
NEW ATTACKS AND DEFENSES LEVERAGING ELECTROMAGNETIC SIDE-CHANNEL

INFORMATION

By

Zihao Zhan

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

October 31, 2021

Nashville, Tennessee

Approved:

Professor Xenofon Koutsoukos, Ph.D.

Professor Bharat Bhuva, Ph.D.

Professor Jules White, Ph.D.

Professor William Robinson, Ph.D.

Professor Zhenkai Zhang, Ph.D.

Copyright © 2021 Zihao Zhan
All Rights Reserved

ii

ACKNOWLEDGMENTS

I would like to sincerely thank my advisors Dr. Zhang and Dr. Koutsoukos. It is impossible to finish this
work without their continuous support, guidance and encouragement.

I would also like to express my gratitude to the rest of the committee members, Dr. Bhuva, Dr. White,
and Dr. Robinson. I really appreciate their generous time, comments and suggestions.

My thanks also go to my labmates Mert Side and Sisheng Liang for offering me significant help in work
and being such good friends with me.

Besides, I am extremely thankful to my friends, Dr. Roman Wang, Dixie Wang, Aubrey Tang, David
Qiao, and so forth. Thank them for bringing so much fun and happiness to my life.

Last but not the least, I would also thank my family for their everlasting support and unconditional love.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 Introduction . 1

1.1 Hardware Security . 1
1.2 Electromagnetic Side-channel . 4
1.3 Challenges . 8
1.4 Contributions . 9
1.5 Organization . 11

2 Related Work . 12

2.1 Rowhammer Attacks and Defenses . 12
2.1.1 Rowhammer Attacks . 13
2.1.2 Rowhammer Defenses . 15

2.2 Physical Side-Channel-Based Defenses . 16
2.3 Electromagnetic Side-Channel Information Leakages . 19
2.4 Physical Covert Channel Attacks . 24
2.5 Security Problems on GPU . 28

3 Rowhammer Attack Detection Via A Radio . 30

3.1 Background . 31
3.1.1 DRAM Organization . 32
3.1.2 The Rowhammer Bug and Hammering . 33
3.1.3 Rowhammer Attacks . 34
3.1.4 EM Emanations . 35

3.2 Threat Model . 36
3.3 New Direction to Rowhammer Detection . 36
3.4 Finding Hammering Information in EM Side-Channel Emanations 37

3.4.1 Direct EM Emanations . 39
3.4.2 AM-Modulated EM Emanations . 39
3.4.3 Spread-Spectrum Clocking . 42

3.5 Rowhammer Attack Detection via A Radio . 42
3.5.1 Measurement Component . 42
3.5.2 De-Spreading Component . 43
3.5.3 Classification Component . 47
3.5.4 Discussion on the Use of Detection Information 48

3.6 Evaluation . 49
3.6.1 Prototype of RADAR . 49
3.6.2 Effectiveness of RADAR . 51
3.6.3 Robustness of RADAR . 54
3.6.4 Resilience to Adaptive Attacks . 57

iv

3.7 Conclusion . 59

4 The Fastest EM Covert Channel In The World . 60

4.1 Threat Model . 61
4.2 The Design of BitJabber Covert Channel . 62

4.2.1 Spread Spectrum Clocking . 62
4.2.2 Modulation . 63
4.2.3 Base Memory Access Design . 64
4.2.4 Communication Protocol and Demodulation . 66

4.2.4.1 Feature Extraction . 67
4.2.4.2 Message Structure . 68
4.2.4.3 Finding Segment Boundaries . 68
4.2.4.4 Payload Decoding . 69

4.3 Experimental Results . 70
4.3.1 Experimental Setup . 70
4.3.2 Symbol Distinguishability . 71
4.3.3 Bandwidth Evaluation . 72
4.3.4 Through-Wall Evaluations . 74
4.3.5 Attacking Distance Evaluations . 75
4.3.6 Error Analysis . 77

4.4 Countermeasures . 79
4.5 Conclusion . 80

5 Screen Content Detection Using EM Emanations From GPU 82

5.1 Background . 84
5.1.1 GPU Architecture . 84
5.1.2 Dynamic Voltage and Frequency Scaling . 85
5.1.3 Electromagnetic Emanations . 85

5.2 Threat Model . 86
5.3 New Exploitable EM Emanations . 86

5.3.1 Experimental Setup . 86
5.3.2 EM Signal of GPU Memory Clock . 87
5.3.3 Activity Identification . 89
5.3.4 Propagation Distance and Wall Penetration . 91

5.4 Signal Transformation and Enhancement . 93
5.4.1 Time Series Derivation . 93
5.4.2 Strong Noise Contamination Effect Reduction . 95

5.5 Case Study 1: Website Fingerprinting . 96
5.5.1 GPU-Accelerated Webpage Rendering . 96
5.5.2 EM-Based Website Fingerprinting . 97
5.5.3 Evaluation . 98

5.5.3.1 Nearby Scenario . 100
5.5.3.2 Faraway Scenario . 102
5.5.3.3 Evaluations with Relaxed Limitations 103

5.6 Case Study 2: Keystroke Timing Inference . 103
5.6.1 Keystroke Detection . 104
5.6.2 Evaluation . 105

5.7 Ineffectiveness of Disabling GPU DVFS . 106
5.7.1 AM-Modulated EM Emanations . 106
5.7.2 Evaluation and Discussion . 109

5.8 Countermeasures . 110
5.9 Conclusion . 111

v

6 Future Work . 112

7 Conclusion . 115

References . 116

vi

LIST OF TABLES

Table Page

2.1 Comparison of existing physical covert channels. 28

3.1 Platforms on which our prototype is evaluated. 49
3.2 Additional platforms on which our prototype is further evaluated. 52
3.3 The relative power of the hammering-correlated sideband patterns caused by clflush,

movnti, and eviction respectively. 55
3.4 The impacts of external noise on RADAR for platform A. 55

4.1 Platforms on which our covert channel is evaluated. 70

5.1 List of GPUs investigated in this chapter . 87
5.2 The signal strength reduction due to the walls . 92
5.3 Feasibility of website fingerprinting attack under Windows and Linux 99
5.4 Different spots where EM signals are measured . 99
5.5 List of fingerprinted websites . 100
5.6 Fingerprinting accuracy in the nearby scenario . 101
5.7 Fingerprinting accuracy in the faraway scenarios . 102
5.8 Fingerprinting accuracy in the relaxed nearby scenario 103
5.9 Fingerprinting accuracy in the relaxed faraway scenario 103
5.10 How close in time two keystrokes could be such that they are still distinguishable from

each other . 105

vii

LIST OF FIGURES

Figure Page

3.1 A representative DRAM architecture . 32
3.2 Three possible hammering techniques in the literature 33
3.3 Different types of techniques for rapidly and repeatedly access the same locations in DRAM. 35
3.4 The timing distributions of 10,000 hammering iterations in terms of approaches using

clflush, movnti, and eviction. 38
3.5 The power spectra under six scenarios . 40
3.6 The power spectra under hammering . 41
3.7 RADAR system illustration. 43
3.8 The phase difference φk−φk 1 between successive samples, where 1≤ k ≤ 10,000 44
3.9 Using cross-correlation to achieve the initial ∆ alignment. 46
3.10 Spectrogram patterns of different activities. 47
3.11 Two antennas that have been used in RADAR. 50
3.12 Different hammering loop bodies. 51
3.13 The detection results in the form of the probability of hammering. 51
3.14 The detection results on additional platforms in the form of the probability of hammering. 52
3.15 The detection results on platform A w.r.t. three well-known tools. 53
3.16 The detection results on platform A w.r.t. SPEC integer and floating-point benchmarks as

well as Apache HTTP server. 54
3.17 Placing the self-built antenna inside the metal case of a SFF computer. 56
3.18 Apparent hammering-correlated sideband patterns. 57
3.19 Add random delay to each iteration to disturb the hammering period. 58
3.20 The power spectra under different M. 58
3.21 The detection results on platform D w.r.t. different M values. 59

4.1 Overview of BitJabber cover channel. 62
4.2 Spectra of different memory access behaviors . 63
4.3 Encoding of 0 and 1 using two modulation methods – OOK and FSK 64
4.4 Message structure . 68
4.5 Experimental setup for wall-penetrating performance evaluation 70
4.6 Symbol distinguishability of GSMem and BitJabber using the B-FSK modulation. 71
4.7 Bit error rate at different symbol rate for GSMem and BitJabber using different modulation

methods. 72
4.8 Bit error rate of GSMem and BitJabber using the B-FSK modulation measured with a wall

between the receiver and sender . 75
4.9 Error rate measured at varied distances for BitJabber implementing B-FSK at different

bandwidths . 76
4.10 Three types of error . 78

5.1 Signal measurement equipment . 87
5.2 Spectra around 2000 MHz in the case of using AMD Radeon RX 580 88
5.3 Spectrograms collected when launching three applications on a system equipped with an

AMD Radeon RX 580 GPU . 90
5.4 Traces of WCK frequency alterations and averaged magnitude with respect to Figure 5.3 (A) 91
5.5 The definition of directions used in this chapter . 91
5.6 Propagation distance (no obstacles in between) . 92
5.7 Spectrogram corresponding to a scenario where the periodic performance level change is

invisible . 94
5.8 Derived time series in which peaks appear periodically and match the desired pattern . . . 94
5.9 Spectrum comparison . 95
5.10 Time series comparison . 96

viii

5.11 Time series derived from the EM emanations that are measured when opening three web-
sites using Chrome on a system equipped with an AMD Radeon RX 580 GPU 98

5.12 The neural network model used for our website fingerprinting attack 100
5.13 Confusion matrices corresponding to the evaluation reported in Table 5.6 101
5.14 Confusion matrices corresponding to the evaluation reported in Table 5.7 102
5.15 Keystrokes generated using xdotool with a predefined pattern on Google 105
5.16 Keystrokes typed by a user on Facebook . 105
5.17 Carrier signal emitted by NVIDIA GTX 1650 that can be AM-modulated by GPU memory

accesses . 107
5.18 The amplitude of carrier signal is modulated when opening three websites in Chrome . . 108
5.19 Website fingerprinting accuracy comparison of exploiting DVFS-induced and AM-modulated

EM emanations from NVIDIA RTX 3060 with Windows being the OS 109

6.1 EM traces collected during neural network evaluation 113
6.2 EM traces of different layers . 113

ix

CHAPTER 1

Introduction

1.1 Hardware Security

As all kinds of computing devices get increasingly integrated into our daily lives in the age of IoT, security and

privacy have become one of the top concerns for people. All computer systems, including personal computers,

cloud servers, mobile phones, smart cards, and other embedded systems, consist of two parts: software and

hardware. A lot of earlier research focused on the security of software, which is defined as the program

implementing a specific algorithm to perform a task. However, in recent years, industry and academia start

to realize the fact that software-level protection alone is far from enough to completely safeguard a computer

system. Therefore, we have seen growing hardware security research that focuses on the hardware platforms

where the software is implemented. The expanding hardware security research has unveiled many previously

overlooked hardware vulnerabilities that may impose severe threats on computer systems. A malicious actor

may exploit these vulnerabilities as a network client, a co-residing user, or anyone who can achieve a certain

level of physical proximity to the targeted device. This section will briefly describe the hardware security

problems.

Hardware vulnerabilities can be either intentionally or unintentionally introduced during the design and

manufacturing phases of electronic devices. One of the most well-known intentionally inserted vulnera-

bilities is the hardware Trojan – a malicious modification on the circuits that compromises the hardware

integrity. A hardware Trojan is usually triggered under certain conditions, like a particular internal logic

state, a certain input trace, or some specific physical environment. Depending on the goals of the malicious

actor, hardware Trojans can be inserted for different purposes. It can assist the attackers in bypassing the

security mechanisms, affecting the computation outputs, undermining the system performance, or stealing

proprietary information. The insertion of hardware Trojan can happen at multiple stages in a compromised

IC supply chain. Sometimes it happens during the design phase with the presence of malicious insiders in

semiconductor design companies. However, it is most common that the hardware Trojan is inserted during

the manufacturing phase. Following the globalization process, the production of integrated circuits (ICs) is

outsourced worldwide in order to reduce the cost and shorten the time-to-market. Consequently, the heavy in-

volvement of third-party manufacturers makes it infeasible to secure the supply chain from malicious actors,

and the insertion of hardware Trojan in ICs becomes much more likely to happen. The other kind of hard-

ware vulnerability is introduced unintentionally. A lot of techniques are implemented in modern computer

1

systems to improve performance, but many of them have been lately found to bring exploitable vulnerabili-

ties at the same time. For example, the computer memory hierarchy separates the storage into multiple levels

with varied sizes and access speeds. While this design significantly improves the processor’s performance

by allowing it to perform high-speed memory access from CPU caches, the cache effects, on the other hand,

become one of the most commonly exploited vulnerabilities in side-channel attacks. Similar problems are

also found in the translation lookaside buffer (TLB). Speculative execution is another technique implemented

in modern CPUs taking full advantage of parallelism to speed up the tasks. Nevertheless, recent works Spec-

tre and Meltdown Lipp et al. (2018b); Kocher et al. (2019) have discovered microarchitectural state changes

caused by speculative executions can be exploited to leak sensitive information. Some unintentionally intro-

duced vulnerabilities originate from the underlying implementations of electronic devices. The rowhammer

bug reported in Kim et al. (2014) can cause bit-flip in a dynamic random-access memory (DRAM) cell by

rapidly and repeatedly accessing memory in the physically adjacent rows. The root cause of this bug is the

implementation of DRAM because bit information is represented by the charging states of capacitors, where

electric leakage is accelerated by hammering activities. All kinds of physical side-channel effects are uninten-

tional vulnerabilities coming from the intrinsic properties of electronic components or semiconductors. The

computation-dependent current on a circuit unavoidably causes power side-channel effects. This constantly

changing current further generates electromagnetic (EM) fields around it. Due to the heating effect of the

electric current, the temperature can be changed in the surrounding environment. Additionally, The switch-

ing activity of transistors will cause photonic emissions. Sometimes the varying current flowing through

components like inductors will cause mechanical vibrations to produce acoustic signals.

Various attacks can be launched by exploiting these hardware vulnerabilities. Data remanence attack is a

technique attempting to recover and read data from storage devices where data is supposed to be erased. For

instance, shortly after a computer shuts down, the data stored in random-access memory (RAM) should be

lost. However, a cold boot attack can be implemented by freezing the RAM to lower the electric leakage rate,

allowing data remanence in the RAM to be read after it is connected to power again. Fault attack is another

common type of attack that compromises the system’s integrity. The hardware fault can often be triggered

when the device is working under unusual conditions. These conditions include extreme temperature, high-

energy laser, strong electromagnetic radiations, clock glitches, and over/under power. As mentioned above,

these unusual working conditions also include abnormal software behavior like rapid and repeated memory

accesses to the same rows in a DRAM bank that is used to trigger the rowhammer bug. Implementation of

fault attacks involves finding and locating the vulnerable location, triggering the fault in a controlled way

to induce exploitable faults, and exploiting the faults. Another similar attack also tries to trigger faults on

hardware, but it aims to inhibit the targeted device instead of sabotaging the integrity. This attack tries to

2

trigger a massive amount of faults and does not require precise control of the fault injecting position. The

targeted device can be put out of service or even permanently damaged. Unlike the active attacks mentioned

above, the side-channel attack is a passive attack, which does not alter the implementation of the targeted

hardware. As mentioned above, physical implementations of software on hardware platforms inevitably have

computation-dependent physical effects, i.e., produce side-channel leakages. Timing side-channel attacks

infer sensitive information by measuring the execution time of secret-dependent computation. Cache side-

channel attacks eavesdrop on the secret by monitoring the cache states brought by the targeted computation.

Apart from these logical side channels, physical side channels are featured by measurable physical variants

brought by computations. Besides these logical side channels, a lot of research studies the leakage from

the physical side effects of computation. These physical side channels include power consumption, electro-

magnetic emanation, acoustic emission, photonic emission, and thermal transmission. While side-channel

information is often exploited to implement attacks, it can sometimes be leveraged for hardware anomaly

detection. Like trusted programs, malware’s computations also inevitably have side-channel effects, espe-

cially when the malware tries to alter some hardware behaviors. Compared to other defenses, side-channel

based malware detection reduces the observer effect and brings low overhead to the protected system. So the

side-channel leakage from hardware devices is a double-sided blade that may be used either for attacks or

defenses.

An attacker attempts to breach the security to compromise confidentiality, integrity, or availability through

exploiting hardware vulnerabilities. One of the most researched topics for confidentiality violation is cryp-

tography breaking. Many cryptographic algorithms are considered invulnerable mathematically so that they

are secure on the software side. However, many cryptography systems have been found vulnerable to hard-

ware vulnerability exploitation. Numerous side-channel attacks have effectively broken all manner of cryp-

tographic algorithms (including DES, AES, RSA, ECC, DH, MD5, SHA256, etc.) implemented on various

platforms (smart cards, embedded systems, personal computers, cloud servers). Fault attacks can also be im-

plemented to break cryptography systems. For some cryptographic algorithms, a single bit of fault injected

into the parameters during computations can tremendously lower the difficulty of inferring the secret key.

Besides cryptographic keys, hardware vulnerabilities can also cause the leakage of other proprietary infor-

mation like protected intellectual properties, user activities, user identities, and commercial secrets. Data

exfiltration is another exploitation that compromises confidentiality through implementing covert channels.

Unlike common side-channel attacks that do not affect the computations on hardware, the construction of

covert channels requires a sender to be inserted into the target device that induces side-channel effects on

purpose to perform unauthorized data transfer. The receiver is deployed to measure this side-channel infor-

mation and recover the exfiltrated data from it. Although covert channels have a stronger threat model than

3

side-channel attacks and have more constraints for implementation, they can help reveal the upper bound of

possible leakages through a specific side-channel. Some attacks aim to compromise the integrity by perform-

ing illegitimate data modifications on devices. By changing parameters in a program (e.g., a neural network

model), an attacker can bias the computation and manipulate the output Yao et al. (2020). It can also be used

to modify a page table entry (PTE) to give an unprivileged attacker full access to physical memory or tweak

the instructions to escape a sandbox environment Seaborn and Dullien (2015). Sometimes the availability

of systems is compromised by attacks. It can either be achieved by corrupting the software on hardware

platforms or directly damage the hardware itself.

To better protect computer systems from the threat posed by hardware vulnerabilities, many countermea-

sures are proposed. However, some vulnerabilities are found in designs that are essential for the system

performance or originated from the intrinsic property of electronic devices, so fixing them by simply dis-

abling or re-implementing these functions is impractical. Most countermeasures apply patches to prevent

known attacks, but it is rarely the case that we can eliminate the vulnerabilities completely. Besides, most

applied countermeasures inevitably have some side effects like resource costing, performance impairment,

financial inefficiency, etc. Balancing the trade-off between security and the negative effects has always been

the main concern for countermeasure implementations. Accordingly, how to mitigate hardware attacks has

always been a challenging problem, even when the vulnerabilities are identified.

On the opposite of exploiting hardware vulnerabilities to launch attacks, some techniques are imple-

mented to improve the system security with the assistance of hardware designs. A typical example is the

trusted execution environment (TEE), where hardware isolation is used to provide a more secure environ-

ment for sensitive applications like cryptography software. ARM TrustZone and Intel SGX are the two

most well-known commercial implementations of TEEs. The physical unclonable function (PUF) is another

hardware-assisted design to improve hardware security. By leveraging some physical characteristics intro-

duced during manufacturing, a PUF can produce an output for a given input, which serves as an identifier

of the circuit. Because the introduced physical properties are unpredictable and uncontrollable, it is almost

impossible to clone a PUF with the same properties, making the output a unique identifier.

1.2 Electromagnetic Side-channel

The EM side-channel is one of the most researched side-channel effects because it can reveal much knowl-

edge of the ongoing activity and has been extensively exploited to breach confidentiality. The history of

public research on espionage using EM side-channel leakages can trace back to 1985 when EMR from the

cathode-ray tube (CRT) display is found exploitable in reconstructing screen content Van Eck (1985). The

earliest EM side-channel attacks targeting ICs were implemented to break cryptography on smart cards Gan-

4

dolfi et al. (2001), shortly after power side-channel attacks were proposed Kocher et al. (1999). EM traces

were collected as an equivalent of power traces in these attacks. Likewise, techniques like simple power

analysis (SPA) and differential power analysis (DPA) were directly applied on EM traces as simple electro-

magnetic analysis (SEMA) and differential electromagnetic analysis (DEMA), respectively. Although the

EM side-channel attack tends to obtain signals with a lower signal-to-noise ratio (SNR) than power traces,

it has many advantages over the power side-channel attack. For example, EM signals can be collected non-

invasively with a probe or antenna placing near the target hardware while measuring the power consumption

usually requires connecting a power meter. Moreover, unlike power analysis that can only measure the global

power consumption, EM analysis allows an attacker to measure the local power consumption with the ap-

propriate placement of probes around the device. However, most early EM side-channel research focuses on

relatively simple devices like smart cards and field-programmable gate arrays (FPGAs). Similar exploitation

on more sophisticated systems was not well studied until when Longo et al. (2015) translated the EM anal-

ysis techniques for simpler deices to SoC-based devices and Genkin et al. (2015a) exploited EM leakages

to perform key extraction from PCs. On these devices, exploiting EM side-channel information is much

more complicated due to the complexity bought by factors like faster computation speed, higher parallelism,

complicate scheduling policy, etc.

The root cause of EM side-channel leakage is that constantly changing electric current on any circuits

must be present during computations, and electromagnetic fields are subsequently generated in the surround-

ing space. Afterward, the causal fields propagate through space in the form of waves, and these waves are

named electromagnetic radiation (EMR). Based on the fact that magnetic fields and electric fields can in-

duce current on conductors, magnetic probes and antennas can be used to receive the EMR. EM emanations

from electric devices can be categorized into direct and indirect emanations. When a time-varying current is

present on circuits, this current itself will generate electromagnetic fields around it, causing so-called direct

EM emanations. Modern electric devices try to fit many components into small areas, and this current may

function as a modulation of currents on nearby components due to the electromagnetic coupling effect. EM

radiations caused by the modulated current hence carry information of the modulating current that can be

recovered after appropriate demodulation, i.e., indirect emanations are caused by the current of interest. In

general, exploitable indirect emanations tend to have higher frequencies and intensities compared to direct

emanations. When strong sources like clocks generate the carrier signals of indirect emanations, a high SNR

signal carrying sensitive information can travel over long distances. To collect, process, and analyze the EM

signal, oscilloscopes and software-defined radios (SDR) are the most frequently used devices.

Based on the distance from an EMR source, the areas around the source can be categorized into near-field

and far-field regions. Generally, the region within one wavelength radius from the source is the near-field

5

region. In this region, electric and magnetic fields can exist independently, with one field dominates the

other, and their intensities decrease fast with distance. Many near-field EM side-channel attacks collect the

EM traces using probes closely located to the target devices, which are IC chips in most cases. To launch

this kind of attack, the attacker normally needs to physically possess the device and sometimes may need to

decapsulate a chip to obtain a stronger signal, making the attack semi-invasive. Generally, most near-field

attacks measure direct emanations.

In contrast, far-field is usually defined for the region more than two wavelengths away from the radiation

source. Electric and magnetic fields in this region tend to have equal intensities that degrade much slower with

distance compared to in the near-field. Far-field EM side-channel attacks usually collect EM traces from a

distance away, targeting high-power devices using antennas. Large electronic devices with high computation

power, like PCs, usually consume power at more than hundreds of watts, and large current fluctuations can

appear at some parts. Subsequently, some long wires where the varying current flows act as an unintentional

antenna to emanate strong EM waves that can propagate over long distances. Compared to near-field attacks,

far-field EM side-channel attacks require less physical proximity, which sometimes imposes more practical

threats. However, devices capable of generating such strong EM emanations usually have more complicated

hardware implementations than low-power devices, which significantly increases the difficulty of signal pro-

cessing needed for information extraction. While a few strong direct emanations allow far-field attacks to be

launched, far-field attacks often exploit strong indirect emanations with long propagation distances.

While far-field attacks can be more threatening than near-field attacks because of the longer attacking

distance, few actual side-channel attacks are performed. Most previous attacks only perform data exfiltra-

tion through EM covert channels. Even for covert channels, the data exfiltration bandwidth is too low to

make them serious threats. Several reasons are accounting for this. First, identifying exploitable signals

in the far-field region can be challenging due to the widely existing background noise emitted from com-

munication systems and nearby electronic devices. Besides, for devices capable of generating strong EM

emanations, some techniques may be implemented to reduce the intensity of emitted signals. For example,

spread-spectrum clocking (SSC) is implemented in modern computers to disperse the clock signals’ energy

in a narrow frequency range to a wide frequency range. With such techniques, the emanated EM signals

are more easily buried by the noise and become less identifiable to the attackers. However, the complexity

in exploitation does not mean that far-field EM leakage can not pose real hazards. On the contrary, many

far-field EM emanations with robust data-carrying ability are embedded with much sensitive information,

making them possible to cause severe information leakage. The limited amount of research in far-field EM

side-channel is responsible for the lack of a clear understanding of the causal threat, making it difficult to

prepare for potential attacks exploiting these leakages.

6

In this thesis, we focus on using EM side-channel information to detect attacks exploiting hardware

vulnerabilities and disclosing new attacks exploiting EM side-channel information. Specifically, we propose

an EM side-channel-based rowhammer detection techniques, find a powerful EM covert channel, and discover

EM side-channel attacks than can steal user privacy.

7

1.3 Challenges

To summarize, the challenges for current research on hardware security and EM side-channel analysis in-

clude:

1. All different approaches to triggering the rowhammer bug make finding effective and practical mitiga-

tions to rowhammer attacks hard.

2. Most side-channel information is exploited to launch attacks, while how to leverage side-channel in-

formation for defense is not clear.

3. The spread-spectrum clocking technique is implemented on almost all modern computer systems, mak-

ing some EM emanations have too low SNR to be useful.

4. Many substantial EM leakages have not been adequately addressed due to the lack of proper under-

standings of them.

5. While physical covert channels can pose severe threats for computer systems, they were often over-

looked due to the weak performance of state-of-the-art ones.

6. EM side-channel research is mainly conducted on simple devices, leaving more complex devices (e.g.,

personal computers and cloud servers) exposed to unknown threats.

7. Leakages in far-field EM emanations can cause more practical threats, but they are difficult to identify,

resulting in inadequate preparation for unknown attacks.

8. Widely-existing EM noise increases the difficulty of examining EM side-channel information in noisy

frequency ranges. Thus specially-designed signal processing techniques are usually needed to extract

the information of interest.

8

1.4 Contributions

The main contributions in this thesis are as follows:

• Chapter 3

– We study the correlation between certain EM emanations and rowhammer attacks, based on which

we propose a systematic rowhammer attack detection approach named RADAR (Rowhammer

Attack Detection via A Radio).

– We propose the first approach to reversing the scattering effect of spread-spectrum clocking on

EM side-channel information issued from high-frequency clocks in a computing device.

– We have implemented a RADAR prototype using a $299 software-defined radio device, and we

evaluate the effectiveness and robustness of our EM-based rowhammer attack detection under

different scenarios.

• Chapter 4

– We present a new physical covert channel named BitJabber that can allow expedited data exfil-

tration between air-gapped sender and receiver.

– We designed a novel technique to produce a strong covert channel carrier that allows multiple

modulation techniques to be applied.

– We verify that our BitJabber covert channel is much more resilient to background noise compared

with the state-of-the-art ones.

– We demonstrate that this new covert channel can achieve reliable communication within a few

meters, even under the scenario where the sender and the receiver are in separate rooms with

walls in-between.

• Chapter 5

– We present a new EM side-channel vulnerability that we have discovered in modern GPUs and

can be exploited to carry out attacks at a distance and/or through a wall. We identify the ubiqui-

tously used DVFS as the root cause of this side-channel and find that such a vulnerability exists

in many GPUs of both NVIDIA and AMD.

– We formulate a signal processing framework to address the challenges introduced by potential

EM shielding and strong noise contamination. With the proposed techniques, we can exploit the

EM emanations of interest even when they are greatly attenuated and/or overwhelmed by strong

legitimate communication signals.

9

– We conduct two case studies on the exploitation of this newly found EM side-channel vulnerabil-

ity. The first one is a website fingerprinting attack, and up to 93.2% accuracy can be achieved in

a scenario where the attacker and victim are 6 meters apart. The second case study is a keystroke

timing inference attack, where we show that keystroke events can be reliably detected to deduce

inter-keystroke times.

– We show that even though disabling GPU DVFS can be an effective approach to mitigating the

discovered EM side-channel vulnerability, it will unfortunately introduce another new one into

many GPUs which can be exploited to mount comparable EM side-channel attacks. We also

discuss some potential countermeasures.

10

1.5 Organization

The rest of this thesis is organized as follows: Chapter 2 describes the related work; Chapter 3 introduces

the EM-based rowhammer attack detection technique; Chapter 4 presents a high-speed, through-wall, and

long-distance EM covert channel exploiting the EM emanations from memory clocks; Chapter 5 imple-

ments techniques using DVFS-related EM emanations from GPU to reveal information about user activities;

Chapter 6 presents some observations of correlations between GPU’s EM emanations and deep neural net-

work (DNN) model being trained or evaluated on it and proposes future work of EM-based DNN model

reverse engineering; Chapter 7 concludes this thesis.

11

CHAPTER 2

Related Work

The main concentration on this thesis is about how to extract information of interest from EM emanations

from computers, and how to use the information for detecting system anomalies (ongoing rowhammer attacks,

to be specific), exfiltrating data rapidly and stealthily, and detecting user activities like website browsing and

typing. The rowhammer bug has been recognized an excessively critical hardware vulnerabilities. Even

though many countermeasures are proposed to solve this problem, all prior methods have certain limitations.

Although the EM side-channel leakages from memory clocks have already been identified in prior research,

no work has thought of using this information for rowhammer attack detection. Previous research on EM

side-channel, especially far-field EM side-channel, mostly just reveal the possible leakages instead of imple-

menting actual attacks, or only implementing covert channel attacks. Furthermore, physical covert channels

implemented in prior work have obvious flaws with respect to data exfiltration bandwidth, obstacle pene-

trating ability, or transmission distance, making them barely capable of posing real threats. Besides memory

clocks, other high-power electronic devices like discrete GPUs can also generate strong EM emanations. As a

GPU is responsible for displaying content on screen, the EM leakages may contain information about content

displayed on screen, which may be used for figerprinting websites browsed by users and timing keystroke

activities causing screen content changes. In this section, we are presenting related work about rowham-

mer attack, side-channel-based defenses, EM side-channel analysis, physical covert channel, GPU-related

security problems, and user activity monitoring attacks.

2.1 Rowhammer Attacks and Defenses

DRAM is widely used in modern electronic devices as the main memory. In DRAM, the bit ’0’ and ’1’

are represented using the charged states of capacitors. Because a capacitor leaks charge naturally, a regular

refresh operation is necessary to keep the states unchanged and prevent possible data loss. However, DRAM

nowadays is getting denser for performance improvement. Subsequently, the capacitor becomes smaller

and the voltage margin separating ‘0’ and ‘1’ becomes lower, which unfortunately have reduced the overall

DRAM reliability Mutlu (2017). Kim et al. first thoroughly studied the rowhammer problem in Kim et al.

(2014), pointing out that repeated and rapid memory access to the same locations (i.e., hammering) may cause

bits in the physically adjacent cells to be flipped to the opposite value. This is caused by the electromagnetic

coupling effects that sometimes accelerate the leakage in a capacitor. The existence of the rowhammer bug

seriously violates memory protection because a process can modify the data in memory without explicit

12

permission. After the publication of Kim’s work, a tremendous amount of follow-up research has been

conducted, and new attacks and defenses related to the rowhammer bug have been proposed. Seaborn and

Dullien (2015); Pessl et al. (2016); Gruss et al. (2016a); van der Veen et al. (2016); Razavi et al. (2016);

Qiao and Seaborn (2016); Jang et al. (2017); Bosman et al. (2016); Gruss et al. (2018); Tatar et al. (2018b);

Lipp et al. (2018a); Tatar et al. (2018a); Zhang et al. (2018); Cojocar et al. (2019); Kwong et al. (2020); Yao

et al. (2020); Zhang et al. (2020a); Lenovo Inc. (2015); Lanteigne (2016); Aweke et al. (2016); Irazoqui et al.

(2018); Schwarz et al. (2017); Corbet (2016); Konoth et al. (2018)

2.1.1 Rowhammer Attacks

Shortly after Kim’s work, Google Project Zero did deeper investigations into the rowhammer bugs Seaborn

and Dullien (2015). This work studied how the address selection strategy affects bit-flip difficulties, pro-

posed multiple routes to perform hammering, and performed a series of tests on different machines to see

how vulnerable they are to rowhammer attacks. Furthermore, they provided two examples of exploiting the

rowhammer bug to perform privilege escalations on real systems. They showed that a Native Client (NaCl)

program could escape from the sandbox environment by altering a validated, safe instruction to an unsafe

one. The other exploitation showed that an unprivileged process on Linux could take over the entire physical

memory space through modifying the page table entry(PTE). As Kim et al. (2014) first gave a comprehen-

sive introduction of the rowhammer bug, Seaborn and Dullien (2015), on the other hand, demonstrated the

non-negligible threats of rowhammer attacks. Later research showed more rowhammer attacks implemented

in various environments, introduced more techniques that enhance rowhammer abilities, and demonstrated

more exploits of rowhammer attacks. In Gruss et al. (2016a), rowhammer attacks were implemented from

a remote using JavaScript. Attacks using JavaScript are more difficult than those using native code due to

limited available instructions and less information about the system. The authors in this paper presented a

proof-of-concept attack without any external information and user interactions. A cross-VM attack was pre-

sented in Razavi et al. (2016). By exploiting the memory deduplication feature, an attacker VM can make

a victim VM’s memory page be mapped to a physical location where bits are known to be vulnerable to

rowhammer attacks exist. Hence, a bit flip can be triggered on the victim VM’s memory page to modify

the modulo used in RSA, which can significantly lower the difficulty of breaking the RSA cryptosystem.

This cryptoanalysis could be further exploited to attack applications like OpenSSH and GPG on the victim

VM. Xiao et al. (2016) is another work performing cross-VM attacks. The authors also provided a method

to reverse-engineering the address mapping between physical addresses and DRAM locations in this work.

Similarly, this mapping reverse-engineering was also performed in Pessl et al. (2016) to assist the rowham-

mer attacks. Rowhammer attack implemented on ARM devices was presented in van der Veen et al. (2016).

13

This work presented the first generic technique that can deterministically put target data in an attack-chosen

vulnerable physical location. In Gruss et al. (2018), a new rowhammer attack was presented that can bypass

all previous rowhammer defenses. Intel SGX feature was abused to hide the attacks from users and operating

systems so that the performance counter-based rowhammer detection techniques are invalidated. They pro-

posed a new method for steering the targeted data to a vulnerable location called memory waylaying, which is

more stealthy compared to other memory steering methods. The authors also provided a new memory access

pattern named one-location hammering that can trigger bit flips with memory controllers using closed-page

policies. While most rowhammer attacks focused on breaching the data integrity, Kwong et al. first proposed

a rowhammer attack that compromises the data confidentiality Kwong et al. (2020). This was achieved based

on the finding that a bit flip only occurs when the hammered aggressor rows next to it have opposite bits

stored in them. When two aggressor rows around a vulnerable bit of interest are controlled by an attacker, the

bit value can be inferred by examining whether a bit flip happens using a timing side-channel.

Because the CPU cache is widely deployed in modern computer systems to achieve fast memory access,

in order to perform rowhammer attacks, a lot of prior work has studied how to find methods avoiding the

cache effects and access memory directly. The most common and straightforward way is using instructions

like clflush after each memory access to flush the stored data out of CPU caches Kim et al. (2014);

Seaborn and Dullien (2015). However, cache flush instructions may not be available in some execution

environments. For example, as a countermeasure for rowhammer attacks performed in NaCl clflush

instructions are disabled after Seaborn’s work Seaborn and Dullien (2015). Consequently, much research

found many so-called clflush-free rowhammer triggering methods. In Aweke et al. (2016), the authors

proposed to perform fast repeated memory using specially-designed cache eviction strategies after studying

the pseudo least recent used (PLRU) cache replacement policy. Similarly, a cache eviction-based rowhammer

attack was also implemented in Gruss et al. (2016a). They launch the attack from a website with JavaScript,

where cache flush instructions are not available. Another cache-eviction-based rowhammer triggering method

was provided in Aga et al. (2017), where they also abused Intel’s Cache Allocation Technology (CAT) feature

to lower the difficulty of cache eviction. Another method for circumventing the cache effects is using non-

temporal memory access instructions. In Qiao and Seaborn (2016), instructions like movnti and movntdq

are found useful on x86 platforms to trigger the rowhammer bug by performing non-temporal stores. The

possibility of using non-temporal memory access to trigger the rowhammer bug was discussed in van der

Veen et al. (2016). However, this method was found not useful because the non-temporal memory access

instructions only serve as a hint instead of guaranteeing the accessed data is uncached. Nevertheless, Zhang

et al. (2018) disclosed a previously overlooked non-temporal memory instruction dczva that can be used to

successfully trigger the rowhammer bug on ARMv8 platforms. Besides trying to issue the memory access

14

command from the CPU, the rowhammer attack was also shown possible using memory access performed by

integrated GPU Frigo et al. (2018). An integrated GPU can perform rapid and repeated memory access to the

main memory to induce bit-flips. Direct memory access (DMA) is another technology frequently exploited to

perform rowhammer attacks van der Veen et al. (2016); Tatar et al. (2018b) because it allows some services

and devices to directly access the memory without CPU intervention.

2.1.2 Rowhammer Defenses

In Kim’s work Kim et al. (2014), some mitigation techniques are proposed to protect devices against the

rowhammer attack. However, most of them do not work due to the impractical hardware modification re-

quirements, significant cost increases, and considerable performance overhead. In this section, we mainly

concentrate on existing rowhammer defenses that do not require unrealistic hardware modifications.

