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Plan of Discussion

In chapter I, we start with the vacuum structure in classical electrodynamics, which is the simplest theory

describing one of the fundalmental fields in the universe. The contraction of the field Fµν Fµν is related to

the energy of the field, and the inequality (Fµν −∗Fµν)
2 ≥ 0 gives a lower bound of the field energy which

saturates the vacuum. As expected, this vacuum is shown to be Fµν = 0 and there is no ambiguity over what

this vacuum represents (the spacetime is void of the electromagnetic field). Then looking into classical SU(2)

Yang-Mills field and following similar procedures, we find that the vacuum is not uniquely determined. In-

stead, there are different types of vacuum categorized by a topological index q. This topological vacuum

structure also appears in QCD theory since SU(2) symmetry can be embeded in SU(3). The necessary redef-

inition of the true vacuum or ground state gives the QCD lagrangian a new term which is a pseudoscalar and

brings CP violation to QCD. However, no experimental data suggests that strong interaction violates CP. This

is known as the strong CP problem, and it may jeopardize QCD as the correct theory of the strong interaction.

The CP violation can be resolved if we introduce a new particle called the axion.

We discuss briefly the properties of the axion including the decay constant and the mass according to

effective field theory. This analysis shows that axions are self-attracted besides gravitational effect. The

bosonic nature of axions imply that a Bose-Einstein condensate of axions can result in axion clusters. The

second source of axion production could be from cosmic strings. A third possibility of large scale axion

production is from superradiance of primordial black holes, although there are limitations on some parameters

of the black hole.

The axion also couples to the photon, thus the decay process a→ γ + γ can take place which provides

the basic mechanism of lasing. We then derive the kinematic relation between the momentum of the axion

pµ and the momentum of the photon kµ . The evolution of the lasing process in a previous model was built

upon the Boltzmann equation, which shows that spontaneous and stimulated decay of the axions, and back

annihilation of the photons contribute to the change of the occupation number of the photons. However, the

model assumed that the axion cluster is spherical symmetric in both momentum and coordinate space. A

portion of our work is to investigate the lasing process when this assumption is not made.

In chapter II, we assume the axion cluster is not spherical symmetric in momentum space but it still

possesses spherical symmetry in coordinate space. We expand the occupation numbers of both axions and

photons in series of spherical harmonics and plug these expansions into the evolution equation. The con-

servation of energy and momentum allow us to integrate and simplify the equation. Since both sides of the

equation are written in terms of components of spherical harmonics which are orthonormal, we arrive at

equations that connect the components of occupation number of photons to the components of occupation
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number of axions.

As with the expansion of the occupation numbers, we can also expand the number density of the axions

and the photons in series of spherical harmonics. Direct integration over the momentum space leads us to

relations that tie the components of occupation number to the components of number density, for axions

and photons respectively. Substitution of these relations into the equations we obtained previously gives us

equations that connect the components of number density of photons to the components of number density

of axions. These equations are applicable to many specific momentum distribution of axion cluster.

The first example discussed has a spherical symmetric momentum distribution and is exactly the same as

the previous axion lasing model. This example should reduce to the equations given by the previous model

if our calculation is not erroneous. And that is the case here which validates at least to some degree our ap-

proach of generalizing the previous model. Our second example is for axion momenta preferentially parallel

to the polar axis. The photons produced from this type of distribution of axion momentum have a similar

momentum distribution. Our last example is for axions with the direction of momentum parallel to the equa-

torial plane. Similar momentum distribution of the photons to that of axions occurs.

Chapter III is an analogy of the work done in chapter II but in coordinate space. In chapter III, we assume

the axion cluster is not spherical symmetric in coordinate space, but it still possesses spherical symmetry in

momentum space. We allow a nonspherically symmetric angular distribution X to modify the spherical axion

spatial distribution, with the aim of finding the angular distribution Y of photons resulting from decays of

axions. This aim fails to be achieved which tells us that there is no simple way to find a closed form for either

X or Y . Therefore, it suggests again the series expansion approach.

Similar to what was presented in chapter II, we expand the occupation numbers and number densities of

axions and photons in spherical harmonics. Then we substitute the series expansion of occupation numbers

in the evolution equation and integrate the equation which is restricted by the conservation of energy and mo-

mentum. We obtain equations that connect the components of number density of photons to the components

of number density of axions and show examples of application of these equations.

The first example is an axion distribution with spherical symmetry. It is expected that this example would

reduce to the previous axion lasing model and this is indeed the case here. The second example shows that

the distribution of the photons has the same component as that of axions which tend to concentrate more

along the polar axis. The third example is also superradiance motivated and we deduce that the components

of distribution of the photons are the same as those of axions.

In chapter IV, we first discuss the evolution equation of the decay process a→ γ +γ in Minkowski space-
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time to gain some insights on how to write the equation in curved spacetime. The equation contains integrals

over several Lorentz measures which need to be expressed in covariant measure in curved spacetime. In ad-

dition, we consider the difference between coordinate time and the local time at which the decay takes place.

The kinematics of the decay process is also generalized from Minkowski spacetime to curved spacetime.

After writing the evolution equation in static spacetime, we repeat the same procedures to integrate and

simplify the evolution equations but with more complexity. The final results are two sets of differential e-

quations that determine the temporal development of number densities of uniformly distributed and distorted

photons and axions. We see a rapid peak in the number density of the uniformly distributed photons, we also

see a rapid peak followed by a rapid trough in the number density of the distorted photons. The behavior of

the uniformly distributed photons is what we expected, as it is similar to that in the previous lasing model.

The unexpected behavior of the distorted photons could be a result of the gravitational tidal effect.

Chapter IV is an adaptation of the previous lasing model to static spacetime.

In chapter V, we review the effective field theory of self-interaction of the axion and propose a prescription

that gives a classical potential which may describe the attraction between two axions by reverse quantization.

Then we derive a continuous potential at each location if we have a continuous distribution of axions based

on the classical potential between two individual axions that we proposed. A comparison between this self-

attraction potential and gravitational potential is carried out. We estimate the effective range of the self-

interaction potential from this comparison. Moreover, this comparison also suggests that axion stars may

have inner structure made of axitons.

Using this potential, we find that the mass and radius of the axiton determine whether the axiton is

relativistic or not. Even for a relativistic axiton, not all the axions are relativistic, as there are nonrelativistic

regions in the axiton. The axions on the surface of an axiton could be nonrelativistic. Previous lasing model

suggested that only nonrelativistic axion cluster can lase. If nonrelativistic axions do exist on the surface of

an axiton, then even a relativistic axiton can lase. Finally, we show examples of lasing from axitons with

parameters which were proven to be stable in recent literature. Chapter V is an application of the previous

lasing model.
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CHAPTER I

The strong CP problem and axion

This chapter introduces the vacuum structure of gauge boson fields with different underlying gauge symmetry

groups.

I.1 Vacuum in classical electrodynamics

The consensus is that there is little structure in the classical vacuum when the underlying gauge symmetry

group is only U(1). The photon field is taken here as the subject of discussion. A classical source-free photon

field Fµν satisfies the inhomogeneous Maxwell’s equation ∂µ Fµν = 0, where Fµν is related to 4-vector field

Aµ through Fµν = ∂µ Aν −∂ν Aµ . The components of Fµν and Fµν are

Fµν =



0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


, Fµν = ηµα Fαβ

ηβν =



0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0


.

The Lorentz invariant quantity Fµν Fµν can be explicitly written in terms of the 3-vector fields ~E and ~B by

Fµν Fµν = 2(B2− E2

c2 ) . (I.1)

It is worth noting that this is a property of Fµν Fµν in Minkowski spacetime. In 4-dimensional Euclidean

spacetime, Fµν Fµν actually measures the energy density E of the electromagnetic field. This is easy to verify

as follows. In 4-dimensional Euclidean spacetime, there is no difference between Fµν and Fµν ,

Fµν = δµα Fαβ
δβν = Fµν =



0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


,

so the minus sign in (I.1) becomes positive,

Fµν Fµν = 2(B2 +
E2

c2 ) = 2µ0(
B2

µ0
+ ε0E2) = 4µ0E .

4



This relation may not hold in general, but in 4-dimensional Euclidean spacetime it connects energy density

of the field and a quantity which is obtained from the field tensor by a simple contraction.

The components of the Hodge dual ∗Fµν = 1
2 εµναβ Fαβ and ∗Fµν = ηµα ∗Fαβ ηβν in Minkowski space-

time are

∗Fµν =



0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0


,∗Fµν =



0 Bx By Bz

−Bx 0 Ez/c −Ey/c

−By −Ez/c 0 Ex/c

−Bz Ey/c −Ex/c 0


,

where εµναβ is the Levi-Civita symbol. Note that ∗Fµν 6= 1
2 εµναβ Fαβ . The contractions between these

tensors are

∗Fµν ∗Fµν = 2(
E2

c2 −B2) =−Fµν Fµν ∗Fµν Fµν =−4
c
~E ·~B = Fµν ∗Fµν

Consider the square of the difference between Fµν and ∗Fµν ,

(Fµν −∗Fµν)
2 = (Fµν −∗Fµν)(Fµν −∗Fµν) =

8
c
~E ·~B .

The sign of the value of ~E · ~B is not determined in general because of the metric signature of Minkowski

spacetime. In fact it is 0 for electromagnetic wave. In 4-dimensional Euclidean spacetime,

∗Fµν = δµα ∗Fαβ
δβν = ∗Fµν =



0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0


,

and

∗Fµν ∗Fµν = 2(
E2

c2 +B2) = Fµν Fµν , ∗Fµν Fµν = Fµν ∗Fµν = 0 ,

therefore the inequality holds regardless of the contexts,

(Fµν −∗Fµν)
2 = (Fµν −∗Fµν)(Fµν −∗Fµν)≥ 0 .

5



This leads to an inequality giving the lower bound of the energy density of the field

E =
1

4µ0
Fµν Fµν ≥

1
4µ0
∗Fµν Fµν .

An integration over the entire space shows the lower bound of the energy of the field

E =
∫

d4x
1

4µ0
Fµν Fµν ≥

∣∣∣∣∫ d4x
1

4µ0
∗Fµν Fµν

∣∣∣∣= |q| . (I.2)

In 4-dimensional Euclidean spacetime, we ought to integrate the energy density E over 4 coordinates since

they are all spatial coordinates and need to be treated the same. If we stayed in Minkowski spacetime, this

integration results in an action instead of energy. The absolute value is allowed to be taken on the RHS (right

hand side) of the inequality because similar relations can be derived from (Fµν +∗Fµν)
2.

The electromagnetic field in 4-dimensional Euclidean spacetime has a lowest possible energy, and that

energy is |q|, where q is given by

q =
∫

d4x
1

4µ0
∗Fµν Fµν .

But ∗Fµν Fµν = 0 in 4-dimensional Euclidean spacetime so q = 0. This is expected as it merely says that the

lowest possible energy of electromagnetic wave, or the energy of the vacuum state of photon, is zero.

The self-dual and anti-self-dual fields ∗Fµν = ±Fµν can saturate the inequality (I.2). This means that

self-dual and anti-self-dual fields are vacua in electrodynamics. However, these fields imply that ~E = c~B so ~E

and ~B are parallel vector fields. These fields do not generally satisfy wave equations ∂µ Fµν = 0, ∂µ ∗Fµν = 0

with the exception that E = 0 and B = 0. The vacuum in electrodynamics obtained from self-dual and anti-

self-dual fields is the vacuum we expected.

Expressing the energy density of the field as simple expressions such as a single contraction between

two tensors is easier in Euclidean spacetime. Had we insisted on retaining Minkowski spacetime, we would

write the energy density as T 00 , the time-time component of the energy stress tensor of the field. Another

advantage of Euclidean spacetime is the positivity of the square of tensors which is absent in Minkowski

spacetime. Corresponding analysis can be performed on the classical vacuum when the underlying gauge

symmetry group is SU(2).

6



I.2 Classical SU(2) vacuum

In 1975, Belavin, Polyakov, Schwartz, and Tyupkin [1] found the solutions of the source-free classical field

equation of SU(2) Yang-Mills theory in 4 dimensional Euclidean spacetime,

Dµ Fµν = 0 , Dµ = ∂µ +gauge terms . (I.3)

where Dµ is the gauge covariant derivative. The Yang-Mills field tensor Fµν has an extra commutator term

when expressed in terms of the field vector Aµ

Fµν = ∂µ Aν −∂ν Aµ − i[Aµ ,Aν ] , Aµ = A j
µ

σ j

2
,

σ j’s are Pauli matrices. The inequality

Tr (Fµν −∗Fµν)
2 ≥ 0 ,

gives the lower bound of the energy E of the field,

E =
1
2

∫
d4x Tr Fµν Fµν ≥

1
2

∣∣∣∣∫ d4x Tr ∗Fµν Fµν

∣∣∣∣= 8π
2|q| , (I.4)

where

q =
1

16π2

∫
d4x Tr ∗Fµν Fµν =

1
16π2

∫
d4x∗Fµν

j F j
µν . Fµν = F j

µν

σ j

2
,

q defines the Pontryagin class of the phase space of the Yang-Mills field, and it is both a topological and a

physical attribute of the field. This did not happen in classical electrodynamics where there is no ambiguity

about q which is 0. Here in Yang-Mills field theory, different solutions of equation (I.3) have different energies

E. The vacuum has the lowest energy so takes the equality of (I.4). Two simple but not trivial fields which

satisfy both equation (I.3) and the equality of (I.4) are self-dual and anti-self-dual fields,

Fµν =±∗Fµν .

These are called BPST [1] instanton (+) and anti-instanton (-), which give Pontryagin class q = 1 and q =−1

respectively. A trivial solution of equation (I.3) and which also gives the equality of (I.4) is Aµ = 0 which

gives Pontryagin class q = 0. Note that Aµ = 0 is a special case of Fµν =±∗Fµν since it satisfies both.

7



Now at least three different fields, Fµν = ±∗Fµν and Aµ = 0, solve equation (I.3) and give the equality

of (I.4). They all describe the vacuum SU(2) Yang-Mills field. However, they are not just some different

“representations” of the same vacuum. Many reviews on this topic are available [2–4]. Although these fields

all solve the classical field equation, any one of them can not be continuously deformed into another by gauge

transformation. As a result, the classical vacuum of Yang-Mills theory becomes vacua and discrete, catego-

rized by the Pontryagin class q.

The BPST (anti)instanton was solved under Euclidean spacetime and SU(2) symmetry, but it is still

useful for explaining the QCD vacuum structure. Solutions from Euclidean spacetime can be adapted to the

Minkowski case through Wick rotation, dt → idt. SU(3) gauge theory allows BPST (anti)instanton because

there is an embedding symmetry of SU(2) into SU(3) .

I.3 The QCD θ vacuum

The vacua discussed above are solutions of classical field equation. Correspondingly, there are different

vacuum states characterized by the Pontryagin class q after quantization.

... |−1〉 , |0〉 , |1〉 , ...

Unlike the classical vacuua, these quantum vacuum states can change to one another by gauge transformations

Gi’s.

Gm |n〉= |n+m〉 .

There is no contradiction here because this is merely a trade-off. While classical vacuum solutions belong to

different q can not be deformed into each other, in the quantum picture the property of lack of deformability

among vacuua is absorbed into the gauge transformations themselves. For example,

G0 |1〉= |1〉 , G1 |0〉= |1〉 ,

where G0 and G1 correspond to q = 0 and q = 1, respectively, and they can not deform into each other.
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The true vacuum should be a linear combination [5,6] of all the vacuum states |i〉,

|θ〉=
∞

∑
n=−∞

einθ |n〉 ,

|θ〉 is constructed in this way so that it’s an eigenstate of all gauge transformations Gi’s,

G0 |θ〉= |θ〉 , G1 |θ〉= e−iθ |θ〉 , ..., Gn |θ〉= e−inθ |θ〉 .

|θ〉 is changed by at most a phase factor through gauge transformations and becomes the true vacuum state.

Callan et al. [5] showed that the transition amplitude between |m〉 and |n〉 is

〈n|e−Ht |m〉=
∫
[dAµ ]n−m exp

(
−
∫

dx4L E
)
,

where [ ]n−m denotes functional integral of gauge field of Pontryagin class q = n−m. This integral still

assumes Euclidean spacetime so there is no i in the argument of the exponent, which renders an oscillation

in Minkowski spacetime into a convergent decay in Euclidean spacetime. Transition amplitude between |θ ′〉

and |θ〉 can be obtained similarly

〈
θ
′∣∣e−Ht |θ〉=δ (θ ′−θ)

∫
[dAµ ]exp

(
− iqθ −

∫
dx4L E

)
=δ (θ ′−θ)

∫
[dAµ ]exp

[
−
∫

dx4(L E +L E
θ )
]
,

where

L E
θ = iθ

1
32π2 ∗Fµν

a Fa
µν .

For QCD in Minkowski spacetime, the gluon field Lagrangian, which resembles that of photon in QED is

L1 =−
1
4

Fµν
a Fa

µν .

Due to the vacuum topological structure, the interaction term Lθ (obtained by performing Wick rotation on∫
L E

θ
d4x) needs to be added to the Lagrangian L1 to form a new Lagrangian L2 for QCD,

L2 =−
1
4

Fµν
a Fa

µν +
θ

32π2 ∗Fµν
a Fa

µν .

9



Lθ is an effective interaction due to vacuum structure and it should be a component of the QCD lagrangian.

