due

to the same underlying political climate that makes both the previous and the current races to have a

larger pool of potential candidates, which causes the campaign spending in the previous race to be

lower. Lastly, the constant term is also significant.42

1.7.5 Sensitivity Analyses

In this Appendix section, I conduct a series of sensitivity analyses in order to justify the assumptions

implicitly made in the model and the structural estimation, and to show the robustness of the structural

results across different hypotheses.

Turnout in General Elections

In the general election, a representative voter can choose to vote or not, depending on the latent utility

ιG0 obtained through the outside good, distributed as a type-1 extreme-value distribution (see Appendix

1.7.1). As in Section 1.3.1, I focus on the first actual candidate in the Democratic primary Di, and still

use P(DiRk) to represent the probability that this candidate Di wins the Democratic primary, as well

as the general election with the candidate Rk as the general election opponent. By the derivation in

Appendix 1.7.1, P(DiRk) has the following form:

P(DiRk) =
1

∑
n
j 6=i exp(−WD j)+ e−MG(Di)+1+ exp(−WG)

[
∑

m
l 6=k exp(−WRl )+1

] · 1
∑

m
l 6=k exp(−WRl )+1

,

where for ease of illustration, I still use the notations in Section 1.3.1. Therefore, due to the existence

of the term exp(−MG(Di)) in the denominator of the first ratio above, I can identify the coefficient

42 Since I use linear regression in this estimation stage, one may wonder the model fit result. However, when Matzkin
(2003) provides the nonparametric identification of the distribution of the unobserved variable, which is ul in the model,
she does not impose parametric assumption on this distribution. Hence, I follow Matzkin (2003) and do not parameterize
the distribution of ul . If, in any sense it is interesting, I assume that ul follows a normal distribution with zero mean, the
usual F-test can be applied, with a estimated F-statistic being 9.30, implying a relatively good model fit (see Staiger and
Stock (1997)).
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vector ωX , along with ω , in the following specification of Section 1.4.1

uG
il ,l = ω log(1+ eil ,l)+XG

l
′
ωX +ul + ιil ,l, il = 1, · · · ,nl,

for a generic election l with nl actual candidates. In the data, the voter turnout data is calculated using

the ratio of the total votes cast in the general Senate election to the VEP of a certain state in a certain

year. The results are contained in Table 1.8 as follows. Since the selection equation and the log of

spending equation are the same as in the benchmark model, I only report the results of this sensitivity

analysis for the voter and entry models. The estimation results for the entry model are affected by

considering the voter turnout in general elections, because this influences the simulated expected

payoffs of all elections.

The result of the primary part in the voter model is the same as in Table 1.3. Once the voter turnout

is taken into account, though the effect of campaign spending on votes in the general election is still

positive, it is not as prominent as in the benchmark model. As for the estimated coefficients in the

general latent utility, most of them have expected signs, but are insignificant. Being an open-seat

election reduces the latent utility for a representative voter in the general election, which can be justified

by the incumbency advantage, because incumbents already build the reputation among voters after

holding the office for a period. The number of actual candidates has a negative effect on the latent

utility of general election voters, related to the structural result in the benchmark model that a more

competitive election reduces the campaign spending made by candidates. This can indicate that a

more competitive election can reduce the latent utility of voters, due to the reason that voters may

have a hard time figuring out who they should select. Therefore, candidates in a more competitive

election receive less expected payoffs, and spend less in campaigns consequently. The only significant

coefficient is on the dummy variable PRE which equals 1 if a presidential election occurs on the same

Senate general election day. This dummy variable has a significantly positive effect on the latent utility

of voters, thus a significantly negative effect on the voter turnout. If a presidential election occurs in a

year, it can spur additional turnout for the Senate general election in the same year.

Although the expected payoffs of candidates are now simulated through the voter model with the

voter turnout in the general elections, the estimation results of the entry model remain stable.
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Table 1.8: Sensitivity analysis: turnout in general elections

Voter Entry

Estimate Sd. error Estimate Sd. error

γ 0.1631 0.005

ω 0.0200 0.038

λI 0.4391 0.021

λC 0.5278 0.013

INCUM 0.3627 0.112

OPEN −0.1421 0.149

PVI −0.0031 0.020 0.0008 0.009

GOV 0.0869 0.133 0.0602 0.132

YOUNG-PER −1.4270 2.275 −4.0241 2.658

MID-PER 0.3320 1.753 2.4294 1.982

OLD-PER 0.7019 2.574 −5.6570 3.073

UNEMP −0.0384 0.057 −0.0372 0.057

LOGINC 0.1962 0.520 0.1645 0.528

PNCAN 0.0027 0.015

ANCAN −0.0477 0.056

PRCP 0.0759 0.279

SNOW 0.1217 0.217

PRE 0.6063 0.298

CONST −3.2340 5.609 0.4723 5.803

Notes: For explanatory variables, estimated coefficients in corresponding specifications are
reported. Sd. errors are obtained through 500 nonparametric bootstrap at the election level.
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Truncated Spending Distribution

In this sensitivity analysis, I assume that the campaign spending is distributed as a log-normal truncated

from above when the spending is strictly positive. Since the model is conditional on the election-level

heterogeneity (X ,u), the resulting distribution of the spending will also condition on (X ,u), so is the

upper boundary. Therefore, I need to estimate the upper boundary of non-zero spending varying with

the election-level heterogeneity.

The upper boundary of non-zero spending is estimated nonparametrically following Guerre, Per-

rigne, and Vuong (2000). Consider the vector of election-level covariates W ⊂ X and W ∈ Rd with the

support W = [w, w̄] (which is assumed to be known or can be readily estimated), I partition W to kd

bins {Wk : k = 1, · · · ,kd} of equal length ∆d ∝ (logL/L)1/(d+1). The estimate of the upper boundary

of non-zero spending is the maximum of all non-zero spending whose corresponding realization of

w belongs to Wk. In the data, I specify W to include two continuous and unbounded covariates: the

normalized unemployment rate and the log of median household income. Since the voter model is

the same as in the benchmark model, I only report the results of estimating the truncated spending

distribution and the entry model, which are contained in Table 1.9.

Most of the results remain consistent with those of the benchmark model. The estimated standard

deviation of the error in the log of spending equation is now slightly larger: 2.82, and the estimated

covariance of the two errors in the spending model is also slightly larger: 1.51, resulting in a correlation

being about 0.54, which is close to the estimate of 0.58 in the benchmark model. The estimated

coefficients in the selection equation have the same signs and similar magnitudes as in the benchmark

model shown in Table 1.3, in most cases. The unemployment rate now has a negative effect on

the decision of making non-zero spending, which is consistent with the positive effect of the log of

median household income, although this effect is still insignificant. With some small discrepancies, the

estimates of the entry model remain stable in this sensitivity analysis, compared with the benchmark

model.

Difference Between Political Parties

I do not take into account the political party difference in the benchmark model, which I aim to capture

in this subsection by including the interaction terms with the party affiliation dummy that equals 1 for

the Democratic party, and 0 for the Republican party.
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Table 1.9: Sensitivity analysis: truncated spending distribution
Spending: selection equation Spending: log(spending) equation Entry

Estimate Sd. error Estimate Sd. error Estimate Sd. error

σ2 2.8189 0.073

σ12 1.5073 0.225

λI 0.4391 0.023

λC 0.5278 0.013

INCUM 7.7142 0.174 0.3628 0.115

OPEN 0.4092 0.149 1.5132 0.197

PVI −0.0102 0.008 −0.0226 0.012 0.0010 0.010

GOV −0.1775 0.128 −0.0820 0.144 0.0604 0.137

YOUNG-PER 0.8286 2.575 −1.5245 2.817 −4.0240 2.906

MID-PER −0.8661 1.832 1.4636 2.409 2.4294 2.135

OLD-PER 0.1442 2.737 3.4832 3.453 −5.6571 3.214

UNEMP −0.0017 0.048 −0.0409 0.059 −0.0370 0.060

LOGINC 0.4745 0.559 1.8320 0.688 0.1647 0.546

PNCAN 0.0437 0.031 0.2330 0.035 0.0031 0.015

ANCAN −0.0955 0.034 −0.4371 0.041

CONST −4.3754 5.976 −7.7340 7.389 0.4725 5.908

Notes: For explanatory variables, estimated coefficients in corresponding specifications are reported. Sd. errors are obtained through 500 nonparametric
bootstrap at the election level.
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Due to the relatively large number of total parameters needed to be estimated, I focus on the differ-

ence between political parties among challenger candidates. Therefore, when analyzing the spending

model and the primary voter model, I categorize the data into four different groups: incumbents (I), the

Democratic challengers (DEM), the Republican challengers (REP), and candidates in open-seat elec-

tions (OPEN).43 For the general voter model, I consider three groups: incumbents (I), challengers (C),

and open-seat candidates (OPEN). Lastly when estimating the entry model, since it is not revealed yet

whether the election is open-seat, I differentiate among three groups: incumbents (I), the Democratic

challengers (DEM), and the Republican challengers (REP). For the corresponding linear specification

parts in the model, I add the interaction terms of these group indexes with the intercept by adding an

indicator being 1 for the Democratic challenger (DEM-IDX), and I also contain the interaction terms

of this indicator with the continuous covariates (YOUNG-PER, MID-PER, OLD-PER, UNEMP, and

LOGINC).

Table 1.10 presents the results of this sensitivity analysis of taking into consideration the difference

between political parties. First of all, the Democratic party challenger index and the interaction terms

of it with the continuous covariates yield insignificant coefficients in the selection equation, the log of

campaign spending equation, and the mean equation of entry cost distribution. Therefore, I do not find

strong evidence of the difference between political parties regarding the effects of the election-level

covariates on the candidates’ decisions of making non-zero spending and how much they prefer to

make through campaigns, as well as the candidates’ entry cost expectations. Secondly, the estimated

coefficients of the election-level covariates in the equations have the same signs and similar magnitudes

as in the benchmark model shown in Table 1.3.

The difference between political parties are reflected in the estimates of the voter model. In

the primary voter model, the incumbents have a relatively higher return of campaign spending than

challengers in the incumbent-challenger elections, in terms that their spending can translate to more

votes in the primary election. The challengers have different returns of campaign spending: for the

Democratic challenger, the estimated coefficient on the spending term in the vote equation is around

0.12, while that coefficient is about 0.14 for the Republican challenger. However, this difference

between parties is not very big. Overall, the campaign spending can translate to more votes in open-seat

elections, compared to incumbent-challenger elections, which may be due to the reason that in open-

43 I do not consider the group-specific standard deviation for the spending model, due to the computative infeasibility that
the optimization algorithm cannot converge.

53



Table 1.10: Sensitivity analysis: difference between political parties
Spending: selection equation Spending: log(spending) equation Voter Entry

Estimate Sd. error Estimate Sd. error Estimate Sd. error Estimate Sd. error

σ2 2.4719 0.072

σ12 1.4641 0.220

γI 0.1733 0.009

γDEM 0.1180 0.013

γREP 0.1372 0.010

γOPEN 0.2261 0.017

ωI 0.1562 0.060

ωC 0.1151 0.063

ωOPEN 0.3800 0.066

λI 0.4387 0.023

λDEM 0.5160 0.013

λREP 0.5149 0.015

INCUM 4.0656 0.173 0.3799 0.126

OPEN 0.3692 0.170 1.2750 0.213

DEM-IDX 10.2573 8.710 −5.1792 12.164 12.8429 7.561

PVI −0.0083 0.009 −0.0093 0.011 0.0013 0.009

GOV −0.1718 0.135 −0.1179 0.152 0.0679 0.143

YOUNG-PER 0.9169 3.011 0.7058 3.444 −6.8047 3.114

MID-PER −1.9044 1.860 −0.5647 2.315 2.3815 2.318

OLD-PER 2.0601 2.909 5.4751 3.770 −5.3437 3.612

UNEMP 0.0215 0.051 0.0059 0.057 −0.0045 0.066

LOGINC 0.7082 0.669 1.5593 0.694 0.6999 0.602

YOUNG-PER × DEM-IDX 0.2618 4.373 −8.7650 6.653 7.5699 4.230

MID-PER × DEM-IDX 3.9263 3.437 1.7336 6.337 0.3565 2.296

OLD-PER × DEM-IDX −8.1985 4.668 −2.7353 8.406 −1.3540 4.258

UNEMP × DEM-IDX −0.0978 0.072 −0.2090 0.126 −0.0958 0.053

LOGINC × DEM-IDX −0.8864 0.802 0.8088 1.126 −1.3239 0.711

PNCAN 0.0331 0.031 0.1279 0.037 0.0038 0.015

ANCAN −0.0788 0.033 −0.2786 0.041

CONST −7.1056 7.212 −5.7461 7.519 −4.7797 6.643

Notes: For explanatory variables, estimated coefficients in corresponding specifications are reported. Sd. errors are obtained through 500 nonparametric bootstrap at the election level.
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seat elections, voters cannot evaluate the candidates’ valence depending on their performance as the

incumbent, thus they tend to rely more on the spending the candidates made through campaigns. This

discrepancy between open-seat and incumbent-challenger elections is more prominent in the general

election. The estimates coefficient on the spending term is about 0.38 for open-seat general elections,

while I estimate the coefficients to be 0.16 and 0.12 for incumbents and challengers respectively for

incumbent-challenger elections. The latter estimates are close to those in the primary voter model,

indicating that the different return of campaign spending between primary and general elections found

in the benchmark model is largely driven by that difference in open-seat elections, in the sense that the

campaign spending can translate to more votes in the general election than in the primary election,

given the same amount of spending.

Quadratic Cost Function

In the benchmark model, I consider a linear cost function of the campaign spending g(·) such that

g(e) = e. In this sensitivity analysis, I alternatively specify a quadratic cost function that is parameter-

ized as g(e) = κe2 +ζ e, where the constant term is excluded since I use the first-order condition 1.3.3

which only contains the derivative of the cost function in the estimation.

Following Campo, Guerre, Perrigne, and Vuong (2011), I use the equality of Equation 1.3.3,

through assuming that one quantile of the private value distribution is constant and unknown. Since the

strictly positive spending is unbounded from above, without loss of generality, I consider a constant and

unknown median of the private value distribution. This median is constant, meaning that it is unrelated

to the election-level heterogeneity (X ,u), i.e., Med(v|X ,u) = Med(v); and this median is unknown,

because I treat it as a parameter which can be identified and estimated along with the parameters in the

cost function (κ,ζ ).

In the data, I observe that the incumbents will always spend non-zero through campaigns once

they decide to run for office. Therefore in equilibrium, the first-order condition always holds as

an equality for the incumbents. I rely on the subset of incumbents’ campaign spending to estimate

(κ,ζ ,Med(v)) through NLS. For incumbents, the expectation in Equation 1.3.3 is simulated by 500

repetitions regarding the spending profile of their opponents. Since the spending model and the voter

model are the same as the benchmark model, I report the results for the cost function and the entry

model, as follows.

Table 1.11 presents the estimates of the sensitivity analysis. The estimated constant Med(v) is
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Table 1.11: Sensitivity analysis: quadratic cost function

Voter Entry

Estimate Sd. error Estimate Sd. error

κ 0.0000 0.000

ζ 0.9545 0.327

Med(v) 1819442 626664

λI 0.4391 0.021

λC 0.5278 0.013

INCUM 0.3626 0.109

PVI 0.0006 0.010

GOV 0.0603 0.131

YOUNG-PER −4.0233 2.733

MID-PER 2.4308 2.023

OLD-PER −5.6554 3.000

UNEMP −0.0375 0.058

LOGINC 0.1639 0.551

PNCAN 0.0000 0.017

CONST 0.4723 6.026

Notes: For explanatory variables, estimated coefficients in corresponding specifications are
reported. Sd. errors are obtained through 500 nonparametric bootstrap at the election level.
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around 18 million, which is significant with an estimated standard error being about 6 million. This

figure is larger than the mean of non-zero campaign spending shown in Table 1.1. Interestingly,

although the cost function is assumed to be quadratic, the results show that the estimated cost function

is linear, with ζ̂ = 0.95, thus leading to a linear function very similar to the one considered in the

benchmark model. Because the estimated cost function does not change much, the resulting estimates

for the entry model are similar to those in the benchmark model. The exception is the effect of the

number of potential candidates, which is estimated to be a tiny positive number that is essentially zero.

Alternative Voter Model Specification

In this sensitivity analysis, I consider an alternative voter model specification where the campaign

spending affects voters’ latent utility linearly, for a generic election index by l, and a representative

candidate indexed by il , as follows:

uP
il ,l = γeil ,l +XP

l
′
γX +ul + ιil ,l, il = 1, · · · ,nl,

for the primary election, and

uG
il ,l = ωeil ,l +XG

l
′
ωX +ul + ιil ,l, il = 1, · · · ,nl,

given that this candidate il wins the primary election and enters into the general election.

Since the spending model is unchanged, I only report the results from estimating the alternative

voter model and the entry model in the following table.

Table 1.12 gives the results in this sensitivity analysis. For the voter model, in both the primary

and general elections, the campaign spending made by the candidates affects the latent utility of the

voters positively and significantly. Unlike the result in the benchmark model, when the campaign

spending enters voters’ latent utility linearly, the effect of spending is larger in the primary election,

almost doubling that in the general election. This is consistent with the benchmark implication and

can be due to the reason that the campaign spending made by the candidates who participate in the

general elections usually spend much more than the rest of the candidates. Thus when the latent utility

is assumed to be a linear function where the spending dose not exhibit diminishing marginal effect,

the marginal effect of the spending on the latent utility of voters is averaged out. Recall that in the

benchmark model where the effect of campaign spending in the voter model is assumed to take the

log form, the more spending candidates make, the smaller the marginal effect of spending entails. It
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Table 1.12: Sensitivity analysis: alternative voter model specification

Voter Entry

Estimate Sd. error Estimate Sd. error

γ 0.1393 0.012

ω 0.0726 0.011

λI 0.4834 0.029

λC 0.5716 0.016

INCUM 0.3392 0.112

PVI −0.0202 0.013

GOV 0.0301 0.134

YOUNG-PER −4.0509 2.727

MID-PER 2.4033 2.030

OLD-PER −5.6832 3.210

UNEMP −0.0513 0.058

LOGINC 0.1572 0.510

PNCAN 0.0008 0.016

CONST 0.4403 5.615

Notes: For explanatory variables, estimated coefficients in corresponding specifications are
reported. Sd. errors are obtained through 500 nonparametric bootstrap at the election level. The
estimates and Sd. errors of γ and ω are scaled up by 106.
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is important to compare the roles of the spending in the primary and general voter models given the

same level of the campaign spending. The results from estimating the entry model are consistent with

those of the benchmark model shown in Table 1.3. In this sensitivity analysis, the estimated standard

deviations of the entry cost distributions for the incumbents and challengers are slightly larger than

those in the benchmark model. The estimated coefficients on the explanatory variables have the same

signs and similar magnitude as in the benchmark model.

Dynamic Change

In the structural analysis of the benchmark model, I maintain an implicit assumption that there is no

time trend regarding the private value of actual candidates and the entry cost of potential candidates.

However, since the data covers a relatively long time span from 1994 to 2018, it is more natural and

realistic to take into consideration the possible dynamic change of the private information possessed by

candidates. As a result, I introduce time trend into the benchmark analysis in this exercise. Specifically,

I allow for time-specific effects in the specifications of the campaign spending distribution and the

entry cost distribution for candidates, which control for time fixed effects in the estimation. The voter

model remains the same as in the benchmark model, because I want to focus on the dynamic discussion

on candidates’ private information.44

I present the estimated results from the model with time fixed effects in Table 1.13. The estimates

of the time-specific constants are not reported and will be discussed later in Figure 1.9. Note that since

the voter model is unchanged, the results only contain the campaign spending model with the selection

equation and the level equation, and the entry cost model.

As shown in Table 1.13, most of the estimates are consistent with those in Table 1.3. The estimated

standard deviation of the error in the log of spending equation, σ2, and the estimated covariance of

the two errors in the selection equation and in the level equation of campaign spending, σ12, are

similar to those derived from estimating the benchmark model. Furthermore, in the specifications

of campaign spending and entry cost distributions, the estimated coefficients on the covariates have

expected signs and magnitudes. Compared with challengers, incumbents tend to spend non-zero and

larger amount through campaigns in elections. Candidates in an open-seat election are more likely to

44 As a sensitivity analysis in Appendix 1.7.5, instead of using time-specific constants in the specifications, I also estimate
an alternative model where a dummy variable being one for the period of post-2008 and zero for that of pre-2008 in
order to capture the effect of time. The voter model estimates show no significant difference on how voters appreciate
the campaign spending made by candidates before and after 2008, for both primary and general elections.
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Table 1.13: Sensitivity analysis: estimation results with time fixed effects
Spending: selection equation Spending: log(spending) equation Entry

Estimate Sd. error Estimate Sd. error Estimate Sd. error

σ2 2.4377 0.074

σ12 1.3562 0.237

λI 0.4406 0.023

λC 0.5232 0.013

INCUM 3.9989 0.174 0.3484 0.114

OPEN 0.3174 0.172 1.2327 0.218

PVI −0.0021 0.010 −0.0003 0.013 0.0131 0.011

GOV −0.2216 0.137 −0.0540 0.162 0.1302 0.158

YOUNG-PER 2.9662 5.847 3.1465 6.285 −5.1482 6.215

MID-PER 0.2007 5.820 6.0058 6.047 5.8030 6.420

OLD-PER 4.9271 4.817 8.7122 5.321 −2.1961 4.992

UNEMP −0.0759 0.072 −0.0088 0.083 −0.0190 0.087

LOGINC 0.7587 0.614 1.9367 0.703 0.7624 0.522

PNCAN 0.0259 0.033 0.1263 0.038 0.0034 0.015

ANCAN −0.0661 0.036 −0.2752 0.040

CONST −8.4307 7.698 −12.3870 8.537 −6.9235 6.446

Notes: Time fixed effects are included in the selection equation of campaign spending, the level equation of campaign spending, and the entry cost
distribution. For explanatory variables, estimated coefficients in corresponding specifications are reported. The estimated results are obtained through the
estimation method described in Section 1.4.2. Sd. errors are obtained through 500 nonparametric bootstrap at the election level.
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have larger probability of making non-zero spending and higher level of such spending by candidates.

The numbers of potential candidates and actual candidates have similar effects on the choice and level

of campaign spending by candidates, when comparing with the benchmark model results. The number

of potential candidates has a positive effect and the number of actual candidates has a negative effect,

where in the selection model of campaign spending the effects are not very significant while in the

log(spending) model the effects are significant. Turning to the entry model, incumbents have relatively

higher entry costs, when comparing to challengers. The number of potential candidates has a positive

effect on the entry cost on average, which is again consistent with the implication of the benchmark

model.

In the following figure I report the estimated time-specific constants in the three models: the

selection model of campaign spending, the log of non-zero campaign spending, and the entry cost

model. The year of 1994 serves as a benchmark and thus is excluded.

Figure 1.9: Coefficients on time dummies in multiple regressions with 90% confidence intervals

As reflected in Figure 1.9, most of the estimated time-specific effects are negative. If I divide the

sample into two periods: pre-2008 and post-2008, the results before 2008 are mixed while those after

2008 are consistently negative with wider confidence intervals. Although all but one of the estimates

are insignificant at the 90% significance level, the trend itself implies the devaluation of candidates for

the Senate office across time, if any, because campaign spending is a strictly increasing function of

the private value of holding the office for actual candidates. The entry costs of potential candidates
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also fall over the same period. Since the entry costs of running for office and the valuations of holding

the office both decrease over time, it is hard to determine whether the net benefits of the Senate office

decrease as well. The estimates correspond to an average entry probability of 0.8050 before 2008, and

an average entry probability of 0.7838 after 2008. Therefore, with the falling entry costs of running

for office and the falling valuations of holding office, the net benefits of office have a minuscule drop

over the years, leading to slightly decreasing entry probabilities of potential candidates.

One reason why it may be worth discussing the time trend is that the decrease of the net benefits

of office for a period of time can form possible driving force of political polarization in terms of

candidates’ ideology, according to Hall (2019).45 McCarty, Poole, and Rosenthal (2006) and Voorheis,

McCarty, and Shor (2015) provide evidence for the sharp growth in legislative polarization in the

U.S. since the 1970s and link this polarization to the rising income inequality simultaneously, which

explains the polarization phenomenon from the demand-side: the changing ideological preferences

of voters. On the other side, if I assume that candidates cannot change their political positions easily

throughout the whole election process, this rigidity of candidate positions may provide new perspective

on why the polarization happens from the angle of supply-side, under the assumption that candidates

also care about ideological benefits of office.46 Hall (2019) proposes a theory showing that when the

non-ideological net benefits of office decrease, the set of potential candidates willing to run for office

becomes more ideologically extreme. The intuition is that keeping the non-ideological net benefits of

office equal for both moderate and extreme candidates, the ideological cost of not running for extreme

candidates will be larger than that for moderate candidates because of the Median Voter Theorem.

