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CHAPTER 1

Introduction: High-Order Low-Bit Quantization on Fusion Frames

Fusion frames provide a mathematical setting for representing signals in terms of projections

onto a redundant collection of closed subspaces. Fusion frames were introduced in [11] as a tool for

data fusion, distributed processing, and sensor networks, e.g., see [12, 13]. In this work we consider

the question of how to perform quantization, i.e., analog-to-digital conversion, on a collection of

fusion frame measurements.

Our motivation comes from the stylized sensor network in [24]. Suppose that one seeks to

measure a signal x P Rd over a large environment using a collection of remotely dispersed sensors

sn that are constrained by limited power, limited computational resources, and limited ability to

communicate. Each sensor is only able to make local measurements of the signal, and the goal is to

communicate the local measurements to a distantly located base station where the signal x can be

accurately estimated. The sensor network is modeled as a fusion frame and is physically constrained

in the following manner:

• Each local measurement yn is a projection of x onto a subspace Wn associated to sn.

• Each sensor has knowledge of the proximities Wn of a small number of nearby sensors.

• Each sensor can communicate analog signals to a small number of nearby sensors.

• Each sensor can transmit a low-bit signal to the distant base station.

• The base station is relatively unconstrained in power and computational resources.

Mathematically, the above sensor network problem can be formulated as a quantization prob-

lem for fusion frames, e.g., [24]. Suppose that tWnu
N
n“1 are subspaces of Rd and suppose that

each An Ă Wn is a finite quantization alphabet. Given x P Rd and the orthogonal projections

yn “ PWnpxq, we seek an efficient algorithm for rounding the continuum-valued measurements

yn P Wn to finite-valued qn P An. This rounding process is called quantization and it provides a

digital representation of yn through qn. Here, qn corresponds to the low-bit signal that the sensor sn
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transmits to the central base station. We will focus on the case where the qn are computed sequen-

tially and we allow the algorithm to be implemented with a limited amount of memory. The memory

variables correspond to the analog signals that sensors communicate to other nearby sensors. Fi-

nally, once the quantized measurements tqnuNn“1 have been computed, we seek a reconstruction

procedure for estimating x; this corresponds to the role of the base station.

We address the above problem with a new low-bit version of Sigma-Delta (Σ∆) quantization for

fusion frames. Sigma-Delta quantization is a widely applicable class of algorithms for quantizing

oversampled signal representations. Sigma-Delta quantization was introduced in [23], underwent

extensive theoretical development in the engineering literature [18], and has been widely imple-

mented in the circuitry of analog-to-digital converters [30]. Starting with [14], the mathematical

literature provided approximation-theoretic error bounds for Sigma-Delta quantization in a variety

of settings, starting with bandlimited sampling expansions [14, 15, 19, 20, 22, 32]. The best known

constructions yield error bounds decaying exponentially in the bit budget [19, 15], which is also the

qualitative behavior that one encounters when quantizing Nyquist rate samples at high precision.

The rate of this exponential decay, however, is provably slower for Sigma-Delta [28].

Subsequently, Sigma-Delta was generalized to time-frequency representations [33] and finite

frame expansions [4]. As it turned out, the direct generalization to frames has significant limitations

unless the frame under consideration has certain smoothness properties [8]. A first approach to

overcome this obstacle was to recover signals using a specifically designed dual frame, the so-called

Sobolev Dual [6, 26]; this approach has also been implemented for compressed sensing [21, 27, 16].

Another class of dual frames that sometimes outperform Sobolev duals are the so-called beta duals

[10]. In the context of compressed sensing, Sobolev duals have inspired a convex optimization

approach for recovery [31], which has also been analyzed for certain structured measurements [17].

Since fusion frames employ vector-valued measurements, our approach in Definition 3.1.1 may

be viewed as a vector-valued analogue of Sigma-Delta quantization. For perspective, we point out

related work on Σ∆ quantization of finite frames with complex alphabets on a lattice [5], hexagonal

Σ∆ modulators for power electronics [29], and dynamical systems motivated by error diffusion in

digital halftoning [1, 2, 3].

The work in [24] constructed and studied stable analogues of Sigma-Delta quantization in the

setting of fusion frames. The first order Σ∆ algorithms in [24] were stably implementable using
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very low-bit quantization alphabets. Unfortunately, the higher order Σ∆ algorithms in [24] required

large quantization alphabets for stability to hold. Stable high order Σ∆ algorithms are desirable

since quantization error generally decreases as the order of a Sigma-Delta algorithm increases, e.g.,

[14]. The main contribution of the current work is that we provide the first examples of stable

high-order low-bit Sigma-Delta quantizers for fusion frames.

Our results achieve the following:

• We construct stable rth order fusion frame Sigma-Delta (FFΣ∆) algorithms with quantization

alphabets that use log2pdimpWnq ` 1q-bits per subspace Wn, see Theorems 3.2.1 and 3.3.2.

This resolves a question posed in [24].

• We provide numerical examples to show that the FFΣ∆ algorithm performs well when im-

plemented together with a version of Sobolev dual reconstruction.
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CHAPTER 2

Fusion frames and quantization

In this section, we provide background on fusion frames and quantization.

2.1 Fusion frames

Let tWnu
N
n“1 be a collection of subspaces of Rd and let tcnuNn“1 Ă p0,8q be positive scalar

weights. The collection tpWn, cnqu
N
n“1 is said to be a fusion frame for Rd with fusion frame bounds

0 ă A ď B ă 8 if

@x P Rd, A}x}2 ď
N
ÿ

n“1

c2n}PWnpxq}
2 ď B}x}2.

If the bounds A,B are equal, then the fusion frame is said to be tight. If cn “ 1 for all 1 ď n ď

N , then the fusion frame is said to be unweighted. Given a fusion frame, the associated analysis

operator T : Rd ÝÑ
ÀN

n“1Wn is defined by

T pxq “ tcnPWnpxqu
N
n“1.

The problem of recovering a signal x P Rd from fusion frame measurements yn “ PWnpxq is

equivalent to finding a left inverse to the analysis operator. There is a canonical choice of left

inverse which can be described using the synthesis operator and the frame operator.

The adjoint T ˚ :
ÀN

n“1Wn ÝÑ Rd of the analysis operator is called the synthesis operator

and is defined by T ˚ptfnuNn“1q “
řN
n“1 cnfn. The fusion frame operator S : Rd Ñ Rd is defined

by Spxq “ pT ˚T qpxq “
řN
n“1 c

2
nPWnpxq. It is well-known [11] that S is a positive self-adjoint

operator. Moreover, L “ S´1T ˚ is a left inverse to T since LT “ S´1T ˚T “ S´1S “ I . This

provides the following canonical reconstruction formula for recovering x P Rd from fusion frame

measurements yn “ PWnpxq

@x P Rd, x “ LTx “ S´1Sx “
N
ÿ

n“1

c2nS
´1pynq.
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Although the canonical choice of left inverse L “ S´1T ˚ is natural, other non-canonical left-

inverses will be more suitable for the problem of reconstructing a signal x from quantized measure-

ments.

2.2 Norms and direct sums

The direct sum space
ÀN

n“1Wn arises naturally in the study of fusion frames. In the interest of

maintaining simple notation, we use the norm symbol } ¨ } in different contexts throughout the paper

to refer to norms on both Euclidean space and direct sum spaces, as well as operator norms on such

spaces.

The following list summarizes different ways in which norm notation is used throughout the

paper.

• If x P Rd then }x} denotes the Euclidian norm.

• If H : Rd Ñ Rd then }H} “ supxPRd
}Hx}
}x} .

• If w P
ÀN

n“1Wn, then }w} “
´

řN
n“1 }wn}

2
¯1{2

and }w}8 “ sup1ďnďN }wn}.

• If G :
ÀN

n“1Wn Ñ
ÀN

n“1Wn then }G} “ supwP
À

Wn

}Gw}
}w} .

• If L :
ÀN

n“1Wn Ñ Rd then }L} “ supwP
À

Wn

}Lw}
}w} .

2.3 Quantization

Let x P Rd and suppose that tWnu
N
n“1 are subspaces associated with a fusion frame for Rd. For

each 1 ď n ď N , let An Ă Wn be a finite set which we refer to as a quantization alphabet, and let

Qn : Wn Ñ An be an associated vector quantizer with the property that

@w PWn, }w ´Qnpwq} “ min
qPAn

}w ´ q}. (2.1)

Memoryless quantization is the simplest approach to quantizing a set of fusion frame mea-

surements yn “ PWnpxq, 1 ď n ď N . Memoryless quantization simply quantizes each yn to

qn “ Qnpynq. See [24] for basic discussion on the performance of memoryless quantization for

fusion frames. This approach works well when the alphabets An are sufficiently fine and dense,
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and is also suitable when the subspaces are approximately orthogonal. On the other hand, it is not

very suitable for our sensor network problem which requires coarse low-bit alphabets and involves

correlated subspaces Wn. We will see that Sigma-Delta quantization is a preferable approach.