The reason why Lθ needs to be added to the QCD lagrangian can be described as follows. The first term is

the contribution to QCD from gluon coupling, however gluons are not the only players in QCD. There is also

instanton coupling which presents without inquiring whether there are gluons or not.

If there weren’t vacuum structure, the mechanics of gluon and QCD seem to work without referring to the

added term ∗Fµν
a Fa

µν . This new term does not indicate that the properties of gluons need to be studied from

scratch or that the entire QCD formalism needs to be rewritten. Adding new terms to the Lagrangian often

brings new physics into being but not always. In classical mechanics, the equations of motion won’t change

if a total time derivative is added to the Lagrangian,

L′(q, q̇, t) = L(q, q̇, t)+
d
dt

f .

The analogy here is that ∗Fµν
a Fa

µν has no effects on perturbation theory [26] since it can be written as a total

derivative

∗Fµν
a Fa

µν = ∂ρ Kρ ,

of the Chern-Simons current Kµ . If one does a variation on the action, the contribution from this term would

be at the boundary and can be set to 0.

∗Fµν
a Fa

µν is the pseudoscalar that brings CP violation to QCD. This is the QCD vacuum contribution to

the strong CP problem. Another mechanism due to quark mass matrix from flavordynamics also contributes

to the strong CP problem. The sum of the two parts forms an effective vacuum angle θ̄ = θQCD +θQFD that

characterizes the strong CP problem.

In 1977, Peccei and Quinn [7] interpreted θ̄ as a dynamical field and the corresponding particle is called

the axion. Under this new interpretation, it is proven that the potential of the whole interaction takes a

minimum at θ̄ = 0. This confirms θ̄ = 0 as the true vacuum and solves the strong CP problem. In exchange,

the proposed particle axion needs to be discovered.
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I.4 Axion cluster from BEC

The axion is a candidate of dark matter. Chiral effective field theory [15] gives a relation for the mass of the

axion ma,

ma fa = [75.5 MeV]2 ,

where fa(the axion decay constant) is the radius of the circle that minimize the axion potential (this is similar

to that of a Mexican hat potential). Astrophysical and cosmological constraints provide a lower and a upper

bound on the value of fa : 3× 109 eV . fa . 1012 eV. This gives the favored range of values for the mass

of axion 10−4 eV < ma < 10−4 eV, but there is also hadronic axion [16] of mass on the order of a few eV.

Below the energy scale of QCD confinement, the effective axion Lagrangian is written as,

L =
1
2

∂µ ψ∂
µ

ψ−V (ψ) ,

where V (ψ) is the axion self interaction potential. The self interaction can be expanded in a Taylor series of

the axion field ψ [18],

V (ψ) =
1
2

m2
aψ

2 +(ma fa)
2

∞

∑
n=2

λ2n

(2n)!
(

ψ

fa
)2n ,

where the values of dimensionaless coupling constants λ2n are on the order 1. Higher order terms in this

potential are very weak due to the large value of fa, therefore we may ignore the self interaction all together

or retain just the ψ4 term depending on the specific situation. As identical bosons, axions can form a Bose-

Einstein condensate (BEC) [17], and thus can have very high occupation number. A gravitational bound BEC

is called an axion star, and a BEC formed by self attraction is called an axiton.

I.5 Axion production from superradiance

Besides BECs, axions can also be produced by superradiance of primordial black holes. When one investi-

gates any object under some black hole background and still utilizes the metric tensor associated with just the

black hole, then the object must be of low energy scale so the gravitational field produced by the object serves

only as a small perturbation to the blackground. Among all the perturbations, it has been shown that nonro-

tating black holes are stable to scalar, electromagnetic, and gravitational perturbations [8–10]. For rotating

black holes, massive perturbation has been recognized that it can leads to instability of the black hole [11].

Massive fields have bound states due to the gravitation pull from the black hole, and at the same time the

amplitude can keep growing exponentially. This is due to a Penrose type process and it fills a hydrogen-like
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orbit with quantum numbers (n, l,m) = (2,1,1) [12].

The Klein-Gordan equation (∇µ ∇µ − m0G
h̄c )ψ = 0 in Kerr spacetime has the following types of solution,

ψ = R(r)S(θ)eimφ e−iωt . If the following conditions hold,

Re(ω)<
am

2Mr+
, µM� 1 , m≥ 0 ,

where a, M and r+ are the black hole angular momentum per unit mass, mass and event horizon respectively,

then there are bound states with Im(ω)< 0. The fastest growing mode l = 1, m = 1 has an e-folding time [13]

of

τ = 10−22s(
µ

µπ

)(µM)−8(
M
a
)

where µπ = Gmπ is the standard gravitational parameter of the pion. This could be within the range of typical

evaporation time of black holes τevap = 1017s( M
2×1015 g )

3. There are models with axions having mass from

10−5 eV to 10−3 eV. The corresponding mass limit of black holes for superradiance to occur is higher than

that (2×1015 g) for pions. The possible scenario is low mass axion field around primordial black holes.

I.6 Kinematics of decay

Below the energy scale of QCD confinement, the effective lagrangian of axion-photon coupling is

Lem =
cγ α

8π fa
ψ ∗Fµν Fµν ,

where cγ is a model dependent [19] coefficient and its magnitude is on the order of 1. α is the fine structure

constant. The decay rate of the process a→ γ + γ is

Γa =
c2

γ α2m3
a

256π3 f 2
a
.

In the simplest KSVZ model [20] with ma = 10−4±1 eV, the decay rate is about Γa = 8×10−60±5 eV which

results in very long axion lifetime (3× 1036∓5 yr) [18]. In the unit system where c = h̄ = 1, suppose the

four-momenta of an axion and the two photons produced by its decay a→ γγ are pµ = (p0,~p), kµ = (k,~k),

kµ

1 = (k1,~k1), respectively. Then conservations of momentum and energy require p0 = k+ k1 , ~p =~k+~k1 .

At the same time, normalization of four-momentum gives p0 =
√

p2 +m2
a . It can be shown that the cosine
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of the angle between ~p and~k is

~p ·~k
pk

=
2p0k−m2

a

2k
√
(p0)2−m2

a
,

otherwise the decay can not happen. This means that the energy of the axion p0 and the momentum of one

of the photons k completely determine the angle between ~p and~k. Because this is the cosine of some angle,

it restricts the value of k,

kmin =
p0−

√
(p0)2−m2

a

2
< k <

p0 +
√

(p0)2−m2
a

2
= kmax . (I.5)

I.7 Evolution equation

Details of the setup of the evolution equation of axion cluster can be found in [14]. The cluster is assumed

to contain axions and photons only. No other matter is present in the cluster. For either species of particles,

axion or photon, the occupation number f (~p,~r, t) in phase space is defined as the number of particles per unit

momentum volume and per unit spatial volume at time t. Number density n(~r, t) is an integral of occupation

number over momentum space,

n(~r, t) =
∫

f (~p,~r, t)
d3 p
(2π)3 .

The total number of particles of any species is then

N(t) =
∫

n(~r, t)d3r .

Since axions are spin 0, photons are spin 1, and in the rest frame of the axion~k1 =−~k, the two photons from

the decay of the common axion should have the same helicity λ . The evolution equation of the decay process

is

2k
d fλ (~k)

dt
=

4maΓa

π

∫ d3k1

2k0
1

d3 p
2p0 δ

4(p− k− k1)×{ fa(~p)[1+ fλ (~k)+ fλ (~k1)]− fλ (~k) fλ (~k1)} , (I.6)

where fλ (~k) is the occupation numbers of the photon of helicity λ and Γa is the decay rate of the axion. The

terms inside the curly braces describes spontaneous decay, stimulated decay from photon of momentum~k,
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stimulated decay from photon of momentum~k1 and photon back reaction, respectively.

An important assumption is made in [14]: the momentum dependences of occupation numbers are spher-

ical symmetric. Neither axion nor photon occupation number f (~v) depends on the direction of the axion

velocity ~v, or in other words, f (~v) = f (v). It is under this assumption that all the following calculations

developed. This significantly simplifies equation (I.6),

2k
d fλ (k)

dt
=

4maΓa

π

∫ d3k1

2k0
1

d3 p
2p0 δ

4(p− k− k1)×{ fa(p)[1+ fλ (k)+ fλ (k1)]− fλ (k) fλ (k1)} .

Now one of the integrations can be carried out,

d fλ (k)
dt

=
maΓa

k2

∫
m2a
4k

dk1×{ fa(k+ k1)[1+ fλ (k)+ fλ (k1)]− fλ (k) fλ (k1)} . (I.7)

The evolution equations of this case(spherical symmetric momentum dependence) is solved in [14]. Here

is the summary of the results. The axion number density decreases exponentially after the lasing process

is initiated. The photon number density increases exponentially in the beginning and decreases later when

the axion number density decrease. In the following chapters, we will investigate the lasing effect of axion

clusters which may have arbitrary momentum and coordinate dependences, respectively.
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CHAPTER II

Photon directional profile from axion clouds with nonspherical momentum distributions

This chapter presents a derivation of relation between the components of photon number density and those of

axions with arbitrary momentum distributions. See [21] for all the details and discussions regarding this topic.

II.1 Evolution equations for individual components of photon occupation number

In the most general case, the occupation number of particle depends on the time t, three spatial coordinates

r, θ , φ (spherical coordinate system), and three momentum components pr, pθ , pφ . Results in [14] were

based on the condition where fa(t,~r,~p) = a(t)Θ(pmax − p)Θ(R− r). Here we weaken this condition as

fa(t,~r,~p) = a(t,~p)Θ(R− r). We neglect the trivial position dependence(Θ function) for the moment and

write fa(~p) as the square of a square integrable function formed in a complex spherical harmonics expansion,

fa(~p) = [∑
l′m′

am′
l′ (p, t)Y m′

l′ (Ωp)]
∗[∑

lm
am

l (p, t)Y m
l (Ωp)]

= ∑
l′lm′m

am′∗
l′ am

l (−1)m′Y−m′
l′ (Ωp)Y m

l (Ωp) = ∑
l′lm′m

(−1)m′a−m′∗
l′ am

l Y m′
l′ (Ωp)Y m

l (Ωp)

= ∑
l′lm′m

∑
L
(−1)m′a−m′∗

l′ am
l

√
(2l′+1)(2l +1)

4π(2L+1)
C(l′, l,L|0,0,0) C(l′, l,L|m′,m,m′+m)Y m′+m

L (Ωp) ,

where the Y m
l ’s are complex spherical harmonics, and the C(l, l′, l′′|m,m′m′′)’s are Clebsch-Gorden coef-

ficients. This is overkill but it shows that one can write the occupation number as a series expansion of

spherical harmonic functions, even if one only knows the amplitude of the occupation number.

By regrouping and renaming coefficients, fa(~p) can be written directly as a real spherical harmonic ex-

pansion,

fa(~p) = ∑
lm

alm(p, t)Ylm(Ωp) ,

where the Ylm’s are real spherical harmonics. Similarly, photon occupation numbers can also be written as

fλ (~k) = ∑
lm

blm(k, t)Ylm(Ωk) , fλ (~k1) = ∑
lm

blm(k1, t)Ylm(Ωk1) .

The following calculations do not put any restrictions on the coefficients alm’s or blm’s, neither do the cal-
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culations require these coefficients be positive or negative. But in the real physical world, only positive

occupation numbers are allowed. In short, these coefficients can be of any value, but we should scrutinize the

resulting occupation numbers so that they are positive and have real world meaning. For example, occupation

number fa(~p) = a10(p, t)Y10(Ωp) can not describe any real scenario since it is negative in half of phase space,

but occupation number fa(~p) = a00(p, t)Y00(Ωp)+a10(p, t)Y10(Ωp) may be allowed since it can be positive

everywhere by adjusting the coefficients a00 and a10. Nevertheless the following calculations are applicable

to both of these occupation numbers, whether they have real physical meaning or not.

Equation (I.6) describes the evolution process of spontaneous and stimulated decay of axions to photons,

and the back reaction of photons to axions. We write down the differential d3k1 and the δ -function explicitly

and (I.6) becomes

2k
d fλ (~k)

dt
=

maΓa

π

∫
(k1)

2dk1 sinθk1dθk1dφk1

k0
1

d3 p
p0

1
(k1)2 sinθk1

δ (p0− k0− k0
1)δ (|~p−~k|− k1)

×δ (θ~p−~k−θ~k1
)δ (φ~p−~k−φ~k1

)×{ fa(~p)[1+ fλ (~k)+ fλ (~k1)]− fλ (~k) fλ (~k1)} .

Cancel the common factors in the numerator and denominator and substitute the series expansions of fλ (~k1),

we find

2k
d fλ (~k)

dt
=

maΓa

π

∫ dk1

k0
1

d3 p
p0 δ (p0− k0− k0

1)δ (|~p−~k|− k1)δ (θ~p−~k−θ~k1
)δ (φ~p−~k−φ~k1

)

×{ fa(~p)[1+ fλ (~k)+∑
lm

blm(k1, t)Ylm(Ωk1)]− fλ (~k)∑
lm

blm(k1, t)Ylm(Ωk1)}dθk1dφk1 .

The integration over θk1 and φk1 can be done most efficiently by changing from Ωk1 to Ω~p−~k. Upon use of

the fact that for photons k0
1 = k1 and k0 = k along with the identity

∫
δ (x− y)δ (x− z)dx = δ (y− z), we find

2k
d fλ (~k)

dt
=

maΓa

π

∫ d3 p
p0(p0− k)

δ [|~p−~k|− (p0− k)] (II.1)

×{ fa(~p)[1+ fλ (~k)+∑
lm

blm(p0− k, t)Ylm(Ω~p−~k)]− fλ (~k)∑
lm

blm(p0− k, t)Ylm(Ω~p−~k)} .

Align the z axis in ~p momentum space with the~k, then there is a differential relation from the law of cosine,

|~p−~k|2 = |~p|2 + |~k|2−2cosθp|~p||~k| ⇒ |~p−~k|d|~p−~k|= |~p||~k|d(−cosθp) .

16



A similar differential relation arise from normalization of 4-momentum,

(p0)2 = p2 +m2
a ⇒ p0d p0 = pd p .

These relations convert d p and d(−cosθp) in the infinitesimal momentum volume d3 p to d p0 and d|~p−~k| ,

respectively,

d3 p = p2d pdΩp = |~p|p0d p0 d(−cosθp)dφp = |~p|p0d p0 |~p−~k|d|~p−~k|
|~p||~k|

dφp = p0d p0 |~p−~k|d|~p−~k|
|~k|

dφp ,

Substitution of this relation into (II.1) gives

2k
d fλ (~k)

dt
=

maΓa

π

∫ p0d p0

p0(p0− k)
|~p−~k|d|~p−~k|

|~k|
dφp δ [|~p−~k|− (p0− k)]

×{ fa(~p)[1+ fλ (~k)+∑
lm

blm(p0− k, t)Ylm(Ω~p−~k)]− fλ (~k)∑
lm

blm(p0− k, t)Ylm(Ω~p−~k)} .

The detailed calculation of the integration over φp and |~p−~k| can be found in [21] and the results is

2k
d fλ (~k)

dt
=2maΓa

∫ d p0

k
{ fλ (~k)[∑

l
al0(p, t)Yl0(θp0)−∑

l
bl0(p0− k, t)Yl0(θp1)]

+∑
l

al0(p, t)Yl0(θp0)+ ∑
l′lm

al′m(p, t)blm(p0− k, t)Y m
l′ (θp0,0)Y m

l (θp1,0)} ,

where θp0 and θp1 are the angles such that

cosθp0 =
2p0k−m2

a

2k
√

(p0)2−m2
a
, cosθp1 = 1− m2

a

2k(p0− k)
.

Since p0 = k+ k1, we are allowed to switch from integration over p0 to k1 (there was an integration over k1

but we changed it to integration over k0
1). Writing fλ (~k) in components, we obtained the evolution equations

for individual components of the occupation number,

dblm(k, t)
dt

=
maΓa

k2

∫
m2a
4k

dk1{δl0δm02
√

π[∑
l′

al′0(p, t)Yl′0(θp0) (II.2)

+ ∑
l′l′′m′

al′m′(p, t)bl′′m′(k1, t)Y m′
l′ (θp0,0)Y m′

l′′ (θp1,0)]

+blm(k, t)[∑
l′

al′0(p, t)Yl′0(θp0)−∑
l′

bl′0(k1, t)Yl′0(θp1)]} .
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II.2 Evolution equations for individual components of photon number density

The exact form of photon and axion occupation numbers are

fa(~p) = ∑
lm

alm(p, t)Ylm(Ωp)Θ(R− r) , fλ (~k) = ∑
lm

blm(k, t)Ylm(Ωk)Θ(R− r) .

The normal way of going from occupation number to number density is by integrating
∫

f p2d pdΩp. This

gives number density but loses the information on the direction of momentum conveyed by Ωp. Therefore,

we define the photon and axion number density to be

na(t,Ωp,~r) =∑
lm

na
lm(t)Θ(R− r)Ylm(Ωp) =

∫
fa(~p)p2d p ,

nλ (t,~r,Ωk) =∑
lm

nλ
lm(t)Θ(R− r)Ylm(Ωk) =

∫
fλ (~k)k

2dk .

To focus on the analysis of the dependence on the momentum direction, we simplify the dependence on the

momentum magnitude by setting

alm(p, t) = alm(t)Θ(pmax− p) , blm(k, t) = blm(t)Θ(k+− k)Θ(k− k−) .

