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CHAPTER 1 

INTRODUCTION 

Written symbols are ubiquitous in our everyday lives and integral to the functioning of 

modern societies. Mastering symbolic notations for numbers (e.g., Arabic numerals) and one’s 

native language (e.g., Roman letters) are critical developmental milestones which lay a 

foundation for both academic success and personal well-being (G. J. Duncan et al., 2007; Geary, 

2011; OECD, 2016; Parsons & Bynner, 2005; Undheim, 2003). The neurobiological basis of 

symbol use, and particularly the development of these mechanisms, however, remains poorly 

understood. The capacities for quantity perception and vocal communication are shared across 

many species (Hauser, Chomsky, & Fitch, 2010; Nieder, 2016), but the use of arbitrary signs to 

denote numerical quantities and speech sounds is an evolutionarily recent human invention 

(Dehaene & Cohen, 2007; Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015; 

Nissen, 1986). Remarkably, the brain areas that come to support numeral and letter recognition 

are spatially segregated and consistently localized in the adult occipitotemporal cortex (L. Cohen 

& Dehaene, 2004; Shum et al., 2013). Symbol processing provides a model system for 

investigating the plasticity and innateness of brain function. How do novel and necessarily 

learned abilities come to engage different areas of the brain? What constrains the localization of 

these areas? These questions, along with the practical importance of symbol use, provide an 

overarching context and motivation for the present work.  

In this dissertation, I explore the neurobiological bases and development of symbol 

processing in the occipitotemporal cortex, with a particular focus on recently identified 

“numeral” areas in the left and right hemisphere and how they compare to a left hemisphere 
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“letter” area. In the remaining sections of this introductory chapter: 1) outline the extant 

literature on functional selectivity and its origins in the occipitotemporal cortex, 2) review 

evidence for the existence of numeral areas, 3) describe several theories of functional specificity 

and development, 4) discuss outstanding questions concerning numeral areas, and 5) provide an 

overview of the present studies and their findings. Subsequently, in my first empirical chapter 

(Chapter 2), I characterize how symbol areas are wired to and communicate with the rest of the 

brain, exploring the idea that connectivity may constrain a brain region’s functional role. In my 

second empirical chapter (Chapter 3), I assess the functional development of symbol areas over 

Kindergarten through 2nd grade, exploring how early symbol learning shapes brain function.     

1.1 Category Selectivity in the Ventral Stream 

A longstanding agenda in cognitive neuroscience has been to characterize the functional 

localization of particular processes in the brain (Kanwisher, 2010). Studies of the human 

occipitotemporal cortex (OTC) have provided some of the most impressive evidence to date that 

focal areas in the brain can become selectively tuned for certain operations (Op de Beeck, Pillet, 

& Ritchie, 2019). At the transition between the occipital and temporal lobes, the OTC falls along 

the ventral visual stream – often referred to as the “what” pathway due to its involvement in 

object perception and identification (Milner & Goodale, 2008; Mishkin, Ungerleider, & Macko, 

1983). Starting with retinal inputs to primary visual cortex, information is thought to undergo a 

series of hierarchical transformations along the ventral pathway, leading to increasingly abstract 

representations supported by OTC areas (Grill-Spector & Weiner, 2014). In the adult human 

brain, the spatial layout of OTC areas appears to be coarsely organized around different object 

categories. For instance, specific areas associated with processing faces, scenes, animals, tools, 

and body parts can be reliably identified in adult OTC using functional magnetic resonance 
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imaging (fMRI), as defined by greater neural activity in response to the preferred category 

relative to others (Downing, Chan, Peelen, Dodds, & Kanwisher, 2006; Kanwisher, 2010; 

Martin, 2007). Despite decades of investigation, outstanding questions remain regarding why 

OTC areas are consistently localized across individuals and how these areas come to develop 

their selectivity for a given category (Op de Beeck et al., 2019; Peelen & Downing, 2017). 

Faces, scenes, animals, tools, and body parts, are all evolutionarily relevant domains, in 

that they were likely important to early hominids going back several million years (Harmand et 

al., 2015; Mahon & Caramazza, 2009). Over this timescale, it is plausible that evolutionary 

pressures were enough drive the development of a genetic predisposition for the cortical 

architecture observed in OTC. Category selectivity for certain domains may thus be innate – 

arising directly from a programmed sequence of gene expression patterns. Supporting this view, 

face and scene-preferring areas of OTC are already adult-like by 4-6 months (Deen et al., 2017). 

Also, individual differences in the fine scale arrangement of selective areas are highly heritable, 

as recently demonstrated in a large comparison of monozygotic and dizygotic twins (Abbasi, 

Duncan, & Rajimehr, 2020). Furthermore, macaques develop distinct face, scene, and body 

“patches” in inferotemporal cortex (Tsao, Freiwald, Knutsen, Mandeville, & Tootell, 2003), and, 

their spatial layout and response properties are highly similar to those in human OTC 

(Kriegeskorte, Mur, Ruff, et al., 2008; Rajimehr, Young, & Tootell, 2009; Tsao et al., 2003). The 

consistency in which OTC selectivity is observed within and across species suggests it is an 

ancient feature of the primate brain. 

While some genetic contribution to OTC organization may be indisputable, a number of 

observations indicate that experience is also a critical driver of selectivity. An impressive 

demonstration came from a study by Arcaro and colleagues who raised a group of macaques that 
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were deprived of all exposure to faces from birth. Compared to control monkeys, the face-

deprived group developed scene, body, and hand areas in stereotypical locations, but did not 

develop face patches (Arcaro, Schade, Vincent, Ponce, & Livingstone, 2017), indicating that 

early visual experience is necessary for the formation of domain-selective regions regardless of a 

domain’s biological relevance. The authors acknowledged, however, that experience is not 

sufficient on its own. They instead argue for an innate “proto-map” in which the processing of 

low-level visual properties is at least initially coarsely segregated across OTC. For instance, in 

newborn macaques, gradients of activity across OTC have been observed for foveal-to-peripheral 

and curvilinear-to-rectilinear shape processing (Arcaro & Livingstone, 2017). This innate 

organization may then scaffold the experience-driven formation of domain-selective areas. For 

example, faces are typically foveated on and contain curvilinear features, while scenes are 

encountered in the periphery and contain more rectilinear features, leading to their functional 

segregation along the preexisting proto-map.  

In humans, fMRI studies also indicate that OTC responses are dependent on experience. 

Cross-sectional studies comparing children, adolescents, and adults have reported that the 

preferential activity and volume of the fusiform face area (FFA) are increasing until at least early 

adulthood, suggesting a protracted developmental process potentially shaped by experience 

(Cantlon, Pinel, Dehaene, & Pelphrey, 2011; Golarai et al., 2007; Golarai, Liberman, Yoon, & 

Grill-Spector, 2010; Scherf, Behrmann, Humphreys, & Luna, 2007). Recent longitudinal studies 

support these early findings, demonstrating that category selective areas for faces, houses, 

bodies, and tools are already identifiable by 6 years of age, but show a steady increase in 

selectivity through late childhood (Dehaene-Lambertz, Monzalvo, & Dehaene, 2018; Nordt et 

al., 2020; Saygin et al., 2016). Another study, which included participants from 7-40 years old, 
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found that the FFA is most responsive to faces of one’s own age (Golarai, Liberman, & Grill-

Spector, 2017). This argues against a unidirectional acquisition of function in FFA and instead 

implies this tuning is malleable over the lifespan and may adapt to experiential context. Further 

evidence comes from a large body of work on visual expertise, which has demonstrated that 

individual differences in OTC responses are associated with increased exposure to and practice 

within a particular domain (Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; Harel, 2016; 

McGugin, Gatenby, Gore, & Gauthier, 2012). Taken together with the work in non-human 

primates, the prolonged elaboration of category selectivity in human OTC is consistent with an 

experience-dependent developmental process.    

We have heretofore focused on evolutionarily relevant domains like faces, places, and 

bodies, which are shared across species and undoubtedly remain integral parts of human life. 

However, perhaps the most remarkable case for experience-dependent plasticity in the human 

OTC involves the evolutionary recent domain of symbolic notation. Written symbols, including 

the most ubiquitous symbol sets used in the modern world, the Roman alphabet and Arabic 

numerals, are recent inventions in the history of our species. In particular, the earliest 

characterized use of abstract symbols, or those which do not physically resemble their referent, 

comes from the pre-cuneiform writing system of ancient Mesopotamian societies 5100-5400 

years ago (Dehaene & Cohen, 2007; Hannagan et al., 2015; Nissen, 1986; note that pictographic 

or mnemonic markings predate abstract symbol use, such as tally marks found on bones dating 

back as far as 43,000 years, D’Errico et al., 2012). These early ideographic (referring to an 

abstract idea such as a quantity) and logographic symbols (referring to a unit of speech) were 

used for economic purposes, e.g., to keep track of commodities, count livestock, or refer to 

different professions (Nissen, 1986), and served as precursors to numerals and letters – marking 
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the advent of human writing systems. At only several thousand years ago, this was far too short a 

period for the emergence of dedicated brain areas for written symbol processing – genetic 

evolution operates on a scale of millions of years (Rakic, 2009; Uyeda, Hansen, Arnold, & 

Pienaar, 2011). Fascinatingly, however, separate areas selective for letters (or words) and 

numerals have been observed in human OTC, namely, the “visual word form area” (VWFA) and 

the “number form area” (NFA) (L. Cohen & Dehaene, 2004; Pollack & Price, 2019; Shum et al., 

2013; D. J. Yeo, Wilkey, & Price, 2017).  

Letter and number symbol knowledge is culturally transmitted and so is necessarily 

acquired through learning. Yet the consistent localization of the VWFA and NFA across 

individuals suggests some biological constraints on their ontogenetic emergence. Symbol 

processing in the OTC thus provides a model system for investigating both innateness and 

functional plasticity in the brain. Given the ubiquity and critical importance of symbols in 

modern societies, understanding the neural mechanisms supporting symbol use may also have 

practical implications for education, such as to inform remediation strategies for those with 

learning disabilities (Geary, 2011; Norton, Beach, & Gabrieli, 2015; OECD, 2016; Parsons & 

Bynner, 2005; Pollack, Luk, & Christodoulou, 2015; Shaywitz et al., 2004). 

The goal of the present thesis is to probe the underlying constraints and functional 

development of symbol processing in the OTC. In the remaining introductory chapters I first 

describe the current state of the literature regarding the VWFA and the more recently discovered 

NFA, with the latter being the primary focus of the studies herein. I then discuss several 

theoretical accounts that motivate the present work and outline several puzzling observations and 

outstanding questions regarding numeral processing in the OTC. Finally, I conclude with a brief 

overview of the empirical studies contained within this thesis.  
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1.2 An Occipitotemporal Area for Numbers? 

Investigations into the brain mechanisms supporting word reading have revealed an OTC 

area critical to this process within the left fusiform gyrus, dubbed the “visual word form area” 

(VWFA) (Allison, McCarthy, Nobre, Puce, & Belger, 1994; McCandliss, Cohen, & Dehaene, 

2003). The VWFA is preferentially engaged by written words compared to other objects, and 

even compared to closely matched stimuli such as consonant, false font, or numeral strings 

(Dehaene & Cohen, 2011). While the constituent parts of words are processed in prior (more 

posterior) stages of the ventral hierarchy, evidence suggests that the representations in VWFA 

are high-level, in that they are tuned to whole words and also invariant to low-level features like 

letter size, case, and font (Glezer, Jiang, & Riesenhuber, 2009; Vinckier et al., 2007). Functional 

selectivity to words in the VWFA is also closely related to familiarity with a script, reading 

speed, and the acquisition of reading in both children and illiterate adults (Baker et al., 2007; 

Dehaene & Cohen, 2011; Dehaene et al., 2010), providing empirical validation that experience 

drives the functional emergence of the VWFA. However, the consistent localization and leftward 

asymmetry of the VWFA across cultures and alphabet systems suggests that this area of left 

OTC is particularly well suited to take on the task of word processing, implying that word 

processing is, at least to some extent, biologically constrained within the human brain (Dehaene, 

Cohen, Morais, & Kolinsky, 2015).  

In contrast to word reading and the VWFA, evidence for an OTC region selectively 

involved in number processing is scarce. Before the advent of modern neuroimaging, the 

component mechanisms of symbolic number processing were already being laid out based on 

observations of patients with brain lesions (Dehaene, 1992; McCloskey, 1992). For instance, in 

particular cases, damage to OTC resulted in deficits to Arabic numeral transcoding (e.g., multi-
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digit reading), while sparing a patient’s ability to perform verbal calculation and other 

approximate numerical operations. Though certain details were disputed, the proposed models 

commonly implicated a modular architecture supported by functionally segregated operations in 

the brain. Stanislas Dehaene hypothesized the existence of “visual Arabic number form” 

representations as part of his highly-influential “triple-code model” of number processing 

(Figure 1A) (Dehaene, 1992; Dehaene & Cohen, 1995). Dehaene postulated that three 

neuroanatomically distinct systems subserve number processing in humans: 1) the 

aforementioned visual code for processing Arabic numerals housed in bilateral OTC regions of 

the visual ventral pathway, 2) a verbal code for auditory/linguistic representations of number and 

operands and utilization of verbal working memory/articulatory loops, housed in the left-

lateralized language areas such as superior/middle temporal gyrus and inferior frontal gyrus, and 

3) a quantity code for analog magnitude representation involving the bilateral intraparietal sulci 

(Dehaene & Cohen, 1995; Dehaene, Piazza, Pinel, & Cohen, 2003). 
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Figure 1. Numeral processing in the inferior temporal gyrus. 

Highlighted history of numeral processing areas in the inferior temporal gyri, starting with A) the 

conjecture of a visual number form area in the triple-code model of Dehaene and Cohen (1995). 

B) Reprinted from https://doi.org/10.1212/01.wnl.0000297194.14452.a0, Copyright (2008), with 

permission from Wolters Kluwer Health, Inc.; C) Reprinted from 

https://doi.org/10.1523/JNEUROSCI.4558-12.2013; D) Reprinted from 

https://doi.org/10.1016/j.neubiorev.2017.04.027 , Copyright (2017), with permission from 

Elsevier. 

 

The first empirical evidence for numeral-selective processing in the OTC came from a 

cortical electrostimulation mapping study in patients undergoing neurosurgery (Roux, Lubrano, 

Lauwers-Cances, Giussani, & Démonet, 2008). Roux and colleagues stimulated sites spanning 

across frontal, parietal, and temporal areas in 53 patients over six years. During stimulation 

periods, patients performed sentence, number word, and Arabic numeral reading, as well as 

picture naming. Selective impairments to numeral reading (e.g., speech arrest) versus the other 

https://doi.org/10.1212/01.wnl.0000297194.14452.a0
https://doi.org/10.1523/JNEUROSCI.4558-12.2013
https://doi.org/10.1016/j.neubiorev.2017.04.027
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tasks were observed during stimulation of the left posterior inferior temporal gyrus (ITG) (Figure 

1B, red circles), located laterally and anteriorly within OTC. Other numeral-selective sites were 

observed in the frontal lobe and supramarginal gyrus, indicating a numeral-preferring network 

that extended beyond OTC. Notably, Roux et al.’s work provided causal evidence for posterior 

ITG’s role in visual numeral reading. This initial report was corroborated in a study by Shum and 

colleagues, who analyzed intracranial recordings in epilepsy patients performing symbol and 

word recognition tasks (Shum et al., 2013). They found that a focal region in right posterior ITG 

(Figure 1C, red cluster), responded preferentially to Arabic numerals compared to perceptually 

similar letters, false font stimuli, and foreign symbols (e.g., 1 vs. T), semantically related number 

words (e.g., 1 vs. one), and phonologically similar non-number words (e.g., 1 vs. won). The 

majority of cortical sites included in this study were in the right hemisphere, while the opposite 

was true of Roux et al.’s study. Taken together, these reports indicated that numeral recognition 

involves a focal area in the bilateral posterior ITG, precisely as predicted by the triple-code 

model.  

Despite evidence from direct cortical recording and stimulation, the search for “number-

form” areas in OTC using fMRI had largely gone empty handed. For instance, several prior 

fMRI studies that had included numeral stimuli did not find numeral-selectivity in the OTC 

(Baker et al., 2007; Cantlon et al., 2011; James, James, Jobard, Wong, & Gauthier, 2005; Polk et 

al., 2002; G. R. Price & Ansari, 2011). Given the reliable localization of VWFA using letter and 

word stimuli (even within the same studies), the extant fMRI literature suggested that numeral-

selectivity in OTC was less robust, potentially due to variability in location across individuals, 

poor fMRI signal quality due to proximity to the ear canals, and/or differing task demands across 

studies (D. J. Yeo et al., 2017). Nevertheless, beginning with a report by Abboud and colleagues 
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in 2015, subsequent studies successfully identified numeral-selective regions in the posterior ITG 

(Abboud, Maidenbaum, Dehaene, & Amedi, 2015; Amalric & Dehaene, 2016; Grotheer, 

Herrmann, & Kovacs, 2016; Grotheer, Jeska, & Grill-Spector, 2018; Pollack & Price, 2019), 

possibly through the use of more advanced acquisition and post-processing techniques (though 

such claims have yet to be directly tested). To consolidate this literature, Yeo and colleagues 

performed a quantitative meta-analysis of fMRI studies that reported numeral preference 

anywhere in the brain (D. J. Yeo et al., 2017). They found converging evidence for Arabic 

numeral processing (compared to appropriate non-numeric control tasks) in the right posterior 

ITG (Figure 1D), as well as in bilateral parietal cortex and right frontal areas. Along with 

additional reports of numeral-selectivity in posterior ITG from intracranial recordings (Daitch et 

al., 2016; Hermes et al., 2017; Pinheiro-Chagas, Daitch, Parvizi, & Dehaene, 2018), the 

accumulated evidence to date supports the existence of so-called “number form areas” in the 

bilateral adult OTC. There are a number of theoretical models of brain function and development 

that may help explain the existence and segregation of alphanumeric symbol processing in the 

OTC. In the following section, we discuss several non-mutually exclusive ideas that inform the 

present work. 

1.3 Explaining Symbol Category Preference in the OTC: Mechanisms and 

Developmental Models 

1.3.1 Proto-maps and the shape hypothesis 

We previously discussed the idea of an innate proto-map in primate OTC that guides the 

localization of category selectivity based on common visual features across category members 

and their related computational requirements (Arcaro & Livingstone, 2017). For instance, 

numerals and letter are relatively simple shapes, contain similar curvilinear features, and are 
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processed foveally rather than peripherally. Representations for single characters should also be 

invariant to transformations of size and font and instead tuned to the configural arrangements of 

lines and edges (Brincat & Connor, 2006). In their “shape hypothesis,” Hannagan and colleagues 

(2015) adopt the proto-map framework and posit that the shared processing requirements across 

symbol categories leads to a rough confinement of symbol-selectivity in the lateral OTC. The 

most direct support for this hypothesis came from a series of training studies in macaques who 

learned to associate different types of object sets with juice rewards, including Helvetica 

characters (numbers and letters), Tetris block patterns, and faces (Srihasam, Mandeville, Morocz, 

Sullivan, & Livingstone, 2012; Srihasam, Vincent, & Livingstone, 2014). Though the object sets 

were all mapped to the same referents (i.e., 27 exemplars in a set associated with 0-26 drops of 

juice), they came to engage distinct areas of inferotemporal cortex over training. Remarkably, the 

areas were consistently localized across monkeys according to object category, regardless of 

training order. In all 10 individuals, Helvetica symbols activated nearly the same focal area of 

lateral inferotemporal cortex. This implies that low-level visual and/or shape characteristics may 

be more consequential in determining high-level OTC organization than has been appreciated. 

Establishing direct homology between humans and macaques is difficult, so it remains unclear 

whether such a proto-symbol area exists in humans (Hannagan et al., 2015). The shape 

hypothesis predicts that the general location of symbol processing is constrained within the 

OTC, implying that the sites of the NFA and VWFA are (at least initially) equally suited to 

processing alphanumeric forms. To explain the ultimate segregation of numeral and letter 

processing, however, some additional mechanism is required. 

1.3.2 The biased connectivity hypothesis 

Hannagan and colleagues propose the “biased connectivity hypothesis” as a necessary 
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additional constraint to explain the locations of the NFA and VWFA (Hannagan et al., 2015). 

This theory instantiates a prominent view in the field that functional preferences of OTC areas 

are driven in part by each area’s differential pattern of anatomical and functional connectivity to 

the rest of the brain (Mahon & Caramazza, 2011; Op de Beeck et al., 2019). Building on earlier 

work, e.g., the “distributed domain-specific hypothesis” (Mahon & Caramazza, 2009), the biased 

connectivity hypothesis posits that the functional potential of a given area in OTC is constrained 

by the relative strength of its connectivity with other regions engaged by a particular conceptual 

domain.  

This idea is in part motivated by the observation that objects with similar features may be 

processed in separate areas (e.g., numerals and letters), but also, that objects with differing 

features may be processed in the same area. Such dissociations indicate that OTC preferences 

could not solely be a product of image statistics (Bracci, Ritchie, & de Beeck, 2017). For 

example, tools (e.g., scissors, hammer, stapler) have been shown to engage an area in lateral 

OTC that is also selective for hands, but not other body parts (Bracci, Cavina-Pratesi, Ietswaart, 

Caramazza, & Peelen, 2012). The tools in this study were all hand-manipulable objects, 

suggesting an action-related rather than visual feature-related organization in OTC. Interestingly, 

the tool area was shown to be selectively functionally connected to a parietal region involved in 

hand action execution, as predicted by connectivity-based accounts of OTC function.  

To further make this case, many studies have shown that categorical organization in OTC 

is largely preserved in blind subjects (Hurka, Baelena, & Beecka, 2017; Mahon, Anzellotti, 

Schwarzbach, Zampini, & Caramazza, 2009; Reich, Szwed, Cohen, & Amedi, 2011). Such 

findings indicate that OTC representations are not fundamentally visual, but instead may be 

sensitive to the cognitive and/or perceptual contexts in which an object is used or experienced. 
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Although blind subjects lack visual inputs, distributed connectivity with other sensory and/or 

associative regions may support some degree of reverse mapping across brain areas, allowing for 

the development of a grossly normal OTC. The biased connectivity hypothesis thus suggests that 

white matter architecture provides a scaffold on which domain-selective functional networks 

emerge. Evidence for a direct relationship between structural connectivity and OTC organization 

has started accumulating, including observations of selective connectivity of face, place, and 

body areas with other regions that are functionally involved in these domains (Gomez et al., 

2015; Grimaldi, Saleem, & Tsao, 2016; Osher et al., 2016; Saygin et al., 2012). 

In this case of number and letter areas, the biased connectivity hypothesis predicts their 

connectivity patterns should reflect differing associations with numerical quantity and speech 

sounds, respectively. For instance, compared to the more medial fusiform face area, the VWFA 

is preferentially connected to language areas (F. Bouhali et al., 2014). On the other hand, the 

VWFA is also structurally and functionally connected with dorsal parietal areas, including the 

intraparietal sulcus (IPS), a region more putatively involved in number processing (L. Chen et 

al., 2019; A. C. Vogel, Miezin, Petersen, & Schlaggar, 2012). A recent study found distinct 

patterns of resting-state functional connectivity of the putative NFA and VWFA with the rest of 

the brain (Nemmi, Schel, & Klingberg, 2018). However, a direct comparison of how the numeral 

and letter-preferring areas are structurally connected to the rest of the brain has not yet been 

made.  

Supporting the idea that domain-specific axonal pathways precede the development of 

symbol areas, it has been demonstrated that structural connectivity (particularly with language 

areas) in pre-reading children can predict the future location of the VWFA (Saygin et al., 2016). 

The VWFA is also already functionally connected to language areas at birth, suggesting the 
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affiliation of the VWFA with the language network may indeed be innate (J. Li, Osher, Hansen, 

& Saygin, 2020). However, in another study of newborn functional connectivity, the expected 

dissociation in connectivity between the future locations of the VWFA and NFA was not 

observed (Barttfeld et al., 2018). Thus, the extent to which functional and/or structural 

connectivity contributes to the development of symbol areas in OTC remains an open area of 

investigation.   

1.3.3 Interactive specialization 

Whether local circuitry or distributed connectivity constrain OTC development, these 

accounts do not describe the mechanistic process by which neural populations acquire their 

tuning. According to the theory of “interactive specialization” put forward by Mark Johnson, the 

development of selectivity is thought, through mechanisms of Hebbian-like plasticity, to be 

driven by repeated co-activation of a region with functional networks engaged by a particular 

behavior or task context (Johnson, 2001, 2011). Brain areas in the OTC (and elsewhere) are 

thought to start out broadly tuned, responding equally to non-preferred stimuli. Over experience, 

responses to a stimulus category become both more focal and, within an area, more selective. At 

the local level this process is thought to occur via synaptic pruning and/or increasing lateral 

inhibition. In regards to numeral and letter processing, support for a pruning-based account was 

provided in a study by Cantlon and colleagues (2011). They showed that a region defined by its 

letter-selectivity in adults was equally responsive to letters and numerals in 4-year old children. 

The selectivity in adults was characterized by a decreased response to numerals, rather than an 

increased response to letters. Within the child sample, behavioral performance on both face and 

symbol identification tasks was specifically related to decreased responses to non-preferred 

stimuli, further suggesting a local pruning effect related to experience and/or learning, consistent 
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with the prediction of interactive specialization (Cantlon et al., 2011).  

Interactive specialization is additionally a theory about the development of domain-

specific networks. Repeated co-activity among sets of regions is hypothesized to mutually 

constrain their stimulus preferences. Consequently, the acquisition of selectivity in one region is 

should (almost) always be accompanied by increasing selectivity in other regions. Johnson 

speculates that both intrinsic (e.g., spontaneous coupling present already at birth) and context-

dependent (i.e., task-evoked) functional interactions are causally involved in shaping a region’s 

response profile. Note that domain-specific interactions may occur across polysynaptic pathways, 

and so may go undetected if one focuses solely on biases in structural connectivity (which is 

intended to measure direct axonal projections). This suggests that structural and functional 

connectivity measures may both be valuable, and likely complementary, in understanding OTC 

selectivity and development.  

In focusing on functional networks, interactive specialization also adopts a contemporary 

view of regional “specialization.” Contrary to what is often implied in the OTC literature 

(including our treatment of the topic thus far), many brain regions, including in particular lateral 

OTC, appear to be involved in multiple contexts and task settings (Anderson, Kinnison, & 

Pessoa, 2013; A. C. Vogel, Petersen, & Schlaggar, 2014). The role of a brain region may be 

more appropriately conceptualized by considering its diverse set of interactions and patterns of 

co-activity across different cognitive states (C. J. Price & Friston, 2005). According to this view, 

a region is best thought of as a computational unit performing an operation that contributes to a 

given experience or behavioral outcome (Genon, Reid, Langner, Amunts, & Eickhoff, 2018). Its 

“operation-function” is therefore situated and necessarily a product of context, i.e., relative to the 

inputs and outputs to/from the region as defined by the dynamic and distributed state of the 
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system. This indicates that the functional connectivity of OTC areas may be relevant for 

understanding not only the development of category selectivity, but also the nature of selectivity 

in the mature state. 

1.3.4 The interactive account of OTC function 

To further elaborate on how OTC responses may be influenced by functional interactions 

with other regions, we can turn to the “interactive account” put forward by Price & Devlin 

(2011). Upon encountering a stimulus, it is proposed that bottom-up information from primary 

visual cortex is accumulated in OTC and momentarily broadcast to other areas. This evokes top-

down prediction signals from higher-order areas (e.g., phonological and semantic), which 

attempt to “make sense” of the stimulus according to prior experiences (K. Friston, 2010). The 

interplay of these two information streams provides constraints on the maintained representation 

and/or computations occurring in OTC areas (C. J. Price & Devlin, 2011). Exchange across this 

hierarchy appears to occur automatically, outside of conscious awareness, implying that both 

bottom-up and top-down influences can spontaneously affect OTC activity. For example, it has 

been shown in priming experiments (e.g., a picture of lion is briefly flashed on a screen followed 

by the word “LION”) that a semantic association between the unconscious prime and target is 

enough to elicit reduced responses in the OTC (Kherif, Josse, & Price, 2011). The idea is that a 

distributed representation is engaged by the prime image and so, upon viewing the word, top-

down predictions are already in effect. This leads to more efficient processing in OTC, or 

reduced prediction error, and results in a net reduction of neural activity. Price & Devlin’s 

framework helps to explain observations of heightened activity for pseudowords compared to 

real words, low compared to high frequency words, and false font compared to letter strings – in 

each case the former condition elicits higher prediction error (Graves, Desai, Humphries, 
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Seidenberg, & Binder, 2010; Kronbichler et al., 2004; Vinckier et al., 2007). One implication of 

this account for development is that in the early stages of acquiring object knowledge (e.g., 

children learning to map symbols to their referents) there is reduced top-down “support” and so 

relatively heightened activity in OTC. After sufficient learning responses should decrease, as the 

stimulus-specific network is more well established.  

Price & Devlin recognize that top-down signals also arise from conscious, goal-oriented 

processing. For instance, it has been well documented that task demands alone can modulate 

OTC responses (e.g., Song et al., 2010; Twomey et al., 2011). This was elegantly demonstrated 

in a recent study where stimulus presentation was held constant but cognitive task was varied 

(Kay & Yeatman, 2017). The VWFA and FFA reliably responded to their preferred category 

during passive fixation but, responses increased when performing a categorization task, and 

increased further during a one-back task. We can conclude that a combination of bottom-up and 

top-down sources drive OTC responses, and these signals are likely dependent on both the 

degree of familiarity with an object category and ongoing task demands. It is thus critical to keep 

these study and stimulus-specific factors in mind when interpreting OTC activity and its change 

over time.  

1.4 Recent Insights into the “Inferior Temporal Numeral Area” and Outstanding 

Questions 

1.4.1 Beyond the “visual number form” 

The study by Abboud et al., which was the first identify putative NFAs using fMRI, 

found these areas in congenitally blind subjects who were trained to associate auditory sequences 

with (roman) numerals and letters. This suggests that 1) NFAs can emerge in the absence of 

visual experience and 2) the NFAs are not necessarily involved in representing the visual forms 
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of Arabic numerals (Abboud et al., 2015). Their result is consistent with aforementioned 

evidence that blind individuals show typical category-selective organization in the OTC (Hurka 

et al., 2017; Mahon et al., 2009), and in particular, that the VWFA is engaged during Braille 

reading (Reich et al., 2011). Whether or not auditory/tactile stimuli commonly activate OTC 

areas in sighted individuals, the data from blind subjects indicate that OTC operations are not 

tied to vision per se, but instead to the more abstract computational requirements of a given 

domain (Mahon et al., 2009). In the case of the NFA, it has been shown that the same area can be 

similarly engaged by numerals, dice patterns, or finger representations during an addition task 

(Grotheer et al., 2018), suggesting that this region may be involved in representing numerical 

objects more abstractly and/or “ascribing numerical content” to inputs (p. 188). Relatedly, using 

intracranial recordings, an equivalent degree of NFA engagement by numerals and number 

words was also observed in patients performing addition (Hermes et al., 2017). Another study 

found that the bilateral NFAs are engaged by numerals and mathematical formulas (e.g., A = πr2)  

in mathematicians and control subjects (Amalric & Dehaene, 2016). Fascinatingly, in 

mathematicians, even auditorily presented mathematical statements engaged the bilateral NFAs, 

further suggesting this region is not strictly tuned to the visual form of numerals.  

In a direct test of this hypothesis, Yeo and colleagues recently used representational 

similarity analyses (RSA) to show that neither NFA carried information about the visual form of 

symbols (D. J. Yeo, Pollack, Merkley, Ansari, & Price, 2020). Instead, activity patterns in the 

right NFA distinguished between numerals and other symbols at a categorical level. Based on 

theirs and other’s findings, the authors proposed replacing “number form area” with a new label, 

the “Inferior Temporal Numeral Area” (ITNA), to emphasize its consistent anatomical location 

and deemphasize a functional association with visual forms. From this point forward, we thus 
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refer to the area as the “ITNA”. These observations leave us with the following questions. If the 

ITNAs are involved in the perception and/or manipulation of numerical “objects” more 

generally, what kind of computations would this entail? What about this area of OTC makes it 

particularly well-suited for handling numerical information? Does the NFA show biased 

connectivity with other regions involved in number processing?   

1.4.2 Task demands matter for ITNA engagement 

Another observation from the literature is that the ITNAs are particular sensitivity to task 

demands. It may be that some level of active engagement with numerals is necessary for a 

reliable ITNA response. For instance, the studies of Price & Ansari and Cantlon et al. used 

passive designs in which participants performed target or color detection tasks – neither study 

found numeral-selectivity in OTC. Such a design ensures participants view the stimuli, but the 

maintained task goal and button response is unrelated to the symbols themselves (Cantlon et al., 

2011; G. R. Price & Ansari, 2011). To rule out the possibility that the study by Price & Ansari 

was underpowered and/or suffered from poor image quality, we recently replicated the study in a 

larger sample (n=37 vs. n=19) using a higher spatial and temporal resolution fMRI sequence 

(TR=1000ms, 2.5mm3  vs. TR=2300ms, 3.3mm3) (Merkley, Conrad, Price, & Ansari, 2019). 

Confirming the previous result, we found no evidence for numeral-selectivity in either ITNA 

using the same passive viewing paradigm. This again suggests that the bottom-up response to 

numerals in ITNA is weak and that some degree of top-down modulation may be necessary, 

highlighting the utility of Price & Devlin’s interactive account for understanding ITNA function.  

As we previously outlined, Kay & Yeatman (2017) reported increasing VWFA and FFA 

activation to words over passive, categorization, and one-back tasks. This study first highlights 

the fact that, in contrast to numerals, passive designs with faces and words or letters do activate 
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their respective OTC areas, as has been observed in previous work (Berman et al., 2010; Cantlon 

et al., 2011; Dehaene & Cohen, 2011; Polk et al., 2002). It also demonstrates a roughly linear 

increase in BOLD signal amplitude with increasing attentional demands (Kay & Yeatman, 

2017). Compared to FFA and VWFA, successful localizations of numeral-selective ITNA 

responses have all involved some form of active design, e.g., symbol reading, categorization, or 

one-back tasks (Grotheer et al., 2016; Hermes et al., 2017; Roux et al., 2008; Shum et al., 2013). 

Responses in the ITNA are further strengthened when numerals are processed in a mathematical 

context, such as simple addition (Grotheer et al., 2018; Hermes et al., 2017), perhaps due to 

increased attentional “scaling” of OTC representations as reported in Kay & Yeatman (2017). A 

caveat to note is that a recent RSA study by Yeo et al. (2020) analyzed passive task data, and 

reported numeral-biased categorical information in the right ITNA. This indicates that automatic 

(i.e., bottom-up) engagement of numeral-selective populations in the ITNAs occurs to some 

extent, but detecting this activity with fMRI may require the increased sensitivity afforded by 

multivariate techniques (Kriegeskorte, Goebel, & Bandettini, 2006; D. J. Yeo et al., 2020).  

It remains an open question whether bottom-up numeral processing in ITNA is 

quantitively weaker than (e.g., subthreshold during passive fMRI paradigms) or qualitatively 

different from (e.g., computationally distinct) word and letter processing in VWFA. Does the 

ITNA receive different sources of top-down input? Are they differentially connected during task 

states? 

1.4.3 Bilateral, but functionally asymmetric ITNAs   

The VWFA is consistently observed in the left hemisphere and is presumed to be related 

to leftward lateralization of language processing (Dehaene & Cohen, 2007). The ITNA is more 

consistently observed in the right hemisphere, as demonstrated in the meta-analysis by Yeo et al. 
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(2017), but reports of numeral processing in the same area of left OTC are not uncommon 

(Amalric & Dehaene, 2016; Bugden, Woldorff, & Brannon, 2019; Grotheer et al., 2016; Pollack 

& Price, 2019; Roux et al., 2008). Indeed, neuropsychological studies of lesion and split brain 

patients suggest either hemisphere may support the recognition of numerals, but subtle 

differences in their capacities appear to exist (Dehaene & Cohen, 1995). For instance, verbal-

based operations with numbers, such as the reading of multi-digit strings, were found to be 

particularly impaired with lesions to left OTC (L. Cohen & Dehaene, 1995), perhaps related 

more generally to a left-hemispheric dominance for language processing. It possible that the 

tasks employed in previous fMRI studies favored right ITNA engagement and that, in natural 

contexts, the left and right ITNA may be equally important (D. J. Yeo et al., 2020). Whatever the 

case, the literature suggests that the left and right ITNAs are not simply copies of each other, but 

instead differentially support numeral processing.  

Some insight into the lateralization of ITNA function may come from a long history of 

work showing asymmetric processing of numerical stimuli in parietal areas (Chochon, Cohen, 

Moortele, & Dehaene, 1999). Research in human infants, for instance, has found early numerical 

processing to be lateralized to the right parietal cortex (Hyde, Boas, Blair, & Carey, 2010; Izard, 

Dehaene-Lambertz, & Dehaene, 2008). fMRI studies have corroborated these findings showing 

that the right IPS is reliably and stably engaged by number tasks from early childhood onward, 

but that the left IPS undergoes a more protracted development (Cantlon, Brannon, Carter, & 

Pelphrey, 2006; Rivera, Reiss, Eckert, & Menon, 2005; S. E. Vogel, Goffin, & Ansari, 2015) (for 

a review and meta-analysis, see Kersey & Cantlon, 2017). For instance, it has recently been 

demonstrated that the right IPS in 3-4 year old children is already adult-like in its perceptual 

tuning to numerosity, while the effect is absent in left IPS (Kersey & Cantlon, 2017a). 
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Fascinatingly, a twin study found a strong genetic contribution to number-related activity in the 

right IPS, but not the left (Pinel & Dehaene, 2013). These results point to an early-developing, 

and possibly innate, right-hemispheric bias for number processing.  

Connectivity-based accounts suggest that the same mechanisms driving the localization 

of category selectivity are also likely to drive the lateralization of function within the OTC 

(Behrmann & Plaut, 2015, 2020). Returning to the ITNA, it has been observed that individual 

differences in the rightward asymmetry of digit-related responses in OTC are associated with 

rightward asymmetry for numerical processing in the parietal cortex, suggesting the functional 

lateralization of these areas is somehow linked (Park, Hebrank, Polk, & Park, 2012). These 

findings lead us to ask, do pre-existing biases for number and language processing in the right 

and left hemispheres constrain the functions of the ITNAs? Do the connectivity of the ITNAs 

with these respective systems differ between hemispheres? 

1.4.4 The uncharted development of the ITNAs 

Only a few prior studies have investigated the development of numeral processing in the 

OTC. Notably, none have detected the emergence of numeral selectivity, leaving a significant 

gap in our understanding of ITNA development. Firstly, Libertus and colleagues had participants 

perform a 2-back working memory task with numerals, letters, and faces separately (Libertus, 

Brannon, & Pelphrey, 2009). In children (8 years old), neither numeral nor letter-specific activity 

was observed the OTC. In adults, only letter-specific activity was found in OTC. As the study 

did not detect an ITNA in adults, the task paradigm may not have been optimal, making it 

consequently difficult to draw conclusions about ITNA development from this early study. Their 

result did, however, suggest some difference in the development letter and numeral processing 

OTC. In a later study by Cantlon et al. (2011), voxels were detected in lateral OTC that 
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responded more to symbols than faces in 4-year old children but, activity levels were equivalent 

between numerals and letters. In an adult sample, selectivity for letters, but not numerals, was 

observed. A color change detection task was used in this case, making it a passive design with 

respect to the symbol stimuli. As we discussed in the prior section 1.4.2, passive designs appear 

to be insufficient in selectively activating the ITNAs adults, again making it difficult to draw 

conclusions about the development of numeral processing from this result.  

A more recent study, also employing a passive design (phase-scrambled background 

detection), focused on the representational patterns of activity in OTC, including responses to 

pseudowords and multi-digit numerals, and several other categories including faces, bodies, 

places, and objects (Nordt et al., 2018). They found that categorical patterns for numerals and 

pseudowords were generally more similar to each other than to other categories, but only 

patterns for pseudowords showed increasing distinctiveness across age bins (5-9, 10-12, 22-28 

years old). Though the triple-code model implicates the ITNA in multi-digit reading, multi-digit 

stimuli may be less likely to engage discrete representations of numerical quantity, and 

particularly so in a passive viewing task. Using the same paradigm (and presumably an 

overlapping sample), Nordt and colleagues recently reported that selective responses to words in 

the left OTC significantly increased over time in a longitudinal analysis of children from 5-12 

years old (Nordt et al., 2020). Critically, however, no detectable change in numeral-related 

activity was observed in either left or right OTC.  

Another recent longitudinal study followed 5-7 year old children from the end of 

kindergarten through the end of 1st grade, employing a similar passive fMRI paradigm (i.e., 

target detection with multiple visual categories including multi-digit numerals) (Dehaene-

Lambertz et al., 2018). Consistent with previous work, there was no evidence of an emerging 
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ITNA and, the few voxels that were sensitive to numerals were equally responsive to words. 

Word-selective activity in the VWFA, however, reliably increased over the study.  

At present, we are aware of only one study that reported a neural distinction between 

digits and letters in early school-age children. Using electroencephalography (EEG), Lochy and 

Schiltz found a rightward-lateralized OTC responses to digits versus letters in 1st graders (Lochy 

& Schiltz, 2019). This study suggests an early-developing distinction in the brain, but due to the 

poor spatial resolution of EEG, it is far from clear whether this activity is specifically tied to 

ITNA function. Furthermore, Lochy and Shiltz’s result stands in conflict with another recent 

EEG study that found no distinction between digit and letter responses in groups of 7 year-olds 

and 10 year-olds (Park, van den Berg, Chiang, Woldorff, & Brannon, 2018). In sum, to our 

knowledge, there exists no convincing evidence of a developmental increase in the ITNA’s 

selectivity for numerals, in stark contrast to studies of the VWFA. Thus, investigations into the 

developmental origins of ITNA specialization are critically needed to address how and when the 

ITNA acquires a preference for numerals.  

1.5 Overview of Current Studies 

In the present thesis, I build on the current state of knowledge of numeral processing in 

the ventral stream to provide insights into our understanding of OTC organization and 

development. The primary questions I address are as follows:  

1) How is the ITNA structurally and functionally connected to the rest of the brain?  

2) Are there hemispheric differences in ITNA connectivity?  

3) When does the ITNA’s selectivity for numerals develop?  