Since the activation of an aggressor row needs to be toggled enough times within a refresh interval to suc-

cessfully trigger the rowhammer bug, a straightforward countermeasure is to double the refresh rate Lenovo

Inc. (2015). However, as shown in several tests Lanteigne (2016); Aweke et al. (2016), this approach still can-

not prevent the bug from being triggered, especially if the double-sided hammering technique is used Seaborn

and Dullien (2015). Another straightforward defense is to use ECC memory to correct or detect bit flips Kim

et al. (2014), but it has been demonstrated that reliable rowhammer attacks in the presence of ECC memory

are still highly possible Cojocar et al. (2019); Kwong et al. (2020).

Due to the explicit use of some special instructions like clflush in early rowhammer attacks, some

mitigation techniques simply prohibit the use of such instructions Seaborn and Dullien (2015); Qiao and

Seaborn (2016), but they cannot hinder eviction-based hammering Aweke et al. (2016); Gruss et al. (2016a).

Given regularities found in various approaches to circumventing the effects of CPU caches, static code anal-

ysis has been used to identify suspicious binaries and estimate their intention levels to perform rowhammer

attacks Irazoqui et al. (2018). However, encryption and secure enclaves can be used to hide any malicious

intention from static analysis Gruss et al. (2018); Schwarz et al. (2017).

Based on certain characteristics observed in many rowhammer attacks, several dynamic detection ap-

proaches are proposed. Since a large number of last-level cache misses are usually incurred in the hammering

process, some detection techniques rely on hardware performance counters to capture suspicious activities

for further analysis Herath and Fogh (2015); Aweke et al. (2016). Nevertheless, it is noticed that such cache

misses will be concealed from CPU performance counters, e.g., when an attack is running inside an Intel

SGX enclave Schwarz et al. (2017); Gruss et al. (2018), which subverts the assumption made for the detec-

tion. Due to the traditionally used open-page policy in memory controllers, to trigger the rowhammer bug,

two aggressor rows in the same bank need to be alternately activated. Consequently, some detection meth-

15

ods use such memory access patterns as an indication of rowhammer attacks Aweke et al. (2016); Corbet

(2016). However, on some platforms, the memory controllers may be configured to use a closed-page policy

to proactively close a row. In such scenarios, even one aggressor row is sufficient to induce bit flips around

the row (named as one-location hammering) Gruss et al. (2018); Lipp et al. (2018a), which makes access

pattern-based detection limited.

Usually, to successfully perform a rowhammer attack, an adversary not only needs the ability to trigger

the rowhammer bug on the targeted system, but also needs to be capable of steering targeted security-critical

data to some vulnerable rows for exploitation. Therefore, instead of detecting or impeding triggering the

rowhammer bug, some mitigation techniques focus on hardening the system against rowhammer bug ex-

ploitation. Since the two early approaches to exploiting the rowhammer bug, memory spraying Seaborn and

Dullien (2015) and memory grooming van der Veen et al. (2016), need to allocate a large portion of mem-

ory, prevention of memory exhaustion has been considered as a feasible countermeasure van der Veen et al.

(2016); Gruss et al. (2016a). Moreover, in Brasser et al. (2017), CATT is proposed to physically partition

the main memory into different security domains, and each domain is segregated with one another by at least

one unused DRAM row (i.e., a guard row), in which case, cross-domain bit flips become impossible. Un-

fortunately, two new approaches to exploiting the rowhammer bug, memory waylaying Gruss et al. (2018)

and memory ambush Cheng et al. (2018), have been developed lately, which defeat the above-mentioned

mitigation techniques.

Although CATT is no longer effective, the concept of guard rows is still valid and effective for absorbing

exploitable bit flips. By using guard rows for fine-grained memory isolation, GuardION and ALIS can make

the DMA-related hammerable area non-exploitable van der Veen et al. (2018); Tatar et al. (2018b). To enable

defenses against more general rowhammer attacks, ZebRAM is proposed in Konoth et al. (2018) to isolate

all data rows with guard rows in a zebra pattern. To avoid wasting half of the DRAM, the guard rows in

ZebRAM are used as an efficient swap space in memory. However, much performance overhead may still

be caused for memory-intensive applications. On the contrary, our proposed technique does not incur any

performance overhead due to its completely non-intrusive and passive nature.

2.2 Physical Side-Channel-Based Defenses

There has been much research work on exploiting physical side-channel information for attacks Kocher et al.

(1999); Gandolfi et al. (2001); Quisquater and Samyde (2001); Agrawal et al. (2002); Kuhn (2004); Backes

et al. (2010); Enev et al. (2011); Schlösser et al. (2012); Heyszl et al. (2012); Sugawara et al. (2013); Genkin

et al. (2015a, 2016a,b, 2017); Alam et al. (2018). However, many researchers have also examined how to

leverage such side-channel information to help defenses. Traditionally hardware and software solutions were

16

used widely to mitigate malware, which usually requires modification of the software or hardware design.

Side-channel defense techniques are novel techniques for detecting malware by looking for the physical side-

channel effects caused by computations performed by malware.

Agrawal et al. first proposed the idea using side-channel fingerprints of ICs to detect the hardware Tro-

jan Agrawal et al. (2007). They described a theoretical framework and demonstrated preliminary experiments

using power simulations. In their work, power traces were collected to build side-channel fingerprints. The

Trojan circuits may be identified by comparing the fingerprints between the selected circuit and the origi-

nal profiled circuits. This technique could effectively detect hardware Trojan circuits down to 0.01% of the

size of the main circuit in simulations and showed the feasibility of detecting hardware Trojans in real ICs.

Agrawal’s technique in Agrawal et al. (2007) was improved by Rad by using localized power consumption

traces Rad et al. (2008). In Rad’s work, power traces measured from neighboring power ports are measured

and compared to obtain power supply transient traces and help detect hardware Trojan. Aarestad proposed a

similar region-based technique in Aarestad et al. (2010). A chip’s steady-state current at multiple regions of

the chip’s surface was measured, and linear regression analysis was used to improve the sensitivity of hard-

ware Trojans of previous approaches. The physical side-channel-based hardware Trojan detection approaches

proposed above all require a profiling stage using circuits guaranteed Trojan-free (golden chips) to obtain a

reference fingerprint. Narasimhan proposed a novel approach that does not need other circuits for profil-

ing Narasimhan et al. (2011). Instead, the traces collected from the same circuit at different time windows

were referenced. In a Trojan-infected circuit, when the same set of state transitions were performed, the un-

correlated state transitions in Trojans will cause variance in current signatures, and this feature could be used

to identify the hardware Trojan. This work was later extended in Hoque et al. (2017) through improving Tro-

jan detection coverage, detecting sequential Trojans, and improving detection capability. After Narasimhan’s

work, more golden chip-free hardware Trojan detection techniques were proposed. He proposed to detect

hardware Trojans using EM side-channel He et al. (2017). The reference traces were obtained using a model

simulating EM radiations when different signal transitions happen instead of measuring emissions from a

golden chip. By comparing the frequency spectra of measured traces and reference traces, the insertion of

a Hardware Trojan can be detected. A very recent work proposed to use backscattering side-channel effects

to detect hardware Trojan Nguyen et al. (2020). Because any malicious modifications on circuits inevitably

affect the impedance changes, which further cause differences in backscattered signals. These differences

can be used as features to classify compromised and Trojan-free chips.

Besides detecting hardware Trojan in ICs, there are many other ways physical side-channel can be used

to improve the security. Clark presented a power-consumption-based technique to detect malware on medical

devices Clark et al. (2013). Power consumption traces were collected when normal and abnormal activi-

17

ties are performed on the secured device, and these traces were used to train a classifier through supervised

learning. The evaluations showed that this technique has much higher malware detection effectiveness than

traditional anti-virus software. Liu et al. proposed a power side-channel-based code execution tracking

technique Liu et al. (2016). A hidden Markov model was used to examine the power traces for performing

control-flow integrity checking and detecting anomalies’ possible existence. Sehatbakhsh proposed a novel

method using EM signals for program profiling in Sehatbakhsh et al. (2016). When a repetitive program

activity (e.g., a loop) is performed, the active components will generate direct EM emanations with energy

concentrated in a narrow frequency range or AM modulate other carrier signals. As a result, a feature can

be observed in the frequency spectrum by looking for the “spikes” corresponding to direct emanations of

components or modulating signals at the sidebands of AM modulated signal. Usually, different activities

performed have different distributions of execution time and cause “spikes” at different frequency ranges in

the spectra; thus, these spikes can be seen as fingerprints of certain activities. The ongoing activity can be

identified, and the program execution can be successfully profiled by monitoring the spectra. Later this work

was extended to detect anomalies in program execution by using EM emanations Nazari et al. (2017). The

spike-monitoring techniques described in Sehatbakhsh et al. (2016) were used to profile programs. When

a program is running, spikes in spectra corresponding to the program were identified. If malicious code is

injected into the program, the execution will be slightly influenced, which can be observed from the positions

and shapes found in spectra. The program profiling and program execution anomaly detection techniques

described above are advantageous in terms of not using any resources from the monitored system. Han pre-

sented an EM-based contactless control-flow monitor ZEUS to ensure the execution control flow integrity of

embedded programmable logic controllers (PLCs) Han et al. (2017). The idea is similar to program profiling

approaches proposed in Sehatbakhsh et al. (2016). At the profiling stage, the EM signal traces were collected

when different PLC instructions were executed. A long short-term memory deep neural network model was

trained to distinguish the spectra corresponding to different instructions. Then the trained model was used

to identify PLC instructions being executed and exam the controller’s integrity. Because this monitoring

technique is based on the physical side-channel analysis performed on an independent device, it does not in-

troduce overheat to real-time systems with tight constraints. And the air gap between this monitor guaranteed

that the controller would not be affected even if the monitor is hacked. Cheng provided the first fingerprinting

work based on the CPU module’s fingerprint in Cheng et al. (2019). In this work, the low-frequency magnetic

inductions generated by inductors from CPU’s voltage regulators were used to identify devices. A stimuli

program is needed to run and keep a stable workload on the CPU. Then the EM induction was collected

and preprocessed to confirm the spatial and temporal consistency. Features were selected from both the time

and frequency domain of the processed signal to construct the fingerprint. The evaluations showed that this

18

fingerprinting technique could even be used to identify identical laptops and mobile phones with 98.1% pre-

cision. With a longer fingerprinting time, the precision could be further improved. Wei et al. proposed a

technique using power side-channel information to detect miro-architecture attacks Wei et al. (2019). In this

work, power traces are collected, and machine learning classifiers are trained to identify attacks. There are

also side-channel defenses include identifying the attacker ECU on in-vehicle networks Cho and Shin (2017),

detecting intellectual property theft Becker et al. (2010); Strobel et al. (2015), and so forth. Yet, there has

been little prior work that uses physical side-channel information to perform rowhammer defenses, and to the

best of our knowledge, only one very recent proposal leverages features in power traces to detect rowhammer

attacks on embedded systems Wei et al. (2019). Our work is the first one on leveraging EM side-channel

information to detect rowhammer attacks.

2.3 Electromagnetic Side-Channel Information Leakages

Since the first power side-channel attack was presented by Kocher et al. in Kocher et al. (1999), a tremendous

amount of research has been conducted on physical side-channel analysis. Studied physicial side-channel

effects includepower consumption Kocher et al. (1999); Messerges et al. (1999); Biham and Shamir (1999);

Clavier et al. (2000); Messerges (2000); Coron et al. (2000); Mayer-Sommer (2000); Akkar et al. (2000); Brier

et al. (2004); Chari et al. (2002); Agrawal et al. (2007); Genkin et al. (2015b); Zhao and Suh (2018); Pant

(2008); Le Masle and Luk (2012); Su et al. (2017), EM emanations Rao and Rohatgi (2001); Quisquater and

Samyde (2001); De Mulder et al. (2005); Aboulkassimi et al. (2013); Carlier et al. (2004); Heyszl et al. (2012);

Genkin et al. (2016a); Alam et al. (2018); Sauvage et al. (2009); Merli et al. (2011); Longo et al. (2015); Guri

et al. (2015a); Gilbert Goodwill et al. (2011); Batina et al. (2019), acoustic emissions Asonov and Agrawal

(2004); Zhuang et al. (2009); Berger et al. (2006); Backes et al. (2010); Marquardt et al. (2011); Zhu et al.

(2014); Genkin et al. (2014); Guri et al. (2020, 2017a); Kwong et al. (2019), photonic emissions Tsang et al.

(2000); Ferrigno and Hlaváč (2008); Di-Battista et al. (2010); Skorobogatov (2009); Schlösser et al. (2012);

Bertoni et al. (2015); Krämer et al. (2013); Carmon et al. (2016, 2017), and thermal radiations Hutter and

Schmidt (2013); Brouchier et al. (2009); Masti et al. (2015); Guri et al. (2015b); Zalewski (2005); Mowery

et al. (2011); Wodo and Hanzlik (2016); Kaczmarek et al. (2018); Andriotis et al. (2013); Abdelrahman et al.

(2017). Among all these physical side-channels, the EM side-channel draws the most attention compared to

the rest of them for the following reasons:

• EM side-channel analysis can be implemented without physical contact with the target device

• Many EM sources found in modern electronic devices can generate signals covering an extraordinary

wide frequency range.

19

• EM signals have the potential of carrying a vast amount of information.

• EM analysis sometimes requires less physical proximity than the other signals and can be implemented

with non-metal obstacles between the receiver and target device.

Given the fact that electric current in the circuitry of a device varies with time, EM emanations inevitably

arise. The EM emanations generated by an electronic device are distributed widely in the spectrum. Not

long after Kocher’s work Kocher et al. (1999), EM side-channel effects were found exploitable for attacking

cryptography systems. For example, SPA, DPA, and CPA can be implemented as SEMA, DEMA, and CEMA

respectively Rao and Rohatgi (2001); Quisquater and Samyde (2001); De Mulder et al. (2005); Aboulkassimi

et al. (2013).

The idea of electromagnetic analysis was first proposed by Jean-Jacques et al. Quisquater and Samyde

(2001) by providing an approach that uses electromagnetic emanations of smart card processors to acquire

cryptographic information in smart cards. In this framework, an EM sensor was placed very close to the

smart card in a card reader. The idea is similar to power analysis proposed in Kocher et al. (1999), with

the power consumption traces replaced by EM traces. Comparison between measured power consumption

and EM emanations indicated that both traces have a similar pattern, but EM signals have lower noise. They

also enumerated several countermeasures of EMA, including noise addition, EM radiation shielding, power

consumption reduction, using asynchronous processors, dual-line logic, and modification architectures and

design of the chip. When EMA was first proposed, the exploited EM signals are mainly emitted by the power

lines, and the attacking methods follow the implementation of power analyses.

After the theory of EMA was proposed and developed, few practical experiments were conducted to

launch attacks on real cryptography systems until Gandolfi’s work Gandolfi et al. (2001). Karine used EM

side-channel effects to attack actual cryptographic algorithms implemented on CMOS chips. A hand-made

coiled copper wire probe was used in the experiments. Different circuit positions were probed, and the EM

emanation around the CPU was found to be most data-dependent. They also mentioned that the measured

signal strength could be stronger by placing the probe closer to a decapsulated chip. This idea was widely

adopted in many later works to implement localized EMA Heyszl et al. (2012). The evaluations were per-

formed by attacking DES, COMP128, and RSA. The performance of DEMA and DPA were compared, and

in all situations, the EM signals had lower noise, and better results were obtained using DEMA.

Dakshin presented a systematic investigation of EM side-channel leakage from CMOS devices in Agrawal

et al. (2002). The EM emanations were categorized into direct and indirect/unintentional emanations. The

direct emanations are EM signals directly induced by the current flows in circuits. These direct emanations

usually have very short propagation distances, and the probes must be put very close to circuits to obtain

20

exploitable signals. Sometimes the current flows can modulate other strong carrier signals (e.g., clock signals)

through coupling, and the modulated EM signal can be emitted from the components generating carrier

signals. This so-called unintentional emanation was believed to be more useful than direct emanation because

it had better propagation ability. Less invasive attacks can be carried out with the probes positioned further

from target systems. This work highlights the strength of EM side-channel analysis by showing that the

unintentional emanations can be observed and exploited even when the probe is far away from the target

devices. It was also mentioned that multi-channel analysis could obtain more leakage than single-channel

analysis.

Early EM analysis mainly targeted cryptography systems implemented in simple circuits like smart cards.

Fewer attacks were implemented on widely used desktop and laptop personal computers because these de-

vices are more complicated, have much higher clock speed, and generate more unpredictable noise. However,

some recent research Zajic and Prvulovic (2014); Callan et al. (2015) revealed that information leakages on

personal computers are greater than those simple devices because of the enormous power consumption.

The information leakage from processor-memory systems of modern desktop and laptop computers was

first presented in Zajic and Prvulovic (2014) through experiments. Many experiments are performed on

different systems to evaluate all kinds of properties of program-activity-dependent EM emanations. Direct

emanations from components in different levels of the memory systems are measured. For all systems,

transmission distances at different frequencies and directions are evaluated. The results indicated that EM

information leakage could be reliably received at varying distances in all tested systems, and memory tends

to produce the strongest EM emanation. Experiments evaluating shielding effects showed that metal shields

could only decrease but not eliminate leakage through EM side-channel. The evaluation of signal dependence

on data values showed that data being accessed have little influence on the EM signals most of the time.

While Zajic and Prvulovic (2014) highlighted the leakage of direct emanations from components in mod-

ern computers, Callan et al. (2015) raised people’s awareness of unintentional emanations by developing a

technique that can effectively find EM emanations that are amplitude-modulated by processor or memory

activities. A series of micro-benchmarks varied in frequencies were executed on tested computers, and AM-

modulated carriers could be identified by looking for expected sideband patterns of the modulated signal in

the spectrum. They used this technique to successfully identify multiple AM-modulated signals emitted by

various components, including voltage regulators, DRAM, and CPU cache.

Genkin presented the first physical side-channel attack on elliptic curves implementation on PC using

EM side-channel effectGenkin et al. (2016a). The exploited software vulnerability is the operand-dependent

execution of Libgcrypt’s point addition operation. When operands of different lengths are used in the tar-

geted software, different executions result in different EM emanations. A chosen ciphertext was input for

21

decryption multiple times, and the EM signals collected at all decryption rounds are collected, aligned, and

averaged. Then the averaged traces are displayed as a spectrogram in the frequency domain, and energy at a

certain frequency range is used to identify the presence of point addition operation. The energy distribution

over the frequency range during the operations is used to identify the operand of point addition. This attack

exposed the vulnerabilities of personal computers in a very practical situation.

In 2018, Alam proposed a new EM attack targeting fixed-window RSA implementation on ARM proces-

sors Alam et al. (2018). This was the first attack that exploits the leakage during the brief computation of

the lookup table index used in each window. Most prior attacks on RSA targeted the long-duration large-

integer multiplications; thus, the brief lookup table index computation was left unprotected. Alam found that

slight variance can be observed when different bit values are added to different bit positions of the computed

lookup index. In the training stage, for each possible bit value added to each position, multiple reference

traces are obtained using K-Means clustering for accounting for other unidentified noise. Then the key bits

can be successfully identified by comparing with the reference traces at high accuracy. A great effort was

spent in this attack to precisely locate and align the targeted execution because of the extremely short dura-

tion. Because the index computation always follows the squaring of large integers, a noticeable feature at

the end of large-integer multiplication was used to locate the exploited trace. Using the features in large-

integer multiplication, the execution sequences of a whole RSA decryption can be recovered. This attack was

implemented non-intrusively on high-clock-rate devices and only required single decryption to recover the

key.

Most power analyses exploit secret-dependent global power consumption, and many EM global EM anal-

yses also take advantage of the EM emanation correlated with the global power consumption. However,

sometimes secret-dependent operations increase the power consumption of certain components while de-

creasing the power consumption of other components. The measured global power consumption difference

is thus canceled, and the leakage is harder to be found. Therefore, localized EM analyses were proposed

to measure local power consumption and locate the position with maximum leakage Sauvage et al. (2009).

Marquardt showed that the most leakage-intensive location for localized EM analysis could be more effi-

ciently found using CEMA Marquardt et al. (2011). Sauvage proposed an innovative method of measuring

location-dependent leakage based on cross-correlation Sauvage et al. (2010). The implementation of this

method does not require any knowledge of the target device. Heyszl et al. (2012) first generalized localized

EM side-channel attacks against cryptography systems. A high spatial resolution probe was used to measure

the EM emanation from a decapsulated FPGA implementing Elliptic Curve Scalar Multiplication (ECSM).

A known scalar was input to ECSM, and the measured EM traces were grouped, aligned, and averaged based

on the secret bit. The differences between two averaged traces at different locations indicated that leakage at

22

different positions varied significantly, and the global leakage is much more minor. With the location with

maximum leakage identified, a single trace measured is enough to recover a secret scalar input to ECSM.

Physical Unclonable Functions (PUFs) are circuit primitives used to derive secrets from the physical char-

acteristics of circuits. Ring Oscillator PUFs proposed by Suh in Suh and Devadas (2007) were found to be

vulnerable to global EM analysis, and countermeasures were proposed in Merli et al. (2011). In the protected

RO PUFs, ROs are separated into several non-overlapped groups. ROs in each group are connected to a

multiplexer and further connected to an asynchronous counter. The final outputs are obtained by comparing

the counter’s values, so the key to attacking an RO PUF is obtaining the frequency of each RO. In Merli et al.

(2013) localized EM analysis was implemented to circumvent the mitigation against global EM attack on RO

PUFs. Due to the limited spatial resolution, locations of ROs can not be easily distinguished, so the locations

of logic and registers connected to ROs(e.g., multiplexers and counters) are examined. When different RO

select sequences are applied, the asynchronous counters’ frequency is the same as the corresponding selected

ROs. Similar to Heyszl et al. (2012), the first step of this attack is locating the counters by looking for the lo-

cations causing maximum leakages(i.e., maximum deviations in the frequency spectra). With enough traces,

the location of the path each counter is connected to was identified by clustering the locations obtained above.

Then different RO select sequences are applied, and the frequency in each path was be measured, which cor-

respond to the selected RO’s sequence in that path. Repeat this step while changing select sequences, and all

RO’s frequency can be identified. Finally, matching the frequencies in every run with the output allowed the

comparison function to be easily found, and the entire RO PUF’s behavior became predictable.

Besides attacking simple circuits, localized EM attack was also successfully implemented on high-end

devices. Longo investigated the leakage of SoC-based devices executing cryptographic algorithms Longo

et al. (2015). This work characterized the side-channel leakage for software-based AES, Hardware AES, and

NEON core. The leakage was quantified using the Test Vector Leakage Assessment (TVLA) methodology of

GoodwillGilbert Goodwill et al. (2011). While attacking the software AES, the probe was put near the SoC.

EM traces collected during AES implementation were filtered by removing traces that are seriously affected

by noises. Sub-traces for each encryption operation were extracted and matched with associated ciphertexts.

The results indicated that fewer than 100 traces were needed to identify the leakage. To attack hardware

AES, the alignment of traces is realized through triggering the AES operations with interrupts. A process co-

resident on the target device is needed to saturate the DMA engine so that any memory management causes

an interrupt. 500,000 traces were collected, and wavelet post-processing was performed to obtain exploitable

traces with maximum SNR. A single-bit correlation-based attack was implemented to recover the key. At-

tacking hardware AES required much more effort, but it was still proven possible using approaches in Longo

et al. (2015). The leakages on NEON, a general-purpose SIMD extension to Cortex A-series ARM cores,

23

were also measured. Operation-dependent leakages and write-back data-dependent leakages were identified.

Then the leakage from the hamming weight of arithmetic, logic, and comparison operations’ results written

back was found, and this leakage can be used to distinguish a single sub-word in the results. This hamming

weight leakage was exploited to recover the key of NEON-based bit-sliced AES implementation using 5,000

traces collected during decryption.

In Batina et al. (2019) EM side-channel analysis was used to reverse engineering a neural network model

on a 32-bit ARM microcontroller. This method was demonstrated on two widely used algorithms: multi-

layer perceptron (MLP) and convolutional neural networks (CNN). The EM emanations are collected when

known random values are input to a black-box neural network to perform this attack. The author successfully

identified the activation functions being used, recovered the number of neurons and layers, and estimated the

weights by analyzing the collected samples. Activation functions used in a neural network were identified

based on the execution time. Weights of a trained neural network could be estimated using CPA/CEMA.

Recovering the number of neurons and layers consists of two steps. First, SPA/SEMA was used to identify

the boundaries of different neurons. Then the boundaries of different layers were found using CPA/CEMA.

In this paper, the reverse-engineered MLP and CNN models have similar performance to the actual model.

The only problem is that the evaluated models in this paper are executed in serial while most neural network

models in real-world are executed in parallel. So the practicalness of this attack could be a problem.

Similar to our work in Chapter 5, Sehatbakhsh et al. have also exploited EM emanations involved with

power management for attacks very recently Sehatbakhsh et al. (2020). While there are similarities, funda-

mental differences exist. First, our work leverages the effect of DVFS on GPU clocks, whereas their work

uses the effect of demand-based switching on CPU voltage regulators. Second, although there is some over-

lap in terms of inferring keystroke timing, the work presented in Sehatbakhsh et al. (2020) mainly focuses on

building covert channels for data exfiltration, while our work focuses more on stealing sensitive information.

Finally, our work demonstrates that disabling DVFS as a countermeasure may not be fully effective.

2.4 Physical Covert Channel Attacks

The confinement problem was brought forth by Lampson in 1973 Lampson (1973), which made the first

mention of possible data exfiltration via covert channels. Since then, extensive research has been conducted

on this topic. Basically, a covert channel is an unintended communication channel that can be used to transfer

information between a sender and a receiver. Depending on the construction, covert channels can be classified

into logical and physical ones. Logical covert channels usually manipulate the microarchitectural states in

a processor to encode and transfer information Szefer (2019), and the receiver normally runs on the same

processor/platform/cloud as the sender Wang and Lee (2006); Ristenpart et al. (2009); Xu et al. (2011);

24

Maurice et al. (2015); Wu et al. (2012); Masti et al. (2015); Sullivan et al. (2018). On the other hand, physical

covert channels are usually used to enable illegitimate communication between air-gapped computers and

are constructed from certain physical side effects of computation. In this section, we will mainly focus on

physical covert channels.

Successful implementation of physical covert channel is based on the assumption that a victim computer

is infected by malware which behaves as an attacker and serves as a sender. The sender program inserted

in the victim computer intentionally performs computations to manipulate the physical side effects in a con-

trolled way such that the information to exfiltrate can be encoded into the physical side effects. These physical

side effects can propagate over a certain distance in the air so that they can circumvent air-gapping(isolate a

computer from unsecured networks), the strongest protection against data exfiltration. A receiver deployed

nearby can measure these physical effects and recover the embedded information. Because an attacker has

full control over the sender program, the covert channel can be established even with only a small amount of

physical side-channel leakages available Guri et al. (2015b). Numerous research has been conducted to im-

plement various physical covert channels exploiting all sorts of physical side-channel information, including

acoustic, optical, thermal, power, electromagnetic emanations.

Many components in a running computer can produce sounds that can be received by any device equipped

with a microphone(e.g., laptop, cell phone, smartwatches, etc.) to establish a covert channel. Carrara et

al. first used speakers and microphones on computers to communicate through ultrasound Carrara and

Adams (2014). Furthermore, Hanspach et al. leveraged ultrasound to establish a covert acoustical mesh

network Hanspach and Goetz (2013). Because ultrasound frequencies are higher than the upper audible limit

of human hearing, communication cannot be easily noticed. Later, Guri et al. designed speakerless acoustic

covert channels, where cooling fans Guri et al. (2020), hard disk drives Guri et al. (2017a) and power supply

unit Guri (2020) were used to generate acoustic emissions. However, these two speakerless covert channels

transmit information using audible sound instead of ultrasound. Even though most people do not pay much

attention to the components’ noise, it is still possible for perceptive people to notice the abnormal noise,

which makes these methods less stealthy. One advantage of the acoustic covert channel is that the transmis-

sion distance is long because sound waves have a long propagation distance in the air. Nevertheless, acoustic

signals have high attenuation in most materials and can be easily mitigated by spatially isolating protected

computers in a secured room.

Optical emissions can also be exploited to create covert channels. The exploitable optical emissions may

be generated by light-emitting diode (LED) in components like keyboards Loughry and Umphress (2002),

monitors Sepetnitsky et al. (2014), and even hard disk drives Guri et al. (2017b). Most LED-based optical

covert channels use OOK modulation, and Zhou et al. showed that the efficiency could be improved by

25

replacing OOK modulation with binary frequency-shift keying modulation (B-FSK) Zhou et al. (2017b). An-

other kind of optical covert channel manipulates the monitor screen Guri et al. (2016a, 2019). By modifying

a small amount of content displayed on the screen, information may be transmitted without being noticed

by humans. Theoretically, optical covert channels can reach a very high bandwidth with the help of optical

instruments as long as the sender is in the sight of the attacker. However, exploiting optical emissions is

harder than expected in practice because it is rare that a malicious camera can monitor a highly secured target

machine. In addition, it is very difficult, if not impossible, to create optical covert channels when the target

machine is enclosed in a room with non-transparent walls. Similar to acoustic covert channels, some optical

emissions like abnormal blinking of LED can also raise the administrator’s suspicion.

No successful side-channel analyses were performed exploiting thermal side-channel effects due to the

short propagation distance and high delay effects. However, an attacker with full control of the sender in a

covert channel can exploit the thermal leakage by accumulating the signal to improve the SNR. A thermal

covert channel was constructed in Guri et al. (2015b) to transmit information between two physically adja-

cent but air-gapped computers. Because the heat source and thermal sensor are all components planted in

computers, this is one of the few covert channels that can realize two-way communication without any exter-

nal devices. However, the performance of this covert channel is extremely poor. The maximum bandwidth

reported is 8 bits/hour, and the sender and the receiver must be very close to each other. A similar ther-

mal covert channel can be implemented using a smartphone as a receiver to exfiltrate data from air-gapped

computers Guri (2019). This covert channel also has the problems of low bandwidth and short transmission

distance.

Power consumption is also exploitable for establishing covert channel Guri et al. (2018b). In this work,

the CPU was manipulated to affect the power consumption of a computer to transmit information through

power lines. The receiver can be mounted either on the in-home power lines directly attached to the electrical

outlet or on the main electrical service panel. The bandwidth of this covert channel can reach 1,000 bps, but

it requires the installation of malicious hardware devices on the power lines connected to victim machines,

which makes this attack less practical.

Since many components (e.g., clocks and voltage regulators) in a computer have switching behavior and

thus emit strong EM signals, several EM covert channels have been created. One way to exploit these EM

emanations is measuring the magnetic field around the computer. It can affected by components like hard

disk drives Matyunin et al. (2016) and CPUs Guri et al. (2018a,c). Measurement of the magnetic field can be

performed using either specialized instruments like digital magnetometers or magnetic sensors equipped in

hardware like cell phones. Magnetic covert channel is advantageous considering that the low-frequency mag-

netic emanations can travel through most obstacles including metal shields like Faraday Cages. However, this

26

obstacle-penetrating ability doesn’t mean the invalidation of spatial isolation mitigation. In fact, due to the

short propagation distance and weak signal strength, magnetic covert channels are limited in both transmis-

sion speed and distance and spatial isolation can successfully mitigate magnetic covert channel in most cases.

Compared to measuring magnetic field near a device, EM covert channels are more often implemented by

receiving strong EM radiations over a longer distance that can pose more practical threat. For example, EM

emanations from graphics card’s clock were exploited to implement covert channel Davidov and Oldenburg

(2020). Guri et al. implemented multiple EM covert channels by exploiting the EM emanations from either

video display unit Guri et al. (2014), USB connectors Guri et al. (2016b), or DRAM bus clock Guri et al.

(2015a). A recent study presented an EM covert channel Sehatbakhsh et al. (2020) exploiting EM emanations

from power management unit capable of exfiltrating data at the bandwidth of 4,000 bps. This is the fastest

EM covert channel prior to our work.

DRAM bus clock was shown to radiate strong EM emanations Zajic and Prvulovic (2014); Callan et al.

(2015), which was exploited to establish the EM covert channel GSMEM Guri et al. (2015a). Similar to our

BitJabber covert channel presented in Chapter 4, their GSMem covert channel described in Guri et al. (2015a)

also relies on the EM signals related to the DRAM clock. They discovered that memory accesses could

increase the strength of the EM signals in a wide frequency range around the DRAM clock frequency. Using

the fact that EM emanations from DRAM bus clock are AM-modulated by memory activities, in GSMEM the

bus clock is modulated through on-off keying (OOK), which is realized by controlling the presence/absence

of intense memory access. The receiver collected the EM signals at certain frequency ranges and compute

the amplitudes, which were used to decide the transmitted bits. What is special of GSMEM is that a DRAM

bus clock’s frequency is usually close to the GSM, UMTS and LTE bands, which make a modified cell phone

be a possible receiver in the covert channel. In our work, BitJabber is implemented using a different carrier

with a much higher SNR and new modulation techniques. EMloRA is a study parallel to our work Shen

et al. (2021). Both BitJabber and EMLoRa are featured by explicitly addressing spread spectrum clocking to

improved communication performance. However, EMLoRa focuses on ultra-long-distance data transmission

with lower bandwidth while BitJabber aims at achieving extremely high-speed data exfiltration.

Comparisons of Existing Covert Channels

To highlight the advantages of BitJabber in Chapter 4, we compare the existing physical covert channels in

Table 2.1. The comparisons are made in terms of their maximum achievable bandwidth and wall-penetrating

ability. From the table we can see, before our work, the fastest physical covert channels was the one proposed

in Guri et al. (2017b), which can achieve 4,000 bps. Compared to that covert channel, our BitJabber improves

the performance by 75x.

27

Moreover, most of the existing physical covert channels have difficulties in penetrating physical obstacles

like a wall. (We mark “maybe” on acoustic covert channels in terms of wall-penetrating ability, although

we think it is very unlikely that they can actually penetrate a wall.) From the table, we can observe that the

EM covert channels have considerable advantages over others in terms of penetrating walls. However, as

illustrated in Chapter 4, when penetrating concrete walls, approaches like GSMem actually have a too large

error rate (from 38% to 50%) to be actually used in reality, while our BitJabber has an error rate even less

than 0.5%. Therefore, compared to other physical covert channels, it can be found that our BitJabber imposes

more realistic security risks on air-gapped isolation protection.

Table 2.1: Comparison of existing physical covert channels.

Covert Channel Type Wall-Penetrating Bandwidth
GPU Clock Davidov and Oldenburg (2020) Electromagnetic Yes N/A

BitWhisper Guri et al. (2015b) Thermal No 0.002 bps
HOTSPOT Guri (2019) Thermal No 0.03 bps

Fansmitter Guri et al. (2020) Acoustic Maybe 0.25 bps
Matyunin Matyunin et al. (2016) Magnetic No 2 bps
DiskFiltration Guri et al. (2017a) Acoustic Maybe 3 bps
MAGNETO Guri et al. (2018a) Magnetic No 5 bps

Screen Brightness Guri et al. (2019) Optical No 10 bps
EMLoRA Shen et al. (2021) Electromagnetic Yes 14 bps

Monitor LED Sepetnitsky et al. (2014) Optical No 20 bps
ODINI Guri et al. (2018c) Magnetic No 40 bps

POWER-SUPPLaY Guri (2020) Acoustic Maybe 50 bps
UltraSonic Carrara and Adams (2014) Acoustic Maybe 230 bps

Keyboard LED Loughry and Umphress (2002) Optical No 450 bps
AirHopper Guri et al. (2014) Electromagnetic Yes 480 bps

USBee Guri et al. (2016b) Electromagnetic Yes 640 bps
GSMem Guri et al. (2015a) Electromagnetic Yes 1,000 bps

PowerHammer Guri et al. (2018b) Power N/A 1,000 bps
Hard Drive LED Guri et al. (2017b) Optical No 4,000 bps

PMU Sehatbakhsh et al. (2020) Electromagnetic Yes 4,000 bps
BitJabber Zhan et al. (2020) Electromagnetic Yes 300,000 bps

2.5 Security Problems on GPU

Given the rising popularity of modern GPUs, research on their security implications has begun drawing

attentions in recent years. Several studies exploit possible residues in GPU memory that may not be properly

cleared after use. Pietro et al. have shown that the lack of memory-zeroizing operations can be exploited to

attack CUDA AES implementations Pietro et al. (2016), and the memory residual leakage vulnerabilities in

virtualized and cloud computing environments have been investigated by Maurice et al. Maurice et al. (2014).

Furthermore, Zhou et al. have studied how to extract raw images from GPU memory residues Zhou et al.

28

(2017a). In Lee et al. (2014), Lee et al. have successfully inferred the web browsing history by examining

GPU memory dumps.

Other than relying on GPU memory residues, many attacks exploit possible logical or physical side-

channel information of GPU to breach confidentiality. Jiang et al. have studied the timing differences due

to contentions on shared GPU caches or memory banks and leveraged such timing side-channels to break

AES implementations on GPU Jiang et al. (2016, 2019). Luo et al. have demonstrated that CUDA RSA

implementations are also susceptible to timing side-channel analysis Luo et al. (2019). Aside from logical

side-channel information, Luo et al. have also used GPU power consumption traces for cryptanalysis of

CUDA AES Luo et al. (2015), while Gao et al. have used near-field localized EM emanations from GPU for

the same purpose Gao et al. (2018). In addition to subverting GPU-accelerated cryptosystems, Naghibijouy-

bari et al. have studied GPU side-channel attacks in a more general context, where they used performance

counters or resource tracking APIs to measure shared GPU resource contentions and exploited such informa-

tion to fingerprint websites, infer user activities, and reverse engineer neural networks Naghibijouybari et al.

(2018).

GPUs can also be a new venue of which malware takes advantage to increase its stealthiness Vasiliadis

et al. (2015). In Ladakis et al. (2013), Ladakis et al. have implemented a piece of GPU-based malware that

directly monitors the keyboard buffer from GPU via DMA to log keystrokes, and in Zhu et al. (2017), Zhu et

al. have conducted a more comprehensive study on such a topic. In Naghibijouybari et al. (2017), Naghibi-

jouybari et al. have showed that malware may exploit contentions on shared GPU resources to construct

covert channels for data exfiltration. In Davidov and Oldenburg (2020), Davidov and Oldenburg have also

exploited GPU’s EM emanations, but they only showed a malware-enabled covert channel on an AMD GPU.