We will make use of the low-bit quantization alphabets provided by the following lemma. These

alphabets use log2pdimpWnq`1q bits to quantize each subspaceWn. For perspective, in the scalar-

valued setting, it is known that stable Σ∆ quantizers of arbitrary order can be implemented using a

1-bit quantization alphabet to quantize each scalar-valued sample, [14]. The vector-valued alphabet

in the following lemma provides a suitable low-bit analogue of this for fusion frames.

Lemma 2.3.1. Let W be an m-dimensional subspace of Rd. There exists a set UpW q “ tukum`1k“1

in W such that
řm`1
j“1 uj “ 0, and each uj is unit-norm }uj} “ 1, and

xuj , uky “ ´
1

m
, for j ‰ k. (2.2)

Moreover, if θ0 “ cos´1p 1mq, then for every w PW zt0u, there exists k such that

anglepw, ukq ď θ0. (2.3)

For references associated to Lemma 2.3.1, see the discussion following Lemma 1 in [24].
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CHAPTER 3

Fusion frame Sigma-Delta quantization

3.1 Algorithm

Throughout this section we shall assume that tWnu
8
n“1 are subspaces of Rd and that each finite

collection tWnu
N
n“1 is an unweighted fusion frame for Rd when N ě d. We also assume that

An “ UpWnq ĂWn is a set of 1` dimpWnq vectors as in Lemma 2.3.1, and that Qn : Wn Ñ An

is a vector quantizer satisfying (2.1). Observe that by (2.1) and (2.3) one has that for arbitrary

w PWn with }w} “ 1

xQnpwq, wy “ 1´ 1
2}Qnpwq ´ w}

2 “ 1´ 1
2 min
qPAn

}w ´ q}2 “ min
qPAn

xq, wy ě 1
m . (3.1)

Given x P Rd, we shall investigate the following algorithm for quantizing fusion frame mea-

surements yn “ PWnpxq.

Definition 3.1.1 (Fusion frame Sigma-Delta algorithm). For each n ě 1, fix operatorsHn,j : Rd Ñ

Wn, 1 ď j ď L. Initialize the state variables v0 “ v´1 “ ¨ ¨ ¨ “ v1´L “ 0 P Rd.

The fusion frame Sigma-Delta algorithm (FFΣ∆) takes the measurements yn “ PWnpxq as

inputs and produces quantized outputs qn P An, n ě 1, by running the following iteration for

n ě 1

qn “ Qn

˜

yn `
L
ÿ

j“1

Hn,jpvn´jq

¸

, (3.2)

vn “ yn ´ qn `
L
ÿ

j“1

Hn,jpvn´jq. (3.3)

The algorithm (3.2), (3.3) may be applied to an infinite stream of inputs, but, in practice, the

algorithm will usually be applied to a fusion frame of finite size and will terminate after finitely

many steps. The operators Hn,j must be chosen carefully for the algorithm (3.2), (3.3) to perform

well. We shall later focus on a specific choice of operators Hn,j in Section 3.3, but to understand its
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motivation, it is useful to first discuss reconstruction methods for the FFΣ∆ algorithm and to keep

Hn,j general for the moment.

The fusion frame Sigma-Delta algorithm must be coupled with a reconstruction procedure for

recovering x from the quantized measurements tqnu. We consider the following simple reconstruc-

tion method that uses left inverses of fusion frame analysis operators. At step N of the FFΣ∆

algorithm, one has access to the quantized measurements tqnuNn“1. Henceforth, q P
ÀN

n“1Wn will

denote the element of
ÀN

n“1Wn whose nth entry is qn P An Ă Wn. Since tWnu
N
n“1 is a fusion

frame with analysis operator T “ TN , let L “ LN denote a left inverse of T , so that LTx “ x

holds for all x P Rd. A specific choice of left inverse will be specified in Section 3.6, but for the

current discussion let L be an arbitrary left inverse. After step N of the iteration (3.2), (3.3), we

reconstruct the following rx from tqnuNn“1

rx “ rxN “ Lq. (3.4)

We now introduce notation that will be useful for describing the error x´ rx associated to (3.4).

Let v P
ÀN

n“1Wn denote the element of
ÀN

n“1Wn whose nth entry is vn P Wn. Let IN :

ÀN
n“1Wn ÝÑ

ÀN
n“1Wn denote the identity operator, and let HN :

ÀN
n“1Wn ÝÑ

ÀN
n“1Wn

denote the N ˆN block operator with entries

@ 1 ď n, k ď N, pHN qn,k “

$

’

’

&

’

’

%

Hn,n´k, if 1 ď n´ k ď L,

0, otherwise.
(3.5)

Note that (3.3) and (3.5) can be expressed in matrix form as y´ q “ pIN ´HN qv. Combining this

and (3.4) allows the error x´ rx to be expressed as

x´ rx “ LN py ´ qq “ LN pIN ´HN qv. (3.6)

We aim to design the operators HN in the quantization algorithm and the reconstruction operator

LN so that the error }x ´ rx} “ }LN pIN ´HN qv} given by (3.6) can be made quantifiably small.

We pursue the following design goals:

• Select HN so that the iteration (3.2), (3.3) satisfies a stability condition which controls the
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norm of the state variable sequence v.

• Select HN and LN so that LN pIN´HN q has small operator norm. This can be decoupled into

separate steps. First, HN is chosen to ensure that operator IN ´ HN satisfies an rth order

condition that expresses IN ´ HN in terms of a generalized rth order difference operator.

Secondly, LN is chosen to be a Sobolev left inverse which is well-adapted to the operator

IN ´HN .

For the above points, Section 3.2 discusses stability, Section 3.3 discusses the rth order property,

and Section 3.6 discusses reconstruction with Sobolev left inverses.

3.2 Stability

The following theorem shows that the fusion frame Σ∆ algorithm is stable in the sense that

control on the size of inputs }yn} ensures control on the size of state variables }vn}. For perspective,

the stable higher order fusion frame Σ∆ algorithm in [24] requires relatively large alphabets An.

Theorem 3.2.1. Let tWnu
N
n“1 be subspaces of Rd with d‹ “ max1ďnďN dimpWnq. Suppose that

a sequence tynuNn“1 with yn PWn is used as input to the algorithm (3.2), (3.3).

Suppose that 0 ă δ ă 1
d‹ , and let

α1 “

d

1´ 2δ
d‹ ` δ

2

1´ p 1
d‹ q

2
and α2 “

1

2

¨

˝

ˆ

1

d‹
´ δ

˙

`

d

ˆ

1

d‹
´ δ

˙2

` 4

˛

‚.

Suppose that α “ sup1ďnďN

řL
j“1 }Hn,j} satisfies 1 ă α ď mintα1, α2u, and let

C “

ˆ

1

d‹
´ δ

˙ˆ

α

α2 ´ 1

˙

.

If }yn} ď δ for all 1 ď n ď N , then the state variables vn in (3.2), (3.3) satisfy }vn} ď C for all

1 ď n ď N .

Proof. Step 1. We begin by noting that the assumption 1 ă α ď mintα1, α2u is not vacuous. The

condition 1 ă α2 directly follows from the assumption. If d‹ “ 1 then 1 ă α1 “ 8 automatically
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holds. For d‹ ą 1, we rewrite

α1 “

d

1`
p 1
d‹ ´ δq

2

1´ p 1
d‹ q

2
,

which is strictly larger than 1.

Step 2. Next, we note that C ě 1. By the definition of C, it can be verified that C ě 1 holds if and

only if

α2 ´

ˆ

1

d‹
´ δ

˙

α´ 1 ď 0.

It follows that C ě 1 holds if and only if

`

1
d‹ ´ δ

˘

´

b

`

1
d‹ ´ δ

˘2
` 4

2
ď α ď

`

1
d‹ ´ δ

˘

`

b

`

1
d‹ ´ δ

˘2
` 4

2
.

Since
p 1
d‹
´δq´

b

p 1
d‹
´δq

2
`4

2 ă 0 and 1 ă α2 “
p 1
d‹
´δq`

b

p 1
d‹
´δq

2
`4

2 , the assumption 1 ă α ď α2

implies that C ě 1, as required.

Step 3. We will prove the theorem by induction. The base case holds by the assumption that

v0 “ v´1 “ ¨ ¨ ¨ “ v1´L “ 0 P Rd. For the inductive step, suppose that n ě 1 and that }vj} ď C

holds for all j ď n´ 1.

