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CHAPTER 1 

 

INTRODUCTION 

 

Time-varying confounding is a commonly encountered challenge in longitudinal 

observational studies that seek to evaluate the causal effect of a time-dependent treatment [1]. A 

time-varying confounder is one that lies on the causal pathway from the (prior) treatment to the 

outcome but also influences future treatment. Simple approaches to account for confounding (e.g., 

traditional covariate adjustment in a regression model) do not allow one to identify the total causal 

effect because such confounders also are mediators on the pathway from prior treatment to the 

outcome. Collider-stratification bias may be introduced if the covariate is caused by a prior 

exposure and by a prior value of the covariate.  

G-computation is a generalization of standardization that can be used to identify causal 

effects of longitudinal treatment regimes. Specifically, g-computation allows estimation of the 

expected outcome under the hypothetical scenario in which everyone in the population receives a 

particular longitudinal treatment regime [2,3]. The standardization formula expresses the mean 

potential outcome as a marginalized version of the conditional expectation of the outcome (i.e., 

conditional on baseline confounders). G-computation generalizes the method of standardization to 

a longitudinal setting in which treatment and covariate values change over time.  

G-computation can readily accommodate commonly encountered complex challenges such 

as censoring and truncation by death. Typical implementations of g-computation are sometimes 

criticized for their heavy reliance on parametric models, such that there is possible non-robustness 

to model misspecification. This motivates the use of a semiparametric approach within g-
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computation such as the cumulative probability model (CPM); briefly, a CPM treats continuous 

outcomes ordinally and is semiparametric in that it presumes that the error term of a linear model 

follows a specified distribution up to some unspecified monotonic transformation, an assumption 

much weaker than the fully parametric models typically used with g-computation [4]. Estimating 

the parameters of a CPM amounts to estimating the conditional distribution of the outcome, for 

reasons we will see in Chapter 2. CPMs have several advantages including their ability to 

accommodate semicontinuous data (arising, for instance, when dealing with observations that fall 

below a detection limit). CPMs result in only a minor loss in statistical efficiency when compared 

to properly specified parametric models. Although not as computationally efficient as parametric 

models, CPMs can be fit with large sample sizes (e.g., N = 40,000). 

The objective of this research is to illustrate the utility of CPMs within g-computation as a 

tool for causal inference in longitudinal studies. We will seek to evaluate degree of concordance 

between the estimated and theoretical distributions of potential outcomes. We will further assess 

finite-sample properties such as bias in estimating the mean potential outcome. We will also apply 

the CPM-based g-computation approach to study three-month cost outcomes in endometrial cancer 

patients under various adjuvant radiation therapy strategies based on a fully simulated data set 

designed to mirror key aspects the true distribution of and correlation between variables from a 

SEER (Surveillance, Epidemiology, and End Results)-Medicare linked database of women with 

endometrial cancer. A fully simulated version of these data was generated due to the proprietary 

nature of the data; results from this analysis are intended to be used only for illustrative purposes. 

Because cost outcomes are measured intermittently, we use the nested g-computation adaptation 

appropriate for settings in which the outcome of interest is a sum of repeated outcome measures 

over time [3]. 
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CHAPTER 2 

 

METHODS 

 

2.1 Notation and Causal Assumptions 

 

 In this section, we briefly introduce the notation used throughout this thesis and summarize 

the key assumptions required to identify the mean potential outcome under a longitudinal treatment 

regime. We let Y denote the observed value of the outcome, L denote measured covariates, and A 

denote observed treatment administered. Let i = 1, …, n index independently sampled study 

subjects, and let t = 1, …, T index uniformly spaced time points measured for each independently 

sampled study subject. We further use overbar notation to denote variable history up until the 

indexed time (or entire variable history absent a time index). 

Figure 2.1 illustrates the temporal ordering of the variables in a hypothetical study 

involving three treatment and covariate measurements prior to a single outcome: 

 

 

Figure 2.1: Causal diagram for a longitudinal study with three time points. Treatment is denoted as At for t 
= 0, …, 2; covariate values are denoted as Lt for t = 0, …, 2; and the outcome is denoted as Y. This is based 
on a similar diagram by Daniel et al.  
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This causal diagram makes clear, for instance, that L1, a common cause of future treatment A1 and 

future confounder L2, is also a mediator on the path from prior treatment, A0 to the outcome, Y. 

Further, all treatment and confounder values occurring from times t = 1 and t = 2 are colliders (i.e., 

they have two causes). While we will later conduct a simulation study involving three time points, 

we will formulate the identifying assumptions under the more general case of T time points, which 

is represented in the DAG of Figure 2.2 (shown below). 

 

Figure 2.2: Causal diagram for longitudinal study with a time-dependent confounder influenced by previous 
treatment/exposure, based on a similar diagram by Daniel et al. 

 

The identifying assumptions are described by Hernán and Robins [10]; generalizations to 

repeated outcomes are further summarized by Spieker et al. [3], which are summarized as follows: 

 

1. Sequentially ignorable treatment: The observed treatment at time t is independent of the 

potential outcome and the measured covariate at time t, conditional on measured covariate 

history through time t – 1. This also is referred to as “no unmeasured confounding” or 

“conditional exchangeability.” Formally, this assumption is expressed as: 

 

("!"# , $!"#) ⊥ 	(!	|	$*!$%, (̅!$%, "!$%	∀	-* ∈ (̅, ∀	/ ∈ {0, . . . , 3} 

!! !" !# !$…

"! "" "# "$…
#
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2. Positivity: Each subgroup defined by their covariate history has a non-zero probability of 

receiving each treatment regime under consideration. Mathematically, this is written as: 

 

0 < 6((!|	$*! , (̅!$%, "*!$%) < 1, ∀	($*! , (̅!$%, "*!$%): 6($*! , (̅!$%, "*!$%) > 0; 	1 ≤ / ≤ 	3. 

 

3. Stable-unit-treatment-value assumption (SUTVA): 

a. No interference: "&!"# , the potential outcome for subject i under treatment regime -* at time t 

is independent of the observed treatment assignment of others. This can be expressed as: 

 

"&!"# 	 ⊥ 	 (̅&!, 1 ≤ < ≠ <' ≤ >, ∀	/. 

 

b. Consistency: Under the treatment actually received, the observed outcome is precisely the 

potential outcome under the observed treatment. Formally, this can be represented as: 

 

"& = "&
(̅" 	. 

 

The standardization formula is given as follows, and is valid under the cross-sectional 

version of the assumptions listed above:  

 

E("") =AE("|( = 	-, $ = ℓ)C*(ℓ)
ℓ

. 

