
i

Evaluating uses of machine learning in propensity score estimation on time-to-event data:

A simulation study

By

Xiangyu Ji

Master’s Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Biostatistics

December 18th, 2021

Nashville, Tennessee

Approved:

Amber J. Hackstadt, Ph.D.

Thomas G. Stewart, Ph.D.

ii

Acknowledgments

 I sincerely appreciate Dr. Amber Hackstadt’s efforts and time throughout this project.

Her mentorship and instruction led me through the whole process of research and thesis writing.

Her positive energies inspired my confidence in finishing the plans and cleared my worries. I

have been and will always be grateful that Dr. Hackstadt directed my thesis work and be glad for

the time working with her.

iii

Table of Contents

List of Tables .. v

List of Figures .. vi

1 Introduction ... 1

2 Methods ... 5

2.1 Propensity Score Estimation Methods ... 5

2.1.1 Logistic Method .. 5

2.1.2 Machine Learning Method .. 5

2.2 PS Application Methods: Weighting.. 8

2.2.1 Inverse Probability of Treatment Weighting .. 8

2.2.2 Matching Weights ... 8

2.2.3 Overlap weights .. 9

2.2.4 Comparison of different weighting methods .. 9

2.3 Overall simulation structure ... 10

2.3.1 Simulation Scenarios .. 10

2.3.2 Data Simulation .. 11

2.4 Performance Metrics .. 13

2.5 Application on Real-Word dataset ... 14

3 Results ... 16

3.1 The Cox PH model ... 16

3.2 Performance of Treatment Effect Estimator .. 16

3.2.1 Weighting without Covariate Adjustment .. 18

3.2.2 Covariate Adjustment without Weighting .. 18

3.2.3 Covariate Adjustment with Weighting ... 18

3.2.4 Comparison between the Three Adjusting/Weighting Situations 19

3.3 Performance of variance estimator ... 19

3.3.1 Weighting without covariate adjustment .. 19

3.3.2 Covariate adjustment without weighting .. 20

3.3.3 Covariate adjustment with weighting ... 20

3.3.4 Comparison between the three adjusting/weighting situations 20

3.4 Balance diagnosis ... 20

iv

3.4.1 When the applied model was weighted .. 21

3.5 Large and Small Sample Sizes ... 23

3.6 Application on RHC Dataset .. 24

4 Conclusion ... 25

4.1 Our Findings ... 25

4.2 Limitations ... 27

5 References ... 28

6 Appendices .. 33

6.1 Appendix A. Tables and Figures .. 33

6.2 Appendix B. Formulas and Coefficients of the Treatment Models and the Outcome

Models Fitted on the RHC Dataset for Data Generation and Corresponding True Hazard Ratio

of Treatment for Each Scenario in Simulations .. 38

6.3 Appendix C. R Codes for Simulation... 40

6.4 Appendix D. R Codes for Method Application on the RHC Dataset Code 56

v

List of Tables

Table 1. Simulation Results Obtained under 4 Scenarios with Different Propensity Score

Estimation and Application Methods (n=1000) .. 17

Table 2. Simulation Results Obtained under 4 Scenarios with Different Propensity Score

Estimation and Application Methods (n=100) .. 22

Table 3. Simulation Results Obtained under 4 Scenarios with Different Propensity Score

Estimation and Application Methods (n=500)d .. 36

Table 4. Method Application on the RHC Data ... 37

vi

List of Figures

Figure 1. Bias of SL-based and Logistic-based Estimator in Scenario B at n=1000 and n=100 .. 25

Figure 2. Distribution of ASAM for Each Scenario with Logistic or SL Method at n=1000 33

Figure 3. Bias for Different Method Combinations between Logistic/SL and Matching/Overlap

Weight at n=1000 .. 34

Figure 4. Kaplan-Meier Plot for Right Heart Catheterization Data .. 35

1

Chapter 1

1 Introduction

Observational studies with time-to-event outcomes in electronic healthcare records have

been widely used to estimate the effects of treatments, exposures, and medical interventions on

health outcomes in a typical clinical setting. Observational studies allow researching on target

groups that are not typically studied in clinical trials and exploring the effects of harmful

exposures that cannot be studied in randomized trials. In randomized trials, randomization can

ensure that treated sample will not differ systematically on average from control sample in both

measured and unmeasured baseline characteristics. Treatment effect can be estimated by directly

comparing outcomes between treatment and control groups. Compared to random clinical trials,

the lack of random distribution assignment in observational studies confounds the effects of

exposures, due to the potential differences in covariate distributions between two groups.

Observational studies could be subject to treatment-selection bias. Thus, the effect of treatment

should not be estimated by simply comparing outcomes between treatment and control groups. It

is essential to minimize the confounding effects for improvement of internal validity in

observation studies with statistical methods such as propensity scores (PS) (Austin & Schuster

2016). Insurance claim data are commonly used in observational studies, which mainly provide

diagnosis, prescription, and insurance information. But electronic health records (EHR) offer

potential confounding clinical characteristics and laboratory measures that are usually

unavailable in insurance claims data, which can improve effect estimation in observation studies

(Polsky et al. 2009).

Propensity score is defined as the probability of a subject receiving treatment

conditioning on the observed baseline covariates (Rosenbaum & Rubin 1983). It can be

considered as a balancing score that attempts to balance the distribution of measured covariates

between treatment and control groups (Joffe & Rosenbaum 1999). The distribution of measured

baseline covariates between the two groups should be similar within a subset of patients with the

same propensity score (Austin 2011). Propensity scores can be used in studies when the

treatment assignment is strongly ignorable, which required two conditions (D’Agostino 2007).

2

One is the assumption that all variables that affect treatment assignment and outcome have been

measured in the study and used for PS methods. Including variables that are actually

unassociated may slightly increase variance in estimation. But this is acceptable since excluding

potentially associated variables can be very costly in terms of bias increasing (Shadish et al.

2008; Stuart 2010). The other condition is that every subject should have a probability larger

than 0 of receiving either the treatment or control (Austin 2011). With these two conditions met,

propensity score methods can help with obtaining a balanced distribution in covariates between

compared groups.

Parametric models are commonly used for PS estimation (e.g., logistic models based on

baseline covariates) and would be efficient if models are correctly specified. Variables used in

the model should be pretreatment covariates that affect the outcome. But parametric models

usually hold strong assumptions for optimal estimation and model misspecification might affect

covariate balance in covariates and increase bias in treatment effect estimates. Recent alternative

approaches tend to address these issues with data-driven models like machine learning (ML)

methods. Gradient boosting model and random forests have been suggested as helpful ML

algorithms for PS estimation (Pirracchio2014; Setoguchi et al. 2008: Lee et al. 2010). Super

Learner (SL) allow one to apply multiple ML algorithms simultaneously.

Super Learner is a method that chooses the optimal regression algorithm from a given set

of candidate algorithms that can include both parametric and data-driven algorithms (Dudoit

&van der Laan 2005; van der Laan el al. 2007). The selection of algorithms depends on cross-

validation and the choice of a loss function. Then a weighted linear combination of the candidate

algorithms will be used as a new estimator, which is called SL estimator. This combination of

methods has been demonstrated to perform asymptotically at least as well as the best option in

the given set of algorithms, if the set does not contain the true parametric model of the dataset

(Dudoit &van der Laan 2005). Despite the potential benefits for PS estimation, applying machine

learning methods can be quite time-consuming and may have higher requirements for computing

power (van der Laan el al. 2007).

Common ways of utilizing propensity scores include stratifying or subclassifying data

based on PS, matching treated subjects with control subjects based on PS, reweighting the

subjects with weights derived using the PS, and adjusting the regression model with PS (Stuart

2010). When the outcome data is already available, a drawback of PS matching methods is that

3

not all data are utilized. Some control subjects are discarded and not used in the analysis even

though they might be in the range of the treatment groups’ scores. Weighting methods, such as

inverse probability of treatment weighting (IPTW), matching weights, and overlap weights,

instead can use all subjects in the data (Franklin et al. 2017; Li et al. 2019). Contrasting with the

nearest neighbor matching method which assigns each individual a weight of either 0 or 1,

weighting methods assign weights between 0 and 1 to individuals (Stuart 2010).

Time to an event of interest in many types of studies, including in pharmaco-

epidemiological studies, use EHR data. A challenge in the time-to-event setting is that subjects

might be censored before their actual survival status are recorded. Unlike in cross-sectional data,

excluding these patients from time-to-event data or simply assuming them alive or dead may

seriously bias the treatment effect estimation. Moreover, survival times in time-to-event data are

usually skewed, which limits the effectiveness of analysis methods that assume a normal data

distribution. Thus, the conclusions for cross-sectional data might not be generalizable to time-to-

event data even for studies with settings similar in other conditions. We used the Cox

proportional hazard model for data generation and treatment effect estimation to address the

features of time-to-event data.

