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Chapter 1 

 

1 Introduction 

Observational studies with time-to-event outcomes in electronic healthcare records have 

been widely used to estimate the effects of treatments, exposures, and medical interventions on 

health outcomes in a typical clinical setting. Observational studies allow researching on target 

groups that are not typically studied in clinical trials and exploring the effects of harmful 

exposures that cannot be studied in randomized trials. In randomized trials, randomization can 

ensure that treated sample will not differ systematically on average from control sample in both 

measured and unmeasured baseline characteristics. Treatment effect can be estimated by directly 

comparing outcomes between treatment and control groups. Compared to random clinical trials, 

the lack of random distribution assignment in observational studies confounds the effects of 

exposures, due to the potential differences in covariate distributions between two groups. 

Observational studies could be subject to treatment-selection bias. Thus, the effect of treatment 

should not be estimated by simply comparing outcomes between treatment and control groups. It 

is essential to minimize the confounding effects for improvement of internal validity in 

observation studies with statistical methods such as propensity scores (PS) (Austin & Schuster 

2016). Insurance claim data are commonly used in observational studies, which mainly provide 

diagnosis, prescription, and insurance information. But electronic health records (EHR) offer 

potential confounding clinical characteristics and laboratory measures that are usually 

unavailable in insurance claims data, which can improve effect estimation in observation studies 

(Polsky et al. 2009). 

Propensity score is defined as the probability of a subject receiving treatment 

conditioning on the observed baseline covariates (Rosenbaum & Rubin 1983). It can be 

considered as a balancing score that attempts to balance the distribution of measured covariates 

between treatment and control groups (Joffe & Rosenbaum 1999). The distribution of measured 

baseline covariates between the two groups should be similar within a subset of patients with the 

same propensity score (Austin 2011). Propensity scores can be used in studies when the 

treatment assignment is strongly ignorable, which required two conditions (D’Agostino 2007). 
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One is the assumption that all variables that affect treatment assignment and outcome have been 

measured in the study and used for PS methods. Including variables that are actually 

unassociated may slightly increase variance in estimation. But this is acceptable since excluding 

potentially associated variables can be very costly in terms of bias increasing (Shadish et al. 

2008; Stuart 2010). The other condition is that every subject should have a probability larger 

than 0 of receiving either the treatment or control (Austin 2011). With these two conditions met, 

propensity score methods can help with obtaining a balanced distribution in covariates between 

compared groups.  

Parametric models are commonly used for PS estimation (e.g., logistic models based on 

baseline covariates) and would be efficient if models are correctly specified. Variables used in 

the model should be pretreatment covariates that affect the outcome. But parametric models 

usually hold strong assumptions for optimal estimation and model misspecification might affect 

covariate balance in covariates and increase bias in treatment effect estimates. Recent alternative 

approaches tend to address these issues with data-driven models like machine learning (ML) 

methods. Gradient boosting model and random forests have been suggested as helpful ML 

algorithms for PS estimation (Pirracchio2014; Setoguchi et al. 2008: Lee et al. 2010). Super 

Learner (SL) allow one to apply multiple ML algorithms simultaneously. 

Super Learner is a method that chooses the optimal regression algorithm from a given set 

of candidate algorithms that can include both parametric and data-driven algorithms (Dudoit 

&van der Laan 2005; van der Laan el al. 2007). The selection of algorithms depends on cross-

validation and the choice of a loss function. Then a weighted linear combination of the candidate 

algorithms will be used as a new estimator, which is called SL estimator. This combination of 

methods has been demonstrated to perform asymptotically at least as well as the best option in 

the given set of algorithms, if the set does not contain the true parametric model of the dataset 

(Dudoit &van der Laan 2005). Despite the potential benefits for PS estimation, applying machine 

learning methods can be quite time-consuming and may have higher requirements for computing 

power (van der Laan el al. 2007).  

Common ways of utilizing propensity scores include stratifying or subclassifying data 

based on PS, matching treated subjects with control subjects based on PS, reweighting the 

subjects with weights derived using the PS, and adjusting the regression model with PS (Stuart 

2010). When the outcome data is already available, a drawback of PS matching methods is that 
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not all data are utilized. Some control subjects are discarded and not used in the analysis even 

though they might be in the range of the treatment groups’ scores. Weighting methods, such as 

inverse probability of treatment weighting (IPTW), matching weights, and overlap weights, 

instead can use all subjects in the data (Franklin et al. 2017; Li et al. 2019). Contrasting with the 

nearest neighbor matching method which assigns each individual a weight of either 0 or 1, 

weighting methods assign weights between 0 and 1 to individuals (Stuart 2010).  

Time to an event of interest in many types of studies, including in pharmaco-

epidemiological studies, use EHR data. A challenge in the time-to-event setting is that subjects 

might be censored before their actual survival status are recorded. Unlike in cross-sectional data, 

excluding these patients from time-to-event data or simply assuming them alive or dead may 

seriously bias the treatment effect estimation. Moreover, survival times in time-to-event data are 

usually skewed, which limits the effectiveness of analysis methods that assume a normal data 

distribution. Thus, the conclusions for cross-sectional data might not be generalizable to time-to-

event data even for studies with settings similar in other conditions. We used the Cox 

proportional hazard model for data generation and treatment effect estimation to address the 

features of time-to-event data. 

The objective of this study is to implement parametric model (logistic regression models) 

and data-driven models (machine learning methods) for PS estimation, adjust the effect 

estimation models with or without weighting based on PS, and evaluate the performances of 

different combination of PS estimation and application methods on simulated survival data 

inspired by Right Heart Catheterization (RHC) dataset. We assess each approaches’ ability to 

obtain balanced baseline covariate distributions between treatment and control groups and 

explore the bias of the treatment effect estimates and the coverage of the corresponding 

confidence intervals for the time-to-event outcomes. We compare the methods to evaluate when 

it would be beneficial to utilize more computationally intensive data-driven approaches and 

when weighted models with logistic-based PS would perform well enough. Some steps further 

from previous studies on comparing machine learning and the logistic regression method for PS 

estimation is that we include scenarios with second-order terms in the true PS models and not 

only first-order terms (Pirracchio 2014). We focus on time-to-event data while previous studies 

focused on cross-sectional data and applied linear logistic regression models. We use more 

recent PS weighting methods instead of Inverse Probability Treatment Weighting (IPTW) that 
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have been typically used as a representative of PS weighting approaches in method comparison 

studies. We also consider real-world application on a health dataset commonly used for studying 

PS. 
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Chapter 2 

 

2 Methods 

2.1 Propensity Score Estimation Methods 

2.1.1 Logistic Method 

 For observational studies, propensity score is commonly estimated through a logistic 

model: e(Xi; β) =
1

1+exp(−Xiβ)
. The βs in the model are obtained through logistic regression fitted 

onto the given dataset so that the model can produce the predicted probability of treatment, 

ê(𝑋𝑖; β), as propensity for each subject. In our study, the first element of 𝑋𝑖 is assumed to be 1 in 

the logistic model for notational simplicity. 

2.1.2 Machine Learning Method 

 While propensity score methods have become a standard tool in causal inference, studies 

showed that minor misspecification of regression models on the PS can lead to substantial bias in 

the estimates of treatment effect (Kang & Schafer 2007). Traditional approaches to modeling 

prediction have primarily included parametric models like logistic regression model (Brookhart 

et al. 2006), which require assumptions that may not be always satisfied in practice. The 

common application ways of using such methods, like using merely main terms and assuming 

additivity-only relationship between covariates, also might not provide optimal estimation for PS 

thus bias the treatment effect estimation. This has led to a growing interest in the use of more 

adaptive regression techniques to improve the estimation of PS. Machine learning methods, 

including classification trees, boosting, and random forest, have been developed to overcome the 

limitations of parametric models by loosening the assumption requirements on pre-specified 

models (Hastie et al. 2009).  

 The decision tree method is a supervised machine learning method that can be utilized for 

regression and classification tasks. It can be defined as a set of rules organized in a hierarchical 

structure with layers of nodes and branches like a tree, starting from an initial node that 

represents the whole training dataset. A decision rule is applied to the data at each node to 

partition the dataset into smaller and more homogenous subsets (Breiman et al. 1984). 

Observations within each node of the tree, will have similar probabilities of class membership. 

Each subset can also be split until a convergence criterion is met then the rule stops increasing in 
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complexity and reach a terminal node (Badillo 2020). Now decision trees are almost never used 

in machine learning in their original form. Some primary issues with the original decision trees 

are overfitting and instability (Badillo 2020), which make the rules obtained from the training 

data not performing well on new data. However, The decision tree method becomes the 

foundation for two widely used approaches: random decision forests (random forests) and 

gradient boosting model (GBM) (Badillo 2020). Both random forest method and tree-based 

gradient boosting method use a set of trained decision trees to predict the outcome. The key 

difference between the two methods is on how the trees are created. As an approach adapted 

from the decision tree method, the random forests algorithm constructs many deep decision trees. 

Although each of those trees is likely overfitted, the overtraining problem can be solved by 

combining the outputs of multiple trees. The GBM generally creates shallow decision trees and 

then it can decrease the classification error over time by adding more and more trees (Badillo 

2020). 

 The Random Forest method is a type of machine learning method that constructs a 

multitude of decision trees at training and can be used for classification in PS estimation. A 

random vector Θk, or the 𝑘th, is generated and is independent of the past random vectors Θ1, …, 

Θ𝑘−1 but all vectors are created using an identical distribution. And a tree is developed using the 

training set and Θ𝑘, which leads to a classifier ℎ(𝑥, Θ𝑘) as the decision rule for the tree. Input 

variables for each tree are randomly selected in subsets of fixed size in the training data (Ferri 

2020). After a number of trees are generated, the output would be the class selected by most trees 

or by averaging the results from all trees (Breiman 2001). For the estimation of propensity score 

based on the training data, random forest algorithm draws multiple random samples from the 

whole dataset to start many trees (Cham et al. 2016). The data at each node is partitioned into 

branches below by rules for covariates and this data division process continues until the final 

node. The propensity score is estimated as the proportion of treated subjects in all subjects 

retained in a final node. This assigns an estimated score to subjects following one specific path 

of rules in a tree and each tree will have a whole set of propensity scores assigning to the 

subjects following each path of rules. The final rules for propensity score estimation will be 

summarized by averaging the propensity scores sets from all trees generated by the algorithm. To 

predict a subject’s propensity score after setting up the estimation rules, the data for this subject 
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will go through all trees generated by the algorithm and the propensity score will be estimated by 

the probability of being voted as a treated subject by all trees.  

 Gradient boosted modeling (GBM) is a machine learning technique that use gradient 

boosting to create multiple decision trees (Ferri 2020). Decision trees are referred as 

classification trees when the predicted outcome is a class or regression trees if the outcome is 

numerical. Collectively these methods can be referred as Classification and Regression Trees 

(CART). “Boosting” means combining the performance of many “weak” models in order to 

produce a more powerful whole model (Friedman et al. 2000). GBM is a prediction model in the 

form of a collection of rough regression models to improve predictive performances (Freidman 

2001). The idea is combining many simple fixed-size models in a forward and stagewise fashion 

instead of finding one best model for better predictive performances (Elith et al. 2008; Friedman 

et al. 2000). For propensity score estimation by GBM, an initial regression model is built to 

roughly fit the whole training data (McCaffrey 2004). Then the algorithm searches for a small 

adjustment in the form of a small simple model to add to the initial model and improves the 

whole model. The adjustments do not change previous models and only adds on fitting 

improvement based on residual points in previous models. The model fitting and adjustment 

process continues until a chosen loss function is minimized. 

 Despite the strengths of these machine learning methods compared to parametric methods 

for PS estimation, these methods have their own limitations so that they can only perform well in 

rather specific situations and might not fit well across various settings. Super Learner (SL) has 

been proposed as a method for optimal selection of regression algorithms and selects from a set 

of candidate algorithms based on cross validation (Dudoit & van der Laan 2005; van der Laan 

2006; Sinisi et al. 2007). The selection strategy depends on the choice of a loss function (L2 

squared error in this study). Comparison of candidate algorithms’ performance relies on V-fold 

cross validation. SL averages the estimated risks across the validation sets and produces the 

cross-validated risk for each algorithm. And the weighted linear convex combination of the 

candidate algorithms will be chosen as the most optimal combination as it has the smallest 

estimated risk. This combination of candidate algorithms is referred as the SL estimator, which is 

applied to the whole learning data (van der Laan 2007). In our study, Random Forest 

(randomForest function in R) (Liaw & Wiener 2002) and GBM (XGBoost function in R) (Chen 

& Guestrin 2016) were included in the SL library as the candidate algorithms. These two 
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algorithms were proposed to have better performance in bias reduction and stability in results 

(Ferri 2020), which fell into our main focus of the performance comparison. 

 

2.2 PS Application Methods: Weighting 

The estimated propensity scores can be used in several primary ways to help with 

estimating the treatment effect, such as stratification or subclassification on PS, PS matching 

methods, PS adjustment method, and PS weighting method (Austin & Stuart 2015). Many 

studies have been conducted for the first three types of methods, but performance evaluation 

needs more discussion on PS weighting methods. We focused on weighting methods where each 

subject was weighted by 𝑤𝑖, a function of the subject’s PS (Stuart 2010). Under weighting 

methods, a hypothetical population is created with the 𝑤𝑖s and ideally should have balanced 

covariate distributions among the treatment and the control groups. A general class of such 

weights, 𝑤𝑖, is called balancing weights (Li et al. 2018).  

2.2.1 Inverse Probability of Treatment Weighting 

 Inverse probability of treatment weighting (IPTW) is a weighting scheme widely used for 

balancing covariates. Using propensity scores that summarize differences in measured sample 

characteristics, IPTW creates a weighted pseudopopulation in which both treatment group and 

control group resemble the complete sample (Li et al. 2019). IPTW is defined as 1/𝑒�̂� for treated 

subjects and 1/(1 − 𝑒�̂�) for control subjects (Austin & Stuart 2015). It inverses the probability of 

being assigned with treatment of the sample. The target population for this method is the entire 

study cohort. Some subjects in the nonoverlap area of two groups’ PS distribution may receive 

very large weights in this scheme, resulting in large bias and high variance in treatment effect 

estimation. Trimming off the nonoverlap regions addresses this issue but may discard subjects 

with outcome events and increase the variance. Truncating the subjects with weights outside of a 

certain percentile range (𝑟th to (1 − 𝑟)th percentile) may help reduce the influence of such type 

of extreme weights while also utilizing the whole sample in the analysis (Cole & Herman 2008). 