 

The g-formula is the longitudinal generalization of the above formula, given by: 

 

E(""#) =AE("|(̅ = -*, $* = ℓ*)DC*#(ℓ!|(̅!$% = -*!$%, $*!$% = ℓ*!$%)
,

!-.ℓ#
. 
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Note that the above expression is suitable for the setting in which there is a single outcome 

measured following the time-varying confounders and treatment. While our simulation study will 

reflect this simpler setting, it will be useful in our application (in which the outcome of interest is 

characterized by " = ∑ "!,
!-% ) to understand the nested g-formula, which amounts to applying the 

above expression to each of the repeated outcome measures, each time treating prior values of the 

outcome as covariates [3]: 

 

E(""#) =AAE("!|(̅! = -*! , $*! = ℓ*!)D6*$(ℓ/|(̅/$% = -*/$%, $*/$% = ℓ*/$%)
!

/-.ℓ#

,

!-.
. 

 

2.2 Model Specification 

 

Neither standardization nor the g-formula requires specification of the treatment 

assignment mechanism. However, the conditional distribution of the outcome and the confounders 

need to be modeled in some fashion. Notably, the distribution of the baseline covariate, L0, can be 

modeled empirically as it is not influenced by any prior variables on the DAG. The covariate L1, 

depends on L0 and A0. Modeling this covariate requires us to condition on the covariate and 

treatment history; we propose in this work to use a cumulative probability model to do this as 

flexibly as possible. By similar logic, we will need to do this for future values of the covariates 

and for the outcome. 

We now introduce the CPM, which will be used throughout this work to model the 

conditional distributions necessary for implementation of the g-formula. We will describe it 

specifically for a general outcome, Y, and general covariate profile, X. We assume that Y is realized 

as a monotonic transformation of some latent "∗ [4]. Expressed formally, " = F("∗) where F(⋅) 

is an increasing function, "∗ =	H,I + 	K, and H,X is a linear combination of the input variables 
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X. Also note that K denotes the error term, for which the distribution, L1, is specified. Without loss 

of generality, it is assumed that y1 ≤ … ≤ yn and that α(⋅) is increasing. The CPM formula for Y 

conditional on X can be derived as follows: 

L(M|I) = 6(" ≤ M|I) 

																																			= 6[F(H,I + 	K) ≤ M|I] 

																																								= 6[K ≤ 	F$%(M) −	H,I|I] 

																													= 	L1[F$%(M) −	H,I]. 

 

This can be simplified by setting Q = 	L1$% (we refer to G as the link function), and R = F$%:  

 

Q[6(" ≤ M	|I)] = R(M) −	H,I. 

 

Cumulative probability models are considered semiparametric because, while F(⋅) is unspecified, 

the conditional distribution of Y is modeled parametrically up to the unspecified transformation 

(possibly along with the association between X and Y) [4].  

We return to the nested g-formula and describe how CPMs can be used in this scenario. 

Recall that the L1 is a descendent of both L0 and A0. If we believe the error distribution to be normal 

(e.g., with a probit link function, we can express the conditional cumulative distribution function 

(CDF) of L1 as: 

 

6($% ≤ ℓ%|$. = ℓ., (. = -.) = ΦTR(ℓ%) − (H%ℓ. + H2-.)U. 

Analogous CPMs can be specified for all time-varying confounders that require specification of a 

conditional distribution. When concerns regarding overfitting become apparent, Markov 

assumptions can be invoked. For instance, we may assume a variable to only depend on covariate 
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values in the same and directly preceding interval [3]. If there is a single outcome measured at the 

end of the study, it is typical to presume it depends upon all prior treatments and confounders. If 

presuming a probit link, the CPM could be expressed, for instance, as: 

 

6T" ≤ MV$* = ℓ*, (̅ = -*U = ΦWR(M) − XAH!ℓℓ!
,

!-%
+AH!"-!

,

!-%
YZ. 

 

2.3 Estimation Procedure 

  

The process by which the mean value of a potential outcome as expressed by the g-formula 

is estimated is referred to a g-computation. It is a computational/numeric tool that is used to 

evaluate what is in most realistic cases an analytically intractable high-dimensional integral (the 

exception to this is the setting in which there few time points with only discrete covariates, each 

having few categories). We now discuss how to implement this procedure when CPMs are used to 

estimate all conditional distributions. 

 

1. Set the number of Monte-Carlo iterations, M (say, M = 5,000). 

2. Set the longitudinal treatment regime to be studied:  -* = (-., … , -,). 

3. Estimate the parameters of all necessary CPMs (details by Liu et al. [4]). 

4. Generate M random draws from the empirical distribution of L0; call them ℓ.%, …, ℓ.3. 

5. Generate M random draws from the distribution of $%"# , call them ℓ%%, …, ℓ%3. This procedure 

can be broken down into the sub-steps: 

a. Construct an estimate of the observation-specific CDF, 6\($% ≤ ℓ%|$. = ℓ.% , (. = -.), 

based on the estimated parameters of the CPM for L1. 
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b. Use the inverse CDF method to take a random sample from the estimated CDF of Step 

5(a).  

6. Repeat Step 5 to take random draws from the estimated distribution of each of $2"# , …, $,"# , and 

""# . Call the random draws from the latter distribution M%, …, M3. 

7. The average of the randomly drawn outcomes, ]$% ∑ M43
4-% , is a point estimate of E[""#]. 

 

One can cycle through this procedure to study the mean of any number of longitudinal treatment 

regimes, from which various longitudinal causal effects can be studied. 

 

2.4 Extensions of the Estimation Procedure 
  

As previously mentioned, this procedure also can be adapted to include repeated outcome 

measurements as will be done within the application to the fully simulated SEER-Medicare data 

set. Estimating repeated outcome measurements requires the use of nested g-computation so that 

the original g-computation formula can be used within each time interval of the study. Nested g-

computation amounts to cycling through this procedure for each outcome and treats past outcomes 

as confounders. 

 

 

 

 

 

 

 



 10 

CHAPTER 3 

 

SIMULATION 

 

 In this chapter, we use Monte Carlo techniques to demonstrate the utility of the CPM within 

g-computation. 

 

3.1 Description of Simulation Setup 

 

 We conduct a simulation study under the setting of three time points (i.e., T = 2, with three 

values of A and L), and a sample size of ^ = 1,000. The general form of the data generation 

mechanism for this simulation is described as follows: 

 

1. $.& ∼ >(` = 0, a2 = 1). 

 

2. (.& ∼ Bernoulli(C = expit(R. + R%$.&)). 

 

3. $%& = g0																	if	$%&
∗ < −1

expit($%&∗ )		otherwise
, where $%&∗ ∼ >(` = H. + H%$.& + H2(.& , a2 = 0.32). 

 

4. (%& ∼ Bernoulli(C = expit(R. + R%$.& + R2(.& + R5$%&)). 

 

5. $2& = g0																	if	$2&
∗ < −1

expit($2&∗ )		otherwise
, where $2&∗ ∼ >(` = H. + H%$%& + H2(%& , a2 = 0.32). 

 

6. (2& ∼ Bernoulli(C = expit(R. + R%$%& + R2(%& + R5$2&)). 