Let zn “ yn `
řL
j“1Hn,jpvn´jq, so that vn “ zn ´ qn with qn “ Qnpznq. If zn “ 0 then

}vn} “ }qn} “ 1 ď C, as required. So, it remains to consider zn ‰ 0.

When zn ‰ 0, let γn “
xzn,qny
}zn}

. Combining the definition of d‹ and the fact that the quantizer

Qn is scale invariant with (3.1), we obtain that γn ě 1
d‹ . Thus,

}vn}
2 “ }zn}

2 ` }qn}
2 ´ 2}zn}γn

ď }zn}
2 ´

2

d‹
}zn} ` 1. (3.7)

Since
řL
j“1 }Hn,j} ď α, }yn} ď δ, and }vn´j} ď C, the definition of zn gives that

}zn} ď }yn} `
L
ÿ

j“1

}Hn,j} }vn´j} ď δ ` Cα. (3.8)
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Recall, we aim to show }vn} ď C. Let fptq “ t2 ´ p 2
d‹ qt` 1. By (3.7) and (3.8), it suffices to

prove

fpr0, αC ` δsq Ď r0, C2s.

For that, we note that

mintfptq : t P r0, αC ` δsu ě fp1{d‹q “ 1´ p1{d‹q2 ě 0.

and

maxtfptq : t P r0, αC`δsu “ maxtfp0q, fpαC`δqu “ maxt1, fpαC`δqu ď maxtC2, fpαC`δqu.

Hence it only remains to show that fpαC ` δq ď C2.

Step 4. Consider the polynomial

ppxq “ pα2 ´ 1qx2 ` 2α

ˆ

δ ´
1

d‹

˙

x`

ˆ

1´
2δ

d‹
` δ2

˙

.

Since 1 ă α ď α1, it can be verified that the polynomial p has real roots r1 ď r2. Since α ą 1, one

has that ppxq ď 0 for all x P rr1, r2s. In particular, p
`

r1`r2
2

˘

ď 0. Moreover, it can be checked that

r1 ` r2
2

“

ˆ

1

d‹
´ δ

˙ˆ

α

α2 ´ 1

˙

“ C.

Thus, ppCq ď 0.

Step 5. Note that

fpαC ` δq “ pαC ` δq2 ´

ˆ

2

d‹

˙

pαC ` δq ` 1

“ α2C2 ` 2α

ˆ

δ ´
1

d‹

˙

C `

ˆ

1´
2δ

d‹
` δ2

˙

“ ppCq ` C2.

11



Since ppCq ď 0 holds by Step 4, it follows that fpαC ` δq ď C2, as required.

3.3 Rth order algorithms and feasibility

Classical scalar-valued rth order Sigma-Delta quantization expresses coefficient quantization

errors as an rth order difference of a bounded state variable, e.g., see [14, 19]. In this section we

describe an analogue of this for the vector-valued setting of fusion frames.

Let DN :
ÀN

n“1Wn ÝÑ
ÀN

n“1Wn be the N ˆN block operator defined by

@ 1 ď n, k ď N, pDN qn,k “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

I, if n “ k,

´PWn , if n “ k ` 1,

0, otherwise.

(3.9)

Definition 3.3.1 (rth order algorithm). The fusion frame Sigma-Delta iteration (3.2), (3.3) is an

rth order algorithm if for every N ě d there exist operators GN :
ÀN

n“1Wn ÝÑ
ÀN

n“1Wn that

satisfy

IN ´HN “ pDN q
rGN , (3.10)

and

sup
N
}GN} ă 8. (3.11)

Moreover, given ε ą 0, we say that tpGN ,HN qu
8
N“d is ε-feasible if the operators Hn,j that define

HN by (3.5) satisfy

sup
ně1

L
ÿ

j“1

}Hn,j} ď 1` ε. (3.12)

The rth order condition (3.10) should be compared with the scalar-valued analogue in equation

(4.2) in [19], cf. [15]. For perspective, the condition (3.12) ensures that the stability result from

Theorem 3.2.1 can be used. The rth order conditions (3.10), (3.11) will later be used in Section 3.6

to provide control on the quantization error }x´ rx}.

We now show that it is possible to select HN so that the low-bit fusion frame Sigma-Delta

algorithm in (3.10), (3.11) is rth order and ε-feasible with small ε ą 0.
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We make use of the following sequences nj , dj , h defined in [19]. The constructions have

subsequently been improved in [25, 15], but we will work with the (suboptimal) first construction,

as it allows for closed form expressions. Given r P N, define the index set Nr “ N X r1, rs. Let

r, σ P N be fixed and define the sequences tnjurj“1 and tdjurj“1 by

nj “ σpj ´ 1q2 ` 1 and dj “
ź

iPNrztju

ni
ni ´ nj

. (3.13)

Next, define h P `1pNq by

h “
r
ÿ

j“1

djδnj , (3.14)

where δn P `1pNq is defined by δnpjq “ 1 if j “ n, and δnpjq “ 0 if j ‰ n. We will later use the

property, proven in [19], that h satisfies

}h}`1 ă coshpπσ´1{2q. (3.15)

Let L “ nr and define the N ˆ N block operator HN using (3.5) with 1 ď n ď N and

1 ď j ď L and

Hn,j “

$

’

’

&

’

’

%

hjPWnPWn´1 ¨ ¨ ¨PWn´j`1 , if n ą j,

0, otherwise.
(3.16)

In the following result, we prove that the fusion frame Sigma-Delta algorithm with operators

(3.16) is rth order and ε-feasible.

Theorem 3.3.2. Fix r ě 2. Given ε ą 0, if σ P N is sufficiently large and if the operators

Hn,j :
ÀN

n“1Wn ÝÑ
ÀN

n“1Wn are defined by (3.13), (3.14), (3.16), then the fusion frame Sigma-

Delta algorithm (3.2), (3.3) is an rth order algorithm and is ε-feasible.

The proof of Theorem 3.3.2 is given in Section 3.5.

3.4 Background lemmas

In this section, we collect background lemmas that are needed in the proof of Theorem 3.3.2.

The following result provides a formula for the entries of the block operator pDN q
´r.
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Lemma 3.4.1. Fix r ě 1. If DN is the N ˆN block operator defined by (3.9) then DN is invertible

and D´rN satisfies

pD´rN qi,j “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`

r`i´j´1
r´1

˘

pPWiPWi´1 . . . PWj`1q if i ą j

I if i “ j

0 if i ă j.

(3.17)

Proof. The proof proceeds by induction. For the base case r “ 1, a direct computation shows that

@ 1 ď i, j ď N, pD´1N qi,j “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

PWiPWi´1 ¨ ¨ ¨PWj`1 if i ą j

I if i “ j

0 if i ă j.

For the inductive step, suppose that (3.17) holds. Using pD
´pr`1q
N qi,j “

řN
k“1pD

´r
N qi,kpD

´1
N qk,j , shows that pD´pr`1qN qi,i “ I , and that if i ă j then pD´pr`1qN qi,j “ 0. If

i ą j, then

pD
´pr`1q
N qi,j “

i
ÿ

k“j

pD´rN qi,kpD
´1
N qk,j “

¨

˝

i
ÿ

k“j

ˆ

r ` i´ k ´ 1

r ´ 1

˙

˛

‚pPWiPWi´1 . . . PWj`1q.

(3.18)

The combinatorial identity
ři´j
k“0

`

r´1`k
k

˘

“
ři´j
k“0

`

r´1`k
r´1

˘

“
`

r`i´j
r

˘

, e.g., see page 1617 in [19],

shows that
ři
k“j

`

r`i´k´1
r´1

˘

“
ři
k“j

`

r´1`i´k
i´k

˘

“
ři´j
k“0

`

r´1`k
k

˘

“
`

r`i´j
r

˘

. In particular, (3.18)

reduces to pD´pr`1qN qi,j “
`

r`i´j
r

˘

pPWiPWi´1 . . . PWj`1q when i ą j.

Lemma 3.4.2. Fix σ P N, r P N, and define thlulPN, tnjurj“1, tdjurj“1 by (3.13) and (3.14). If

n ě nr ´ r ` 1, then

ˆ

r ` n´ 1

r ´ 1

˙

“

n
ÿ

l“1

ˆ

r ` n´ 1´ l

r ´ 1

˙

hl. (3.19)

Sketch of Proof. The result is contained in the proof of Proposition 6.1 in [19]. We provide a brief

summary since [19] proves a more general result.
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First, note that tnjurj“1 is an increasing sequence of strictly positive, distinct integers, which

satisfies the requirements of Proposition 6.1 in [19]. The final sentence in step (i) of the proof

Proposition 6.1 in [19] shows that

ˆ

n` r ´ 1

r ´ 1

˙

´
ÿ

njďn

dj

ˆ

n´ nj ` r ´ 1

r ´ 1

˙

“ gn,

where gn is given by (6.1) in [19]. Moreover, the first two sentences in step (ii) in the proof of

Proposition 6.1 in [19] give that gn “ p
śr
i“1 niqGpnq where Gpnq “ 0 whenever n ě nr ´ r` 1.

