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CHAPTER 1

INTRODUCTION

Most common human traits such as diabetes, height, Alzheimer’s disease, schizophrenia

are complex. These traits are called complex because they are not caused by the dys-

function of a single gene but influenced by many genes and environmental factors. The

polygenic nature of many complex traits makes it challenging to study their genetic basis.

The rapid development of genotyping and sequencing technology, which has enabled the

identification of genotype of many single nucleotide polymorphisms (SNPs), has revolu-

tionized the study of complex traits. Leveraging these technologies, genome-wide asso-

ciation studies (GWAS) are designed to map the genetic architecture of complex traits by

identifying genetic variants at a significantly different frequency in individuals with the

trait and without. Since the first GWAS published in 2005 (Klein et al., 2005), GWASs

have grown significantly in sample size and number of SNP-trait associations, with 251401

associations reported on the GWAS catalog to date (Buniello et al., 2019).

However, the path from GWAS to biology is not straightforward. Around 90% of

disease-associated loci identified in GWAS are located in the noncoding regions of the

genome (Eicher et al., 2015). It is not clear which genes and in which biological contexts

does this regulation occurs. Therefore, it is very important to conduct follow-up analy-

ses to bridge the gap from GWAS to biology. Multiple data sources, such as regulatory

atlases, rare variants based findings, or GWAS from multiple ancestries can be leveraged

in follow-up analyses to aid the interpretation of GWAS findings. Some GWAS follow-up

analyses focus on basic research, trying to gain biological insights of traits; some are more

translational, aiming to take what’s learned and apply that in the development of solutions

in clinical care. We are interested in integrating the above-mentioned rich data sources with

GWAS findings for both types of follow-up analyses.
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The availability of gene regulatory data has enabled researchers to interpret the reg-

ulatory impact of a GWAS significant locus or to prioritize the genes that are key to the

predisposition of traits through integrative analysis with GWAS data using innovative an-

alytics approaches. Common risk variants identified by GWASs map overwhelmingly to

regulatory regions, suggesting that they influence traits via gene regulatory effects. Large-

scale international efforts such as the Genotype-Tissue Expression (GTEx) Consortium

(Consortium, 2015) have provided a regulatory landscape of gene expression and splicing

variation in a broad collection of primary human tissues (Barbeira et al., 2020). While there

are lots of efforts in identifying genes that influence traits via expression, genes influencing

traits via splicing remain understudied.

Different from the majority of common variants that might influence traits via regula-

tory effects, lots of rare variants might play an important role in influencing traits by affect-

ing protein-coding regions. A recent study suggests that most of the missing heritability, a

phenomenon that GWAS identified variants together did not amount to the genetic contri-

bution predicted by family studies, can be found in rarer gene variants in several complex

traits (Wainschtein et al., 2019). Advances in sequencing technology enable focused ex-

plorations on low-frequency and rare variants to human traits. These resources provide

opportunities to learn from both common and rare variants to understand the roots of many

traits. But few studies have focused on using the complementary signals from rare and

common variants for gene discovery.

GWAS identified genetic variants associated with a disease is valuable in indicating

relevant genes, but there are also expectations that GWAS findings could be used to predict

disease risk with potential clinical utility. Polygenic risk score (PRS) is developed to cap-

ture part of an individual’s susceptibility to diseases through combining GWAS identified

variants. Many studies have shown that PRSs can predict disease status in research-based

case-control studies (Khera et al., 2018; Mavaddat et al., 2019), population-based cohort

studies (Musliner et al., 2019) and in electronic health record-based studies (Lewis and Ha-
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genaars, 2019). There are still many challenges to establish the clinical utility of PRS, one

of them is ensuring that they are equally applicable to users across ethnic groups to limit

exacerbating health disparities (Martin et al., 2019).

In this dissertation, we introduce new development and applications of integrative sta-

tistical approaches of GWAS data with other types of data aforementioned to both basic

and more translational aspects of GWAS follow-up analyses. For the more basic research

part, I introduce two different frameworks for prioritizing disease risk genes from GWAS

signals: one leverages the important regulatory effects of splicing that is often ignored, the

other leverages rare variant associations studies (RVASs) results that are complementary to

common variants based GWAS findings for gene-based analyses; for the more translational

part, I introduce an approach to improve PRS prediction accuracy for minority populations

using GWAS information from multiple ancestries.

In detail, Chapter 2 of this dissertation introduces Multidimensional Splicing Gene

(MSG) discovery approach to identify genes that influence traits via RNA splicing regula-

tion. Genetic effect on RNA splicing is of comparable importance and often independent of

that on expression. However, distinct from the active development and gene discovery on

expression data from Predixcan (Gamazon et al., 2015)/TWAS (Gusev et al., 2016) and its

multidimensional variants (e.g., S-MultiXcan (Barbeira et al., 2019)/UTMOST (Hu et al.,

2019)), there has been a lack of studies on the efficient use of multidimensional splicing in-

formation for trait-associated gene discovery. To harness the rich splicing mediated effects,

we propose MSG to implicate novel risk genes through integrative modeling of GWAS

summary statistics and multidimensional splicing data from GTEx. We demonstrate in real

and simulated data that this approach achieves controlled error rate and superior power

compared to current state-of-the-art approaches. This work is still in preparation for sub-

mission.

In Chapter 3, we present a three-stage pipeline to identify risk genes from both GWASs

and RVASs. RVASs offer opportunities to pinpoint genes with clear functional supports,
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since the ambiguity about the direction and the magnitude of impact on gene function is

limited. However, due to the infrequency of rare variants and multiple testing burden,

the power to identify genes from RVASs using conventional FDR control procedures like

Benjamini Hochberg (BH) approach is usually limited. Hypothesis weighting provides an

attractive strategy to make more discoveries while controling false discovery rate (FDR)

by incorporating useful prior information about each hypothesis. Here, we first build su-

pervised machine learning models, fed with high-confidence risk genes and local back-

ground genes selected near GWAS significant loci through a published framework iRIGS

as training set genes, and multiple biological features, to assign each gene (both in and

outside genome-wide loci) a prediction score that measures its disease risk. Then we use

the prediction scores as covariates to prioritize RVAS results in the independent hypoth-

esis weighting (IHW) framework. We applied the pipeline to SCZ and ASD RVASs and

observed sizeable improvements on the number of genes discovered.

In Chapter 4, we develop a rescaled meta-analysis framework that improves the predic-

tion accuracy for PRS in non-European populations. PRS is an estimate of an individual’s

genetic predisposition to a trait by aggregating the effects of many variants identified from

GWAS. While using PRS in clinical care has a long road ahead, it has the potential for

precision medicine. Currently, most large-scale GWAS efforts have been conducted in Eu-

ropean (EUR) ancestry populations, with only 10% of all GWAS participants being of

non-European (non-EUR) descent (Loos, 2020; Mills and Rahal, 2020). One important

challenge we need to address before PRS can be used in clinical settings is racial disparity:

most current scores are computed based on EUR GWAS studies and show reduced accu-

racy in other ancestries. We develop a rescaled meta-analysis framework that upweights

non-EUR signals over EUR signals, yielding effect size estimates closer to the true effect

sizes in non-EUR while taking advantage of the large sample sizes of EUR GWASs. As an

application, we constructed PRSs using summary statistics from the rescaled meta-analysis

of EUR and East Asian (EAS) breast cancer GWAS data and then evaluated their perfor-
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mances in an independent EAS validation dataset. Our PRS outperforms PRSs derived

from the EUR or EAS GWAS alone as well as the conventional meta-analysis of EAS and

EUR GWASs.

In Chapter 5, we discuss the conclusions and point out some future directions. The in-

creasing availability of high-throughput genome-scale technologies will make more com-

prehensive multi-omics databases available. There are ongoing efforts to include minority

populations in GWAS and biobank initiatives that have the capacity to yield extensive ge-

netic data, and to connect genetic profiling to electronic health records. The access to

such a large amount of information will accelerate the translation of GWAS loci into new

biological insights.
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CHAPTER 2

Integration of multidimensional splicing data and GWAS summary statistics for risk

gene discovery

2.1 Introduction

Over the past two decades, genome-wide association studies (GWAS) have led to the dis-

covery of many trait-associated loci. However, most loci are located in non-coding regions

of the genome, whose functional relevance remains largely unclear (Visscher et al., 2017).

Recent research suggested that a large portion of GWAS loci might influence complex traits

through regulating gene expression levels (Nicolae et al., 2010; Li et al., 2016b). Methods

like PrediXcan (Gamazon et al., 2015), FUSION (Gusev et al., 2016), and S-PrediXcan

(Barbeira et al., 2018) have been developed to test the mediating role of gene expression

variation in complex traits. These methods first build gene expression prediction mod-

els using reference transcriptome datasets (e.g., the Genotype-Tissue Expression (GTEx)

Project) and then perform transcriptome-wide association studies (TWAS) to infer the ge-

netically regulated component of tissue-specific gene expression using readily-available

GWAS individual- or summary-level data. These methods have quickly become popular in

practice (e.g., more than 800 citations of (Gamazon et al., 2015) and (Gusev et al., 2016)

in five and six years, respectively) as they facilitate the functional interpretation of existing

GWAS associations and detection of novel trait-associated genes.

Gene expression is not the only mediator of genetic effects on complex traits. Splicing

is of comparable importance and often functions independently of expression (Li et al.,

2016b; Barbeira et al., 2018, 2020; Gamazon et al., 2018). The splicing process involves

highly context-dependent regulation and other complex mechanisms, which could be prone

to errors with potentially pathological consequences (Scotti and Swanson, 2016). Recent

studies indicated that at least 20% of disease-causing mutations might affect pre-mRNA
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splicing (Wang and Cooper, 2007), and splicing QTLs (sQTLs) could account for dispro-

portionately high fractions of disease heritability (Akula et al., 2021; Walker et al., 2019).

Despite the importance of splicing regulation, it has been understudied. There is a pressing

need to investigate trait-associated genes with effects mediated by splicing.

While gene expression can usually be summarized into one measurement per gene per

tissue, there are on average eight RNA splicing events per gene per tissue (Li et al., 2018).

A straightforward extension of the TWAS framework for expression to splicing data would

test each genetically regulated splicing event separately and then correct for multiple testing

(Barbeira et al., 2020; Walker et al., 2019; Gusev et al., 2018; Li et al., 2019; Raj et al.,

2018). For example, (Gusev et al., 2018) tested for around 9 times splicing events (99,562)

compared to expression data (10,819) and detected a comparable number of significant

genes between the two for association with schizophreniaGusev et al. (2018). These results

provide support for the importance of splicing as a genotype-phenotype link. Moreover,

they suggest that there might be room for appreciative power gain for detecting gene-level

associations with reduced multiple testing burden.

One potential solution to reduce multiple testing burden is by analyzing multiple splic-

ing events not individually but integratively. To integrate the multidimensional splicing

data, a number of data integration approaches can be considered. These approaches can

be characterized by their strategy: (A) Early: Combining data from different sources into a

single dataset on which the model is built, (B) Intermediate: Combining data through infer-

ence of a joint model, and (C) Late: Building models for each dataset separately and com-

bining them to a unified model (Gligorijević and Pržulj, 2015; Rodosthenous et al., 2019).

In expression data analysis space, late integration approaches like S-MultiXcan (Barbeira

et al., 2019) and UTMOST (Hu et al., 2019) have been developed to improve power by

integrating signals from multiple tissues. They work by first building models for individual

tissue expression, and then combining multiple single-tissue association tests within a gene

into a joint test. However, these methods are designed for expression analysis and haven’t
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been evaluated in splicing data yet.

Apart from these late integration approaches, intermediate integration approaches might

offer improvements by aggregating signals during the prediction step. Here, we propose an

intermediate integration approach called multidimensional splicing gene (MSG) approach,

to integrate the correlated splicing events directly in the model building process based on

sparse canonical correlation analysis (sCCA) (Witten et al., 2009). Previous studies have

used sCCA to improve gene expression prediction models, and the authors suggested that

a potential advantage of sCCA is its ability to better capture genetic contribution to gene

expression shared across multiple tissues (Feng et al., 2021). As it remains unclear whether

sCCA can help in splicing analysis, an exploration of its application will provide a valuable

reference for future studies.

Here, we applied both established multidimensional expression analysis approaches S-

MultiXcan and UTMOST and our proposed MSG approach to simulated data as well as

real splicing data, and evaluated their performance. With simulations, we show that MSG

provides controlled type I error rate and yields substantial power gain over S-MultiXcan

and UTMOST. Real data applications using GTEx data and summary statistics from 15

complex human traits demonstrate that MSG identified on average 2.15 times and 3.23

times significant genes than S-MultiXcan, UTMOST respectively. We showcased the ap-

plication of MSG to GWAS summary statistics from Alzhimer’s disease (AD), low-density

lipoprotein cholesterol (LDL-C) and schizophrenia (SCZ), and found the majority of splic-

ing identified significant genes that would have been missed from expression based analysis

(75%, 86%, 89%, for AD, LDL-C and SCZ respectively), highlighting the importance of

splicing in genetic regulation.
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2.2 Results

2.2.1 MSG model building overview

Our proposed approach MSG consists of two main stages: first, build splicing models, and

then test the association between the constructed splicing models with trait of interest using

GWAS summary statistics data. In the first stage, we use sCCA to construct latent canonical

vectors (CVs) by identifying sparse linear combinations of SNPs and splicing events that

are highly correlated with each other. In the second stage, we test for the association

between genetically regulated splicing and the trait of interest based on a matrix built from

CVs and SNP-trait associations from GWAS summary statistics.

There are several steps within the second stage. To integrate single splicing CV-trait re-

lationships into a gene-level statistic, we estimate the joint effect sizes of predicted splicing

on trait and compute the covariance matrix of the effect sizes. During correlation matrix

estimation, as multiple predicted splicing variables within a gene can be highly correlated

and can lead to numerical issues, we use a pseudo-inverse matrix derived via singular value

decomposition to keep only k components of large variation following S-MultiXcan (Bar-

beira et al., 2019). Finally, the single splicing CV-trait tests are combined and association

is detected at the gene level using using χ2
k test. Fig 2.1 displays an overview of the method

(see details in the Materials and Methods section).

We trained MSG models in both 1) simulated genotype and splicing data under dif-

ferent scenarios to evaluate theoretical type I error and power and 2) real genotype and

splicing data from the GTEx v8 release (Consortium et al., 2020) and summary GWAS

statistics for candidate gene discovery. For both types of applications, we also evaluated

the performance of existing methods S-MultiXcan and UTMOST.
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Figure 2.1: Schematic of MSG method. sCCA (Witten et al., 2009) is used to compute
sparse canonical variables (CVs) from individual level genotype and splicing events data.
Thes splicing CVs are used as explanatory variables in association analysis with trait of
interest. We estimated the correlation matrix of predicted splicing based on the weights
in CVs and LD information from a reference panel. To avoid multicolinearity, we use
the SVD pseudo-inverse of the predicted correlation matrix. We quantify the significance
of the inferred multi-splicing gene-level association using the single-splicing associations
and the psuedo-inverse matrix in a χ2 test. More details are provided in the Materials and
Methods section.
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2.2.2 Simulations: type I error and power analysis

We performed simulations to carefully examine the type I error and power of MSG and

compared it with existing approaches S-MultiXcan and UTMOST. We considered several

important parameters of splicing and trait genetic architecture in various realistic simulation

scenarios. In the first set of simulations, we focused on the impact of different sparsity

levels and cellular-level heritability (Wheeler et al., 2016; Yang et al., 2020): sparsity is

the proportion of genetic variants that have non-zero effects on splicing; and heritability

is the proportion of the variance of splicing events that can be explained by genotype. In

the second set of simulations, we examined the impact of genetic effect sharing between

splicing events, and the number of splicing events contribute to the trait. We define ”effect-

sharing splicing events” as splicing events with shared SNPs with non-zero effects; and

”trait-contributing splicing events” as splicing events with non-zero effects on the trait. For

each gene, we present three scenarios: 1) all splicing events are trait-contributing splicing

events; 2) only effect-sharing splicing events are trait-contributing splicing events; 3) only

non-effect-sharing splicing events are trait-contributing splicing events.

2.2.2.1 Type I error

We found that all three methods can effectively control the type-I error in both sets of

simulations. Table 2.1 shows that splicing heritability and sparsity have little impact on the

type I error in the first set of simulations. Table 2.2 shows that the number of effect-sharing

splicing events and trait-contributing splicing events have little impact on the type I error in

the second set of simulations with fixed heritability and sparsity at 0.05 (due to little impact

of those parameters and limits on computation time). In both sets of simulations, we found

S-MultiXcan and MSG provide comparable level of control while UTMOST shows a slight

deflation in most scenarios.
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Table 2.1: Type-I error rate in the first simulation analysis*.

shareIa sparsityb h2
sp

c S-MultiXcan UTMOST MSG
2 0.01 0.01 0.047 0.036 0.049

0.05 0.051 0.038 0.050
0.10 0.057 0.043 0.049

0.05 0.01 0.044 0.035 0.051
0.05 0.050 0.036 0.051
0.10 0.055 0.042 0.052

0.10 0.01 0.041 0.031 0.051
0.05 0.054 0.042 0.053
0.10 0.053 0.039 0.052

4 0.01 0.01 0.044 0.034 0.050
0.05 0.053 0.039 0.051
0.10 0.056 0.043 0.048

0.05 0.01 0.043 0.033 0.051
0.05 0.048 0.034 0.047
0.10 0.053 0.040 0.051

0.10 0.01 0.044 0.031 0.047
0.05 0.047 0.037 0.051
0.10 0.057 0.045 0.054

8 0.01 0.01 0.044 0.034 0.051
0.05 0.047 0.037 0.050
0.10 0.054 0.041 0.049

0.05 0.01 0.044 0.033 0.047
0.05 0.051 0.036 0.050
0.10 0.053 0.040 0.050

0.10 0.01 0.042 0.032 0.048
0.05 0.050 0.040 0.050
0.10 0.044 0.034 0.051

* Type I error was computed as the proportion of significant
genes under p-value cutoff at 0.05. Each entry is based on
20,000 replicates.
a Number of splicing events with shared non-zero effects.
b Sparsity: the proportion of genetic variants that have non-
zero effects on splicing.
c Splicing heritability: the proportion of variance of sQTL that
can be explained by genotype

2.2.2.2 Power

Fig 2.2 shows sparsity has little impact on power, yet the splicing heritability increase is

associated with power increase in the first set of simulations. Fig 2.3 shows that power
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Table 2.2: Type-I error rate in the second simulation analysis*.