 

7. "& = g0																	if	"&
∗ < −1

expit("&∗)		otherwise
, where "&∗ ∼ >(` = o. + ∑ o!*$!&2

!-. +∑ o!((!&2
!-. , a2 = 1). 
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Note that this data generation mechanism features a Markov assumption in which, 

conditional on covariate history in the concurrent and prior interval, treatment and confounders 

are conditionally independent of variables further back in time than a single interval. In this 

particular simulation, we set the following parameter values: 

 

• (R., R%, R2, R5) = (−0.3, 0.7, 0.5, 0.7). 

• (H., H%, H2) = (−0.6, 0.25, 0.2). 

• (o., o%* , o2* , o5* , o%(, o2(, o5() = (−2.5, 0.2, 0.4, 0.6, 0.1, 0.3, 0.5). 

 

The treatment assignment is generated as a binary variable at each time point, resulting in 

a total of 23 = 8 possible longitudinal treatment regimes. For ease of presentation, we restrict our 

attention to four distinct treatment regimes defined by the time at which treatment commences. 

The regimes can be realized as follows: 

 

Regime 1:  -* = (0,0,0) (i.e., never treated). 

Regime 2: -* = (0,1,1) (i.e., treatment commences after one period of no treatment). 

Regime 3: -* = (0,0,1) (i.e., treatment commences after two periods of no treatment). 

Regime 4: -* = (1,1,1) (i.e., always treated). 

 

There is no closed-form expression that allows us to derive a closed-form expression for 

the true mean potential outcome under a particular longitudinal treatment regime. However, the 

true values can be ascertained computationally by sampling under the data generating mechanism 

under the very large sample size of N = 1,000,000 subjects and taking the mean of the generated 
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outcomes; of course, we plug in the treatment regime of interest, -*, in order to accomplish this (as 

opposed to actually generating the treatment randomly in a fashion that depends upon time-

dependent covariates). Being able to computationally ascertain the value of the true mean potential 

outcome will allow us to characterize finite sample properties such as bias when using CPMs to 

estimate their values. 

 
 

3.2 Proof of Concept Regarding the CPM 

 

 In evaluating the performance of the CPM method, it first is illustrative to use Monte-Carlo 

techniques to graphically compare the theoretical marginal distributions of the potential outcome 

and the time-dependent confounders to their respective estimated marginal distributions as 

determined by the CPM method under a large sample. To achieve a numeric representation of the 

true distributions, we simulate data under the true parameter values using the procedure discussed 

in the final paragraph of Section 3.1 under each of the four longitudinal treatment regimes. We 

then use the CPM-based g-computation method under a single simulation replicate (with the data 

generation mechanism described at the start of Section 3.1) with a total sample size of N = 1,000 

independent observations and M = 5,000 Monte Carlo iterations. The resulting distributions are 

displayed in Figures 3.1 through 3.4. 

For each treatment regime, we found that the estimated marginal distributions very closely 

reflected their respective theoretical distributions in almost all cases. One notable discrepancy is 

observed in estimating the distribution of L1 (Figure 3.4), which requires further investigation 

within future work. Overall, these distributions suggest that the method of implementing CPMs 

within g-computation is extremely effective in estimating the distributions of interest.  
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Figure 3.1: Theoretical and CPM distributions of the time-dependent cofounder (all three time points) and 
the outcome, Y, under Regime 1 (!" = (0,0,0); never treated). 
 
 

 

Figure 3.2: Theoretical and CPM distributions of the time-dependent cofounder (all three time points) and 
the outcome, Y, under Regime 2 (!" = (0,1,1); treatment commences after a period of no treatment).  
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Figure 3.3: Theoretical and CPM distributions of the time-dependent cofounder (all three time points) and 
the outcome, Y, under Regime 3 (!" = (0,0,1); treatment commences after two periods of no treatment).  
 
 

 

Figure 3.4: Theoretical and CPM distributions of the time-dependent cofounder (all three time points) and 
the outcome, Y, under Regime 4 (!" = (1,1,1); always treated).  
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The above is more or less a “proof of concept” simulation that illustrates the mechanism 

by which we hypothesize CPMs will have high utility in g-computation. Specifically, CPMs appear 

to be able to flexibly and adequately allow random draws from marginal distributions that are 

unlikely to be well captured by simple parametric models. 

 

3.3 Further Simulation-based Assessment of Finite Sample Properties 
 

We further seek to evaluate the bias of this approach, as given by the difference between 

E[""#] and Eu[""#]. We observe in Table 3.1 below the estimated means for each potential outcome 

under each of the four longitudinal treatment regimes. This result provides a further indication that 

the CPM approach is a suitable method for inclusion in the g-computation procedure for estimating 

the mean value of a potential outcome.  

 

Table 3.1: Bias of the CPM-based g-computation approach. 

Regime E[v67] w\[v67] w\[v67] - w[v67] 
xy = (z, z, z) 0.281 0.283 0.00188 
xy = (z, {, {) 0.692 0.696 0.00412 
xy = (z, z, {) 0.469 0.473 0.00477 
xy = ({, {, {) 0.804 0.805 0.000598 

 

 

 Our simulation study of the finite-sample properties of implementing CPMs within g-

computation suggests that this approach is useful for estimating the mean potential outcome in a 

longitudinal setting with time-varying confounders. Not only do the theoretical distributions of 

the cofounder and outcome nearly match the CPM distributions, but also the bias in estimating 

the mean potential outcome is negligible. 
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CHAPTER 4 

 

APPLICATION TO CUMULATIVE MEDICAL COSTS IN ENDOMETRIAL CANCER 

 

4.1 Background: Endometrial Cancer 

 

 In the United States, endometrial cancer is the fourth most common type of cancer in 

women, and fifth most common cancer-related cause of death overall [5]. A total of 63,230 women 

in the United States were diagnosed with endometrial cancer in 2018, with approximately 11,350 

cases resulting in death [5]. Additionally, because endometrial cancer is usually a postmenopausal 

disease and the U.S. population is continuing to increase in age, the prevalence of this disease is 

only expected to rise; in spite of this trend, older patients tend to receive treatments that are less 

aggressive than those received by younger individuals, as some physicians believe that older adults 

have less tolerance for therapy [6]. 

 To further complicate this situation, spending on medical care in the United States has been 

found to exceed other high-income countries almost two-fold [7]. In 1996, total health care 

expenditures were approximately $1.4 trillion, and this number increased to about $3.1 trillion by 

2016 [8]. Despite this high level of spending, rates of medical care utilization in the U.S. are 

comparable with other high-income countries that have lower levels of spending [7].  

 It is of interest to identify cost-effective treatments for endometrial cancer for the purposes 

of policy development, planning, and budgeting [3]. Considerations regarding safety, efficacy, and 

tolerability all enter into patient-specific treatment decisions. Though in an ideal world cost would 

be no factor, the burden of treatment costs also needs to be understood on a population level for 

the purposes of resource allocation. Since patient-specific treatment is typically adaptive and 



 17 

iterative in nature, principled methods for estimating costs of longitudinal treatment strategies are 

of critical importance. 