Thus, when the non-ideological net benefits of office fall, the marginal extreme candidates will choose

to run for office while the marginal moderate candidates will choose not to run, which drives the

pool of actual candidates more extreme. The time trend estimated from the model in this part shows

the potential decrease in the non-ideological net benefits of Senate office from 1994 to 2018, if any.

Therefore, the results in this part can be viewed as weak evidence for the ideological polarization of

political candidates over this period of time (see Hirano, Snyder, Ansolabehere, and Hansen (2010)

45 In this paper I do not consider candidates’ choices of ideological position as equilibrium results. This is partially because
due to the Median Voter Theorem, candidates will eventually move to the middle in response to electoral competition,
under the assumption that candidates can flip-flop their political policies or opinions after they proceed into the general
election stage and that there is a lack of commitment regarding candidates’ ideological positions.

46 The reasons behind the rigidity of candidate positions can be due to the strong personal views of candidates, see Aldrich
and Rohde (2001) and Cox and McCubbins (2007), and/or due to the fact that voters may punish candidates for changing
positions, see Tomz and Van Houweling (2012) and Debacker (2015).
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and Theriault and Rohde (2011)).

The Great-Recession Effect

In Section 1.7.5, I introduce the full set of time dummies into the benchmark model so that the dynamic

change of the results can be taken into account. In this sensitivity analysis, I conduct an alternative

exercise adding a dummy variable that is assigned one for the period of post-2008 and zero for that of

pre-2008 to the specifications in the model. Figure 1.9 in Section 1.7.5 shows a persistent decrease

of the propensity to spend through campaigns, the amount of positive campaign spending, and the

entry cost of candidates after 2008, which may be due to the Great-Recession in 2008. Therefore, by

introducing a dummy variable to indicate the period of post-2008, it may form additional evidence for

the falling of the benefit of office by comparing the difference before and after 2008. Further, in this

exercise, I allow the effects of campaign spending on voters to differ before and after 2008 in primary

and general elections.

Table 1.14: Sensitivity analysis: difference over time
Spending: selection equation Spending: log(spending) equation Voter Entry

Estimate Sd. error Estimate Sd. error Estimate Sd. error Estimate Sd. error

σ2 2.4774 0.074

σ12 1.4431 0.226

γpre−2008 0.1576 0.010

γpost−2008 0.1694 0.010

ωpre−2008 0.1969 0.028

ωpost−2008 0.2454 0.038

λI 0.4396 0.023

λC 0.5274 0.013

INCUM 4.0648 0.174 0.3630 0.112

OPEN 0.3942 0.151 1.3058 0.192

PVI −0.0069 0.009 −0.0070 0.012 0.0024 0.009

GOV −0.1761 0.133 −0.0880 0.154 0.0582 0.142

YOUNG-PER 1.4943 5.305 2.0650 5.841 −3.7232 5.554

MID-PER −0.5449 4.138 3.2381 4.571 2.3272 4.140

OLD-PER 0.7460 4.442 7.4776 5.319 −5.3445 4.438

UNEMP 0.0024 0.048 −0.0291 0.055 −0.0327 0.059

LOGINC 0.47099 0.555 1.7827 0.663 0.1875 0.521

PNCAN 0.0321 0.030 0.1371 0.036 0.0035 0.014

ANCAN −0.0780 0.034 −0.2903 0.040

CONST −4.7339 6.767 −9.5297 7.990 0.0891 6.302

POST-2008 −0.1320 0.905 −0.7574 1.007 −0.0335 0.847

Notes: For explanatory variables, estimated coefficients in corresponding specifications are reported. The variable “POST-2008” equals one for post-2008 period, and zero for pre-2008 period. Sd.
errors are obtained through 500 nonparametric bootstrap at the election level.
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I present the results of this sensitivity analysis in Table 1.14. Most of the estimates have the same

signs and similar magnitudes as those in the benchmark model shown in Table 1.3. Since I care about

the effect of the Great-Recession in 2008, I focus on the coefficients on the variable “POST-2008” in

the corresponding specifications for the spending and entry models, as well as the estimated parameters

in the voter model. As in Section 1.7.5, the dummy variable indicating the period of post-2008 has

a negative coefficient in both the selection equation and the level equation of the spending model,

implying that after 2008 actual candidates are less likely to spend non-zero in campaigns, and make

smaller amount of campaign spending. This dummy variable also has a negative coefficient in the entry

cost specification, showing a possible decline of entry costs after 2008. However, these effects are not

significant, as shown in Figure 1.9. For voter model, I observe a difference regarding the estimated

effects of campaign spending on voters’ utility before and after 2008, and this difference is more

pronounced in general elections (but the difference is still not big). Voters tend to value how much

candidates spend in the general election more after 2008. This can explain why I find null effect of

time dummies in Section 1.7.5 and here. The devaluing of office may exist over time among candidates

that should result in the decrease of the campaign spending in equilibrium, but because voters value the

spending made by candidates through campaigns more over time, therefore in the end two conflicting

effects on the campaign spending cancel out with each other and lead to no significant change of the

campaign spending across time.
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Chapter 2: Nonparametric Identification of Bayesian Games under Exclusion Restrictions

This chapter is adapted from the working paper “Nonparametric Identification of Bayesian Games under

Exclusion Restrictions” and has been reproduced with the permission of my co-authors Tong Li and Jun Zhang.

2.1 Introduction

Bayesian games as a natural extension of games under complete information have been one of the

most important models in modern economics. While it is natural to add incomplete information to

most economic models, unfortunately, Bayesian games are difficult to analyze both from a theoretical

perspective and using a structural approach because of the complexity arising from solving the

equilibrium strategies and analyzing their properties. As a result, the structural analysis of Bayesian

games has been quite limited, with a notable exception being the auction case which has been

extensively studied since Paarsch (1992) especially thanks to the nonparametric identification and

estimation method developed in Guerre, Perrigne, and Vuong (2000).1 The reason for this exception is

that due to the discontinuity in bidders’ payoff functions, the first order conditions in characterizing

bidders’ Bayesian Nash equilibrium strategies are first order differential equations with well specified

boundary conditions, while they are integral equations in general Bayesian games. Only a few special

cases of Bayesian games with continuous payoffs and restrictive payoff structures have recently been

studied. For example, He and Huang (2018) study nonparametric identification and estimation of

the Tullock contest model with private information; Aryal and Zincenko (2019) study identification

and estimation of the Cournot competition model under incomplete information; Aryal and Gabrielli

(2020) estimate a competitive nonlinear pricing model with two firms; in all these papers the only

model primitive that needs to be identified is the private type distribution.

In this paper, we consider an arbitrary Bayesian game within the private type paradigm and with

an additive payoff function. This framework is general enough to cover many applications such as

oligopoly competition (Raith (1996)), Diamond search (Diamond (1982)), public good provision

(Bergstrom, Blume, and Varian (1986)), and Tullock contest (Tullock (1980)). To address the identi-

fication issue, we focus on the case where a part of the (additive) payoff function is unknown to the

1 For the fast growing literature in the empirical analysis of auction data, especially using the nonparametric approach, see
surveys such as Athey and Haile (2007), Hendricks and Porter (2007), Hickman, Hubbard, and Sağlam (2012), Gentry,
Hubbard, Nekipelov, and Paarsch (2018), and Li and Zheng (2020).
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researcher, which can be more general than assuming the entire payoff functional form being known,

and can find many applications. For example, the unknown part in the payoff function can be firms’

cost functions in oligopoly competition games, searchers’ cost functions in the Diamond search model,

contributors’ cost functions of private contribution in public good provision games, and contestants’

cost of effort functions in Tullock contest model, to name a few.

We first show that the benchmark model is not nonparametrically identified from observed actions

without further restrictions. We then impose the exclusion restriction in the form of an exogenous

players’ participation and establish nonparametric point or partial identification results of the model

primitives, namely, the private type distribution and the unknown part of the payoff function. Specifi-

cally, we show that if the distributions of actions intersect with each other when the number of players

varies, the private type distribution and the unknown structure are nonparametrically identified up

to a scale. Otherwise, they are partially identified as they can be bounded nonparametrically. Our

partial identification results are as important as the point identification results since they are applicable

in many applications. Note that the distributions of actions can be nonparametrically estimated in a

straightforward manner, thus whether they intersect or not when the number of players varies can be

readily verified from the data.

Using exclusion restrictions as a means to identify structural econometric models in general and

auction models in particular has been one of the key identification strategies; for examples in the

empirical auction literature, see Athey and Haile (2002), Haile, Hong, and Shum (2003), Bajari and

Hortaçsu (2005), Guerre, Perrigne, and Vuong (2009), Gentry and Li (2014), and Chen, Gentry, Li,

and Lu (2019). In this regard, our identification strategy is related to Guerre, Perrigne, and Vuong

(2009) who study nonparametric identification of first price auctions with unknown risk averse utility

functions and establish nonparametric point identification of the model primitives, which are the private

value distribution and the utility function, under the exclusion restriction. However, the Bayesian

games under our consideration are more involved than the auction case considered in Guerre, Perrigne,

and Vuong (2009). In the auction case, point identification can be attained because the equilibrium

bid functions at different competition levels always cross at the lowest valuation if there is no binding

reserve price or at the reserve price if there is, as a result of the boundary condition of the differential

equation whose solution defines the Bayesian Nash equilibrium, while such a boundary condition does

not exist for a general Bayesian game we consider.

Our identification approach starts with taking the ratio of the first order conditions corresponding
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to different numbers of players. This idea has also been used in Aryal, Grundl, Kim, and Zhu (2018)

in studying identification of auctions with risk aversion and ambiguity, and Li and Zhu (2020) in

studying identification of auctions with ambiguity and entry. However, the analysis that follows

in these cases and ours takes a completely different approach from each other, due to the unique

feature and complexity of the respective model. Furthermore, in a recent paper by D’Haultfœuille and

Février (2020) that studies empirically the optimality of simple linear compensation contracts in a

principal-agent model with both adverse selection and moral hazard using the contract data between the

French National Institute of Statistics and Economics and the interviewers the Institute hired to conduct

its surveys, the authors take the ratio of the first order conditions before and after the exogenous change

of piece rate to obtain nonparametric partial identification results for the derivative of the cost function

of the interviewers and the distribution of their types, respectively. In this regard, D’Haultfœuille

and Février (2020) and our paper share similarities in terms of identification strategy, while in totally

different contexts, using different exogenous variations, and dealing with different problems.

Our partial identification results are related to the partial identification literature in econometrics

pioneered by Charles Manski; see Manski (2003) for a review of early contributions, and more recent

work includes Manski and Tamer (2002), Tamer (2003), Chesher and Rosen (2013), Molinari (2008),

among others, which are surveyed in Tamer (2010) and Molinari (2020). The partial identification

approach has been used also in the structural analysis of auction data starting with Haile and Tamer

(2003); see, e.g., Hortaçsu and McAdams (2010), Tang (2011), Aradillas-López, Gandhi, and Quint

(2013), Gentry and Li (2014), and Chen, Gentry, Li, and Lu (2019), and also the papers surveyed in Li

and Zheng (2020). To the best of our knowledge, our paper is the first one to study the nonparametric

identification for a general class of Bayesian games.2

Our econometric approach is based on the theoretical literature on Bayesian games. The existence

and/or uniqueness of a monotone pure strategy Nash equilibrium (MPSNE) have been established

in several different frameworks that complement with each other using different approaches. First,

Athey (2001) pioneers the literature and provides a central tool to establish the existence of MP-

2 It is worth noting that dealing with continuous actions in Bayesian games raises challenging identification problems
that this paper attempts to address, while there has been some interesting work on identification of Bayesian games
with discrete actions whose framework is vastly different from what we consider and requires different identification
strategies/approaches. See, e.g., Sweeting (2009), Aradillas-Lopez (2010), Bajari, Hong, Krainer, and Nekipelov (2010),
Tang (2010), de Paula and Tang (2012), Wan and Xu (2014), and Lewbel and Tang (2015), among others. On the other
hand, for identification of games with complete information, see, e.g., Bajari, Hong, and Ryan (2010) for identification
of discrete games of complete information, and Kline (2015) for complete information games that allow generalized
interaction structures and generalized behavioral assumptions.
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SNE for Bayesian games that satisfy the single crossing condition.3 Second, Van Zandt and Vives

(2007) establish the existence of a greatest and a least MPSNE for Bayesian games with strategic

complimentarities. Polydoro (2011) further provides sufficient conditions for the uniqueness. Third,

Mason and Valentinyi (2010) establish the existence and uniqueness of MPSNE using the contracting

mapping method. Lastly, the existence and uniqueness of MPSNE in Tullock contest under incomplete

information have been established separately by Fey (2008), Ryvkin (2010), and Ewerhart (2014).

In our paper, we require the existence of strictly MPSNE. To accommodate as many applications as

possible, we assume the existence of MPSNE, meaning that our nonparametric methodology can be

applied to any of the above frameworks. We further impose strict supermodularity between one’s own

action and type to ensure that the existing MPSNE is strictly monotone.4

The rest of the paper is organized as follows. Section 2.2 introduces the Bayesian game with

an unknown structure as well as the non-identification result. Section 2.3 introduces the exclusion

restrictions and explores the functional comparative statics. Section 2.4 establishes the identification

results. Section 2.5 presents the numerical illustration. Section 2.6 extends the model. Section 2.7

concludes. The proofs of our main results are in the Appendix 2.8, and all the other technical details

are included in the Supplemental Appendix 2.9.

2.2 The Benchmark Model and Non-Identification

2.2.1 Preliminaries

There are N ≥ 2 players engaging in a Bayesian game. Player i ∈ {1, · · · ,N} has a private type ti

drawn from a distribution with CDF Fi(·) over the type space Ti ≡ [t i, t̄i] ⊂ R. Assume that Fi(·) is

absolutely continuous and thus has an atomless density fi(·). Types are drawn independently across

players. All players choose actions simultaneously. Player i’s action ai is chosen from a compact

action space Ai ⊂ R. Each player’s strategy is a mapping from the type space to the action space, i.e.,

si : Ti→Ai.

Player i’s payoff, πi(a, ti), depends on all players’ actions and her own type, and thus is a mapping

πi : A×Ti → R, where A = A1× ·· ·AN and a = (a1, · · · ,aN). We assume that πi(a, ti) is twice

3 McAdams (2003) extends Athey’s model to allow partially ordered multidimensional type and action spaces. Reny
(2011) further allows action spaces to be compact and locally complete metric semilattices, and type spaces to be partially
ordered probability spaces.

4 There is a large literature that establishes the existence of pure strategy equilibrium but without the property of
monotonicity, to name a few, see Vives (1990), Milgrom and Weber (1985), Barelli and Duggan (2015), Khan and Zhang
(2014), and He and Sun (2019).
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continuously differentiable with bounded derivatives.5 In addition we assume that πi(a, ti) is strictly

supermodular in (ai, ti). Thus, there exists a positive number Mπ , such that

0 <
∂ 2πi(ai,a−i, ti)

∂ai∂ ti
≤Mπ almost everywhere, ∀i, (2.2.1)

where a−i are the actions taken by all the players but player i.

2.2.2 Additive Payoff with an Unknown Structure

In order to explore the possibility of an unknown structure in the payoff function, throughout the

rest of this paper, we focus on Bayesian games with an additive payoff structure, which takes one of

the following three forms:

(1). πi(a, ti) = tixi(a)+ yi(ai),

(2). πi(a, ti) = xi(a)+ yi(ai)/ti,

(3). πi(a, ti) = tiai + xi(a)+ yi(ai),

where the structure of xi(·) is known but the structure of yi(·) is unknown by the researcher. Note that

ti can be replaced by a deterministic known function of ti, mi(ti). Many Bayesian games fall into one

of the above three structures as shown in the following examples.6

Example 1 Differentiated Cournot competition: The private type ti is a firm’s demand characteristic

and the action ai is a firm’s production level.7 Firm i’s profit is

πi(ai,a−i, ti) =

(
ti−β

N

∑
j=1

a j

)
ai− ci(ai) = tiai−βai

N

∑
j=1

a j− ci(ai),

This application fits Structure (3) with xi(a) = βai ∑
N
j=1 a j (known) and yi(ai) =−ci(ai) (unknown).

5 The assumption that πi has bounded derivatives ensures the interchangeability of derivative and expectation (integral),
through Lebesgue’s dominated convergence theorem, see Bartle (1995). Strictly speaking, the Tullock contest model is
not twice continuously differentiable. However, it has discontinuity only when all players choose zero efforts, which
never happens in equilibrium. Therefore, the Tullock model can still be included in the class of games we study.

6 If xi(a) contains some parameters, we assume they can be identified in a preliminary step. For example, in the
differentiated Cournot competition, if we impose the same exclusion restriction as in Section 2.3, the parameter β can
be identified via taking difference of inverse demand functions of Cournot games with different numbers of players,
because prices and productions of firms are known. The function g(·) in the Diamond’s search model can be identified
through the observed search intensity (measured by time) of each player, together with the observable matching rate.
The function k(·) in the public good provision model can be identified through the observed contribution of each player,
together with the amount of observable public goods. The parameter r for the Tullock contest model can be identified
from each contestant’s action and the result of the contest, both of which are observed.

7 A more standard and less general model is to assume firms have a constant private marginal cost. However, in that model,
the payoff structure is known by researchers.
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Example 2 Diamond search model: The private type ti is a player’s valuation of a match and the

action ai is a player’s search intensity. The payoff function for player i is equal to

πi(ai,a−i, ti) = tiaig

(
∑
j 6=i

a j

)
− ci(ai)

This application fits Structure (1) with xi(a) = aig
(
∑ j 6=i a j

)
(known) and yi(ai) =−ci(ai) (unknown).

Example 3 Public good provision: The private type ti is a player’s value of the public good, and the

action ai is the individual contribution. The payoff function for player i is equal to

πi(ai,a−i, ti) = tik(ai +∑
j 6=i

a j)− ci(ai),

This application fits in Structure (1) with xi(a) = k(ai +∑ j 6=i a j) (known) and yi(ai) = −ci(ai) (un-

known).

Example 4 Tullock contest: The private type ti is a player’s ability, and the action ai is the expenditure

in R&D contests, or fund raised in political campaign. Then the payoff function for player i is

πi(ai,a−i, ti) =V
ar

i
ar

i +∑ j 6=i ar
j
− ci(ai)

ti
,

where V is the prize, ar
i

ar
i+∑ j 6=i ar

j
is the Tullock contest success function, and ci(ai) is player i’s cost

function of action. This application fits in Structure (2) with xi(a) =V ar
i

ar
i+∑ j 6=i ar

j
(known) and yi(ai) =

−ci(ai) (unknown).

2.2.3 Strictly Monotone Pure Strategy Nash Equilibrium

For the ease of exposition, in the main context, we only examine form (1): πi(a, ti) = tixi(a)+yi(ai).

All the results can be extended to the other two forms as we show in the Supplemental Appendix. The

following assumption gives the regularity conditions for the unknown primitives of the Bayesian game,

i.e., the distributions of the private types and the unknown structure in the payoff function.

Assumption 1 Let F and Y be two classes of functions that satisfy the following conditions:

(i) ∀F(·) ∈ F , F(·) satisfies: (1) F(·) is an absolutely continuous CDF with a compact support:

T ≡ [t, t̄]⊂ R; (2) F(·) has a bounded, continuous and atomless PDF f (·), which is strictly positive

and bounded from infinity over T , i.e.: 0 < f (·)< ∞.

(ii) ∀y(·) ∈ Y , y(·) satisfies: (1) y(·) is twice continuously differentiable (C2) over a compact support:
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A ⊂ R with bounded derivatives; (2) the sign of y′(·) is known over the support A ; (3) y(·) is convex

or concave over A .

Condition (i) is the standard assumption on the latent type distribution Fi(·). Condition (ii) imposes

some shape restrictions on the function yi(·), which play an important role in the later nonparametric

identification approach.8 These conditions are not restrictive in empirical applications. For instance, it

is natural to assume that the cost function is increasing and convex.

We assume that xi(·) is twice continuously differentiable with bounded derivatives. Furthermore,

the strict supermodularity of πi(a, ti) in (ai, ti) is also imposed. Thus together these assumptions lead

to the following condition: there exists a positive number Mx such that

0 <
∂xi(ai,a−i)

∂ai
≤Mx almost everywhere, ∀i. (2.2.2)

In order to discuss the identification problem, we focus on the strictly MPSNE where player i adopts

a strictly increasing equilibrium strategy si(·).9 Given that all other players adopt the equilibrium

strategy, i.e., a j = s j(t j) for j 6= i, player i’s maximization problem, when having private type ti, can

be written as:

max
ai

Πi(ai, ti)≡
∫

t−i∈T−i

[tixi(ai,s−i(t−i), ti)+ yi(ai)]dF−i(t−i), (2.2.3)

where T−i = · · ·×Ti−1×Ti+1×·· · , s−i(t−i) = (· · · ,si−1(ti−1),si+1(ti+1), · · ·), t−i are the types of

the opponents of player i, and dF−i(t−i) = · · ·dFi−1(ti−1)dFi+1(ti+1) · · · . Therefore the first order

condition together with the equilibrium condition leads to that, ∀i and ∀ti,

ti ·
∫

t−i∈T−i

∂xi(si(ti),s−i(t−i))

∂ai
dF−i(t−i)+ y′i(ai) = 0. (2.2.4)

where the partial derivative is with respect to the first argument of payoff function xi.10 The following

proposition states the existence and regularity conditions of a strictly increasing equilibrium for the

class of Bayesian games considered in the paper.

Proposition 2 The equilibrium with si(·) : Ti → Ai characterized by (2.2.4) for the specific class

8 A known sign of the derivative function y′i(·) over its support is necessary to attain point identification. Furthermore, for
the partial identification result, we need this convexity or concavity restriction for all the three forms of payoff functions
to bound the derivative function y′i(·). Specifically, for the third form of payoff functions, the point identification result
does not rely on (ii)-(2), but the partial identification result requires (ii)-(3) (see the Supplemental Appendix).

9 For Bayesian games with a strictly decreasing equilibrium strategy, we can simply redefine the type.

10 Here we focus on the interior solutions, and extend to the analysis for accommodating corner solutions in Section 2.6.1.
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of Bayesian games described above with the structure [Fi(·),yi(·)] ∈F ×Y satisfies the following

conditions:

(i) si(·) is strictly increasing, with the first derivative bounded away from infinity: 0 < s′i(·)< ∞,

(ii) si(·) is continuously differentiable (C1) with a compact image [ai, āi] = [si(t i),si(t̄i)]⊂Ai.

As discussed in the introduction, the existence and uniqueness of the MPSNE have been well

established in the literature. The strict supermodularity (2.2.2) ensures that the equilibrium is strictly

monotone. Note that the uniqueness is not essential here since with multiple equilibria, as long as

players always act according to one of the equilibria, it does not affect our identification results below.

2.2.4 Non-Identification Results

The unknown model primitives are a pair of functions: [Fi(·),yi(·)]. In order to illustrate the

econometrics of this game, it is useful to represent condition (2.2.4) using the CDF of equilibrium

actions, denoted as Gi(·), for each i. Note that Gi(·) has a compact support [ai, āi] = [si(t i),si(t̄i)]. For

each a∈ [ai, āi], and each i, Gi(a) = Pr(ai ≤ a) = Pr(ti ≤ s−1
i (a)) = Fi(t), if we denote a = si(t). Thus

Equation (2.2.4) becomes

ti ·
∫

a−i∈A−i

∂xi(ai,a−i)

∂ai
dG−i(a−i)+ y′i(ai) = 0. (2.2.5)

Noting that the multiple integral in Equation (2.2.5) can be expressed by an expectation over player

i’s opponents’ all equilibrium action profiles as E−i[
∂xi(ai,a−i)

∂ai
], for simplicity. Equation (2.2.5) is thus

simplified to

ti ·E−i[
∂xi(ai,a−i)

∂ai
]+ y′i(ai) = 0, (2.2.6)

which is the key condition when discussing identification results in the rest of this paper. The following

proposition gives properties of the CDF Gi(·).