Trait-contributing splicing eventsa shareIb S-MultiXcan UTMOST MSG
Only
effect-sharing
events

2 0.046 0.036 0.049
4 0.048 0.036 0.051
8 0.050 0.038 0.051

All events
2 0.045 0.035 0.053
4 0.045 0.032 0.051
8 0.050 0.034 0.051

Non
effect-sharing
events

2 0.048 0.036 0.049
4 0.051 0.035 0.051
8 0.049 0.037 0.048

* Type I error was computed as the proportion of significant genes under p-value
cutoff at 0.05. Each entry is based on 20,000 replicates. Sparsity is fixed at 0.05,
splicing heritability is fixed at 0.05.
a splicing events that contribute to the trait
b Number of splicing events with shared non-zero effects.

increases with the number of trait-contributing splicing events, regardless of which method

is used and the number of effect-sharing splicing events in the second set of simulations,

with trait heritability fixed at 0.01, and sparsity fixed at 0.05. In both sets of simulations,

we found MSG has greater power than S-MultiXcan and UTMOST.
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Figure 2.2: Comparison of power for S-MultiXcan, UTMOST, MSG models in simulation
with different number of effect-sharing splicing events (2,4,8), sparsity (0.01,0.05,0.1)
and splicing heritability (0.01,0.05,0.1). Trait heritability is fixed at 0.01. For each sub-
plot, the x-axis stands for the number of effect-sharing splicing events and the y-axis stands
for the proportion of significant genes within 2000 simulations.
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2.2.3 Application to complex human traits

2.2.3.1 Summary of applications to 15 traits

We applied S-MultiXcan, UTMOST and MSG to splicing data from GTEx project to ob-

tain prediction models, then integrated with GWAS summary statistics from 15 complex

traits to identify trait-associated genes. For each trait, we chose the tissue with the top trait

heritability enrichment in the respective tissue-specific annotation using linkage disequi-

librium score regression (Bulik-Sullivan et al., 2015) as previously described (Hu et al.,

2019). The sample sizes of these tissues range from 175 (brain frontal cortex BA9) to 706

(muscle skeletal). We extracted cis-SNPs within 500 kb upstream of the transcription start

site or 500 kb downstream of the transcription stop site. GWASs for both quantitative traits

(e.g., body mass index) and binary traits (e.g. Alzheimer’s disease) of relatively large sam-

ple size, ranging from 51,710 (Bipolar disorder) to type 2 diabetes (408,953) are included.

LD reference panels are required for inference from GWAS summary statistics. For LD

reference, we used European subsamples from 1000 Genome (Consortium et al., 2015) for

S-MultiXcan and UTMOST as recommended in the original publications; we used 5,000

random selected European subsamples from BioVU for MSG since our simulations and

previous literature (Yang et al., 2012) suggested that a larger sample size is required for

less sparse models, as our MSG models are (see Table S1 for details). To detect associa-

tions, we used a Bonferroni threshold accounting for all genes that were tested (0.05/total

number of genes with splicing variation in the selected tissue) for each trait.

Table 2.3 shows that MSG identified on average 2.15 and 3.23 times the significant

genes from S-MultiXcan and UTMOST respectively from the tested traits. We examined

the results from three disorders (Alzheimer’s disorder, LDL-C, and Schizophrenia) and

found the majority of splicing informed significant genes would have been missed from

expression based analysis, and some of these genes have strong external support, suggesting

the complementary roles of splicing to expression and the capture of potential true signals

using MSG. The genes significant in MSG for all 15 traits are included in Table S2.
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Trait Tissue MSG S.MultiXcan UTMOST
Alzheimer’s Disease BA9 32 19 14

Bipolar disorder BA9 67 23 17
Major depressive disorder BA9 23 5 3

Body mass index BA9 1757 786 497
schizophrenia BA9 458 203 145
Neuroticism BA9 178 68 46

Type 2 diabetes Liver 83 48 26
Total cholesterol Liver 202 109 66
LDL cholesterol Liver 200 108 69

Serum urate Liver 87 63 50
HDL cholesterol Adipose subcutaneous 161 79 53

Triglycerides Adipose subcutaneous 144 96 69
Type 2 diabetes Adipose subcutaneous 104 53 41

Waist hip ratio adjusted for BMI Adipose subcutaneous 860 397 259
Age at Natural Menopause muscle skeletal 220 118 79

Table 2.3: Numbers of significant gene-trait associations across 15 human traits using S-
MultiXcan, UTMOST and MSG. The reference penal is European subsamples from 1000
Genome (for S-MultiXcan and UTMOST) and European subsamples from BioVU (for
MSG). The source of GWAS traits and significant genes identified from MSG for all traits
can be found in Table S2.
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2.2.3.2 Application to Alzheimer’s disease

We applied MSG, S-MultiXcan, and UTMOST to brain frontal cortex splicing measure-

ments and stage I GWAS summary statistics from the International Genomics of Alzheimer’s

Project (IGAP(Lambert et al., 2013); N = 54,162). Fig 2.4 shows that 32, 19, and 14 sig-

nificant genes in GTEx frontal cortex (BA9) was identified from MSG, S-MultiXcan, and

UTMOST respectively (Bonferroni-corrected p-value¡ 0.05). To replicate our findings, we

applied these three approaches to summary statistics from the GWAS by proxy (GWAX

(Liu et al., 2017b); N = 114,564) and we found 6, 1, 0 genome-wide significant genes

under Bonferroni correction from MSG, S-MultiXcan and UTMOST respectively. All sig-

nificant genes from GWAX using MSG are also significant from IGAP, which amounts

to 6 out of 32 genes being successfully replicated using MSG (MARK4, ERCC1, RELB,

CLASRP, PPP1R37, CEACAM19). We found some well-known AD genes are significant

from MSG and labelled those in Fig 2.4.

We observe 26 out of 32 MSG significant genes are within 500 kb distance to 5 GWAS

identified lead SNPs, including PTK2B-CLU locus on chromosome (CHR) 1, SPI1 locus

on CHR 11, MS4A4A locus on CHR 11, PICALM locus on CHR 11 and APOE locus

on CHR 19 (see full list of these genes in Table S2). The observation that the most sig-

nificant genes are near GWAS loci is consistent with previous reports from application of

UTMOST to AD (Hu et al., 2019), and TWAS, S-MultiXcan to other traits (Gusev et al.,

2018; Barbeira et al., 2018).

Furthermore, we conducted conventional S-PrediXcan analysis using GTEx prefrontal

cortex gene expression data and the same summary statistics, and compared those to MSG

identified splicing genes. We found 8 genes are overlapped between expression (S-PrediXcan)

and splicing (MSG) significant genes. The remaining 24 out of 32 splicing genes would

have been missed in conventional approaches evaluating gene expression levels alone, a

few of them are showed in Fig.2.5. For genes that can only be identified via splicing, PI-

CALM (MSG splicing p-value=1.93×10−9, expression p-value=9.80×10−1) and PTK2B
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Figure 2.4: Applying various methods on IGAP Alzheimer’s disease. A). Bar plots of
the number of significant genes using the different training models. B), Venn diagram
plots showing the overlap of the genes from different methods. C). Manhattan plot for
Alzheimer’s disease from the application of MSG model in IGAP stage I GWAs summary
statistics. Genes with strong literature support are annotated in red.

(MSG splicing p-value=7.96×10−9, expression p-value=8.98×10−1) are two genes pre-

viously shown to be significantly differentially spliced between AD patients and controls

from ROSMAP dataset (Raj et al., 2018). MARK4 (MSG splicing p-value=1.31×10−58,

expression p-value=8.48× 10−2) was shown to change the properties of tau (Oba et al.,

2020) and has variants reported to be associated with AD and AD family history (Mar-

ioni et al., 2018; Jansen et al., 2019). Several genes in APOE region are also signifi-

cant from splicing analysis but not from expression, including APOE (MSG splicing p-
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value=1.12× 10−8, expression p-value=2.49× 10−3), a well-known risk gene (Yu et al.,

2007) for late-onset AD, with reports that alternative splicing (exclusion of exon 5) is as-

sociated with increased beta-amyloid deposition, and affecting tau structure (Love et al.,

2015); APOC1 (MSG splicing p-value=4.65× 10−17, expression p-value=2.07× 10−3)

has been reported to be associated with family history of AD and AD (Schwartzentruber

et al., 2021; Herold et al., 2016); TOMM40 (MSG splicing p-value=5.67× 10−9, expres-

sion p-value=4.84× 10−1) have previously reported to have intronic variants associated

with family history of AD (Marioni et al., 2018) and HDL levels (Zhu et al., 2019); ERCC1

(MSG splicing p-value=2.32×10−27, expression p-value=4.48×10−2), a DNA repair en-

zyme, has been shown to be associated with quantification of amount of tau and implicated

in AD research (Wang et al., 2020a).
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Figure 2.5: AD Genes identified via splicing that would be missed from expression. The
full list of significant splicing genes identified using MSG is shown in Table S2.
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2.2.3.3 Application to LDL-C

We applied MSG, UTMOST and S-MultiXcan to a continuous trait: low-density lipopro-

tein cholesterol (LDL-C) from global lipids genetics consort ism (GLSC) GWAS (n=188,578)

(Willer et al., 2013). Fig.2.6 shows that 200, 108, 69 significant genes are identified in

GTEx liver from MSG, UTMOST, and S-MultiXcan, respectively (Bonferroni-corrected

p-value¡ 0.05). There are 57 genes shared by all three methods. To replicated our findings,

we applied three approaches to summary statistics from the LDL-C UK Biobank GWAS (N

= 343,621) and identified 474, 223, and 175 from MSG, S-MultiXcan, UTMOST respec-

tively. The replication rate is high in all three methods: of the significant genes identified

from the GLSC GWAS (n=188,578), 161 out of 200 genes (81%), 79 out of 108 genes

(73%), 52 out of 69 genes (75%) are replicated in UK Biobank GWAS analysis using

MSG, S-MultiXcan, and UTMOST respectively. As shown in Fig 2.6, We found MSG

captured some well-known lipid metabolism genes (Zhou et al., 2020) including LPIN3,

FADS3, LDLRAP1, FADS1, LDLR, FADS2. We note LDL-C significant genes tend to

cluster around known SNP-level significant loci to a lesser extent than AD. 102 out of 200

MSG significant genes are within 500 kb distance to 20 GWAS significant lead SNPs (see

the full list of these genes in Table S2).

Furthermore, we conducted conventional S-PrediXcan analysis using GTEx liver gene

expression data with the same GWAS summary statistics, and compared those to MSG

identified splicing genes. We found 27 of the 56 expression genes overlapped with the

splicing significant genes identified by MSG. 173 out of 200 splicing genes identified from

MSG would have been missed in conventional approaches evaluating gene expression lev-

els alone. As shown in Fig 2.7, some genes can only be identified via splicing: HMGCR

(MSG p-value=1.14× 10−40, expression p-value=3.00× 10−4) has variants affecting al-

ternative splicing of exon13 and is associated with LDL-C across populations (Burkhardt

et al., 2008); PARP10 (MSG p-value=1.51× 10−8, expression p-value=1.07× 10−2) has

been prioritized as causal gene from exome-wide association analysis in more than 300,000

21



0
50

100
150
200

M
SG

S−M
ult

iX
ca

n

UTM
OST

method

N
um

be
rA

MSG UTMOST

S−MultiXcan

115
(50.9%)

0
(0.0%)

17
(7.5%)

3
(1.3%)

25
(11.1%)

9
(4.0%)

57
(25.2%)

B

●

●

●

●

●

●

LDLRAP1

FADS2

FADS1

FADS3

LDLR

LPIN3

2

3

5

10

20

30

50

100

150
200
250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  17 19 21
chromosome

−
lo

g 1
0(

P
)

C

Figure 2.6: Comparison of the performance of the various methods on LDL-C in Teslovich
et al, Nature (2010) GWAs summary statistics. a. Bar plots of the number of significant
genes using the different training models. b, Venn diagram plots showing the overlap of
the genes. c, Manhattan plot for LDL-c from the application of MSG model, six genes
previously known to be associated with LDL-C are annotated in red.

individuals (Liu et al., 2017a); SMARCA4 (MSG p-value=3.27× 10−109, expression p-

value=6.52× 10−2) was shown to have variants associated with LDL cholesterol levels

(Richardson et al., 2020), coronary heart disease susceptibility (Guo et al., 2017; Dichgans

et al., 2014) and myocardial infarction (Nikpay et al., 2015); LDLR (MSG p-value=4.49×

10−73, expression p-value=1.43×10−1) has been reported to be associated with statin use

from UK Biobank studies, and has intronic variants identified in Familial Hypercholes-

terolemia cases (Reeskamp et al., 2018); CARM1 (MSG p-value=1.05× 10−66, expres-
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sion p-value=3.06× 10−1) has been reported to have intronic variants associated LDL-C

and total cholestrol (Hoffmann et al., 2018).
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Figure 2.7: LDL-C Genes identified via splicing that would be missed from expression.
The full list of significant splicing genes identified using MSG is shown in Table S2.
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2.2.3.4 Application to Schizophrenia

We applied MSG, UTMOST and S-MultiXcan to a schizophrenia (SCZ) GWAS (N=105,318)

(Pardiñas et al., 2018). Fig.2.8 shows that 501, 222, 153 significant splicing genes are iden-

tified in GTEx frontal cortex (BA9) using MSG, S-MultiXcan, and UTMOST respectively

(Bonferroni-corrected p-value¡ 0.05). There are 116 genes shared by all three methods.

Current available large-scale SCZ GWAS usually have sample overlaps, so we weren’t

able to replicate with a independent GWAS. We found a few genes previously reported to

influence SCZ risk via splicing, including SNX19 (Ma et al., 2020b), AS3MT (Li et al.,

2016a) and CYP2D6 (Ma et al., 2020b). We note SCZ significant genes tend to cluster

around known SNP-level significant loci to a lesser extent than AD. 376 out of 501 MSG

significant genes are within 500 kb distance to 76 GWAS significant lead SNPs (see full

list of these genes in Table S2).

Furthermore, we conducted conventional S-PrediXcan analysis using GTEx prefrontal

cortex gene expression data and the same summary statistics, and compared those to MSG

identified splicing genes. We found 55 expression genes overlapped with the significant

splicing genes identified by MSG. Due to the complex haplotype and LD structure of the

major histocompatibility complex (MHC) locus, we further separate the results into genes

in MHC region and genes not in MHC region. In the MHC region, 30 genes overlapped

between 33 expression genes (S-PrediXcan) and 101 splicing genes (MSG). Some well-

known genes can only be identified from splicing: NOTCH4 (MSG p-value=8.35×10−29,

expression p-value=8.19× 10−2) (Aberg et al., 2013), TRIM26 (MSG p-value=4.64×

10−14, expression p-value=4.40× 10−1) (Consortium et al., 2012), ZSCAN9 (MSG p-

value=4.64× 10−14, expression p-value=4.40× 10−1) (aut, 2017). Outside of the MHC

region, 25 genes overlapped between 58 expression genes (S-PrediXcan) and 400 splic-

ing genes (MSG). Fig 2.9 shows that some genes can only be identified via splicing:

SNX19 (MSG p-value=2.27× 10−10, expression p-value=2.38× 10−3) is known to have

risk-associated transcripts defined by an exon-exon splice junction between exons 8 and 10
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Figure 2.8: Comparison of the performance of the various methods on SCZ. a) Bar plots of
the number of significant genes using the different training models. b) Venn diagram plots
showing the overlap of the genes. c) Manhattan plot for scz from the application of MSG
model, genes previously known to be associated with SCZ by splicing are annotated in red.

(junc8.10) that is predicted to encode proteins that lack the characteristic nexin C terminal

domain (Ma et al., 2020a); GRIA1 (MSG p-value=1.28×10−8, expression p-value=1.62×

10−5) has been reported to be associated with SCZ (Ripke et al., 2013); CACNA1C (MSG

p-value=9.35×10−10, expression p-value=5.44×10−1) and CACNA1G (MSG p-value=2.45×

10−6, expression p-value=7.15×10−1) encode calcium voltage-gated channel subunit and

has been implicated in multiple studies to be associated with SCZ (Lam et al., 2019a; Ripke

et al., 2013); PPP1R16B (MSG p-value=4.86× 10−18, expression p-value=8.62× 10−1)

has been reported to be associated with SCZ in several populations (Ripke et al., 2013;
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Goes et al., 2015) and multiple psychiatric disorders (Wu et al., 2020; Lam et al., 2019b).
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Figure 2.9: SCZ genes identified via splicing that would be missed from expression. The
full list of significant splicing genes identified using MSG is shown in Table S2.
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2.3 Discussion

Distinct from the active development and gene discovery using expression data from Predix-

can/TWAS and its multidimensional variants (e.g., S-MultiXcan/UTMOST), there is a lack

of studies on trait-associated gene discovery using splicing data. Splicing data presents

some unique challenges due to its multidimensional nature, which prompts the develop-

ment of efficient analytic approaches. In this paper, we proposed a method (MSG) to con-

struct cross-splicing event models using sCCA to boost power in identifying genes influ-

encing traits via splicing. Through simulations, we showed MSG has controlled type I error

rate and superior power compared to current state-of-the-art approaches S-MultiXcan/UTMOST.

In real data applications, we identified on average 2.15 times and 3.23 times significant

genes from MSG than from S-MultiXcan or UTMOST across 15 complex traits. We

highlighted studies on AD, LDL-C and SCZ, and found independent literature support

for MSG-identified genes, indicating MSG captures some true signals. Additionally, the

majority of genes identified from MSG are not implicated in traditional expression-based

studies, consistent with the complementary roles between genetic regulation of splicing

and expression.

Through MSG, we found a considerable number of trait-associated splicing genes that

were not identified from expression data, demonstrating the important role of RNA splic-

ing on trait susceptibility. Besides, the number of splicing genes is usually larger than that

from expression. A few factors might contribute to this. One is that splicing is highly

prevalent, affecting over 95% of human genes (Wang and Cooper, 2007). It provides the

possibility of cell type- and tissue-specific protein isoforms, and the possibility of regu-

lating the production of different proteins through specific signalling pathways (Kornblihtt

et al., 2013). Another factor is that the rich multi-dimensional splicing information provides

higher power to detect association compared to single dimension expression information.