 

4.2 Description of Simulated Data Set 

 

The SEER (Surveillance, Epidemiology, and End Results)-Medicare Health Outcomes 

Survey connects information from surveys of Medicare recipients with cancer registry data [9]. 

The data set to which we will apply CPM-based g-computation approach is applied is fully 

simulated to protect the proprietary nature of the SEER-Medicare data but was designed to reflect 

key aspects of the overall variable distributions in the original data base. Our results are intended 

to be taken only as an illustration and are not suitable for particular policy recommendations. For 

the remainder of the thesis, our discussion of the data will be based on the simulation version.  

All women in these data had undergone hysterectomy, the only gold standard approach to 

evaluate cancer grade and stage. We focus in this particular project on patients with stage 1A (N = 

8,618) or 1B (N = 2,924) cancer. There are 11,542 participants in total who each have a unique ID 

number. The database participants’ age and cancer stage were recorded. Additional information 

collected includes the Charlson comorbidity index recorded at the beginning of the first, second, 

and third months post-hysterectomy; treatment within the first, second, and third months of 

hysterectomy; medical cost (in US dollars, $) accumulated within the first, second, and third 

months of hysterectomy; and the number of hospitalizations within the first, second, and third 

months of hysterectomy.  

Possible values of the Charlson comorbidity score are 0, 1, 2, and 3+. These data are 

aggregated based on different kinds of radiation therapy and chemotherapy. The different kinds of 

radiation therapy that might have been received by the patients include three-dimensional 
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conformal radiation, proton therapy, stereotactic body radiation therapy (SBRT), cyberknife, 

interstitial radiation, and intensity-modulated radiation therapy (IMRT). As for chemotherapy, the 

various types available include paclitaxel, carboplatin, doxorubicin, cisplatin, and docetaxel. For 

the purposes of this analysis, subjects were categorized as having received one of the following 

treatment options: no treatment, radiation therapy (RT), chemotherapy (CT), or both. Because 

patients are managed in large part according to prior treatment exposure, each treatment is 

considered an absorbing state such that treated patients will continue to be considered as treated.  

The purpose of this study is to estimate the mean total costs accumulated over time under 

various hypothetical treatment regimes. This longitudinal study includes two time-varying 

confounders: the Charlson comorbidity index and the number of hospitalizations. These variables 

likely are associated with both the treatment received, as well as the cost of this treatment over 

time. Figure 4.1 represents the relationships present in this setting at baseline and at the first time 

point, which can be expanded to all three time points: 

 

 

Figure 4.1: Causal diagram for the SEER-Medicare study to demonstrate the temporal ordering in a single 
time interval.  L1 and L2 are the time-stable covariates of age and cancer stage, measured at baseline.  L3 is 
the time-varying Charlson comorbidity index measured at the beginning of the first month, A1 and A2 are 
the time-varying treatments administered within the first month, and L4 is the time-varying covariate of 
hospitalizations that accumulates value within the first month. )! represents the cost accumulated within 
that first month. 
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 The Charlson comorbidity score is a time-varying confounder that is recorded at the 

beginning of the month, and hospitalizations is a time-varying confounder that accumulates value 

throughout the month. The outcome, cost, also is not only recorded at the end of the study but also 

after each month has passed. The cost accumulated within each month is estimated because these 

values may be of interest if determining when a patient incurs the most costs. Cost also may be a 

time-varying confounder, as it theoretically could be associated with future treatment decisions 

and is associated with the final cost.  

Regardless of the differences between this setting and the simulation, the CPM approach 

still can accommodate this scenario. As in the simulation, a first-order Markov assumption is 

invoked to allow for a current variable to only depend on covariate values in the same and directly 

preceding interval [3].  

 
4.3 Descriptive Statistics 

 

In order to characterize the variables in the data set, a table of descriptive statistics, 

stratified by cancer stage, is presented in Table 4.1. Within the table, p-values are provided to 

indicate differences in covariate values between subjects with stage 1A endometrial cancer and 

stage 1B endometrial cancer. For categorical variables, these p-values are obtained from the Chi-

square test. A Fisher's exact test is performed for categorical variables with sparse cell counts. A 

Kruskal-Wallis test is performed to yield the p-values for continuous variables. For categorical 

variables, the number of observations and frequency are presented in the table. For continuous 

variables, mean (standard deviation) and median (min, max) are presented. Table 4.2 presents an 

additional table of descriptive statistics, stratified by baseline values of the Charlson comorbidity 
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index. No tests of significance are performed to create this second table, and p-values are not 

provided.  

For every variable in the data set except for the cost within three months, covariate values 

between participants with stage 1A cancer and stage 1B cancer differ statistically (p < 0.05). Those 

with stage 1B cancer tend to be older than those with stage 1A cancer (75.1 (6.94) vs. 73.1 (6.37)), 

and the overall mean age regardless of cancer stage is 73.6 years.  

For each category of the Charlson comorbidity index and at every time point, there are 

more patients with stage 1A cancer than stage 1B. Overall, the majority of patients fall in the 0 

category of this Charlson comorbidity index at baseline (N = 7,915), and the two categories with 

the greatest number of patients at t = 1 and t = 2 are 0 (N = 4,643 and N = 4,509, respectively) and 

2 (N = 5,942 and N = 5,184, respectively).  

For each treatment at each time point, except for radiation therapy within the first month, 

it also is true that there are more participants with stage 1A cancer than stage 1B cancer. At each 

time point, the majority of all subjects receive no treatment, and the second greatest number of 

subjects receive radiation.  

For readability, cost is scaled by 1,000 prior to summarizing its distribution. Cost within 

one month is higher for the stage 1B subjects, and cost within two months is comparable between 

the two groups, but the distribution of cost for the stage 1A subjects displays a greater variance. 

For participants overall, cost increases from t = 1 to t = 2 and decreases from t = 2 to t = 3.   

While the two cancer stage groups differ statistically in terms of the number of 

hospitalizations, this variable still appears to be comparable between them. A notable trend is that 

the overall number of hospitalizations decreases with time.  
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Table 4.1: Descriptive statistics, stratified by cancer stage. 