Finally, recalling the definition hl in (3.14) gives the desired conclusion.

3.5 Proof of Theorem 3.3.2

In this section we prove Theorem 3.3.2.

Step 1. We first show that the operators Hn,j :
ÀN

n“1Wn Ñ
ÀN

n“1Wn defined by (3.13), (3.14),

(3.16) satisfy (3.12) when σ P N is sufficiently large.

Note that fpxq “ coshpxq is decreasing on p0,8q and limxÑ0` coshpxq “ 1. Given ε ą 0, it

follows from (3.15) that there exists N0 “ N0pεq so that σ ą N0 implies

}h}`1 ă coshpπσ´1{2q ă 1` ε. (3.20)

By (3.16) we have

sup
ně1

L
ÿ

j“1

}Hn,j} “ sup
ně1

L
ÿ

j“1

}hjPWnPWn´1 . . . PWn´j`1} ď sup
ně1

L
ÿ

j“1

|hj | ď }h}`1 ă 1` ε. (3.21)

Step 2. Define the N ˆ N block operator GN “ pD´rN qpIN ´HN q. Using (3.5), (3.16), Lemma

3.4.1, and pGN qi,j “
řN
k“1pD

´r
N qi,kpIN ´HN qk,j it can be shown that

pGN qi,j “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´

`

r`i´j´1
r´1

˘

´
ři´j
l“1

`

r`i´j´l´1
r´1

˘

hl

¯

pPWiPWi´1 ¨ ¨ ¨PWj`1q if i ą j,

I if i “ j,

0 if i ă j.

(3.22)
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Let K “ nr ´ r ` 1. Lemma 3.4.2 shows that if i ´ j ě K then
`

r`i´j´1
r´1

˘

“

ři´j
l“1

`

r`i´j´l´1
r´1

˘

hl. This shows that GN is banded and satisfies

pGN qi,j “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´

`

r`i´j´1
r´1

˘

´
ři´j
l“1

`

r`i´j´l´1
r´1

˘

hl

¯

pPWiPWi´1 ¨ ¨ ¨PWj`1q if K ą i´ j ą 0,

I if i “ j,

0 otherwise.
(3.23)

Step 3. Recall that K “ nr ´ r` 1 and let Mr “
`

r`K´2
r´1

˘

. We next show that if 1 ď i, j ď N and

0 ă i´ j ă K then

}pGN qi,j} ď p2` εqMr. (3.24)

Since
`

r`m´2
r´1

˘

increases as m increases, it follows that if 0 ă i ´ j ă K then
`

r`i´j´1
r´1

˘

ď

`

r`K´2
r´1

˘

“Mr. Likewise, if 1 ď l ď i´ j ă K then
`

r`i´j´l´1
r´1

˘

ď
`

r`K´2
r´1

˘

“Mr. Also, recall

that by (3.20) we have }h}`1 ă 1` ε. So, if 0 ă i´ j ă K then (3.23) implies that

}pGN qi,j} ď

ˇ

ˇ

ˇ

ˇ

ˆ

r ` i´ j ´ 1

r ´ 1

˙ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

i´j
ÿ

l“1

ˆ

r ` i´ j ´ l ´ 1

r ´ 1

˙

hl

ˇ

ˇ

ˇ

ˇ

ˇ

ďMr `Mr

i´j
ÿ

l“1

|hl| ďMr `Mr}h}`1 ď p2` εqMr.

Step 4. Next, we prove that

sup
NąK

}GN} ď p2` εqMrK ă 8. (3.25)

Suppose that v P
ÀN

n“1Wn satisfies }v}2 “ 1. By (3.23), it follows that GNv satisfies

@ 1 ď n ď N, pGNvqn “

$

’

’

&

’

’

%

vn `
řn´1
k“1 Gn,kvk if 1 ď n ď K,

vn `
řn´1
k“n`1´K Gn,kvk if K ` 1 ď n ď N.

(3.26)

Using (3.24), (3.26), and noting that p2` εqMr ě 1, gives

}GNv}
2 “

K
ÿ

n“1

}vn `
n´1
ÿ

k“1

Gn,kvk}
2 `

N
ÿ

n“K`1

}vn `
n´1
ÿ

k“n`1´K

Gn,kvk}
2

16



ď p2` εq2M2
r

K
ÿ

n“1

˜

}vn} `
n´1
ÿ

k“1

}vk}

¸2

` p2` εq2M2
r

N
ÿ

n“K`1

˜

}vn} `
n´1
ÿ

k“n`1´K

}vk}

¸2

“ p2` εq2M2
r

»

–

K
ÿ

n“1

˜

n
ÿ

k“1

}vk}

¸2

`

N
ÿ

n“K`1

˜

n
ÿ

k“n`1´K

}vk}

¸2
fi

fl . (3.27)

Applying the Cauchy-Schwarz inequality to (3.27) gives

}GNv}
2 ď p2` εq2M2

r

«

K
ÿ

n“1

n
n
ÿ

k“1

}vk}
2 `

N
ÿ

n“K`1

K
n
ÿ

k“n`1´K

}vk}
2

ff

ď p2` εq2M2
rK

«

K
ÿ

n“1

n
ÿ

k“1

}vk}
2 `

N
ÿ

n“K`1

n
ÿ

k“n`1´K

}vk}
2

ff

. (3.28)

Next, a computation shows that

N
ÿ

n“K`1

n
ÿ

k“n`1´K

}vk}
2 “

K
ÿ

n“1

N´K`n
ÿ

k“n`1

}vk}
2. (3.29)

Combining (3.28) and (3.29) completes the proof

}GNv}
2 ď p2` εq2M2

rK
K
ÿ

n“1

N´K`n
ÿ

k“1

}vk}
2 ď p2` εq2M2

rK
2
N
ÿ

k“1

}vk}
2 “ p2` εq2M2

rK
2.

3.6 Reconstruction and error bounds

In this section, we describe the choice of left inverse L used for the reconstruction step (3.4).

Combining the error expression (3.6) with the rth order condition (3.10) gives

x´ rx “ LpIN ´HN qv “ LDr
NGNv. (3.30)

If T : Rd Ñ
ÀN

n“1Wn is the analysis operator of the unweighted fusion frame tWnu
N
n“1, we seek

a left inverse L :
ÀN

n“1Wn Ñ Rd that satisfies LT “ I and for which the quantization error in

(3.30) is small.

By the stability result in Theorem 3.2.1, the state variable v satisfies }v}8 ď C ă 8 and

}v} ď
?
N}v}8. Also, the rth order condition (3.11) ensures that C 1 “ supN }GN} ă 8 is finite.
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So

}x´ rx} ď }LDr
NGN} }v}

ď }LDr
N} }GN} }v}

ď C 1
?
N }LDr

N}}v}8

ď C 1C
?
N}LDr

N}. (3.31)

In view of (3.31), the work in [24] selected L as a left inverse to T that makes }LDr
N} small.

The rth order Sobolev left inverse is defined by

Lr,Sob “ ppD´rN T q˚D´rN T q´1pD´rN T q˚D´rN . (3.32)

It is easily verified that Lr,Sob T “ I; see [24] for further discussion of Sobolev duals in the setting

of fusion frames.

In general, it can be difficult to bound the operator norm }LDr
N} in (3.31). It would be interest-

ing to find quantitative bounds on }LDr
N} when L is the Sobolev left inverse for nicely structured

classes of deterministic or random fusion frames. For perspective, [6, 16, 21, 26, 31] provides anal-

ogous bounds for the scalar-valued setting of frames, and [24] contains examples for fusion frames

when L is the canonical left inverse.

18



CHAPTER 4

Numerical experiments

This section contains two numerical examples which illustrate the performance of the low-bit

fusion frame Sigma-Delta algorithm. For each N ě 3, define the unit-vectors tϕNn u
N
n“1 Ă R3 by

ϕNn “

ˆ

1?
3
,

b

2
3 cosp2πnN q,

b

2
3 sinp2πnN q

˙

,

and define the unweighted fusion frame WN “ tW
N
n u

N
n“1 by

WN
n “ tx P R3 : xx, ϕNn y “ 0u.