It was shown that the power of S-PrediXcan/TWAS approaches an maximum when sample

size reachs 1000 (Gusev et al., 2016). As most tissues in GTEx have a sample size less than
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1000, the sample size from a target tissue maybe too small to have enough power for ex-

pression data-based S-PrediXcan/TWAS analysis, but enough to detect some associations

for multidimensional splicing data analysis. Thus, we believe splicing data analysis may

offer great opportunities to study complex traits, and we view our method as an important

early step toward using sQTLs for GWAS interpretation and gene discovery.

We observed a 2- to 3- fold increase in the number of trait-associated splicing genes

from MSG compared to established methods S-MultiXcan and UTMOST. The relative

increase of power using MSG can be attribute to several factors. First, we found MSG

to increase the number of ”testable” genes compared to the alternatives. For example, for

SCZ, there are 1041 genes not testable in S-MultiXcan or UTMOST but testable by MSG.

We found sCCA models tend to be less sparse (i.e., include more SNPs with estimated

non-zero effects) than S-MultiXcan and UTMOST and explain more variability in splicing

variation, and in turn are more likely to be testable for association with traits. Another

potential strength of MSG is that sCCA might be able to capture the correlated genetic

effects more effectively. We speculate the CVs in MSG might tend to capture genetic

variance. Meanwhile, predictions in S-MultiXcan/UTMOST might tend to capture the total

phenotypic variance which includes both genetic and non-genetic variation (Aschard et al.,

2014), and thus are less powerful than MSG in the application to multidimensional splicing

data. These desirable properties of sCCA on correlated data have also been suggested in

previous applications to multi-tissue expression data (Feng et al., 2021).

We note MSG models tend to be less sparse compared to alternative methods like S-

MultiXcan and UTMOST. Accordingly, simulations show our method require a larger ref-

erence panel than the commonly used 1000 Genomes European samples to have controlled

type I error. Model sparsity seems to have influenced the granularity level needed for LD

reference, which is partially driven by the reference sample size. Intuitively, the more SNPs

in the model, the less standard deviation of each SNP is needed in the LD matrix, since the

sum of many errors will make the model unreliable. In fact, previous studies have rec-
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ommended choosing a reference with a large sample size (i.e, at least 2,000) to estimate

the LD correlations with little error in analyzing GWAS summary statistics (Yang et al.,

2012). Through simulations, we explored using LD reference panels of different sample

sizes (i.e., 400; 1000; 5,000; 10,000; 50,000) when conducting analysis with a GWAS of

50,000 samples (see Table S1 for details). We found a reference panel of 5,000 individuals

is adequate for MSG. To construct this large reference sample, we randomly selected 5,000

samples of European population in BioVU and have made the reference LD correlation

matrices available. However, while not ideal, we think 1000 Genomes samples could also

be used for initial screening purpose, but the more stringent validation will be needed for

the genes identified.

There are several limitations to our approach. First, we focused on single-gene, single-

trait analysis on splicing data in our method, while there are exciting opportunities for

method development and gene discovery if we transfer the knowledge of multi-tissue,

multi-trait, multi-gene, cis and trans from expression analysis to splicing studies (Liu et al.,

2021; Luningham et al., 2020; ?). Second, when combining signals from multiple splicing

canonical vectors, we used SVD approach following S-MultiXcan (Barbeira et al., 2019).

This application was effective in solving collinearity and numerical issues, but there are

other approaches to combine signals like ACAT (Liu et al., 2019) might lead to further

power gain as suggested by applications in expression data analysis (Feng et al., 2021).

Third, our models were derived from GTEx transcriptome sequencing from adult bulk

tissue, so findings driven by differences in cellular composition or developmental stages

cannot be fully resolved. As splicing must be tightly regulated, the association of splicing

implicated genes with traits in different cell types or developmental stages remains to be

studied. Fourth, like other S-PrediXcan/TWAS-type approaches, results from our method

need to be interpreted with caution: they do not implicate causality. Further causal analysis

using methods like FOCUS (Mancuso et al., 2019) and experimental validation are needed

to determine causal genes.
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By integrating multidimensional splicing information with GWAS, we were able to

pinpoint candidate genes associated with common traits via splicing. This approach can

potentially be extended to integrate molecular data beyond splicing, such as epigenetic

data. With the increasing availability of summary statistics and molecular data, we believe

we will have a better understanding of how genes influence complex traits through diverse

regulatory effects.
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2.4 Software and resources

The genotype data for the GTEx project are available on AnVIL. Processed GTEx gene

expression and splicing data (fully processed, filtered, and normalized splice phenotype

matrices (in BED format)) is available from the GTEx portal (https://gtexportal.org). The

source of the summary statistics datasets of all GWAS meta-analyses analyzed in this paper

can be found in Table S2. The significant MSG genes from the 15 human traits are provided

in Table S2. The LD correlation matrices for cis-SNPs of each gene from a reference panel

of 5,000 BioVU samples of European ancestry will be available on https://zenodo.org/.

The LD reference panel from 1000 Genomes is available at https://data.broadinstitute.org/

alkesgroup/FUSION/LDREF.tar.bz2.

The code for MSG is available at Github https://github.com/yingji15/MSG public. We

used R package PMA (Witten and Tibshirani, 2020) to implement sCCA for splicing anal-

ysis. Part of the code is modified from previous work: S-MultiXcan at https://github.com/

hakyimlab/MetaXcan; TWAS at https://github.com/gusevlab/fusion twas/; UTMOST at

https://github.com/Joker-Jerome/UTMOST; TisCoMM at https://github.com/XingjieShi/TisCoMM;

JTI at https://github.com/gamazonlab/MR-JTI.

2.5 Materials and methods

2.5.1 MSG framework

To identify candidate trait-associated genes, suppose we have both the splicing and geno-

type data, and GWAS summary statistics from a study that measure both the trait of interest

and the genotype. The two studies are independent with no sample overlap. Our proposed

method consists of two main stages. In the first stage, we construct sparse latent canonical

vectors (CVs) by identifying sparse linear combinations of SNPs and splicing events that

are highly correlated with each other from data provided in GTEx v8 release. In the second

stage, we test the association between genetic regulated splicing and the trait of interest

based on the obtained SNP-splicing CVs and summary-level data from GWAS to perform
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association analysis of estimated splicing with a phenotype.

In the first stage, for a given gene, we denote X1 as a n1× p genotype matrix for p

SNPs reside in the cis-region of the gene (i.e., 1-Mb window around a gene) among n1

samples, and Y as a n1× t matrix of measured t splicing events from GTEx. Given X1 and

Y , sCCA seeks sparse latent CVs written in matrix forms B and V such that Cor(X1B,YV )

is maximized based on constraints. The objective function is:

max
B,U

BT XT
1 YV

subject to||B||2 ≤ 1, ||V ||2 ≤ 1, ||B||1 ≤ c1, ||V ||1 ≤ c2,

(2.1)

where c1 and c2 are parameters chosen to yield sparse B and V , with ||B||1 and ||V ||1 denote

L1 (or lasso) penalties. The solutions for B and V are obtained via an iterative algorithm

(Witten et al., 2009; Witten and Tibshirani, 2009).

In the second stage, we test the association between genetic-regulated splicing CVs

and the trait of interest. If individual level data from GWAS study is available, we denote

X2 as a n2× p genotype matrix for the same p SNPs reside in the cis-region of the gene

among n2 samples, and z2 as a n2-vector of the phenotypic value. Then we can use PCA

regularization on B by decompose the predicted matrix X2B into principal components and

keep only the k eigenvectors of non-negligible variance, following S-MultiXcan (Barbeira

et al., 2019) to avoid collinearity issues. As individual level GWAS studies are usually not

available, our MSG approach focus on using GWAS summary statistics and a reference

panel to conduct the association test following previous work (Gusev et al., 2016; Barbeira

et al., 2019; Hu et al., 2019). It consists of the following steps:

(1) Computation of single splicing CV association results following S-PrediXcan (Bar-

beira et al., 2018). Let S denote the matrix of imputed genetic regulated splicing, X3 denote

a n3× p genotype matrix from reference panel of n3 individuals and p SNPs. We predict

genetic regulated splicing variables using the splicing CV matrix B obtained in the previous
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stage:

S = X3B. (2.2)

Let T denote the trait of interest in GWAS, X denote the genotype matrix of GWAS samples

of the p cis-SNPs and S denote the predicted splicing variables in GWAS samples, γ denote

the effect sizes of predicted splicing variables within this gene on the trait. We assume a

linear regression model, and we are interested in estimating regression-coefficient-vector

γ:

T = Sγ + εT , (2.3)

We also have GWAS estimates vector βGWAS of the p cis-SNPs for this gene, and the linear

regression model of the trait on the genotype of these SNPs is:

T = XβGWAS + εGWAS, (2.4)

The ordinary least-square estimator γ̂ and its variance is as follows:

γ̂ = (ST S)−1ST T = (ST S)−1BT XT T = (ST S)−1BT XT XβGWAS, (2.5)

se(γ̂)2 ≈Var(T )(ST S)−1 =Var(βGWAS)(XT X)(ST S)−1 = se(βGWAS)
2(XT X)(ST S)−1.

(2.6)

Plug in both equations 2.5 and 2.6, let zGWAS =
βGWAS

se(βGWAS)
be a vector of z-scores from GWAS

summary statistics, the estimated z scores for γ is

ẑ =
γ̂

se(γ̂)
=

√
XT X√
ST S

BT zGWAS (2.7)

Since individual level data from GWAS samples is usually not available, we estimate XT X

and ST S from the reference population, not the actual GWAS population. Then we obtain

ẑ by plugging in these estimates.

33



(2) Estimation of the correlation matrix of predicted splicing using the linkage dise-

quilibrium (LD) information from a reference panel. As multiple predicted splicing events

within a gene can be highly correlated and can lead to numerical issues caused by collinear-

ity, we obtain a pseudoinverse for correlation matrix ST S = (X3B)T X3B by discarding the

components of the smallest variation via singular value decomposition (SVD), analogous

to PC analysis discussed above in individual-level data (Barbeira et al., 2019). We denote

the resulting matrix with k components surviving the SVD peudo-inverse as Σ
+
k .

(3) Quantification of the predicted multidimensional splicing gene-level association.

We use the fact that the regression coefficients follow γ̂ ∼N(γ,σ2(ST S)−1). Under the null

hypothesis of no association, it follows that γ̂T ST S
σ2 γ̂ ∼ χ2. As previously shown (Barbeira

et al., 2019), γ̂T ST S
σ2 γ̂ ≈ ẑTCor(S)−1ẑ and we can use the pseudo-inverse matrix Σ

+
k in place

of Cor(S)−1 in practice. Then we combine all the association statistics ẑ within a gene

ẑT Σ
+
k ẑ in a χ2 test. We estimate for all genes using the above procedure. For each trait and

tissue combination, we use Bonferroni correction to determine the genome-wide signifi-

cance threshold by dividing 0.05 with the number of genes with at least 2 splicing events

in that tissue. This value varies between trait-tissue combinations, usually approximately

at 0.05/10000 = 5×10−6.

2.5.2 Simulations

To evaluate the type I error rate and power of the association tests, we simulate a training

dataset with both genetic and splicing data, a GWAS dataset with both individual-level

data and summary statistics, and an LD reference panel. Then we conduct gene level

association tests using our proposed approach MSG and alternative methods (S-MultiXcan

and UTMOST) in a wide variety of different controlled scenarios.

We assume a linear regression model to simulate the training genotype data X1 and

splicing events data Y of a gene: Y = X1B+E. Here, X1 is a matrix with 200 rows rep-

resenting samples and 300 columns representing the cis-SNPs residing in a 1Mb window
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around the gene, simulated with values drawn from a multivariate normal distribution with

autoregressive covariance structure determined by ρX = 0.1. Y is a matrix with 200 rows

representing samples and 10 columns representing splicing events within the gene. The ef-

fect size matrix B, with rows representing SNPs and columns representing splicing events,

is factored into SNP-dependent and splicing event-dependent components represented by

B= diag(b)W , with b determining the magnitude of shared effect on each SNP and W spec-

ifying the effects of SNPs on splicing events following previous work (Shi et al., 2020). To

model the structure of W , we determine the location of non-zero elements in W through

the following parameters: we denote shareTi (shareTi = 1,2,4,6,8) to be the number of

”effect-sharing splicing events”, which are splicing events which have non-zero effect SNPs

shared between them; shares (shares = 0.3) to be the fraction of shared SNPs in non-zero

effect SNPs for these effect-sharing splicing events; and sparsity level s (s= 0.01,0.05,0.1)

to be the overall fraction of non-zero effect SNPs out of the total 300 SNPs for each splicing

event (see illustration in supplementary materials Fig 2.10). The value of these non-zero

elements in W are randomly generated from a uniform distribution. We describe the splic-

ing heritability hc (hc = 0.01,0.05,0.1) as the proportion of splicing variability explained

by SNPs. E is a matrix of random Gaussian noise term with a scale such that it accounts

for (1−h2
c)% of the expected variance in Y with autoregressive covariance structure deter-

mined by ρE = 0.5. The values are chosen to be comparable to the observed value in real

data applications.

To simulate the GWAS dataset, we assume T = X2Bα +εT . We first generated an indi-

vidual level GWAS set and obtained summary statistics from marginal linear regression to

this simulated individual-level GWAS dataset, then we provided the summary statistics to

all prediction models. Here, the genotype matrix X2 is a matrix of 50,000 rows representing

samples and 300 columns representing cis-SNPs, and is simulated similar to X1. Quanti-

tative GWAS trait T is generated using B from the simulated splicing training dataset and

a vector α representing the effects of 10 splicing events on the trait. The non-zero entries
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in α denote the ”trait-contributing splicing events”, which are splicing events with non-

zero effects on the trait, with values generated from a uniform distribution. The heritability

of the trait hT is set to be 0.01. εT is a random Gaussian noise term chosen such that it

accounts for (1−h2
T )% of the expected variance in T to keep hT at 0.01.

To aid using summary level GWAS data for inference, we also simulated the LD ref-

erence panel X3 with the same cis-SNPs using similar settings as X1 and X2. We consider

two reference panels, one with 400 samples (mimic 1000 Genomes European reference

samples) and another with 5,000 samples (mimic random selected BioVU samples). Our

simulation shows MSG requires a larger reference sample size, a comparison between the

two reference panels is included in the Table 2.4.

We performed simulations of diverse scenarios through varying splicing sparsity, splic-

ing heritability, effect-sharing splicing events, and trait-contributing splicing events. We

estimated the type I error control of different methods (i.e., S-MultiXcan, UTMOST, MSG)

under the null (hz = 0) and alternative hypothesis (hz = 0.01). For type I error evaluation,

we repeated simulations 2×105 times for each scenario and report the proportion of sim-

ulations with p-value < 0.05. For power evaluation, we repeated the scenario for 2,000

times and report the proportion of simulations with p-value < 5×10−6 which was chosen

to mimic Bonferroni correction in real data application.

2.5.3 Datasets

GTEx data Genotype and splicing data from RNA sequencing data were obtained from the

Genotype-Tissue Expression Project (GTEx v8p). To select relevant tissue for each trait,

we used the top tissues enriched for trait heritability provided by UTMOST supplementary

materials (Hu et al., 2019). The resulting tissues for our selected traits are frontal cortex

(BA9), liver, adipose, and muscle skeletal tissues (see Table S2 for sample size per tissue).

GWAS summary statistics We obtained GWAS summary statistics from 15 traits of rela-

tively large sample size (N ≥ 50,000) from categories like metabolites (e.g., HDL-C, LDL-
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C) and psychiatric/neurodegenerative disorders (e.g., Alzheimer’s disease, Schizophrenia).

Details of these traits can be found in Supplementary Table S2. In the main text, we dis-

cussed Alzheimer’s disease, LDL-C and Schizophrenia in detail. A summary of analysis

results for all traits can be found in Table 2.3.

LD Reference panel Due to the absence of GWAS genotype data using summary statistics,

we use reference samples to estimate the LD structures among SNPs in the study samples.

We used two European reference panels since diseases and traits considered in our real data

application are for European population cohorts: one from random selected 5,000 samples

in BioVU and another from 1000 Genome Project (Consortium et al., 2015). Our simula-

tion established that a reference LD correlation matrix constructed from 5,000 individuals

is recommended for our MSG method (Table 2.4). The LD correlation matrices from 5,000

random BioVU samples will be provided at https://zenodo.org/.

2.5.4 Alternative methods

We conducted simulations and real data analysis to evaluate the performance of different

methods by performing gene-trait association tests. For multidimensional splicing data

analysis, we compared the performance of our MSG approach with two current state-of-

the-art methods in the main text: S-MultiXcan (Barbeira et al., 2019) and UTMOST (Hu

et al., 2019). Specifically, for splicing event i, let Xi and yi be the genotype and splicing

data. Both S-MultiXcan and UTMOST assume an elastic net model that combines L1 and

L2 penalty as a variable selection approach following the assumptions made in PrediXcan

(Gamazon et al., 2015) to select a sparse set of SNPs with non-zero effects on gene splicing

and estimate their effects in the linear regression: yi = Xiβ +E. They assume that β ∝

exp(λ1||β ||1 + λ2||β2||) where ||.||1 and ||.||2 denote the L1 and L2 norms, respectively.

The penalty λ1 and λ2 is selected via cross validation. A group-lasso penalty on the effect

size of one SNP across all isoforms is also used in UTMOST to integrate information

across multiple dimensions. To combine gene-trait associations across multidimensional
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data, S-MultiXcan first uses PCA regulation and then performs χ2 test, while UTMOST

leverages GBJ test (Sun et al., 2019). For single dimension expression data analysis, we

used S-PrediXcan (Barbeira et al., 2018).

2.5.5 Compilation of well-known trait associated gene lists

We obtained AD-associated genes from a previously curated list (Lin et al., 2021). The

authors performed intensive hand-curation to identify confident AD-associated genes (pos-

itives) from various disease gene resources, including AlzGene, AlzBase, OMIM, Dis-

Genet, DistiLD, and UniProt, Open Targets, GWAS Catalog, differentially expressed genes

(DEGs) in ROSMAP, and published literature. We obtained LDL-C related genes from

previous curated list (Zhou et al., 2020) that includes genes from literature and KEGG

pathways. We obtained SCZ-associated genes via splicing from literature (Takata et al.,

2017; Ma et al., 2020b; Cai et al., 2021; Glatt et al., 2009). The full lists are provided in

supplementary materials.