The objective of this study is to implement parametric model (logistic regression models)

and data-driven models (machine learning methods) for PS estimation, adjust the effect

estimation models with or without weighting based on PS, and evaluate the performances of

different combination of PS estimation and application methods on simulated survival data

inspired by Right Heart Catheterization (RHC) dataset. We assess each approaches’ ability to

obtain balanced baseline covariate distributions between treatment and control groups and

explore the bias of the treatment effect estimates and the coverage of the corresponding

confidence intervals for the time-to-event outcomes. We compare the methods to evaluate when

it would be beneficial to utilize more computationally intensive data-driven approaches and

when weighted models with logistic-based PS would perform well enough. Some steps further

from previous studies on comparing machine learning and the logistic regression method for PS

estimation is that we include scenarios with second-order terms in the true PS models and not

only first-order terms (Pirracchio 2014). We focus on time-to-event data while previous studies

focused on cross-sectional data and applied linear logistic regression models. We use more

recent PS weighting methods instead of Inverse Probability Treatment Weighting (IPTW) that

4

have been typically used as a representative of PS weighting approaches in method comparison

studies. We also consider real-world application on a health dataset commonly used for studying

PS.

5

Chapter 2

2 Methods

2.1 Propensity Score Estimation Methods

2.1.1 Logistic Method

 For observational studies, propensity score is commonly estimated through a logistic

model: e(Xi; β) =
1

1+exp(−Xiβ)
. The βs in the model are obtained through logistic regression fitted

onto the given dataset so that the model can produce the predicted probability of treatment,

ê(𝑋𝑖; β), as propensity for each subject. In our study, the first element of 𝑋𝑖 is assumed to be 1 in

the logistic model for notational simplicity.

2.1.2 Machine Learning Method

 While propensity score methods have become a standard tool in causal inference, studies

showed that minor misspecification of regression models on the PS can lead to substantial bias in

the estimates of treatment effect (Kang & Schafer 2007). Traditional approaches to modeling

prediction have primarily included parametric models like logistic regression model (Brookhart

et al. 2006), which require assumptions that may not be always satisfied in practice. The

common application ways of using such methods, like using merely main terms and assuming

additivity-only relationship between covariates, also might not provide optimal estimation for PS

thus bias the treatment effect estimation. This has led to a growing interest in the use of more

adaptive regression techniques to improve the estimation of PS. Machine learning methods,

including classification trees, boosting, and random forest, have been developed to overcome the

limitations of parametric models by loosening the assumption requirements on pre-specified

models (Hastie et al. 2009).

 The decision tree method is a supervised machine learning method that can be utilized for

regression and classification tasks. It can be defined as a set of rules organized in a hierarchical

structure with layers of nodes and branches like a tree, starting from an initial node that

represents the whole training dataset. A decision rule is applied to the data at each node to

partition the dataset into smaller and more homogenous subsets (Breiman et al. 1984).

Observations within each node of the tree, will have similar probabilities of class membership.

Each subset can also be split until a convergence criterion is met then the rule stops increasing in

6

complexity and reach a terminal node (Badillo 2020). Now decision trees are almost never used

in machine learning in their original form. Some primary issues with the original decision trees

are overfitting and instability (Badillo 2020), which make the rules obtained from the training

data not performing well on new data. However, The decision tree method becomes the

foundation for two widely used approaches: random decision forests (random forests) and

gradient boosting model (GBM) (Badillo 2020). Both random forest method and tree-based

gradient boosting method use a set of trained decision trees to predict the outcome. The key

difference between the two methods is on how the trees are created. As an approach adapted

from the decision tree method, the random forests algorithm constructs many deep decision trees.

Although each of those trees is likely overfitted, the overtraining problem can be solved by

combining the outputs of multiple trees. The GBM generally creates shallow decision trees and

then it can decrease the classification error over time by adding more and more trees (Badillo

2020).

 The Random Forest method is a type of machine learning method that constructs a

multitude of decision trees at training and can be used for classification in PS estimation. A

random vector Θk, or the 𝑘th, is generated and is independent of the past random vectors Θ1, …,

Θ𝑘−1 but all vectors are created using an identical distribution. And a tree is developed using the

training set and Θ𝑘, which leads to a classifier ℎ(𝑥, Θ𝑘) as the decision rule for the tree. Input

variables for each tree are randomly selected in subsets of fixed size in the training data (Ferri

2020). After a number of trees are generated, the output would be the class selected by most trees

or by averaging the results from all trees (Breiman 2001). For the estimation of propensity score

based on the training data, random forest algorithm draws multiple random samples from the

whole dataset to start many trees (Cham et al. 2016). The data at each node is partitioned into

branches below by rules for covariates and this data division process continues until the final

node. The propensity score is estimated as the proportion of treated subjects in all subjects

retained in a final node. This assigns an estimated score to subjects following one specific path

of rules in a tree and each tree will have a whole set of propensity scores assigning to the

subjects following each path of rules. The final rules for propensity score estimation will be

summarized by averaging the propensity scores sets from all trees generated by the algorithm. To

predict a subject’s propensity score after setting up the estimation rules, the data for this subject

7

will go through all trees generated by the algorithm and the propensity score will be estimated by

the probability of being voted as a treated subject by all trees.

 Gradient boosted modeling (GBM) is a machine learning technique that use gradient

boosting to create multiple decision trees (Ferri 2020). Decision trees are referred as

classification trees when the predicted outcome is a class or regression trees if the outcome is

numerical. Collectively these methods can be referred as Classification and Regression Trees

(CART). “Boosting” means combining the performance of many “weak” models in order to

produce a more powerful whole model (Friedman et al. 2000). GBM is a prediction model in the

form of a collection of rough regression models to improve predictive performances (Freidman

2001). The idea is combining many simple fixed-size models in a forward and stagewise fashion

instead of finding one best model for better predictive performances (Elith et al. 2008; Friedman

et al. 2000). For propensity score estimation by GBM, an initial regression model is built to

roughly fit the whole training data (McCaffrey 2004). Then the algorithm searches for a small

adjustment in the form of a small simple model to add to the initial model and improves the

whole model. The adjustments do not change previous models and only adds on fitting

improvement based on residual points in previous models. The model fitting and adjustment

process continues until a chosen loss function is minimized.

 Despite the strengths of these machine learning methods compared to parametric methods

for PS estimation, these methods have their own limitations so that they can only perform well in

rather specific situations and might not fit well across various settings. Super Learner (SL) has

been proposed as a method for optimal selection of regression algorithms and selects from a set

of candidate algorithms based on cross validation (Dudoit & van der Laan 2005; van der Laan

2006; Sinisi et al. 2007). The selection strategy depends on the choice of a loss function (L2

squared error in this study). Comparison of candidate algorithms’ performance relies on V-fold

cross validation. SL averages the estimated risks across the validation sets and produces the

cross-validated risk for each algorithm. And the weighted linear convex combination of the

candidate algorithms will be chosen as the most optimal combination as it has the smallest

estimated risk. This combination of candidate algorithms is referred as the SL estimator, which is

applied to the whole learning data (van der Laan 2007). In our study, Random Forest

(randomForest function in R) (Liaw & Wiener 2002) and GBM (XGBoost function in R) (Chen

& Guestrin 2016) were included in the SL library as the candidate algorithms. These two

8

algorithms were proposed to have better performance in bias reduction and stability in results

(Ferri 2020), which fell into our main focus of the performance comparison.

2.2 PS Application Methods: Weighting

The estimated propensity scores can be used in several primary ways to help with

estimating the treatment effect, such as stratification or subclassification on PS, PS matching

methods, PS adjustment method, and PS weighting method (Austin & Stuart 2015). Many

studies have been conducted for the first three types of methods, but performance evaluation

needs more discussion on PS weighting methods. We focused on weighting methods where each

subject was weighted by 𝑤𝑖, a function of the subject’s PS (Stuart 2010). Under weighting

methods, a hypothetical population is created with the 𝑤𝑖s and ideally should have balanced

covariate distributions among the treatment and the control groups. A general class of such

weights, 𝑤𝑖, is called balancing weights (Li et al. 2018).