For each fixed N ě 3, tWN
n u

N
n“1 is an unweighted tight fusion frame for R3 with fusion

frame bound A “ AN “ 2N
3 , e.g., see Example 1 in [24]. Moreover, the vectors eN1,n “

`

0, sinp2πnN q,´ cosp2πnN q
˘

and eN2,n “
b

1
3

`

´
?

2, cosp2πnN q, sinp2πnN q
˘

form an orthonormal basis

for WN
n .

Let AN
n ĂWN

n be the low-bit quantization alphabet given by Lemma 2.3.1. Since dimpWN
n q “

2, each alphabet AN
n contains 3 elements, and can be defined by

AN
n “

"

eN1,n,

ˆ

´
1

2
eN1,n `

?
3

2
eN2,n

˙

,

ˆ

´
1

2
eN1,n ´

?
3

2
eN2,n

˙*

.

Let Qn be a vector quantizer associated to AN
n by (2.1).

4.1 Example 1 (second order algorithm)

This example considers the performance of the second order fusion frame Sigma-Delta algo-

rithm. By Theorems 3.2.1 and 3.3.2 we can choose appropriate σ and h, as in Section 3.3, to ensure

that the algorithm (3.2), (3.3) is stable and second order. In Theorem 3.2.1, let δ “ 0.1, so that

α1 « 1.1015 and α2 « 1.2198 allows us to pick α “ 1.101. Using (3.15) and (3.21), the condition

supně1
řL
j“1 }Hn,j} ď }h}`1 ă α will be satisfied if πσ´1{2 “ cosh´1pαq “ lnpα`

?
α2 ´ 1q ď
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0.4458, which occurs when σ ě 49.67. We pick σ “ 50, so that (3.13) gives n1 “ 1, n2 “ 51, and

(3.14) gives

hj “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n2
n2´n1

“ 51
50 if j “ n1,

n1
n1´n2

“ ´ 1
50 if j “ n2,

0 otherwise.

(4.1)

The second order low-bit Σ∆ quantization algorithm takes the following form

qNn “ Qn

˜

yNn ` h1PWN
n
pvNn´1q ` hn2

n2´1
ź

k“0

PWN
n´k
pvNn´n2

q

¸

, (4.2)

vNn “ yNn ´ q
N
n `

˜

h1PWN
n
pvNn´1q ` hn2

n2´1
ź

k“0

PWN
n´k
pvNn´n2

q

¸

. (4.3)

Let x “ p 1
25 ,

π
57 ,

1
2
?
57
q and define the fusion frame measurements by yNn “ PWN

n
pxq. Note that

}yn} ď }x} ď δ. Run the second order low-bit fusion frame Sigma-Delta algorithm with inputs

tyNn u
N
n“1, to obtain the quantized outputs qN “ tqNn u

N
n“1.

Let TN be the analysis operator for the unweighted fusion frame tWN
n u

N
n“1. The canonical left

inverse of TN is LN “ S´1N T ˚N “ pA´1N IqT ˚N “ A´1N T ˚N . Since the fusion frame is tight with

bound AN “ 2N{3, it follows that LN “ 3
2N T

˚
N , e.g., [24]. Also let LN2,Sob be the second order

Sobolev left inverse of TN , as defined in (3.32). Consider the following two different methods of

reconstructing a signal from qN

rxN “ LN pqN q and rxN,Sob “ LN2,SobpqN q.

Figure 4.1 shows log-log plots of }x´rxN} and }x´rxN,Sob} againstN . For comparison, log-log

plots of 2{N and 100{N2 against N are also given.

4.2 Example 2 (third order algorithm)

We consider the same experiment as in Example 1, except that we use an algorithm of order

r “ 3.

We again use the parameters δ “ 0.1 and σ “ 50. Using (3.13) with σ “ 50 and r “ 3 gives
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Figure 4.1: Error for the second order algorithm in Example 1.

n1 “ 1, n2 “ 51, n3 “ 201 and

hj “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

n2n3
pn2´n1qpn3´n1q

if j “ n1,

n1n3
pn1´n2qpn3´n2q

if j “ n2,

n1n2
pn1´n3qpn2´n3q

if j “ n3,

0 otherwise.

(4.4)

The third order low-bit fusion frame Sigma-Delta quantization algorithm takes the following form

qNn “ Qn

˜

yNn ` h1PWN
n
pvNn´1q ` hn2

n2´1
ź

k“0

PWN
n´k
pvNn´n2

q ` hn3

n3´1
ź

k“0

PWN
n´k
pvNn´n3

q

¸

, (4.5)

vNn “ yNn ´ q
N
n `

˜

h1PWN
n
pvNn´1q ` hn2

n2´1
ź

k“0

PWN
n´k
pvNn´n2

q ` hn3

n3´1
ź

k“0

PWN
n´k
pvNn´n3

q

¸

.

(4.6)
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Figure 4.2: Error for the third order algorithm in Example 2.

Let x “ p 1
25 ,

π
57 ,

1
2
?
57
q, and use the third order fusion frame Sigma-Delta algorithm with inputs

tyNn u
N
n“1 to obtain the quantized outputs qN “ tqNn u

N
n“1. For the reconstruction step, let LN “

3
2N T

˚
N be the canonical left inverse of TN and let LN3,Sob be the third order Sobolev left inverse of

TN , as defined in (3.32). We consider the following two different methods of reconstructing a signal

from qN

rxN “ LN pqN q and rxN,Sob “ LN3,SobpqN q.

Figure 4.2 shows log-log plots of }x´rxN} and }x´rxN,Sob} againstN . For comparison, log-log

plots of 2{N and 104{N3 against N are also given.
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CHAPTER 5

Outlook

In this paper we have discussed higher order Sigma-Delta modulators for fusion frame measure-

ments and proved their stability. As for finite frames, the reconstruction accuracy of such approaches

will depend on the fusion frame under consideration. In particular, we expect that for certain adver-

sarial fusion frame constructions, only very slow error decay can be achieved.

On the other hand, our numerical experiments in the previous section show that for certain

deterministic fusion frames the error decays polynomially of an order that corresponds to the order

of the Sigma-Delta scheme. For random frames, such error bounds have been established with

high probability [21, 27, 16]. These result have important implications for compressed sensing

with random measurement matrices. Given that the theory of compressed sensing generalizes to the

setting of fusion frames [9], and there exists analysis of random fusion frames which parallels the

restricted isometry property [7]; it will be interesting to understand if the aforementioned results

generalize to the stable low-bit rth order fusion frame Sigma-Delta algorithms discussed in this

paper, or whether modifications are necessary. The crucial quantity to estimate is the last factor

in (3.31) for the Sobolev dual of a random fusion frame. In any case, we expect that the stability

analysis provided in this paper will be of crucial importance even in the latter case.

5.1 Experiments of random fusion frames

In this section, we will do numerical experiments when we take random fusion frames. We

consider the same experiment as in Example 1 and Example 2, except that we take random frames.

We again use the parameters δ “ 0.1 and σ “ 50. First we will do the experiment when r “ 2,

then we have another figure when r “ 3. ni are still calculated as in previous examples and hj , qNn

and vNn are again calculated by formula (8.1), (4.5) and (4.6).

Let x “ p 1
25 ,

π
57 ,

1
2
?
57
q, and use the fusion frame Sigma-Delta algorithm with inputs tyNn u

N
n“1

to obtain the quantized outputs qN “ tqNn u
N
n“1. For the reconstruction step, let LN be the canonical

left inverse of TN and let LN2,Sob or LN3,Sob be the second or third order Sobolev left inverse of TN .
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Figure 5.1: Error for the second order random frames in section 5.1.

We consider the following two different methods of reconstructing a signal from qN

rxN “ LN pqN q and rxN,Sob “ LN2,SobpqN q or LN3,SobpqN q.

Figure 5.1 and Figure 5.2 shows log-log plots of }x ´ rxN} and }x ´ rxN,Sob} against N . For

comparison, log-log plots of 1{10 and 1{N1{2 against N are also given.
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Figure 5.2: Error for the third order random frames in section 5.1.
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CHAPTER 6

Introduction: Hypergraph Signal Processing and Applications

The second part of this thesis is on hypergraph signal processing.

Hypergraphs are a generalization of the concept of graphs. In mathematics, a graph is a structure

for some objects in which some pairs of the objects have some kind of relation. We use vertices

(sometimes also called as nodes or points) to denote the objects and edges to denote such relations.

It can be written as G “ pV,Eq, where G corresponds to the graph, V corresponds to the vertices

and E corresponds to the edges. More precisely, V “ tv1, v2, . . . , vnu, where vi is one vertex, and

E Ă tpvi, vjq|pvi, vjq P V
2 and 1 ď i, j ď n, i ‰ ju, where pvi, vjq is one edge. We can use a

nˆ n matrix to formulate the graph A “ tpai,jqu where ai,j P t0, 1u when i ‰ j, and ai,i “ 0. So

ai,j “ 1 means objects i has relation i with j and they share an edge.