As we have discussed, the biased connectivity and interactive specialization hypotheses 

provide appealing frameworks for explaining the segregation and development of symbol-
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preferring areas in the OTC. The interactive account of OTC function further informs us on how 

differential contributions of bottom-up and top-down inputs may affect ITNA responses 

depending on task context. To address questions 1 and 2, in Chapter 2 we build on these 

connectivity-focused perspective to characterize the structural and functional connectivity 

profiles of the left and right ITNA, as well as a letter-sensitive area in the left hemisphere 

(proximal to the putative VWFA), in the adult brain. We compared these profiles between areas 

to test predictions regarding domain-specific connectivity patterns and hemispheric asymmetries 

in ITNA function.  

In particular, we hypothesized that the ITNA’s involvement in numeral processing is 

related to increased axonal connectivity and functional interactions with the intraparietal sulcus, 

as opposed to the letter area, which should be more connected to language areas supporting 

phonology and speech production. Note that such findings in adults would not directly support 

the developmental claims that domain-specific connectivity precedes and/or drives the 

specialization of OTC areas. However, if connectivity does impose an early bias on OTC 

preferences, biased connectivity patterns should persist into adulthood and potentially even be 

strengthened, e.g., through increased myelination of repeatedly used white matter tracts and/or 

network-level tuning mechanisms proposed in interactive specialization. If we do not see the 

expected patterns of differential connectivity, it may suggest that either 1) connectivity is not 

consequential in determining categorical preferences for symbols in the OTC or that 2) the 

dichotomy we have laid out, numerals-to-magnitude versus letters-to-phonemes, is not the 

organizing dimension along which these symbol categories differ, at least at the neural level.  

We further hypothesized that an automatic mapping process occurs within these circuits, 

which should be robust in adult subjects given their extensive experience using numerals and 
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letters in separate contexts. As proposed in the interactive account, such a pattern may reflect the 

engagement of distributed representations for numerals and letters that occur regardless of task 

goals. If differences in category-specific coupling are not observed, it may suggest that 1) 

distributed representations for numerals and letters are not automatically activated in the 

employed task context, that 2) distributed representation of numerals and letters are sufficiently 

similar, or 3) the distributed activity is too subtle or transient to be detectable in the fMRI signal. 

In regards to question 2, we hypothesized that the same connectivity-based principles of 

OTC organization should govern the laterality of functions supported by the left and right ITNA. 

We predicted that the left ITNA, given its privileged access to the left-hemispheric language 

system outlined in the triple-code model and reported role in verbal-based operations with 

numbers, should demonstrate stronger structural and functional connectivity with language areas 

compared to the homologous circuits in the right hemispheres. We also predicted the right ITNA 

would show stronger within-hemisphere connectivity with the IPS, given the general right-

parietal bias for number processing and more robust engagement of the right ITNA in prior 

work. It is alternatively possible that these circuits are in fact symmetric, and that differential 

roles of the ITNAs are more simply due to their proximity to asymmetric functional networks. 

Further, given evidence that the left IPS is increasingly tuned for processing symbolic numbers 

over development, it may be that connectivity in the left ITNA-IPS circuit “catches up” with the 

right hemisphere, and so may be similar by adulthood. Whatever the case, this comparison is a 

necessary first step in addressing how connectivity-based constraints may impact the bilateral 

processing of numerals in the OTC.  

 To address question 3, in Chapter 3, we conducted a longitudinal analysis of children in 

kindergarten through 2nd grade who performed a symbol classification task during fMRI. We 
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characterized the functional development of symbol areas in terms of their sensitivity and 

selectivity to numbers and letters, the representational content within these areas, and their 

functional connectivity with intraparietal regions involved in number processing. We 

hypothesized that symbol learning is enhanced in the early years of formal schooling and so 

should represent a critical period of OTC development. We predicted the ITNAs would 

demonstrate increasingly “digit-biased” functional properties over the study. On one level, our 

inclusion of multiple functional measures (i.e., activity, representational patterns, and 

connectivity) serves an exploratory purpose, asking whether the ITNAs become functionally 

differentiated in any sense over this time window. However, specific findings would have 

implications for current models of OTC development. For instance, if the ITNA similarly (and 

positively) responds to all symbols at baseline, this would support the shape hypothesis’s 

prediction of shared processing of symbols in the initial state. If such an observation is then 

followed by both a declining response to non-preferred symbols and a maintained response to 

numerals, this would provide evidence for a pruning-based account such as proposed in 

interactive specialization. Alternatively, if the ITNA’s response to numerals is at its peak early 

on and then declines over the study, it may support the interactive account’s proposal of 

decreasing prediction error with learning. Furthermore, based on the biased connectivity 

hypothesis, we may expect stronger functional connectivity between the ITNA and IPS 

compared to the letter area already at baseline, indicating that a domain-specific circuit is 

established prior to learning and is possibly innate. Functional connectivity in this circuit may 

also increase over the study, supporting the notion of increasing network-level selectivity put 

forth in theory of interactive specialization.  

In the subsequent empirical chapters (Chapters 2 & 3), I introduce each study, describe their 
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methods, and then present and discuss the results. In the General Discussion (Chapter 4), I 

emphasize the most important findings and reflect more generally on the implications of my 

work, as well as how it speaks to theoretical frameworks I have outlined in this introduction.  

CHAPTER 2 

CONNECTIVITY CONSTRAINTS ON SYMBOL AREAS IN THE 

OCCIPITOTEMPORAL CORTEX 

2.1 Introduction 

To explain the spatial segregation of number versus letter processing in OTC, the biased-

connectivity hypothesis predicts that the “inferior temporal numeral area” (ITNA; Yeo et al., 

2020) emerges due to increased structural connectivity with areas involved in magnitude 

processing, such as the intraparietal sulcus (Nieder & Dehaene, 2009). On the other hand, letters 

may be processed near the more medial “visual word form area” (VWFA) due to this area’s 

increased connectivity to perisylvian language regions (Hannagan et al., 2015). Indeed, a “letter 

form area” has been observed in the fusiform gyrus, immediately posterior to the VWFA 

(Thesen et al., 2012).  

In addition to an area’s distinct profile of axonal projections, the set of regions which an 

area communicates may also drive its preference for certain object categories (Johnson, 2011; 

Mahon & Caramazza, 2011). These interactions could occur through a direct axonal pathway, 

but also indirectly, through polysynaptic functional networks. The ITNA, compared to the 

VWFA, is more strongly coupled to parietal areas during rest (Abboud et al., 2015; Nemmi et al., 

2018), while the VWFA exhibits “privileged” functional connectivity with the language system 

(Stevens, Kravitz, Peng, Tessler, & Martin, 2017). Note that these studies characterized intrinsic 
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functional connectivity (i.e., correlations in spontaneous activity occurring in a resting state), so 

do not directly demonstrate the context-dependent pattern of communication between symbol 

areas and domain-specific networks, as predicted by an interactive specialization account. A 

recent electrophysiological-recording study found that functional interactions of the pITG and 

parietal cortex are selectively increased in the context of an arithmetic compared to reading task 

(Daitch et al., 2016). However, multiple demands differ between arithmetic and reading so, we 

cannot infer this communication was related to digit processing per se. Furthermore, given the 

aforementioned studies have only characterized functional connectivity, they do not provide 

direct support for the biased (structural) connectivity account and additionally provide no 

information about the relations between, or relative importance of, structural and functional 

connectivity.  

Outside of the number domain, structural connectivity patterns have been shown to 

reliably predict the location of OTC areas involved in processing faces, objects, scenes, and 

bodies (Mahon & Caramazza, 2011; Osher et al., 2016; Saygin et al., 2012). Similarly, compared 

to the adjacent fusiform face area (FFA), the VWFA is more structurally connected to areas 

involved in language (F. Bouhali et al., 2014). Structural connectivity patterns in pre-reading 

children can even predict the future location of the VWFA (Saygin et al., 2016), providing 

perhaps the strongest evidence to date for the primacy of white-matter projections in driving 

OTC organization in humans. The extent to which white-matter projections underlie 

anatomically distinct locations for digit and letter processing, however, is unknown. Of note, a 

recent tractography study by Grotheer and colleagues contrasted structural connectivity among 

networks of regions involved in reading and adding (which included distinct areas of the OTC) 

(Grotheer, Zhen, Lerma-Usabiaga, & Grill-Spector, 2019). They found that while many 
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projections between regions of the “reading” and “math” networks ran in parallel, along the 

arcuate and superior longitudinal fasciculi, they occupied distinct sub-bundles and could be 

reliably distinguished in individuals. This study thus provides convincing evidence that domain-

specific networks for reading and math are structurally differentiable. However, the regions 

analyzed in this study were defined based their engagement in two qualitatively different task 

contexts, i.e., reading or adding, and so cannot specifically address digit versus letter processing. 

Critically, the biased connectivity hypothesis provides causal explanations for why digits and 

letters would be processed in different cortical locations under the same task conditions.  

Connectivity-based constraints on OTC organization are thought to influence not only the 

localization of selectivity within a hemisphere, but also the lateralization of function between 

hemispheres (Behrmann & Plaut, 2015, 2020). In the Introduction section 1.4.3, I reviewed 

findings that both a left and right ITNA may support digit recognition, but functional 

asymmetries in their roles have been observed. In particular, the right ITNA appears to be more 

reliably be engaged by numbers compared to other symbols (D. J. Yeo et al., 2020, 2017), 

possibly related to a right-hemispheric dominance for number processing more generally. The 

right IPS in particular appears to be innately predisposed to magnitude processing, compared to a 

more protracted and experientially-driven development of numerical tuning in the left IPS 

(Chochon, Cohen, Van De Moortele, et al., 1999; Kersey & Cantlon, 2017a; Pinel & Dehaene, 

2013; Rivera et al., 2005; S. E. Vogel et al., 2015). Based on neuropsychological evidence, the 

left ITNA appears more important for verbally-mediated number operations, such as arithmetic 

fact retrieval and multi-digit reading (L. Cohen & Dehaene, 1995; Dehaene & Cohen, 1995), 

presumably due to privileged access to the left-hemisphere language system. The triple-code 

model describes within-hemisphere pathways linking the “visual” and “quantity” codes of ITNA 
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and IPS bilaterally, and the “visual” and “verbal” codes specifically within the left hemisphere 

(Figure 1A). However, the model does not explicitly address how connectional architectures may 

differ between hemispheres (Dehaene & Cohen, 1995). Here, we hypothesized that hemispheric 

asymmetries in ITNA connectivity with right parietal areas and left language areas may underlie 

their functional differentiation.   

In the present study, we set out to examine, for the first time, both the structural and 

functional connectivity of digit- and letter-sensitive areas in OTC. We reanalyzed fMRI data 

from Pollack and Price (2019) and computed measures of structural connectivity via diffusion-

weighted imaging in the same sample of individuals. Functionally defined seed regions were 

derived from a previously published group-level analysis of this dataset, including left and right 

hemisphere Digit areas, anatomically consistent with the putative ITNAs, and a left hemisphere 

Letter area, slightly posterior to the VWFA and consistent with other studies of letter processing 

(Rothlein & Rapp, 2014; Thesen et al., 2012). We examined whether different symbol areas 

demonstrate differential white-matter projections and/or task-evoked functional connectivity to 

any area of the brain. Based on connectivity-based accounts of OTC function, we made the 

following predictions:  

1. Localization: The left Digit area will be more structurally and functionally connected 

than the Letter area to the intraparietal cortex due to its domain-specific involvement in 

magnitude processing and math, while the Letter area will be more connected to language 

areas involved in reading.   

2. Lateralization: The left hemisphere Digit area will be more connected to left hemisphere 

language network (compared to the homologous pathways in the right hemisphere), while 



 33 

right Digit to right IPS connectivity will be stronger than the homologous pathway in the 

left hemisphere.  

2.2 Methods 

2.2.1 Participants  

Participants who completed the fMRI tasks were 33 neurologically healthy, right-handed, 

English speaking 18-23 year old adults from our university and the surrounding community (M = 

19.42, SD = 1.50, 22 females. Of these, 29 also underwent diffusion weighted imaging. 

Participants were recruited from our university and the surrounding community via postings to 

the psychology study pool and local research listservs. Participants received either course credit 

(1 credit for each half-hour of time) or monetary compensation of $20 (if not an eligible student) 

for participating. All participants gave written consent and the study was approved by the 

Vanderbilt University Institutional Review Board. We included only normal healthy, right-

handed, English speaking adults between the ages of 18 and 35. No gender or ethnic group was 

targeted or excluded. To determine a participant's eligibility for MRI, screening questions were 

asked that determined if there was metal in the participant's body (including non-ferrous metal 

such as braces), claustrophobia, vision or hearing problems, conduct disorder or the inability to 

hold still for 3 minutes at a time. Participants were excluded if there was a diagnosis of any 

psychiatric disorder, including ADD/ADHD, history of head injury, perinatal complications, 

poor hearing or vision, current pregnancy, a history of claustrophobia or the presence of metal in 

the body. MRI exclusionary criteria were determined via self-report on an MRI screening form, 

which was further reviewed by an MRI technologist before allowing any subject to enter the 

MRI magnet room.  
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Figure 2.1 fMRI task paradigm 

Figure adapted from Pollack & Price (2019). Dotted lines under the target stimuli are included 

here for presentation purposes only. Detection tasks were performed separately, and 

counterbalanced across participants.  

 

2.2.2 fMRI task 

As reported in Pollack & Price (2019), during the digit detection task, participants viewed a 

string of 5 symbols (either 5 letters or 4 letters + 1 digit) and determined whether a digit was 

present (Yes or No), responding via button press of either the right index or middle finger. The 

letter detection task was the same, except a letter was to be detected among digits. The digits 1-9 

and letters T, S, N, R, H, E, D, C, and A in Arial font were used as stimuli. On target present 

trials, the target appeared at either the 2nd, 3rd, or 4th positions in the string. Each task had 54 

distinct trials grouped into 27 pairs, involving a target present and target absent version. Strings 

were random subsets of the selected stimuli but excluded letter strings that formed words or 

pseudowords and digit strings that contained a strictly increasing or decreasing number 

sequence. Trials lasted 1000ms each and inter-trial intervals (ITI) were either 2000, 4000, or 

6000ms (average of 4000ms), during which a fixation cross was present on the screen. Each 

digit/letter was matched once with each ITI and ITIs were counterbalanced across target string 

positions. Stimuli were presented with PsychoPy 1.84 (Peirce, 2007). Runs began and ended 
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with 16 seconds of fixation, totaling 5m2s each. Each run consisted of the same 54 trials in a 

different pseudorandom order. No ITI was repeated more than twice and no correct response 

repeated more than three times. Four sequential runs of each task were completed, with the order 

of digit and letter task counterbalanced across participants.   

2.2.3 MRI Acquisition parameters 

All images were acquired using a 3T Philips Achieva (Philips Medical Systems, Best, The 

Netherlands) and 32-channel head coil. T2*-weighted, single shot echo-planar imaging (EPI) 

was used for functional scans, with the following parameters: TR/TE = 2000/25 ms, FA = 90°, 

FOV = 240 x 240 x 130 mm, voxel size = 3 mm3 (with 0.25 mm gap), SENSE = 2.5. Each run 

lasted approximately 5m 16s in which 151 volumes were acquired (8 runs total = 4 runs digit 

task, 4 runs of letter task). 

Diffusion MRI was performed using a pulsed gradient spin-echo (PGSE-EPI) sequence with 

the following parameters: 60 diffusion-weighted directions, b-value = 2000, TR/TE = 

8600/66ms, FA = 90°, FOV = 240 x 240 x 125 mm, voxel size = 2.5 mm3, partial-fourier = 0.6, 

SENSE = 2, fat shift direction = P, acquisition time = 9m 36s. A non-diffusion weighted (b0) 

volume preceded the diffusion-weighted volumes. DWI was acquired immediately after the final 

fMRI run. 

A T1-weighted anatomical scan was acquired between tasks, with the following parameters: 

TR/TE = 8.1/3.8ms, FA = 5°, FOV = 256 x 256 x 170 mm, inversion time = 936 ms, SENSE = 2, 

acquisition time = 6m 26s. This scan was segmented with FreeSurfer and used for anatomical 

reference. 

2.2.4 Anatomical processing 

T1-weighted anatomical images were processed using FreeSurfer (v6.0.1, 
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http://surfer.nmr.mgh.harvard.edu), via the Vanderbilt University XNAT platform (Harrigan et 

al., 2016). The default “recon-all” pipeline was run along with inclusion of the extra “-3T” flag 

(which optimizes bias correction parameters and the target atlas for data acquired at 3T). All 

cortical surfaces and subcortical parcellations were visually inspected and manually edited where 

necessary using FreeView, according to FreeSurfer guidelines 

(https://surfer.nmr.mgh.harvard.edu/fswiki/Edits). FreeSurfer outputs were further processed for 

use in AFNI/SUMA using AFNI’s @SUMA_Make_Spec_FS program (Cox, 1996; Saad & 

Reynolds, 2012). As part of this process, standard surface meshes were generated which preserve 

the overall geometry of subjects’ original meshes, but provide node-to-node correspondence 

across subjects based on alignment of sulcal and gyral landmarks. To take advantage of the sub-

voxel resolution provided by streamline tractography, high-density “ld141” meshes were used, 

while the lower-density “ld60” meshes were used for fMRI analyses. 

 

 

http://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/fswiki/Edits
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Figure 3. Digit and Letter seed areas in relation to reported literature coordinates.  

Depicted coordinates represent a non-comprehensive subset of studies employing digit, letter, 

and word stimuli. One can appreciate that our functionally defined seed ROIs are approximately 

consistent with prior reports. For a more comprehensive set of coordinates from studies using 

letter stimuli, see Figure 14. 

 

2.2.5 Seed fROI Definition 

The seed regions of interest for the present study were functionally defined (fROIs) based on 

three results from the Pollack & Price (2019) group-level analyses. The digit fROI in the left 

hemisphere was derived from the contrast of Digit Present > Digit Absent and we focus 

specifically on the peak in the inferior temporal gyrus in Brodmann area 37 (MNI: -57,-52,-11). 

We can say that, based on the contrast, this region demonstrated digit selectivity, i.e., its activity 

was increased significantly when a digit was present and detected in the string of symbols 

compared to when the string contained only letters. Similarly, the letter fROI in the left 

hemisphere was derived from the contrast of Letter Present > Letter Absent and we focus on the 

peak in the left inferior occipital gyrus in Brodmann area 19 (MNI: -42,-64,-11). In the right 
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hemisphere, we focus on the peak of the cluster in the inferior temporal gyrus (MNI: 54,-52,-14) 

which showed a positive brain-behavior correlation between digit selective activity (Digit 

Present > Digit Absent) and mathematics competence (residualized Calculation Skills). Though 

this region did not show an overall group-level effect of digit selectivity, we were motivated to 

include it in the present due to 1) the behavioral relevance of its selectivity, 2) it is a nearby 

homolog of the left hemisphere digit region, facilitating our laterality analyses, and 3) a right-

hemispheric ITNA has been more consistently identified in the literature (G. R. Price, Yeo, 

Wilkey, & Cutting, 2017). 

To facilitate our cortical surface-based connectivity analyses, a series of steps was conducted 

to generate subject-specific surface ROIs. Using the MNI152-2009 template and the associated 

FreeSurfer surfaces distributed with AFNI 

(https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI152_2009.tgz), we first mapped each 

volumetric peak coordinate to its closest node on the MNI template surface (using AFNI’s 

3dVol2Surf command). We then created circular ROIs around these nodes on each subject’s 

inflated standard surface, dilating to a radius of 7mm. By using the standardized subject-space 

surfaces, we ensured that 1) the ROIs were centered on the same cortical location across subjects 

(based on gyral/sulcal anatomy), but also that 2) each ROI occupied the same total area of 

cortical tissue. The latter feature was particularly important for our quantitative tractography 

analyses to eliminate a potential confounding of ROI size with streamline count (and 

subsequently the sum of streamline weights, see tractography pipeline below). The ROI size 

(7mm radius) was chosen to be consistent with several other analyses of OTC connectivity 

(Grotheer et al., 2019; Gschwind, Pourtois, Schwartz, Van De Ville, & Vuilleumier, 2012; Klein, 

Moeller, Glauche, Weiller, & Willmes, 2013; Yeatman, Rauschecker, & Wandell, 2013). 

https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI152_2009.tgz
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To situate our findings within the broader literature on the ITNA, we qualitatively evaluated the 

relative proximity of our functionally defined ROIs to prior reports. Critically, there is not a one-

to-one correspondence between the Euclidean distance of volumetric coordinates and their 

distance along the cortical sheet. We therefore used the same volume-to-surface mapping 

approach for a number of reported coordinates from studies looking at either digit, letter, or word 

selectivity. In Figure 3 we plot these coordinates on the MNI cortical surface along with the 

ROIs used in the present study. We can appreciate the consistency of findings for digit selectivity 

in both hemispheres, but particularly in the right. Furthermore, the Letter area used in the present 

study is comparatively much closer than the left Digit area to locations of letter and word 

selectivity (e.g., the VWFA). This provides confidence that the localization of digit and letter 

selectivity in the ventral stream is relatively task-invariant. Importantly, the study-specific seeds 

used herein are consistent with prior reports, making the present results more broadly relevant 

for the field. 

2.2.6 DWI Preprocessing 

The DWI data were processed in MATLAB using tools from FSL (v6.0), ANTs, AFNI, and 

MRtrix3 (Cox, 1996; S. M. Smith et al., 2004; J-Donald Tournier et al., 2019; Tustison, Avants, 

Cook, & Gee, 2010). First, the raw diffusion data was first converted from DICOM to NIfTI 

format using dicm2nii (X. Li, Morgan, Ashburner, Smith, & Rorden, 2016). Next, the DWIs 

were denoised using MRtrix3’s dwidenoise program, which has been shown to improve the 

subsequent estimation of diffusion parameters and fiber orientation distributions (Cordero-

Grande, Christiaens, Hutter, Price, & Hajnal, 2019; Veraart et al., 2016). To correct for distortion 

(which is critical for anatomically accurate tractography), we employed a recently published 

method (Synb0-DisCo) which uses deep learning to generate a synthetic, undistorted b0 volume 
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using a subject’s T1-w anatomical image (Schilling et al., 2020, 2019). The synthetic volume 

was then passed to FSL’s TOPUP program to correct distortions in the acquired DWI images 

(Andersson, Skare, & Ashburner, 2003). A publicly-available MATLAB pipeline 

(https://github.com/justinblaber/topup_eddy_preprocess) was used to implement TOPUP and 

FSL’s eddy tool, which corrects for motion and eddy current artifacts including outlier 

replacement (Andersson, Graham, Zsoldos, & Sotiropoulos, 2016; Andersson & Sotiropoulos, 

2016). The T1-w anatomical image was affine registered to the distortion-corrected b0 image via 

AFNI’s align_epi_anat.py script. With this transformation, the surface ROIs and FreeSurfer-

derived tissue masks were sampled to a subject’s native DWI-space for use within the 

tractography pipeline. While the primary analyses were carried out in native DWI-space 

followed by sampling to subjects’ standardized cortical surfaces, we further assessed the 

volumetric overlap of our tracts of interests with canonical white matter bundles. For this 

analysis, a nonlinear registration of the T1-w anatomical images to the MNI152-2009 template 

was achieved using AFNI’s auto_warp.py script, and the transformation subsequently applied to 

the DWI-space streamline density images (see below). 

2.2.7 Streamline tractography pipeline 

Streamline tractography was carried out using MRtrix3 (J-Donald Tournier et al., 2019). 

From the preprocessed DWI volumes, we first implemented an unsupervised method for 

estimating single-fiber response functions for white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF), via dwi2response with the “dhollander” algorithm (Dhollander, Mito, 

Raffelt, & Connelly, 2019). To facilitate later group-level comparisons, the group average 

response function for each tissue type was used for subsequent estimation of fiber orientation 

distributions (FODs) (R. E. Smith, Raffelt, Tournier, & Connelly, 2020). Single-Shell 3-Tissue 

https://github.com/justinblaber/topup_eddy_preprocess
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constrained spherical deconvolution (SS3T-CSD) was performed to obtain WM-like FODs as 

well as GM-like and CSF-like compartments in all voxels (Dhollander & Connelly, 2016), using 

MRtrix3Tissue (https://3Tissue.github.io), a fork of MRtrix3. SS3T-CSD takes advantage of 

multi-tissue CSD, a framework which more faithfully resolves FODs in areas of partial voluming 

between tissues and ultimately improves tractography (Jeurissen, Tournier, Dhollander, 

Connelly, & Sijbers, 2014), while uniquely requiring only single-shell data. Prior to streamline 

generation, the FOD maps were corrected for bias fields and intensity inhomogeneities via 

mtnormalise (Raffelt et al., 2017). Probabilistic tracking was then performed to construct a 

whole-brain structural connectome (i.e., “tractogram”) via tckgen with the “iFOD2” algorithm 

(J-D. Tournier & , F. Calamante, 2010). The tractogram was created by generating 50 million 

streamlines which were randomly seeded and terminated (including “back-tracking”) at the 

GM/WM interface (GMWMI) as delineated by FreeSurfer. This method, called Anatomically-

Constrained Tractography (ACT), improves the biological accuracy of the reconstructed 

streamlines by ensuring that, like the underlying axons, all streamlines begin and end (i.e., 

“synapse”) at some GM structure (R. E. Smith, Tournier, Calamante, & Connelly, 2012). 

Following tractogram construction, we used the successor to the “spherical-deconvolution 

informed filtering of tractograms” method (SIFT2, via tcksift2) to assign a weight (i.e., a cross-

sectional area multiplier) to each streamline (R. E. Smith, Tournier, Calamante, & Connelly, 

2013, 2015a). This process corrects for biases in tractography associated with the fact that 

streamlines are volume-less entities, which, for instance, can result in overrepresentation of 

certain tracts. Specifically, SIFT2 ensures that the (weighted) streamline reconstruction is an 

adequate fit of the diffusion signal (i.e., the CSD model) at each voxel, which is itself 

proportional to the volume of tissue aligned in each orientation. This effectively guarantees that 

https://3tissue.github.io/
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the summed weight of streamlines connecting any two brain regions is proportional to the total 

cross-sectional area of WM fibers connecting these regions, providing a physically interpretable, 

quantitative measure of structural connectivity (R. E. Smith et al., 2020). Overall, the 

tractography pipeline implemented here capitalizes on recent advancements in the field and has 

been shown to: 1) significantly improve the biological validity of structural connectivity metrics 

derived from streamlines (R. E. Smith, Tournier, Calamante, & Connelly, 2015b), 2) reduce 

inter-subject variability introduced by fiber-tracking biases (Yeh, Smith, Liang, Calamante, & 

Connelly, 2016), and 3) improve the reproducibility of tractography results compared to other 

pipelines (Nath et al., 2019). 

2.2.8 Seed to whole-brain connectivity and consistency-based thresholding 

To facilitate correspondence with the tractography data, the cortical surface ROIs were first 

sampled to subjects’ DWI-space. The weighted streamlines intersecting each ROI were extracted 

and served as a volumetric representation of the ROI’s white-matter projections. Connectivity 

was assessed by mapping the streamline endpoints to the cortical surface and summing the 

streamline weights at each surface node. The node-level values were then multiplied by the 

subject-specific proportionality coefficient generated by SIFT2 (µ)(R. E. Smith et al., 2015a). 

Along with our previous steps that implemented group-average response functions and intensity 

normalization, multiplication by µ yields maps containing theoretically absolute measures of 

fiber cross-sectional area, making them finally comparable across subjects (R. E. Smith et al., 

2020). The maps were then smoothed to a FWHM of 6mm (using SUMA’s SurfSmooth 

program). 

Prior literature suggests that probabilistic tractography methods produce a high rate of 

spurious connections. In the present case, due to the large number of streamlines and SIFT2 
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weighting procedure, the seed-to-whole-brain connectivity maps generated were nearly fully 

connected. That is, while the connectivity of the seed to a target area may have been vanishingly 

small, it was almost never zero. We thus sought to threshold these maps before statistical testing 

to account for potential false positive connections. We implemented a recently proposed 

consistency-based thresholding approach which, compared to traditional weight-based 

approaches, was shown to yield structural connectivity results that more faithfully represent 

empirical estimates from tracer data (Roberts, Perry, Roberts, Mitchell, & Breakspear, 2017). For 

each surface node, the coefficient of variation (standard deviation/mean weight across subjects) 

was computed and served as a measure of connection consistency. The values for all surface 

nodes of the analyzed hemisphere (excluding the seed areas) were then ranked by their 

consistency. The logic goes that, regardless of its overall strength, as long as a connection is 

highly consistent across subjects it can be considered a true positive. This approach helps 

account for distance-dependent biases such that weak but consistent long-range connections may 

be retained while inconsistent short-range connections, e.g., due to overrepresented propagation 

errors, are removed. We principally chose a cutoff for masking based on reports of 

approximately 30% connection density in the mammalian brain (Buchanan et al., 2020; Oh et al., 

2014; Roberts et al., 2017; van den Heuvel, Scholtens, & de Reus, 2016). Specifically, a binary 

mask was created from the top 30% most consistent nodes connected to each ROI, and a union of 

these served as a combined inclusion mask for subsequent analyses. Prior to statistical testing, 

the structural connectivity weights were log10 transformed, due to prior demonstrations that 

errors in streamline-based connectivity are multiplicative rather than additive (R. E. Smith et al., 

2015b). A benefit of this transformation is that the residuals from the linear contrasts should be 

more normally distributed. Note as well, given the exponential decline in axonal connectivity 
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with distance, logarithmic transformation of axonal connection densities is common practice in 

the literature (Oh et al., 2014). 

2.2.9 Fiber Density & Length and Bundle Overlap Analyses 

To supplement our tractography results, we performed several additional analyses involving 

assessments of 1) average length and total cross-sectional area (“density”) of white-matter fibers 

innervating each of the seed areas, and 2) the overlap of each area’s projections with canonical 

white-matter tracts. Whole-brain length and density images were created using Mrtrix3’s tckmap 

tool and were derived from the full set of streamlines. SIFT2 weights were incorporated into this 

calculation to down-weight spurious fibers’ contributions to the average estimate at each voxel. 

The density images were multiplied by the subject-specific proportionality coefficient as in our 

seed-based connectivity estimates, to allow for valid group-level comparisons of these values (R. 

E. Smith et al., 2020)d. Length and density images were then sampled to the surface, where 

average values were extracted from each subject’s seed ROIs.  

We then calculated the degree of overlap of the each seed ROI projection map with canonical 

white-matter bundles from the Xtract subset of the Pandora 4D atlas (Hansen et al., 2021; 

Warrington et al., 2020). The MNI-normalized track-density images were used to represent a 

subject’s weighted, volumetric map of projections from each seed ROI through the white matter.  

Bundle images and density images were thresholded at levels of 0.6 and 3, respectively, and then 

binarized. Overlap between the binarized 3D images was assessed using the Dice coefficient. 

The threshold settings were arbitrary, but led to the highest overall Dice coefficients and seemed 

reasonable upon visual inspection. We found that the results were consistent across a range of 

thresholds. 
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2.2.10 fMRI Preprocessing 

Surface-based analyses respect subject-specific gyral and sulcal anatomy and have been 

shown to improve cortical area localization as well as increase statistical power (Anticevic et al., 

2008; Coalson, Van Essen, & Glasser, 2018). Given these potential benefits, and to facilitate 

comparisons with our structural connectivity results, the fMRI data from Pollack and Price 

(2019) were reanalyzed in the present study using a surface-based pipeline. The raw imaging 

files were first converted from Philips PARREC format to NIfTI format using the dicm2nii 

MATLAB toolbox (X. Li et al., 2016). The fMRI data was then preprocessed in MATLAB using 

AFNI and SUMA tools (Cox, 1996; Saad & Reynolds, 2012; Saad, Reynolds, Argall, Japee, & 

Cox, 2005). Trial onset timestamps were extracted from the PsychoPy output files for each 

condition separately (i.e., Digit Present, Digit Absent, Letter Present, Letter Absent, Errors, and 

Omissions) and onset files were created for use in AFNI. The afni_proc.py program was used to 

build a preprocessing pipeline that included the following steps: despiking, slice-time correction, 

EPI-anatomical alignment, motion correction, sampling EPI data to subjects’ standardized 

cortical surface, smoothing on the surface with a 6mm FWHM filter, and scaling to percent 

signal change. 

2.2.11 Beta-series connectivity 

To assess task-evoked functional connectivity, we performed beta-series correlation (BSC) 

(Rissman, Gazzaley, & D’Esposito, 2004), which has been shown to be more powerful than 

psychophysiological interaction (PPI) analysis for assessing task-modulated connectivity in 

event-related paradigms, and is more robust to variability in the hemodynamic response across 

subjects (Cisler, Bush, & Steele, 2014). The independent BOLD response was estimated for each 

trial, generating a series of beta maps, and this series was then used to assess condition-specific 
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coupling of our ROIs with the rest of the brain. We used the computationally efficient “least-

squares-separate” estimation method via AFNI’s 3dLSS function (Mumford, Turner, Ashby, & 

Poldrack, 2012). 

Specifically, AFNI’s 3dDeconvolve function was first used to generate a general linear model 

(GLM) that combined all data from both the digit and letter tasks, containing nuisance 

parameters and an separate regressor for every trial. Trial-level regressors were defined by 

convolving the onset time with a gamma function modelling the hemodynamic response (i.e., 

AFNI’s default basis function, specifying an event duration of 1 second, “GAM(8.6,0.547,1)”). 

Head-motion and outlier censoring was performed by removing volumes from the GLM which 

demonstrated between-volume movement of > 0.3mm Euclidean norm distance or if > 5% of 

voxels within a brain mask were determined to be outliers. Nuisance parameters were defined for 

each run separately, including 6 motion parameters, 6 motion derivatives, and 0-3rd order 

Legendre polynomials to model low-frequency drifts. The GLMs additionally included the first 

three principal components in both white matter and lateral ventricles, as defined by a subject’s 

FreeSurfer segmentation. These additional regressors helped to mitigate the impact of non-neural 

physiological fluctuations and unmodeled motion effects in the beta series, which can artificially 

inflate connectivity values (Caballero-Gaudes & Reynolds, 2017; Ciric et al., 2017; Muschelli et 

al., 2014). The full GLM was then passed to the 3dLSS function, which constructed and fit the 

reduced model for each trial separately.  

Due to the censoring approach, we implemented a “beta-scrubbing” procedure where we 

excluded from BSCs those betas which had more than one volume censored over the span of the 

associated (~14s) HRF, with the assumption that these trials were contaminated by motion 

artifacts (Conrad, Wilkey, Yeo, & Price, 2020; Ray et al., 2017). This serves as a principled 
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strategy to eliminate outlier beta estimates resulting from an insufficient number of observations 

(volumes). Finally, the mean beta series for each condition was computed from the digit and 

Letter areas and correlated with the beta series of each node on the cortical surface, resulting in 

condition-specific seed-to-whole-brain functional connectivity maps. The Pearson correlation 

coefficients were transformed to Fisher Z estimates to allow for quantitative comparisons 

(Fisher, 1915). 

 

 

Figure 4. Schematic of the homotopic mapping procedure.  

This process was used to estimate an anatomically-informed transformation of data between 
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surfaces of each hemisphere. This allowed for direct, whole-surface comparisons of the within-

hemisphere connectivity profiles of the left and right Digit areas. Images in the bottom panel 

demonstrate the mapping result with indexed data, validating that the transformation in either 

direction performed as expected.  

 

 

2.2.12 Landmark-Based Homotopic Mapping 

To facilitate direct comparisons of the left and right Digit area connectivity to their ipsilateral 

targets, we implemented an anatomical landmark-based mapping procedure adopted from Jo et 

al. (Jo, Saad, Gotts, Martin, & Cox, 2012). The procedure is outlined in Error! Reference 

source not found.. First, we determined the centroid of each FreeSurfer ROI on the left and right 

cortical surfaces, using the 74-region Destrieux parcellation of the MNI152_2009 template 

surfaces (Destrieux, Fischl, Dale, & Halgren, 2010). We calculated all pairwise distances among 

the nodes of each ROI and then defined the centroid as the node with the shortest average 

distance to all others (via AFNI’s SurfDist function). Next, we calculated the distance of every 

surface node to the 74 ROI centroids, producing a vector of within-hemisphere distances for each 

node. We then assessed, for each node in a hemisphere, what node in the opposite hemisphere 

had the most similar distance profile using Pearson correlation. This process yielded a complete 

set of node-level correspondences between hemispheres, representing a fine-grained mapping 

each node’s homotopic location with respect to gyral and sulcul landmarks. Correspondences 

were determined for both the high and low density meshes to facilitate comparisons of structural 

and functional connectivity patterns, respectively. Prior to statistical contrasts, subject-level 

connectivity maps for the right Digit area were sampled to the left hemisphere. To ensure our 

results were robust to the particular direction of mapping, we performed the same contrasts using 

left Digit connectivity maps sampled to the right hemisphere. The results were effectively 

identical, including all significant clusters reported herein.  
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2.2.13 Statistical Analysis and Threshold-Free Cluster Enhancement 

The goal of this study was to assess similarities and differences in the structural (SC) and 

functional connectivity (FC) profiles of digit and letter-sensitive areas in the OTC. We focus 

only on connections to the ipsilateral cortical surface, due to the relatively sparse degree of 

axonal projections between hemispheres involving non-homologous areas. This approach is 

consistent with other studies in the field (F. Bouhali et al., 2014; Grotheer et al., 2019). While FC 

is much more bilateral in nature, we chose to also restrict these analyses to the ipsilateral 

hemisphere to facilitate comparisons with the structural results. “Task-general” functional 

connectivity was defined based on BSCs over all trials combined (ALL). Recent work has 

shown baseline BSC connectivity patterns are highly similar to those observed in a resting-state 

(Di, Reynolds, & Biswal, 2017), due to the fact that task-evoked activity accounts for only a 

small portion of the variance in the BOLD signal (Cole, Bassett, Power, Braver, & Petersen, 

2014). Thus, we expected our task-general connectivity measure to reflect a mixture of both 

spontaneous and stimulus-evoked coupling (see Limitations for further discussion). We also 

assessed condition-specific coupling by contrasting the BSCs derived from trials of one 

condition versus others.  

Using the subject-level, seed-to-whole-brain connectivity maps, we carried out a series of 

paired t-tests involving the following contrasts:  

I. SC – Digit area L > Letter Area 

II. SC – Digit area L > Digit area R (sampled to the left hemisphere) 

III. Task-general FC – Digit area L, ALL > Letter area, ALL 

IV. Task-general FC – Digit area L, ALL > Digit area R, ALL (sampled to the left hemisphere) 

V. Digit-selective FC – Digit area L, Dp > Da 
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VI. Letter-selective FC – Letter area, Lp > La 

VII. Digit-selective FC – Digit area R, Dp > Da 

VIII. Difference in Digit-selective vs Letter-selective FC –  

[Digit area L, Dp–Da] > [Letter area, Lp–La] 

IX. Difference in Digit-selective FC –  

[Digit area L, Dp–Da] > [Digit area R, Dp–Da] (sampled to the left hemisphere) 

 

For each contrast, the paired test was carried out simultaneously with a multiple comparison 

correction procedure, using a surface-based implementation of threshold free cluster 

enhancement (TFCE) from the CoSMoMVPA toolbox, with default null settings and 100k 

permutations (Oosterhof, Connolly, & Haxby, 2016; S. M. Smith & Nichols, 2009). A final 

corrected threshold of p < 0.05 was used to indicate significance. Uncorrected t-statistic and the 

associated Bayes factor maps (Bayesian prior: Cauchy distribution, scale = 0.707) were created 

in the case of null results, in order to assess the level of evidence in support of the null 

hypothesis. To assess areas of shared connectivity between seeds, conjunctions analyses were 

carried out for each of the contrasts. The group-level conjunction maps were computed by 

thresholding each subject-level connectivity map, creating a binary map of their overlap for each 

subject, and then computing a percentage map that indicated the proportion of subjects 

demonstrating an overlap at each node. SC maps were thresholded at log10(mm2) = -6, and 

further masked by the previously defined group-level consistency mask. FC maps were 

thresholded at an uncorrected p < 0.005 level. 
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2.3 Results 

2.3.1 Structural connectivity of Digit versus Letter area  

We hypothesized that distinct connectivity patterns may underlie the localization of digit and 

letter processing in the ventral visual stream. In our first set of analyses we asked whether our 

functionally-defined Digit and Letter area in the left hemisphere were differentially connected, 

both in terms of their 1) white matter projections and 2) functional coupling during symbol 

detection. Specifically, we predicted the Digit area would show stronger connections to the 

intraparietal sulcus (IPS), known to be involved in magnitude processing and domain-specific 

numerical operations, while the Letter area would be more strongly connected to perisylvian and 

inferior frontal language areas involved in reading. 

Our results demonstrated that the Digit area was more structurally connected to large swaths 

of parietal, lateral temporal, and lateral prefrontal cortex (red) (Figure 5E). The Letter area was 

more structurally connected to occipital areas and the fusiform gyrus. Our prediction of greater 

connectivity between the Digit area and the IPS was supported. These projections included most 

of the inferior parietal lobule but did not extend to the superior parietal lobule (Figure 5E). The 

Letter area, however, was not found to have stronger connectivity with putative language areas 

of the perisylvian fissure and inferior frontal gyrus. We instead observed that the Digit area was 

more connected to these areas. In a conjunction analysis (Figure 5E), we observed that both areas 

were similarly connected to the lateral/superior occipital and inferior/anterior temporal areas.  
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Figure 5. Structural Connectivity of Digit and Letter areas 

A-C) Group-average connectivity to ipsilateral cortical surface of each seed ROI, measured in 

units of fiber cross-section area (mm2), and masked according to the consistency-based 

thresholding procedure. D) Average fiber density and streamline length for each seed ROI. E) 

Contrast and conjunction statistical maps involving the left Digit and Letter area connectivity 

profiles. Contrast Z-scores derived from the TFCE-correction procedure. F) Contrast and 

conjunction maps involving the left and right Digit area.   

 

2.3.2 Functional connectivity of Digit versus Letter area 

We next compared the functional connectivity profiles of the Digit and Letter areas. In the 
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first contrast, we compared their task-general connectivity patterns, defined as the BSC across all 

trials combined. We found the Digit and Letter area participated in largely distinct, whole-brain 

functional networks (Figure 6A-D). The Digit area was more strongly coupled with the IPS, the 

angular gyrus, the middle frontal and orbital gyri, and proximal areas in inferior temporal and 

middle temporal gyrus. The Letter area was more coupled with many areas spanning across 

occipital, superior temporal, superior parietal, pre/postcentral, insula, and inferior frontal gyrus. 