2.2.1 Inverse Probability of Treatment Weighting

 Inverse probability of treatment weighting (IPTW) is a weighting scheme widely used for

balancing covariates. Using propensity scores that summarize differences in measured sample

characteristics, IPTW creates a weighted pseudopopulation in which both treatment group and

control group resemble the complete sample (Li et al. 2019). IPTW is defined as 1/𝑒�̂� for treated

subjects and 1/(1 − 𝑒�̂�) for control subjects (Austin & Stuart 2015). It inverses the probability of

being assigned with treatment of the sample. The target population for this method is the entire

study cohort. Some subjects in the nonoverlap area of two groups’ PS distribution may receive

very large weights in this scheme, resulting in large bias and high variance in treatment effect

estimation. Trimming off the nonoverlap regions addresses this issue but may discard subjects

with outcome events and increase the variance. Truncating the subjects with weights outside of a

certain percentile range (𝑟th to (1 − 𝑟)th percentile) may help reduce the influence of such type

of extreme weights while also utilizing the whole sample in the analysis (Cole & Herman 2008).

2.2.2 Matching Weights

 Matching weights is an alternative weighting method to limit the impact of extreme

weights from nonoverlap in the PS and improve covariate balance by treating the same estimand

as pair matching on the PS (Li & Greene 2013). The matching weight is defined as 𝑤𝑖 =

9

𝑚𝑖𝑛(𝑒𝑖,1−𝑒𝑖)

𝑒𝑖
 for treatment group and 𝑤𝑖 =

𝑚𝑖𝑛(𝑒𝑖,1−𝑒𝑖)

1−𝑒𝑖
 for control group. This method

downweights overabundant subjects in the sample, such as treated subjects with high PSs and

control subjects with low PS. In contrast, IPTW upweights the underestimated subjects in the

sample like treated subjects with low PSs and control subjects with high PSs. So those subjects

that would receive very high weights under IPTW approach will receive at most 1 as their

weights under matching weights approach. And no patients will be excluded from the sample

although they might be downweighted.

2.2.3 Overlap weights

 Overlap weight is a newer weighting method developed for better balancing function and

addresses some of the issues of IPTW (Li et al. 2019). The overlap weight is defined as 𝑤𝑖 =

1 − 𝑒�̂� for treatment group and wi = 𝑒�̂� for control group, which is the probability of a patient

being assigned to the opposite group. Overlap weight upweights subjects having substantial

probability of receiving treatment and downweights the subjects in the tails of the PS

distribution. Therefore, subjects with PS of 0.5 would make the largest contribution to the effect

estimation and those with PS close to 0 or 1 would make smallest contribution. It targets on the

population with the most overlap in their observed covariates.

2.2.4 Comparison of different weighting methods

 Compared to stratification and subclassification on PS, the baseline covariates of treated

and control samples can be easily described and presented under IPTW. With the assumption

that all of the important confounders are included in the dataset, IPTW may be a convenient PS

estimation for its simplicity and alignment with the ideal scenario where the entire sample, rather

than subsets, had been randomized to the intervention of interest. However, IPTW might be more

sensitive to misspecification of PS estimation model (Deb 2016). And it may perform poorly

when the treatment group and the control group are initially very different or when some patients

have extreme PS near 0 or 1, which means a subject might always receive treatment or always in

control group in the model. Using IPTW method on sample with such patients might lead to

larger bias and variance in the estimated treatment effect. Extreme propensities are common in

large datasets where inclusion criteria could be broadly defined. Although trimming methods

have been suggested as an improvement approach by excluding patients with extreme

10

propensities, the decision rule for trimming methods might be unclear and controversial and they

can result in substantial sample size reduction (Li et al. 2019).

 Matching weight is an alternative weighting method that can limit the influence of

subjects with extreme propensity scores (Franklin et al. 2017). It can confer numerical stability

compared with IPTW by focusing on treatment effects in subjects with good overlap on the

propensity score between treatment and control groups (Yoshida 2017). Compared to IPTW,

overlap weighting method is a newer PS weighting method meant for better performance in

balance and precision. These weights are bounded in a rational range (0-1) and thus substantially

reduce the influence of subjects at tails of the PS distribution without removing them from the

sample. Overlap weighting method may also minimize the large-sample variance of treatment

effect estimator (Li et al. 2019).

2.3 Overall simulation structure

We performed a set of Monte-Carlo simulation experiments with simulated data inspired

by the Right Heart Catheterization (RHC) dataset (Connors et al. 1996) to examine the

performance of different propensity score estimation and application methods on estimating the

treatment effect for the time-to-event outcomes and improving covariate balance. The data were

simulated as a hypothetical cohort study with a binary treatment A, a time-to-event outcome and

eleven covariates Wis. We had a similar survival time distribution (until 90 days) and incidence

rate as the RHC dataset. Datasets were generated 1,000 times for four simulation scenarios which

differed in the true association model between covariates, treatment and outcome. Propensity

scores were estimated with the traditional logistic regression model and machine learning

methods. We then explore the performance of two recently proposed propensity score weighting

approaches, matching weight and overlap weight methods, in estimating the treatment effect in

the time-to-event model. In each scenario, the performance will be compared using unadjusted

and adjusted models with or without weights.

2.3.1 Simulation Scenarios

In practice, researchers do not know the true structure of the association between

treatment and covariates and similarly, the association between the outcome and the covariates.

Thus, they might fit a mis-specified model by assuming linear and/or additive relationships and

ignoring potential interaction or quadratic terms in the true model. To compare the performance

11

of different methods when using mis-specified models, we designed four scenarios differing in

the complexity of the associations between the treatment/outcome and the covariates, or the “true

models”. The complexity varied in the degree of non-linearity and/or non-additivity of modeled

associations between the covariates across the models. In each scenario, the relationship between

covariates in the true treatment model and the true outcome model was the same.

The designed four scenarios had the following properties:

• Scenario A: additivity and linearity (main effects only);

• Scenario B: non-linearity (main effects + 3 quadratic terms);

• Scenario C: non-additivity (main effects + 10 two-way interaction terms);

• Scenario D: non-additivity and nonlinearity (main effects + 10 two-way interaction terms

+ 3 quadratic terms).

 The Cox PH models and the PS estimation models in application were additive and linear

only between the covariates across all scenarios. The true model in Scenario A were the same

with the applied model for PS estimation and treatment effect estimation model. The true models

in Scenario B, C, and D were different from the treatment effect estimation models applied onto

the simulated datasets. Therefore, the applied models in Scenario B, C, and D were incorrect and

the deviation from the true models increased from Scenario B to D.

2.3.2 Data Simulation

 The motivating Right Heart Catheterization (RHC) dataset was obtained from a

prospective cohort study called Study to Understand Prognoses and Preferences for Outcomes

and Risks of Treatments (SUPPORT) that examined the association between the use of right

heart catheterization during the first 24 hours of care in the intensive care unit (ICU) and

subsequent survival, intensity of care, length of stay, and cost of care (Connors et al. 1996). The

study was operated between 1989 and 1994 in five US teaching hospitals. The study sample was

5735 critically ill adult patients receiving ICU care for one of the nine prespecified disease

categories. The main outcomes were death status, survival time, intensity of care, cost of care,

length of stay in the ICU and hospital and these outcome measurements were determined from

the clinical record and from the National Death Index. In Connor’s study (1996), propensity

scores for this dataset were constructed using multivariable logistic regression. The association

of right heart catheterization treatment with specific outcomes were analyzed with case-matching

and multivariable regression modeling after adjusting for treatment selection with the propensity

12

scores. Sensitivity analysis was used to estimate the potential effect of missing covariates on the

results.

We used the RHC dataset as the inspiration for generating covariates, treatment variable,

and outcome variable in the simulated datasets. The RHC dataset had eight covariates that were

relatively impactful based on the Cox PH model we fitted to it, which were PaO2/FIO2 ratio

(“pafi1”), age (“age”), heart rate (“hrt1”), respiratory rate (“resp1”), bilirubin level (“bili1”), do-

not-resuscitate status (“dnr1”), cardiovascular diagnosis (“card”) and medical insurance type

(“ninsclas”). The simulated datasets in our study had eleven baseline covariates which were

generated to have influence on both treatment selection and the outcome. We simulated five

continuous covariates from independent standard normal distributions and six binary covariates

were simulated from independent binomial distribution to have similar incidence rates as the

selected variables in the RHC dataset. Each binary covariate in the simulated datasets

represented a nominal value of selected categorical covariates in the RHC dataset.