Graphs are a very powerful tool in discrete mathematics because they can model the relations

between discrete objects, such as social networks (where each person or organization is one vertex),

digital maps (i.e. google map, where each building is one vertex) or review systems (where each

product and each customer could be one vertex). We can modify a simple graph to allow the graph

to contain some more complicated information, like letting wi,j be a positive number associated

to each edge to include the weights, which can represent the importance for the relation, or letting

ai,j ‰ 0 but aj,i “ 0 to give a direction between the objects.

However, there are situations where more than two objects have relations. In this situation, a

model of graph may lose some very important information. For example, suppose we want to use a

graph to describe relation between books, and if two books belong to same category, they share an

edge. Now suppose we have three books, where book 1 and book 2 are history, book 2 and book

3 are politics, book 1 and book 3 are science. Then we will have a fully connected graph of three

vertices. Consider another case, where book 1, book 2 and book 3 all belong to history. In this case,

we also get a fully connected graph. These two cases would generate the same graph, but they are

in fact have totally different meanings.

For hypergraphs, we require the concept of hyperedge rather than edge. A hyperedge is a set
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of vertices that share some common relations, in contrast, an edge is only a set of two vertices. So

we can use the same notations and also denote a hypergraph as G “ pV,Eq, where V is the set of

vertices and E is the set of hyperedges. V “ tv1, v2, . . . , vnu, where vipi “ 1, . . . , nq is one vertex,

and E “ te1, e2, . . . , emu, where ei is one hyperedge and consists of a set of vertices. A weighted

hypergraph G “ pV,E,wq, where w “ twpequ, is a hypergraph that has a positive number wpeq

associated with each hyperedge e. If we do a simple math, we can see for an undirectioned graph,

there would be at most npn´1q{2 edges, but for a hypergraph graph, there would be at most 2n´1

hyperedges. So a hypergraph can take more information than a graph. Besides, if all hyperedges

only contains exactly two vertices, a hypergraph is the same as a graph.

Here we are going to introduce some more notation for hypergraphs.

• A hypergraph G can be represented by a |V | ˆ |E| matrix H , hpv, eq “ 1 if v P e and 0

otherwise.

• For a vertex v P V , the corresponding degree is defined as dpvq “
ř

tePE|vPeuwpeq “

ř

ePE hpv, eqwpeq.

• For a hyperedge e P E, the corresponding degree is defined as δpeq “ |e|, i.e., number of

vertices contained in this hyperedge. It is also δpeq “
ř

vPV hpv, eq.

• Dv andDe can denote the diagonal matrix containing the vertex degree and hyperedge degree.

Obviously, Dv is |V | ˆ |V | and De is |E| ˆ |E|.

• W can denote the diagonal matrix containing the weights wpeq of each hyperedge. So W is

|E| ˆ |E|.

• The weighted adjacency matrix A of hypergraph G “ pV,E,W q can be defined as A “

HWHT . Then A would be |V | ˆ |V |.

We consider the question of how to adapt tools from classical signal processing to the setting of

hypergraphs. We focus on the following three methods: diffusion maps, wavelets, and the empirical

mode decomposition (EMD).

Diffusion maps are a dimensionality reduction or feature extraction algorithm proposed by Coif-

man and Lafon [reference]. It could embed data into Euclidean space, i.e., representing weighted
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graph G “ pV,E,W q in Rd. The coordinates of the embedding given by diffusion map usually

come from eigenvectors and eigenvalues of a diffusion operator. Other dimensionality reduction

methods, such as principal component analysis (PCA), take advantage of linear transforms. How-

ever, diffusion maps are a non-linear method. It tries to discover the underlying manifold where the

data comes from.

Many signal processing techniques are based on transform methods. In many fields, Fourier

transforms, which can decompose a continuous time signal into sines and cosines, are widely used.

The wavelet transform is similar to the Fourier transform with a completely different basis function.

The wavelet transform is more powerful in some sense by using functions that are localized in both

the time and frequency. It is a mapping from L2pRq Ñ L2pR2q. We can write a continuous wavelet

transform Ws of signal fpxq as

Wf pa, bq “ă ψa,b, f ą“

ż 8

´8

fpxqa´1ψ˚p
x´ b

a
qdx

where ψ is the wavelet function, a is dilation term and b is translation term and

ψa,bpxq :“
1

|a|
ψp
x´ b

a
q.

The Empirical mode decomposition (EMD) is another transform method. A big difference

between EMD and the wavelet transform or Fourier transform is that EMD can break down a signal

without leaving the time domain. It is very helpful when we analyze natural signals. Because

natural time series are often generated by multiple causes, and each of these causes may occur

at different time intervals. EMD can decompose this kind of data easily and clearly, whereas the

Fourier transform or wavelet transform cannot.

The EMD will break down a signal into its component intrinsic mode functions (IMFs). For a

given signal fpxq P L2pRq, the operator Srf s can be defined by the following steps:

‚ Find all extrema of fpxq.

‚ Use a cubic spline to interpolate minima, write the interpolation function as eminpxq; similarly

interpolate maxima and get emaxpxq.

‚ Take the mean of the two interpolation functions mpxq “ peminpxq ` emaxpxqq{2.
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‚ The remaining part of the signal is Srf spxq “ fpxq ´mpxq.

The above steps would be repeated until some conditions are met. Suppose it terminates after n

iterations, we would have d1rf spxq “ Snrf spxq and m1rf spxq “ fpxq ´ d1rf spxq. d1rf spxq here

is an oscillatory signal called as an intrinsic mode function (IMF). It can be shown that [34] an IMF

has only one extrema between zero crossings, and has a mean value of zero. If we do not stop with

m1rf spxq, we can get m1rf spxq “ m2rf spxq ` d2rf spxq and so on. At last, we can represent fpxq

as

fpxq “ mKrf spxq `
K
ÿ

k“1

dkrf spxq.
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CHAPTER 7

Diffusion Map, Wavelet and Empirical Mode Decomposition

In this chapter, we will construct diffusion maps, wavelet, and the emperical mode decomposi-

tion on hypergraphs.

7.1 Diffusion maps on hypergraphs

Given hypergraph G “ pV,E,wq, again, here we want to embed the hypergraph to Euclidean

space Rd. Consider a random walk on the vertices of V with transition probabilities

ProbtXpt` 1q “ j|Xptq “ iu “

ř

ePE hpvi, eqwpeq
1
|e|hpvj , eq

dpviq
.

The explanation for this formula can be, if we start from vertex vi, we can look at all hyperedges

that vi is in. Next, because each hyperedge may contain more two vertices, if e contains vertex

vj , we need to normalize the probability by dividing |e|, since we may walk to other vertices. Of

course, we need to have the weight of e in the denominator. Let M be the matrix of probabilities,

Mi,j “

ř

ePE hpvi, eqwpeq
1
|e|hpvj , eq

dpviq
.

It is straightforward to see Mi,j ě 0 and

pM1qi “

ř

ePE hpvi, eqwpeq
ř

1ďjď|V |
1
|e|hpvj , eq

dpviq
“

ř

ePE hpvi, eqwpeq

dpviq
“ 1.

where 1 is a vector with each entry has value 1. So the above definitions are valid. We can write M

as M “ D´1v HWD´1e HT .

If we start the random walk at vertex vi at time t0 “ 0, then at time point t, the probability of

ending at vertex vj would be

ProbtXptq “ j|Xp0q “ iu “M tri, js.
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Of course, we can map vi to the probability cloud M tri, :s. This could be an embedding from the

hypergraph onto the Euclidean space Rd. However, it requires d “ |V |, which could be unaccept-

ably large. We want to use spectral methods to reduce the dimensionality. Unfortunately M is not

symmetric, so we need to find an alternative that is similar to M and is symmetric. Define

S “ D
1
2
vMD

´ 1
2

v “ D
´ 1

2
v HWD´1e HTD

´ 1
2

v .

It is not hard to verify S is a symmetric matrix. Consider the spectral decomposition of S. Then

S “ UΛUT , where U “ ru1, . . . , u|V |s satisfies the property UTU “ I|V |ˆ|V | and Λ is a diagonal

matrix with Λi,i “ λi. Here we can assume tλiu are ordered that λ1 ě λ2 ě ¨ ¨ ¨ ě λ|V |. So we can

write M as

M “ D
´ 1

2
v SD

1
2
v “ pD

´ 1
2

v UqΛpD
1
2
v Uq

T “ ΦΛΨT .

where Φ “ D
´ 1

2
v U “ rφ1, φ2, . . . , φ|V |s and Ψ “ D

1
2
v U “ rψ1, ψ2, . . . , ψ|V |s. Here Φ and Ψ

build a biorthogonal system such that ΦTΨ “ ΨTΦ “ I|V |ˆ|V |. We also have Mφk “ λkφk and

ψTkM “ λkψ
T
k , thus

M “

|V |
ÿ

k“1

λkφkψ
T
k .

and after t steps,

M t “

|V |
ÿ

k“1

λtkφkψ
T
k .