2.6 Supplementary Materials

2.6.1 Illustration of W matrix
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shareTi: columns with shared effects

Shares: 
fraction of 
nonzero SNPs 
shared 
between 
columns

S: fraction of 
SNPs with 
nonzero 
effects

Figure 2.10: Design of weight matrix W in simulation
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2.6.2 Effect of reference panel sample size on type I error for MSG

Table 2.4: Comparison of type I error for MSG using individual GWAS (MSGIND), MSG
with GWAS summary statistics and reference genome of 400 individuals (MSGREF400),
MSG with GWAS summary statistics and reference genome of 5000 individuals
(MSGREF5000) in simulation with different number of effect-sharing isoforms (2,4,8), spar-
sity (0.01,0.05,0.1) and splicing heritability (0.01,0.05,0.1). The number of replication
is 20000 for each scenario.

shareTi s h c mcca.ind MSG (REF400) MSG (REF5000)
2 0.01 0.01 0.048 0.059 0.049

0.01 0.05 0.050 0.059 0.050
0.01 0.10 0.047 0.058 0.049
0.05 0.01 0.051 0.061 0.051
0.05 0.05 0.049 0.059 0.051
0.05 0.10 0.050 0.060 0.052
0.10 0.01 0.012 0.015 0.013
0.10 0.05 0.013 0.016 0.013
0.10 0.10 0.012 0.015 0.013

4 0.01 0.01 0.050 0.060 0.050
0.01 0.05 0.052 0.061 0.051
0.01 0.10 0.046 0.057 0.048
0.05 0.01 0.050 0.059 0.051
0.05 0.05 0.048 0.057 0.047
0.05 0.10 0.047 0.060 0.051
0.10 0.01 0.011 0.015 0.012
0.10 0.05 0.013 0.015 0.013
0.10 0.10 0.013 0.016 0.013

8 0.01 0.01 0.051 0.060 0.051
0.01 0.05 0.051 0.059 0.050
0.01 0.10 0.050 0.060 0.049
0.05 0.01 0.046 0.055 0.047
0.05 0.05 0.049 0.060 0.050
0.05 0.10 0.050 0.060 0.050
0.10 0.01 0.012 0.014 0.012
0.10 0.05 0.012 0.015 0.012
0.10 0.10 0.012 0.015 0.013
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2.6.3 Compilation of well-known trait associated gene lists

2.6.3.1 Compilation of AD-associated genes

We obtained AD-associated genes from published literature (Lin et al., 2021). The authors

performed intensive hand-curation to identify confident AD-associated genes (positives)

from various disease gene resources, including AlzGene, AlzBase, OMIM, DisGenet, Dis-

tiLD, and UniProt, Open Targets, GWAS Catalog, differentially expressed genes (DEGs)

in ROSMAP9, and published literature. The genes include: APOE, SORL1, GAB2, CR1,

PICALM, CLU, CD33, ABCA7, ADAM10, CD2AP, BIN1, APOC1, TOMM40, INPP5D,

PSEN2, EPHA1, APP, MTHFD1L, CNTNAP2, HLA-DRB1, CASS4, BCAM, ABCA1,

PTK2B, MS4A6A, FRMD4A, BCL3, SLC24A4, GLIS3, FERMT2, PSEN1, TREM2,

ZCWPW1, EXOC3L2, MS4A4A, ACE, APOC4, BZW2, SUCLG2, APOB, SCIMP, SCARB1,

RELB, CRY2, PVRL2, CLASRP, ADAMTS4, MMP3, UBE2L3, PPP1R37, ECHDC3,

TCF7L2, IL6R, MS4A2, LIPG, MAN2A1, MAPT, ALDH1A2, ABI3, LILRA5, CELF1,

PLCG2, HMGCR, OARD1, APH1B, APOC2, OR4S1, STAT4, MS4A4E, PVR, MT-ND2,

HS3ST1, CCR2, VASP, CYP8B1, BLOC1S3, PPP1R13L, NFIC, NKPD1, INSR, CNT-

NAP5, BCAS3, BCHE, BCL2, NME8, CLPTM1, CLNK, UBQLN1, CLMN, IL1B, TRAPPC6A,

VSNL1, SORCS1, PPARG, IGSF23, CRH, PSMA1, CHRNB2, FBXL7, CHRNA7, SPON1,

MYO16, CHRNA2, VLDLR, KIR3DL2, KIT, HLA-DRB5, BACE1, HLADRA, DSG2,

CALHM1, RBFOX1, HFE, PILRA, LRP4, HARBI1, TFCP2, CBLC, DPP10, SYNJ1,

CDC25B, ACP2, ACHE, PACSIN3, MADD, ZNF652, GSK3B, PFDN1, RIN3, MARK4,

GRIN2A, PDGFRB, MAPK8IP1, GRIN3B, CCRL2, ECE1, SCN1A, HBEGF, CACNA1G,

CEACAM16, MMP13, ESR1, ALDH5A1, PLAU, SCN8A, CACNA2D1, MMP12

2.6.3.2 Compilation of LDL-associated genes

We obtained well-known lipid metabolism genes from (Zhou et al., 2020). The authors

collected genes from literature and KEGG pathways. The genes include: VAPB, APOE,

SOAT1, LRPAP1, ADH1B, NPC1, PPARG, ANGPTL3, PCSK9, CYP27A1, KPNB1,
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CETP, LPIN3, NCEH1, TNKS, FADS3, LDLRAP1, OSBPL5, FADS1, VDAC1, PLTP,

APOC2, LIPA, LPA, LIPC, SORT1, MYLIP, SCARB1, ABCB11, VDAC3, LRP2, APOB,

APOH, TSPO, VAPA, LIPG, APOA4, APOC3, ALDH2, APOA1, NPC2, LRP1, LDLR,

APOC1, STARD3, FADS2, CD36, ABCG5, ABCG8, STAR, APOA2, ABCA1, VDAC2,

ANGPTL4, SOAT2, CYP7A1, IRF2BP2, LPL, LCAT

2.6.3.3 Compilation of SCZ-associated genes

Since there are lots of genes previously reported to be associated with SCZ, We focused

on genes reported to be associated with SCZ via splicing from literature. The genes are:

IRAK4,CYC1,CHI3L1, FLJ46321,ATXN3,DENND1A, S100A12, ARAF, BICD2, DLG3,

NRG3, DISC1, KCNH2, GRM3, ZNF804A, ERBB4, DRD2, AS3MT, SNX19, ARL6IP4,

APOPT1, CYP2D6.
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CHAPTER 3

Leveraging gene-level prediction as informative covariate in hypothesis weighting

improves power for gene-based rare variant association studies

3.1 Introduction

Rare variant association studies (RVASs) enable the identification of disease-associated

genes with clear functional support (Liu et al., 2014). In RVASs, a large number of hypoth-

esis tests are usually generated from scanning the human genome and one needs corrections

to limit false positives while maximizing power. False discovery rate (FDR) (Benjamini and

Hochberg, 1995; Storey and Tibshirani, 2003) control has become a popular approach for

detecting weak effects by limiting the expected false discovery proportion (FDP). Of the

FDR control procedures, the Benjamini Hochberg (BH) (Benjamini and Hochberg, 1995)

procedure is one of the most commonly used. While BH is nearly optimal when all hy-

potheses are equally likely to be null (Zhang et al., 2019), it suffers from suboptimal power

when tests are heterogeneous (Genovese et al., 2006), which is often the case in modern

applications like RVASs.

Different from the BH procedure, hypothesis-weighting FDR control procedures have

been proposed to incorporate prior information to up-weight and down-weight hypothe-

ses (Roeder and Wasserman, 2009). The idea is that more FDR budget can be allocated

to hypotheses with greater prior probability of being non-null, hence has the potential to

increase detection power (Li et al., 2013; Zhang et al., 2019).

We reason that hypothesis weighting might help improve detection power in RVASs.

Previous research has shown the effectiveness of hypothesis weighting in multiple genetic

applications, like differential expression gene discovery (Ignatiadis et al., 2016); GWAS

(Kichaev et al., 2019; Li et al., 2013; Andreassen et al., 2013; Yurko et al., 2020; Fort-

ney et al., 2015), eQTL discovery (Ignatiadis et al., 2016; Zhang et al., 2019), and trait-
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associated epigenetic marks discovery (Huang et al., 2020). Recently, many hypothesis

weighting methods have been developed, and a detailed comparison of these methods were

reviewed elsewhere (Korthauer et al., 2019; Ignatiadis and Huber, 2017). Among these

methods, independent hypothesis weighting (IHW) (Ignatiadis et al., 2016) have been rec-

ommended due to its powerful, robust, and computational efficient nature (Huang et al.,

2020; Korthauer et al., 2019). In addition, in IHW framework, the relationship between

covariates and p-values is assumed to be not fully known and can be learned as a function

of the covariates from data without overfitting. This enables us to harness prior informa-

tion that does not precisely specify but are informative of the likelihood of hypotheses

being non-null. Leveraging these desired properties, we hypothesize that there might be

opportunities to derive gene-level scores reflecting the prior likelihood of genes’ associa-

tion with traits and using them as covariates in IHW framework to increase detection power

in RVASs.

Genome-wide association studies (GWASs) provide opportunities for us to derive gene-

level scores to facilitate RVASs discovery, as recent findings suggest the convergence of

trait-associated genes from common and rare variants (Singh et al., 2020). To map SNP-

level GWAS signals to gene-level probability of disease association. we first obtain a start-

ing set of genes from methods like iRIGS (Wang et al., 2019) that can classify genes near

GWAS hits to high-confidence genes (HRG) and local background genes (LBG). However,

iRIGS and other similar methods do not provide genome-wide prediction of risk genes. We

tackle this by leveraging the rich collection of gene-level annotations to identify patterns

that are shared among the starting set of genes inferred by iRIGS (i.e. HRG, LBG), and

leverage those patterns to assign scores to all genes based on the similarity of profiles to

these genes.

Here, we propose a three-stage pipeline to improve the power to identify risk genes

from RVASs. First, we identify a small set of training genes by applying iRIGS to classify

genes near GWAS significant loci to HRGs and LBGs. Second, we derive genome-wide
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probability of disease association from training set genes and relevant biological features

using machine-learning models. Specifically, we frame this as a classification problem (i.e.,

classify genes into risk genes versus non-risk genes) to be solved by supervised machine-

learning algorithms like random forest (Breiman, 2001). We validate the prediction scores

by testing for increased burden of SNP-heritability and enrichment with gene lists repeat-

edly implicated in disease among top predicted genes. Finally, we use prediction scores

as covariates to weight published p-values from RVASs through the IHW framework. To

demonstrate this pipeline, we propose to detect genes associated with SCZ from p-values

in a recent RVASs (Singh et al., 2020) using predictions informed from a recent GWAS

(Ripke et al., 2014). As there is significant overlap of rare variant risk between SCZ and

autism spectrum disorders (ASD) (Singh et al., 2020), we also propose to use the same pre-

dictions as covariates to adjust recent published ASD RVAS p-values (Satterstrom et al.,

2020).

3.2 Methods

3.2.1 Method overview

As shown in Fig 3.1, our approach involves three stages. First, we obtained HRGs and

LBGs near significant SCZ GWAS loci through probabilistically ranked genes based on

their strength of genomic evidence and closeness in the network space via iRIGS. These

two sets of genes served as positive and negative instances for the subsequent training.

Second, we constructed features using selected biological annotations and predicted the

SCZ association for all genes using the labeled training set of genes and selected features.

Third, we use the prediction as the informative covariate in a published FDR-based method

IHW to improve gene discovery from RVASs.

3.2.2 Obtain the training set of genes

To facilitate the supervised training, a training set of both ”SCZ-genes” and ”non SCZ-

genes” are needed. We used iRIGS to obtain these genes. All genes within a 2 Mb region
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Figure 3.1: Overview of the workflow
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centered at the SCZ GWAS significant index SNPs are considered to be candidates (Ripke

et al., 2014), the genes with highest iRIGS posterior probability (HRG) from all GWAS

hits are used as ”positive” instances and the genes with posterior probability less than the

median of all candidate genes (LBGs) are used as ”negative” instances.

3.2.3 Feature pre-processing

BRAINSPAN (Miller et al., 2014) is a dataset with RNA sequencing profiling of differ-

ent cortical and subcortical structures across the full course of human brain development.

The dataset includes 524 samples with developmental time points ranging from 5 post-

conceptional weeks (pcw) to over 40 years of age from 26 brain structures. We used the

genes in the dataset as instances (i.e., rows of the feature matrix), and their expression val-

ues measured in RPKM (reads per kilobase of exon model per million mapped reads) for

the different developmental time points and brain structure as columns of the feature matrix

for the training dataset.

DEPICT (Pers et al., 2015) provides a dataset with 14,461 ”reconstituted” gene sets

with a membership probability for each gene in each gene set based on co-regulation of

gene expression and previously annotated gene sets representing a wide spectrum of bio-

logical annotations. We used the genes in the dataset as instances (i.e., rows of the fea-

ture matrix), and their membership probability across the 14,461 reconstituted gene sets as

columns as a feature matrix for the training dataset.

FANTOM5 (Andersson et al., 2014) project used cap analysis of gene expression (CAGE)

technique to measure promoter utilization across 975 human samples. We used the genes in

the dataset as instances, and their CAGE expression TPM values as columns of the feature

matrix for the training dataset.

LAKE (Lake et al., 2018) includes nuclear transcriptomic data for more than 60,000

single cells from human adult visual cortex, frontal cortex, and cerebellum from six dif-

ferent individuals. It is a unique resource that enables us to observe expression signatures
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of different cell types and states to resolve the heterogeneity within tissues. To reduce the

dimension of this dataset, we take an average of all expression in each cell type and state

(with labels provided in the dataset), resulting in a matrix with 61 columns.

3.2.4 Model training and genome-wide prediction of SCZ risk

We seek to prioritize unlabelled genes with feature profiles similar to positive-labeled genes

and different from negative-labeled genes using the random forest classifier. The input

features for the random forest classifiers are: BRAINSPAN, DEPICT, FANTOM5, and

LAKE. We obtained labeled genes as the training set from SCZ GWAS using iRIGS. As

there are usually one HRG and multiple LBGs at each significant locus, the training set

is highly imbalanced. To tackle this, we develop a workflow with 100 iterations, and we

create a random balanced training set by down-sampling the negative-labeled genes in each

iteration. In each iteration, we perform a 3-fold split on each balanced training set, and train

on 2 folds, followed by prediction each time on the third fold (”test” fold). We evaluate the

AUC of the test folds using predicted probabilities and true labels. We then make prediction

of the whole dataset using the learned model and record the predicted score. The practice

of learning from different random balanced training sets allow the prediction to be less

prone to bias of a small set of genes and thus are more robust. Finally, after 100 iterations,

we average the prediction probabilities assigned to each gene from all the iterations. We

used the R package ”randomForest” (Liaw and Wiener, 2002) for the implementation and

the only parameter we set is the number of trees (ntree=3000). We choose to not fine-tune

other parameters to avoid over-fitting.

3.2.5 Application of IHW for hypothesis weighting

IHW is a general method with established type I error control and stability. Intuitively,

individual tests may differ in their statistical properties and a covariate might provide infor-

mation for such properties. For our case of gene-level rare variant association hypotheses,

each gene may differ in their relevance to SCZ risk, and this risk can be indexed by gene-
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level covariates obtained by prediction in the previous step. Then, instead of using a flat

p-value threshold in conventional methods, we can use an adaptive threshold informed by

the covariate: allocate more FDR budget to the hypothesis with a certain covariate value.

To explain the methods, suppose we have m hypotheses to test based on p-values

(p1,. . . ,pm) with covariates X1,. . . ,Xm. Conventional BH-approach use this decision rule:

Reject hypothesis i if pi ≤ t̂, (3.1)

with cutoff t̂ determined at a defined level using only p-values by a multiple testing proce-

dure FWER control or FDR control, such as Bonferroni correction (Bonferroni, 1936) or

BH (Benjamini and Hochberg, 1995) respectively, to protect against spurious discoveries.

Instead of using the conventional approach illustrated in Equation 3.1, we used ”IHW”

(Ignatiadis et al., 2016; Ignatiadis and Huber, 2017), a general and flexible hypothesis

weighting approach unique in that it can learn weights from covariates and p-values without

overfitting (i.e., losing type-I error control) using cross-weighting. In IHW, a decision rule

is:

Reject hypothesis i if pi ≤ t̂Ŵ (X−l
i ) where i ∈ Il, (3.2)

where Il , l = 1, ..,k is a partition of the hypotheses into k folds to avoid overfitting. Ŵ (X−l
i )

are weight functions depending on covariates, with the weight function used for fold l being

learned from p-values and covariates X fron the k−1 folds excluding the fold l. Compare

equation 3.2 and equation 3.1, it is equivalent of using weighted p-values (pi/Ŵ (X−l
i ))

instead of p-values (pi) in multiple hypothesis testing. The genes with large weights yield

smaller weighted p-values, and the associated genes are more likely to be declared sig-

nificant. Here, IHW splits the hypotheses into different strata (selected using the default

mode ”auto”) based on increasing value of the predicted gene-level risk score. Within each

stratum, IHW randomly split them into folds. IHW learns the weights for each stratum

and fold combination to achieve the highest number of discoveries. Details of IHW can be

49



found in published papers (Ignatiadis et al., 2016; Ignatiadis and Huber, 2017).

3.2.6 The SCZ RVAS data

Association p-values for SCZ RVAS were obtained from the Schizophrenia Exome Se-

quencing Meta-analysis (SCHEMA) consortium website https://schema.broadinstitute.org/

results. The data contains the meta-analysis of whole-exomes from 24,248 cases and

97,322 controls from diverse global populations. Three classes of variants are included

in the meta-analysis: PTVs (defined as stop-gained, frameshift, essential splice donor and

acceptor variants), missense variants with MPC pathogenicity score ¿ 3, and MPC 2-3.

PTVs and MPC ¿ 3 variants (class I) were analyzed by a burden test to generate gene-level

p-values; genes with MPC 2-3 variants were aggregated and combined with class I p-

values using a weighted Z-score method, please refer to Singh et al. (2020) for details. We

extracted the meta-analysis p-values (column ”P meta” in the online table) for the analysis.

3.2.7 The ASD RVAS data

Association test results for ASD RVAS were obtained from Table S2 of Satterstrom et al.