29

CHAPTER 3

Rowhammer Attack Detection Via A Radio

As a fundamental requirement for implementing security measures, memory protection prevents a process

from modifying memory it does not own. However, this essential protection becomes at stake due to the

discovery of a vulnerability, known as the rowhammer bug Kim et al. (2014), in the underlying dynamic

random-access memory (DRAM). The rowhammer bug belongs to the class of software-induced hardware

faults, which makes unauthorized data modifications possible.

The existence of the rowhammer bug has been reported in numerous DRAM chips of DDR3 and DDR4 Kim

et al. (2014); Lanteigne (2016). Since its discovery, this hardware vulnerability has been continuously ex-

ploited to form a wide range of powerful rowhammer attacks. Examples of such attacks include sandbox

escaping Seaborn and Dullien (2015); Qiao and Seaborn (2016); Gruss et al. (2016a), privilege escala-

tion Seaborn and Dullien (2015); Gruss et al. (2016a); Xiao et al. (2016); Bosman et al. (2016); van der

Veen et al. (2016); Gruss et al. (2018), cryptography subversion Bhattacharya and Mukhopadhyay (2016);

Razavi et al. (2016), denial-of-service Lipp et al. (2018a); Zeitouni et al. (2018); Jang et al. (2017), and

even confidentiality breaching Kwong et al. (2020). Furthermore, rowhammer attacks have been effectively

demonstrated in the presence of ECC mechanism Cojocar et al. (2019) as well as in the context of only

sending network packets Tatar et al. (2018b); Lipp et al. (2018a).

In response, many defense techniques against rowhammer attacks have been proposed in recent years,

including several detection-based approaches Aweke et al. (2016); Herath and Fogh (2015); Payer (2016);

Irazoqui et al. (2018); Gruss et al. (2016b). Unfortunately, as more sophisticated rowhammer attacks are de-

veloped, the effectiveness of detection-based rowhammer defenses becomes questionable. As demonstrated

in Gruss et al. (2018), all of the practical rowhammer attack detection approaches can be circumvented.

In particular, by abusing the Intel SGX technology and closed-page memory controller policy, rowhammer

attack detection based on either static analysis Irazoqui et al. (2018) or dynamic monitoring Aweke et al.

(2016); Herath and Fogh (2015); Payer (2016); Gruss et al. (2016b) will become ineffective.

In this chapter, we introduce a new direction to addressing the problem of rowhammer attack detection1.

Specifically, we propose to leverage certain electromagnetic (EM) emanations to effectively and robustly de-

tect rowhammer attacks. EM side-channel information is capable of revealing much knowledge about the

ongoing activity in a computing device, and it has been extensively exploited to breach confidentiality Gan-

dolfi et al. (2001); Quisquater and Samyde (2001); Agrawal et al. (2002); Kuhn (2004); Enev et al. (2011);

1The work in this chapter has been previously published in Zhang et al. (2020b)

30

Heyszl et al. (2012); Genkin et al. (2015a, 2016a,b); Alam et al. (2018). However, it has been realized that,

as a double-edged sword, such side-channel information can also be used to help build security defenses Han

et al. (2017); Nazari et al. (2017). Following this line, for the first time, we utilize EM side-channel informa-

tion to our advantage for rowhammer attack detection. Because EM emanations are inevitably issued during

any computation and can be hardly suppressed by outside adversaries, our proposed approach can detect any

potential rowhammer attacks including the extremely elusive ones that are hidden inside attacker-controlled

SGX enclaves. Moreover, our detection approach does not degrade the performance or resource utilization

of the system under protection.

The main contributions of this chapter are as follows:

• We study the correlation between certain EM emanations and rowhammer attacks, based on which

we propose a systematic rowhammer attack detection approach named RADAR (Rowhammer Attack

Detection via A Radio).

• We propose the first approach to reversing the scattering effect of spread-spectrum clocking on EM

side-channel information issued from high-frequency clocks in a computing device.

• We have implemented a RADAR prototype using a $299 software-defined radio device, and we eval-

uate the effectiveness and robustness of our EM-based rowhammer attack detection under different

scenarios.

There has been little prior work that uses physical side-channel information to perform rowhammer defenses,

and to the best of our knowledge, this is the first investigation on leveraging EM side-channel information for

this purpose.

The rest of this chapter is organized as follows: Section 3.1 briefly sets the background; Section 3.2

formulates the threat model; Section 3.3 presents a new direction to rowhammer attack detection; Section 3.4

studies the correlation between EM side-channel information and rowhammer attacks; Section 3.5 proposes

our RADAR system, which can achieve rowhammer attack detection in a non-intrusive manner; Section 3.6

evaluates the proposed RADAR system; Section 3.7 concludes this chapter.

3.1 Background

In this section, we provide some background information on DRAM organization, the rowhammer bug, and

rowhammer attacks. Moreover, we briefly present the physical side effects leveraged in this chapter, namely

the EM emanations.

31

3.1.1 DRAM Organization

Modern computing devices use DRAM as the main memory. For better memory bandwidth, DRAM is

often partitioned into multiple channels. Each channel may be associated with multiple dual in-line memory

modules (DIMMs). Each DIMM has one or more ranks (e.g., modern DIMMs can be single-/dual-/quad-

/octal-rank), and each rank has multiple banks (e.g., normally there are 8 banks for DDR3 and 16 banks for

DDR4). As depicted in Fig. 3.1, each bank can be viewed as a two-dimensional array of memory words,

organized in rows and columns. The size of the memory word depends on the data bus width, and decides

how many cells are needed to store its content (e.g., 64 cells are needed to store a 64-bit memory word). Each

cell consists of a capacitor and a transistor, where the capacitor is either charged or uncharged to represent a

binary value2, and the transistor is used to access the capacitor. In each bank, there is also a row buffer, which

can hold the contents of a single row. To access a cell, the corresponding row has to be activated first to put

the contents of the row into the row buffer, and then the access is served from the row buffer. An activated row

remains in the row buffer until being closed by the memory controller, and before then, consecutive accesses

to that row will be served directly from the row buffer. Depending on what memory controller policy is being

used, an active row can be closed due to different reasons: If the memory controller uses an open-page policy,

the active row will not be closed until a different row in the same bank is accessed; and such a causal event

is often called a row conflict. On the other hand, if a closed-page policy is employed, the memory controller

will proactively close the row Gruss et al. (2018); Lipp et al. (2018a).

Rank 0 (front of a DIMM) Rank 1 (back of a DIMM)

Memory
Controller

DIMMs

Channel 0

Channel 1

Bank 7
..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

.
..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

Bank 0

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

A simplified view of a rank

Figure 3.1: A representative DRAM architecture (two channels and four dual-rank DIMMs). A rank consists
of all the chips on the same side (front or back) of a DIMM.

Note that a DRAM cell can only keep its charged state for a short period of time, as its capacitor leaks its

charge over time. In order to prevent any data loss, the cells must be refreshed regularly. DDR3 and DDR4

specifications require that the refresh interval must not be longer than 64ms. Normally, the refresh interval is

2Depending on the implementation, some cells use the charged state to represent ‘1’, while other cells use the charged state to
represent ‘0’.

32

between 32ms to 64ms.

3.1.2 The Rowhammer Bug and Hammering

As DRAM becomes denser, the capacitor in a cell becomes smaller and the voltage margin separating ‘0’

and ‘1’ becomes lower, which unfortunately have reduced the overall DRAM reliability Mutlu (2017). First

thoroughly studied in Kim et al. (2014), the rowhammer bug has become a well-known DRAM reliability

issue: When a DRAM row is repeatedly activated and closed (namely, the row is hammered) enough times

within a refresh interval, one or more bits in its physically adjacent rows can be flipped to the opposite value3.

Usually, a row that is hammered is referred to as an aggressor row, and a row that has flipped bits is called a

victim row.

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

(A)

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

(B)

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

(C)

Figure 3.2: Three possible hammering techniques in the literature: (A) single-sided hammering Kim et al.
(2014); (B) double-sided hammering Seaborn and Dullien (2015); and (C) one-location hammering Gruss
et al. (2018).

Since many of the memory controllers use an open-page policy, to trigger the rowhammer bug on such

systems, two aggressor rows in the same bank need to be alternately activated. Consequently, the row buffer

of that bank will alternately hold the contents of these two aggressor rows. If the two aggressor rows are

not intentionally chosen to “sandwich” a row, it is termed as single-sided hammering, as shown in Fig. 3.2

(A). On the other hand, if the two aggressor rows are selected to specifically lie on both sides of another

row, it is called double-sided hammering, as shown in Fig. 3.2 (B). As demonstrated in practice, double-

sided hammering is much more effective and efficient than single-sided hammering Seaborn and Dullien

(2015). Some new memory controllers may use a closed-page (or hybrid) policy, and in such cases even one

aggressor row is sufficient to induce bit flips around the row, which is called one-location hammering Gruss

et al. (2018), as shown in Fig. 3.2 (C).

3The large current coupled with toggling the activation of a row repeatedly and rapidly accelerates the discharge rate of cells in the
physically adjacent rows. Before the next refresh, if too much charge in a cell has been leaked, the stored bit information will be lost,
namely the bit is flipped from 1 to 0 or from 0 to 1, depending on whether 1 or 0 is represented by the charged state.

33

3.1.3 Rowhammer Attacks

Because the rowhammer bug allows one to modify the contents of a DRAM row without explicit permission,

severe security risks are posed. Since the discovery of this devastating hardware vulnerability, many powerful

attack vectors have been developed by exploiting the rowhammer bug to compromise the security defenses

of a system. Usually, a rowhammer attack consists of three basic phases:

1. Exploration phase. In the first phase, the attacker intensively hammers the DRAM and searches for

exploitable bit flips. The prerequisite for performing this phase is to design approaches used to trigger

the rowhammer bug on the targeted system. More details will be described below.

2. Manipulation phase. In the second phase, the attacker steers the targeted security-critical data to the

vulnerable memory location that has the exploitable bit flips found in the first phase. There are several

approaches developed for this specific task, including memory spraying Seaborn and Dullien (2015),

memory grooming van der Veen et al. (2016), memory waylaying Gruss et al. (2018), and memory

ambush Cheng et al. (2018).

3. Exploitation phase. Once the security-critical data has been placed at the vulnerable location, in the

third phase, the attacker triggers the rowhammer bug again to flip the bit(s), which achieves the final

compromise.

When designing an approach to triggering the rowhammer bug on the targeted system, several technical

challenges need to be overcome. One challenge is the lack of address mapping information, including both

virtual-to-physical and physical-to-DRAM, which leads to some approaches using inefficient random test-

ing Seaborn and Dullien (2015); Qiao and Seaborn (2016). While memory deduplication can be exploited to

ease this challenge Bosman et al. (2016), attackers have tried to recover such mapping information, especially

by reverse engineering the physical-to-DRAM address mapping Pessl et al. (2016); Xiao et al. (2016); Tatar

et al. (2018a), for more efficient and effective double-sided hammering.

The other challenge is how to access the underlying DRAM quickly enough. To trigger the rowhammer

bug, the same location in DRAM has to be accessed rapidly; otherwise, even if the DRAM were extremely

vulnerable to hammering, one would still not be able to exploit the bug for a successful rowhammer attack.

However, due to the presence of the caches, most of the memory accesses to the same location can hardly

reach the DRAM. (This is why the rowhammer bug is seldom triggered during the ordinary use of a computing

device, even though the underlying DRAM might be extremely vulnerable.) Over the past few years, several

techniques have been developed to overcome this challenge (e.g., to circumvent the effect of the caches).

Fig. 3.3 shows a typical computing platform, and each of the dashed lines in the figure represents a possible

34

Interconnect (an aggregate view of different buses)

Cache

Core

Processor

GPU

Memory Controller

DRAM

I/O Devices
e.g. NIC

DRAM Bus

(1)(2)
(3)

(4)

Figure 3.3: Different types of techniques for rapidly and repeatedly access the same locations in DRAM.

path taken to enable fast access to the same location in DRAM: (1) flushing or evicting CPU caches Kim

et al. (2014); Aweke et al. (2016); Gruss et al. (2016a); Aga et al. (2017); (2) bypassing CPU caches Qiao and

Seaborn (2016); van der Veen et al. (2016); (3) evicting GPU caches Frigo et al. (2018); and (4) maneuvering

DMA buffers from I/O devices Tatar et al. (2018b).

3.1.4 EM Emanations

Because the electric current in the circuitry of a computing device varies with time, EM emanations arise. As

inevitable physical side effects, EM emanations carry information about the underlying electronic activities,

which can be linked with certain high-level activities such as which instructions or loops are being executed.

Thus, this information leakage has been exploited to facilitate certain attacks, e.g., stealing cryptographic

keys Genkin et al. (2015a, 2016a,b); Alam et al. (2018), or inferring privacy Kuhn (2004); Enev et al. (2011).

Yet, other than being exploited for side-channel attacks, EM emanations have also been used to track code

execution for ensuring control-flow integrity Han et al. (2017); Nazari et al. (2017) or profiling Sehatbakhsh

et al. (2016); Callan et al. (2016).

The generated EM emanations are distributed widely on the spectrum. Although the sources of many of

these emanations are unknown, a few of them are in fact easy to determine, e.g., the ones created by well-

known periodic activities like clocking and DRAM refreshing. The EM-emanated signals created by these

periodic activities are also strong and can propagate far. Interestingly, some of these signals may be uninten-

tionally modulated by other activities in the form of amplitude modulation (AM) or frequency modulation

35

(FM) Callan et al. (2015); Prvulovic et al. (2017). For example, signals emanated from switching voltage

regulators may be AM-modulated by activities in the circuits they power, and signals generated by periodic

DRAM refreshes may be AM-modulated by memory access activities Callan et al. (2015). Therefore, these

signals act as carrier signals that convey information about the modulating activities.

3.2 Threat Model

Assume an attacker has access to a system equipped with DDR3 or DDR4 memory modules. The attacker

attempts to find out whether the DRAM of the system has the rowhammer bug, and if so, the attacker also

scans for exploitable bit flips for a subsequent attack. Given the very low probability that exploitable bit flips

can be found in the first few trials, the attacker needs to intensively hammer the DRAM for such bit flips.

In this chapter, we assume that the attacker will either utilize special instructions such as clflush (namely

flushing the cache) or movnti (namely bypassing the cache), or constantly evict the corresponding cache

lines, to achieve either double-sided, single-sided, or one-location hammering. To circumvent simple detec-

tions, the attacker may manipulate the system to run an SGX enclave, inside which the malicious activities

are performed.

In this chapter, we mainly focus on computing platforms that use DDR (instead of low-power DDR) and

are seldom moved on a daily basis, such as personal computers and workstations. Although mobile/embedded

systems are excluded, this actually includes most of the currently vulnerable systems that have a much wider

rowhammer attack surface than mobile/embedded systems and are harder to protect van der Veen et al. (2016);

Frigo et al. (2018); van der Veen et al. (2018).

Another assumption is that the attacker is not able to physically interfere with the EM emanations gener-

ated by the system, e.g., she cannot place a high-power radio transmitter nearby the target system and use it

to jam the frequency band of interest. Note, however, that this assumption does not limit the applicability of

our proposed method at all, due to the fact that rowhammer attackers rarely need or have physical access to

the target systems.

3.3 New Direction to Rowhammer Detection

Under the stated threat model, developing effective detection-based defense techniques against the possible

rowhammer attacks remains an open research problem Gruss et al. (2018); Cheng et al. (2018); Tatar et al.

(2018a). In this section, we discuss why leveraging physical side-channel information, EM emanations in

particular, can provide a feasible solution to this problem.

As we know, to effectively and robustly detect any type of attacks, we need to discover and rely on

information that has a strong correlation with these attacks but can hardly be tampered or concealed by

36

any attacker-controllable running program. Since physical side-channel information leaks much fine-grained

knowledge about system activities and can hardly be corrupted by remote adversaries in reality, we can

leverage such information to help detect anomalies, including rowhammer attacks.

A variety of physical side effects are inevitably generated during any activity of a computer system.

For instance, power is consumed, heat is issued, EM signals are radiated, and even sound or light may be

produced. Some of these side effects may have strong correlations with the operations of certain hardware

components. As we can observe from Fig. 3.3, the memory controller, memory bus, and DRAM modules are

the three hardware components that are always involved in a rowhammer attack, no matter which technique is

employed to hammer the DRAM. Thus, we should primarily consider the physical side-channel information

that is strongly correlated with the operations of these three hardware components. In this chapter, we argue

that we can leverage EM side-channel information for this purpose.

The rationale for leveraging EM side-channel information to detect rowhammer attacks lies in the follow-

ing facts:

• As mentioned in Section 3.1, EM emanations are inevitable physical side effects during any computa-

tion, issued both intentionally and unintentionally Agrawal et al. (2002); Zajic and Prvulovic (2014);

Callan et al. (2015); Prvulovic et al. (2017).

• EM emanations can be measured in a contactless manner (e.g., via a radio device). This removes the

need for unrealistic hardware modifications to guarantee practicality.

• Compared to other physical side-channel information like power consumption, EM emanations can

provide more fine-grained and niche-targeting insight into an activity.

• Most importantly, as illustrated in Zajic and Prvulovic (2014); Callan et al. (2014, 2015); Prvulovic

et al. (2017), rich information about memory activities can be found in some EM emanations.

In the following, we will present our investigation on finding information correlated with a potential

rowhammer attack in EM emanations. Additionally, we will describe our system design that uses simple and

affordable measurements to achieve an effective detection-based rowhammer attack defense. In the course of

our discussion, we will use EM emanations and EM-emanated signals interchangeably.

3.4 Finding Hammering Information in EM Side-Channel Emanations

As mentioned in Section 3.1, rowhammer attacks need a hammering process to tentatively trigger the rowham-

mer bug, and then search for exploitable bit flips. The whole hammering process consists of many hammering

attempts, each of which requires a large amount of toggling the activation of aggressor row(s) within a short

37

period of time. In the following discussion, we will call such an activation toggling as a hammering iteration.

Therefore, there is a fast and nearly-regular switching behavior in rowhammer attacks in nature. As a conse-

quence, when the three aforementioned hardware components (namely, the memory controller, memory bus,

and DRAM modules) are stressed by hammering, the information about the hammering activity is very likely

carried by some EM-emanated signals at certain frequencies.

153 154 155 156 157 158 173 174 175 176 177 178 179 319 320 321 322 323 324 325

Time(ns)

0

500

1000

1500

2000

2500

C
o

u
n

ts

clflush

movnti

eviction

Figure 3.4: The timing distributions of 10,000 hammering iterations in terms of approaches using clflush,
movnti, and eviction.

Theoretically, such signals can be in any place of the EM spectrum, but most likely, they should be

correlated with the frequency of the switching behavior. However, we do not specifically know the switching

frequency, because there can be multiple approaches to triggering the rowhammer bug on the same machine,

each of which may have different computational overhead in its hammering iteration. Moreover, the time

consumed in each hammering iteration can hardly be identical, which will result in a small range of switching

frequencies in the context of a single hammering attempt. For example, for each of the three most commonly

used approaches, which are flushing the cache, bypassing the cache, and evicting the cache, Fig. 3.4 shows the

corresponding timing distribution of 10,000 hammering iterations. The timing measurements are performed

on a platform equipped with an Intel Haswell G3258 processor and 8 GiB DDR3-1333 DRAM. In the rest of

this chapter, unless stated otherwise, this is the platform used in the examples.

Nevertheless, the possible frequencies of this switching behavior are bounded to some extent. Because

the rowhammer bug cannot be triggered if there are not enough times of hammering iterations in between

two refreshes, the frequency has a lower bound. Obviously, the frequency must also have an upper bound,

because memory accesses cannot be arbitrarily fast. (In effect, if the memory controller uses an open-page

policy, there exists an even tighter upper bound due to row conflicts.)

38

3.4.1 Direct EM Emanations

Given the fast switching behavior in a hammering attempt (e.g., the row buffer in a bank is repeatedly opened

and closed along with discharging and charging the aggressor rows), we conjecture that there should be clear

EM-emanated signals at the possible switching frequencies. Therefore, we are tempted to identify these

signals directly.

However, there are some challenges and concerns in measuring such direct EM emanations, even though

their existence is plausible: First, the switching periods are normally in the range of one hundred to several

hundreds of nanoseconds, and therefore the corresponding frequencies are in a rather low spectral range,

where much noise exists due to radio stations, appliances, and other sources. Second, these signals may be

very weak, and measuring such long wavelength weak signals may require a physically large antenna or a

special antenna whose return loss is minimal around the frequencies of interest.

In our experiments, we did not observe any EM-emanated signal that is strongly correlated with the

hammering switching behavior in the frequency range of interest. Granted, we used only a software-defined

radio with a telescopic whip antenna to try to capture such signals. Therefore, it may be possible to find some

signals of interest if using some lab-grade instruments and carefully placing some customized EM probes

close to the chips. However, if such equipment is required, the practicality of our detection approach will

be decreased. For our purposes, we need to leverage other possible EM emanations containing hammering

attempt information that can also be easily measured.

3.4.2 AM-Modulated EM Emanations

As we know, many system modules like clocks and voltage regulators intrinsically create EM-emanated

periodic signals. According to the study in Callan et al. (2015), some of these periodic signals will be AM-

modulated by certain types of activities, and thus information about the corresponding activities can be found

in those modulated signals. Moreover, such signals are relatively strong and can propagate far, which lowers

the requirements for measuring them. Inspired by this study, we investigate whether it is possible to find

information about hammering attempts in some of such AM-modulated signals. As an educated guess, the

hammering activity most likely modulates some periodic carrier signals generated in the aforementioned three

hardware components.

As illustrated in Callan et al. (2015), the strength of the EM emanations generated by the DRAM clock

varies when the amount of activities driven by the clock changes, namely the emanations at the DRAM clock

frequency will be AM-modulated by the DRAM activities. Therefore, our investigation will focus on finding

hammering attempt information in the AM-modulated DRAM clock signals.

AM-modulation has a long history and is well understood. We know that when a carrier signal is AM-

39

modulated, there are sidebands appearing on both sides of the carrier frequency in the spectrum, and each

sideband is a mirror-image of the other relative to the carrier. These upper and lower sidebands correspond to

the spectrum of the modulating activity, namely each modulating frequency will be present in each sideband.

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(A) idle

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(B) playing a video

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(C) browsing a website

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(D) hammering DRAM (clflush)

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(E) hammering DRAM (movnti)

658 660 662 664 666 668 670 672 674 676

frequency(MHz)

-60

-40

-20

0

d
B

(F) hammering DRAM (eviction)

Figure 3.5: The power spectra under six scenarios. Note that the vertical axis is on a logarithmic dB scale.
Each spectrum is derived by averaging 78 FFTs of 16,384 values with 50% overlap sampled in 25 MHz over
32 ms.

Since nearly-regular and lasting switching behavior is associated with a hammering attempt, if the DRAM

clock signal carries such hammering attempt information through AM-modulation, we expect to identify

that information via some distinctive frequency patterns in the upper and lower sidebands of the modulated

DRAM clock signal. We have conducted a large number of experiments that have verified the feasibility

of this idea. For instance, Fig. 3.5 shows the power spectra of the DRAM clock signal measured using a

software-defined radio under six scenarios: The first scenario (A) is the simplest one, in which only the system

background tasks are running. The following two scenarios represent some common uses of a computer

system, which are (B) playing a video and (C) browsing web pages. The last three scenarios are to (single-

sided) hammer the underlying DRAM by means of the three most commonly used approaches: (D) using

clflush instruction to flush the cache, (E) using non-temporal store movnti instruction to bypass the

cache, and (F) loading from congruent addresses to evict the cache.

Given that DDR3-1333 memory modules are used in this example, the DRAM clock frequency is around

666∼668 MHz. On our platform, it is at 667.85 MHz, which corresponds to the tallest central spike in each

spectrum of Fig. 3.5. Note that, to avoid a cluttered discussion, we turned off the spread spectrum clocking

40

feature in the BIOS for now (the motherboard used in this example is ASUS Z87-A), and the problem caused

by this feature as well as our solution will be discussed later.

From Fig. 3.5, we can observe distinguishable sideband patterns in the spectra when the underlying

DRAM is being hammered, namely there are noticeable “bumps” located on both left and right sides of the

central spike, which are circled and pointed to by arrows in Fig. 3.5 (D), (E), and (F). By referring to Fig. 3.4,

we can actually find the relation between the times spent in hammering iterations and the frequencies where

the sideband patterns of interest are located. Take the approach using movnti for an example. From Fig. 3.4,

we can see the dominant period of hammering iterations is around 156 ns. As shown in Fig. 3.5 (E), the circled

lower sideband patterns are at about 661.4 MHz (i.e., 667.85 MHz - 1000/156 MHz), and the circled upper

ones are at about 674.3 MHz (i.e., 667.85 MHz + 1000/156 MHz). These hammering-correlated sideband

patterns conform to the effect of AM-modulation, which illustrates that we can find hammering attempt

information in the modulated DRAM clock signal. Furthermore, we can notice that the “bumps” in Fig. 3.5

(D) and (F) are slightly wider than that in Fig. 3.5 (E). This is because the timing variances when using

clflush and eviction are larger than that when using movnti, as shown in Fig. 3.4.

Note that, since multimedia like videos is non-temporal data (namely data needed in the near future is not

in the cache), there is a large number of DRAM accesses in the scenario (B). However, as shown in Fig. 3.5

(B), no obvious patterns of interest arise. Thus, it indicates that the presence of massive cache misses or

DRAM accesses is only a necessary but not a sufficient condition for generating hammering-correlated

sideband patterns. Normally, it is rare that a benign program generates high rate and periodic cache misses

for more than 30 ms.

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(A) hammering DRAM (clflush) -- before de-spreading

658 660 662 664 666 668 670 672 674 676

frequency(MHz)

-60

-40

-20

0

d
B

(B) hammering DRAM (clflush) -- after de-spreading

Figure 3.6: The power spectra under hammering by means of clflush before and after de-spreading. Each
spectrum is derived by averaging 78 FFTs of 16,384 values with 50% overlap sampled in 25 MHz over 32
ms.

Furthermore, we can still observe these sideband patterns even after introducing some disturbance into the

periodic behavior of a hammering attempt. (In such a case, the variance of hammering period is increased, so

the “bumps” become wider and lower.) In other words, it is hard to conceal such patterns while maintaining

sufficiently fast toggling rate of aggressor rows to trigger the rowhammer bug. In Section 3.6.4, we will

illustrate some of the experimental results related to this random delay addition.

41

3.4.3 Spread-Spectrum Clocking

One major difficulty in robustly detecting hammering-correlated sideband patterns is created by spread spec-

trum clocking (SSC), which has been commonly used in electronic products like computer systems for meet-

ing electromagnetic compatibility (EMC) regulations. EMC standards impose allowable limits on the EM-

emanated signal energy at any frequency above 30 MHz, and many high-frequency clock signals in a com-

puter system (e.g., the DRAM clock) are strong enough to violate such legal limits. To achieve EMC, SSC

uses FM-modulation to vary the clock frequency over a range so that the time spent by the clock signal at a

particular frequency is reduced and the energy is spread over that range of frequencies Hardin et al. (1994).

Under the situation in which the underlying DRAM is being hammered, Fig. 3.6 (A) demonstrates the

problem when SSC is turned on (which is the default option in most BIOSes). As we can observe in the

spectrum, instead of a single spike at 667.85 MHz, the clock frequency now ranges from 664.85 MHz to

667.85 MHz as a consequence of SSC. Compared with the SSC-off clock signal power, when SSC is turned

on, the signal power is indeed significantly reduced (more than 15 dB in the given example). However, we

find that the frequency patterns of interest to our rowhammer attack detection are also attenuated due to SSC,

such that the hammering-correlated sideband patterns become unrecognizable.

To overcome this problem, we need to de-spread the energy in the signal. The details of our de-spreading

process will be described in the next section. Here, our aim is to show that hammering attempt information

can be found in the EM-emanated DRAM clock signal. Fig. 3.6 (B) shows the power spectrum of the

measured signal after de-spreading. Compared with Fig. 3.6 (A) which shows the spectrum of the original

signal without de-spreading, we can clearly notice that the sideband patterns used for rowhammer attack

detection reappear. Therefore, we conclude that information correlated with a potential rowhammer attack

can be effectively found in certain EM emanations.

3.5 Rowhammer Attack Detection via A Radio

In this section, we propose a rowhammer attack detection system named RADAR (Rowhammer Attack

Detection via A Radio), which detects potential rowhammer attacks by identifying hammering-correlated

sideband patterns in the AM-modulated DRAM clock signal. The diagram of the proposed RADAR system

is depicted in Fig. 3.7. In the following, we describe each component of our RADAR system.

3.5.1 Measurement Component

In the first step, we use a measurement device to capture the EM-emanated DRAM clock signal. As the

time spent in each hammering iteration could be as low as one hundred nanoseconds (e.g., when using one-

location hammering on a high-performance platform), to capture both upper and lower hammering-correlated

42

System under watch

Detector

RF Receiver

Antenna
Measurement

De-spreading

Classification

Figure 3.7: RADAR system illustration.

sideband patterns, the measurement device utilizing quadrature sampling should be able to support at least 20

MHz instantaneous bandwidth. Moreover, the clock frequency of interest may be as low as 400 MHz (e.g.,

DDR3-800) or as high as 1600 MHz (e.g., DDR4-3200), and thus it is more flexible to have a measurement

device that can be tuned to all of the possible frequencies. Fortunately, inexpensive and reliable instruments

exist. For simplicity and convenience, in our prototype, we use a software-defined radio for this task.

Because a clock signal is a square wave, there is an infinite number of harmonics in the frequency domain.

Here we only consider the first harmonic. If there is too much noise around the fundamental frequency, we

may try to rely on some higher-order harmonics.

The antenna used in our system should match the frequency range of interest. Given the possible DRAM

clock frequencies, there are many antenna choices. Through experiments, we find that a cheap whip antenna

(e.g., a telescopic one or just a piece of wire) suffices. The antenna can be placed inside or outside the case

of the computer being monitored, but its position and orientation may need to be fine-tuned for the best

performance.

3.5.2 De-Spreading Component

As aforementioned, to robustly detect hammering-correlated sideband patterns, we need to counter the effect

of SSC by de-spreading the energy in the measured clock signal. Given a clock signal whose frequency is

fc, SSC uses FM-modulation to vary the clock frequency in accordance with a signal fm(t) that is generated

in the SSC hardware chip but undocumented. At time t, the instantaneous frequency fi(t) of the clock signal

becomes:

fi(t) = fc +K fm(t) , (3.1)

where K is some proportionality constant. In an analytic form, the effect of SSC is equivalent to multiplying

the clock signal by a complex exponential function θ(t), which is defined as:

θ(t) = e j2π
∫ t

0 K fm(t)dt , (3.2)

43

where j denotes
√
−1. If the DRAM is hammered when SSC is on, by reason of AM-modulation, the

frequency patterns of interest in the sidebands are also shifted by K fm(t) at time t. Hence, for the purpose of

de-spreading, we just need to estimate θ(t) and multiply the measured signal by θ−1(t).

Although the exact mathematical expression of fm(t) is not available, since we deal with sampled values

in the system, as far as we are concerned, only the discrete values of θ(t) at the points of sampling are needed

for de-spreading. We leverage quadrature sampling to measure the SSC-affected clock signal which also

centers its spectrum at zero Hz. Let vk denote the kth sample corresponding to the clock signal at a specific

time τ , namely

vk = |vk|e jφk , (3.3)

where |vk| is the magnitude of vk and φk is the phase angle of vk. Using FM-demodulation, we can acquire:

dφk

dt
= 2πK fm(τ) (3.4)

Therefore, at time τ , the instantaneous value of θ(t) is derived:

θ(τ) = e j2π
∫

τ
0 K fm(t)dt = e j(φk+Θ) = e jφk e jΘ , (3.5)

where Θ is a constant phase angle. Although we do not know the exact value of Θ, we may simply assume it

is 0, because a non-zero constant phase angle only shifts the signal in the time domain by a constant but does

not affect our analysis in the frequency domain at all. Thus, we can simplify Eq. 3.5 to have it rely on only

the values acquired by quadrature sampling:

θ(τ) =
vk

|vk|
= e jφk (3.6)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sample

0

Figure 3.8: The phase difference φk−φk 1 between successive samples, where 1≤ k ≤ 10,000. Many of the
apparent spikes above 0 are actually caused by phase wrapping, i.e., any negative difference in the range of
−π > ∆φ ≥−2π will be converted to an angle in the range of 0 < ∆φ ≤ π .

To de-spread each sampled value of the SSC-affected signal, the need for deriving the value of θ(t) at that

44

point in time is not desirable, since it is better to derive such values when the amount of DRAM activities is

little for less noise. Fortunately, it is known that fm(t) is a periodic function Hardin et al. (1994), namely we

have fm(t) = fm(t +Tm) where Tm is the period of fm(t). Therefore, even though the sequence of the discrete

θ(t) values may not be periodic4, its phase difference sequence, which is equivalent to FM-demodulation,

must be periodic over Tm. In other words, given a sampling frequency fs, we have:

φk−φk 1 ≈ φl−φl 1 , where l = k+ bTm fsc (3.7)

For example, in terms of the platform used in Section 3.4, Fig. 3.8 shows the phase difference sequence of

10,000 values of θ(t) over 0.4 ms (i.e., the sampling frequency is 25 MHz). Due to random noises, we can

observe singular jumps, although the periodicity is obvious. By averaging the corresponding values, we can

effectively remove the noise.

Let ∆[0 . . .N−1] denote the phase difference sequence over a Tm, where N = bTm fsc. Note that we only

need to derive ∆ once for each hardware platform, as it is software-independent. When sampling the clock

signal for ∆ derivation, we do not have user processes running on the target system, and we also use a bandpass

filter to attenuate frequencies outside the range of possible clock frequencies. The sampling frequency should

be the same as the one used during detection.

To use ∆ for de-spreading during detection, we first need to achieve ∆ alignment, which is to find a point

p in the stream S of the sampled values such that the phase of θ(t) varies by ∆[0] between S [p+ 1] and

S [p], by ∆[1] between S [p+2] and S [p+1], and so forth. It is straightforward to see that ∆ alignment is

periodic, namely if S [p] aligns with ∆, S [p+kN] will also align with ∆. (Because it is very likely that Tm fs

is not an integer, strictly speaking, ∆ alignment is quasiperiodic.) Our solution to this problem is based on the

fact that a correct alignment leads to the maximum cross-correlation between the entries of ∆ and the phase

changes of N successive sampled values, which implies the maximum cross-correlation between the sums of

the first 1 ≤ m ≤ N entries of ∆ and the phase changes of the mth point relative to the first point. Therefore,

4If the integration of K fm(t) over Tm is an integer, θ(t) is periodic over Tm. If it is not an integer but a rational value, θ(t) is still
periodic. If the integration is an irrational value, θ(t) is aperiodic.

45

given a point q, we use the following equation to calculate the cross-correlation:

ρ(q) =

∣∣∣∣∣ 1
N

N

∑
m=1

S [q+m]
|S [q+m]|

S [q]
|S [q]|

e
− j

m−1
∑

i=0
∆[i]
∣∣∣∣∣

=

∣∣∣∣∣ 1
S [q]
|S [q]|

∣∣∣∣∣
∣∣∣∣∣ 1
N

N

∑
m=1

S [q+m]

|S [q+m]|
e
− j

m−1
∑

i=0
∆[i]
∣∣∣∣∣

=

∣∣∣∣∣ 1
N

N

∑
m=1

S [q+m]

|S [q+m]|
e
− j

m−1
∑

i=0
∆[i]
∣∣∣∣∣

(3.8)

Using Eq. 3.8, we can start at an arbitrary point q and compute ρ(q+k(N +1)) in the (k+1)st round, where

k ≥ 0, until the cross-correlation reaches a spike, which signifies we have found ∆ alignment in that round.

(Again, if Tm fs is an integer, we will need at most N rounds to find ∆ alignment. However, it is very likely

that Tm fs is not an integer, and we may need more than N rounds.) As an example, Fig. 3.9 shows the cross-

correlation results in the first 800 rounds with respect to the example given in Fig. 3.6, and we can clearly see

that the initial ∆ alignment is found in the 266th round.

1 100 200 266 300 400 500 600 700 800

round

0

0.2

0.4

0.6

c
ro

s
s
-c

o
rr

e
la

ti
o
n

Figure 3.9: Using cross-correlation to achieve the initial ∆ alignment.

After we have found the initial ∆ alignment, say, S [p] aligns with ∆, for each of the next i ≥ 1 values

after S [p], we use the following process to obtain the de-spread sequence D :

D [p+ i] = S [p+ i]e− jϕp+i , where

ϕp+i = ϕp+i 1 +∆[(i−1) mod N] , and ϕp = 0
(3.9)

As the rounding error introduced by bTm fsc when Tm fs is not an integer will slowly make the alignment drift

away, we need to periodically calibrate the alignment. Since the floor is taken, the accumulated error will

reach a point where S [p+kN+1] aligns with ∆, instead of S [p+kN]. We solve this problem by computing

two cross-correlations ρ(p+ kN) and ρ(p+ kN + 1) together, where k ≥ 0, on the fly in the de-spreading

process, and introduce a delay to ∆ if ρ(p+ kN +1) is larger, which means performing a right circular shift

on ∆ by one position, namely, we derive and use a new ∆ as follows:

Interestingly, de-spreading will inadvertently help reduce background noise unrelated to the EM ema-

46

if ρ(p+ kN +1)> ρ(p+ kN) then
for j = 0; j < N; j = j+1 do

∆new[(j+1) mod N] = ∆[j];
end

nations of interest. This effect is due to the fact that de-spreading will act like SSC on such noise, whose

energy will be scattered over a range of frequencies. Because of this, the robustness of the proposed system

is increased, as later shown in Section 3.6.3.