 1A 
(N = 8618) 

1B 
(N = 2924) 

Overall 
(N = 11542) P-value 

Age at Hysterectomy  
Mean (SD) 

 
73.1 (6.37) 

 
75.1 (6.94) 

 
73.6 (6.57) 

< 0.001 
 

Median [Min, Max] 72.0 [60.0, 99.0] 74.0 [60.0, 98.0] 73.0 [60.0, 99.0]  
Charlson Comorbidity  
Index, t = 1 

   < 0.001 

0 6010 (69.7%) 1905 (65.2%) 7915 (68.6%)  
1 1931 (22.4%) 713 (24.4%) 2644 (22.9%)  
2 545 (6.3%) 246 (8.4%) 791 (6.9%)  
3+ 132 (1.5%) 60 (2.1%) 192 (1.7%)  

Charlson Comorbidity 
Index, t = 2 

   < 0.001 

0 3588 (41.6%) 1055 (36.1%) 4643 (40.2%)  
1 567 (6.6%) 190 (6.5%) 757 (6.6%)  
2 4325 (50.2%) 1617 (55.3%) 5942 (51.5%)  
3+  138 (1.6%) 62 (2.1%) 200 (1.7%)  

Charlson Comorbidity 
Index, t = 3 

   < 0.001 

0 3486 (40.5%) 1023 (35.0%) 4509 (39.1%)  
1 591 (6.9%) 202 (6.9%) 793 (6.9%)  
2 3764 (43.7%) 1420 (48.6%) 5184 (44.9%)  
3+ 777 (9.0%) 279 (9.5%) 1056 (9.1%)  

Treatment within 
Month 1 

   < 0.001 

None 8379 (97.2%) 2571 (87.9%) 10950 (94.9%)  
Radiation Therapy 196 (2.3%) 343 (11.7%) 539 (4.7%)  
(RT)     
Chemotherapy 43 (0.5%) 10 (0.3%) 53 (0.5%)  
(CT)     

Treatment within 
Month 2 

   < 0.001 

None 6579 (76.3%) 2047 (70.0%) 8626 (74.7%)  
RT 1730 (20.1%) 790 (27.0%) 2520 (21.8%)  
CT 222 (2.6%) 58 (2.0%) 280 (2.4%)  
Both RT & CT 87 (1.0%) 29 (1.0%) 116 (1.0%)  

Treatment within 
Month 3 

   < 0.001 

None 6070 (70.4%) 1880 (64.3%) 7950 (68.9%)  
RT 1998 (23.2%) 889 (30.4%) 2887 (25.0%)  
CT 343 (4.0%) 94 (3.2%) 437 (3.8%)  
Both RT & CT 207 (2.4%) 61 (2.1%)  268 (2.3%)  
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In general, age appears to display a positive association with higher categories of the 

baseline Charlson comorbidity index. Those with a baseline Charlson comorbidity index of 2 tend 

to be the oldest, with a mean age of 76.2 years. For both stages of cancer, the greatest number of 

subjects have a baseline Charlson comorbidity index of 0. Additionally, the overall number of 

patients who have stage 1A (N = 8,618) cancer is greater than the number who have stage 1B (N 

= 2,924).  

At t = 2, for the Charlson comorbidity index of 0 and 2, the greatest number of individuals 

have a baseline Charlson comorbidity index of 0. Also at this time point, for the Charlson 

comorbidity index of 1, the greatest number of subjects have a baseline Charlson comorbidity 

index of 1. For the Charlson comorbidity index of 3+ at this time point, the largest portion of 

subjects have a baseline Charlson comorbidity index of 3+. At t = 3, for the Charlson comorbidity 

Cost within Month 1 < 0.001 
Mean (SD) 15.0 (19.3) 16.3 (19.9) 15.4 (19.5)  

Median [Min, Max] 9.22 [0, 122] 11.3 [0, 135] 9.78 [0, 135]  
Cost within Month 2    < 0.001 

Mean (SD) 36.1 (94.2) 36.1 (87.8) 36.1 (92.6)  
Median [Min, Max] 1.94 [0, 2110] 3.76 [0, 766] 2.33 [0, 2110]  

Cost within Month 3        0.154 
Mean (SD) 9.69 (60.9) 8.00 (33.5) 9.26 (55.3)  
Median [Min, Max] 1.10 [0.00302, 

4330] 
1.17 [0.00273, 
683] 

1.13 [0.00273, 
4330] 

 

Hospitalizations within 
Month 1 

    

Mean (SD) 0.925 (0.265) 0.937 (0.244) 0.928 (0.260)     0.032 
Median [Min, Max] 1.00 [0, 2.00] 1.00 [0, 2.00] 1.00 [0, 2.00]  

Hospitalizations within 
Month 2 

    

Mean (SD) 0.443 (0.539) 0.490 (0.551) 0.455 (0.543) < 0.001 
Median [Min, Max] 0 [0, 3.00] 0 [0, 3.00] 0 [0, 3.00]  

Hospitalizations within 
Month 3 

    

Mean (SD) 0.0899 (0.296) 0.0663 (0.261) 0.0840 (0.288) < 0.001 
Median [Min, Max] 0 [0, 3.00] 0 [0, 3.00] 0 [0, 3.00]  
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index of 0, 2, and 3+, the majority of participants have a baseline Charlson comorbidity index of 

0. For a Charlson comorbidity index of 1 at this time point, most subjects have a baseline Charlson 

comorbidity index of 2.  

For each treatment level at each time point, the greatest number of subjects have a baseline 

Charlson comorbidity index of 0. Excluding the third time point, those with a baseline Charlson 

comorbidity index of 2 have accumulated the greatest costs. Within the third month post-

hysterectomy, subjects with a baseline Charlson comorbidity index of 1 have accumulated the most 

costs. 

The number of hospitalizations is comparable between the different baseline values of the 

Charlson comorbidity index. For each value, the number of hospitalizations decreases with time.  

Figure 4.2 illustrates the distribution of age at hysterectomy within the study sample. A 

right-skewness is observed, with a defined peak at approximately age 65. This likely is due to the 

fact that U.S. citizens become eligible for Medicare at the age of 65 years.  

 

 

Figure 4.2: Distribution of age at hysterectomy. 
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Table 4.2: Descriptive statistics, stratified by baseline Charlson comorbidity index. 
 0 

(N = 7915) 
1 

(N = 2644) 
2 

(N = 791) 
3+ 

(N = 192) 
Overall 

(N = 11542) 
Age at Hysterectomy  

Mean (SD) 
 
72.7 (6.36) 

 
75.4 (6.55) 

 
76.2 (6.63)  

 
76.1 (6.71) 

 
73.6 (6.57) 

Median [Min, Max] 71.0 [60.0, 
98.0] 

75.0 [64.0, 99.0] 76.0 [65.0, 98.0] 75.0 [65.0, 93.0] 73.0 [60.0, 99.0] 

Stage at Hysterectomy      
1A 6010 (75.9%) 1931 (73.0%) 545 (68.9%) 132 (68.8%) 8618 (74.7%) 
1B 1905 (24.1%) 713 (27.0%) 246 (31.1%) 60 (31.2%) 2924 (25.3%) 

Charlson Comorbidity 
Index, t = 2 

     