In the conjunction analysis (Figure 6D), we observed both areas were coupled to portions of the 

IPS, lateral prefrontal, and proximal OTC areas.     

We next asked whether the Digit area’s connectivity pattern was sensitive to digit detection, 

contrasting the Digit Present and Digit Absent maps. No significant clusters were observed, 

indicating a similar pattern of connectivity regardless of the stimulus condition (Figure 6F). 

Upon inspection of the Bayes Factor maps for this contrast (Figure 8; Figure 9), there existed 

some evidence of an effect in the IPS, such that the detection of a digit was associated with 

increased Digit area to IPS coupling. However, given it did not survive multiple comparison 

correction, we consider this an inconclusive result. We furthermore observed no letter-selective 

coupling from the Letter area. Finally, we observed no reliable difference between the Digit and 

Letter areas in terms of their stimulus-selective coupling.   
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Figure 6.1 Functional Connectivity of Digit and Letter areas 

A-C) Group-average task-general functional connectivity to ipsilateral cortical surface from each 

seed ROI. Task-general connectivity referred to the correlation in the beta-series across all task 

events, regardless of condition. Pearson R values were then converted to Fisher Z. D) Contrast 

and conjunction statistical maps involving the left Digit and Letter area connectivity profiles 

(task-general connectivity). Contrast Z-scores derived from the TFCE-correction procedure. E) 

Contrast and conjunction maps involving the left and right Digit area. F) Description of 

condition-specific connectivity analyses, where the beta-series correlation across trials of one or 

more conditions was contrasted with another. No clusters survived TFCE-correction for any 

contrast.  
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2.3.3 Structural connectivity of the left versus right Digit area  

In our second set of analyses we asked whether our functionally defined Digit areas in the 

left and right hemisphere were differentially connected, both in terms of their 1) white matter 

projections and 2) functional coupling during symbol detection. Specifically, we predicted the 

left Digit area would show stronger connections to ipsilateral language regions, due to the known 

hemispheric asymmetry of language processing. We predicted the right Digit area would be more 

connected to the ipsilateral IPS, due to prior neuropsychological and neuroimaging evidence 

suggesting that a right hemispheric bias for numerical magnitude processing and a more 

consistent rightward lateralization for numeral processing in the OTC. Note, to test these 

predictions, the data from the right hemisphere was first sampled onto the left hemisphere 

surface, using a homotopic mapping procedure (see Methods).  

In general, the left and right Digit areas showed a similar pattern of structural connectivity 

(Figure 5A,C), with the conjunction analysis demonstrating projections from both areas to the 

lateral occipital, inferior parietal, and lateral prefrontal cortices. However, the structural 

connectivity contrast highlighted significant differences in the total density of connections with 

several regions (Figure 5F). Among posterior areas, the right Digit area was more connected to 

lateral occipital cortex, angular gyrus, and portions of the intraparietal and parieto-occipital sulci. 

The right ROI was also more strongly connected to portions of the middle frontal and precentral 

gyri. The left Digit area was more strongly connected to the opercular inferior frontal and 

inferior precentral gyri, as well as a small section of the supramarginal gyrus (Figure 5F). We 

attribute the significant positive cluster at the anterior border of the left Digit area to the slight 

discrepancy in homotopic location, as it may be an artifact of local smoothing.  
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2.3.4 Functional connectivity of the left versus right Digit area  

 We next compared the functional connectivity profiles of the left and right Digit areas. In the 

first contrast, we compared their task-general connectivity patterns. We found the left Digit area 

was more functionally coupled with the angular and middle temporal gyri, as well as the 

temporal pole (Figure 6E). The right Digit area was more coupled with the IPS, a posterior 

portion of the middle temporal gyrus, and antero-lateral prefrontal areas. The conjunction of their 

task-general connectivity patterns revealed both were strongly of coupled to a frontoparietal 

network including IPS and lateral prefrontal cortex (Figure 6E).   

We observed no evidence of digit-selective coupling for either region separately (Figure 6F), 

other than the previously mentioned subthreshold effect between the left Digit area and IPS 

(Figure 8). Furthermore, we observed no difference between the left and right Digit area in terms 

of digit-selective coupling (Figure 6E). 
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Figure 7. White Matter Bundle Overlap 

Mean volumetric overlap (Dice coefficient) of bundle and track-density images (TDI), across 

subjects. MNI-space bundles taken from the XTract subset of the Pandora 4D population atlas 

(Hansen et al., 2021; Warrington et al., 2020).  
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Figure 8. Digit-selective Coupling from Left versus Right Digit Area – Bayes Factor and T-

maps 

Due to the null results from TFCE-corrected contrasts (Figure 6E) we performed exploratory 

Bayesian analyses to test for strong evidence for the null hypothesis. In general, there was a lack 

of evidence for the null, indicating that the contrast was inconclusive in either direction. A 

positive cluster in favor of the alternative hypothesis (digit-selective coupling) was observed in 

IPS for the left Digit area, providing moderate evidence for increased coupling with this area 

during digit detection.  



 59 

 

Figure 9. Stimulus-selective Coupling from left Digit versus Letter Area – Bayes Factor and T-

maps 

Due to the null results from TFCE-corrected contrasts (Figure 6E) we performed exploratory 

Bayesian analyses to test for strong evidence for the null hypothesis. In general, there was a lack 

of evidence for the null, indicating that the contrast was inconclusive in either direction. A 

positive cluster in favor of the alternative hypothesis (digit-selective coupling) was observed in 

IPS for the left Digit area, providing moderate evidence for increased coupling with this area 

during digit detection (note the Digit area L panel is the same data as the top panel in Figure 8).  

 

2.4 Discussion: ITNA Localization and Connectivity 

 Based on the biased connectivity hypothesis, we predicted that an OTC area sensitive to 
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digits, given the association of digits with numerical magnitudes and their contextualized use in 

the domain of arithmetic and mathematics, would be preferentially connected to other regions 

reliably engaged by numerical processes, such as the intraparietal sulcus (IPS) (Nieder & 

Dehaene, 2009). We further predicted that an OTC area sensitive to letters, given the association 

of letters with written language and reading, would be preferentially connected to left-

hemispheric language regions, such as inferior frontal and poster perisylvian cortex (Binder, 

2015). In the following sections, I refer to the “Digit area” and “ITNA” interchangeably. 

2.4.1 The ITNA is functionally and structurally connected to intraparietal sulcus 

In a whole-brain contrast, we found that the Digit and Letter areas were highly distinct in 

terms of their anatomical connectivity. As predicted, across our sample, the Digit area reliably 

projected to the IPS and was more connected than the Letter area to the IPS, including most of 

the inferior parietal lobe (Figure 5E). These projections provide a plausible candidate pathway 

through which number symbols could be mapped to their magnitude referents. It is furthermore 

consistent with the idea that the localization of the ITNA could be driven by direct axonal 

connectivity of ITNA with other regions involved in representing numbers (see General 

Discussion section 4.1 for more on this finding).  

Similarly, in contrasts of functional connectivity (FC), though both areas showed strong 

task-general coupling with the IPS (Figure 6A,B), the digit area was more strongly coupled to 

the IPS than the Letter area (Figure 6D). The pattern of differences in task-general FC was 

highly consistent with that from a recent analysis which compared the intrinsic connectivity of 

the “number form area” (i.e., ITNA) with the VWFA in a large sample of individuals ranging 

from 3-21 years of age (Nemmi et al., 2018). The authors showed the FC of the ITNA to the left 

IPS increased with age, suggesting this circuit is increasingly refined over experience. A similar 
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pattern was reported in  early work by Abboud and colleagues (Abboud et al., 2015). In both 

studies, however, the observed ITNA-IPS coupling was intrinsic, i.e., without reference to a 

specific stimulus or task-context. Our findings build on this work, showing that when one is 

engaged in an active cognitive task, though both symbol areas interact with the IPS, the ITNA’s 

interaction is stronger, presumably supporting a higher degree of information exchange between 

areas.   

If this circuit supports the domain-specific process of digit-magnitude mapping, we 

should expect these areas to interact more so when processing their preferred stimulus category. 

Although the present task did not require actively processing magnitude information, behavioral 

studies have shown that digits are implicitly mapped to their magnitude referents, even when 

magnitude information is irrelevant to the task (Dehaene & Akhavein, 1995; Henik & Tzelgov, 

1982; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002), and further, the interactive account of 

Price & Devlin predicts the automatic engagement of distributed representations once a stimulus 

is processed in the OTC (C. J. Price & Devlin, 2011). Thus, in the present study, we expected to 

see evidence of this mapping in terms of stronger coupling during digit detection (i.e., Digit 

present > Digit absent). While there were indications that ITNA-IPS FC increased during the 

digit present versus absent condition (see Bayes Maps, Figure 8/Figure 9, top panel), this finding 

did not survive TFCE-correction (Figure 6F). We further found no evidence that the ITNA was 

selectively coupled to any region during digit versus letter detection. If digits were mapped to 

magnitudes during the task, it is possible that the signal from these events was too weak and/or 

transient to detect with fMRI, or that ITNA connectivity was anatomically variable across our 

sample. Despite the present results, other studies have demonstrated some domain-specificity to 

ITNA-IPS interactions. For instance, using intracranial electrocorticography, Daitch et al. have 
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shown that pITG and IPS sites were intrinsically coupled at baseline, but that this coherence was 

even more pronounced during an arithmetic task, as well as in comparison to a control task 

involving sentence reading (Daitch et al., 2016). Similarly, a longitudinal fMRI study in 8-14 

year-olds demonstrated task-evoked coupling between IPS and a left OTC areas during 

arithmetic compared to a control task (Battista et al., 2018). This interaction increased with age, 

presumably due to a history of repeated co-activation of these areas over schooling (Johnson, 

2011). Furthermore, the aforementioned study of Nemmi et al. found that ITNA-IPS FC related 

positively to arithmetic ability (Nemmi et al., 2018). This evidence all suggests the ITNA-IPS 

circuit is an integral component of the domain-specific network involved in number processing 

and mathematics. Our study provides new evidence that this reported functional circuit is not 

only distinct from the that of the Letter area during task performance, but is also supported by a 

larger degree of axonal connectivity between the ITNA and IPS, as predicted by the biased 

connectivity hypothesis. 

2.4.2 The ITNA is more structurally connected to language areas 

A curious aspect to our structural connectivity results was that it was not the Letter area, 

but the Digit area that demonstrated more projections to putative language areas, a finding that 

potentially provides evidence against the biased connectivity hypothesis. The Digit area was in 

fact more connected to large swaths of temporal, parietal and prefrontal cortex. Compared to the 

Letter area, the Digit area’s axonal projections also had more distant targets on average (Figure 

5D) and overlapped more prominently with the arcuate fasciculus (Figure 7), a white matter tract 

that has been heavily implicated in language and reading (Wandell, Rauschecker, & Yeatman, 

2012). If structural connectivity drives categorical preference in the OTC, the present results 

suggest that the ITNA’s position in the ventral stream may be a product of more than just the 
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association of digits with magnitudes. One possibility that single digits have higher-order 

semantic referents while letters, on the other hand, have no intrinsic meaning on their own. It 

could be that the distributed representation of a digit is simply more distributed, in that it taps 

into a wider range of cortical regions. In other words, the association of a single character (or 

object) to a wider conceptual network may be supported by a more broad axonal network. Such 

an interpretation is consistent with the largescale pattern of differential connectivity from the 

ITNA we observed here, as well as its significantly longer projections (Figure 5D). One 

interesting implication for this finding may be in the explanation for the so-called “digit-

advantage,” whereby behavioral studies have reported a slight but consistent increase in 

processing speed for single digits over letters (for a review see T. M. Schubert, 2017). 

Interestingly, a digit advantage was reported in the present dataset in Pollack & Price (2019), in 

which digit detection took less time on average than letter detection, tying this idea more closely 

to the functional ROIs we analyzed here. A number of hypotheses have been proposed, but 

perhaps the most promising suggests that, due to their association with a conceptual 

representation, digits are afforded higher top-down support compared to single letters. Such an 

idea is in line with the interactive account, which outlines the effect of top-down prediction 

signals on processing efficiency in the OTC (C. J. Price & Devlin, 2011). The structural 

connectivity of the Digit area we observed here may underlie increased top-down support, and 

may further explain increased processing speed for digits compared to letters. This suggestion 

remains speculative, but is a fascinating avenue for future research.  

As a final comment on this finding, we note that the Letter area was more functionally 

coupled to language areas in terms of its task-general connectivity (Figure 6D). This highlights a 

significant discrepancy between functional and structural connectivity patterns and suggests that 
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these two metrics should not be conflated in theories of OTC organization and development (see 

General Discussion section 4.1 for more on this topic).  

2.4.3 The Letter area is functionally and structurally connected to the fusiform gyrus 

In the above sections, we have focused on why the ITNA may be situated where it is, and 

how its location is potentially supported by unique connectivity patterns. Note, however, that the 

Letter area was more strongly connected to fusiform gyrus, including to the classical location of 

the VWFA (Figure 5E, Figure 6D). The Letter area’s projections also showed greater overlap 

with the vertical occipital fasciculus (Figure 7), a primary white matter tract associated with the 

VWFA which connects ventral and dorsal aspects of the occipital cortex (Yeatman et al., 2013, 

2014). This fusiform-centered pathway involving the Letter area likely underlies the posterior-to-

anterior hierarchy of ventral stream stages critical to reading, involving the processing of shapes, 

letters, bigrams, and finally a binding of these representations into whole words (Vinckier et al., 

2007). The repeated involvement of letters (and not digits) in this computational hierarchy may 

itself lead to selectivity of this area for letters over digits. Note that although multi-digit numbers 

have their own syntactic structure involving place values, this process may not rely on the 

fusiform system (or if so is less frequently engaged than word reading) and so this area of cortex 

is not involved in single digit processing (see Dotan & Friedmann, 2019, for distinct cognitive 

models for multi-digit versus word reading). From this perspective, biased connectivity of the 

Letter area with this computational system may indeed play a consequential role in driving the 

selectivity of this area for single letters.    

2.5 Discussion: Lateralization of ITNA Connectivity 

 The distribution of functions among the left and right hemispheres of the brain has long 
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been a topic of investigation and debate, but yet remains an open area of research in which many 

outstanding questions remain. Despite a remarkable degree of symmetry in their anatomy, it is 

well appreciated that the two hemispheres consistently take on distinct and often complementary 

roles in service of behavior. The hemispheric asymmetry of visual object processing in the 

occipitotemporal cortex (OTC) is no exception and has received a great deal of attention in the 

literature (Behrmann & Plaut, 2020). As with functional localization among OTC areas within a 

hemisphere, the functional roles taken on by each hemisphere are thought to be constrained by 

dissociations in their connectional architectures. In the present study, we compared the structural 

and functional connectivity profiles of the inferior temporal numeral area (ITNA) in the left and 

right hemisphere. Prior neuropsychological and neuroimaging evidence has highlighted 

distinctions in their functional contributions, but no study has directly contrasted their 

connectivity profiles. Based on the prior evidence, and in particular drawing on the triple-code 

model of Dehaene and colleagues (Figure 1A), we predicted that the left and right ITNA would 

show distinct patterns of connectivity to domain-specific regions involved in language and 

numerical magnitude processing. 

2.5.1 Left ITNA has greater anatomical connectivity with inferior frontal gyrus 

 First, in accordance with our prediction, we found that the left ITNA was more 

structurally connected to the opercular inferior frontal gyrus (IFGop), also known as pars 

opercularis or Brodmann area 44, as well as the neighboring sulcus that separates the opercular 

and triangular IFG (the vertical ramus of the anterior lateral sulcus) (Destrieux et al., 2010). The 

IFGop in the left hemisphere is a core component of the language network and has been 

described as a cortical “convergence zone” involved in the perception and production of speech 

(Fedorenko & Blank, 2020; Keller, Crow, Foundas, Amunts, & Roberts, 2009; C. J. Price, 2012). 
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For instance, evidence from studies using direct cortical stimulation and recording have 

demonstrated that the left IFGop is engaged when processing both phonologic and semantic 

aspects of language (Tate, Herbet, Moritz-Gasser, Tate, & Duffau, 2014), and involved in 

transforming representations from temporal areas into an articulatory code that can be 

implemented in motor cortex (Flinker et al., 2015). In terms of its anatomical projections, 

tractography studies have found the IFG to be anatomically connected via the arcuate fasciculus 

(AF) to Brodmann area 37, which includes posterior aspects of the middle and inferior temporal 

gyrus (Friederici, 2009; Glasser & Rilling, 2008; Grotheer et al., 2019). In our tract overlap 

analysis (Figure 7), we found that a portion of projections from the both the left and right ITNA 

overlapped with the AF, but that the overlap was greater in the left hemisphere (t(28) = 3.16, p = 

0.004, BF10 = 10.56), suggesting asymmetric ITNA-IFGop connectivity involves a difference in 

the AF pathway. Our result is consistent with a well-established finding of greater fiber density 

within the left AF compared to its right homolog (Allendorfer et al., 2016; Barrick, Lawes, 

Mackay, & Clark, 2007; Glasser & Rilling, 2008; Hagmann et al., 2006; Nucifora, Verma, 

Melhem, Gur, & Gur, 2005; Powell et al., 2006; Vernooij et al., 2007). Asymmetry in the AF is 

present even in infants, suggesting this architecture may serve as an early and long-lasting 

constraint on hemispheric organization (Dubois et al., 2009). In a study similar to our own which 

focused on the lateralization of AF connectivity, it was shown that the left lateral temporal cortex 

is more structurally connected than its right homolog to the IFG (Takaya et al., 2015). The 

authors also found that the intrinsic coupling of the temporal and IFG regions was greater in left 

hemisphere and that their level of activation was closely related during a semantic word 

classification task, suggesting that the higher density of AF fibers supports increased functional 

interactions within the left hemisphere. The lateral temporal ROI used in that study only 
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bordered the ITG, however, and instead included aspects of the STG, STS, and MTG, leaving 

open the question of whether asymmetry in the AF included projections to the lateral ITG. Our 

results indicate that the left ITNA is not simply proximal to the language network, but that it is 

directly connected to this network via the AF and shares a similar profile of hemispheric 

asymmetry in its projections. These projections provide a plausible substrate through which both 

feedforward and feedback interactions could occur, such that number symbols could be 

efficiently linked to left hemisphere-based verbal representations and language areas could in 

turn provide top-down prediction signals to the left ITNA (C. J. Price & Devlin, 2011). As a 

consequence, the existence of this asymmetric white matter architecture may result in differential 

tuning of the left and right ITNA over enculturation.   

It should be noted, however, that we found no evidence of a leftward asymmetry in the 

functional connectivity of the ITNA and IFGop. In fact, neither ITNA was strongly coupled with 

IFGop. Instead, both were engaged with a frontoparietal system that included IPS and 

orbital/middle frontal areas (see Figure 6E, FC conjunction). Relatedly, it has been shown that 

the VWFA is intrinsically connected to the dorsal attention network, including the superior 

aspect of the IPS, SPL, and frontal eye fields, while only weakly connected to language regions 

(A. C. Vogel et al., 2012). During language processing, however, VWFA connectivity with the 

language system significantly increases compared to baseline (L. Chen et al., 2019). It is possible 

that the left ITNA and IFGop only interact strongly in particular contexts when verbal 

representations are engaged, such as during digit identification or retrieval-based arithmetic 

operations, as opposed to the task employed here which involved a category-level decision (i.e., 

is a digit present or not?). Thus, although the underlying channel for communication between 

the ITNA and language system exists in the left hemisphere, this circuit may only be tapped 
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when needed. For instance, we would expect the functional coupling patterns of the left and right 

ITNA to be more clearly differentiated in tasks that place a greater emphasis on verbal 

mechanisms.  

2.5.2 Both ITNAs are connected to the frontoparietal control network 

The functional connectivity of a region is thought to in part reflect a region’s history of 

coactivation (Lewis, Baldassarre, Committeri, Romani, & Corbetta, 2009), and so the pattern of 

coupling observed at “rest” is likely to reflect the most consistent coalition in which a region 

participates (Anderson, 2015; Johnson, 2011). Given we did not observe strong functional 

connectivity of the left ITNA with the IFGop (or other language areas) (Figure 6A,D,E), a 

further implication of our results is that the primary functional role of the left ITNA is likely not 

to connect symbols with verbal representations. As mentioned, both ITNAs were primarily 

connected to what is often referred to as the frontoparietal “control” network or FPN (Vincent, 

Kahn, Snyder, Raichle, & Buckner, 2008; B. T. Yeo et al., 2011). Their shared structural 

projections also included parts of this network (see Figure 5F, conjunction results). The FPN has 

been described as a global “hub” network that supports cognition by flexibly connecting with 

other networks and coordinating their activity (Cole, Repovš, & Anticevic, 2014). A bilateral 

ventral ITG area, precisely at the location of the ITNAs studied here, is consistently assigned to 

the frontoparietal network (FPN) across studies (Marek & Dosenbach, 2018). Furthermore, 

studies specifically looking at intrinsic connectivity of the ITNAs have found strong coupling 

with the FPN (Nemmi et al., 2018), including in blind subjects (Abboud et al., 2015). 

Remarkably, however, the ITG’s contribution to the FPN has rarely been discussed in the large 

body of recent literature on this network and, consequently, remains poorly understood. While 

we proceed to discuss additional distinctions in the left and right ITNA connectivity patterns, we 
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pause to note that an understanding the ITG’s general computational contributions to the FPN 

will likely be key to a more complete characterization of the ITNA’s specific role in numerical 

cognition.   

2.5.3 Right ITNA is more structurally and functionally connected to the intraparietal 

sulcus  

In the present study, we found the ITNAs were both structurally and functionally 

connected to portions of the ipsilateral IPS (Figure 5F; Figure 6E), indicating that direct axonal 

projections exist between these areas and suggesting that their functional roles are tightly linked. 

This finding supports the triple-code model’s postulation that a “visual-to-quantity code” 

pathway exists in both hemispheres. However, on each measure, the right ITNA demonstrated a 

greater degree of connectivity, structurally to the posterior IPS (26.0% of FreeSurfer’s IPS ROI 

(Destrieux et al., 2010)) and functionally along the entire length of the IPS (79.9%), supporting 

the prediction of rightward asymmetry in this pathway. In the context of the present dataset, 

Pollack & Price (2019) found that the left ITNA was sensitive to digits (i.e., Digit present > Digit 

absent) at the group-level, but the same effect was not observed in the right ITNA. In contrast, 

individual differences in digit-sensitivity of the right, but not the left, ITNA positively related to 

math achievement. The task employed here involved a simple categorical decision, “Is a digit 

present among a string of letters?”, and so required no explicit mapping of digits to their 

magnitude referents in the IPS. This task may be more efficiently achieved via activation of the 

left hemisphere verbal pathway. In contrast, individual differences in the spontaneous 

engagement of the quantity-biased right hemisphere circuit may be related to mathematical 

competence. 
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2.5.4 Distinct connectivity of the ITNA with anterior and posterior IPS  

An interesting structure/function distinction we observed in both hemispheres was that 

the ITNA was functionally coupled with IPS along its entire length, but was only consistently 

structurally connected to the posterior IPS (pIPS) (e.g., the raw connectivity and conjunction 

figures; Figure 5A,C,F; Figure 6A,C,E). Our results are consistent with prior tractography 

studies in humans which show stronger OTC projections to pIPS compared to anterior IPS (aIPS; 

Bouhali et al., 2014; Bray, Arnold, Iaria, & MacQueen, 2013; Grotheer et al., 2019; Uddin et al., 

2010), and a similar pattern has also been observed in macaque tracer data (Seltzer & Pandya, 

1984). This suggests that interactions between the ITNA and the aIPS are supported by a 

polysynaptic, rather than direct, pathway. Consequently, its plausible that information flow in 

this circuit follows an ITNA  pIPS  aIPS (bidirectional) chain of processing. Some 

empirical support for this model may be found in a recent study by Daitch et al. (2016) who 

directly measured cortical responses in the pITG, pIPS, and aIPS during numeral viewing and 

arithmetic tasks (Daitch et al., 2016). The authors found that both tasks activated sites in the 

pITG and pIPS, and that the pIPS responses were equally engaged by non-numeric control 

conditions. The aIPS, on the other hand, was engaged only in the arithmetic task, significantly 

more so than during a reading-based memory control task. These findings are consistent with 

prior work showing domain-specific involvement of the aIPS in higher-order arithmetic and 

numerical magnitude representation, whereas the pIPS is involved more generally in visuospatial 

attention (Dehaene et al., 2003; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Pinel, Piazza, 

Le Bihan, & Dehaene, 2004). Daitch and colleagues further demonstrate that the pITG and aIPS 

were functionally connected at rest and that their coupling was selectively amplified during 

arithmetic. Intriguingly, the authors acknowledge that this interaction may be direct or indirect, 
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potentially mediated by a thalamo-cortical pathway (Saalmann & Kastner, 2011). As discussed, 

our structural connectivity results suggest the ITNA to aIPS pathway may indeed be indirect but 

could plausibly be mediated by the pIPS. Though this hypothesis is admittedly speculative, it 

demonstrates the potential for tractography to constrain computational models of number 

processing. The results of this study, however, do contribute to a recent emphasis on 

understanding how IPS subdivisions differentially contribute to numerical cognition (Castaldi, 

Vignaud, & Eger, 2020; Harvey, Ferri, & Orban, 2017).    

2.5.5 Double dissociation in ITNA connectivity with the angular gyrus 

We observed a dissociation in regard to how the ITNAs were structurally and 

functionally connected to the angular gyrus (AG), such that the left ITNA, compared to the right, 

showed reduced structural connectivity but greater functional coupling with AG (Figure 5F; 

Figure 6E). A large body evidence suggests that, in general, structural and functional 

connectivity are well aligned across the brain. This particular observation involving the AG thus 

serves as a fascinating counter-example and poses a puzzling interpretive challenge. In the Three 

Parietal Circuits model, Dehaene and colleagues postulated that the left AG supports verbal-

based number processing, such as retrieval of multiplication facts, while also acknowledging its 

involvement in reading and verbal short-term memory (Dehaene et al., 2003). Though some 

work suggests the right AG plays an important role in number processing (Arsalidou & Taylor, 

2011; Göbel, Walsh, & Rushworth, 2001), the preponderance of evidence points to the left AG 

as more critical for specifically symbolic numerical abilities (Faye et al., 2019). AG activity has 

been demonstrated across many task contexts, including when passively viewing numerals 

compared to other symbols (G. R. Price & Ansari, 2011), when actively accessing the magnitude 

of symbolic compared to non-symbolic stimuli (e.g., dot sets) (Castaldi et al., 2020; Holloway, 
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Price, & Ansari, 2010), and during retrieval-based arithmetic (Grabner et al., 2009). More 

generally, the left AG is thought to support symbol-referent mapping (Ansari, 2008), and outside 

of numerical cognition, it has been described as a global hub that integrates conceptual 

knowledge across multiple semantic and perceptual domains (Seghier, 2013). The left ITNA-AG 

circuit may support the mapping of lexicalized numerical “objects” to a language-based semantic 

network in the left hemisphere. We speculate that the increased axonal projections in the right 

hemisphere may predate the presumably experience-driven formation of this structural circuit in 

the left hemisphere, and that this rightward-lateralized structural connectivity persists into 

adulthood. The discrepancy between structure and function in this case requires further 

investigation, to address, for instance, what is the functional role of the right ITNA-AG circuit, 

given the strong(er) axonal connectivity between these areas?  

2.6 Limitations 

Our functionally defined ROIs were defined at the group level, based on previously 

published contrasts in Pollack et al. (2019). It has been argued that subject-level ROIs are more 

sensitive to individual differences in the functional localization of visual object processing areas 

in occipitotemporal areas (Nieto-Castañón & Fedorenko, 2012). Despite this potential limitation, 

we note that our method does represent an improvement over traditional volumetric ROI 

approaches, in that it accounted for individual variation in cortical geometry. We first mapped 

the peak coordinate of each cluster to its closest location (node) on the MNI-template cortical 

surface. Rather than an absolute geometrical position in volumetric space, the surface-space node 

indexes a location relative to gyral and sulcal boundaries. We then took advantage of the aligned 

surfaces which preserved an individual’s native cortical geometry while also providing node-

level correspondence across individuals. The circular ROIs used herein were generated by 
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“growing” a circle (14mm diameter) around the defined surface location. This process ensured 

that the ROI was centered on approximately the same cortical location and encompassed an 

absolute surface area of ~154mm2 for every subject.   

Our study included more females than males (20F/9M) and therefore may have been 

skewed in relation to the general population. Previous studies have found that AF white matter 

demonstrates stronger leftward asymmetry in right-handed males compared to women and left-

handed males (Catani et al., 2007; Hagmann et al., 2006) and that activation levels are more 

symmetric in females in the language network during language processing (Shaywitz et al., 

1995). This suggests our findings may be conservative with respect to the asymmetries we 

observed in structural and functional connectivity, particularly involving language regions such 

as the IFGop. Our study was not designed to detect sex differences, so future work in larger 

samples will be necessary to examine the potential relation between sex and ITNA connectivity.     

 In the present study, we defined “task-general” connectivity as the correlation in response 

patterns across all trials of the task. Connectivity results derived from such baseline beta-series 

correlations (i.e., where no contrasts is made between conditions) have been shown to be highly 

similar those observed in traditional resting-state time series correlations (Di, Zhang, & Biswal, 

2020), indicating that a large portion of variance in the BOLD signal is attributable to intrinsic 

fluctuations. However, in principle, since our results are based on coupling over trials of a task, 

they will be somewhat biased towards general task engagement. For instance, the BOLD signal 

assessed here included visual processing and motor responses that are unrequired in typical 

resting-state scans. Given we know the ITNAs are engaged by the task, we would expect that any 

effect of task performance on our measure functional connectivity to be amplified. Resting-state 

data was not collected in this study, so comparison to a true “resting” state was not possible. To 
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understand the generalizability of our functional connectivity findings, it will be important in 

future work to assess how similar our task-general connectivity patterns are to those in the 

absence of a task context, as well as to those in other task contexts such as arithmetic.   

2.7 Conclusions 

Alphanumeric symbol processing in the OTC provides a useful model system for 

understanding both the localization and lateralization of functionally distinct areas in the brain. It 

has been proposed that areal patterns of structural and functional connectivity provide constraints 

on the topographic layout of categorical selectivity in the OTC. We tested these ideas by 

comparing the connectivity profiles of segregated digit and letter-sensitive areas in young adults. 

The left Digit area showed stronger connectivity than the Letter area to inferior parietal cortex 

and IPS, revealing a pathway that may support the mapping of digits to their magnitude referents 

and bias the posterior section of the ITG towards digit sensitivity. The left, compared to the right, 

Digit area was more connected to language areas, while the right Digit area was more connected 

to the IPS. These results are in line with the triple-code model of number processing and provide 

the first empirical evidence of architectural asymmetries between homologous digit-preferring 

areas of the OTC, potentially supporting their differential functional roles in particular task 

contexts. Understanding the causal role of connectivity in driving areal selectivity will require 

further work involving longitudinal data in young children. 
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CHAPTER 3 

 

 FUNCTIONAL DEVELOPMENT OF INFERIOR TEMPORAL NUMERAL AREAS 

FROM KINDERGARTEN THROUGH 2ND GRADE 

3.1 Introduction 

The human occipitotemporal cortex (OTC) contains a patchwork of category-selective 

areas that respond preferentially to particular classes of objects (Grill-Spector & Weiner, 2014; 

Kanwisher, 2010). Despite decades of work characterizing the functional profile of the OTC in 

adults, understanding how these areas come to develop their selectivity is a comparatively open 

frontier. A number of theories make predictions about the origins and developmental trajectories 

of OTC function (Arcaro & Livingstone, 2017; Behrmann & Plaut, 2020; Cantlon et al., 2011; 

Hannagan et al., 2015; Johnson, 2011; Op de Beeck et al., 2019; C. J. Price & Devlin, 2011). 

Testing these predictions, however, requires measurements prior to and/or concurrent with the 

process of interest. OTC responses to common visual domains like faces and places occur in 

stereotypical locations at birth and are further refined within the first few years of life (Arcaro & 

Livingstone, 2017; Cantlon et al., 2011; Deen et al., 2017), resulting in a critical window of 

growth that is difficult to capture with current neuroimaging methods. Alphanumeric symbols, on 

the other hand, are particularly appealing class of objects for investigating OTC development for 

a number of reasons.  

Firstly, with writing systems coming into existence over just the past 5000 years, 

alphanumeric symbols are an evolutionarily recent invention. This is far too short a time period 

for the human brain to have acquired dedicated brain systems for processing symbols. Instead, 

the brain must adapt or “recycle” preexisting architecture to fluently use symbols (Dehaene & 
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Cohen, 2007). The arbitrary association of symbols with their referents further necessitates that 

this class of objects is learned through experience. These features make symbol learning a 

perfect model system for understanding not only plasticity in the brain’s capacity for object 

recognition, but also how ventral stream areas interface with distributed circuits involved in 

language, magnitude, and attentional processes.  

Secondly, symbol learning occurs over a protracted developmental window extending 

into at least the early years of formal schooling. For instance, the U.S. Common Core Standards 

specify that students should be able to write the numbers 0-20 by the end of kindergarten and all 

upper and lower case letters by the end of 1st grade (Practices & Officers, 2010). The use of 

symbols in foundational skills, such as adding and subtracting numbers up to 100 and reading 

common two-syllable words, is not expected until the end of 2nd grade. The repeated and 

contextualized experience with alphanumeric symbols over this window provides an extensive 

and (relatively) controlled case of visual object learning in children. Critically, over this period 

children also acquire the ability to actively engage in novel cognitive tasks and simultaneously 

remain still in a scanner, making this window particularly suitable for studying the emergence of 

brain function with fMRI.  

Finally, in human adults, the neural populations most sensitive to digits and letters are 

reliably segregated in the OTC. Given these symbol sets are effectively identical in terms of their 

low-level visual properties, functional segregation suggests that OTC activity is not solely a 

product of visual perception but is related to the higher-order associations and/or the 

contextualized use of objects in different domains. Studies in blind subjects further demonstrate 

this point, revealing that the same areas are engaged when numerical or phonological concepts 

are associated with auditory or tactile inputs. Investigating how and when responses to digits and 
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letters diverge in the OTC should help to clarify the fundamental mechanisms governing the 

development of human brain function.  

Prior work on early symbol processing in the brain has largely focused on the 

development of the “visual word form area” (VWFA), a region in the left OTC that is 

preferentially engaged by letter and words. Responses in the VWFA track closely with literacy 

acquisition, whether that occurs with early reading instruction in school or later in life in 

illiterate-to-literate adults (Dehaene et al., 2015, 2010), suggesting that tuning of the VWFA is 

indeed a product of reading experience. Studies in children indicate that a preference for letters 

and words emerges in the left occipitotemporal sulcus (OTS; the site of the mature VWFA) from 

approximately 5 to 8 years of age, corresponding to the kindergarten through 2nd grade period 

(Ben-Shachar, Dougherty, Deutsch, & Wandell, 2011; Brem et al., 2010; Dehaene-Lambertz et 

al., 2018; Nordt et al., 2020; Saygin et al., 2016). In particular, it is the functional specificity for 

letters in the left OTS that appears to be changing over this period, i.e., greater response to letters 

relative to other symbols (Cantlon et al., 2011; Tracy M. Centanni, King, Eddy, Whitfield-

Gabrieli, & Gabrieli, 2017). Already by kindergarten, individual differences in letter specificity 

are positively related to word reading, suggesting that early symbol processing in OTC is not 

only a product of symbol learning but is behaviorally relevant in children (Tracy M. Centanni et 

al., 2018). 

In contrast to developmental studies of the VWFA, only a few studies have looked at 

digit processing in early school-age children. Of the existing fMRI studies that included number 

stimuli, none have found evidence for the emergence of digit specificity in the OTC (Cantlon et 

al., 2011; Dehaene-Lambertz et al., 2018; Libertus et al., 2009; Nordt et al., 2018, 2020). As we 

reviewed in Chapter 1 section 1.4.4, these results may be due to: 1) the use of passive task 
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designs which do not reliably engage the ITNA in adults (see also Chapter 1 section 1.4.2), 2) the 

use of multi-digit stimuli which may be less engaging in young children (e.g., understanding of 

place value beyond two-digit numbers is not taught until 2nd grade or later), 3) the inclusion of 

small sample sizes (20 or fewer participants studied under the age of 9 in all studies), and 4) a 

focus on univariate measures of the fMRI signal. Despite their potential limitations, it is 

important to recall that several of these studies found letter-specific activation in OTC within the 

same paradigms and also detected developmental increases in letter specificity (Cantlon et al., 

2011; Dehaene-Lambertz et al., 2018; Nordt et al., 2018, 2020). This suggests that the 

development of digit specificity in OTC may be less robust or reliable and/or qualitatively 

different from the development of letter specificity.  

Outside of the fMRI work, one recent study acquired electroencephalography (EEG) 

recordings in 20 first graders who viewed sequences of either single digits or letters while 

performing a color-change detection task (Lochy & Schiltz, 2019). The authors observed 

lateralized responses in occipitotemporal electrodes, with stronger rightward activity for digits 

and stronger leftward activity for letters, indicating that children’s brains already distinguish 

between symbols categories at some level (note that given the limited spatial resolution of EEG, 

the precise localization of activity in OTC remains unclear). This result stands in contrast to 

another recent EEG study that found no difference in responses to letter strings and multi-digit 

numbers in 7 year-olds (n = 27) or 10 year-olds (n = 29) performing an oddball detection task 

(Park et al., 2018). Park and colleagues did, however, observe lateralized responses similar to 

Lochy & Schiltz in a group of 15 year-olds and a group of adults, suggesting a more protracted 

development of symbol-related processing in OTC. Whatever the case, given the current state of 

evidence, it is unclear when and in what manner the ITNA acquires its functional specificity for 
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digits.  

3.2 The present study 

In the present study, we address these questions using an approach that improves upon 

prior work in a number of ways. We collected fMRI in children who performed an active 

classification task on single digits, letters, and scrambled versions of digits and letters. 

Longitudinal measurements were collected in a comparatively large sample of children over 

kindergarten through 2nd grade. A total of 86 children had usable imaging data over 145 scans 

and a majority contributed two or more timepoints, more than doubling the sample size of 

previous studies. Using mixed-effect models, we assessed how functional responses to symbols 

in the bilateral ITNAs and a proximal letter area changed over children’s time in school. We 

predicted the following: 

1) Both ITNAs would show an increase over time in their sensitivity to digits (digit 

response vs. baseline).  

2) Both ITNAs would show an increase over time in their selectivity to digits (digit vs. 

other symbol responses).  

 

Furthermore, we analyzed not only univariate measures of activity and specificity, but 

also multivariate patterns (MVPA) including representational similarity analysis (RSA) and 

decoding (Kriegeskorte, Mur, & Bandettini, 2008; Norman, Polyn, Detre, & Haxby, 2006). 

MVPA-based approaches abstract away from response amplitudes at specific locations and 

instead look for information contained in the spatial pattern of activity elicited by different 

stimuli. Digits and letters may engage distinct arrangements of neural populations across an area, 

even if the overall mean response of the area is similar (e.g., Cantlon et al., 2011). Importantly, 
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with MVPA there is no requirement for activity patterns to spatially overlap across individuals – 

an inherent assumption of univariate analyses which may be invalid due to differences in cortical 

geometry, inadequate alignment, or idiosyncratic neural tuning. These features make MVPA-

based measures complementary to, and potentially more powerful than, univariate analyses 

(Kriegeskorte et al., 2006).  

RSA uses pattern information to examine the second-order representational “geometry” 

across stimuli/categories, i.e., the extent to which the similarity matrix itself follows a particular 

hierarchical structure. Employing RSA, Yeo and colleagues recently detected digit-biased 

category-level representations in the right ITNA when adult participants passively viewed single 

digits, letters, and scrambled symbols, despite similar univariate engagement across categories 

(D. J. Yeo et al., 2020). Representational patterns have also been shown to precede the 

development of category selectivity in the OTC for common visual domains, including faces, 

bodies, scenes, and objects (M. A. Cohen et al., 2019). Similarly, the distinctiveness of activation 

patterns for words, but not other categories, has been shown to increase over development in a 

cross-sectional study of children, adolescents, and adults (Nordt et al., 2018). Interestingly, a 

recent longitudinal study found that within-category representational similarity in OTC was 

already stable for multiple visual domains in 6 year-old children, but for words, representational 

similarity increased over early schooling (Dehaene-Lambertz et al., 2018). Taken together, these 

studies suggest that RSA may be a more sensitive marker of categorical preference in early 

developmental windows, especially for alphanumeric symbols, and thus motivate its inclusion in 

the present work. We hypothesized that the ITNAs may demonstrate increasing digit-biased 

representational geometries over early schooling, even if a univariate preference for digits is not 

yet established. We predict the following: 
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1) In both ITNAs, representational differences will increase between response patterns 

for digits and other symbols. (i.e., digit-biased representational geometry) 

2) In both ITNAs, representational differences will increase between response patterns 

for digits and letters. (i.e., categorical distinction between digits and letters) 

 

MVPA-based decoding involves training a classifier to distinguish between labelled activity 

patterns and then predicting the label of an untrained pattern. If one can successfully “decode” a 

stimulus from an area’s activity patterns alone, one can infer neural populations in this area 

encode information about stimulus identity. Our lab has recently demonstrated discriminability 

between digits in the left ITNA in tasks requiring explicit access to digit identity and magnitude 

(Wilkey, Conrad, Yeo, & Price, 2020). During simple digit detection, however, exemplar-level 

discriminability was not significant at the group level in either ITNA but did positively relate to 

math ability in the left ITNA (Yeo et al., in prep). These results together suggest that the left 

ITNA is “capable” of representing digit identity but it depends on task demands and potentially 

mathematical competence. Other work indicates that, in a delayed matched-to-sample task, digits  

are distinguishable in the right OTC, and that representational geometry there is related to the 

frequency of environmental co-occurrence, implying that digit-specific tuning is sensitive to 

experience (Lyons & Beilock, 2018). Though there is clearly more work required to understand 

how digits are represented in the ITNAs in the adult state, we hypothesized that digit-specific 

representations in the ITNA would strengthen over kindergarten through 2nd grade and therefore 

become more decodable. We predicted the following: 

1) In both ITNAs, exemplar-level decoding of digits, but not letters, would increase. 
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Our univariate and multivariate measures focused on response levels and representational 

patterns within symbol areas of the OTC. As we have discussed, however, these regions do not 

act alone. It is important to consider local response properties within a broader context of 

distributed processing to understand the functional role of any brain region (Karl J. Friston & 

Price, 2011; Genon et al., 2018). And furthermore, connectivity-based accounts of OTC function 

posit that domain-specific connectivity profiles help to constrain and/or determine an area’s 

functional selectivity. The interactive specialization (IS) hypothesis postulates that local 

processing is refined over development through repeated co-activation and interaction among 

interregional networks (Johnson, 2001, 2011). IS provides an explanatory framework for how 

functional connectivity causally drives, and potentially precedes, regional specialization. In our 

analyses of symbol area connectivity in adults (Chapter 2), we found that digit areas were more 

functionally connected than a letter area to parietal regions putatively involved in magnitude 

representation. We further found stronger functional coupling in the ITNA-parietal circuit of the 

right hemisphere. Finding these patterns in adults, however, does not address the developmental 

predictions put forward by the IS hypothesis. In the present sample, we more directly tested these 

predictions, assessing both the background and stimulus-specific coupling of the ITNAs to 

number-sensitive parietal regions and whether connectivity in these circuits changed over 

schooling. We hypothesized that if connectivity drives the development of category-selectivity in 

the ventral stream, domain-specific connectivity may be observable before changes in the local 

response profiles. Furthermore, as IS addresses both functional specialization and localization, 

the initial presence of and/or developmental change in ITNA-parietal coupling should be specific 

to the ITNAs, and not characteristic of the letter area. We predicted the following: 
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1) Both ITNAs would be functionally connected to a number-sensitive parietal regions in 

the earliest timepoint, but this connectivity would be greater in the right hemisphere due 

to an early-developing hemispheric asymmetry. 