Proposition 3 Consider the specific class of Bayesian games described above with the structure

[Fi(·),yi(·)] ∈F ×Y . The derived equilibrium action CDF Gi(·) satisfies the following properties:

(i) Gi(·) is an absolutely continuous CDF with a compact support: [ai, āi] = [si(t i),si(t̄i)]⊂Ai, where

si(·) is a strictly increasing equilibrium,

(ii) Gi(·) has a bounded, continuous and atomless PDF gi(·), which is strictly positive and bounded

from infinity over [ai, āi], i.e., 0 < gi(·)< ∞.

In the data, we observe the number of players N and the actions of players. Since the CDF of
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observed actions Gi(·) and its support Ai can be consistently estimated nonparametrically using the

observed number of players and players’ actions, they can be identified. Thus the identification

problem reduces to whether the structure [Fi(·),yi(·)] is uniquely determined from the observables.

The following assumption gives the conditions that the observed action CDF Gi(·) satisfies.

Assumption 2 Let G be a class of functions that Gi(·) belongs to. Then G satisfies that: ∀G(·) ∈ G ,

G(·) satisfies properties (i) and (ii) in Proposition 3.

The identification of the latent structure [Fi(·),yi(·)] from the known CDF Gi(·) ∈ G with the

number of players being N has to be unique, in the sense that a structure [Fi(·),yi(·)] is identified if

there does not exist any other structure [F∗i (·),y∗i (·)] leading to the same action CDF for the game with

N players. In general, however, a structure [Fi(·),yi(·)] ∈F ×Y is not identified, as shown in the

following result.

Proposition 4 For a structure [Fi(·),yi(·)] ∈F ×Y , there exists another observationally equivalent

structure [F∗i (·),y∗i (·)] ∈F ×Y , in the sense that both structures induce the same CDF of equilibrium

actions Gi(·) ∈ G , given the number of players N, in the specific class of Bayesian games.

The intuition of Proposition 4 can be better understood, by noting that two unknown functions Fi(·)

and yi(·) have to be recovered from only one condition, which is the first order condition of the model,

given that Gi(·) is observed for each i. Therefore, by keeping Gi(·) unchanged, when adjusting one of

the two functions, the other one can always be adapted accordingly. This leads to the non-uniqueness

of the structure containing these two functions, to induce the same observed Gi(·).

In the next sections, targeting at the structure [Fi(·),yi(·)], this paper proposes the nonparametric

(point or partial) identification approach through the exclusion restriction, to back out the unknown

model primitives in the class of Bayesian games considered in this section.11

2.3 Functional Comparative Statics under Exclusion Restriction

To start with, we impose the symmetry restriction by assuming that each player draws her private

type from the same distribution F(·|N) ∈F over the same compact support [t(N), t̄(N)].12 Besides,

the unknown function yi(·) is assumed to be identical for every player, denoted by y(·) ∈ Y and

11 Without the exclusion restriction, it is possible to make other parametric or semiparametric assumptions to attain
identification of the underlying model primitives. This is beyond the scope of this paper.

12 The extension to the asymmetric case will be discussed in Section 2.6.
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independent of N. Furthermore, we assume that the known function xi(a;N) is independent of i and

symmetric in the argument a−i for each player i, thus is expressed as x(ai,a−i;N).13 Note that this

function depends on N directly, since the argument is the whole vector of actions a. Lastly, the action

space Ai = A (N) for each player i.

Due to symmetry, the focal point for the rest of the paper is the same equilibrium strategy and the

same CDF of equilibrium actions for each player. Thus, the equilibrium s(·;N) satisfies Proposition 2;

and G(·|N) ∈ G has a compact and common support [a(N), ā(N)]. For ease of exposition, in this and

next sections, we omit the superscript i when necessary.

A key requirement for nonparametric identification for this class of Bayesian games is the exclusion

restriction satisfying F(·|N)=F(·) for all N≥ 2∈N+, over the support [t, t̄]. Intuitively, this restriction

requires that the CDF of latent types is independent of the number of players participating in the game,

implying that participation is exogenous, see Guerre, Perrigne, and Vuong (2009) for the auction case.

It is important to point out that, although the latent type distribution is independent of participation, the

resulting equilibrium strategy and action distribution still depend on N.14

Specifically, let 2≤ N1 < N2 be two different numbers of players, where we use the index j = 1,2

to refer to the level of competition. We exploit the functional comparative statics under the exclusion

restriction F(·|N j) = F(·), for j = 1,2. When N varies, the equilibrium action varies accordingly. For

j = 1,2, denote the equilibrium strategy s j(·)≡ s(·|N j), leading to the equilibrium action denoted as

a j with support [a j, ā j]; the corresponding action distribution is G j(·) = G(·|N j).

For a given probability α ∈ [0,1], let t(α) be the α-th quantile of the private type distribution F(·),

i.e. F(t(α)) = α . Note that a j(α) = s j(t(α)), and G j(a j(α)) = α = F(t(α)) for all α ∈ [0,1] and

j = 1,2. When the number of players increases from N1 to N2, the equilibrium strategy shifts from

s1(t(α)) to s2(t(α)), for all t ∈ [t, t̄], or equivalently for all α ∈ [0,1]. This is why the comparative

statics we investigate is in a functional sense. When the equilibrium strategy shifts from s1(·) to s2(·),

the action distribution shifts accordingly from G1(·) to G2(·), for all α ∈ [0,1].

In short, Equation (2.2.6) can be expressed as a function of α ∈ [0,1], and, together with the

symmetry assumption, shown as

13 For example, in the Tullock contest case, the contest success function is symmetric in a−i for each contestant i.

14 Note that this exclusion restriction does not mean players’ types are uncorrelated with the characteristics of the game;
suppose the game has characteristics denoted by a vector Z, which can be continuous or discrete, we allow that
F(·|Z,N) = F(·|Z) for all N.
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t(α) ·Ea−N [
∂x(a(α),a−N ;N)

∂a
]+ y′(a(α)) = 0, (2.3.1)

where a(α) = s(t(α)), for all α ∈ [0,1], Ea−N is the expectation over the N− 1 players’ all action

profiles, and a−N denotes the action profile of the N−1 players.

The analysis of functional comparative statics when the number of players increases is intractable,

due to the generality of the class of Bayesian games, as well as the expectation in equation (2.3.1),

which is essentially a multiple integral with an integrand of an arbitrary form taken over all possible

action profiles of player i’s opponents. When the number of players increases or the game becomes

more competitive, there are two challenging features of evaluating this expectation. The first challenge

is that the dimension of the joint distribution increases accordingly. The second challenge is that since

the equilibrium strategy s(·) is implicitly contained in Equation (2.3.1) for all participating players

without a closed-form solution in general, the changing direction and the magnitude of this expectation

are even harder to decide analytically.

When the number of players increases from N1 to N2, we are interested in the shift of the whole

equilibrium strategy function s(t(α)) for all α ∈ [0,1]. To utilize this functional comparative statics in

the nonparametric identification approaches, we need to discuss every possible shifting pattern, due to

the generality of the game. Therefore, graphs are useful in the discussion below.

2.3.1 Single Intersection Point

We first consider the case where there is a single intersection point. Here, players with different

types change the equilibrium actions towards different directions. Without loss of generality, we

assume that the comparative statics correspond to the situation where players with higher types act

more and players with lower types act less when the game becomes more competitive.

Figure 2.1a below shows the functional comparative statics in the single-intersection-point case.

We draw the corresponding graph of the two action distributions, as shown in Figure 2.1b. Note that

for j = 1,2, G j(a) = Pr(a j ≤ a|N j) = Pr(t ≤ s−1
j (a)|N j) = Pr(t ≤ s−1

j (a)) = F(s−1
j (a)). Thus when

s−1
1 (a)> s−1

2 (a), G1(a)> G2(a), evaluated at one fixed a.

When the equilibrium functions intersect only once, the corresponding action distributions also

intersect once at (a(α IP),α IP). In the identification section, this single-intersection-point case will be

discussed first.
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Figure 2.1: Equilibrium strategies and action CDFs with different numbers of players: single
intersection point.

t t̄

(0) (α) (1)

s2(t)

s1(t)

a(α IP)

t(α IP)

(a) Equilibrium strategies.

0 a

G(·)

1
G2(·)G1(·)

a1a2 ā2ā1a(α IP)

α IP

(b) Action CDFs.

Notes: In Figure 2.1a, the x-axis shows the support T , which can be either labeled as the private type t over the support
[t, t̄], or α over the support [0,1]. Thus evaluated at the same α , the equilibrium actions are shown by the curves a1(α) and
a2(α), respectively. The intersection of s1 and s2 is labeled as a(α IP) with the x-axis coordinate t(α IP). The action CDFs
in Figure 2.1b come directly from Figure 2.1a. When two equilibrium strategy functions intersect once in Figure 2.1a, the
corresponding CDFs intersect only once here.

2.3.2 Multiple Intersection Points

The second case we consider is that there are finite M > 1 intersection points. Denote the

intersection points as {α IP1, · · · ,α IPM}, where 0 ≤ α IP1 < · · · < α IPM ≤ 1. Note that we do not

allow the two equilibrium curves coincide on some open intervals as in this case, shown in Section

2.4.1, we can only identify the endpoints of these open intervals by continuity, but not the intervals

themselves.

Figure 2.2a below presents a simple example of this functional comparative statics, where the

two equilibrium action functions intersect twice. In this example, when the game becomes more

competitive, lower and higher type players increase actions while players in between decrease actions.

As a result, the corresponding action functions intersect twice at (α IP1,a(α IP1)) and (α IP2,a(α IP2)).

Therefore when α ∈ [0,α IP1)∪ (α IP2,1], b2(α) > b1(α); when α ∈ (α IP1,α IP2), b2(α) < b1(α).

Figure 2.2b below shows the corresponding action distributions.

As shown, the two action distributions intersect twice at (a(α IP1),α IP1) and (a(α IP2),α IP2). The

identification problem in this case will be discussed as a direct application of the identification approach

introduced for the single-intersection-point case.
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Figure 2.2: Equilibrium strategies and action CDFs with different numbers of players: multiple
intersection points.

t t̄

(0) (α) (1)

s1(t)
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t(α IP1) t(α IP2)

(a) Equilibrium strategies.

0 a

G(·)

1
G1(·) G2(·)

a1 a2 ā2ā1

a(α IP1)

α IP1

a(α IP2)

α IP2

(b) Action CDFs.

Notes: In Figure 2.2a, there are two intersections of s1 and s2, denoted by a(α IP1) and a(α IP2), with the x-axis coordinates
t(α IP1) and t(α IP2). The action CDFs in Figure 2.2b come directly from Figure 2.2a. When two equilibrium strategy
functions intersect twice in Figure 2.2a, the corresponding CDFs intersect twice here.

2.3.3 No Intersection Point

The last shifting pattern of the equilibrium strategy function is when s1(·) and s2(·) do not intersect

with each other over T . Without loss of generality, we assume that more competition results in the

upward shifting of the whole curve, as shown in Figure 2.3a. The corresponding action distributions

G1(·) and G2(·) are shown in Figure 2.3b. There is no intersection of the two distributions.

Figure 2.3: Equilibrium strategies and action CDFs with different numbers of players: no
intersection point.

t t̄

(0) (α) (1)

s1(t)
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(a) Equilibrium strategies.
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G(·)
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α

a1(α)

a2(α)

a1 a2 ā1 ā2

(b) Action CDFs.

Notes: There is no intersection of s1 and s2 in Figure 2.3a. The action CDFs in Figure 2.3b come directly from Figure 2.3a.
When two equilibrium strategy functions do not intersect in Figure 2.3a, the corresponding CDFs do not intersect here.
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2.3.4 How to Determine the Pattern?

Since we deal with Bayesian games with a general structure, all of the three patterns can hap-

pen depending on a specific application under consideration. We first examine the patterns in the

aforementioned examples.

Example 1’ Differentiated Cournot competition: Assume c′(a)≥ 0. The FOC yields:

ti−β [2a(ti)+(N−1)E(a(t))]− c′(a(ti)) = 0,∀ti.

It is easy to see that when N changes, the solution should change, otherwise the FOC cannot hold at

the same time for different N.15 For any pair of types, say ti and t j, i 6= j, we have

ti−2βa(ti)− c′(a(ti)) = t j−2βa(t j)− c′(a(t j)).

Note that this equality does not depend on N directly. The LHS is strictly decreasing in a(ti) and the

RHS is strictly decreasing in a(t j). Therefore, when N changes, the solution changes and a(t) changes

in the same direction for all t and there will not be crossing.

Example 2’ Diamond’s search model: Assume g(x) = x,c′(a)> 0,c′′(a)> 0, then the FOC yields:

ti(N−1)E(a(t))− c′(a(ti)) = 0.

It is easy to see that when N changes, the solution should change, otherwise the FOC cannot hold at

the same time for different N. For any pair of types, say ti and t j, i 6= j, we have

c′(a(ti))
ti

=
c′(a(t j))

t j
.

Note that this equality does not depend on N directly. The LHS is strictly increasing in a(ti) and the

RHS is strictly increasing in a(t j). Therefore, when N changes, the solution changes and a(t) changes

in the same direction for all t and there will not be crossing.

Example 3’ Public good provision: Suppose k(a) = a2/2, and c′(0)> 0. Then the FOC yields:

ti[a(ti)+(N−1)E(a(t))]− c′(a(ti)) = 0,∀ti.

SOC requires that

ti− c′′(a(ti))≤ 0, ∀ti.

15 Formally, it is easy to see that a(t) = 0,∀t is not a solution and therefore E(a(t))> 0. Thus, when N changes, at least
one type has to change the action, otherwise, the above FOC cannot hold at the same time under different N.
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For any pair of types, say ti and t j, i 6= j, we have

c′(a(ti))− tia(ti)
ti

=
c′(a(t j))− t ja(t j)

t j
.

Note that this equality does not depend on N directly. In addition, if we assume that SOC holds strictly,

the LHS is strictly decreasing in a(ti) and the RHS is strictly decreasing in a(t j). Therefore, when N

changes, if the solution changes then a(t) changes in the same direction for all t and there will not be

crossing.

Example 4’ Tullock contest: Assume r = 1,c(a) = a, t is uniformly distributed on [0.5,1.5]. Wasser

(2013) numerically shows that the action functions for N = 2 and N = 3 cross with each other, as well

as N = 2 and N = 5. However, the action functions for N = 3 and N = 5 do not cross.

While Examples 1’-3’ exhibit the no-intersection pattern, this does not necessary imply that no-

intersection is more relevant in applications, since the results heavily rely on further assumptions on

the model primitives. However, this suggests that the no-intersection case is important, if not more

important than the intersection cases. From an econometric perspective, on the other hand, since the

players’ actions are observed, the distribution of actions can be consistently estimated. Therefore the

patterns of the action distributions can be inferred from the data. The next proposition establishes

equivalence between the crossing patterns of two action strategies and their corresponding distributions.

Proposition 5 The two equilibrium action strategies intersect with each other if and only if their

action distributions intersect with each other.

Proposition 5 implies that the crossing condition is straightforward to verify from the data, as it

can be inferred from estimating the action distributions.

2.4 Contraction Sequence and Nonparametric Identification

In this section, we establish the nonparametric identification results of the structure [F(·),y(·)]

under the exclusion restriction F(·|N) = F(·), in different cases of functional comparative statics

as shown in Section 2.3, when the number of players increases from N1 to N2. While we assume

independence between F(·) and N, the equilibrium action distribution G still depends on N. Therefore,

Assumption 2 is still satisfied by G(·|N), given N.

Note that the expectation in Equation (2.3.1) is strictly positive for all a ∈ [a(N), ā(N)], due to

Condition 2.2.2 that the known function x(a(α),a−N ;N) has to satisfy. By rearranging terms, we

get the inverse of the action strategy function s(·|N), satisfying the following equation for an interior
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solution

t(α) =−y′(a(α)) ·
{
Ea−N [

∂x(a(α),a−N ;N)
∂a ]

}−1

≡ ξ (a(α);x,G,y|N),
(2.4.1)

which expresses each participant’s private type as a function ξ of the equilibrium action, the function

x, the number of players, and the equilibrium action CDF G (all are known) as well as the function y

(which is latent and needs to be recovered). Note that ξ−1(·|N) = s(·|N) for an interior solution, and

Equation (2.4.1) holds for any probability α ∈ [0,1]. We denote the corresponding ξ function as ξ j(·)

for j = 1,2.

By stacking the key equations in (2.3.1) together when N increases from N1 to N2, we get the

following system of two equations:

t(α) ·Ea−N1
[

∂x(a1(α),a−N1 ;N1)

∂a1
]+ y′(a1(α)) = 0,

t(α) ·Ea−N2
[

∂x(a2(α),a−N2 ;N2)

∂a2
]+ y′(a2(α)) = 0.

(2.4.2)

A key step is to analyze the ratio of two key equations in the above system

Ea−N1
[

∂x(a1(α),a−N1 ;N1)

∂a1
]

Ea−N2
[

∂x(a2(α),a−N2 ;N2)

∂a2
]
=

y′(a1(α))

y′(a2(α))
, (2.4.3)

where the common term t(α), being the private type evaluated at one pre-determined α , is canceled

out, under the exclusion restriction F(t(α)|N) = F(t(α)). On the left-hand side, we have the ratio of

expected derivatives of function x when N varies, for the player whose private type is evaluated at the

α-th quantile. On the right-hand side, we have the ratio of the derivatives of function y, evaluated at

the actions for the same player when N varies. Since the ratio on the left hand side is known, the ratio

on the right hand side is thus identified nonparametrically for all α ∈ [0,1]. If y′(·) can be identified,

the private types can be backed out from the first order condition (2.4.1).

It turns out whether y′(·) can be identified depends on whether the two equilibrium action strategies

cross with each other. Proposition 5 implies that the crossing condition is straightforward to verify

from the data. Thus the pattern of functional comparative statics can be decided from the data. We

can characterize all the patterns into the two categories, namely, whether the two equilibrium action

strategies intersect or not. In the rest of this section, we first derive the point identification result,

through the construction of a contraction sequence, for the case with intersections. Then we shift to
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the no-intersection-point case, and establish the partial identification result. Throughout the discussion

in this section, we maintain the following assumption.

Assumption 3 Consider two numbers of players: N1 < N2. The corresponding conditional action

CDFs satisfy: G j(·) ∈ G with the support [a j, ā j], for j = 1,2.

2.4.1 Intersection: Point Identification

Single Intersection

In the case where there is only one intersection point of the two equilibrium action strategies, we can

follow Guerre, Perrigne, and Vuong (2009) to construct a contraction sequence which is a strictly

monotonic sequence of probabilities converging to the intersection point, denoted as {αn}∞
n=1. The idea

of nonparametric identification relies on exploiting the variations in the quantiles of two equilibrium

action CDFs with two different numbers of players, while the quantiles of the CDF of private types do

not change. Our identification strategy distinguishes from Guerre, Perrigne, and Vuong (2009) in the

sense that we directly work on the action distributions instead of the equilibrium strategy functions,

and we construct the sequence of quantiles in a different way. More importantly, their identification

strategy only works for the benchmark case when the two equilibrium action strategies intersect, but

not for the no-intersection-point case.

To see how the contraction sequence approach works, a graphic analysis is useful. Consider the case

in Figure 2.1b. We choose an arbitrary starting probability α1 > α IP, and try to identify y′(a2(α1)).16

The identification approach is shown in the following figure.

Note that from Equation (2.4.3), the identification of the ratio y′(a2(α1))/y′(a1(α1)) is directly

obtained through Ea−N2
[

∂x(a2(α1),a−N2 ;N2)

∂a2
]/Ea−N1

[
∂x(a1(α1),a−N1 ;N1)

∂a1
]. In order to disentangle y′(a2(α1)),

we construct a strictly decreasing contraction sequence {αn}∞
n=1, which satisfies a1(αn) = a2(αn+1),

for n > 1. To begin with, note that a1(α1) = a2(α2), thus y′(a1(α1)) = y′(a2(α2)). Evaluated at the

new probability α2, the ratio y′(a2(α2))/y′(a1(α2)) is obtained from Equation (2.4.3) by

Ea−N2
[

∂x(a2(α2),a−N2 ;N2)

∂a2
]/Ea−N1

[
∂x(a1(α2),a−N1 ;N1)

∂a1
]. By repeating this procedure, for each n, the ratio

y′(a2(αn))/y′(a1(αn)) is identified nonparametrically. Furthermore, when n→ ∞, a1(αn)→ a(α IP)

16 There is no special reason why we choose a starting point above the intersection point (a(α IP),α IP). The procedure is
identical if we choose a starting point below it, leading to a strictly increasing sequence of probabilities.
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Figure 2.4: Identification through contraction sequence in single-intersection-point case.
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Notes: To identify y′(a2(α1)), we construct a strictly decreasing sequence of probabilities
{αn}∞

n=1, satisfying a1(αn) = a2(αn+1). As n→ ∞, αn → α IP, a1(αn)→ a(α IP), and
a2(αn)→ a(α IP).

and a2(αn)→ a(α IP), thus the ratio y′(a2(αn))/y′(a1(αn))→ 1. Notice that

y′(a2(α1)) =
y′(a2(α1))
y′(a1(α1))

× y′(a2(α2))
y′(a1(α2))

×·· ·× y′(a2(αn))
y′(a1(αn))

×·· ·× y′(a(α IP)),

= y′(a(α IP))×Π∞
n=1

y′(a2(αn))
y′(a1(αn))

.
(2.4.4)

The above equation holds, because (1) the condition y′(a1(αn)) = y′(a2(αn+1)) leads to the cancel-

lation of all intermediate terms, and (2) y′(a2(αn))/y′(a1(αn))→ 1 as n→ ∞. Also, note that since

the value y′(a(α IP)) is unknown, this point identification result holds only up to a scale. Knowing

y′(a(α IP)) is equivalent to knowing t(α IP), since they are linked to each other through the first order

condition (2.3.1).17 Without loss of generality, we use y′(a(α IP)) as the scale for the point identification

approach.

Another point worth noting is that the sign restriction imposed in Assumption 1-(ii)-(2) that the sign

of y′(·) is known over its support plays a role in the identification of y′(a2(α1)). Note that we utilize

the system of equations (2.4.2) to cancel out the α1-th quantile of the private type t(α1), the same for

both games. However, the supermodularity assumption regarding function x(a(α1),a−N ;N) shown in

Condition 2.2.2 implies the strictly positive derivative of x(a(α1),a−N ;N) with respect to a(α1), the

first argument in x. This strictly positive derivative appears in the expectation on the right hand side

17 The scale can be defined through other values of quantile, by noting that from the function value y′(a j(α)) (or,
equivalently t(α)) at an arbitrary α for either j = 1 or 2, we can back out the value of y′(a(α IP)) and the identification
approach goes through. Alternatively, we can assume that at α IP, t(α IP) is normalized to be one, thus both y′(a1(α

IP))
and y′(a2(α

IP)) are known.
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in the system of equations (2.4.2). Consequently, the sign of unchanged t(α1) determines the sign of

y′(a2(α1)) (and y′(a1(α1))). Since we do not restrict the sign of private type t(α1), it is possible for

y′(a2(α1)) (and y′(a1(α1))) to be negative, but by canceling out t(α1), we always get strictly positive

right hand side ratio in Equation (2.4.3). Further through the product of ratios in Equation (2.4.4),

we always have strictly positive y′(a2(α1)) from the benchmark contraction sequence approach, if

y′(a(α IP)) is assumed to be positive. In this sense, the benchmark nonparametric identification we

propose in this subsection can only identify y′(a2(α1)), up to its absolute value. By assuming that we

know the sign of y′(·), we know the sign of y′(a2(α1)). As a result, the identification of y′(a2(α1)) is

obtained.18 Moreover, the sign restriction plays a similar role in Sections 2.4.1 and 2.4.2.

By varying the starting probability α1 given α1 > α IP, we can use the strictly decreasing con-

traction sequence approach to nonparametrically identify y′(a2(·)) over the support (α IP,1], up to

the scale y′(a(α IP)). Through a similar procedure by constructing a strictly increasing contraction

sequence, y′(a2(·)) is identified over [0,α IP), up to the scale y′(a(α IP)). In this way, y′(a2(·)) is

nonparametrically identified over [0,1]; or equivalently, y′(·) is nonparametrically identified over

[a2, ā2], up to the scale y′(a(α IP)).