2.2.2 Matching Weights 

 Matching weights is an alternative weighting method to limit the impact of extreme 

weights from nonoverlap in the PS and improve covariate balance by treating the same estimand 

as pair matching on the PS (Li & Greene 2013). The matching weight is defined as 𝑤𝑖 =
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𝑚𝑖𝑛(𝑒𝑖,1−𝑒𝑖)

𝑒𝑖
 for treatment group and  𝑤𝑖 =

𝑚𝑖𝑛(𝑒𝑖,1−𝑒𝑖)

1−𝑒𝑖
 for control group. This method 

downweights overabundant subjects in the sample, such as treated subjects with high PSs and 

control subjects with low PS. In contrast, IPTW upweights the underestimated subjects in the 

sample like treated subjects with low PSs and control subjects with high PSs. So those subjects 

that would receive very high weights under IPTW approach will receive at most 1 as their 

weights under matching weights approach. And no patients will be excluded from the sample 

although they might be downweighted. 

2.2.3 Overlap weights 

 Overlap weight is a newer weighting method developed for better balancing function and 

addresses some of the issues of IPTW (Li et al. 2019). The overlap weight is defined as 𝑤𝑖 =

1 − 𝑒�̂� for treatment group and wi = 𝑒�̂� for control group, which is the probability of a patient 

being assigned to the opposite group. Overlap weight upweights subjects having substantial 

probability of receiving treatment and downweights the subjects in the tails of the PS 

distribution. Therefore, subjects with PS of 0.5 would make the largest contribution to the effect 

estimation and those with PS close to 0 or 1 would make smallest contribution. It targets on the 

population with the most overlap in their observed covariates.  

2.2.4 Comparison of different weighting methods 

 Compared to stratification and subclassification on PS, the baseline covariates of treated 

and control samples can be easily described and presented under IPTW. With the assumption 

that all of the important confounders are included in the dataset, IPTW may be a convenient PS 

estimation for its simplicity and alignment with the ideal scenario where the entire sample, rather 

than subsets, had been randomized to the intervention of interest. However, IPTW might be more 

sensitive to misspecification of PS estimation model (Deb 2016). And it may perform poorly 

when the treatment group and the control group are initially very different or when some patients 

have extreme PS near 0 or 1, which means a subject might always receive treatment or always in 

control group in the model. Using IPTW method on sample with such patients might lead to 

larger bias and variance in the estimated treatment effect. Extreme propensities are common in 

large datasets where inclusion criteria could be broadly defined. Although trimming methods 

have been suggested as an improvement approach by excluding patients with extreme 
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propensities, the decision rule for trimming methods might be unclear and controversial and they 

can result in substantial sample size reduction (Li et al. 2019).  

 Matching weight is an alternative weighting method that can limit the influence of 

subjects with extreme propensity scores (Franklin et al. 2017). It can confer numerical stability 

compared with IPTW by focusing on treatment effects in subjects with good overlap on the 

propensity score between treatment and control groups (Yoshida 2017). Compared to IPTW, 

overlap weighting method is a newer PS weighting method meant for better performance in 

balance and precision. These weights are bounded in a rational range (0-1) and thus substantially 

reduce the influence of subjects at tails of the PS distribution without removing them from the 

sample. Overlap weighting method may also minimize the large-sample variance of treatment 

effect estimator (Li et al. 2019).  

 

2.3 Overall simulation structure 

We performed a set of Monte-Carlo simulation experiments with simulated data inspired 

by the Right Heart Catheterization (RHC) dataset (Connors et al. 1996) to examine the 

performance of different propensity score estimation and application methods on estimating the 

treatment effect for the time-to-event outcomes and improving covariate balance. The data were 

simulated as a hypothetical cohort study with a binary treatment A, a time-to-event outcome and 

eleven covariates Wis. We had a similar survival time distribution (until 90 days) and incidence 

rate as the RHC dataset. Datasets were generated 1,000 times for four simulation scenarios which 

differed in the true association model between covariates, treatment and outcome. Propensity 

scores were estimated with the traditional logistic regression model and machine learning 

methods. We then explore the performance of two recently proposed propensity score weighting 

approaches, matching weight and overlap weight methods, in estimating the treatment effect in 

the time-to-event model. In each scenario, the performance will be compared using unadjusted 

and adjusted models with or without weights. 

2.3.1 Simulation Scenarios 

In practice, researchers do not know the true structure of the association between 

treatment and covariates and similarly, the association between the outcome and the covariates. 

Thus, they might fit a mis-specified model by assuming linear and/or additive relationships and 

ignoring potential interaction or quadratic terms in the true model. To compare the performance 
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of different methods when using mis-specified models, we designed four scenarios differing in 

the complexity of the associations between the treatment/outcome and the covariates, or the “true 

models”. The complexity varied in the degree of non-linearity and/or non-additivity of modeled 

associations between the covariates across the models. In each scenario, the relationship between 

covariates in the true treatment model and the true outcome model was the same. 

The designed four scenarios had the following properties: 

• Scenario A: additivity and linearity (main effects only); 

• Scenario B: non-linearity (main effects + 3 quadratic terms); 

• Scenario C: non-additivity (main effects + 10 two-way interaction terms);  

• Scenario D: non-additivity and nonlinearity (main effects + 10 two-way interaction terms 

+ 3 quadratic terms). 

 The Cox PH models and the PS estimation models in application were additive and linear 

only between the covariates across all scenarios. The true model in Scenario A were the same 

with the applied model for PS estimation and treatment effect estimation model. The true models 

in Scenario B, C, and D were different from the treatment effect estimation models applied onto 

the simulated datasets. Therefore, the applied models in Scenario B, C, and D were incorrect and 

the deviation from the true models increased from Scenario B to D.  

2.3.2 Data Simulation 

 The motivating Right Heart Catheterization (RHC) dataset was obtained from a 

prospective cohort study called Study to Understand Prognoses and Preferences for Outcomes 

and Risks of Treatments (SUPPORT) that examined the association between the use of right 

heart catheterization during the first 24 hours of care in the intensive care unit (ICU) and 

subsequent survival, intensity of care, length of stay, and cost of care (Connors et al. 1996). The 

study was operated between 1989 and 1994 in five US teaching hospitals. The study sample was 

5735 critically ill adult patients receiving ICU care for one of the nine prespecified disease 

categories. The main outcomes were death status, survival time, intensity of care, cost of care, 

length of stay in the ICU and hospital and these outcome measurements were determined from 

the clinical record and from the National Death Index. In Connor’s study (1996), propensity 

scores for this dataset were constructed using multivariable logistic regression. The association 

of right heart catheterization treatment with specific outcomes were analyzed with case-matching 

and multivariable regression modeling after adjusting for treatment selection with the propensity 
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scores. Sensitivity analysis was used to estimate the potential effect of missing covariates on the 

results. 

We used the RHC dataset as the inspiration for generating covariates, treatment variable, 

and outcome variable in the simulated datasets. The RHC dataset had eight covariates that were 

relatively impactful based on the Cox PH model we fitted to it, which were PaO2/FIO2 ratio 

(“pafi1”), age (“age”), heart rate (“hrt1”), respiratory rate (“resp1”), bilirubin level (“bili1”), do-

not-resuscitate status (“dnr1”), cardiovascular diagnosis (“card”) and medical insurance type 

(“ninsclas”). The simulated datasets in our study had eleven baseline covariates which were 

generated to have influence on both treatment selection and the outcome. We simulated five 

continuous covariates from independent standard normal distributions and six binary covariates 

were simulated from independent binomial distribution to have similar incidence rates as the 

selected variables in the RHC dataset. Each binary covariate in the simulated datasets 

represented a nominal value of selected categorical covariates in the RHC dataset.  

For the 𝑖th subject in a dataset, the probability of the treatment was estimated from one of 

the four true PS models which were four logistic models each corresponding to a scenario 

(Scenario A - D). The coefficients of the models were obtained from fitting the same models to 

the RHC dataset and then inflating some coefficient values to ensure that each covariate included 

in the model had an impact on treatment selection. The coefficient for the quadratic term of age 

variable was set to be 0.01 if its absolute value from model fitting was smaller than 0.01. The 

coefficients for the interactions term related to cardiovascular diagnosis variable (“card”) was set 

to be 0.1 if the original values from model fitting was smaller than 0.1. All other coefficients that 

had absolute values smaller than 0.001 were set to 0.001. The formulas used for simulating the 

probability of treatment are given in Appendix D. And for each subject, treatment status was 

generated from a Bernoulli distribution with subject-specific parameters 𝑝𝑖: 𝐴𝑖~Be(𝑝𝑖), where 

𝑝𝑖 =
exp(𝑋𝑇β)

1+exp(𝑋𝑇β)
, 𝑋𝑇 is the input matrix containing the generated covariate columns and the 

columns for the specified interaction or quadratic terms, and β is the coefficients for the 

treatment model.  

 We generated an observed time-to-event outcome for each subject using a Cox 

proportional hazards model with an exponential baseline hazard, the actual treatment assigned 

and simulated covariates (Morina & Navarro 2014; Bender, Augustin, & Blettner 2005). The 

coefficients used to simulate the time-to-event outcome were obtained from the Cox proportional 
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hazards model that were same in relation structure between covariates with the corresponding 

treatment models in each scenario. There were four sets of coefficients, each for one of the four 

scenarios. The true treatment effect and the formulas for simulating the time-to-event outcomes 

are given in Appendix D. When generating the outcome status, the generated survival times were 

censored at 90 as a representative of 90 days in order to make the simulated time distribution 

similar to the survival time distrribution of the RHC dataset.  

We designed the following factors to vary within each scenario: (1) PS estimation: the 

propensity scores were generated with the logistic method or the machine learning method 

(Super Learner); (2) whether adjusting for baseline covariates besides treatment in the treatment 

effect estimation model, (3) whether using weights in the treatment effect estimation model; (4) 

PS application: the propensity score were applied as weights through the matching weight 

approach or the overlap weight approach. Therefore, there were ten cases (Case 1 - 10) for each 

scenario, five for the adjusted models (no weights, matching weights calculated using logistic 

regression, matching weights calculated using the Super Learner, overlap weights calculated 

using logistic regression, and overlap weights calculated using the Super Learner) and five for 

the unadjusted models (no weights, matching weights calculated using logistic regression, 

matching weights calculated using the Super Learner, overlap weights using logistic regression, 

and overlap weights calculated using the Super Learner). In each scenario, we simulated 1000 

datasets at three sample sizes: n=100, 500, or 1000 subjects.  

 

2.4 Performance Metrics 

 We measured and compared the performance of the method combinations in the ten cases 

under each scenario through the following metrics: 

• The performance of point estimate of the treatment effect: bias, mean squared errors 

(MSE), and rooted mean squared errors (RMSE). The bias was reported as absolute bias.  

Bias =
1

𝑁
∑(𝑌 − 𝑌�̂�)

𝑁

𝑖=1

 

MSE =
1

𝑁
∑(𝑌 − 𝑌�̂�)

2
𝑁

𝑖=1
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RMSE = √∑ (𝑌 − 𝑌�̂�)
2𝑁

𝑖=1

𝑁
 

𝑌 is the true hazard ratio of treatment from the Cox PH model fitted onto the RHC 

dataset. 𝑌�̂� is the estimated hazard ratio of treatment fitted onto the 𝑖th simulated dataset. 

𝑁 is the number of simulations.  

• The performance of variance estimators: 95% confidence interval coverage and width. 

If the true hazard ratio 𝑌 is within [𝑒𝑥𝑝(𝑙𝑜𝑔(𝑌�̂�) − 𝑡𝑐𝑠𝑖/√𝑛), 𝑒𝑥𝑝(𝑙𝑜𝑔(𝑌�̂�) + 𝑡𝑐𝑠𝑖/√𝑛)], 

then it is counted as covered for once. 𝑡𝑐 = 𝑡0.975,𝑛−1 is the critical value of the 𝑡 statistic 

with the significance of 0.05 and n-1 degrees of freedom. 𝑠𝑖/√(𝑛) is the standard error of 

log(𝑌�̂�), where 𝑠𝑖 is the sample standard deviation for log(𝑌�̂�). 𝑛 is the sample size of that 

dataset. 

Confidence interval width: 2 𝑡𝑐𝑠/√𝑛 

• The balance in the covariates between treated and control subjects: the average 

standardized absolute mean difference (ASAM). ASAM of 0.1 or more were considered 

to be of concern (Austin 2009). 

𝐴𝑆𝐴𝑀 =
1

𝑛𝑐
∑

𝑀1 − 𝑀2

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑

𝑛𝑐

𝑗=1

 

 𝑀1and 𝑀2 are the means of one covariate in the treatment group and in the control group. 

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 is the pooled standard deviation for the covariate values in the total sample. 𝑛𝑐 is the 

number of covariates in the datasets. Note that this equation is the ASAM for one simulated 

dataset rather than across the 1,000 simulated datasets. 

 All performance metrics used for method performance comparison were the average of 

the metrics across the 1,000 simulated data sets. 

  

2.5 Application on Real-Word dataset 

 Right Heart Catheterization dataset (introduced in section 2.3.2) has been widely used as 

a biostatistical dataset for illustrating and testing propensity score methods. It has a relatively 

high outcome event rate while many studies on propensity score methods use datasets with rare 

outcomes. We applied the methods of interest to the RHC dataset to evaluate the performance of 
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PS estimation methods, PS weighting methods, and covariate adjustment on a treatment effect 

estimation model in terms of 95% CI width and covariate balance. The patterns of method 

performance in the RHC dataset would be compared with those found in the simulated datasets 

as a partial examination on the findings from the simulated results. 

 We applied the same methods used in the ten cases under the simulation setting to the 

RHC dataset, including covariate adjustment in treatment effect estimation model or using 

weights in the model, PS estimation methods (logistic- and SL-based), and PS application 

methods (matching weight and overlap weight).  

 All analyses were performed in R statistical software version 4.0.2 (R Foundation for 

Statistical Computing, Vienna, Austria), running on a Windows 10 x64 platform. R codes were 

provided in the Appendix. 
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Chapter 3 

 

3 Results 

The simulation results obtained for the four scenarios are presented in Table 1. 

 

3.1 The Cox PH model 

Under Scenario A, the true model on the association between treatment and covariates 

was linear and additive so the adjusted Cox PH model when estimating the treatment effect 

estimation in the simulated datasets was correctly specified. The true models under Scenario B, 

C, and D had nonlinear, nonadditive, or both features so the linear additive models used in the 

propensity score estimation and covariate adjustments were incorrectly specified in these 

scenarios. Three combinations of adjusting and weighting methods, or three types of models, 

were compared in performances: unadjusted weighted models, adjusted unweighted models, and 

adjusted unweighted models. Unadjusted weighted models can estimate marginal treatment 

effects with covariate distribution balance addressed. Adjusted unweighted can be used for 

conditional effects estimation. Adjusted weighted models might be helpful if people are 

interested in utilizing the information in the data in both adjusting and weighting approaches. 