2) Spontaneous coupling of the ITNAs with number-sensitive parietal areas would increase 

over schooling, possibly reflecting repeated co-activation through math instruction. 

3) Digit-specific, task-evoked coupling in this circuit should also increase over schooling as 

these areas are mutually tuned towards their preferred stimulus domain.  

 

3.3 Methods 

3.3.1 Participants  

The children included in the present analysis were participants in a longitudinal study of 

symbolic number processing in neuro-typical children from K-2nd grade, which began data 

collection in January of 2018. The study involved a behavioral and an imaging visit (median = 

2.3 weeks apart) each year for three years. Families were recruited via several mechanisms 

including through announcements on relevant email list-serves and Vanderbilt research 

participant databases, Facebook advertisements, flyers at local schools, and word-of-mouth. 

Participants had to be enrolled in a school that follows Tennessee’s academic curriculum and in 

kindergarten or the summer between kindergarten and 1st grade. Exclusion criteria included 

homeschooling, pre-term birth, diagnosis of any psychiatric or neurological disorder (including 

ADHD and/or other learning disability), history of neurological injury, or any MRI 

contraindication. All participants and their parents gave written consent and the study was 

approved by the Vanderbilt University Institutional Review Board.    
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A total of 110 children completed baseline behavioral testing (M ± SD = 6.1 ± 0.4 years old, 

47 female, 92 right-handed). The racial composition of this initial cohort was 74.5% White, 

10.9% multiracial, 9.1% Black, 1.8% Hispanic, and the remaining 3.6% unreported. Self-

reported family income was distributed as follows: $0–$24,999 (0%), $25,000–$49,999 (6.4%), 

$50,000–$74,999 (14.6%), $75,000–$99,999 (14.6%), $100,000–$124,999 (11.8%), and 

$125,000–$149,999 (10.0%), $150,000+ (33.6%), and the remaining 11.8% unreported. The 

mean IQ across the group was 109.0 ± 14.4, as measured by the KBIT-2 (Kaufman Brief 

Intelligence Test 2). 

As of the current date, the study is in its final phase of data collection and only a portion of 

the final visits have been completed. The study was significantly disrupted by the COVID-19 

pandemic that halted research activities for most of 2020 (see Limitations section 3.6.1 for 

further discussion).  
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Figure 10. Longitudinal sample and usable data. 

Sample plotted based on academic months (left) and age (right). Black dots refer to a visit with 

usable fMRI data. Gray dots refer to visit where behavioral data was collected, but fMRI was 

either not collected or was unusable (e.g., due to motion or below chance accuracy). Blue lines 

indicate individuals with three visits. Green lines indicate individuals with two visits. Red dotted 

lines indicate the transition between grade levels, where a full academic year = 9.29 months.  

 

3.3.2 fMRI Tasks 

Symbolic Classification Task (“SYM”) 

Participants viewed a series of centrally located stimuli involving either a single digit, letter, 

or unfamiliar symbol. Using either their left and right thumbs, participants indicated via button 

press whether they “knew the name” of the stimulus (i.e. is a digit or letter; press left) or not (i.e. 

an unfamiliar symbol; press right). Digits from 2 - 8 were used as well as the capitalized letters 

A, E, H, N, R, S, T, which are highly common in the English alphabet and excluded those that 

look visually similar to a digit (e.g. O or I) (Jones & Mewhort, 2004). The unfamiliar symbols 

were adapted from a previous study of symbol processing in adults (G. R. Price & Ansari, 2011) 
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and, were originally created by segmenting and rearranging the intact letters and digits into 

unified but entirely novel shapes. Thus, each letter and each digit had an unrecognizable 

scrambled counterpart with equivalent number of pixels and approximately similar numbers of 

angles and curves. Each digit and letter appeared twice per run and each scrambled symbol 

appeared once per run (i.e., 14 digit, 14 letter, and 14 scrambled trials per run). Stimuli remained 

on the screen for 2000ms and inter-trial intervals (ITIs) range from 2000-5100ms with an 

average of 3000ms. Stimulus and ITI randomization was performed using the NeuroDesign 

toolbox which uses a genetic algorithm to optimize the presentation sequence for increased 

detection power and BOLD response estimation efficiency (Durnez, Blair, & Poldrack, 2017). 

Three runs are administered in succession, including a total of 126 trials (42 digit, 42 letter, and 

42 scrambled) over approximately 11.5 minutes of scan time. The SYM task was acquired first 

in every MRI session, in part to minimize explicit processing of magnitude that may be induced 

by the number comparison tasks. This paradigm was modelled after an ECoG study in adults by 

Shum et al., which demonstrated preferential processing of numerals in the ITG (Shum et al., 

2013).  For all tasks, stimulus presentation and response recording was performed using E-Prime 

3.0. Upon completion of the SYM task, a T1-weighted anatomical image was acquired.  

 

 

Figure 11. All stimuli used in the symbol classification task  
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Symbolic Comparison Task (“NUM”) 

Following the T1-weighted acquisition symbolic and nonsymbolic comparison tasks were 

performed. The order of these tasks were reversed in approximately half of the sample, then 

reversed at each timepoint within an individual, to minimize task-order effects. In the symbolic 

comparison task (“NUM”), participants viewed two Arabic numerals on either side of the screen, 

separated by a vertical bar. With responses boxes in each hand, participants indicated with either 

the right or left thumb button the stimulus that was greater in magnitude for each trial. The range 

of stimuli was 1-9 and involved small (0.167-0.375) and large (0.667-0.778) ratio conditions. 

Numeral pairs remained on the screen for 2000ms and ITIs ranged from 2300-8500ms with a 

mean of 4000ms. Stimulus randomization and ITI optimization were again performed using the 

NeuroDesign toolbox. Two runs were administered in succession, involving a total of 64 trials 

over approximately 7 minutes of scan time.  

 

  

Figure 12. Example of symbolic digit comparison stimuli 

 

3.3.3 MRI Acquisition parameters 

All images were acquired using a Philips Achieva dStream 3T scanner (Philips Medical 

Systems, Best, The Netherlands) and 32-channel head coil. T2*-weighted, single shot echo-
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planar imaging (EPI) was used for functional scans, with the following parameters: TR/TE = 

1110/28 ms, FA = 62°, FOV = 240 x 240 x 129.75 mm, voxel size = 2.5 x 2.5 x 3 mm (with 0.25 

mm gap), SENSE = 2, multi-band factor = 2. For the symbol classification task, each run lasted 

approximately 3m51s in which 198 volumes were acquired, with an additional 8 dummy 

volumes acquired at the beginning of the sequence to allow for steady-state magnetization to be 

reached. In cases where significant motion and/or below chance accuracy was observed for a 

given run, a re-run was attempted when possible. During approximately the mid-point of every 

scan session, a small set of reverse phase-encoded EPI volumes were acquired with the same 

parameters as the primary fMRI sequence (i.e., with the fat shift direction set to A instead of P), 

to be used for EPI distortion correction. 

A T1-weighted turbo field echo anatomical scan was acquired immediately following the 

final run of the symbolic classification task with the following parameters: TR/TE = 8.3/3.9 ms, 

inversion time = 1060 ms, shot interval time = 2400 ms, FA = 8°, FOV = 256 x 240 x 184 mm, 

SENSE = 2 AP / 1.5 RL, acquisition time = 4m 19s. This scan was segmented with FreeSurfer 

and used for anatomical reference. Diffusion-weighted imaging (DWI) was acquired during the 

final 15 minutes of each session and was not analyzed here. 

3.3.4 Motion reduction strategy 

Given the pediatric population of interest, the reduction of motion-related artifacts and MR 

signal degradation was of paramount concern for us (Satterthwaite et al., 2012). Recent work 

suggests that shorter fMRI run lengths with fast-paced stimuli are associated with less head 

movement in both children and adults (Engelhardt et al., 2017; Meissner, Walbrin, Nordt, 

Koldewyn, & Weigelt, 2020), motivating in part our use of fast event-related designs broken into 

short runs (i.e., 3m51s x 3 runs for symbol classification and 3m33s x 4 runs for 
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symbolic/nonsymbolic comparison). To prepare children for the scan experience, our lab 

developed a mock-scanner training protocol in which children became progressively more 

familiar with the scanning environment, including multiple visits to the mock-scanner suite over 

the behavioral visit. Participants completed at least one full fMRI training run during this visit, 

involving the same style of button boxes, a similar head coil, and MRI scanner sounds played 

over speakers. This training additionally allowed us to ensure each participant was capable of 

remaining still while performing the tasks and also to screen for children who may be scared of 

the scanning environment.  

On the day of the MRI, participants completed a short training session within the mock 

scanner suite, including example trials from each task and a final review of the scan instructions. 

Once a participant was situated on the real MRI table, Micropore paper tape was placed gently 

across the forehead and attached to each side of the head coil. The tape provided tactile feedback 

to the participant in cases of head motion, without compromising comfort, and served as a 

minimally invasive strategy for motion reduction. We have found tape to be effective in prior 

studies in our lab and this method was recently shown to quantitively improve fMRI measures 

(Krause et al., 2019). A “scanner buddy”, typically a research assistant from the lab, 

accompanied each child in the scanner room and sat at the end of the scanner bore. The buddy 

provided a sense of security for the child but also closely monitored for motion throughout the 

scan. In cases where motion was detected, the buddy tapped the child’s foot twice as a reminder 

to hold still. Following each run, the experimenter reviewed the fMRI series to qualitatively 

assess the degree the motion and decide whether a re-run was necessary.  

To improve anatomical image and DWI quality, participants watched clips of an animated 

movie (Disney’s WALL-E), following previous demonstrations that movie viewing is an 
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effective motion reduction strategy in children (Cantlon & Li, 2013; Greene et al., 2018). We 

also developed our own animation slides themed around the story of WALL-E. After each run, 

WALL-E collected a trash block and added it to his trash tower. At each step, he made his way 

further down a path, ultimately arriving at his friend Eve upon completion of the scan. In an 

effort to improve participant compliance, these animations provided a visual indication of 

progress over the session and a fun, motivating aspect to the fMRI tasks. Additionally, a scan 

slot of 1.5 hours was reserved which afforded a short break during which participants could stand 

up to stretch or use the restroom. Incorporating such a break into fMRI sessions has recently 

been shown to relate to reduced head motion in children (Meissner et al., 2020). Similarly, we 

found the break to be beneficial on many occasions and allowed for a lower-stress experience for 

our participants. Despite these extensive efforts, participants inevitably moved during MRI. 

Thus, further analytical strategies were employed during data processing to mitigate the effect of 

motion on our data and are described in subsequent sections. 

3.3.5 Anatomical processing 

Similarly to the adult study, T1-weighted anatomical images were processed using 

FreeSurfer (v6.0.1, http://surfer.nmr.mgh.harvard.edu), via the Vanderbilt University XNAT 

platform (Harrigan et al., 2016), involving the default “recon-all” with the “-3T” flag. The 

segmentations were carefully inspected and manually edited when necessary using FreeView. 

FreeSurfer outputs were further processed for use in AFNI/SUMA using AFNI’s 

@SUMA_Make_Spec_FS program (Cox, 1996; Saad & Reynolds, 2012). As part of this process, 

standard surface meshes were generated and the low density “ld60” meshes (36,002 nodes per 

hemisphere) were used for subsequent fMRI analyses. 

http://surfer.nmr.mgh.harvard.edu/
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3.3.6 fMRI preprocessing 

The raw imaging files were first converted from DICOM to NIfTI format using dcm2niix (X. 

Li et al., 2016). The fMRI data was then preprocessed in MATLAB using AFNI and SUMA 

tools (Cox, 1996; Saad & Reynolds, 2012; Saad et al., 2005). Trial onset timestamps were 

extracted from the E-Prime tab-delimited output files for each condition, exemplar, and/or trial 

and timing files were created for use in AFNI. Onset times for errors (of commission) and 

omissions were specified separately within the output files. The afni_proc.py program was used 

to build a preprocessing pipeline that included the following steps: despiking, slice-time 

correction, dewarping of fMRI volumes via reverse phase-encoded volumes, EPI-anatomical 

alignment, motion correction, sampling of EPI data to subjects’ standardized cortical surface, 

smoothing on the surface with a 6mm FWHM filter, and scaling to percent signal change.  

3.3.7 Motion Censoring and Nuisance Regressors 

Prior to fitting first-level models to the preprocessed data, we performed volume censoring 

(or “scrubbing”) based on estimates of volume-to-volume motion and outlier signal values. 

Specifically, this involved the flagging of timepoints in which the Euclidean norm of the motion 

derivative exceeded 0.5mm as well as timepoints in which 10% of voxels were flagged as 

outliers. Note that the particular thresholds used in the child analysis were relaxed compared our 

adult study. This decision represented a compromise between adequately controlling for motion 

and retaining more data in the child sample. As there is no agreed-upon “correct” setting for 

these thresholds, we quantitively compared them with those of another popular processing 

package, the CONN Toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012), which implements 

an analogous motion scrubbing procedure called ART Repair. Importantly, though both AFNI 

and ART refer to their thresholds in terms of millimeters, the calculation of volume-to-volume 
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motion is different between the packages. We ran a subset of the data through these programs 

and found that, in terms of the final fraction of volumes censored, the AFNI thresholds chosen 

here fell between CONN’s “intermediate” (the default) and “liberal” setting (Figure 13), 

providing a point of comparison for future studies. For all subsequent analyses, a participant’s 

data for a given task was determined to be unusable when greater than 25% of the volumes 

across all runs were flagged for censoring.  

 

 

Figure 13. Benchmarking censor fraction thresholds across software. 

The motion thresholds used in the present study are depicted in red. In test data from a 

preliminary group of participants, these settings resulted in a total censor fraction that fell within 

the “intermediate” and “liberal” default settings of the ART Repair module included in the 

CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012).  

 

Nuisance regressors, or “signals of no interest”, were defined within a task including 6 

motion parameters, 6 motion derivatives, and 0-2nd order Legendre polynomials to model low-

frequency drifts (all defined for each run separately). We defined 6 additional nuisance 

regressors which spanned across runs involving the first 3 principal components of signals in the 

white matter and in the lateral ventricles, as defined by a subject’s FreeSurfer segmentation, in 

approach analogous to the “aCompCor” method (Behzadi, Restom, Liau, & Liu, 2007). These 

tissue-based regressors helped to mitigate the impact of non-neural physiological fluctuations 
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and unmodeled motion effects in BOLD signal, which can contaminate task-related responses in 

the gray matter and artificially inflate connectivity values (Caballero-Gaudes & Reynolds, 2017; 

Muschelli et al., 2014; Satterthwaite et al., 2012). The full set of nuisance regressors was 

included in each of first-level models described below. These denoising and censoring 

procedures are in line with recommendations put forward by recent studies that assessed many 

different pipelines for handling motion artifacts in fMRI data (Ciric et al., 2017). 

3.3.8 General Linear Models 

General linear model (GLMs) were fit which captured the mean BOLD response to each 

condition. In the SYM task, this involved the Digit, Letter, and Scrambled conditions. Condition-

level regressors were defined by convolving the trial onset times with a gamma function 

modelling the hemodynamic response (HRF), using AFNI’s default basis function, 

“GAM(8.6,0.547,2)”, specifying an event duration of 2 seconds. Errors of commission and 

omission were modelled as two separate conditions. Prior to fitting the GLMs, volumes (i.e., 

observations) flagged for censoring were removed from the design matrix. Models were fit using 

AFNI’s 3dREMLfit program and outputs included coefficients and t-statistics for condition 

versus baseline responses as well as for contrasts between conditions (e.g., Digit > Letter, Digit > 

Letter + Scrambled, etc.). The coefficients represented the mean percent signal change (PSC) in 

response to a condition or, the relative difference in PSC between conditions. The GLMs were 

run on both unsmoothed and smoothed. For analyses in which the mean response was extracted 

from an ITNA ROI, unsmoothed data was used to avoid the mixing of signal from voxels outside 

the ROI, as category-selective ventral stream areas are often located in close proximity.   

Using the same process as above, GLMs were fit to capture the mean BOLD response to 

each of the 28 unique symbols (“exemplars”) presented in the SYM task. In this case, exemplar-
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level regressors were created which modelled the HRF for all 6 instances of a symbol across 

runs. Depending on trial accuracy and censoring, the number of usable trials for a given 

exemplar varied from subject to subject (any sig diff among exemplars?). The exemplar-level 

response maps were derived from unsmoothed data and used in for representational similarity 

analyses.  

Finally, trial-level GLMs were fit to model the response to each trial separately. We used the 

computationally efficient “least-squares-separate” estimation method via AFNI’s 3dLSS function 

(Mumford et al., 2012). This method fits a separate GLM for each trial, including a regressor for 

the single trial response, a regressor of no-interest derived from the sum of all other trial 

responses, and the other nuisance regressors. These models generated a series of response maps 

which we refer to as a “beta-series.”  The beta-series data was used for beta-series correlation 

(BSC) analyses and for classification-based multi-voxel pattern analyses (MVPA). Compared to 

a traditional approach where all trial regressors are included in a single GLM, the LSS approach 

not only preserves degrees of freedom, but has been shown to improve trial-specific activation 

estimates which benefit MVPA analysis (and presumably BSC as well) (Mumford et al., 2012). 

3.3.9 Category-level Representational Similarity Analysis  

To perform RSA, for each participant and ITNA, activation patterns were characterized by 

the spatial distribution of t-values determined from the exemplar-level GLMs. As opposed to the 

univariate activation analysis where change in the mean response level (PSC) was of interest, t-

values were used in this case because they take into account the noise level in each node and 

have been shown to be advantageous for multivariate analysis (Misaki, Kim, Bandettini, & 

Kriegeskorte, 2010). There were a total of 57 surface nodes in the left ITNA and 60 in right 

ITNA. Subsequent analyses were caried out using in-house MATLAB scripts. Activation 
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patterns were first scaled by subtracting from each node its mean activation level across all 

considered exemplars. This normalization step removes the common response pattern shared 

across exemplars, which can artificially increase the correlations among exemplars and obscure 

the underlying representational distance (Diedrichsen & Kriegeskorte, 2017; Walther et al., 

2016). From the 60 (or 57) node x 28 exemplar activation patterns, a 28 x 28 representational 

dissimilarity matrix (RDM) was computed using a correlational distance of 1 – Pearson’s r. 

Each neural RDM was then compared to hypothetical model RDMs that captured several the 

representational geometries of interest. We first considered a Digit versus Other model (DvO), 

which tests the hypothesis that Digits are represented in a manner similar to each other and 

different to that of letters and scrambled symbols. In the DvO model letters and scrambled 

symbols are indistinguishable categories, making it the strongest case for a “digit-biased” 

representational geometry (D. J. Yeo et al., 2020). Model RDMs were constructed to be the same 

dimensions as the neural RDM (e.g., 28 x 28) but with values of 1 or 0, indicating dissimilar or 

perfectly similar activation patterns, respectively. As a control analysis, we considered a Letter 

versus Other model (LvO), which is constructed the same as DvO but with Letters as the 

preferred category. Though the DvO model suggests a digit-biased geometry, it may be driven by 

a particular distinction between Digits and Scrambled symbols. We thus also considered a Digit 

versus Letter model (DvL). On its own, evidence for DvL would indicate that the two (familiar) 

categories are distinguishable but would not imply a digit-bias. In tandem with evidence for 

DvO, however, this would suggest a specificity for digits beyond simply their familiarity. To 

compare the neural and model RDMs, a Spearman correlation was computed on the upper 

triangular portion of each matrix and transformed to a Fisher Z value for use in statistical models.   
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3.3.10 Exemplar Discriminability – SVM Classification 

In addition to category-level representations in the ITNAs, we were also interested in 

exemplar discriminability within a category, i.e., the extent to which individual digits can be 

distinguished from one another. While the previous analysis asked whether Digit patterns are 

more similar to each other than to Letters and Scrambled symbols, exemplar discriminability 

within a category could simultaneously exist along one or more orthogonal dimensions. The RSA 

framework was appropriate for assessing category-level representational geometry, where 

comparisons to categorical model RDMs could be drawn. For the present analysis, however, we 

were not interested in a particular geometry per se, but instead on whether a presented digit 

could be decoded from the spatial pattern of responses in the ITNA. That is, do responses in the 

ITNA carry information about the identity of the presented digit? This question naturally lent 

itself to classification-based MVPA (Mur, Bandettini, & Kriegeskorte, 2009; Norman et al., 

2006). To implement this approach, from each participant and ITNA, we extracted the 

unsmoothed trial-level response estimates (t–values) from the LSS GLMs. We used the 

CoSMoMVPA toolbox to perform a leave-one-out cross validation procedure where a single trial 

was held out and a model (linear support vector machine) was trained to predict digit identity 

from the remaining trials (Oosterhof et al., 2016). The identity of the left-out trial was predicted 

from the model and the accuracy recorded, with chance accuracy in the case of 7 exemplars = 

14.29%. Overall accuracy was computed for each exemplar separately, then the mean of these 

averages was used as the final index of exemplar discriminability. Incorrect trials (i.e., error or 

omitted response) were excluded from modeling, leading to unbalanced numbers of trials across 

exemplars. To circumvent potential algorithmic biases, we randomly excluded trials such that 

every training partition contained a balanced set of response patterns. In cases where an 
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exemplar had fewer than 3 usable trials, the exemplar was excluded and decoding was performed 

on the remaining set. To standardize classifier performance across participants and timepoints, 

we z-scored the accuracies by comparing to a null distribution. Specifically, for each dataset, the 

classifier target labels were randomly shuffled and decoding was performed for 1000 iterations. 

A z-score was then computed as [AccTrue – mean(AccNull)] / std(AccNull). 

3.3.11 Task-Evoked and Background Functional Connectivity 

To assess task-evoked functional connectivity (FC), we used the BSC method (Rissman et 

al., 2004). This method extracts trial-level response values and then correlates over trials of the 

same condition, across voxels, vertices, or regions of interests (Florence Bouhali, Bézagu, 

Dehaene, & Cohen, 2019; Conrad et al., 2020; Fornito, Yoon, Zalesky, Bullmore, & Carter, 

2011; Geib, Stanley, Dennis, Woldorff, & Cabeza, 2017; Göttlich, Beyer, & Krämer, 2015; 

Monge et al., 2017; Ray et al., 2017; Schedlbauer, Copara, Watrous, & Ekstrom, 2014). We used 

Pearson correlation and converted the values to Fisher Z estimates prior to further statistical 

testing (Fisher, 1915). The BSC Z value represented the degree to which two areas respond in 

unison to a particular task condition (i.e., their task-evoked coupling or connectivity). Note that 

the first order BSC, involving coupling during a condition (versus baseline), indexed task-related 

connectivity involving information exchange between areas but also “simple” co-activations in 

which two regions are engaged in parallel but do not interact. Critically, the BSCs were 

compared between conditions to assess differential degrees of coupling when processing one 

type of stimuli versus another (e.g., Digit > Letter). With a proper control condition, a BSC 

contrast should “subtract out” shared co-activation patterns resulting from, for example, low-

level visual processing, response selection, and motor output, and reveal stimulus-specific 

coupling. In principle, a BSC contrast should detect similar task-modulated connectivity as that 



 98 

detected in the more common generalized psychophysiological interaction (gPPI) analysis, and 

this was recently demonstrated in empirical data (Di et al., 2020). Importantly, however, BSC 

has been shown to be more powerful than gPPI for assessing task-modulated connectivity in 

event-related paradigms, is more robust to variability in the hemodynamic response across 

subjects (Cisler et al., 2014), and is thought to be resistant to the artificial inflation of FC 

estimates due to task-related activity (Cole et al., 2019). These observations, along with the 

relative simplicity of the BSC framework, motivate our use in the present work. 

Given the high levels of motion in the present sample, we opted to forego the explicit 

censoring of volumes within the LSS GLMs. This allowed for a consistent number of volumes to 

contribute to every trial-level response estimate. We did, however, implement a “beta-scrubbing” 

procedure where we excluded from BSCs those betas in which more than 1/3 of the volumes 

over the span of the associated (~14s) HRF were flagged for censoring, with the assumption that 

these trials were contaminated by motion artifacts (Conrad et al., 2020; Ray et al., 2017). This 

served as a principled strategy to eliminate outlier beta estimates resulting from an insufficient 

number of observations (volumes). 

To assess “background” FC, the residuals of the condition-level GLMs were catenated across 

all tasks and used as the timeseries of interest. These signals contain the unexplained variance in 

the BOLD signal after accounting for task and nuisance effects, and thus in principle should 

reflect spontaneous brain activity occurring in the “background”. Again, Pearson correlation was 

used to derive region-to-region FC estimates. We intended this measure to serve as a proxy for 

“intrinsic” FC, as may be measured in a resting state, and such an approach has been used in 

previous work (Fair et al., 2007; Wendelken et al., 2017). We do acknowledge prior evidence 

that task states can alter spontaneous fluctuations (Norman-Haignere, McCarthy, Chun, & Turk-
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Browne, 2012), and that, from a statistical perspective, the presence of task-induced activations 

may inflate FC and/or contaminate FC estimates through unmodeled nonlinear effects (Cole et 

al., 2019; Fair et al., 2007). However, the timeseries analyzed here spanned across all tasks, 

stimulus events, interstimulus intervals, and pre/post task baseline periods and so are unlikely to 

be related to any specific task state or stimulus type. The background FC metric is thus the 

closest we can get to intrinsic FC in the absence of a true resting-state acquisition. Importantly, it 

is distinct from the BSCs, which explicitly model task-evoked coupling and are used to contrast 

FC between conditions.  

3.3.12 Definition of Occipitotemporal ROIs 

The ITNA seed ROIs were derived from an ITG cluster that showed selectivity to digits 

compared to other symbols in a recent meta-analysis (D. J. Yeo et al., 2017). The right 

hemisphere volumetric cluster in MNI was first binarized and then was sampled onto the 

standardized MNI cortical surface using AFNI’s 3dVol2Surf program. While subject-specific 

functionally defined ROIs (fROIs) have been shown to increase sensitivity in group-level 

analyses and are commonly used in studies of the OTC (Glezer & Riesenhuber, 2013; Nieto-

Castañón & Fedorenko, 2012; Stigliani, Weiner, & Grill-Spector, 2015), our use of an a priori 

group-level ROI was motivated by several factors. Firstly, we would not expect the ITNA to be 

selective for digits, compared to other symbols, in 5-6 year old children. Previous work, for 

instance, has shown that word-selectivity in ventral cortex does not emerge until later in 

schooling (Dehaene-Lambertz et al., 2018; Saygin et al., 2016), and that this development 

extends through adolescence (Ben-Shachar et al., 2011; Tracy M. Centanni et al., 2017). From a 

practical perspective, even if digit-selectivity could be detected in the last timepoint of our 

sample (7-9yo), defining an fROI would require independent task data to avoid biasing our 
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longitudinal analyses towards detecting a change (i.e., circularity). Also, most subjects 

contributed only two timepoints, so defining a retrospective fROI and discarding the final 

timepoint, as in a recent study (Dehaene-Lambertz et al., 2018), was not an option for the present 

analyses. 

While selectivity is likely not present, some sensitivity to digits compared to other (non-

symbol) stimuli may have emerged in the OTC by school entry due to environmental exposure 

and/or preschool instruction involving numerals. For instance, greater responses to digits and 

letters compared to faces have been observed in lateral OTC areas in 4-6 year old children 

(Cantlon et al., 2011; T. M. Centanni et al., 2019; Tracy M. Centanni et al., 2018), suggesting 

that an “ITNA” may be definable in kindergarteners based on a criterion of sensitivity. Note that 

this approach would require a more diverse stimulus set than used here, where only digits, letters, 

or scrambled symbols were presented. Critically though, whether the neural populations initially 

sensitive to an object category are the same as those that later become selective for the category 

is an open area of investigation, and is outside the scope of the present work. Thus, we instead 

chose to focus our analysis on the mature (and remarkably consistent) location of the ITNA as 

observed in adults.  

While our focus here was on developmental trajectories of ITNA function, representational 

content, and connectivity, we sought to compare these trajectories with a nearby region involved 

in letter processing. Our adult work showed distinct anatomical and functional connectivity 

profiles of proximal digit and letter areas. If connectivity drives categorical specialization in the 

OTC, we would expect “digit-biased” developmental trajectories in the ITNAs, whether or not a 

broader area of OTC is responsive to alphanumeric symbols (i.e., the shape hypothesis). Thus, 

the letter area would serve as a conservative control region that could be initially sensitive to but 
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ultimately not specialized for digit processing. To define this area, we conducted a (non-

exhaustive) search for fMRI studies of letter processing that reported a coordinate in the fusiform 

gyrus, occipitotemporal sulcus, or inferior temporal gyrus. We identified twelve coordinates in 

the literature from ten studies that met our criteria (Abboud et al., 2015; Carreiras, Quiñones, 

Hernández-Cabrera, & Duñabeitia, 2015; Flowers et al., 2004; Grotheer et al., 2016; Pernet, 

Celsis, & Démonet, 2005; Polk et al., 2002; Pollack & Price, 2019; Puce, Allison, Asgari, Gore, 

& McCarthy, 1996; Rothlein & Rapp, 2014; Thesen et al., 2012). When necessary, coordinates 

were converted from Talairach to MNI space using the tal2icbm_other Lancaster transform 

(Lancaster et al., 2007; https://brainmap.org/icbm2tal/). Consistent with findings of a strongly 

left-lateralized VWFA, of the included studies, there were no reports of letter-sensitivity in the 

right hemisphere within the aforementioned anatomical boundaries. We used the mean of the 

twelve reported coordinates (-42.7,-60.2,-13.2) to define an occipitotemporal letter area (OTLA). 

Interestingly, though none of the included coordinates pertained to word processing, our OTLA 

mapped to a location consistent with the classical VWFA (L. Chen et al., 2019; L. Cohen et al., 

2002; Dehaene et al., 2010; Grotheer et al., 2016; A. C. Vogel et al., 2012), on the border of the 

posterior fusiform gyrus and occipitotemporal sulcus. A circle was dilated on the MNI surface to 

a radius of 8mm around this coordinate, resulting in an ROI that approximately matched the 

surface areas of the left and right ITNA ROIs.  
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Figure 14. Outline of ROI definition for developmental analyses 

 

3.3.13 Definition of Target fROIs for Connectivity Analyses 

In terms of ITNA functional connectivity, we predicted an increase in coupling with regions 

involved in magnitude processing over children’s time in school, which would indicate increased 

interactions across this domain-specific circuit over experience. While many regions have been 

implicated in numerical tasks, the intraparietal sulcus (IPS) is thought to house neural 

populations involved in processing and/or representing abstract numerical magnitude 

information (Dehaene et al., 2003; Nieder, 2016; Piazza, Pinel, Le Bihan, & Dehaene, 2007), and 

thus served as the primary target region of interest. However, the IPS is a large area of cortex 

involved in multitude of operations including visual attention and working memory  (Corbetta & 

Shulman, 2002; Goltz et al., 2015; Molenberghs, Mesulam, Peeters, & Vandenberghe, 2007; 
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Owen, McMillan, Laird, & Bullmore, 2005; Vossel, Geng, & Fink, 2014). Thus, we first defined 

an anatomical constraint mask based on a recent meta-analysis of number processing in children 

(Arsalidou, Pawliw-Levac, Sadeghi, & Pascual-Leone, 2017). We chose coordinates in the right 

(38, -46, 42) and left (-42, -48, 42) inferior parietal lobes/sulci that showed convergence across 

fMRI studies for number and calculation tasks in children, respectively. Importantly, these areas 

were proposed to be involved in numerical quantity representation and are similarly involved in 

adults (Arsalidou & Taylor, 2011). A circular ROI with a radius of 14mm was generated on the 

MNI cortical surfaces around each coordinate, serving as group-level constraint masks. To 

further increase our sensitivity to areas involved in magnitude processing within individuals, we 

defined subject-specific fROIs within the anatomical masks, as detailed below.  

In addition to the symbol classification task, children completed symbolic and nonsymbolic 

comparison tasks in the scanner in which two simultaneously presented quantities (digits or dots) 

were compared for each trial. A critical manipulation in these tasks involved varying the ratio of 

the two numbers being compared. In this case, trials were binned into small (easier; e.g., 3 vs. 9) 

and large (harder; e.g., 5 vs. 7) ratio conditions. Dominant theory suggests that larger ratios 

engage more overlapping quantity representations and thus lead to increased reaction times and 

decreased accuracy (Dehaene, 2007; Verguts & Fias, 2004). A “neural” ratio effect, i.e., greater 

activity during large vs. small ratio trials, is thought to index the locality of these representations 

and is typically found in the IPS, including in children (Bugden, Price, McLean, & Ansari, 2012; 

Gullick, Sprute, & Temple, 2011; Lussier & Cantlon, 2017; G. R. Price, Holloway, Räsänen, 

Vesterinen, & Ansari, 2007; S. E. Vogel et al., 2015; Wilkey, Barone, Mazzocco, Vogel, & 

Price, 2017). Though it is an area of contention (Wilkey & Ansari, 2020), evidence suggests that 

both symbolic and nonsymbolic formats tap into shared magnitude representations in the IPS 
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(Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003; Wilkey et al., 2020). It has been postulated 

that symbolic and nonsymbolic magnitude representations are most “integrated” in children who 

are just learning symbolic notation (Lyons, Ansari, & Beilock, 2012; Matejko & Ansari, 2016; 

Piazza, 2011). To our knowledge, however, there exist no empirical evidence to support this 

“integration” hypothesis. Thus, to ensure that the final fROIs showed sensitivity to symbolic 

magnitude information, we restricted our neural ratio effect to only the symbolic comparison 

task. For each subject, the symbolic Large > Small ratio contrasts was computed using smoothed 

data. The top 150 nodes based on the contrast t-statistics within each of the left and right IPS 

were selected as the final fROIs. 150 nodes were chosen as this matched approximately the 

surface area of the occipitotemporal ROIs (on average across participants) and further ensured 

the fROI size was consistent across participants. In cases where the symbolic comparison task 

data was unusable, the dataset was excluded from connectivity analyses. fROIs were defined 

separately for each timepoint, allowing the location of maximal ratio-sensitivity to vary within an 

individual over time.  

3.3.14 Linear Mixed-Effects Models 

To test for associations of each of our dependent measures of ITNA function with children’s 

time in school, we employed linear mixed-effect models (LMMs) with participants specified as 

random effects. We computed participant’s time in school as the total number of days between 

the beginning of kindergarten and the day of the MRI scan, excluding summer breaks. A 

standard summer break from May 20th to August 10th was used for this calculation. The total time 

in school was converted to academic months and served as a continuous independent variable in 

the LMMs. The fixed effect of academic months was the primary coefficient of interest. 

Participants were modeled as random effects, including terms for random intercepts and slopes. 
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The inclusion of random slopes in the present models was theoretically motivated by the fact 

that, in addition to individual differences in entry levels (random intercepts), we expected 

children to undergo differential trajectories in the development of their ITNAs. Models were fit 

using MATLAB’s fitlme function. It is important to note that given the number of timepoints (1-

3, but 2 in most cases), the random slope estimates (i.e., participant-level trajectories) from these 

models are likely to be unreliable on their own (King et al., 2018; Wright, 2017). Instead, the 

goal here was to characterize the fixed effect of academic months, which represented the average 

change in the dependent variable over academic months. Estimating this group-level effect using 

LMMs allows for unequal intervals between scans and the inclusion of incomplete data (e.g., 

participants with only one timepoint). Furthermore, the use of mixed-effects models for studying 

brain development is now well established, and represents the gold standard in the literature 

(Haller, Mills, Hartwright, David, & Cohen Kadosh, 2018; Mills et al., 2016; Vijayakumar, 

Mills, Alexander-Bloch, Tamnes, & Whittle, 2018; Wendelken et al., 2017; Wierenga, Langen, 

Oranje, & Durston, 2014).   

3.4 Results 

3.4.1 Longitudinal changes in behavioral performance 

We first assessed whether performance on the symbol classification task was related to 

our continuous measure of months in school (academic months), using linear mixed-effects 

models with academic months modelled as a fixed and random effect. These analyses involved 

only those subjects with usable imaging data (i.e., significantly greater than chance accuracy 

across all trials and less than 25% censor fraction). Accuracy was computed as the number of 

trials with a correct response divided by the total number of trials across all available runs. 

Reaction time was computed from correct trials only and averaged across stimulus categories. A 
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significant fixed effect of academic months was observed in both models. Accuracy increased 

and reaction time decreased, indicating that task performance improved over schooling (Figure 

15).  

 

 

Figure 15. Longitudinal change in task performance, signal quality, and motion over academic 

months 

Black lines depict the fixed effect of academic months with gray lines indicating 95% confidence 

interval bands. Single black dots represent subject data in which only one usable timepoint was 

acquired. Red dots/lines represent subjects where more than one timepoint was acquired and the 

subject-specific slope (change over months) was positive. Blue dots/lines indicate subjects where 

the slope was negative. The t-statistic (t) and p-value (p) refer to the significance of the fixed 

effect of academic months. TSNR = temporal signal to noise ratio.   
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3.4.2 Longitudinal changes in signal quality and motion 

Next, using the same mixed-modelling procedure, we assessed whether signal quality and 

motion related to academic months. Temporal signal to noise ratio (TSNR), a metric commonly 

used to assess fMRI signal quality, was computed as the mean signal amplitude divided the 

standard deviation in amplitude across all (catenated) runs of the SYM task. TSNR was derived 

from the unsmoothed cortical surfaces, immediately following the motion correction and surface 

sampling procedures. For each subject, the average was taken across all nodes from both 

hemispheres. TSNR was significantly positively related to academic months, indicating image 

quality improved as children progressed in school (Figure 15).  

Participant motion was measured in terms of the mean censor fraction across all runs, and 

was also significantly related to academic months (Figure 15). We previously discussed the 

potential for motion to confound longitudinal imaging analyses in children (see section 3.3.4). 

Though a number of analytical steps were taken to reduce the impact of motion on our imaging 

metrics, the significant effect observed here motivated us to include mean censor fraction as a 

nuisance covariate in subsequent LMMs looking at measures of brain function.   

3.4.3 Task Performance by Symbol Category 

The previous analyses combined across all task conditions (i.e., symbol categories), 

giving a picture of overall task performance and change over schooling. However, as our primary 

analyses focused on relative differences in how the ITNAs functionally respond to each symbol 

category, we sought to also test whether task performance was similar across categories, and 

whether category-level performance similarly changed over academic months. We first looked at 

the mean accuracy and reaction time for each condition, binned by grade level. Within each 

grade, we conducted paired t-tests to look for differences between conditions (Figure 16). In 
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terms of accuracy, the only significant difference was observed in the 1st grade sample between 

Letters and Scrambled (t(54) = 2.29, p = 0.026). LMMs were fit with condition-wise accuracy 

included as the dependent variable and indicated that accuracy significantly improved over 

academic months for only Digits (t(142) = 2.68, p = 0.008) and Letters (t(142) = 2.46, p = 

0.015), but not for Scrambled (t(142) = 1.11, p = 0.267). In terms of reaction times, a number of 

differences were observed between conditions within each grade (Figure 16). Reaction times to 

Digits were consistently slower than Scrambled (K, t(67) = 4.33, p = 0.00005; 1st, t(54) = 3.34, p 

= 0.002; 2nd, t(18) = 4.75, p = 0.0002), and also slower than Letters in K and 1st grade (K, t(67) = 

3.05, p = 0.003; 1st, t(54) = 2.19, p = 0.03). Reaction times to Letters were slower than 

Scrambled in K and 2nd grade (K, t(67) = 2.74, p = 0.008; 2nd, t(18) = 2.84, p = 0.01). LMMs 

showed that reaction times for all three conditions were strongly related to academic months 

(Digits, t(142) = -4.43, p = 2e-5; Letters, t(142) = -3.86, p = 2e-4; Scrambled, t(142) = -4.74, p = 

5e-6).  
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Figure 16. Symbol classification task performance by grade and longitudinal effects 

Accuracy and reaction time measures are presented for each symbol category separately, and 

binned by grade level (left). LMM results for each metric/category looking at the fixed effect of 

academic months across the entire sample are also presented (right).  

 

3.4.4 Longitudinal changes in occipitotemporal ROI activation versus baseline 

In our first set of analyses looking at the functional properties of the ITNAs and OTLA 

control region, we focused on the mean response level for each condition. This metric indicates 

the sensitivity of the region to each stimulus category relative to baseline periods where a blank 

screen was presented and was measured as the BOLD percent signal change. We first plotted the 

raw group-level means in Figure 17A, binned by grade level. One sample t-tests were used to 

determine whether activity levels were significantly greater than zero at the group level (Table 2. 