For the 𝑖th subject in a dataset, the probability of the treatment was estimated from one of

the four true PS models which were four logistic models each corresponding to a scenario

(Scenario A - D). The coefficients of the models were obtained from fitting the same models to

the RHC dataset and then inflating some coefficient values to ensure that each covariate included

in the model had an impact on treatment selection. The coefficient for the quadratic term of age

variable was set to be 0.01 if its absolute value from model fitting was smaller than 0.01. The

coefficients for the interactions term related to cardiovascular diagnosis variable (“card”) was set

to be 0.1 if the original values from model fitting was smaller than 0.1. All other coefficients that

had absolute values smaller than 0.001 were set to 0.001. The formulas used for simulating the

probability of treatment are given in Appendix D. And for each subject, treatment status was

generated from a Bernoulli distribution with subject-specific parameters 𝑝𝑖: 𝐴𝑖~Be(𝑝𝑖), where

𝑝𝑖 =
exp(𝑋𝑇β)

1+exp(𝑋𝑇β)
, 𝑋𝑇 is the input matrix containing the generated covariate columns and the

columns for the specified interaction or quadratic terms, and β is the coefficients for the

treatment model.

 We generated an observed time-to-event outcome for each subject using a Cox

proportional hazards model with an exponential baseline hazard, the actual treatment assigned

and simulated covariates (Morina & Navarro 2014; Bender, Augustin, & Blettner 2005). The

coefficients used to simulate the time-to-event outcome were obtained from the Cox proportional

13

hazards model that were same in relation structure between covariates with the corresponding

treatment models in each scenario. There were four sets of coefficients, each for one of the four

scenarios. The true treatment effect and the formulas for simulating the time-to-event outcomes

are given in Appendix D. When generating the outcome status, the generated survival times were

censored at 90 as a representative of 90 days in order to make the simulated time distribution

similar to the survival time distrribution of the RHC dataset.

We designed the following factors to vary within each scenario: (1) PS estimation: the

propensity scores were generated with the logistic method or the machine learning method

(Super Learner); (2) whether adjusting for baseline covariates besides treatment in the treatment

effect estimation model, (3) whether using weights in the treatment effect estimation model; (4)

PS application: the propensity score were applied as weights through the matching weight

approach or the overlap weight approach. Therefore, there were ten cases (Case 1 - 10) for each

scenario, five for the adjusted models (no weights, matching weights calculated using logistic

regression, matching weights calculated using the Super Learner, overlap weights calculated

using logistic regression, and overlap weights calculated using the Super Learner) and five for

the unadjusted models (no weights, matching weights calculated using logistic regression,

matching weights calculated using the Super Learner, overlap weights using logistic regression,

and overlap weights calculated using the Super Learner). In each scenario, we simulated 1000

datasets at three sample sizes: n=100, 500, or 1000 subjects.

2.4 Performance Metrics

 We measured and compared the performance of the method combinations in the ten cases

under each scenario through the following metrics:

• The performance of point estimate of the treatment effect: bias, mean squared errors

(MSE), and rooted mean squared errors (RMSE). The bias was reported as absolute bias.

Bias =
1

𝑁
∑(𝑌 − 𝑌�̂�)

𝑁

𝑖=1

MSE =
1

𝑁
∑(𝑌 − 𝑌�̂�)

2
𝑁

𝑖=1

14

RMSE = √∑ (𝑌 − 𝑌�̂�)
2𝑁

𝑖=1

𝑁

𝑌 is the true hazard ratio of treatment from the Cox PH model fitted onto the RHC

dataset. 𝑌�̂� is the estimated hazard ratio of treatment fitted onto the 𝑖th simulated dataset.

𝑁 is the number of simulations.

• The performance of variance estimators: 95% confidence interval coverage and width.

If the true hazard ratio 𝑌 is within [𝑒𝑥𝑝(𝑙𝑜𝑔(𝑌�̂�) − 𝑡𝑐𝑠𝑖/√𝑛), 𝑒𝑥𝑝(𝑙𝑜𝑔(𝑌�̂�) + 𝑡𝑐𝑠𝑖/√𝑛)],

then it is counted as covered for once. 𝑡𝑐 = 𝑡0.975,𝑛−1 is the critical value of the 𝑡 statistic

with the significance of 0.05 and n-1 degrees of freedom. 𝑠𝑖/√(𝑛) is the standard error of

log(𝑌�̂�), where 𝑠𝑖 is the sample standard deviation for log(𝑌�̂�). 𝑛 is the sample size of that

dataset.

Confidence interval width: 2 𝑡𝑐𝑠/√𝑛

• The balance in the covariates between treated and control subjects: the average

standardized absolute mean difference (ASAM). ASAM of 0.1 or more were considered

to be of concern (Austin 2009).

𝐴𝑆𝐴𝑀 =
1

𝑛𝑐
∑

𝑀1 − 𝑀2

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑

𝑛𝑐

𝑗=1

 𝑀1and 𝑀2 are the means of one covariate in the treatment group and in the control group.

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 is the pooled standard deviation for the covariate values in the total sample. 𝑛𝑐 is the

number of covariates in the datasets. Note that this equation is the ASAM for one simulated

dataset rather than across the 1,000 simulated datasets.

 All performance metrics used for method performance comparison were the average of

the metrics across the 1,000 simulated data sets.

2.5 Application on Real-Word dataset

 Right Heart Catheterization dataset (introduced in section 2.3.2) has been widely used as

a biostatistical dataset for illustrating and testing propensity score methods. It has a relatively

high outcome event rate while many studies on propensity score methods use datasets with rare

outcomes. We applied the methods of interest to the RHC dataset to evaluate the performance of

15

PS estimation methods, PS weighting methods, and covariate adjustment on a treatment effect

estimation model in terms of 95% CI width and covariate balance. The patterns of method

performance in the RHC dataset would be compared with those found in the simulated datasets

as a partial examination on the findings from the simulated results.

 We applied the same methods used in the ten cases under the simulation setting to the

RHC dataset, including covariate adjustment in treatment effect estimation model or using

weights in the model, PS estimation methods (logistic- and SL-based), and PS application

methods (matching weight and overlap weight).

 All analyses were performed in R statistical software version 4.0.2 (R Foundation for

Statistical Computing, Vienna, Austria), running on a Windows 10 x64 platform. R codes were

provided in the Appendix.

16

Chapter 3

3 Results

The simulation results obtained for the four scenarios are presented in Table 1.

3.1 The Cox PH model

Under Scenario A, the true model on the association between treatment and covariates

was linear and additive so the adjusted Cox PH model when estimating the treatment effect

estimation in the simulated datasets was correctly specified. The true models under Scenario B,

C, and D had nonlinear, nonadditive, or both features so the linear additive models used in the

propensity score estimation and covariate adjustments were incorrectly specified in these

scenarios. Three combinations of adjusting and weighting methods, or three types of models,

were compared in performances: unadjusted weighted models, adjusted unweighted models, and

adjusted unweighted models. Unadjusted weighted models can estimate marginal treatment

effects with covariate distribution balance addressed. Adjusted unweighted can be used for

conditional effects estimation. Adjusted weighted models might be helpful if people are

interested in utilizing the information in the data in both adjusting and weighting approaches.

 Since this study focuses on clinical studies using EHR data often having larger sample

sizes, the discussion of the results will be initially on the simulations of sample size 1000 and

then makes comparison with the simulations of the smaller sample size (i.e., n=100).

3.2 Performance of Treatment Effect Estimator

 The performance of treatment effect estimator was measured by bias, mean squared

errors (MSE), and rooted mean squared errors (RMSE). Overall, adjusting appeared to be more

beneficial than weighting towards the performance of the treatment effect estimator at sample

size of 1000 (Figure 1). The SL-based PS estimation method performed similarly with the

logistic-based method. Across the scenarios, misspecification of PS model appeared to have

larger influence on bias when the true PS model became more complex, which means the bias

difference between the three types of models increased for scenarios with more complex true

models (Table 1).