 Since this study focuses on clinical studies using EHR data often having larger sample 

sizes, the discussion of the results will be initially on the simulations of sample size 1000 and 

then makes comparison with the simulations of the smaller sample size (i.e., n=100). 

 

3.2 Performance of Treatment Effect Estimator 

 The performance of treatment effect estimator was measured by bias, mean squared 

errors (MSE), and rooted mean squared errors (RMSE). Overall, adjusting appeared to be more 

beneficial than weighting towards the performance of the treatment effect estimator at sample 

size of 1000 (Figure 1). The SL-based PS estimation method performed similarly with the 

logistic-based method. Across the scenarios, misspecification of PS model appeared to have 

larger influence on bias when the true PS model became more complex, which means the bias 

difference between the three types of models increased for scenarios with more complex true 

models (Table 1).  
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Table 1. Simulation Results Obtained under 4 Scenarios with Different Propensity Score 

Estimation and Application Methods (n=1000) 
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3.2.1 Weighting without Covariate Adjustment 

 The bias increased as the true model became more complex (Table 1). For the PS 

matching weights method with no covariate adjustment, the bias of logistic-based estimator was 

slightly larger than SL-based estimator when the applied model was correct. The bias associated 

with SL-based estimators were similar to logistic-based estimators for the scenarios when the PS 

model was non-additive or both non-additive and non-linear. The biases of logistic-based 

estimators did not show substantial difference from SL-based estimators in general when using 

PS matching weights without covariate adjustment (Table 1). 

 For the PS overlap weight method, the bias associated with logistic-based was slightly 

higher than SL-based estimator for the non-linear true model (Table 1). The biases of the 

logistic-based estimators were similar to those of the SL-based estimators across all scenarios 

when using PS overlap weights without covariate adjustment.  

 The matching weight method tended to have smaller biases than the overlap weight 

method. The biases for both nonlinear and nonadditive true models (Scenario D) were generally 

higher than those for the true models under other scenarios (Scenario A, B, C). 

3.2.2 Covariate Adjustment without Weighting 

 When using covariate adjustment but not weighting, the bias was relatively smaller than 

in unadjusted weighted models even for the scenarios when the PS model was not correct (Table 

1). The differences across the scenarios were negligible. 

3.2.3 Covariate Adjustment with Weighting 

 For the PS matching weight method, the bias associated with logistic-based estimators 

were lower when the applied PS model was correctly specified than the bias in other scenarios 

(Table 1). Similar patterns were observed with SL-based estimators (Table 1). The biases of 

logistic-based estimators were slightly higher than those of SL-based estimators in general when 

adjusting covariates and using PS matching weights. 

 For the PS overlap weight method, the bias associated with both logistic-based and SL-

based estimators were lower when the applied model was correctly specified (Scenario A) than 

other scenarios (Table 1). The logistic-based estimators produced bias slightly lower with the 

SL-based estimators across all cases when adjusting covariates and using PS overlap weights.  
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 The matching weight method tended to have similar scales of biases than the overlap 

weight method. The biases of correct applied models (Scenario A) might be lower than Scenario 

B, C, and D. 

3.2.4 Comparison between the Three Adjusting/Weighting Situations 

When the sample size was 1000, adjusted unweighted models were associated with the 

smallest biases, followed by adjusted weighted models then unadjusted weighted models. 

Adjusting for covariates with or without PS weights substantially improved the bias reduction 

compared to not using covariate adjustment (Table 1). Thus, unless the investigator is interested 

in marginal effects, adjusting for covariates tends to reduce bias better than not adjusting in 

studies with larger sample sizes.  

 

3.3 Performance of variance estimator 

 The performance of variance estimator was evaluated by 95% confidence interval 

coverage and CI width. At sample size of 1000, models with covariate adjustment had higher 

95% CI coverage rates than unadjusted models. SL-based estimators have better 95% CI 

coverage rates and wider CI than logistic-based estimators and adjusting seemed more beneficial 

than weighting (Table 1). 

3.3.1 Weighting without covariate adjustment 

 For the PS matching weight method, the coverage rates of 95% confidence intervals (CI) 

associated with logistic-based estimators when the true PS model was both nonlinear and 

nonadditive were lower than the nominal level for other scenarios (Table 1). A similar pattern 

was observed for SL-based estimators (Table 1). The CI coverage rates and CI width for SL-

based estimators were slightly better than logistic-based estimators when using PS matching 

weights without covariate adjustment (Table 1). 

 For the PS overlap weight method, the coverage rates of 95% CI associated with both 

logistic-based and SL-based estimators were lower when the true model was both nonlinear and 

nonadditive than the nominal level of other scenarios (Table 1). The CI coverage rates of SL-

based estimators performed similar with those of logistic-based across the scenarios when using 

PS overlap weights without covariate adjustment. 

 The CI coverage rates for weighted outcome models without covariate adjustment were 

generally not ideal (around 90% or lower). The matching weight method produced better CI 
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coverage rates than the overlap weight method for both logistic-based and SL-based estimator. 

The CI width did not clearly differ between the two PS weighting methods. Weighting did not 

provide nominal CI coverage rates based on the results of unadjusted weighted models, even 

when the PS model was correct and the covariate balance was good.  

3.3.2 Covariate adjustment without weighting 

 The 95% CI coverage rates were similar across different scenarios. The CI coverage rate 

for correct PS model (Scenario A) was slightly lower than 95% and the nominal rate for other 

scenarios were slightly higher than 95% (Table 1). 

3.3.3 Covariate adjustment with weighting 

 For both matching and overlap weight methods, the 95% CI coverage rates did not 

clearly differ between logistic-based and SL-based estimators and were around 95%. There was 

also no clear difference between the rates from matching and overlap weight methods.  

3.3.4 Comparison between the three adjusting/weighting situations 

Among the three cases at sample size of 1000, adjusted unweighted models gave the 

highest rates of CI coverage and slightly narrower CI than adjusted weighted models. Adjusted 

unweighted models’ and adjusted weighted models’ performances were similar to each other 

compared and both obtained better coverage than the unadjusted weighted. The CI coverage rates 

with covariate adjustment but no weighting were close to 95%. The CI coverage rates for models 

with neither covariate adjusting nor weighting were generally lower than 90%.  

 

3.4 Balance diagnosis 

 Propensity score weighting aims to reduce bias in estimates by obtaining more balanced 

treatment groups, in terms of observed covariates. The balance of covariate distribution was 

diagnosed with the average standardized absolute mean difference (ASAM). An ASAM of 0.1 or 

more indicates that the two groups have poor balance (Austin 2009). The ASAM was solely 

determined by the weights used in the applied models since it was related to how balanced the 

variable distributions were in the sample and not related to what models would be applied to the 

sample. So, the comparison was made between weighted and unweighted models and the three 

combinations of weighting/adjusting were not applicable here. 
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3.4.1 When the applied model was weighted 

 For the PS matching weight method, the ASAM values associated with logistic-based PS 

were smaller than the SL-based PS. The ASAM values were similar across the four scenarios for 

each PS estimation methods (Table 1). Although SL-based PS had slightly larger ASAM, the 

difference was not substantial considering that ASAM were not of concern when less than 0.1.  

 The PS overlap weight method had similar trends for ASAM with the matching weight 

method. And the differences between the two types of weighting methods were not considerable 

since they were both less than 0.1. But overlap weight method did produce nearly complete 

covariate balance when combined with logistic PS estimation method, as Li (2019) claimed. 

 The ASAM of adjusted unweighted models were not negligible (Table 1). When the true 

model was nonadditive, the ASAM values tended to be the biggest among all the scenarios, 

which were even bigger than those of nonlinear and nonadditive models (Table 1). In general, 

weighted models had better ASAM than unweighted models. 
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Table 2. Simulation Results Obtained under 4 Scenarios with Different Propensity Score 

Estimation and Application Methods (n=100) 
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3.5 Large and Small Sample Sizes 

Besides simulating for sample sizes of 1000, we also tested the simulations for sample 

size of 500 and 100 to observe the impact of smaller sample sizes. For simulations at all three 

sample sizes, the functions for machine learning methods in Super Learner library were used 

with the default parameters.  

 The simulations results held a similar general pattern for logistic- or SL-based PS 

estimation methods and matching or overlap weight methods at sample size of 100 with 1000 

(Table 2). SL-based estimator in general had similar performance with the logistic-based 

estimator in terms of bias (Table 2). Although the SL-based estimator did have smaller or larger 

biases than the logistic-based estimator, the differences were within the Monte Carlo simulation 

error. Simulation results at a sample size of 500 were very similar to those at 1000 (Table 3). 

However, choosing adjusting or weighting in the treatment effect estimation model 

seemed to have reverse performance in biases at small sample compared to the bias at large 

sample. When the sample size was smaller (n=100), adjusted models had larger biases than 

unadjusted models whether the applied model was correct or not. Unadjusted weighted models 

performed best and were followed by adjusted unweighted models then adjusted weighted 

models (Figure 1 and Table 2). In contrast, adjusting obtains estimates with relatively small bias 

when the sample size is larger (n=500 or n=1000), compared to using PS weights in the 

treatment effect estimation model. This pattern of adjusting outperforms weighting for bias at 

larger sample sizes still exist even when adjusting by a model that is not correctly specified. One 

note is that the bias of unadjusted weighted models substantially increased compared to other 

scenarios but generally were similar to the bias of adjusted models at scenario C. This 

observation might be specific to our study setting since we had ten interaction terms for 

scenarios with non-linear condition and the coefficients for interaction terms related to “card” 

variable were inflated to 0.1. 

When the sample size was smaller, adjusted models had lower 95% CI coverage rates and 

wider CI than unadjusted models especially when the true model became more complex. The 

coverage rates for adjusted models at smaller sample size were around 92% and were lower for 

scenarios of using incorrect PS models than scenarios using correct models (Table 2). And the 

SL-based estimator generally had slightly lower CI coverage rates and wider CI. For both CI 



24 
 

coverage and CI width, unadjusted weighted models performed better than adjusted unweighted 

models than adjusted weighted models.  

For the sample size of 100, the ASAM values associated with the SL-based PS estimation 

method indicated poor balance but ASAM values for the logistic method were still not 

concerning (Table 2). Overlap weight method using logistic-based PS yielded best covariate 

balance. Unweighted models still performed worse in ASAM than weighted models with SL-

based PS. 

3.6 Application on RHC Dataset 

 For the method application on the RHC data, the 95% CI width for treatment effect from 

unadjusted weighted models was the narrowest, followed by adjusted unweighted models then 

adjusted weighted models. The ASAM from weighted models were smaller than that from 

unweighted models. Logistic-based PS used in weighting produced slightly smaller ASAM than 

SL-based PS. But the difference was not concerning as all ASAMs from weighted models were 

smaller than 0.1 (Table 4). Since the RHC dataset is a real-world dataset, the true PS model is 

unknown. The CI width and ASAM patterns in the RHC dataset were consistent to the patterns 

found in the results from the simulated datasets at a sample size of 1000. The treatment effect 

estimates were similar for all methods and both the logistic and super learner propensity score 

estimates improved balance between the treatment groups. This was expected since the RHC 

dataset has 5735 subjects which was relatively large in our simulation setting. Regardless of the 

analysis approach, like previous studies, the estimate of the hazard ratio and the Kaplan Meier 

plot suggest that right heart catherization increases the risk of death (Figure 4 and Table 4). 
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Chapter 4 

4 Conclusion 

4.1 Our Findings 

Figure 1. Bias of SL-based and Logistic-based Estimator in Scenario B at n=1000 and n=100 

 
 

The primary goal of our study was to explore the performance of machine learning and 

logistic regression approaches for PS estimation along with two different weighting techniques 

through bias of treatment effect, 95% CI coverage and CI width, and ASAM for health studies. 

Some comparisons of interest include adjusting for covariates only, weighting without covariate 

adjustment and weighting with covariate adjustment in the treatment effect estimation. At a 

sample size of 1000, adjusting performed better than weighting in terms of reducing bias for the 

treatment effect estimator, even if the covariate adjustment model was not correctly specified. 

For n =100, weighting reduced bias better than adjusting by either correctly or incorrectly 

specified covariate models. Unadjusted weighted models worked best for treatment effect 

estimation, followed by adjusted weighted and unadjusted weighted models. SL-based PS had 

similar performance with logistic-based PS in terms of bias, even when the logistic model was 

not correctly specified. For variance estimation, SL performed better than the logistic method in 

a large sample but worse in a small sample. The matching weight approach had slightly better CI 

performance than overlap weight method for both SL- and logistic-based PS in a large sample 

but these two methods had similar performance in a small sample. At n=1000 or 500, adjusted 
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weighted models performed better in CI coverage at the cost of wider CI than adjusted 

unweighted, followed by unadjusted weighted models. At n=100, unadjusted weighted models 

had best performance in CI coverage and CI width than adjusted weighted models than adjusted 

unweighted models. For covariate balance, weighted models had smaller ASAM values. Using 

SL or logistic method for PS estimation did not have an obvious impact as long as weighting was 

used in the applied model, although the values of ASAM were smaller when estimating PS with 

logistic method.   

 Our study showed that covariate adjustment reduced bias in larger samples and weighting 

reduced bias in smaller samples, which were consistent with previous studies. Hirano & Imbens 

(2001) used the RHC dataset to compare the treatment effect estimation performance of using 

covariate adjustment and IPTW with logistic-based propensity score in linear regression model 

(they were using the dataset as a cross-sectional dataset). Their methods were similar to our cases 

in terms of comparing covariate adjustment with logistic-based PS weighting, although we were 

using matching and overlap weights as PS weighting methods and Cox PH model for treatment 

effect estimation. Our findings were consistent with their conclusion that using both covariate 

adjustment and PS weighting might help with reducing bias. Lee (2010), along with Setoguchi 

(2008), suggested that using machine learning algorithms instead of logistic regression models 

for PS estimation can largely reduce bias across sample sizes, true model scenarios, and PS 

application methods. Freedman (2008) claimed that PS weighting would more often bring in bias 

than help reduce the bias when compared with model adjusting. But our study did not find 

substantial differences in bias reduction between SL-based and logistic-based PS in general. We 

also find that PS weighting could be beneficial for bias reduction for smaller sample sizes. 

However, a major difference to note is that the simulated data in our study was in time-to-event 

structure while the previous studies were conducted on simulated cross-sectional data. Lee 

(2010) and Pirracchio (2014) also used a number of machine learning algorithms for PS 

estimation, either separately or through SL, while we only used two that were mentioned as most 

strong candidate for this purpose. The covariate setting in the previous studies based on data with 

linear and binary outcomes were also different from our study. There were three types of 

covariates in their generated data: exposure predictors that were covariates only associated with 

generated exposure, outcome predictors, and confounders that were associated with both 
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exposure and outcome. Our study used the same covariate model when generating treatment and 

outcome.  