One-sample t-test results for activation vs. baseline levels, by grade level.Table 2), which would 
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indicate some degree of sensitivity to the symbol category. In almost all cases, the responses 

versus baseline were above zero, indicating the three ROIs were engaged by each symbol 

category. Notably, however, the response levels in the OTLA were two times greater (or more) 

than in the ITNAs. We further used LMMs to characterize the relationship between activity 

levels and academic months (Figure 17B). Censor fraction (motion) was included as a covariate 

in these models. We observed no significant effects of academic months, suggesting that activity 

levels were relatively stable over K-2nd grade.   

 

 

 

Figure 17. Longitudinal change in activation level versus baseline 

A) Mean percent signal change (PSC) is plotted by grade level and ROI, with dotted lines 

indicating the standard error of the mean. Asterisks indicate the significance of one-sample t-

tests. Shaded sections (green, red, blue) correspond to the ROI colors as depicted on the inferior 
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view of the inflated MNI surfaces (right). B) Fixed effect of academic months and 95% 

confidence intervals for each linear mixed-effect model, where the imaging metric was the 

dependent variable. LMMs included academic months as a fixed effect and subject as a random 

effect (slope + intercept), along with censor fraction as a time-varying covariate. Full statistical 

results are provide in Table 1 & 2. Acdm Mos = academic months; ITNA = inferior temporal 

numeral area; OT = occipitotemporal 

 

3.4.5 Longitudinal changes in relative activation between conditions 

To assess the specificity of the ITNAs response to Digits relative to other symbols, we 

next looked at contrast between conditions, where values represent the relative difference in 

activation between symbol categories within each subject (i.e., difference in PSC). The Digits 

versus Other (average of Letters and Scrambled) response was computed, along with the 

pairwise difference compared to Letters and Scrambled separately. The Letters > Others and 

Letters > Scrambled contrasts were included for comparison. We again plotted the raw group-

level means, binned by grade level, and tested whether these values were significantly different 

from zero, which would indicate a significant difference in response between conditions (Figure 

18A/Table 3). Contrast values were mostly near zero in the left ITNA, indicating similar 

responses levels across symbol categories. Values in the right ITNA and OTLA were generally 

negative, indicating smaller responses to Digits/Letters relative to Scrambled stimuli. For the 

LMMs results, the right ITNA demonstrated a positive relation between academic months and 

the Digits > Other and Digits > Scrambled response (Figure 18B), suggesting the digit-specific 

activity in the right ITNA increased over schooling. No significant longitudinal changes were 

observed in the left ITNA or OTLA, suggesting category-specific activation levels were stable in 

these regions.  
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Figure 18. Longitudinal change in activation differences between conditions 

A) Mean activation contrast values for each subject were extracted from the ROIs. Group-level 

means and standard error of means (dotted line) by grade level are plotted. Asterisks indicate the 

significance of one-sample t-tests. Negative value indicates higher response level for the 

condition to the right of the > sign. B) Fixed effect of academic months and 95% confidence 

intervals for each linear mixed-effect model, where the imaging metric was the dependent 

variable. LMMs included academic months as a fixed effect and subject as a random effect 

(slope + intercept), along with censor fraction as a time-varying covariate. Full statistical results 

are provide in Table 1 & 3. Acdm Mos = academic months; PSC = percent signal change; ITNA 

= inferior temporal numeral area; OT = occipitotemporal 

 

3.4.6 Longitudinal changes in category-level representational geometry  

We next sought to determine whether spatial patterns of activity across each ROI carried 

information about symbol category. Exemplar-level response patterns were estimated and 

correlated, and the resulting representational (dis)similarity matrices (RDMs) were compared to 
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idealized candidate models. Group-level means by grade level are plotted in Figure 19A. Neural 

RDMs involving Digits or Letters and Scrambled separately showed generally higher fits, 

suggesting response patterns for familiar versus novel stimuli were the most distinct (Table 4). 

Digit vs. Letter model fits were relatively low, in comparison, albeit reaching a significant 

positive level in the left ITNA by 2nd grade. Turning to the LMM results, a significant relation 

between academic months and the Digit vs. Letter geometry was observed in both the left and 

right ITNAs (Figure 19A; full statistical results provided in Table 1). In the left ITNA, The 

Digits vs. Other and vs. Scrambled geometries also showed a longitudinal increase in fit. This 

was not the case for the Letter focused control models, suggesting a “digit-biased” change in the 

left ITNA’s representational geometry. Compared to the other indices of ITNA function studied 

here, category-level RSA metrics appeared to be most sensitive to changes over academic 

months based on the significance of the fixed effects. 
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Figure 19. Longitudinal change in category-level representational geometry 

A) Mean fits between neural and candidate model representational dissimilarity matrices 

(RDMs) are plotted, along with standard error of means (dotted line), by grade level. Asterisks 

indicate the significance of one-sample t-tests. Positive value indicates a neural representational 

geometry consistent with the candidate model. B) Fixed effect of academic months and 95% 

confidence intervals for each linear mixed-effect model, where the imaging metric was the 

dependent variable. LMMs included academic months as a fixed effect and subject as a random 

effect (slope + intercept), along with censor fraction as a time-varying covariate. Full statistical 

results are provide in Table 1 & 4. Acdm Mos = academic months; RDM = representational 

dissimilarity matrix; ITNA = inferior temporal numeral area; OT = occipitotemporal 

 

 

3.4.7 Longitudinal changes in exemplar decodability 

While the category-level representational similarity analyses focused on response pattern 

similarity within and between stimulus conditions, we were also interested in the extent to which 

the ITNAs carried distinct information about stimulus identity, i.e., unique patterns for each 
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symbol exemplar. MVPA decoding analyses were performed on Digit and Letter sets separately. 

Mean decodability (classification accuracy) levels were converted to Z-scores based on null-

distributions created from shuffling exemplar labels. The group-level mean Z-scores by grade 

level are plotted in Figure 20A (with stats reported in Table 5). We observed no significantly 

above chance decoding for any grade level, for either Digits or Letters, suggesting response 

patterns within these ROIs did not contain reliable exemplar-level information. LMMs showed 

decreasing decodability for Letters in the left ITNA over academic months, but no other effects 

were significant (Figure 20B), suggesting that these regions are coding at the category level 

rather than the item level during this developmental time frame.    
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Figure 20. Longitudinal change in exemplar decodability 

A) Mean exemplar decodability Z-scores are plotted, along with standard error of means (dotted 

line), by grade level. Asterisks indicate the significance of one-sample t-tests (none surviving). 

B) Fixed effect of academic months and 95% confidence intervals for each linear mixed-effect 

model, where the imaging metric was the dependent variable. LMMs included academic months 

as a fixed effect and subject as a random effect (slope + intercept), along with censor fraction as 

a time-varying covariate. Full statistical results are provide in Table 1 & 5. Acdm Mos = 

academic months; Acc. = classification accuracy; ITNA = inferior temporal numeral area; OT = 

occipitotemporal 

 

3.4.8 Longitudinal changes in “background” functional connectivity 

In the next set of analyses, we focused on functional connectivity of the ITNAs with 

parietal fROIs (IPSRatio). First, we assessed the “background” connectivity patterns, i.e., 

correlation in the residual timeseries after removal of task effects, which capture the degree of 

spontaneous coupling between ROIs over the scan session. The group-level means were all 
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significantly above zero (Figure 21A/Table 6) and suggested strong coupling between OT areas 

and the intraparietal sulci bilaterally. In the LMMs, however, we observed no significant 

relations between academic months and connectivity levels (Figure 21B, full statistical results 

provided in Table 1). This indicates that background connectivity was relatively stable over the 

period studied here. Note that for these analyses, usable data from the symbolic comparison task 

was required to define the target fROIs. Due to missing and/or unusable comparison task data, 

we could not define fROIs in 25 of the 145 (17%) scan sessions included in the previous models 

looking at local function. The present analyses, as well as the task-evoked connectivity analyses 

below, include the reduced set of 120 observations.  
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Figure 21. Longitudinal change in background functional connectivity with IPSRatio ROIs 

A) Mean “background” connectivity (correlation in the residual timeseries across all tasks/runs, 

after removal of task and nuisance effects), along with standard error of means (dotted line), is 

plotted by grade level. Asterisks indicate the significance of one-sample t-tests. Example target 

fROIs in parietal cortex are shown to the right (yellow). B) Fixed effect of academic months and 

95% confidence intervals for each linear mixed-effect model, where the imaging metric was the 

dependent variable. LMMs included academic months as a fixed effect and subject as a random 

effect (slope + intercept), along with censor fraction as a time-varying covariate. Full statistical 

results are provide in Table 1 & 6. Acdm Mos = academic months; fROI = functionally-defined 

region of interest; IPS = intraparietal sulcus; ITNA = inferior temporal numeral area; OT = 

occipitotemporal 

 

3.4.9 Longitudinal changes in task-evoked functional connectivity 

Next, we looked at the task-evoked functional connectivity of each ROI with the parietal 

fROIs, using the beta-series correlation (BSC) method, and whether category-specific coupling 

changed over schooling. The focus here was on the relative difference in coupling in response to 
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one category versus another (i.e., a contrast). Thus, a Z-score representing the difference between 

two Pearson correlation coefficients (BSCs) was the dependent variable. We observed 

considerable variability in the mean Z-scores across contrasts and grade levels (wide standard 

error of the means) and few cases where values were significantly different from zero, indicating 

a general lack of category-specific coupling (Figure 22A/Table 7). An exception was the left 

ITNA in the kindergarten time period, which showed reduced coupling during the Digit trials 

compared to Scrambled and Letter trials (Figure 22A, see significant negative values in left 

panel). In the LMM results, there were no significant relations with academic months for any 

ROI or contrast (Figure 22, full statistical results provided in Table 1). 

 

 



 120 

 

Figure 22. Longitudinal change in task-evoked connectivity with IPSRatio ROIs 

A) Mean task-evoked connectivity differences based on beta-series correlations are plotted by 

grade level, along with standard error of means (dotted line). Asterisks indicate the significance 

of one-sample t-tests. Example target fROIs in parietal cortex are shown to the right (yellow). 

Only ipsilateral connections were analyzed here. B) Fixed effect of academic months and 95% 

confidence intervals for each linear mixed-effect model, where the imaging metric was the 

dependent variable. LMMs included academic months as a fixed effect and subject as a random 

effect (slope + intercept), along with censor fraction as a time-varying covariate. Full statistical 

results are provide in Table 1 & 7. Acdm Mos = academic months; fROI = functionally-defined 

region of interest; IPS = intraparietal sulcus; ITNA = inferior temporal numeral area; OT = 

occipitotemporal 

 

3.4.10 Relations between connectivity and local functional metrics 

In a final set of analyses, we looked at whether individual differences in the degree of 

background and category-specific connectivity were related to local measures of ITNA function, 

including activity levels, representational geometry, and exemplar decodability. As the focus 
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here was on how different metrics are related, rather than the extent to which digit-specific 

processing occurs and/or changes within the ITNAs, we included only Digit-specific measures 

and excluded the OTLA. We used the same LMM structure as before to estimate these relations, 

except with the connectivity metric as the independent variable instead of academic months. In 

this case, the model outputs indicate the overall association between the two measures across our 

sample, taking into account repeated measures within individuals. Censor fraction was again 

included as a covariate of no interest. LMMs were fit for each relation separately and the t-stats 

for the fixed effect of connectivity are presented in Figure 23.  In the left ITNA, the difference in 

activity between Digits and Letters was negatively related to Digit-specific coupling. Though this 

result is challenging to interpret, it suggests an inverse relation between category-specific 

activity and coupling in the left hemisphere. Note, that the effect was not observed for Digits > 

Scrambled (activity), indicating the relation only pertained to familiar symbol processing. For the 

right ITNA, only one significant effect was observed, involving a positive relation between 

background functional connectivity and the Digit vs. Scrambled representational geometry. Note 

that right ITNA and right IPS showed the strongest functional connectivity of any ROI pair 

(Figure 21A), suggesting this circuit is already well established in children. The present result 

indicates that, in early school-age children, individual differences in this circuit relate to 

categorical representations in the right ITNA.  
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Figure 23. Relations between ITNA-IPSRatio connectivity and local functional metrics 

Cells represent the significance of the relation (t-statistic for fixed-effect) between each 

connectivity measure (x-axis) and local measure (y-axis) across the entire sample (n=120 

observations).  LMMs included the connectivity measure as a fixed effect and subject as a 

random effect (slope + intercept), along with censor fraction as a time-varying covariate. Local 

measures were included as the dependent (predicted) variable. FC = background functional 

connectivity; IPS = intraparietal sulcus; ITNA = inferior temporal numeral area; BSC = beta-

series correlation 
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Table 1. Linear mixed-effects model parameters for all longitudinal analyses of imaging-derived 

metrics. 

  
Kindergarten 

 
1st grade 

  
2nd grade 

 

Metric T-stat D P-value T-stat D P-value T-stat D P-value 
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F F F 

Dig_Coef_LH 3.1172 68 0.0026753 3.23329 54 0.002089 1.9214 18 0.070658 

Dig_Coef_RH 3.05247 68 0.003237 2.67226 54 0.0099405 1.9805 18 0.063145 

Dig_Coef_OTLA_LH 9.20529 68 1.44E-13 6.44869 54 3.23E-08 4.6666 18 0.00019201 

Let_Coef_LH 1.9242 68 0.058516 2.38243 54 0.020749 2.4024 18 0.02729 

Let_Coef_RH 3.29316 68 0.0015744 2.08102 54 0.042189 1.9897 18 0.062033 

Let_Coef_OTLA_LH 10.474 68 7.95E-16 6.73926 54 1.09E-08 5.9561 18 1.23E-05 

Scr_Coef_LH 3.55494 68 0.00069321 3.22012 54 0.0021711 2.4751 18 0.023491 

Scr_Coef_RH 6.05281 68 6.87E-08 3.87937 54 0.00028667 4.3293 18 0.00040396 

Scr_Coef_OTLA_LH 13.6549 68 3.66E-21 10.1926 54 3.47E-14 8.7618 18 6.55E-08 

Table 2. One-sample t-test results for activation vs. baseline levels, by grade level.  

 

  
Kindergarten 

  
1st grade 

  
2nd grade 

  

Metric T-stat D

F 

P-value T-stat D

F 

P-value T-stat D

F 

P-value 

D_L_S_Coef_LH -0.036011 68 0.97138 -0.27404 54 0.7851 -0.049688 18 0.96092 

D_L_S_Coef_RH -3.164 68 0.0023274 -0.010849 54 0.99138 -0.99183 18 0.33443 

D_L_S_Coef_OTLA_LH -7.0479 68 1.16E-09 -6.8766 54 6.54E-09 -4.0342 18 0.00077828 

D_S_Coef_LH -1.4611 68 0.1486 -0.96501 54 0.33884 -0.20677 18 0.83851 

D_S_Coef_RH -4.3096 68 5.40E-05 -1.4563 54 0.1511 -1.6428 18 0.11779 

D_S_Coef_OTLA_LH -8.7845 68 8.27E-13 -8.8117 54 4.94E-12 -5.3653 18 4.24E-05 

D_L_Coef_LH 1.2656 68 0.20998 0.81188 54 0.42043 0.16827 18 0.86825 

D_L_Coef_RH -0.21809 68 0.82801 1.6052 54 0.11428 0.076369 18 0.93997 

D_L_Coef_OTLA_LH -1.348 68 0.18214 -2.1502 54 0.036037 -0.60819 18 0.55066 

L_D_S_Coef_LH -2.1532 68 0.034851 -1.6762 54 0.099483 -0.31653 18 0.75524 

L_D_S_Coef_RH -2.4499 68 0.016868 -2.7463 54 0.008172 -1.2416 18 0.23033 

L_D_S_Coef_OTLA_LH -5.2857 68 1.43E-06 -4.5067 54 3.57E-05 -3.2605 18 0.0043436 

L_S_Coef_LH -2.5725 68 0.012285 -1.7101 54 0.09298 -0.34067 18 0.7373 

L_S_Coef_RH -3.7678 68 0.00034665 -2.983 54 0.0042779 -1.8711 18 0.077684 

L_S_Coef_OTLA_LH -8.0547 68 1.74E-11 -8.2407 54 4.04E-11 -5.0703 18 7.98E-05 

Table 3. One-sample t-test results for activation differences, by grade level.  

 

 

  
Kindergarten 

  
1st grade 

  
2nd grade 

  

Metric T-stat D

F 

P-value T-stat D

F 

P-value T-stat D

F 

P-value 

DvO_LH -1.151 68 0.25378 1.0754 54 0.28696 1.8427 18 0.081911 
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DvO_RH 2.6444 68 0.010152 2.5324 54 0.014268 1.0703 18 0.29861 

DvO_OTLA_LH 3.4747 68 0.00089494 3.3396 54 0.0015263 3.6362 18 0.0018888 

DvS_LH 1.2007 68 0.23404 3.8902 54 0.00027687 2.0272 18 0.057717 

DvS_RH 5.2748 68 1.49E-06 3.7154 54 0.00048265 2.1583 18 0.044657 

DvS_OTLA_LH 6.065 68 6.54E-08 5.9198 54 2.29E-07 5.2894 18 4.98E-05 

DvL_LH -6.0345 68 7.40E-08 -3.3622 54 0.0014266 2.8577 18 0.010457 

DvL_RH -2.2587 68 0.027111 0.020923 54 0.98338 -0.067508 18 0.94692 

DvL_OTLA_LH 0.055679 68 0.95576 -0.63035 54 0.53112 0.71844 18 0.48171 

LvO_LH -1.1473 68 0.25528 -0.78174 54 0.43778 2.4073 18 0.027017 

LvO_RH 1.2439 68 0.2178 1.8453 54 0.070486 2.0717 18 0.052943 

LvO_OTLA_LH 3.556 68 0.00069089 1.9501 54 0.056358 2.1185 18 0.048306 

LvS_LH 1.3408 68 0.18445 2.2355 54 0.029542 1.8745 18 0.077185 

LvS_RH 4.3679 68 4.39E-05 3.6092 54 0.00067246 3.324 18 0.0037762 

LvS_OTLA_LH 6.3984 68 1.69E-08 5.7505 54 4.27E-07 4.0616 18 0.00073217 

Table 4. One-sample t-test results for category-level representational geometry, by grade level.  

 
 

Kindergarten 
 

1st grade 
  

2nd grade 
  

Metric T-stat DF P-value T-stat DF P-value T-stat DF P-value 

SVM_Dig_LH 1.5388 68 0.1285 0.79166 54 0.43202 -1.5197 18 0.14595 

SVM_Dig_RH 0.012621 68 0.98997 -0.98126 54 0.33084 1.4046 18 0.17716 

SVM_Dig_OTLA_LH -0.12008 68 0.90477 -1.2445 54 0.2187 -0.8543 18 0.40417 

SVM_Let_LH 1.8178 68 0.073502 -1.2775 54 0.20688 0.771 18 0.45071 

SVM_Let_RH 0.31934 68 0.75044 -1.2055 54 0.23325 -1.6999 18 0.10637 

SVM_Let_OTLA_LH -0.10457 68 0.91702 1.0736 54 0.2878 -0.39921 18 0.69444 

Table 5. One-sample t-test results for exemplar decodability, by grade level. 

 

 
Kindergarten 

 
1st grade 

  
2nd grade 

  

Metric T-stat DF P-value T-stat DF P-value T-stat DF P-value 

ITNA_lh_Ars17_lh_IFC 15.8236 53 9.96E-22 13.4692 44 3.26E-17 10.9399 18 2.20E-09 

ITNA_rh_Ars17_rh_IFC 17.6494 53 7.57E-24 16.5388 44 1.68E-20 13.5696 18 6.81E-11 

OTLA_lh_Ars17_lh_IFC 16.69 53 9.39E-23 15.5732 44 1.62E-19 10.6118 18 3.55E-09 

ITNA_lh_Ars17_rh_IFC 14.8437 53 1.60E-20 12.271 44 8.45E-16 8.55272 18 9.34E-08 

ITNA_rh_Ars17_lh_IFC 18.7055 53 5.28E-25 16.0387 44 5.37E-20 15.797 18 5.40E-12 

OTLA_lh_Ars17_rh_IFC 16.054 53 5.27E-22 15.2373 44 3.66E-19 9.51808 18 1.90E-08 

Table 6. One-sample t-test results for background functional connectivity, by grade level. 
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Kindergarten 

 
1st grade 

  
2nd grade 

  

Metric T-stat DF P-value T-stat DF P-value T-stat DF P-value 

ITNA_lh_Ars17_lh_DvLS -2.7582 53 0.0079586 -1.0647 44 0.29281 -0.14919 18 0.88306 

ITNA_rh_Ars17_rh_DvLS 0.72662 53 0.47066 0.55374 44 0.58256 -0.57821 18 0.57029 

OTLA_lh_Ars17_lh_DvLS -1.6933 53 0.096264 -0.35989 44 0.72065 1.1653 18 0.25912 

ITNA_lh_Ars17_lh_DvS -2.8718 53 0.0058565 -0.58647 44 0.56055 0.55553 18 0.58537 

ITNA_rh_Ars17_rh_DvS 0.10734 53 0.91492 0.5345 44 0.59569 -0.87351 18 0.39389 

OTLA_lh_Ars17_lh_DvS -1.3633 53 0.17856 -0.93633 44 0.35422 1.6487 18 0.11656 

ITNA_lh_Ars17_lh_DvL -2.7582 53 0.0079586 -1.0647 44 0.29281 -0.14919 18 0.88306 

ITNA_rh_Ars17_rh_DvL 0.72662 53 0.47066 0.55374 44 0.58256 -0.57821 18 0.57029 

OTLA_lh_Ars17_lh_DvL -1.6933 53 0.096264 -0.35989 44 0.72065 1.1653 18 0.25912 

ITNA_lh_Ars17_lh_LvDS 0.23578 53 0.81451 1.1096 44 0.27322 1.5094 18 0.14856 

ITNA_rh_Ars17_rh_LvDS -0.41574 53 0.67928 -0.11012 44 0.91282 0.051145 18 0.95977 

OTLA_lh_Ars17_lh_LvDS 1.0022 53 0.32081 -0.68124 44 0.49929 0.36565 18 0.71889 

ITNA_lh_Ars17_lh_LvS -1.292 53 0.20197 0.62734 44 0.53368 1.8105 18 0.086942 

ITNA_rh_Ars17_rh_LvS -1.5023 53 0.13895 0.1229 44 0.90275 -0.4548 18 0.65469 

OTLA_lh_Ars17_lh_LvS 0.25979 53 0.79603 -1.024 44 0.31145 0.90509 18 0.37737 

Table 7. One-sample t-test results for task-evoked connectivity with IPSRatio ROIS, by grade 

level. 

 

3.5 Discussion 

3.5.1 Novel symbols elicit strong responses in digit and letter areas 

 A striking observation from our analyses of mean activation in OTC areas was the strong 

response to the novel (Scrambled) stimuli. Our modeling suggested that all ROIs showed a 

significant positive response to these symbols at school entry (Figure 17A). The magnitude of 

the Scrambled response was approximately twice as large as the response to Digits and Letters in 

the right ITNA and OTLA (Figure 17A). In direct contrasts, both ROIs show significant negative 

values at school entry for Digits > Scrambled and Letters > Scrambled (Figure 18A), indicating 

these OTC areas are more sensitive to novel symbols than familiar symbols in 5-6 year old 
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children. There are several potential explanations for this finding. Note that we will get to a 

discussion of how responses change over schooling, but this more general discussion of the task 

and Scrambled response will help set the stage for later interpretations of the underlying 

developmental mechanisms.  

First, it is possible that a systematic difference in the perceptual features of the scrambled 

stimuli contributed to increased OTC responses, e.g., through bottom-up visual mechanisms. 

This is unlikely to be the case as the scrambled set used in the present study was matched to the 

digits and letter sets in terms of number of pixels and was designed to be equivalent in terms of 

the number of angles and curves (G. R. Price & Ansari, 2011). Critically, a recent analysis of 

these same stimuli empirically demonstrated that there were no differences in the perimetric 

(visual) complexity across symbol categories (D. J. Yeo et al., 2020), corroborating earlier work 

comparing digits and letter features (Schubert, 2017), and further confirming that the present 

results were not driven by differing perceptual features between stimuli.  

The present result is consistent with a “novelty” effect observed in fMRI studies whereby 

activity increases in response to unfamiliar versus familiar stimuli (de Chastelaine, Mattson, 

Wang, Donley, & Rugg, 2017; Diana, Yonelinas, & Ranganath, 2007). In the task used here, 

participants were instructed to judge whether they “knew the name” of the symbol. However, 

only a “yes” or “no” button press was required, making the task at its core a decision about 

stimulus familiarity. Attending to this feature may have amplified the “novelty” effect compared 

to other task settings. Notably, however, in studies using passive and perceptual matching tasks, 

where stimulus identity is irrelevant, an increased OTC response to novel symbols compared to 

digits and/or letters has similarly been observed using fMRI and event-related potentials (Park, 

Chiang, Brannon, & Woldorff, 2014; Park et al., 2012; Vinckier et al., 2007). The differential 
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response in these studies was instead attributed to a general increase in “attentional engagement” 

with the unfamiliar symbols. This suggests that the present result is not solely an artifact of task 

demands, but be explainable via Price & Devlin’s interactive account, where a novelty effect can 

occur with or without explicit cognitive goals as a function of prediction errors (for further 

discussion, see Introduction section 1.3.4). 

3.5.2 An increasing preference for digits in the right ITNA 

 The interactive account makes a clear prediction about the developmental course of OTC 

activation over learning, proposing an inverted-U shaped trajectory. In the pre-learning stage, 

there are no representations associated with a stimulus and thus no top-down predictions or 

prediction error. The response in OTC at this stage is characterized as a more purely bottom-up 

response based on the stimulus’ visual features. After some (unspecified) amount of learning, 

predictions are generated, but they are imprecise, resulting in high prediction error and increased 

OTC activity. With repeated experience, the distributed representations become more refined and 

OTC activity declines to an intermediate level (C. J. Price & Devlin, 2011). In light of the 

previous discussion, it should be noted that the children in the present study had been exposed to 

the Scrambled stimuli on at least two separate occasions before their first scan, during mock 

scanner training and the day-of-scan practice session. The brief exposure, coupled with the 

required task of making an active decision about these symbols, may have been sufficient for 

participants to already attach “meaning” to the novel shapes, placing our children in the early 

learning/high prediction error/increased OTC activation part of the curve. More importantly, this 

proposal predicts that the response to digits and letters in OTC areas should decrease over 

children’s time in school. This model stands in contrast to more traditional “maturational” or 

“expertise-based” accounts of OTC development, whereby category-preferring areas become 
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increasingly sensitive over learning, responding more strongly to their preferred object domain, 

albeit emphasizing different underlying mechanisms (L. Cohen & Dehaene, 2004; Gauthier, 

2000; Johnson, 2011).  

 So, what (if any) developmental trajectory do we see in the response levels of three ROIs 

analyzed here? First, there were no significant effects of academic months on the stimulus versus 

baseline activity levels for any symbol category or ROI (Figure 17B), suggesting that the raw 

sensitivities of symbol areas to novel and familiar symbols are (linearly) stable over K-2nd grade. 

To test for potential nonlinear effects, we fit models with a quadratic term (academic months2), 

which could indicate exponential or non-monotonic (e.g., inverted-U) growth. For instance, a 

recent study found that the volume of OTC responses to words first increased and then receded 

over the same window studied here (Dehaene-Lambertz et al., 2018). Their result was mixed, 

however, as functionally localized peaks of word-sensitivity (defined retrospectively) showed a 

reliable linear increase in their response to words. In the present case, we found that linear 

models were superior to quadratic models in all cases, indicating there was insufficient evidence 

of a more complex trajectory. 

 Though the category versus baseline responses were relatively stable, there was some 

evidence that the right ITNA’s response to digits relative to other symbols increased over 

schooling. This effect was particularly driven by the Digits > Scrambled contrast (Figure 18B), 

as there was no evidence for an increasing preference for digits over letters. Relatedly, in Figure 

17B, there appears to be a “trade-off” in sensitivity to digits (increasing) versus scrambled 

symbols (decreasing) in the right ITNA. Though the effect is relatively weak, this finding 

represents the first evidence that the ITNA’s selectivity for digits over novel symbols increases 

in children. On the other hand, given an increasing preference for digits over letters was not 
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observed, we cannot claim the right ITNA is becoming more specialized for digit processing 

over this window. The lack of univariate selectivity for digits compared to letters is consistent 

with prior studies in 4-9 year old children (Cantlon et al., 2011; Dehaene-Lambertz et al., 2018; 

Nordt et al., 2018, 2020; Park et al., 2018), and taken together, suggests that a “mature” ITNA 

selectivity for digits must emerge later in development.  

Our results may be considered consistent with the pruning account, whereby selectivity 

for one category (Digits) emerges due to a decreasing response to non-preferred categories 

(Scrambled) (Cantlon et al., 2011). However, a strict interpretation of pruning predicts that the 

sensitivity to all symbols starts out roughly similar. In the present case, the responses to 

Scrambled started out much higher than to Digits, emphasizing the importance of considering 

task-induced, top-down modulations when interpreting these results. We further did not observe 

significant changes in the sensitivity to any category (i.e., no significant decrease in Scrambled 

sensitivity) , so the story appears more complex, potentially involving several interacting 

developmental mechanisms (see General Discussion section 4.3 for more on these findings and 

their implications). 

3.5.3 Increasing digit-biased categorical representations in left ITNA 

Representational similarity analysis (RSA) provides a potentially more powerful 

analytical approach to characterizing the representational content of a region. At the scale of 

whole ROIs as used here (5-10mm), focusing on a univariate measure of average activity risks 

missing the fine-grained detail contained in the spatial pattern of responses across a region. In 

the present study, we assessed the extent to which neural representational geometry in symbol 

areas fit with category-level representational models, and whether fits changed over schooling. 

Of the three regions, the most significant changes were observed in the left ITNA, which showed 
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increasing correlation to the Digit vs. Other, Digit vs. Scrambled, and Digit vs. Letter model 

RDMs over months in school (Figure 19B). We interpret this finding as representing a “digit-

biased” developmental trajectory in the left ITNA, as it was only the models involving digits as a 

distinct category that showed an effect of school. No such effect was observed for the letter-

focused models (Letter vs. Other, Letters vs. Scrambled). In the right ITNA, the Digit vs. Letter 

geometry also positively increased, suggesting some shift towards a category-level 

representational hierarchy in this region. It is important to note, however, that an effect for the 

Digit vs. Letter model on its own provides no evidence of a bias for either category – it simply 

reflects greater within versus between category similarity, i.e., categorical distinction.  

As RDM similarity provides evidence for or against a particular representational 

geometry, it is critical discuss the aforementioned changes in the context of the raw (Spearman 

Z) values. As can be appreciated in the mean levels by grade in the left ITNA (Figure 19A), the 

RDM similarity was first negative in K-1st grade and then reached relatively strong positive 

values in our 2nd grade sample. Upon closer examination of the neural RDMs (not depicted), we 

found that the pairwise relationships in exemplar activity patterns were near zero between 

categories (as predicted in the model RDM), indicating that digit and letter representations were 

unrelated. Critically though, the negative RDM similarity was driven by (weakly) anti-correlated 

responses to exemplars within each category. In other words, the model RDM for Digits vs. 

Letter predicts similar patterns within a category, but in younger children, the opposite was 

observed. The positive slope (Figure 19B, left ITNA) and positive RDM similarity in 2nd graders 

(Figure 19A, left ITNA), suggests that the left ITNA carried some symbol identity information 

early on, but over schooling, transitioned towards categorical representation. This interpretation 

is in line with the results of our exemplar-decoding analyses which indicated decreasing 
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decoding accuracy over schooling for letters (p<0.01) and digits (nonsignificant, negative trend) 

in the left ITNA (Figure 20A,B). Interestingly, using the adult dataset described in Chapter 1 

where participants performed an (active) serial search task, our lab recently found no evidence of 

exemplar discriminability in the left or right ITNA for either digits or letters (Yeo et al., in prep). 

Both regions instead showed strong discriminability at the category level. Thus, in the present 

data, we may be observing a developmental shift towards a more “adult-like” state of categorical 

representation in the left ITNA.  

The right ITNA also demonstrated a positive slope for the Digits vs. Letter model and 

similarly started with a negative fit in kindergartners (Figure 19A). In contrast to the left, RDM 

similarities in the right ITNA ended up near zero in 1st and 2nd graders, indicating no evidence 

for representational distinction between digits and letters. This is perhaps puzzling in light of a 

recent study which found strong evidence for categorical geometries in the right but not the left 

ITNA (D. J. Yeo et al., 2020). That study used data from a passive viewing task so indexed a 

more “spontaneous” symbol representation process compared to the task used here. It is 

nevertheless possible that a Digit vs. Letter geometry develops later in the right ITNA, outside of 

the K-2nd grade window, and so was not yet evident in our sample. The right ITNA did, however, 

demonstrate early and stable fits to the Digit vs. Scrambled and Letter vs. Scrambled models and 

to a greater extent than observed in the left ITNA (Figure 19A). Our results suggests that 

category information is represented in the right ITNA, but at a supraordinate “familiar vs. novel” 

level, and that this representational geometry is already present at school entry.  

While we have heretofore conceived of a unidirectional, maturational shift in ITNA 

representations, an important caveat is that, at least in adults, representational content in the 

ITNAs appears to be task-specific. For instance, when access to digit identity and/or numerical 
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magnitude is required for task performance, there is some evidence that the left ITNA and right 

OTC can represent digit identity (Lyons & Beilock, 2018; Wilkey et al., 2020). Additionally, in a 

separate analysis of the visual search task data from Chapter 2, though a group-level mean effect 

was absent, the degree of digit discriminability in the left ITNA related to calculation ability in 

adults (Yeo et al., in prep). It is thus doubtful that the apparent developmental decline in 

exemplar discriminability we observed here reflects a reduction the ITNA’s capacity for 

exemplar representation. Indeed, though it remains open area of investigation, some researchers 

have postulated that the ITNAs can flexibly shift between category and identity-level 

representations, depending on task demands (Grotheer et al., 2016; D. J. Yeo et al., 2020, 2017). 

Here, the children performed a categorization task, which may bias towards categorical 

geometries at the neural level. The shift towards category discrimination could reflect more 

strategic modulation of the ITNAs as children progress in school, rather than an fundamental 

change in how the region processes symbols. Again, the balance of top-down versus bottom-up 

effects makes interpretation of these data challenging, particularly for a region that interfaces 

between sensory and associative networks. Studies using a range of task contexts will likely be 

required to better understand the nature of ITNA representational flexibility, both how it 

manifests in the mature state and develops in children. 

In the OTLA, representational geometries were not significantly related to time in school. 

However, relatively strong categorical organization was observed in this region as early as 

kindergarten (Figure 19A), as indicated by the positive RDM similarities for all but the Digits vs. 

Letters model. The effects were only significant when the Scrambled condition was part of the 

model, suggesting the OTLA distinguishes familiar from novel symbols but, notably, does not 

distinguish between digits and letters. The effects for the digit-focused and letter-focused models 
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were in fact qualitatively similar, providing no evidence for a “letter-bias” in terms of the 

OTLA’s representational geometry over K-2nd grade. In considering these results, it is important 

to note that the OTLA’s univariate response to all symbol categories was over twofold that of 

ITNAs (Figure 17A) and the raw difference in the Scrambled versus Digit and Letter responses 

was similarly scaled (Figure 18A). In our RSA procedure we implemented mean pattern 

subtraction (also referred to as “cocktail-blanket removal”), which helps avoid artificially 

inflated correlations by removing the shared component across all conditions (Misaki et al., 

2010; Walther et al., 2016). This procedure does not explicitly remove differences in response 

amplitudes between conditions – meaning that the univariate difference for the Scrambled 

condition was still present in the scaled response patterns and may have influenced pattern 

correlations. On the other hand, the Pearson correlation is invariant to the magnitude and scale of 

two variables. So, if a constant univariate difference was present, i.e., affecting all voxels/nodes 

to a similar extent, the representational distance between two patterns should be unrelated to 

their average amplitudes. To verify whether or not Scrambled response amplitudes were 

associated with representational geometries, we performed a supplementary analysis looking at 

the simple cross-correlations in these values across all observations included in the primary 

analyses (n=145). We found that the magnitude of the Scrambled response in the OTLA was not 

significantly correlated with RDM similarity values (all ps > 0.05). However, the univariate 

contrast results were negatively related to the corresponding RDM similarity scores ([D>S ~ D 

vs. S], r = -0.168, p = 0.043; [L>S ~ L vs. S], r = -0.174, p = 0.037), indicating that a stronger 

mean response to the Scrambled relative to familiar symbols was associated with greater 

representational distinction between categories. These results suggest that Scrambled symbols 

evoked a category-specific pattern of activity across the ROI and that these sets of nodes, in sum, 
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showed a stronger BOLD signal change than the patterns elicited by familiar symbols.   

3.5.4 No evidence for symbol identity representations in symbol-preferring ROIs 

Consistent with Yeo et al. (in prep) who found no exemplar-level (digit) discriminability 

at the group level in the ITNAs, we saw no evidence of above-chance exemplar decoding at any 

age (Figure 20). Yeo et al. did, however, find that individual differences digit discriminability in 

the left ITNA related to math ability, suggesting spontaneous engagement of identity 

representations may be related to increased experience/expertise with symbolic number. Further 

analysis will be required to determine whether differences in exemplar representation are already 

associated with math ability in this sample. The lack of group-level evidence for exemplar 

representations in the present study may be due to the task being generally insufficient to engage 

exemplar-level representations in the ITNAs, or these representations may not emerge until later 

developmental windows. 

3.5.5 The ITNAs are functionally connected to number-sensitive IPS by kindergarten 

To test predictions of the interactive specialization hypothesis, we examined the 

spontaneous (“background”) and task-evoked functional connectivity (FC) of the ITNAs and 

OTLA with functionally defined target regions in the bilateral intraparietal sulcus, and modeled 

the developmental trajectory of these measures over K-2nd grade. Focusing first on background 

connectivity, we observed strong coupling of all three ventral stream ROIs with the bilateral 

parietal ROIs across grade levels (Figure 21A), suggesting these functional circuits are 

established prior to school entry. Our results are consistent with the study from Nemmi and 

colleagues (2018), who looked at resting-state connectivity of the right/left ITNA and VWFA, 

with target clusters in the left and right IPS defined by showing a developmental increase in 

ITNA connectivity over age (3-21 years old) (Nemmi et al., 2018). Their IPS clusters fell within 



 136 

the anatomical constraints masks used here (~12mm and 7mm away from our left and right 

parietal coordinates) and their VWFA was within 4mm of our OTLA coordinate, making for a 

particularly comparable set of results. From 3 years of age, all three symbol areas showed above 

zero connectivity (Fisher Z ≈ 0.2) with the left and right IPS, indicating that spontaneous 

coupling between OTC areas and the IPS precedes the learning of symbolic notations. In fact, 

recent work looking at resting-state connectivity in human neonates has shown that the lateral 

OTC is already connected to inferior parietal areas (Barttfeld et al., 2018) and the VWFA already 

demonstrates adult-like connectivity patterns (J. Li et al., 2020), consistent with observations that 

the global layout of resting-state networks are largely present at birth (Doria et al., 2010; 

Fransson et al., 2007). Early-developing functional connectivity organization has been taken to 

support the “proto-map” hypothesis, which posits that a blueprint for functional specialization is 

laid out in gestation (Arcaro & Livingstone, 2017; Rakic, 1988) and, fits generally within the 

“maturational” view of brain development.  

Though all of our seed ROIs were already significantly connected to the bilateral IPS at 

kindergarten, there were notable differences between regions (Figure 21A). The ipsilateral 

connection between the right ITNA and right IPS was considerably stronger than the 

homologous connections of the left ITNA and OTLA to left IPS. In paired tests, the differences 

were significant within every grade bin (all ps < 0.038). This result is in line with our adult work 

in Chapter 2, where we found increased functional and structural connectivity of the right ITNA 

to right IPS compared to the homologous circuit in the left hemisphere. As we discussed there, 

considerable evidence exists for a rightward asymmetry to number processing, particularly in 

children (Cantlon et al., 2006; Cantlon & Li, 2013; Hyde et al., 2010; Izard et al., 2008; Kersey 

& Cantlon, 2017a; Lochy & Schiltz, 2019; S. E. Vogel et al., 2015). The present findings provide 



 137 

the first direct evidence that asymmetric functional connectivity between the ITNA and IPS is 

present as early as kindergarten. A fascinating future direction for this work will be to understand 

whether asymmetry is also in present in the white matter pathways connecting these areas, and 

whether individual differences in structural asymmetry relate to functional connectivity. For 

instance, in considering the biased connectivity hypothesis, it remains unclear the extent to 

which functional or structural connectivity is more important in driving cortical specialization, as 

largescale white matter architecture is also adult-like at birth (Dubois et al., 2014). If structural 

and functional connectivity are strongly linked over development, it would suggest they mutually 

guide neural specialization, but a divergence may indicate differing contributions. Another 

outstanding question is whether asymmetry in this pathway relates to behavior. Some evidence 

points towards individual differences in left hemispheric processing to be specifically related to 

symbolic number abilities (e.g., Emerson and Cantlon, 2015; Evans et al., 2015; Yeo et al., in 

prep). If IPS-ITNA circuit asymmetry scaffolds lateralized responses to numbers, e.g., through 

competitive dynamics (Behrmann & Plaut, 2020), early-observable individual differences in 

asymmetry may prove behaviorally relevant. 

3.5.6 No parietal bias in left ITNA versus OTLA connectivity    

In comparing the left ITNA and OTLA ROIs, we found they were similarly connected to 

the left IPS across grade levels (all ps > 0.27), indicating no domain-specific bias in functional 

connectivity among left hemisphere symbol areas (Figure 21A). This finding suggests that, at 

least in terms of functional connectivity, the left ITNA is not preferentially connected to number-

sensitive areas of the IPS compared to the nearby OTLA area, contrary to what may be expected 

based on a strong interpretation of the biased connectivity hypothesis (Hannagan et al., 2015). 