We also assume that photons are equally likely to have helicity λ = 1 and λ = −1; thus the total photon

number density component is twice that from each individual helicity state,

n+lm(t) =n−lm(t) , nγ

lm(t) = 2nλ
lm(t) .

In the axion cluster, the maximum momentum is pmax = maβ , where the exact value of β is based on the

dynamical condition we impose on the axion cluster. For instance, in a simple model where we ignore the

pressure and consider only Newtonian self gravity of axions only, then β =
√

2GM
R which is the escape

velocity of the axion [14]. There are always an approach to finding the maximum momentum of the axion

in any model and this maximum momentum is denoted as maβ . k− and k+ are the minimum and maximum

momentum of the photon, or kmin and kmax when
√
(p0)2−m2

a = maβ in (I.5). The integral over p provides

relations between components of occupation number and number density,

alm(t) =
24π3na

lm(t)
m3

aβ 3 , blm(t) =
32π3nλ

lm(t)
m3

aβ
. (II.3)
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Integrating equation (II.2) and substituting relations (II.3), we have equations for individual components of

photon number density, regular axion number density, and sterile axion number density,

dnγ

lm(t)
dt

=
2Γa

m2
aβ 2 {δl0δm0

√
π[∑

l′

6
β

K0
l′n

a
l′0(t)+

96π3

m3
aβ 2 ∑

l′l′′m′
na

l′m′(t)n
γ

l′′m′(t)K
01
l′l′′m′ ] (II.4)

+
16π3nγ

lm(t)
m3

a
× [

3
β 2 ∑

l′
na

l′0(t)K
0
l′ −2∑

l′
nγ

l′0(t)B
1
l′ ]}−

3c
2R

nγ

lm(t) ,

dna
lm(t)
dt

=− Γa

m2
aβ 2 {δl0δm0

√
π[∑

l′

6
β

K0
l′n

a
l′0(t)+

96π3

m3
aβ 2 ∑

l′l′′m′
na

l′m′(t)n
γ

l′′m′(t)K
01
l′l′′m′ ] (II.5)

+
16π3nγ

lm(t)
m3

a
× [

3
β 2 ∑

l′
na

l′0(t)K
0
l′ −2∑

l′
nγ

l′0(t)N
1
l′ ]} ,

dnas
lm(t)
dt

=
Γa

m2
aβ 2

16π3nγ

lm(t)
m3

a
×2∑

l′
nγ

l′0(t)S
1
l′ . (II.6)

We have absorbed many integrals into the newly defined constant coefficients.

K0
l′ =

√
2l′+1

4π

∫
dk
∫ maγ−k

m2a
4k

dk1P0
l′ [

2(k1 + k)k−m2
a

2k
√
(k1 + k)2−m2

a
].

K0
l′ ’s are constant coefficients describing spontaneous and half of stimulated decay.

K01
l′l′′m′ =

∫
dk
∫ maγ−k

m2a
4k

dk1Y m′
l′ (θp0,0)Y m′

l′′ (θp1,0)

=

√
(2l′+1)(l′−m′)!

4π(l′+m′)!

√
(2l′′+1)(l′′−m′)!

4π(l′′+m′)!

∫
dk
∫ maγ−k

m2a
4k

dk1Pm′
l′ [

2(k1 + k)k−m2
a

2k
√

(k1 + k)2−m2
a
] Pm′

l′′ [1−
m2

a

2kk1
].

K01
l′l′′m′ ’s account for the other half of stimulated decay.

B1
l′ =

∫
dk
∫ k+

m2a
4k

dk1Yl′0(θp1) =

√
2l′+1

4π

∫
dk
∫ k+

m2a
4k

dk1P0
l′ [1−

m2
a

2kk1
] .

The B1
l′ are constant coefficients describing back reaction of photons, which when necessary, can be split into

N1
l′ and S1

l′ the part of back reactions that produce normal axions and sterile axions respectively, and hence

B1
l′ = N1

l′ +S1
l′ ,

N1
l′ =

∫
dk
∫ maγ−k

m2a
4k

dk1Yl′0(θp1) =

√
2l′+1

4π

∫
dk
∫ maγ−k

m2a
4k

dk1P0
l′ [1−

m2
a

2kk1
] ,

S1
l′ =

∫
dk
∫ k+

maγ−k
dk1Yl′0(θp1) =

√
2l′+1

4π

∫
dk
∫ k+

maγ−k
dk1P0

l′ [1−
m2

a

2kk1
] ,
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where Pm
l ’s are associated legendre polynomials.

Here we should address the production of sterile axions. In our model, we focus on axions that have

momentum below pmax = maβ . Axions of Higher momentum magnitude would not be included in the region

Θ(pmax− p) from the mathematical point of view, and would not be bounded in the region Θ(R− r) from

the physical perspective (gravity alone can not restrain axions with velocity higher than the escape velocity).

Thus these axions are referred to as sterile axions. An axion of momentum maβ decays into two photons,

if one photon has momentum k+, then the other photon has momentum k−. If two photons both have mo-

mentum k+ and go through γ + γ→ a, then the newly created axion would have momentum larger than maβ .

This is the reason why there are sterile axions.

II.3 Examples

Equations (II.4) and (II.5) are evolution equations of individual components of the number density. They can

be applied to many specific cases.

II.3.1 Y00 momentum distribution

Axion momentum distribution in this example has spherical symmetry. The number density of axions is

na(t,~r,Ωp) = ∑
lm

na
lm(t)Θ(R− r)Ylm(Ωp) = na

00(t)Θ(R− r)Y00(Ωp) .

Then, for any l 6= 0, m 6= 0, the number density component is zero, na
lm(t) = 0 (lm 6= 00) . This means that

the evolution equations (II.5) for these components reduce to

dna
lm(t)
dt

=− Γa

m2
aβ 2 ×

16π3nγ

lm(t)
m3

a
× [

3
β 2 ∑

l′
na

l′0(t)K
0
l′ −2∑

l′
nγ

l′0(t)N
1
l′ ] = 0 (lm 6= 00) .

There are two solutions of the equation above. The first solution is nγ

lm(t) = δl0δm0nγ

00(t). All the photon

number density components nγ

lm vanish except lm = 00. Thus, the photon number density becomes

nγ(t,~r,Ωk) = nγ

00(t)Θ(R− r)Y00(Ωk) .

Since the photon field is fixed in the Y00 momentum distribution, the exact form of number density of normal

axion, photon and sterile axion can be obtained by solving the evolution equations (II.4), (II.5) and (II.6)
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which reduce to

dnγ

00(t)
dt

=
2Γa

m2
aβ 2 {

√
π[

6
β

K0
0 na

00(t)+
96π3

m3
aβ 2 na

00(t)n
γ

00(t)K
01
000]

+
16π3nγ

00(t)
m3

a
× [

3
β 2 na

00(t)K
0
0 −2nγ

00(t)B
1
0]}−

3c
2R

nγ

00(t) .

dna
00(t)
dt

=− Γa

m2
aβ 2 {

√
π[

6
β

K0
0 na

00(t)+
96π3

m3
aβ 2 na

00(t)n
γ

00(t)K
01
000]

+
16π3nγ

00(t)
m3

a
× [

3
β 2 na

00(t)K
0
0 −2nγ

00(t)N
1
0 ]} .

dnas
00(t)
dt

=
Γa

m2
aβ 2

16π3nγ

00(t)
m3

a
×2nγ

00(t)S
1
0 .

These equations are the same as (34′),(37′) and (38′) of [14] since

K0
0 =

m2
aβ 3

6
√

π
= N1

0 , K01
000 =

m2
aβ 3

12π
,B1

0 =
m2

aβ 2

4
√

π
(1+

2β

3
) , N1

0 =
m2

aβ 3

6
√

π
, S1

0 =
m2

aβ 2

4
√

π
,

na
00(t) =

na(t)
2
√

π
, nγ

00(t) =
nγ(t)
2
√

π
.

The second solution is

3
β 2 ∑

l′
na

l′0(t)K
0
l′ −2∑

l′
nγ

l′0(t)N
1
l′ = 0 .

This solution means that the effect of half of stimulated decay exactly cancels the effect of photon annihilation

back into regular axions. This also expresses the l = 0, m = 0 component of axion number density as a sum

of components of photon number density,

na
00(t) =

2β 2

3K0
0

∑
l′

nγ

l′0(t)N
1
l′ .

Evolution equation (II.5) for l = 0, m = 0 component then becomes

dna
00(t)
dt

=−6Γa
√

π

m2
aβ 3 [K0

0 na
00(t)+

16π3

m3
aβ

∑
l′′

na
00(t)n

γ

l′′0(t)K
01
0l′′0] .

Evolution equations (II.4) for any l 6= 0, m 6= 0 components of photon number density in this second case is

dnγ

lm(t)
dt

=−64π3Γa

m5
aβ 2 nγ

lm(t)∑
l′

nγ

l′0(t)S
1
l′ −

3c
2R

nγ

lm(t) .

Photon annihilation back into sterile axion and surface loss are the only mechanisms that contribute to
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nγ

lm(t)(l 6= 0, m 6= 0) modes. There is no source of decay providing photons to l 6= 0, m 6= 0 number den-

sity components. Therefore nγ

lm(t)(l 6= 0, m 6= 0) modes are expected to vanish quickly. The majority of

photons would be in the nγ

00(t) component.

In both cases, either nγ

lm(t) = 0 or 3
β 2 ∑l′ na

l′0(t)K
0
l′ − 2∑l′ n

γ

l′0(t)N
1
l′ = 0, if the axions are locked in a Y00

momentum state, then so would be the photons (or at least predominantly in the second case).

II.3.2 Y20 momentum distribution

This configuration indicates that the direction of momentum of axions prefers to be parallel to the polar axis

instead of equatorial plane. It moderately describes the movement of axions between northern and southern

hemispheres

na(t,~r,Ωp) = ∑
lm

na
lm(t)Θ(R− r)Ylm(Ωp) = na

20(t)Θ(R− r)Y20(Ωp) .

na
20(t) is the only nonzero axion number density component, the other components are zero,

na
lm(t) = 0 (l 6= 2 m 6= 0) .

The evolution equation (II.5) for na
20(t) becomes

dna
20(t)
dt

=− 16π3Γa

m5
aβ 2 nγ

20(t)[
3

β 2 na
20(t)K

0
2 −2∑

l′
nγ

l′0(t)N
1
l′ ] 6= 0 .

At the same time, except for na
00(t) and na

20(t), evolution equation (II.5) reduces to

dna
lm(t)
dt

=−16π3Γa

m5
aβ 2 nγ

lm(t)[
3

β 2 na
20(t)K

0
2 −2∑

l′
nγ

l′0(t)N
1
l′ ] = 0 (lm 6= 00,20) .

Both of these equations need to hold. Comparing the these two equations, it is easy to see that the expression

inside the square bracket can not be 0.

nγ

lm(t) = 0 (lm 6= 00,20) .

This shows that there are only two nonzero components for photon number density, nγ

00(t) and nγ

20(t).
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Since the na
00(t) component of axion number density is 0, evolution equation (II.5) reduces to

dna
00(t)
dt

=0 =− Γa

m2
aβ 2 {

√
π[

6
β

K0
2 na

20(t)+
96π3

m3
aβ 2 ∑

l′′
na

20(t)n
γ

l′′0(t)K
01
2l′′0]

+
16π3nγ

00(t)
m3

a
[

3
β 2 na

20(t)K
0
2 −2∑

l′
nγ

l′0(t)N
1
l′ ]} .

This can be substituted to simplify the photon evolution equation (II.4) for component nγ

00(t),

dnγ

00(t)
dt

=
2Γa

m2
aβ 2 {

√
π[

6
β

K0
2 na

20(t)+
96π3

m3
aβ 2 ∑

l′′
na

20(t)n
γ

l′′0(t)K
01
2l′′0]

+
16π3nγ

00(t)
m3

a
[

3
β 2 na

20(t)K
0
2 −2∑

l′
nγ

l′0(t)B
1
l′ ]}−

3c
2R

nγ

00(t)

=− 64π3Γa

m5
aβ 2 nγ

00(t)∑
l′

nγ

l′0(t)S
1
l′ −

3c
2R

nγ

00(t) .

The nγ

00(t) component is expected to vanish quickly since the only contributions to this mode are due to back

reaction to sterile axions and surface losses. Meanwhile, the photon component nγ

20(t) evolves according to

equation (II.4),

dnγ

20(t)
dt

=
32π3Γa

m2
aβ 5 nγ

20(t)[
3

β 2 na
20(t)K

0
2 −2∑

l′
nγ

l′0(t)B
1
l′ ]−

3c
2R

nγ

20(t) .

If axions were locked in a Y20 momentum state, the majority of photons would be expected to be in this

state, which means more photons would travel in the direction that is to some extent parallel to the polar

axis. However, this is not an acceptable physical number density for particles because Y20 is negative in some

regions, but in the appropriate combinations with Y00, the total number density can be positive.

II.3.3 Y±1∗
1 Y±1

1 ∼ sin2
θ momentum distribution

This configuration means that the direction of momentum of the axions prefers to be parallel to the equatorial

plane instead of polar axis. It roughly describes the movement of rotating axions. The axion number density

has two nonzero components, na
00 and na

20,

na(t,~r,Ωp) =∑
lm

na
lm(t)Ylm(Ωp)Θ(R− r) = na(t)sin2

θp Θ(R− r)

=na(t)
4
√

π

3
[Y00(Ωp)−

1√
5

Y20(Ωp)]Θ(R− r) .

23



This provides a relation between these two nonzero components,

na
20(t) =−

1√
5

na
00(t) ,

all other components are 0. Evolution equation (II.5) for na
20(t) is

dna
20(t)
dt

=− 16π3Γa

m5
aβ 2 nγ

20(t)[
3

β 2 ∑
l′

na
l′0(t)K

0
l′ −2∑

l′
nγ

l′0(t)N
1
l′ ] 6= 0 .

All components except for na
00(t) and na

20(t), evolution equation (II.5) becomes

dna
lm(t)
dt

=−16π3Γa

m5
aβ 2 nγ

lm(t)[
3

β 2 ∑
l′

na
l′0(t)K

0
l′ −2∑

l′
nγ

l′0(t)N
1
l′ ] = 0 (lm 6= 00,20) .

Comparing these two equations, we find that the expression inside the square bracket can not be 0, so this

leads to

nγ

lm(t) = 0 (lm 6= 00,20) ,

which shows that there are only two nonzero components of photon number density, nγ

00(t) and nγ

20(t). After

some algebraic manipulation, we can derive a relation between the photon components nγ

00(t) and nγ

20(t),

d
dt
[nγ

00(t)+
√

5nγ

20(t)] =−[
32π3Γa

m5
aβ 2 ∑

l′
nγ

l′0(t)S
1
l′ +

3c
2R

][nγ

00(t)+
√

5nγ

20(t)] .

A possible but not uniquely solution of this differential equation is nγ

00(t)+
√

5nγ

20(t) = 0, which shows that

axions of sin2
θ momentem distribution can produce (although not definitely) photons of sin2

θ momentem

distribution.

II.4 Summary and conclusions of photon directional profile from momentum distribution

Equations (II.4), (II.5), (II.6) are the main result of this chapter. We have modeled clusters of axions with

spherically symmetric spacial but nonspherical momentum distributions and have studied the directional

profile of photos produced in their evolution through spontaneous and stimulated axion decay via the process

a→ γγ . These results can be used in situations where an axion cluster is formed due to primodial density

perturbations or superradiance around black holes. However, this is not a superradiance-light blast simulation.

It is a decay model for scalar particles that is based on statistical counting. Three specific examples were

presented, one with spherical symmetry, to make contact with previous work [14], and two others of typical
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but simple cases without spherical symmetry. It is straightforward to use our result to model any cluster of

axions with spherically symmetric spacial but nonspherical momentum distributions.
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CHAPTER III

Photon directional profile from stimulated decay of axion clouds with nonspherical axion spatial

distributions

This chapter presents a derivation of relation between components of photon number density and those of

axions with nonspherical spacial distributions. See [22] for a full elaboration on this topic.

III.1 Separable angular dependence

The approach is very similar to that in previous chapter. Here we allow a nonspherically symmetric spatial

distribution X(θ ,φ) to modify the axion clouds model previously studied in [14], with the aim of finding the

angular distribution Y (θ ,φ) of photons resulting from decays of axions, provided that there is some outside

constraint (e.g., a gravitational field or self interactions) that can keep the axions in the initial spatial distribu-

tion. The assumption is that angular dependences of axion and photon occupation number are simultaneously

separable from the other variables. But this is not necessarily true. For such an axion distribution, assuming

it factorizes, the occupation number fa(p,r,θ , t) and number densities na(r,θ , t) can be written as

fa(p,r,θ , t) = fac(t)Θ(pmax− p)Θ(R− r)X(θ) (III.1)

and

na(r,θ , t) =
∫ d3 p

(2π)3 fa(p,r,θ , t) =
m3

aβ 3

6π2 fac(t)Θ(R− r)X(θ) = nac(t)Θ(R− r)X(θ)

where we can translate between the two with

fac(t) =
6π2

m3
aβ 3 nac(t). (III.2)

Here and elsewhere we use the short hand notation X(θ) for X(θ ,φ), likewise for Y , f and n. The photons

are contained in a ball of radius R, and a momentum spherical shell of inner and outer radius k− = maγ

2 (1−β )

and k+ = maγ

2 (1+β ) respectively [14], where β = v/c. There is a similar relation between axion occupation

number

fλ (k,r,θ , t) = fλc(t)Θ(k+− k)Θ(k− k−)Θ(R− r)Y (θ) , (III.3)
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and number density,

nλ (r,θ , t) =
∫ d3k

(2π)3 fλ (k,r,θ , t) = fλc(t)Θ(R− r)Y (θ)
Vk

8π3 = nλc(t)Θ(R− r)Y (θ) ,

with

fλc(t) =
8π2

m3
aβ

nλc(t) . (III.4)

where as before λ =±1 represents the helicity of photon. We assume that the number density of each helicity

state is the same, so the total photon number density nγ can be written as

nγ(r,θ , t) = nγc(t)Θ(R− r)Y (θ) = n+(r,θ , t)+n−(r,θ , t) = [n+c(t)+n−c(t)]Θ(R− r)Y (θ)

n+c(t) = n−c(t) nγc(t) = 2nλc(t) (III.5)

Hence the coefficient of the total photon number density is just 2 times that of photon number density of each

helicity state.