 

4.2 Limitations 

Due to computational feasibility, we did not test on simulation setting with additional 

sample sizes. Thus, the conclusions might not apply to situations that were not represented by 

our simulated data. Some specific simulation setting, such as lower outcome prevalence and the 

presence of covariates with relationships with outcome but not treatment, would require 

investigation. Also, the association between the covariates and the treatment was moderate to 

small in size as the coefficients from the fitted models were relatively small. Stronger association 

could contribute to more distinct patterns in the results.  

The Super Learner method relies on cross-validation which may become infeasible at the 

larger sample sizes in some EHR studies. Our simulation study used the default settings for 

parameters in the machine learning algorithms. This mode of parameter settings might not be the 

optimal setting to utilize the ML algorithms of interest, despite that we chose the algorithms that 

were claimed to have better performance in propensity score estimation (Lee et al. 2010). The 

versions of the machine learning algorithms we applied to the data were those available in the 

Super Learner algorithm library. The performance of machine learning methods might differ 

across algorithm packages and lead to different observations in results.  

 The use of machine learning methods to estimate propensity scores is of interest because 

the true relationship between treatment allocation and observed covariates is generally unknown. 

In our study, machine learning methods do not seem to have better performance than the logistic 

method in terms of bias reduction but might be helpful for variance reduction. Adjusting 

treatment effect models with baseline covariates is more beneficial in a larger sample but less 

beneficial in a smaller sample in terms of bias reduction for bigger sample sizes than having the 

models weighted with PS. The overlap weight method could yield slightly better covariate 

balance if matching weight method could not provide satisfying ASAM values. Future work can 

be done in the outcome setting of rare outcomes, competing risks, or additional PS utilization 

methods such as adjusting for the propensity scores in the outcome model. 
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6 Appendices 

 

6.1 Appendix A. Tables and Figures 

 

Figure 2. Distribution of ASAM for Each Scenario with Logistic or SL Method at n=1000 

 
A) Scenario A (i.e., additivity and linearity); B) scenario B (i.e., nonlinearity C) scenario C (i.e., 

nonadditivity); D) scenario D (i.e., nonadditivity and nonlinearity). The midline represents the 

mean value, and the vertical lines show the 2.5% and 97.5% quantiles. 
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Figure 3. Bias for Different Method Combinations between Logistic/SL and Matching/Overlap 

Weight at n=1000 

 

 
A) Scenario A (i.e., additivity and linearity); B) scenario B (i.e., nonlinearity C) scenario C (i.e., 

nonadditivity); D) scenario D (i.e., nonadditivity and nonlinearity). The midline represents the 

mean value, and the vertical lines show the 2.5% and 97.5% quantiles. 
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Figure 4. Kaplan-Meier Plot for Right Heart Catheterization Data 

 

       
  

  

  

 Days # of risk # of event Survival rate Std. err Lower 95% CI Upper 95% CI 

Treatment 90 1108 68 0.513 0.0107 0.492 0.534 

Control 90 2077 120 0.593 0.00826 0.577 0.609 
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Table 3. Simulation Results Obtained under 4 Scenarios with Different Propensity Score 

Estimation and Application Methods (n=500) 
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Table 4. Method Application on the RHC Data 

 

 
  

True model  Outcome Model PS Estimation 

Model 

PS Weighting 

method 

Estimated 

HR of 

Treatment 

CI width ASAM 

RHC data (True Model 

Unknown) 

Adjusted Unweighted  / 1.257 0.177 0.158 

Logit Matching  1.255 0.186 0.004 

SL Matching 1.196 0.189 0.044 

Logit Overlapping 1.266 0.187 0.000 

SL Overlapping 1.205 0.185 0.025 

Unadjusted Unweighted  / 1.164 0.153 0.158 

Logit Matching  1.209 0.171 0.004 

SL Matching 1.160 0.182 0.044 

Logit Overlapping 1.213 0.170 0.000 

SL Overlapping 1.158 0.171 0.025 
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6.2 Appendix B. Formulas and Coefficients of the Treatment Models and the Outcome 

Models Fitted on the RHC Dataset for Data Generation and Corresponding True 

Hazard Ratio of Treatment for Each Scenario in Simulations 

 

Scenario A 

Treatment model (logistic):  

trt ~ -0.187 - 0.004 pafi1 – 0.004 age + 0.006 hrt1 – 0.018 resp1 + 0.042 bili1 – 0.670 dnr1 + 

0.787 card + 0.581 private + 0.364 medicare + 0.522 priNcare + 0.457 other 

Outcome model (Cox PH model):  

Surv (survtime, death) ~ 0.229 trt + 0.001 pafi1 + 0.01 age  

+ 0.002 hrt1 - 0.001 resp1 + 0.039 bili1 + 0.842 dnr1 - 0.151 card + 0.081 private + 0.015 

medicare + 0.084 priNcare + 0.009 other  

True hazard ratio of treatment: 1.257 

 

Scenario B 

Treatment model (logistic):  

trt ~ -1.449 - 0.004 pafi1 – 0.054 age + 0.001 hrt1 – 0.021 resp1 + 0.042 bili1 – 0.617 dnr1 + 

0.778 card + 0.554 private + 0.439 medicare + 0.569 priNcare + 0.486 other + 0.01 I(age^2) + 

0.001 I(hrt1^2) + 0.001 I(resp1^2)  

Outcome model (Cox PH model):  

Surv (survtime, death) ~ 0.219 trt + 0.001 pafi1 + 0.03 age  

- 0.006 hrt1 - 0.015 resp1 + 0.041 bili1 + 0.856 dnr1 - 0.162 card + 0.071 private + 0.031 

medicare + 0.081 priNcare + 0.011 other + 0.01 I(age^2) + 0.001 I(hrt1^2) + 0.001 I(resp1^2)  

True hazard ratio of treatment: 1.245 

 

Scenario C 

Treatment model (logistic):  

trt ~ -1.048 - 0.005 pafi1 + 0.01 age + 0.007 hrt1 – 0.015 resp1 + 0.053 bili1 - 0.185 dnr1 + 

2.269 card + 0.527 private + 1.578 medicare + 0.898 priNcare + 0.965 other - 0.006 age*dnr1 + 

0.1 age*card + 0.001 age*private – 0.019 age*medicare -0.007 age*priNcare - 0.01 age*other + 

0.1 pafi1*card + 0.1 hrt1*card + 0.1 card*resp1 + 0.1 card*bili1 
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Outcome model (Cox PH model):  

Surv (survtime, death) ~ 0.215 trt + 0.001 pafi1 + 0.015 age  

+ 0.002 hrt1 + 0.001 resp1 + 0.038 bili1 + 2.38 dnr1 + 0.125 card + 0.024 private + 0.09 

medicare + 0.622 priNcare – 0.109 other - 0.021 age*dnr1 + 0.1 age*card + 0.001 age*private  

– 0.001 age*medicare -0.008 age*priNcare + 0.002 age*other + 0.1 pafi1*card + 0.1 hrt1*card    

+ 0.1 card*resp1 + 0.1 card*bili1 

True hazard ratio of treatment: 1.24 

 

Scenario D 

Treatment model (logistic):  

trt ~ -1.572 - 0.005 pafi1 + 0.045 age + 0.003 hrt1 – 0.017 resp1 + 0.053 bili1 – 0.374 dnr1 + 

2.032 card + 0.405 private + 0.868 medicare + 0.093 priNcare + 0.667 other + 0.01 I(age^2) + 

0.001 I(hrt1^2) + 0.001 I(resp1^2) – 0.003 age*dnr1 + 0.1 age*card + 0.003 age*private – 0.006 

age*medicare + 0.007 age*priNcare – 0.003 age*other + 0.1 pafi1*card + 0.1 hrt1*card + 0.1 

card*resp1 + 0.1 card*bili1 

Outcome model (Cox PH model):  

Surv (survtime, death) ~ 0.215 trt + 0.001 pafi1 + 0.017 age – 0.007 hrt1 – 0.014 resp1 + 0.04 

bili1 + 2.328 dnr1 - 0.081 card – 0.003 private + 0.082 medicare + 0.624 priNcare – 0.161 other 

+ 0.01 I(age^2) + 0.001 I(hrt1^2) + 0.001 I(resp1^2) – 0.021 age*dnr1 + 0.1 age*card + 0.002 

age*private + 0.001 age*medicare – 0.008 age*priNcare + 0.003 age*other + 0.1 pafi1*card + 

0.1 hrt1*card + 0.1 card*resp1 + 0.1 card*bili1 

True hazard ratio of treatment: 1.24 
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6.3 Appendix C. R Codes for Simulation 

 

 
knitr::opts_chunk$set(echo = TRUE) 

 

## ===================== 

## packages used 

## ===================== 

library(survival) ## coxph 

library(survey)  ## svydesign and svycoxph 

library(simsurv) ## simsurv 

 

#packages for SuperLearner function 

library(SuperLearner) 

library(caret) 

library(glmnet) 

library(randomForest) 

library(RhpcBLASctl) 

library(xgboost) 

 

#package for ASAM 

library(PSweight) 

start.time = Sys.time() 

start.time 

 

## ===================== 

## simulation parameters 

## ===================== 

 

seed=1026 

set.seed(seed) 

n= 100 ## size of data set 

nsim = 100## number of simulated data sets 

 

lambda_out = .01  

censortime = 90 

## ===================== 

## Create object to save results 

## ===================== 

p_trt = rep(NA,nsim) 

event_rate = rep(NA,nsim) 

times_c<-vector(mode="list", length=nsim) 

times_uc<-vector(mode="list", length=nsim) 

status_list<-vector(mode="list", length=nsim) 

 

##simulated datasets 

dat_cox<-vector(mode="list", length=nsim) 

#load("~/R/summer2020/simulation script 3/sim1D_n1000_datasets.RData") #used when running on saved data 

 

##### for adjusted cox ph model results 

## ignoring weights 

HR_est = rep(NA,nsim) 
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#HR_mse = rep(NA,nsim) 

HR_ci = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci) = c("lower","upper") 

HR_coverage_ind = rep(NA,nsim) 

ci_width_uw=rep(NA,nsim) ##width of CI 

 

## incorporating weights: matching weights 

HR_est_wt = rep(NA,nsim) 

HR_ci_wt = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt) = c("lower","upper") 

HR_coverage_ind_wt = rep(NA,nsim) 

ci_width=rep(NA,nsim) #width of CI 

#CIF_est_wt = matrix(0,nrow = nsim,ncol = n) 

#CIF_mse_wt = matrix(0,nrow = nsim,ncol = n) 

#CIV_coverage_ind_wt = matrix(0,nrow = nsim,ncol = n) 

 

## incorporating weights: overlapping weights 

HR_est_wt2 = rep(NA,nsim) 

HR_ci_wt2 = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt2) = c("lower","upper") 

HR_coverage_ind_wt2 = rep(NA,nsim) 

ci_width2=rep(NA,nsim) #width of CI 

 

 

##from superlearner: coefficients for each ML methods 

model_coef=matrix(0, ncol=2, nrow=nsim)  

colnames(model_coef)=c('RF', 'XGB') 

 

 

 

##ASAM 

asam= matrix(0,nrow = nsim,ncol = 3) 

colnames(asam) = c("unweighted","matching", "overlap") 

 

 

##### for unadjusted cox ph model results 

## ignoring weights 

HR_est_ua = rep(NA,nsim) 

#HR_mse = rep(NA,nsim) 

HR_ci_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_ua) = c("lower","upper") 

HR_coverage_ind_ua = rep(NA,nsim) 

ci_width_uw_ua=rep(NA,nsim) ##width of CI 

 

## incorporating weights: matching weights 

HR_est_wt_ua = rep(NA,nsim) 

HR_ci_wt_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt_ua) = c("lower","upper") 

HR_coverage_ind_wt_ua = rep(NA,nsim) 

ci_width_ua=rep(NA,nsim) #width of CI 

 

 

## incorporating weights: overlapping weights 
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HR_est_wt2_ua = rep(NA,nsim) 

HR_ci_wt2_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt2_ua) = c("lower","upper") 

HR_coverage_ind_wt2_ua = rep(NA,nsim) 

ci_width2_ua=rep(NA,nsim) #width of CI 

 

##from superlearner 

model_coef_ua=matrix(0, ncol=2, nrow=nsim)  

colnames(model_coef_ua)=c('RF', 'XGB') 

 

##ASAM 

asam_ua= matrix(0,nrow = nsim,ncol = 3) 

colnames(asam_ua) = c("unweighted","matching", "overlap") 

 

 

 

## ===================== 

## set up: generate X values 

## ===================== 

rhc.dat = read.csv("~/R/summer2020/rhc.csv", stringsAsFactors=T) 

dnr1_num<-654 

card_num<-1931 

private<-1698 

medicare<-1458 

priNcare<-1236 

other<-1343 

 

simulate_cov<-function(n){ 

  #continuous: Pafi1, age, hrt1, resp1, bili1 

  pafi1<-rnorm(n) 

  age<-rnorm(n) 

  hrt1<-rnorm(n) 

  resp1<-rnorm(n) 

  bili1<-rnorm(n) 

   

  #binary: dnr1, card 

  dnr1<-rbinom(n, 1, dnr1_num/nrow(rhc.dat))  

  card<-rbinom(n, 1, card_num/nrow(rhc.dat)) 

  #categorical:  nineclas 

  ninclas.private<-rbinom(n,1, private/nrow(rhc.dat)) 

  ninclas.medicare<-rbinom(n,1, medicare/nrow(rhc.dat)) 

  ninclas.priNcare<-rbinom(n,1, priNcare/nrow(rhc.dat)) 

  ninclas.other<-rbinom(n,1, other/nrow(rhc.dat)) 

   

  #simulated data frame 

  sim.dat<-cbind(pafi1, age, hrt1, resp1, bili1, dnr1, card,  

                 ninclas.private, ninclas.medicare, ninclas.priNcare, ninclas.other) 

  colnames(sim.dat)<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card",  

                       "private", "medicare", "priNcare", "other") 

   

  sim.dat 

} 

 



43 
 

## ===================== 

###set up: generate treatment values 

## ===================== 

 

vars_selected<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card", "ninsclas") 

vars_converted<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card",  

                  "private", "medicare", "priNcare", "other") 

 

ps.formula<- trt~pafi1+age+hrt1+resp1+bili1+dnr1+card+private+medicare+priNcare+other 

 

rhc.X<-cbind(rhc.dat[,vars_selected]) 

 