Our results corroborate those of Nemmi and colleagues (2018), who found that left ITNA and 
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VWFA connectivity to left IPS did not differentiate until 9.8 years of age, at which point ITNA 

connectivity steadily increased. Similarly, in their study of neonatal connectivity, Barttfeld and 

colleagues (2018) noted that no difference was observed between VWFA and the more lateral 

cortex associated with ITNA in terms of coupling to inferior parietal cortex, speculating that “it 

is possible such patterns of functional specialization emerge through exposure and learning and 

that initially only a rough division between mesial and lateral regions is visible” (Barttfeld et al., 

2018, p. 3117). Though we will return to this idea in the following discussion of the task-evoked 

connectivity patterns, our results indicated no change in connectivity to the left IPS over K-2nd 

grade for either the left ITNA or OTLA. It should be noted that the developmental change 

observed in the study of Nemmi et al. (2018) occurred over 3-21 years of age. The lack of 

change we observed here (for all three of our ROIs, Figure 21B), despite having a larger sample 

size in the 5-8 year old range, suggests that developmental increases in spontaneous coupling 

between the ITNAs and IPS are not robust within this narrower window and rather occurs over a 

longer timescale.   

To the extent that biased connectivity operates across hemispheres, we also expected the 

left ITNA to be more connected than the OTLA to the right IPS. Even if the left IPS undergoes 

protracted development, the right IPS is known to already be involved in number processing by 

kindergarten (Cantlon et al., 2006; Holloway et al., 2010; Kersey & Cantlon, 2017a; Libertus et 

al., 2009), and so may preferentially interact with the left ITNA. Our results argue against this 

hypothesis, at least in terms of early functional connectivity (Figure 21A). Compared to the left 

ITNA, the OTLA was more connected to the contralateral right IPS in K and 1st grade (t(53) = 

2.44, p = 0.018; t(44) = 2.26, p = 0.029). This represents the only major divergence from Nemmi 

et al.’s (2018) results, which found that left ITNA-right IPS connectivity was already stronger 
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than VWFA-right IPS connectivity by 3.9 years. It is likely that spontaneous interactions 

between OTC areas and IPS are stronger in background connectivity measured during task 

performance compared to rest (e.g., due to increased visuo-perceptual processing (Norman-

Haignere et al., 2012)), as suggested by the relatively higher Fisher Z values we observed here (≈ 

0.35 versus 0.2 in Nemmi et al.). This discrepancy may be important for understanding 

differences in the present results and future studies looking at resting-state connectivity patterns.  

3.5.7 No digit-selective coupling of the ITNAs with IPS and no change over schooling  

Interactive specialization emphasizes the experientially-driven development of regional 

networks, which are dynamically engaged based on particular task demands (Anderson, 2015; 

Johnson, 2011). Based on this model, we predicted that the ITNA would be selectively coupled 

with number-sensitive IPS regions when recognizing digits compared to other symbols. That is, 

if the ITNA-IPS circuit facilitates the “mapping” of number symbols to magnitude referents in 

parietal cortex, over learning it should develop into a number-preferring functional network. A 

strong Numerical Stroop interference effect (i.e., where number identity interfered with 

judgements about physical size) was present in our kindergarten sample (t(66) = 4.70, p = 1.4e-5), 

suggesting these children were already implicitly and/or automatically mapping digits to their 

semantic representations. In the present categorization task, we thus expected to 1) find evidence 

of implicit mapping in kindergarten in terms of digit-selective coupling between ITNA-IPS and 

2) increasing digit-specific coupling over schooling, as this domain-specific circuit is repeatedly 

engaged during math instruction. Our results supported neither of these predictions. The digit-

specific coupling (Digits > Other, > Scrambled, and > Letters) in the left hemisphere was 

significantly negative in kindergartners and rose to approximately zero by 2nd grade (Figure 

22A). The fixed effect of academic months, however, was not significant (Figure 22B), 
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suggesting that the trajectory of change was inconsistent across participants and/or unrelated to 

time in school. Though the positive trend in the left hemisphere suggests digit-specific coupling 

may eventually be established later in school, the very same trend was observed for the letter-

specific contrasts, which more conclusively argues against an interactive specialization account. 

Moreover, in the right hemisphere, the letter-specific contrasts showed positive trends, but the 

digit-specific trends were negative, further indicating that this circuit is not preferentially 

engaged by digits. As previously discussed, however, the categorization task employed here 

required no access to numerical magnitude and so may not sufficiently engage the ITNA-IPS 

circuit. Finally, even if implicit engagement of number-sensitive populations in IPS occurred in 

this task, it is plausible this activity is too weak or even undetectable at the spatial resolution 

acquired here (2.5 x 2.5 x 3.25mm). In monkeys, for instance, it has been shown that only 15-

20% of neurons within the number-sensitive VIP region of IPS code for nonsymbolic number 

(Nieder, 2016). Intracranial recordings in humans suggest this percentage is likely to be even 

smaller for symbolic numbers (Daitch et al., 2016; Kutter et al., 2018). We therefore must avoid 

interpreting the present null result as evidence of absence of an effect. Future work in a 

comparative sample of adults will be important to determine whether the ITNA-IPS circuit is 

selectively engaged within this particular task paradigm in the mature state. It may be that 

higher-level tasks, such as number comparison or arithmetic, are necessary to evoke this 

functional circuit.    

3.6 Limitations 

3.6.1 COVID-19 

We began MRI scanning for the longitudinal study described in early 2018, and the 

baseline Kindergarten sessions were acquired through the summer of 2019. The subsequent 



 141 

timepoints thus were scheduled for 2019-2020, and 2020-2021. In early March 2020, all research 

activities were put on indefinite hold due to the COVID-19 pandemic. The shutdown 

unfortunately occurred at nearly the midpoint of data collection for the project. This resulted in a 

reduced sample size for the present analyses, with a particularly limited set of three-timepoint 

participants from which (within-subject) linear trajectories can be reliably estimated. This guided 

our statistical approach focused on population-level fixed effects, rather than within-subject 

trajectories and individual differences in relation to behavior (e.g., how baseline connectivity 

predicts 2nd grade activation or numerical ability). As more data is acquired over the coming 

months, alternative approaches will be possible.   

In mid-August 2020, we did resume scanning, but at a limited capacity and with 

numerous new safety protocols. Some aspects, e.g., limited exposure to study personnel or 

required masking during MRI, could have systematically affected these sessions in unexpected 

ways and impacted our results. Furthermore, the virtual schooling and other environmental 

factors associated with the pandemic may have unduly influenced our sample. Critically, 

however, of the 145 scan sessions included the present analyses, only 16 (11%) occurred after 

the study resumed, suggesting minimal impact on our results.  

3.6.2 Assumption of normality and individual differences in trajectories 

Where the fixed effect of academic months was insignificant, it is possible that the 

assumption of normality was violated. For instance, a bimodal distribution, where subsets of 

participants showed either strong positive or negative slopes, could lead to a null result 

(Schielzeth et al., 2020). In this situation, while the null effect is statistically “true,” the 

conclusion of “stable” response pattern over the developmental window would be invalid. We 

qualitatively examined histograms of the raw participant-level slopes for each model and found 
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no notable cases of a bimodal distribution. We further visually inspected residual plots and found 

no concerns of nonnormality. Nevertheless, significant variability in slope estimates was 

common. Understanding the neural and behavioral relevance of these individual differences will 

be an important avenue of future investigation, but was outside the scope of the present work.  

3.6.3 Group-level ROI Definition 

 Our use of group-level ITNA and OTLA ROIs was principally motivated based on 

several factors (see Chapter 3 section 3.3.12). However, this approach is undoubtedly imperfect. 

The size of these ROIs was relatively small and may have missed the “sensitive” area in some 

(or many) subjects, due to misalignment of cortical surfaces and/or true anatomical variability in 

ITNA location. We extracted activation estimates from 6mm smoothed data (with the exception 

of RSA and MVPA analyses) in an effort to minimize this variability. Though it was not possible 

here, individually localized fROIs, defined retrospectively, may be the most sensitive approach, 

such as adopted in similar longitudinal studies (Dehaene-Lambertz et al., 2018; Saygin et al., 

2016). A more thorough investigation of individual differences in the location and spatial extent 

of digit-related activity across the occipitotemporal cortex may be a fruitful next step in the 

present sample, but again, was outside the scope of this dissertation. 

3.7 Conclusions 

We present here a series of longitudinal analyses looking at how the functional profile of 

symbol areas changes over the first three years of formal schooling. Our study improved upon 

prior work in several ways, including a large sample size, an active symbol processing task, and 

multiple measures of functional differentiation. Our results provide the first evidence that the 

ITNAs become increasingly “numeral-biased” in their response profiles and representational 
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geometries in early school-age children. More generally, our findings provide novel insights into 

experience-dependent functional plasticity in the ventral visual cortex. 
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CHAPTER 4 

GENERAL DISCUSSION 

The representation and processing of alphanumeric symbols in the brain provides an 

appealing model system for probing mechanisms of brain function and development. Humans 

use abstract signs, such as letters and numbers, to efficiently tap into distributed brain networks 

involved in language and mathematics. The invention of written symbol systems occurred too 

recently in human history for dedicated brain circuits to have evolved for their used (Dehaene & 

Cohen, 2007). Remarkably, however, after sufficient learning, numbers and letters are found to 

engage distinct areas along the ventral visual pathway within the occipitotemporal cortex (OTC), 

including bilateral regions responsive to numerals and a left-lateralized region responsive to 

letters (Hannagan et al., 2015). The ventral pathway supports object recognition, housing neural 

populations that represent “what” an input is (i.e., properties of its identity). In humans and non-

human primates, the OTC contains a patchwork of areas whose spatial layout is consistent and 

largely organized around behaviorally-relevant categories of experience, including regions 

preferentially involved in processing faces, bodies, places, and manipulable objects (Tsao et al., 

2003). Numbers and letters carve out their respective niches within this pre-existing circuitry but, 

many outstanding questions remain. For instance, why are symbol areas segregated and 

consistently localized where they are? How and when do they come to acquire their preference 

for one set of symbols versus another?    

4.1 Digit versus letter area connectivity 

An influential class of theories posit that the functional role of any given brain region is 

dictated by its connections to and communication with other regions involved in particular 
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cognitive and behavioral capacities (Hannagan et al., 2015; Johnson, 2011; Mahon & 

Caramazza, 2011; Riesenhuber, 2007). Such principles may help to explain the differential 

locations and hemispheric asymmetries of number and letter areas (Behrmann & Plaut, 2020). To 

test these theories, researchers have turned to increasingly sophisticated approaches for non-

invasively measuring axonal wiring and interactivity in the human brain. These methods have 

provided an unprecedented window into brain architecture and organization, particularly in the 

OTC. However, only a few studies have examined the connectivity of number and letter areas 

(Abboud et al., 2015; Barttfeld et al., 2018; Grotheer et al., 2019; Nemmi et al., 2018). In our 

first empirical chapter (Chapter 2), we used state-of-the-art methods to assess, for the first time, 

both the structural and functional connectivity of symbol areas in the same group of individuals.    

Our analyses revealed marked distinctions in Digit and Letter-area connectivity. As 

predicted by the biased-connectivity hypothesis, we found that the Digit area had more axonal 

projections to inferior parietal regions involved in numerical magnitude representation and 

arithmetic, including the intraparietal sulcus (IPS) (Figure 5E). During the symbol detection task, 

stimulus-evoked responses of the Digit area and IPS were also more strongly coupled (Figure 

6D), implying that these areas more readily communicate in service of behavior. The present 

findings provide evidence of a brain circuit plausibly involved in mapping symbols to abstract 

numerical quantities, and one that appears critical to symbolic number abilities and mathematics 

in humans (Amalric & Dehaene, 2016, 2018). If this circuit is intact before symbol learning, it 

may constrain the localization of number processing in the OTC and help explain why the ITNA 

is consistently localized in the posterior ITG, lateral to letter and word form areas. Of course, 

observing this domain-specific circuit in adults does not directly address the claim that 

connectivity is a causal driver of functional specification – after all, increased connectivity could 
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be a consequence of numeracy acquisition. Nevertheless, our findings are generally consistent 

with connectivity-based accounts in terms of what should be observed in the mature state. 

Together with findings that the ITNA is already functionally connected to the same 

frontoparietal network we observed here by 3 years of age (Nemmi et al., 2018), and that 

structural connectivity patterns in pre-reading children can predict the future location of the 

VWFA (Saygin et al., 2016), our results build on the mounting body of evidence for 

connectivity-constrained processing of symbols in the OTC.  

A important caveat to the above interpretation is that the Digit area also showed greater 

structural connectivity (than the Letter area) to putative language regions, including the superior 

temporal and inferior frontal gyri (Figure 5E), which may be taken as evidence against the 

biased-connectivity hypothesis. One possibility is that it is actually the VWFA, which lies slightly 

anterior to the Letter area we analyzed here, that is preferentially connected to language areas. In 

the present study, we used functionally defined locations of digit and letter sensitivity to 

specifically address why responses to these categories are segregated within the same 

(asemantic) task context. One may argue, though, that words rather than single letters are 

mapped to language representations, and so, a more apt test of biased-connectivity involves 

comparison of ITNA and VWFA proper.   

While we agree this is an interesting question for future work, we did find, as predicted, 

that the Letter area was more functionally connected to language areas (Figure 6D). This result 

indicates a significant dissociation between structural and functional connectivity measures. The 

connectivity-based theories we have discussed herein do not explicitly differentiate the roles of 

structural versus functional connectivity in driving regional selectivity. Often the two modalities 

have been conflated and/or expected to go in the same direction, even in current discussions of 
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the topic (Q. Chen, Garcea, Almeida, & Mahon, 2017; Op de Beeck et al., 2019). As we outlined 

in Chapter 1, functional interactions can occur over polysynaptic pathways that are not typically 

considered (or directly assessable) in tractography analyses. Based on this fact alone, it seems 

unwise to conflate structural and functional connectivity.     

Our results strongly suggest that the assumption of correspondence between connectivity 

measures is unfounded, at least in consideration of anterior OTC areas. It further highlights the 

utility of including multiple modalities in one study, where the ROIs and participant sample are 

consistent between analyses. Going forward, it will be important to clarify the relative 

contributions of functional and structural connectivity to OTC organization, and further refine 

existing theoretical frameworks. Directly comparing modalities in future longitudinal studies of 

OTC development will be particularly helpful in this regard (e.g., how do structural or functional 

connectivity patterns uniquely predict future specialization?).  

A final observation to reiterate is that the Digit and Letter areas were members of distinct 

functional networks (Figure 6D). We found that the Digit area was associated with the putative 

frontoparietal “control” network (FPN), corroborating previous reports of posterior ITG coupling 

in studies of resting-state and task-evoked connectivity (Abboud et al., 2015; Cole et al., 2013; 

Marek & Dosenbach, 2018; Nemmi et al., 2018; Vincent et al., 2008; B. T. Yeo et al., 2011). In 

contrast, the Letter area was functionally connected to primary visual, superior temporal, dorsal 

attention, somatomotor, and insular regions, generally consistent with reported connectivity 

patterns of the VWFA (L. Chen et al., 2019; Nemmi et al., 2018; A. C. Vogel et al., 2012; B. T. 

Yeo et al., 2011). Thus, despite their close proximity, digit and letter-preferring areas fall on 

either side of a steep gradient in functional connectivity with the rest of the brain. If the tenets of 

connectivity-based accounts hold, our findings would suggest that digits and letters engage 
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qualitatively distinct networks.  

How these largescale networks map onto semantic domains has received recent attention 

in the literature. Over a series of studies, Amalric & Dehaene have demonstrated that the 

frontoparietal-inferior temporal network is preferentially involved in processing mathematical 

versus nonmathematical semantic statements (Amalric & Dehaene, 2016, 2019). The same 

network was engaged across all levels of numerical tasks, from the recognition of digits to high-

level mathematical reflection. The authors have argued for a broad dissociation in the networks 

supporting math versus linguistic skills (Amalric & Dehaene, 2018). They cite a recent study that 

further supports their idea in which a brain “atlas” of semantic knowledge was presented (e.g., 

emotional, social, locational, abstract, numeric, tactile, temporal, visual, etc.) (Huth, De Heer, 

Griffiths, Theunissen, & Gallant, 2016). A distributed set of regions, similar to the Digit-area 

network we observed here, was selective for a semantic dimension that included numeric words 

(e.g., “four”, “extra”, “shillings”, “pairs”, “smaller”, “double”, etc.). More medial areas, 

including the occipitotemporal sulcus and fusiform gyrus, did not show this selectivity (Huth et 

al., 2016). Together with these studies, our data suggest that the localization of digit processing 

in the OTC may be due to this area’s involvement in a largescale brain system that is particularly 

well suited for mathematical thinking. It is possible that this system was originally geared 

towards the processing of magnitude and space, and in modern humans, is co-opted for usage in 

symbolic number abilities. However, given the frontoparietal/inferior temporal system has been 

proposed more generally as “hub” network involved in “adaptive task control” (Cole et al., 

2013), or a “multiple-demand” network central to “intelligent thought and action” (J. Duncan, 

2010), its particular involvement in (even rudimentary) numerical operations remains mysterious 

(Amalric & Dehaene, 2018). Future work will be necessary to understand the functional roles of 
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digit and letter areas within largescale networks. Insights may come through analysis of network-

level connectivity across different task contexts (Conrad et al., 2020), but also through 

more nuanced characterization of the local stimulus preferences and representational content 

within these areas (D. J. Yeo et al., 2020).  

4.2 Hemispheric asymmetries in ITNA connectivity  

Connectivity is thought to constrain not only the localization of categorical selectivity in 

the OTC, but also the hemispheric lateralization of selectivity (Behrmann & Plaut, 2020). 

Perhaps the most well documented example of asymmetric selectivity is that of word processing 

in the left hemisphere and face processing in the right. Though it is unclear whether letter 

processing is already biased to the left hemisphere in pre-reading children (Cantlon et al., 2011; 

Maurer, Brem, Bucher, & Brandeis, 2005), what is clear is that a preference for letters and words 

reliably emerges in the left fusiform gyrus/occipitotemporal sulcus in the earliest stages of 

reading acquisition (Tracy M. Centanni et al., 2018; Dehaene-Lambertz et al., 2018; Dehaene et 

al., 2015; Lochy & Schiltz, 2019; Nordt et al., 2018). It is commonly recognized that the left 

hemisphere’s dominance in language processing contributes to VWFA lateralization, but more 

specifically, why might this occur? First, the restriction of language faculties to one hemisphere 

is thought to afford increased processing efficiency and, though the origins are still debated, it 

appears to be tied to innate asymmetries in white matter architecture already present at birth 

(Behrmann & Plaut, 2015; Dehaene-Lambertz, Dehaene, & Hertz-Pannier, 2002; Dubois et al., 

2014, 2009). This functional asymmetry is thus in place long before the learning of alphanumeric 

symbols. An additional pressure at play is the fact that forming and maintaining axons comes at a 

significant wiring cost. Most axonal projections in the mammalian brain are relatively short and 

few exist between hemispheres, aside from connections among homologous regions via the 
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corpus collosum (Behrmann & Plaut, 2020; Rubinov, Ypma, Watson, Bullmore, & Raichle, 

2015). Thus, left hemisphere regions involved in phonological representation and speech 

production only directly project to areas of the left OTC. Even if both hemispheres are suitable 

for alphanumeric symbol processing, the VWFA naturally emerges in left due to these 

architectural constraints. Remarkably, the emergence of a rightward lateralization for face 

processing appears to coincide with VWFA development. Evidence suggests that the fusiform 

gyrus is initially bilaterally engaged by faces but, as one learns to read, the left fusiform is 

increasingly recruited for word recognition (Behrmann & Plaut, 2015, 2020). Words and faces 

are thought to draw on similar computational resources, e.g., foveal vision and a need for fine 

discrimination among similar exemplars, so a competition for cortical space is thought to play 

out. Ultimately, the VWFA “wins out” in the left fusiform and the right fusiform is increasingly 

relied on for face recognition, leading to consistent localization of the FFA in the right 

hemisphere. 

 In the case of number processing in the OTC, as we have discussed, both hemispheres 

appear to support digit recognition, depending on the task context. This provides an intriguing 

opportunity to explore connectivity-based constraints on functional asymmetry in the brain. 

Based on neuropsychological evidence, Cohen & Dehaene proposed differential contributions of 

the left and right ITNAs, but empirical investigation into these differences has only recently 

begun (L. Cohen & Dehaene, 1995; D. J. Yeo et al., 2020). A central question is, if either ITNA 

is able to process digits, are their roles redundant or complementary? We hypothesized that 

asymmetric connectivity profiles may differentially constrain the function of the ITNAs. In 

Chapter 2 we aimed characterize and compare, for the first time, the structural and functional 

connectivity of left and right ITNA. 
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Based on the triple-code model of number processing (Figure 1), along with evidence that 

language dominance in the left hemisphere affects OTC organization, we predicted that the left 

ITNA would show stronger within-hemisphere connectivity to language areas. Conversely, given 

the well documented rightward dominance for magnitude processing (see Chapter 2 

Introduction), based on the same logic we predicted stronger connectivity would be observed 

within the right ITNA-IPS circuit. Our results agreed with both predictions. Compared to the 

same pathway in the right hemisphere, the left ITNA had significantly more axonal projections 

to the opercular IFG, a region involved in speech perception and production (Figure 5F). The left 

ITNA showed greater functional coupling with areas of middle temporal gyrus and superior 

temporal sulcus, regions implicated in phonological and lexical processes (Figure 6E). In the 

right hemisphere, we found stronger structural and functional connectivity of the ITNA with the 

IPS and inferior parietal lobe. According to the triple-code model, the left “visual number form” 

area should have privileged access to the language system (i.e., the “verbal code”), and our 

findings support this idea. Conversely, though the triple-code model did not explicitly predict 

asymmetry in the ITNA to IPS (i.e., the “magnitude” code) circuit, our results suggest the right 

ITNA has privileged access to the magnitude system. The present results suggest this access is 

not simply a matter of proximity, but reveal significant asymmetries in the connectional 

architecture within each hemisphere.  

Given this was a sample of adults, we cannot speak to the origins of asymmetry in these 

circuits – the observed patterns could predate the learning of number symbols, arise as a 

consequence, or (most likely) involve a mixture of both. In any case, based on the idea that 

connectivity constrains the function of OTC areas, our findings suggest that the left ITNA 

should support the mapping of digits to verbal word forms (e.g., during retrieval-based arithmetic 
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or multi-digit reading), and potentially any higher order numerical or mathematical operation 

centered on linguistic representations. It was recently shown, for instance, that mathematical 

formulas and constants selectively activated the left ITNA in mathematicians much more so than 

in controls, whereas responses were similar between groups in the right ITNA (Amalric & 

Dehaene, 2016). It is plausible that these (advanced) mathematical “objects” are more lexicalized 

in mathematicians, and so more readily engage verbal systems via the left ITNA (Yeo et al., in 

prep).  

The rightward lateralization of the ITNA-IPS (“visual-to-quantity code”) circuit may 

consequently lead to a biased involvement of the right ITNA in numerical tasks that tap non-

verbal and more purely quantitative concepts. For instance, we recently found that during a 

number comparison task the right ITNA, but not the left, was functionally associated with a 

network of parietal areas (Conrad et al., 2020). Given an association with quantity is a 

categorically distinct feature of digits, activity in the right ITNA may be more selective for digits 

versus other symbol categories. This may explain why the right ITNA is more robustly observed 

in tasks that contrast digit versus letter processing, for example (Lochy & Schiltz, 2019; Park et 

al., 2014, 2018; D. J. Yeo et al., 2017). Additionally corroborating this idea, Yeo et al. recently 

found digit-biased categorical representations in the right ITNA, but not the left, during passive 

viewing of symbols (D. J. Yeo et al., 2020). Again, the idea here is that rightward lateralization 

of this circuit leads to more robust quantity-related (and therefore categorically distinct) 

information in the right ITNA.  

To conclude, our study provides novel evidence that the ITNAs are asymmetrically 

connected within their respective hemispheres. These findings are consistent with the triple-code 

model of number processing and may explain a number of functional asymmetries observed in 
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prior work. Future studies will be required to understand how and in what contexts the left and 

right ITNAs leverage their privileged connectivity with language and magnitude systems.  

4.3 The functional development of symbol areas 

As we have discussed, symbol areas in the OTC have the potential to inform us, not only 

on how function may be locally constrained within the brain but also, on fundamental 

mechanisms of brain development and experience-dependent plasticity. In my introduction 

section 1.3, I introduced several theories of cortical development and how these ideas may apply 

to symbol processing in the OTC, including: innate proto-maps and the shape hypothesis, biased 

connectivity, interactive specialization, and the interactive account (Arcaro & Livingstone, 2017; 

Hannagan et al., 2015; Johnson, 2011; C. J. Price & Devlin, 2011). With these theoretical 

frameworks providing backdrop, in Chapter 3, we explored how and when the ITNAs develop 

their functional preferences for digits over children’s first years of formal schooling and 

compared these trajectories with those of a nearby letter area (OTLA). 

4.3.1 The shape hypothesis 

 First let us consider the shape hypothesis, which builds off the notion that proto-maps of 

neural specialization emerge innately in the primate OTC as a product of shared visual features 

and/or computational requirements across object categories (Hannagan et al., 2015). This 

hypothesis posits that symbol processing rests on the foveal-based recognition of object shapes, 

or the “adjacency of the component parts of an object,” involving representations that are 

invariant to the particular physical features of the stimulus. This computational requirement 

should lead to a rough confinement of symbol selectivity within the OTC, across an area 

encompassing at least the NFA and VWFA. In line with this idea, we found that symbol areas 
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were generally responsive to numbers, letters, and scrambled symbols across K-2nd grade, with 

above baseline responses consistently observed for each symbol category and grade level (albeit 

to a larger extent for scrambled, presumably due to a novelty effect; Figure 17). Mean response 

levels to digits and letters were also similar within each area (Figure 18). This suggests that 

similar computational processes may be occurring in these areas, regardless of symbol type, as 

predicted by the shape hypothesis. Responses were already observed in kindergarteners and did 

not change over the study, suggesting the mechanisms underlying this activity are both early-

developing and stable, at least within the window analyzed here. We cannot say, however, that 

these computations are symbol-specific or even shape-based. Responses to other types of stimuli, 

not included in our paradigm, would need to be examined. Furthermore, given we focused on a 

priori ROIs, we also cannot say whether shared processing of symbols occurred outside of the 

hypothesized shape-sensitive zone.  For instance, if similar, above-baseline responses to symbols 

were observed in medial areas of OTC, traditionally implicated in peripheral vision and 

place/scene processing, it would argue against a visual feature-specific account such as put 

forward in the shape hypothesis. Though outside the scope of the present work, this question can 

be addressed in future analyses of our data (e.g., inclusion of FFA and PPA ROIs and/or whole-

brain analyses). In summary, our results point to an early-developing recruitment of the ITNAs 

and OTLA for symbol processing that is consistent with Hannagan et al.’s shape hypothesis. 

Other task paradigms and analyses will be required to understand the nature of these 

(presumably) shared computations, including their spatial distribution and specificity to symbols. 

Sampling from children’s earliest exposure to alphanumeric symbols onward may be necessary 

to delineate the developmental origins of these processes.  
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4.3.2 The interactive account 

Further reflecting on the mean activity levels we observed, a clear finding was the strong 

response to novel (scrambled) symbols in the ITNAs and OTLA. In section 3.5.1, I discussed at 

length how Price & Devlin’s interactive account may help to explain the novelty effects observed 

here and elsewhere. In general, this result highlights an imperative need for studies of OTC 

function to consider both top-down and bottom-up effects, and how they may interact in different 

task paradigms. One way researchers have skirted around this problem is the use of passive 

designs, which are suggested to reduce the confound of top-down effects (Dehaene & Cohen, 

2011). However, in their interactive account, Price & Devlin review evidence that top-down 

signaling occurs automatically, challenging the supposed “purity” of passive designs. Perhaps 

more importantly, the engagement with symbols that we really care about involves active, 

attentional processing, e.g., in the classroom or workplace, at the grocery store, in the car, etc. In 

this sense, active tasks are more ecologically valid, engaging brain systems that support symbol 

use in service of some goal (even if just simple classification). Of course, as we have come up 

against here, top-down and bottom-up effects make for a more complicated story. It will be 

important to incorporate into models of OTC selectivity and development both feedforward and 

feedback inputs, and how each of these sources may differentially change with experience. 

Furthermore, it will be necessary to not only consider these effects in a theoretical sense, but also 

in an empirical sense, via measures of effective connectivity such as dynamic causal modelling 

(Booth, Mehdiratta, Burman, & Bitan, 2008; K J Friston et al., 2017; Zeidman et al., 2019), or 

high-resolution laminar fMRI methods which can help disentangle input and output-related 

signals within a cortical area (Yang, Huber, Yu, & Bandettini, 2021).  

In an attempt to address the development of top-down signals, the interactive account 
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does make some predictions about how learning modifies OTC responses (C. J. Price & Devlin, 

2011). An inverted U-shaped trajectory was proposed, starting with no activity in “pre-learning”, 

high activity during early learning, and, as prediction errors are minimized, reduced activity with 

expertise. Some evidence for such a process exists, suggesting OTC responses to words peak 

sometime in K-2nd grade period as children learn to read (Dehaene-Lambertz et al., 2018; Maurer 

et al., 2006; note that in Dehaene-Lambertz et al., an inverted-U curve was observed in terms of 

the volume of word-selective activation around the VWFA, while responses at the peak voxel of 

VWFA activity showed a linear increase in selectivity). In the case of single alphanumeric 

symbols, however, our interpretation of Price & Devlin’s proposal is that the transition from 

“Stage 1” (pre-learning/no activity) to “Stage 2” (early learning/high activity) would occur 

before kindergarten, when children are first exposed to symbols (and their labels/referents) at 

home or in preschool. Though speculative, based on this model, we would expect to observe 

peak responses to single digits and letters sometime around school entry, with a linear decrease 

in activity levels over 1st and 2nd grade. Whatever the case, in our data, we did not observe either 

decreasing or inverted U-shaped trajectories at the group level (Figure 18-19; note we tested 

models with quadratic terms, but these fits were inferior to simpler linear models). It is 

nevertheless possible that individual variability in the onset of this process exists, such that some 

children are increasing while others are decreasing, leading to a null group effect like we see 

here. We cannot adequately test this hypothesis in the present dataset, as detecting non-linear 

trajectories within individuals would require more than three timepoints (King et al., 2018). It 

may be revealing, however, to examine individual or subgroup differences in “increasers” and 

“decreasers”, and how trajectories relate to concurrent symbol processing abilities. Ultimately, 

future studies involving repeatedly-sampled individuals will be necessary to characterize 
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inverted U-shaped plasticity in the OTC. Novel symbol training studies in adults may be 

necessary to capture the entirety of this process, given the challenges involved in imaging young 

children.   

4.3.3 The biased connectivity hypothesis   

The two connectivity-focused ideas we outlined in the introduction, biased connectivity 

and interactive specialization, emphasize roles for axonal projections and co-activation in 

defining a region’s functional selectivity over learning. Several observations from the present 

developmental results speak to these theories. First, the biased connectivity hypothesis posits that 

innate connectivity of the ITNA with numerical magnitude-sensitive areas of parietal cortex 

drive the ITNA towards a preference for numerals (Hannagan et al., 2015). We longitudinally 

measured “background” functional connectivity in our sample, i.e., the degree to which symbol 

areas and IPS sites spontaneously co-activated over an entire fMRI session. Both ITNAs, as well 

as the OTLA, showed positive coupling with the IPS that was significant at school entry and 

stable over the K-2nd grade window (Figure 21). However, the right ITNA-IPS coupling was 

particularly strong, suggesting two features are already present at school entry: 1) biased 

connectivity of the right ITNA with IPS (compared to the OTLA), and 2) a rightward asymmetry 

to the ITNA-IPS pathway. These findings are consistent with prior work looking at resting-state 

connectivity of the ITNA in young children and adults (Abboud et al., 2015; Nemmi et al., 

2018), as well as with our study of adults in Chapter 2 (Figure 5F; Figure 6E). Taken together, it 

appears that “privileged” connectivity of the right ITNA with IPS is present prior to the learning 

of alphanumeric symbols, and so may plausibly serve as a pre-existing constraint on where 

numeral preference will ultimately develop in the OTC. There remains a considerable amount of 

work to be done, however, to fully test the predictions of the biased connectivity hypothesis as it 
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pertains to number processing. For instance, Hannagan and colleagues originally proposed biases 

in the structural connectivity of symbol areas, despite they and others interpreting measures of 

functional connectivity as a proxy for the same mechanism (Barttfeld et al., 2018; Hannagan et 

al., 2015; J. Li et al., 2020; Nemmi et al., 2018). One study of VWFA structural connectivity 

showed that white matter projections in pre-reading predict the future location of word-

selectivity, and so suggests that white matter scaffolds OTC development (Saygin et al., 2016). It 

will be important to perform analogous longitudinal analyses for the ITNA, to determine whether 

a similar scaffolding process is at play within the numeral-selective network. Further, in light of 

our adult findings showing considerable discrepancies between structural and functional 

connectivity of OTC areas, it seems premature to assume that structure and function contribute to 

local specialization in the same manner. The inclusion of both modalities in a single 

developmental study will be helpful in refining the biased connectivity framework into a more 

precise theory.  

4.3.4 Interactive specialization 

Compared to the biased connectivity hypothesis, Johnson’s theory of interactive 

specialization is a more all-encompassing account of neural development, including predictions 

about how local responses evolve over learning (Johnson, 2001, 2011). One overarching 

principle adopted in interactive specialization is the idea that “to learn is to eliminate,” and our 

results of ITNA activity levels (and possibly representational geometry) speak to this idea 

(Changeux & Dehaene, 1989; Johnson & de Haan, 2015). Johnson builds from an assumption 

that cortical areas are first broadly tuned, responding similarly to stimuli with shared features 

(e.g., written symbols – note the consistency here with the shape hypothesis). Over experience, 

as domain- and/or stimulus-specific networks are repeatedly co-activated, activation will become 
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more focal, confined to particular areas such as the ITNA, and selective, in that responses to 

preferred inputs are maintained while responses to non-preferred inputs are reduced. To explain 

this at the neuronal level, Johnson invokes the idea of “selective stabilization” through synaptic 

pruning, referring to the process by which a subset of synapses is maintained while others are 

eliminated (Changeux & Dehaene, 1989; Johnson & de Haan, 2015). In the case of the ITNA, a 

pruning account predicts a stable response level for digits over learning (similar sensitivity over 

time) with a decreasing response to non-preferred characters (increasing selectivity over time). 

Though this had not yet been demonstrated in the ITNA, some evidence exists for pruning within 

the VWFA and FFA (Cantlon et al., 2011; Joseph, Gathers, & Bhatt, 2011; Kubota, Joo, Huber, 

& Yeatman, 2019). In our analysis, we found that the right ITNA’s sensitivity to digits was 

roughly stable (Figure 17), while selectivity for digits increased over schooling (Digits > Others, 

Digits > Scrambled; Figure 18). This is consistent with an account of increasing specialization of 

the right ITNA via synaptic pruning, providing the first evidence that such a process may occur 

for digits. Critically, however, the effect seemed to be driven by differential responses to digits 

versus scrambled symbols, and not by digits versus letters. If the right ITNA does ultimately 

“care” more about digits than letters (and not familiar versus novel symbols more generally), our 

results suggest its development extends beyond the K-2nd grade window, or possibly is not 

directly related to children’s time in school. We have thus demonstrated only partial evidence for 

pruning in the right ITNA. Given the aforementioned novelty effect involving the scrambled 

symbols, and how this may also be modulated by experience, it remains difficult to fully square 

our results with any one particular model. As is the norm in neuroscience, things are more 

complicated than we may wish! 

 As we outlined in our Introduction section 1.3.3, a central claim in interactive 
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specialization is that repeated coactivation of groups of regions in service of some goal leads to 

increasing selectivity at a network level. Based on this account, we expected to see inter-regional 

functional connectivity between the ITNA and number-sensitive IPS increase over the study. Not 

only should this network become more selectively engaged by digits, but also, as a byproduct of 

increased coactivity during schooling, background connectivity between the ITNA and IPS may 

also increase. We found no evidence that either form of connectivity was related to children’s 

time in school (Figure 21/Figure 22), which may be taken as evidence against the interactive 

specialization model. However, for our connectivity analyses, we made assumptions about not 

only the location (and surface area) of digit selectivity but also the target location in the IPS. The 

particular scale at which interactive specialization should operate (e.g., from synapses to 

largescale functional regions) is admittedly vague, so it is hard to disprove based on this (or any 

one) study alone. As a first step, it may be fruitful to assess whether the ITNA’s connectivity 

with any region changes over time in a whole-brain analysis.  

Alternatively, our null findings could be due to the developmental process extending 

beyond the K-2nd window. For example, Nemmi et al. found that intrinsic connectivity of ITNA 

and IPS increases from early childhood to at least early adulthood (Nemmi et al., 2018). Future 

work following task-evoked and stimulus-specific connectivity patterns over longer 

developmental periods will be informative in this regard. Additionally, it may be important to 

employ task designs which explicitly engage the number-processing network, as opposed to the 

low-level categorization task employed here. For instance, evidence in favor of interactive 

specialization was presented in a recent longitudinal study of arithmetic in 8-14 year-olds, where 

connectivity between the OTC and IPS during an arithmetic task increased over time (Battista et 

al., 2018). Interestingly, the control task in that study was a number identification task, 
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suggesting that increasing specialization of the OTC-IPS circuit occurs for higher-order 

processing of numbers over and above simple visual recognition. Though outside the scope of 

the present work, the symbolic comparison task we acquired here may be a more fruitful 

paradigm for testing longitudinal predictions of interactive specialization in the K-2nd grade 

window. 

4.3.5 Representational similarity 

Though it appears the ITNAs are not yet fully specialized, in the traditional univariate 

sense, for processing digits over letters by 2nd grade, they may already carry information about 

the distinction between symbol categories. In section 3.2, we reviewed recent empirical work 

showing representational patterns in OTC are established early in development, potentially 

before selectivity is first observable (M. A. Cohen et al., 2019; Dehaene-Lambertz et al., 2018; 

Nordt et al., 2018). Our results indicate that category-level representational geometry is at least 

changing in a consistent manner, particularly in the left ITNA (Figure 19B). Taken together with 

previous findings, our work suggests that investigations of representational content in the OTC is 

a potentially fruitful avenue for future developmental studies. To our knowledge, there exist no 

developmental theories that directly address the emergence of representational geometry, so the 

implications of our findings are still unclear. For instance, are distributed activity patterns 

fundamentally different from focal activity? If not, they may be driven by the same causal 

mechanisms (e.g., synaptic pruning, fine-grained axonal projection patterns, etc.). Our results 

point to differential trajectories in the left and right ITNA, so the emergence of numeral 

processing in the OTC may be a particularly useful model for disentangling and/or uniting 

representational geometry from local selectivity.  
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4.4 Final Remarks 

In this dissertation, I used symbol processing in the ventral stream as a model system for 

understanding how human learning interacts with innate brain architecture. Our findings were 

consistent with the idea that long-range connectivity patterns, in terms of axonal wiring and 

regional communication, determine the location and lateralization of newly-acquired functions in 

the brain. We further found that brain areas preferentially engaged by Arabic numerals in adults 

become increasingly tuned to numerals as children go through school, providing novel evidence 

of experience-dependent plasticity. Our work speaks to several theories of brain organization and 

development, but perhaps more importantly, opens the door to a number of future directions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 163 

REFERENCES 

Abbasi, N., Duncan, J., & Rajimehr, R. (2020). Genetic influence is linked to cortical 

morphology in category-selective areas of visual cortex. Nature Communications, 11(1). 

https://doi.org/10.1038/s41467-020-14610-8 

Abboud, S., Maidenbaum, S., Dehaene, S., & Amedi, A. (2015). A number-form area in the 

blind. Nature Communications, 6, 6026. https://doi.org/10.1038/ncomms7026 

Allendorfer, J. B., Hernando, K. A., Hossain, S., Nenert, R., Holland, S. K., & Szaflarski, J. P. 

(2016). Arcuate fasciculus asymmetry has a hand in language function but not handedness. 

Human Brain Mapping, 37(9), 3297–3309. https://doi.org/10.1002/hbm.23241 

Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human extrastriate visual 

cortex and the perception offaces, words, numbers, and colors, 4(5), 544–554. Retrieved 

from http://cercor.oxfordjournals.org/cgi/content/abstract/4/5/544 

Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in 

expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 4909–

4917. https://doi.org/10.1073/pnas.1603205113 

Amalric, M., & Dehaene, S. (2018). Cortical circuits for mathematical knowledge: Evidence for 

a major subdivision within the brain’s semantic networks. Philosophical Transactions of the 

Royal Society B: Biological Sciences, 373(1740), 20160515. 

https://doi.org/10.1098/rstb.2016.0515 

Amalric, M., & Dehaene, S. (2019). A distinct cortical network for mathematical knowledge in 

the human brain. NeuroImage, 189, 19–31. 

https://doi.org/10.1016/j.neuroimage.2019.01.001 

Anderson, M. L. (2015). Précis of after Phrenology: Neural Reuse and the Interactive Brain. 

Behavioral and Brain Sciences, 39(2016). https://doi.org/10.1017/S0140525X15000631 

Anderson, M. L., Kinnison, J., & Pessoa, L. (2013). Describing functional diversity of brain 

regions and brain networks. NeuroImage, 73, 50–58. 

https://doi.org/10.1016/j.neuroimage.2013.01.071 

Andersson, J. L. R., Graham, M. S., Zsoldos, E., & Sotiropoulos, S. N. (2016). Incorporating 

outlier detection and replacement into a non-parametric framework for movement and 

distortion correction of diffusion MR images. NeuroImage, 141, 556–572. 

https://doi.org/10.1016/j.neuroimage.2016.06.058 

Andersson, J. L. R., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions 

in spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage, 

20(2), 870–888. https://doi.org/10.1016/S1053-8119(03)00336-7 

Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-

resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125, 1063–

1078. https://doi.org/10.1016/j.neuroimage.2015.10.019 

Ansari, D. (2008). Effects of development and enculturation on number representation in the 

brain. Nature Reviews. Neuroscience, 9(4), 278–291. https://doi.org/10.1038/nrn2334 

Anticevic, A., Dierker, D. L., Gillespie, S. K., Repovs, G., Csernansky, J. G., Van Essen, D. C., 

& Barch, D. M. (2008). Comparing surface-based and volume-based analyses of functional 

neuroimaging data in patients with schizophrenia. NeuroImage, 41(3), 835–848. 

https://doi.org/10.1016/j.neuroimage.2008.02.052 

Arcaro, M. J., & Livingstone, M. S. (2017). A hierarchical, retinotopic proto-organization of the 

primate visual system at birth. ELife, 6, 1–24. https://doi.org/10.7554/eLife.26196 

Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R., & Livingstone, M. S. (2017). Seeing 



 164 

faces is necessary for face-domain formation. Nature Neuroscience, 20(10), 1404–1412. 

https://doi.org/10.1038/nn.4635 

Arsalidou, M., Pawliw-Levac, M., Sadeghi, M., & Pascual-Leone, J. (2017). Brain areas 

associated with numbers and calculations in children: Meta-analyses of fMRI studies. 