(2020). FDR qvalues are transformed to p-values for analysis (code in https://github.com/

yingji15/SCZIHW public/). The data contains the largest exome sequencing study of ASD

to date (n = 35,584 total samples, 11,986 with ASD). Two categories of rare variation,

namely protein-truncating variants (PTVs; i.e., frameshift, stop gained, canonical splice site

disruption) and “probably damaging” missense variants according to PolyPhen-2 (Mis3)

(Adzhubei et al., 2010), in the context of three categories of inheritance pattern: de novo,

inherited, and case-control are included.

3.3 Results

3.3.1 Evaluation of prediction scores

As shown in Fig 3.2, we first evaluated our prediction models using cross-validation and

the model achieved an average area under the receiver–operator curve (AUC) of 0.74, 0.86,
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0.87, and 0.89 from BRAINSPAN, DEPICT, LAKE, FANTOM5 respectively from the

hold-out sets among all iterations. Among the selected features, DEPICT, LAKE and FAN-

TOM5 showed comparable performance in terms of AUC, while BRAINSPAN based pre-

diction showed lower AUC compared to the other three. The AUC values from all features

are much higher than 0.5, suggesting they all contain informative signals about SCZ risk.
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Figure 3.2: Distribution of AUC scores across the predictions from different features.

Since different features may characterize SCZ risk genes from different angles, we

generated an ”ensemble score” as the final gene prediction by averaging the scaled pre-

dictions from all features. Then we performed a systematic empirical evaluation based on

the enrichment of SNP-based heritability by stratified LD score regression (LDSC) (Bulik-

Sullivan et al., 2015; Finucane et al., 2015) according to the rankings of the ensemble

score. As shown in Fig 3.3, we found that the top ranked genes are significantly enriched

for SNP-based heritability through applying LDSC on a most recent SCZ GWAS (Ripke

et al., 2020). While there is a small ”bump” at around genes rank 10,000, the general trend

of more pronounced heritability enrichment is observed for more prioritized genes.
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Figure 3.3: Enrichment of schizophrenia-SNP heritability with the number of ranked genes
(calculated using LDSC). The most recent SCZ GWAS published in 2020 (Satterstrom
et al., 2020) was used in the analysis.

We further evaluated the ensemble score based gene ranking using enrichment analyses

with gene lists repeatedly implicated in SCZ (Wang et al., 2019). As shown in Table 3.1, we

evaluated the top 1000 predicted genes by ensemble score versus the rest of the genome for

enrichment using one-sided Fisher’s exact test. We found strong enrichment in the target

genes of FMRP (p = 6.10×10−249), which is an RNA-binding protein that regulates trans-

lation and needed at synapses for glutamate receptor signaling and neurogenesis (Purcell

et al., 2014; Callan and Zarnescu, 2011). We also found top predicted genes to be signifi-

cantly enriched in synaptic genes, including postsynaptic density (PSD, p= 5.82×10−126),

protein cytoskeleton-associated scaffold protein (ARC, p = 2.19× 10−8), NMDAR net-

work (p = 3.54× 10−24), mGluR5 (p = 2× 10−5). We also observed significant enrich-

ment in RFBOX1 (p = 2.26×10−140) and miR-137 targets (p = 2.19×10−22). A detailed

description of the gene lists is in Table 3.4.
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Table 3.1: Enrichment of top 1000 predicted
genes in gene sets implicated in SCZ.

Gene seta ORb p-valuec

FMRP-Darnel (832) 14.23 6.10×10−249

RBFOX1 (556) 11.14 2.2×10−140

PSD (1444) 5.15 5.82×10−126

ECG (998) 5.38 2.28×10−99

PRP (336) 5.06 4.53×10−34

PRAZ (209) 5.87 6.90×10−27

NMDAR (59) 18.17 3.54×10−24

miR-137 targets (281) 4.32 2.19×10−22

GABA (18) 46.06 1.07×10−11

SYV (107) 4.32 7.38×10−09

ARC (25) 13.82 2.19×10−08

CRF (56) 5.54 6.81×10−07

mGluR5 (37) 6.28 2.00×10−05

CCS (73) 3.72 1.06×10−04

a The numbers of genes in the corresponding gene
sets are in parentheses. The source and short de-
scription of these gene sets are included in Table
S1.
b Odds ratio from one-sided Fisher’s exact test
c p-value from one-sided Fisher’s exact test after
Bonferroni correction.
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3.3.2 Leverage prediction as covariates to identify SCZ risk genes

Having evaluated our predicted scores using different evidence, we sought to examine the

utility of leveraging the predictions for the identification of risk genes from RVAS results.

Here, we extracted the published association p-values from SCZ RVAS (Singh et al., 2020)

and investigated the ensemble scores as covariates to conduct hypothesis weighting in IHW.

As an exploratory analysis, we first checked whether the ensemble score as a covariate

is informative about power under the alternative. We started with SCZ RVAS results by

partitioning all hypotheses into three equally sized groups: ”low score” group with the

ensemble score less than its 33% quantile, ”medium score” group with the ensemble score

between its 33% and 67% quantile, and ”high score” group with the ensemble score larger

than its 67% quantile. As shown in Fig 3.4, we observe a successive increase of hypotheses

with p-values near zero for increasing scores indicating that the proportion of non-null

effects varies across different groups.
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Figure 3.4: Histograms of SCHEMA p-values after splitting the hypotheses into three
groups by the prediction score.

Since the ensemble scores are informative of the prior probability of each individual

test, to maximize power for discovery, all gene-level tests should not be treated exchange-

ably. Thus, we used the ensemble scores as covariates to adjust RVAS gene-level p-values

under different target FDR levels (α=0.05, 0.1, 0.2, 0.3) using IHW. The range of α is

chosen to reflect the FDR control level commonly used in practice. We also included the

prediction scores from individual feature sets (i.e., BRAINSPAN, DEPICT, LAKE, FAN-
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TOM5) as covariates for comparison purpose. As shown in Table 3.2, when using the

ensemble score as the covariate to adjust SCZ p-values, although we did not find an in-

crease of significant genes when α = 0.05 potentially due to insufficient power, we did

observe 22%, 28% and 109% increase of significant genes for higher target FDR levels at

α = 0.1,0.2,0.3 respectively. For the single feature based scores, we observe more im-

provement from DEPICT and LAKE data, and less improvement from BRAINSPAN and

FANTOM5.

One might doubt whether the power gain is just by chance. To check this, we randomly

shuffled the ensemble score (i.e., ”IHW - shuf ensemble” in Table), and used the shuffled

score as the covariate for adjustment. The number of rejections is similar to that using BH

approach, providing evidence that a mis-specified covariate would not cause much power

increase or decrease. This result is line with the previous findings that hypothesis weighting

can lead to power improvements with informative weights and cause little power lost with

uninformative weights (Roeder and Wasserman, 2009; Roeder et al., 2007; Andersson et al.,

2014).

Table 3.2: Number of discoveries from SCZ
dataset, by different methods and covariatesa

methodb 0.05c 0.1 0.2 0.3
IHW - BRAINSPAN 29 34 51 63
IHW - FANTOM5 30 37 54 64

IHW - DEPICT 30 36 57 93
IHW - LAKE 30 35 55 97

IHW - ensemble 30 38 59 134
IHW - shuf ensemble 31 31 48 57

BH 31 33 46 64
a at a range of target FDR levels α from 0.05 to
0.3.
b Methods used for p-value adjustment.
c α = 0.05.

Using the expanded set of significant genes identified, we next sought biological in-

sights. We applied gene ontology (GO) enrichment analysis to the 84 genes that are in-
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significant using BH-adjustment but significant after IHW-adjustment at FDR level α =

0.3. As shown in Fig 3.5, we discovered an enrichment of biological processes like synapse

assembly (OR=5.90), neuron projection guidance (OR=5.84) , consistent with previous

knowledge on SCZ (Egbujo et al., 2016). We also evaluated the 64 genes that are sig-

nificant under the conventional BH-adjustment at α = 0.3 for GO term enrichment and

observed none of the GO terms are significant at FDR=0.1 level. The lack of GO enrich-

ment in BH-adjustment identified genes might be caused by a lack of power or specificity

of the original results.
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Figure 3.5: SCZ gene ontology(GO) enrichment analysis results for top biological pro-
cesses with FDR≤ 0.1.

Then we further investigated genes not significant using BH-adjustment but ”boosted”

to significance after adjustment using the ensemble score in IHW (referred to as IHW-

adjustment). The FDR level α = 0.1 is chosen since that’s the more stringent level at

which the adjustment leads to improvements. Since the RVAS study we used is compre-

hensive and included the most available RVAS studies of moderate size, we were not able to

conduct replication studies. Instead, we looked for literature support for genes ”boosted”.

CACNA2D1 is one example, not significant under traditional BH-adjustment (p = 0.23)

but significant after IHW-adjustment (p= 0.065). A deletion in CACNA2D1 have been ob-

served in one Japanese SCZ patient from a independent study (Malhotra and Sebat, 2012).

There are also support for CACNA2D1 in other psychiatric disorders that are correlated

with SCZ like epilepsy and intellectual disability (Vergult et al., 2015), it has been identi-
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fied as a potential drug target in MDD from GWAS (Gaspar et al., 2019). Another example

is FABP7, not significant under traditional BH-adjustment (p = 0.21) but significant after

IHW-adjustment (p = 0.065) respectively. There were non-synonymous polymorphisms

identified from SCZ and ASD in FABP7 (Shimamoto et al., 2014). FYN not significant un-

der traditional BH-adjustment (p= 0.17) but significant after IHW-adjustment (p= 0.045).

Previous study has identified an excess of disruptive and damaging variants in FYN among

SCZ patients (Tsavou and Curtis, 2019). For all these genes, while previous studies found

the numbers of variants involved are too small to draw firm conclusions, adding an en-

semble score as covariates provides extra confidence that these genes might increase SCZ

risk.

3.3.3 Leverage prediction as covariates to identify ASD risk genes

As another application, we sought to evaluate whether our ensemble score can serve as co-

variates for the detection of risk genes from RVAS in ASD. While the prediction scores are

for SCZ, multiple lines of evidence have suggested that SCZ and ASD partially share un-

derlying genetic mechanisms: SCZ and ASD are genetically correlated (Lee et al., 2013);

up to 30% of individuals diagnosed with ASD during childhood will develop SCZ in adult-

hood (Burbach and van der Zwaag, 2009); CNVs and rare alleles show overlap between

ASD and SCZ in synaptic related genes (Walsh et al., 2008; Szatmari et al., 2007). Thus,

we used the same SCZ-risk scores as covariates to adjust p-values from the largest RVAS

of ASD (Satterstrom et al., 2020) using IHW. Exploratory plots in Fig 3.6 suggested that

our ensemble score is also informative in stratifying ASD test results.

As shown in Table 3.3, when using the ensemble score as covariate, we observe 47%,

77%, 125% and 230% increase of significant genes for α = 0.05,0.1,0.2,0.3 respectively,

showing a similar trend of increased association detection after adjustment as in SCZ. For

the single feature based scores, we observe more improvement from BRAINSPAN, DE-

PICT and LAKE data, and less improvement from FANTOM5. These findings are consis-
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tent with the overlapping genetic basis in SCZ and ASD.
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Figure 3.6: Histograms of ASD p-values after splitting the hypotheses into three groups by
the prediction score.

Table 3.3: Number of discoveries from ASD
dataset, by different methods and covariatesa

methodb 0.05c 0.1 0.2 0.3
IHW - BRAINSPAN 89 142 294 477
IHW - FANTOM5 98 119 207 363

IHW - DEPICT 107 158 329 495
IHW - single LAKE 105 149 287 439

IHW - avg scaled 112 176 323 658
IHW - shuffled avg 79 95 151 201

BH 76 99 143 199
a At a range of target FDR levels α from 0.05to
0.3.
b Methods used forp-value adjustment.
c α = 0.05.

Similar to previous analysis on SCZ, using the expanded set of significant genes identi-

fied, we next sought biological insights. We applied gene ontology enrichment analysis

to the 488 genes that are insignificant using BH-adjustment but significant after IHW-

adjustment at FDR level α = 0.3. As shown in Fig 3.7, we discovered the enrichment

of biological processes like cell part morphogenesis (OR=3.56), neuron projection devel-

opment (OR=3.29), neuron differentiation (OR=2.86), consistent with previous knowledge

on ASD (Gilbert and Man, 2017).
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Figure 3.7: ASD gene ontology(GO) enrichement analysis results for top 10 biological
processes with FDR≤ 0.05.

Then we further investigated genes not significant using BH-adjustment but ”boosted”

to significance after adjustment using the ensemble score in IHW (referred to as IHW-

adjustment). The FDR level α = 0.1 is chosen and 84 genes are ”boosted” by IHW-

adjustment. Since the RVAS study we used is comprehensive and included the most

available RVAS studies of moderate size, we were not able to conduct replication stud-

ies. Instead, we looked for literature support for genes ”boosted”. COBL is not significant

under traditional BH-adjustment (p= 0.37) but significant after IHW-adjustment (p=0.095).

Previous studies have shown deletions of COBL cause defects in neuronal cytoskeleton

morphogenesis in model vertebrates (Ahuja et al., 2007). It has also been supported by

case-unique CNVs in autism case-control studies (Griswold et al., 2012). GABRA1 is not

significant under traditional BH-adjustment (p= 0.34) but significant after IHW-adjustment

(p=0.086). Previous studies have found significant reductions of GABRA1 expression in

several brain regions of subjects with ASD (Fatemi et al., 2009).

3.4 Discussion

In this study, we explored the use of IHW in analyzing RVAS results with gene-level pre-

dicted scores as covariates, and investigated the biology of SCZ and ASD in the process.

The covariates were the predicted gene-level susceptibility to SCZ obtained through super-

vised learning using biological features BRAINSPAN, FANTOM5, DEPICT and LAKE
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as inputs. An ensemble score which is the average of all single-feature-based predictions

is also derived to capture support from all features. Applications to SCZ and ASD gene-

level RVASs p-values using the ensemble score lead to more significant genes than us-

ing any single feature, suggesting the benefits of integrating diverse biological evidence.

This is consistent with previous findings that integrating multiomics covariates improves

power in identifying SNPs from GWAS analysis and eGenes from eQTL analysis (Yurko

et al., 2020). When using the ensemble score as covariate, we observed 22%, 28% and

109% increase of significant genes for target FDR levels at α = 0.1,0.2,0.3 respectively

for SCZ RVAS analysis; 47%, 77%, 125% and 230% increase of significant genes for

α = 0.05,0.1,0.2,0.3 respectively for ASD RVAS analysis.

Previous studies have shown the hypothesis weighting adjustment mostly has an impact

on the genes with ”borderline significance”. Genes with very small p-values already have

high power, genes with very large p-values have extremely low power and benefit little by

weighting. Therefore, the weighting approach is most useful for genes with a marginal

effect (Roeder and Wasserman, 2009). Here for SCZ, we observe more improvement when

FDR > 0.1, the reason of which might be that there are more genes at the borderline when

FDR> 0.1 yet very few genes are at the borderline when FDR=0.05. On the other hand,

for ASD, we observe improvements across different FDR levels, suggesting there are more

borderline genes at each FDR level. This might come from the larger power from rare-

variant gene-level tests in ASD.

There are a few limitations to our pipeline. First, the training set in the prediction

scoring process is from genes inferred by iRIGS near GWAS hits, there might be false

positives and false negatives in this set. Therefore, the candidate genes we identified still

require thorough experimentation. Second, as with most supervised learning methods, our

pipeline depends on existing patterns of labelled genes and are less powerful to identify

disease genes with unexpected characteristics.

Opportunities for future expansion of this strategy include exploring more features to
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include and applying better approaches to integrate signals from multiple features. Cur-

rently, we chose features from gene expression and biological processes in the prediction.

There are other data resources that could potentially be included as features, such as pro-

teomics, epigenomics. As IHW takes a single covariate, we took an average of the single

feature based predictions to derive an ensemble score for hypothesis weighting. We ex-

plored other methods that could include multiple dimensions of covariates like AdaFDR

(Zhang et al., 2019) and AdaPT (Lei and Fithian, 2016). However, our application of

AdaFDR did not provide improvements in the genes identified and tend to be less stable;

AdaPT takes many iterations of optimization and is computationally expensive as it uses

a p-value masking procedure. Therefore, we chose IHW in this analysis. There might

be room for further improvement in the way of integrating multiple covariates, which are

worthy of future explorations.

3.5 Conclusions

In this paper, we present a three-stage pipeline to identify risk genes from both GWASs

and RVASs: we first obtain training genes close to GWAS significant loci via iRIGS, then

build machine-learning prediction models to predict each gene’s probability to associate

with SCZ using training genes and biological features; finally we use the prediction scores

as informative covariates for hypothesis weighting to improve gene detection power from

RVASs using IHW. We applied the pipeline to SCZ and ASD RVASs and observed sizeable

improvements on the number of genes discovered. As an increasing volume of contextual

information are being generated, we believe that our approach that leverages prediction

as covariates in hypothesis weighting provides a valuable contribution to boost statistical

significance in RVASs. This approach requires little investment and can be easily applied

to the analysis of existing and future studies beyond RVASs.
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3.6 Availability of data and materials

The original data used is documented on https://github.com/yingji15/SCZIHW public The

processed datasets during the current study will be available in Zenodo. The code for per-

forming these analysis is freely available at https://github.com/yingji15/SCZIHW public

3.7 Abbreviations

RVAS: rare variant association study

GWAS: genome-wide associations study

SCZ: schizophrenia

ASD: autism spectrum disorder

FDR: false discovery rate

AUC: area under the receiver-operating characteristic (ROC) curve

3.8 Supplementary Materials

Table 3.4: Gene sets implicated in SCZ

Gene set Short description
FMRP-Darnel (Darnell et al., 2011) Fragile X mental retardation (FMRP) protein tar-

gets
RBFOX1 (Weyn-Vanhentenryck
et al., 2014)

targets of RNA binding protein, fox-1 homolog 1

PSD (Bayés et al., 2011) post synaptic genes
ECG (Samocha et al., 2014) evolutionary constrained genes
PRP (Pirooznia et al., 2012) genes related to presynaptic proteins
PRAZ (Pirooznia et al., 2012) genes in the presynaptic active zone
NMDAR (Purcell et al., 2014) components of the N-methyl-D-aspartate

(NMDA) network
miR-137 targets (Ripke et al., 2011) miRNA-137 targets
GABA (Pocklington et al., 2015) components of the GABA receptor complex
SYV (Pirooznia et al., 2012) synaptic vesicles
ARC neuronal activity-regulated cytoskeleton-

associated proteins
CRF (Shipra et al., 2006) chromatin remodeling factors
mGluR5 (Walsh et al., 2008) components of the metabotropic glutamate recep-

tor 5 complex
CCS (Müller et al., 2010) calcium channel and signaling genes
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CHAPTER 4

Incorporating European GWAS findings improves polygenic risk prediction

accuracy of breast cancer among East Asians 1

4.1 Introduction

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer

death in females worldwide (Torre et al., 2015). Although the rate of getting breast cancer

has stabilized in some high-income countries, it continues to rise in most Asian and other

low and middle-income countries, stressing the need for establishing early risk prediction

and management strategies (Denny et al., 2017). Genetic risk factors play an important

role in breast cancer predisposition (Nathanson et al., 2001). Large scale genome-wide

association studies (GWASs) have identified more than 200 loci to be associated with risk

of breast cancer (Cai et al., 2014; Michailidou et al., 2015, 2017; Shu et al., 2020; Zheng

et al., 2009, 2013). Polygenic risk score (PRS), a weighted aggregation of risk allele counts

derived from GWASs, is emerging as a useful tool for breast cancer risk stratification in

multiple populations, including Europeans (EURs) and East Asians (EASs) (Khera et al.,

2018; Mavaddat et al., 2019; Wen et al., 2016).