##convert factor variables in rhc.cov into indicator variables 

rhc.conv<- model.matrix(~., data= rhc.X)[,-1] 

rhc.conv<-cbind(rhc.conv, rhc.dat$swang1) #add trt var into the db 

rhc.conv<-data.frame(rhc.conv) 

rhc.conv[,14]<-rhc.conv[,11] 

rhc.conv[,15]<-rhc.conv[,8] 

rhc.conv[,16]<-rhc.conv[,12] 

rhc.conv[,17]<-rhc.conv[,9]+rhc.conv[,10] 

rhc.conv<-cbind(rhc.conv[,1:7],rhc.conv[,13:17]) 

colnames(rhc.conv)[6:12]<-c("dnr1", "card", "trt", "private", "medicare", "priNcare", "other") 

rhc.conv$trt[which(rhc.conv$trt==1)]<-0 

rhc.conv$trt[which(rhc.conv$trt==2)]<-1 

#head(rhc.conv) 

 

 

#true mode: main effects only (Scenario A) 

#trt_formula<-as.formula(paste("trt ~", paste(vars_converted, collapse="+")))  

#trt_mod<-glm(trt_formula, data=rhc.conv, family=binomial()) 

 

#true model with 3 quadratic terms (Scenario B) 

#trt_formula<-as.formula(paste("trt ~", paste(vars_converted, collapse="+"),  

                              #"+ I(age^2) + I(hrt1^2) +I(resp1^2)"))  

#trt_mod<-glm(trt_formula, data=rhc.conv, family=binomial()) 

 

 

#true model with 10 interaction terms (Scenario C) 

#trt_formula<-as.formula(paste("trt ~", paste(vars_converted, collapse="+"),  

                              #"+ age*dnr1 + age*card + age*private + age*medicare + age*priNcare + 

                              #age*other + card*pafi1 + card*hrt1 + card*resp1 + card*bili1"))  

#trt_mod<-glm(trt_formula, data=rhc.conv, family=binomial()) 

 

 

#true model with interaction and quadratic terms (Scenario D) 

trt_formula<-as.formula(paste("trt ~", paste(vars_converted, collapse="+"),  

                              "+ age*dnr1 + age*card + age*private + age*medicare + age*priNcare + 

                              age*other + card*pafi1 + card*hrt1 + card*resp1 + card*bili1 + 

                              I(age^2) + I(hrt1^2) +I(resp1^2)"))  

trt_mod<-glm(trt_formula, data=rhc.conv, family=binomial()) 

 

#betas for trt model 

beta_trt_mod<-trt_mod$coeff 
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##adjust coefficients 

  #all nonliner terms: >0.001 and setting the coefficient for pafi1 equal to 0.001 

beta_trt_mod[abs(beta_trt_mod)<0.001]=0.001 

  #age^2: at least 0.01 

if(beta_trt_mod["I(age^2)"]<0.01){beta_trt_mod["I(age^2)"]=0.01} 

  #interaction terms with the card variable: at least 0.1 

indx=which(grepl(':card', names(beta_trt_mod))) 

beta_trt_mod[indx][beta_trt_mod[indx]<0.1]=0.1 

 

round(beta_trt_mod,3) 

 

## ===================== 

## set up: generate event times using cox ph and exponential baseline 

## ===================== 

 

##get survival time of RHC 

survtime<-ifelse(is.na(rhc.dat$dthdte), rhc.dat$lstctdte-rhc.dat$sadmdte, rhc.dat$dthdte-rhc.dat$sadmdte) 

rhc.conv$survtime<-survtime 

death<-(rhc.dat$death=="Yes")^2 

rhc.conv$death<-death 

 

#surv_form<-as.formula(paste("Surv(survtime, death)~", "trt +", paste(vars_converted, collapse="+")) ) 

surv_form<-as.formula(paste("Surv(survtime, death)~trt+", paste(vars_converted, collapse="+"),  

                              "+ age*dnr1 + age*card + age*private + age*medicare + age*priNcare + 

                              age*other + card*pafi1 + card*hrt1 + card*resp1 + card*bili1 + 

                              I(age^2) + I(hrt1^2) +I(resp1^2)") ) 

surv_mod<-coxph(surv_form, data=rhc.conv) 

beta_out_mod<-surv_mod$coefficients 

 

##adjust coefficients 

  #all nonliner terms: >0.001 and setting the coefficient for pafi1 equal to 0.001 

beta_out_mod[abs(beta_out_mod)<0.001]=0.001 

  #age^2: at least 0.01 

if(beta_out_mod["I(age^2)"]<0.01){beta_out_mod["I(age^2)"]=0.01} 

  #interaction terms with the card variable: at least 0.1 

indx=which(grepl(':card', names(beta_out_mod))) 

beta_out_mod[indx][beta_out_mod[indx]<0.1]=0.1 

 

round(beta_out_mod,3) 

 

 

#get HR of treatment=hazard of exposed/ hazard of unexposed 

out_trt<-beta_out_mod[1]  

round(out_trt,3) 

round(exp(out_trt),3) 

 

for(sim_num in 1:nsim){ 

   

   

  ## +++++ 

  ## generate X values 
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  ## +++++ 

  X<-simulate_cov(n) 

   

    ## for main effects model(Scenario A) 

    #X_int=X  

     

    ## for with quadratic terms only (Scenario B) 

    #X_int=cbind(X,(X[,"age"])^2, (X[,"hrt1"])^2, (X[,"resp1"])^2) 

     

    ## for with interaction terms only (Scenario C) 

    #X_int=cbind(X,(X[,"age"])*(X[,"dnr1"]), (X[,"age"])*(X[,"card"]), (X[,"age"])*(X[,"private"]), 

                #(X[,"age"])*(X[,"medicare"]), (X[,"age"])*(X[,"priNcare"]), (X[,"age"])*(X[,"other"]),   

                #(X[,"card"])*(X[,"pafi1"]), (X[,"card"])*(X[,"hrt1"]), (X[,"card"])*(X[,"resp1"]), 

                #(X[,"card"])*(X[,"bili1"]))  

     

  ## for with interaction and quadratic terms (Scenario D) 

  X_int=cbind(X, (X[,"age"])^2, (X[,"hrt1"])^2, (X[,"resp1"])^2, 

              (X[,"age"])*(X[,"dnr1"]), (X[,"age"])*(X[,"card"]), (X[,"age"])*(X[,"private"]), 

              (X[,"age"])*(X[,"medicare"]), (X[,"age"])*(X[,"priNcare"]), (X[,"age"])*(X[,"other"]),   

              (X[,"card"])*(X[,"pafi1"]), (X[,"card"])*(X[,"hrt1"]), (X[,"card"])*(X[,"resp1"]), 

              (X[,"card"])*(X[,"bili1"]))  

 

   

  ## +++++ 

  ## generate trt variable 

  ## +++++ 

  XB_trt<-cbind(1, X_int)%*%beta_trt_mod 

  p_treat<-exp(XB_trt)/(1+exp(XB_trt)) 

  trt<-rbinom(n, 1, p_treat) 

  p_trt[sim_num] = round(sum(trt)/n,4) 

   

  ## +++++ 

  ## generate event times using cox ph and exponential baseline 

  ## +++++ 

   

  X_frame=data.frame(trt, X_int) 

  beta_vect = c(beta_out_mod) 

  names(beta_vect) = colnames(X_frame) 

  t_temp =simsurv(dist = c("exponential"), lambdas = lambda_out,x = X_frame, betas =beta_vect) 

   

  t = t_temp$eventtime 

  times_uc[[sim_num]]<-t 

   

  ## +++++ 

  ## generate status variable 

  ## +++++ 

  time = pmin(t, censortime) #censored times 

  times_c[[sim_num]]<-time  

  status = 1-(t > censortime)^2 

  status_list[[sim_num]]<-status 

  event_rate[sim_num] = sum(status)/n 

   

  dat_cox[[sim_num]] = data.frame(X,trt,time,status) #for censored time  
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  #dat_cox[[sim_num]] = data.frame(X,trt,t,status) #for uncensored time    

  colnames(dat_cox[[sim_num]]) = c(vars_converted, "trt", "time", "status") 

   

   

  #print(paste("sim number: ", sim_num, sep = "")) 

} 

 

#view of simulated data 

head(dat_cox[[1]]) 

#save data sets 

#save(dat_cox, file = "~/R/summer2020/simulation script 3/sim1D_n1000_datasets.RData") 

#load("~/R/summer2020/simulation script 3/sim1D_n1000_datasets.RData") 

 

## #Compare simulated data with RHC data 

## data_mt=as.data.frame(do.call(rbind, dat_cox)) 

## head(data_mt) 

## dim(data_mt) 

##   #survival time 

## hist(survtime, xlim=c(0,censortime), ylim=c(0, 600), nclass= 1200, main="RHC survival time") #RHC 

## hist(sample(data_mt$time, nrow(rhc.dat)), ylim=c(0, 400), nclass= 100, main="simulated survival time") #simulated 

##   #event rates 

## sum(death)/nrow(rhc.dat) #RHC 

## sum(data_mt$status)/nrow(data_mt) #simulated data 

##  

##  

##  

 

 

 

for(sim_num in 1:nsim){ 

   

   

 

## +++++++++++++++++++++ 

  ## Fit cox proportional hazard model ignoring weights 

  

 

  surv_form<-as.formula(paste("Surv(time, status)~", "trt +", paste(vars_converted, collapse="+") )) 

  cox_mod <- coxph(surv_form, data =  dat_cox[[sim_num]]) 

  cox_mod_sum = summary(cox_mod) 

  cox_mod_ci = exp(confint(cox_mod)) 

  HR_est[sim_num] = cox_mod_sum$coefficients[1,2] 

  HR_ci[sim_num,] = cox_mod_ci[1,] 

  HR_coverage_ind[sim_num] = (exp(out_trt) >= HR_ci[sim_num,1] & 

                                exp(out_trt) <= HR_ci[sim_num,2])^2 

  ci_width_uw[sim_num]=HR_ci[sim_num,2]- HR_ci[sim_num,1] 

 

 

#------------------------ 

 

  ## fit model with weights 

  log_mod = glm(as.formula(paste("trt~", paste(vars_converted, collapse="+")) ), 
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                data = dat_cox[[sim_num]], family = "binomial") 

  logit_ps = predict(log_mod) 

  prob_ps =  exp(logit_ps)/(1+exp(logit_ps)) 

  prob_ps[which(prob_ps==1)]=0.999 

  

   

  #matching weights and evaluation 

  w_ps = pmin(prob_ps,1-prob_ps)/(trt*prob_ps + (1-trt)*(1-prob_ps)) 

  w_ps[which(w_ps==min(w_ps))]=0.0001 #for bug fixing 

  svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox[[sim_num]]) 

  cox_weighted_mod = svycoxph(surv_form, design = svyDes) 

  HR_est_wt[sim_num] = exp(cox_weighted_mod$coefficients[1]) 

  HR_ci_wt[sim_num,] =  exp(confint(cox_weighted_mod))[1,] 

  HR_coverage_ind_wt[sim_num] = (exp(out_trt) >= HR_ci_wt[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt[sim_num,2])^2 

  ci_width[sim_num]=HR_ci_wt[sim_num,2]- HR_ci_wt[sim_num,1] 

   

  #overlap weights and evaluation 

  overlap_w_ps= trt + (-1)^trt * prob_ps 

  overlap_w_ps[which(overlap_w_ps==min(overlap_w_ps))]=0.0001 #for bug fixing 

  svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox[[sim_num]]) 

  cox_weighted_mod2 = svycoxph(surv_form, design = svyDes2) 

  HR_est_wt2[sim_num] = exp(cox_weighted_mod2$coefficients[1]) 

  HR_ci_wt2[sim_num,] =  exp(confint(cox_weighted_mod2))[1,] 

  HR_coverage_ind_wt2[sim_num] = (exp(out_trt) >= HR_ci_wt2[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt2[sim_num,2])^2 

  ci_width2[sim_num]=HR_ci_wt2[sim_num,2]- HR_ci_wt2[sim_num,1] 

   

  #ASAM 

  # using SumStat to estimate propensity scores 

    #use PSweight package to generate PS 

    #msstat1 <- SumStat(ps.formula, trtgrp="1", data=dat_cox[[sim_num]], weight="matching") 

    #msstat2 <- SumStat(ps.formula, trtgrp="1", data=dat_cox[[sim_num]], weight="overlap") 

  msstat1 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]], 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="matching") 

  msstat2 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]], 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="overlap") 

   

  #ASAM for unweighted dataset 

  asam[sim_num,1]= mean(summary(msstat1)$unweighted[,"SMD"]) 

  #ASAM for matching weight dataset 

  asam[sim_num,2]= mean(summary(msstat1)$matching[,"SMD"]) 

  #ASAM for overlap weight dataset 

  asam[sim_num,3]= mean(summary(msstat2)$overlap[,"SMD"]) 

   

   

  ## +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  ####----------fit model with unadjusted cox ph mode ##### 

  ## +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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  ## Fit cox proportional hazard model ignoring weights 

 

  surv_form_ua<-as.formula(paste("Surv(time, status)~trt" )) 

  cox_mod <- coxph(surv_form_ua, data =  dat_cox[[sim_num]]) 

  cox_mod_sum = summary(cox_mod) 

  cox_mod_ci = exp(confint(cox_mod)) 

  HR_est_ua[sim_num] = cox_mod_sum$coefficients[1,2] 

  HR_ci_ua[sim_num,] = cox_mod_ci[1,] 

  HR_coverage_ind_ua[sim_num] = (exp(out_trt) >= HR_ci_ua[sim_num,1] & 

                                exp(out_trt) <= HR_ci_ua[sim_num,2])^2 

  ci_width_uw_ua[sim_num]=HR_ci_ua[sim_num,2]- HR_ci_ua[sim_num,1] 

   

   

   

  ## fit model with weights 

  #matching weights and evaluation 

 

  svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox[[sim_num]]) 

  cox_weighted_mod_ua = svycoxph(surv_form_ua, design = svyDes) 

  HR_est_wt_ua[sim_num] = exp(cox_weighted_mod_ua$coefficients[1]) 

  HR_ci_wt_ua[sim_num,] =  exp(confint(cox_weighted_mod_ua))[1,] 

  HR_coverage_ind_wt_ua[sim_num] = (exp(out_trt) >= HR_ci_wt_ua[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt_ua[sim_num,2])^2 

  ci_width_ua[sim_num]=HR_ci_wt_ua[sim_num,2]- HR_ci_wt_ua[sim_num,1] 

   

  #overlap weights and evaluation 

  svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox[[sim_num]]) 

  cox_weighted_mod2_ua = svycoxph(surv_form_ua, design = svyDes2) 

  HR_est_wt2_ua[sim_num] = exp(cox_weighted_mod2_ua$coefficients[1]) 

  HR_ci_wt2_ua[sim_num,] =  exp(confint(cox_weighted_mod2_ua))[1,] 

  HR_coverage_ind_wt2_ua[sim_num] = (exp(out_trt) >= HR_ci_wt2_ua[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt2_ua[sim_num,2])^2 

  ci_width2_ua[sim_num]=HR_ci_wt2_ua[sim_num,2]- HR_ci_wt2_ua[sim_num,1] 