Developmental Cognitive Neuroscience, 30(July 2017), 239–250. 

https://doi.org/10.1016/j.dcn.2017.08.002 

Arsalidou, M., & Taylor, M. J. (2011). Is 2+2=4? Meta-analyses of brain areas needed for 

numbers and calculations. NeuroImage, 54(3), 2382–2393. 

https://doi.org/10.1016/j.neuroimage.2010.10.009 

Baker, C. I., Liu, J., Wald, L. L., Kwong, K. K., Benner, T., & Kanwisher, N. (2007). Visual 

word processing and experiential origins of functional selectivity in human extrastriate 

cortex. Proceedings of the National Academy of Sciences of the United States of America, 

104(21), 9087–9092. https://doi.org/10.1073/pnas.0703300104 

Barrick, T. R., Lawes, I. N., Mackay, C. E., & Clark, C. A. (2007). White matter pathway 

asymmetry underlies functional lateralization. Cerebral Cortex, 17(3), 591–598. 

https://doi.org/10.1093/cercor/bhk004 

Barttfeld, P., Abboud, S., Lagercrantz, H., Adén, U., Padilla, N., Edwards, A. D., … Dehaene-

Lambertz, G. (2018). A lateral-to-mesial organization of human ventral visual cortex at 

birth. Brain Structure and Function, 223(7), 3107–3119. https://doi.org/10.1007/s00429-

018-1676-3 

Battista, C., Evans, T. M., Ngoon, T. J., Chen, T., Chen, L., Kochalka, J., & Menon, V. (2018). 

Mechanisms of interactive specialization and emergence of functional brain circuits 

supporting cognitive development in children. Npj Science of Learning, 3(1), 1. 

https://doi.org/10.1038/s41539-017-0017-2 

Behrmann, M., & Plaut, D. C. (2015). A vision of graded hemispheric specialization. Annals of 

the New York Academy of Sciences, 1359(1), 30–46. https://doi.org/10.1111/nyas.12833 

Behrmann, M., & Plaut, D. C. (2020). Hemispheric Organization for Visual Object Recognition: 

A Theoretical Account and Empirical Evidence*. Perception, 49(4), 373–404. 

https://doi.org/10.1177/0301006619899049 

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction 

method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. 

https://doi.org/10.1016/j.neuroimage.2007.04.042 

Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K., & Wandell, B. A. (2011). The Development 

of Cortical Sensitivity to Visual Word Forms. Journal of Cognitive Neuroscience, 23(9), 

2387–2399. https://doi.org/10.1162/jocn.2011.21615 

Berman, M. G., Park, J., Gonzalez, R., Polk, T. A., Gehrke, A., Knaffla, S., & Jonides, J. (2010). 

Evaluating functional localizers: The case of the FFA. NeuroImage, 50(1), 56–71. 

https://doi.org/10.1016/j.neuroimage.2009.12.024 

Binder, J. R. (2015). The Wernicke area: Modern evidence and a reinterpretation. Neurology, 

85(24), 2170–2175. https://doi.org/10.1212/WNL.0000000000002219 

Booth, J. R., Mehdiratta, N., Burman, D. D., & Bitan, T. (2008). Developmental increases in 

effective connectivity to brain regions involved in phonological processing during tasks 

with orthographic demands. Brain Research, 1189(1), 78–89. 

https://doi.org/10.1016/j.brainres.2007.10.080 

Bouhali, F., Thiebaut de Schotten, M., Pinel, P., Poupon, C., Mangin, J.-F., Dehaene, S., & 

Cohen, L. (2014). Anatomical Connections of the Visual Word Form Area. Journal of 



 165 

Neuroscience, 34(46), 15402–15414. https://doi.org/10.1523/JNEUROSCI.4918-13.2014 

Bouhali, Florence, Bézagu, Z., Dehaene, S., & Cohen, L. (2019). A mesial-to-lateral dissociation 

for orthographic processing in the visual cortex. Proceedings of the National Academy of 

Sciences, 116(43), 201904184. https://doi.org/10.1073/pnas.1904184116 

Bracci, S., Cavina-Pratesi, C., Ietswaart, M., Caramazza, A., & Peelen, M. V. (2012). Closely 

overlapping responses to tools and hands in left lateral occipitotemporal cortex. Journal of 

Neurophysiology, 107(5), 1443–1446. https://doi.org/10.1152/jn.00619.2011 

Bracci, S., Ritchie, J. B., & de Beeck, H. O. (2017). On the partnership between neural 

representations of object categories and visual features in the ventral visual pathway. 

Neuropsychologia, 105(October 2016), 153–164. 

https://doi.org/10.1016/j.neuropsychologia.2017.06.010 

Bray, S., Arnold, A. E. G. F., Iaria, G., & MacQueen, G. (2013). Structural connectivity of 

visuotopic intraparietal sulcus. NeuroImage, 82, 137–145. 

https://doi.org/10.1016/j.neuroimage.2013.05.080 

Brem, S., Bach, S., Kucian, K., Kujala, J. V., Guttorm, T. K., Martin, E., … Richardson, U. 

(2010). Brain sensitivity to print emerges when children learn letter–speech sound 

correspondences. Proceedings of the National Academy of Sciences, 107(17), 7939–7944. 

https://doi.org/10.1073/pnas.0904402107 

Brincat, S. L., & Connor, C. E. (2006). Dynamic shape synthesis in posterior inferotemporal 

cortex. Neuron, 49(1), 17–24. https://doi.org/10.1016/j.neuron.2005.11.026 

Buchanan, C. R., Bastin, M. E., Ritchie, S. J., Liewald, D. C., Madole, J. W., Tucker-Drob, E. 

M., … Cox, S. R. (2020). The effect of network thresholding and weighting on structural 

brain networks in the UK Biobank. NeuroImage, 211(November 2019), 116443. 

https://doi.org/10.1016/j.neuroimage.2019.116443 

Bugden, S., Price, G. R., McLean, D. A., & Ansari, D. (2012). The role of the left intraparietal 

sulcus in the relationship between symbolic number processing and children’s arithmetic 

competence. Developmental Cognitive Neuroscience, 2(4), 448–457. 

https://doi.org/10.1016/j.dcn.2012.04.001 

Bugden, S., Woldorff, M. G., & Brannon, E. M. (2019). Shared and distinct neural circuitry for 

nonsymbolic and symbolic double‐digit addition. Human Brain Mapping, 40(4), 1328–

1343. https://doi.org/10.1002/hbm.24452 

Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for cleaning the BOLD fMRI signal. 

NeuroImage, 154(December 2016), 128–149. 

https://doi.org/10.1016/j.neuroimage.2016.12.018 

Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of 

numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), 844–854. 

https://doi.org/10.1371/journal.pbio.0040125 

Cantlon, J. F., & Li, R. (2013). Neural Activity during Natural Viewing of Sesame Street 

Statistically Predicts Test Scores in Early Childhood. PLoS Biology, 11(1). 

https://doi.org/10.1371/journal.pbio.1001462 

Cantlon, J. F., Pinel, P., Dehaene, S., & Pelphrey, K. A. (2011). Cortical representations of 

symbols, objects, and faces are pruned back during early childhood. Cerebral Cortex, 21(1), 

191–199. https://doi.org/10.1093/cercor/bhq078 

Carreiras, M., Quiñones, I., Hernández-Cabrera, J. A., & Duñabeitia, J. A. (2015). Orthographic 

coding: Brain activation for letters, symbols, and digits. Cerebral Cortex, 25(12), 4748–

4760. https://doi.org/10.1093/cercor/bhu163 



 166 

Castaldi, E., Vignaud, A., & Eger, E. (2020). Mapping subcomponents of numerical cognition in 

relation to functional and anatomical landmarks of human parietal cortex. NeuroImage, 

221(March), 117210. https://doi.org/10.1016/j.neuroimage.2020.117210 

Catani, M., Allin, M. P. G., Husain, M., Pugliese, L., Mesulam, M. M., Murray, R. M., & Jones, 

D. K. (2007). Symmetries in human brain language pathways correlate with verbal recall. 

Proceedings of the National Academy of Sciences of the United States of America, 104(43), 

17163–17168. https://doi.org/10.1073/pnas.0702116104 

Centanni, T. M., Norton, E. S., Ozernov-Palchik, O., Park, A., Beach, S. D., Halverson, K., … 

Gabrieli, J. D. E. (2019). Disrupted left fusiform response to print in beginning 

kindergartners is associated with subsequent reading. NeuroImage: Clinical, 22(February), 

101715. https://doi.org/10.1016/j.nicl.2019.101715 

Centanni, Tracy M., King, L. W., Eddy, M. D., Whitfield-Gabrieli, S., & Gabrieli, J. D. E. 

(2017). Development of sensitivity versus specificity for print in the visual word form area. 

Brain and Language, 170, 62–70. https://doi.org/10.1016/j.bandl.2017.03.009 

Centanni, Tracy M., Norton, E. S., Park, A., Beach, S. D., Halverson, K., Ozernov-Palchik, O., 

… Gabrieli, J. D. E. DE. (2018). Early development of letter specialization in left fusiform 

is associated with better word reading and smaller fusiform face area. Developmental 

Science, 21(5), 1–10. https://doi.org/10.1111/desc.12658 

Changeux, J.-P., & Dehaene, S. (1989). Neuronal models of cognitive functions. Cognition, 

33(1–2), 63–109. https://doi.org/10.1016/0010-0277(89)90006-1 

Chen, L., Wassermann, D., Abrams, D. A., Kochalka, J., Gallardo-Diez, G., & Menon, V. 

(2019). The visual word form area (VWFA) is part of both language and attention circuitry. 

Nature Communications, 10(1), 5601. https://doi.org/10.1038/s41467-019-13634-z 

Chen, Q., Garcea, F. E., Almeida, J., & Mahon, B. Z. (2017). Connectivity-based constraints on 

category-specificity in the ventral object processing pathway. Neuropsychologia, 105(July 

2016), 184–196. https://doi.org/10.1016/j.neuropsychologia.2016.11.014 

Chochon, F., Cohen, L., Moortele, P. F. van de, & Dehaene, S. (1999). Differential Contributions 

of the Left and Right Inferior Parietal Lobules to Number Processing. Journal of Cognitive 

Neuroscience, 11(6), 617–630. https://doi.org/10.1162/089892999563689 

Chochon, F., Cohen, L., Van De Moortele, P. F., Dehaene, S., Moortele, P. F. van de, & 

Dehaene, S. (1999). Differential Contributions of the Left and Right Inferior Parietal 

Lobules to Number Processing. Journal of Cognitive Neuroscience, 11(6), 617–630. 

https://doi.org/10.1162/089892999563689 

Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., … Satterthwaite, T. 

D. (2017). Benchmarking of participant-level confound regression strategies for the control 

of motion artifact in studies of functional connectivity. NeuroImage, 154(March), 174–187. 

https://doi.org/10.1016/j.neuroimage.2017.03.020 

Cisler, J. M., Bush, K., & Steele, J. S. (2014). A comparison of statistical methods for detecting 

context-modulated functional connectivity in fMRI. NeuroImage, 84, 1042–1052. 

https://doi.org/10.1016/j.neuroimage.2013.09.018 

Coalson, T. S., Van Essen, D. C., & Glasser, M. F. (2018). The impact of traditional 

neuroimaging methods on the spatial localization of cortical areas. Proceedings of the 

National Academy of Sciences of the United States of America, 115(27), E6356–E6365. 

https://doi.org/10.1073/pnas.1801582115 

Cohen, L., & Dehaene, S. (1995). Number processing in pure alexia: The effect of hemispheric 

asymmetries and task demands. Neurocase, 1(2), 121–137. 



 167 

https://doi.org/10.1080/13554799508402356 

Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the 

visual word form area. NeuroImage, 22(1), 466–476. 

https://doi.org/10.1016/j.neuroimage.2003.12.049 

Cohen, L., Lehéricy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S. (2002). Language-

specific tuning of visual cortex? Functional properties of the Visual Word Form Area. 

Brain, 125(5), 1054–1069. https://doi.org/10.1093/brain/awf094 

Cohen, M. A., Dilks, D. D., Koldewyn, K., Weigelt, S., Feather, J., Kell, A. J., … Kanwisher, N. 

(2019). Representational similarity precedes category selectivity in the developing ventral 

visual pathway. NeuroImage, 197(September 2018), 565–574. 

https://doi.org/10.1016/j.neuroimage.2019.05.010 

Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and 

task-evoked network architectures of the human brain. Neuron, 83(1), 238–251. 

https://doi.org/10.1016/j.neuron.2014.05.014 

Cole, M. W., Ito, T., Schultz, D., Mill, R., Chen, R., & Cocuzza, C. (2019). Task activations 

produce spurious but systematic inflation of task functional connectivity estimates. 

NeuroImage, 189(August 2018), 1–18. https://doi.org/10.1016/j.neuroimage.2018.12.054 

Cole, M. W., Repovš, G., & Anticevic, A. (2014). The frontoparietal control system: A central 

role in mental health. Neuroscientist, 20(6), 652–664. 

https://doi.org/10.1177/1073858414525995 

Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). 

Multi-task connectivity reveals flexible hubs for adaptive task control. Nature 

Neuroscience, 16(9), 1348–1355. https://doi.org/10.1038/nn.3470 

Conrad, B. N., Wilkey, E. D., Yeo, D. J., & Price, G. R. (2020). Network topology of symbolic 

and nonsymbolic number comparison. Network Neuroscience, 1–32. 

https://doi.org/10.1162/netn_a_00144 

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in 

the brain. Nature Reviews Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755 

Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A. N., & Hajnal, J. V. (2019). Complex 

diffusion-weighted image estimation via matrix recovery under general noise models. 

NeuroImage, 200(March), 391–404. https://doi.org/10.1016/j.neuroimage.2019.06.039 

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic 

resonance neuroimages. Computers and Biomedical Research, 29(29), 162–173. 

https://doi.org/10.1006/cbmr.1996.0014 

D’Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J. J., Bamford, M. K., … Beaumont, P. 

B. (2012). Early evidence of San material culture represented by organic artifacts from 

Border Cave, South Africa. Proceedings of the National Academy of Sciences of the United 

States of America, 109(33), 13214–13219. https://doi.org/10.1073/pnas.1204213109 

Daitch, A. L., Foster, B. L., Schrouff, J., Rangarajan, V., Kaşikçi, I., Gattas, S., & Parvizi, J. 

(2016). Mapping human temporal and parietal neuronal population activity and functional 

coupling during mathematical cognition. Proceedings of the National Academy of Sciences, 

113(46), E7277–E7286. https://doi.org/10.1073/pnas.1608434113 

de Chastelaine, M., Mattson, J. T., Wang, T. H., Donley, B. E., & Rugg, M. D. (2017). 

Independent contributions of fMRI familiarity and novelty effects to recognition memory 

and their stability across the adult lifespan. NeuroImage, 156(May), 340–351. 

https://doi.org/10.1016/j.neuroimage.2017.05.039 



 168 

Deen, B., Richardson, H., Dilks, D. D., Takahashi, A., Keil, B., Wald, L. L., … Saxe, R. (2017). 

Organization of high-level visual cortex in human infants. Nature Communications, 8, 1–

10. https://doi.org/10.1038/ncomms13995 

Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of 

speech perception in infants. Science, 298(5600), 2013–2015. 

https://doi.org/10.1126/science.1077066 

Dehaene-Lambertz, G., Monzalvo, K., & Dehaene, S. (2018). The emergence of the visual word 

form: Longitudinal evolution of category-specific ventral visual areas during reading 

acquisition. PLOS Biology, 16(3), e2004103. https://doi.org/10.1371/journal.pbio.2004103 

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42. 

https://doi.org/10.1016/0010-0277(92)90049-N 

Dehaene, S. (2007). Symbols and quantities in parietal cortex: Elements of a mathematical 

theory of number representation and manipulation. Attention & Performance XXII. Sensori-

Motor …, 527–574. https://doi.org/10.1093/acprof:oso/9780199231447.003.0024 

Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in 

number processing. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 21(2), 314–326. https://doi.org/10.1037/0278-7393.21.2.314 

Dehaene, S., & Cohen, L. (1995). Towards an Anatomical and Functional Model of Number 

Processing. Mathematical Cognition, 1, 83–120. 

Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398. 

https://doi.org/10.1016/j.neuron.2007.10.004 

Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. 

Trends in Cognitive Sciences, 15(6), 254–262. https://doi.org/10.1016/j.tics.2011.04.003 

Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: behavioural and 

cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234–

244. https://doi.org/10.1038/nrn3924 

Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Filho, G. N., Jobert, A., … Cohen, L. (2010). 

How Learning to Read Changes the Cortical Networks for Vision and Language. Science, 

330(6009), 1359–1364. https://doi.org/10.1126/science.1194140 

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number 

processing. Cognitive Neuropsychology, 20(3–6), 487–506. 

https://doi.org/10.1080/02643290244000239 

Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human 

cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15. 

https://doi.org/10.1016/j.neuroimage.2010.06.010 

Dhollander, T., & Connelly, A. (2016). A novel iterative approach to reap the benefits of multi-

tissue CSD from just single-shell ( + b = 0 ) diffusion MRI data A novel iterative approach 

to reap the benefits of multi-tissue CSD. Proc. Intl. Soc. Mag. Reson. Med, (May). 

Dhollander, T., Mito, R., Raffelt, D., & Connelly, A. (2019). Improved white matter response 

function estimation for 3-tissue constrained spherical deconvolution. Proc. Intl. Soc. Mag. 

Reson. Med, (May 11-16), 555. 

Di, X., Reynolds, R. C., & Biswal, B. B. (2017). Imperfect (De)convolution may introduce 

spurious psychophysiological interactions and how to avoid it. Human Brain Mapping, 

38(4), 1723–1740. https://doi.org/10.1002/hbm.23413 

Di, X., Zhang, Z., & Biswal, B. B. (2020). Understanding psychophysiological interaction and its 

relations to beta series correlation. Brain Imaging and Behavior. 



 169 

https://doi.org/10.1007/s11682-020-00304-8 

Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and familiarity in 

the medial temporal lobe: a three-component model. Trends in Cognitive Sciences, 11(9), 

379–386. https://doi.org/10.1016/j.tics.2007.08.001 

Diedrichsen, J., & Kriegeskorte, N. (2017). Representational models: A common framework for 

understanding encoding,. PLoS Computational Biology (Vol. 13). Retrieved from 

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005508&type=

printable 

Doria, V., Beckmann, C. F., Arichi, T., Merchant, N., Groppo, M., Turkheimer, F. E., … 

Edwards, A. D. (2010). Emergence of resting state networks in the preterm human brain. 

Proceedings of the National Academy of Sciences of the United States of America, 107(46), 

20015–20020. https://doi.org/10.1073/pnas.1007921107 

Dotan, D., & Friedmann, N. (2019). Separate mechanisms for number reading and word reading: 

Evidence from selective impairments. Cortex, 114, 176–192. 

https://doi.org/10.1016/j.cortex.2018.05.010 

Downing, P. E., Chan, A. W. Y., Peelen, M. V., Dodds, C. M., & Kanwisher, N. (2006). Domain 

specificity in visual cortex. Cerebral Cortex, 16(10), 1453–1461. 

https://doi.org/10.1093/cercor/bhj086 

Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P. S., & Hertz-Pannier, L. 

(2014). The early development of brain white matter: A review of imaging studies in 

fetuses, newborns and infants. Neuroscience, 276, 48–71. 

https://doi.org/10.1016/j.neuroscience.2013.12.044 

Dubois, J., Hertz-Pannier, L., Cachia, A., Mangin, J. F., Le Bihan, D., & Dehaene-Lambertz, G. 

(2009). Structural asymmetries in the infant language and sensori-motor networks. Cerebral 

Cortex, 19(2), 414–423. https://doi.org/10.1093/cercor/bhn097 

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., … 

Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 

1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428 

Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for 

intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172–179. 

https://doi.org/10.1016/j.tics.2010.01.004 

Durnez, J., Blair, R., & Poldrack, R. A. (2017). Neurodesign: Optimal Experimental Designs for 

Task fMRI. BioRxiv. https://doi.org/10.1101/119594 

Eger, E., Sterzer, P., Russ, M. O., Giraud, A.-L., & Kleinschmidt, A. (2003). A supramodal 

number representation in human intraparietal cortex. Neuron, 37(4), 719–725. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/12597867 

Emerson, R. W., & Cantlon, J. F. (2015). Continuity and change in children’s longitudinal neural 

responses to numbers. Developmental Science, 18(2), 314–326. 

https://doi.org/10.1111/desc.12215 

Engelhardt, L. E., Roe, M. A., Juranek, J., DeMaster, D., Harden, K. P., Tucker-Drob, E. M., & 

Church, J. A. (2017). Children’s head motion during fMRI tasks is heritable and stable over 

time. Developmental Cognitive Neuroscience, 25, 58–68. 

https://doi.org/10.1016/j.dcn.2017.01.011 

Evans, T. M., Kochalka, J., Ngoon, T. J., Wu, S. S., Qin, S., Battista, C., & Menon, V. (2015). 

Brain Structural Integrity and Intrinsic Functional Connectivity Forecast 6 Year 

Longitudinal Growth in Children’s Numerical Abilities. Journal of Neuroscience, 35(33), 



 170 

11743–11750. https://doi.org/10.1523/JNEUROSCI.0216-15.2015 

Fair, D. A., Schlaggar, B. L., Cohen, A. L., Miezin, F. M., Dosenbach, N. U. F. F., Wenger, K. 

K., … Petersen, S. E. (2007). A method for using blocked and event-related fMRI data to 

study “resting state” functional connectivity. NeuroImage, 35(1), 396–405. 

https://doi.org/10.1016/j.neuroimage.2006.11.051 

Faye, A., Jacquin-Courtois, S., Reynaud, E., Lesourd, M., Besnard, J., & Osiurak, F. (2019). 

Numerical cognition: A meta-analysis of neuroimaging, transcranial magnetic stimulation 

and brain-damaged patients studies. NeuroImage: Clinical, 24(October), 102053. 

https://doi.org/10.1016/j.nicl.2019.102053 

Fedorenko, E., & Blank, I. (2020). Broca’s area is not a natural kind. Submitted, 1–15. 

https://doi.org/10.1016/j.tics.2020.01.001 

Fisher, R. A. (1915). Frequency Distribution of the Values of the Correlation Coefficient in 

Samples from an Indefinitely Large Population. Biometrika, 10(4), 507. 

https://doi.org/10.2307/2331838 

Flinker, A., Korzeniewska, A., Shestyuk, A. Y., Franaszczuk, P. J., Dronkers, N. F., Knight, R. 

T., & Crone, N. E. (2015). Redefining the role of broca’s area in speech. Proceedings of the 

National Academy of Sciences of the United States of America, 112(9), 2871–2875. 

https://doi.org/10.1073/pnas.1414491112 

Flowers, D. L., Jones, K., Noble, K., VanMeter, J., Zeffiro, T. A., Wood, F. B., & Eden, G. F. 

(2004). Attention to single letters activates left extrastriate cortex. NeuroImage, 21(3), 829–

839. https://doi.org/10.1016/j.neuroimage.2003.10.002 

Fornito, A., Yoon, J., Zalesky, A., Bullmore, E. T., & Carter, C. S. (2011). General and specific 

functional connectivity disturbances in first-episode schizophrenia during cognitive control 

performance. Biological Psychiatry, 70(1), 64–72. 

https://doi.org/10.1016/j.biopsych.2011.02.019 

Fransson, P., Skiold, B., Horsch, S., Nordell, A., Blennow, M., Lagercrantz, H., & Aden, U. 

(2007). Resting-state networks in the infant brain. Proceedings of the National Academy of 

Sciences, 104(39), 15531–15536. https://doi.org/10.1073/pnas.0704380104 

Friederici, A. D. (2009). Pathways to language: fiber tracts in the human brain. Trends in 

Cognitive Sciences, 13(4), 175–181. https://doi.org/10.1016/j.tics.2009.01.001 

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews 

Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787 

Friston, K J, Preller, K. H., Mathys, C., Cagnan, H., Heinzle, J., Razi, A., & Zeidman, P. (2017). 

Dynamic causal modelling revisited. NeuroImage, (February), 0–1. 

https://doi.org/10.1016/j.neuroimage.2017.02.045 

Friston, Karl J., & Price, C. J. (2011). Modules and brain mapping. Cognitive Neuropsychology, 

28(3–4), 241–250. https://doi.org/10.1080/02643294.2011.558835 

Gauthier, I. (2000). What constrains the organization of the ventral temporal cortex? Trends in 

Cognitive Sciences, 4(1), 1–2. https://doi.org/10.1016/S1364-6613(99)01416-3 

Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the 

middle fusiform “face area” increases with expertise in recognizing novel objects. Nature 

Neuroscience, 2(6), 568–573. https://doi.org/10.1038/9224 

Geary, D. C. (2011). Consequences, Characteristics, and Causes of Mathematical Learning 

Disabilities and Persistent Low Achievement in Mathematics. Journal of Developmental & 

Behavioral Pediatrics, 32(3), 250–263. https://doi.org/10.1097/DBP.0b013e318209edef 

Geib, B. R., Stanley, M. L., Dennis, N. A., Woldorff, M. G., & Cabeza, R. (2017). From 



 171 

Hippocampus to Whole-Brain : The Role of Integrative Processing in Episodic Memory 

Retrieval, 2259, 2242–2259. https://doi.org/10.1002/hbm.23518 

Genon, S., Reid, A., Langner, R., Amunts, K., & Eickhoff, S. B. (2018). How to Characterize the 

Function of a Brain Region. Trends in Cognitive Sciences, 22(4), 350–364. 

https://doi.org/10.1016/j.tics.2018.01.010 

Glasser, M. F., & Rilling, J. K. (2008). DTI tractography of the human brain’s language 

pathways. Cerebral Cortex, 18(11), 2471–2482. https://doi.org/10.1093/cercor/bhn011 

Glezer, L. S., Jiang, X., & Riesenhuber, M. (2009). Evidence for Highly Selective Neuronal 

Tuning to Whole Words in the “Visual Word Form Area.” Neuron, 62(2), 199–204. 

https://doi.org/10.1016/j.neuron.2009.03.017 

Glezer, L. S., & Riesenhuber, M. (2013). Individual variability in location impacts orthographic 

selectivity in the “visual word form area.” Journal of Neuroscience, 33(27), 11221–11226. 

https://doi.org/10.1523/JNEUROSCI.5002-12.2013 

Göbel, S., Walsh, V., & Rushworth, M. F. S. (2001). The mental number line and the human 

angular gyrus. NeuroImage, 14(6), 1278–1289. https://doi.org/10.1006/nimg.2001.0927 

Golarai, G., Ghahremani, D. G., Whitfield-Gabrieli, S., Reiss, A., Eberhardt, J. L., Gabrieli, J. D. 

E., & Grill-Spector, K. (2007). Differential development of high-level visual cortex 

correlates with category-specific recognition memory. Nature Neuroscience, 10(4), 512–

522. https://doi.org/10.1038/nn1865 

Golarai, G., Liberman, A., & Grill-Spector, K. (2017). Experience Shapes the Development of 

Neural Substrates of Face Processing in Human Ventral Temporal Cortex. Cerebral Cortex 

(New York, N.Y. : 1991), 27(2), 1229–1244. https://doi.org/10.1093/cercor/bhv314 

Golarai, G., Liberman, A., Yoon, J. M. D., & Grill-Spector, K. (2010). Differential development 

of the ventral visual cortex extends through adolescence. Frontiers in Human Neuroscience, 

3(FEB), 1–19. https://doi.org/10.3389/neuro.09.080.2009 

Goltz, D., Gundlach, C., Nierhaus, T., Villringer, A., Müller, M., & Pleger, B. (2015). 

Connections between Intraparietal Sulcus and a Sensorimotor Network Underpin Sustained 

Tactile Attention. The Journal of Neuroscience, 35(20), 7938–7949. 

https://doi.org/10.1523/jneurosci.3421-14.2015 

Gomez, J., Pestilli, F., Witthoft, N., Golarai, G., Liberman, A., Poltoratski, S., … Grill-Spector, 

K. (2015). Functionally Defined White Matter Reveals Segregated Pathways in Human 

Ventral Temporal Cortex Associated with Category-Specific Processing. Neuron, 85(1), 

216–227. https://doi.org/10.1016/j.neuron.2014.12.027 

Göttlich, M., Beyer, F., & Krämer, U. M. (2015). BASCO : a toolbox for task-related functional 

connectivity, 9(September), 1–10. https://doi.org/10.3389/fnsys.2015.00126 

Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F., & Neuper, 

C. (2009). Fact learning in complex arithmetic and figural-spatial tasks: The role of the 

angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30(9), 

2936–2952. https://doi.org/10.1002/hbm.20720 

Graves, W. W., Desai, R., Humphries, C., Seidenberg, M. S., & Binder, J. R. (2010). Neural 

systems for reading aloud: A multiparametric approach. Cerebral Cortex, 20(8), 1799–

1815. https://doi.org/10.1093/cercor/bhp245 

Greene, D. J., Koller, J. M., Hampton, J. M., Wesevich, V., Van, A. N., Nguyen, A. L., … 

Dosenbach, N. U. F. (2018). Behavioral interventions for reducing head motion during MRI 

scans in children. NeuroImage, 171(September 2017), 234–245. 

https://doi.org/10.1016/j.neuroimage.2018.01.023 



 172 

Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal 

cortex and its role in categorization. Nature Reviews Neuroscience, 15(8), 536–548. 

https://doi.org/10.1038/nrn3747 

Grimaldi, P., Saleem, K. S., & Tsao, D. (2016). Anatomical Connections of the Functionally 

Defined “Face Patches” in the Macaque Monkey. Neuron, 90(6), 1325–1342. 

https://doi.org/10.1016/j.neuron.2016.05.009 

Grotheer, M., Herrmann, K.-H., & Kovacs, G. (2016). Neuroimaging Evidence of a Bilateral 

Representation for Visually Presented Numbers. Journal of Neuroscience, 36(1), 88–97. 

https://doi.org/10.1523/JNEUROSCI.2129-15.2016 

Grotheer, M., Jeska, B., & Grill-Spector, K. (2018). A preference for mathematical processing 

outweighs the selectivity for Arabic numbers in the inferior temporal gyrus. NeuroImage, 

175(March), 188–200. https://doi.org/10.1016/j.neuroimage.2018.03.064 

Grotheer, M., Zhen, Z., Lerma-Usabiaga, G., & Grill-Spector, K. (2019). Separate lanes for 

adding and reading in the white matter highways of the human brain. Nature 

Communications, 10(1), 3675. https://doi.org/10.1038/s41467-019-11424-1 

Gschwind, M., Pourtois, G., Schwartz, S., Van De Ville, D., & Vuilleumier, P. (2012). White-

matter connectivity between face-responsive regions in the human brain. Cerebral Cortex, 

22(7), 1564–1576. https://doi.org/10.1093/cercor/bhr226 

Gullick, M. M., Sprute, L. A., & Temple, E. (2011). Individual differences in working memory, 

nonverbal IQ, and mathematics achievement and brain mechanisms associated with 

symbolic and nonsymbolic number processing. Learning and Individual Differences, 21(6), 

644–654. https://doi.org/10.1016/j.lindif.2010.10.003 

Hagmann, P., Cammoun, L., Martuzzi, R., Maeder, P., Clarke, S., Thiran, J. P., & Meuli, R. 

(2006). Hand preference and sex shape the architecture of language networks. Human Brain 

Mapping, 27(10), 828–835. https://doi.org/10.1002/hbm.20224 

Haller, S. P. W., Mills, K. L., Hartwright, C. E., David, A. S., & Cohen Kadosh, K. (2018). 

When change is the only constant: The promise of longitudinal neuroimaging in 

understanding social anxiety disorder. Developmental Cognitive Neuroscience, 33(May), 

73–82. https://doi.org/10.1016/j.dcn.2018.05.005 

Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lambertz, G., & Dehaene, S. (2015). Origins of 

the specialization for letters and numbers in ventral occipitotemporal cortex. Trends in 

Cognitive Sciences, 19(7), 374–382. https://doi.org/10.1016/j.tics.2015.05.006 

Hansen, C. B., Yang, Q., Lyu, I., Rheault, F., Kerley, C., Chandio, B. Q., … Schilling, K. G. 

(2021). Pandora: 4-D White Matter Bundle Population-Based Atlases Derived from 

Diffusion MRI Fiber Tractography. Neuroinformatics, 19(3), 447–460. 

https://doi.org/10.1007/s12021-020-09497-1 

Harel, A. (2016). What is special about expertise? Visual expertise reveals the interactive nature 

of real-world object recognition. Neuropsychologia, 83, 88–99. 

https://doi.org/10.1016/j.neuropsychologia.2015.06.004 

Harmand, S., Lewis, J. E., Feibel, C. S., Lepre, C. J., Prat, S., Lenoble, A., … Roche, H. (2015). 

3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature, 

521(7552), 310–315. https://doi.org/10.1038/nature14464 

Harrigan, R. L. R. L., Yvernault, B. C. B. C., Boyd, B. D. B. D., Damon, S. M. S. M., Gibney, K. 

D. K. D., Conrad, B. N., … Landman, B. A. B. A. (2016). Vanderbilt University Institute of 

Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and 

processing environment. NeuroImage, 124, 1097–1101. 



 173 

https://doi.org/10.1016/j.neuroimage.2015.05.021 

Harvey, B. M., Ferri, S., & Orban, G. A. (2017). Comparing Parietal Quantity-Processing 

Mechanisms between Humans and Macaques. Trends in Cognitive Sciences, 21(10), 779–

793. https://doi.org/10.1016/j.tics.2017.07.002 

Hauser, M. D., Chomsky, N., & Fitch, W. T. (2010). The faculty of language: What is it, who 

has it, and how did it evolve? The Evolution of Human Language: Biolinguistic 

Perspectives, 298(November), 14–42. https://doi.org/10.1017/CBO9780511817755.002 

Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and 

semantic size in comparison tasks. Memory & Cognition, 10(4), 389–395. 

https://doi.org/10.3758/BF03202431 

Hermes, D., Rangarajan, V., Foster, B. L., King, J. R., Kasikci, I., Miller, K. J., & Parvizi, J. 

(2017). Electrophysiological Responses in the Ventral Temporal Cortex During Reading of 

Numerals and Calculation. Cerebral Cortex (New York, N.Y. : 1991), 27(1), 567–575. 

https://doi.org/10.1093/cercor/bhv250 

Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural pathways for 

the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study. 

NeuroImage, 49(1), 1006–1017. https://doi.org/10.1016/j.neuroimage.2009.07.071 

Hurka, J. Vanden, Baelena, M. Van, & Beecka, H. P. O. (2017). Development of visual category 

selectivity in ventral visual cortex does not require visual experience. Proceedings of the 

National Academy of Sciences of the United States of America, 114(22), E4501–E4510. 

https://doi.org/10.1073/pnas.1612862114 

Huth, A. G., De Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural 

speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453–

458. https://doi.org/10.1038/nature17637 

Hyde, D. C., Boas, D. A., Blair, C., & Carey, S. (2010). Near-infrared spectroscopy shows right 

parietal specialization for number in pre-verbal infants. NeuroImage, 53(2), 647–652. 

https://doi.org/10.1016/j.neuroimage.2010.06.030 

Izard, V., Dehaene-Lambertz, G., & Dehaene, S. (2008). Distinct cerebral pathways for object 

identity and number in human infants. PLoS Biology, 6(2), 0275–0285. 

https://doi.org/10.1371/journal.pbio.0060011 

James, K. H., James, T. W., Jobard, G., Wong, A. C.-N., & Gauthier, I. (2005). Letter processing 

in the visual system: Different activation patterns for single letters and strings. Cognitive, 

Affective, & Behavioral Neuroscience, 5(4), 452–466. 

https://doi.org/10.3758/CABN.5.4.452 

Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J. (2014). Multi-tissue 

constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI 

data. NeuroImage, 103, 411–426. https://doi.org/10.1016/j.neuroimage.2014.07.061 

Jo, H. J., Saad, Z. S., Gotts, S. J., Martin, A., & Cox, R. W. (2012). Quantifying Agreement 

between Anatomical and Functional Interhemispheric Correspondences in the Resting 

Brain. PLoS ONE, 7(11), e48847. https://doi.org/10.1371/journal.pone.0048847 

Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 

2(7), 475–483. https://doi.org/10.1038/35081509 

Johnson, M. H. (2011). Interactive Specialization: A domain-general framework for human 

functional brain development? Developmental Cognitive Neuroscience, 1(1), 7–21. 

https://doi.org/10.1016/j.dcn.2010.07.003 

Johnson, M. H., & de Haan, M. (2015). Interactive Specialization. In Developmental Cognitive 



 174 

Neuroscience (4th ed., pp. 222–239). John Wiley & Sons, Incorporated. 

Jones, M. N., & Mewhort, D. J. K. (2004). Case-sensitive letter and bigram frequency counts 

from large-scale English corpora. Behavior Research Methods, Instruments, and 

Computers, 36(3), 388–396. https://doi.org/10.3758/BF03195586 

Joseph, J. E., Gathers, A. D., & Bhatt, R. S. (2011). Progressive and regressive developmental 

changes in neural substrates for face processing: Testing specific predictions of the 

Interactive Specialization account. Developmental Science, 14(2), 227–241. 

https://doi.org/10.1111/j.1467-7687.2010.00963.x 

Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional 

architecture of the mind. Proceedings of the National Academy of Sciences of the United 

States of America, 107(25), 11163–11170. https://doi.org/10.1073/pnas.1005062107 

Kay, K. N., & Yeatman, J. D. (2017). Bottom-up and top-down computations in word- and face-

selective cortex. ELife, 6, 1–29. https://doi.org/10.7554/elife.22341 

Keller, S. S., Crow, T., Foundas, A., Amunts, K., & Roberts, N. (2009). Broca’s area: 

Nomenclature, anatomy, typology and asymmetry. Brain and Language, 109(1), 29–48. 

https://doi.org/10.1016/j.bandl.2008.11.005 

Kersey, A. J., & Cantlon, J. F. (2017a). Neural tuning to numerosity relates to perceptual tuning 

in 3– 6-year-old children. Journal of Neuroscience, 37(3), 512–522. 

https://doi.org/10.1523/JNEUROSCI.0065-16.2016 

Kersey, A. J., & Cantlon, J. F. (2017b). Primitive Concepts of Number and the Developing 

Human Brain. Language Learning and Development, 13(2), 191–214. 

https://doi.org/10.1080/15475441.2016.1264878 

Kherif, F., Josse, G., & Price, C. J. (2011). Automatic top-down processing explains common 

left occipito-temporal responses to visual words and objects. Cerebral Cortex, 21(1), 103–

114. https://doi.org/10.1093/cercor/bhq063 

King, K. M., Littlefield, A. K., McCabe, C. J., Mills, K. L., Flournoy, J., & Chassin, L. (2018). 

Longitudinal modeling in developmental neuroimaging research: Common challenges, and 

solutions from developmental psychology. Developmental Cognitive Neuroscience, 

33(November 2017), 54–72. https://doi.org/10.1016/j.dcn.2017.11.009 

Klein, E., Moeller, K., Glauche, V., Weiller, C., & Willmes, K. (2013). Processing Pathways in 

Mental Arithmetic-Evidence from Probabilistic Fiber Tracking. PLoS ONE, 8(1). 

https://doi.org/10.1371/journal.pone.0055455 

Krause, F., Benjamins, C., Eck, J., Lührs, M., van Hoof, R., & Goebel, R. (2019). Active head 

motion reduction in magnetic resonance imaging using tactile feedback. Human Brain 

Mapping, 40(14), 4026–4037. https://doi.org/10.1002/hbm.24683 

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain 

mapping. Proceedings of the National Academy of Sciences, 103(10), 3863–3868. 

https://doi.org/10.1073/pnas.0600244103 

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis – 

connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 

2(November), 1–28. https://doi.org/10.3389/neuro.06.004.2008 

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., … Bandettini, P. A. 

(2008). Matching Categorical Object Representations in Inferior Temporal Cortex of Man 

and Monkey. Neuron, 60(6), 1126–1141. https://doi.org/10.1016/j.neuron.2008.10.043 

Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner, G. (2004). The 

visual word form area and the frequency with which words are encountered: Evidence from 



 175 

a parametric fMRI study. NeuroImage, 21(3), 946–953. 

https://doi.org/10.1016/j.neuroimage.2003.10.021 

Kubota, E. C., Joo, S. J., Huber, E., & Yeatman, J. D. (2019). Word selectivity in high-level 

visual cortex and reading skill. Developmental Cognitive Neuroscience, 36(June 2018), 

100593. https://doi.org/10.1016/j.dcn.2018.09.003 

Kutter, E. F., Bostroem, J., Elger, C. E., Mormann, F., Correspondence, A. N., & Nieder, A. 

(2018). Single Neurons in the Human Brain Encode Numbers Article Single Neurons in the 

Human Brain Encode Numbers. Neuron, 100, 1–9. 

https://doi.org/10.1016/j.neuron.2018.08.036 

Lancaster, J. L., Tordesillas-Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., … 

Fox, P. T. (2007). Bias between MNI and talairach coordinates analyzed using the ICBM-

152 brain template. Human Brain Mapping, 28(11), 1194–1205. 

https://doi.org/10.1002/hbm.20345 

Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning 

sculpts the spontaneous activity of the resting human brain. Proceedings of the National 

Academy of Sciences, 106(41), 17558–17563. https://doi.org/10.1073/pnas.0902455106 

Li, J., Osher, D. E., Hansen, H. A., & Saygin, Z. M. (2020). Innate connectivity patterns drive 

the development of the visual word form area. Scientific Reports, 1–12. 

https://doi.org/10.1038/s41598-020-75015-7 

Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for 

neuroimaging data analysis: DICOM to NIfTI conversion. Journal of Neuroscience 

Methods, 264, 47–56. https://doi.org/10.1016/j.jneumeth.2016.03.001 

Libertus, M. E., Brannon, E. M., & Pelphrey, K. A. (2009). Developmental changes in category-

specific brain responses to numbers and letters in a working memory task. NeuroImage, 

44(4), 1404–1414. https://doi.org/10.1016/j.neuroimage.2008.10.027 

Lochy, A., & Schiltz, C. (2019). Lateralized Neural Responses to Letters and Digits in First 

Graders. Child Development, 90(6), 1866–1874. https://doi.org/10.1111/cdev.13337 

Lussier, C. A., & Cantlon, J. F. (2017). Developmental bias for number words in the intraparietal 

sulcus. Developmental Science, 20(3), 1–18. https://doi.org/10.1111/desc.12385 

Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic estrangement: Evidence against a 

strong association between numerical symbols and the quantities they represent. Journal of 

Experimental Psychology: General, 141(4), 635–641. https://doi.org/10.1037/a0027248 

Lyons, I. M., & Beilock, S. L. (2018). Characterizing the neural coding of symbolic quantities. 