3.5.3 Classification Component

Having the stream of samples that are processed according to Eq. 3.9, we continuously perform FFTs to

obtain a sequence of spectra. Each spectrum is treated as a feature vector that is fed into a classifier. Since the

hammering-correlated sideband patterns are relatively easy to recognize, it is not hard to train an appropriate

model to achieve accurate binary classification. However, if we predict there is a potential rowhammer

attack as soon as certain hammering-correlated sideband patterns are identified in a single spectrum, the false

positive rate may be high because similar patterns may transiently arise due to some factors like noise.

Recall that a hammering attempt lasts for a period of time, usually tens of milliseconds, which means

that the hammering-correlated sideband patterns are very likely present in each spectrum derived within that

period of time. On the other hand, if some similar sideband patterns appear in a spectrum, but not due to

hammering, they may disappear in the next few spectra. Therefore, we can rely on this temporal dependency

to achieve more accurate classification.

(a) Playing a video

(b) Hammering the DRAM (clflush)

Figure 3.10: Spectrogram patterns of different activities.

The sideband patterns of interest and temporal dependency imply that vertical lines are probably in the

spectrogram if some hammering attempts are ongoing. For instance, Fig. 3.10 shows two spectrograms over

47

40 ms under two scenarios, and we can clearly observe two vertical stripes in the spectrogram, symmetric

about the DRAM clock frequency (represented by the central red stripe), when using clflush to hammer

the DRAM. In contrast, no such vertical stripes appear in the spectrogram corresponding to the video playing

scenario.

Since such patterns are local and share the property of space invariance, we decide to use convolutional

neural network (CNN) that can automatically extract these local features and perform classification on the

basis of them. The input to CNN is a magnitude spectrogram that is a sequence of w magnitude spectra.

The output from CNN is the probability of the input being in the hammering class after applying a softmax

function. We use a sliding window of size w, whose stride is s to successively feed the inputs. Note that

w and s depend on several factors including sampling frequency, computational capacity, and classification

accuracy. The values used in our RADAR prototype are described in Section 3.6.1.

We find that it is important to normalize the magnitude of each point in the spectrogram prior to training

and classification. For each point, we normalize its magnitude by subtracting the mean and dividing by the

standard deviation of the magnitudes of all the points in that spectrogram (i.e., using instance normalization).

Note that we simply set the magnitudes of the points within ±0.05 MHz of the clock frequency to zero,

namely, we zero out the central red stripes in Fig. 3.10. The rationale behind this is twofold. First, the

power levels around the DRAM clock frequency totally dominate (e.g., more than 20 or even 40 dB as shown

in Fig. 3.5), which can significantly affect the results of normalization. Second, we do not lose any useful

information for our detection purpose, because the sideband patterns of interest induced by actual hammering

attempts will not fall in this range; otherwise it will be too slow to trigger the rowhammer bug.

3.5.4 Discussion on the Use of Detection Information

When suspicious sideband patterns are recognized, the detector will notify the system under watch that a

rowhammer attack may be ongoing. To this end, the detector should be connected to the system through some

standard communication interface like USB, and will send notification messages when potential hammering

attempts are detected.

Upon receiving such a message, we may try to prevent the system from being compromised in a very

simple fashion, which is to terminate all of the untrusted processes or the processes belonging to untrusted

users. Although this approach can promptly thwart potential rowhammer attacks, it is overly conservative,

since many non-malicious processes are also terminated. Alternatively, we may leverage the scheduling

information to narrow down the list of suspicious processes (e.g., we can select the untrusted processes that

were scheduled to run in the last 100 ms as suspicious ones).

As a matter of fact, it is very likely that tens of (or even hundreds of) hammering attempts are needed

48

before finding some exploitable bit flips, especially if the underlying DRAM modules are not overly vulner-

able (e.g., the number of bit flips is below a threshold during some test). In such scenarios, we can try to

pinpoint the malicious process by individually scheduling each suspicious process to see which one can raise

the alarm again. Of course, if the system under watch is very security-sensitive and/or the underlying DRAM

is very vulnerable, we may wish to terminate all of the untrusted running processes as soon as a notification

message from the detector is received.

3.6 Evaluation

We have implemented a RADAR prototype to demonstrate its practicality, and have evaluated it on four

platforms that are summarized in Tab. 3.1. As stated in Section 3.2, an attacker has various choices of

hammering techniques for rowhammer attacks. We show that our approach can protect a system from all

these possible techniques. Before presenting the evaluation results, we will first describe our prototype in

more detail.

Table 3.1: Platforms on which our prototype is evaluated.

Platform Motherboard CPU Memory
A Asus Z87-A Intel G3258 8 GiB Hynix DDR3-1333
B Dell OptiPlex 990 Intel i7-2600K 8 GiB Samsung DDR3-1333
C Alienware Aurora R7 Intel i7-8700K 16 GiB Micron DDR4-2666
D Asus ROG Strix B350-F AMD Ryzen 7 1800X 32 GiB Samsung DDR4-2133

3.6.1 Prototype of RADAR

We use a software-defined radio, LimeSDR, to acquire the EM-emanated DRAM clock signal data. The

bandwidth we need is 25 MHz, and LimeSDR can provide 61.44 MHz RF bandwidth in the frequency range

of 100 kHz – 3.8 GHz Lime Microsystems (2021), which is more than sufficient for our needs. A LimeSDR

costs $299. In fact, we need only an RF receiver instead of a full-duplex SDR, and thus a customized device

can even be much cheaper. We simply use a 20 cm telescopic antenna or a self-built one from two pieces of

7.5 cm wire that can be easily placed inside a computer case. Fig. 3.11 shows two antennas used in RADAR.

The left one is a telescopic antenna, which has a magnetic mount to make itself easy to stand on the metal

case of a computer. The right one is a self-built antenna, which consists of two pieces of metal wire connected

to an antenna balun. The wire is coated with plastic for isolation.

For rapid prototyping, we use a dedicated computer to serve as the detector, on which the de-spreading

and classification components run. The de-spreading component is implemented as a module of the GNU

radio framework. The classification component is implemented under the PyTorch framework and integrated

into the GNU radio using the C++ interface. (Note that using a dedicated computer is only for proof-of-

49

Figure 3.11: Two antennas that have been used in RADAR. In both figures, the used LimeSDR is also shown.

concept. The whole detector can be implemented on an FPGA, which will be our future work.) The detector

is connected to the system under watch via the USB interface5.

We train a 3-layer CNN model using the positive and nega-tive examples collected from the four plat-

forms listed in Tab. 3.1. Each platform contributes 5,000 positive examples as well as 5,000 negative ones. A

standalone program is used to generate positive examples, which randomly selects aggressor rows and ham-

mers 1/3 of them using clflush, another 1/3 of them using movnti, and the rest of them using eviction;

and the negative examples are collected at random during the daily use of these platforms (e.g., browsing

some web pages). Although not thoroughly investigated in this chapter, we conjecture that there can be a

generic model, which is trained using data from some representative platforms having different factors like

case sizes and DRAM clock speeds. To preliminarily prove this, we evaluate the trained model on several

additional platforms, whose data has never participated in the original training. The results are reported in

Section 3.6.2, which show that reliable detection can still be achieved on these unseen platforms. We leave

the comprehensive study to our future work.

Given the 25 MHz sampling frequency6, we perform 8192-point FFTs that can provide about 3 KHz

frequency resolution and spans only 327.68 µs. The FFT overlap we use is 50%, and it means an FFT is

performed with 4096 new points and 4096 previous points. To overcome noise, we average 20 spectra to

derive a single spectrum, i.e., each averaged spectrum spans about 3.3 ms. For classification, we set the

sliding window size to 12 and the stride to 1. In other words, the classification runs every 3.3 ms on the

spectrogram of the last 40 ms.

Due to the tight timing constraints, we need to minimize the performance overhead incurred by de-

spreading and classification. To achieve this, we optimize them by taking advantage of data-level parallelism.

When implementing the de-spreading component, we use the AVX-256 SIMD instructions, whenever pos-

sible, to process multiple sampled values at a time. In terms of classification, we fall our back on GPU

5A crossover USB cable having an embedded bridge controller is needed to connect two USB hosts. We use such a cable with a
PL-2301 bridge controller.

6Since quadrature sampling is used, it provides 25 MHz bandwidth.

50

to provide sufficient acceleration. As mentioned before, these two components can be implemented on an

FPGA, since FPGAs are truly parallel in nature. Our future work includes implementing the whole detector

on the FPGA of LimeSDR.

3.6.2 Effectiveness of RADAR

mov (X), %0
mov (Y), %0
clflush (X)
clflush (Y)
mfence

mov (X), %0
mov (Y), %0
clflush (X)
clflush (Y)

movnti %0, (X)
movnti %0, (Y)
mov (X), %0
mov (Y), %0
mfence

movnti %0, (X)
movnti %0, (Y)
mov (X), %0
mov (Y), %0

evict (X)
evict (Y)
mov (X), %0
mov (Y), %0

mov (X), %0
clflush (X)

(I) (II) (III) (IV) (V) (VI)

Figure 3.12: Different hammering loop bodies.

Figure 3.13: The detection results in the form of the probability of hammering.

We first evaluate whether our RADAR system can effectively detect potential rowhammer attacks under

simple situations, in which no memory-intensive tasks are running. The evaluation is performed in a normal

working environment, where computers with the same DRAM clock frequency are present but no closer than

1.8 m (note that later we will show the distance can be as close as 0 m), and the antenna stands outside on the

metal case using a magnetic mount.

The effectiveness of our RADAR system is evaluated against the hammering methods illustrated in

Fig. 3.12. The first five ones (I)–(V) use two addresses to perform single-/double-sided hammering via

clflush, movnti, or eviction, and the last one (VI) tests one-location hammering following the tool

flipfloyd Gruss et al. (2018). We also evaluate the effects of a memory barrier mfence using (I) and (III). We

note that it does not matter if single-sided or double-sided hammering is used with respect to the generation of

hammering-correlated sideband patterns, and thus we use double-sided hammering on platforms A (Haswell)

and B (Sandy Bridge) as their DRAM address mappings are available Tatar et al. (2018a); Pessl et al. (2016);

Xiao et al. (2016), and use single-sided hammering on platforms C and D.

We run each hammering executable for about 3 seconds in the order given by Fig. 3.12, and then we

run three legitimate applications for about 3 seconds. The three applications are: (1) randomly accessing a

large array of size 256 MiB, which will miss the caches and access the memory very often; (2) playing a

video, which will continuously use non-temporal instructions to access the video; (3) using gcc to compile

51

Table 3.2: Additional platforms on which our prototype is further evaluated.

Platform Motherboard CPU Memory
E Dell OptiPlex 3020 Intel i5-4590 16 GiB Kingston DDR3-1333
E’ Dell OptiPlex 3020 Intel i5-4590 8 GiB Micron DDR3-1600
F Dell XPS 8920 Intel i7-7700K 16 GiB Hynix DDR4-2133
F’ Dell XPS 8920 Intel i7-7700K 16 GiB Hynix DDR4-2400

a Linux kernel, which will generate a large amount of processor-memory-storage traffic. Fig. 3.13 shows the

detection results.

From the results, we can observe that malicious hammering attempts can be effectively detected for

each platform under each scenario (that are represented by the red dots in the figure), and there are no false

positives if the classification probability threshold is chosen sufficiently high (e.g., we simply use 0.85). We

also notice some interesting phenomena when conducting these experiments. First, we find that not every

hammering attempt can induce the sideband patterns of interest, although most of the attempts will. This

is why the detector sometimes gives a probability output less than the threshold even during hammering.

Second, compared to flushing or bypassing the cache, the patterns induced by eviction are less obvious, as

indicated by the first row of Tab. 3.3. Yet, they are still recognizable. Third, the use of memory barriers seems

irrelevant to the appearance of such sideband patterns, although it ensures that all memory accesses reach the

DRAM.

In addition, as studied in Gruss et al. (2018), rowhammer attacks may be hidden inside malicious SGX

enclaves. Our conjecture is that, regardless of whether or not hammering is performed inside an SGX enclave,

there should be no difference with respect to its characteristics in the DRAM clock spectrum. We have

verified this speculation by evaluating our RADAR system against malicious SGX enclaves on platform C,

as illustrated in Fig. 3.13. Thus, the proposed RADAR can effectively detect elusive rowhammer attacks.

To preliminarily demonstrate a specifically tailored model is not necessary for classification, we evaluate

our current CNN model on two additional platforms, whose data has never been used in the original training.

These two platforms E and F are listed in Tab. 3.2. We can find that platforms A, B, and E are all equipped with

DDR3-1333 modules, but their DRAM chip vendors are different (c.f., Tab. 3.1). Likewise, both platforms D

and F have DDR4-2133 modules, but their memory chips are also from different vendors.

Figure 3.14: The detection results on additional platforms in the form of the probability of hammering. The
CNN model for classification is the one trained in Section. 3.6 without any change.

52

Furthermore, we change the memory modules of E and F to form another two platforms E’ and F’. As

listed in Tab. 3.2, E’ uses DDR3-1600 and F’ uses DDR4-2400. Note that both of these two DRAM speed

types have never been involved in the original model training. We conduct the experiments listed in Fig. 3.12

on these four platforms.

The detection results are presented in Fig. 3.14. From the results we can observe that the model, trained

using data from platforms A, B, C, and D, works well for recognizing potential attacks on platforms E, E’,

F, and F’. Although data in terms of DDR3-1600 and DDR4-2400 modules has never been seen during the

CNN model training, very good generalization has been achieved, which is able to classify new examples

having symmetric vertical stripes in the spectrogram as possible rowhammer attacks.

The effectiveness of our RADAR system has also been evaluated against three well-known tools that

are publicly available for demonstrating rowhammer attacks: (1) Google’s rowhammer-test7 Seaborn and

Dullien (2015), which uses a probabilistic approach to perform single-sided hammering, or takes advantage

of the /proc/self/pagemap interface to acquire physical addresses for double-sided hammering; (2) Tatar’s

hammertime8 Tatar et al. (2018a), which can achieve more effective double-sided hammering by considering

the detailed information about end-to-end address translation; and, (3) Gruss’s flipfloyd9 Gruss et al. (2018),

which has a tool for testing one-location hammering.

Figure 3.15: The detection results on platform A w.r.t. three well-known tools.

We run each tool as is, and Fig. 3.15 shows the detection results when these tools are executed on platform

A. We just use platform A as the example, because (1) platform A is very vulnerable to hammering; (2)

hammertime only has the detailed address translation model for the platforms A and B; and (3) the detection

results for other platforms are very similar to that for A. From the results, we can observe that our RADAR

can effectively detect hammering attempts.

When running hammertime on platform A, on average there are 6.6 bit flips per second reported. (Both

rowhammer-test and flipfloyd do not report any bit flip.) We implement a kernel module that “kills” all of the

processes belonging to untrusted users upon receiving a message from the detector, and execute hammertime

for 100 times. In each of the 100 trials, the hammering behavior was always detected as soon as it merely

started. We have not observed any bit flip before hammertime is detected and terminated, namely if
7https://github.com/google/rowhammer-test
8https://github.com/vusec/hammertime
9https://github.com/IAIK/flipfloyd

53

only considering prevention of bit flips, the false negative rate in this case is 0%. The DRAMs on other

platforms are originally less vulnerable, and when our RADAR is on, we have not observed any bit flip before

any hammering tool is detected and terminated.

On the other hand, the false positive rate of our RADAR detection is also extremely low. As studied

in Aweke et al. (2016), gcc induces many false positives under ANVIL; yet, from Fig. 3.13, we can observe

that gcc introduces no false positives under RADAR. We also evaluate other SPEC 2006 benchmarks and

Apache HTTP server on platform A. For SPEC benchmarks, we use their reference inputs, and for Apache

server, we use the tool ab to generate heavy workloads. The representative results are shown in Fig. 3.16,

and the results for other SPEC benchmarks are similar to bzip2 (integer) and lbm (floating-point). From

Fig. 3.16, we can clearly see that no false positives arise. Note that no floating-point SPEC benchmarks are

used in Aweke et al. (2016), but we argue that these benchmarks should be included for evaluation due to

their pervasive manipulation on very large matrices.

Figure 3.16: The detection results on platform A w.r.t. SPEC integer and floating-point benchmarks as well
as Apache HTTP server.

Since these benchmarks represent normal applications well, the results signify the aforementioned argu-

ment that a benign program barely has a behavior generating a high rate as well as periodic DRAM accesses

for a long period of time (e.g., more than 30 ms) to trigger the alarm. (In fact, as indicated by the results

of continuous accesses to a large array in a random way in Fig. 3.13, we argue that it is the same bank(s)

that should be periodically accessed rather than just DRAM, which means it is even more difficult to find the

alarm-triggering behavior in a benign program.) Note that although the result for zeusmp appears singular

in contrast with others, we do not observe any false positive even when running its four instances in paral-

lel. It shows that the possibility of synthesizing symmetric vertical stripes in the spectrogram by multiple

simultaneously running benign programs is very low.

3.6.3 Robustness of RADAR

There are two types of noise that may affect the operation of RADAR. The first type of noise is generated

internally, due to a legitimate use of the computer system which changes the power of the DRAM clock

signal constantly. To create such noise, we run different applications to impose loads on the memory system.

To quantify the obviousness of the sideband patterns, we measure how relatively “tall” the patterns of interest

are, namely the power difference between the patterns and their neighboring frequency components. The

54

measurements are in dB and shown in Tab. 3.3 for sideband patterns caused by clflush, movnti, and

eviction. Note that Tab. 3.3 only shows the first one that is recognizable for each case.

Table 3.3: The relative power (measured in dB) of the hammering-correlated sideband patterns caused by
clflush, movnti, and eviction respectively.

Scenario Platform A B C D

Baseline 21.97/23.57/9.63 31.06/32.99/27.42 25.22/20.17/13.55 30.83/30.01/19.78
stress -m 10 13.49/16.57/8.37 30.89/26.94/17.97 –/–/– –/–/–
Playing a video 21.39/22.85/9.97 33.61/29.83/27.20 21.10/18.65/14.11 29.02/25.24/12.89

Compiling kernel 21.30/22.78/8.92 32.86/27.32/26.99 23.20/16.60/13.35 28.27/29.21/15.01

The first row of Tab. 3.3 lists the baseline values for each platform having the minimum workload. As

we can observe from the other rows, except for platforms C and D under stress, the patterns used for

rowhammer attack detection are still discernible in the spectrum when much noise is created. Note that there

are n high memory traffic threads spawned by stress -m n. We find that, when running stress -m

10 on platform C or D, all of the 10 threads can run in parallel with the hammering process leading to memory

bandwidth exhaustion, so that up to five-fold time is spent in a hammering iteration. By contrast, platform

A has a dual-core processor without SMT, which supports only 1 stress thread simultaneously running

with the hammering process; hence, there is actually no difference between stress -m 1 and stress

-m 10 on A, and the memory bandwidth is sufficient for its traffic. Surprisingly, on platform B, 7 stress

threads can run in parallel with hammering, but our test shows that they together impose only 1.7 GB/s traffic,

which is much less than the supported 20 GB/s bandwidth. (On other platforms, one single stress thread

can generate 4∼5 GB/s traffic.) Note that, even with enough memory bandwidth, we have observed that the

rowhammer bug is much harder to trigger while stress is running, let alone when bandwidth is exhausted.

For example, platform A is very vulnerable to hammering, and on average 6.6 bit flips per second can be

observed without running stress, but only 0.85 bit flips per second when running one stress thread.

Therefore, the disappearance of the patterns of interest under extreme conditions is only a minor issue.

The second type of noise exists externally. In reality, there may be some neighboring computer systems

having the same DRAM clock frequency as the one under RADAR’s watch. To test whether our RADAR will

become “confused”, we settle platform A as the system under protection and observe how other platforms

using DDR3-1333 affect the operation of RADAR.

Table 3.4: The impacts of external noise on RADAR for platform A.

Scenario Distance 1.5 m 1.0 m 0.5 m 0 m
B & antenna out none none none none
A* & antenna out none slight moderate† moderate/severe†

A* & antenna in none none none none
†These unfavorable impacts can be mitigated.

First, we gradually move platform B towards A starting from 1.5 meters away. The antenna stands outside

on the metal case of platform A. The operation of RADAR is not affected at all, as shown in the first row of

55

Tab. 3.4. This is because, as mentioned in Section 3.5.2, de-spreading will inadvertently help reduce such

noise. Recall that, for de-spreading, the hardware-dependent ∆ is aligned and used to modulate the measured

signal, and if the measured signal has components unrelated to the used ∆, the energy of these components

will be spread. Since the ∆ of A is different from that of platform B, when using the ∆ of A for de-spreading,

the EM-emanated DRAM clock signals of B are unrelated to the used ∆, and their energy is scattered to

become negligible noise.

A more interesting scenario arises from using identical motherboards, as they have the same ∆. Thus,

we move another platform A*, which is the same as A, gradually towards A starting from 1.5 meters away.

The antenna still stands outside on the metal case of A. When the distance is reduced to about 1 m, we start

observing “bumps” regularly and symmetrically sweeping back and forth within±3 MHz around the DRAM

clock frequency in the spectrum. This phenomenon is due to the fact that the correct ∆ alignment with the

SSC-affected signal of A is most likely incorrect with respect to that of A* (unless they coincidently have the

same SSC phase). As long as the antenna picks up the signal from A more than the signal from A*, the ∆

remains aligned with the SSC-affected signal of A. As A* gets closer to A, the magnitudes of the sweeping

“bumps” get increased, reaching the same level as the hammering-correlated sideband patterns. However,

their impacts are moderate, because they have very distinguishing features such as the spikes forming the

bumps are actually separated from each other by exactly 32 KHz (a behavior of SSC) so that we can take

them into account in the classifier. The severe impacts come from the situation where the antenna is too

close to A* such that the correct ∆ alignment is disrupted. We find that the severe impacts can be avoided by

carefully placing the antenna, e.g., on the other side of the case of A when A* and A are side-by-side.

The same experiment using A* is performed again but with the antenna placed inside the metal case of A.

We can generally manage to place the telescopic antenna inside the mini tower (or bigger) cases. By contrast,

we use a very simple self-built antenna, which consists of two pieces of 7.5 cm metal wire. This antenna can

be easily placed inside the computer case of any size (e.g., small form factor or server chassis).

Figure 3.17: Placing the self-built antenna inside the metal case of a SFF computer.

56

For example, Fig. 3.17 illustrates how to place our self-built antenna inside a small form factor (SFF)

computer of size 31.2 × 29.0 × 9.3 cm. The antenna is inserted into the computer case through the holes on

the backplate and taped on the power supply, which can be seen from the left part of Fig. 3.17 (denoted by

the dashed line). We simply leave the antenna balun outside the case, as shown in the right part of Fig. 3.17.

This placement just took us several minutes. Even though it was possible to spend longer time on placement

in some situations, we argue that it might just need to happen once and can remain fixed if no significant

changes need to be made on the hardware side of the platform later on. This time, no matter how close A*

gets to A, there are no impacts on the operation of RADAR at all, as shown in the third row of Tab. 3.4. The

reason is straightforward: On one hand, the case of A acts as a EM shield, and on the other hand, the signal of

A is much stronger inside the case. Note that there may be apparent reflection effects if the antenna is placed

inside the case, but we notice that many spots can be found where reflections are not obvious and thus can be

ignored.

Figure 3.18: Apparent hammering-correlated sideband patterns.

Given the aforementioned antenna placement, we execute a program for hammering. As we can observe

from Fig. 3.18, the hammering-correlated sideband patterns are extremely clear. Again, the SSC is always on

and the spectrum is shown after de-spreading.

3.6.4 Resilience to Adaptive Attacks

To demonstrate the effectiveness of our RADAR on certain adaptive attacks, we create such a scenario where

the adversary tries to circumvent detection by deliberately introducing some random delays into each ham-

mering iteration of a hammering attempt, as illustrated in Fig. 3.19. The outer loop in Fig. 3.19 denotes a

hammering attempt that hammers the DRAM for N iterations. Inside each iteration, we use an inner loop to

introduce some random delay, as its bound b is randomly chosen in the range of 1 to M.

Fig. 3.20 shows the DRAM clock spectra of platform D under different M values. (Note that the ex-

57

for i := 0 to N−1 do
b := rand(M)
for j := 0 to b−1 do

nop
mov (X), %0
mov (Y), %0
clflush (X)
clflush (Y)
mfence

Figure 3.19: Add random delay to each iteration to disturb the hammering period.

periments are performed under normal circumstances where the SSC feature is always on.) As anticipated,

when random delays are introduced, the periodic behavior of hammering is disrupted to some extent, and thus

the hammering-correlated sideband patterns become less prominent than those without adding such delays.

However, as illustrated in the figure, even when M reaches 500, the patterns are still recognizable for its use

in detection.

1055 1060 1065 1070 1075

-40

-30

-20

-10

0

d
B

(A) no random delay

1055 1060 1065 1070 1075

-40

-30

-20

-10

0

d
B

(B) M = 100

1055 1060 1065 1070 1075

-40

-30

-20

-10

0

d
B

(C) M = 200

1055 1060 1065 1070 1075

-40

-30

-20

-10

0

d
B

(D) M = 300

1055 1060 1065 1070 1075

-40

-30

-20

-10

0

d
B

(E) M = 400

1055 1060 1065 1070 1075

frequency(MHz)

-40

-30

-20

-10

0

d
B

(F) M = 500

Figure 3.20: The power spectra under different M. In a hammering attempt, each hammering iteration will
be delayed by a loop whose bound is randomly chosen in the range of 1 to M. The larger M is, the more
disturbance is added into the hammering period.

From Fig. 3.20 (A) that corresponds to the normal situation without adding random delays, we can observe

three pairs of “bumps” very clearly on both sides of the central spike, which are circled and pointed to by

arrows. They are located at about 1066 MHz± k× 3.9 MHz in the spectrum, where k = 1,2,3. The reason for

this phenomenon is that the modulating signal generated by the switching behavior of hammering on platform

D has strong second and third harmonics. Therefore, when this signal AM-modulates the DRAM clock

carrier signal, the sideband patterns corresponding to the second and third harmonics will arise noticeably.

58

Nevertheless, this does not cause any problem or difference for our detection method, since there are still two

vertical stripes symmetric about the DRAM clock frequency in the spectrogram.

Fig. 3.21 presents the detection results on platform D under different M values. As we can observe from

the figure, even when M reaches 500, it still cannot circumvent the detection. (Although theoretically we

cannot prove that bit flips can be prevented when M is 500, we do empirically notice that it becomes much

harder/impossible to trigger the rowhammer bug on the evaluated platform when M reaches 300, and no bit

flips are induced when M is 500.)

Figure 3.21: The detection results on platform D w.r.t. different M values.

Compared to the (I) results on platform D in Fig. 3.13, some of the results in Fig. 3.21 are even slightly

better. As mentioned before, not every hammering attempt can induce the sideband patterns of interest,

although most of the attempts will. Since the aggressor rows are randomly selected, different pairs were used

in these two experiments, which caused a slight detection difference.

3.7 Conclusion

In this chapter, we have investigated how to leverage EM side-channel information to detect rowhammer

attacks. We have found that there are distinguishable sideband patterns correlated with hammering activities

in the spectrum of the DRAM clock signal. Based on this observation, we have proposed and implemented a

system named RADAR, which unveils and recognizes hammering-correlated sideband patterns to help set up

defenses against even elusive next-generation rowhammer attacks (e.g., the ones concealing themselves inside

some SGX enclaves). The effectiveness and robustness of RADAR have been demonstrated under different

scenarios. Besides, RADAR does not degrade the performance or resource utilization of the computer system

under protection.

In the future, we plan to implement the entire detector part of RADAR on an FPGA (e.g., the one on the

used LimeSDR), and perform large-scale experiments in, e.g., a data center. In addition, we will conduct a

thorough study on the possibility of the existence of a generic model for classification as well as investigate

other properties of RADAR such as its power consumption10.
10Our conjecture is that RADAR can actually help save energy compared to the traditional software-based rowhammer defenses.

RF transceivers/receivers and FPGAs used by RADAR normally consume much less power than CPU. For example, the LMS7002M
transceiver used by LimeSDR consumes only 550mW in its SISO mode (the mode used in this chapter) and the Altera Cyclone
EP4CE40F23 FPGA on the board is also low-power. By contrast, a high-end CPU consumes more than 100W when it is active, so
reducing the CPU workload imposed by the traditional software-based defenses may help reduce the overall power consumption.

59

CHAPTER 4

The Fastest EM Covert Channel In The World

In organizations where information security and privacy are top priorities, physical isolation is often used to

prevent data exfiltration. Air-gapping is considered as one of the strongest physical isolation method that has

been widely used by, e.g., militaries and governments. An air-gapped computer has no connections with the

outside unsecured networks, so that it is believed that protection against unauthorized data transfer can be

effectively guaranteed.

However, recent research has discovered that many physical side effects of computation on air-gapped

computers can be exploited to construct so-called physical covert channels to re-enable data exfiltration.

The physical side effects that can be exploited are various, including thermal Guri et al. (2015b), opti-

cal Loughry and Umphress (2002); Sepetnitsky et al. (2014); Guri et al. (2017b); Lopes and Aranha (2017),

magnetic Matyunin et al. (2016); Guri et al. (2018a,c), acoustic Hanspach and Goetz (2013); Carrara and

Adams (2014); Guri et al. (2020, 2017a), or electromagnetic (EM) Guri et al. (2014); Zajic and Prvulovic

(2014); Guri et al. (2016b, 2015a). The communication distance of such covert channels is usually very short,

ranging from several centimeters to several meters, due to the high attenuation of the exploited physical ef-

fects in the distance. Information is encoded within the physical effects and transferred over the air gaps

between a sender and a receiver. Normally, a sender is a piece of malware, like a Trojan horse, that has been

stealthily inserted into a victim’s computer, and a receiver is some device in the proximity of the sender that

can capture the exploited physical effects.

Nevertheless, the security risks of such covert channels are often neglected, as they are considered hardly

posing any real hazards for two reasons. First, the bandwidth of such physical covert channels is usually

very low. For example, the transmission rate of the covert channel proposed in Guri et al. (2015b) is only

8 bits/hour (i.e., 0.002 bps). Even the fastest one reported in Guri et al. (2017b) can only reach 4,000 bps.

Therefore, if a large amount of data needs to be exfiltrated, an attacker has to maintain the covertly commu-

nicating status for a long period of time. In a situation where the attacker can briefly have her foothold in the

proximity to the targeted computer, any lingering action may cause suspicion. Second, most of these covert

channels require no physical obstacles between the sender and receiver. Thus, an attacker may encounter

great difficulties in managing the placement of the receiving device. In particular, locking an air-gapped

computer in an enclosed room has been regarded as a sufficiently secure protection against such physical

covert channels.

In this chapter, we demonstrate that there in effect exist powerful covert channels that are extremely fast

60

and strong enough to penetrate even thick walls1. Specifically, we construct such a covert channel named

BitJabber from the EM signals generated by the DRAM clock. As discovered in Callan et al. (2015), there

are strong EM signals generated by different clocks in a computer that can propagate far, and these EM

signals can be amplitude-modulated (AM) by activities driven by the corresponding clocks. Therefore, the

EM signals generated by the DRAM clock can be AM-modulated by normal memory accesses to carry and

transfer information over the air gaps between a pair of sender and receiver, namely forming an electromag-

netic covert channel. Our experimental results show that the transmission rate of this new covert channel can

reach 100,000 bps using binary frequency-shift keying modulation (B-FSK) with error rate around 0.05%,

and 300,000 bps using multiple frequency-shift keying modulation (M-FSK) with error rate less than 0.1%.

Moreover, this covert channel is resilient to a reasonable level of background noise and works well even in

the presence of 15 cm thick walls between the sender and the receiver.

The main contributions of this chapter are three-fold:

• We present a new physical covert channel named BitJabber that can allow expedited data exfiltration

between air-gapped sender and receiver.

• We verify that our BitJabber covert channel is much more resilient to background noise compared with

the state-of-the-art ones.

• We demonstrate that this new covert channel can achieve reliable communication within a few meters,

even under the scenario where the sender and the receiver are in separate rooms with walls in-between.

The rest of this chapter is organized as following: Section 4.1 states the threat model considered in this

chapter. Section 4.2 presents our BitJabber covert channel in detail, including the techniques for modulation,

demodulation and synchronization. Section 4.3 evaluates the performance of BitJabber. Section 4.4 lists

some possible countermeasures against this new covert channel and Section 4.5 concludes this chapter.

4.1 Threat Model

Similar to the previous work Matyunin et al. (2016); Guri et al. (2018a,c,b, 2015b); Hanspach and Goetz

(2013); Carrara and Adams (2014); Guri et al. (2016a, 2017a); Loughry and Umphress (2002); Sepetnitsky

et al. (2014); Guri et al. (2017b); Lopes and Aranha (2017); Guri et al. (2014, 2016b), in this chapter, we

explore how to construct a covert communication channel between a pair of air-gapped sender and receiver.

We assume that the sender has been placed on the victim computer that stores or processes the secret data

of interest, and the sender can acquire the secret through techniques like microarchitectural side-channels Ge

et al. (2018). (How to place the sender there is out of scope, but, as presumed in the previous work, the
1The work in this chapter has been previously published in Zhan et al. (2020) and reported in Zhan et al. (2021a)

61

attacker is capable of achieving this by methods like social engineering, USB interface, or physical access.)

Note that we do not assume the sender has any privilege higher than the regular user level.

We assume that the attacker can use a radio frequency (RF) receiver (like a cheap software-defined radio)

to collect the EM signals emanated from the victim machine somewhere nearby. Note that we do not require

the receiving device to share the same room with the sender or to be physically adjacent to the sender. The

sender and the receiver may be in different rooms with concrete walls, and the straight-line distance between

them can be one or two meters.

4.2 The Design of BitJabber Covert Channel

As mentioned above, our BitJabber is an EM-based covert channel. The carrier EM signal is generated

by the DRAM clock, and memory accesses are used to modulate the carrier signal to encode information.

When modulated carrier signal is captured, demodulation is used to decode information from that signal. The

overview of our BitJabber covert channel is illustrated in Fig. 4.1. In the following, we will describe the main

components and techniques used in BitJabber.

DRAM busencode
010...01 measurement

device
decode

010..01

Sender Receiver

Figure 4.1: Overview of BitJabber cover channel.

4.2.1 Spread Spectrum Clocking

As aforementioned in 3, SSC has been widely used in electronic products like computers for meeting elec-

tromagnetic compatibility (EMC) regulations Departments and agencies of the Federal Government (2019).

Due to SSC, the energy of the EM signals generated by the DRAM clock will be spread over a wide range

of frequencies. Such an energy dispersion makes the exploitation of these EM signals much harder, because

the power of the exploitable signals becomes weaker but the power of the background noise stays the same.

As a result, the signal-to-noise ratio (SNR) is much decreased, and thus our covert channel capacity will be

considerably affected. To increase the SNR, we need to use a de-spreading technique to gather the scattered

signal energy back, which has been described in Section 3.5.2 in detail. De-spreading can significantly im-

prove the capacity of our covert channel in several ways. First, de-spreading gathers the scattered energy of

the exploitable EM signals (i.e., it helps strengthen the signal), while de-spreading also inadvertently acts like

SSC on background noise (i.e., it helps weaken the noise). Thus, the SNR will be greatly increased. Second,

the EM signals of interest will be located in a narrow frequency range after de-spreading, which allows us to

62

use more advanced modulation techniques to utilize the spectra.

4.2.2 Modulation

To encode information into the EM signals generated by the DRAM clock, modulation is required to vary the

EM wave with respect to the message contents. As it is known that the EM radiation of the DRAM clock is

AM-modulated by memory accesses, the modulation for BitJabber covert channel is accomplished through

manipulating the memory access behavior.

To understand how memory access behaviors affect the EM signals generated by the DRAM clock, we

perform different memory activities on a computer equipped with DDR3-1600 memory modules (i.e., the

DRAM clock frequency is 800MHz) and investigate the corresponding spectra, which are shown in Fig. 4.2.

At first, no intense memory accesses are performed. As illustrated in Fig. 4.2, the EM radiation after de-

spreading has most of its energy concentrated near the clock frequency (i.e., 800MHz). When memory

accesses with execution time around 350ns are repeatedly performed, raised energy can be observed at certain

frequencies in the lower and upper sidebands. The offsets of these lobes from 800MHz are multiples of the

memory access frequencies (i.e., 2.86MHz), which indicates that the EM radiation is AM-modulated by a

non-sinusoidal wave with the same frequency as the memory accesses. If some delay is added to make the

memory accesses slower, the positions where the lobes locate indicate that the frequency of the modulating

non-sinusoidal wave also decreases. (Note that we use non-temporal load/store instructions like MOVNTI to

avoid memory accesses being served directly from the CPU caches.)

790 795 800 805 810

frequency (MHz)

-20

-10

0

10

20

30

m
a

g
n

it
u

d
e

 (
d

B
)

no memory access

fast memory access

slow memory access

Figure 4.2: Spectra of different memory access behaviors

The above observation shows that not only do intense memory accesses introduce obvious lobes in the

sidebands, but also the memory access frequency has influence on where these lobes locate. Accordingly, two

modulation techniques can be applied to encode information into the EM signals generated by the DRAM

clock:

• The first and also the simplest modulation method is OOK. As shown in Fig. 4.3 (a), OOK uses the

63

Intense memory activities

No intense memory activities

(a) OOK Modulation (b) OOK Modulation

Figure 4.3: Encoding of 0 and 1 using two modulation methods – OOK and FSK

presence and absence of repeated memory accesses to encode bit ‘1’ and bit ‘0’. Consequently, the

AM-modulated EM signal will have side lobes in its spectrum only when ‘1’ is transmitted; otherwise,

‘0’ is sent.

• The other modulation method is FSK, indicated by Fig. 4.3 (b), where different symbols are repre-

sented by different memory access frequencies. For example, to send bit ‘1’, fast memory accesses are

repeated, and to send bit ‘0’, slow accesses are repeatedly made. Thus, different distances between the

side lobes and the clock frequency in the spectra can distinguish these two cases. To realize different

memory access frequencies, we can use a normal memory access as the fast one and introduce some

delay to derive the slow one.