17

Table 1. Simulation Results Obtained under 4 Scenarios with Different Propensity Score

Estimation and Application Methods (n=1000)

T
ru

e m
o
d

el ("S
cen

ario
s")

O
u

tco
m

e M
o

d
el

P
S

 E
stim

atio
n

M
o
d

el

P
S

 W
eig

h
tin

g

m
eth

o
d

B
ias

M
S

E

R
M

S
E

%

 o
f C

I

co
v

erag
e

C
I w

id
th

A

S
A

M

A
. A

d
d
itiv

ity
 an

d
 lin

earity

(M
ain

 effects o
n

ly
)

A
d

ju
sted

U

n
w

eig
h
ted

/

0
.0

0
5

8

0
.0

1
1

7

0
.1

0
8

4

9
4

.4

0
.4

1
7

0
.1

4
4

L
o

g
it

M
atch

in
g

0
.0

0
5

7

0
.0

1
2

8

0
.1

1
3

0

9
4

.3

0
.4

4
0

0
.0

0
7

S
L

M

atch
in

g

0
.0

0
4

9

0
.0

1
5

5

0
.1

2
4

3

9
4

.8

0
.4

8
1

0
.0

2
9

L
o

g
it

O
v

erlap
p

in
g

0
.0

0
5

5

0
.0

1
2

9

0
.1

1
3

4

9
4

.6

0
.4

3
9

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

0
6

3

0
.0

1
5

7

0
.1

2
5

1

9
4

.9

0
.4

8
3

0
.0

4
3

U
n

ad
ju

sted

U
n

w
eig

h
ted

/

-0
.0

7
6

9

0
.0

1
5

1

0
.1

2
2

9

8
5

.5

0
.3

7
2

0
.1

4
4

L
o

g
it

M
atch

in
g

-0

.0
7
3

4

0
.0

1
5

3

0
.1

2
3

6

8
9

.0

0
.3

9
4

0
.0

0
7

S
L

M

atch
in

g

-0
.0

6
6

1

0
.0

1
6

8

0
.1

2
9

8

9
0

.3

0
.4

4
1

0
.0

2
9

L
o

g
it

O
v

erlap
p

in
g

-0

.0
8
2

6

0
.0

1
6

8

0
.1

2
9

7

8
5

.8

0
.3

9
1

0
.0

0
0

S
L

O

v
erlap

p
in

g

-0
.0

7
8

9

0
.0

1
8

8

0
.1

3
7

0

8
7

.9

0
.4

3
9

0
.0

4
3

B
. N

o
n

lin
earity

(M
ain

 effects +
 q

u
ad

ratic

term
s)

A
d

ju
sted

U

n
w

eig
h
ted

/

0
.0

1
2

2

0
.0

1
2

1

0
.1

0
9

9

9
5

.3

0
.4

2
6

0
.1

5
2

L
o

g
it

M
atch

in
g

0
.0

1
5

2

0
.0

1
5

1

0
.1

2
2

8

9
4

.3

0
.4

6
6

0
.0

0
8

S
L

M

atch
in

g

0
.0

1
7

9

0
.0

1
7

3

0
.1

3
1

4

9
3

.9

0
.5

0
4

0
.0

2
8

L
o

g
it

O
v

erlap
p

in
g

0
.0

1
4

5

0
.0

1
4

9

0
.1

2
2

2

9
4

.3

0
.4

6
4

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

1
5

8

0
.0

1
7

3

0
.1

3
1

5

9
4

.2

0
.5

0
4

0
.0

4
2

U
n

ad
ju

sted

U
n

w
eig

h
ted

/

-0
.0

6
2

2

0
.0

1
3

0

0
.1

1
4

0

9
0

.2

0
.3

8
0

0
.1

5
2

L
o

g
it

M
atch

in
g

-0

.0
4
8

1

0
.0

1
3

7

0
.1

1
7

1

9
2

.7

0
.4

2
1

0
.0

0
8

S
L

M

atch
in

g

-0
.0

5
3

5

0
.0

1
6

1

0
.1

2
7

0

9
3

.2

0
.4

5
9

0
.0

2
8

L
o

g
it

O
v

erlap
p

in
g

-0

.0
5
6

3

0
.0

1
4

3

0
.1

1
9

7

9
2

.1

0
.4

1
6

0
.0

0
0

S
L

O

v
erlap

p
in

g

-0
.0

5
8

1

0
.0

1
6

7

0
.1

2
9

3

9
2

.8

0
.4

6
0

0
.0

4
2

C
. N

o
n

-ad
d
itiv

ity
 (M

ain

effects +
 in

teractio
n

 term
s)

A
d

ju
sted

U

n
w

eig
h
ted

/

0
.0

0
9

6

0
.0

1
2

7
4

0
.1

1
2

9

9
5

.3

0
.4

3
9

0
.2

2
9

L
o

g
it

M
atch

in
g

0
.0

1
1

4

0
.0

1
5

8
1

0
.1

2
5

8

9
5

.1

0
.4

7
9

0
.0

1
0

S
L

M

atch
in

g

0
.0

1
1

8

0
.0

1
6

2
9

0
.1

2
7

6

9
5

.4

0
.5

0
0

0
.0

4
2

L
o

g
it

O
v

erlap
p

in
g

0
.0

1
1

5

0
.0

1
6

2
4

0
.1

2
7

5

9
4

.3

0
.4

8
3

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

1
2

6

0
.0

1
6

5
1

0
.1

2
8

5

9
5

.4

0
.5

0
4

0
.0

4
4

U
n

ad
ju

sted

U
n

w
eig

h
ted

/

0
.0

7
8

3

0
.0

1
6

2
3

0
.1

2
7

4

8
8

.8

0
.3

9
9

0
.2

2
9

L
o

g
it

M
atch

in
g

0
.0

5
7

9

0
.0

1
5

8
5

0
.1

2
5

9

9
2

.0

0
.4

4
1

0
.0

1
0

S
L

M

atch
in

g

0
.0

5
4

5

0
.0

1
6

6
8

0
.1

2
9

2

9
2

.4

0
.4

7
4

0
.0

4
2

L
o

g
it

O
v

erlap
p

in
g

0
.0

7
4

4

0
.0

1
8

9
9

0
.1

3
7

8

9
0

.2

0
.4

5
1

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

7
7

6

0
.0

2
1

0
5

0
.1

4
5

1

9
0

.0

0
.4

8
8

0
.0

4
4

D
. N

o
n
-ad

d
itiv

ity
 an

d

n
o

n
lin

earity

(M
ain

 effects+
 q

u
ad

ratic term

+
 in

teractio
n

 term
)

A
d

ju
sted

U

n
w

eig
h
ted

/

0
.0

1
7

3

0
.0

1
2

2

0
.1

1
0

6

9
5

.5

0
.4

3
5

0
.1

8
8

L
o

g
it

M
atch

in
g

0
.0

1
9

1

0
.0

1
4

3

0
.1

1
9

5

9
5

.1

0
.4

7
6

0
.0

0
8

S
L

M

atch
in

g

0
.0

1
8

6

0
.0

1
5

9

0
.1

2
6

2

9
4

.7

0
.4

9
6

0
.0

4
3

L
o

g
it

O
v

erlap
p

in
g

0
.0

1
9

1

0
.0

1
4

5

0
.1

2
0

6

9
5

.0

0
.4

7
8

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

1
9

2

0
.0

1
6

0

0
.1

2
6

4

9
5

.0

0
.4

9
9

0
.0

4
4

U
n

ad
ju

sted

U
n

w
eig

h
ted

/

-0
.0

9
3

6

0
.0

1
6

1

0
.1

2
7

0

8
1

.5

0
.3

4
5

0
.1

8
8

L
o

g
it

M
atch

in
g

-0

.0
8
2

2

0
.0

1
5

1

0
.1

2
2

9

8
7

.7

0
.3

8
8

0
.0

0
8

S
L

M

atch
in

g

-0
.0

8
6

1

0
.0

1
7

9

0
.1

3
3

7

8
8

.0

0
.4

2
2

0
.0

4
3

L
o

g
it

O
v

erlap
p

in
g

-0

.0
9
0

7

0
.0

1
7

2

0
.1

3
1

1

8
5

.6

0
.3

8
8

0
.0

0
0

S
L

O

v
erlap

p
in

g

-0
.0

9
0

0

0
.0

1
9

0

0
.1

3
7

7

8
6

.9

0
.4

2
5

0
.0

4
4

18

3.2.1 Weighting without Covariate Adjustment

 The bias increased as the true model became more complex (Table 1). For the PS

matching weights method with no covariate adjustment, the bias of logistic-based estimator was

slightly larger than SL-based estimator when the applied model was correct. The bias associated

with SL-based estimators were similar to logistic-based estimators for the scenarios when the PS

model was non-additive or both non-additive and non-linear. The biases of logistic-based

estimators did not show substantial difference from SL-based estimators in general when using

PS matching weights without covariate adjustment (Table 1).

 For the PS overlap weight method, the bias associated with logistic-based was slightly

higher than SL-based estimator for the non-linear true model (Table 1). The biases of the

logistic-based estimators were similar to those of the SL-based estimators across all scenarios

when using PS overlap weights without covariate adjustment.

 The matching weight method tended to have smaller biases than the overlap weight

method. The biases for both nonlinear and nonadditive true models (Scenario D) were generally

higher than those for the true models under other scenarios (Scenario A, B, C).