   

  #ASAM 

  # using SumStat to estimate propensity scores 

    #use PSweight package to generate PS 

    #msstat1 <- SumStat(ps.formula, trtgrp="1", data=dat_cox[[sim_num]], weight="matching") 

    #msstat2 <- SumStat(ps.formula, trtgrp="1", data=dat_cox[[sim_num]], weight="overlap") 

  msstat1_ua <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]], 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="matching") 

  msstat2_ua<- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]], 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="overlap") 

   

  #ASAM for unweighted dataset 

  asam_ua[sim_num,1]= mean(summary(msstat1_ua)$unweighted[,"SMD"]) 

  #ASAM for matching weight dataset 

  asam_ua[sim_num,2]= mean(summary(msstat1_ua)$matching[,"SMD"]) 

  #ASAM for overlap weight dataset 

  asam_ua[sim_num,3]= mean(summary(msstat2_ua)$overlap[,"SMD"]) 
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} 

  

  

   

 

 

## ===================== 

## Summarize Simulation Results 

## ===================== 

results_frame = data.frame(matrix(0,nrow = 6,ncol = 6)) 

colnames(results_frame) = c("Bias", "MSE","RMSE","% CI coverage", "CI width","ASAM") 

rownames(results_frame) = c("no weights","matching weights", "overlap weights", 

                            "no weights (unadj)","matching weights (unadj)", "overlap weights (unadj)") 

results_frame[1,] = c(mean((HR_est -exp(out_trt))), #mean of bias 

                      mean((HR_est -exp(out_trt))^2), 

                      sqrt(mean((HR_est -exp(out_trt))^2)),             

                      round(sum( HR_coverage_ind)/nsim*100,3), 

                      mean(ci_width_uw),  

                      mean(asam[,1])) 

                         

results_frame[2,] = c(mean((HR_est_wt -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt)/nsim*100,3), 

                      mean(ci_width),  

                      mean(asam[,2]) ) 

 

results_frame[3,] = c(mean((HR_est_wt2 -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt2 -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt2 -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt2)/nsim*100,3), 

                      mean(ci_width2),  

                      mean(asam[,3]) ) 

 

results_frame[4,] = c(mean((HR_est_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_ua -exp(out_trt))^2)),             

                      round(sum( HR_coverage_ind_ua)/nsim*100,3), 

                      mean(ci_width_uw_ua),  

                      mean(asam_ua[,1])) 

                         

results_frame[5,] = c(mean((HR_est_wt_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt_ua -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt_ua)/nsim*100,3), 

                      mean(ci_width_ua),  

                      mean(asam_ua[,2]) ) 

 

results_frame[6,] = c(mean((HR_est_wt2_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt2_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt2_ua -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt2_ua)/nsim*100,3), 

                      mean(ci_width2_ua),  
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                      mean(asam_ua[,3]) ) 

 

round(results_frame,5)  

save(results_frame, file = "~/R/summer2020/simulation script 3/sim1D_n1000_results_frame_logistic.RData") 

save(asam, file="~/R/summer2020/simulation script 3/sim1D_n1000_asam_logistic.RData") 

biases=cbind(HR_est -exp(out_trt), #adjusted models 

            HR_est_wt -exp(out_trt), 

            HR_est_wt2 -exp(out_trt), 

            HR_est_ua -exp(out_trt), #unadjusted models 

            HR_est_wt_ua -exp(out_trt), 

            HR_est_wt2_ua -exp(out_trt)) 

save(biases, file="~/R/summer2020/simulation script 3/sim1D_n1000_biases_logistic.RData") 

 

##### for adjusted cox ph model results 

#####--------------------------------- 

## ignoring weights 

HR_est = rep(NA,nsim) 

HR_ci = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci) = c("lower","upper") 

HR_coverage_ind = rep(NA,nsim) 

ci_width_uw=rep(NA,nsim) ##width of CI 

 

## incorporating weights: matching weights 

HR_est_wt = rep(NA,nsim) 

HR_ci_wt = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt) = c("lower","upper") 

HR_coverage_ind_wt = rep(NA,nsim) 

ci_width=rep(NA,nsim) #width of CI 

 

## incorporating weights: overlapping weights 

HR_est_wt2 = rep(NA,nsim) 

HR_ci_wt2 = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt2) = c("lower","upper") 

HR_coverage_ind_wt2 = rep(NA,nsim) 

ci_width2=rep(NA,nsim) #width of CI 

 

##ASAM 

asam= matrix(0,nrow = nsim,ncol = 3) 

colnames(asam) = c("unweighted","matching", "overlap") 

 

##### for un-adjusted cox ph model results 

#####--------------------------------- 

## ignoring weights 

HR_est_ua = rep(NA,nsim) 

#HR_mse = rep(NA,nsim) 

HR_ci_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_ua) = c("lower","upper") 

HR_coverage_ind_ua = rep(NA,nsim) 

ci_width_uw_ua=rep(NA,nsim) ##width of CI 

 

## incorporating weights: matching weights 

HR_est_wt_ua = rep(NA,nsim) 

HR_ci_wt_ua = matrix(0,nrow = nsim,ncol = 2) 
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colnames(HR_ci_wt_ua) = c("lower","upper") 

HR_coverage_ind_wt_ua = rep(NA,nsim) 

ci_width_ua=rep(NA,nsim) #width of CI 

 

 

## incorporating weights: overlapping weights 

HR_est_wt2_ua = rep(NA,nsim) 

HR_ci_wt2_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt2_ua) = c("lower","upper") 

HR_coverage_ind_wt2_ua = rep(NA,nsim) 

ci_width2_ua=rep(NA,nsim) #width of CI 

 

 

##from superlearner: coefficients for ML methods 

model_coef=matrix(0, ncol=2, nrow=nsim)  

colnames(model_coef)=c('RF', 'XGB') 

 

 

 

##ASAM 

asam_ua= matrix(0,nrow = nsim,ncol = 3) 

colnames(asam_ua) = c("unweighted","matching", "overlap") 

 

 

 

## ===================== 

## Simulation of PS and evaluation 

## ===================== 

 

 

 

for(sim_num in 1:nsim){ 

  #print(paste("sim number: ",sim_num,sep = "")) 

   

 

   

  ## ++++++++++++++++++++++++++++++++ 

  ## Fit cox proportional hazard model ignoring weights 

  ## +++++ 

 

  surv_form<-as.formula(paste("Surv(time, status)~", "trt +", paste(vars_converted, collapse="+") )) 

    ##the following code are not used because adjusted and unweighted results have been calculated at logistic truck above. 

    #cox_mod <- coxph(surv_form, data =  dat_cox[[sim_num]]) 

    #cox_mod_sum = summary(cox_mod) 

    #cox_mod_ci = exp(confint(cox_mod)) 

    #HR_est[sim_num] = cox_mod_sum$coefficients[1,2] 

    #HR_ci[sim_num,] = cox_mod_ci[1,] 

    #HR_coverage_ind[sim_num] = (exp(out_trt) >= HR_ci[sim_num,1] &exp(out_trt) <= HR_ci[sim_num,2])^2 

    #ci_width_uw[sim_num]=HR_ci[sim_num,2]- HR_ci[sim_num,1] 

 

#---------------------------------------- 
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  ## fit model with weights (if n=1000) 

   

  x_train=dat_cox[[sim_num]][,vars_converted] 

  sl_multi = SuperLearner::SuperLearner(Y=dat_cox[[sim_num]]$trt, X=x_train, 

                                      family=binomial(), SL.library=c( "SL.randomForest", "SL.xgboost")) 

  multi_pred = predict(sl_multi, x_train, onlySL = TRUE) 

  prob_ps =multi_pred$pred 

  prob_ps[which(prob_ps==1)]=0.999 

   

   

  ## fit model with weights (if n=100 or 500) 

  #x_train=dat_cox[[sim_num]][,vars_converted] 

  ### create customized random Forest and XGBoost methods 

  #create_rf = create.Learner("SL.randomForest", params=list(ntree = 1000, nodeside=5, nPerm=2)) 

  #create_xgb=create.Learner("SL.xgboost", params = list(nrounds=5), tune = list(eta=0.5, max_depth =10)) 

  ### apply SL function 

  #sl_multi = SuperLearner(Y = dat_cox[[sim_num]]$trt, X = x_train, family=binomial(), 

                  #  SL.library = c(create_rf$names, create_xgb$names)) 

   

  multi_pred = predict(sl_multi, x_train, onlySL = TRUE) 

  prob_ps =multi_pred$pred 

  prob_ps[which(prob_ps==1)]=0.999 

   

   

   

  #matching weights and evaluation 

  w_ps = pmin(prob_ps,1-prob_ps)/(trt*prob_ps + (1-trt)*(1-prob_ps)) 

  w_ps[which(w_ps==min(w_ps))]=0.0001 #for bug fixing 

  svyDes = svydesign(id=~0,weights=w_ps, data=dat_cox[[sim_num]]) 

  cox_weighted_mod = svycoxph(surv_form, design = svyDes) 

   

  HR_est_wt[sim_num] = exp(cox_weighted_mod$coefficients[1]) 

  HR_ci_wt[sim_num,] =  exp(confint(cox_weighted_mod))[1,] 

  HR_coverage_ind_wt[sim_num] = (exp(out_trt) >= HR_ci_wt[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt[sim_num,2])^2 

  ci_width[sim_num]=HR_ci_wt[sim_num,2]- HR_ci_wt[sim_num,1] 

  model_coef[sim_num, 1:2]= sl_multi$coef[1:2] 

   

  #overlap weights and evaluation 

  overlap_w_ps= trt + (-1)^trt * prob_ps 

  overlap_w_ps[which(overlap_w_ps==min(overlap_w_ps))]=0.0001 #for bug fixing 

  svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox[[sim_num]]) 

  cox_weighted_mod2 = svycoxph(surv_form, design = svyDes2) 

  HR_est_wt2[sim_num] = exp(cox_weighted_mod2$coefficients[1]) 

  HR_ci_wt2[sim_num,] =  exp(confint(cox_weighted_mod2))[1,] 

  HR_coverage_ind_wt2[sim_num] = (exp(out_trt) >= HR_ci_wt2[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt2[sim_num,2])^2 

  ci_width2[sim_num]=HR_ci_wt2[sim_num,2]- HR_ci_wt2[sim_num,1] 

 

   

   

    #ASAM 

  #importing user-supplied propensity scores "prob_ps" 
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  msstat1 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]], 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="matching") 

  msstat2 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]], 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="overlap") 

   

  #ASAM for unweighted dataset 

  asam[sim_num,1]= mean(summary(msstat1)$unweighted[,"SMD"]) 

  #ASAM for matching weight dataset 

  asam[sim_num,2]= mean(summary(msstat1)$matching[,"SMD"]) 

  #ASAM for overlap weight dataset 

  asam[sim_num,3]= mean(summary(msstat2)$overlap[,"SMD"]) 

   

   

  ## +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  ####----------fit model with unadjusted cox ph mode ##### 

  ## +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

   

   

  ## Fit cox proportional hazard model ignoring weights 

 

  surv_form_ua<-as.formula(paste("Surv(time, status)~trt" )) 

    ##the following code are not used because adjusted and unweighted results have been calculated at logistic truck above. 

    #cox_mod <- coxph(surv_form_ua, data =  dat_cox[[sim_num]]) 

    #cox_mod_sum = summary(cox_mod) 

    #cox_mod_ci = exp(confint(cox_mod)) 

    #HR_est_ua[sim_num] = cox_mod_sum$coefficients[1,2] 

    #HR_ci_ua[sim_num,] = cox_mod_ci[1,] 

    #HR_coverage_ind_ua[sim_num] = (exp(out_trt) >= HR_ci_ua[sim_num,1] &exp(out_trt) <= 

HR_ci_ua[sim_num,2])^2 

    #ci_width_uw_ua[sim_num]=HR_ci_ua[sim_num,2]- HR_ci_ua[sim_num,1] 

   

   

   

  ## fit model with weights 

  #matching weights and evaluation 

 

  svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox[[sim_num]]) 

  cox_weighted_mod_ua = svycoxph(surv_form_ua, design = svyDes) 

  HR_est_wt_ua[sim_num] = exp(cox_weighted_mod_ua$coefficients[1]) 

  HR_ci_wt_ua[sim_num,] =  exp(confint(cox_weighted_mod_ua))[1,] 

  HR_coverage_ind_wt_ua[sim_num] = (exp(out_trt) >= HR_ci_wt_ua[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt_ua[sim_num,2])^2 

  ci_width_ua[sim_num]=HR_ci_wt_ua[sim_num,2]- HR_ci_wt_ua[sim_num,1] 

  model_coef_ua[sim_num, 1:2]= sl_multi$coef[1:2] 

   

  #overlap weights and evaluation 

  svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox[[sim_num]]) 

  cox_weighted_mod2_ua = svycoxph(surv_form_ua, design = svyDes2) 

  HR_est_wt2_ua[sim_num] = exp(cox_weighted_mod2_ua$coefficients[1]) 

  HR_ci_wt2_ua[sim_num,] =  exp(confint(cox_weighted_mod2_ua))[1,] 

  HR_coverage_ind_wt2_ua[sim_num] = (exp(out_trt) >= HR_ci_wt2_ua[sim_num,1] & 
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                                   exp(out_trt) <= HR_ci_wt2_ua[sim_num,2])^2 

  ci_width2_ua[sim_num]=HR_ci_wt2_ua[sim_num,2]- HR_ci_wt2_ua[sim_num,1] 

 

  #ASAM 

  # using SumStat to estimate propensity scores 

  msstat1_ua <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]], 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="matching") 

  msstat2_ua<- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]], 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="overlap") 

   

  #ASAM for unweighted dataset 

  asam_ua[sim_num,1]= mean(summary(msstat1_ua)$unweighted[,"SMD"]) 

  #ASAM for matching weight dataset 

  asam_ua[sim_num,2]= mean(summary(msstat1_ua)$matching[,"SMD"]) 

  #ASAM for overlap weight dataset 

  asam_ua[sim_num,3]= mean(summary(msstat2_ua)$overlap[,"SMD"]) 

   

} 

  

   

 

 

## ===================== 

## Summarize Simulation Results 

## ===================== 

results_frame = data.frame(matrix(0,nrow = 6,ncol = 6)) 

colnames(results_frame) = c("Bias", "MSE","RMSE","% CI coverage", "CI width","ASAM") 

rownames(results_frame) = c("no weights","matching weights", "overlap weights", 

                            "no weights (unadj)","matching weights (unadj)", "overlap weights (unadj)") 

results_frame[1,] = c(mean((HR_est -exp(out_trt))), #mean of bias 

                      mean((HR_est -exp(out_trt))^2), 

                      sqrt(mean((HR_est -exp(out_trt))^2)),             

                      round(sum( HR_coverage_ind)/nsim*100,3), 

                      mean(ci_width_uw),  

                      mean(asam[,1])) 