Then we can construct a map from a vertex in the hypergraph to Rd:

vi ÞÑM tri, :s “

|V |
ÿ

k“1

λtkφkpiqψ
T
k .

If we use the set tψku as the basis, we have

vi ÞÑM tri, :s “
“

λt1φ1piq, λ
t
2φ2piq, . . . , λ

t
|V |φ|V |piq

‰T
.

Proposition 7.1.1. All eigenvalues λk of M have property that |λk| ď 1.

Proof. For any eigenvalue λk, let φk be the corresponding eigenvector. Suppose ik is the index for
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which |φkpikq| ě |φkpjq| for all j ‰ ik. Then,

|λkφkpikq| “ |Mφkpikq| “ |

|V |
ÿ

j“1

Mik,jφkpjq| ď

|V |
ÿ

j“1

|Mik,j ||φkpikq| “ |φkpikq|.

The last equality is because M1 “ 1. So |λk| ď 1.

Again byM1 “ 1, we could conclude λ1 “ 1. So we do not need to look at the first eigenvector.

Definition 7.1.2 (Diffusion Map). Given a hypergraph G “ pV,E,wq and an interger d, we can

construct M and have a map from the hypergraph to a d-dimensional Euclidean space, the map is

ft : V Ñ Rd, where

f
pdq
t pviq “

“

λt2φ2piq, λ
t
3φ3piq, . . . , λ

t
d`1φd`1piq

‰T
.

when d “ |V | ´ 1, this is a diffusion map, and when d ă |V | ´ 1, this is truncated diffusion map.

7.2 Spectral hypergraph wavelet transform

Let G “ pV,E,wq be a given hypergraph. For a vertex subset S Ă V and the compliment Sc.

Similar to the cut in a graph, a cut in a hypergraph is also to partition of V into subsets S and Sc.

If a hyperedge e contains vertices from both S and Sc, we say e is a cut. The boundary of S can be

defined as

BS “ te P E|eX S ‰ H, eX Sc ‰ Hu.

In another word, BS is the set of all cuts. Similar to the volume in a graph, a volume of S in a

hypergraph is the sum of the degrees of the vertices in S, which is volS “
ř

v P Sdpvq. So the

volume of the boundary of S is

volBS “
ÿ

ePBS

wpeq
|eX S||eX Sc|

δpeq
.

If we take a hyperedge e P E as a fully connected subgraph (W pv, uq “ 1 for any v, u P e),
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then the cut in the graph view is

cutpeX S, eX Scq “
ÿ

vPeXS,uPeXSc

W pv, uq “ |eX S||eX Sc|.

Then the hypergraph cut HcutpS, Scq :“
ř

ePE cutpeXS, eXScq “
ř

ePE |eXS||eXS
c|. Suppose

we take the same weight wpeq{δpeq for all edges in this fully connected subgraph, cutpe X S, e X

Scq “ wpeq |eXS||eXS
c|

δpeq . Then we get

volBS “
ÿ

ePBS

cutpeX S, eX Scq.

By symmetry, it is not hard to see that volBS “ volBSc. Similar to the Ncut in a graph, Ncut in

a hypergraph could be defined as

NcutpS, Scq :“
ÿ

ePE

ˆ

cutpeX S, eX Scq
volS

`
cutpeX Sc, eX Sq

volSc

˙

“
ÿ

ePE

cutpeX S, eX Scq
ˆ

1

volS
`

1

volSc

˙

“volBS
ˆ

1

volS
`

1

volSc

˙

.

Consider an optimization problem

argminH‰SĂV NcutpS, Scq (7.1)

This problem (7.1) is NP-hard, we can relex it as

argminf
1

2

ÿ

ePE

ÿ

v,uPe

wpeq

δpeq

˜

fpvq
a

dpvq
´

fpuq
a

dpuq

¸2

subject to
ÿ

vPV

f2pvq “ 1,
ÿ

vPV

fpvq
a

dpvq “ 0.

In Section 7.1, we defined M “ D´1v HWD´1e HT and a similar symmetric alternative to M as
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S “ D
1
2
vMD

´ 1
2

v “ D
´ 1

2
v HWD´1e HTD

´ 1
2

v . Define ∆ “ I ´ S, it could be shown that

ÿ

ePE

ÿ

v,uPe

wpeq

δpeq

˜

fpvq
a

dpvq
´

fpuq
a

dpuq

¸2

“ 2fT∆f. (7.2)

Then the normalized hypergraph Laplacian matrix is defined as

Lsym :“ I ´D´1{2v HWD´1e HTD´1{2v ,

We also define the unnormalized hypergraph Laplacian matrix as

L “ D1{2
v LsymD

1{2
v “ Dv ´HWD´1e HT .

The Fourier transform is defined by

fpxq “
1

2π

ż

Td

f̂pωqeiωxdω “ă
1

2π
e´iωx, f̂ ą,

f̂pωq “

ż

Td

fpxqe´iωxdx “ă eiωx, f ą .

In fact, we can notice that d
dx2
peiωxq “ ´ω2peiωxq, so eiωx is eigenfunction of Laplacian operator

d
dx2

. Similarily, we can define hypergraph Fourier transform.

f̂plq “ă χl, f ą“
N
ÿ

n“1

χ˚l pnqfpnq,

fpnq “ă χ˚l , f̂ ą“
N´1
ÿ

l“0

χlpnqf̂plq,

where L is the symmetric hypergraph Laplacian matrix, and χl pl “ 0, . . . , N ´ 1q are eigenfunc-

tions to eigenvalues λl,

Lχl “ λlχl.

If we consider Φ as the eigenfunction matrix, i.e. Φ “ pχlql“1,...,N , then Φ is an unitary matrix.

Also if one treats f, f̂ as two N ˆ 1 vectors, then we can arrange the hypergraph Fourier transform
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in matrix form as

f̂ “ Φ˚f,

f “ Φf̂ .

Theorem 7.2.1. The Parseval relation holds for the hypergraph Fourier transform, in particular for

any f, g P RN

ă f, g ą“ă f̂ , ĝ ą .

Proof.

ă f̂ , ĝ ą“ f̂˚ĝ “ pΦ˚fq˚Φ˚g “ f˚ΦΦ˚g “ f˚g “ă f, g ą

The spectral hypergraph wavelet transform will be determined by the choice of a kernel function

g : R` Ñ R`, which is analogous to ψ̂˚. This kernal g should behave as a band-pass filter, i.e.

gp0q “ 0 and limxÑ8 gpxq “ 0. Recall ψ̂p0q “
ş8

´8
ψptqdt “ 0 is the admissibility condition.

Lemma 7.2.2. For the spectral hypergraph wavelet kernel g, the wavelet operator Tg “ gpLq acts

on a given function f by

pyTgfqplq “ gpλlqf̂plq.

Proof. Since gpLqf “ diagtgpλ0q, . . . , gpλN´1quf , then

{gpLqf “ diagtgpλ0q, . . . , gpλN´1quf̂ .

Applying the inverse Fourier transform to yTgf , we have

pTgfqpmq “
N´1
ÿ

l“0

gpλlqf̂plqχlpmq.

The wavelet operator at scale t is defined by T tg “ gptLq. Note: even though the domain on a

hypergraph is discrete, since the kernel g is continuous, the scaling tmay be defined for any positive

number t ą 0.
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The spectral hypergraph wavelets can be realized as through localizing these operators by ap-

plying them to the impulse on a single vertex, so on a hypergraph domain, we have

ψt,npmq “ T tgδnpmq “
N´1
ÿ

l“0

gptλlqδ̂nplqχlpmq

“

N´1
ÿ

l“0

gptλlq

˜

N
ÿ

m“1

χ˚l pmqδnpmq

¸

χlpmq “
N´1
ÿ

l“0

gptλlqχ
˚
l pnqχlpmq.

Again, define the analogous spectral hypergraph wavelet transform as follows,

Wf pt, nq “ă ψt,n, f ą .

Lemma. If nˆ n matrix A is symmetric, then eigenvectors corresponding to different eigenvalues

are orthogonal.