0 4643 (58.7%) 0 (0%) 0 (0%) 0 (0%) 4643 (40.2%) 
1 80 (1.0%) 677 (25.6%) 0 (0%) 0 (0%) 757 (6.6%) 
2 3189 (40.3%) 1963 (74.2%) 790 (99.9%) 0 (0%) 5942 (51.5%) 
3+  3 (0.0%) 4 (0.2%) 1 (0.1%) 192 (100%) 200 (1.7%) 

Charlson Comorbidity 
Index, t = 3 

     

0 4509 (57.0%) 0 (0%) 0 (0%) 0 (0%) 4509 (39.1%) 
1 145 (1.8%) 648 (24.5%) 0 (0%) 0 (0%) 793 (6.9%) 
2 2748 (34.7%) 1737 (65.7%) 699 (88.4%) 0 (0%) 5184 (44.9%) 
3+ 513 (6.5%) 259 (9.8%) 92 (11.6%) 192 (100%) 1056 (9.1%) 

Treatment within Month 1      
None 7520 (95.0%) 2493 (94.3%) 755 (95.4%) 182 (94.8%) 10950 (94.9%) 
Radiation Therapy 360 (4.5%) 134 (5.1%) 36 (4.6%) 9 (4.7%) 539 (4.7%) 
(RT)      
Chemotherapy 35 (0.4%) 17 (0.6%) 0 (0%) 1 (0.5%) 53 (0.5%) 
(CT)      

Treatment within Month 2      
None 5922 (74.8%) 1960 (74.1%) 593 (75.0%) 151 (78.6%) 8626 (74.7%) 
RT 1727 (21.8%) 580 (21.9%) 178 (22.5%) 35 (18.2%) 2520 (21.8%) 
CT 181 (2.3%) 81 (3.1%) 13 (1.6%) 5 (2.6%) 280 (2.4%) 
Both RT & CT 85 (1.1%) 23 (0.9%) 7 (0.9%) 1 (0.5%) 116 (1.0%) 
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Treatment within Month 3      

None 5466 (69.1%) 1789 (67.7%) 550 (69.5%) 145 (75.5%) 7950 (68.9%) 
RT 1976 (25.0%) 673 (25.5%) 203 (25.7%) 35 (18.2%) 2887 (25.0%) 
CT 281 (3.6%) 123 (4.7%) 25 (3.2%) 8 (4.2%) 437 (3.8%) 
Both RT & CT 192 (2.4%) 59 (2.2%) 13 (1.6%) 4 (2.1%) 268 (2.3%) 

Cost within Month 1      
Mean (SD) 12.8 (17.7) 19.9 (20.9) 24.3 (23.9) 20.9 (23.1) 15.4 (19.5) 
Median [Min, Max] 6.40 [0, 115] 14.8 [0, 122] 17.9 [0, 135] 15.2 [0, 84.8] 9.78 [0, 135] 

Cost within Month 2      
Mean (SD) 32.6 (89.7) 43.2 (97.8) 49.0 (103) 31.8 (84.9) 36.1 (92.6) 
Median [Min, Max] 1.08 [0, 2110] 6.33 [0, 1100] 9.04 [0, 823] 3.10 [0, 686] 2.33 [0, 2110] 

Cost within Month 3      
Mean (SD) 9.39 (41.1) 9.70 (90.2) 7.18 (20.2) 6.49 (22.3) 9.26 (55.3) 
Median [Min, Max] 0.987 [0.00343, 

1590] 
1.37 [0.00273, 
4330] 

1.55 [0.00515, 249] 1.34 [0.0267, 208] 1.13 [0.00273, 4330] 

Hospitalizations within 
Month 1 

     

Mean (SD) 0.911 (0.287) 0.968 (0.175) 0.973 (0.161) 0.911 (0.285) 0.928 (0.260) 
Median [Min, Max] 1.00 [0, 2.00] 1.00 [0, 1.00] 1.00 [0, 1.00] 1.00 [0, 1.00] 1.00 [0, 2.00] 

Hospitalizations within 
Month 2 

     

Mean (SD) 0.391 (0.501) 0.581 (0.601) 0.659 (0.604) 0.505 (0.560) 0.455 (0.543) 
Median [Min, Max] 0 [0, 3.00] 1.00 [0, 3.00] 1.00 [0, 3.00] 0 [0, 3.00] 0 [0, 3.00] 

Hospitalizations within 
Month 3 

     

Mean (SD) 0.103 (0.315) 0.0393 (0.211) 0.0341 (0.182) 0.0990 (0.299) 0.0840 (0.288) 
Median [Min, Max] 0 [0, 3.00] 0 [0, 3.00] 0 [0, 1.00] 0 [0, 1.00] 0 [0, 3.00] 
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 The trajectories of Charlson comorbidity index and number of hospitalizations are plotted 

in Figure 4.3. By construction, the comorbidities that comprise the Charlson score are absorbing 

states, and they therefore are non-decreasing over time. 

 

Figure 4.3: All possible trajectories for Charlson comorbidity index and hospitalization trajectories over 

three months. 

 

The plot (right panel of Figure 4.3) of hospitalizations for each subject over time shows 

that, for some individuals, the number of hospitalizations increases after 2 months post-

hysterectomy, followed by a decrease. For other participants, the number of hospitalizations 

decreases after 2 months post-hysterectomy and then increases after 3 months post-hysterectomy.  

The treatment changes that occurred within the sample over the course of three months are 

shown in Figure 4.4. From this plot, we observe a decrease in the percentage of individuals who 

receive no treatment at a given time point out of all the individuals present at that time point. This 

percentage changes from 94.87% to 68.88% during the study. Conversely, for each treatment 

option, we can see an increase in the percentage of patients who receive that treatment at a given 

time point out of all the patients in the sample at that time. For instance, the percentage of 
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individuals who receive radiation changes from 4.67% at t = 1 to 25.01 % at t = 3. Within any 

given month, the greatest percentage of subjects receive no treatment, and the second greatest 

percentage receive radiation therapy. The lowest percentage receive both radiation and 

chemotherapy.  

 

Figure 4.4: Treatment distribution over three months. 

 

Figure 4.5 shows the overall distribution of cost in U.S. dollars scaled by 1,000 after each 

month post-hysterectomy. From these histograms, it can be seen that cost is severely right-skewed 

which is an indication that this variable could be log-transformed prior to the analysis. Figure 4.6 

shows the overall distribution of cost after log-transforming, and while the distributions still are 

fairly skewed, they are more symmetric than those in Figure 4.5.  

 The overwhelming trend of cost accumulated over time, stratified by subject, is that cost 

increases after 2 months post-hysterectomy and then decreases after 3 months post-hysterectomy. 

For some individuals, cost spikes after three months post-hysterectomy. 
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Figure 4.5: Overall distribution of cost after each month post-hysterectomy. 

 

 

Figure 4.6: Overall distribution of log cost after each month post-hysterectomy. 
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4.4 Model Specification for G-computation Procedure 

 

In formulas and models moving forward, L again will represent the covariate values, but a 

subscript of j will be introduced to denote the type of covariate being referenced. Recall that 

independent subjects are indexed by i, and time points/observations are represented by t. Time-

stable covariates of interest will be labeled as follows: 

 

• L1: Baseline age (at time of hysterectomy). 