Recall that, when evaluated at the same α , y′(a2(α))/y′(a1(α)) is identified. Together with the

above argument that y′(a2(·)) is nonparametrically identified over [0,1], we directly obtain the identifi-

cation of y′(a1(α)) over the whole support of α , i.e. [0,1], up to the scale y′(a(α IP)). Equivalently,

y′(·) is nonparametrically identified over [a1, ā1]. In summary, y′(·) is nonparametrically identified

over [min{a1,a2},max{ā1, ā2}], up to the scale y′(a(α IP)).

Identifying F(·) over the support [t, t̄] can be achieved through the inverse of the strategy function

ξ j stated in Equation (2.4.1), through which private types are recovered using either j = 1 or 2, up to the

scale t(α IP). As a result, F(·) can be nonparametrically identified by noting that F(t) = G j(ξ
−1
j (t)),

for any t ∈ [t, t̄] and for j = 1 or 2. Again, since G j(ξ
−1
j (t(α IP))) is unknown, this identification holds

up to a scale of F(t(α IP)) = G j(ξ
−1
j (t(α IP))), for j = 1 or 2.

Theorem 1 Suppose Assumption 3 and the additional assumption hold: there is only one intersection

point of two corresponding action distributions G1(·) and G2(·), denoted as: (a(α IP),α IP). Then

under the exclusion restriction that F(·) = F(·|N1) = F(·|N2),

18 In the Supplemental Appendix, where the corresponding assumptions and identification results of the second and third
forms of the payoff function are given, we show that the identification of the second form also needs the restriction of
sign. On the other hand, the identification of the third form does not need the sign restriction, implying that we can
identify the exact derivative y′(a2(α1)).
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(1) y′(·) is nonparametrically identified over [min{a1,a2},max{ā1, ā2}], up to the scale y′(a(α IP)).

(2) F(·) is nonparametrically identified over [t, t̄], with F(·) = G1(ξ
−1
1 (·)) = G2(ξ

−1
2 (·)), up to the

scale F(t(α IP)) = G1(ξ
−1
1 (t(α IP))) = G2(ξ

−1
2 (t(α IP))).

Note that in the single-intersection-point case, the contraction sequence {αn}∞
n=1 is unique. Thus

y′(·) and F(·) are uniquely identified over their identifiable supports, up to a scale.

Multiple Intersections

The identification in this subsection is a suitable adaption of the contraction sequence approach adopted

in the single-intersection-point case. Since in the multiple-intersection-point case, there are always

intersection points of two equilibrium action CDFs, we can obtain the point identification result as in

Section 2.4.1.

As in Section 2.3.2, we do not allow the two action distributions to coincide on some open intervals;

instead, they intersect at M > 1 finite points. Denote the intersection points as {α IP1, · · · ,α IPM}, where

0≤ α IP1 < · · ·< α IPM ≤ 1. The M intersection points divide the 2-dimensional space containing the

two action distributions into a finite number of parts. Note that while in the simple example in Section

2.3.2 shown in Figure 2.2b, the two intersection points divide the space into 4 parts, and the number

of the parts is not definitely M+2, since we allow the first and the last intersection points satisfying

α IP1 = 0 or α IPM = 1. For nonparametric identification, we then show how to identify y′(·) (up to a

scale) over [a2, ā2] in this case. With the first intersection point α IP1 , the point identification result

holds with t(α IP1) normalized to be one and thus y′(a1(α
IP1)) and y′(a2(α

IP1)) both known. Without

loss of generality, we use this normalization.

Note that if we choose an arbitrary part in the 2-dimensional space containing the two distribution

curves, the following four different possibilities can occur: (1) G2 is above G1, and both endpoints are

intersection points, (2) G2 is above G1, and only one endpoint is intersection point, (3) G2 is below

G1, and both endpoints are intersection points, and (4) G2 is below G1, and only one endpoint is

intersection point. (2) and (4) can only happen in the first and the last parts. (1) and (3) can happen

in any part. In the example shown in Figure 2.2b, when a ∈ [a2,a(α
IP1)], G2(a) < G1(a), only the

right endpoint is intersection point; when a ∈ [a(α IP1),a(α IP2)], G2(a)> G1(a), both endpoints are

intersection points; when a ∈ [a(α IP2), ā2], G2(a)< G1(a), the left endpoint is intersection point.

We can use the contraction sequence approach in the benchmark case in Section 2.4.1 to identify
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y′(·). Choose any part from the x-axis in the action CDF graph corresponding to [a(α IPm),a(α IPm+1)],

which satisfies one of the four possibilities depicted above. Notice that here we allow that a(α IPm) =

min{a1,a2}, or a(α IPm+1) = max{ā1, ā2}. In order to identify y′(·) over (a(α IPm),a(α IPm+1)), we

choose any a in this open interval. The identification then relies on which event happens:

(i) First, the contraction sequence of probabilities {αn}∞
n=0 for identification is chosen depending

on the location of the intersection point. When only one endpoint is the intersection point, the right

endpoint, whose corresponding α IPm+1 is the limit of the sequence, implies that the sequence is

increasing; the left endpoint, whose corresponding, α IPm is the limit of the sequence, implies that the

sequence is decreasing. When both endpoints are intersection points, one can choose either endpoint

as the limit of the sequence. The identification of y′(a) is unique, because we rely on Equation (2.4.4)

which is an identity where the intermediate ratios are canceled out.

(ii) When G2 is above G1, and we choose the right endpoint as the limit of the contraction sequence

of probabilities {αn}∞
n=0, the identification of y′(a2(α0)) is determined by Equation (2.4.4) directly,

without any adjustment. Instead, if we choose the left endpoint as the limit, Equation (2.4.4) is applied

with a minor adaption, by noting that y′(a2(α0)) = y′(a1(α1)) since a2(α0) = a1(α1) and a1(α1) is

right below a2(α0). Therefore, y′(a1(α1)) is identified, and y′(a2(α0)) is the same as y′(a1(α1)).

(iii) When G2 is below G1, choosing the right endpoint as the limit requires the minor adaption

mentioned above to identify y′(a2(α0)) and a1(α1) is right above a2(α0); and choosing the left

endpoint as the limit gives the direction identification of y′(a2(α0)).

These discussions show that we identify y′(·) over all open intervals. Lastly, the endpoints of these

open intervals can be determined by continuity. The next proposition summarizes the identification

results of y′(·) and F(·) in the multiple-intersection-point case.

Proposition 6 Suppose Assumption 3 and the additional assumption hold: there are M > 1 finite

intersection points of two corresponding distributions G1(·) and G2(·). Then

(1) y′(·) is nonparametrically identified over [min{a1,a2},max{ā1, ā2}], up to a scale.

(2) F(·) is nonparametrically identified over [t, t̄] with F(·) = G2(ξ
−1
2 (·)) = G1(ξ

−1
1 (·)), up to a scale.

2.4.2 No-Intersection: Partial Identification

When two action CDFs do not intersect with each other, as shown in Figure 2.3b, in general we

do not have point identification even under the exclusion restriction. We first illustrate it using the

following graph.
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Figure 2.5: No point identification in no-intersection-point case.

0 a

G(·)

1
G2(·)G1(·)

a1 a2 ā1 ā2

α̂

Notes: Any functional form of y′(·) over the support [a1,a2] can be chosen, but still leading
to the same ratios y′(a1(α))/y′(a2(α)) for all α ∈ [0,1] and the same CDFs G1 and G2,
which are known. Thus y′(·) is not pointly-identified over either [a1, ā1] or [a2, ā2], under
the exclusion restriction F(·) = F(·|N1) = F(·|N2).

As shown in Figure 2.5, evaluated at any action a between [a1,a2], we can assign any value to the

function y′(·), which corresponds to the function value y′(a1(α)) at α ∈ [0, α̂] along the known CDF

G1. Then, we can derive y′(a2(α)) through the known ratio y′(a1(α))/y′(a2(α)) which is known as it

is determined by the ratio Ea−N1
[

∂x(a1(α),a−N1 ;N1)

∂a1
]/Ea−N2

[
∂x(a2(α),a−N2 ;N2)

∂a2
] from Equation (2.4.3), at the

same quantile, along the known CDF G2. Repeat this procedure, we can finally determine all function

value y′(·) over [a2, ā2], by choosing any arbitrary function of y′(·) over [a1,a2]. This implies that y′(·)

is not pointly identified, since we can essentially derive the same known information with the freedom

of picking any function y′(·) over the continuum [a1,a2]. This non-identification result is given in the

following proposition.

Proposition 7 Suppose Assumption 3 and the additional assumption hold: there is no intersection

point of two corresponding action distributions G1(·) and G2(·). Then under the exclusion restriction

that F(·) = F(·|N1) = F(·|N2), y′(·) is not pointly identified over [min{a1,a2},max{ā1, ā2}]. Specifi-

cally, for a function y′(·), there exists another function y′∗(·) observationally equivalent to y′(·), in the

sense that both functions induce the same CDFs G1(·) and G2(·) over their corresponding supports

[a1, ā1] and [a2, ā2], as well as the same ratios y′(a1(α))/y′(a2(α)) for any α ∈ [0,1].

However, we can get bounds for the function y′(·), thus deriving partial identification result (up to a

scale). We first assume that there exists one α∗ whose corresponding private type t(α∗) is normalized
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to be one, from which the values y′(a1(α
∗)) and y′(a2(α

∗)) can be known from the system of equations

(2.4.2).19 Starting from this normalized α∗, we obtain a finite set of probabilities, whose corresponding

function values of y′(a1(·)) and y′(a2(·)) are known, denoted as {q1,q2, · · · ,qI}, designed to be a

strictly increasing sequence, meaning that qi < qi+1, and satisfy the condition: a1(qi+1) = a2(qi)

for i < I. We consider the pairs (y′(a1(q1)),y′(a2(q1))), · · · , and (y′(a1(qI)),y′(a2(qI))), where we

express every value as a function of y′(a1(q1)) in the following fashion:

y′(a2(q1)) =
Ea−N2

[
∂x(a2(q1),a−N2

;N2)

∂a2
]

Ea−N1
[

∂x(a1(q1),a−N1
;N1)

∂a1
]
y′(a1(q1)),

y′(a1(q2)) = y′(a2(q1)) =
Ea−N2

[
∂x(a2(q1),a−N2

;N2)

∂a2
]

Ea−N1
[

∂x(a1(q1),a−N1
;N1)

∂a1
]
y′(a1(q1)),

· · · ,

y′(a1(qI)) = y′(a2(qI−1)) = ∏
I−1
i=1

Ea−N2
[

∂x(a2(qi),a−N2
;N2)

∂a2
]

Ea−N1
[

∂x(a1(qi),a−N1
;N1)

∂a1
]
y′(a1(q1)),

y′(a2(qI)) = ∏
I
i=1

Ea−N2
[

∂x(a2(qi),a−N2
;N2)

∂a2
]

Ea−N1
[

∂x(a1(qi),a−N1
;N1)

∂a1
]
y′(a1(q1)),

(2.4.5)

due to the ratio of the two first order conditions as in (2.4.3) and the properties of the finite set of

probabilities {q1,q2, · · · ,qI}.

Without loss of generality, we assume that y(·) is a strictly decreasing and concave function, which

implies y′(a2(qi))≤ y′(a1(qi)) for each i. Thus we have I bounds from these paired function values:

[y′(a2(q1)),y′(a1(q1))], · · · , [y′(a2(qI)),y′(a1(qI))]. The identified sets are constructed from these

bounds as follows.

Given the finite set {q1,q2, · · · ,qI}, the whole support [0,1] is divided into J parts, where J can

take three possible values: I− 1, I, and I + 1, which translates into four different cases: (1) when

J = I− 1, and q1 = 0, qI = 1, (2.a) when J = I, and q1 = 0, qI < 1, (2.b) when J = I, and q1 > 0,

qI = 1, (3) when J = I +1, and q1 > 0, qI < 1.

Consider another strictly increasing sequence of probabilities {α1, · · · ,αJ}, with each element

falling into one of the J parts. Next we will construct bounds for each α j, for j = 1, · · · ,J. Naturally,

19 This pre-specified probability serves as the scale in our partial identification approach. As in the point identification
for the single-intersection-point case, we can choose an arbitrary probability for normalization. But at the normalized
probability, the private type value along with the function values of y′ are unknown; thus it is impossible to compare
bounds derived from different normalized probabilities, because this entails comparing the unknown function values at
different normalized probabilities. Therefore, to fix the idea, we choose the probability to be normalized first, then derive
bounds based on this normalized probability.
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an arbitrary α j will have I bounds derived from the I pairs of known values, and then we can pick the

tightest bound.

We now discuss the first case as an example for illustration, and leave the discussion on the

remaining cases to the Supplemental Appendix. For ease of illustration, we adopt the following

notation:
E1(a1(α))

E2(a2(α))
≡

Ea−N1
[

∂x(a1(α),a−N1 ;N1)

∂a1
]

Ea−N2
[

∂x(a2(α),a−N2 ;N2)

∂a2
]
,

which is always strictly positive due to the strict supermodularity condition 2.2.2.

Case 1: J = I−1

For an arbitrary α j ∈ (q j,q j+1), bounds using q j+1, · · · ,qJ+1 come from bounding

y′(a2(α j)), · · · ,y′(a2(αJ)), while bounds using q1, · · · ,q j come from bounding

y′(a1(α1)), · · · ,y′(a1(α j)). Note that we can always express y′(a2(α j)) in the following two ways:

y′(a2(α j)) =y′(a1(α j+1))

=
E1(a1(α j+1))

E2(a2(α j+1))
y′(a2(α j+1))

=
E1(a1(α j+1))

E2(a2(α j+1))

E1(a1(α j+2))

E2(a2(α j+2))
y′(a2(α j+2))

= · · ·

=
E1(a1(α j+1))

E2(a2(α j+1))

E1(a1(α j+2))

E2(a2(α j+2))
· · · E1(a1(αJ))

E2(a2(αJ))
y′(a2(αJ)),

or

y′(a2(α j)) =
E2(a2(α j))

E1(a1(α j))
y′(a1(α j))

=
E2(a2(α j))

E1(a1(α j))

E2(a2(α j−1))

E1(a1(α j−1))
y′(a1(α j−1))

= · · ·

=
E2(a2(α j))

E1(a1(α j))

E2(a2(α j−1))

E1(a1(α j−1))
· · · E2(a2(α1))

E1(a1(α1))
y′(a1(α1)).

Thus, the first group of bounds are constructed as follows:

The bound using q j+1 has a coefficient y′(a1(q1))∏
j
l=1

E2(a2(ql))
E1(a1(ql))

on [1, E2(a2(q j+1))
E1(a1(q j+1))

].

The bound using q j+2 has a coefficient y′(a1(q1))∏
j+1
k= j+1

E1(a1(αk))
E2(a2(αk))

)∏
j+1
l=1

E2(a2(ql))
E1(a1(ql))

on [1, E2(a2(q j+2))
E1(a1(q j+2))

].

Finally, the bound using qJ+1 has a coefficient y′(a1(q1))∏
J
k= j+1

E1(a1(αk))
E2(a2(αk))

)∏
J
l=1

E2(a2(ql))
E1(a1(ql))

on
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[1, E2(a2(qJ+1))
E1(a1(qJ+1))

].

Therefore, if we define ∏
s
k= j+1

E1(a1(αk))
E2(a2(αk))

= 1 for s < j+1, we can use a unified way to represent

the bound from qi to be

y′(a1(q1))
i−1

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],

for all i = j+1, · · · ,J+1. Then, the second group of bounds are constructed as follows:

The bound using q j has a coefficient y′(a1(q1))∏
j
k= j

E2(a2(αk))
E1(a1(αk))

)∏
j−1
l=1

E2(a2(ql))
E1(a1(ql))

on [1, E2(a2(q j))
E1(a1(q j))

].

The bound using q j−1 has a coefficient y′(a1(q1))∏
j
k= j−1

E2(a2(αk))
E1(a1(αk))

)∏
j−2
l=1

E2(a2(ql))
E1(a1(ql))

on [1, E2(a2(q j−1))
E1(a1(q j−1))

].

Finally, the bound using q1 has a coefficient y′(a1(q1))∏
j
k=1

E2(a2(αk))
E1(a1(αk))

) on [1, E2(a2(q1))
E1(a1(q1))

].

Therefore, if we define ∏
0
l=0

E2(b2(ql))
E1(b1(ql))

= 1, we can use a generic way to represent the bound from

qi to be

y′(a1(q1))
j

∏
k=i

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],

for all i = 1, · · · , j.

Finally, the upper bound through the above procedure is thus y′(a1(q1)) times

max

(
max{

j

∏
k=i

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
} j

i=1,max{
i−1

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J+1

i= j+1

)
,

and the lower bound is thus y′(a1(q1)) times

min

(
min{

j

∏
k=i

E2(a2(αk))

E1(a1(αk))

i

∏
l=0

E2(a2(ql))

E1(a1(ql))
} j

i=1,min{
i−1

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J+1

i= j+1

)
.

As a result, for any α ∈ (q1,q2)∪(q2,q3)∪·· ·∪(qI−1,qI), we adopt the approach discussed above,

and derive the lower and upper bounds for the function value y′(a2(α)), denoted as lb[y′(a2(α))] and

ub[y′(a2(α))]. Thus the identified set of the function y′(·) is given as follows:

Y ′∗ ≡ {y′ ∈ Y ′ : y′(a2(α)) ∈
[
lb[y′(a2(α))],ub[y′(a2(α))]

]
when α ∈ ∪I−1

i=1 (qi,qi+1),

y′(a2(α)) is pointly determined through the system (2.4.5) when α ∈ {q1, · · · ,qI}},

(2.4.6)

where Y ′ is defined following the regularity conditions in Assumption 1-(ii) of Y , thus is omitted

here. One restriction worth noting here is that the function y(·) is assumed to be concave, thus the

derivative function y′(·) is decreasing. Although the bounds cannot be shown to be monotonic in α ,
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this shape restriction is already included in the assumption of Y , thus in Y ′, and one needs to take it

into consideration when constructing bounds and the identified set. This identified set is sharp in the

sense that any function y′(·) that belongs to this set would induce the same data, i.e., the action CDFs

G1 and G2 and the ratios y′(a1(α))/y′(a2(α)) for any α ∈ [0,1].

From the bounds of y′(a2(α)), we can easily recover the bounds for y′(a1(α)) for any α from

∪I−1
i=1 (qi,qi+1). The lower and upper bounds can be shown to be continuously differentiable. Therefore,

we can use these bounds to recover the bounds of private types via the inverse of the strategy function

as in Section 2.4.1, from which the bounds on the private type CDF F(·) can then be recovered.

Theorem 2 Suppose Assumption 3 and the additional assumption hold: there is no intersection point

of two corresponding action distributions G1(·) and G2(·). Then under the exclusion restriction that

F(·) = F(·|N1) = F(·|N2),

(1) y′(·) is nonparametrically partially identified over [min{a1,a2},max{ā1, ā2}], up to a scale. The

identified set is given by Y ′∗ in (2.4.6).

(2) F(·) is nonparametrically partially identified over [t, t̄], with F(·) = G1(ξ
−1
1 (·)) = G2(ξ

−1
2 (·)), up

to a scale.

2.4.3 Discussion on the Identification Results

We obtain point identification results for the single-intersection-point case and the multiple-

intersection-point case, but only partial identification result for the no-intersection-point case. Although

the point identification result is not always guaranteed, we emphasize that the patterns of functional

comparative statics discussed in Section 2.3 are testable through checking the conditional action CDFs

G1 and G2. Therefore, whether the point or partial identification result holds can be verified from the

data. If the data shows that G1 and G2 cross at least once, the identification approaches in Section 2.4.1

and Section 2.4.1 can be adopted, thus leading to point identification result. If G1 and G2 do not cross,

the partial identification result in Section 2.4.2 applies.

The point and partial identification results are actually connected to each other. Consider the case

of no-intersection-point. Since we impose the convexity or concavity restriction of y(·) in Assumption

1-(ii), the relative locations of G1 and G2 give more information about the bounds. If G1 and G2 are

closer to each other, the bounds from known and finite pairs of function values become tighter, because

the derivative function y′(·) is increasing or decreasing. Specifically, when G1 and G2 are close enough

such that they intersect once, the bounds from known pairs of function values will be infinite, thus
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collapsing to point identification, because at the intersection point, the bound becomes a singleton.

Although the discussion about the identification problem focuses on the game with incomplete

information, the game with complete information can also be included in our framework. Recall that

the key of identification relies on the ratio of the two first order conditions as in Equation (2.4.3). The

left-hand side ratio of expected derivatives of function x can be replaced by the ratio of the derivatives

of function x, without the expectation. This does not affect the identification approach, in the sense

that this derivative of function x is known, and varies with the number of players N. Thus the point or

partial identification result still holds.

If N can take more than two values, the over-identification of the problem might occur. However,

since the model is general, it is hard to know whether knowing a third N can help tighten the bounds in

the case of partial identification, which would depend on how far away the third action CDF lies from

the first two action CDFs.

2.5 Numerical Illustration

In this section, we use the Tullock contest model to illustrate the nonparametric identification

results. We further assume in Example 4 that V = 1, r = 1 and all contestants are ex-ante symmetric.

Thus, the payoff function becomes

πi(ai,a−i, ti) =
ai

ai +∑ j 6=i a j
− c(ai)

ti
, (2.5.1)

According to Wasser (2013) and Ewerhart (2014), the equilibrium is interior and can be reduced to

ti ·E−i[
∑ j 6=i a j

(ai +∑ j 6=i a j)2 ] = c′(ai), (2.5.2)

Denote p = 1/t, which can be interpreted as the private cost. We specify the distribution of private

costs in this numerical illustration following Wasser (2013).

2.5.1 When the Exclusion Restriction Holds

We first consider the scenario when the exclusion restriction holds. The true distribution of private

cost p is assumed to be a uniform distribution on [0.5,2.5]. The true cost function is assumed to be

a quadratic one: c(x) = (1/2)x2, which leads to an identity cost derivative function: c′(x) = x. We

approximate s(t) = ν(p) numerically by a discrete function on a grid of points in [0.5,2.5]. The size

of the grid is set to be g = 1000, and the set of points is denoted as:

p̂ = {p1, p2, · · · , pg}.
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When the exclusion restriction holds, we consider the same p̂ for different numbers of contestants:

N = 2, N = 3, N = 5, and N = 6. The numerical equilibrium strategy functions and corresponding

equilibrium efforts distributions are shown in Figures 2.6a and 2.6b, respectively. When N increases

from 2 to 3, the change corresponds to the first pattern of functional comparative statics: single-

intersection-point; when N increases from 3 to 5 and 6, the last pattern of functional comparative

statics emerges: no-intersection-point. We apply the point identification approach to the single-

intersection-point pattern, e.g., N = 2 and N = 3 to identify the cost derivative function over the

support of equilibrium efforts when N = 3. We also apply the partial identification result to two

no-intersection-point patterns, e.g., N = 3 and N = 5, as well as N = 3 and N = 6, in order to identify

the cost derivative function over the support of efforts when N = 3 as well.

Figure 2.6: When the exclusion restriction holds: equilibrium effort functions and effort
distributions.

(a) Equilibrium effort functions with different N. (b) Effort distributions with different N.

For point identification, we normalize the cost derivative at the intersection point to be the effort

itself, since the true cost derivative function is an identity function, which is represented by the 45-

degree line. As shown in Figure 2.7a, the identified cost derivative function is more accurate as the

effort value being evaluated is closer to the intersection point. The reason is that the point identification

result relies on the construction of a contraction sequence that converges to the intersection point. The

infinite nature of this sequence can cause the numerical error induced by calculating the empirical CDF

and the empirical quantile to accumulate. As the effort being identified gets further away from the

intersection point, the cumulative error gets larger.

The partial identification results are shown in Figure 2.7b, where the upper and lower bounds of

the cost derivative function are displayed. First of all, starting from the lower support of equilibrium
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efforts when N = 3, there is a finite set of effort values evaluated at which the cost derivatives are

pointly identified. The bounds are thus derived for each section between two pointly identified values.

Compared to N = 6, the effort distribution with N = 5 is closer to that with N = 3. Therefore, there

are more effort values at which the cost derivatives are pointly identified resulting in tighter bounds.

Figure 2.7: When the exclusion restriction holds: point and partial identification results.

(a) Point identification of the cost derivative
function.

(b) Partial identification of the cost derivative
function.