The evolution relation between axion and photon occupation numbers is (I.7)

d fλ (k)
dt

=
maΓa

k2

∫
m2a
4k

dk1{ fa(k+ k1)[1+ fλ (k)+ fλ (k1)]− fλ (k) fλ (k1)}

where fλ (k) and fλ (k1) are photon occupation numbers of momentum k and k1, respectively, and Γa is the

spontaneous axion decay rate and τa = 1/Γa is the dcay time scale. Other variables in fλ (k) and fλ (k1),

i.e. r,θ , t, are the same since they share the same spacetime. fa(k+ k1) is the axion occupation number of

momentum k+ k1. Substituting (III.1) and (III.3) into (I.7) we arrive at

d fλ (k)
dt

=
maΓa

k2

{
[1+ fλ (k)] fac Θ(R− r)X(θ)

∫
m2a
4k

Θ(pmax−
√

(k+ k1)2−m2
a)dk1

+ fac fλc [Θ(R− r)]2X(θ)Y (θ)
∫

m2a
4k

Θ(pmax−
√

(k+ k1)2−m2
a)Θ(k+− k1)Θ(k1− k−)dk1

− fλ (k) fλcΘ(R− r)Y (θ)
∫

m2a
4k

Θ(k+− k1)Θ(k1− k−)dk1

}
.

The first and second integrals are the same,

∫
m2a
4k

Θ(pmax−
√
(k+ k1)2−m2

a)dk1 =
∫

m2a
4k

Θ(pmax−
√
(k+ k1)2−m2

a)Θ(k+− k1)Θ(k1− k−)dk1

=maγ− k− m2
a

4k
.

27



The third integral is related to the back reaction of photons. It is convenient to split it into two parts

∫
m2a
4k

Θ(k+− k1)Θ(k1− k−)dk1 =
∫ maγ−k

m2a
4k

dk1 +
∫ k+

maγ−k
dk1 = (maγ− k− m2

a

4k
)+(k− k−) .

The first part represents back reaction resulting in axions with energy less than maγ so that axions that can

again participate in stimulated emission, while the second part gives the back reaction resulting in sterile

axions, i.e., where the total energy of the axion k+ k1 is larger than maγ . Moving the step function Θ(R− r)

in front of the curly brackets and substituting the results of the integrations, we have

d fλ (k)
dt

= Θ(R− r)
maΓa

k2

{
[1+ fλ (k)] fac X(θ)(maγ− k− m2

a

4k
)

+ fac fλc X(θ)Y (θ)(maγ− k− m2
a

4k
)− fλ (k) fλcY (θ) [(maγ− k− m2

a

4k
)+(k− k−)]

}
.

Collecting terms fλ (k) can be written

d fλ (k)
dt

=Θ(R− r)Θ(k+− k)Θ(k− k−)
maΓa

k2

×
{
[ fac(X +2 fλc XY )− f 2

λcY
2](maγ− k− m2

a

4k
)− f 2

λcy2(k− k−)
}

.

The rate of change of photon number density is the integration of this equation over k space

dnλ

dt
=
∫ d fλ (k)

dt
d3k
(2π)3

=Θ(R− r)
maΓa

2π2

{
[ fac(X +2 fλc XY )− f 2

λcY
2]
∫ k+

k−
(maγ− k− m2

a

4k
)dk− f 2

λcy2
∫ k+

k−
(k− k−)dk

}
.

Evaluating the two integrals,

∫ k+

k−
(maγ− k− m2

a

4k
)dk =

m2
aγ2β

2
− m2

a

4
ln
(

1+β

1−β

)
,

∫ k+

k−
(k− k−)dk =

m2
aγ2β 2

2
,

gives

dnλ

dt
= Θ(R− r)

m3
aΓa

8π2

{
[ fac(X +2 fλc XY )− f 2

λcY
2][2γ

2
β − ln

(
1+β

1−β

)
]− f 2

λcY
2× (2γ

2
β

2)

}
.

Nonrelativistic approximations for β � 1

2γ
2
β =

2β

1−β 2 ≈ 2β (1+β
2) = 2β +2β

3 , ln
(

1+β

1−β

)
≈ 2β +

2β 3

3
, 2γ

2
β

2 ≈ 2β
2 ,
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simplifies this equation to

dnλ

dt
= Θ(R− r)

m3
aΓaβ 2

6π2

{
fac(X +2 fλc XY )β − (β +

3
2
) f 2

λcY
2
}

.

Substituting the derived relations (III.2) and (III.4) into the equation above, gives

dnλ

dt
= ΓaΘ(R− r)

[
nac(X +

16π2nλc

βm3
a

XY )−
32π2n2

λc
3m3

a
(β +

3
2
)Y 2
]
.

Taking into consideration photon surface loss [14]

(
dnλ

dt

)
surface loss

=−3cnλ

2R
=− 3c

2R
nλcΘ(R− r)Y (θ) ,

we have an equation which gives the number density for each helicity state

dnλ

dt
= Θ(R− r)×

[
nac

τa
X(θ)+

16π2nacnλc

βm3
aτa

X(θ)Y (θ)−
32π2n2

λc
3m3

aτa
(β +

3
2
)Y (θ)2− 3cnλc

2R
Y (θ)

]

where we are assuming, as was shown in (III.5), that total number density of photon is twice that of the

individual helicity states. Therefore the rate of change of total number density of photon is

dnγ

dt
= Θ(R− r)×

[
2

nac

τa
X(θ)+

16π2nacnγc

βm3
aτa

X(θ)Y (θ)−
16π2n2

γc

3m3
aτa

(β +
3
2
)Y 2(θ)−

3cnγc

2R
Y (θ)

]
.

Since the derivative operation on nγ is passed to its time dependence,

dnγ

dt
=

dnγc

dt
Θ(R− r)Y (θ) ,

we drop the step function Θ(R− r) and have an equation for the coefficient of total number density of photon

dnγc

dt
= 2

nac

τa

X(θ)

Y (θ)
+

16π2nacnγc

βm3
aτa

X(θ)−
16π2n2

γc

3m3
aτa

(β +
3
2
)Y (θ)−

3cnγc

2R
. (III.6)

From the first to the last term on the RHS of the equation, the terms account for spontaneous decay of

axions, photon stimulated decay of axions, back reaction of photons, and surface loss of photons, respectively.

Following similar approach, we obtain an equation regarding the coefficient of total number density of axions

dnac

dt
=−nac

τa

X(θ)

Y (θ)
−

8π2nacnγc

βm3
aτa

X(θ)+
8π2n2

γcβ

3m3
aτa

Y (θ) . (III.7)
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The third term on the RHS of (III.7) is proportional to β , while the third term on the RHS of (III.6) has a

factor of (β + 3
2 ). Keeping track of the two parts of axions generated from the back reacting photons, we find

that the 3
2 in the third term on the RHS of (III.6) represents sterile axions [14] and it should have been and

was excluded in the derivation of (III.7).

The left hand sides (LHS) of (III.6) and (III.7) have no θ dependence, but the RHS does. X(θ)=Y (θ) will

not make (III.6) and (III.7) valid simultaneously. So even if there is some outside constraint which can keep

the axions in the X(θ) distribution fixed, the photons cannot have the same distribution, i.e., Y (θ) 6= X(θ).

There is no simple way to find a closed form for Y (θ) because the LHS of the equations (III.6) and (III.7)

have no θ dependence, while the θ dependences on the RHS of these equations are different. This suggests

the possibility that Y (θ) may be found as a series expansion in X(θ). As a first test of this idea we replaced

the general form X(θ) with sinθ to study the distribution with more axions accumulated near the equatorial

plane with few near the polar area, aiming at matching orders of sinθ on each side of equations. But this

fails as it turns out that sinn
θ (n ∈ Z) is not an orthogonal set of functions and thus the calculation leads to

contradictions. Therefore, we must expand the occupation numbers and number density in terms of a full

set of orthogonal functions. We do this in the next section where we choose the set to be the real spherical

harmonics.

III.2 Real spherical harmonics expansion

The set-up here is similar to the previous discussion except that the axion and photon occupation numbers

and number densities have coefficients labeled by order index l and m. Occupation number is treated as

homogeneous in the radial direction. This formalism does not fully incorporate the physical mechanism

of superradiance or gravity. It is more a decay model for scalar particles that is built on statistics than a

superradiance-blast simulation model. Axion occupation number and number density are

fa(p,r,Ω, t) = ∑
lm

falm(t)Ylm(Ω)Θ(pmax− p)Θ(R− r) , na(r,Ω, t) = ∑
lm

nalm(t)Ylm(Ω)Θ(R− r) ,

respectively. The relation between components of axion occupation number and number density is

falm(t) =
6π2

m3
aβ 3 nalm(t) .
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Photon occupation number and number density are

fλ (k,r,Ω, t) = ∑
lm

fλ lm(t)Ylm(Ω)Θ(R− r)Θ(k+− k)Θ(k− k−) , nλ (r,Ω, t) = ∑
lm

nλ lm(t)Ylm(Ω)Θ(R− r) ,

respectively. The relation between components of photon occupation number and number density is

fλ lm(t) =
8π2

m3
aβ

nλ lm(t) .

The number density of each helicity state is assumed to be the same, so the total photon number density nγ

can be written as

nγ(r,Ω, t) =∑
lm
[n+lm(t)+n−lm(t)]Ylm(Ω)Θ(R− r) = ∑

lm
nγlm(t)Ylm(Ω)Θ(R− r)

n+lm(t) =n−lm(t) , nγlm(t) = 2nλ lm(t)

Hence the component of the total photon number density is just 2 times that of component of photon number

density of each helicity state. Following the procedures from the previous section, we have an equation

similar to (III.6) for each choice of lm

dnγlm(t)
dt

= 2
nalm

τa
+

16π2

βm3
aτa

Elm−
16π2

3m3
aτa

(β +
3
2
)Flm−

3c
2R

nγlm(t) , (III.8)

where Elm and Flm are defined through

na(Ω, t)nγ(Ω, t) = ∑
l′m′l′′m′′

nal′m′nγl′′m′′Yl′m′Yl′′m′′ = ∑
lm

ElmYlm (III.9)

and

[nγ(Ω, t)]2 = ∑
l′m′l′′m′′

nγl′m′nγl′′m′′Yl′m′Yl′′m′′ = ∑
lm

FlmYlm , (III.10)

respectively. We also have equations similar to equation (III.7) for each choice of lm with regard to the

changing number density of axions. The equation includes components representing spontaneous decay,

stimulated decay and back reaction with sterile axions excluded

dnalm(t)
dt

=−nalm

τa
− 8π2

βm3
aτa

Elm +
8π2β

3m3
aτa

Flm . (III.11)
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The sterile axions evolve according to

dnslm(t)
dt

=
4π2

m3
aτa

Flm . (III.12)

The rate of change of photon number density component can be expressed in terms of the changing compo-

nents of normal axion and sterile axion, and the components of surface loss

dnγlm(t)
dt

=−2[
dnalm(t)

dt
+

dnslm(t)
dt

]− 3c
2R

nγlm(t) . (III.13)

III.3 Examples

Equations (III.8) and (III.11) are the main results based on which we explore some example choices of initial

axion distributions.

III.3.1 Y00 distribution

Consider the spherical symmetric axion distribution where the only nonzero component of axion number

density is na00,

na =Θ(R− r)na00Y00(Ω) ,

then all components other than na00 are zero,

nalm = 0 (lm 6= 00) .

This simplifies equation (III.9) to

na(Ω, t)nγ(Ω, t) =∑
lm

na00Y00nγlmYlm ,

which tells a relationship between Elm and nγlm,

Elm = na00Y00nγlm . (III.14)

Equation (III.11) is also simplified for lm 6= 00 to

0 = 0− 8π2

βm3
aτa

Elm +
8π2β

3m3
aτa

Flm ,
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which reduces to

Flm =
3

β 2 Elm (lm 6= 00) . (III.15)

Substitute (III.14) and (III.15) into equation (III.10) gives, upon splitting of 00 pieces, the two forms of

(III.10)

[nγ(Ω, t)]2 = F00Y00 +
3

β 2 na00Y00 ∑
lm6=00

nγlmYlm , (III.16)

and

[nγ(Ω, t)]2 =
nγ00nγ00

2
√

π
Y00 +2nγ00Y00 ∑

lm6=00
nγlmYlm + ∑

l′m′l′′m′′ 6=0000
nγl′m′nγl′′m′′Yl′m′Yl′′m′′ . (III.17)

The most conspicuous solution to the equation is

F00 =
nγ00nγ00

2
√

π
, nγlm = 0 (lm 6= 00) .

where the only nonzero component of photon number density is nγ00. So if there is spherical symmetry in the

axion distribution, then spherical symmetry also exists in the photon distribution. These yield all the coupling

coefficients Elm and Flm,

Elm =
na00nγ00

2
√

π
δl0δm0 , Flm =

nγ00nγ00

2
√

π
δl0δm0 .

Equations (III.8), (III.11) and (III.12) reduce to the equations (34’), (37’), (38’) in [14] given that

nγ00 = 2
√

πnγ , na00 = 2
√

πna ,

Hence we have arrived at the spherically symmetric model results given in [14] .

III.3.2 Y20 distribution

For a Y20 axion distribution the only nonzero component of the axion number density is na20,

na =Θ(R− r)na20Y20(Ω) ,
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so that

nalm = 0 (lm 6= 20) .

Equation (III.11) is simplified to

0 = 0− 8π2

βm3
aτa

Elm +
8π2β

3m3
aτa

Flm ,

which reduces to

Flm =
3

β 2 Elm (lm 6= 20) . (III.18)

The nonzero component na20 of axion number density evolves via

dna20(t)
dt

=−na20

τa
− 8π2

βm3
aτa

E20 +
8π2β

3m3
aτa

F20 .

The photon number density component nγ20 growth rate is

dnγ20(t)
dt

=2
na20

τa
+

16π2

βm3
aτa

E20−
16π2

3m3
aτa

(β +
3
2
)F20−

3c
2R

nγ20(t) ,

while the other photon number density component nγlm(lm 6= 20) evolve as

dnγlm(t)
dt

=− 8π2

m3
aτa

Flm−
3c
2R

nγlm(t) .

Since no spontaneous decay from axion feeds into these components, they are negligible. This example is

not physical because a number density of the form Y20 becomes negative in some regions. It is included here

for demonstration purposes. Even though this example is not physical, it is needed because it is a component

of the next example which is physical and motivated by superradiance.

III.3.3 Y±1∗
1 Y±1

1 ∼ sin2
θ distribution

A sin2θ distribution is positive definite everywhere, and hence can represent a physical distribution of parti-

cles. The only nonzero components of the axion number density are na00 and na20, so we can write na(r,θ , t)

in several useful forms

na = Θ(R− r)na(t)sin2
θ = Θ(R− r)na(t)

4
√

π

3
(Y00−

1√
5

Y20) = Θ(R− r)[na00(t)Y00 +na20(t)Y20] .
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The relation between na00 and na20 is

na20(t) =−
na00(t)√

5
. (III.19)

Similar to previous examples, we find that for components other than 00 and 20

Flm =
3

β 2 Elm (lm 6= 00,20) ,

so that the components of photon number density evolve as

dnγlm(t)
dt

=− 8π2

m3
aτa

Flm−
3c
2R

nγlm(t) (lm 6= 00,20) .

Since no spontaneous decay from axions feed into these components, they are negligible, as in the previous

example.

The nonzero axion number density components evolve according to

dna00(t)
dt

+
na00

τa
=− 8π2

βm3
aτa

E00 +
8π2β

3m3
aτa

F00 ,
dna20(t)

dt
+

na20

τa
=− 8π2

βm3
aτa

E20 +
8π2β

3m3
aτa

F20 .

Because of (III.19), we can derive a relation from these two equations,

− 8π2

βm3
aτa

E20 +
8π2β

3m3
aτa

F20 =
1√
5
(

8π2

βm3
aτa

E00−
8π2β

3m3
aτa

F00) . (III.20)

The photon number density components nγ00 and nγ20 grow as

dnγ00(t)
dt

= 2
na00

τa
+

16π2

βm3
aτa

E00−
16π2

3m3
aτa

(β +
3
2
)F00−

3c
2R

nγ00(t)

and

dnγ20(t)
dt

=2
na20

τa
+

16π2

βm3
aτa

E20−
16π2

3m3
aτa

(β +
3
2
)F20−

3c
2R

nγ20(t) .