Proof. Suppose χ1, χ2 are two eigenvectors corresponding to λ1, λ2 and λ1 “ λ2, then

λ1χ
˚
1χ2 “ pAχ1q

˚χ2 “ χ˚1pAχ2q “ χ˚1pλ2χ2q “ λ2χ
˚
1χ2.

Because of the orthogonality of tχlu, we can express the spectral hypergraph wavelet transform

explicitly,

Wf pt, nq “ pT
t
gfqpnq “ă ψt,n, f ą

“

N
ÿ

m“1

ψ˚t,npmqfpmq

“

N
ÿ

m“1

ψ˚t,npmq

˜

N´1
ÿ

l“0

f̂plqχlpmq

¸

“

N
ÿ

m“1

˜

N´1
ÿ

l“0

gptλlqχ
˚
l pnqχlpmq

¸˚˜N´1
ÿ

l“0

f̂plqχlpmq

¸

“

N
ÿ

m“1

˜

N´1
ÿ

l“0

gptλlqχlpnqχ
˚
l pmq

¸˜

N´1
ÿ

l“0

f̂plqχlpmq

¸

“

N
ÿ

m“1

N´1
ÿ

l“0

N´1
ÿ

l1“0

gptλlqχlpnqχ
˚
l pmqf̂pl

1qχl1pmq
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“

N´1
ÿ

l“0

N´1
ÿ

l1“0

˜

N
ÿ

m“1

gptλlqχlpnqχ
˚
l pmqf̂pl

1qχl1pmq

¸

“

N´1
ÿ

l“0

N´1
ÿ

l1“0

gptλlqχlpnqf̂pl
1q1lpl

1q

“

N´1
ÿ

l“0

gptλlqf̂plqχlpnq.

7.3 Hypergraph Empirical Mode Decomposition

Let G “ pV,E,wq be given hypergraph and f be a signal defined on V . Then a node i is a

local maxima if for all its neighbors j in G, fpiq ą fpjq. A node i is a local minima if for all its

neighbors j in G, fpiq ă fpjq.

In last section, we defined the unnormalized hypergraph Laplacian matrix as L “ Dv ´

HWD´1e HT and the normalized hypergraph Laplacian matrix as Lsym :“ D
´1{2
v LD

´1{2
v . In

this section, we will simply use L as either of the unnormalized hypergraph Laplacian matrix or the

normalized hypergraph Laplacian matrix.

Next, we will try to interpolate these minima and maxima to get emin and emax. Let B be the

sets of nodes where the signal is known and U be the sets of nodes where the signal is unknown.

Then will will solve a Dirichlet problem on the hypergraph. Because of formula (7.2), the problem

is finding s that minimizes sTLs with restriction spbq “ sBpbq for b P B. We can re-order the nodes

and write L as

¨

˚

˝

LB R

RT LU

˛

‹

‚

. Then the Dirichlet problem is reduced as a problem solving a linear

system LUsU “ ´R
T sB .

Definition 7.3.1 (Hypergraph Empirical Mode Decomposition). Like the traditional EMD, HEMD

will break down a signal into its component intrinsic mode functions (IMFs). For a given signal

f P V q, the operator Srf s can be defined as following steps:

‚ Find all extrema of fpiq, i P V .

‚ Use the interpolate method introduced above, write the interpolation function as eminpiq and

emaxpiq.

‚ Take the mean of the two interpolation functions mpiq “ peminpiq ` emaxpiqq{2.

‚ The remaining part of the signal is Srf spiq “ fpiq ´mpiq.
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The above steps would be repeated until some criteria conditions are met. At last, we can

decompose f into

fpiq “ mKrf spiq `
K
ÿ

k“1

dkrf spiq.
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CHAPTER 8

Experiments

In this chapter, we will test our proposed algorithms on some data sets.

8.1 Diffusion Map

In this section, we use a dataset consists of 101 animals from a zoo(from UCI machine learning,

link: https://www.kaggle.com/uciml/zoo-animal-classification). There are 16 different variables

with various traits to describe the animals. Here are a list for these traits:

name of attribute type of value domain

hair Boolean

feathers Boolean

eggs Boolean

milk Boolean

airborne Boolean

aquatic Boolean

predator Boolean

toothed Boolean

backbone Boolean

breathes Boolean

venomous Boolean

fins Boolean

legs Numeric (set of values: 0,2,4,5,6,8)

tail Boolean

domestic Boolean

catsize Boolean

Each of the animal belongs to one of the categories, which are mammal, bird, reptile, fish,

amphibian, bug and invertebrate. Our goal will be, based on these traits, trying to predict the
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Figure 8.1: Visualization of Truncated Diffusion Map in section 8.1.

classification of the animal.

Based on the data, we can build a hypergraph with 101 vertices and 36 hyperedges. 30 of the

hyperedges come from the Boolean value variables. For example, one hyperedge would be the set

of animals with hair and another hyperedge would be the set without hair. 6 of the hyperedges come

from the variable ‘legs’. For example, one hyperedge could be the set of animals with 0 leg. Then

we can build our diffusion map as described before. Usually, we can take some small integer d and

have the corresponding truncated diffusion map. A visualization of truncated (d “ 2) diffusion map

is shown in Figure 8.1.

At last, we can use some unsupervised classification algorithms, such as KNN or SVM, to make

the classification.

8.2 Wavelet

When the wavelet kernel g is carefully chosen, the spectral hypergraph wavelet transform would

perform localization in good scales. In our experiments, we take our wavelet kernel function as
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gpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x for x ă 1

´5` 11x´ 6x2 ` x3 for 1 ď x ď 2

1
x for x ą 2.

(8.1)

The wavelet scales tj will be picked between t1 and tJ , in which t1 and tJ will be determined

by the values of the hypergraph Laplacian L. Suppose λmax is the largest eigenvalue of L and

λmin “
λmax
K , where K is a parameter for the wavelet transform. Pick t1 “ 2

λmin
and tJ “ 1

λmax
.

Then the function gpt1xq has decay for x ą λmin and gptJxq has linear for x ă λmax.

8.2.1 Swiss Roll

In the first example, we will make the spectral hypergraph wavelet transform on a Swiss roll

data cloud. The data points are generated by a map R2 Ñ R3 : ps, tq ÞÑ
´

tcosptq
4π , s, tsinptq

4π

¯

, where

ps, tq is uniformily random distributed on r´1, 1s ˆ rπ, 4πs. We will generate 400 points for our

experiment.

Each point would be one vertex in our hypergraph. We then will construct same number of

hyperedges as the number of vertices. For each vertex vi, the corresponding hyperedge evi contains

itself vi and vertices vj if dpvi, vjq ă D, where D ą 0. Then we could get the matrix H . The

weight matrix is I400ˆ400, which means the hypergraph is unweighted.

Suppose the original siginal is a Dirac delta function on one node of the Swiss roll. Figure 8.2

shows the wavelets with J “ 3 scales and K “ 20.

8.2.2 Minnesota Road Hypergraph

In this example, we build a hypergraph of Minnesota road network. The original data is a graph,

so we generate the hypergraph from the original graph. First, we take all vertices in the graph

as the vertices in the hypergraph. Here each vertex stands one town or one intersection of roads.

Second, we construct one hyperedge for each vertex vi. The hyperedge consists 1), vi, 2); vj if

dpvi, vjq ă D; 3), vi and vj share a edge in the graph.
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Figure 8.2: Spectral hypergraph wavelet transform on a Swiss roll in section 8.2.1.
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Figure 8.3: Spectral hypergraph wavelet transform on Minnesota road map in section 8.2.2.

Suppose the original siginal is a Dirac delta function on one node of the Minnesota road. Figure

8.3 shows the wavelets with J “ 3 scales and K “ 100.

8.3 Hypergraph Empirical Mode Decomposition

Suppose there are N “ 1600 sensors uniformly randomly distributed on the 2D manifold

r0, 1s ˆ r0, 1s. Let’s assume the orignal signal was a superposition of two sine waves. Then there

would be three parts including the noise: 1), f1px, yq “ sinp7
?

2π|x` y|q, which is a sine function

with an angle π{4 with the horizontal; 2), f2px, yq “ 2sinp4πxqwhich is a horizontal sine function;

3), a uniform noise from r´0.5, 0.5s.

Each sensor would be one vertex in our hypergraph. We then will construct same number of

hyperedges as the number of vertices. For each vertex vi, the corresponding hyperedge evi contains
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itself vi and vertices vj if dpvi, vjq ă D, where D “ 0.025 in our example.

Figure 8.4 shows the first two IMFs and the residue of the Hypergraph EMD algorithm.
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Figure 8.4: Hypergraph EMD on sensor network. Left column: the original signal and its three
components. Right column: the first two IMFs and the residue which is uncovered by HEMD in
section 8.3.
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