The small sample size in GWASs of non-EUR samples and the differences of genetic

architecture between EUR and other populations make it challenging to develop powerful

and well-calibrated PRSs across diverse populations. To date, large-scale breast cancer

GWASs were conducted by the Breast Cancer Association Consortium (BCAC), with sum-

mary statistics publicly available for 123,000 (Michailidou et al., 2015) and 220,000 EUR

samples (Michailidou et al., 2017). The largest non-EUR GWAS was conducted by the

Asia Breast Cancer Consortium (ABCC), which included more than 40,000 EAS samples

(Cai et al., 2014; Shu et al., 2020; Zheng et al., 2009, 2013). From study of 17 anthropomet-

ric and blood-panel traits, applying PRSs derived from EUR GWASs directly to non-EUR

1This chapter has been previously published in Genetic Epidemiology (Ji et al., 2021)
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samples showed poor transferability in general, with approximately 37%, 50%, and 78%

lower prediction R2 in South Asians, EASs, and Africans, respectively, compared to that

in EUR populations (Martin et al., 2019). Therefore, developing polygenic risk prediction

models for diverse populations is imperative to translate the GWAS findings to clinical use.

This calls for efforts to improve the performance of PRS in non-EUR samples to mitigate

the racial disparity.

Given that non-EUR GWASs are usually of insufficient sample size, and that there is

extensive genetic sharing across populations (Consortium et al., 2015), there are several re-

cent studies that sought to incorporate a large EUR GWAS and a smaller non-EUR GWAS

to improve risk prediction in non-EUR populations. Specifically, Coram et al. (2015) pro-

posed a cross-population best linear unbiased prediction method based on multi-component

linear mixed models, where SNPs were placed in classes defined by GWAS evidence from

different ancestries and allelic effects computed in a population-specific fashion (Coram

et al., 2015, 2017); this method requires individual-level training data in the target pop-

ulation. When only GWAS summary statistics are available, Márquez-Luna et al. (2017)

constructed a trans-ethnic PRS from a weighted linear combination of PRSs from two pop-

ulations (Márquez-Luna et al., 2017), which could improve the prediction accuracy for

type II diabetes in Hispanic/Latinos and South Asians. Grinde et al. (2019) found that

this approach did not perform well for several anthropometric, blood count, and blood

pressure traits in their Hispanic/Latino cohorts (Grinde et al., 2019). Instead, they pro-

posed to construct PRSs by selecting single-nucleotide polymorphisms (SNPs) and their

corresponding weights based on different combinations of EUR GWASs, Hispanic/Latino

GWASs, or meta-analyses of both. They found that PRSs using an EUR GWAS for SNP

selection and a Hispanic/Latino GWAS or meta-analysis for SNP weights performed the

best in their empirical studies. These findings suggested that PRS performances could dif-

fer by population- and disease-specific genetic architectures. For breast cancer, EUR-based

PRSs were reported to perform equally well in Hispanic/Latinos as in EURs but poorly in
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African Americans (Allman et al., 2015). The performance of EUR- and EAS-based PRSs

in EASs remains unclear. This motivates us to evaluate breast cancer PRS predictions in

EASs and develop new strategies to construct PRSs targeting non-EUR populations.

Differential linkage disequilibrium (LD) and minor allele frequency (MAF) are major

contributors to the poor transferability of PRSs among populations (Wang et al., 2020b).

In a PRS of the form ∑w jX j, where X j and w j stand for the standardized genotype and

weight for SNP j, respectively, the ideal weight satisfies w2
j = h2

j , where h2
j is the disease

heritability directly contributed by SNP j (Speed and Balding, 2019). Because the disease

heritability contributed by a SNP varies according to local LD (Gazal et al., 2017; Speed

et al., 2017), explicit incorporation of EUR LD information can improve prediction accu-

racy for EURs (Hu et al., 2017; Marquez-Luna et al., 2020; Vilhjálmsson et al., 2015). In

addition, SNPs can serve as better proxies for the underlying “true effects” in populations

in which they have high LD scores compared to populations in which they have low LD

scores, where the LD score of a SNP is the sum of LD r2 measured between this SNP and

all other SNPs (Bulik-Sullivan et al., 2015). MAF has been used as an indication of the

strength of natural selection, thus the differences in strengths of selection between ances-

tries might have an impact on PRSs (Wang et al., 2020b). This motivates us to examine

whether modeling the LD and MAF differences between EURs and EASs could improve

effect size estimation and genetic risk prediction in EAS populations.

In this paper, we are primarily interested in 1) evaluating the transferability of EUR

GWAS data to breast cancer risk prediction in EASs, 2) improving risk predication for

breast cancer in EASs, and 3) exploring the effects of LD and MAF differences between

EUR and EAS ethnicities in PRS construction. We propose a rescaled meta-analysis frame-

work that upweights EAS signals over EUR signals, yielding effect size estimates closer

to the true effect sizes in EASs while taking advantage of the large sample sizes of EUR

GWASs. We constructed PRSs using summary statistics from the rescaled meta-analysis of

EUR and EAS GWAS data and then evaluated their performances in an independent EAS

65



validation dataset. Our PRS outperforms PRSs derived from the EUR or EAS GWAS alone

as well as the conventional meta-analysis of EAS and EUR GWASs. The EUR and EAS

GWASs used in the analysis are from the BCAC and ABCC, respectively.

4.2 Materials and methods

4.2.1 GWAS training data in samples of European ancestry

Two large, publicly available summary statistics datasets based on European ancestry were

used in this study. The data were from the Breast Cancer Association Consortium (BCAC)

(details see S1 Table). EUR 2015 (Michailidou et al., 2015) includes two subsets, GWAS

(N = 32,498) and COGS (N = 89,677). EUR 2017 (Michailidou et al., 2017) is the largest

available GWAS study of breast cancer in European ancestry population. This study con-

sisted of three subsets, GWAS, COGS, and OncoArray (N = 106,776).

4.2.2 GWAS training data in samples of Asian ancestry

The GWASs in samples of East Asian ancestry were from the Asian Breast Cancer Con-

sortium (ABCC), which includes 14,958 breast cancer cases and 15,843 controls of Asian

ancestry (Cai et al., 2014; Zheng et al., 2009, 2013). Samples were from studies conducted

in mainland China, South Korea, Japan, Thailand, Malaysia, Singapore, Canada, U.S.,

Hong Kong, Taiwan and other countries and regions. Details are in S1 Table. We used the

meta-analyzed summary statistics data from the study.

4.2.3 Validation data of East Asian ancestry

The validation set of EAS ancestry is from the Shanghai breast cancer genetic study, includ-

ing 1794 cases and 2059 controls. Samples were all genotyped on MEGA chip (Illumina),

with 80k custom Asian content selected to improve the coverage of low-frequency SNPs

in Asian populations. Data were imputed using the Phase 3 release of the 1000 Genomes

Project as reference.
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4.2.4 Meta-analysis of EUR and EAS

Let βEAS, j and VEAS, j be the expectation and its variance of SNP j in EAS GWAS. The

corresponding estimates in EUR are βEUR, j and VEUR, j. In conventional meta-analysis, we

have

β̂ =
winv EAS, jβEAS, j +winv EUR, jβEUR, j

winv EAS, j +winv EUR, j

where winv EAS, j =
1

VEAS, j
and winv EUR, j =

1
VEUR, j

are the inverse-variance weights for EAS

and EUR, respectively. As our goal is to obtain weights to construct PRS for EAS, we

multiply a scaling factor (denoted as α , α > 1) for EAS to the inverse variance weight to

obtain a rescaled estimate

β̂ =
α×winv EAS, jβEAS, j +winv EUR, jβEUR, j

α×winv EAS, j +winv EUR, j

with variance

V̂ = [
α×winv EAS, j

α×winv EAS, j +winv EUR, j
]2VEAS, j +[

winv EUR, j

α×winv EAS, j +winv EUR, j
]2VEUR, j

To select the scaling factor, we tried a grid of α = 1,2,3,4,5 to derive the resulting

summary statistics. Then we selected the scale factor to use along with p-value threshold

that achieved a high prediction accuracy by cross-validation in the EAS validation set.

4.2.5 “P+T”

The P+T method refers to the calculation of PRS using informed LD-pruning and p-value

thresholding. In this study, we use the implementation of the P+T method in the software

package PRSice-2 (Euesden et al., 2015) with the default threshold of r2 = 0.2 for clumping

correlated markers and clumping windows of 250 kb. We examined varying strengths of LD

among SNPs by repeating the procedures and changing threshold for clumping correlated

markers (r2 = 0.1,0.2,0.4,0.6,0.8) and the sizes of clumping windows (250 kb, 500 kb),

and found results to be similar. For any pair of SNPs that have a physical distance smaller
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than the clumping window or r2 greater than the selected threshold, the less significant SNP

is removed. PRS is computed by summing risk alleles weighted by effect sizes derived

from input summary statistics. The p-value threshold are selected using validation data to

optimize prediction accuracy. We constructed PRS for EAS using selected SNPs and effect

size estimates PRS = ∑
J
j=1 wEAS, jx j, which wEAS, j is the weight for the jth SNP.

4.2.6 LDpred

LDpred is a method that uses the GWAS summary statistics and LD information from the

external LD reference sample to infer the posterior mean effect size of each SNP, con-

ditioning on the SNP effect estimates of other correlated SNPs. This method assumes a

point-normal prior on the distribution of SNP effects such that only a fraction of SNPs

have non-zero estimated effects. These fractions of causal SNPs (denoted as f ) were used

in the validation set: 1 (i.e., all SNPs), 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001, with an LD

radius of 400 (i.e., M/3000, M is the number of SNPs, around 1.2 million Hapmap SNPs

is included in the current analysis) to obtain local LD information, as suggested by the

authors.

4.2.7 Assessment of PRSs

Our analysis used genotypes and phenotypes in independent validation data of East Asian

ancestry from training GWAS. We reported area under the ROC curve (AUC) in a logistic

regression model using the disease as outcome. When using a model with only PRS as

the predictor, we report the in-sample fit using all individuals in the validation set. When

using models with PRS, age and first 2 genotype PCs, we use the 10-fold cross-validation

procedure. To compare AUCs from different training GWAS data, we conducted one-sided

Delong’s test for paired AUC curves using “roc.test” implemented in R package pROC.

We also include average Nagelkerke’s pseudo R2 liability-scale pseudo R2 for the mod-

els (Lee et al., 2012) and the likelihood ratio test p-value. Nested models are considered to

provide performance estimates of PRSs: the full model (PRS + covariates including age and
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first two PCs of genotype) and the reduced model (covariates only). Nagelkelke’s pseudo

R2 was calculated comparing the full model with the reduced model with the covariates

alone, thus yielding an estimate of how well the variable (PRS here) explains the data. R

packages “rcompanion” (see Web Resources) was used in the analysis. Since Nagelkelke’s

R2 suffers from bias when case/control proportion is different, we included liability-scale

R2 that accounted for an ascertained case/control ratio (Lee et al., 2012).

To assess the relationship of PRS with breast cancer case/control status, individuals in

the validation set were binned into 10 deciles according to the PRS, and the percentage of

cases within each bin was determined. We calculated the odds ratio (OR) comparing top

10% of the individuals with the remaining 90% of the samples as the reference group, as

well as OR comparing top 10% of individuals with individuals in the 40th-60th percentiles.

4.2.8 Data Availability Statement

Access to the ABCC data could be requested by submission of an inquiry to Dr. Wei Zheng

(wei.zheng@vanderbilt.edu). Request of access to the BCAC data could be submitted di-

rectly to BCAC (http://bcac.ccge.medschl.cam.ac.uk/).

4.2.9 Web Resources

LD score: https://data.broadinstitute.org/alkesgroup/LDSCORE/

PRSice2 package (for P+T): https://www.prsice.info/

Rcompanion package (for pseudo-R2):

https://cran.rproject.org/web/packages/rcompanion/index.html

2015 EUR and 2017 EUR GWAS summary statistics: http://bcac.ccge.medschl.cam.ac.uk/

bcacdata/oncoarray/gwas-icogs-and-oncoarray-summary-results/

Liability-adjusted R2 implementation: adapted from https://github.com/armartin/pgc scz

asia/blob/master/eur eas prs.R
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4.3 Results

4.3.1 Trade-off between training GWAS sample size and matched genetic ancestry

in PRS prediction in EASs

We first constructed PRSs using SNP-level effect sizes from single EUR or EAS GWASs

and evaluated their performance in an independent EAS validation dataset. To assess the

impact of sample size on PRS performance, we used EUR GWAS from the BCAC pub-

lished in 2015 (62,533 cases and 60,976 controls) (Michailidou et al., 2015) and EAS

GWAS from the ABCC (14,958 cases and 15,843 controls) (Cai et al., 2014; Zheng et al.,

2009, 2013) for PRS construction; we used an earlier, smaller EUR GWAS rather than the

most recent, much larger GWAS (Michailidou et al., 2017) from the BCAC to illustrate

our strategy of combing EAS and EUR data to avoid the EAS data being overwhelmed by

the EUR data. For each training GWAS dataset, we derived predictors based on the “P+T”

method (Materials and methods) and chose parameters that maximize prediction accuracy

through cross-validation in an independent EAS validation dataset of 3,853 subjects (1,794

cases and 2,059 controls) (MEGA Shanghai; see Materials and methods and Table 4.1).

Table 4.1: Studies contributing to the current analysis (Shu et al., 2020)

Study Cases Controls Sub-total Genotyping platform
SBCGS (EAS) 1563 2396 3959 Illumina HumanExome-12v1 A Beadchip
SBCGS (EAS) 2511 2135 4646 Affymetrix GenomeWide Human SNP Array 6.0

HCES-Br (EAS) 274 273 547 Illumina Multi-Ethnic Genotyping Array
KPOP (EAS) 963 921 1884 Illumina Multi-Ethnic Genotyping Array
BBJ1 (EAS) 2642 2099 4741 Illumina OmniExpress BeadChip

SeBCS (EAS) 2246 2052 4298 Affymetrix Genome-Wide Human SNP Array 6.0
BCAC iCOGS (EAS) 4759 5967 10716 Illumina iSelect Genotyping Array
BCAC GWAS (EUR) 14910 17588 32498 Illumina 370K/550K/610K/670K/1.2M, Affymetrix 5.0/6.0
BCAC iCOGS (EUR) 46785 42892 89677 Illumina iSelect Genotyping Array

SBCGS (EAS validation) 1794 2059 3853 Illumina Multi-Ethnic Genotyping Array

We reported area under the receiver operating characteristics curve (AUC) of the PRSs

along with their p-value threshold and the number of SNPs included in Fig 4.1 and Ta-

ble 4.2. We found that a single individual sample in the EAS training dataset was substan-

tially more informative about predicting breast cancer risk in the EAS validation dataset

compared to that in the EUR training datasets. The best PRS derived from the EAS GWAS
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yielded an AUC of 0.5782. The best PRS derived from the EUR GWAS, which is ∼ 4

times the sample size of the EAS GWAS, yielded a comparable AUC of 0.5809 in the EAS

validation set. These findings are consistent across the different p-value thresholds used

and the numbers of SNPs included in the PRSs (Fig 4.1), demonstrating the trade-off be-

tween higher prediction accuracy conferred by the larger EUR sample size and the matched

EAS ancestry. Similar findings for type II diabetes in Latinos have been reported before

(Márquez-Luna et al., 2017).

Table 4.2: Prediction AUC, Nagelkerke’s R2 and liability adjusted R2 in the EAS
validation set a

Modelb pc NSNPs
d AUCe R2

Nagelkelke
f R2

ad j
g p over reducedh

EAS 5×10−6 44 0.5782 0.05 0.02 9.64×10−29

EUR 5×10−8 107 0.5809 0.05 0.02 1.99×10−28

META FE 1×10−5 257 0.6008 0.06 0.03 1.33×10−38

META 2EAS 5×10−6 190 0.6049 0.07 0.03 1.30×10−40

META 3EAS 1×10−5 193 0.6059 0.07 0.03 1.08×10−40

ADD3 NA 265 0.6096 0.07 0.03 7.70×10−43

a We reported AUC, Nagelkerke’s R2 and liability adjusted R2 for each of the PRSs
in the EAS validation dataset (adjusted for age and first 2 principal components of
genotype);
b Models that PRSs are based on: EAS: EAS GWAS derived PRS; EUR:
EUR GWAS derived PRS; META FE: conventional fixed-effect meta-analysis;
META 2EAS: rescaled meta-analysis that up-weights the EAS summary statistics
by a factor of two; META 3EAS: rescaled meta-analysis that up-weights the EAS
summary statistics by a factor of three; ADD3: summation of the three best PRSs
within each LD category;
c p-value cutoff for including SNPs in model;
d Number of SNPs in model;
e Area under ROC curve;
f Nagelkerke’s R2 of a full model;
g Liability adjusted Nagelkerke’s R2 that accounted for case/control ratio;
h p-value from likelihood ratio test compare full model (PRS, covariates including
age and first 2 principal components of genotype) with a reduced model (a model
with covariates age and first 2 principal components of genotype only);

To explore whether incorporating GWASs from both the EUR and EAS populations

can boost prediction performance, we performed a meta-analysis of the EUR and EAS
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Figure 4.1: The AUC of PRSs derived from the EASEUR GWASs alone and meta-analysis
of both. PRSs are derived from EAS, EUR GWASs and fixed effect meta-analysis of the
EAS and EUR (denoted as META FE). PRSs are evaluated in an independent EAS valida-
tion dataset for predicting breast cancer risk. Each PRS was plotted against the (A) p-value
threshold and (B) number of SNPs included. The corresponding numerical results were
reported in Table 4.3.