Because of (III.19) and (III.20), we can combine the previous two equations and write

dnγ00(t)
dt

+
3c
2R

nγ00(t) =2
na00

τa
+

16π2

βm3
aτa

E00−
16π2

3m3
aτa

(β +
3
2
)F00 ,
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and

dnγ20(t)
dt

+
3c
2R

nγ20(t) =2
na00

τa
(
−1√

5
)+(

16π2

βm3
aτa

E00−
16π2β

3m3
aτa

F00)(
−1√

5
)− 8π2

m3
aτa

F20

=
−1√

5
[
dnγ00(t)

dt
+

3c
2R

nγ00(t)]−
8π2

m3
aτa

F20 .

We observe that if the part of back reaction that results in sterile axions is neglected, then

nγ20(t) =−
nγ00(t)√

5
,

so the photons would remain in a sin2
θ distribution.

In the previous section, we found that X 6= Y , i.e. the angular dependences of axion and photon are not

equal. X = Y would have contradicted the results from the previous section but that is not what this example

indicates. This example shows that the combination of 00 and 20 components of axion and photon have the

same angular dependence. This is not the same as X = Y . There are photon components other than 00 and

20. These components are neglected under circumstances that there is no source feeding these components

but they are not equal to 0. In fact, the presence of these negligible components verifies that the angular

dependences can not be written in a closed-form such as X(θ) or Y (θ). X is approximately Y but not exactly.

Here we have a similar result as that in [21], which is not a coincidence. We are trying to solve the same

type of problems, i.e., finding photon distribution from corresponding axion distribution. If the axion distri-

bution is given, then we always have equations for axion components that are absent in axion distribution.

Equations (III.11) still applies, even if the specific axion component is 0. The solution of these equations with

absent axion components is that the back scattering of photons somewhat cancels the effect of stimulated de-

cay of axion, which prompt simplified equations for the corresponding photon components. There seems to

be no source feeding these photon components and they would become absent also.

III.3.4 General distribution

Suppose that we have an axion number density

na =Θ(R− r)∑nalmYlm(Ω) .
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For any nalm = 0, then according to (III.11) this leads to

Flm =
3

β 2 Elm (nalm = 0) .

Substituting this condition into equation (III.8), we have

dnγlm(t)
dt

=− 16π2

3m3
aτa

(
3
2
)Flm−

3c
2R

nγlm(t) (nalm = 0) .

Hence there is no source feeding those photon components. The parts of the back reaction that results in

sterile axions and surface loss are the only terms that contribute to these components. It is expected that these

components die out quickly and thus have no effect on lasing. So

nγ =Θ(R− r)∑nγlmYlm(Ω) , where nγlm ≈ 0 when nalm = 0 ,

i.e., the photon field has the same spherical harmonic components as the axion field, as other components

die out quickly due to lack of sources. Neither spontaneous decay nor stimulated decay contributes to the

harmonic components of photons that are not present in the axions.

Suppose we are given a distribution,

nalm = αlmnal0m0 ,

where all of these axion components are nonzero, and αlm are numbers and nal0m0 is the fiducial component

to which all other components are proportional. Then

8π2β

3m3
aτa

Flm−
8π2

βm3
aτa

Elm =
dnalm(t)

dt
+

nalm

τa

and

dnγlm(t)
dt

+
3c
2R

nγlm(t) = 2
nalm

τa
+

16π2

βm3
aτa

Elm−
16π2

3m3
aτa

(β +
3
2
)Flm =−2

dnalm(t)
dt

− 8π2

m3
aτa

Flm

If the part of the back reaction that results in sterile axions is neglected, then

dnγlm(t)
dt

+
3c
2R

nγlm(t) =−2
dnalm(t)

dt
=−2αlm

dnal0m0(t)
dt

= αlm[
dnγl0m0(t)

dt
+

3c
2R

nγl0m0(t)] ,

where the last step utilized (III.12) and (III.13). This means that nonzero components of photon number
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density are also proportional to each other,

nγlm = αlmnγl0m0 .

Hence the distribution of photons would keep the same shape as that of the axions if sterile axions were

neglected.

III.4 Discussion of Photon directional profile from spatial distribution

In the example of a sin2
θ distribution, the 00 and 20 components of the given axion number density are

“filled”(not 0) but all the other components are “empty”(0). Our results show that the “filled’ photon number

density components are also 00 and 20, and the other components are almost “empty”(under the circumstance

discussed above). This relation is not only pertinent to this sin2
θ example. In the general distribution,

if axions number density is only “filled” for certain component l0m0 with the other components “empty”,

then the photon number density also has these almost “empty” components, with only l0m0 components

“filled”. This correlation between components of photon and axions also occurs in [21] where the momentum

dependences of occupation numbers were considered.
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CHAPTER IV

Stimulated Radiation from Axion Cluster Evolution in Static Spacetimes

This chapter presents a generalization of the axion decay model of the previous chapters to curved spacetime,

specifically static spacetime. [23] presents a complete analysis of this subject.

IV.1 a↔ γ + γ process in Minkowski spacetime

Two photons emitted by decay of a spin zero particle have the same helicity, as required by angular momen-

tum conservation. The change in the number density of photons of a given helicity λ =±1 within the axion

cluster, due to the process a↔ γ + γ in Minkowski spacetime, is

dnλ

dt
=
∫

dX (3)
LIMS[ fa(1+ f1λ )(1+ f2λ )− f1λ f2λ (1+ fa)]|M(a→ γ(λ )γ(λ ))|2 , (IV.1)

where fa, f1λ and f2λ are the occupation numbers of the axion and the two photons and M = M(a →

γ(+)γ(+)) = M(a→ γ(−)γ(−)) is the decay amplitude determined by the Abelian chiral anomaly [24,25]

and is related to the spontaneous axion decay constant by

τ
−1
a = Γa =

1
8π

(
1

2ma
)

1
2 ∑

λ=±
|M(a→ γ(λ )γ(λ ))|2 . (IV.2)

The three body Lorentz invariant momentum space is

∫
dX (3)

LIMS =
∫ d3 p

(2π)32p0

∫ d3k1

(2π)32k0
1

∫ d3k2

(2π)32k0
2
(2π)4

δ
(4)(p− k1− k2) .

One obtains eq. (10) of [14] by writing the three body Lorentz invariant momentum space explicitly,

2k
d fλ (~k)

dt
=

4maΓa

π

∫ d3k1

2k0
1

d3 p
2p0 δ

4(p− k− k1){ fa(~p)[1+ fλ (~k)+ fλ (~k1)]− fλ (~k) fλ (~k1)} . (IV.3)

which became the starting point for studying the lasing of nonrelativistic spherically symmetric axion clouds.

Here we need to discuss how the Lorentz invariant phase space originates in Minkowski space in order to

generalize it to curved space. The one body Lorentz invariant momentum space measure is

∫
dXLIMS =

∫ d3 p
(2π)32p0 .
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In Minkowski spacetime, the quantity d p0d p1d p2d p3 which equals
√
|η |d p0d p1d p2d p3 is Lorentz invariant

since |η |= 1, where η is the determinant of the Minkowski metric. For a particle in special relativity, when

we count how many possible momentum states it possesses, p0, p1, p2, p3 can not just take any values. These

values have to satisfy the normalization condition pµ pµ = m2. The first component is just the energy of the

particle, so in addition, we need to require that p0 > 0. Therefore, a quantity that is both Lorentz invariant

and counts the number of all possible momentum states is

∫ p0=+∞

p0=−∞

d p0d p1d p2d p3
δ (pµ pµ −m2)Θ(p0) =

d3 p

2
√
~p2 +m2

=
d3 p
2p0 = (2π)3dXLIMS .

The quantity
√
|η |dx0dx1dx2dx3 = dx0dx1dx2dx3 is a Lorentz invariant pseudoscalar. The small change

d( τ

m ) is also a Lorentz invariant, where τ and m are the proper time and the rest mass of the particle, respec-

tively. Hence we have another Lorentz invariant quantity

m
dx0

dτ
dx1dx2dx3 = p0d3r .

Finally, from the product of two pseudoscalars dx0dx1dx2dx3 and d p0d p1d p2d p3, which is a scalar, the

Lorentz invariant phase space measure arises naturally,

2m
dτ

dx0dx1dx2dx3
∫

d p0d p1d p2d p3
δ (pµ pµ −m2)Θ(p0) = 2p0d3r

d3 p
2p0 = d3rd3 p = dXLIPS .

This is the quantity that we will generalize to curved space in the following section. In polar coordinates, the

infinitesimal line element in Minkowski metric using polar coordinates reads ds2 = −dt2 + dr2 + r2dθ 2 +

r2 sin2
θdφ 2, and the particle number density is given by

n(~r, t) =
∫

f (~p,~r, t)
d3 p
(2π)3 =

∫ f (~p,~r, t)
(2π)3 d pxd pyd pz =

∫ f (~p,~r, t)
(2π)3

∂ (px, py, pz)

∂ (pr, pθ , pφ )
d prd pθ d pφ

=
∫ f (~p,~r, t)

(2π)3 r2 sinθd prd pθ d pφ =
∫ f (~p,~r, t)

(2π)3

√
|ηE|d prd pθ d pφ ,

where ηE is the determinant of the 3 dimensional Euclidean metric in spherical coordinates. The total number

of the particle is

N(t) =
∫

n(~r, t)r2 sinθdrdθdφ =
∫

n(~r, t)
√
|ηE|drdθdφ .
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IV.2 Covariance measures in Static spacetime

The concept of Lorentz transformation is not very useful in Schwarzschild spacetime because there is no

global inertial frame. At a single event, the spacetime can be treated locally as flat and special relativi-

ty is still applicable, Lorentz transformation still provides the relationship between two nearby observers

from two local inertial frames having relative velocity in that infinitesimal region. As soon as an observer,

for example, moves forward along the geodesic a finite distance, the previous established Lorentz transfor-

mation loses its meaning. But even if the functionality of Lorentz transformation between inertial frames

is irrecoverable in curved spacetime, we can embrace the general coordinate transformation under which

general relativity demonstrates general covariance. The invariance provided by Lorentz transformation in

flat spacetime can be emulated by writing quantities in a general covariant form in curved spacetime. For

example, in Schwarzschild spacetime, the coordinates can be expressed as Schwarzschild coordinates, or

Kruskal-Szekeres coordinates, or other equivalent transformations, but the general covariant quantities are

valid without referring to the specific coordinate system.

For any species of particles, the occupation number f (~p,~r, t) in Minkowski spacetime should change to

f (pi,xα) in curved spacetime, where pi is the three spatial component of the 4-momentum of the particle

and xα is the spacetime coordinate of the particle. The occupation number does not depend on the first

component p0 of the 4-momentum of the particle since normalization of the 4-momentum gµν pµ pν =−m2

still holds in curved spacetime. A stationary particle has 4-momentum pµ = (p0,0,0,0), and its 4-velocity is

vµ = (p0/m,0,0,0). A co-stationary observer at the location of the particle would measure the energy of the

particle to be m = −gµν pµ vν = −g00
(p0)2

m . p0 = ± m√
−g00

, where we choose p0 such that it reduces to m in

the flat spacetime limit. So in addition, we may as well require that p0 > 0. Moreover, p0 > 0 implies that

dt
dτ

> 0, or the proper time and coordinate time flow in the same direction. Similar to the Lorentz invariant

momentum space dXLIMS, now there is a general covariant momentum space dXGCMS,

dXGCMS =
∫ √

|g|d p0d p1d p2d p3
δ (gµν pµ pν +m2)Θ(p0) .

The general covariant 4-momentum volume element is
√
|g|d p0d p1d p2d p3, regardless of the metric or the

coordinates that give a specific form to the metric, where g is the determinant of the metric. This abstract

form of momentum space is as far as we can go without implementing the knowledge of a specific metric. It

is applicable not only to static spacetime such as Schwarzschild spacetime, but to any atationary spacetime,

including the Kerr spacetime.

Let us consider static spacetime where g0µ = g00δ0µ . In this case we can have a static covariant momen-

tum space dXSCMS which is a 4-momentum volume measure that is compatible with all static spacetimes and
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their coordinates transformations which keep g0µ = g00δ0µ .

dXSCMS

=
√
|g|
∫ +∞

p0=0
d p0d p1d p2d p3

δ [g00(p0)2 +gi j pi p j +m2]

=
√
|g|d p1d p2d p3

∫ +∞

0
d p0

δ [g00(p0−

√
gi j pi p j +m2

−g00
)(p0 +

√
gi j pi p j +m2

−g00
)]

=
√
|g|d p1d p2d p3

∫ +∞

0
d p0[

1

−2g00

√
gi j pi p j+m2

−g00

δ (p0−

√
gi j pi p j +m2

−g00
)

+
1

−2g00

√
gi j pi p j+m2

−g00

δ (p0 +

√
gi j pi p j +m2

−g00
)]

=

√
|g|d p1d p2d p3

2
√
−g00

√
gi j pi p j +m2

=

√
−g00||gi j||d p1d p2d p3

2
√
−g00

√
−g00(p0)2

=

√
||gi j||d p1d p2d p3

2
√
−g00 p0 ,

where |gi j| is the determinant of the metric of 3-surface dx0 = 0 in the static spacetime of ds2 = g00(dx0)2 +

gi jdxidx j.

A general covariant 4-volume element is
√
|g|dx0dx1dx2dx3. A small change d τ

m , where τ is the proper

time and m the rest mass of the particle is also general covariant. So the quantity

√
|g|mdx0

dτ
dx1dx2dx3 =

√
|g|p0dx1dx2dx3

is also general covariant. Combining this with the static covariant momentum space, we have the static

covariant phase space element

dXSCPS =
√
|g|p0dx1dx2dx3

√
||gi j||d p1d p2d p3
√
−g00 p0 = ||gi j||dx1dx2dx3d p1d p2d p3 .

If we adopt notations

d3x =
√
||gi j||dx1dx2dx3 d3 p =

√
||gi j||d p1d p2d p3 ,

then static covariant phase space has an identical form to Lorentz invariant phase space

dXSCPS = d3xd3 p .
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In a static spacetime, the number density given by

n(xα) =
∫

f (pi,xα)
d3 p
(2π)3 =

∫
f (pi,xα)

√
||gi j||

(2π)3 d p1d p2d p3 ,

and the total number of the particle is

N(t) =
∫

n(xα)d3x =
∫

n(xα)
√
||gi j||dx1dx2dx3 ,

where |gi j| is the determinant of the 3-surface metric ds2 = gi jdxidx j at constant coordinate time t.

IV.3 a↔ γ + γ process in Static spacetime

It is now straightforward to generalize equation (IV.1) to find the change in the number density of photons of

a given helicity =±1 within the axion cluster, due to the process a↔ γ + γ in static spacetime, which is

dnλ

dτ
=
∫

dX (3)
SCMS[ fa(1+ f1λ )(1+ f2λ )− f1λ f2λ (1+ fa)]|M(a→ γ(λ )γ(λ ))|2 . (IV.4)

The one body static covariant momentum space is

∫
dXSCMS =

∫ √||gi j||d p1d p2d p3

(2π)32
√
−g00 p0 ,

and the three body static invariant phase space is

∫
dX (3)

SCMS =
∫ √||gi j||d p1d p2d p3

(2π)32
√
−g00 p0

√
||gi j||dk1

1dk2
1dk3

1

(2π)32
√
−g00k0

1

√
||gi j||dk1

2dk2
2dk3

2

(2π)32
√
−g00k0

2
(2π)4

δ
(4)(p− k1− k2) .

Equation (IV.2) describes the axion decay constant τa in a local inertial frame that is comoving with the

axion. The relation between the time in the comoving frame τ with the axion and the coordinate time t in

static spacetime is

dt
dτ

=
1√
−g00

√
gi j

pi p j

m2 +1 .

where gi j pi p j is the square of the magnitude of the 3-momentum. The decay constant τa in the comoving

frame would change to the decay constant ta in lab frame

ta = τa
1√
−g00

√
gi j

pi p j

m2 +1 ,
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and the decay rate Γa changes

Γa → Γa
√
−g00(gi j

pi p j

m2 +1)−1/2 .

Multiplying equation (IV.4) by dτ

dt , we have an equation for the rate of change in the number density of

photons measured by coordinate time t,

dnλ

dt
=
∫

dX (3)
SCMS{[ fa[1+ fλ (k

i)+ fλ (k
i
1)]− fλ (k

i) fλ (k
i
1)}×16πmaΓa

dτ

dt
.

Writing dnλ

dt in terms of fa we have one static covariant momentum space measure dXSCMS on the LHS of

this equation that we use to cancel one of the three static covariant momentum space measures in dX (3)
SCMS

on the RHS. There remains two static covariant momentum space measures, one for the axion and one for a

photon, plus the δ function.

2
√
−g00k0 d fλ

dt
=
∫ √||gi j||d p1d p2d p3

(2π)32
√
−g00 p0

√
||gi j||dk1

1dk2
1dk3

1

(2π)32
√
−g00k0

1
(2π)4

δ
4(pα − kα − kα

1 ){ fa[1+ fλ (k
i)+ fλ (k

i
1)]

− fλ (k
i) fλ (k

i
1)}16πmaΓa

√
−g00(gi j

pi p j

m2
a

+1)−1/2 .