• L2: Cancer stage (1A vs. 1B). 

 

Further, time-dependent covariates will be denoted as follows: 

 

• L3t: Charlson comorbidity index (for t = 1, … , 3). 

• L4t: Hospitalizations (for t = 1, … , 3). 

 

Treatment will be denoted by !!", where radiation therapy is given by !#" and chemotherapy as 

!$". The cost outcomes are represented by "", with t = 1, …, 3. We will use the notation #("" = 0) 

to denote a zero-cost at time (. Let *" = (+#, +%" , +&") and -" = (!#" , !$") for ease of notation. 

Before using the CPM approach to estimate the cost, it is essential to establish and clarify the 

temporal ordering within the g-computation formula (see Section 2.1 for a presentation of the 

nested g-formula and Section 2.3 for the estimation procedure). In particular, we will need to be 

able to take random draws from certain distributions of interest, some of which will be conditional 

and therefore will need to be estimated using CPMs. Within the first time interval, the distributions 

of interest are as follows: 
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• .(+#, +%#), estimated empirically. 

• .(+&#|-#, +#, +%#), estimated with a CPM. 

• .("#|+&#, -#, +#, +%#), estimated with a zero-inflated CPM. 

 

For the times t = 2 and t = 3, we invoke a first-order Markov assumption that allows us to estimate 

the models based on first order lagged variables; these can each be estimated with a CPM: 

 

• .(+%"|-0"'#, *1"'#, "1"'#). 

• .(+&"|-0" , *1"'#, "1"'#, +%"). 

• .(""|-0" , *1" , "1"'#). 

 

All cumulative probability models are expressed using a probit link function, and all terms in the 

model are presumed linear. 

 

4.5 Treatment Regimes and Comparisons of Interest 

 

 Recall that treatment is considered as an absorbing state such that a patient is considered 

to receive a treatment from the time of initiation onward. Defining treatment is this manner reduces 

the dimensionality of the possible treatment options; without such a simplification, the positivity 

assumption would be more easily violated. Further, this application is limited to the most common 

treatment trajectories present within the data set. These trajectories are as follows: 

 

• No treatment. 
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• Radiation therapy commences during third month following hysterectomy. 

• Radiation therapy commences during second month following hysterectomy. 

• Radiation therapy commences within one month of hysterectomy. 

 

We further stratify our analysis by cancer stage, with mean costs at each time point estimated for 

both stage 1A patients and stage 1B patients separately. 

 

4.6 Results 

 

Tables 4.3 and 4.4 summarize the results for each cancer stage and treatment trajectory. 

 

Table 4.3: Mean cumulative cost ($/1000) for cancer stage 1A. 

 23[5()*] (SD) 23[5+)*] (SD) 23[5,)*] (SD) 23[5)*] (SD) 

70 =	(0, 0, 0) 
 

14.6 (18.4) 18.7 (62.1) 22.7 (73.5) 56.1 (154) 

70 =	(0, 0, RT) 
 

14.6 (18.6) 18.7 (62.6) 17.3 (85.7) 50.7 (167) 

70 =	(0, RT, RT) 
 

15.1 (18.9) 16.8 (62.5) 36.6 (142) 68.4 (224) 

70 =	(RT, RT, RT) 31.8 (23.9) 43.5 (107) 56.2 (137) 131 (268) 
 

Table 4.4: Mean cumulative cost ($/1000) for cancer stage 1B. 

 23[5()*] (SD) 23[5+)*] (SD) 23[5,)*] (SD) 23[5)*] (SD) 

70 =	(0, 0, 0) 
 

14.0 (17.5) 16.6 (56.0) 20.2 (62.2) 50.8 (136) 

70 =	(0, 0, RT) 
 

14.5 (18.0) 17.3 (56.5) 14.9 (54.9) 46.7 (129) 

70 =	(0, RT, RT) 
 

14.1 (17.4) 11.3 (42.5) 19.9 (64.2) 45.3 (124) 

70 =	(RT, RT, RT) 31.7 (24.7) 25.1 (69.1) 33.4 (84.7)  90.1 (178) 
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 Among patients with stage 1A cancer, the overall cost tends to be higher for those patients 

who receive more treatment which, intuitively, is a logical observation. For instance, treatment 1 

(which entails no treatment received at each time point) is associated with a lower overall cost than 

treatment 3 (no treatment at t = 1 and radiation therapy at t = 2 and t = 3) which itself has a lower 

cost than treatment 4 (radiation therapy at all time points). However, treatment 2 (no treatment at 

t = 1 or t = 2 and radiation therapy at t = 3) for these patients has the lowest overall cost of all the 

treatment trajectories. While the exact reason for this is unknown, this could be an indication that 

receiving some treatment (vs. none) may result in more mild symptoms and, thus, lower total costs. 

Simultaneously, receiving treatment at one time point vs. more than one time point intuitively will 

lead to lower total costs.  

 For stage 1B cancer patients, overall cost is lower for treatment regimes that include more 

treatment, with the exception of treatment regime 4. For instance, treatment 1 is associated with a 

higher overall cost than treatment 2 which itself has a higher overall cost than treatment 3. 

However, treatment 4 for these patients has the highest overall cost of all the treatment trajectories. 

This could be the case if treatment regimes 2 and 3 are more effective than treatment regimes 1 

and 4 in terms of reducing symptoms, which would lead to lower total costs. It also is logical that 

receiving no treatment would incur a lower cost than receiving treatment at every time point.  

 For treatment regime 1, among patients in both cancer stage groups, cost tends to increase 

over the course of three months. This trend also holds for treatments 3 and 4 among subjects with 

stage 1A cancer. This could be due to either worsening symptoms or more treatment received over 

time. Treatment 2, for all cancer patients, corresponds with an increase in cost from t = 1 to t = 2 

and a decrease from t = 2 to t = 3. If receiving treatment at t = 3 helps alleviate symptoms, this 

could be the reason for that decline in cost. For treatments 3 and 4, among patients with stage 1B 
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cancer, costs decrease from t = 1 to t = 2 and increase from t = 2 to t = 3. This may be the result if 

receiving treatment two months post-hysterectomy is effective in decreasing symptoms and, 

therefore, costs. Perhaps treatment three months post-hysterectomy is not the most effective or 

symptoms recur.  

 For all treatments, the overall cost of treating stage 1A cancer patients is higher than the 

cost of treating stage 1B patients. This could be the case if more treatments are administered to 

subjects with less-aggressive cancer as a preventative measure.  

 We display the distribution of log cost at each time point for each cancer stage under 

treatment trajectory (Stage 1A in Figure 4.7 and Stage 1B in Figure 4.8). 