A few remarks regarding the results from the point identification and the partial identification

approaches are in order. First, the point identification results come from the product of infinitely

many ratios, which lead to the accumulation of numerical errors. In contrast, the bounds in the

partial identification case are derived from the pairs of point identified values that are finite; hence

the numerical error seems smaller relative to the case of point identification. Second, in the point

identification case the normalized point is chosen to be the intersection point; while in the partial

identification case, the normalized point is always the lower support of equilibrium efforts when

N = 3. Figure 2.8 shows the results from the point identification (N = 2 and N = 3) and the partial

identification (N = 3 and N = 5). Roughly speaking, the results are compatible although the point

identification result is further away from the true function (45-degree line) as moving further away

from the intersection point due to the cumulative numerical error. Nevertheless and importantly, in

a local area around the intersection point, the point identification result is always inside the derived

bounds.

2.5.2 When Exclusion Restriction Does Not Hold

When the exclusion restriction does not hold, the private cost distribution varies as N increases. We

assume that when N = 2, the cost is distributed as a truncated standard normal distribution in [0.5,2.5];
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Figure 2.8: Comparison of the point and partial identification when the exclusion restriction holds.

when N = 3, the cost is distributed as a uniform distribution in [0.5,2.5]; when N = 5, the cost is

distributed as a truncated exponential distribution in [0.5,2.5]; when N = 6, the cost is distributed as a

truncated logistic distribution in [0.5,2.5].

The numerical equilibrium strategy functions are shown in Figure 2.9a, and the distributions

of equilibrium efforts are shown in Figure 2.9b. Clearly the patterns presented in Figure 2.9a do

not transmit to Figure 2.9b, because the exclusion restriction does not hold. We apply the point

identification approach to the single-intersection-point pattern, e.g., N = 2 and N = 3 to identify the

cost derivative function over the support of equilibrium efforts when N = 2 (Figure 2.10a). We also

apply the partial identification result to two no-intersection-point patterns, e.g., N = 2 and N = 5, as

well as N = 2 and N = 6, in order to identify the cost derivative function over the support of efforts

when N = 2 as well (Figure 2.10b).

The point identification result shown in Figure 2.10a is substantially different from the true function

(not even increasing). While the bounds from the partial identification shown in Figure 2.10b seem

closer to the true function than the point identification result, the 45-degree line lies outside the

identified sets. When the exclusion restriction does not hold, the bounds from different Ns are not

compatible with each other. The derived bounds from N = 2 and N = 5 are not tighter and do not
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Figure 2.9: When the exclusion restriction does not hold: equilibrium effort functions and effort
distributions.

(a) Equilibrium effort functions with different N. (b) Effort distributions with different N.

lie within those from N = 2 and N = 6, which is in sharp contrast with the results in Figure 2.7b.

As a result, this can be used as a basis to propose a test for the exclusion restriction, provided that

nonparametric set inference methods are developed.

Figure 2.10: When the exclusion restriction does not hold: point and partial identification results.

(a) Point identification of the cost derivative
function.

(b) Partial identification of the cost derivative
function.

2.6 Extensions

2.6.1 Corner Solutions

In the previous sections, we only consider the interior solution case, where the first order condition

yields Equation (2.3.1). However, in some empirical applications, corner solutions may occur.

Example 4 illustrates the payoff function in a Tullock contest that fits in the framework of Bayesian

games in this paper as in Section 2.5. Note that unlike Example 4, here we let the cost function c(·) be
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the same for every contestant and assume that r is known to researchers. In this subsection, we use this

contest model to discuss the nonparametric identification of the unknown structure [F,c′], given the

exclusion restriction F(·|N) = F(·), when the contestant’s equilibrium effort is allowed to be zero.20

The first order condition is now characterized by the Krush-Kuhn-Tucker (KKT) conditions:

ti ·V ·E−i[
rar−1

i (∑ j 6=i ar
j)

(ar
i +∑ j 6=i ar

j)
2 ] = c′(ai), i f ai > 0, (2.6.1)

ti ·V ·E−i[
rar−1

i (∑ j 6=i ar
j)

(ar
i +∑ j 6=i ar

j)
2 ]≤ c′(ai), i f ai = 0. (2.6.2)

Therefore, there exist both “inactive” contestants who make zero effort and obtain zero expected

payoffs, as well as “active” ones whose efforts are strictly positive. Ewerhart (2014) shows that there

exists a unique, symmetric, and monotone equilibrium strategy s(·) in the above Tullock contest, and

at least one contestant remains active in equilibrium. For active contestants, s(·) is strictly increasing

since the strict supermodularity condition is satisfied.

To apply the contraction sequence approach of nonparametric identification proposed in Section

2.4, we can classify the cases of comparative statics in the same way as before, by looking at how the

two effort distributions behave for the private types who are active when N varies.

It is worth noting that in the corner solution case, c′(·) and F(·) can only be pointly or partially

identified over a restricted support, due to the reason that the identification approaches can only be

adopted for strictly positive efforts in Equation (2.6.1). For instance, in the Tullock contest, let α∗1 and

α∗2 be two probabilities, which correspond to the upper boundaries of zero actions in the two contests

(also the lower boundaries of non-zero actions in the two contests). Then c′(·) is only identified over

the restricted support [min{a1(α
∗
1 ),a2(α

∗
2 )},max{ā1, ā2}], and F(·) is identified over the restricted

support [min{t(α∗1 ), t(α∗2 )}, t̄}], with F(·) = G j(ξ
−1
j (·)) for j = 1,2.

2.6.2 Asymmetric Private Type Distribution

We now consider the asymmetric case where each player i has her private type drawn from

asymmetric Fi(·) over the support [t i, t̄i], satisfying Assumption 1-(i). We maintain the exclusion

restriction. The strictly MPSNE of player i is denoted by si(ti) = ai, with equilibrium action CDF

Gi(·|N) over the support [ai(N), āi(N)], which satisfies Assumption 2. The first order condition (an

20 Here we focus on identification of c′(·), the derivative of the cost function.
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adaption of Equation (2.3.1)) now becomes:

ti(α) ·Ea−N [
∂x(ai(α),a−N ;N)

∂ai
]+ y′(ai(α)) = 0, (2.6.3)

where the bolded E−N denotes the expectation over the joint action distribution except player i:

G−i(·, · · · , ·|N) = Π j 6=iG j(·|N). We consider the interior solution case.

Consider two numbers of players N1 < N2. Our identification problem is to recover the struc-

ture [F1(·), · · · ,FN j(·);y′(·)], given the equilibrium action vector {a j,1, · · · ,a j,N j}, and action CDFs

{G j,1(·), · · · ,G j,N j(·)} for j = 1,2.

Under the exclusion restriction, it is crucial to cancel out ti(α) in Equation (2.6.3) above, as in the

beginning of Section 2.4. Therefore, one necessary constraint to apply the identification approach is

to assume that there are N0 common players with 1≤ N0 ≤ N1 when N varies. We assume that these

common players are indexed as the first N0 players. The identification procedure is thus as follows

(either pointly or partially):

Step 1: Choose an arbitrary common player i, with private type distribution Fi(·). By canceling out

ti(α), we get the following equation

Ea−N1
[

∂x(a1,i(α),a−N1 ;N1)

∂a1,i
]

Ea−N2
[

∂x(a2,i(α),a−N2 ;N2)

∂a2,i
]
=

y′(a1,i(α))

y′(a2,i(α))
.

Step 2: Applying the identification approach in Section 2.4, y′(·) is nonparametrically identified

over [min{a1,i,a2,i},max{ā1,i, ā2,i}], and Fi(·) is nonparametrically identified over [t i, t̄i], with Fi(·) =

G j,i(ξ
−1
j,i (·)) for j = 1,2.

Step 3: Varying the index i within the group of common players, y′(·) is identified over

[min1≤i≤N0

{
min{a1,i,a2,i}

}
,max1≤i≤N0

{
max{ā1,i, ā2,i

}
].21

Step 4: Choosing an arbitrary remaining contestant k, with private type distribution Fk(·). Thus

when a j,k ∈ [min1≤i≤N0

{
min{a1,i,a2,i}

}
,max1≤i≤N0

{
max{ā1,i, ā2,i

}
], when j = 1 or 2, the corre-

sponding private type tk can be recovered. As a result, Fk(·) is identified over such values of tk.

2.6.3 Asymmetric Function y

We now consider the asymmetric case where N players draw their private types from a common

CDF F(·) over [t, t̄], but have different functions yi(·) satisfying Assumption 1. Although the latent

21 If the support [min{a1,i,a2,i},max{ā1,i, ā2,i}] of different common player i overlaps, varying the index i may potentially
tighten the bounds of y′(·) in the case of partial identification.
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private type distribution is common, each player i can have a different equilibrium strategy si(ti) = ai

with different equilibrium action CDF Gi(·|I) over [ai(N), āi(N)], due to the different function yi.

Consider two numbers of players N1 < N2, and assume that there are N0 common players where

1 ≤ N0 ≤ N1. We assume that these common players are indexed as the first N0 players. The

identification approach is as follows (either pointly or partially):

Step 1: Choose an arbitrary common player i, with the function yi(·). By canceling out t(α), we

get the following equation

Ea−N1
[

∂x(a1,i(α),a−N1 ;N1)

∂a1,i
]

Ea−N2
[

∂x(a2,i(α),a−N2 ;N2)

∂a2,i
]
=

y′i(a1,i(α))

y′i(a2,i(α))
.

Step 2: Applying the identification approach in Section 2.4, y′i(·) is nonparametrically identified

over [min{a1,i,a2,i},max{ā1,i, ā2,i}], and F(·) is nonparametrically identified over [t, t̄], with F(·) =

G j,i(ξ
−1
j,i (·)) for j = 1,2.22

Step 3: Choose an arbitrary remaining contestant k when N = N j, j = 1 or 2. Thus from player

k’s first order condition t(α) ·Ea−Nj
[∂x(a j,k(α),a−N j ;N j)/∂a j,k] = y′k(a j,k(α)), y′k(·) is identified over

[a j,k, ā j,k].

2.6.4 Asymmetric Private Type Distribution and Function y

We now consider the asymmetric Bayesian game, where player i has own private type CDF Fi(·)

over [t i, t̄i] and own function yi(·) satisfying Assumption 1. Each player i has a different equilibrium

action strategy si(ti) = ai with a different action distribution Gi(·|N) over [ai(N), āi(N)].

Consider two numbers of players N1 < N2. assume that there are N0 common players where

1 ≤ N0 ≤ N1. We assume that these common players are indexed as the first N0 players. The

identification approach is as follows (either pointly or partially):

Step 1: Choose an arbitrary common player i, with private type distribution Fi(·). By canceling out

ti(α), we get the following equation

Ea−N1
[

∂x(a1,i(α),a−N1 ;N1)

∂a1,i
]

Ea−N2
[

∂x(a2,i(α),a−N2 ;N2)

∂a2,i
]
=

y′(a1,i(α))

y′(a2,i(α))
.

Step 2: Applying the identification approach in Section 2.4, y′(·) is nonparametrically identified

over [min{a1,i,a2,i},max{ā1,i, ā2,i}], and Fi(·) is nonparametrically identified over [t i, t̄i], with Fi(·) =

22 Varying the index i may potentially tighten the bounds of F(·) in the case of partial identification.
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G j,i(ξ
−1
j,i (·)) for j = 1,2.

Note that in this setup, only the private type CDFs {F1(·), · · · ,FN0(·)}, and functions

{y1(·), · · · ,yN0(·)} of common players can be nonparametrically identified over their corresponding

identified supports.

2.6.5 Asymmetric Function x

We now consider the extension to allow for each player i to have different xi(ai,a−i;N). It is

important to note that this function has to vary with N, which implies that for player i, when the number

of participants change, xi has to change as well, in order to cause variation of the expectation expressed

as a multiple integral.

Since xi is assumed to be known to the researchers, its asymmetry does not add any more difficulty

to the identification problem as it does not influence the cancellation of private type for common

players when the first order conditions for common players are stacked, which is the key insight we

use in our identification strategy. Specifically, when asymmetric xi appears together with asymmetric

private type CDF Fi, the procedure in Section 2.6.2 can be adopted. Second, when both xi and yi are

asymmetric, we can utilize the procedure in Section 2.6.3. Lastly, when the functions xi, Fi and yi are

all asymmetric, the procedure in Section 2.6.4 can be applied.

Furthermore, as mentioned in Section 2.2.2, a deterministic function of ti appearing in payoff

functions in all three forms, i.e. mi(ti), can be relaxed to be asymmetric, for the same reason as in the

asymmetric xi case. As a result, asymmetric mi can be combined with asymmetric Fi or asymmetric yi

(along with asymmetric xi), which will not affect identification results in this section.

2.6.6 Unobserved Heterogeneity

In this subsection, we discuss the extension of the benchmark model to the case with unobserved

game heterogeneity, which is modeled as a random variable U drawn independently from the CDF

FU(·) with the support denoted by U . The realization of the unobserved heterogeneity u is common

knowledge among players in the Bayesian game, but as researchers we do not observe this u. Thus

conditional on this u, players act as in the setup of our benchmark model, in the sense that their

private types are independent conditionally. As a consequence, the existence of strictly MPSNE and its

properties follow Proposition 2, given the conditional private type distribution F(·|u) ∈F defined in

Assumption 1-(i). Therefore, conditional on this u, the distribution of equilibrium actions denoted as

G(·|u) satisfies the properties in Proposition 3, i.e. G(·|u) ∈ G . Thus, the identification problem now

99



becomes how to identify the unknown structure conditional on the realization U = u, together with the

unknown distribution of the unobserved heterogeneity, i.e. FU(·). Note that now the unknown private

type’s CDF is conditional on this u, thus F(·|u), while the other unknown function y(·) is unrelated to

u.

In order to discuss the identification problem, we impose the following assumptions, which hold

throughout this section.

Assumption 4

(i) Conditional exclusion restriction: for all N ≥ 2 ∈ N+, F(·|u,N) = F(·|u).

(ii) Stochastic monotonicity restriction: conditional on u, the private type is strictly increasing in u

with respect to the first order.

There are two challenges in nonparametric identification of the model primitives under the unob-

served heterogeneity. First, we need to identify the distribution of actions conditional on the unobserved

heterogeneity and the distribution of the unobserved heterogeneity, given the unconditional distribution

of actions identified in the data, for each N. Second, after identifying the above distributions, we have

to know how to match the conditional distributions of actions for N1 and N2, denoted as G j(·|u) for

j = 1,2, on the realization of the unobserved heterogeneity, or when G1(·|u) and G2(·|u) correspond

to the same realization u, in order to apply the identification approaches described in Section 2.4.

Assumption 4-(ii) is needed for both discrete and continuous u in order to exploit support variation,

see Hu, McAdams, and Shum (2013), Gentry and Li (2014), and Grundl and Zhu (2019) in the auction

context. Particularly, the strict inequality is assumed to hold at the upper boundary of t, i.e., t̄(u) is

strictly increasing in u. In general, that the private type is strictly FOSD-increasing with respect to

the unobserved heterogeneity u does not necessarily imply that the equilibrium action is also FOSD-

increasing in u.23 If the Bayesian game under consideration is a game with strategic substitutes, or the

payoff function satisfies
∂ 2π(a, t)
∂ai∂a j

≤ 0, almost everywhere, ∀i 6= j,

this stochastic monotonicity restriction on the private type with respect to the unobserved heterogeneity

23 An example can be found in Aryal and Zincenko (2019), who consider a Cournot-oligopoly model with private
information of firms and linear demand function faced by firms. They establish identification of the model primitives,
including the distribution of the unobserved heterogeneity. However, since their Cournot model does not have an
unknown function like the unknown cost function q(ai) in Example 1, our models are different and it is unclear whether
the strict monotonicity of equilibrium strategies still holds in our case.
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implies that the equilibrium action at a fixed α : a(α;u) = s(t(α);u) as a function of u, is increasing in

u. Specifically, at the upper boundary, or α = 1, ā(u) is strictly increasing in u. After establishing the

monotonicity of the equilibrium action with respect to the unobserved heterogeneity, we can proceed to

discuss the identification problem; we need to distinguish between the cases of discrete and continuous

u, in order to extend Grundl and Zhu (2019) who deals with first-price auctions with risk aversion and

unobserved auction heterogeneity to our setting.

If u is discrete, with a finite support, i.e., the support of u is 1,2, · · · ,K with K < ∞, we need two

numbers of players N1 and N2; for each one, two randomly selected actions are observed. For different

u, the upper boundaries of observed actions are distinguishable. Thus, we can identify the K action

distributions conditional on one value of u for each N. Furthermore, the action distribution for each N

can be sorted by the upper boundaries of their supports. If two different numbers of players correspond

to the same u, they should have the same rank. Therefore, they should have the same private type

distributions conditional on this u. After matching the games on the value of u, we can apply the

identification approaches in the previous section to identify the private type distributions. By doing

this for each u, we can obtain the final identification.

If u is continuous, for each N we need three randomly selected actions. Besides, in order to use

the results on identification of triangular non-separable models, we need to impose an additional

assumption that the lower boundary of the private type t(u) is also strictly increasing in u, together

with a normalization condition such as t(u) = u. With these extra conditions, we ensure that the lower

and upper boundaries of equilibrium actions are both strictly increasing with u, for each N. As a result,

we can adopt the support variation approach to identify the distribution of actions conditional on u,

together with the distribution of U . Moreover, it guarantees that G1(·|u) and G2(·|u) with different

numbers of players are conditional on the same u if their supports have the same lower boundary,

which fits into the identification approach proposed in the previous section.

2.6.7 Endogenous Participation

Our identification strategy has replied on the exclusion restriction in the form of a players’ ex-

ogenous participation, i.e., F(·|N) = F(·). However, this restriction is no longer valid if players’

private types are influenced by the competition level of the game, i.e., the number of players. In this

subsection, we consider the case when there is unobserved heterogeneity ε at the game level that
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affects players’ participation decisions, leading to the endogenous participation.24 Specifically, we

assume N = N(Z,ε), where Z is a vector of observed characteristics of the game. We discuss two

empirically-related scenarios regarding the correlation between the observed Z and the unobserved ε .

The first scenario is when t ⊥⊥ ε|Z, thus the unobserved heterogeneity ε only affects players’

participation, but not their private values, because the distribution of private types F(·|Z,ε) = F(·|Z).

Thus for any given Z, we obtain the exclusion restriction F(·|N,Z) = F(·|Z), but in the equilibrium,

the action distribution G(·|N,Z) still depends on N. As a consequence, we can exploit the variation

from two numbers of players N1 < N2 as before, but note that now they have the same characteristics

Z. Our point and partial identification approaches can thus be adopted in a straightforward manner.

The second scenario is more involved, when the unobserved heterogeneity ε is correlated with the

private type.25 We assume the availability of instrumental variable W such that N = N(Z,W,ε), and

t ⊥⊥W |(Z,ε). As a result, the private type distribution satisfies F(·|Z,W,ε) = F(·|Z,ε). Thus for any

fixed (Z,ε), we want to utilize the exclusion restriction F(·|N,Z,ε) = F(·|Z,ε), in order to use the

identification approaches, because in equilibrium, the action distribution is G(·|N,Z,ε). We follow

Guerre, Perrigne, and Vuong (2009) to impose the following two conditions:

(i) ε = N−E[N|Z,W ].

(ii) W = h(X ,ε), where h(·, ·) is strictly increasing in ε , X ⊥⊥ ε , and X cannot be a subset of Z.

Under either one of the above conditions, we can identify ε as a first step, in order to identify

the other structure of the model. When condition (i) holds, N is known and E[N|Z,W ] is identified.

Therefore, ε can be treated as the error term and is identifiable. When condition (ii) holds, the func-

tion h(·, ·) can be identified following Matzkin (2003), and ε can be identified as the inverse of the

function, i.e., ε = h−1(X ,W ). After ε is recovered, for any given (Z,ε), under the exclusion restric-

tion F(·|N,Z,ε) = F(·|Z,ε), our identification approaches are applicable by noting that G(·|N,Z,ε)

depends on N.

24 In auction models, bidders’ entry behavior has been studied both theoretically (see Samuelson (1985), McAfee and
McMillan (1987), and Levin and Smith (1994), among others), and empirically (see Li and Zheng (2009), Athey, Levin,
and Seira (2011), Krasnokutskaya (2011), and Compiani, Haile, and Sant’Anna (2019), among others). For Bayesian
game models, however, both theoretical and empirical studies on players’ participation have been limited. To the best of
our knowledge, the two theoretical papers (Fu, Jiao, and Lu (2015) and Gu, Hehenkamp, and Leininger (2019)) that
study players’ entry in contest models consider the complete information framework, thus not a Bayesian game. On
the empirical side, Kawai and Sunada (2015) estimate a dynamic model to analyze the campaign finance of electoral
candidates, together with the challenger’s entry decision.

25 Note that this situation is different from the case of unobserved heterogeneity which enters directly players’ private type
distribution in Section 2.6.6. Here we consider the scenario when the unobserved heterogeneity affects private types
through players’ participation.
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2.7 Conclusions

In this paper, we explore a general approach to nonparametric identification of general Bayesian

games with separable payoff functions, which include many interesting applications. Using the

exclusion restriction in the form of an exogenous players’ participation, we characterize conditions

under which we can establish either point or partial identification of the model primitives, which

are the payoff function and the private type distribution. We make two core contributions to the

related literature. First, for the benchmark model we show that if the distributions of actions intersect

with each other when the number of players varies, the model primitives can be nonparametrically

identified. Otherwise, they can be bounded. Whether the distributions of actions intersect with each

other as the level of competition changes can be verified readily from the data. As a result, while

the equilibrium strategies in Bayesian games we consider are challenging to analyze, we are able to

provide empirically verifiable conditions and corresponding identification results. Second, we extend

these results to accommodate corner solutions, asymmetric players, unobserved heterogeneity, and

endogenous participation, thus making our results applicable to a broad class of empirically relevant

Bayesian games.

While we focus on studying nonparametric identification of Bayesian games, in a similar spirit to

the papers in addressing identification issues in structural IO models such as auction models (Athey

and Haile (2002), Guerre, Perrigne, and Vuong (2009) and Gentry and Li (2014)) and the models of

differentiated products markets (Berry and Haile (2014)), our identification results can also provide

a basis for nonparametric estimation and inference (including testing for the exclusion restriction as

discussed in Section 2.5.2) in the class of Bayesian games we consider. In the point identification

case when the distributions of actions intersect with each other as the number of players varies, the

estimation method proposed in Zincenko (2018) in estimating the model primitives in the first price

auction model with risk averse bidders can be extended to our case using our point identification results.

On the other hand, in the partial identification case when the distributions of actions do not intersect as

the number of players changes, the nonparametric bounds can be consistently estimated by replacing

the bounds by the nonparametric estimators of the point identified quantities. However, it raises new

and challenging questions about inference for nonparametrically partially identified models, as the

recent advances in inference on incomplete or partially identified econometric models have mainly

focused on the parametric or semiparametric framework (e.g. Chernozhukov, Hong, and Tamer (2007),

Beresteanu, Molchanov, and Molinari (2011), Ciliberto and Tamer (2009), Galichon and Henry (2011),
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and Chesher and Rosen (2017), among others), thus will be left for future research.26

2.8 Appendix: Proofs of Main Results

Proof of Proposition 2:

We prove the result for the general payoff πi(ai,a−i, ti) that satisfies the strict supermodularity

condition 2.2.1. Then Proposition 2 for the additive payoff case follows directly. The F.O.C. is∫
t−i∈T−i

∂πi(si(ti),s−i(t−i), ti)
∂ai

dF−i(t−i) = 0, (2.8.1)

where we define the existing MPSNE as si(·) for each player i. Differentiating Equation (2.8.1) with

respect to ti yields:

s′i(ti) ·
∫

t−i∈T−i

∂ 2πi(ai,s−i(t−i), ti)
∂a2

i
dF−i(t−i)+

∫
t−i∈T−i

∂ 2πi(ai,s−i(t−i), ti)
∂ai∂ ti

dF−i(t−i) = 0. (2.8.2)

Note that the existence of equilibrium implies that the second order necessary condition for this

optimization is valid, i.e. ∫
t−i∈T−i

∂ 2πi(ai,s−i(t−i), ti)
∂a2

i
dF−i(t−i)≤ 0.

Due to the strict supermodularity condition, we have s′i(ti)> 0 almost everywhere.