After simplification, we obtained the evolution equation

2k0 d fλ

dt
=

4maΓa

π

∫ √||gi j||d p1d p2d p3

2
√
−g00 p0

√
||gi j||dk1

1dk2
1dk3

1

2
√
−g00k0

1
{ fa[1+ fλ (k

i)+ fλ (k
i
1)] (IV.5)

− fλ (k
i) fλ (k

i
1)}δ 4(pα − kα − kα

1 )(gi j
pi p j

m2
a

+1)−1/2 .

which resembles equation (IV.3), and reduces to it in the flat space limit.

IV.4 Integration over k1

We write last equation as

2k0 d fλ (ki)

dt
=

4maΓa

π

∫
(gi j

pi p j

m2
a

+1)−1/2

√
||gi j||d p1d p2d p3

2
√
−g00 p0

∫ √||gi j||dk1
1dk2

1dk3
1

2
√
−g00k0

1

1√
|g|

δ (p0− k0− k0
1)

×δ (p1− k1− k1
1)δ (p2− k2− k2

1)δ (p3− k3− k3
1)

×{ fa(pi)[1+ fλ (k
i)+ fλ (k

i
1)]− fλ (k

i) fλ (k
i
1)} ,

to emphasize the ki
1 part of the equation. The only function that depends on k1

1, k2
1 and k3

1 is fλ (ki
1) =

fλ (k1
1,k

2
1,k

3
1). Therefore, after the three δ function are integrated, fλ (ki

1) will change to fλ (p1− k1, p2−
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k2, p3− k3) = fλ (pi− ki). k0
1 is an implicit function of k1

1, k2
1 and k3

1 as given by the normalization of photon

4-momentum. After integration k0
1 would change to

k0
1 →

√
gi j(pi− ki)(p j− k j)

−g00
,

Because g =−g00|gi j|, integration over k1 gives us

2k0 d fλ (ki)

dt
=

4maΓa

π

∫
(gi j

pi p j

m2
a

+1)−1/2

√
||gi j||d p1d p2d p3

2
√
−g00 p0 × 1

2
√

gi j(pi− ki)(p j− k j)

1√
−g00

×δ [p0− k0−

√
gi j(pi− ki)(p j− k j)

−g00
]

×{ fa(pi)[1+ fλ (k
i)+ fλ (pi− ki)]− fλ (k

i) fλ (pi− ki)}.

Normalization of axion 4-momentum allows us to write

(gi j
pi p j

m2
a

+1)−1/2 =
ma√
−g00 p0 .

We use this to simplify the equation to

2k0 d fλ (ki)

dt
=

4maΓa

π(−g00)

∫ ma

p0

√
||gi j||d p1d p2d p3

2
√
−g00 p0 × 1

2
√

gi j(pi− ki)(p j− k j)
(IV.6)

×δ [p0− k0−

√
gi j(pi− ki)(p j− k j)

−g00
]

×{ fa(pi)[1+ fλ (k
i)+ fλ (pi− ki)]− fλ (k

i) fλ (pi− ki)} .

IV.5 Integration over pi

We proceed to integrate if occupation numbers are assumed to be isotropic. Occupation numbers depend on

the 3-momentum only through the norm,

fa(pi) = fa(
√

gi j pi p j) fλ (k
i) = fλ (

√
gi jkik j) .
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Applying the isotropic assumption to equation (IV.6) results in

2k0 d fλ (
√

gi jkik j)

dt
=

4maΓa

π(−g00)

∫ ma

p0

√
||gi j||d p1d p2d p3

2
√
−g00 p0 × 1

2
√

gi j(pi− ki)(p j− k j)
(IV.7)

×δ [p0− k0−

√
gi j(pi− ki)(p j− k j)

−g00
]×{ fa(

√
gi j pi p j)[1+ fλ (

√
gi jkik j)

+ fλ

(√
gi j(pi− ki)(p j− k j)

)
]− fλ (

√
gi jkik j) fλ

(√
gi j(pi− ki)(p j− k j)

)
} .

This equation is valid at event P0(tP0 ,x
i
P0

). On the 3-surface ds2 = gi jdxidx j, at point P0 we employ

Riemann normal coordiantes xi
R on an infinitesimal small patch around P0. We write the metric on the

infinitesimal 3-patch in these coordinates as

ds2 = Gi j(xR)dxi
Rdx j

R .

The coordinate labels have to be changed from (t,xi) to P0, to remind us that we are focusing on the physics

only at P0. Hence we will make the following replacements

k0(t,x1,x2,x3) ⇒ k0
∣∣∣
P0

p0(t,x1,x2,x3) ⇒ p0
∣∣∣
P0

g00(t,x1,x2,x3) ⇒ g00

∣∣∣
P0

.

The isotropic assumption is required so that the spatial quantites in equation (IV.7) can be written in

general covariant form (general covariant only on the 3-surface). General covariant quantities keep their

form when switching to Riemann normal coordinates xi
R,

√
||gi j||d p1d p2d p3 ⇒

√
||Gi j||d p1

Rd p2
Rd p3

R

∣∣∣
P0

√
gi j(pi− ki)(p j− k j) ⇒

√
Gi j(pi

R− ki
R)(p j

R− k j
R)
∣∣∣
P0√

gi j pi p j ⇒
√

Gi j pi
R p j

R

∣∣∣
P0

√
gi jkik j ⇒

√
Gi jki

Rk j
R

∣∣∣
P0
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With these substitutions equation (IV.7) becomes

2k0
∣∣∣
P0

d fλ (

√
G ki

Rk j
R

∣∣∣
P0

,P0)

dt

=
4maΓa

π(−g00

∣∣∣
P0

)

∫ ma

p0
∣∣∣
P0

√
||Gi j||d p1

Rd p2
Rd p3

R

∣∣∣
P0

2
√
−g00

∣∣∣
P0

p0
∣∣∣
P0

× 1

2
√

Gi j(pi
R− ki

R)(p j
R− k j

R)
∣∣∣
P0

×δ [p0
∣∣∣
P0
− k0

∣∣∣
P0
−

√
Gi j(pi

R− ki
R)(p j

R− k j
R)

−g00

∣∣∣
P0

]

×{ fa(

√
Gi j pi

R p j
R

∣∣∣
P0

)[1+ fλ (

√
Gi jki

Rk j
R

∣∣∣
P0

)+ fλ

(√
Gi j(pi

R− ki
R)(p j

R− k j
R)
∣∣∣
P0

)
]

− fλ (

√
Gi jki

Rk j
R

∣∣∣
P0

) fλ

(√
Gi j(pi

R− ki
R)(p j

R− k j
R)
∣∣∣
P0

)
} .

The metric Gi j at point P0 in Riemann normal coordinates xi
R is Gi j

∣∣∣
P0

= (+1,+1,+1), which means at

point P0 on the 3-surface, the space is Euclidean. So the momentum differential volume at point P0 can be

expressed as

√
||Gi j||d p1

Rd p2
Rd p3

R

∣∣∣
P0

= |~pR|2d|~pR|d(−cosθR)d(φR)
∣∣∣
P0

.

where |pR| is the magnitude of the 3-momentum, which is invariant under the coordinate change

|~pR|2
∣∣∣
P0

= Gi j pi
R p j

R

∣∣∣
P0

= gi j pi p j
∣∣∣
P0

.

Rewriting other quantities using the Euclidean notation, gives

√
Gi j pi

R p j
R

∣∣∣
P0

= |~pR|
∣∣∣
P0

√
Gi jki

Rk j
R

∣∣∣
P0

= |~kR|
∣∣∣
P0

√
Gi j(pi

R− ki
R)(p j

R− k j
R)
∣∣∣
P0

= |~pR−~kR|
∣∣∣
P0

,

The law of cosines still hold at the event P0,

|~pR−~kR|2
∣∣∣
P0

= |~pR|2
∣∣∣
P0

+ |~kR|2
∣∣∣
P0
−2cosθR

∣∣∣
P0
|~pR|
∣∣∣
P0
|~kR|
∣∣∣
P0

. (IV.8)

The photon 3-momentum~kR is an independent variable in the 3-Euclidean space around the event P0. As

far as the integration process is concerned, we have the freedom to choose that in this 3-Euclidean space, the

angle formed by ~pR and~kR is θR, or in other words,~kR = |~kR|~ez.
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With these replacements, the evolution equation becomes

2k0
∣∣∣
P0

d fλ (|~kR|
∣∣∣
P0

,P0)

dt

=
4maΓa

π(−g00

∣∣∣
P0

)

∫ ma

p0
∣∣∣
P0

|~pR|2d|~pR|d(−cosθR)d(φR)
∣∣∣
P0

2
√
−g00

∣∣∣
P0

p0
∣∣∣
P0

× 1

2|~pR−~kR|
∣∣∣
P0

×δ (p0
∣∣∣
P0
− k0

∣∣∣
P0
− |~pR−~kR|√

−g00

∣∣∣
P0

)

×{ fa(|~pR|
∣∣∣
P0

)[1+ fλ (|~kR|
∣∣∣
P0

)+ fλ (|~pR−~kR|
∣∣∣
P0

)]− fλ (|~kR|
∣∣∣
P0

) fλ (|~pR−~kR|
∣∣∣
P0

)} .

φR

∣∣∣
P0

is directly integrated to yield

2k0
∣∣∣
P0

d fλ (|~kR|
∣∣∣
P0

,P0)

dt
(IV.9)

=
4maΓa

(−g00

∣∣∣
P0

)

∫ ma

p0
∣∣∣
P0

|~pR|2d|~pR|d(−cosθR)
∣∣∣
P0√

−g00

∣∣∣
P0

p0
∣∣∣
P0

× 1

2|~pR−~kR|
∣∣∣
P0

×δ (p0
∣∣∣
P0
− k0

∣∣∣
P0
− |~pR−~kR|√

−g00

∣∣∣
P0

)

×{ fa(|~pR|
∣∣∣
P0

)[1+ fλ (|~kR|
∣∣∣
P0

)+ fλ (|~pR−~kR|
∣∣∣
P0

)]− fλ (|~kR|
∣∣∣
P0

) fλ (|~pR−~kR|
∣∣∣
P0

)} .

The condition of normalization at point P0 reads

m2 +Gi j pi
R p j

R

∣∣∣
P0

= m2 + |~pR|2
∣∣∣
P0

=−g00(p0)2
∣∣∣
P0

,

which gives a differential relation at P0

|~pR|d|~pR|
∣∣∣
P0

=−g00 p0d p0
∣∣∣
P0

.

From the law of cosines (IV.8), there is another differential relation which tells us how the magnitude |~pR−~kR|

changes when we change the angle θR formed by ~pR and~kR at P0,

|~pR−~kR|d|~pR−~kR|
∣∣∣
P0

= |~pR||~kR|d(−cosθR)
∣∣∣
P0

.
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Replacing d(−cosθR) with d|~pR−~kR|, |~pR|d|~pR| with −g00 p0d p0, and changing the argument of the δ func-

tion, equation (IV.9) turns into

2k0
∣∣∣
P0

d fλ (|~kR|
∣∣∣
P0

,P0)

dt

=
4maΓa

(−g00

∣∣∣
P0

)

∫ ma

p0
∣∣∣
P0

(−g00)p0d p0 |~pR−~kR|d|~pR−~kR|
∣∣∣
P0√

−g00

∣∣∣
P0

p0
∣∣∣
P0
|~kR|
∣∣∣
P0

× 1

2|~pR−~kR|
∣∣∣
P0

×
√
−g00

∣∣∣
P0
×δ (|~pR−~kR|

∣∣∣
P0
−
√
−g00(p0− k0)

∣∣∣
P0

)

×{ fa(|~pR|
∣∣∣
P0

)[1+ fλ (|~kR|
∣∣∣
P0

)+ fλ (|~pR−~kR|
∣∣∣
P0

)]− fλ (|~kR|
∣∣∣
P0

) fλ (|~pR−~kR|
∣∣∣
P0

)} .

After canceling common factors in numerators and denominators, integrating the |~pR−~kR| part, this equation

becomes

k0
∣∣∣
P0

d fλ (|~kR|
∣∣∣
P0

,P0)

dt

=maΓa

∫ ma

p0
∣∣∣
P0

d p0
∣∣∣
P0

|~kR|
∣∣∣
P0

×{ fa(|~pR|
∣∣∣
P0

)[1+ fλ (|~kR|
∣∣∣
P0

)+ fλ

(√
−g00(p0− k0)

∣∣∣
P0

)
]

− fλ (|~kR|
∣∣∣
P0

) fλ

(√
−g00(p0− k0)

∣∣∣
P0

)
} .

The rate of change of photon occupation number at P0 is then

d fλ (|~kR|
∣∣∣
P0

,P0)

dt
(IV.10)

=
maΓa

k0|~kR|
∣∣∣
P0

∫ ma

p0
∣∣∣
P0

d p0
∣∣∣
P0
×{ fa(|~pR|

∣∣∣
P0

)[1+ fλ (|~kR|
∣∣∣
P0

)+ fλ

(√
−g00(p0− k0)

∣∣∣
P0

)
]

− fλ (|~kR|
∣∣∣
P0

) fλ

(√
−g00(p0− k0)

∣∣∣
P0

)
} .

We converte from Riemann normal coordinates xi
R back to general coordinates, via the following substi-

tutions,

√
gi j pi p j

∣∣∣
P0

⇐
√

Gi j pi
R p j

R

∣∣∣
P0

= |~pR|
∣∣∣
P0

√
gi jkik j

∣∣∣
P0

⇐
√

Gi jki
Rk j

R

∣∣∣
P0

= |~kR|
∣∣∣
P0√

gi j(pi− ki)(p j− k j)
∣∣∣
P0

⇐
√

Gi j(pi
R− ki

R)(p j
R− k j

R)
∣∣∣
P0

= |~pR−~kR|
∣∣∣
P0

.
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With k0
∣∣∣
P0

=
√

gi jkik j

−g00

∣∣∣
P0

, equation (IV.10) changes to

d fλ (
√

gi jkik j
∣∣∣
P0

,P0)

dt
=

maΓa
√
−g00

∣∣∣
P0

gi jkik j
∣∣∣
P0

∫ ma

p0
∣∣∣
P0

d p0
∣∣∣
P0
×{ fa(

√
gi j pi p j

∣∣∣
P0

)[1+ fλ (
√

gi jkik j
∣∣∣
P0

)

+ fλ

(√
−g00(p0− k0)

∣∣∣
P0

)
]− fλ (

√
gi jkik j

∣∣∣
P0

) fλ

(√
−g00(p0− k0)

∣∣∣
P0

)
} .

The reason we can use Riemann normal coordinate and convert back is that, the equations do not depend on

the specific Riemann normal coordinates we are using, and where the event point is located. All the relevant

variables can be written in covariant form. We can go through the same process at events P1(tP1 ,x
i
P1

), and

P2(tP2 ,x
i
P2

) using Riemann normal coordinates xi
R1 and xi

R2 respectively, and then obtain equations of the

same form. If the event P0(tP0 ,x
i
P0

) is not at a special point in spacetime, then we should have this equation

at any location xα ,

d fλ (
√

gi jkik j)

dt
=

maΓa
√
−g00

gi jkik j

∫ ma

p0 d p0×{ fa(
√

gi j pi p j)[1+ fλ (
√

gi jkik j)+ fλ

(√
−g00(p0− k0)

)
]

(IV.11)

− fλ (
√

gi jkik j) fλ

(√
−g00(p0− k0)

)
} .

We note the factor of
√
−g00 is from the gravitational redshift which corrects the time difference between the

clock in the lab and the clock at the location the axion. The factor ma
p0 is due to special relativity correction.

IV.6 Kinematics of decay in static spacetime

Utilizing the normalization of momentum, the law of cosine (IV.8) can be written as

(−g00)(p0− k0)2
∣∣∣
P0

=[(−g00)(p0)2−m2
a]
∣∣∣
P0

+(−g00)(k0)2
∣∣∣
P0

−2cosθR

√
(−g00)(p0)2−m2

a

√
(−g00)(k0)2

∣∣∣
P0

.

cos2 θR

∣∣∣
P0
≤ 1 requires that

p0
∣∣∣
P0
≥ k0

∣∣∣
P0

+
m2

a

4k0(−g00)

∣∣∣
P0

or k0
min

∣∣∣
P0
≤ k0

∣∣∣
P0
≤ k0

max

∣∣∣
P0

,
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where

k0
max/min

∣∣∣
P0

=
1
2
[ p0±

√
(p0)2− m2

a

−g00
]
∣∣∣
P0

=
1
2
(p0±

√
gi j pi p j

−g00
)
∣∣∣
P0

.

This equation and equation (IV.8) provides a relationship between momentum of the axions and the photons,

all located at a single point where Riemann normal coordinates were applied. But in general, neither the law

of cosines nor the trigonometric relation cos2 θ ≤ 1 holds in curved spacetime over an extended region. We

find that at event P0, there are upper and lower limits on the 0th component of photon momentum. This is

true for every event at any point in spacetime. The bounds are

p0 ≥ k0 +
m2

a

4k0(−g00)
k0

max/min =
1
2
[ p0±

√
(p0)2− m2

a

−g00
] =

1
2
(p0±

√
gi j pi p j

−g00
)√

gi jkik j
max/min

=
1
2
(
√
−g00 p0±

√
gi j pi p j) . (IV.12)

IV.7 From occupation number f to number density n

Switching from variable
√

gi j pi p j to p0, the evolution equation (IV.11) becomes

d fλ (
√

gi jkik j)

dt
=

maΓa
√
−g00

gi jkik j

∫
k0− m2a

4k0g00

ma

p0 d p0{ fa

(√
(−g00)(p0)2−m2

a

)
× [1+ fλ (

√
gi jkik j)+ fλ

(√
−g00(p0− k0)

)
]− fλ (

√
gi jkik j) fλ

(√
−g00(p0− k0)

)
} .