GWASs and used the resulting summary statistics to derive PRSs. We obtained an AUC

of 0.6008 in the validation EAS dataset, which was higher than any PRS derived from the

EAS or EUR GWASs alone. These results demonstrated that combining information from

a higher-powered EUR GWAS and ancestry matched EAS GWAS helped improve breast

cancer risk predictions in EASs, which was consistent with previous reports for other traits

in EASs (Lam et al., 2019a) and Hispanic/Latinos (Grinde et al., 2019).
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Table 4.3: Odds ratio (OR) comparing those with high
PRS (10%) with the middle (40%-60%) of the popu-
lation a

Modelb ORc OR (95% CI)d p-valuee

EAS 2.23 1.82 - 2.98 1.90×10−12

EUR 1.68 1.32 - 2.14 1.30×10−5

META FE 2.41 1.88 - 3.09 3.40×10−13

META 2EAS 2.36 1.84 - 3.02 8.36×10−13

META 3EAS 2.52 1.97 - 3.24 1.42×10−14

ADD3 2.60 2.03 - 3.34 2.10×10−15

a We reported ORs of breast cancer for the top 10%
PRS relative to 40%-60% of population (adjusted for
age and first 2 principal components of genotype) ;
b Models that PRSs are based on: EAS: EAS
GWAS derived PRS; EUR: EUR GWAS derived PRS;
META FE: conventional fixed-effect meta-analysis;
META 2EAS: rescaled meta-analysis that up-weights
the EAS summary statistics by a factor of two;
META 3EAS: rescaled meta-analysis that up-weights
the EAS summary statistics by a factor of three;
ADD3: summation of the three best PRSs within each
LD category;
c OR: odds ratio;
d OR (95% CI): 95% confidence internal for OR;
e p-value: logistic regression association test p-values.

4.3.2 Upweighting the EAS effect size estimates in meta-analysis improves PRS pre-

diction in EASs

In conventional fixed-effect meta-analysis, the effect size of each SNP is calculated by an

inverse variance weighted sum of the effect size estimates from the participating GWASs.

When the true effect sizes are equal across the GWASs, this formula is optimal and en-

tails no efficiency loss compared to a joint analysis of the GWASs using individual-level

data (Lin and Zeng, 2010). However, this formula may not be optimal when the goal is to

provide effect size estimate from EAS and EUR GWASs for constructing PRS in EASs.

Instead, we propose to tip the trans-ethnic meta-analysis towards the EAS population by

up-scaling EAS effect size estimates by a factor of α in addition to the inverse variance
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weighting scheme (Materials and methods). This strategy enables us to shrink the meta ef-

fect size estimates towards the estimates in the EAS GWAS and increase the power to detect

EAS-specific signals. To find a good up-scaling factor α , we conducted a grid search (i.e.,

α = 1,2,3,4,5) and then evaluated the AUC of the resulting PRSs using cross-validation

(S1 Fig). The conventional fixed-effect meta-analysis is a special case with α = 1.

We evaluated these PRSs on the EAS validation dataset and found that up-scaling the

EAS GWAS with a factor of two or three in meta-analysis could result in increased predict-

ing accuracy (Fig 4.2). For example, we obtained an AUC of 0.6059 when using α = 3,

compared to an AUC of 0.6008 in conventional fixed-effect meta-analysis (i.e., α = 1).

In general, an up-scaling factor of two or three resulted in better prediction performance

than conventional fixed-effect meta-analysis across a range of p-value thresholds used and

numbers of SNPs included in the PRS in our analysis (Fig 4.2). We conducted one-sided

Delong’s test and did not observe significant difference between the AUCs of PRSs de-

rived from the rescaled meta-analysis (α = 3) and conventional fixed-effect meta-analysis

(p-value = 0.14). This is somewhat expected as recent literature on PRS evaluation also

showed small AUC differences between PRSs constructed using different methods using

the same training dataset (Khera et al., 2018). We note that the difference between the

AUCs of PRSs derived from the rescaled meta-analysis (α = 3) and EAS GWAS was sta-

tistically significant (p-value = 4.6× 10(− 4)), so was the difference between the AUCs

of PRSs derived from the rescaled meta-analysis (α = 3) and EUR GWAS (p-value =

1.9×10(−4)).

4.3.3 GWAS effect size heterogeneity is related to LD score differences between an-

cestries

Wojcik et al. (2019) observed inconsistent effect size estimates between populations, which

could contribute to reduced transferability of PRSs between populations. The extent of ef-

fect size differences between populations differs across the genome. As LD score measures
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Figure 4.2: The AUC of PRSs derived from rescaled meta-analysis of the EAS and
EUR 2015. PRSs are evaluated in predicting breast cancer risk in the EAS validation
dataset. META FE denotes the conventional fixed-effect meta-analysis; META 2EAS de-
notes the rescaled meta-analysis that upweights the EAS effect size estimates by a factor
of two; and META 3EAS denotes the rescaled meta-analysis that upweights the EAS effect
size estimates by a factor of three. Each PRS was plotted against the (A) p-value threshold
and (B) number of SNPs. The corresponding numerical results were provided in Table 4.3

the tagging capacity of a SNP, a natural topic of investigation is whether the extent of LD

differences is related to the extent of effect size differences between EURs and EASs.

To examine this, we used the difference in EAS and EUR LD score (Bulik-Sullivan

et al., 2015): ldi f f , j = lEAS, j− lEUR, j as an indication of a SNP’s tagging capacity diver-

gence between populations, where lEAS, j and lEUR, j are the ancestry-specific LD scores in

EASs and EURs, respectively, estimated from the corresponding populations in the 1000

Genomes Project (Consortium et al., 2015). We partitioned all available SNPs into three

equally sized groups: “low EAS/high EUR LD score” group with ldi f f less than its 33%
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quantile, “similar EAS/EUR LD score” group with ldi f f between its 33% and 67% quan-

tiles, and “high EAS/low EUR LD score” group with ldi f f larger than its 67% quantile. To

account for the impact of differential GWAS sample sizes on SNPs’ effect size estimates,

we calculated “standardized” z-scores by dividing the original z-scores by the square root

of GWAS sample size (Wojcik et al., 2019). Then, we compared the standardized z-scores

in the EUR and EAS GWASs (denoted as zEUR and zEAS, respectively) for SNPs with p-

value < 5× 10−8 in either the EUR or EAS GWAS (Fig 4.3). In general, we observed

a reduction of standardized Z scores in EASs compared to EURs regardless of ldi f f cate-

gories, with an overall slope of 0.64 (zEAS = 0.64× zEUR, 95% confidence interval: 0.61

- 0.67). In addition, we observed that standardized z-scores tended to be even lower in

EASs for SNPs with “low EAS/high EUR LD score” (zEAS = 0.52×zEUR, 95% confidence

interval: 0.48 - 0.55), and higher in EASs for SNPs with “high EAS/low EUR LD score”

(zEAS = 0.83× zEUR, 95% confidence interval: 0.75 - 0.90), suggesting that LD differences

are related to observed effect size differences between populations.

4.3.4 Effects of LD differences on genetic risk prediction

We further investigated the impact of differential tagging capacity due to differential LD

levels between populations on PRS performance in EASs. After classifying SNPs into three

groups based on ldi f f , we constructed group specific PRSs based on both conventional and

rescaled meta-analyses and applied the PRSs to the validation EAS dataset. We observed

that the performance of PRS in the low EAS/high EUR LD score group is noticeably lower

than that in the other two groups. This is true for both the conventional and rescaled meta-

analyses (Fig 4.4). For example, the AUC of the PRS derived from the conventional meta-

analysis using SNPs in the low EAS/high EUR LD score group is 0.5677, while the AUC

of the PRSs derived using SNPs in the similar EAS/EUR LD score and high EAS/low

EUR LD score groups are 0.5837 and 0.5890, respectively. Comparing the rescaled versus

conventional meta-analysis, we found that upweighting the EAS effect size estimates with

76



−0.05

0.00

0.05

−0.05 0.00 0.05
EUR

E
A

S

SNP category

High EAS/Low EUR LD
Low EAS/High EUR LD
Similar EAS/EUR LD

linetype

All SNPs
y=x

A

−0.05

0.00

0.05

−0.05 0.00 0.05
EUR

E
A

S

SNP category

Low EAS/High EUR MAF
Similar EAS/EUR MAF
High EAS/Low EUR MAF

linetype

All SNPs
y=x

B

Figure 4.3: Standardized Z-scores of SNPs from EUR and EAS GWAS classified into
different LD and MAF groups. SNPs with p-values < 5×10−8 in either EUR 2015 or the
EAS GWAS were included. (A) Low EAS/High EUR LD: SNPs with ldi f f less than its 33%
quantile; Similar EAS/EUR LD: SNPs with ldi f f between its 33% and 67% quantiles; High
EAS/Low EUR LD: SNPs with ldi f f larger than its 67% quantile. (B) Low EAS/high EUR
MAF: SNPs with MAFdi f f , j less than its 33% quantile, similar EAS/EUR MAF: SNPs with
MAFdi f f , j between its 33% and 67% quantiles, and high EAS/low EUR MAF: SNPs with
MAFdi f f , j larger than its 67% quantile. The black dashed line is the slope of the fitted line
of standardized Z score in EAS over standardized Z score in EUR with all SNPs included;
the red/blue/green lines are fitted lines of standardized Z score in EAS over standardized Z
score in EUR for SNPs in corresponding LD group or MAF group.

a factor of two or three resulted in a more dramatic increase in prediction accuracy for

SNPs in the low EAS/high EUR LD score and similar EAS/EUR LD score groups, while

the performance gain in the high EAS/low EUR LD score group appeared to be minimal.

As the LD difference is likely a key factor contributing to the poor transferability of

EUR-derived PRS to non-EUR populations, we also explored whether taking LD differ-

ences among population into account has potential to increase PRS accuracy. We con-
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Figure 4.4: The AUC of PRSs constructed with SNPs in different ldi f f groups. All SNPs
were classified into three groups: low EAS/high EUR LD score group with ldi f f less
than its 33% quantile, similar EASEUR LD score group with ldi f f between its 33% and
67% quantiles, and high EASlow LD score group with ldi f f larger than its 67% quantile.
META FE denotes the conventional fixed-effect meta-analysis; META 2EAS denotes the
rescaled meta-analysis that upweights the EAS effect size estimates by a factor of two; and
META 3EAS denotes the rescaled meta-analysis that upweights the EAS effect size esti-
mates by a factor of three. Each PRS was plotted against the (A) p-value threshold and (B)
number of SNPs.

structed an ldi f f -stratified PRS by the summation of the three best PRSs within each ldi f f

group (referred to as “ADD3”). We observed marginal significant improvement of AUC

from ADD3 (AUC = 0.6096) over conventional fixed-effect meta-analysis PRS (AUC =

0.6008, one-sided Delong’s test p-value = 0.05).
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4.3.5 Effect of MAF differences on GWAS effect size and genetic risk prediction

As MAF differences between populations might also contribute to GWAS heterogeneity

and decreased transferability of PRS, we sought to investigate the effects of MAF empiri-

cally. We used a similar approach as in the interrogation of LD differences to partition all

available SNPs into three equally sized groups by MAF differences. Specifically, we used

the difference in EAS and EUR MAF: MAFdi f f , j = MAFEAS, j−MAFEUR, j as an indica-

tion of a SNP’s MAF divergence between populations, where MAFEAS, j and MAFEUR, j are

the ancestry-specific MAFs reported by the single population GWASs. We partitioned all

available SNPs into three equally sized groups: “low EAS/high EUR MAF” group with

MAFdi f f , j less than its 33% quantile, “similar EAS/EUR MAF” group with MAFdi f f , j be-

tween its 33% and 67% quantiles, and “high EAS/low EUR MAF” group with MAFdi f f , j

larger than its 67% quantile. Then, we compared the standardized z-scores in the EUR and

EAS GWASs for SNPs with p-value < 5×10−8 in either the EUR or EAS GWAS similar to

what we did previously for LD differences (Fig 3B). We observed that standardized z-scores

tended to be lower in EASs for SNPs with “low EAS/high EUR MAF” (zEAS = 0.48×zEUR,

95% confidence interval: 0.44 - 0.51), and higher in EASs for SNPs with “high EAS/low

EUR MAF” (zEAS = 0.78× zEUR, 95% confidence interval: 0.64 - 0.83), suggesting that

MAF differences are related to observed effect size differences between populations.

We constructed MAF group-specific PRSs based on both conventional and rescaled

meta-analyses and applied the PRSs to the validation EAS dataset. We observed that the

performance of PRS in the low EAS/high EUR MAF group is noticeably lower than that

in the other two groups (Fig 4.5). This is true for both the conventional and rescaled meta-

analyses. For example, the AUC of the PRS derived from the conventional meta-analysis

using SNPs in the low EAS/high EUR MAF group is 0.5530, while the AUC of the PRSs

derived using SNPs in the similar EAS/EUR MAF and high EAS/low EUR MAF groups

are 0.5876 and 0.5993, respectively.

We explored whether integrating MAF and LD difference information would further
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Figure 4.5: The AUC of PRSs constructed with SNPs in different MAF groups.

improve PRS. We stratified SNPs into nine groups cross-tabulated by the three LD score

groups and three MAF groups (Fig 4.6). We observed that the prediction AUC of PRS

derived from SNPs in “low EAS/high EUR MAF + high EAS/low EUR LD score” group

was the lowest, while the AUC of PRS derived from SNPs in “high EAS/low EUR MAF +

high EAS/low EUR LD score” group was the highest. Then, we evaluated the performance

of the added score of the best PRSs from the nine groups (referred to as “ADD9”), similar

to what we did with ADD3. We found no improvement on AUC for ADD9 (AUC = 0.6084)

compared to ADD3 (AUC = 0.6096), indicating that the impact of MAF differences on PRS

prediction might overlap with that of LD score differences (the correlation between MAF

differences and LD score differences was 0.36).
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Figure 4.6: The AUC of PRSs constructed with SNPs in different MAF and LD groups.

4.3.6 Evaluation of the PRSs using the prediction Nagelkerke’s pseudo R2 and odds-

ratio in EASs

We evaluated the candidate PRSs using the prediction Nagelkerke’s pseudo R2 and liability-

adjusted R2. We included the PRSs constructed from the EUR and EAS GWAS alone and

the rescaled meta-analyses that upweights the EAS effect size estimates by a factor of two

or three. We also included an ldi f f -stratified PRS constructed by the summation of the three

best PRSs within each ldi f f group. We used logistic regression and included age and the
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first two principal components as covariates. The results were shown in Table 4.3. The PRS

derived from the rescaled meta-analysis that upweights the EAS effect size estimates by a

factor of three increased the prediction Nagelkerke’s pseudo R2 (liability-adjusted R2) by

40% (41%), 41% (42%), and 5% (6%), respectively, compared to PRSs derived from the

EAS GWAS only, EUR GWAS only, and conventional fixed-effects meta-analysis of both.

The ldi f f -stratified PRS performed better than the other models, although the improvement

was marginal (Table 1).

We assessed the odds ratio (OR) of developing breast cancer in the top 10% individ-

uals with the highest PRSs versus the remaining 90% in the EAS validation dataset. We

observed that PRSs derived from the meta-analyses of EAS and EUR GWASs resulted

in improved ORs compared to PRSs derived from the EAS GWAS or EUR alone (Table

4.4). For example, we obtained ORs in the range of 2.31 - 2.50 for PRSs derived from the

meta-analyses, while we obtained ORs of 2.23 and 1.73 for PRSs derived from the EAS

GWAS or EUR, respectively. We also compared the top 10% individuals with the middle

40%-60% and observed similar results (Table 4.3).

4.4 Discussion

There has been tremendous progress in discovery of GWAS loci associated with breast

cancer, making it feasible to construct PRS for individualized risk stratification. However,

there is a lack of well-powered GWAS in non-EUR populations, a challenge that may ex-

acerbate disparity in clinical use. The primary goal of this work is to explore strategies that

can improve PRS of non-EUR populations, particularly in EAS. We found that incorpo-

rating information from well powered EUR GWAS and explicitly modeling LD and MAF

differences are promising to improve PRS for breast cancer risk prediction in EAS. We

proposed an approach to construct PRS from a rescaled meta-analysis of EUR and EAS

GWAS which upweights the EAS component relative to the conventional inverse-variance

based weightings. We observed improvement in PRS prediction accuracy using rescaled
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Table 4.4: OR of developing breast cancer in individ-
uals with the top 10% PRSs versus the remaining 90%
in EAS validation data seta

Modelb ORc OR (95% CI)d p-valuee

EAS 2.23 1.78 - 2.80 2.33×10−13

EUR 1.73 1.39 - 2.16 3.93×10−7

META FE 2.50 1.99 - 3.14 8.40×10−17

META 2EAS 2.31 1.85 - 2.91 1.86×10−14

META 3EAS 2.43 1.94 - 3.06 5.34×10−16

ADD3 2.50 1.99 - 3.14 8.40×10−17

a We reported ORs of breast cancer for the top
10%PRS relative to remaining 90% of population (ad-
justed forage and first 2 principal components of geno-
type)
b META FE denotes the conventional fixed-effect
meta-analysis; META 2EAS denotes the rescaled
meta-analysis that upweights the EAS effect size es-
timates by a factor of two; META 3EAS denotes the
rescaled meta-analysis that upweights the EAS effect
size estimates by a factor of three; ADD3 denotes the
-stratified PRS constructed by the summation of the
three best PRSs within each group
c OR, odds ratio;
d confidence interval of OR;
e logistic regression association test p-values

meta-analyses. As LD and MAF differences are likely key factors contributing to the poor

transferability of EUR-derived PRS to non-EUR populations, we also explored whether

taking them into account have potential to increase PRS accuracy. We observed marginal

significant improvement of AUC from the ldi f f -stratified PRS (“ADD3”) over conventional

fixed-effect meta-analysis PRS (“META-FE”, p-value = 0.05) but no further improvement

by stratifying on both LD and MAF differences (“ADD9”).