 

 

Figure 4.7: Distribution of non-zero log cost with exponentiated x-axis labels, stratified by month and 

treatment trajectory among patients with stage 1A cancer. 
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The log cost distributions for treatments 1-3 within month 1 display a slight left-skewness 

and look similar (if not exactly the same). For treatment 4 within month 1, the distribution of log 

cost also is left-skewed but includes more of the higher log cost values. Because each treatment 

regime, except for 4, receives no treatment within the first month, it seems likely that their log cost 

distributions would be similar.  

 Within the second and third months for treatment 1, the distributions of log cost are flatter 

and appear to display more non-zero log cost values than within month 1. They both are right-

skewed and appear to match one another. It is logical that these patients in treatment regime 1 

would generate more log costs over time and that cost at t = 2 and t = 3 would have similar 

distributions as the patients still do not receive treatment within months 2 and 3. Also similar (if 

not the same) to these distributions is that for log cost within month 2 for treatment regime 2. This 

again makes sense, as those patients also do not receive any treatment within the second month.  

 The distribution of log cost within month 3 for treatment regime 2 is slightly right-

skewed, meaning that there are more of the lower log cost values in this distribution. This is a 

reasonable observation, as we observed in Table 4.3 that the mean cost decreases from t = 2 to t = 

3 for cancer stage 1A patients receiving treatment 2. Treatment regime 3’s log cost distribution 

within month 2 is very flat and slightly right-skewed. This could be due to the effectiveness of the 

treatment in reducing symptoms and, therefore, the number of non-zero log cost values. For 

treatment regime 3 within month 3, there are more non-zero log cost values in the distribution and 

there is a right-skewness. It makes sense that more log cost would be accumulated as more 

radiation therapy is received. The log cost distributions for treatment regime 4 within months 2 

and 3 are somewhat symmetric and similar to one another. These distributions may be similar due 

to the fact that radiation therapy is received at both times.  
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 Additionally, it generally is true for stage 1A cancer patients that the probability of 

having a zero cost value decreases with increased treatment. It makes sense that receiving more 

treatment results in more non-zero costs incurred. Two exceptions are the probability of a zero 

cost for treatment regime 2 within month 3 and treatment regime 3 within month 2. These time 

points happen to be when treatment begins for these regimes, and it could be that the initial 

treatment period results in lower (more zero) costs. 

 

 
 

Figure 4.8: Distribution of non-zero log cost with exponentiated x-axis labels, stratified by month and 

treatment trajectory among patients with stage 1B cancer. 

 

As was the case for stage 1A patients, the log cost distributions among stage 1B patients 

for treatments 1-3 within month 1 display a slight left-skewness and look similar (if not exactly 
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the same). For treatment 4 within month 1, the distribution of log cost is also left-skewed but 

includes more of the higher log cost values. The reasoning for these observations for stage 1A 

cancer patients holds for stage 1B cancer patients.  

The remaining distributions for stage 1B subjects, except for the distribution of log cost 

within month 3 for treatment regime 4, are right-skewed and look very similar. This may indicate 

that time and treatment do not influence log cost among patients with stage 1B cancer. However, 

further statistical investigation is necessary to make such a conclusion. The plot for month 3 for 

treatment regime 4 is slightly less skewed than the other plots at times 2 and 3.  

 Similar to stage 1A cancer patients, it is true that for stage 1B cancer patients that the 

probability of having a zero cost value decreases with increased treatment. One exception is the 

probability of a zero cost for treatment regime 2 within month 3. As with the stage 1A subjects, 

this time point is when treatment begins for this group, and it could be that the initial treatment 

period results in lower (more zero) costs. 
 

 

Figure 4.9: Distribution of non-zero overall log cost with exponentiated x-axis labels, stratified by cancer 

stage and treatment trajectory. 
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Figure 4.9 displays the total log cost for each treatment regime by cancer stage. Comparing 

distributions of overall accumulated log cost between cancer stages (see Figure 4.9), it appears as 

if these distributions are approximately the same within each treatment group. Thus, there is not a 

noticeable difference in total log cost between stage 1A and 1B cancer. The distributions of log 

cost within treatment regime 1, 2 and 4, for both cancer stages, are fairly symmetric. The log cost 

distribution under treatment regime 3, for both cancer stages, is right-skewed which means that 

this treatment results in more of the lower total log cost values.  

The probability of having a zero cost is comparable between the two cancer stages for all 

the treatment regimes, with stage 1B patients having only a minimally smaller probability for 

treatment regimes 1-3. This indicates that, within a given treatment regime, cancer stage may not 

influence the probability of having a zero-cost value.  
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CHAPTER 5 

 

DISCUSSION 

 

 Given the rising costs in health care in the United States and the difficulty in estimating the 

full treatment effect in a longitudinal study with time-varying confounders, it is critical that 

methods are developed to effectively measure these costs in such settings. While parametric g-

computation is a suitable approach, the more flexible option of implementing CPMs within g-

computation is shown to be viable, as well. From the simulation outlined in this paper, the resulting 

bias in estimating the mean potential outcome is extremely low, and the CPM distributions of the 

time-varying confounder and the outcome are nearly the same as the corresponding theoretical 

distributions. When this method is applied to fully simulated SEER-Medicare data, modifications 

are made to accommodate two time-varying confounders, additional baseline covariates, and 

longitudinal measurements of the outcome (instead of measuring just the final outcome). 

Regardless of these changes, the general framework of the CPM approach holds, and the mean 

potential outcome at each time point and overall can be estimated.  

  Future work on this project could entail determining the uncertainty of the mean potential 

outcome estimates by performing bootstrap replicates of the estimation procedure to determine the 

standard error of those estimates. Additionally, it only is known now that flexible g-computation 

is possible, but it is not clear how this approach compares to parametric g-computation in terms of 

efficiency. Determining this would entail repeating the estimation procedure with parametric 

models (such as multiple linear regression models) in place of the cumulative probability models 
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and comparing the approaches based on bias, bootstrap standard error, coverage probability, and 

robustness to model misspecification.  

 Additional expansions of this research include applying the CPM approach to settings in 

which the time points are not evenly spaced, there is missing data, and other semiparametric 

models are considered. Furthermore, the process of programming flexible g-computation within 

statistical software is lengthy and complex. For this approach to be more easily implemented 

within applied collaborations, a package could be written for R to include functions that perform 

the steps which are coded manually for this project.  

 Continuing to explore flexible and varied methods of approaching common problems can 

only help to advance the efforts of modern research, allowing investigators to reach conclusions 

with less assumptions and, in turn, less room for error. When trying to understand a topic as 

imperative as rising medical costs, this endeavor is even more valuable. Exploring the CPM 

approach further should lead to significant contributions to longitudinal research.  
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APPENDIX 

 

 The R code to perform this project’s simulation and application can be found in a public 

repository at the following link: https://github.com/BirdrowC/Semiparametric-G-Computation. 

 

 