Sincet p0 = k0+k0
1 and

√
−g00k0

1 =
√

gi jki
1k j

1, this equation can also be rewritten as an integral over
√

gi jki
1k j

1,

d fλ (
√

gi jkik j)

dt
=

maΓa
√
−g00

gi jkik j

∫
m2a

4
√

gi jkik j

mad(
√

gi jki
1k j

1)√
gi jkik j +

√
gi jki

1k j
1

×{ fa

(√
(
√

gi jkik j +

√
gi jki

1k j
1)

2−m2
a

)

× [1+ fλ (
√

gi jkik j)+ fλ (

√
gi jki

1k j
1)]− fλ (

√
gi jkik j) fλ (

√
gi jki

1k j
1)} .

At any event xα , the number density is given by

n(xα) =
∫

f (pi,xα)

√
||gi j||

(2π)3 d p1d p2d p3 ,
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which also holds at event P0 in Riemann normal coordinates with Gi j

∣∣∣
P0

= ηi j = (+1,+1,+1),

dnλ

dt

∣∣∣
P0

=
dnλ

dt

∣∣∣
xα=tP0 ,x

i
P0

=
∫ d fλ (

√
gi jkik j)

dt

√
||gi j||

(2π)3 d p1d p2d p3
∣∣∣
P0

=
∫ d fλ (

√
Gi jkik j)

dt

√
||Gi j||

(2π)3 dk1dk2dk3
∣∣∣
P0

=
∫ d fλ (|~kR|)

dt
|~kR|2

(2π)3 d|~kR|d(−cosθR)d(φR)
∣∣∣
P0

=
∫ d fλ (

√
gi jkik j)

dt
gi jkik j

(2π)3 d(
√

gi jkik j)d(−cosθR)d(φR)
∣∣∣
P0

=
∫ d fλ (

√
gi jkik j)

dt
gi jkik j

2π2 d(
√

gi jkik j)
∣∣∣
P0

.

The rate of change in photon number density is then

dnλ

dt
=

maΓa
√
−g00

2π2

∫ ∫
k0− m2a

4k0g00

ma

p0

{
fa

(√
(−g00)(p0)2−m2

a

)
[1+ fλ (

√
gi jkik j) (IV.13)

+ fλ (
√
−g00 p0−

√
gi jkik j)]− fλ (

√
gi jkik j) fλ (

√
−g00 p0−

√
gi jkik j)

}
d p0d(

√
gi jkik j) ,

or alternatively

dnλ

dt
=

maΓa
√
−g00

2π2

∫ ∫
m2a

4
√

gi jkik j

mad(
√

gi jki
1k j

1)d(
√

gi jkik j)√
gi jkik j +

√
gi jki

1k j
1

{
fa

(√
(
√

gi jkik j +

√
gi jki

1k j
1)

2−m2
a

)

× [1+ fλ (
√

gi jkik j)+ fλ (

√
gi jki

1k j
1)]− fλ (

√
gi jkik j) fλ (

√
gi jki

1k j
1)
}
.

IV.8 Setup of simple cluster model

Assume that the dependences of the axion occupation number are separable, and of the form

fa(
√

gi j pi p j,r, t) =Θ(pmax−
√

gi j pi p j)[ fac(t)Θ(r+− r)Θ(r− r−)+ fad(t)d(r)] . (IV.14)

We let r+ ∼ r− both be far beyond the event horizon of the host star or black hole, with the small distortion

d(r) in the region (r− ≤ r ≤ r+) away from a uniform distribution. We define the maximum 3-momentum

of an axion to be pmax = [
√

gi j(r)pi p j]max = maβ ′. [23] provides several ways of calculating the value of β ′

based on circumstances. For Schwarzschild space time,

β
′
sch =2×10−3

√
MR�
M�r+

√
r+
r−
−1 ,
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where M� and R� are the solar mass and solar radius respectively, and M is the mass of host star or black

hole. Suppose that the photon occupation number which correspondences to that of axions (IV.14), is

fλ (
√

gi jkik j,r, t) =[ fλc(t)Θ(r+− r)Θ(r− r−)+ fλd(t)d(r)] (IV.15)

×Θ(
√

gi jkik j
+
−
√

gi jkik j)Θ(
√

gi jkik j−
√

gi jkik j
−
) ,

√
gi jkik j

+/− are
√

gi jkik j
max/min in (IV.12) when

√
gi j pi p j takes the value maβ ′.

√
gi jkik j

±
=

1
2
(
√
−g00 p0±

√
gi j pi p j)

∣∣∣∣√
gi j pi p j=maβ ′

=
1
2
[
√

m2
a +(maβ ′)2±

√
(maβ ′)2]

=
ma

2
(
√

1+β ′2±β
′) .

We integrate equation (IV.13) over |ki
1| and |ki|. The integration process is long and tedious, see [23] for

detailed steps toward the results presented here.

dnλ

dt
=

maΓa

2π2

√
−g00{

m2
aβ ′3

3
[ fac(t)Θ(r+− r)Θ(r− r−)+ fad(t)d(r)+2 fac(t) fλc(t)Θ(r+− r)Θ(r− r−)

+2( fac(t) fλd(t)+ fad(t) fλc(t))d(r)− f 2
λc(t)Θ(r+− r)Θ(r− r−)−2 fλc(t) fλd(t)d(r)]

− m2
aβ ′2

2
[ f 2

λc(t)Θ(r+− r)Θ(r− r−)+2 fλc(t) fλd(t)d(r)]} , (IV.16)

Using Riemann normal coordinates, the axion number density at event xα is an integration of fa(
√

gi j pi p j,r)

over pi,

na(t,xi) =
∫ maβ ′

0
Θ(pmax−

√
gi j pi p j)

gi jkik j

2π2 d(
√

gi jkik j)[ fac(t)Θ(r+− r)Θ(r− r−)+ fad(t)d(r)]

=
(maβ ′)3

6π2 [ fac(t)Θ(r+− r)Θ(r− r−)+ fad(t)d(r)] = [nac(t)Θ(r+− r)Θ(r− r−)+nad(t)d(r)] .

The occupation numbers can be converted to number densities with

fac(t) =
6π2

(maβ ′)3 nac(t) , fad(t) =
6π2

(maβ ′)3 nad(t) .

Again, using Riemann normal coordinates, we calculated the volume of the shell Θ(
√

gi jkik j
+−

√
gi jkik j)

×Θ(
√

gi jkik j−
√

gi jkik j
−) to be

Vk ≈4π[
1
2
(
√

gi jkik j
+
+
√

gi jkik j
−
)]2× (

√
gi jkik j

+
−
√

gi jkik j
−
) = πm3

aβ
′(1+β

′2) .
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The number density of photons

nλ (t,x
i) =nλc(t)Θ(r+− r)Θ(r− r−)+nλd(t)d(r) (IV.17)

is an integration of photon occupation number fλ over ki. The coefficients of occupation number and number

density are related by

fλc(t) =
(2π)3nλc(t)

Vk
=

8π2

m3
aβ ′

nλc(t) , fλd(t) =
(2π)3nλd(t)

Vk
=

8π2

m3
aβ ′

nλd(t) ,

which we note is different from the axion relations.

IV.9 Radial distribution approximation

Because of the factor
√
−g00 in (IV.13), neither axions nor photons can maintain a uniform radial distribution

and it is this fact that causes the distortion d(r) to arise in those quantities. We assume that the distortion is

the displacement of
√
−g00 from 1,

√
−g00 = 1+d(r) .

In the case of Schwarzschild spacetime, the Maclaurin series for the correction factor
√
−g00 is

√
1− 2M

r
=1− 1

2
2M
r
− 1

8
(

2M
r

)2− ...

In the case of Reissner-Nordström spacetime it is

√
1− 2M

r
+

Q2

r2 =1− 1
2

2M
r

+[
1
2

Q2

r2 −
1
8
(

2M
r

)2]− ...

From the Maclaurin series, we can see that all the r dependent terms contribute to the unevenness of the

distribution, i.e., to d(r). Returning to the general form, we consider the time derivative of (IV.17). Neglecting

terms which are second or higher order of d(r), we have

dnλ

dt
=

dnλc(t)
dt

Θ(r+− r)Θ(r− r−)+
dnλd(t)

dt
d(r) =

maΓa

2π2 [1+d(r)]{m2
aβ ′3

3
[ fac(t)Θ(r+− r)Θ(r− r−)

+ fad(t)d(r)+2 fac(t) fλc(t)Θ(r+− r)Θ(r− r−)+2 fac(t) fλd(t)d(r)+2 fad(t) fλc(t)d(r)

− f 2
λc(t)Θ(r+− r)Θ(r− r−)−2 fλc(t) fλd(t)d(r)]

− m2
aβ ′2

2
[ f 2

λc(t)Θ(r+− r)Θ(r− r−)+2 fλc(t) fλd(t)d(r)]} .
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which defines the uniform and distorted parts of the number density, nλc(t) and nλd(t) respectively, as well

as the uniform and distorted parts of the of the corresponding occupation number. We match terms according

to whether the radial distribution is uniform Θ(r+− r)Θ(r− r−) or distorted d(r). The equation for uniform

part of the photon distribution is

dnλc(t)
dt

=
maΓa

2π2 {
m2

aβ ′3

3
[ fac(t)+2 fac(t) fλc(t)− f 2

λc(t)]−
1
2

m2
aβ
′2 fλc(t)

2} .

while the equation for the deformed part is

dnλd(t)
dt

=
maΓa

2π2 {
m2

aβ ′3

3
× [ fac(t)+ fad(t)+2 fac(t) fλc(t)+2 fac(t) fλd(t)

+2 fad(t) fλc(t)− f 2
λc(t)−2 fλc(t) fλd(t)]−

m2
aβ ′2

2
[ f 2

λc(t)+2 fλc(t) fλd(t)]} .

Finally we replace all the occupation number coefficents with number density coefficents and simplify to find

dnλc

dt
= Γa(nac +

16π2

m3
aβ ′

nacnλc−
32π2β ′

3m3
a

n2
λc−

16π2

m3
a

n2
λc)

which is the same as equation (32) of [14], as expected. In addition, we have the simplified equation that

accounts for radial distortion,

dnλd(t)
dt

=Γa(nac +nad +
16π2

m3
aβ ′

nacnλc +
16π2

m3
aβ ′

nacnλd +
16π2

m3
aβ ′

nλcnad

− 32π2β ′

3m3
a

n2
λc−

64π2β ′

3m3
a

nλcnλd−
16π2

m3
a

n2
λc−

32π2

m3
a

nλcnλd) .

IV.10 Surface loss and total photon density

The surface loss of photon at r = r+ is

(dnλ )r+surface loss =
1
2
× −dNλ

V
=−1

2
× nλ dV∫√

|gi j|dxidx2dx3
,

where 1
2 accounts for the probability that in the tangent space of an event at the surface, the momentum of the

photon has positive radial component. In general, the surface loss rate Γs (at both r+ and r−) is proportional

to the number density,

(
dnλ

dt
)r+surface loss +(

dnλ

dt
)r−surface loss =−Γsnλ .
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For Schwarzschild spacetime,

(dnλ )r+surface loss =−
nλ Sc(dt)∫√

(1− 2M
r )−1r2r2 sin2

θdrdθdφ

× 1
2
=− nλ Sc(dt)

4π
∫ r+

r−
r2√

1− 2M
r

dr
× 1

2

≈− nλ

2
4πr2

+

4πr3
+

3 −
4πr3
−

3

c(dt) .

Here since r� 2M, (working to lowest order in d(r)) we used the approximation
√

1− 2M
r ∼ 1. Then the

surface loss at r+ is

(
dnλ

dt
)r+surface loss =−

3cr2
+nλ

2(r3
+− r3

−)
=−

3cr2
+

2(r3
+− r3

−)
[nλc(t)Θ(R− r)+nλd(t)d(r)] .

The surface loss of photon at r = r− can be neglected because photons would go back to the cluster unless

being captured by the black hole. r−� 2M limits the possibility of incidents that photon falling into black

hole. Define the surface loss rate,

Γs =−
3cr2

+

2(r3
+− r3

−)
.

With surface loss included, the photon number density rate equation becomes

dnλc

dt
=Γa[nac +

16π2

m3
aβ ′

nacnλc−
32π2

3m3
a
(β ′+

3
2
)n2

λc]−Γsnλc ,

dnλd

dt
=Γa[nac +nad +

16π2

m3
aβ ′

(nacnλc +nacnλd +nλcnad)−
32π2

3m3
a
(β ′+

3
2
)n2

λc

− 64π2β ′

3m3
a

(β ′+
3
2
)nλcnλd ]−Γsnλd .

Assuming that all reactions create and/or annihilate equal number of photons from each helicity state, n+c =

n−c and n+d = n−d . Hence nλc =
1
2 nγc and nλd = 1

2 nγd , and we find

dnγc

dt
=Γa[2nac +

16π2

m3
aβ ′

nacnγc−
16π2

3m3
a
(β ′+

3
2
)n2

γc]−Γsnγc ,

dnγd

dt
=Γa[2nac +2nad +

16π2

m3
aβ ′

(nacnγc +nacnγd +nγcnad)−
16π2

3m3
a
(β ′+

3
2
)n2

γc

− 32π2

3m3
a
(β ′+

3
2
)nγcnγd ]−Γsnγd .
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The uniform and distorted axion number density rate equations are minus one half of the photon number

density rate equation, excluding sterile axions

dnac

dt
=−Γa[+nac +

8π2

m3
aβ ′

nacnγc−
8π2

3m3
a

β
′n2

γc] ,

dnad

dt
=−Γa[+nac +nad +

8π2

m3
aβ ′

(nacnγc +nacnγd +nγcnad)−
8π2

3m3
a

β
′n2

γc−
16π2

3m3
a

β
′nγcnγd ] .

Counting time in units of axion decay constant 1/Γa, then defining a new dimensionless variable ta = tΓa and

measuring volume in unit of axion Compton volume 16π2

m3
a

, the system of rate equations can be expressed as

dnC
γc

dta
=[2nC

ac +
1
β ′

nC
acnC

γc−
1
3
(β ′+

3
2
)(nC

γc)
2]− Γs

Γa
nC

γc ,

dnC
ac

dta
=[−nC

ac−
1

2β ′
nC

acnC
γc +

β ′

6
(nC

γc)
2] ,

dnC
γd

dta
=2nC

ac +2nC
ad +

1
β ′

(nC
acnC

γc +nC
acnC

γd +nC
γcnC

ad)−
1
3
(β ′+

3
2
)(nC

γc)
2− 2

3
(β ′+

3
2
)nC

γcnC
γd−

Γs

Γa
nC

γd ,

dnC
ad

dta
=−nC

ac−nC
ad−

1
2β ′

(nC
acnC

γc +nC
acnC

γd +nC
γcnC

ad)+
β ′

6
(nC

γc)
2 +

β ′

3
nC

γcnC
γd .

These equations are our main results. They can be applied in many circumstances.

IV.11 Example and discussion: lasing axions clustered near a solar mass black hole

We have numerically solved the above system of rate equations for the case of a one solar mass, M = M�

Schwarzschild black hole. (Although the mass of sun is below the minimum value required for a star to form

a black hole, primordial black holes are allowed to have solar mass.) We assume there is a hadronic axion (∼

3 eV) cluster (Again, this may not be realistic because hadronic axions are not favored currently.) of diameter

600 m with roughly standard ice density 900 kg/m3 which is equivalent to an initial axion number density

of about 7.56× 1018 times the unit axion Compton number density. If the cluster is placed at 40 AU (this

corresponds to the radius of the Kuiper belt in solar system) from the black hole, the relativity index becomes

β ′ = 2.156×10−10. The uniform photon density nγc grows exponentially on a time scale of 10−28/Γa. Since

the distortion factor d(r) ∼ −2.465× 10−10 is very small, the total photon and axion number density are

affected very little. The detailed photon radiation outcome, such as growth time and pulse height, are highly

dependent on the initial axion number density, as the surface loss would affect low density axion clusters

more noticeably than high density ones.

For the numerical calculation we assume the axion cluster is approximately a cylinder rather than spher-

ical. Actually it is a section of a cone of height 600 m, i.e., a frustum, which we get by including the
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Figure IV.1: The uniform axion density nac decreases exponentially on the same temporal scale as the photos.
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Figure IV.2: The distorted photon density formed a sharp pulse. The distorted axion density also formed a
sharp pulse with the amplitude being the opposite of that of distorted photon.
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Figure IV.3: The total particle densities
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factors Θ(θ)Θ(10−8− θ)Θ(φ)Θ(10−8− φ) to constrain the axion and photon occupation numbers (IV.14)

and (IV.15), since g00 in equation (IV.16) does not depend on the θ or φ if the black hole is of Schwarzschild

or Reissner-Nordström type. Including these factors makes our results applicable to asteroid size axion clus-

ter. These factors will not change β ′. During the lasing time scale, axions move only a few micrometer if

the previous β ′ is the maximum velocity of the axions. This means that the axions would be confined in the

region described by these Θ factors during lasing. Surface loss terms may need to be changed here, therefore

it is not guaranteed that every point in the cluster would lase as the figures suggest, but some part of the clus-

ter will. The purpose of the example presented here is only to demonstrate the applicability of the method

we have developed but not to provide an example of a realistic physical system. Other examples are easily

handled by this approach, for instance, ring type axion clusters are also able to be described by our results

by adding similar angular factors and changing surface loss terms as far as a spherical symmetric metric is

concerned.
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CHAPTER V

Analysis of the possibility of lasing from axitons and axion stars

This chapter explores the some properties of axitons and axion stars based on the classical analogy with axion

self interaction lagrangians and investigates the conditions of possible lasing from these objects.