Note that the above-mentioned FSK modulation is not limited to B-FSK, in which case either bit ‘0’ or ‘1’

is transmitted. Because any two different memory access frequencies can result in distinguishable side lobe

positions in the spectra, M-FSK modulation is also achievable by adding distinct delays to a base memory

access activity BaseMemAcc as depicted in Algorithm 1. (The details of the BaseMemAcc activity will be

described later.)

Input: Ti = delay time for transmitting symbol i
if Transmitting symbol i then

BaseMemAcc;
DELAY(Ti);

end
Algorithm 1: Memory activities for M-FSK modulation

4.2.3 Base Memory Access Design

We have observed that randomly accessing some memory addresses may not AM-modulate the EM signals

generated by the DRAM clock well. Thus, we need to have a systematic way to construct a memory access

activity such that the probability of AM-modulating the EM signals of interest well is very high. We term

this systematically-constructed memory access activity as base memory access BaseMemAcc.

We need BaseMemAcc to have the following three properties:

64

1. It should have a very short execution time (e.g., a few hundreds of nanoseconds).

2. It should have a relatively stable execution time.

3. It should induce obvious change in the amplitude of the EM signals generated by the DRAM clock.

To design such a base memory access activity, we need to understand how memory accesses affect the DRAM

clock. Although it has been investigated in some prior work Callan et al. (2015), factors that influence the

AM-modulation effect were not fully identified.

To satisfy the first two properties, we decide to use non-temporal memory access instructions, such as

MOVNTI, MOVNTDQ and VMOVNTDQ. Since they will bypass the CPU caches, we can use them to directly

access the main memory in a rapid manner. Otherwise, CLFLUSH instruction needs to be used to flush

the cache after each memory access, which brings in more overhead and execution time variation. These

non-temporal memory access instructions can support operands of different sizes, e.g., either 32-bit or 64-bit

operands can be used in MOVNTI. The operand size can affect the execution time slightly, but can result in

observable differences in side lobe positions in the spectrum.

We notice that memory locations may have a significant influence on the AM-modulation. In order to

find out how the AM-modulation effect is related to the memory access instructions and memory locations,

we conduct experiments and empirically conclude the following:

1. When the same memory access instruction is used to access the same memory location, the AM-

modulation effect (e.g., side lobe positions and their energy) is fixed.

2. When different types of non-temporal instructions are used to access the same memory location, the

AM-modulation effect is slightly different.

3. When the same instruction is used to access different memory locations, the amount of amplitude

change of the EM signals of interest may be significantly different. The relationship between accessed

address and the amount of amplitude change is still not clear, but in our tested platforms we notice that

accessing memory addresses in the same DRAM bank tends to change the amplitude similarly.

Therefore, the more memory locations are accessed, the higher the possibility that obvious amplitude change

will arise is. Based on the above observations, to satisfy the third property, BaseMemAcc needs to access

several fixed memory locations using the same non-temporal memory access instruction. Apparently, there

is a trade-off, because the more memory locations are accessed, the slower BaseMemAcc will become. We

empirically find that accessing 4 memory locations is sufficient to have obvious AM-modulation effect while

keeping the execution time short.

65

Note that if these fixed memory locations are randomly selected, it may incur unpredictable variations

in the execution time due to row buffer conflicts in the same DRAM banks Hassan et al. (2015); Pessl et al.

(2016). Such variations may make the second required property of BaseMemAcc violated. Therefore, it is

preferable to have these memory locations in different DRAM banks. Moreover, considering that in some

platforms the amplitude change is bank-dependent, this memory location selection strategy can even help

BaseMemAcc hold the third property. Thus, we design BaseMemAcc to be a memory access activity that

uses a fixed non-temporal memory access instruction to access 4 fixed memory locations in different DRAM

banks.

Input : AP = address pool
Output: G = addresses mapped to the same bank
RefAddr← AP.DEQUEUE();
G.ENQUEUE(RefAddr);
n←SIZEOF(AP);
for i← 1...n do

RemAddr← AP.DEQUEUE();
if LATENCY(RemAddr,RefAddr) then

G.ENQUEUE(RemAddr)
else

AP.ENQUEUE(RemAddr)
end

end
Algorithm 2: Grouping virtual addresses w.r.t. banks

However, finding memory locations belonging to different DRAM banks can be a problem, because

the address mapping information is unavailable to unprivileged attackers. To obtain such memory loca-

tions, we use a method exploiting a timing side-channel introduced by the row buffer conflicts in the same

DRAM banks Hassan et al. (2015); Pessl et al. (2016). Given two virtual addresses a1,a2, a function

LATENCY(a1,a2) is used to check whether they are in the same bank. If they are in the same bank,

accessing them consecutively is relatively slow due to the delay induced by the row buffer conflict, and

LATENCY(a1,a2) returns True; otherwise, accessing them is faster and LATENCY(a1,a2) returns False.

The memory location selection method is described in Algorithm 2. By repeating this method, we can derive

several groups, in each of which the addresses are located in the same DRAM bank.

4.2.4 Communication Protocol and Demodulation

As indicated in Section 4.2.2, modulated signals with varied energy distribution on frequency domain are

transmitted to send symbols of different values. On the receiver’s side, after the EM signals are captured,

demodulation is a necessary step to recover the encoded information from the modulated signals. In order to

demodulate the received signals correctly, three problems need to be tackled:

66

1. How can we extract the features to distinguish different transmitted signals?

2. How is the receiver synchronized with the sender?

3. How can the receiver map the extracted features to correct symbol values?

In this section, we will describe the feature extraction method and communication protocol implemented to

handle these problems.

4.2.4.1 Feature Extraction

For our BitJabber covert channel, the key problem of demodulation is to classify different symbol values

according to the signal’s energy distribution in the frequency domain. As shown in Fig. 4.2, when memory

accesses are performed at a fixed frequency to transmit a symbol value corresponding to that frequency, side

lobes appear at the first few harmonics of that frequency. Instinctively, features corresponding to these side

lobes should be extracted.

To better describe the feature extraction process, we will use an example in which B-bit FSK modulation

is employed. In this case, S possible symbol values may be sent, where S = 2B. We assume the clock

frequency is fc, memory access frequencies f0, f1, ..., fS−1, are used for encoding S different symbol values.

M symbols are transmitted with a known symbol rate Rsymbol and the EM signal of interest is sampled with a

known sampling rate Rsample. The steps of feature extraction are as follows:

1. Find all the frequencies where side lobes locate in the spectrum of the captured EM signal (which is a

sequence of samsample size ofpled values). In our example, for each symbol value s ∈ {0, ...,S− 1},

let us assume there are 2Ks lobes at fc± ks fs where 1≤ ks ≤ Ks.

2. For each frequency where a side lobe locates, apply a bandpass filter on the original signals and extract

the envelope of filtered signals to preserve only the energy of that frequency. For our example, we can

obtain K filtered signals, where K = ∑
S−1
s=0 2Ks. Hence, the captured signals are converted to a sequence

of K-dimension vectors v.

3. Segment the vector series v using the boundary finding technique described in Section 4.2.4.3. The

length of each segment L is:

L =
Rsample

Rsymbol
(4.1)

(Note that we choose Rsample divisible by Rsymbol by design, so L is an integer.)

4. Average all the values within each segment. Assume the segment head found for symbol m is sample

67

n, the correspoinding feature vector Vm is computed using:

Vm =
1
L

L−1

∑
l=0

vn+l (4.2)

After this step, M K-dimension feature vectors are derived for all symbols.

4.2.4.2 Message Structure

To implement our BitJabber, we structure the message Q as shown in Fig. 4.4. It consists of a header

{QH
0 , ...,Q

H
Mh−1} and its payload{QP

0 , ...,Q
P
Mp−1}. The header is a pseudo random number sequence whose

seed is shared by the sender and receiver, which is used for signal synchronization and deriving symbol

mapping.

QH
0 QH

1 QH
2 QH

3
. . . QH

Mh−1

Header
(shared pseudo random sequence)

QP
0 QP

1 QP
2 QP

3
. . . QP

Mp−1

Payload

Figure 4.4: Message structure

4.2.4.3 Finding Segment Boundaries

Successful synchronization is the prerequisite of demodulation, which guarantees that the feature vectors

in Eq. 4.2 is computed at the right position, i.e., the correct pair of (m,n) are found. Assume in a symbol

sequence, we know segment for symbol m0 starts at sample n0, the segment for the next symbol m0 +1 will

start at sample n0 +L. Because the sender and receiver are driven by different clocks, there exists inevitable

clock drift δ . Although in reality δ is very small (e.g., around 0.0001%), the accumulated error can reach a

level such that a compensation in the symbol length is needed. Therefore, the symbol m will actually start at

sample n expressed as:

n = n0 +(m−m0)×L+ b(m−m0)×δ ×Lc (4.3)

If we make m0 = 0, symbol m starts at:

n = bm×L× (1+δ)c+n0 (4.4)

Thus, finding segment boundaries means finding the values of δ and n0, which can be accomplished through

performing linear fit on some known pairs of (m,n). Such pairs can be found within the header with it being

shared knowledge between the sender and receiver.

68

To find the correct segment head nr for a symbol mr in header, we use the following steps:

1. With a guessed segment head nr = n′, we can obtain a feature vector VH
mr(n

′) using Eq. 4.2.

2. Find an integer ∆m such that 2∆m+ 1 is a large enough sample size for psenterforming statistical

analysis while satisfying ∆mδ � 1. In reality, ∆m is usually a number ranging from 100 to 1000.

3. With a guessed segment head n′ and a properly chosen ∆m, segment heads for symbols {mr−∆m, ...,mr+

∆m} can be estimated as {n′−L∆m, ...,n′+L∆m}. Subsequently, a sequence of feature vectors

{VH
mr−∆m(n

′), ...,VH
mr+∆m(n

′)} can be obtained.

4. For each possible symbol value s, these feature vectors can be split into two groups according to the

value of QH
m , which gives us VH

s (n
′) = {VH

m(n
′)|QH

m = s} and VH
∼s(n

′) = {VH
m(n

′)|QH
m 6= s}.

5. With this splitting, we take advantage of the fact that with the correct segmentation, feature values

in each dimension of the feature vectors will have the minimum standard deviations within the same

group and the maximum differences between different groups. Intuitively, to measure the segmentation

quality for each symbol value s w.r.t each feature dimension k, we can define a score T as follows:

T (n′,s,k) = ln

 ∑mi,m j

(
V H

s,k,mi
(n′)−V H

∼s,k,m j
(n′)
)2

|V H
s,k(n

′)|× |V H
∼s,k(n

′)|×σ

[
V H

s,k(n
′)
]
×σ

[
V H
∼s,k(n

′)
]
 (4.5)

Then the actual nr can be found through searching for the maximum score.

nr = argmax
n′

∑
s,k

T (n′,s,k) (4.6)

After enough pairs of symbol and segment heads are identified in the header, we can fit Eq. 4.4 to obtain

δ and n0 for the header. With this knowledge, segment heads n of a symbol m in the payload can be computed

using:

n = b(m+Mh)×L× (1+δ)c+n0 (4.7)

4.2.4.4 Payload Decoding

After successful synchronization, we can correctly compute the feature vectors for all symbol transmitted in

the message. The last step of demodulation is mapping these feature vectors to the correct symbol values.

As the header is a symbol sequence shared by the sender and receiver, the feature vectors obtained from the

header can be used to train a simple classifier. This classifier is then used to translate the feature vectors

69

in payload part to symbol values. Because the feature vectors to be recognized are simple, any classifica-

tion technique can be used. In our case, we find the performance of SVM (support vector machine) to be

satisfactory as demonstrated in Section 4.3.

4.3 Experimental Results

In this section, we will evaluate the performance of our BitJabber covert channel in terms of its bandwidth,

error rate, and capability of wall-penetrating. In the evaluations, we also compare our BitJabber with the

existing GSMem covert channel for the following two reasons:

1. The performance of covert channels depends on many factors like background noise and the physical

architecture of the sender machine.

2. Both BitJabber and GSMem covert channels use the EM emanations generated from the DRAM clock.

4.3.1 Experimental Setup

The performance of BitJabber and GSMem covert channels are evaluated on three different platforms listed in

Tab. 4.1. These platforms use different motherboards and DRAMs of multiple frequencies. On all platforms,

two DIMMs are installed on two DRAM channels.

Table 4.1: Platforms on which our covert channel is evaluated.

Platform Motherboard Memory Case Material
A Dell Optiplex 990 2 × 4GB DDR3-1333 Metal
B Dell Optiplex 3020 2 × 4GB DDR3-1600 Metal
C Asus PRIME Z270-P 2 × 8GB DDR4-2400 Metal & Plastic

The receiver uses a log-periodic (LP) antenna, a telescope antenna and a software-defined radio (SDR)

platform LimeSDR-USB development board to collect the EM signals around the DRAM clock frequency as

shown in the left part of Fig. 4.5. The EM signals are preprocessed using the GNU Radio.

Figure 4.5: Experimental setup for wall-penetrating performance evaluation

70

The experiments are performed in a typical office environment. In such an environment, much back-

ground noise exists, including EM waves radiated from wireless communication systems (e.g., radio stations

and cell towers), nearby electronic devices, and other components in the victim computers.

The experiments are performed in three different scenarios. First, the antenna is put close to the victim

machine to receive the strongest EM emanations from the DRAM clock. This experiment will show the

performance upper bound of different approaches. The second scenario is to experiment with a more practical

setting, as shown in Fig. 4.5, where the sender and receiver are located in two different offices sharing a 15cm

thick wall. This experiment compares the wall-penetrating data exfiltration capability of the covert channels.

Additionally, we evaluate the performance of BitJabber with the antenna and victim machine separated by

different distances, with no obstacles in between. This experiment evaluates BitJabber’s long-distance data

exfiltration ability.

Our paper focuses on high-speed data exfiltration only, so the lowest evaluated symbol rate is 1,000 Bd.

Nevertheless, in all evaluations, we use a 20 Bd symbol rate sequence to speed up the process of locating

the beginning of signals (which is optional for the implementation). These 20 Bd patterns are very visually

perceptible in all evaluations, i.e., all measurements in this section have zero error rates at 20 Bd symbol rate.

4.3.2 Symbol Distinguishability

For all covert channels exploiting physical side channel effects, the receiver measures certain physical changes

introduced by senders and transforms the measurements into different symbols. A good covert channel should

have good symbol distinguishabilities. In Fig. 4.6, we compare the symbol distinguishabilities of two covert

channels GSMem and BitJabber using the B-FSK modulation.

symbol
-2

-1

0

1

2

3

4

fe
a

tu
re

 v
a

lu
e

GSMEM-1,000 Bd BFSK-100,000 Bd

gsmem-1

gsmem-0

bfsk-1

bfsk-0

Figure 4.6: Symbol distinguishability of GSMem and BitJabber using the B-FSK modulation.

For transmitting binary symbols, we can use a single feature value to represent how likely a measurement

is identified to a certain symbol (either ‘0’ or ‘1’). In GSMem, only the magnitude of the EM signal is used

for distinguishing symbols with binary values, and thus we can use this as the feature value. For BitJabber

71

using B-FSK modulation, an SVM model is trained to distinguish the feature vectors, and thus we use the

difference of two prediction scores as the feature value. The feature values of GSMem at 1,000Bd symbol rate

and BitJabber using the B-FSK modulation at 100,000Bd symbol rate are illustrated in Fig. 4.6. Compared

to GSMem, it is apparent that the measurements of BitJabber have much larger difference between different

symbol values and smaller variances between same symbol values even if the symbol rate is 100 times higher.

This comparison indicates that our BitJabber can greatly outperform the GSMem, which is demonstrated by

the following experimental results.

4.3.3 Bandwidth Evaluation

0 0 0 0 0

0.004 0.004

0.008

0.004 0.004

 0.0145

0.00667

 0.0275

 0.0038

 0.405

 0.038

0.0225
0.0175 0.016

 1.59

0.014
 0.01

0.047
0.039

 10.9

0.012

0.031 0.029

0.054

 20.8

 0.0550.0595

 0.037

 0.1

 35

 1000 4000 10000 20000 25000 50000 100000

symbol rate(Bd)

0.001

0.01

0.1

1

10

100

b
it
 e

rr
o

r
ra

te
 (

%
)

OOK

BFSK

MFSK--2 bits

MFSK--3 bits

GSMEM

(a) Platform A

 0 0 0 0

4.67

 0 0

0.00313

 0.0312

 6.56

0.0025

 0.005

0.0512

 0.1

 8.09

0.0963

0.0325

0.0675

 0.125

 17.3

0.205

 0.01

 0.08

0.205

 18.3

0.289

0.046

 0.09

0.411

 36.3

0.412

 0.26

0.683
 0.94

 47.9

 1000 4000 10000 20000 25000 50000 100000

symbol rate(Bd)

0.001

0.01

0.1

1

10

100

b
it
 e

rr
o
r

ra
te

 (
%

)

OOK

BFSK

MFSK--2 bits

MFSK--3 bits

GSMEM

(b) Platform B

 0.183

 0 0

0.0111

 0.16
 0.133

0.0833

 0.008

0.0958

 0.5

0.0783

 0.397

0.0958 0.111

 0.533

 1.02

0.0208

 0.261
 0.362

 17

0.303
0.199

0.151

0.575

 33.1

0.485
0.401

 0.49

 1.73

 25.7

0.755
0.546

 1.06

 2.2

 36.4

 1000 4000 10000 20000 25000 50000 100000

symbol rate(Bd)

0.001

0.01

0.1

1

10

100

b
it
 e

rr
o
r

ra
te

 (
%

)

OOK

BFSK

MFSK--2 bits

MFSK--3 bits

GSMEM

(c) Platform C

Figure 4.7: Bit error rate at different symbol rate for GSMem and BitJabber using different modulation
methods.

72

The first group of experiments measure the maximum bandwidth of GSMem and our BitJabber. To mea-

sure the performance upper bound, all measurements are performed with the antenna set at a fixed position,

at which the strongest EM emanations from the DRAM clock can be collected. The EM signals are modu-

lated by the OOK, B-FSK, and M-FSK modulation methods. Examined symbol rates range from 1,000 Bd

to 100,000 Bd and the evaluation results are shown in Fig. 4.7. Because of the huge performance difference

between GSMem and our BitJabber, logarithmic scale is used in this plot. Note that the original GSMem uses

the EM signals at only 800MHz. To make a fair comparison, here we evaluate GSMem using the EM signals

at the frequencies of DRAM clocks, where memory behaviors cause the maximum amplitude changes.

In our evaluations, we limit the maximum symbol rate to 100,000 Bd and the maximum symbol length

for M-FSK to 3 bits. Theoretically, larger symbol rate and symbol length can be used for this covert channel.

Nevertheless, selection of these two parameters highly depends on the hardware device used to implement this

covert channel. The BaseMemAcc used in victim computers typically takes several hundred nanoseconds

to execute. If symbol rate higher than 100,000 Baud is used, the actual symbol duration tends to be more

unstable, which will greatly increase the error rate. As for the symbol length, when 3 bits are represented

by a single symbol, 8 different memory access frequencies are used and the resulting EM emanations almost

affect the entire 25MHz frequency range. If more bits are transmitted, frequency ranges affected during

transmission of different symbol values may overlap too much and variance between different symbol values’

feature vectors tends to be smaller, which will also increase the error rate. With more advanced SDR devices

used to exfiltrate data from more powerful computers, BitJabber may be implemented at larger symbol rates

and symbol lengths.

The evaluations on different platforms have slight differences but in general for different covert channels

and modulation methods we can summarize that:

• For all evaluated approaches, the error rates increase as symbol rates get higher.

• The error rate reported in at the symbol rate 1,000 Bd is 0.087%. Our evaluations indicate that the

performance of GSMem is highly dependent on the platforms where it is implemented and the error

rates range from 0 to 4.67% at 1,000 Bd symbol rate. Even though GSMem can be implemented with

relatively low error rate in some platforms when the symbol rate is low, as the symbol rate increases,

the error rates of GSMem implemented in all platforms become extremely high. Therefore, GSMem

covert channel can not be used to exfiltrate data in high bandwidth.

• When the OOK modulation is used in BitJabber, it has a low error rate which is close to 0 at low

bandwidth. On most platforms, the error rates are also low when the bandwidth is 100,000 bps. Using

the same OOK modulation, BitJabber outperforms GSMem.

73

• Most of the time, BitJabber implementing B-FSK modulation exfiltrate data with the lowest error rate

among all evaluated approaches.

• Using the M-FSK modulation, BitJabber can transmit multiple bits with each symbol effectively, the

error rate is very low at a low symbol rate. Under the same conditions, 2-bit M-FSK always results in

lower error rate than 3-bit M-FSK.

• Considering that 3-bit M-FSK modulation can transmit 3 bits with each symbol, the fastest transmis-

sion can reach 300,000 bps. Compared to GSMem at its fastest transmission rate (i.e., 1000 bit/sec),

BitJabber increases the bandwidth by 300 times even with significantly lower error rate.

According to Fig. 4.7, evaluated covert channels’ performances highly depend on the victim platforms.

By comparing the evaluation results and features of EM signals, the intensities of emanated EM signals

and background noise have significant impacts on evaluated covert channels, especially for GSMem. When

the antenna is put close to the victim platforms, the received EM signals from computers all have high

intensities, but background noise at different frequency ranges varies a lot. The strongest noise is observed

around 800MHz when platform B is evaluated and it is not emanated from the victim computer. Therefore,

we can observe that on platform B, GSMem has the worst performance. As mentioned before, the despread

technique used for implementing BitJabber enhances EM signal emanated from computers and suppresses

the other irrelevant signals so the performance of BitJabber on platform B is not seriously affected. More

detailed analysis of the factors influencing error rates will be given in Section 4.3.6.

4.3.4 Through-Wall Evaluations

Compared to the other covert channels, one advantage of EM covert channels is that EM signals can travel

through many non-metal obstacles with little energy loss. In this experiment, GSMem and BitJabber are

evaluated in a more practical scenario. The sender machine is put in an isolated room with a 15cm thick wall.

The distance between the sender and the wall is 50cm. The receiver is set in the next door sharing the same

wall with the sender’s room.

Similar to the previous evaluation, background noise exists in both rooms and there are even some wire

cables with unknown layout in the wall. In this scenario, the received EM emanations generated by the

DRAM clock is weaker and more noise is in the transmission process. Wall-penetrating performance of

GSMem and our BitJabber using the B-FSK modulation are evaluated and the results are shown in Fig. 4.8.

From the figures, we can conclude that:

• Compared to results in Fig.4.7, performances of both covert channels get worse to some extent.

74

 0

5.5

0

2

0.0067

 12.5

0.0018

 30.7

0.018

 32.1

0.071

 29.1

0.295

 47.3

 1000 4000 10000 20000 25000 50000 100000

symbol rate(Bd)

0.001

0.01

0.1

1

10

100

b
it
 e

rr
o

r
ra

te
 (

%
)

BFSK

GSMEM

(a) Platform A

 0

38

0.054

 42

0.005

 50.3

0.07

49.7

0.0493

 49.5

0.38

 50

0.497

 50.1

 1000 4000 10000 20000 25000 50000 100000

symbol rate(Bd)

0.001

0.01

0.1

1

10

100

b
it
 e

rr
o
r

ra
te

 (
%

)

BFSK

GSMEM

(b) Platform B

 0

1.93

 0

2.19

0.0067

 33.1

0.0018

 19.6

0.018

 33.7

0.071

 50

0.295

 50

 1000 4000 10000 20000 25000 50000 100000

symbol rate(Bd)

0.001

0.01

0.1

1

10

100

b
it
 e

rr
o
r

ra
te

 (
%

)

BFSK

GSMEM

(c) Platform C

Figure 4.8: Bit error rate of GSMem and BitJabber using the B-FSK modulation measured with a wall
between the receiver and sender

• GSMem’s performance is seriously affected and the error rates exceed 25% with symbol rate of 25,000

Bd on all platforms.

• Performance of our BitJabber using the B-FSK modulation is only slightly affected compared to

GSMem.

During the evaluations, we found that the office wall has little influence of EM signal intensities but the

distance between senders and receivers matter. Similar results to Fig. 4.8 can be obtained when the receivers

and senders are separated in same distances but without being wall-gapped.

4.3.5 Attacking Distance Evaluations

Benefit from the stronger carrier signal, BitJabber can be used to perform long-distance data exfiltration. In

our experimental environment, implementing GSMem at distances longer than 1 meter is very hard because

the SNR gets too low to be exploitable. Therefore, in this section, we only measure the performance of

BitJabber when the receiver is located at different distances away from the sender. In the experiments,

BitJabber implementing B-FSK are evaluated at bandwidth range between 1,000 bps and 100,000 bps. For

platforms A and B, the measured distances range from 0 meters to the longest distance where the carrier

signals are visible. For platform C, the longest measured distance is 6 meters due to the space limitations of

our experiment environment.

The experimental results are shown in Fig. 4.9 From the figures, we can observe that:

• The error rates are low for all methods with short attacking distances, and they increase as the attacking

distances become longer.

• The correlation between error rates and distances gets strong when the error rate is high. While this

correlation is weak when the error rate is low.

75

0 0.5 1 1.5 2 2.5 3 3.5 4

Distance (m)

0.001

0.01

0.1

1

10

100

E
rr

o
r

ra
te

 (
%

)

1000

4000

10000

20000

25000

50000

100000

(a) Platform A

0 0.5 1 1.5 2 2.5 3

Distance (m)

0.001

0.01

0.1

1

10

100

E
rr

o
r

ra
te

 (
%

)

1000

4000

10000

20000

25000

50000

100000

(b) Platform B

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Distance (m)

0.001

0.01

0.1

1

10

100

E
rr

o
r

ra
te

 (
%

)

1000

4000

10000

20000

25000

50000

100000

(c) Platform C

Figure 4.9: Error rate measured at varied distances for BitJabber implementing B-FSK at different bandwidths

76

• Platform C is most vulnerable to BitJabber at long distances, and the error rate is around 0.1%, with

the bandwidth being 1,000 bps at 6 meters away.

• BitJabber implemented on Platform C has the highest error rates when the attacking distance is short.

Besides the result presented in Fig. 4.9, one thing worth mentioning is that longer distance between

senders and receivers not only reduces the EM signal intensities, but also increases the difficulty of setting

antennas. The EM signals emanated from victim computers have different intensities in different directions

so the location and orientation of antenna have large influence on the collected signals. When the receiver

is moved away from the victim computers, the antenna locations receiving the strongest signals is harder

to be determined, i.e. an attacker needs much more effort to receive the exfiltrated data. The difficulty of

finding the best antenna locations is related to the computer case materials. When the receivers and senders

are put more than 4 meters away, we can not find any antenna locations to collect exploitable EM signals

from platform A and B, but the EM emanations from platform C can still be easily observed. If we replace

a metal plate of platform A’s case with tampered glass, we can observe strong EM emanations even if the

receiver is put more than 6 meters away.

4.3.6 Error Analysis

We have observed that the error rate is influenced by factors including symbol rates and attacking distances

from the above evaluations. Although we can conclude that the error rate generally increases with higher

symbol rates and longer attacking distances, which also agrees with our intuition, we notice that some mea-

surements do not strictly follow this relation. In order to better understand the threat posed by BitJabber, we

try to find out all factors influencing the error rate using data collected at Section 4.3.5. Finally, we identify

three types of errors. For each type of error, we select a symbol value sequence where that error occurs. We

plot the symbol value sequences and spectrograms around the corresponding frequencies in Fig. 4.10

The first type of error is caused by low SNR, as shown in Fig. 4.10a. This sequence is collected when

BitJabber implements 100,000 bps B-FSK modulation on platform C with the sender and receive located

3.5 meters away from each other. As we can see from the spectrogram, the signal collected at this distance

is very noisy. Two symbol values can not be clearly distinguished by looking at the feature values due to

the low SNR. This type of error can explain how the error rate is related to the symbol rate and attacking

distance. Because the SNR decreases with increased symbol rate and attacking distance, we observe the

inverse correlations between error rate and symbol rate and between error rate and attacking distance. Under

the same conditions, signals emitted from platform C have the highest SNR, which makes it most vulnerable

to long-range attack. However, when the SNR is high enough for distinguishing different symbols, higher

77

-0.2

0

0.2

0.4

F
e

a
tu

re
 v

a
lu

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (ms)

1206.2

1206.4

1206.6

1206.8

1207

F
re

q
u

e
n

c
y
 (

M
H

z
)

(a) error caused by low SNR

-4

-2

0

2

4

F
e

a
tu

re
 v

a
lu

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (ms)

1206.2

1206.4

1206.6

1206.8

1207

F
re

q
u

e
n

c
y
 (

M
H

z
)

(b) error caused by shifted memory access frequency

-2

-1

0

1

2

F
e

a
tu

re
 v

a
lu

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (ms)

657.2

657.4

657.6

657.8

658F
re

q
u

e
n

c
y
 (

M
H

z
)

(c) error caused by the sender

Figure 4.10: Three types of error. Feature value sequences and the spectrograms around the corresponding
frequencies when three different types of error occur. Color blue and red represent transmitted symbols with
values ’0’ and ’1’ respectively. Dots (•) and crosses (×) denote correctly and wrongly classified symbols
respectively.

78

SNR does not help further lower the error rate, which is why the above correlations get weaker with low

error rates. As evaluations in previous sections indicated, error rates do not always reach zero with very short

distances between the sender and the receiver when the SNRs are high enough for distinguishing two symbol

values. The other two types of errors dominate in these cases.

The second type of error is caused by shifted memory access frequency, as shown in Fig. 4.10b. This

sequence is collected when BitJabber implements 100,000 bps B-FSK modulation on platform C with the

sender and receive located very close to each other. As we can see from the spectrogram, the captured signal

has a very high SNR. Nevertheless, we observe that the side lobe frequency is shifted by 0.5 MHz at 1.5

ms. Accordingly, the computed feature vectors are erroneous at this part and many errors occur. In our

experiments, this kind of unexpected frequency shift is most often observed on platform C but rarely on

platforms A and B. This type of error explains why BitJabber implemented on platform C fails to reach a

very low error rate despite the highest SNR.

The third type of error is introduced when the wrong symbol is transmitted by the sender, as shown

in Fig.4.10c. This sequence is collected when BitJabber implements 100,000 bps B-FSK modulation on

platform A with the sender and receive located very close to each other. As we can see from the spectrogram,

the received signal has a very high SNR with no unexpected frequency shift. The only misclassified symbol

has a feature value entirely in accordance with the feature values of the other symbol value. When the

sender transmits data at a very high speed, it may fail to update the data to transmit in time (e.g., due to task

scheduling). Subsequently, the sender modulates the carrier based on the incorrect data and transmits the

wrong information. All our evaluations are performed with sender running on relatively idle computers, in

which case this type of error appears occasionally on platform A and B but rarely on platform C.

In conclusion, the first type of error is related to the signal quality received by the receiver. Both the

second and third types of errors depend on the working states of senders on victim machines. These error

analysis results offer us deeper insight into countermeasures of BitJabber.

4.4 Countermeasures

Based on the error analysis results in Section 4.3.6, we propose countermeasures against BitJabber in several

different directions.

One direction of countermeasures aims at lowering the SNR of received signals to increase the first type

of error. This can be achieved either by reducing the EM emanation intensity or increasing the background

noise. EM shielding is a commonly used technique to reduce the EM emanation intensities. Since EM

signals can travel through normal walls, metal shields like the Faraday cage are needed to block EM wave

propagation. As reported in Zajic and Prvulovic (2014), EM emanations from metal-shielded computers are

79

weakened. Our evaluations in Section. 4.3.5 also show that long-range data exfiltration from computers in

metal cases using BitJabber is harder to implement. However, we need to keep in mind that metal-shielding

does not completely eliminate this covert channel, as we’ve seen in our evaluations that data exfiltration is still

possible from 4 meters away for platform A that has a metal case. SNR can also be lowered by increasing the

noise level in the surrounding environment, which can be achieved using signal interference devices to jam

the frequency range around the carrier signal. However, our approach will disperse the power of random noise

after de-spreading the EM signal generated by the DRAM clock. As our evaluations indicate, the random

noise irrelevant to victim computers only has a slight influence on BitJabber’s performance. However, the

noise with SSC patterns can effectively increase the error rate. Therefore, to better mitigate this covert

channel, the noise generator can produce noise with an SSC pattern to disturb the de-spreading process.

The other direction of countermeasures targets the sender running on the guarded computer. Because

performing memory activities in stable frequencies is essential to implement BitJabber with a low error rate,

we can execute some memory-intensive applications to disturb the sender’s memory access behavior. In this

way, the second type of error may be significantly increased. Besides, we can also increase the third type of

error by introducing more computation load in the protected computers. However, all these methods require

the computer to stay busy to some extent, which may hurt the computer’s performance sometimes.

Furthermore, since BitJabber’s performance is highly dependent on the de-spreading of SSC signal, a

good idea of mitigation is preventing the de-spreading process. In most modern computers, SSC is imple-

mented by FM modulating the clock signal with a simple periodical signal. This de-spreading process can be

easily reversed to recover the modulating signal. If we use a more complicated SSC technique (e.g., using a

secret random number sequence to FM modulate the clock signal), the attacker can not restore the high-SNR

carrier, and the implementation of BitJabber is much harder.

4.5 Conclusion

In this chapter, the EM radiation of the DRAM clock is exploited to implement a covert channel. We restore

a high-SNR carrier by de-spreading the DRAM clock’s EM emanations and applying multiple modulation

techniques to exploit EM signals to efficiently exfiltrate data from air-gapped computers. The performance

of our covert channel BitJabber is evaluated and compared with an existing covert channel GSMem, which

exploited the same EM emanations from the DRAM clock. BitJabber can reach a bandwidth of 300,000

bps with an error rate under 1%. It can also perform wall-penetrating data exfiltration and long-range data

exfiltration. According to Davidov and Oldenburg (2020), people used to consider the SSC technique a

countermeasure for EM side-channel attacks, but our work shows that this countermeasure can be easily

invalidated. Although only the DRAM clock’s EM emanations are investigated in this work, we also notice

80

that many other components in computers also generate strong EM emanations after de-spreading, which

may also be exploitable for performing threatening covert channels. This covert channel greatly increases the

maximum data exfiltration speed for air-gapped computers by exploiting EM side-channels, making people

pay more attention to the protection against EM attacks.

81

CHAPTER 5

Screen Content Detection Using EM Emanations From GPU

Over the past few years, graphics processing units (GPUs) have become an integral part of modern computer

systems, which are used not only for graphics rendering but also for intensive parallel computing. Given the

fact that many tasks running on a GPU operate on sensitive information, concerns about the security of GPUs,

especially potential information leakage, have been raised. Several recently developed attacks on GPU have

justified such concerns Lee et al. (2014); Zhou et al. (2017a); Pietro et al. (2016); Luo et al. (2015); Jiang

et al. (2016, 2019); Gao et al. (2018); Maurice et al. (2014); Naghibijouybari et al. (2018).

Although these existing GPU attacks focus on different application scenarios, they all require that GPUs

be either logically shared with or physically accessible1 to adversaries. If an attacker has no physical or logical

access to the GPUs used by her targets, is it still possible that the attacker can steal sensitive information from

such GPUs? In this chapter, we answer this question affirmatively by presenting a new physical side-channel

vulnerability of modern GPUs as well as some examples of its exploitation2.

Specifically, we have discovered certain electromagnetic (EM) emanations3 from GPUs which are: 1

exploitable – we find that these EM signals are computation-dependent and can reveal fine-grained informa-

tion about the ongoing activity; and 2 easy to measure – we find that such EM signals are strong and can

propagate very far (e.g., more than 6 meters in many cases) as well as even penetrate thick walls. A further

investigation reveals that the root cause of such exploitable far-field EM emanations is the dynamic voltage

and frequency scaling (DVFS) feature of GPU, which has been playing an important role in either saving

energy or improving GPU performance Nath and Tullsen (2015); Mei et al. (2013); Abe et al. (2014).

By exploiting the discovered EM side-channel information, for the first time, we demonstrate that it is not

only possible but also practical to mount realistic eavesdropping attacks. Given a victim who uses a modern

GPU without sharing, we show that an attacker can spy on the victim and identify the webpages visited by

the victim (i.e., website fingerprinting attack) with a high accuracy. In addition, we show that the keystroke

timings of the victim can be further inferred, which may be used to recover typed words or passphrases Song

et al. (2001); Zhang and Wang (2009). As the attacker can be several meters away from the victim and the

attacker can even hide in a separate cubicle or room, the presented attacks are in effect extremely stealthy.

To the best of our knowledge, our work serves as the first physical side-channel attack on non-shared

1In Gao et al. (2018), although contactless, the attack needs to remove GPU’s heat sink and place a probe near GPU chip surface.
In Luo et al. (2015), it is the power supply of the computer rather than the GPU that is instrumented by the attacker.

2The work in this chapter has been reported in Zhan et al. (2021b)
3In this chapter, we use EM emanations and EM signals interchangeably.

82

GPUs at a distance. Prior to our work, there are only a few studies on leveraging physical side effects of

GPU computation (e.g., power Luo et al. (2015) or near-field EM Gao et al. (2018)) to breach confidentiality,

but all of them require physical access to the GPUs. On the contrary, we discover and exploit a far-field

EM side-channel vulnerability, which empowers more practical attacks without too unrealistic proximity

requirements.

Even outside of the GPU security area, we find that most of the existing long-range EM-based attacks are

just to build covert communication channels Guri et al. (2015a); Sehatbakhsh et al. (2020); Shen et al. (2021).

Surprisingly (or not), there are only very few works showing that it is possible to mount EM side-channel

attacks on modern computers to steal sensitive information from several meters away.4 This is because EM

emanations that are both far-field and exploitable for eavesdropping attacks appear to be hard to discover.

Thus, our work also serves as a good demonstration of long-range EM side-channel attacks.

The main contributions of this chapter are as follows:

• We present a new EM side-channel vulnerability that we have discovered in modern GPUs and can be

exploited to carry out attacks at a distance and/or through a wall. We identify the ubiquitously used

DVFS as the root cause of this side-channel and find that such a vulnerability exists in many GPUs of

both NVIDIA and AMD.