3.2.2 Covariate Adjustment without Weighting

 When using covariate adjustment but not weighting, the bias was relatively smaller than

in unadjusted weighted models even for the scenarios when the PS model was not correct (Table

1). The differences across the scenarios were negligible.

3.2.3 Covariate Adjustment with Weighting

 For the PS matching weight method, the bias associated with logistic-based estimators

were lower when the applied PS model was correctly specified than the bias in other scenarios

(Table 1). Similar patterns were observed with SL-based estimators (Table 1). The biases of

logistic-based estimators were slightly higher than those of SL-based estimators in general when

adjusting covariates and using PS matching weights.

 For the PS overlap weight method, the bias associated with both logistic-based and SL-

based estimators were lower when the applied model was correctly specified (Scenario A) than

other scenarios (Table 1). The logistic-based estimators produced bias slightly lower with the

SL-based estimators across all cases when adjusting covariates and using PS overlap weights.

19

 The matching weight method tended to have similar scales of biases than the overlap

weight method. The biases of correct applied models (Scenario A) might be lower than Scenario

B, C, and D.

3.2.4 Comparison between the Three Adjusting/Weighting Situations

When the sample size was 1000, adjusted unweighted models were associated with the

smallest biases, followed by adjusted weighted models then unadjusted weighted models.

Adjusting for covariates with or without PS weights substantially improved the bias reduction

compared to not using covariate adjustment (Table 1). Thus, unless the investigator is interested

in marginal effects, adjusting for covariates tends to reduce bias better than not adjusting in

studies with larger sample sizes.

3.3 Performance of variance estimator

 The performance of variance estimator was evaluated by 95% confidence interval

coverage and CI width. At sample size of 1000, models with covariate adjustment had higher

95% CI coverage rates than unadjusted models. SL-based estimators have better 95% CI

coverage rates and wider CI than logistic-based estimators and adjusting seemed more beneficial

than weighting (Table 1).

3.3.1 Weighting without covariate adjustment

 For the PS matching weight method, the coverage rates of 95% confidence intervals (CI)

associated with logistic-based estimators when the true PS model was both nonlinear and

nonadditive were lower than the nominal level for other scenarios (Table 1). A similar pattern

was observed for SL-based estimators (Table 1). The CI coverage rates and CI width for SL-

based estimators were slightly better than logistic-based estimators when using PS matching

weights without covariate adjustment (Table 1).

 For the PS overlap weight method, the coverage rates of 95% CI associated with both

logistic-based and SL-based estimators were lower when the true model was both nonlinear and

nonadditive than the nominal level of other scenarios (Table 1). The CI coverage rates of SL-

based estimators performed similar with those of logistic-based across the scenarios when using

PS overlap weights without covariate adjustment.

 The CI coverage rates for weighted outcome models without covariate adjustment were

generally not ideal (around 90% or lower). The matching weight method produced better CI

20

coverage rates than the overlap weight method for both logistic-based and SL-based estimator.

The CI width did not clearly differ between the two PS weighting methods. Weighting did not

provide nominal CI coverage rates based on the results of unadjusted weighted models, even

when the PS model was correct and the covariate balance was good.

3.3.2 Covariate adjustment without weighting

 The 95% CI coverage rates were similar across different scenarios. The CI coverage rate

for correct PS model (Scenario A) was slightly lower than 95% and the nominal rate for other

scenarios were slightly higher than 95% (Table 1).

3.3.3 Covariate adjustment with weighting

 For both matching and overlap weight methods, the 95% CI coverage rates did not

clearly differ between logistic-based and SL-based estimators and were around 95%. There was

also no clear difference between the rates from matching and overlap weight methods.

3.3.4 Comparison between the three adjusting/weighting situations

Among the three cases at sample size of 1000, adjusted unweighted models gave the

highest rates of CI coverage and slightly narrower CI than adjusted weighted models. Adjusted

unweighted models’ and adjusted weighted models’ performances were similar to each other

compared and both obtained better coverage than the unadjusted weighted. The CI coverage rates

with covariate adjustment but no weighting were close to 95%. The CI coverage rates for models

with neither covariate adjusting nor weighting were generally lower than 90%.

3.4 Balance diagnosis

 Propensity score weighting aims to reduce bias in estimates by obtaining more balanced

treatment groups, in terms of observed covariates. The balance of covariate distribution was

diagnosed with the average standardized absolute mean difference (ASAM). An ASAM of 0.1 or

more indicates that the two groups have poor balance (Austin 2009). The ASAM was solely

determined by the weights used in the applied models since it was related to how balanced the

variable distributions were in the sample and not related to what models would be applied to the

sample. So, the comparison was made between weighted and unweighted models and the three

combinations of weighting/adjusting were not applicable here.

21

3.4.1 When the applied model was weighted

 For the PS matching weight method, the ASAM values associated with logistic-based PS

were smaller than the SL-based PS. The ASAM values were similar across the four scenarios for

each PS estimation methods (Table 1). Although SL-based PS had slightly larger ASAM, the

difference was not substantial considering that ASAM were not of concern when less than 0.1.

 The PS overlap weight method had similar trends for ASAM with the matching weight

method. And the differences between the two types of weighting methods were not considerable

since they were both less than 0.1. But overlap weight method did produce nearly complete

covariate balance when combined with logistic PS estimation method, as Li (2019) claimed.

 The ASAM of adjusted unweighted models were not negligible (Table 1). When the true

model was nonadditive, the ASAM values tended to be the biggest among all the scenarios,

which were even bigger than those of nonlinear and nonadditive models (Table 1). In general,

weighted models had better ASAM than unweighted models.

22

Table 2. Simulation Results Obtained under 4 Scenarios with Different Propensity Score

Estimation and Application Methods (n=100)

T
ru

e m
o

d
el ("S

cen
ario

s")
O

u
tco

m
e M

o
d

el
P

S
 E

stim
atio

n

M
o

d
el

P
S

 W
eig

h
tin

g

m
eth

o
d

B
ias

M
S

E

R
M

S
E

%

 o
f C

I

co
v

erag
e

C
I w

id
th

A

S
A

M

A
. A

d
d

itiv
ity

 an
d

 lin
earity

(M
ain

 effects o
n

ly
)

A
d

ju
sted

U

n
w

eig
h

ted

/
0

.1
0

0
6

0

.2
1

1
7

0
.4

6
0

1

9
2

.8

1
.6

5
2

0

.2
1

4

L
o

g
it

M
atch

in
g

0

.1
2

3
8

0

.2
6

7
7

0
.5

1
7

4

9
2

.3

1
.8

3
4

0

.0
2

8

S
L

M

atch
in

g

0
.0

9
9

2

0
.2

7
1

5

0
.5

2
1

1

9
1

.4

1
.8

3
6

0

.1
5

1

L
o

g
it

O
v

erlap
p

in
g

0

.1
2

0
2

0

.2
6

0
9

0
.5

1
0

8

9
1

.8

1
.8

3
0

0

.0
0

0

S
L

O

v
erlap

p
in

g

0
.1

1
1

3

0
.2

8
3

4

0
.5

3
2

3

9
1

.7

1
.8

5
9

0

.1
5

6

U
n

ad
ju

sted

U
n

w
eig

h
ted

/

-0
.0

3
2

8

0
.1

0
0

9

0
.3

1
7

7

9
4

.8

1
.2

8
9

0

.2
1

4

L
o

g
it

M
atch

in
g

-0

.0
1

3
6

0

.1
2

2
3

0
.3

4
9

7

9
4

.3

1
.4

2
6

0

.0
2

8

S
L

M

atch
in

g

-0
.0

1
7

8

0
.1

3
3

2

0
.3

6
5

0

9
4

.2

1
.4

5
3

0

.1
5

1

L
o

g
it

O
v

erlap
p

in
g

-0

.0
2

6
4

0

.1
2

4
1

0
.3

5
2

2

9
4

.3

1
.4

2
1

0

.0
0

0

S
L

O

v
erlap

p
in

g

-0
.0

2
3

2

0
.1

3
6

7

0
.3

6
9

8

9
4

.3

1
.4

5
2

0

.1
5

6

B
. N

o
n

lin
earity

(M
ain

 effects +
 q

u
ad

ratic

term
s)