V.1 Guesstimate of interaction potential between two axions

We want to find a classical potential that can characterize the interaction between two axions similar to the

way Newtonian gravity does. In [18], the axion interaction potential is expressed by

V (φ) =
1
2

m2
aφ

2 +(ma fa)
2

∞

∑
n=2

λ2n

(2n)!
(

φ

fa
)2n , (V.1)

where fa is the decay constant of axion and ma is the mass of axion. Astrophysical and cosmological con-

straints put the value of fa between 3×109 GeV and 1012 GeV. The product of ma and fa was given in [15]

as

ma fa = [75.5 MeV]2 .

Based on this relation, the mass of axion ma has a typical value of 10−4±1 eV. V (φ) is the potential density

of the axion field with dimension of [ML−3] = [M4]. This means that the field φ has the same dimension as

energy. The lagrangian density of axion field with lowest two orders of interaction is

L =
1
2

∂µ φ∂
µ

φ − 1
2

m2
aφ

2− λ4

4!
(

ma

fa
)2

φ
4− λ6

6!
(

m2
a

f 4
a
)φ 6 .

The quantum field lagrangian density is obtained from the classical particle lagrangian through the canonical

quantization, p→ ∂µ φ , x→ φ . By reversing the quantization process,

∂µ φ → p, φ → x ,

we might guess a classical potential that roughly describes the interaction between individual axions. Under

this analogy, 1
2 ∂µ φ∂ µ φ− 1

2 m2
aφ 2 becomes the kinetic energy. The exact prescription of obtaining the classical
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potential is

φ → ma
r

2π

ma

= mara , then× (
2π

ma
)3 , (V.2)

where ra is the distance r between two axions measured in unit of axion Compton wavelength `a =
2π

ma
. The

field φ needs to have a dimension of energy and the only relevant energy scale here is the mass of axion. At

the same time, the field φ needs to be replaced by the coordinate x but it can not take the dimension of length.

Then a possible solution is to associate φ to distance measured in terms of Compton length of axion 2π

ma
. At

last, we have to multiply the potential density by a volume, in order to make the classical potential having the

correct dimension. Under this prescription, the self interaction between axions is approximated to the lowest

order by the potential energy

V4(ra)≈
|λ4|π3

3
(

ma

fa
)2mar4

a . (V.3)

This becomes an attractive potential when the absolute value of λ4 is taken.

It was said in [18] that in the axion field potential (V.1), m2
a

f 2
a

is a quantum loop factor and higher orders of

interaction are suppressed by m2
a

f 2
a

. Under prescription (V.2), the next lowest order term in the potential density

(V.1) becomes

V6(ra)∼
λ6π3

90
(

ma

fa
)4mar6

a .

This shows that the second lowest order potential energy V6 is m2
a

f 2
a

times smaller than V4, which is consistent

with the argument presented in [18]. As a side note, higher order potentials gain an amplification factor of

r2
a. As long as this factor is smaller than the suppression factor m2

a
f 2
a

, the higher order potentials such as V6, V8

could be ignored. That is to say,

ra <

√
30|λ4

λ6
| fa

ma
.

If we take fa =
√

3×109×1012 GeV, this suggests that the higher order potential can be dropped if the

distance r between axions is less than 2.1× 106 ly. In the following study, we won’t encounter events of

galactic size, so higher order potentials will be neglected.

The energy scale of potential (V.3) is very small at small distance due to the supression factor m2
a

f 2
a

. Two

axions separated from each other with a distance of 1 µm have V4 ≈ 6.61× 10−68 eV. By comparison, the
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same distance between two axions provides a gravitational potential of Vgr ≈ 1.43× 10−65 eV. At closer

range, the attraction between axions would be even weaker, and much weaker than gravity. So potential (V.3)

doesn’t contradict the current consensus that the self interaction between axions is very weak.

At larger distance, if potential (V.3) is still applicable, it indicates a stronger attraction between axions

via self interaction than gravity. For instance, self interaction at a distance of 1 cm has a value of V4 ≈

6.61×10−52 eV, which is still weak but much stronger than that from gravity Vgr ≈ 1.43×10−69 eV.

V.2 Continuous potential of an axion cluster

Potential (V.3) shows the energy between two individual axions. If we have a continuous distribution of ax-

ions, the potential energy at each location can be obtained by integration over the entire distribution. Consider

a sphere of radius R with the center of the sphere sitting at the origin. Two arbitrary points inside the sphere

have coordinates ~r1 and ~r2. We can arrange the coordinate system so that the z-axis align with ~r1 which

results in

~r1 = r1~ez , ~r2 = r2 cosθ~ez + r2 sinθ cosϕ~ex + r2 sinθ sinϕ~ey , |~r1−~r2|=
√

r2
1−2r1r2 cosθ + r2

2 .

The gravitational potential at~r1 is given by

Ugr(r1) =
∫
− Gρr2

2dr2 sinθdθdϕ√
r2

1−2r1r2 cosθ + r2
2

=


GM
2R3 (r2

1−3R2) , r1 < R

−GM
r1

, r1 > R

where ρ is the constant mass density of the axion sphere of mass M. By similar calculation we can find the

continuous axion self interaction potential

U4(r1) =
∫

na(~r2)V4(~r1−~r2)r2
2dr2 sinθdθdϕ ,

where na(~r2) is the number density of axions at~r2. For a constant mass density ρ , the number density also

becomes constant na(~r2) = na0 =
3M

4πR3ma
= ρ

ma
. The self interaction potential at~r1 becomes

U4(r1) =
∫

na0
|λ4|π3

3
(

ma

fa
)2ma

(
|~r1−~r2|

`a

)4

r2
2dr2 sinθdθdϕ =

π3|λ4|
3`4

a
(

ma

fa
)2(Mr4

1 +2Mr2
1R2 +M

3R4

7
)

We can write the continuous potential in terms of dimensionless length ra =
r
`a

,

U4(ra) =π
3|λ4|(

ma

fa
)2M(

r4
a

3
+

2r2
aR2

a

3
+

R4
a

7
) . (V.4)
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The value of potential (V.4) increases as the distance from the center increases, this is similar to the gravi-

tational potential. Unlike gravity, the zero point of U4 is not at ra = ∞, but is at ra = 0. The exact potential

energy at any location ra should be U4(ra)−U4(0).

V.3 Comparison of self interaction and gravity for axiton and axion star

A Newtonian gravitational potential is not guaranteed to bound a particle as long as the particle has enough

kinetic energy. If potential (V.3) is applicable at a long distance, then it seems that a particle can never escape

the quartic barrier, regardless of its kinetic energy. This implies that if potential (V.3) is applicable at relative

long distance, axions inside an axiton formed by self interaction can only be relativistic. There is a critical

radius of the axion cluster beyond which the self interaction potential is larger than the gravitational potential

at the surface R:

U4(R)−U4(0)> ma[Ugr(∞)−Ugr(R)] , ⇒ Rself-dominate >
5

√
`4

a

π3|λ4|
(

fa

ma
)2 Gma

c4 ≈ 2.35µm .

Stable axion clusters of 1 cm in size can exist according to [18], which may verify that the axion self interac-

tion has an effective range longer than 2.35 µm. Then the self interaction potential may have an applicable

range from a few µm to a few cm. At the same time, we expect the potentials (V.3) and (V.4) to break down

at some distance Rbd > 1 cm. The first reason is that the prescription (V.2) is not an accurate calculation,

and the potentials (V.3) and (V.4) trap axions inside an infinite high potential well which is not physically

achievable. According to [18], there is no stable axiton of� 1 cm in size.

For axitons, gravity can be ignored since the self interaction dominates in the range from 2.35 µm to 1

cm. Therefore, we only need to consider axion self interaction when we investigate axitons. However, the

corresponding argument probably is not true for axion stars. In theory, stable axion stars of roughly 100 km

in size can exist. Based on the discussion so far, inside this type of axion stars, it’s possible that in the range

from µm to cm, self interaction of axiton dominates, which results in many small granular axitons or pebble

axitons. Thus the inner structure of axion stars may be that, on a short length scale axions form granular

axitons because of the stronger self interaction; on a long length scale, as the self interaction breaks down

and gravitational potential grows stronger, those granular axitons are bounded by gravity and form the axion

star. If a dilute axion star of mass 1.2× 10−14M� and radius 2.3× 10−3R� is made up of granular axitons

of mass 2.0× 10−19M�, radius 1.75× 10−11R�, then the number density of granular axiton is about 1 per

2.87× 105 km3. There is very long distance between granular axitons. On the other hand, if a dense axion

star of mass 1.0× 10−12M�, radius 5× 10−10R� is made up of the same granular axitons, then the number
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Figure V.1: axion star inner structure: granular axitons

density of granular axiton is about 28 per cm3. There is significant overlap between the granular axitons.

V.4 Axiton mechanics

Consider an axion cluster of mass M and radius R and ignore gravity, an axion initially sitting at the surface

of the cluster would have the maximum possible kinetic energy when it travels down to the center of the

cluster from the surface. Let β denote the maximum possible speed of the axion when it is at the origin. Then

ignoring gravity, conservation of energy gives us

ma(
1√

1−β 2
−1) =U4(R)−U4(0) = π

3|λ4|(
ma

fa
)2MR4

a . (V.5)

Different value combinations of the mass M and radius R of the axiton would make the resident axions

either relativistic or nonrelativistic. We plotted figure V.2 that shows the conditions the mass M and radius

R of the axiton need to meet in order to keep those axions nonrelativistic, semirelativistic, and relativistic,

respectively. For an axiton of mass 2.0×10−20M�, radius 1.75×10−11R�, which may be a stable axiton as

suggested in [18], the maximum axion speed is found to be larger than 0.999c, if we assume the axiton has a

uniform density. This does not necessarily mean that most of the axions in this axiton are highly relativistic.

It only requires that an axion needs an initial speed of > 0.999c to escape from the center to the surface of

the axiton. So even an initial highly relativistic axion will not always be relativistic. A common scenario is

that a highly relativistic axion initially at the center moves towards the outside, losing kinetic energy quickly

and then becoming nonrelativistic. When it barely touches the surface of the axiton, it exhausts all the kinetic

energy and moves back toward the center. The axions essentially oscillate between the surface and the center.

Our calculation shows that the average number density of this axiton is a few times higher than the central

number density given in [18]. This could possibly confirms that relativistic axions can exist in the center of

the axiton. If we assume the mass density is same everywhere in the axiton, then a lower number density

requires the axiton to be heavier.

Along the track of an axion bouncing between the center and the surface of the axiton, we can find the
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Figure V.2: Relativistic category of axitons formed of 10−4 eV axions

velocity β1 of the axion when it is at r1.

ma(
1√

1−β 2
−1) =U4(R)−U4(0) =

π3|λ4|
`4

a
(

ma

fa
)2MR4

ma(
1√

1−β 2
1

−1) =U4(R)−U4(r1) =
π3|λ4|

3`4
a

(
ma

fa
)2M(3R4− r4

1−2r2
1R2)

⇒ (
1√

1−β 2
1

−1) =(
1√

1−β 2
−1)(1− r4

1
3R4 −

2r2
1

3R2 )

The relationship between β1 and r1 for surface axions with zero angular momentum inside nonrelativistic,

semirelativistic, and relativistic axiton are plotted in figure V.3. For a nonrelativistic axiton of β = 0.1, the

maximum velocity of an axion is 0.1c and that happens when a surface axion at r1 = R falls down and arrives

at the center r1 = 0. The entire axiton is nonrelativistic as the β = 0.1 curve shows. For a semirelativistic

axiton of β = 0.5, the maximum velocity of an axion is 0.5c and that happens when a surface axion at r1 = R

falls down and arrives at the center r1 = 0. It is not that all the axions are semirelativistic. As the β = 0.5

curve shows, in the shell region from 0.95R to R, the axions are nonrelativistic. For a relativistic axiton of
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Figure V.3: Relativistic regions of axitons

β = 0.9, the maximum velocity of an axion is 0.9c and that happens when a surface axion at r1 = R falls down

and arrives at the center r1 = 0. Indeed, most of the axions inside this type of axiton are highly relativistic.

But in the thin layer from 0.99R to R, these “exhausted” axions can be treated as nonrelativistic.

V.5 Relativistic axiton surface lasing model

According to [14], lasing of axion clusters requires two conditions. The first condition is that the initial axion

density is high enough. The second condition is that these axions are nonrelativistic. We think this second

condition would be satisfied in many cases. For a highly relativistic axiton with β ∼ 1, its thin surface layer

of axions consists of nonrelativistic “exhausted” axions. And if the density of those nonrelativistic axion is

high enough, this surface layer of axions would lase first. As this lasing finishes, there would be a new type

of axiton with less mass and shorter radius. Equation (V.5) says the maximum velocity β of the new axiton

is less than the axiton before lasing. Therefore this new axiton would be less relativistic than the previous

axiton, and have a thicker layer of nonrelativistic axions on its surface. This may leads to another lasing event

if the density of the axions is high enough. In short, even in the case of highly relativistic axiton, there could

be a cascade of lasing events that continues to reduce the mass and shrink the size of axiton, that renders the

axiton less relativistic, that gradually gains thicker layer of nonrelativistic axions at its surface which could
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Figure V.4: Relativistic axiton lases through layers of nonrelativistic axions

produce a stronger lasing event. Relativistic axitons showly shreds its nonrelativistic layers of axions through

lasing, which causes its inner semirelativistic layers of axions to become less relativistic and starts another

lasing. The process may not stop until the entire axiton has self annihilated. This process could also be

continuous with lasing always taking place at the surface of the axiton.

V.6 Axiton and axion star lasing

[14] proposed equations for the evolution of axion cluster lasing,

dnC
γ

dta
= 2nC

a +
1
β

nC
a nC

γ − (
β

3
+

1
2
)(nC

γ )
2− Γs

Γa
nC

γ ,
dnC

a

dta
=−nC

a −
1

2β
nC

a nC
γ +

β

6
(nC

γ )
2 . (V.6)

nC
a and nC

γ are the dimensionless number density of axion and photon, respectively. β is the maximum

velocity of the axions and ta is the dimensionless time which measures real time t in units of axion decay

time 1/Γa. For a typical nonrelativistic axiton of mass M = 2× 10−26M�, radius R = 1.75× 10−11R� in

figure V.2, equations (V.6) shows that it may not lead to lasing. The reason is that the axion density is too

low, the photons from spontaneous decays escaped the axiton before they can further stimulate other axions

to decay. For a typical relativistic axiton of mass M = 2× 10−26M�, radius R = 8× 10−11R� in the figure

V.2, the axion density is even lower, and equations (V.6) shows that it would not lase either.

A stable axiton of mass M = 2.0×10−20M� and radius R= 1.75×10−11R� is relativistic, as we discussed

before.See figure V.5. It will not lase if all the axions are relativistic. But there are nonrelativistic axions in

outer regions of the axiton. These nonrelativistic axions have near zero velocity along the radius direction

due to the self interaction potential. The lasing model proposed in [14] takes the escape velocity of the

gravitational bound as the maximum velocity of the lasing axions. In the current case, although gravity is

weaker than the self interaction, it does not prohibit us from using the gravitational escape velocity as the
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Figure V.5: Surface lasing from axiton of M = 2.0×10−20M�, R = 1.75×10−11R�, ma = 10−4 eV

maximum velocity for nonrelativistic axions on the surface of the axiton. This gravitational escape velocity

is found to be
√

2GM
R = 20.87 m/s. On the thin layer near the surface of the axiton, it is dynamically allowed

to have axions moving with ∼ 20 m/s perpendicular to the radius direction even in the presence of the much

stronger self interaction. These axions would fall down quickly and the thin layer can be constantly supplied

by other incoming axions from the center. Therefore, there is a sustained density of the nonrelativistic axions

close to the surface. Taking all this information as initial conditions for equations (V.6), we can plot the

relation between the density of photons and axions with respect to time as follows. The nonrelativistic axions

on the surface could decay in an extremely short peoriod of time. For a 10 times heavier axiton of mass

M = 2.0× 10−19M�, radius R = 1.75× 10−11R�, see figure V.6, which is also stable as indicated by [18],

equations (V.6) also suggests rapid surface decay of axions and photon production. The evolution of the

process is even quicker than that of the lighter axiton.

For dilute axion stars with mass M = 9.0× 10−14M�, radius R = 1.75× 10−4R� and mass M = 1.2×

10−14M�, radius R = 2.3×10−3R�, we did not find axion decay induced lasing by solving equations (V.6).

The density of axion is too low and photons escaped the cluster region before encoutering significant number

of axions along the path to induce lasing. This may verify the claim that these type of axion stars are

stable [18] and it means that lasing can not be prompted from axion stars formed by only gravitational

binding. But as we discussed before, axion stars may not be a cluster type object but have inner structure, the

granular axitons. These granular axitons can induce lasing if there are high axion occupation numbers.
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