• We formulate a signal processing framework to address the challenges introduced by potential EM

shielding and strong noise contamination. With the proposed techniques, we can exploit the EM em-

anations of interest even when they are greatly attenuated and/or overwhelmed by strong legitimate

communication signals.

• We conduct two case studies on the exploitation of this newly found EM side-channel vulnerability.

The first one is a website fingerprinting attack, and up to 93.2% accuracy can be achieved in a scenario

where the attacker and victim are 6 meters apart. The second case study is a keystroke timing inference

attack, where we show that keystroke events can be reliably detected to deduce inter-keystroke times.

• We show that even though disabling GPU DVFS can be an effective approach to mitigating the discov-

ered EM side-channel vulnerability, it will unfortunately introduce another new one into many GPUs

which can be exploited to mount comparable EM side-channel attacks. We also discuss some potential

countermeasures.

As DVFS has been used or may appear in many other hardware components Miyoshi et al. (2002); Kim et al.

4So far, we have only found the attack range in Kuhn (2004) comparable to ours, but it is not clear if that exploited EM side-channel
vulnerability still remains when contemporary cables, e.g., HDMI or DP, are used.

83

(2008); Mishra et al. (2009); Deng et al. (2011); Chen et al. (2013), our research also gives a pointer to what

may need additional attention during certain security investigations.

Responsible Disclosure

We have reported our findings to both NVIDIA and AMD. NVIDIA replied to us that “NVIDIA is continually

investigating ways to minimize board emissions in future product designs and will take these findings and

recommendations under advisement”. AMD informed us that their engineering team reviewed the issue and

“no effective mitigations or fixes have been identified”.

5.1 Background

In this section, we provide a brief overview of GPU architecture and GPU DVFS feature. Note that, in this

chapter, we do not consider any integrated GPUs in CPU processors, namely the term GPU is used to indicate

the discrete ones designed by NVIDIA or AMD only. Moreover, we briefly present the physical side effects

exploited in this chapter, namely the EM emanations.

5.1.1 GPU Architecture

GPUs have evolved from hardwired graphics accelerators into highly parallel programmable computing de-

vices. Usually, a modern GPU contains a number of single-instruction multiple-thread (SIMT) processors.

Each SIMT processor has many simple GPU cores, and each core can perform scalar integer and floating-

point arithmetic operations. Such SIMT processors are called streaming multiprocessors by NVIDIA and

compute units by AMD. SIMT processors manage, schedule, and execute groups of parallel threads, which

are named warps and wavefronts in the terminology of NVIDIA and AMD respectively.

To store large amounts of data, a modern GPU normally has several gigabytes of memory. Such large

GPU memory is shared by all the SIMT processors on the GPU, and consists of multiple memory modules.

These memory modules are of special DRAM type tailored for use in GPUs (e.g., GDDR5 and GDDR6). In

general, a GPU needs high memory bandwidth to sustain its high computational throughput, and there are

multiple memory controllers used to enable massively parallel access to the memory modules to reach the

desired bandwidth.

In a GPU, the SIMT processors and the GPU memory are connected through an on-chip interconnect

such as a crossbar. The GPU memory is independent of the main memory on the host side and also managed

in its own manner. Data transfers between the main memory and GPU memory are via the PCIe bus.

84

5.1.2 Dynamic Voltage and Frequency Scaling

DVFS is a power management technique that has been widely used with respect to CPUs Weiser et al. (1994).

It dynamically changes voltage and frequency to adjust performance for power savings.5 Instead of always

staying at the highest level, performance is actively regulated according to current workloads, which can

make very efficient use of energy.

As GPUs continue to grow powerful, their increasing power consumption has become a radical problem.

To address this problem, the DVFS technique has been applied to GPUs. In fact, almost every modern GPU

provides hardware support for DVFS Nath and Tullsen (2015). For a GPU, DVFS governs the supply voltage

and frequency of both its cores and memory.

Normally, there are multiple performance levels specified by GPU DVFS. (The performance levels are

often called performance/power states, namely, P-states.) Each performance level defines a setting of volt-

age and frequency for the GPU cores and memory. (At a performance level, the frequency and/or voltage

of the GPU cores may not be fixed but can vary within a specific range, while the frequency of the GPU

memory usually does not change.) GPU DVFS dynamically switches performance levels to meet the current

computation needs and minimize power draw, heat generation, and fan noise. In general, the approach to

determining performance levels in official GPU drivers is proprietary and not well-documented. The default

GPU DVFS approach is employed automatically, although an end user may choose to disable its functionality

by manually setting fixed frequencies or to provide a customized approach Ma et al. (2012).

5.1.3 Electromagnetic Emanations

Given the fact that electric current in the circuitry of a device varies with time, EM emanations inevitably

arise. The EM emanations generated by a computer system are distributed widely in the spectrum. As these

EM signals generally carry information about the underlying electronic activities, which can be linked with

certain high-level activities, some of them have been leveraged in the context of security for attacks Kuhn

(2004); Genkin et al. (2015a, 2016a,b); Alam et al. (2018); Sehatbakhsh et al. (2020) as well as defenses Han

et al. (2017); Nazari et al. (2017).

Although the sources of many of the EM emanations are unknown, a few of them are in effect easy to

determine, e.g., emanations generated by some components whose activities are periodic, such as voltage reg-

ulators and DRAM clocks Callan et al. (2015). The EM signals created by these components having periodic

switching behavior are also strong and may propagate to a distance of several meters. Interestingly, some

of these signals may be unintentionally modulated by other activities in the form of amplitude-modulation

5DVFS principally reduces dynamic power consumption PD, which is proportional to the voltage V quadratically and frequency f
linearly, namely, PD ∝ V 2× f .

85

(AM) or frequency-modulation (FM) Callan et al. (2015); Prvulovic et al. (2017). For example, the EM sig-

nals created by voltage regulators may be AM-modulated by activities in the circuits they power. Therefore,

these signals act as carrier signals that convey information about the modulating activities. Moreover, to

measure these far-field EM signals, very simple equipment suffices. For instance, a whip antenna and a cheap

software-defined radio (SDR) device are adequate Sehatbakhsh et al. (2020); Zhang et al. (2020b).

5.2 Threat Model

We assume that there is an attacker who intends to eavesdrop on a victim to extract some of his/her sensitive

information, e.g., the webpages the victim is browsing. The attacker is in the proximity of the victim, but

they may still be well spaced apart. For example, the attacker and the victim may be colleagues or neighbors.

Furthermore, they may be physically isolated from each other. For instance, the victim may be in a separate

cubicle, office, or apartment, to which the attacker has no access.

The victim uses a desktop computer system which is equipped with a discrete GPU. (We do not consider

laptops or other mobile computing devices in this threat model.) The GPU may be a product of either

NVIDIA or AMD. We assume that the victim uses the official driver and its default settings, which is the

most prevalent case in reality. The attacker is assumed to be able to find and employ the same type of GPU

as the one used by the victim for profiling. (The attacker may have known what GPU the victim is using,

but if this a priori knowledge is not available, we will show that the attacker may still be able to deduce it.)

Unlike the prior work on GPU side-channel or memory dump attacks Lee et al. (2014); Naghibijouybari et al.

(2018); Maurice et al. (2014); Zhou et al. (2017a), we do not require that the use of the GPU or any other

computational resources be shared between the victim and the attacker. We neither require the presence of

any software vulnerabilities.

5.3 New Exploitable EM Emanations

Given the aforementioned threat model, an attacker may opt for EM side-channel attacks, because (1) they

are passive and non-intrusive; and (2) they may be mounted at a distance and work through walls. Neverthe-

less, one challenging problem is to find certain exploitable EM signals which may hide in any place of the

spectrum. In this section, we present our newly discovered, exploitable EM emanations that are generated by

the memory clock in a modern GPU.

5.3.1 Experimental Setup

In this chapter, we carried out all the experiments using an SDR device, USRP B210, and an ultra-wideband

directional antenna, RFSPACE UWB-3. As shown in Figure 5.1, the antenna is directly connected to the SDR

86

Table 5.1: List of GPUs investigated in this chapter
GPU Card (Vendor) Architecture Memory WCK Frequencies Release Data

AMD Radeon RX 580 (GIGABYTE) GCN 4.0 8 GB GDDR5 600 MHz, 2000 MHz, 4000 MHz Apr. 2017
AMD Radeon RX 5600 XT (MSI) RDNA 1.0 6 GB GDDR6 400 MHz, 2000 MHz, 2500 MHz, 3500 MHz Jan. 2020
AMD Radeon RX 5700 XT (XFX) RDNA 1.0 8 GB GDDR6 400 MHz, 2000 MHz, 2500 MHz, 3500 MHz Jul. 2019
NVIDIA Geforce GTX 1080 (PNY) Pascal 8 GB GDDR5X 405 MHz, 810 MHz, 4513 MHz, 5005 MHz May 2016
NVIDIA Geforce GTX 1650 (MSI) Turing 4 GB GDDR5 405 MHz, 810 MHz, 4001 MHz Apr. 2019

NVIDIA Geforce RTX 3060 OC (ASUS) Ampere 12 GB GDDR6 405 MHz, 810 MHz, 5001 MHz, 7301 MHz, 7501 MHz Jan. 2021

device via a coaxial cable without any other amplifier/filter front-end modules in-between. The bandwidth we

need here is 25 MHz, and the USRP B210 can provide 56 MHz of instantaneous bandwidth in the frequency

range of 70 MHz to 6 GHz, which is more than sufficient for our needs. The GNU Radio framework is used

to capture and process the signal of interest.

Figure 5.1: Signal measurement equipment: USRP B210 and RFSPACE UWB-3

The modern-looking computer case with a translucent side panel (which is acrylic) is AeroCool Cylon

RGB Mid Tower. The monitor is HP VH240A. The motherboard installed in this case is ASUS PRIME

Z270-P. The CPU used in this system is Intel i5-6500T. The power supply unit (PSU) installed in this case is

Apevia ATX-JP1000 Jupiter 1000W.

The all-metal computer case is Thermaltake Versa H22 Mid Tower. The monitor is HP VH240A. The

motherboard installed in the case is ASRock Z270 Killer SLI. The CPU used in this system is Intel i3-6100.

The PSU installed in this case is Thermaltake Smart 700W.

When we performed the experiments reported in Section 5.3.4, we used AMD GPU driver for Linux

(AMDGPU 20.20) to set the performance level to the second lowest one. However, NVIDIA GPU driver

does not allow us to fix the GPU to a specific performance level except for the highest one. To ensure the

appearance of the signals of interest, we played YouTube videos to make sure that the performance level

bumps up to the second lowest one frequently.

5.3.2 EM Signal of GPU Memory Clock

First of all, we show the characteristics of the EM emanations of interest. As mentioned in Section 5.1.2,

GPU DVFS defines multiple performance levels, and it switches between these levels in accordance with the

87

current GPU workloads. In other words, the clock frequencies of the GPU cores and memory often change.

Clocks usually create strong EM emanations, and hence when a performance level is on/off, we expect to

observe the appearance/disappearance of clear EM signals at the corresponding clock frequencies in the

spectrum. To verify this anticipated feature, we test several AMD and NVIDIA GPUs made by different

vendors and equipped with different types of GDDR, which are listed in Table 5.1. These GPUs are very

commonly used, and almost all the recent architectures of AMD and NVIDIA are covered by them, including

the latest NVIDIA Ampere architecture.

We alter the performance level of each GPU, and examine the spectral behavior at the corresponding core

and memory frequencies. The inspection results are as follows: (1) the EM emanations generated by the

GPU core clock can be hardly found; but, (2) the EM signal of the GPU memory clock is very noticeable

and its behavior matches our anticipation; and (3) interestingly, the EM signal consists of many frequency

components that are over a wide range in the spectrum. For example, Figure 5.26 illustrates (2) and (3) when

the first GPU in Table 5.1 (i.e., AMD Radeon RX 580) is used.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Frequency (MHz)

-70

-60

-50

-40

-30

P
S

D
 (

d
B

/H
z
) (A)

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Frequency (MHz)

-70

-60

-50

-40

-30

P
S

D
 (

d
B

/H
z
) (B)

Figure 5.2: Spectra around 2000 MHz in the case of using AMD Radeon RX 580: (A) when GPU memory
clock frequency is 600 or 4000 MHz, and (B) when frequency is 2000 MHz

Figure 5.2 (A) shows that we can barely see any signal energy around 2000 MHz if RX 580 memory clock

is not set to the corresponding level. On the other hand, Figure 5.2 (B) shows that we can clearly observe the

EM signal of RX 580 memory clock in the frequency-domain when the clock is set to 2000 MHz. Moreover,

we can see that the signal has a large number of spectral components in the frequency range below 2000 MHz.

The reason for such a phenomenon is due to the use of a hardware feature called spread spectrum clocking

(SSC) for meeting electromagnetic compatibility (EMC) regulations. EMC standards impose allowable limits

on EM signal energy at any frequency above 30 MHz, and many clock signals (e.g., the GPU memory clock)

are strong enough to violate such legal limits. To achieve EMC, SSC uses FM-modulation to vary the clock

frequency over a range so that the time spent by the clock signal at a particular frequency is reduced and the

6The power spectral density (PSD) is computed using the Welch’s method. The FFT size is 8192, and a Hamming window is used.
Ten segments without overlap are averaged.

88

energy is spread over that range of frequencies Hardin et al. (1994).

Note that, since GDDR5, GPU memory operates with two types of clocks. One type is referred to as

command clock (CK) that is used for sending commands and addresses, and the other one is referred to

as write clock (WCK) that is used for data reads and writes. The EM emanations of interest are specifically

generated by the WCK. In the case of GDDR5, the frequency of WCK is half the data rate Micron Technology,

Inc. (2014). In the cases of GDDR5X and GDDR6, the frequency of WCK is half the data rate if the operating

mode is set as double data rate (DDR), or one fourth the data rate if the operating mode is set as quad data

rate (QDR) Micron Technology, Inc. (2017).

Since many GPUs have different sets of WCK frequencies, an attacker may exploit this fact to find out

what GPU is being used by a victim if this knowledge is unknown to the attacker beforehand. Essentially,

the attacker monitors the spectrum at all of the possible WCK frequencies and uses the appearance of the EM

signals similar to the one shown in Figure 5.2 (B) to determine which WCK frequencies the target GPU has.

Such reconnaissance information can be used to pinpoint potential GPUs.

5.3.3 Activity Identification

To be exploitable, the EM emanations should be computation-dependent so that high-level activities can be

inferred to reveal certain sensitive information. We notice that the performance level of a modern GPU is usu-

ally changed rapidly to seek a balance between performance and power consumption. Given a computational

activity that creates some GPU workloads, there can be multiple GPU performance level switches during the

activity. As different activities potentially impose different loads on GPU at different times, distinct perfor-

mance level switching behaviors should be induced, which can thus serve as activity signatures. In the above

discussion, we have learnt the correlation between the performance level switches and the appearance/dis-

appearance of targeted EM signals, which implies that the EM emanations of interest can be leveraged to

identify different activities.

To fully capture the behavior of performance level switching, we may try to monitor all of the frequency

ranges where the GPU memory clock signals can arise in a synchronized manner. However, our experiments

show that such a heavyweight approach to gaining a complete picture of switching behavior is not neces-

sary, but a partial picture concentrating on when a specific performance level is switched on/off suffices to

distinguish different activities. For instance, Figure 5.3 demonstrates the spectrograms when launching three

different programs, that are Chrome, Firefox, and LibreOffice Writer, on a system equipped with an AMD

Radeon RX 580 GPU. (The OS is Ubuntu 18.04 and the GPU driver is AMDGPU 20.20.) The frequency

range on which we focus corresponds to the second lowest WCK level (c.f. Table 5.1 and Figure 5.2). As

we can see from the figure, the patterns of stripe appearance on the spectrograms are distinguishable from

89

1990 1995 2000 2005 2010

Frequency (MHz)

0

1

2

3

4
T

im
e

 (
s
)

(a) Chrome

1990 1995 2000 2005 2010

Frequency (MHz)

0

1

2

3

4

T
im

e
 (

s
)

(b) Firefox

1990 1995 2000 2005 2010

Frequency (MHz)

0

1

2

3

4

T
im

e
 (

s
)

(c) LibreOffice Writer

Figure 5.3: Spectrograms having frequency range of 20 MHz centered at 2000 MHz when launching three
applications on a system equipped with an AMD Radeon RX 580 GPU

each other and we have also verified that they are fully repeatable. Thus, such patterns can be treated as

fingerprints to help infer which program is being launched.

Therefore, we need only to consider one specific frequency of WCK and keep track of when the corre-

sponding EM signal energy appears and disappears in the focused frequency range to gain knowledge (e.g.,

in the form of spectrogram) that can be exploited for activity identification. Theoretically, we may choose

any of the possible WCK frequencies, but empirically, we find that the second lowest one generally yields the

optimal exploitation results. The reasons for the second lowest WCK frequency being a better choice than

others include: (1) this frequency is reached much more often than the other higher ones, especially when an

activity does not use the GPU intensively; and (2) we notice that it normally has a higher signal-to-noise ratio

(SNR) than the lowest one. Thus, in the following, if not otherwise specified, we focus on the EM emanations

generated by the WCK when switched to its second lowest level.

Note that, to further substantiate the tight correlation between the patterns of stripe appearance on the

spectrograms in Figure 5.3 and the WCK frequency switching behavior, we also obtain the traces of GPU

memory clock frequency changes via an interface exposed by the AMD GPU driver7 and compare the traces

with the spectrograms. The experiments verify that the patterns well match the frequency change traces, and

7The interface is /sys/class/drm/card0/device/pp dpm mclk that does not give WCK frequency directly. In terms of
AMD Radeon RX 580, we need to double the reading to get the current WCK frequency.

90

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

600

2000

4000

W
C

K
 F

re
q

u
e

n
c
y
 (

M
H

z
)

0

0.5

1

M
a

g
n

it
u

d
e

Figure 5.4: Traces of WCK frequency alterations and averaged magnitude with respect to Figure 5.3 (A)

Figure 5.4 shows such an example corresponding to Figure 5.3 (A), i.e., launching Chrome. In Figure 5.4, we

can see that the WCK frequency is switched among its three possible levels (namely the blue dashed line),

and we make the line segments solid and bold when the WCK frequency is switched to its second lowest

one, namely, 2000 MHz. For each of the spectra constituting the spectrogram in Figure 5.3 (A), we plot

the average of the magnitudes in the frequency range from 1990 MHz to 2000 MHz (namely the red solid

line). As we can see from the figure, the local peaks of the averaged magnitude match closely with the line

segments indicating that the WCK is switched to 2000 MHz.

5.3.4 Propagation Distance and Wall Penetration

To exploit a physical side-channel in an air-gapped setting, we also need to consider how far it can propagate

and whether it can go through obstacles like a wall. To this end, we have performed several experiments on

the GPUs listed in Table 5.1 and found that the EM emanations of interest have a desirable wall-penetrating

property and can be measured by an attacker from a distance long enough to carry out attacks practically.

Figure 5.5: The definition of directions used in this chapter

Figure 5.6 shows the distances with respect to the directions from which the EM emanations of interest

can still be “picked up” when there is no obstacle in between the GPU machine and the antenna. Here we

define “pick up” as that the SNR after applying the technique described in Section 5.4 is at least 7 dB. In

general, we can find that the longest measurement distance changes with the direction. Note that, due to

our office space limitation, the maximum distance we can reach is 6 meters. The definition of directions is

illustrated in Figure 5.5. We can see that 0° is defined as when the antenna is orthogonal to the case side from

which the motherboard and GPU are installed, and 90° is defined as when the antenna is perpendicular to the

91

front side of the case.

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

1 m

2 m

3 m

4 m

5 m
6

+
 m

(a) Modern-looking case 0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

1 m

2 m

3 m

4 m

5 m
6

+
 m

RX 580

RX 5600

RX 5700

GTX 1650

GTX 1080

RTX 3060

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

1 m

2 m

3 m

4 m

5 m
6

+
 m

(b) All-metal case

Figure 5.6: Propagation distance (no obstacles in between)

Figure 5.6 shows two scenarios in which two types of computer cases are used. In the first scenario,

a modern-looking computer case with a translucent side panel is used (as shown in Figure 5.5), and in the

second scenario, a computer case whose every side is made of metal is used. Comparing Figure 5.6 (A)

and (B), we can observe that the translucent side panel in the first scenario benefits the propagation of the

exploitable EM signals. As illustrated by Figure 5.6 (A), when a modern-looking case is used, we can capture

the EM emanations of our interest from more than 3 meters away in almost every direction no matter which

GPU is used. On the other hand, in the second scenario, the all-metal computer case can attenuate the strength

of the EM signals in the directions from 270° to 90° counter-clockwise, but the signals of our interest can still

be picked up at a distance of 3 meters or more in many other directions for each GPU. Notice that, nowadays,

modern-looking computer cases with a translucent side panel dominate the market Newegg (2021) and are in

effect extremely popular among users of mid-range to high-end GPUs. Therefore, in reality, it is very likely

that an attacker can easily capture the EM emanations of interest at a very far distance. Even if a computer

case with all metal sides is used, the exploitable EM signals can still be measured from several meters away.

Table 5.2: The signal strength reduction due to the walls

RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 3060
Plaster Wall -1.06 dB -1.03 dB -1.18 dB -1.32 dB -0.21 dB -0.51 dB

Concrete Wall -4.41 dB -4.28 dB -6.92 dB -8.64 dB -5.24 dB -4.50 dB

We also isolate the GPU machine having the modern-looking computer case in two rooms and test if the

EM emanations of our interest can be captured from the outside of the rooms. The first one is an office room

92

whose wall is as thick as 15 cm and made of plaster, and the second one is a lab room which has very thick

concrete walls (∼15 cm). We measure and compare the strengths of the exploitable EM signals when the

antenna and the target machine are separated by 1 m with and without the walls in between. Table 5.2 shows

the EM signal strength reduction due to the walls. From the results, we can observe that the plaster wall can

only reduce the EM signal strength by at most 1.32 dB while the concrete wall can reduce the strength by up

to 8.64 dB. These results indicate negligible effects of normal plaster walls and manageable effects of thick

concrete walls on potential attacks exploiting this newly discovered EM side-channel vulnerability.

5.4 Signal Transformation and Enhancement

Although we may directly exploit the derived spectrograms like the ones shown in Figure 5.3 to identify

activities, it can become very difficult to do so under circumstances where the SNR is too low to induce

visible stripes on the spectrograms. To address this problem, we introduce two signal processing techniques

that can preserve the target signal’s appearance and disappearance patterns even when the SNR becomes very

low.

5.4.1 Time Series Derivation

As mentioned in Section 5.3.2, SSC is used to spread the energy of a clock signal over a frequency range

for meeting the EMC regulations. Given a clock whose frequency is fc, SSC in effect scatters its energy

to a series of N sub-clocks at fc− n fm, where 0 ≤ n < N and fm is the modulating frequency Shen et al.

(2021). Typically, fm is 30 to 33 kHz. Due to factors like path loss or better EM shielding, the power of such

sub-clock signals may become too weak compared to the background noise. Inspired by the work in Shen

et al. (2021), we leverage the folding technique to amplify the manifestation of the targeted memory clock

signal being present.

Assume we perform an M-point discrete Fourier transform (DFT) to derive a spectrum X . Since the

frequencies of the sub-clocks are separated by fm, they should be separated by ∆ DFT bins in X , where

∆ = fm×
M
fs

, (5.1)

and fs is the sampling rate. Let us define S[i] as the sum of the magnitudes of the ith, (i−∆)th, · · · , [i− (N−

1)×∆]th DFT bins of X , namely we have

S[i] =
N−1

∑
j=0

X [i− j×∆] . (5.2)

If the clock frequency fc is located in the kth bin of X , S[k] can be treated as the accumulated energy of all

93

the sub-clocks, and it will reach a much higher value compared to any S[i] where i 6= k, given the fact that

sub-clocks coherently increase the power at the corresponding frequency locations.

Therefore, given a sequence of sampled values, it is divided into subsequences without overlap and each

subsequence has L samples. (We should have L≤M, and if L < M, it is expanded to M using zero-padding.)

For the ith subsequence, we calculate S[k]i, and again the kth bin in X contains the highest sub-clock’s spec-

tral content. The sequence {S[k]0,S[k]1, · · ·} will be the one-dimensional time series data derived from the

measured EM emanations. Here we use an example to demonstrate the effectiveness of using this technique

to overcome the relatively low SNR issue. We use AMD RX 5700 and Linux OS in this example.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Frequency (MHz)

0

1

2

3T
im

e
 (

s
)

Figure 5.7: Spectrogram corresponding to a scenario where the periodic performance level change is invisible

We have RX 5700 in the all-metal computer case, and place it far away from the antenna (about 6 meters).

We make a script which uses the AMD GPU driver to periodically switch the performance level between the

lowest and the second lowest. Figure 5.7 shows the corresponding spectrogram. On the spectrogram, we

cannot visibly find any patterns of stripe appearance. If we simply use such spectrograms for attacks like

website fingerprinting, it is very unlikely that the attacks can be successfully mounted.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

2

4

S
[k

]

Figure 5.8: Derived time series in which peaks appear periodically and match the desired pattern

By contrast, Figure 5.8 shows the time series derived using the techniques described in Section 5.4. From

the figure, we can clearly see the designed periodic peak appearance pattern.

Note that, although fm is unknown to us, it can be exhaustively searched given the fact that its search

space is small (30 to 33 kHz). An incorrect fm will not produce noticeably high S[k]’s. Another unknown

parameter is N, i.e., the number of sub-clocks. Nevertheless, we do not need to know the exact number. The

GPU memory sub-clocks generated by SSC span at least 4 MHz, which means that there are at least 121

sub-clocks even when fm is 33 kHz. Thus, the number 120, which is large enough to make S[k] stand out,

may be chosen as N if no other information is available.

94

Another issue is that although fc is known and theoretically fixed, it may still vary in a small range due to

clock skews; hence, if the DFT frequency resolution is fine-grained (e.g., in this chapter we use 100 Hz), the

kth bin computed directly from fc may not be the one where the highest sub-clock truly locates. To address

this problem, we compute multiple S[i]’s around k and update k to the one whose result is significantly larger

than others.

5.4.2 Strong Noise Contamination Effect Reduction

The second lowest WCK frequency of all NVIDIA GPUs is 810 MHz, and their SSC sub-clocks are dis-

tributed in the 800 MHz – 810 MHz frequency band. In certain areas, this band may be too noisy for us.

For instance, in North America, the Federal Communications Commission allocates the 614 MHz – 806

MHz frequency band for TV communication use. The contamination induced by such strong background

noise makes it very difficult to find the correct sub-clock positions using the aforementioned technique. As

an example, Figure 5.9 (A) shows a spectrum where communication signals exist, and we cannot rely on

comparing different S[i]’s around the initial k to find where the highest sub-clock truly locates, because one

significantly large noise peak can easily dwarf the sum of all the sub-clocks.

800 802 804 806 808 810 812 814 816 818 820

Frequency(MHz)

0

50

100

M
a
g
n
it
u
d
e (A)

800 802 804 806 808 810 812 814 816 818 820

Frequency(MHz)

-50

0

50

M
a
g
n
it
u
d
e
 D

if
f (B)

Figure 5.9: Spectrum comparison: (A) the original spectrum X , and (B) the derived spectrum X ′ after the
proposed operation is performed

To address this issue, we propose to process the spectrum X using a convolution kernel [−0.5, 1, −0.5].

In other words, we derive X ′ from X as

X ′[i] =−1
2

X [i−1]+X [i]− 1
2

X [i+1] , (5.3)

and replace X with X ′ in Equation 5.2. Note that, after this operation, the local peaks originally in X should

have positive values in X ′; otherwise, negative values. Thus, this operation will pinpoint all the local peaks

which include (most of) the sub-clocks. Figure 5.9 (B) shows the spectrum after the operation is performed

on the one in Figure 5.9 (A).

95

The reason why using X ′ can help reduce the negative effect of strong background noise on finding the

correct sub-clock positions is that: (1) if the highest sub-clock is in the jth bin, S[j] will sum up the bins

which are certainly dependent (as they correspond to sub-clocks), and thus it should be a positive value; but

(2) if the highest sub-clock is not in the jth bin, S[j] will be the sum of bins which are independent, and given

the fact that the kernel makes the expectation of randomly summing up X ′ bins be 0, S[j] is very likely to

be close to 0 in this case. Therefore, we can still find the correct sub-clock positions even in the presence of

strong background noise.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0

5

10

S
[k

]

(A)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0

1

2

3

S
[k

]

(B)

Figure 5.10: Time series comparison: (A) time series derived from X’s, and (B) time series derived from X ′’s

Figure 5.10 demonstrates the effectiveness of our approach in the context of NVIDIA RTX 3060 being

used with the existence of strong background noise as in Figure 5.9 (A). The EM signal of the second lowest

WCK should appear around every 0.5 s, namely, there should be a peak in the derived time series about every

0.5 s. However, due to the strong noise contaminating the frequency band of our interest, the peak appearance

pattern is completely incorrect in Figure 5.10 (A). After applying the proposed approach, we can observe the

correct peak appearance pattern in Figure 5.10 (B).

5.5 Case Study 1: Website Fingerprinting

In Section 5.3, we have illustrated that GPU performance level switching patterns derived from the EM

emanations of interest can be exploited to identify which application is being launched by a user. To further

exemplify the exploitability of this DVFS-induced EM side-channel vulnerability, we show a case study in

this section where an attacker can leverage this vulnerability to infer which webpages have been visited by a

victim user, namely, to mount a website fingerprinting attack.

5.5.1 GPU-Accelerated Webpage Rendering

When browsing websites, the GPU is actually involved in a much more complicated fashion than simply

showing pages on the screen. Modern web browsers such as Chrome and Firefox use GPU not only for

96

displaying but also for helping webpage rendering.

Webpage rendering is a procedure that translates an HTML file along with its associated cascading style

sheets (CSS) and JavaScript code into a rasterized image. The whole procedure consists of multiple stages:

it builds a document object model (DOM) tree, calculates the style for each DOM node, creates the layout of

the page, separates the DOM-represented page into layers, rasterizes each layer, and combines the rasterized

results into a final screen image Kosaka (2018). In such a complicated procedure, GPU is often leveraged to

accelerate operations that involve large numbers of pixels. For example, a layer is normally divided into a

grid of tiles, and these tiles need to be rasterized into bitmaps which are then uploaded to the GPU as textures.

In the presence of GPU-accelerated rasterization, the GPU may be directly used to rasterize many tiles into

textures, based on certain heuristics (e.g., if the tiles can be affected by animations or transition effects, it is

better to employ the GPU). In addition, the GPU can be used to accelerate compositing textures into screen

images.

5.5.2 EM-Based Website Fingerprinting

As stated above, GPU is extensively used during webpage rendering in a modern web browser. Since different

webpages have different designs and contents, rendering them are likely to have different GPU workloads

generated. In the light of the investigation presented in Section 5.3.3, such differences in workloads should

be able to induce different patterns of GPU performance level switches, and these patterns can be captured

approximately through monitoring the EM emanations of the GPU memory clock at a specific frequency.

Exploiting such derived patterns, we should be able to distinguish the rendered webpages from each other

(i.e., fingerprinting).

Specifically, we monitor the EM emanations generated by the WCK at its second lowest frequency and

leverage the techniques described in Section 5.4 to derive time series to fingerprint webpage rendering ac-

tivities. To illustrate this, we use three popular websites, Google, Amazon, and Youtube, as an example,

and compare the time series derived from the signals captured when opening these three websites in Chrome

on a system equipped with an AMD Radeon RX 580 GPU. Chrome uses GPU-accelerated webpage render-

ing by default. Accordingly, rendering the homepages of these three websites should create different GPU

workloads, as their contents differ significantly (e.g., Google homepage is more concise, Amazon has more

animations, and Youtube is populated with videos). Figure 5.11 shows the corresponding time series, and as

expected, we can notice clear differences between them.

From Figure 5.11, we can observe that the peaks in the time series data appear very frequently corre-

sponding to Youtube and Google. In terms of Youtube, when opened, it has some video being played, which

will continuously employ the GPU for displaying (or even decoding); yet, we can still see the adjustment of

97

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0

20

40

S
[k

]

(a) Google

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0

20

40

S
[k

]

(b) Amazon

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0

20

40

S
[k

]

(c) Youtube

Figure 5.11: Time series derived from the EM emanations that are measured when opening three websites
using Chrome on a system equipped with an AMD Radeon RX 580 GPU

the performance level due to GPU DVFS. In terms of Google, it has a blinking text cursor in its input box,

whose blinking rate is about 1.67 Hz; and every time it blinks, the affected tiles need to be re-rasterized and

screen image needs to be re-composited by the GPU. We can see that after the initial 1 s, the interval between

each wide peak in Figure 5.11 (A) is about 600 ms, which matches the periodic blinking behavior of the

cursor. Although not shown in Figure 5.11 (B), Amazon also induces periodic peak appearance in the time

series data at about 0.2 Hz due to its animated advertisement pictures that are switched about every 5 s.

Notice that users normally tend to have multiple tabs opened in a browser. We find that using multiple

tabs does not affect our website fingerprinting at all. The reason is that popular browsers like Chrome and

Firefox only send the workloads of the currently focused tab to the GPU for optimizing resource utilization.

To verify this, we use Chrome or Firefox to open a website in a tab while having several other tabs with

YouTube playing videos, and we confirm that the EM signal pattern of interest is not disturbed by other

unfocused tabs.

5.5.3 Evaluation

Because our main intention is to showcase the exploitation of the newly discovered EM side-channel, the

evaluation is just performed in a closed-world scenario, where a victim is assumed to visit a list of popular

98

websites and an attacker tries to pinpoint the webpages browsed by the victim from the set of possibilities.

The open-world scenarios need novelty detection, which is left as our future work, where we may use some

recently proposed techniques Ruff et al. (2018); Perera and Patel (2019).

We evaluate the EM-based website fingerprinting technique on all the GPUs listed in Table 5.1. The

evaluation is focused on Chrome web browser, since it dominates the market share8. We try to use different

operating systems, but we surprisingly find that all the AMD GPUs under Windows seldom change the

performance level when opening a website. (This phenomenon should be caused by its driver, and we leave

the further inspection to our future work.) Therefore, we evaluate the attack on AMD GPUs only under

Linux, where the official driver AMDGPU 20.20 is used. In contrast, the attack can be mounted against

all the NVIDIA GPUs under either Windows or Linux. We pair NVIDIA GTX 1080 with Linux where the

official Linux driver 450.51.06 is installed, and pair NVIDIA GTX 1650 with Windows where the official

Windows driver 461.40 is installed. For NVIDIA RTX 3060, we evaluate the attack under both Windows and

Linux. Table 5.3 summarizes these circumstances.

Table 5.3: Feasibility of website fingerprinting attack under Windows and Linux

RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 3060

q 7 7 7 3 3* 3*

± 3* 3* 3* 3* 3 3*

The symbol 3 indicates that website fingerprinting can be performed.
The symbol 7 indicates that website fingerprinting cannot be performed.
The symbol * indicates that the evaluation is performed in this section.

We use an USRP B210 SDR and a RFSPACE UWB-3 antenna to capture the EM signals of interest, and

we use the GNU Radio to manage the entire measurement process and process the captured raw data. The

SDR is tuned to the second lowest WCK frequency of the corresponding GPU, and is set to use a 25 MHz

sampling frequency9.

Table 5.4: Different spots where EM signals are measured

Nearby Spots Distance Direction Faraway Spots Distance Direction
N1 0.5 m 315° F1 3 m 315°
N2 1 m 315° F2 6 m 315°
N3 0.5 m 0° F3 3 m 0°
N4 1 m 0° F4 6 m 0°
N5 0.5 m 30° F5 3 m 30°
N6 1 m 30° F6 6 m 30°
N7 0.5 m 60°
N8 1 m 60°

We select 50 websites according to Alexa Top Sites, which are listed in Table 5.5.

8According to NetMarketShare, Chrome has around 70% browser market.
9Since quadrature sampling is used, it provides 25 MHz bandwidth.

99

Table 5.5: List of fingerprinted websites

9gag.com abs-cbn.com adobe.com amazon.com amazonaws.com aol.com
apple.com archive.org ask.com battle.net bing.com blogger.com
booking.com businessinsider.com cnn.com deviantart.com dictionary.com discord.com
duckduckgo.com ebay.com espncricinfo.com exoclick.com facebook.com feedly.com
foxnews.com gamepedia.com github.com go.com goodreads.com google.com
imdb.com linkedin.com live.com microsoft.com msn.com netflix.com
office.com paypal.com pinterest.com reddit.com roblox.com stackoverflow.com
twitch.tv twitter.com whatsapp.com wikipedia.org yahoo.com youtube.com
zillow.com zoom.us

For each website, we measure the EM signals from different directions (which are 315°, 0°, 30°, and 60°)

at different distances (which are 0.5 m, 1 m, 3 m, and 6 m), as listed in Table 5.4. At each spot, we measure

the EM emanations for 8 seconds when its webpage is opened, and we repeat this process for 50 times. For

each measured signal, we use the techniques described in Section 5.4 to generate a time series. Given the

25 MHz sampling rate, we use L = M = 250,000, namely, each subsequence has 250,000 samples and a

250,000-point DFT is used, which means that the DFT bin resolution is 100 Hz and each derived point S[k]

represents 10 ms.

5.5.3.1 Nearby Scenario

We start with a nearby scenario, where only the EM signals measured at N1, N2, N3, and N4 are used to train

a classification model, and the EM signals measured at N5, N6, N7, and N8 are used for testing. Given the

fact that the EM signals have been transformed into time series, we adopt the ResNet model from Wang et al.

(2017), whose architecture is duplicated in Figure 5.12. The details about the model can be found in Wang

et al. (2017) and its code repository (https://github.com/cauchyturing/UCR Time Series Classification Deep

Learning Baseline). (As for each website there are 50 EM signals measured at each spot, there are 200 time

series for training and 200 time series for testing with respect to each website.)