The property that ∂ 2πi(ai,s−i(t−i),ti)
∂ai∂ ti

is bounded away from infinity, together with Equation (2.8.2),

immediately implies that s′i(·) is bounded away from infinity. Thus 0 < s′i(·)< ∞. Also the existence

of equilibrium implies at the upper and lower boundaries of the equilibrium actions exist, denoted as

ai = si(t i) and āi = si(t̄i), thus forming the image of the equilibrium strategy si(·), i.e. [ai, āi]⊂Ai.

Next we show the smoothness condition of the equilibrium strategy si(·). Note that si(·) has a

bounded first derivative. Suppose that there exists a positive number Ms such that 0 < s′i(·) ≤ Ms.

Choose any point t ∈ [t i, t̄i], for any ε > 0, then there exists a positive δ = ε/Ms such that |si(ti)−

si(t)|< ε as long as |ti− t|< δ . This holds because by the mean value theorem, there exists a t̃ between

ti and t such that |si(ti)− si(t)|= |s′i(t̃)||ti− t|. Furthermore, by Lebesgue’s dominated convergence

theorem, through Equation (2.8.2) above, since the two integrals
∫

t−i∈T−i

∂ 2πi(ai,s−i(t−i),ti)
∂a2

i
dF−i(t−i)

and
∫

t−i∈T−i

∂ 2πi(ai,s−i(t−i),ti)
∂ai∂ ti

dF−i(t−i) are continuous, the first derivative of si(·) is continuous. In

conclusion, si(·) is continuously differentiable (C1). �

26 D’Haultfœuille and Février (2020) establish consistency of their nonparametric estimator of the bounds, and suggest to
use bootstrap to make inference. They then use their nonparametric bound estimates to specify parametric forms for the
underlying structural elements and conduct structural estimation using the parametric approach.
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Proof of Proposition 3:

First of all, the equilibrium action has a compact support [ai, āi] = [si(t i),si(t̄i)], which is also the

support for the derived CDF of equilibrium action for player i. For any a ∈ [ai, āi] and each i, note that

Gi(a) = Pr(ai ≤ a) = Pr(ti ≤ s−1
i (a)) = Fi(t), by denoting a = si(t). Since Fi(·) ∈F in Assumption

1-(i), Fi(·) is absolutely continuous; thus Gi(·) is absolutely continuous in its support [ai, āi].

Since for any a ∈ [ai, āi], let a = si(t), we have Gi(si(t)) = Fi(t). By taking derivatives on both

sides, we have

gi(a)s′i(t) = fi(t),

which leads to gi(a) = fi(t)/s′i(t). Due to the assumption that fi(·) is bounded, continuous and

atomless, and the result in Proposition 2 that s′i(·) is bounded and continuous, gi(·) is therefore bounded,

continuous and atomless. In addition, since both fi(·) and s′i(·) are strictly positive, and bounded from

infinity, we have that gi(·) is strictly positive and bounded from infinity, i.e.: 0 < gi(·)< ∞. �

Proof of Proposition 4:

We provide a counter example to show this nonidentification result. First, for any i, consider a

structure [Fi(·),yi(·)] ∈F ×Y in the class of Bayesian games under investigation, which leads to an

observed equilibrium action CDF Gi(·) ∈ G . Specifically, we assume that yi(·) is strictly increasing

and convex. As a result, this structure satisfies the following first order condition, for any i:

ti ·
∫

a−i∈A−i

∂xi(ai,a−i)

∂ai
dG−i(a−i)+ y′i(ai) = 0. (2.8.3)

Consider another function y∗i (·) = φi(yi(·)) for each player i where φi(·) is twice continuously

differentiable, strictly increasing, and convex, thus y∗i (·) ∈ Y . To derive the same Gi, it suffices is to

show there exists another CDF F∗i (·) that produces the private type t∗i = φ ′i (yi(ai))ti. We now rewrite

the first order condition (2.8.3) through quantiles. For any α ∈ [0,1], Equation (2.8.3) is equivalent to

F−1
i (α) ·

∫
a−i∈A−i

∂xi(G−1
i (α),a−i)

∂ai
dG−i(a−i)+ y′i(G

−1
i (α))) = 0. (2.8.4)

Thus if we define a new quantile function Q∗i (α) = φ ′i (yi(G−1
i (α)))F−1

i (α), the corresponding

CDF F∗i (t) = Pr(t∗i ≤ Q∗i (α)) satisfies that F∗i (·) ∈F . Therefore, the structure [F∗i (·),y∗i (·)] induces

the same observed equilibrium action CDF Gi(·) as [Fi(·),yi(·)]. �

Proof of Proposition 5:

105



Without loss of generality, we assume that the two equilibrium action strategies intersect with

each other at the intersection point (α IP,a(α IP)) as in Figure 2.1a. Note that for j = 1,2, G j(a) =

Pr(a j ≤ a|N j) = Pr(t ≤ s−1
j (a)|N j) = Pr(t ≤ s−1

j (a)) = F(s−1
j (a)). Thus when s−1

1 (a) > s−1
2 (a),

G1(a)> G2(a), evaluated at one fixed a > a(α IP); when s−1
1 (a)< s−1

2 (a), G1(a)< G2(a), evaluated

at one fixed a < a(α IP). Therefore, when the two equilibrium strategy functions intersect once, the

two action CDFs intersect once, too.

On the other hand, if the two action CDFs intersect once at (a(α IP,α IP) as in Figure 2.1b, with the

same logic as above, the two equilibrium strategy functions intersect once, too. �

Proof of Theorem 1:

The assumptions in Assumption 3 and the additional assumption in Theorem 1 hold. Focusing on

N2, by constructing the contraction sequence as in the main text of Section 2.4.1, y′(·) is nonparamet-

rically identified over [a2, ā2] up to a scale y′(a(α IP)). Due to the same logic regarding N1, y′(·) is

nonparametrically identified over [a1, ā1] up to the same scale. Combining them together yields the

identification of y′(·) over [min{a1,a2},max{ā1, ā2}] up to the scale y′(a(α IP)).

Next, since y′(·) is nonparametrically identified over [a2, ā2], we use N2 to recover the private

type over the whole support [t, t̄], through Equation (2.4.1), i.e. t(α) = ξ (a2(α);x,G,y|N2) =

ξ2(a2(α)), for any α ∈ [0,1]. From this, F(·) is nonparametrically identified over [t, t̄], up to a

scale F(t(α IP)) = G2(ξ
−1
2 (t(α IP))). Using N1 produces the same result, thus F(·) = G j(ξ

−1
j (·)),

since a j(α) = ξ
−1
j (t(α)) for any α ∈ [0,1] and for j = 1,2.

Lastly, since the contraction sequence is unique in this case, the identification results above are all

unique. �

Proof of Proposition 7:

The assumptions in Assumption 3 and the additional assumption in Proposition 7 hold. Assume

that the conditional action CDFs G1 and G2 are known; furthermore, the ratios y′(a1(α))/y′(a2(α))

are known for each α ∈ [0,1] through the ratio of two first order conditions. In order to show non-

identification, we need to show that different functions of y′(·) can lead to the same G1, G2, and

y′(a1(α))/y′(a2(α)) for any α ∈ [0,1].

Choosing any fixed α̌ , we show this non-identification result. Suppose we have one arbitrary

function y′(·) over [a1(α̌),a2(α̌)] that are known, which corresponds to the function values y′(a1(·))

over [α̌,min{1, α̂}] along the known CDF G1, where α̂ satisfies a1(α̂) = a2(α̌). Thus, from the known
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ratios y′(a1(α))/y′(a2(α)), we can derive y′(a2(·)) over the same support along the known CDF G2.

Repeat this procedure, we can determine all function values of y′(·) over the whole support [a1, ā2],

which accord with the known information about G1, G2, and y′(a1(α))/y′(a2(α)) over α ∈ [0,1]. This

procedure does not depend on what function we choose for y′(·) over [a1(α̌),a2(α̌)]. This arbitrariness

of the function y′(·) over a continuum of its support implies that y′(·) is not point identified. �

Proof of Theorem 2:

The assumptions as in Proposition 7 hold. Focusing on N2, the bounds of y′(a2(α)) are constructed

as in the main text, resulting in the identified set (2.4.6). Thus y′(·) is partially identified over [a2, ā2],

up to a scale. Due to the same logic regarding N1, y′(·) is partially identified over [a1, ā1], up to the

same scale. Therefore, y′(·) is partially identified over [a1, ā2], up to the same scale.

After the bounds on y′(·) are derived, we can use these bounds to recover the bounds on private types

over the whole support [t, t̄], from which, the bounds on the private type CDF F(·) are then recovered,

because both the inverse strategy functions ξ j(·) for j = 1,2 and F(·) are strictly increasing over their

supports. Denote the bounds of F(t(α)) as lb[F(t(α))] and ub[F(t(α)], for any α ∈ ∪I−1
i=1 (qi,qi+1)

(here, we use the same notations as in Section 2.4.2). The identified set of F(·) is thus:

F ∗ ≡ {F ∈F : F(t(α)) ∈ [lb[F(t(α))],ub[F(t(α))]] when α ∈ ∪I−1
i=1 (qi,qi+1), (2.8.5)

F(t(α)) is pointly determined when α ∈ {q1, · · · ,qI}}. (2.8.6)

�

2.9 Supplemental Appendix

This supplemental appendix collects the partial identification of Case 2.a, Case 2.b, and Case 3

when the action distributions do not cross, and the identification of the second and third forms of the

additive payoff structure for the Bayesian game under investigation in the main text.

2.9.1 Partial Identification of Case 2.a, Case 2.b, and Case 3

In Section 2.4.2, given a finite set of probabilities {q1,q2, · · · ,qI}, the whole support [0,1] is

divided into J parts. In the main text, we discuss the partial identification approach regarding the first

case (1) when J = I−1, and q1 = 0, qI = 1. Here we focus on the remaining cases: (2.a) when J = I,

and q1 = 0, qI < 1, (2.b) when J = I, and q1 > 0, qI = 1, (3) when J = I +1, and q1 > 0, qI < 1.

Case 2.a: J = I, q1 = 0

For this case, we need to separate j = 1, · · · ,J− 1, and j = J, because for j = J we utilize the
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bounds in only one form instead of two. For any j = 1, · · · ,J−1, the bound from qi, for i = j+1, · · · ,J

takes the following form:

y′(a1(q1))
i−1

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],

if we define ∏
s
k= j+1

E1(a1(αk))
E2(a2(αk))

= 1 for s < j+1. The bound from qi, for i = 1, · · · , j takes the following

form:

y′(a1(q1))
j

∏
k=i

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],

if we define ∏
0
l=0

E2(a2(ql))
E1(a1(ql))

= 1. Thus, we adopt the same procedure as in Case 1 in the main text to

get the final lower and upper bound for y′(a2(α j)). The upper bound is y′(a1(q1)) times

max
(

max{
j

∏
k=i

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
} j

i=1,max{
i−1

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J

i= j+1

)
,

and the lower bound is thus y′(a1(q1)) times

min
(

min{
j

∏
k=i

E2(a2(αk))

E1(a1(αk))

i

∏
l=0

E2(a2(ql))

E1(a1(ql))
} j

i=1,min{
i−1

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J

i= j+1

)
.

For j = J, the bound from qi, for i = 1, · · · ,J takes the following form:

y′(a1(q1))
J

∏
k=i

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],

if we define ∏
0
l=0

E2(a2(ql))
E1(a1(ql))

= 1. One subtle difference for j = J is that, from the monotonic property

of the function y′(·), we know y′(a2(αJ)) has a natural upper bound, i.e., y′(a2(qJ)), which takes the

form

y′(a1(q1))
J

∏
l=0

E2(a2(ql))

E1(a1(ql))
,

and has not been considered, thus this lower bound should be compared with the lower bounds from

the qi, for i = 1, · · · ,J to further tighten the identified set.

For j = J, the upper bound is y′(a1(q1)) times

max
(

max{
J

∏
k=i

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
}J

i=1,
J

∏
l=0

E2(a2(ql))

E1(a1(ql))

)
,
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and the lower bound is thus y′(a1(q1)) times

min{
J

∏
k=i

E2(a2(αk))

E1(a1(αk))

i

∏
l=0

E2(a2(ql))

E1(a1(ql))
}J

i=1.

Case 2.b: J = I, qI = 1

For this case, we need to separate j = 2, · · · ,J, and j = 1, because for j = 1 we utilize the bounds

in only one form instead of two. For any j = 2, · · · ,J, the bound from qi, for i = j, · · · ,J takes the

following form:

y′(a1(q1))
i

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],

if we define ∏
s
k= j+1

E1(a1(αk))
E2(a2(αk))

= 1 for s < j + 1. The bound from qi, for i = 1, · · · , j− 1 takes the

following form:

y′(a1(q1))
j

∏
k=i+1

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],

if we define ∏
0
l=0

E2(a2(ql))
E1(a1(ql))

= 1. Thus, we adopt the same procedure as in Case 1 in the main text to

get the final lower and upper bound for y′(a2(α j)). The upper bound is y′(a1(q1)) times

max
(

max{
j

∏
k=i+1

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
} j−1

i=1 ,max{
i

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J

i= j

)
,

and the lower bound is thus y′(a1(q1)) times

min
(

min{
j

∏
k=i+1

E2(a2(αk))

E1(a1(αk))

i

∏
l=0

E2(a2(ql))

E1(a1(ql))
} j−1

i=1 ,min{
i

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J

i= j

)
.

For j = 1, the bound from qi, for i = 1, · · · ,J takes the following form:

y′(a1(q1))
i

∏
k=2

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],

if we define ∏
s
k=2

E1(a1(αk))
E2(a2(αk))

= 1 for s < 2.

For j = 1, the upper bound is y′(a1(q1)) times

max{
i

∏
k=2

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J

i=1,

and the lower bound is thus y′(a1(q1)) times

min{
i

∏
k=2

E1(a1(αk))

E2(a2(αk))

i

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J

i=1.
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Case 3: J = I +1

For this case, we need to separate j = 2, · · · ,J−1, and j = 1, j = J, because for j = 1 and j = M

we utilize the bounds in only one form instead of two. For any j = 2, · · · ,J−1, the bound from qi, for

i = j, · · · ,J−1 takes the following form:

y′(a1(q1))
i

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(ql))

E1(a1(ql))
],

if we define ∏
s
k= j+1

E1(a1(αk))
E2(a2(αk))

= 1 for s < j + 1. The bound from qi, for i = 1, · · · , j− 1 takes the

following form:

y′(a1(q1))
j

∏
k=i+1

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(ql))

E1(a1(ql))
],

if we define ∏
0
l=0

E2(a2(ql))
E1(a1(ql))

= 1.

Thus, for any j = 2, · · · ,J−1, the upper bound is y′(a1(q1)) times

max
(

max{
j

∏
k=i+1

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
} j−1

i=1 ,max{
i

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J−1

i= j

)
,

and the lower bound is thus y′(a1(q1)) times

min
(

min{
j

∏
k=i+1

E2(a2(αk))

E1(a1(αk))

i

∏
l=0

E2(a2(ql))

E1(a1(ql))
} j−1

i=1 ,min{
i

∏
k= j+1

E1(a1(αk))

E2(a2(αk))

i

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J−1

i= j

)
.

For j = 1, the bound from qi, for i = 1, · · · ,J−1 takes the following form:

y′(a1(q1))
i

∏
k=2

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],

if we define ∏
s
k=2

E1(a1(αk))
E2(a2(αk))

= 1 for s < 2.

For j = 1, the upper bound is y′(a1(q1)) times

max{
i

∏
k=2

E1(a1(αk))

E2(a2(αk))

i−1

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J−1

i=1 ,

and the lower bound is thus y′(a1(q1)) times

min{
i

∏
k=2

E1(a1(αk))

E2(a2(αk))

i

∏
l=1

E2(a2(ql))

E1(a1(ql))
}J−1

i=1 .

For j = J, the bound from qi, for i = 1, · · · ,J−1 takes the following form:

y′(a1(q1))
J

∏
k=i+1

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
[1,

E2(a2(qi))

E1(a1(qi))
],
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if we define ∏
0
l=0

E2(a2(ql))
E1(a1(ql))

= 1. One subtle difference for j = J is that, from the monotonic property

of the function y′(·), we know y′(a2(αJ) has a natural upper bound, i.e., y′(a2(qJ−1)), which takes the

form

y′(a1(q1))
J−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
,

and has not been considered, thus this lower bound should be compared with the lower bounds from

the qi, for i = 1, · · · ,J−1 to further tighten the identified set.

For j = J+1, the upper bound is y′(a1(q1)) times

max
(

max{
J

∏
k=i+1

E2(a2(αk))

E1(a1(αk))

i−1

∏
l=0

E2(a2(ql))

E1(a1(ql))
}J−1

i=1 ,
J−1

∏
l=0

E2(a2(ql))

E1(a1(ql))

)
,

and the lower bound is thus y′(a1(q1)) times

min{
J

∏
k=i+1

E2(a2(αk))

E1(a1(αk))

i

∏
l=0

E2(a2(ql))

E1(a1(ql))
}J−1

i=1 .

2.9.2 Identification of the Second and Third Forms of Payoff

Identification of the Second Form of Payoff

Recall that the second form of payoff is: (2). πi(a, ti) = xi(a)+ yi(ai)/ti. In this appendix subsection,

we first provide the assumptions that all functions have to satisfy. Then, we show that the nonparametric

identification approach in the main text can be applied to this form of payoff function. Therefore, all

proofs in this subsection are omitted, because they follow the proofs of the main results given in the

main text Appendix.

As in the main text, we impose the restriction that the function xi(·) is known. Unlike in the main

text, however, we do not require the strictly positive sign of its derivative with respect to ai. The

unknown model primitives consist of a pair of functions: [Fi(·),yi(·)]. The following assumption gives

the regularity conditions that this pair must satisfy.

Assumption 5 Let F and Y be two classes of functions that Fi(·) and yi(·) belong to. Then F and

Y satisfy the following conditions:

(i) ∀F(·) ∈ F , F(·) satisfies: (1) F(·) is an absolutely continuous CDF with a compact support:

T ≡ [t, t̄]⊂ R, where 0 /∈ T ; (2) F(·) has a bounded, continuous and atomless PDF f (·), which is

strictly positive and bounded from infinity over T , i.e.: 0 < f (·)< ∞.

(ii) ∀y(·) ∈ Y , y(·) satisfies: (1) y(·) is twice continuously differentiable (C2) over a compact support:
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A ⊂R; (2) there exists a positive number My, such that the first derivative y′(·) satisfies: 0 <−y′(·)≤

My almost everywhere; (3) y(·) is convex or concave over A .

Most conditions of Assumption 5 are the same as those in Assumption 1 for the first form of payoff.

The only condition that needs to be noted is (ii)-(2), which is assumed to ensure that the payoff function

πi(a, ti) satisfies the strict supermodularity condition.

The existence and the regularity of strictly MPSNE, denoted as si(·), in this case is shown in

Proposition 2. The properties of the derived CDF Gi(·) are the same as in Proposition 3. The

assumption, with conditions that the observed action CDF Gi(·) satisfies, is equivalent to Assumption

2, and we still call the class of such functions G for convenience. All of the three can be found in the

main text for the first form of payoff, thus are suppressed here.

To obtain nonparametric identification in this case, we again introduce the exclusion restriction

Fi(·|N) = Fi(·) for each N ≥ 2 ∈ N+. The nonparametric identification approach then follows directly

Section 2.4 for symmetric equilibrium, and Section 2.6 for asymmetric equilibrium.

Taking symmetric equilibrium as an example, one only needs to note that the first order condition

for this payoff form, which corresponds to Equation (2.3.1), becomes:

Ea−N [
∂x(a(α),a−N ;N)

∂a
]+

y′(a(α))

t(α)
= 0. (2.9.1)

As the final remark, we emphasize the crucial role of sign restriction as in Assumption 1-(ii)-(2)

and Assumption 5-(ii)-(2) in nonparametric identification. The difference is that here since we have

to assume the supermodularity condition, with this form of payoff, function y(·) has to be strictly

decreasing; as a result, the sign restriction is satisfied naturally.

Since by stacking the two first order conditions as in Equation (2.9.1) for two numbers of players

N1 < N2, we cancel out t(α) evaluated at one specific α , whose sign is unrestricted. Furthermore, the

sign of expectation Ea−N [∂x(a(α),a−N ;N)/∂a] is unrestricted, unlike in the main text. Therefore, it is

essential to know the sign of y′(·) in advance, since taking ratio sometimes causes the confusion of the

sign.

Identification of the Third Form of Payoff

Recall that the third form of payoff is: (3). πi(a, ti) = tiai + xi(a)+ yi(ai). In this appendix subsection,

we first provide the assumptions that all functions have to satisfy. Then we propose the nonparametric
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identification approach for this form of payoff function, which is an adaption of the identification

approach. Besides, all proofs in this subsection are omitted, because they follow the proofs of the main

results given in Appendix 2.8, with minor adjustment.

As in the main text, we impose the restriction that function xi(·) is known. Also as in the second

form of payoff, we do not require the strictly positive sign of its derivative with respect to ai, because

the strict supermodularity condition is automatically satisfied. The unknown model primitives consists

of a pair of functions: [Fi(·),yi(·)]. The following assumption gives the regularity conditions that this

pair needs to satisfy.

Assumption 6 Let F and Y be two classes of functions that Fi(·) and yi(·) belong to. Then F and

Y satisfy the following conditions:

(i) ∀F(·) ∈ F , F(·) satisfies: (1) F(·) is an absolutely continuous CDF with a compact support:

T ≡ [t, t̄]⊂ R; (2) F(·) has a bounded, continuous and atomless PDF f (·), which is strictly positive

and bounded from infinity over T , i.e.: 0 < f (·)< ∞.

(ii) ∀y(·) ∈ Y , y(·) satisfies: (1) y(·) is twice continuously differentiable (C2) over a compact support:

A ⊂ R with bounded derivatives; (2) y(·) is convex or concave over A .

Note that, unlike the main text or the second form of payoff, here Assumption 6-(ii) does not

require the sign restriction, either for the strict supermodularity condition, or for the confusion caused

by taking ratio of first order conditions. This is because the identification approach adopted here is not

taking ratio, but taking difference of first order conditions.

The existence and the regularity of strictly MPSNE, denoted as si(·), in this case is shown in

Proposition 2. The properties of the derived CDF Gi(·) are the same as in Proposition 3. Also the

assumption, with conditions the observed action CDF Gi(·) satisfies, is equivalent to Assumption 2,

and we still call the class of such functions G for convenience. All of the three can be found in the

main text for the first form of payoff, thus are suppressed here.

Turn to the nonparametric identification approach. First note that corresponding to the key first

order equation as Equation (2.9.1) in the above subsection, for the third form of payoff, we have the

following first order condition, expressed through the expectation over all possible opponents’ action

profile, when considering symmetric equilibrium:

t(α)+Ea−N [
∂x(a(α),a−N ;N)

∂a
]+ y′(a(α)) = 0. (2.9.2)
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Given the exclusion restriction that F(·|N) = F(·) for all N ≥ 2 ∈ N+, in the case of symmetric

equilibrium as in Section 2.4 in the main text, we again consider two numbers of players, i.e. N1 < N2.

The system of first order conditions is thus

t(α)+Ea−N1
[
∂x(a1(α),a−N1;N1)

∂a1
]+ y′(a1(α)) = 0,

t(α)+Ea−N2
[
∂x(a2(α),a−N2;N2)

∂a2
]+ y′(a2(α)) = 0,

(2.9.3)

evaluated at a pre-specified α ∈ [0,1].

The key idea of nonparametric identification now relies on the difference of two equations in the

above system:

Ea−N2
[
∂x(a2(α),a−N2;N2)

∂a2
]−Ea−N1

[
∂x(a1(α),a−N1;N1)

∂a1
] = y′(a1(α))− y′(a2(α)). (2.9.4)

The contraction sequence {αn}∞
n=0 and the bounds from a finite set of probabilities at which

y′(a1(·)) and y′(a2(·)) are known play exactly the same roles in the point and partial identification

approaches as in Sections 2.4.1 and 2.4.2, depending on the pattern of functional comparative statics.

However, for the third form of payoff, due to the difference in Equation (2.9.4), the identity equation

that resembles Equation (2.4.4) is thus:

y′(a2(α0)) =
[
y′(a2(α0))− y′(a1(α0))

]
+
[
y′(a2(α1))− y′(a1(α1))

]
+ · · ·+

[
y′(a2(αn))− y′(a1(αn))

]
+ · · ·+ y′(a(α IP)),

=y′(a(α IP))+
∞

∑
n=0

[
y′(a2(αn))− y′(a1(αn))

]
.