                         

results_frame[2,] = c(mean((HR_est_wt -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt)/nsim*100,3), 

                      mean(ci_width),  

                      mean(asam[,2]) ) 

results_frame[3,] = c(mean((HR_est_wt2 -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt2 -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt2 -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt2)/nsim*100,3), 

                      mean(ci_width2),  

                      mean(asam[,3]) ) 

 

results_frame[4,] = c(mean((HR_est_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_ua -exp(out_trt))^2), 
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                      sqrt(mean((HR_est_ua -exp(out_trt))^2)),             

                      round(sum( HR_coverage_ind_ua)/nsim*100,3), 

                      mean(ci_width_uw_ua),  

                      mean(asam_ua[,1])) 

                         

results_frame[5,] = c(mean((HR_est_wt_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt_ua -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt_ua)/nsim*100,3), 

                      mean(ci_width_ua),  

                      mean(asam_ua[,2]) ) 

 

results_frame[6,] = c(mean((HR_est_wt2_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt2_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt2_ua -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt2_ua)/nsim*100,3), 

                      mean(ci_width2_ua),  

                      mean(asam_ua[,3]) ) 

 

round(results_frame,5) 

save(results_frame, file = "~/R/summer2020/simulation script 3/sim1D_n1000_results_frame_SL.RData") 

save(asam, file="~/R/summer2020/simulation script 3/sim1D_n1000_asam_SL.RData") 

biases=cbind(HR_est -exp(out_trt), #adjusted models 

            HR_est_wt -exp(out_trt), 

            HR_est_wt2 -exp(out_trt), 

            HR_est_ua -exp(out_trt), #unadjusted models 

            HR_est_wt_ua -exp(out_trt), 

            HR_est_wt2_ua -exp(out_trt)) 

save(biases, file="~/R/summer2020/simulation script 3/sim1D_n1000_biases_SL.RData") 

 

colMeans(model_coef) #the frequency of ML method chosen for each time 

colMeans(model_coef_ua) #the frequency of ML method chosen for each time 

 

end.time = Sys.time() 

run_time = end.time - start.time 

start.time; end.time; run_time 
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6.4 Appendix D. R Codes for Method Application on the RHC Dataset Code 

 

 
knitr::opts_chunk$set(echo = TRUE) 

 

## ===================== 

## packages used 

## ===================== 

library(survival) ## coxph 

library(survey)  ## svydesign and svycoxph 

library(simsurv) ## simsurv 

 

#packages for SuperLearner function 

library(SuperLearner) 

library(caret) 

library(glmnet) 

library(randomForest) 

library(RhpcBLASctl) 

library(xgboost) 

 

#package for ASAM 

library(PSweight) 

 

## ===================== 

## simulation parameters 

## ===================== 

start.time = Sys.time() 

seed=0123 

#seed=345 #original seeddd 

set.seed(seed) 

rhc.dat = read.csv("~/R/summer2020/rhc.csv", stringsAsFactors=T) 

n= nrow(rhc.dat)## size of data set 

nsim = 10 ## number of simulated data sets 

 

 

## ===================== 

## Create object to save results 

## ===================== 

p_trt = rep(NA,nsim) 

event_rate = rep(NA,nsim) 

times_c<-vector(mode="list", length=nsim) 

times_uc<-vector(mode="list", length=nsim) 

status_list<-vector(mode="list", length=nsim) 

 

##simulated datasets 

dat_cox<-vector(mode="list", length=nsim) 

 

##### for adjusted cox ph model results 

## ignoring weights 

HR_est = rep(NA,nsim) 

#HR_mse = rep(NA,nsim) 

HR_ci = matrix(0,nrow = nsim,ncol = 2) 
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colnames(HR_ci) = c("lower","upper") 

HR_coverage_ind = rep(NA,nsim) 

ci_width_uw=rep(NA,nsim) ##width of CI 

 

## incorporating weights: matching weights 

HR_est_wt = rep(NA,nsim) 

HR_ci_wt = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt) = c("lower","upper") 

HR_coverage_ind_wt = rep(NA,nsim) 

ci_width=rep(NA,nsim) #width of CI 

 

## incorporating weights: overlapping weights 

HR_est_wt2 = rep(NA,nsim) 

HR_ci_wt2 = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt2) = c("lower","upper") 

HR_coverage_ind_wt2 = rep(NA,nsim) 

ci_width2=rep(NA,nsim) #width of CI 

 

 

##from superlearner: coefficients for each ML methods 

model_coef=matrix(0, ncol=2, nrow=nsim)  

colnames(model_coef)=c('RF', 'XGB') 

 

 

 

##ASAM 

asam= matrix(0,nrow = nsim,ncol = 3) 

colnames(asam) = c("unweighted","matching", "overlap") 

 

 

##### for unadjusted cox ph model results 

## ignoring weights 

HR_est_ua = rep(NA,nsim) 

#HR_mse = rep(NA,nsim) 

HR_ci_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_ua) = c("lower","upper") 

HR_coverage_ind_ua = rep(NA,nsim) 

ci_width_uw_ua=rep(NA,nsim) ##width of CI 

 

## incorporating weights: matching weights 

HR_est_wt_ua = rep(NA,nsim) 

HR_ci_wt_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt_ua) = c("lower","upper") 

HR_coverage_ind_wt_ua = rep(NA,nsim) 

ci_width_ua=rep(NA,nsim) #width of CI 

 

 

## incorporating weights: overlapping weights 

HR_est_wt2_ua = rep(NA,nsim) 

HR_ci_wt2_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt2_ua) = c("lower","upper") 

HR_coverage_ind_wt2_ua = rep(NA,nsim) 

ci_width2_ua=rep(NA,nsim) #width of CI 
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##from superlearner 

model_coef_ua=matrix(0, ncol=2, nrow=nsim)  

colnames(model_coef_ua)=c('RF', 'XGB') 

 

##ASAM 

asam_ua= matrix(0,nrow = nsim,ncol = 3) 

colnames(asam_ua) = c("unweighted","matching", "overlap") 

 

 

 

## ===================== 

###set up: manage RHC dataset 

## ===================== 

 

vars_selected<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card", "ninsclas") 

vars_converted<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card",  

                  "private", "medicare", "priNcare", "other") 

 

ps.formula<- trt~pafi1+age+hrt1+resp1+bili1+dnr1+card+private+medicare+priNcare+other 

 

rhc.X<-cbind(rhc.dat[,vars_selected]) 

 

##convert factor variables in rhc.cov into indicator variables 

rhc.conv<- model.matrix(~., data= rhc.X)[,-1] 

rhc.conv<-cbind(rhc.conv, rhc.dat$swang1) #add trt var into the db 

rhc.conv<-data.frame(rhc.conv) 

rhc.conv[,14]<-rhc.conv[,11] 

rhc.conv[,15]<-rhc.conv[,8] 

rhc.conv[,16]<-rhc.conv[,12] 

rhc.conv[,17]<-rhc.conv[,9]+rhc.conv[,10] 

rhc.conv<-cbind(rhc.conv[,1:7],rhc.conv[,13:17]) 

colnames(rhc.conv)[6:12]<-c("dnr1", "card", "trt", "private", "medicare", "priNcare", "other") 

rhc.conv$trt[which(rhc.conv$trt==1)]<-0 

rhc.conv$trt[which(rhc.conv$trt==2)]<-1 

#head(rhc.conv) 

 

## ===================== 

## set up: get outcome model coefficients ("true" model) 

## ===================== 

 

##get survival time of RHC 

survtime<-ifelse(is.na(rhc.dat$dthdte), rhc.dat$lstctdte-rhc.dat$sadmdte, rhc.dat$dthdte-rhc.dat$sadmdte) 

rhc.conv$survtime<-survtime 

death<-(rhc.dat$death=="Yes")^2 

rhc.conv$death<-death 

 

surv_form<-as.formula(paste("Surv(survtime, death)~", "trt +", paste(vars_converted, collapse="+")) ) 

surv_mod<-coxph(surv_form, data=rhc.conv) 

beta_out_mod<-surv_mod$coefficients 

beta_out_mod 

out_trt<-beta_out_mod[1] #get HR of treatment=hazard of exposed/ hazard of unexposed 

out_trt 
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exp(out_trt) 

 

dat_cox=rhc.conv 

colnames(dat_cox)[c(ncol(rhc.conv)-1,ncol(rhc.conv))]=c("time","status") 

 

 

for(sim_num in 1:nsim){ 

   

   

 

## +++++++++++++++++++++ 

  ## Fit cox proportional hazard model ignoring weights 

  

 

  surv_form<-as.formula(paste("Surv(time, status)~", "trt +", paste(vars_converted, collapse="+") )) 

  cox_mod <- coxph(surv_form, data =  dat_cox) 

  cox_mod_sum = summary(cox_mod) 

  cox_mod_ci = exp(confint(cox_mod)) 

  HR_est[sim_num] = cox_mod_sum$coefficients[1,2] 

  HR_ci[sim_num,] = cox_mod_ci[1,] 

  HR_coverage_ind[sim_num] = (exp(out_trt) >= HR_ci[sim_num,1] & 

                                exp(out_trt) <= HR_ci[sim_num,2])^2 

  ci_width_uw[sim_num]=HR_ci[sim_num,2]- HR_ci[sim_num,1] 

 

 

#------------------------ 

 

  ## fit model with weights 

  log_mod = glm(as.formula(paste("trt~", paste(vars_converted, collapse="+")) ), 

                data = dat_cox, family = "binomial") 

  logit_ps = predict(log_mod) 

  prob_ps =  exp(logit_ps)/(1+exp(logit_ps)) 

  prob_ps[which(prob_ps==1)]=0.999 

   

  #matching weights and evaluation 

  trt=dat_cox$trt 

  w_ps = pmin(prob_ps,1-prob_ps)/(trt*prob_ps + (1-trt)*(1-prob_ps)) 

  svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox) 

  cox_weighted_mod = svycoxph(surv_form, design = svyDes) 

  HR_est_wt[sim_num] = exp(cox_weighted_mod$coefficients[1]) 

  HR_ci_wt[sim_num,] =  exp(confint(cox_weighted_mod))[1,] 

  HR_coverage_ind_wt[sim_num] = (exp(out_trt) >= HR_ci_wt[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt[sim_num,2])^2 

  ci_width[sim_num]=HR_ci_wt[sim_num,2]- HR_ci_wt[sim_num,1] 

   

  #overlap weights and evaluation 

  overlap_w_ps= trt + (-1)^trt * prob_ps 

  svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox) 

  cox_weighted_mod2 = svycoxph(surv_form, design = svyDes2) 

  HR_est_wt2[sim_num] = exp(cox_weighted_mod2$coefficients[1]) 

  HR_ci_wt2[sim_num,] =  exp(confint(cox_weighted_mod2))[1,] 

  HR_coverage_ind_wt2[sim_num] = (exp(out_trt) >= HR_ci_wt2[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt2[sim_num,2])^2 
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  ci_width2[sim_num]=HR_ci_wt2[sim_num,2]- HR_ci_wt2[sim_num,1] 

   

  #ASAM 

  msstat1 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox, 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="matching") 

  msstat2 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox, 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="overlap") 

   

  #ASAM for unweighted dataset 

  asam[sim_num,1]= mean(summary(msstat1)$unweighted[,"SMD"]) 

  #ASAM for matching weight dataset 

  asam[sim_num,2]= mean(summary(msstat1)$matching[,"SMD"]) 

  #ASAM for overlap weight dataset 

  asam[sim_num,3]= mean(summary(msstat2)$overlap[,"SMD"]) 

   

   

  ## +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  ####----------fit model with unadjusted cox ph mode ##### 

  ## +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

   

   

  ## Fit cox proportional hazard model ignoring weights 

 

  surv_form_ua<-as.formula(paste("Surv(time, status)~trt" )) 

  cox_mod <- coxph(surv_form_ua, data =  dat_cox) 

  cox_mod_sum = summary(cox_mod) 

  cox_mod_ci = exp(confint(cox_mod)) 

  HR_est_ua[sim_num] = cox_mod_sum$coefficients[1,2] 

  HR_ci_ua[sim_num,] = cox_mod_ci[1,] 

  HR_coverage_ind_ua[sim_num] = (exp(out_trt) >= HR_ci_ua[sim_num,1] & 

                                exp(out_trt) <= HR_ci_ua[sim_num,2])^2 

  ci_width_uw_ua[sim_num]=HR_ci_ua[sim_num,2]- HR_ci_ua[sim_num,1] 

   

   

   

  ## fit model with weights 

  #matching weights and evaluation 

 

  svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox) 

  cox_weighted_mod_ua = svycoxph(surv_form_ua, design = svyDes) 

  HR_est_wt_ua[sim_num] = exp(cox_weighted_mod_ua$coefficients[1]) 

  HR_ci_wt_ua[sim_num,] =  exp(confint(cox_weighted_mod_ua))[1,] 

  HR_coverage_ind_wt_ua[sim_num] = (exp(out_trt) >= HR_ci_wt_ua[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt_ua[sim_num,2])^2 

  ci_width_ua[sim_num]=HR_ci_wt_ua[sim_num,2]- HR_ci_wt_ua[sim_num,1] 

   

  #overlap weights and evaluation 

  svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox) 

  cox_weighted_mod2_ua = svycoxph(surv_form_ua, design = svyDes2) 

  HR_est_wt2_ua[sim_num] = exp(cox_weighted_mod2_ua$coefficients[1]) 

  HR_ci_wt2_ua[sim_num,] =  exp(confint(cox_weighted_mod2_ua))[1,] 
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  HR_coverage_ind_wt2_ua[sim_num] = (exp(out_trt) >= HR_ci_wt2_ua[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt2_ua[sim_num,2])^2 

  ci_width2_ua[sim_num]=HR_ci_wt2_ua[sim_num,2]- HR_ci_wt2_ua[sim_num,1] 

   

  #ASAM 

  msstat1_ua <- SumStat(zname="trt", xname=vars_converted, data=dat_cox, 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="matching") 

  msstat2_ua<- SumStat(zname="trt", xname=vars_converted, data=dat_cox, 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="overlap") 

   

  #ASAM for unweighted dataset 

  asam_ua[sim_num,1]= mean(summary(msstat1_ua)$unweighted[,"SMD"]) 

  #ASAM for matching weight dataset 

  asam_ua[sim_num,2]= mean(summary(msstat1_ua)$matching[,"SMD"]) 

  #ASAM for overlap weight dataset 

  asam_ua[sim_num,3]= mean(summary(msstat2_ua)$overlap[,"SMD"]) 

   

} 

  

  

   

 

 