In
p

u
t

64

B
N

 +
 R

eL
U

64

B
N

 +
 R

eL
U

64

B
N

 +
 R

eL
U

128

B
N

 +
 R

eL
U

128

B
N

 +
 R

eL
U

128

B
N

 +
 R

eL
U

128

B
N

 +
 R

eL
U

128

B
N

 +
 R

eL
U

128

B
N

 +
 R

eL
U

So
ft

m
ax

G
lo

b
al

 P
o

o
lin

g

+ + +

Figure 5.12: The neural network model used for our website fingerprinting attack (duplicated from Wang
et al. (2017))

The evaluation results in terms of accuracy are shown in Table 5.6, and the confusion matrices are shown

in Figure 5.13.

Note that, in reality, an attacker can profile the EM signals from any direction at any distance. Therefore,

this scenario is biased against attackers, and the evaluation underestimates the achievable accuracy. Even

so, from the results, we can see that the averaged classification accuracy is above 63% in all cases, and it

100

https://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_Baseline
https://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_Baseline

Table 5.6: Fingerprinting accuracy in the nearby scenario

RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 30601 RTX 30602
N5 85.9% 83.3% 74.3% 81.9% 84.0% 80.7% 56.7%
N6 84.0% 86.0% 79.5% 88.2% 85.4% 61.3% 62.7%
N7 85.3% 82.6% 74.0% 73.3% 83.6% 72.4% 67.6%
N8 86.0% 83.2% 70.4% 72.4% 78.6% 70.0% 68.5%

Avg. 85.3% 83.8% 74.6% 79.0% 82.9% 71.1% 63.9%
Std. 0.8% 1.3% 3.2% 6.5% 2.6% 6.9% 4.7%

10 20 30 40 50

True

5

10

15

20

25

30

35

40

45

50

P
re

d
ic

te
d

(a) AMD RX 580

10 20 30 40 50

True

5

10

15

20

25

30

35

40

45

50

P
re

d
ic

te
d

(b) AMD RX 5600

10 20 30 40 50

True

5

10

15

20

25

30

35

40

45

50

P
re

d
ic

te
d

(c) AMD RX 5700

10 20 30 40 50

True

5

10

15

20

25

30

35

40

45

50

P
re

d
ic

te
d

(d) NVIDIA GTX 1080

10 20 30 40 50

True

5

10

15

20

25

30

35

40

45

50

P
re

d
ic

te
d

(e) NVIDIA GTX 1650

10 20 30 40 50

True

5

10

15

20

25

30

35

40

45

50

P
re

d
ic

te
d

(f) NVIDIA RTX 3060L

10 20 30 40 50

True

5

10

15

20

25

30

35

40

45

50

P
re

d
ic

te
d

(g) NVIDIA RTX 3060W

Figure 5.13: Confusion matrices corresponding to the evaluation reported in Table 5.6

reaches 85.3% in the case of RX 580. Given a test example, if we randomly guess which of the 50 websites

it corresponds to, the accuracy will be only 2% (i.e., 1/50). Thus, the results signify that an abundant amount

of information can be leaked through this new EM side channel.

An interesting case is to compare the results corresponding to using the same GPU but under different

OSes. The last two columns of Table 5.6 show such a case, where NVIDIA RTX 3060 is evaluated under

Windows (the last column) and Linux (the second last column). We can observe that, except for the anoma-

lous spot N5, the performance for any other spot appears to be very similar, although it is slightly better under

Linux. We also use the Linux-related model to classify the data captured under Windows and vice versa, but

interestingly the accuracy is just slightly better than random guessing (4.3% and 5.6% respectively). This

means that factors like drivers and Chrome engines for different OSes can strongly affect the GPU DVFS

behavior when rendering webpages. Notice that, an attacker can simply perform profiling against both OSes

and combine the training data, and thus we train a single model in such a manner to test the performance.

101

The resultant accuracy becomes 64.1%, which is very similar to the one in the last column (i.e., 63.9%).

Therefore, this fingerprinting can work no matter which OS is used on the target.

AMD RX 5600 and RX 5700 do differ but both of them are based on AMD RDNA 1.0 architecture. We

attempt to use the models trained for them to cross fingerprint each other. The accuracy of using the model

trained for RX 5600 to fingerprint the signals of RX 5700 is 63.3%, and the accuracy of using the model

trained for RX 5700 to fingerprint the signals of RX 5600 is 50.6%. Even though they are made by different

vendors and use different GPU chipsets, we can still obtain reasonable website fingerprinting results. This

implies that an attacker can use the model trained with respect to his/her own GPU to fingerprint the signals

of another similar GPU (of course, more accurately if two GPU chipsets also match).

5.5.3.2 Faraway Scenario

Next, we perform evaluations in a faraway scenario, where the EM signals measured at F1, F2, F3, and F4

are used to train a classification model, and the EM signals measured at F5 and F6 are used for testing. In

addition, we test signals measured at N6 using this model. We evaluate two GPUs that are AMD RX 580 and

NVIDIA GTX 1650. We place GTX 1650 in the modern-looking computer case, while we place RX 580 in

the all-metal computer case. The evaluation results are shown under “Faraway Scenario 1” in Table 5.7, and

the confusion matrices are shown in Figure 5.14.

Table 5.7: Fingerprinting accuracy in the faraway scenarios

Faraway Scenario 1 Faraway Scenario 2
RX 580 GTX 1650 RX 580 GTX 1650

F5 80.1% 95.4% 83.6% 95.6%
F6 78.3% 93.2% 80.4% 94.1%
N6 70.9% 83.9% 87.0% 94.8%

10 20 30 40 50

True

5

10

15

20

25

30

35

40

45

50

P
re

d
ic

te
d

(a) AMD RX 580

10 20 30 40 50

True

5

10

15

20

25

30

35

40

45

50

P
re

d
ic

te
d

(b) NVIDIA GTX 1650

Figure 5.14: Confusion matrices corresponding to the evaluation reported in “Faraway Scenario 1” of Ta-
ble 5.7

Similar to the previous nearby scenario, the evaluation also underestimate the achievable accuracy. Nev-

ertheless, we can observe that the accuracy is very high, and in terms of NVIDIA GTX 1650, the resulting

performance at far distances is even much better than that at near distances (e.g., it reaches 95.4% at 3 m and

102

93.2% at 6 m in comparison to 85.4% at 1 m). Moreover, in this scenario, training examples are neither from

N6’s direction nor around its distance, but the result w.r.t. N6 is comparable to that in Table 5.6 for GTX 1650

and fairly decent for RX 580. The results indicate that, as long as the EM signals of interest can be picked

up, the differences in direction and distance are generally tolerable.

In the second faraway scenario, we include the EM signals measured at N2 and N4 for training as well,

and still test the EM signals measured at F5, F6, and N6. The evaluation results are shown under “Faraway

Scenario 2” in Table 5.7. We can observe that after expanding training examples with the ones measured at

nearby spots N2 and N4, the accuracy w.r.t. faraway spots F5 or F6 does not change much, but it becomes

much higher w.r.t. N6. The results indicate that, between the two profiling factors distance and direction,

distance affects performance more. Thus, if resources are limited, an attacker should choose distance over

direction during profiling.

5.5.3.3 Evaluations with Relaxed Limitations

We relax the limitations in the nearby scenario setting by allowing the training data set to include examples

collected at all the other seven spots when testing each of the last four spots (i.e., spots N5, N6, N7, and

N8). Table 5.8 shows the evaluation results. Compared with the results in Table 5.6, we can observe that the

accuracy is increased by more than 10% in many cases (e.g., in terms of NVIDIA GTX 1080, the accuracy

is increased by 11.1%, and in terms of NVIDIA RTX 3060, the accuracy is increased by 11.6% in the Linux

case and 13.3% in the Windows case). Similarly, Table 5.9 shows the evaluation results when we relax the

limitations in the first faraway scenario. Since an attacker can freely choose different spots for profiling at

his/her own place, the accuracies reported here actually represent more pragmatic results.

Table 5.8: Fingerprinting accuracy in the relaxed nearby scenario (training examples are collected at all the
other spots)

RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 30601 RTX 30602
Avg. 93.0% 86.9% 80.6% 90.1% 89.9% 82.7% 77.2%
Std. 1.4% 0.7% 1.6% 3.1% 1.9% 3.9% 4.1%

Table 5.9: Fingerprinting accuracy in the relaxed faraway scenario (training examples are collected at all the
other spots)

RX 580 GTX 1650
Avg. 83.4% 95.7%
Std. 2.7% 1.1%

5.6 Case Study 2: Keystroke Timing Inference

In this section, we present the second case study we have conducted on the exploitation of the DVFS-induced

EM side-channel vulnerability, which is to detect the keystroke events and learn the time between successive

103

keystrokes, namely, a keystroke timing inference attack. Even though such an attack cannot directly recover

the specific keys pressed by a user, it is still treated as a type of keylogging Monaco (2018), because the

knowledge about the keystroke timing can be exploited to infer the typed passphrases or other words Song

et al. (2001); Zhang and Wang (2009). Thus, this attack poses a greater hazard to security and privacy.

When combined with the website fingerprinting attack studied in the last section, it can even cause more

serious violation of user privacy. For instance, when it is detected that a user has opened the login page

of some website, the attacker can easily recognize the length of typed username and password through the

number of identified keystrokes and further the attacker can infer the details of such items via the timing

information using some well-studied statistical techniques Monaco (2018); Song et al. (2001); Zhang and

Wang (2009).

5.6.1 Keystroke Detection

If we can detect the keystroke events and mark them precisely on the time axis, it will be a straightforward

task to learn the time between successive keystrokes. Hence, we investigate if keystrokes are detectable from

the EM emanations of the GPU memory clock, especially during the time when a user is typing on a webpage.

In essence, typing in a text box on a webpage makes the affected tiles of the corresponding layer re-

rasterized and the final screen image re-composited. As previously mentioned, a browser often delegates the

computation generated by these operations to GPU for acceleration. According to our earlier observations,

the GPU performance level will be consequently changed by DVFS, and such level switches can be captured

by monitoring the EM emanations of the GPU memory clock. Therefore, we expect that the keystroke events

can be detected by exploiting the DVFS-induced EM side-channel vulnerability in modern GPUs.

To verify this hypothesis, we carry out several experiments. Firstly, we use keyboard activity generation

tools to create a sequence of fake keystrokes regarding certain patterns and check if the appearance of the EM

signals of the GPU memory clock match these patterns. Figure 5.15 shows an example of this experiment

performed on NVIDIA GTX 1080, where we use a script to repeatedly generate a sequence of ‘a’, ‘b’, and ‘c’

in the search box of Google. After each ‘a’, there is a 200 ms pause; after each ‘b’, there is a 350 ms pause;

and, after each ‘c’, there is a 500 ms pause. The time series in Figure 5.15 is derived using the techniques

described in Section 5.4. From this figure, we can easily see that the appearance of peaks match the ‘a’, ‘b’,

‘c’ keystroke timing pattern.

Next, we ask three people to quickly type “username” and “password” in the corresponding boxes

on the Facebook login page. The keyboard is Dell L30U. Figure 5.16 illustrates the processed EM signals

of interest in terms of NVIDIA RTX 3060 when the fastest typist among the participants is typing. From

the results, we confirm that the keystroke events can be correctly detected and the inter-keystroke timing

104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

20

40

S
[k

]

a b c a b c a b c a b c a b c

200ms 350ms 500ms 200ms 350ms 500ms 200ms 350ms 500ms 200ms 350ms 500ms 200ms 350ms

Figure 5.15: Keystrokes generated using xdotool with a predefined pattern on Google (performed w.r.t.
NVIDIA GTX 1080)

information can be precisely derived. Notice that, even though we are able to determine the time between

the keystrokes by exploiting the EM emanations of interest, we have not found any correlation between the

signal and the typed characters.

0 0.5 1 1.5 2 2.5 3

Time (s)

0

1

2

S
[k

]

u s e r n a m e Tab p a s s w o r d

105ms 210ms 52ms 336ms 94ms 168ms 84ms 231ms 273ms 147ms 199ms 115ms 189ms 157ms 168ms 210ms

Figure 5.16: Keystrokes typed by a user on Facebook (performed w.r.t. NVIDIA RTX 3060)

5.6.2 Evaluation

In this evaluation, we mainly explore how close in time two successive keystrokes can be such that they are

still detectable via exploiting the discovered DVFS-induced EM side-channel vulnerability. To facilitate the

evaluation, we use the keyboard activity generation tools to create fake keystrokes, since they are certainly

much more precise in time than manual inputs. As mentioned above, we focus on deriving the time between

successive keystrokes when typing on webpages in a browser. Thus, the evaluation is primarily conducted

in such a scenario. Like in Section 5.5, we exclusively use Chrome as the browser. We choose Google

homepage and PayPal login page to be the representative venues for the evaluation. Currently, we do not use

any automatic approach to identifying the keystroke events in the processed data but only perform a manual

analysis.

Table 5.10: How close in time two keystrokes could be such that they are still distinguishable from each other

RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 3060
Interval 150 ms N/A N/A 50 ms 70 ms 30 ms

We create sequences of keystrokes with the inter-keystroke time interval being 10 ms, 20 ms, 30 ms,

· · · , respectively. We test each sequence on each GPU target machine listed in Table 5.1 to check if all the

keystrokes in the sequence can be detected via the peak appearance and disappearance patterns in the derived

105

time series. Table 5.10 shows the evaluation results.

From the results, we can see that NVIDIA RTX 3060 has the highest time resolution, where keystrokes

at 30 ms intervals can be clearly recognized. (When it is lower than 30 ms, e.g., 20 ms, more than 90%

keystrokes can also be recognized.) In terms of other NVIDIA GPUs, GTX 1080 and GTX 1650, a high

resolution can also be achieved.10

Compared to NVIDIA GPUs, the timing resolution in terms of AMD RX 580 is much coarser, that is

almost 150 ms. The reason for this discrepancy is that when RX 580 is at the second lowest performance

level, it appears to stay there longer than those tested NVIDIA GPUs. Hence, if two or more keystrokes occur

very closely in time, they can be treated as one keystroke event. (Nevertheless, a recent study on human typing

behavior and performance has revealed that 250 ms inter-keystroke time interval is already very fast for many

normal people Dhakal et al. (2018).) The interesting cases are AMD RX 5600 and RX 5700, on which we

cannot mount the discussed attack. Even though their performance level changes correspondingly when a

webpage is being rendered (as shown in Section 5.5), we find that this switching behavior seldom happens

when typing on webpages. Therefore, we may not exploit the DVFS-induced EM side-channel vulnerability

for this attack when AMD GPUs are used.

5.7 Ineffectiveness of Disabling GPU DVFS

To mitigate the aforementioned exploitation possibilities, a straightforward approach is to disable GPU DVFS

by setting the GPU to run at a specific performance level. However, such a countermeasure has two major

problems. The first one is that this countermeasure hurts either performance or energy efficiency. If a rela-

tively low performance level is selected, it will contradict with the purpose of using the GPU for acceleration;

yet, if a high performance level is selected, it will be highly energy-inefficient. The second and much severer

problem is that, when NVIDIA GPUs are used, this countermeasure will unfortunately introduce another

highly exploitable EM side-channel vulnerability.

5.7.1 AM-Modulated EM Emanations

The reason for such ineffectiveness is that we have discovered a new type of exploitable EM emanations

appearing when the performance level of an NVIDIA GPU is fixed. Given an NVIDIA GPU, a user may use

tools included in the official driver to set its performance level to be maximum. (Unlike AMD GPUs whose

driver allows us to fix the performance level at any defined one, the performance level of NVIDIA GPUs

can only be fixed at the highest.) We find that when the performance level is fixed as such, there appears

10Additionally, we temporarily borrow two other NVIDIA GPUs, RTX 2060 Super and RTX 2080, from another group, and find that
they behave the same as RTX 3060 and can reach 30 ms.

106

strong EM emanations that are inadvertently AM-modulated by the GPU memory accesses. In other words,

the strength of these EM emanations varies when the amount of data reads and writes changes.

Interestingly, the EM emanations are around the frequency that is one eighth the data rate in the cases of

all NVIDIA GPUs we have tested (i.e., GTX 1080, GTX 1650, and RTX 3060). Although we do not know

the exact cause of such EM signals at the moment, an educated guess is that they are created by some clock

driving certain components in the GPU memory system. We leave the search for this clock to our future

work.

Since the emerging EM emanations will be AM-modulated by the GPU memory accesses, even though the

DVFS-induced EM side-channel vulnerability were removed by using a fixed GPU memory clock frequency,

information about the patterns of GPU memory traffic would be encoded into these new EM emanations,

which can be exploited to effectively identify the high-level activities. Essentially, such EM emanations act

as a modulated carrier signal that bears the modulating activity information and propagates to large distances.

990 995 1000 1005 1010

Frequency (MHz)

-4

-2

0

d
B

(a) Frequency-domain representation

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

-0.2

0

0.2

A
m

p
lit

u
d
e

(b) Time-domain representation

Figure 5.17: Carrier signal emitted by NVIDIA GTX 1650 that can be AM-modulated by GPU memory
accesses

As an example, Figure 5.17 shows the above-mentioned carrier signal of interest that emerges when we

set the performance level of NVIDIA GTX 1650 to its maximum. Given the 8 Gbps data rate of GTX 1650

at its maximum level, the EM carrier signal on which we focus will be at 1000 MHz. Yet, from Figure 5.17

(A), which illustrates the carrier signal of interest in the frequency-domain, we can observe that it has a

number of spectral components in the frequency range from 996 MHz to 1000 MHz. Recall the discussion

in Section 5.3.2 that SSC is used to vary the frequency of a clock over a range for meeting EMC regulations.

These components spread over the 4 MHz range in Figure 5.17 (A) are caused by SSC, which indicates that

the carrier signal is due to a clock. Figure 5.17 (B) shows the signal in the time-domain and its amplitude

will change over time when AM-modulated.

107

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

-0.2

0

0.2

A
m

p
lit

u
d

e

(a) Google

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

-0.2

0

0.2

A
m

p
lit

u
d

e

(b) Amazon

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

-0.2

0

0.2

A
m

p
lit

u
d
e

(c) Youtube

Figure 5.18: The amplitude of carrier signal is modulated when opening three websites in Chrome

To exemplify that the EM signal shown in Figure 5.17 can be AM-modulated and exploitable, we examine

the signal when browsing different websites using Chrome. Like the example demonstrated in Section 5.5.2,

we use the three most popular websites, Google, Amazon, and Youtube. As the performance level is fixed this

time, we cannot exploit its switching patterns to discern these websites. However, Figure 5.18 shows that the

EM signal arising after the DVFS-induced EM side-channel vulnerability is mitigated can be exploited to infer

the website identities, as its amplitude is modulated by the GPU memory accesses during webpage rendering,

which should be different in general if different pages are being rendered. Comparing Figure 5.11 and

Figure 5.18 with respect to the time axis, we can note resemblances. For instance, the 1.67 Hz blinking cursor

behavior on Google search page is obvious in both cases. The AM-modulated signal of interest certainly

carries information fine-grained enough for being exploited.

Notice that, when GPU DVFS is disabled, we have found this EM side-channel vulnerability only in

NVIDIA GPUs but not in AMD GPUs. Nevertheless, it does not mean that disabling DVFS is a completely

effective countermeasure in terms of AMD GPUs. There may be some other undiscovered EM vulnerabilities

emerging when DVFS is disabled on AMD GPUs. We will discuss some possible countermeasures in the

next section.

108

5.7.2 Evaluation and Discussion

To show the exploitability of such AM-modulated EM emanations, we evaluate the performance of website

fingerprinting attack on NVIDIA RTX 3060 with Windows being used as the OS. The evaluation setting is

exactly the same as the one used in Table 5.6, namely, the signals measured at N1, N2, N3, and N4 are used

to train a classification model and the signals measured at N5, N6, N7, and N8 are used for testing. At each

spot, it is still 50 signals being captured for each website.

The signal measurement setup is the same as that in Section 5.5.3 with one exception – we tune the SDR

to center at 1875 MHz, as it is the frequency that is one eighth the corresponding data rate when we set the

performance level of RTX 3060 to be the highest. We directly use the measured signal in the time-domain,

as shown in Figure 5.18. Since it is also time series data, we still use the same ResNet classification model.

The evaluation results are shown in Figure 5.19.

DVFS−induced AM−modulated

60
70

80
90

A
cc

ur
ac

y
(p

er
ce

nt
ag

e)

63.9

89.1

Figure 5.19: Website fingerprinting accuracy comparison of exploiting DVFS-induced and AM-modulated
EM emanations from NVIDIA RTX 3060 with Windows being the OS

From the results, we can find that the accuracy is as high as 89.1%, which is much better than that

exploiting the DVFS-induced EM emanations (i.e., 63.9%). Such good performance indicates that the AM-

modulated EM emanations can be exploited to effectively mount website fingerprinting attacks. Even com-

pared with the last column in Table 5.8 where data collected at the other seven spots is used for training, we

can observe that the accuracy here is much higher. If considering only the fact that disabling GPU DVFS is

actually used as a countermeasure, it would be unexpected to find that such a mitigation method helps rather

than thwarts attacks.

We have also verified that we are able to perform keystroke timing inference by exploiting such AM-

modulated EM signals. In this case, two keystrokes separated by 20 ms are still well distinguishable no

matter which NVIDIA GPU is used.

Our conjecture about the considerably increased attack performance when leveraging the AM-modulated

EM emanations is that the granularity of information carried in such EM signals is much finer than the

109

DVFS-induced ones. Although GPU DVFS is rapid enough to reveal changes in GPU workloads, it cannot

enable us to pry more detailed activities inside each workload. In the specific case of website fingerprinting

attack, if some finer-grained information can be acquired, it may help distinguish webpages that generate

similar sequences of GPU workloads during their rendering. By contrast, the emanations whose strength

is AM-modulated by GPU memory accesses inevitably contain information about the modulating memory

activities of each workload. Thus, given the webpages which are often misclassified as each other when the

DVFS-induced EM side-channel vulnerability is exploited, they become more discernible from each other

when using the AM-modulated EM emanations.

Notice that, the EM side-channel vulnerability presented in this section and the DVFS-induced one cannot

be exploited at the same time. We find that the AM-modulated vulnerability emerges only when the perfor-

mance level is fixed. Therefore, although the AM-modulated EM side-channel vulnerability can be leveraged

to achieve more effective attacks, it is the DVFS-induced one that will be exploited in many realistic situa-

tions, because, most of the time, a user will not change the settings on GPU DVFS which is active by default.

However, as we have seen in this section, if the GPU DVFS is turned off, the other EM vulnerability becomes

available for being exploited.

5.8 Countermeasures

As described in Section 5.7, the straightforward mitigation approach that disables GPU DVFS by fixing the

performance level fails to effectively prevent information leakage from many GPUs. In this section, we

propose several other countermeasures that we believe can potentially mitigate the EM side-channel vulner-

abilities of GPU.

The first mitigation direction is to try to significantly lower the SNR of the exploitable EM emanations

that an attacker can measure. To achieve this, we may have different options (e.g., using an RF device to

generate some EM noise over the targeted frequency range), but a plausible and attainable method is to shield

the computer for reducing the intensity of the emitted EM signals. For example, we may be tempted to

tape some shielding Faraday fabric on the computer case sides. We have performed such experiments and

found that, if we just naively rely on the patterns of stripe appearance on the spectrograms for exploitation,

this can indeed make far-off attacks much harder or even impossible. However, if we apply the techniques

proposed in Section 5.4 first, we can still acquire the target signal’s appearance/disappearance patterns

even when the SNR becomes very low, which defeats the purpose of having EM shielding in such a simple

way. Therefore, more carefully engineered EM shielding computer cases are needed. Moreover, hardware

manufacturers should devote more efforts to minimizing EM emissions in their future product designs, as

replied by NVIDIA to us.

110

The second mitigation direction is to make the granularity of the EM side-channel information much

coarser. For this purpose, we may try to reduce the sensitivity of GPU DVFS to workload changes. In such

a case, the performance level may not be switched during activities like webpage rendering, and thus the

leaked information will be coarse-grained so that very little sensitive information can be inferred. Although

this method does not try to eliminate side-channel information, it can reduce the entropy of that side-channel

and thus reduce the overall exploitability. Since this will hurt energy efficiency, a problem is how to find a

good trade-off between security and power consumption.

In addition to reducing the SNR of the EM signals and increasing the granularity of the side-channel

information, a third direction is through obfuscation. For instance, when a sensitive activity is using GPU,

we may deliberately generate some random GPU workloads to disrupt its original GPU use pattern such that

the predictability is reduced. With respect to the website fingerprinting attacks studied in this chapter, we

may implement a thread in the browser to randomly use GPU for some dummy computation during webpage

rendering via certain interfaces like WebGL. In terms of Chrome in particular, we may simply create an

extension to send random requests to the GPU process which is the specific process in Chrome for managing

interactions with GPU.

5.9 Conclusion

In this chapter, we have presented our newly discovered EM side-channel vulnerability that exists in many

modern GPUs and conducted two case studies, website fingerprinting and keystroke timing attacks, to demon-

strate that this new EM vulnerability is highly exploitable. Even though the root cause of this vulnerability is

identified as the commonly used DVFS feature in GPU, we have shown that simply disabling DVFS by setting

GPU to a specific performance level may not be an effective countermeasure since another AM-modulated

EM vulnerability emerges. We have also discussed some potential mitigation approaches.

As research on information leakage vulnerabilities of GPU has just started lately, we believe that the

currently disclosed ones and their exploitation represent only the tip of the iceberg, and many other exploitable

ones lurk in the darkness. The study carried out in this chapter argues for more rigid evaluation on the security

of GPU from different perspectives.

111

CHAPTER 6

Future Work

The growing research on deep learning nowadays prompts the use of optimal hardware for running neural

network models. The GPU is found to perfectly fit the requirements of deep learning because of its high

parallelism, so it is most frequently used for training and evaluating deep neural networks. Following the

observation in Chapter 5 that the EM emanations from GPU are AM-modulated by ongoing computations,

we find that this modulation effect will leak information about the running deep neural network model. In this

section, we will present some preliminary experimental results to show how DNN running on GPU affects its

EM emanations.

The EM traces are collected with a simple neural network model being evaluated on an NVIDIA Geforce

RTX 2080 graphics card. The model consists of a normalization layer, a convolutional layer, and a fully

connected layer, and random input values are used to repeat the evaluation 100 times. As mentioned above,

DVFS is implemented in GPU to balance the power consumption and performance. In our experiments, we

observe that the DVFS always shifts the performance level to the second-highest level whenever a neural

network model is evaluated. Therefore, we fix the receiver’s center frequency at the second-highest WCK

frequency.

In Fig. 6.1 we plotted the magnitude of an EM trace. Then we zoom into different scales to examine the

signals. From the figures we can find that:

• The periodical peaks repeating 100 times can be clearly identified in Fig. 6.1a. Using this pattern,

the trace can be separated into 100 segments, each corresponding to one iteration of the DNN model

evaluation.

• By examining the traces of two consecutive iterations in Fig. 6.1b, we can find that two segments are

similar with respect to the peak width and duration. The magnitudes of peaks are similar but with a

little difference.

• When we zoom in to examine only the peak part in Fig. 6.1c, the boundaries between three different

layers are very obvious, based on which we can further separate each segment into three parts. Each

part maps to a specific type of DNN layer.

With the boundaries between iterations and layers correctly identified, we can select 100 traces mapped

to it for each layer. In order to examine the relationship between the EM signals and the layer types, we

112

10 20 30 40 50 60

time (ms)

0

0.05

m
a
g
n
it
u
d
e

(a) Trace of 100 iterations

3.8 4 4.2 4.4 4.6 4.8

time (ms)

0

0.05
m

a
g
n
it
u
d
e

(b) Trace of 2 iterations

3.705 3.71 3.715 3.72 3.725 3.73 3.735 3.74

time (ms)

0

0.05

m
a

g
n

it
u

d
e

(c) A single peak in the trace

Figure 6.1: EM traces collected during neural network evaluation

perform some statistical analysis on these traces. The first step is aligning the traces, which is accomplished

by looking for the position with maximum cross-correlation. Then we plot the aligned traces in Fig. 6.2,

along with the averaged traces and the standard deviations below. The results showed in Fig. 6.1 indicate that

signals mapped to the same type of layer share some features w.r.t both length and shape, while for different

types of layers, the signals have some features that can be used to distinguish them from each other.

(a) Aligned traces of the normalization layer (b) Aligned traces of the convolutional layer(c) Aligned traces of the fully-connected
layer

Figure 6.2: EM traces of different layers

According to the above preliminary experimental results, we have identified that EM emanations from

GPU may leak information about the DNN model. Besides the results presented, we also observed that

113

other parameters like convolution kernel size, node number, and layer connection could influence the EM

emanations differently. In the future, we need to investigate deeper in order to fully understand the DNN

model-related leakages from GPU’s EM emanations.

114

CHAPTER 7

Conclusion

In this thesis, we have investigated the footprints left by rowhammer attacks in the EM emanations from

DRAM clocks and provided a new direction for rowhammer attack detection. This novel rowhammer de-

tection technique also provides new insight into the side-channel effects, showing that they can not only be

exploited for attacks but can also help defend a system. We have studied the energy scattering effects caused

by SSC and designed the first de-spreading technique to recover a strong EM carrier capable of carrying rich

information of ongoing activities. The successful implementation of this de-spreading technique proves that

some seemingly weak EM emanations from a computer system can actually be recovered to produce strong

leakages with some proper technique. Furthermore, we have highlighted the significant improvement on

SNR after applying the de-spreading technique by recovering a powerful EM covert channel carrier from the

DRAM clock’s EM emanations. The restored strong carrier can carry data using various modulation meth-

ods and construct a powerful covert channel capable of performing high-speed, through-wall, and long-range

data exfiltration. This new EM covert channel increases the maximum physical covert channel bandwidth

by 75× and breaks the illusion that physical covert channels can barely pose practical hazards. Henceforth,

we believe that threats brought by physical covert channels are worth more attention. Besides side-channel-

based defenses and physical covert channels, we have also implemented a long-range EM side-channel attack

stealing information of content displayed on the screen. This is the first research exploiting far-field EM ema-

nations from GPU to steal user privacy. Because this attack can be implemented from a certain distance away

with obstacles (e.g., concrete walls) in between, very practical hazards can be posed by this leakage. The

attacks presented in this work should urge manufactures to pay more attention to the EM leakages during the

design and implementation of electronic components. All work presented in this thesis stressed the fact that

many components in modern computers can generate strong EM emanations with abundant leakages. Even

though these leakages were considered hard to exploit due to both the high complexity of systems and the

massive amount of EM signals that interfere with each other, we have shown that sensitive information can

be easily extracted with specially designed techniques. Therefore, both the industry and academia should pay

more attention to these strong electromagnetic leakages in order to improve current hardware security.

115

References

Aarestad, J., Acharyya, D., Rad, R., and Plusquellic, J. (2010). Detecting trojans through leakage cur-
rent analysis using multiple supply pad Iddq s. IEEE Transactions on information forensics and security,
5(4):893–904.

Abdelrahman, Y., Khamis, M., Schneegass, S., and Alt, F. (2017). Stay cool! understanding thermal attacks
on mobile-based user authentication. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, pages 3751–3763. ACM.

Abe, Y., Sasaki, H., Kato, S., Inoue, K., Edahiro, M., and Peres, M. (2014). Power and Performance Char-
acterization and Modeling of GPU-Accelerated Systems. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium (IPDPS), pages 113–122. IEEE.

Aboulkassimi, D., Fournier, J., Freund, L., Robisson, B., and Tria, A. (2013). Ema as a physical method for
extracting secret data from mobile phones. International Journal of Computer Science and Application,
2(1):16–25.

Aga, M. T., Aweke, Z. B., and Austin, T. (2017). When Good Protections Go Bad: Exploiting Anti-DoS Mea-
sures to Accelerate Rowhammer Attacks. In 2017 IEEE International Symposium on Hardware Oriented
Security and Trust, HOST ’17, pages 8–13.

Agrawal, D., Archambeault, B., Rao, J. R., and Rohatgi, P. (2002). The EM Side-Channel(s). In Proceedings
of the 4th International Workshop on Cryptographic Hardware and Embedded Systems, CHES ’02, pages
29–45.

Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., and Sunar, B. (2007). Trojan detection using ic
fingerprinting. In 2007 IEEE Symposium on Security and Privacy (SP’07), pages 296–310. IEEE.

Akkar, M.-L., Bevan, R., Dischamp, P., and Moyart, D. (2000). Power analysis, what is now possible... In
International Conference on the Theory and Application of Cryptology and Information Security, pages
489–502. Springer.

Alam, M., Khan, H. A., Dey, M., Sinha, N., Callan, R., Zajic, A., and Prvulovic, M. (2018). One&Done:
A Single-Decryption EM-Based Attack on OpenSSL’s Constant-Time Blinded RSA. In 27th USENIX
Security Symposium (USENIX Security 18), pages 585–602.

Andriotis, P., Tryfonas, T., Oikonomou, G., and Yildiz, C. (2013). A pilot study on the security of pattern
screen-lock methods and soft side channel attacks. In Proceedings of the sixth ACM conference on Security
and privacy in wireless and mobile networks, pages 1–6. ACM.

Asonov, D. and Agrawal, R. (2004). Keyboard acoustic emanations. In IEEE Symposium on Security and
Privacy, 2004. Proceedings. 2004, pages 3–11. IEEE.

Aweke, Z. B., Yitbarek, S. F., Qiao, R., Das, R., Hicks, M., Oren, Y., and Austin, T. (2016). ANVIL:
Software-Based Protection Against Next-Generation Rowhammer Attacks. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’16, pages 743–755.

Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., and Sporleder, C. (2010). Acoustic Side-channel Attacks
on Printers. In Proceedings of the 19th USENIX Conference on Security, USENIX Security ’10.

Batina, L., Bhasin, S., Jap, D., and Picek, S. (2019). CSINN: Reverse engineering of neural network archi-
tectures through electromagnetic side channel. In 28th USENIX Security Symposium (USENIX Security
19), pages 515–532.

116

Becker, G. T., Kasper, M., Moradi, A., and Paar, C. (2010). Side-Channel Based Watermarks for Integrated
Circuits. In 2010 IEEE International Symposium on Hardware-Oriented Security and Trust, HOST ’10,
pages 30–35.

Berger, Y., Wool, A., and Yeredor, A. (2006). Dictionary attacks using keyboard acoustic emanations. In
Proceedings of the 13th ACM conference on Computer and communications security, pages 245–254.
ACM.

Bertoni, G. M., Grassi, L., and Melzani, F. (2015). Simulations of optical emissions for attacking aes and
masked aes. In International Conference on Security, Privacy, and Applied Cryptography Engineering,
pages 172–189. Springer.

Bhattacharya, S. and Mukhopadhyay, D. (2016). Curious case of rowhammer: flipping secret exponent bits
using timing analysis. In International Conference on Cryptographic Hardware and Embedded Systems,
CHES ’16, pages 602–624.

Biham, E. and Shamir, A. (1999). Power analysis of the key scheduling of the aes candidates. In Proceedings
of the second AES Candidate Conference, pages 115–121.

Bosman, E., Razavi, K., Bos, H., and Giuffrida, C. (2016). Dedup est machina: Memory deduplication
as an advanced exploitation vector. In 2016 IEEE symposium on security and privacy, S&P ’16, pages
987–1004.

Brasser, F., Davi, L., Gens, D., Liebchen, C., and Sadeghi, A.-R. (2017). CAn’t Touch This: Software-only
Mitigation against Rowhammer Attacks targeting Kernel Memory. In 26th USENIX Security Symposium
(USENIX Security 17), pages 117–130.

Brier, E., Clavier, C., and Olivier, F. (2004). Correlation power analysis with a leakage model. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 16–29. Springer.

Brouchier, J., Dabbous, N., Kean, T., Marsh, C., and Naccache, D. (2009). Thermocommunication. IACR
Cryptology ePrint Archive, 2009:2.

Callan, R., Behrang, F., Zajic, A., Prvulovic, M., and Orso, A. (2016). Zero-overhead Profiling via EM
Emanations. In Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA
2016, pages 401–412.

Callan, R., Zajić, A., and Prvulovic, M. (2014). A Practical Methodology for Measuring the Side-
Channel Signal Available to the Attacker for Instruction-Level Events. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-47, pages 242–254.

Callan, R., Zajić, A., and Prvulovic, M. (2015). FASE: Finding Amplitude-modulated Side-channel Emana-
tions. In Proceedings of the 42Nd Annual International Symposium on Computer Architecture, ISCA ’15,
pages 592–603.

Carlier, V., Chabanne, H., Dottax, E., and Pelletier, H. (2004). Electromagnetic side channels of an fpga
implementation of aes. In CRYPTOLOGY EPRINT ARCHIVE, REPORT 2004/145. Citeseer.

Carmon, E., Seifert, J.-P., and Wool, A. (2016). Simple photonic emission attack with reduced data complex-
ity. In International Workshop on Constructive Side-Channel Analysis and Secure Design, pages 35–51.
Springer.

Carmon, E., Seifert, J.-P., and Wool, A. (2017). Photonic side channel attacks against rsa. In 2017 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pages 74–78. IEEE.

Carrara, B. and Adams, C. (2014). On acoustic covert channels between air-gapped systems. In International
Symposium on Foundations and Practice of Security, pages 3–16. Springer.

Chari, S., Rao, J. R., and Rohatgi, P. (2002). Template attacks. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 13–28. Springer.

117

Chen, X., Xu, Z., Kim, H., Gratz, P., Hu, J., Kishinevsky, M., and Ogras, U. (2013). In-Network Monitoring
and Control Policy for DVFS of CMP Networks-on-Chip and Last Level Caches. ACM Transactions on
Design Automation of Electronic Systems, 18(4).

Cheng, Y., Ji, X., Zhang, J., Xu, W., and Chen, Y.-C. (2019). Demicpu: Device fingerprinting with mag-
netic signals radiated by cpu. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 1149–1170. ACM.

Cheng, Y., Zhang, Z., Nepal, S., and Wang, Z. (2018). Still Hammerable and Exploitable: on the Effectiveness
of Software-only Physical Kernel Isolation. CoRR, abs/1802.07060.

Cho, K.-T. and Shin, K. G. (2017). Viden: Attacker Identification on In-Vehicle Networks. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, pages 1109–
1123.