A
d

ju
sted

U

n
w

eig
h

ted

/
0

.1
1

7
9

0

.2
1

8
0

0
.4

6
6

9

9
3

.3

1
.7

0
5

0

.2
2

1

L
o

g
it

M
atch

in
g

0

.1
4

1
3

0

.3
0

2
1

0
.5

4
9

6

9
2

.5

1
.9

8
8

0

.0
3

0

S
L

M

atch
in

g

0
.2

2
9

0

0
.4

2
4

5

0
.6

5
1

6

9
0

.8

2
.1

2
5

0

.1
5

8

L
o

g
it

O
v

erlap
p

in
g

0

.1
3

9
4

0

.2
9

0
6

0
.5

3
9

1

9
2

.4

1
.9

7
1

0

.0
0

0

S
L

O

v
erlap

p
in

g

0
.1

9
9

8

0
.3

8
5

8

0
.6

2
1

1

9
1

.2

2
.0

7
0

0

.1
6

3

U
n

ad
ju

sted

U
n

w
eig

h
ted

/

-0
.0

1
0

4

0
.1

1
1

5

0
.3

3
3

9

9
4

.7

1
.3

1
3

0

.2
2

1

L
o

g
it

M
atch

in
g

0

.0
1

9
4

0

.1
4

9
7

0
.3

8
6

9

9
5

.1

1
.5

2
5

0

.0
3

0

S
L

M

atch
in

g

0
.0

0
6

5

0
.1

5
7

2

0
.3

9
6

4

9
4

.0

1
.5

0
6

0

.1
5

8

L
o

g
it

O
v

erlap
p

in
g

0

.0
1

1
1

0

.1
5

0
5

0
.3

8
7

9

9
4

.7

1
.5

1
6

0

.0
0

0

S
L

O

v
erlap

p
in

g

0
.0

0
9

0

0
.1

5
8

0

0
.3

9
7

5

9
4

.4

1
.5

1
2

0

.1
6

3

C
. N

o
n

-ad
d

itiv
ity

 (M
ain

effects +
 in

teractio
n

 term
s)

A
d

ju
sted

U

n
w

eig
h

ted

/
0

.1
2

3
1

0

.2
4

0
7

0
.4

9
0

7

9
3

.4

1
.7

8
2

0

.2
9

8

L
o

g
it

M
atch

in
g

0

.1
6

8
8

0
.4

2
9

5

0
.6

5
5

3

9
3

.4

2
.1

0
2

0

.0
3

5

S
L

M

atch
in

g

0
.1

3
3

0

0
.3

4
7

6

0
.5

8
9

6

9
1

.4

2
.0

8
5

0

.1
6

9

L
o

g
it

O
v

erlap
p

in
g

0

.1
6

5
6

0

.4
3

3
5

0
.6

5
8

4

9
2

.8

2
.1

2
7

0

.0
0

0

S
L

O

v
erlap

p
in

g

0
.1

4
4

4

0
.3

5
5

9

0
.5

9
6

6

9
1

.4

2
.1

1
7

0

.1
8

5

U
n

ad
ju

sted

U
n

w
eig

h
ted

/

0
.1

3
0

1

0
.1

3
7

1

0
.3

7
0

2

9
4

.4

1
.3

8
3

0

.2
9

8

L
o

g
it

M
atch

in
g

0

.1
2

2
0

0

.1
7

1
8

0
.4

1
4

5

9
5

.8

1
.6

0
0

0

.0
3

5

S
L

M

atch
in

g

0
.1

3
5

6

0
.1

8
2

3

0
.4

2
6

9

9
4

.8

1
.6

5
2

0

.1
6

9

L
o

g
it

O
v

erlap
p

in
g

0

.1
3

6
3

0

.1
9

2
5

0
.4

3
8

8

9
5

.0

1
.6

4
1

0

.0
0

0

S
L

O

v
erlap

p
in

g

0
.1

4
6

1

0
.1

9
2

3

0
.4

3
8

6

9
4

.5

1
.6

7
5

0

.1
8

5

D
. N

o
n

-ad
d

itiv
ity

 an
d

n
o

n
lin

earity

(M
ain

 effects+
 q

u
ad

ratic term

+
 in

teractio
n

 term
)

A
d

ju
sted

U

n
w

eig
h

ted

/
0

.1
4

4
9

0

.2
6

5
1

0
.5

1
4

9

9
2

.0

1
.7

9
8

0

.2
6

2

L
o

g
it

M
atch

in
g

0

.1
9

4
2

0

.4
2

6
9

0
.6

5
3

4

9
0

.3

2
.0

8
2

0

.0
3

2

S
L

M

atch
in

g

0
.2

0
7

7

0
.4

2
2

2

0
.6

4
9

7

9
0

.5

2
.1

7
2

0
.1

4
2

L
o

g
it

O
v

erlap
p

in
g

0

.1
9

6
4

0

.4
2

0
9

0
.6

4
8

8

9
0

.1

2
.1

0
3

0

.0
0

0

S
L

O

v
erlap

p
in

g

0
.1

9
2

8

0
.4

0
8

3

0
.6

3
8

9

9
1

.1

2
.1

6
4

0

.1
5

7

U
n

ad
ju

sted

U
n

w
eig

h
ted

/

-0
.0

4
3

2

0
.0

9
7

4

0
.3

1
2

1

9
3

.1

1
.1

8
7

0

.2
6

2

L
o

g
it

M
atch

in
g

-0

.0
0

5
8

0

.1
3

1
0

0
.3

6
1

9

9
4

.3

1
.4

0
5

0

.0
3

2

S
L

M

atch
in

g

-0
.0

1
3

6

0
.1

5
1

2

0
.3

8
8

8

9
3

.1

1
.4

5
7

0

.1
4

2

L
o

g
it

O
v

erlap
p

in
g

-0

.0
1

2
7

0

.1
4

0
5

0
.3

7
4

8

9
3

.4

1
.4

1
6

0

.0
0

0

S
L

O

v
erlap

p
in

g

-0
.0

1
2

7

0
.1

5
6

0

0
.3

9
4

9

9
2

.4

1
.4

6
7

0

.1
5

7

23

3.5 Large and Small Sample Sizes

Besides simulating for sample sizes of 1000, we also tested the simulations for sample

size of 500 and 100 to observe the impact of smaller sample sizes. For simulations at all three

sample sizes, the functions for machine learning methods in Super Learner library were used

with the default parameters.

 The simulations results held a similar general pattern for logistic- or SL-based PS

estimation methods and matching or overlap weight methods at sample size of 100 with 1000

(Table 2). SL-based estimator in general had similar performance with the logistic-based

estimator in terms of bias (Table 2). Although the SL-based estimator did have smaller or larger

biases than the logistic-based estimator, the differences were within the Monte Carlo simulation

error. Simulation results at a sample size of 500 were very similar to those at 1000 (Table 3).

However, choosing adjusting or weighting in the treatment effect estimation model

seemed to have reverse performance in biases at small sample compared to the bias at large

sample. When the sample size was smaller (n=100), adjusted models had larger biases than

unadjusted models whether the applied model was correct or not. Unadjusted weighted models

performed best and were followed by adjusted unweighted models then adjusted weighted

models (Figure 1 and Table 2). In contrast, adjusting obtains estimates with relatively small bias

when the sample size is larger (n=500 or n=1000), compared to using PS weights in the

treatment effect estimation model. This pattern of adjusting outperforms weighting for bias at

larger sample sizes still exist even when adjusting by a model that is not correctly specified. One

note is that the bias of unadjusted weighted models substantially increased compared to other

scenarios but generally were similar to the bias of adjusted models at scenario C. This

observation might be specific to our study setting since we had ten interaction terms for

scenarios with non-linear condition and the coefficients for interaction terms related to “card”

variable were inflated to 0.1.

When the sample size was smaller, adjusted models had lower 95% CI coverage rates and

wider CI than unadjusted models especially when the true model became more complex. The

coverage rates for adjusted models at smaller sample size were around 92% and were lower for

scenarios of using incorrect PS models than scenarios using correct models (Table 2). And the

SL-based estimator generally had slightly lower CI coverage rates and wider CI. For both CI

24

coverage and CI width, unadjusted weighted models performed better than adjusted unweighted

models than adjusted weighted models.

For the sample size of 100, the ASAM values associated with the SL-based PS estimation

method indicated poor balance but ASAM values for the logistic method were still not

concerning (Table 2). Overlap weight method using logistic-based PS yielded best covariate

balance. Unweighted models still performed worse in ASAM than weighted models with SL-

based PS.

3.6 Application on RHC Dataset

 For the method application on the RHC data, the 95% CI width for treatment effect from

unadjusted weighted models was the narrowest, followed by adjusted unweighted models then

adjusted weighted models. The ASAM from weighted models were smaller than that from

unweighted models. Logistic-based PS used in weighting produced slightly smaller ASAM than

SL-based PS. But the difference was not concerning as all ASAMs from weighted models were

smaller than 0.1 (Table 4). Since the RHC dataset is a real-world dataset, the true PS model is

unknown. The CI width and ASAM patterns in the RHC dataset were consistent to the patterns

found in the results from the simulated datasets at a sample size of 1000. The treatment effect

estimates were similar for all methods and both the logistic and super learner propensity score

estimates improved balance between the treatment groups. This was expected since the RHC

dataset has 5735 subjects which was relatively large in our simulation setting. Regardless of the

analysis approach, like previous studies, the estimate of the hazard ratio and the Kaplan Meier

plot suggest that right heart catherization increases the risk of death (Figure 4 and Table 4).