(2.9.5)

Note that this identity holds because (1) the condition y′(a1(αn)) = y′(a2(αn+1)) leads to the

cancellation of all intermediate terms, and (2) y′(a2(αn))− y′(a1(αn))→ 0 as n→ ∞. Also, note that

since the value y′(a(α IP)) is unknown, the identification results in the following hold up to a location.

Each difference term in the identity equation (2.9.5) is identified through the left hand side

difference in Equation (2.9.4). The point and partial identification approaches thus follow the main

text, including those for symmetric equilibrium in Section 2.4 and those for asymmetric equilibrium in

Section 2.6.

Note that for this form of payoff there is no sign restriction, since we take difference of two first

order conditions like in Equation (2.9.4). By taking difference instead of ratio, there is no ambiguity of

signs on y′(·).
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Chapter 3: Testing for Collusion in Procurement Auctions

This chapter is adapted from the working paper “Testing for Collusion in Procurement Auctions” and has been

reproduced with the permission of my co-authors Tong Li and Jun Nakabayashi.

3.1 Introduction

Collusion has been a serious antitrust issue in procurement auctions and served as a threat to the

integrity of procurement auctions. The basic purpose of a procurement auction, which comprises

purchasing of goods or services required for activities, is to secure the best value for the buyer’s

money. Bid rigging, as the typical mechanism of collusion in procurement contracts, distorts the

efficient functioning of procurement auctions, because bidders may determine among themselves

how to arrange the bids and alter the winner, for example, by bid rotation scheme, phantom bidding

with side-payments, or geographic territory. Therefore, it is important for investigators, prosecutors,

auditors, and other anti-collusion professionals to detect and prove bid rigging.

In a seminal paper, Porter and Zona (1993) propose a test based on the rank distribution of the

cartel and non-cartel bids and use their test to analyze the Long Island highway construction data, and

find the evidence of prevalent existence of cartel and bid rigging schemes. Their test is based on the

assumption that the phantom bidding scheme was used (as supported by the empirical observation) and

thus there were fundamental differences between the ordering of the cartel and competitive bids. They

assume bidders’ private costs are independent, and their rank-based test is derived from a multinomial

logit (MNL) model that exhibits the Independence of Irrelevant Alternatives (IIA) property. However,

in auctions in general and in procurement auctions in particular, bidders’ private values or costs are

likely to be positively correlated, or affiliated through some common factors.1 For example, in the

bridge construction setting considered in this paper, bidders’ private costs can be correlated through

uncertainties they all face in assessing soil conditions when relaying or removing existing bridges

(e.g. De Silva, Dunne, Kankanamge, and Kosmopoulou (2008)). Moreover, in procurement auctions,

firms often use the same subcontractors and thus have dependence among their private costs through

1 See the discussion in “Scientific Background on the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred
Nobel 2020” by the Committee for the Prize in Economic Sciences in Memory of Alfred Nobel (The Committee for the
Prize in Economic Sciences in Memory of Alfred Nobel (2020)), on the importance of the affiliation concept introduced
in Milgrom and Weber (1982) and its empirical relevance.
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their shared subcontractors (Rosa (2019)). The structural analysis of the affiliated private value (APV)

model has been conducted in the literature (e.g. Li, Perrigne, and Vuong (2000), Li, Perrigne, and

Vuong (2002), Li, Perrigne, and Vuong (2003), Campo, Perrigne, and Vuong (2003), Hubbard, Li,

and Paarsch (2012) and Li and Zhang (2015)), and several tests for affiliation have been proposed

(de Castro and Paarsch (2010), Li and Zhang (2010), and Jun, Pinkse, and Wan (2010)) that also offer

empirical support for the validity of the affiliation assumption in real world auctions . However, most

of the analyses of cartels and bid rigging and of the structural analyses of procurement auctions have

been conducted within the independent private value (IPV) paradigm.2

In this paper, we extend the rank-based test in Porter and Zona (1993) to allow for affiliated

private costs among bidders. Toward this end, we assume that the log of bids (conditional on auction

heterogeneity and bidder-specific covariates) follow a joint normal distribution. As such, the proba-

bilities of rankings of bids can be modeled as a multivariate probit model instead of the MNL as in

Porter and Zona (1993). To deal with the multiple integrals in the likelihood function, we propose a

simulation-based method using the GHK simulator developed by Geweke (1991), Börsch-Supan and

Hajivassiliou (1993), and Keane (1994). We use a Wald test to test for collusion. In a similar spirit to

Porter and Zona (1993), our rank-based test is designed to detect differences of the determinants for

the bidding rules between the bidder delivering the lowest bid and all the other bidders with higher

bids. Our test can also detect more sophisticated collusion schemes such as the one where the cartel

members all inflate their bids above costs by the same percentage. Moreover, as in Porter and Zona

(1993), we are able to control for the unobserved auction heterogeneity in conducting the empirical

test. Controlling for unobserved auction heterogeneity is an important econometric issue that has

recently drawn attention in the structural analysis of auction data; see, e.g., Li and Zheng (2009), Li

and Zheng (2012), Athey, Levin, and Seira (2011), Krasnokutskaya (2011), Li and Zhang (2010), Li

and Zhang (2015), Roberts (2013), Roberts and Sweeting (2013), Bhattacharya, Roberts, and Sweeting

(2014), and Compiani, Haile, and Sant’Anna (2019). In our setting where the bidders’ private costs

are affiliated, the importance of controlling for unobserved heterogeneity is more pronounced. This is

because the dependence among the observed bids (conditional on the observables) can be attributed

2 The exception for the former is Chassang, Kawai, Nakabayashi, and Ortner (2019) who propose a way of detecting
collusion based on a general information structure that includes the APV paradigm. The exceptions for the latter are
Hong and Shum (2003) who study competition and winner’s curse in procurement auctions using a common value
model, Rosa (2019) and De Silva, Li, and Zhao (2020) who study a residence preference program and a bidder training
program, respectively, in procurement auctions within the APV paradigm.
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to two sources, namely, the unobserved auction heterogeneity that is observed by the bidders when

they make bidding decisions but unobserved by the econometrician, and the affiliation that is caused

by some common factors unobserved by the bidders when they submit bid. Only when unobserved

heterogeneity is controlled for, can one isolate the affiliation level from the dependence among bids.

We use our test to examine possible bid rigging occurrence in Japanese procurement auctions for

bridge construction projects let by the Ministry of Infrastructure Land and Transportation (MILT). It

had been the largest bid rigging case in the history of the nation. The Japan Fair Trade Commission

(JFTC) ordered 44 firms to pay a total fine of approximately 130 million dollars. Our testing results

indicate evidence of prevalent collusion, not only among the firms who were convicted by the JFTC,

but also among some of those who were not convicted. To see affiliation matters in testing collusion,

we also conduct the MNL test used in Porter and Zona (1993). We find that the estimates based on

the MNL with the IPV assumption are quite different from the estimates we obtain assuming APV.

Moreover, the test for collusion with the IPV assumption yields less plausible results.

Our paper contributes to the literature on bid rigging detection. For the literature in detecting

collusion in first price auctions, see Porter and Zona (1999), Pesendorfer (2000), Bajari and Ye (2003),

List, Millimet, and Price (2007), Ishii (2008), Price (2008), Aryal and Gabrielli (2013), Schurter

(2020), and Chassang and Ortner (2019). For detecting collusion in English auctions, see Baldwin,

Marshall, and Richard (1997), Athey, Levin, and Seira (2011), Marmer, Shneyerov, and Kaplan (2017),

and Marshall, Richard, and Shen (2019). Moreover, for detecting collusion in non-standard auction

formats, such as the two-stage model with the first stage being knockout auction (first-price sealed

auction with side-payments) among collusive bidders and the second stage being English auction and

the average-bid auction, respectively; see Asker (2010) for the former and Conley and Decarolis (2016)

for the latter. Note that all these papers study or detect collusions in an IPV paradigm. See Porter

(2005) and Marshall and Marx (2012) for the thorough discussion of the issues with detecting collusion

and review of the related literature.

The paper is organized as follows. Section 3.2 depicts the data and the background. The estimation

method and the testing procedure are proposed in Section 3.3. In Section 3.4, we apply our test to

analyze the data. Section 3.5 concludes.
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3.2 Data and Background

The data we study consists of 709 procurement auctions for bridge superstructure construction

let by the MILT in Japan from April 2003 through December 2006. The format of the auctions used

by the MILT is a first-price sealed-bid auction with a secret reserve price.3 These auctions can be

separated into two groups, namely, “open” and “invited,” depending on how the MILT imposes on the

participation restriction. In an open auction, any qualified bidder can participate. In an invited-bidder

auction, the government typically chooses 10 firms from a list of qualified contractors and solicits bids

only from these firms.4

The data includes auctions for a major collusion case: one of the largest scales of collusion the

country had ever experienced. The JFTC ruling documents that the ring consists of 47 manufactures of

steel bridge upperstructrue, such as IHI, Nippon Steel Corporation, and Mitsubishi Heavy Industries,

and was implicated to keep colluding for a long time. In October 2004, the JFTC begun on-site

inspections of thirty firms. The JFTC first criminalized the prosecutor’s office for collusion with eight

rigging companies in May 2005 and with additional 18 companies on June 15 in 2005. On the same

day, the Tokyo High Public Prosecutor’s Office indicted these 26 companies. Perhaps the most publicly

noticed event in the bid rigging scandal was the prosecution’s arrest of the vice president of the Japan

Highway Public Corporation on July 12, 2005, on suspicion of supporting rigging and violating the

antitrust law. In response to these events, the MLIT announced on July 29th a thorough investigation

of the bid rigging case and a drastic revision of the bidding system. Given these events, we split our

data into two periods, one includes auctions that occurred on July 31, 2005 and earlier (referred to

as before mid-2005 hereinafter), and the other includes the remaining auctions (referred to as after

mid-2005 hereinafter). Figure 3.1 illustrates the winning bids (relative to the reserve prices) and the

share of open auctions (with the solid line) in our sample. The vertical line is July 31, 2005. We see

that winning bids fall across the vertical line and that the share of open auctions increases significantly

after July 31. The data also has the index for collusive firms who were convicted by the JFTC; for

3 The government agencies reauction projects if no bid falls below the secret reserve price. Except for this, the auction
format is exactly the same as the first-price sealed-bid procurement as long as in the first round the lowest bid is below
the secret reserve price, and we restrict our attention to the first round of bidding. Kawai and Nakabayashi (2014) exploit
the reauction feature and develop the method similar to regression discontinuity by focusing on the projects that were
reauctioned.

4 The MILT acknowledges that invited bidders had been facilitating collusion, which can explain why the government
changed the policy of participation restriction to encourage “open” (free) participation in auctions as part of the
government’s initiative in adopting a general competition method with high objectivity, transparency, and competitiveness.
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these firms that were not convicted by the JFTC, we call them “competitive” firms.

Figure 3.1: The increasing share of open auctions and the decreasing percent of winning bids
normalized by the reserve prices.

Table 3.1 presents the auction-specific summary statistics. Regardless of the auction type, the

average number of bidders drops after the institutional change on July 31, 2005. Both the winning bids

and the reserve prices in the after mid-2005 subsamples are smaller than those in the before mid-2005

subsamples on average, and the magnitudes of decreases are larger invited auctions relative to open

auctions. After normalized by the reserve prices, the average winning bids fall over time, specifically

in open auctions, which is consistent with the patterns shown in Figure 3.1.

To capture the asymmetry among the bidders and for the purpose of testing for the difference

between the lowest bid and the other bids in one auction, which is the key idea behind our test, we

follow Porter and Zona (1993) to construct bidder-specific covariates. The variable “backlog” is

defined as the sum of the amounts of contract awarded within one year of the auction in which the

firm participates. The variable “Capacity” is a firm’s maximum backlog during the sample period.

A firm’s utilization rate (“Util”) measures the firm’s backlog at a given time and is constructed by

dividing the backlog by the capacity. We include the squared terms of the capacity and the utilization

rate (“Capacity Sq” and “Util Sq”) to account for possible nonlinearities. Following Porter and Zona

(1993), we create a dummy variable “Noback” for “competitive” bidders, which is equal to one if the
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Table 3.1: Auction-Specific Summary Statistics

Before Mid-2005 After Mid-2005

Open Auctions Invited Auctions Open Auctions Invited Auctions

No. of Auctions 210 275 44 18

No. of Bidders 10.862 9.7564 5.8182 6.3333
(2.646) (1.762) (4.161) (3.087)

Winning Bid 4.1796 1.4959 2.0136 0.4111
(3.273) (1.404) (1.879) (0.262)

Reserve Price 4.3986 1.5355 2.9209 0.4797
(3.569) (1.434) (3.014) (0.301)

Winning Bid / Reserve Price 0.9639 0.9751 0.7618 0.8785
(0.063) (0.094) (0.133) (0.143)

Notes: The means are reported for variables of interest, with the standard deviations shown in parentheses. The means of “Winning bid”
and “Reserve price” and the associated standard deviations are scaled down by 108.

“competitive” bidder never won during the same period.

Seven different datasets are used in the application. The first and the second consist of the ranking

of “competitive” bids in the open and invited auctions before mid-2005, respectively, where we keep

the auctions that receive two or more “competitive” bids. The third and the fourth consist of the ranking

of cartel bids in the open and invited auctions before mid-2005, respectively, and the auctions with one

or no cartel bids are dropped. The fifth and the sixth consist of the ranking of “competitive” bids in the

open and invited auctions after mid-2005, respectively, where auctions with two or more “competitive”

bids are included. Since all the invited auctions after mid-2005 have fewer than two cartel bids, we

only keep the open auctions with two or more cartel bids after mid-2005 as our last subset.

Table 3.2 gives the bidder-specific summary statistics of the data. The mean “competitive” bids for

the open and invited auctions before mid-2005 are, approximately, 292 million and 51 million Yen,

respectively. The mean cartel bids for the open and invited auctions before mid-2005 are 471 million

and 187 million Yen, respectively. After mid-2005, the mean “competitive” bids for open and invited

auctions are 292 million and 50 million Yen, respectively. The mean cartel bids for the open auctions

after mid-2005 is 306 million Yen. Regardless of the time period and the type of the procurement

auction, the bids submitted by by “competitive” and cartel bidders exhibit similar patterns: cartel

bidder’s bids are relatively larger than those submitted by “competitive” bidders on average, meaning

that cartel bidders tend to be less aggressive or bid on larger projects.
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Table 3.2: Bidder-Specific Summary Statistics
Before Mid-2005 After Mid-2005

“Competitive” Ranks Cartel Ranks “Competitive” Ranks Cartel Ranks

Open Auctions Invited Auctions Open Auctions Invited Auctions Open Auctions Invited Auctions Open Auctions

No. of Auctions 72 90 209 235 32 17 19

No. of Bids 225 521 2021 2105 126 110 112

Bid 2.9163 0.5139 4.7089 1.8676 2.9184 0.4966 3.0575
(2.428) (0.467) (3.586) (1.539) (2.257) (0.276) (2.277)

Util 0.2282 0.1391 0.4545 0.4778 0.4389 0.2299 0.3970
(0.309) (0.283) (0.324) (0.326) (0.409) (0.387) (0.300)

Util Sq 0.1473 0.0991 0.3113 0.3345 0.3590 0.2016 0.2468
(0.297) (0.252) (0.320) (0.326) (0.410) (0.378) (0.279)

Capacity 3.7330 1.5009 28.586 23.592 4.8399 1.2524 20.885
(3.397) (2.914) (16.12) (15.73) (5.112) (2.091) (15.76)

Capacity Sq 0.2542 0.1073 10.767 8.0374 0.4935 0.0590 6.8229
(0.414) (0.392) (11.99) (10.76) (0.905) (0.232) (9.996)

Noback 0.2222 0.5048 0.1190 0.2909
(0.417) (0.500) (0.325) (0.456)

Notes: The means are reported for variables of interest, with the standard deviations shown in parentheses. The means of “Bid” and “Capacity” and the associated standard deviations are scaled down
by 108. The means and the standard deviations of “Capacity Sq” are scaled down by 1018.

3.3 The Collusion Test

We consider a first-price sealed-bid procurement auction in which a single project is auctioned off

to n risk-neutral bidders within the APV paradigm, extending the IPV paradigm considered in Porter

and Zona (1993).5 Affiliation is a terminology describing the dependence among random variables,

which is introduced in Milgrom and Weber (1982) as follows:

Definition 1 Let y and y′ be any two values of a random vector Y ⊆ Rn with a density f (·). Then all

elements of Y are affiliated if f (y∨y′) f (y∧y′)≥ f (y) f (y′), where y∨y′=(max(y1,y′1), ...max(yn,y′n)),

and y∧ y′ = (min(y1,y′1), ...min(yn,y′n)).

Intuitively speaking, affiliation means that large values for some of the components in Y make

other components more likely to be large than small. In the case where the bidders’ private costs follow

a log-normal distribution, the (positive) correlation of the normal distribution measures the level of

affiliation.

We assume that we observe a 1× px auction-specific covariate vector, denoted by xl , l = 1, · · · ,L,

where L is the number of auctions in the data. For auction l with nl bidders, we define bli as the

bid submitted by bidder i, for i = 1, · · · ,nl . Since we deal with procurement auctions, the bids are

5 We follow Porter and Zona (1993) to model procurement auctions as private value auctions. As Porter (2005) points out,
collusion often occurs in private value auctions in which bidders differ in their idiosyncratic willingness to pay, rather
than differences in information concerning common components of valuations; procurement auctions are a primary
example of such.
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arranged in the descending order: bl1 > bl2 > · · ·> blnl , with the last bid blnl representing the lowest

(winning) bid of the auction. Bidder-specific covariate vector denoted by zli is assumed to be 1× pz,

for i = 1, · · · ,nl . Following Porter and Zona (1993), we suppose that the equilibrium behavior can be

approximated by the log-linear bidding rule:

log(bli) = xlβ + zliγi +ηl + εli, (3.3.1)

where ηl is the unobserved auction heterogeneity while εli denotes the unobserved idiosyncratic error

at the bidder level, independent of xl , zli, and ηl . Denote the vector of all γi, i = 1, ...,nl , l = 1, · · · ,L

as γ , which capture the asymmetry among bidders. Note that here we allow the coefficient of zli to

depend on bidder i, while it is assumed to be a constant across all bidders in Porter and Zona (1993).

In Porter and Zona (1993), they assume −εl1, · · · ,−εlnl are i.i.d and each follows a type I extreme

value distribution, consistent with the IPV paradigm they consider. To accommodate affiliation, instead

we assume that εl = (εl1, · · · ,εlnl)
′ follows a joint normal distribution with mean µ = (0, · · · ,0)′ and

covariance

Σnl =


1 ρ

. . .

ρ 1

 ,
implying that εli and εl j have a correlation denoted by ρ , the same across all the bidders/auctions.

Therefore, ρ ≥ 0 represents the affiliation in our APV paradigm.6

The likelihood of observing the ranking of bids for auction l, denoted by pl(γ,ρ) is as follows:

pl(γ,ρ)

=P
(
bl1 > bl2 > · · ·> blnl

)
=P
(
log(bl1)> log(bl2)> · · ·> log(blnl)

)
=
∫ +∞

−∞

∫ log(bl1)

−∞

· · ·
∫ log(blnl−1)

∞

dG
(
log(bl1), · · · , log(blnl)

)
,

where G
(
log(bl1), · · · , log(blnl)

)
denotes the joint distribution of log(bli)’s induced by ηl and εli’s.

6 As discussed earlier in Section 3.1 and can be clearly seen in (3.3.1), the dependence among the observed bids in an
auction can be attributed to the two sources, one from the unobserved auction heterogeneity, and the other from the
(positive) dependence among the idiosyncratic error terms, which is the affiliation among the bidders’ private costs.
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Note that this likelihood can also be represented as following:

P
(
bl1 > bl2 > · · ·> blnl

)
=P
(
(zl1γ1 + εl1)> (zl2γ2 + εl2)> · · ·> (zlnl γnl + εlnl)

)
=
∫ +∞

−∞

∫ zl1γ1−zl2γ2+εl1

−∞

· · ·
∫ zlnl−1γnl−1−zlnl γnl+εlnl−1

∞

dF(εl1, · · · ,εlnl)

=
∫ +∞

−∞

· · ·
∫ +∞

−∞

1{εl ∈ Al}dF(εl1, · · · ,εlnl),

where the auction-specific covariate vector xl and the auction unobserved heterogeneity ηl are cancelled

out, and Al denotes the corresponding set of εl induced by the ranking of bids. The dimension of the

integral above is equal to nl , the number of bidders in auction l = 1, · · · ,L, which renders the integral

difficult to evaluate as the average number of bidders in the data is about 8 with the largest being 22.

3.3.1 A Smoothly Simulated Maximum Likelihood Estimator

Let θ = (γ,ρ) denote the unknown parameters. The likelihood of observing the ranking of bids

for auction l can be written as pl(θ). The joint log-likelihood function for all auctions in the data is

defined as

L(b,z;θ) =
L

∑
l=1

ln pl(θ),

where bl = (bl1, · · · ,blnl)
′, zl = (zl1, · · · ,zlnl)

′, and b = (b1, · · · ,bL)
′, z = (z1, · · · ,zL)

′.

To overcome the computational burden associated with the multiple integral in pl(θ), we adopt

a simulation-based method to approximate the above log-likelihood function. Also with the use

of the simulation-based method, the objective function may become non-smooth due to the index

function 1{εl ∈ Al} in the integrand. Toward this end, we use a smooth and unbiased simulator that is

called the GHK simulator after Geweke, Hajivassiliou, and Keane, which can address both issues; see

Hajivassiliou, McFadden, and Ruud (1996).7 Specifically, there exists a lower triangular matrix hl such

that hlh′l = Σnl . Then εl can be written as εl = hlξl , where ξl = (ξl1, · · · ,ξlnl)
′ follows an nl-variate

standard normal distribution. Using the Choleski decomposition, we have the following recursive

formula for εl:

εl1 = hl,11ξl1

εl2 = hl,21ξl1 +hl,22ξl2

7 See also Li and Zhang (2010) for using the GHK simulator to test for affiliation using bidders’ entry behavior.
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· · ·

εlnl = hl,nl1ξl1 + · · ·+hl,nlnl ξlnl ,

where hl,i j = hl(i, j). Then we can make another transformation from εl to ξl to calculate the likelihood

P(bl1 > bl2 > · · ·> blnl) as follows:

P
(
bl1 > bl2 > · · ·> blnl

)
=
∫ +∞

−∞

· · ·
∫ +∞

−∞

1{εl ∈ Al}dF(εl1, · · · ,εlnl)

=
∫ +∞

−∞

· · ·
∫ +∞

−∞

1{ξl ∈ Bl}φ(ξl1) · · ·φ(ξlnl)dξl1 · · ·dξlnl

=
∫ +∞

−∞

· · ·
∫ +∞

−∞

q(ξl)1{ξl ∈ Bl}
φ(ξl1) · · ·φ(ξlnl)

q(ξl)
dξl1 · · ·dξlnl

=Eξl
[q(ξl)],

where Bl denotes the corresponding set of ξl induced by Al; and

q(ξl) =Φ
(zl1γ1− zl2γ2 +(hl,11−hl,21)ξl1

hl,22

)
×Φ

(zl2γ2− zl3γ3 +(hl,21−hl,31)ξl1 +(hl,22−hl,32)ξl2

hl,33

)
×·· ·×Φ

(zlnl−1γnl−1− zlnl γnl +(hl,nl−11−hl,nl1)ξl1 + · · ·+(hl,nl−1nl−1−hl,nlnl−1)ξlnl−1

hl,nlnl

)
;

by noting that 1{ξl ∈ Bl}
φ(ξl1)···φ(ξlnl )

q(ξl)
is actually a density function of ξl , the last equality holds.

Thus, P(bl1 > bl2 > · · · > blnl) can be simulated by 1
R ∑

R
r=1 q(ξ r

l ), where ξ r
l is simulated by the

following procedure.

Step 1: Draw a realization of ξl1, denoted by ξ r
l1 from N(0,1).

Step 2: Calculate P(ξl2 <
zl1γ1−zl2γ2+(hl,11−hl,21)ξl1

hl,22
|ξl1 = ξ r

l1) = Φ
( zl1γ1−zl2γ2+(hl,11−hl,21)ξ

r
l1

hl,22

)
.