Clark, S. S., Ransford, B., Rahmati, A., Guineau, S., Sorber, J., Xu, W., and Fu, K. (2013). Wattsupdoc:
Power side channels to nonintrusively discover untargeted malware on embedded medical devices. In
Presented as part of the 2013 USENIX Workshop on Health Information Technologies.

Clavier, C., Coron, J.-S., and Dabbous, N. (2000). Differential power analysis in the presence of hardware
countermeasures. In International Workshop on Cryptographic Hardware and Embedded Systems, pages
252–263. Springer.

Cojocar, L., Razavi, K., Giuffrida, C., and Bos, H. (2019). Exploiting Correcting Codes: On the Effectiveness
of ECC Memory Against Rowhammer Attacks. In 2019 IEEE Symposium on Security and Privacy, S&P
’19.

Corbet, J. (2016). Defending against Rowhammer in the kernel.

Coron, J.-S., Kocher, P., and Naccache, D. (2000). Statistics and secret leakage. In International Conference
on Financial Cryptography, pages 157–173. Springer.

Davidov, M. and Oldenburg, B. (2020). TEMPEST@Home - Finding Radio Frequency Side Channels.
https://duo.com/labs/research/finding-radio-sidechannels#section9.

De Mulder, E., Buysschaert, P., Ors, S., Delmotte, P., Preneel, B., Vandenbosch, G., and Verbauwhede, I.
(2005). Electromagnetic analysis attack on an fpga implementation of an elliptic curve cryptosystem. In
EUROCON 2005-The International Conference on” Computer as a Tool”, volume 2, pages 1879–1882.
IEEE.

Deng, Q., Meisner, D., Ramos, L., Wenisch, T. F., and Bianchini, R. (2011). MemScale: Active Low-Power
Modes for Main Memory. In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages 225–238.

Departments and agencies of the Federal Government (2019). Code of federal regulations.

Dhakal, V., Feit, A. M., Kristensson, P. O., and Oulasvirta, A. (2018). Observations on Typing from 136
Million Keystrokes. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems,
pages 1–12.

Di-Battista, J., Courrege, J.-C., Rouzeyre, B., Torres, L., and Perdu, P. (2010). When failure analysis meets
side-channel attacks. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 188–202. Springer.

Enev, M., Gupta, S., Kohno, T., and Patel, S. N. (2011). Televisions, Video Privacy, and Powerline Electro-
magnetic Interference. In Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS ’11, pages 537–550.

Ferrigno, J. and Hlaváč, M. (2008). When aes blinks: introducing optical side channel. IET Information
Security, 2(3):94–98.

118

https://duo.com/labs/research/finding-radio-sidechannels#section9

Frigo, P., Giuffrida, C., Bos, H., and Razavi, K. (2018). Grand Pwning Unit: Accelerating Microarchitectural
Attacks with the GPU. In 2018 IEEE Symposium on Security and Privacy, S&P ’18, pages 357–372.

Gandolfi, K., Mourtel, C., and Olivier, F. (2001). Electromagnetic Analysis: Concrete Results. In Proceedings
of the Third International Workshop on Cryptographic Hardware and Embedded Systems, CHES ’01,
pages 251–261.

Gao, Y., Zhang, H., Cheng, W., Zhou, Y., and Cao, Y. (2018). Electro-Magnetic Analysis of GPU-Based AES
Implementation. In Proceedings of the 55th Annual Design Automation Conference (DAC).

Ge, Q., Yarom, Y., Cock, D., and Heiser, G. (2018). A survey of microarchitectural timing attacks and
countermeasures on contemporary hardware. Journal of Cryptographic Engineering, 8(1):1–27.

Genkin, D., Pachmanov, L., Pipman, I., and Tromer, E. (2015a). Stealing Keys from PCs Using a Radio:
Cheap Electromagnetic Attacks on Windowed Exponentiation. In International Conference on Crypto-
graphic Hardware and Embedded Systems, CHES 2015, pages 207–228.

Genkin, D., Pachmanov, L., Pipman, I., and Tromer, E. (2016a). Ecdh key-extraction via low-bandwidth
electromagnetic attacks on pcs. In Cryptographers’ Track at the RSA Conference, pages 219–235. Springer.

Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., and Yarom, Y. (2016b). ECDSA Key Extraction from
Mobile Devices via Nonintrusive Physical Side Channels. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages 1626–1638.

Genkin, D., Pipman, I., and Tromer, E. (2015b). Get your hands off my laptop: Physical side-channel key-
extraction attacks on pcs. Journal of Cryptographic Engineering, 5(2):95–112.

Genkin, D., Shamir, A., and Tromer, E. (2014). Rsa key extraction via low-bandwidth acoustic cryptanalysis.
In Annual Cryptology Conference, pages 444–461. Springer.

Genkin, D., Shamir, A., and Tromer, E. (2017). Acoustic Cryptanalysis. Journal of Cryptology, 30(2):392–
443.

Gilbert Goodwill, B. J., Jaffe, J., Rohatgi, P., et al. (2011). A testing methodology for side-channel resistance
validation. In NIST non-invasive attack testing workshop, volume 7, pages 115–136.

Gruss, D., Lipp, M., Schwarz, M., Genkin, D., Juffinger, J., O’Connell, S., Schoechl, W., and Yarom, Y.
(2018). Another Flip in the Wall of Rowhammer Defenses. In 2018 IEEE Symposium on Security and
Privacy, S&P ’18, pages 489–505.

Gruss, D., Maurice, C., and Mangard, S. (2016a). Rowhammer.js: A Remote Software-Induced Fault Attack
in JavaScript. In International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, DIMVA ’16, pages 300–321.

Gruss, D., Maurice, C., Wagner, K., and Mangard, S. (2016b). Flush+Flush: A Fast and Stealthy Cache
Attack. In Proceedings of the 13th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721, DIMVA ’16, pages 279–299.

Guri, M. (2019). Hotspot: Crossing the air-gap between isolated pcs and nearby smartphones using temper-
ature. In 2019 European Intelligence and Security Informatics Conference (EISIC), pages 94–100. IEEE.

Guri, M. (2020). Power-supplay: Leaking data from air-gapped systems by turning the power-supplies into
speakers. arXiv preprint arXiv:2005.00395.

Guri, M., Bykhovsky, D., and Elovici, Y. (2019). Brightness: Leaking sensitive data from air-gapped work-
stations via screen brightness. In 2019 12th CMI Conference on Cybersecurity and Privacy (CMI), pages
1–6. IEEE.

Guri, M., Daidakulov, A., and Elovici, Y. (2018a). Magneto: Covert channel between air-gapped systems
and nearby smartphones via cpu-generated magnetic fields. arXiv preprint arXiv:1802.02317.

119

Guri, M., Hasson, O., Kedma, G., and Elovici, Y. (2016a). An optical covert-channel to leak data through an
air-gap. In 2016 14th Annual Conference on Privacy, Security and Trust (PST ’16), pages 642–649.

Guri, M., Kachlon, A., Hasson, O., Kedma, G., Mirsky, Y., and Elovici, Y. (2015a). GSMem: Data Exfiltra-
tion from Air-Gapped Computers over GSM Frequencies. In 24th USENIX Security Symposium (USENIX
Security 15), pages 849–864.

Guri, M., Kedma, G., Kachlon, A., and Elovici, Y. (2014). Airhopper: Bridging the air-gap between isolated
networks and mobile phones using radio frequencies. In 2014 9th International Conference on Malicious
and Unwanted Software: The Americas (MALWARE), pages 58–67. IEEE.

Guri, M., Monitz, M., and Elovici, Y. (2016b). Usbee: air-gap covert-channel via electromagnetic emission
from usb. In 2016 14th Annual Conference on Privacy, Security and Trust (PST), pages 264–268. IEEE.

Guri, M., Monitz, M., Mirski, Y., and Elovici, Y. (2015b). Bitwhisper: Covert signaling channel between
air-gapped computers using thermal manipulations. In 2015 IEEE 28th Computer Security Foundations
Symposium, pages 276–289. IEEE.

Guri, M., Solewicz, Y., Daidakulov, A., and Elovici, Y. (2017a). Acoustic data exfiltration from speakerless
air-gapped computers via covert hard-drive noise (‘diskfiltration’). In European Symposium on Research
in Computer Security, pages 98–115. Springer.

Guri, M., Solewicz, Y., and Elovici, Y. (2020). Fansmitter: Acoustic data exfiltration from air-gapped com-
puters via fans noise. Computers & Security, 91:101721.

Guri, M., Zadov, B., Bykhovsky, D., and Elovici, Y. (2018b). Powerhammer: Exfiltrating data from air-
gapped computers through power lines. arXiv preprint arXiv:1804.04014.

Guri, M., Zadov, B., Daidakulov, A., and Elovici, Y. (2018c). Odini: Escaping sensitive data from faraday-
caged, air-gapped computers via magnetic fields. arXiv preprint arXiv:1802.02700.

Guri, M., Zadov, B., and Elovici, Y. (2017b). Led-it-go: Leaking (a lot of) data from air-gapped computers
via the (small) hard drive led. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 161–184. Springer.

Han, Y., Etigowni, S., Liu, H., Zonouz, S., and Petropulu, A. (2017). Watch Me, but Don’T Touch Me!
Contactless Control Flow Monitoring via Electromagnetic Emanations. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’17, pages 1095–1108.

Hanspach, M. and Goetz, M. (2013). On covert acoustical mesh networks in air. Journal of Communications,
8(11).

Hardin, K. B., Fessler, J. T., and Bush, D. R. (1994). Spread Spectrum Clock Generation for the Reduction
of Radiated Emissions. In Proceedings of IEEE Symposium on Electromagnetic Compatibility, EMC ’94,
pages 227–231.

Hassan, M., Kaushik, A. M., and Patel, H. (2015). Reverse-engineering embedded memory controllers
through latency-based analysis. In 21st IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS ’15), pages 297–306.

He, J., Zhao, Y., Guo, X., and Jin, Y. (2017). Hardware trojan detection through chip-free electromag-
netic side-channel statistical analysis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(10):2939–2948.

Herath, N. and Fogh, A. (2015). These are Not Your Grand Daddy’s CPU Performance Counters - CPU
Hardware Performance Counters for Security. In Black Hat Briefings.

Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., and Sigl, G. (2012). Localized electromagnetic analysis of
cryptographic implementations. In Cryptographers’ track at the RSA conference, pages 231–244. Springer.

120

Hoque, T., Narasimhan, S., Wang, X., Mal-Sarkar, S., and Bhunia, S. (2017). Golden-free hardware trojan
detection with high sensitivity under process noise. Journal of Electronic Testing, 33(1):107–124.

Hutter, M. and Schmidt, J.-M. (2013). The temperature side channel and heating fault attacks. In International
Conference on Smart Card Research and Advanced Applications, pages 219–235. Springer.

Irazoqui, G., Eisenbarth, T., and Sunar, B. (2018). MASCAT: Preventing Microarchitectural Attacks Before
Distribution. In Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy,
CODASPY ’18, pages 377–388.

Jang, Y., Lee, J., Lee, S., and Kim, T. (2017). SGX-Bomb: Locking Down the Processor via Rowhammer
Attack. In Proceedings of the 2nd Workshop on System Software for Trusted Execution, SysTEX ’17, pages
5:1–5:6.

Jiang, Z. H., Fei, Y., and Kaeli, D. (2016). A Complete Key Recovery Timing Attack on a GPU. In 2016
IEEE International symposium on high performance computer architecture (HPCA), pages 394–405.

Jiang, Z. H., Fei, Y., and Kaeli, D. (2019). Exploiting Bank Conflict-Based Side-Channel Timing Leakage of
GPUs. ACM Transactions on Architecture and Code Optimization, 16(4).

Kaczmarek, T., Ozturk, E., and Tsudik, G. (2018). Thermanator: Thermal residue-based post factum attacks
on keyboard password entry. arXiv preprint arXiv:1806.10189.

Kim, W., Gupta, M. S., Wei, G.-Y., and Brooks, D. (2008). System Level Analysis of Fast, Per-Core DVFS
using On-Chip Switching Regulators. In 2008 IEEE 14th International Symposium on High Performance
Computer Architecture (HPCA), pages 123–134.

Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D., Wilkerson, C., Lai, K., and Mutlu, O. (2014).
Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
In Proceeding of the 41st Annual International Symposium on Computer Architecuture, ISCA ’14, pages
361–372.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S.,
Prescher, T., et al. (2019). Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1–19. IEEE.

Kocher, P. C., Jaffe, J., and Jun, B. (1999). Differential Power Analysis. In Proceedings of the 19th Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO ’99, pages 388–397.

Konoth, R. K., Oliverio, M., Tatar, A., Andriesse, D., Bos, H., Giuffrida, C., and Razavi, K. (2018). ZebRAM:
Comprehensive and Compatible Software Protection Against Rowhammer Attacks. In 13th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI ’18, pages 697–710.

Kosaka, M. (2018). Inside Look at Modern Web Browser.

Krämer, J., Nedospasov, D., Schlösser, A., and Seifert, J.-P. (2013). Differential photonic emission analy-
sis. In International Workshop on Constructive Side-Channel Analysis and Secure Design, pages 1–16.
Springer.

Kuhn, M. G. (2004). Electromagnetic Eavesdropping Risks of Flat-Panel Displays. In Proceedings of the 4th
International Conference on Privacy Enhancing Technologies, PET ’04, pages 88–107.

Kwong, A., Genkin, D., Gruss, D., and Yarom, Y. (2020). RAMBleed: Reading Bits in Memory Without
Accessing Them. In 41st IEEE Symposium on Security and Privacy, S&P ’20.

Kwong, A., Xu, W., and Fu, K. (2019). Hard drive of hearing: Disks that eavesdrop with a synthesized
microphone. 2019 IEEE Symposium on Security and Privacy (SP), pages 905–919.

Ladakis, E., Koromilas, L., Vasiliadis, G., Polychronakis, M., and Ioannidis, S. (2013). You Can Type, but
You Can’t Hide: A Stealthy GPU-based Keylogger. In Proceedings of the 6th European Workshop on
System Security (EuroSec).

121

Lampson, B. W. (1973). A note on the confinement problem. Communications of the ACM, 16(10):613–615.

Lanteigne, M. (2016). How Rowhammer Could Be Used to Exploit Weaknesses in Computer Hardware.

Le Masle, A. and Luk, W. (2012). Detecting power attacks on reconfigurable hardware. In 22nd International
Conference on Field Programmable Logic and Applications (FPL), pages 14–19. IEEE.

Lee, S., Kim, Y., Kim, J., and Kim, J. (2014). Stealing Webpages Rendered on Your Browser by Exploiting
GPU Vulnerabilities. In Proceedings of the 2014 IEEE Symposium on Security and Privacy (S&P), pages
19–33.

Lenovo Inc. (2015). Row Hammer Privilege Escalation Lenovo Security Advisory (LEN-2015-009).

Lime Microsystems (2021). LimeSDR.

Lipp, M., Aga, M. T., Schwarz, M., Gruss, D., Maurice, C., Raab, L., and Lamster, L. (2018a). Nethammer:
Inducing Rowhammer Faults through Network Requests. CoRR, abs/1805.04956.

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard, S., Kocher, P.,
Genkin, D., et al. (2018b). Meltdown: Reading kernel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18), pages 973–990.

Liu, Y., Wei, L., Zhou, Z., Zhang, K., Xu, W., and Xu, Q. (2016). On Code Execution Tracking via Power
Side-Channel. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 1019–1031.

Longo, J., De Mulder, E., Page, D., and Tunstall, M. (2015). Soc it to em: electromagnetic side-channel
attacks on a complex system-on-chip. In International Workshop on Cryptographic Hardware and Em-
bedded Systems, pages 620–640. Springer.

Lopes, A. C. and Aranha, D. F. (2017). Platform-agnostic low-intrusion optical data exfiltration. In ICISSP,
pages 474–480.

Loughry, J. and Umphress, D. A. (2002). Information leakage from optical emanations. ACM Transactions
on Information and System Security (TISSEC), 5(3):262–289.

Luo, C., Fei, Y., and Kaeli, D. (2019). Side-Channel Timing Attack of RSA on a GPU. ACM Transactions
on Architecture and Code Optimization, 16(3).

Luo, C., Fei, Y., Luo, P., Mukherjee, S., and Kaeli, D. (2015). Side-Channel Power Analysis of a GPU AES
Implementation. In Proceedings of the 2015 33rd IEEE International Conference on Computer Design
(ICCD), pages 281–288.

Ma, K., Li, X., Chen, W., Zhang, C., and Wang, X. (2012). GreenGPU: A Holistic Approach to Energy
Efficiency in GPU-CPU Heterogeneous Architectures. In Proceedings of the 2012 41st International Con-
ference on Parallel Processing (ICPP), pages 48–57.

Marquardt, P., Verma, A., Carter, H., and Traynor, P. (2011). (sp) iphone: Decoding vibrations from nearby
keyboards using mobile phone accelerometers. In Proceedings of the 18th ACM conference on Computer
and communications security, pages 551–562. ACM.

Masti, R. J., Rai, D., Ranganathan, A., Müller, C., Thiele, L., and Capkun, S. (2015). Thermal covert channels
on multi-core platforms. In 24th USENIX Security Symposium (USENIX Security 15), pages 865–880.

Matyunin, N., Szefer, J., Biedermann, S., and Katzenbeisser, S. (2016). Covert channels using mobile de-
vice’s magnetic field sensors. In 2016 21st Asia and South Pacific Design Automation Conference (ASP-
DAC), pages 525–532. IEEE.

Maurice, C., Neumann, C., Heen, O., and Francillon, A. (2014). Confidentiality Issues on a GPU in a
Virtualized Environment. In International Conference on Financial Cryptography and Data Security (FC),
pages 119–135.

122

Maurice, C., Neumann, C., Heen, O., and Francillon, A. (2015). C5: cross-cores cache covert channel. In
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA
’15), pages 46–64.

Mayer-Sommer, R. (2000). Smartly analyzing the simplicity and the power of simple power analysis on
smartcards. In International Workshop on Cryptographic Hardware and Embedded Systems, pages 78–92.
Springer.

Mei, X., Yung, L. S., Zhao, K., and Chu, X. (2013). A Measurement Study of GPU DVFS on Energy
Conservation. In Proceedings of the Workshop on Power-Aware Computing and Systems (HotPower).

Merli, D., Heyszl, J., Heinz, B., Schuster, D., Stumpf, F., and Sigl, G. (2013). Localized electromagnetic
analysis of ro pufs. In 2013 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pages 19–24. IEEE.

Merli, D., Schuster, D., Stumpf, F., and Sigl, G. (2011). Semi-invasive em attack on fpga ro pufs and
countermeasures. In Proceedings of the Workshop on Embedded Systems Security, page 2. ACM.

Messerges, T. S. (2000). Using second-order power analysis to attack dpa resistant software. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 238–251. Springer.

Messerges, T. S., Dabbish, E. A., and Sloan, R. H. (1999). Investigations of power analysis attacks on
smartcards. Smartcard, 99:151–161.

Micron Technology, Inc. (2014). GDDR5 SGRAM Introduction.

Micron Technology, Inc. (2017). GDDR6: The Next-Generation Graphics DRAM.

Mishra, A. K., Das, R., Eachempati, S., Iyer, R., Vijaykrishnan, N., and Das, C. R. (2009). A Case for
Dynamic Frequency Tuning in On-Chip Networks. In 2009 42nd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 292–303.

Miyoshi, A., Lefurgy, C., Van Hensbergen, E., Rajamony, R., and Rajkumar, R. (2002). Critical Power
Slope: Understanding the Runtime Effects of Frequency Scaling. In Proceedings of the 16th International
Conference on Supercomputing (ICS), pages 35–44.

Monaco, J. V. (2018). SoK: Keylogging Side Channels. In Proceedings of the 2018 IEEE Symposium on
Security and Privacy (S&P), pages 211–228.

Mowery, K., Meiklejohn, S., and Savage, S. (2011). Heat of the moment: Characterizing the efficacy of
thermal camera-based attacks. In Proceedings of the 5th USENIX conference on Offensive technologies,
pages 6–6. USENIX Association.

Mutlu, O. (2017). The RowHammer Problem and Other Issues We May Face As Memory Becomes Denser.
In Proceedings of the Conference on Design, Automation & Test in Europe, DATE ’17, pages 1116–1121.

Naghibijouybari, H., Khasawneh, K. N., and Abu-Ghazaleh, N. (2017). Constructing and Characterizing
Covert Channels on GPGPUs. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 354–366.

Naghibijouybari, H., Neupane, A., Qian, Z., and Abu-Ghazaleh, N. (2018). Rendered Insecure: GPU Side
Channel Attacks Are Practical. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 2139–2153.

Narasimhan, S., Wang, X., Du, D., Chakraborty, R. S., and Bhunia, S. (2011). Tesr: A robust temporal self-
referencing approach for hardware trojan detection. In 2011 IEEE International Symposium on Hardware-
Oriented Security and Trust, pages 71–74. IEEE.

Nath, R. and Tullsen, D. (2015). The CRISP Performance Model for Dynamic Voltage and Frequency Scaling
in a GPGPU. In Proceedings of the 48th International Symposium on Microarchitecture (MICRO), pages
281–293.

123

Nazari, A., Sehatbakhsh, N., Alam, M., Zajic, A., and Prvulovic, M. (2017). EDDIE: EM-Based Detection
of Deviations in Program Execution. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, pages 333–346.

Newegg (2021). Best Selling Computer Cases. https://www.newegg.com/d/Best-Sellers/Computer-Cases/s/
ID-7.

Nguyen, L. N., Yilmaz, B. B., Prvulovic, M., and Zajic, A. (2020). A novel golden-chip-free clustering
technique using backscattering side channel for hardware trojan detection. In 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 1–12. IEEE.

Pant, S. (2008). Design and Analysis of Power Distribution Networks in VLSI Circuits. PhD thesis, University
of Michigan.

Payer, M. (2016). HexPADS: A Platform to Detect “Stealth” Attacks. In Proceedings of the 8th International
Symposium on Engineering Secure Software and Systems, ESSoS 2016, pages 138–154.

Perera, P. and Patel, V. M. (2019). Deep Transfer Learning for Multiple Class Novelty Detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Mangard, S. (2016). DRAMA: Exploiting DRAM
Addressing for Cross-CPU Attacks. In 25th USENIX Security Symposium (USENIX Security 16), pages
565–581.

Pietro, R. D., Lombardi, F., and Villani, A. (2016). CUDA Leaks: A Detailed Hack for CUDA and a (Partial)
Fix. ACM Transactions on Embedded Computing Systems, 15(1).

Prvulovic, M., Zajić, A., Callan, R. L., and Wang, C. J. (2017). A Method for Finding Frequency-Modulated
and Amplitude-Modulated Electromagnetic Emanations in Computer Systems. IEEE Transactions on
Electromagnetic Compatibility, 59(1):34–42.

Qiao, R. and Seaborn, M. (2016). A new approach for rowhammer attacks. In 2016 IEEE International
Symposium on Hardware Oriented Security and Trust, HOST ’16, pages 161–166.

Quisquater, J.-J. and Samyde, D. (2001). ElectroMagnetic Analysis (EMA): Measures and Counter-Measures
for Smart Cards. In Proceedings of the International Conference on Research in Smart Cards: Smart Card
Programming and Security, E-SMART ’01, pages 200–210.

Rad, R., Plusquellic, J., and Tehranipoor, M. (2008). Sensitivity analysis to hardware trojans using power
supply transient signals. In 2008 IEEE International Workshop on Hardware-Oriented Security and Trust,
pages 3–7. IEEE.

Rao, J. R. and Rohatgi, P. (2001). Empowering side-channel attacks. IACR Cryptology ePrint Archive,
2001:37.

Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., and Bos, H. (2016). Flip Feng Shui: Hammering
a Needle in the Software Stack. In 25th USENIX Security Symposium (USENIX Security 16), pages 1–18.

Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. (2009). Hey, you, get off of my cloud: exploring in-
formation leakage in third-party compute clouds. In Proceedings of the 16th ACM conference on Computer
and communications security (CCS ’09), pages 199–212. ACM.

Ruff, L., Vandermeulen, R. A., Görnitz, N., Deecke, L., Siddiqui, S. A., Binder, A., Müller, E., and Kloft, M.
(2018). Deep one-class classification. In Proceedings of the 35th International Conference on Machine
Learning (ICML), volume 80, pages 4393–4402.

Sauvage, L., Guilley, S., Flament, F., Danger, J.-L., and Mathieu, Y. (2010). Cross-correlation cartography.
In 2010 International Conference on Reconfigurable Computing and FPGAs, pages 268–273. IEEE.

124

https://www.newegg.com/d/Best-Sellers/Computer-Cases/s/ID-7
https://www.newegg.com/d/Best-Sellers/Computer-Cases/s/ID-7

Sauvage, L., Guilley, S., and Mathieu, Y. (2009). Electromagnetic radiations of fpgas: High spatial resolution
cartography and attack on a cryptographic module. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 2(1):4.

Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., and Seifert, J.-P. (2012). Simple Photonic Emission
Analysis of AES: Photonic Side Channel Analysis for the Rest of Us. In Proceedings of the 14th Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, CHES ’12, pages 41–57.

Schwarz, M., Weiser, S., Gruss, D., Maurice, C., and Mangard, S. (2017). Malware Guard Extension: Using
SGX to Conceal Cache Attacks. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA ’17, pages 3–24. Springer.

Seaborn, M. and Dullien, T. (2015). Exploiting the DRAM Rowhammer Bug to Gain Kernel Privileges. In
Black Hat Briefings.

Sehatbakhsh, N., Nazari, A., Zajic, A., and Prvulovic, M. (2016). Spectral Profiling: Observer-effect-free
Profiling by Monitoring EM Emanations. In The 49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-49, pages 59:1–59:11.

Sehatbakhsh, N., Yilmaz, B. B., Zajic, A., and Prvulovic, M. (2020). A New Side-Channel Vulnerability on
Modern Computers by Exploiting Electromagnetic Emanations from the Power Management Unit. In 2020
IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 123–138.

Sepetnitsky, V., Guri, M., and Elovici, Y. (2014). Exfiltration of information from air-gapped machines
using monitor’s led indicator. In 2014 IEEE Joint Intelligence and Security Informatics Conference, pages
264–267. IEEE.

Shen, C., Liu, T., Huang, J., and Tan, R. (2021). When LoRa Meets EMR: Electromagnetic Covert Channels
Can Be Super Resilient. In Proceedings of the 2021 IEEE Symposium on Security and Privacy (S&P).

Skorobogatov, S. (2009). Using optical emission analysis for estimating contribution to power analysis. In
2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 111–119. IEEE.

Song, D. X., Wagner, D., and Tian, X. (2001). Timing Analysis of Keystrokes and Timing Attacks on SSH.
In USENIX Security Symposium (USENIX Security 01).

Strobel, D., Bache, F., Oswald, D., Schellenberg, F., and Paar, C. (2015). Scandalee: A Side-channel-based
Disassembler Using Local Electromagnetic Emanations. In Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, DATE ’15, pages 139–144.

Su, Y., Genkin, D., Ranasinghe, D., and Yarom, Y. (2017). USB snooping made easy: Crosstalk leakage
attacks on USB hubs. In 26th USENIX Security Symposium (USENIX Security 17), pages 1145–1161.

Sugawara, T., Suzuki, D., Saeki, M., Shiozaki, M., and Fujino, T. (2013). On Measurable Side-channel Leaks
Inside ASIC Design Primitives. In Proceedings of the 15th International Conference on Cryptographic
Hardware and Embedded Systems, CHES ’13, pages 159–178.

Suh, G. E. and Devadas, S. (2007). Physical unclonable functions for device authentication and secret key
generation. In 2007 44th ACM/IEEE Design Automation Conference, pages 9–14. IEEE.

Sullivan, D., Arias, O., Meade, T., and Jin, Y. (2018). Microarchitectural minefields: 4k-aliasing covert
channel and multi-tenant detection in iaas clouds. In NDSS ’18.

Szefer, J. (2019). Survey of microarchitectural side and covert channels, attacks, and defenses. Journal of
Hardware and Systems Security, 3(3):219–234.

Tatar, A., Giuffrida, C., Bos, H., and Razavi, K. (2018a). Defeating Software Mitigations Against Rowham-
mer: A Surgical Precision Hammer. In Research in Attacks, Intrusions, and Defenses, RAID ’18, pages
47–66.

125

Tatar, A., Konoth, R. K., Athanasopoulos, E., Giuffrida, C., Bos, H., and Razavi, K. (2018b). Throwhammer:
Rowhammer Attacks over the Network and Defenses. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 213–226.

Tsang, J. C., Kash, J. A., and Vallett, D. P. (2000). Picosecond imaging circuit analysis. IBM Journal of
Research and Development, 44(4):583–603.

van der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D., Maurice, C., Vigna, G., Bos, H., Razavi, K., and
Giuffrida, C. (2016). Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, pages 1675–
1689.

van der Veen, V., Lindorfer, M., Fratantonio, Y., Pillai, H. P., Vigna, G., Kruegel, C., Bos, H., and Razavi, K.
(2018). GuardION: Practical Mitigation of DMA-Based Rowhammer Attacks on ARM. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA ’18, pages
92–113.

Van Eck, W. (1985). Electromagnetic radiation from video display units: An eavesdropping risk? Computers
& Security, 4(4):269–286.

Vasiliadis, G., Polychronakis, M., and Ioannidis, S. (2015). GPU-Assisted Malware. International Journal
of Information Security, 14(3):289–297.

Wang, Z. and Lee, R. B. (2006). Covert and side channels due to processor architecture. In 2006 22nd Annual
Computer Security Applications Conference (ACSAC ’06), pages 473–482. IEEE.

Wang, Z., Yan, W., and Oates, T. (2017). Time Series Classification from Scratch with Deep Neural Networks:
A Strong Baseline. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 1578–
1585.

Wei, S., Aysu, A., Orshansky, M., Gerstlauer, A., and Tiwari, M. (2019). Using Power-Anomalies to Counter
Evasive Micro-architectural Attacks in Embedded Systems. In 2019 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST ’19.

Weiser, M., Welch, B., Demers, A., and Shenker, S. (1994). Scheduling for Reduced CPU Energy. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

Wodo, W. and Hanzlik, L. (2016). Thermal imaging attacks on keypad security systems. In SECRYPT, pages
458–464.

Wu, Z., Xu, Z., and Wang, H. (2012). Whispers in the hyper-space: High-speed covert channel attacks in
the cloud. In Presented as part of the 21st USENIX Security Symposium (USENIX Security 12), pages
159–173.

Xiao, Y., Zhang, X., Zhang, Y., and Teodorescu, R. (2016). One Bit Flips, One Cloud Flops: Cross-VM Row
Hammer Attacks and Privilege Escalation. In 25th USENIX Security Symposium (USENIX Security 16),
pages 19–35.

Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., and Schlichting, R. (2011). An exploration of l2
cache covert channels in virtualized environments. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop (CCSW ’11), pages 29–40.

Yao, F., Rakin, A. S., and Fan, D. (2020). Deephammer: Depleting the intelligence of deep neural networks
through targeted chain of bit flips. In 29th USENIX Security Symposium (USENIX Security 20), pages
1463–1480.

Zajic, A. and Prvulovic, M. (2014). Experimental Demonstration of Electromagnetic Information Leak-
age From Modern Processor-Memory Systems. IEEE Transactions on Electromagnetic Compatibility,
56(4):885–893.

126

Zalewski, M. (2005). Cracking safes with thermal imaging. ser. http://lcamtuf. coredump. cx/tsafe.

Zeitouni, S., Gens, D., and Sadeghi, A.-R. (2018). It’s Hammer Time: How to Attack (Rowhammer-based)
DRAM-PUFs. In Proceedings of the 55th Annual Design Automation Conference, DAC ’18, pages 65:1–
65:6.

Zhan, Z., Zhang, Z., and Kousoukos, X. (2021a). A high-speed, long-distance and wall-penetrating covert
channel based on em emanations from dram clock. Technical report.

©2020 IEEE. Reprinted, with permission, from Zhan, Z., Zhang, Z., and Koutsoukos, X. (2020). BitJab-
ber: The World’s Fastest Electromagnetic Covert Channel. In 2020 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST).

Zhan, Z., Zhang, Z., Liang, S., Yao, F., and Kousoukos, X. (2021b). Graphics peeping unit: Exploiting em
side-channel information of gpus to eavesdrop on your neighbors. Technical report.

Zhang, K. and Wang, X. (2009). Peeping Tom in the Neighborhood: Keystroke Eavesdropping on Multi-User
Systems. In USENIX Security Symposium (USENIX Security 09), pages 17–32.

Zhang, Z., Cheng, Y., Liu, D., Nepal, S., Wang, Z., and Yarom, Y. (2020a). Pthammer: Cross-user-kernel-
boundary rowhammer through implicit accesses. In 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 28–41. IEEE.

Zhang, Z., Zhan, Z., Balasubramanian, D., Koutsoukos, X., and Karsai, G. (2018). Triggering rowhammer
hardware faults on arm: A revisit. In Proceedings of the 2018 Workshop on Attacks and Solutions in
Hardware Security, pages 24–33.

©2020 IEEE. Reprinted, with permission, from Zhang, Z., Zhan, Z., Balasubramanian, D., Li, B., Volgyesi,
P., and Kousoukos, X. (2020b). Leveraging EM Side-Channel Information to Detect Rowhammer Attacks.
In Proceedings of the 2020 IEEE Symposium on Security and Privacy (S&P).

Zhao, M. and Suh, G. E. (2018). Fpga-based remote power side-channel attacks. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 229–244. IEEE.

Zhou, Z., Diao, W., Liu, X., Li, Z., Zhang, K., and Liu, R. (2017a). Vulnerable GPU Memory Management:
Towards Recovering Raw Data from GPU. Proceedings on Privacy Enhancing Technologies (PETS),
2017(2):57–73.

Zhou, Z., Zhang, W., Yang, Z., and Yu, N. (2017b). Exfiltration of data from air-gapped networks via
unmodulated led status indicators. arXiv preprint arXiv:1711.03235.

Zhu, T., Ma, Q., Zhang, S., and Liu, Y. (2014). Context-free attacks using keyboard acoustic emanations.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pages
453–464. ACM.

Zhu, Z., Kim, S., Rozhanski, Y., Hu, Y., Witchel, E., and Silberstein, M. (2017). Understanding The Security
of Discrete GPUs. In Proceedings of the General Purpose GPUs (GPGPU), pages 1–11.

Zhuang, L., Zhou, F., and Tygar, J. D. (2009). Keyboard acoustic emanations revisited. ACM Transactions
on Information and System Security (TISSEC), 13(1):3.

127

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Hardware Security
	1.2 Electromagnetic Side-channel
	1.3 Challenges
	1.4 Contributions
	1.5 Organization

	2 Related Work
	2.1 Rowhammer Attacks and Defenses
	2.1.1 Rowhammer Attacks
	2.1.2 Rowhammer Defenses

	2.2 Physical Side-Channel-Based Defenses
	2.3 Electromagnetic Side-Channel Information Leakages
	2.4 Physical Covert Channel Attacks
	2.5 Security Problems on GPU

	3 Rowhammer Attack Detection Via A Radio
	3.1 Background
	3.1.1 DRAM Organization
	3.1.2 The Rowhammer Bug and Hammering
	3.1.3 Rowhammer Attacks
	3.1.4 EM Emanations

	3.2 Threat Model
	3.3 New Direction to Rowhammer Detection
	3.4 Finding Hammering Information in EM Side-Channel Emanations
	3.4.1 Direct EM Emanations
	3.4.2 AM-Modulated EM Emanations
	3.4.3 Spread-Spectrum Clocking

	3.5 Rowhammer Attack Detection via A Radio
	3.5.1 Measurement Component
	3.5.2 De-Spreading Component
	3.5.3 Classification Component
	3.5.4 Discussion on the Use of Detection Information

	3.6 Evaluation
	3.6.1 Prototype of RADAR
	3.6.2 Effectiveness of RADAR
	3.6.3 Robustness of RADAR
	3.6.4 Resilience to Adaptive Attacks

	3.7 Conclusion

	4 The Fastest EM Covert Channel In The World
	4.1 Threat Model
	4.2 The Design of BitJabber Covert Channel
	4.2.1 Spread Spectrum Clocking
	4.2.2 Modulation
	4.2.3 Base Memory Access Design
	4.2.4 Communication Protocol and Demodulation
	4.2.4.1 Feature Extraction
	4.2.4.2 Message Structure
	4.2.4.3 Finding Segment Boundaries
	4.2.4.4 Payload Decoding

	4.3 Experimental Results
	4.3.1 Experimental Setup
	4.3.2 Symbol Distinguishability
	4.3.3 Bandwidth Evaluation
	4.3.4 Through-Wall Evaluations
	4.3.5 Attacking Distance Evaluations
	4.3.6 Error Analysis

	4.4 Countermeasures
	4.5 Conclusion

	5 Screen Content Detection Using EM Emanations From GPU
	5.1 Background
	5.1.1 GPU Architecture
	5.1.2 Dynamic Voltage and Frequency Scaling
	5.1.3 Electromagnetic Emanations

	5.2 Threat Model
	5.3 New Exploitable EM Emanations
	5.3.1 Experimental Setup
	5.3.2 EM Signal of GPU Memory Clock
	5.3.3 Activity Identification
	5.3.4 Propagation Distance and Wall Penetration

	5.4 Signal Transformation and Enhancement
	5.4.1 Time Series Derivation
	5.4.2 Strong Noise Contamination Effect Reduction

	5.5 Case Study 1: Website Fingerprinting
	5.5.1 GPU-Accelerated Webpage Rendering
	5.5.2 EM-Based Website Fingerprinting
	5.5.3 Evaluation
	5.5.3.1 Nearby Scenario
	5.5.3.2 Faraway Scenario
	5.5.3.3 Evaluations with Relaxed Limitations

	5.6 Case Study 2: Keystroke Timing Inference
	5.6.1 Keystroke Detection
	5.6.2 Evaluation

	5.7 Ineffectiveness of Disabling GPU DVFS
	5.7.1 AM-Modulated EM Emanations
	5.7.2 Evaluation and Discussion

	5.8 Countermeasures
	5.9 Conclusion

	6 Future Work
	7 Conclusion
	 References