## ===================== 

## Summarize Simulation Results 

## ===================== 

results_frame = data.frame(matrix(0,nrow = 6,ncol = 6)) 

colnames(results_frame) = c("Bias", "MSE","RMSE","% CI coverage", "CI width","ASAM") 

rownames(results_frame) = c("no weights","matching weights", "overlap weights", 

                            "no weights (unadj)","matching weights (unadj)", "overlap weights (unadj)") 

results_frame[1,] = c(mean((HR_est -exp(out_trt))), #mean of bias 

                      mean((HR_est -exp(out_trt))^2), 

                      sqrt(mean((HR_est -exp(out_trt))^2)),             

                      round(sum( HR_coverage_ind)/nsim*100,3), 

                      mean(ci_width_uw),  

                      mean(asam[,1])) 

                         

results_frame[2,] = c(mean((HR_est_wt -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt)/nsim*100,3), 

                      mean(ci_width),  

                      mean(asam[,2]) ) 

 

results_frame[3,] = c(mean((HR_est_wt2 -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt2 -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt2 -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt2)/nsim*100,3), 

                      mean(ci_width2),  

                      mean(asam[,3]) ) 
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results_frame[4,] = c(mean((HR_est_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_ua -exp(out_trt))^2)),             

                      round(sum( HR_coverage_ind_ua)/nsim*100,3), 

                      mean(ci_width_uw_ua),  

                      mean(asam_ua[,1])) 

                         

results_frame[5,] = c(mean((HR_est_wt_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt_ua -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt_ua)/nsim*100,3), 

                      mean(ci_width_ua),  

                      mean(asam_ua[,2]) ) 

 

results_frame[6,] = c(mean((HR_est_wt2_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt2_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt2_ua -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt2_ua)/nsim*100,3), 

                      mean(ci_width2_ua),  

                      mean(asam_ua[,3]) ) 

 

round(results_frame,5)  

save(results_frame, file = "~/R/summer2020/simulation script 2/sim1A_RHC_results_frame_logistic.RData") 

 

## estimated HRs of treatment from fitted models 

round(cbind(mean(HR_est),        #adjusted unweighted 

mean(HR_est_wt),     #adjusted, matching weight   

mean(HR_est_wt2),    #adjusted, overlap weight 

mean(HR_est_ua),     #unadjusted unweighted 

mean(HR_est_wt_ua),  #unadjusted matching weight 

mean(HR_est_wt2_ua)), 3) #unadjusted overlap weight 

 

##### for adjusted cox ph model results 

#####--------------------------------- 

## ignoring weights 

HR_est = rep(NA,nsim) 

HR_ci = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci) = c("lower","upper") 

HR_coverage_ind = rep(NA,nsim) 

ci_width_uw=rep(NA,nsim) ##width of CI 

 

## incorporating weights: matching weights 

HR_est_wt = rep(NA,nsim) 

HR_ci_wt = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt) = c("lower","upper") 

HR_coverage_ind_wt = rep(NA,nsim) 

ci_width=rep(NA,nsim) #width of CI 

 

## incorporating weights: overlapping weights 

HR_est_wt2 = rep(NA,nsim) 

HR_ci_wt2 = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt2) = c("lower","upper") 

HR_coverage_ind_wt2 = rep(NA,nsim) 



63 
 

ci_width2=rep(NA,nsim) #width of CI 

 

##ASAM 

asam= matrix(0,nrow = nsim,ncol = 3) 

colnames(asam) = c("unweighted","matching", "overlap") 

 

##### for un-adjusted cox ph model results 

#####--------------------------------- 

## ignoring weights 

HR_est_ua = rep(NA,nsim) 

#HR_mse = rep(NA,nsim) 

HR_ci_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_ua) = c("lower","upper") 

HR_coverage_ind_ua = rep(NA,nsim) 

ci_width_uw_ua=rep(NA,nsim) ##width of CI 

 

## incorporating weights: matching weights 

HR_est_wt_ua = rep(NA,nsim) 

HR_ci_wt_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt_ua) = c("lower","upper") 

HR_coverage_ind_wt_ua = rep(NA,nsim) 

ci_width_ua=rep(NA,nsim) #width of CI 

 

 

## incorporating weights: overlapping weights 

HR_est_wt2_ua = rep(NA,nsim) 

HR_ci_wt2_ua = matrix(0,nrow = nsim,ncol = 2) 

colnames(HR_ci_wt2_ua) = c("lower","upper") 

HR_coverage_ind_wt2_ua = rep(NA,nsim) 

ci_width2_ua=rep(NA,nsim) #width of CI 

 

 

##from superlearner: coefficients for ML methods 

model_coef=matrix(0, ncol=2, nrow=nsim)  

colnames(model_coef)=c('RF', 'XGB') 

 

 

 

##ASAM 

asam_ua= matrix(0,nrow = nsim,ncol = 3) 

colnames(asam_ua) = c("unweighted","matching", "overlap") 

 

 

 

## ===================== 

## Simulation of PS and evaluation 

## ===================== 

 

 

 

for(sim_num in 1:nsim){ 
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  ## ++++++++++++++++++++++++++++++++ 

  ## Fit cox proportional hazard model ignoring weights 

  ## +++++ 

 

  surv_form<-as.formula(paste("Surv(time, status)~", "trt +", paste(vars_converted, collapse="+") )) 

  cox_mod <- coxph(surv_form, data =  dat_cox) 

  cox_mod_sum = summary(cox_mod) 

  cox_mod_ci = exp(confint(cox_mod)) 

  HR_est[sim_num] = cox_mod_sum$coefficients[1,2] 

  HR_ci[sim_num,] = cox_mod_ci[1,] 

  HR_coverage_ind[sim_num] = (exp(out_trt) >= HR_ci[sim_num,1] & 

                                exp(out_trt) <= HR_ci[sim_num,2])^2 

  ci_width_uw[sim_num]=HR_ci[sim_num,2]- HR_ci[sim_num,1] 

 

#---------------------------------------- 

   

  ## fit model with weights 

   

    x_train=dat_cox[,vars_converted] 

  sl_multi = SuperLearner::SuperLearner(Y=dat_cox$trt, X=x_train, 

                                      family=binomial(), SL.library=c( "SL.randomForest", "SL.xgboost")) 

  multi_pred = predict(sl_multi, x_train, onlySL = TRUE) 

  prob_ps =multi_pred$pred 

  prob_ps[which(prob_ps==1)]=0.999 

   

  #matching weights and evaluation 

  w_ps = pmin(prob_ps,1-prob_ps)/(trt*prob_ps + (1-trt)*(1-prob_ps)) 

  svyDes = svydesign(id=~0,weights=w_ps, data=dat_cox) 

  cox_weighted_mod = svycoxph(surv_form, design = svyDes) 

   

  HR_est_wt[sim_num] = exp(cox_weighted_mod$coefficients[1]) 

  HR_ci_wt[sim_num,] =  exp(confint(cox_weighted_mod))[1,] 

  HR_coverage_ind_wt[sim_num] = (exp(out_trt) >= HR_ci_wt[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt[sim_num,2])^2 

  ci_width[sim_num]=HR_ci_wt[sim_num,2]- HR_ci_wt[sim_num,1] 

  model_coef[sim_num, 1:2]= sl_multi$coef[1:2] 

   

  #overlap weights and evaluation 

  overlap_w_ps= trt + (-1)^trt * prob_ps 

  svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox) 

  cox_weighted_mod2 = svycoxph(surv_form, design = svyDes2) 

  HR_est_wt2[sim_num] = exp(cox_weighted_mod2$coefficients[1]) 

  HR_ci_wt2[sim_num,] =  exp(confint(cox_weighted_mod2))[1,] 

  HR_coverage_ind_wt2[sim_num] = (exp(out_trt) >= HR_ci_wt2[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt2[sim_num,2])^2 

  ci_width2[sim_num]=HR_ci_wt2[sim_num,2]- HR_ci_wt2[sim_num,1] 

 

   

   

    #ASAM 
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  #importing user-supplied propensity scores "prob_ps" 

  msstat1 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox, 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="matching") 

  msstat2 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox, 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="overlap") 

   

  #ASAM for unweighted dataset 

  asam[sim_num,1]= mean(summary(msstat1)$unweighted[,"SMD"]) 

  #ASAM for matching weight dataset 

  asam[sim_num,2]= mean(summary(msstat1)$matching[,"SMD"]) 

  #ASAM for overlap weight dataset 

  asam[sim_num,3]= mean(summary(msstat2)$overlap[,"SMD"]) 

   

   

  ## +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  ####----------fit model with unadjusted cox ph mode ##### 

  ## +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

   

   

  ## Fit cox proportional hazard model ignoring weights 

 

  surv_form_ua<-as.formula(paste("Surv(time, status)~trt" )) 

  cox_mod <- coxph(surv_form_ua, data =  dat_cox) 

  cox_mod_sum = summary(cox_mod) 

  cox_mod_ci = exp(confint(cox_mod)) 

  HR_est_ua[sim_num] = cox_mod_sum$coefficients[1,2] 

  HR_ci_ua[sim_num,] = cox_mod_ci[1,] 

  HR_coverage_ind_ua[sim_num] = (exp(out_trt) >= HR_ci_ua[sim_num,1] & 

                                exp(out_trt) <= HR_ci_ua[sim_num,2])^2 

  ci_width_uw_ua[sim_num]=HR_ci_ua[sim_num,2]- HR_ci_ua[sim_num,1] 

   

   

   

  ## fit model with weights 

  #matching weights and evaluation 

 

  svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox) 

  cox_weighted_mod_ua = svycoxph(surv_form_ua, design = svyDes) 

  HR_est_wt_ua[sim_num] = exp(cox_weighted_mod_ua$coefficients[1]) 

  HR_ci_wt_ua[sim_num,] =  exp(confint(cox_weighted_mod_ua))[1,] 

  HR_coverage_ind_wt_ua[sim_num] = (exp(out_trt) >= HR_ci_wt_ua[sim_num,1] & 

                                   exp(out_trt) <= HR_ci_wt_ua[sim_num,2])^2 

  ci_width_ua[sim_num]=HR_ci_wt_ua[sim_num,2]- HR_ci_wt_ua[sim_num,1] 

  model_coef_ua[sim_num, 1:2]= sl_multi$coef[1:2] 

   

  #overlap weights and evaluation 

  svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox) 

  cox_weighted_mod2_ua = svycoxph(surv_form_ua, design = svyDes2) 

  HR_est_wt2_ua[sim_num] = exp(cox_weighted_mod2_ua$coefficients[1]) 

  HR_ci_wt2_ua[sim_num,] =  exp(confint(cox_weighted_mod2_ua))[1,] 

  HR_coverage_ind_wt2_ua[sim_num] = (exp(out_trt) >= HR_ci_wt2_ua[sim_num,1] & 
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                                   exp(out_trt) <= HR_ci_wt2_ua[sim_num,2])^2 

  ci_width2_ua[sim_num]=HR_ci_wt2_ua[sim_num,2]- HR_ci_wt2_ua[sim_num,1] 

 

  #ASAM 

  # using SumStat to estimate propensity scores 

  msstat1_ua <- SumStat(zname="trt", xname=vars_converted, data=dat_cox, 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="matching") 

  msstat2_ua<- SumStat(zname="trt", xname=vars_converted, data=dat_cox, 

                     ps.estimate=prob_ps, 

                     trtgrp="1",  weight="overlap") 

   

  #ASAM for unweighted dataset 

  asam_ua[sim_num,1]= mean(summary(msstat1_ua)$unweighted[,"SMD"]) 

  #ASAM for matching weight dataset 

  asam_ua[sim_num,2]= mean(summary(msstat1_ua)$matching[,"SMD"]) 

  #ASAM for overlap weight dataset 

  asam_ua[sim_num,3]= mean(summary(msstat2_ua)$overlap[,"SMD"]) 

   

} 

  

   

 

 

## ===================== 

## Summarize Simulation Results 

## ===================== 

results_frame = data.frame(matrix(0,nrow = 6,ncol = 6)) 

colnames(results_frame) = c("Bias", "MSE","RMSE","% CI coverage", "CI width","ASAM") 

rownames(results_frame) = c("no weights","matching weights", "overlap weights", 

                            "no weights (unadj)","matching weights (unadj)", "overlap weights (unadj)") 

results_frame[1,] = c(mean((HR_est -exp(out_trt))), #mean of bias 

                      mean((HR_est -exp(out_trt))^2), 

                      sqrt(mean((HR_est -exp(out_trt))^2)),             

                      round(sum( HR_coverage_ind)/nsim*100,3), 

                      mean(ci_width_uw),  

                      mean(asam[,1])) 

                         

results_frame[2,] = c(mean((HR_est_wt -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt)/nsim*100,3), 

                      mean(ci_width),  

                      mean(asam[,2]) ) 

results_frame[3,] = c(mean((HR_est_wt2 -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt2 -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt2 -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt2)/nsim*100,3), 

                      mean(ci_width2),  

                      mean(asam[,3]) ) 

 

results_frame[4,] = c(mean((HR_est_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_ua -exp(out_trt))^2), 
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                      sqrt(mean((HR_est_ua -exp(out_trt))^2)),             

                      round(sum( HR_coverage_ind_ua)/nsim*100,3), 

                      mean(ci_width_uw_ua),  

                      mean(asam_ua[,1])) 

                         

results_frame[5,] = c(mean((HR_est_wt_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt_ua -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt_ua)/nsim*100,3), 

                      mean(ci_width_ua),  

                      mean(asam_ua[,2]) ) 

 

results_frame[6,] = c(mean((HR_est_wt2_ua -exp(out_trt))), #mean of bias 

                      mean((HR_est_wt2_ua -exp(out_trt))^2), 

                      sqrt(mean((HR_est_wt2_ua -exp(out_trt))^2)), 

                      round(sum(HR_coverage_ind_wt2_ua)/nsim*100,3), 

                      mean(ci_width2_ua),  

                      mean(asam_ua[,3]) ) 

 

round(results_frame,5) 

save(results_frame,  

     file = "~/R/summer2020/simulation script 2/sim1A_n1000_results_frame_SL.RData") 

 

colMeans(model_coef) #the frequency of ML method chosen for each time 

colMeans(model_coef_ua) #the frequency of ML method chosen for each time 

 

## estimated HRs of treatment from fitted models 

round(cbind(mean(HR_est),        #adjusted unweighted 

mean(HR_est_wt),     #adjusted, matching weight   

mean(HR_est_wt2),    #adjusted, overlap weight 

mean(HR_est_ua),     #unadjusted unweighted 

mean(HR_est_wt_ua),  #unadjusted matching weight 

mean(HR_est_wt2_ua)), 3) #unadjusted overlap weight 

 

end.time = Sys.time() 

run_time = end.time - start.time 

start.time; end.time; run_time 

 