Step 3: Draw a realization of ξl2, denoted by ξ r
l2 from a truncated standard normal truncated at

zl1γ1−zl2γ2+(hl,11−hl,21)ξ
r
l1

hl,22
from above.

...

Step 4: Draw a realization of ξlnl−1, denoted by ξ r
lnl−1 from a truncated standard normal truncated

at
zlnl−2γnl−2−zlnl−1γnl−1+(h1,nl−21−hl,nl−11)ξ

r
l1+···+(hl,nl−2nl−2−hl,nl−1nl−2)ξ

r
lnl−2

hl,nl−1nl−1
from above.

Step 5: Calculate Φ
( zlnl−1γnl−1−zlnl γnl+(hl,nl−11−hl,nl1)ξ

r
l1+···+(hl,nl−1nl−1−hl,nlnl−1)ξ

r
lnl−1

hl,nlnl

)
.

Step 6: Calculate corresponding q(ξ r
l ) given the realization of ξl .

For each auction denoted by l, the simulated likelihood can be written as p̃l(θ) =
1
R ∑

R
r=1 q(ξ r

l ). A
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smoothly simulated maximum likelihood estimator (SSMLE) for θ is proposed as

θ̂ SSMLE = argmax
θ

L̃(b,z;θ) = argmax
θ

L

∑
l=1

ln p̃l(θ).

As a simulated maximum likelihood estimator, θ̂ SSMLE has the same asymptotic normal distribution

as that of the usual MLE, as the number of auctions L→ ∞, the number of simulations R→ ∞, and

R/
√

L→ ∞. For the purpose of conducting inference, we will use the nonparametric bootstrap method.

3.3.2 The Wald Test for Collusion

The key idea behind the rank-based test in Porter and Zona (1993) is that one can remain agnostic

about how the low cartel bidder is selected and the test is designed to detect differences in the order

between competitive and cartel bids conditional on the observed data. Under the null hypothesis that the

model is correctly specified (and thus no collusion), due to the IIA property, the model parameters can

be consistently estimated by any subset of the data using maximum likelihood estimation. Therefore,

they construct a likelihood ratio (LR) test statistic by comparing the likelihood of observing the low

bidders from all auctions and the likelihood of observing all other rankings of bids from these auctions.

Their approach, however, cannot be adopted in our case, because the IIA property is no longer valid

when we allow bidders’ private costs to be affiliated and we use the joint normal distribution to model

the joint distribution of log of bids. Nevertheless, we can still build on the key idea of the rank-based

test in Porter and Zona (1993) to detect the discrepancy between the bidding rules for the bidder who

submits the lowest bid and the rest of the bidders in a procurement auction. Toward this end, we model

the bidding rules for the bidder who submits the lowest bid and the rest of the bidders differently for

auction l, as follows:

log(bli) = xlβ + zliγR +ηl + εli, f or i = 1, · · · ,nl−1,

log(blnl) = xlβ + zlnl γLOW +ηl + εlnl ,
(3.3.2)

(3.3.2) is a special case of (3.3.1). Thus we can construct the likelihood of observing a particular

ranking in an auction based on (3.3.2) and use the SSMLE procedure proposed in Section 3.3.1 in

estimating the model parameters. We construct the following hypothesis to test for collusion:

H0 : γR = γLOW ,

H1 : γR 6= γLOW .
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While Wald, Lagrange multiplier, and LR tests can be implemented to test for H0 against H1, we use

the Wald test, which is relatively straightforward to be implemented in our case. A by-product of our

setting is that the affiliation among bidders can be tested by testing ρ ≥ 0.

3.4 Collusion in Japanese Procurement Auctions

We test for collusive behavior in Japanese procurement auctions by applying the test proposed in

the previous section to the data.

As aforementioned, we split data into two periods, before and after July 31, 2005. In the subset

before mid-2005, we apply the test for the “competitive” bidders who were not convicted by the JFTC

and the cartel bidders who were convicted by the JFTC, respectively. We separate open and invited

auctions, because they entail different formats of governmental regulation of bidder participation. Thus

four different sub-datasets are considered. For the period after mid-2005, there is no auction left for

the invited auction subset after excluding those auctions with fewer than two cartel bids. Hence we

have three different sub-datasets for this period.

Table 3.3: Estimation Results: Same ρ

Before Mid-2005 After Mid-2005

“Competitive” Ranks Cartel Ranks “Competitive” Ranks Cartel Ranks

Open Auctions Invited Auctions Open Auctions Invited Auctions Open Auctions Invited Auctions Open Auctions

No. of Auctions 72 90 209 235 32 17 19

No. of Bids 225 521 2021 2105 126 110 112

Log Likelihood -122.0 -717.3 -3779 -3778 -118.6 -142.1 -198.1

Wald Statistic 1.3240 9.5394 12.024 21.392 8.7618 5.6842 1.1365

P Value 0.9324 0.0894 0.0172 0.0003 0.1190 0.3382 0.8884

ρ 0.0018 0.0737 0.0913 0.0914 0.0560 0.0555 0.0990
(0.0221) (0.0032) (0.0051) (0.0066) (0.0100) (0.0037) (0.0082)

Low Ranks Util -2.1042 -0.2564 1.6995 1.0988 -1.8277 1.0187 2.4124
(1.327) (1.132) (0.382) (0.513) (1.392) (0.765) (2.574)

Util Sq 1.5171 0.4061 -2.0174 -1.3376 0.6615 -1.0114 -0.9918
(2.550) (1.336) (0.482) (0.542) (1.684) (0.814) (2.908)

Capacity -0.3690 0.4191 1.3553 1.2065 0.3334 0.3321 1.2204
(0.524) (0.113) (0.222) (0.595) (0.730) (0.186) (1.655)

Capacity Sq 0.0119 -0.0410 -0.3505 -0.3393 0.0002 -0.0234 -0.3189
(0.135) (0.012) (0.097) (0.108) (0.156) (0.044) (0.946)

Noback 0.2049 -0.3638 -0.9004 0.1603
(0.484) (0.215) (0.971) (0.200)

Rest Ranks Util -2.5024 0.9103 1.1617 0.4436 0.3660 0.4770 0.6179
(0.959) (0.701) (0.289) (0.404) (0.907) (0.682) (0.883)

Util Sq 2.7807 -0.8658 -1.0188 -0.4640 -0.5250 -0.4056 -0.2018
(1.090) (0.711) (0.240) (0.323) (0.894) (0.705) (0.941)

Capacity 0.3851 0.2623 1.0633 0.0376 -0.1258 0.6682 0.4863
(0.481) (0.082) (0.126) (0.098) (0.370) (0.150) (0.446)

Capacity Sq -0.1189 -0.0212 -0.2912 -0.0168 0.0610 -0.1092 -0.0812
(0.117) (0.007) (0.041) (0.029) (0.088) (0.027) (0.088)

Noback 0.7856 0.0770 0.1100 0.3182
(0.362) (0.132) (0.453) (0.191)

Notes: The estimated results are obtained through the SSMLE, with 100 simulations. The standard errors are in parentheses, which are calculated through 100 nonparametric bootstrap samples. The variable
“Capacity” is normalized via dividing by the sample mean, and the variable “Capacity Sq” is constructed by squaring the normalized “Capacity”. The correlation coefficient ρ is the same for all bidders.
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Table 3.3 shows the results of the SSMLE obtained with 100 simulations, together with the Wald

test results, when the correlation of the unobserved idiosyncratic errors is assumed to be the same

across all bidders within one procurement auction. We report the results for the two different periods,

before mid-2005 and after mid-2005, in the first four columns and the last three columns, respectively.

The first two columns correspond to the ranking of “competitive” bids, and the middle two columns

correspond to the ranking of cartel bids, both before mid-2005. The last three columns present the

results of “competitive” bids for both types of auctions and of cartel bids for the open auctions only,

after mid-2005.

Our primary goal is to test for collusion. Thus the results of the Wald test are of main interest. For

cartel ranks before mid-2005, the Wald statistic is distributed asymptotically as a χ2 with four degrees

of freedom under the null hypothesis. For the open and invited auctions, the Wald statistics are 12.02

and 21.39, respectively, both being significant at the 5 percent level. Therefore, we can reject the null

hypothesis in the case of cartel ranks, which means the existence of the collusion behavior among

cartel firms as expected. For “competitive” ranks before mid-2005, the Wald statistics for the open

and invited auctions are 1.32 and 9.54, respectively, which are distributed asymptotically as a χ2 with

five degrees of freedom under the null hypothesis. For open auctions, the associated p-value is 0.93,

thus we cannot reject the null hypothesis of the equality in bidding behavior between the lowest and

other bidders. In contrast, for invited auctions, the p-value is 0.09, indicating that the test statistic is

significant at the 10 percent level and that we can reject the null hypothesis of competitive bidding.

This suggests that there may be collusion even among the “competitive” firms in the invited auctions.

That these “competitive” firms may collude yet were not convicted by the government may be because

implementing antitrust law requires hard evidence and that it is not unusual that some collusive firms

do not leave any hard evidence of collusion. As a result, we conclude that before mid-2005, there is

evidence of collusion regardless of “competitive” or cartel firms in the invited auctions, and there is

evidence of collusion among cartel firms in the open auctions.

Next we turn to the period after mid-2005. The Wald statistics for “competitive” ranks in the open

and invited auctions are 8.76 and 5.68, with the corresponding p-values 0.12 and 0.34, respectively,

and therefore, we cannot reject the null hypothesis of coefficient stability across ranks. For the cartel

ranks in the open auctions in the same period, the Wald statistic is 1.14, with a p-value being 0.89,

implying that we cannot reject the null hypothesis of competitive behavior. As a result, we find no

evidence of collusive behavior for both types of bidders after mid-2005.
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We also find evidence from the estimates of ρs that cartel firms and “competitive” firms collude

with different information sets. For open auctions and “competitive” bidders, the estimated ρ is 0.002,

being insignificant with standard error 0.022. However, the estimated ρ for “competitive” bidders in the

invited auctions is 0.074, with standard error around 0.003. This result suggests that ρ is significantly

positive, thus the “competitive” bidders are affiliated in the invited auctions. For the cartel bidders in

the open and invited auctions, the estimates for ρs are both 0.091, with standard errors 0.005 and 0.007

respectively, both corresponding to a larger affiliation level among the cartel firms, compared to the

results of the “competitive” firms. This suggests that the cartel firms may have a different information

set and share more information relative to the “competitive” firms. After mid-2005, the affiliation

levels for the “competitive” bidders in the open and invited auctions are estimated as significantly

positive values, both being 0.056, with standard errors around 0.010 and 0.004 respectively. For the

cartel bidders in the open auctions after mid-2005, the estimated ρ is 0.099, with standard error 0.008.

This means that after mid-2005, the affiliation level among the cartel bidders is also larger than that

among the “competitive” bidders.

Most of the estimates have the expected signs. The utilization rate as a measure of the job backlog

affects the subsets before mid-2005 significantly, and the effects on “competitive” and cartel bidders

are different. For the “competitive” bids in the open auctions, the rest of the bids first decrease then

increase as “Util” increases. In contrast, for the cartel bids in the open auctions, bids first increase then

decrease as “Util” increases, regardless of the bid ranking. For the cartel bids in the invited auctions,

“Util” only has a significant and inverted-U-shaped effect on the lowest bids, but not the rest of the bids.

Taking the subset of cartel bids in the open auctions before mid-2005 as an example, at a utilization

rate of 42 percent, the lowest bids are about 26 percent higher than usual; at a full utilization rate of

100 percent with no usable capacity left, bids are about 32 percent lower.

The capacity has a consistent and inverted-U-shaped effect on the log of bids across subsets.

Specifically, “Capacity” affects the lowest bids for the “competitive” bids in the invited auctions

regardless of the period and the cartel bids in both the open and invited auctions before mid-2005

significantly. “Capacity” also has significant effects on the rest of the bids for the “competitive”

bids in the invited auctions regardless of the period and the cartel bids in the open auctions. In the

aforementioned specifications, bids are first an increasing function of “Capacity,” and then decreasing.

For “competitive” bids, the dummy variable “Noback” has a significant and positive effect on the log of

the lowest bids in the open auctions before mid-2005. Besides, “Noback” affects the rest “competitive”
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bids in the invited auctions after mid-2005 significantly.

The results above are obtained based on the assumption of equal affiliation level between the lowest

and other bidders. For robustness, we conduct our test assuming that the correlation between the

unobserved idiosyncratic errors from the lowest bids and from the rest of the bids is different from

that among the unobserved idiosyncratic errors of the rest of the bids. The results are very similar to

these reported in Table 3.3, and are not reported here. Moreover, the estimated correlation between

the unobserved idiosyncratic errors from the lowest bids and from the rest of the bids has similar

magnitude relative to that among the unobserved idiosyncratic errors of the rest of the bids.
Table 3.4: Estimation Results: Porter and Zona (1993)

Before Mid-2005 After Mid-2005

“Competitive” Ranks Cartel Ranks “Competitive” Ranks Cartel Ranks

Open Auctions Invited Auctions Open Auctions Invited Auctions Open Auctions Invited Auctions Open Auctions

No. of Auctions 72 90 209 235 32 17 19

No. of Bids 225 521 2021 2105 126 110 112

Likelihood Ratio Statistic 4.1906 18.400 15.826 48.903 12.734 12.875 1.2981

P Value 0.5223 0.0025 0.0033 0.0000 0.0260 0.0246 0.8617

Low Ranks Util -1.9902 0.0795 0.6679 1.4111 2.2374 -148.69 4.7251
(2.220) (1.868) (1.117) (1.042) (3.039) (569.3) (3.608)

Util Sq -0.0724 -0.5227 -1.8628 -2.6487 -5.2908 148.62 -4.4486
(2.314) (2.028) (1.048) (0.978) (3.531) (569.4) (3.745)

Capacity 0.3420 -0.0167 0.3255 -1.2163 0.8133 -0.6173 -1.0486
(0.777) (0.231) (0.452) (0.344) (1.073) (0.996) (1.211)

Capacity Sq -0.3082 0.0118 -0.1154 0.3328 -0.2274 0.4967 0.5178
(0.388) (0.100) (0.217) (0.173) (0.568) (0.558) (0.623)

Noback -0.1938 -1.6090 -0.7878 -1.1201
(0.720) (0.440) (1.193) (0.909)

Observations 72 90 209 235 32 17 19

Log Likelihood -72.25 -128.8 -456.1 -483.0 -29.00 -23.24 -27.84

Rest Ranks Util -0.8861 2.4102 -0.9469 -0.1132 1.9017 3.2430 3.8862
(2.028) (1.338) (0.426) (0.442) (1.856) (1.960) (1.712)

Util Sq -0.2446 -2.5986 0.8040 -0.1146 -2.5183 -3.1182 -4.5490
(2.022) (1.395) (0.379) (0.387) (1.833) (2.024) (1.999)

Capacity -1.3914 -0.0148 0.2144 0.4821 -0.2359 0.9228 0.2475
(0.837) (0.160) (0.172) (0.143) (0.571) (0.572) (0.551)

Capacity Sq 0.6483 0.0142 -0.0322 -0.1966 0.1302 -0.7883 -0.1119
(0.409) (0.065) (0.085) (0.068) (0.321) (0.584) (0.251)

Noback -1.0478 0.1401 0.5665 0.5956
(0.743) (0.214) (0.658) (0.458)

Observations 153 431 1812 1870 94 93 93

Log Likelihood -68.92 -503.3 -2596 -2528 -65.96 -106.2 -114.0

All Ranks Util -1.6670 1.7755 -0.7790 0.0323 1.8423 1.8627 3.9158
(1.482) (1.080) (0.397) (0.406) (1.506) (1.777) (1.522)

Util Sq 0.1486 -2.0848 0.5135 -0.4085 -2.8583 -2.2922 -4.4354
(1.499) (1.140) (0.355) (0.358) (1.521) (1.800) (1.746)

Capacity -0.4402 -0.0019 0.2233 0.2213 0.0423 0.1134 0.0328
(0.554) (0.130) (0.161) (0.131) (0.493) (0.288) (0.496)

Capacity Sq 0.1335 0.0082 -0.0418 -0.1129 0.0615 0.0759 -0.0225
(0.269) (0.054) (0.079) (0.063) (0.271) (0.183) (0.233)

Noback -0.5750 -0.1384 0.1953 0.0102
(0.510) (0.184) (0.552) (0.355)

Observations 225 521 2021 2105 126 110 112

Log Likelihood -143.3 -641.3 -3060 -3036 -101.3 -135.8 -142.5

Notes: The estimated results are obtained through the MNL as in Porter and Zona (1993). The standard errors are in parentheses.

We also apply the test in Porter and Zona (1993) to our data. The results are shown in Table 3.4.
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We obtain quite different conclusions from the Wald test results in Table 3.3. Out of seven subsets, for

only two subsets we cannot reject the null hypothesis of no bid rigging. They are the “competitive”

bids in the open auctions before mid-2005 and the cartel bids in the open auctions after mid-2005, with

the likelihood ratio statistics being 4.19 and 1.30 and the p-values being 0.52 and 0.86, respectively.

This means for “competitive” bidders, using the MNL assuming independence of bidders’ private costs,

they would be deemed as non-collusive before mid-2005 and collusive after, which is implausible and

means the test could have both size and power problems. Moreover, most of the estimated coefficients

are not significant using the full data. If any, “Capacity” has a significant and inverted-U-shaped

effect on the log of bids for the cartel bids in the invited auctions before mid-2005, and “Util” has a

significant and inverted-U-shaped effect for the cartel bids in the open auctions after mid-2005. This

means that it is important to take into account the affiliation among bidders’ private costs when testing

for the possible collusive behavior in procurement auctions.
Table 3.5: Estimation Results: Marginal Bids

Before Mid-2005 After Mid-2005

“Competitive” Ranks Cartel Ranks “Competitive” Ranks Cartel Ranks

Open Auctions Invited Auctions Open Auctions Invited Auctions Open Auctions Invited Auctions Open Auctions

No. of Auctions 69 82 202 231 21 10 15

No. of Bids 210 379 1849 1940 55 35 38

Log Likelihood -84.45 -458.0 -3282 -3341 -31.73 -25.76 -28.32

Wald Statistic 5.2491 15.167 7.8118 20.639 5.3525 5.3043 0.539

P Value 0.3862 0.0097 0.0987 0.0004 0.3744 0.3799 1.2928

ρ -0.0039 0.0649 0.1004 0.0928 0.0544 0.0560 0.0991
(0.0421) (0.0038) (0.0057) (0.0089) (0.0093) (0.0033) (0.0285)

Low Ranks Util -2.6138 0.4386 1.6967 1.1339 -1.8400 1.0164 2.2607
(1.327) (1.243) (0.402) (0.529) (2.864) (1.075) (3.195)

Util Sq 1.5301 -0.2673 -1.9826 -1.3614 0.6659 -1.0091 -1.0263
(3.637) (1.398) (0.497) (0.569) (2.859) (1.316) (3.345)

Capacity -0.4619 0.5216 1.2763 1.1638 0.3315 0.3313 1.1851
(0.528) (0.189) (0.231) (0.961) (0.928) (0.529) (1.891)

Capacity Sq 0.0001 -0.0533 -0.3315 -0.3311 0.0002 -0.0232 -0.3188
(0.141) (0.036) (0.103) (0.170) (0.246) (0.226) (0.881)

Noback 0.2951 -0.3414 -0.8998 0.1599
(0.445) (0.239) (0.803) (0.264)

Rest Ranks Util -1.2906 1.1311 1.1631 0.5421 0.3669 0.7185 0.6258
(1.170) (0.777) (0.295) (0.417) (0.975) (1.006) (1.300)

Util Sq 3.4547 -1.1769 -1.0570 -0.5463 -0.5285 -0.7334 -0.2035
(1.143) (0.840) (0.246) (0.349) (0.696) (1.054) (1.290)

Capacity 0.6728 0.2473 1.0361 0.0544 -0.1267 0.3734 0.4848
(0.573) (0.109) (0.127) (0.117) (0.252) (0.460) (0.761)

Capacity Sq -0.0738 -0.0204 -0.2791 -0.0229 0.0619 -0.0220 -0.0826
(0.117) (0.012) (0.041) (0.031) (0.067) (0.198) (0.200)

Noback 1.0208 -0.0058 0.1107 0.1719
(0.383) (0.139) (0.352) (0.250)

Notes: The estimated results are obtained through the SSMLE, with 100 simulations. The standard errors are in parentheses, which are calculated through 100 nonparametric bootstrap samples. The variable
“Capacity” is normalized via dividing by the sample mean, and the variable “Capacity Sq” is constructed by squaring the normalized “Capacity”. The correlation coefficient ρ is the same for all bidders.

It is possible that bidders with relatively higher private costs do not submit “serious” bids in the

sense that they do not follow the equilibrium bidding rule. To rule out this possibility, we only keep the
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bids within 10% range of the lowest bid in each auction and re-conduct our test. The results are reported

in Table 3.5, which remain consistent with those reported in Table 3.3 with the full data.8 We find that

for the same subsets as in Table 3.3 before mid-2005 (the “competitive” bids in the invited auctions and

the cartel bids in both open and invited auctions), we reject the null hypothesis of competitive behavior,

while for the subset of the “competitive” bids in the open auctions and the subsets after mid-2005

we cannot reject the null hypothesis. Note that in this analysis, some of the estimates have greater

standard errors than those in Table 3.3, because the sample size is smaller here. It is worth noting

that, for the four subsets before mid-2005, trimming the bids outside the range of 10% of the lowest

bid in each auction does not exclude most bids, which keeps 93% and 73% “competitive” bids in the

open and invited auctions respectively, and 91% and 92% cartel bids in the open and invited auctions

respectively. In contrast, after mid-2005, we keep only 43% and 32% “competitive” bids in the open

and invited auctions, respectively, and 34% cartel bids in the open auctions. Such a striking difference

can be attributed to that for the “competitive” bidders in the invited auctions and the cartel bidders

in both open and invited auctions before mid-2005, the lowest bid is too high, or bidders who do not

have the lowest bid and may try to collude in auctions submit “phantom” bids to create an illusion of

competition; however, they may bid too aggressively compared to when they submitted “competitive”

bids according to their moderate or high private costs. This also offers a piece of evidence showing

that collusion was widespread during this period.

3.5 Conclusion

In this paper, we extend the rank-based test in Porter and Zona (1993) who assume independence

among bidders’ private costs in procurement auctions to allow for affiliation among bidders’ pri-

vate costs. From a methodological perspective, with affiliation, estimation of the model becomes

computationally intensive due to the multiple integrals in the likelihood function, and we propose a

simulation-based method to resolve this issue. Also due to the affiliation, we need to modify the ways

in which the hypotheses are constructed and also tested. We apply our testing procedure to the bridge

construction procurement auctions in Japan. We find that during the period before mid-2005, not only

these firms convicted by the JFTC colluded, the “competitive” firms that were not convicted also likely

8 We also re-conduct the test in Porter and Zona (1993) with the marginal bids. For the subsets of the “competitive” bids
in the invited auctions and the cartel bids in the open auctions after mid-2005, the algorithm cannot converge, which may
imply potential misspecification problems using the MNL model. For the rest of the subsets, the results are consistent
with those in Table 3.4, as we cannot reject the null hypothesis of competitive behavior only for the “competitive” bids in
the open auctions before mid-2005.
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colluded in the invited auctions. On the other hand, our testing results find no evidence of collusion for

all bidders after mid-2005, suggesting that the antitrust and anti-collusion actions by the government

in mid-2005 were effective.

As discussed in Porter and Zona (1993), their test would no longer work should an antitrust

authority publicly announce the adoption of their testing procedure, as all cartel firms could scale their

competitive bids up by the same percentage. This is because their test statistic is based on the ratio

between the likelihood of observing the low bidders from all auctions and the likelihood of observing

all other rankings of bids from these auctions. While our test is based on a similar idea to Porter and

Zona (1993) which is to detect differences in the ordering of higher bids, our testing procedure would

still work when all cartel firms scale their competitive bids up by the same percentage, as a result of

our hypotheses set-up, which is different from Porter and Zona (1993). On the other hand, as discussed

in Porter and Zona (1993), their test would be less powerful with inclusive cartels as cost asymmetries

between the cartel and competitive firms can give rise to the difference in the bidding behavior from

the two groups of firms. Our test shares the same caveat in this case. We conclude our paper by quoting

Porter and Zona (1993) “Attention would then have to focus on the determination of the identity of the

lowest bidder or on rates of return.”
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