We further dissect why rescaled meta-analysis strategy is able to increase the PRS ac-

curacy of the risk prediction in EAS in this study and in other non-EUR populations in

general. We define the true model as y = ∑βEAS, jx j for EAS and y = ∑βEUR, jx j for EUR.

Given the genetic differences between EAS and EUR, βEAS, j and βEUR, j are often unequal,
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and the extent of their differences depends on many factors, including LD, MAF, and en-

vironment factors. To construct a powerful PRS for EAS, i.e., ∑wEAS, jx j, the goal is to

assign a weight for the jth SNP wEAS, j that is close to the true effect size βEAS, j. When we

use weights derived from EAS GWAS as wEAS, j, the estimates are unbiased but of larger

variance due to the smaller sample size. On the other hand, when the weights are derived

from EUR GWAS, the estimates have smaller variance but are biased away from the true ef-

fect sizes in EAS, leading to poor transferability of EUR-derived PRS to EAS populations.

To obtain estimates with a better bias and variance tradeoff, we proposed to combine EAS

and EUR data to obtain estimates for use in PRS construction in EAS. Specifically, we pro-

posed a rescaled meta-analysis strategy, with a rescale factor α > 1 to “pull” the estimate

towards the true effect size in EAS, i.e. wEAS, j = α ×winv EAS, jβEAS, j +winv EUR, jβEUR, j,

where winv EAS, j and winv EUR, j are the inverse-variance weights in the conventional meta-

analysis (Materials and methods). The magnitude of α controls for the extent of “pulling”

towards EAS, with α = 0 or α = in f corresponding to the extreme case where only EUR

data (α = 0) or only EAS data (α = in f ) are used. For α > 1, it upweights EAS in a way

that a sample in the EAS GWAS data contributes more than a sample in EUR GWAS to the

resulting effect size estimate, thus achieving the effect of pulling toward EAS. The optimal

magnitude of α depends on the relative sample size of EAS and EUR, and in general, α

increases when EAS sample sizes increases relative to EUR due to a bias-variance tradeoff

between the more accurate EAS results and more precise EUR results. When the EAS sam-

ple size is much smaller than the EUR sample size, the effect size estimates obtained from

the EUR GWAS have much smaller standard errors. In this situation, upweighting the EAS

effect size with a larger α may significantly increase the standard errors in the rescaled

meta-analyzed compared to that in conventional fixed-effects meta-analysis, offsetting the

potential benefit of reduced bias. For example, when we used the latest EUR GWAS data of

220,000 samples, the optimal α decreases to 1.3, achieving an AUC = 0.6195, compared

to AUC = 0.6119 obtained in the traditional meta-analyses. To comprehensively study the
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relationship between optimal and relative EUR and EAS sample sizes, we would need ac-

cess to individual-level training data so that we can conduct a series of GWASs at different

sample sizes (e.g., 60k, 120k, 180k, and 220k for EUR and 10k, 20k, and 30k for EAS).

For a variety of diseases, more non-EUR samples are being generated, e.g., PAGE (Wojcik

et al., 2019) and TOPMed (Taliun et al., 2021), and the reweighting factor is expected to

increase when meta-analyzing with EUR data, resulting in increased prediction accuracy

for non-EUR samples. Note that we used only a single scaling factor to controls for the

adjustment. Ideally, if we are able to assign a SNP-level scaling factor for every SNP, i.e.

wEAS, j = α j×winv EAS, jβEAS, j +winv EUR, jβEUR, j where α j is the scaling factor for the jth

SNP, the performance of PRS can be further improved. However, it is challenging to assign

scaling factors for each individual risk allele, as it is unknown a priori which alleles have

different effect sizes between populations, and to what extent of their differences are. It re-

quires further efforts to model fine-scale genetic difference between populations to assign

reasonable SNP-level scaling factors.

We also examined the predictive performance on our validation set using Grinde et al.

(2019)’s approach that performed well in several anthropometric and blood count traits

in Hispanic Americans: select SNPs based on European GWASs and use meta-analysis

weight estimates to construct PRS. We find resulting PRS perform worse (AUC = 0.5859)

than using conventional meta-analysis GWAS for both SNP selection and weight estimates

(AUC = 0.6008). This agrees with previous findings that the best performing PRS for a trait

likely depends on the genetic architecture, differences in sample size between populations,

and other factors.

We are aware that there are other PRS construction methods besides “P+T”, such as

LDpred (Vilhjálmsson et al., 2015) and SBayesR (Lloyd-Jones et al., 2019). Specifically,

we applied LDpred using the EAS LD reference panel. The findings were similar compared

to those obtained by “P+T”: PRS derived from conventional fixed-effects meta-analysis

performed better than those derived from single population GWASs; PRSs derived from
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rescaled meta-analysis and the ldi f f -stratified PRS performed better than PRS derived from

conventional fixed-effect meta-analysis. We observed comparable performance between

PRSs constructed using LDpred and “P+T”, which is consistent with existing literature on

breast cancer PRS (Khera et al., 2018).

We studied the impact of LD and MAF PRS constructed by taking into account both

LD score differences and MAF differences between EAS and EUR did not outperform PRS

constructed by taking into account LD score differences alone in EAS. It would be wor-

thy of further exploration on how to better leverage MAF and LD in PRS construction. In

addition, we did not explore the impact of functional genomic annotations on trans-ethnic

PRS prediction. As previous studies have shown that the use of epigenetic and functional

annotations improves heritability estimation and PRS prediction in a single population (Hu

et al., 2017; Lloyd-Jones et al., 2019), an interesting topic of investigation is to incorpo-

rate those annotations when constructing trans-ethnic PRS to further boosting prediction

accuracy.

Our work is based on a target population of EAS, while there are potential opportunities

to extend the strategies explored in this study to other ethnicities. For example, the explicit

modeling of genetic difference between EUR and African has potential to improve PRS

in African and in African Americans. Although our approach has been effective in a rel-

atively homogenous population like EAS, its application remains challenging in admixed

populations with complex LD patterns and demographic history like African Americans

or Hispanic/Latinos. Since the genomes of admixed individuals are a mosaic of segments

with different ancestral origins, a first step would be to get ancestry specific effect size

estimates and p-values from training GWASs, which is often not available from publicly

available summary statistics. If individual-level training GWAS data is available, recently

developed methods like Tractor (Atkinson et al., 2020) could be applied to obtain ancestry

specific summary statistics by generating ancestry dosage at each site from local ancestry

inference calls and running a local ancestry-aware regression. Similarly, for the validation
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data, local ancestry haplotype dosage for each person at each variant need to be estimated

and weighted by the ancestry specific effect size estimated in the previous step to allow the

generation of “ancestry-specific” PRSs. After that, we can experiment with our strategy

of globally upweighting the “more informative” ancestry-level PRS. However, local ances-

try estimation in both training and validation sets might introduce bias and the anticipated

large sample size discrepancies between EUR and African Americans GWAS studies might

further complicate the application. We think this question is worthy of further exploration

and we believe that the rapid expansion of genomic resources in admixed populations will

be critical to improve PRS predictions. Besides genetic factors (e.g., LD and MAF), envi-

ronmental factors also influence effect size differences among ancestries. We argue that,

for admixed populations, it is critical for PRS to be ancestry-aware, especially for clinical

use, since each individual admixed genome has unique local ancestry profiles, and without

taking local ancestry into account it is hard to maintain desired sensitivity and specificity

due to genetic differences among ancestries.

In summary, we proposed an approach to construct breast cancer PRS in EAS de-

rived from a rescaled meta-analysis of EUR and EAS GWAS. Different from conventional

inverse-variance based weighting framework, our approach upweights the EAS component

over the EUR component. PRS derived from our rescaled meta-analysis outperforms PRS

derived from single population GWAS or conventional meta-analysis. This strategy of inte-

grating GWASs across ethnicities when building PRS prediction models could potentially

be extended to other non-EUR populations.

87



CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

The emergence of GWAS over a decade ago has led to remarkable shifts in our ability to

understand the genetic basis of complex human traits. The availability of multiple data

sources, such as regulatory atlas, rare variants based findings, or GWAS from multiple

ancestries, have eased the translation of GWAS findings into biological mechanisms. Ad-

vanced statistical analyses that leverage these data have been key in securing continued

progress in gene discovery and disease risk prediction.

Despite the tremendous progress, there is still plenty of room for development of GWAS

follow-up analyses. While great progress has been made in identifying genes that influence

traits via integrative analysis of GWAS and expression QTLs, genes linked to traits via reg-

ulatory effects other than expression remain understudied. In Chapter 2 of this dissertation,

we attempted to fill the gap by leveraging splicing for gene discovery. Moreover, common

variants identified by GWASs only contribute to part of the genetic basis of complex traits.

The complementary roles of rare and common variants in disease biology have long been

recognized, yet few published methods integrate knowledge from both for gene discovery.

To bridge this gap, in Chapter 3, we proposed an approach to leverage GWAS signals to

improve power for rare-variant based risk gene discovery. Another popular application of

GWAS data is the use of PRS in disease risk prediction. However, the lack of representa-

tion of diverse populations limits the transferability of GWAS results across populations.

To address this, we developed a rescaled meta-analysis based framework in Chapter 4 to

improve genetic risk prediction accuracy for minority populations.

In Chapter 2, using our Multidimensional Splicing Gene (MSG) discovery approach,

we implicated novel risk genes through integrative modeling of GWAS summary statis-

tics and multidimensional splicing data from GTEx. Overall, we identified 2.15 times and
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3.23 times significant genes from MSG than from current state-of-the-art approaches (i.e.,

S-MultiXcan or UTMOST). There are some exciting future avenues to gain deeper under-

standing of splicing regulation through analyzing a growing abundance of splicing data

with GWAS using MSG. For example, recent developments in cell-type-specific splicing

signal detection (Benegas et al., 2021) and long-read transcriptomics (Amarasinghe et al.,

2020) offer remarkable potential in understanding how genes influence complex traits via

splicing with higher accuracy and resolution.

In Chapter 3, we presented a pipeline to improve gene detection power from RVASs

using GWAS signals via hypothesis weighting. We applied the pipeline to SCZ and ASD

RVASs and observed sizeable improvements on the number of genes discovered. Differ-

ent from most previous studies that use hypothesis weighting, we used prediction scores

as covariates, which enabled us to harness data from various sources that are not readily

available for each hypothesis. This approach requires little investment and can be easily

applied to the analysis of existing and future studies beyond RVASs. Multiple large scale

study design like GWAS, QTL discovery, can all be reanalyzed using this strategy with

appropriate prediction scores as covariates.

Lastly, in Chapter 4, we proposed an approach to construct breast cancer PRS in east

asians (EAS) derived from a rescaled meta-analysis of European (EUR) and EAS GWAS.

PRS derived from our rescaled meta-analysis outperforms PRS derived from single pop-

ulation GWAS or conventional meta-analysis. This strategy of integrating GWASs across

ethnicities when building PRS prediction models could potentially be extended to other

non-EUR populations like African Americans and Hispanics. With the rapid expansion of

genomic resources for non-EUR populations coupled with the active development of an-

alytic methods, we believe there are remarkable potentials to the deployment of PRS in

clinical settings.

With the decrease of sequencing cost, GWAS using whole genome sequencing (WGS)

in large samples across ethnic groups will become increasingly realistic. This will lead
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to the discovery of additional GWAS loci, rare variants, and population-specific variants.

These anticipated developments have the potential to improve PRS prediction, and identify

genes through the integration of rare and common variants. In addition, with the devel-

opment of high-throughput technologies, our ability to map sites of regulatory impact will

increase, which will accelerate the translation of GWAS findings into genes that influence

traits via regulatory effects. In the future, the availability of large-scale data, along with

continuing development of analytical approaches, will keep driving gene discovery and

reduce health disparities from GWAS.
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Bayés, À., Van De Lagemaat, L. N., Collins, M. O., Croning, M. D., Whittle, I. R., Choud-
hary, J. S., and Grant, S. G. (2011). Characterization of the proteome, diseases and
evolution of the human postsynaptic density. Nature neuroscience, 14(1):19–21.

Benegas, G., Fischer, J., and Song, Y. S. (2021). Robust and annotation-free analysis of
isoform variation using short-read scrna-seq data. bioRxiv.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal statistical society: series
B (Methodological), 57(1):289–300.

Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita. Pubbli-
cazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8:3–
62.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., Daly,
M. J., Price, A. L., and Neale, B. M. (2015). Ld score regression distinguishes confound-
ing from polygenicity in genome-wide association studies. Nature genetics, 47(3):291–
295.

Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone,
C., McMahon, A., Morales, J., Mountjoy, E., Sollis, E., et al. (2019). The nhgri-ebi
gwas catalog of published genome-wide association studies, targeted arrays and sum-
mary statistics 2019. Nucleic acids research, 47(D1):D1005–D1012.

Burbach, J. P. H. and van der Zwaag, B. (2009). Contact in the genetics of autism and
schizophrenia. Trends in neurosciences, 32(2):69–72.

92



Burkhardt, R., Kenny, E. E., Lowe, J. K., Birkeland, A., Josowitz, R., Noel, M., Salit, J.,
Maller, J. B., Pe’er, I., Daly, M. J., et al. (2008). Common snps in hmgcr in micronesians
and whites associated with ldl-cholesterol levels affect alternative splicing of exon13.
Arteriosclerosis, thrombosis, and vascular biology, 28(11):2078–2084.

Cai, Q., Zhang, B., Sung, H., Low, S.-K., Kweon, S.-S., Lu, W., Shi, J., Long, J., Wen,
W., Choi, J.-Y., et al. (2014). Genome-wide association analysis in east asians identifies
breast cancer susceptibility loci at 1q32. 1, 5q14. 3 and 15q26. 1. Nature genetics,
46(8):886–890.

Cai, X., Yang, Z.-H., Li, H.-J., Xiao, X., Li, M., and Chang, H. (2021). A human-specific
schizophrenia risk tandem repeat affects alternative splicing of a human-unique isoform
as3mt d2d3 and mushroom dendritic spine density. Schizophrenia Bulletin, 47(1):219–
227.

Callan, M. A. and Zarnescu, D. C. (2011). Heads-up: New roles for the fragile x mental
retardation protein in neural stem and progenitor cells. Genesis, 49(6):424–440.

Consortium, . G. P. et al. (2015). A global reference for human genetic variation. Nature,
526(7571):68.

Consortium, G. (2015). The genotype-tissue expression (gtex) pilot analysis: Multitissue
gene regulation in humans. Science, 348(6235):648–660.

Consortium, G. et al. (2020). The gtex consortium atlas of genetic regulatory effects across
human tissues. Science, 369(6509):1318–1330.

Consortium, I. S. G., 2, W. T. C. C. C., et al. (2012). Genome-wide association study
implicates hla-c* 01: 02 as a risk factor at the major histocompatibility complex locus in
schizophrenia. Biological psychiatry, 72(8):620–628.

Coram, M. A., Candille, S. I., Duan, Q., Chan, K. H. K., Li, Y., Kooperberg, C., Reiner,
A. P., and Tang, H. (2015). Leveraging multi-ethnic evidence for mapping complex traits
in minority populations: an empirical bayes approach. The American Journal of Human
Genetics, 96(5):740–752.

Coram, M. A., Fang, H., Candille, S. I., Assimes, T. L., and Tang, H. (2017). Leveraging
multi-ethnic evidence for risk assessment of quantitative traits in minority populations.
The American Journal of Human Genetics, 101(2):218–226.

Darnell, J. C., Van Driesche, S. J., Zhang, C., Hung, K. Y. S., Mele, A., Fraser, C. E., Stone,
E. F., Chen, C., Fak, J. J., Chi, S. W., et al. (2011). Fmrp stalls ribosomal translocation
on mrnas linked to synaptic function and autism. Cell, 146(2):247–261.

Denny, L., De Sanjose, S., Mutebi, M., Anderson, B. O., Kim, J., Jeronimo, J., Herrero,
R., Yeates, K., Ginsburg, O., and Sankaranarayanan, R. (2017). Interventions to close
the divide for women with breast and cervical cancer between low-income and middle-
income countries and high-income countries. The Lancet, 389(10071):861–870.

93



Dichgans, M., Malik, R., König, I. R., Rosand, J., Clarke, R., Gretarsdottir, S., Thor-
leifsson, G., Mitchell, B. D., Assimes, T. L., Levi, C., et al. (2014). Shared genetic
susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of
common variants. Stroke, 45(1):24–36.

Egbujo, C. N., Sinclair, D., and Hahn, C.-G. (2016). Dysregulations of synaptic vesicle
trafficking in schizophrenia. Current psychiatry reports, 18(8):1–10.

Eicher, J. D., Landowski, C., Stackhouse, B., Sloan, A., Chen, W., Jensen, N., Lien, J.-
P., Leslie, R., and Johnson, A. D. (2015). Grasp v2. 0: an update on the genome-
wide repository of associations between snps and phenotypes. Nucleic acids research,
43(D1):D799–D804.

Euesden, J., Lewis, C. M., and O’Reilly, P. F. (2015). Prsice: polygenic risk score software.
Bioinformatics, 31(9):1466–1468.

Fatemi, S. H., Reutiman, T. J., Folsom, T. D., and Thuras, P. D. (2009). Gaba a receptor
downregulation in brains of subjects with autism. Journal of autism and developmental
disorders, 39(2):223.

Feng, H., Mancuso, N., Gusev, A., Majumdar, A., Major, M., Pasaniuc, B., and Kraft,
P. (2021). Leveraging expression from multiple tissues using sparse canonical correla-
tion analysis and aggregate tests improves the power of transcriptome-wide association
studies. PLoS genetics, 17(4):e1008973.

Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R., Anttila,
V., Xu, H., Zang, C., Farh, K., et al. (2015). Partitioning heritability by functional anno-
tation using genome-wide association summary statistics. Nature genetics, 47(11):1228.

Fortney, K., Dobriban, E., Garagnani, P., Pirazzini, C., Monti, D., Mari, D., Atzmon, G.,
Barzilai, N., Franceschi, C., Owen, A. B., et al. (2015). Genome-wide scan informed
by age-related disease identifies loci for exceptional human longevity. PLoS genetics,
11(12):e1005728.
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