NeuroImage, 178(May), 503–518. https://doi.org/10.1016/j.neuroimage.2018.05.062 

Mahon, B. Z., Anzellotti, S., Schwarzbach, J., Zampini, M., & Caramazza, A. (2009). Category-

Specific Organization in the Human Brain Does Not Require Visual Experience. Neuron, 

63(3), 397–405. https://doi.org/10.1016/j.neuron.2009.07.012 

Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A cognitive 

neuropsychological perspective. Annual Review of Psychology, 60, 27–51. 

https://doi.org/10.1146/annurev.psych.60.110707.163532 

Mahon, B. Z., & Caramazza, A. (2011). What drives the organization of object knowledge in the 

brain? Trends in Cognitive Sciences, 15(3), 97–103. 

https://doi.org/10.1016/j.tics.2011.01.004 

Marek, S., & Dosenbach, N. U. F. (2018). The frontoparietal network: function, 

electrophysiology, and importance of individual precision mapping. Dialogues Clin 

Neurosci, 20, 133–140. Retrieved from www.dialogues-cns.org 



 176 

Martin, A. (2007). The representation of object concepts in the brain. Annual Review of 

Psychology, 58(1), 25–45. https://doi.org/10.1146/annurev.psych.57.102904.190143 

Matejko, A. A., & Ansari, D. (2016). Trajectories of symbolic and nonsymbolic magnitude 

processing in the first year of formal schooling. PLoS ONE, 11(3), 1–15. 

https://doi.org/10.1371/journal.pone.0149863 

Maurer, U., Brem, S., Bucher, K., & Brandeis, D. (2005). Emerging neurophysiological 

specialization for letter strings. Journal of Cognitive Neuroscience, 17(10), 1532–1552. 

https://doi.org/10.1162/089892905774597218 

Maurer, U., Brem, S., Kranz, F., Bucher, K., Benz, R., Halder, P., … Brandeis, D. (2006). 

Coarse neural tuning for print peaks when children learn to read. NeuroImage, 33(2), 749–

758. https://doi.org/10.1016/j.neuroimage.2006.06.025 

McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for 

reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293–299. 

https://doi.org/10.1016/S1364-6613(03)00134-7 

McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired 

dyscalculia. Cognition, 44(1–2), 107–157. https://doi.org/10.1016/0010-0277(92)90052-J 

McGugin, R. W., Gatenby, J. C., Gore, J. C., & Gauthier, I. (2012). High-resolution imaging of 

expertise reveals reliable object selectivity in the fusiform face area related to perceptual 

performance. Proceedings of the National Academy of Sciences of the United States of 

America, 109(42), 17063–17068. https://doi.org/10.1073/pnas.1116333109 

Meissner, T. W., Walbrin, J., Nordt, M., Koldewyn, K., & Weigelt, S. (2020). Head motion 

during fMRI tasks is reduced in children and adults if participants take breaks. 

Developmental Cognitive Neuroscience, 44, 100803. 

https://doi.org/10.1016/j.dcn.2020.100803 

Merkley, R., Conrad, B., Price, G., & Ansari, D. (2019). Investigating the visual number form 

area: A replication study. Royal Society Open Science, 6(10). 

https://doi.org/10.1098/rsos.182067 

Mills, K. L., Goddings, A. L., Herting, M. M., Meuwese, R., Blakemore, S. J., Crone, E. A., … 

Tamnes, C. K. (2016). Structural brain development between childhood and adulthood: 

Convergence across four longitudinal samples. NeuroImage, 141, 273–281. 

https://doi.org/10.1016/j.neuroimage.2016.07.044 

Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 

46(3), 774–785. https://doi.org/10.1016/j.neuropsychologia.2007.10.005 

Misaki, M., Kim, Y., Bandettini, P. A., & Kriegeskorte, N. (2010). Comparison of multivariate 

classifiers and response normalizations for pattern-information fMRI. NeuroImage, 53(1), 

103–118. https://doi.org/10.1016/j.neuroimage.2010.05.051 

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two 

cortical pathways. Trends in Neurosciences, 6(C), 414–417. https://doi.org/10.1016/0166-

2236(83)90190-X 

Molenberghs, P., Mesulam, M. M., Peeters, R., & Vandenberghe, R. R. C. (2007). Remapping 

attentional priorities: Differential contribution of superior parietal lobule and intraparietal 

sulcus. Cerebral Cortex, 17(11), 2703–2712. https://doi.org/10.1093/cercor/bhl179 

Monge, Z. A., Geib, B. R., Siciliano, R. E., Packard, L. E., Tallman, C. W., & Madden, D. J. 

(2017). Functional modular architecture underlying attentional control in aging. 

NeuroImage, 155(May), 257–270. https://doi.org/10.1016/j.neuroimage.2017.05.002 

Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD 



 177 

activation in event-related designs for multivoxel pattern classification analyses. 

NeuroImage, 59(3), 2636–2643. https://doi.org/10.1016/j.neuroimage.2011.08.076 

Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational content with 

pattern-information fMRI - An introductory guide. Social Cognitive and Affective 

Neuroscience, 4(1), 101–109. https://doi.org/10.1093/scan/nsn044 

Muschelli, J., Nebel, M. B., Caffo, B. S., Barber, A. D., Pekar, J. J., & Mostofsky, S. H. (2014). 

Reduction of motion-related artifacts in resting state fMRI using aCompCor. NeuroImage, 

96(2), 22–35. https://doi.org/10.1016/j.neuroimage.2014.03.028 

Nath, V., Schilling, K. G., Parvathaneni, P., Huo, Y., Blaber, J. A., Hainline, A. E., … Landman, 

B. A. (2019). Tractography reproducibility challenge with empirical data (TraCED): The 

2017 ISMRM diffusion study group challenge. Journal of Magnetic Resonance Imaging, 1–

16. https://doi.org/10.1002/jmri.26794 

Nemmi, F., Schel, M. A., & Klingberg, T. (2018). Connectivity of the Human Number Form 

Area Reveals Development of a Cortical Network for Mathematics. Frontiers in Human 

Neuroscience, 12(November), 1–15. https://doi.org/10.3389/fnhum.2018.00465 

Nieder, A. (2016). The neuronal code for number. Nature Reviews Neuroscience, advance on(6), 

366–382. https://doi.org/10.1038/nrn.2016.40 

Nieder, A., & Dehaene, S. (2009). Representation of Number in the Brain. Annual Review of 

Neuroscience, 32(1), 185–208. https://doi.org/10.1146/annurev.neuro.051508.135550 

Nieto-Castañón, A., & Fedorenko, E. (2012). Subject-specific functional localizers increase 

sensitivity and functional resolution of multi-subject analyses. NeuroImage, 63(3), 1646–

1669. https://doi.org/10.1016/j.neuroimage.2012.06.065 

Nissen, H. J. (1986). The archaic texts from Uruk. World Archaeology, 17(3), 317–334. 

https://doi.org/10.1080/00438243.1986.9979973 

Nordt, M., Gomez, J., Natu, V., Jeska, B., Barnett, M., & Grill-Spector, K. (2018). Learning to 

Read Increases the Informativeness of Distributed Ventral Temporal Responses. Cerebral 

Cortex, 1–16. https://doi.org/10.1093/cercor/bhy178 

Nordt, M., Gomez, J., Natu, V., Rezai, A. A., Finzi, D., Kular, H., & Grill-Spector, K. (2020). 

Cortical recycling in high-level visual cortex during childhood development. BioRxiv, 1–35. 

https://doi.org/10.1101/2020.07.18.209783 

Norman-Haignere, S. V., McCarthy, G., Chun, M. M., & Turk-Browne, N. B. (2012). Category-

selective background connectivity in ventral visual cortex. Cerebral Cortex, 22(2), 391–

402. https://doi.org/10.1093/cercor/bhr118 

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-

voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430. 

https://doi.org/10.1016/j.tics.2006.07.005 

Norton, E. S., Beach, S. D., & Gabrieli, J. D. E. (2015). Neurobiology of dyslexia. Current 

Opinion in Neurobiology, 30, 73–78. https://doi.org/10.1016/j.conb.2014.09.007 

Nucifora, P. G. P., Verma, R., Melhem, E. R., Gur, R. E., & Gur, R. C. (2005). Leftward 

asymmetry in relative fiber density of the arcuate fasciculus. NeuroReport, 16(8), 791–794. 

https://doi.org/10.1097/00001756-200505310-00002 

OECD. (2016). Proficiency in Key Information-Processing Skills among Working-Age Adults, 

55–100. https://doi.org/http://dx.doi.org/10.1787/9789264204256-en 

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., … Zeng, H. (2014). A 

mesoscale connectome of the mouse brain. Nature, 508(7495), 207–214. 

https://doi.org/10.1038/nature13186 



 178 

Oosterhof, N. N., Connolly, A. C., & Haxby, J. V. (2016). CoSMoMVPA: Multi-Modal 

Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave. Frontiers in 

Neuroinformatics, 10(July), 1–27. https://doi.org/10.3389/fninf.2016.00027 

Op de Beeck, H. P., Pillet, I., & Ritchie, J. B. (2019). Factors Determining Where Category-

Selective Areas Emerge in Visual Cortex. Trends in Cognitive Sciences, 1–14. 

https://doi.org/10.1016/j.tics.2019.06.006 

Osher, D. E., Saxe, R. R., Koldewyn, K., Gabrieli, J. D. E., Kanwisher, N., & Saygin, Z. M. 

(2016). Structural Connectivity Fingerprints Predict Cortical Selectivity for Multiple Visual 

Categories across Cortex. Cerebral Cortex, 26(4), 1668–1683. 

https://doi.org/10.1093/cercor/bhu303 

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory 

paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain 

Mapping, 25(1), 46–59. https://doi.org/10.1002/hbm.20131 

Park, J., Chiang, C., Brannon, E. M., & Woldorff, M. G. (2014). Experience-dependent 

Hemispheric Specialization of Letters and Numbers Is Revealed in Early Visual Processing. 

Journal of Cognitive Neuroscience, 26(10), 2239–2249. 

https://doi.org/10.1162/jocn_a_00621 

Park, J., Hebrank, A., Polk, T. A., & Park, D. C. (2012). Neural dissociation of number from 

letter recognition and its relationship to parietal numerical processing. Journal of Cognitive 

Neuroscience, 24(1), 39–50. https://doi.org/10.1162/jocn_a_00085 

Park, J., van den Berg, B., Chiang, C., Woldorff, M. G., & Brannon, E. M. (2018). 

Developmental trajectory of neural specialization for letter and number visual processing. 

Developmental Science, 21(3), 1–14. https://doi.org/10.1111/desc.12578 

Parsons, S., & Bynner, J. (2005). Does Numeracy Matter More ? National Research and 

Development Centre for Adult Literacy and Numeracy. London, UK. 

Peelen, M. V., & Downing, P. E. (2017). Category selectivity in human visual cortex: Beyond 

visual object recognition. Neuropsychologia, 105(April), 177–183. 

https://doi.org/10.1016/j.neuropsychologia.2017.03.033 

Pernet, C., Celsis, P., & Démonet, J. F. (2005). Selective response to letter categorization within 

the left fusiform gyrus. NeuroImage, 28(3), 738–744. 

https://doi.org/10.1016/j.neuroimage.2005.06.046 

Piazza, M. (2011). Neurocognitive Start-Up Tools for Symbolic Number Representations. Space, 

Time and Number in the Brain, 14(12), 267–285. https://doi.org/10.1016/B978-0-12-

385948-8.00017-7 

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning Curves for 

Approximate Numerosity in the Human Intraparietal Sulcus. Neuron, 44(3), 547–555. 

https://doi.org/10.1016/j.neuron.2004.10.014 

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A Magnitude Code Common to 

Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron, 53(2), 293–

305. https://doi.org/10.1016/j.neuron.2006.11.022 

Pinel, P., & Dehaene, S. (2013). Genetic and environmental contributions to brain activation 

during calculation. NeuroImage, 81, 306–316. 

https://doi.org/10.1016/j.neuroimage.2013.04.118 

Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral 

representations of number, size, and luminance during comparative judgments. Neuron, 

41(6), 983–993. https://doi.org/10.1016/S0896-6273(04)00107-2 



 179 

Pinheiro-Chagas, P., Daitch, A., Parvizi, J., & Dehaene, S. (2018). Brain Mechanisms of 

Arithmetic: A Crucial Role for Ventral Temporal Cortex. Journal of Cognitive 

Neuroscience, 30(12), 1757–1772. https://doi.org/10.1162/jocn_a_01319 

Polk, T. A., Stallcup, M., Aguirre, G. K., Alsop, D. C., D’Esposito, M., Detre, J. A., & Farah, M. 

J. (2002). Neural specialization for letter recognition. Journal of Cognitive Neuroscience, 

14(2), 145–159. https://doi.org/10.1162/089892902317236803 

Pollack, C., Luk, G., & Christodoulou, J. A. (2015). A meta-analysis of functional reading 

systems in typically developing and struggling readers across different alphabetic 

languages. Frontiers in Psychology, 6(MAR), 1–10. 

https://doi.org/10.3389/fpsyg.2015.00191 

Pollack, C., & Price, G. R. (2019). Neurocognitive mechanisms of digit processing and their 

relationship with mathematics competence. NeuroImage, 185(May 2018), 245–254. 

https://doi.org/10.1016/j.neuroimage.2018.10.047 

Powell, H. W. R., Parker, G. J. M., Alexander, D. C., Symms, M. R., Boulby, P. A., Wheeler-

Kingshott, C. A. M., … Duncan, J. S. (2006). Hemispheric asymmetries in language-related 

pathways: A combined functional MRI and tractography study. NeuroImage, 32(1), 388–

399. https://doi.org/10.1016/j.neuroimage.2006.03.011 

Practices, N. G. A. C. for B., & Officers, C. of C. S. S. (2010). Common Core State Standards. 

National Governors Association Center for Best Practices, Council of Chief State School 

Officers, Washington D.C. 

Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard 

speech, spoken language and reading. NeuroImage, 62(2), 816–847. 

https://doi.org/10.1016/j.neuroimage.2012.04.062 

Price, C. J., & Devlin, J. T. (2011). The Interactive Account of ventral occipitotemporal 

contributions to reading. Trends in Cognitive Sciences, 15(6), 246–253. 

https://doi.org/10.1016/j.tics.2011.04.001 

Price, C. J., & Friston, K. J. (2005). Functional ontologies for cognition: The systematic 

definition of structure and function. Cognitive Neuropsychology, 22(3–4), 262–275. 

https://doi.org/10.1080/02643290442000095 

Price, G. R., & Ansari, D. (2011). Symbol processing in the left angular gyrus: Evidence from 

passive perception of digits. NeuroImage, 57(3), 1205–1211. 

https://doi.org/10.1016/j.neuroimage.2011.05.035 

Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal 

magnitude processing in developmental dyscalculia. Current Biology, 17(24), 1042–1043. 

https://doi.org/10.1016/j.cub.2007.10.013 

Price, G. R., Yeo, D. J., Wilkey, E. D., & Cutting, L. E. (2017). Prospective Relations between 

Resting-State Connectivity of Parietal Subdivisions and Arithmetic Competence. 

Developmental Cognitive Neuroscience. https://doi.org/10.1016/j.dcn.2017.02.006 

Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of 

human visual cortex to faces, letterstrings, and textures: A functional magnetic resonance 

imaging study. Journal of Neuroscience, 16(16), 5205–5215. 

https://doi.org/10.1523/jneurosci.16-16-05205.1996 

Raffelt, D., Dhollander, T., Tournier, J. D., Tabbara, R., Smith, R. E., Pierre, E., & Connelly, A. 

(2017). Bias field correction and intensity normalisation for quantitative analysis of 

apparent fiber density. Proc Intl Soc Mag Reson Med, 25(April), 3541. Retrieved from 

https://www.researchgate.net/publication/315836355 



 180 

Rajimehr, R., Young, J. C., & Tootell, R. B. H. (2009). An anterior temporal face patch in 

human cortex, predicted by macaque maps. Proceedings of the National Academy of 

Sciences of the United States of America, 106(6), 1995–2000. 

https://doi.org/10.1073/pnas.0807304106 

Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241(4862), 170–176. 

https://doi.org/10.1126/science.3291116 

Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature 

Reviews Neuroscience, 10(10), 724–735. https://doi.org/10.1038/nrn2719 

Ray, K. L., Lesh, T. A., Howell, A. M., Salo, T. P., Ragland, J. D., MacDonald, A. W., … 

Carter, C. S. (2017). Functional network changes and cognitive control in schizophrenia. 

NeuroImage: Clinical, 15(May), 161–170. https://doi.org/10.1016/j.nicl.2017.05.001 

Reich, L., Szwed, M., Cohen, L., & Amedi, A. (2011). A ventral visual stream reading center 

independent of visual experience. Current Biology, 21(5), 363–368. 

https://doi.org/10.1016/j.cub.2011.01.040 

Riesenhuber, M. (2007). Appearance Isn’t Everything: News on Object Representation in 

Cortex. Neuron, 55(3), 341–344. https://doi.org/10.1016/j.neuron.2007.07.017 

Rissman, J., Gazzaley, A., & D’Esposito, M. (2004). Measuring functional connectivity during 

distinct stages of a cognitive task. NeuroImage, 23(2), 752–763. 

https://doi.org/10.1016/j.neuroimage.2004.06.035 

Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in 

mental arithmetic: Evidence for increased functional specialization in the left inferior 

parietal cortex. Cerebral Cortex, 15(11), 1779–1790. https://doi.org/10.1093/cercor/bhi055 

Roberts, J. A., Perry, A., Roberts, G., Mitchell, P. B., & Breakspear, M. (2017). Consistency-

based thresholding of the human connectome. NeuroImage, 145(September 2016), 118–

129. https://doi.org/10.1016/j.neuroimage.2016.09.053 

Rothlein, D., & Rapp, B. (2014). The similarity structure of distributed neural responses reveals 

the multiple representations of letters. NeuroImage, 89, 331–344. 

https://doi.org/10.1016/j.neuroimage.2013.11.054 

Roux, F. E., Lubrano, V., Lauwers-Cances, V., Giussani, C., & Démonet, J. F. (2008). Cortical 

areas involved in Arabic number reading. Neurology, 70(3), 210–217. 

https://doi.org/10.1212/01.wnl.0000297194.14452.a0 

Rubinov, M., Ypma, R. J. F., Watson, C., Bullmore, E. T., & Raichle, M. E. (2015). Wiring cost 

and topological participation of the mouse brain connectome. Proceedings of the National 

Academy of Sciences of the United States of America, 112(32), 10032–10037. 

https://doi.org/10.1073/pnas.1420315112 

Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). The Development of Internal 

Representations of Magnitude and Their Association with Arabic Numerals. Journal of 

Experimental Child Psychology, 81(1), 74–92. https://doi.org/10.1006/jecp.2001.2645 

Saad, Z. S., & Reynolds, R. C. (2012). SUMA. NeuroImage, 62(2), 768–773. 

https://doi.org/10.1016/j.neuroimage.2011.09.016 

Saad, Z. S., Reynolds, R. C., Argall, B., Japee, S., & Cox, R. W. (2005). SUMA: An interface for 

surface-based intra- and inter-subject analysis with AFNI. In 2004 2nd IEEE International 

Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821) (Vol. 2, pp. 

1510–1513). IEEE. https://doi.org/10.1109/ISBI.2004.1398837 

Saalmann, Y. B., & Kastner, S. (2011). Cognitive and Perceptual Functions of the Visual 

Thalamus. Neuron, 71(2), 209–223. https://doi.org/10.1016/j.neuron.2011.06.027 



 181 

Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., … 

Gur, R. E. (2012). Impact of in-scanner head motion on multiple measures of functional 

connectivity: Relevance for studies of neurodevelopment in youth. NeuroImage, 60(1), 

623–632. https://doi.org/10.1016/j.neuroimage.2011.12.063 

Saygin, Z. M., Osher, D. E., Koldewyn, K., Reynolds, G., Gabrieli, J. D. E., & Saxe, R. R. 

(2012). Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. 

Nature Neuroscience, 15(2), 321–327. https://doi.org/10.1038/nn.3001 

Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S. D., Feather, J., … 

Kanwisher, N. (2016). Connectivity precedes function in the development of the visual 

word form area. Nature Neuroscience, 19(9), 1250–1255. https://doi.org/10.1038/nn.4354 

Schedlbauer, A. M., Copara, M. S., Watrous, A. J., & Ekstrom, A. D. (2014). Multiple 

interacting brain areas underlie successful spatiotemporal memory retrieval in humans. 

Scientific Reports, 4, 1–9. https://doi.org/10.1038/srep06431 

Scherf, K. S., Behrmann, M., Humphreys, K., & Luna, B. (2007). Visual category-selectivity for 

faces, places and objects emerges along different developmental trajectories. Developmental 

Science, 10(4). https://doi.org/10.1111/j.1467-7687.2007.00595.x 

Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky, C., … 

Araya-Ajoy, Y. G. (2020). Robustness of linear mixed-effects models to violations of 

distributional assumptions. Methods in Ecology and Evolution, 11(9), 1141–1152. 

https://doi.org/10.1111/2041-210X.13434 

Schilling, K. G., Blaber, J., Hansen, C., Rogers, B., Anderson, A., Smith, S., … Landman, B. 

(2020). Registration-free Distortion Correction of Diffusion Weighted MRI. PLOS ONE, 

15(7), e0236418. https://doi.org/10.1101/2020.01.19.911784 

Schilling, K. G., Blaber, J., Huo, Y., Newton, A., Hansen, C., Nath, V., … Landman, B. A. 

(2019). Synthesized b0 for diffusion distortion correction (Synb0-DisCo). Magnetic 

Resonance Imaging, 64(December 2018), 62–70. https://doi.org/10.1016/j.mri.2019.05.008 

Schubert, T. M. (2017). Why are digits easier to identify than letters? Neuropsychologia, 

95(November 2016), 136–155. https://doi.org/10.1016/j.neuropsychologia.2016.12.016 

Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. 

Neuroscientist, 19(1), 43–61. https://doi.org/10.1177/1073858412440596 

Seltzer, B., & Pandya, D. N. (1984). Further observations on parieto-temporal connections in the 

rhesus monkey. Experimental Brain Research, 55(2), 301–312. 

https://doi.org/10.1007/BF00237280 

Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., 

… Gore, J. C. (2004). Development of left occipitotemporal systems for skilled reading in 

children after a phonologically-based intervention. Biological Psychiatry, 55(9), 926–933. 

https://doi.org/10.1016/j.biopsych.2003.12.019 

Shaywitz, B. A., Shaywltz, S. E., Pugh, K. R., Constable, R. T., Skudlarski, P., Fulbright, R. K., 

… Gore, J. C. (1995). Sex differences in the functional organization of the brain for 

language. Nature, 373(6515), 607–609. https://doi.org/10.1038/373607a0 

Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J., … Parvizi, J. 

(2013). A Brain Area for Visual Numerals. Journal of Neuroscience, 33(16), 6709–6715. 

https://doi.org/10.1523/JNEUROSCI.4558-12.2013 

Smith, R. E., Raffelt, D., Tournier, J., & Connelly, A. (2020). Quantitative streamlines 

tractography : methods and inter-subject normalisation, (c), 1–27. 

Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2012). Anatomically-constrained 



 182 

tractography: Improved diffusion MRI streamlines tractography through effective use of 

anatomical information. NeuroImage, 62(3), 1924–1938. 

https://doi.org/10.1016/j.neuroimage.2012.06.005 

Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2013). SIFT: Spherical-

deconvolution informed filtering of tractograms. NeuroImage, 67, 298–312. 

https://doi.org/10.1016/j.neuroimage.2012.11.049 

Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2015a). SIFT2: Enabling dense 

quantitative assessment of brain white matter connectivity using streamlines tractography. 

NeuroImage, 119, 338–351. https://doi.org/10.1016/j.neuroimage.2015.06.092 

Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2015b). The effects of SIFT on the 

reproducibility and biological accuracy of the structural connectome. NeuroImage, 104, 

253–265. https://doi.org/10.1016/j.neuroimage.2014.10.004 

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-

Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image 

analysis and implementation as FSL. NeuroImage, 23(SUPPL. 1), S208–S219. 

https://doi.org/10.1016/j.neuroimage.2004.07.051 

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing 

problems of smoothing, threshold dependence and localisation in cluster inference. 

NeuroImage, 44(1), 83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061 

Song, Y., Hu, S., Li, X., Li, W., & Liu, J. (2010). The role of top-down task context in learning 

to perceive objects. Journal of Neuroscience, 30(29), 9869–9876. 

https://doi.org/10.1523/JNEUROSCI.0140-10.2010 

Srihasam, K., Mandeville, J. B., Morocz, I. A., Sullivan, K. J., & Livingstone, M. S. (2012). 

Behavioral and anatomical consequences of early versus late symbol training in macaques. 

Neuron, 73(3), 608–619. https://doi.org/10.1016/j.neuron.2011.12.022 

Srihasam, K., Vincent, J. L., & Livingstone, M. S. (2014). Novel domain formation reveals 

proto-architecture in inferotemporal cortex. Nature Neuroscience, 17(12), 1776–1783. 

https://doi.org/10.1038/nn.3855 

Stevens, W. D., Kravitz, D. J., Peng, C. S., Tessler, M. H., & Martin, A. (2017). Privileged 

Functional Connectivity between the Visual Word Form Area and the Language System. 

The Journal of Neuroscience, 37(21), 5288–5297. 

https://doi.org/10.1523/JNEUROSCI.0138-17.2017 

Stigliani, A., Weiner, K. S., & Grill-Spector, K. (2015). Temporal Processing Capacity in High-

Level Visual Cortex Is Domain Specific. Journal of Neuroscience, 35(36), 12412–12424. 

https://doi.org/10.1523/JNEUROSCI.4822-14.2015 

Takaya, S., Kuperberg, G. R., Liu, H., Greve, D. N., Makris, N., & Stufflebeam, S. M. (2015). 

Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized 

language function in the human brain. Frontiers in Neuroanatomy, 9(September), 1–12. 

https://doi.org/10.3389/fnana.2015.00119 

Tate, M. C., Herbet, G., Moritz-Gasser, S., Tate, J. E., & Duffau, H. (2014). Probabilistic map of 

critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain, 

137(10), 2773–2782. https://doi.org/10.1093/brain/awu168 

Thesen, T., McDonald, C. R., Carlson, C., Doyle, W., Cash, S., Sherfey, J., … Halgren, E. 

(2012). Sequential then interactive processing of letters and words in the left fusiform 

gyrus. Nature Communications, 3, 1–8. https://doi.org/10.1038/ncomms2220 

Tournier, J-D., & , F. Calamante,  and a. C. (2010). Improved probabilistic streamlines 



 183 

tractography by 2 nd order integration over fibre orientation distributions. Ismrm, 88(2003), 

2010. 

Tournier, J-Donald, Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., … Connelly, 

A. (2019). MRtrix3: A fast, flexible and open software framework for medical image 

processing and visualisation. NeuroImage, 202(January), 116137. 

https://doi.org/10.1016/j.neuroimage.2019.116137 

Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B., & Tootell, R. B. H. (2003). 

Faces and objects in macaque cerebral cortex. Nature Neuroscience, 6(9), 989–995. 

https://doi.org/10.1038/nn1111 

Tustison, N. J., Avants, B. B., Cook, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias 

correction with robust B-spline approximation, 29(6), 708–711. 

https://doi.org/10.1109/isbi.2010.5490078 

Twomey, T., Kawabata Duncan, K. J., Price, C. J., & Devlin, J. T. (2011). Top-down modulation 

of ventral occipito-temporal responses during visual word recognition. NeuroImage, 55(3), 

1242–1251. https://doi.org/10.1016/j.neuroimage.2011.01.001 

Uddin, L. Q., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D. A., Greicius, M. D., & 

Menon, V. (2010). Dissociable connectivity within human angular gyrus and intraparietal 

sulcus: Evidence from functional and structural connectivity. Cerebral Cortex, 20(11), 

2636–2646. https://doi.org/10.1093/cercor/bhq011 

Undheim, A. M. (2003). Dyslexia and psychosocial factors. A follow-up study of young 

Norwegian adults with a history of dyslexia in childhood. Nordic Journal of Psychiatry, 

57(3), 221–226. https://doi.org/10.1080/08039480310001391 

Uyeda, J. C., Hansen, T. F., Arnold, S. J., & Pienaar, J. (2011). The million-year wait for 

macroevolutionary bursts. Proceedings of the National Academy of Sciences of the United 

States of America, 108(38), 15908–15913. https://doi.org/10.1073/pnas.1014503108 

van den Heuvel, M. P., Scholtens, L. H., & de Reus, M. A. (2016). Topological organization of 

connectivity strength in the rat connectome. Brain Structure and Function, 221(3), 1719–

1736. https://doi.org/10.1007/s00429-015-0999-6 

Veraart, J., Novikov, D. S., Christiaens, D., Ades-aron, B., Sijbers, J., & Fieremans, E. (2016). 

Denoising of diffusion MRI using random matrix theory. NeuroImage, 142, 394–406. 

https://doi.org/10.1016/j.neuroimage.2016.08.016 

Verguts, T., & Fias, W. (2004). Representation of Number in Animals and Humans: A Neural 

Model. Journal of Cognitive Neuroscience, 16(9), 1493–1504. 

https://doi.org/10.1162/0898929042568497 

Vernooij, M. W., Smits, M., Wielopolski, P. A., Houston, G. C., Krestin, G. P., & van der Lugt, 

A. (2007). Fiber density asymmetry of the arcuate fasciculus in relation to functional 

hemispheric language lateralization in both right- and left-handed healthy subjects: A 

combined fMRI and DTI study. NeuroImage, 35(3), 1064–1076. 

https://doi.org/10.1016/j.neuroimage.2006.12.041 

Vijayakumar, N., Mills, K. L., Alexander-Bloch, A., Tamnes, C. K., & Whittle, S. (2018). 

Structural brain development: A review of methodological approaches and best practices. 

Developmental Cognitive Neuroscience, 33(June 2017), 129–148. 

https://doi.org/10.1016/j.dcn.2017.11.008 

Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a 

frontoparietal control system revealed by intrinsic functional connectivity. Journal of 

Neurophysiology, 100(6), 3328–3342. https://doi.org/10.1152/jn.90355.2008 



 184 

Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical 

Coding of Letter Strings in the Ventral Stream: Dissecting the Inner Organization of the 

Visual Word-Form System. Neuron, 55(1), 143–156. 

https://doi.org/10.1016/j.neuron.2007.05.031 

Vogel, A. C., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2012). The Putative Visual 

Word Form Area Is Functionally Connected to the Dorsal Attention Network. Cerebral 

Cortex, 22(3), 537–549. https://doi.org/10.1093/cercor/bhr100 

Vogel, A. C., Petersen, S. E., & Schlaggar, B. L. (2014). The VWFA: it’s not just for words 

anymore. Frontiers in Human Neuroscience, 8(March), 1–10. 

https://doi.org/10.3389/fnhum.2014.00088 

Vogel, S. E., Goffin, C., & Ansari, D. (2015). Developmental specialization of the left parietal 

cortex for the semantic representation of Arabic numerals: An fMR-adaptation study. 

Developmental Cognitive Neuroscience, 12(1), 61–73. 

https://doi.org/10.1016/j.dcn.2014.12.001 

Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct 

neural circuits but collaborative roles. Neuroscientist, 20(2), 150–159. 

https://doi.org/10.1177/1073858413494269 

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016). Reliability 

of dissimilarity measures for multi-voxel pattern analysis. NeuroImage, 137, 188–200. 

https://doi.org/10.1016/j.neuroimage.2015.12.012 

Wandell, B. A., Rauschecker, A. M., & Yeatman, J. D. (2012). Learning to See Words. Annual 

Review of Psychology, 63(1), 31–53. https://doi.org/10.1146/annurev-psych-120710-100434 

Warrington, S., Bryant, K. L., Khrapitchev, A. A., Sallet, J., Charquero-Ballester, M., Douaud, 

G., … Sotiropoulos, S. N. (2020). XTRACT - Standardised protocols for automated 

tractography in the human and macaque brain. NeuroImage, 217(March), 1–15. 

https://doi.org/10.1016/j.neuroimage.2020.116923 

Wendelken, C., Ferrer, E., Ghetti, S., Bailey, S. K., Cutting, L., & Bunge, S. A. (2017). 

Frontoparietal Structural Connectivity in Childhood Predicts Development of Functional 

Connectivity and Reasoning Ability: A Large-Scale Longitudinal Investigation. The Journal 

of Neuroscience, 37(35), 8549–8558. https://doi.org/10.1523/JNEUROSCI.3726-16.2017 

Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn : A Functional Connectivity Toolbox 

for Correlated and Anticorrelated Brain Networks. Brain Connectivity, 2(3), 125–141. 

https://doi.org/10.1089/brain.2012.0073 

Wierenga, L. M., Langen, M., Oranje, B., & Durston, S. (2014). Unique developmental 

trajectories of cortical thickness and surface area. NeuroImage, 87, 120–126. 

https://doi.org/10.1016/j.neuroimage.2013.11.010 

Wilkey, E. D., & Ansari, D. (2020). Challenging the neurobiological link between number sense 

and symbolic numerical abilities. Annals of the New York Academy of Sciences, 1464(1), 

76–98. https://doi.org/10.1111/nyas.14225 

Wilkey, E. D., Barone, J. C., Mazzocco, M. M. M., Vogel, S. E., & Price, G. R. (2017). The 

effect of visual parameters on neural activation during nonsymbolic number comparison 

and its relation to math competency. NeuroImage, 159(August), 430–442. 

https://doi.org/10.1016/j.neuroimage.2017.08.023 

Wilkey, E. D., Conrad, B. N., Yeo, D. J., & Price, G. R. (2020). Shared Numerosity 

Representations Across Formats and Tasks Revealed with 7 Tesla fMRI: Decoding, 

Generalization, and Individual Differences in Behavior. Cerebral Cortex Communications, 



 185 

1(1), 1–19. https://doi.org/10.1093/texcom/tgaa038 

Wright, D. B. (2017). Some Limits Using Random Slope Models to Measure Academic Growth. 

Frontiers in Education, 2(November). https://doi.org/10.3389/feduc.2017.00058 

Yang, J., Huber, L., Yu, Y., & Bandettini, P. A. (2021). Linking cortical circuit models to human 

cognition with laminar fMRI. Neuroscience & Biobehavioral Reviews, 128, 467–478. 

https://doi.org/10.1016/j.neubiorev.2021.07.005 

Yeatman, J. D., Rauschecker, A. M., & Wandell, B. A. (2013). Anatomy of the visual word form 

area: Adjacent cortical circuits and long-range white matter connections. Brain and 

Language, 125(2), 146–155. https://doi.org/10.1016/j.bandl.2012.04.010 

Yeatman, J. D., Weiner, K. S., Pestilli, F., Rokem, A., Mezer, A., & Wandell, B. A. (2014). The 

vertical occipital fasciculus: A century of controversy resolved by in vivo measurements. 

Proceedings of the National Academy of Sciences, 111(48), E5214–E5223. 

https://doi.org/10.1073/pnas.1418503111 

Yeh, C. H., Smith, R. E., Liang, X., Calamante, F., & Connelly, A. (2016). Correction for 

diffusion MRI fibre tracking biases: The consequences for structural connectomic metrics. 

NeuroImage, 142, 150–162. https://doi.org/10.1016/j.neuroimage.2016.05.047 

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … 

Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic 

functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. 

https://doi.org/10.1152/jn.00338.2011 

Yeo, D. J., Pollack, C., Merkley, R., Ansari, D., & Price, G. R. (2020). The “Inferior Temporal 

Numeral Area” distinguishes numerals from other character categories during passive 

viewing: A representational similarity analysis. NeuroImage, 214(October 2019), 116716. 

https://doi.org/10.1016/j.neuroimage.2020.116716 

Yeo, D. J., Wilkey, E. D., & Price, G. R. (2017). The search for the number form area: A 

functional neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 78(April), 

145–160. https://doi.org/10.1016/j.neubiorev.2017.04.027 

Zeidman, P., Jafarian, A., Corbin, N., Seghier, M. L., Razi, A., Price, C. J., & Friston, K. J. 

(2019). A guide to group effective connectivity analysis, part 1: First level analysis with 

DCM for fMRI. NeuroImage, 200(May), 174–190. 

https://doi.org/10.1016/j.neuroimage.2019.06.031 

 

 


	1 INTRODUCTION
	1.1 Category Selectivity in the Ventral Stream
	1.2 An Occipitotemporal Area for Numbers?
	1.3 Explaining Symbol Category Preference in the OTC: Mechanisms and Developmental Models
	1.3.1 Proto-maps and the shape hypothesis
	1.3.2 The biased connectivity hypothesis
	1.3.3 Interactive specialization
	1.3.4 The interactive account of OTC function

	1.4 Recent Insights into the “Inferior Temporal Numeral Area” and Outstanding Questions
	1.4.1 Beyond the “visual number form”
	1.4.2 Task demands matter for ITNA engagement
	1.4.3 Bilateral, but functionally asymmetric ITNAs
	1.4.4 The uncharted development of the ITNAs

	1.5 Overview of Current Studies

	2 CONNECTIVITY CONSTRAINTS ON SYMBOL AREAS IN THE OCCIPITOTEMPORAL CORTEX
	2.1 Introduction
	2.2 Methods
	2.2.1 Participants
	2.2.2 fMRI task
	2.2.3 MRI Acquisition parameters
	2.2.4 Anatomical processing
	2.2.5 Seed fROI Definition
	2.2.6 DWI Preprocessing
	2.2.7 Streamline tractography pipeline
	2.2.8 Seed to whole-brain connectivity and consistency-based thresholding
	2.2.9 Fiber Density & Length and Bundle Overlap Analyses
	2.2.10 fMRI Preprocessing
	2.2.11 Beta-series connectivity
	2.2.12 Landmark-Based Homotopic Mapping
	2.2.13 Statistical Analysis and Threshold-Free Cluster Enhancement

	2.3 Results
	2.3.1 Structural connectivity of Digit versus Letter area
	2.3.2 Functional connectivity of Digit versus Letter area
	2.3.3 Structural connectivity of the left versus right Digit area
	2.3.4 Functional connectivity of the left versus right Digit area

	2.4 Discussion: ITNA Localization and Connectivity
	2.4.1 The ITNA is functionally and structurally connected to intraparietal sulcus
	2.4.2 The ITNA is more structurally connected to language areas
	2.4.3 The Letter area is functionally and structurally connected to the fusiform gyrus

	2.5 Discussion: Lateralization of ITNA Connectivity
	2.5.1 Left ITNA has greater anatomical connectivity with inferior frontal gyrus
	2.5.2 Both ITNAs are connected to the frontoparietal control network
	2.5.3 Right ITNA is more structurally and functionally connected to the intraparietal sulcus
	2.5.4 Distinct connectivity of the ITNA with anterior and posterior IPS
	2.5.5 Double dissociation in ITNA connectivity with the angular gyrus

	2.6 Limitations
	2.7 Conclusions

	3  FUNCTIONAL DEVELOPMENT OF INFERIOR TEMPORAL NUMERAL AREAS FROM KINDERGARTEN THROUGH 2ND GRADE
	3.1 Introduction
	3.2 The present study
	3.3 Methods
	3.3.1 Participants
	3.3.2 fMRI Tasks
	3.3.3 MRI Acquisition parameters
	3.3.4 Motion reduction strategy
	3.3.5 Anatomical processing
	3.3.6 fMRI preprocessing
	3.3.7 Motion Censoring and Nuisance Regressors
	3.3.8 General Linear Models
	3.3.9 Category-level Representational Similarity Analysis
	3.3.10 Exemplar Discriminability – SVM Classification
	3.3.11 Task-Evoked and Background Functional Connectivity
	3.3.12 Definition of Occipitotemporal ROIs
	3.3.13 Definition of Target fROIs for Connectivity Analyses
	3.3.14 Linear Mixed-Effects Models

	3.4 Results
	3.4.1 Longitudinal changes in behavioral performance
	3.4.2 Longitudinal changes in signal quality and motion
	3.4.3 Task Performance by Symbol Category
	3.4.4 Longitudinal changes in occipitotemporal ROI activation versus baseline
	3.4.5 Longitudinal changes in relative activation between conditions
	3.4.6 Longitudinal changes in category-level representational geometry
	3.4.7 Longitudinal changes in exemplar decodability
	3.4.8 Longitudinal changes in “background” functional connectivity
	3.4.9 Longitudinal changes in task-evoked functional connectivity
	3.4.10 Relations between connectivity and local functional metrics

	3.5 Discussion
	3.5.1 Novel symbols elicit strong responses in digit and letter areas
	3.5.2 An increasing preference for digits in the right ITNA
	3.5.3 Increasing digit-biased categorical representations in left ITNA
	3.5.4 No evidence for symbol identity representations in symbol-preferring ROIs
	3.5.5 The ITNAs are functionally connected to number-sensitive IPS by kindergarten
	3.5.6 No parietal bias in left ITNA versus OTLA connectivity
	3.5.7 No digit-selective coupling of the ITNAs with IPS and no change over schooling

	3.6 Limitations
	3.6.1 COVID-19
	3.6.2 Assumption of normality and individual differences in trajectories
	3.6.3 Group-level ROI Definition

	3.7 Conclusions

	4 GENERAL DISCUSSION
	4.1 Digit versus letter area connectivity
	4.2 Hemispheric asymmetries in ITNA connectivity
	4.3 The functional development of symbol areas
	4.3.1 The shape hypothesis
	4.3.2 The interactive account
	4.3.3 The biased connectivity hypothesis
	4.3.4 Interactive specialization
	4.3.5 Representational similarity

	4.4 Final Remarks