25

Chapter 4

4 Conclusion

4.1 Our Findings

Figure 1. Bias of SL-based and Logistic-based Estimator in Scenario B at n=1000 and n=100

The primary goal of our study was to explore the performance of machine learning and

logistic regression approaches for PS estimation along with two different weighting techniques

through bias of treatment effect, 95% CI coverage and CI width, and ASAM for health studies.

Some comparisons of interest include adjusting for covariates only, weighting without covariate

adjustment and weighting with covariate adjustment in the treatment effect estimation. At a

sample size of 1000, adjusting performed better than weighting in terms of reducing bias for the

treatment effect estimator, even if the covariate adjustment model was not correctly specified.

For n =100, weighting reduced bias better than adjusting by either correctly or incorrectly

specified covariate models. Unadjusted weighted models worked best for treatment effect

estimation, followed by adjusted weighted and unadjusted weighted models. SL-based PS had

similar performance with logistic-based PS in terms of bias, even when the logistic model was

not correctly specified. For variance estimation, SL performed better than the logistic method in

a large sample but worse in a small sample. The matching weight approach had slightly better CI

performance than overlap weight method for both SL- and logistic-based PS in a large sample

but these two methods had similar performance in a small sample. At n=1000 or 500, adjusted

26

weighted models performed better in CI coverage at the cost of wider CI than adjusted

unweighted, followed by unadjusted weighted models. At n=100, unadjusted weighted models

had best performance in CI coverage and CI width than adjusted weighted models than adjusted

unweighted models. For covariate balance, weighted models had smaller ASAM values. Using

SL or logistic method for PS estimation did not have an obvious impact as long as weighting was

used in the applied model, although the values of ASAM were smaller when estimating PS with

logistic method.

 Our study showed that covariate adjustment reduced bias in larger samples and weighting

reduced bias in smaller samples, which were consistent with previous studies. Hirano & Imbens

(2001) used the RHC dataset to compare the treatment effect estimation performance of using

covariate adjustment and IPTW with logistic-based propensity score in linear regression model

(they were using the dataset as a cross-sectional dataset). Their methods were similar to our cases

in terms of comparing covariate adjustment with logistic-based PS weighting, although we were

using matching and overlap weights as PS weighting methods and Cox PH model for treatment

effect estimation. Our findings were consistent with their conclusion that using both covariate

adjustment and PS weighting might help with reducing bias. Lee (2010), along with Setoguchi

(2008), suggested that using machine learning algorithms instead of logistic regression models

for PS estimation can largely reduce bias across sample sizes, true model scenarios, and PS

application methods. Freedman (2008) claimed that PS weighting would more often bring in bias

than help reduce the bias when compared with model adjusting. But our study did not find

substantial differences in bias reduction between SL-based and logistic-based PS in general. We

also find that PS weighting could be beneficial for bias reduction for smaller sample sizes.

However, a major difference to note is that the simulated data in our study was in time-to-event

structure while the previous studies were conducted on simulated cross-sectional data. Lee

(2010) and Pirracchio (2014) also used a number of machine learning algorithms for PS

estimation, either separately or through SL, while we only used two that were mentioned as most

strong candidate for this purpose. The covariate setting in the previous studies based on data with

linear and binary outcomes were also different from our study. There were three types of

covariates in their generated data: exposure predictors that were covariates only associated with

generated exposure, outcome predictors, and confounders that were associated with both

27

exposure and outcome. Our study used the same covariate model when generating treatment and

outcome.

4.2 Limitations

Due to computational feasibility, we did not test on simulation setting with additional

sample sizes. Thus, the conclusions might not apply to situations that were not represented by

our simulated data. Some specific simulation setting, such as lower outcome prevalence and the

presence of covariates with relationships with outcome but not treatment, would require

investigation. Also, the association between the covariates and the treatment was moderate to

small in size as the coefficients from the fitted models were relatively small. Stronger association

could contribute to more distinct patterns in the results.

The Super Learner method relies on cross-validation which may become infeasible at the

larger sample sizes in some EHR studies. Our simulation study used the default settings for

parameters in the machine learning algorithms. This mode of parameter settings might not be the

optimal setting to utilize the ML algorithms of interest, despite that we chose the algorithms that

were claimed to have better performance in propensity score estimation (Lee et al. 2010). The

versions of the machine learning algorithms we applied to the data were those available in the

Super Learner algorithm library. The performance of machine learning methods might differ

across algorithm packages and lead to different observations in results.

 The use of machine learning methods to estimate propensity scores is of interest because

the true relationship between treatment allocation and observed covariates is generally unknown.

In our study, machine learning methods do not seem to have better performance than the logistic

method in terms of bias reduction but might be helpful for variance reduction. Adjusting

treatment effect models with baseline covariates is more beneficial in a larger sample but less

beneficial in a smaller sample in terms of bias reduction for bigger sample sizes than having the

models weighted with PS. The overlap weight method could yield slightly better covariate

balance if matching weight method could not provide satisfying ASAM values. Future work can

be done in the outcome setting of rare outcomes, competing risks, or additional PS utilization

methods such as adjusting for the propensity scores in the outcome model.

28

5 References

Austin, P. C. (2009). Balance diagnostics for comparing the distribution of baseline covariates

between treatment groups in propensity score matched samples. Stat Med, 28(25), 3083–

3197. https://doi.org/10.1002/sim.3697

Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects of

confounding in observational studies. Multivariate Behav Res, 46(3), 399–424.

https://doi.org/10.1080/00273171.2011.568786

Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using inverse

probability of treatment weighting (IPTW) using the propensity score to estimate causal

treatment effects in observational studies. Stat Med, 34(28), 3661–3679.

Austin, P., & Schuster, T. (2016). The performance of different propensity score methods for

estimating absolute effects of treatments on survival outcomes: A simulation study.

Statistical Methods in Medical Research, 25(5), 2214–2237.

https://doi.org/10.1177/0962280213519716

Badillo, Banfai, B., Birzele, F., Davydov, I. I., Hutchinson, L., Kam‐Thong, T., Siebourg‐Polster,

J., Steiert, B., & Zhang, J. D. (2020). An Introduction to Machine Learning. Clinical

Pharmacology and Therapeutics, 107(4), 871–885. https://doi.org/10.1002/cpt.1796

Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox

proportional hazards models. Stat Med, 24(11), 1713–1723.

https://doi.org/10.1002/sim.2059

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.

https://doi.org/10.1023/A:1010933404324

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression

Trees (1st ed.).

Brookhart, M. A., Schneeweiss, S., Rothman, K., Glynn, R. J., Avorn, J., & Stürmer, T. (2006).

Variable selection for propensity score models. American Journal of Epidemiology, 163(12),

1149–1156. https://doi.org/10.1093/aje/kwj149

Cham, H., Hurley, L., & Teng, Y. (2016, May). Optimizing random forests propensity scores

[Conference presentation]. 2016 Modern Modeling Methods Conference, Storrs, CT, United

States. https://modeling.uconn.edu/wp-content/uploads/sites/1188/2016/05/Optimizing-

Random-Forests-propensity-score.pdf

https://doi.org/10.1002/sim.3697
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1177/0962280213519716
https://doi.org/10.1002/sim.2059
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1093/aje/kwj149

29

Chen, T. & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

785–794. https://doi.org/10.1145/2939672.2939785

Cole, S. R., & Hernan, M. A. (2008). Constructing inverse probability weights for marginal

structural models. American Journal of Epidemiology, 168(6), 656–664.

https://doi.org/10.1093/aje/kwn164

Connors, A. F., Speroff, T., Dawson, N. V., Thomas, C., & Harrell, F. E. (1996). The

effectiveness of right heart catheterization in the initial care of critically ill patients.

SUPPORT Investigators. Journal of the American Statistical Association, 276(11), 889–897.

https://doi.org/10.1001/jama.276.11.889

D’Agostino, R. B. (2007). Propensity scores in cardiovascular research. Circulation, 115(17),

2340–2343. https://doi.org/10.1161/CIRCULATIONAHA.105.594952

Deb, Austin, P. C., Tu, J. V., Ko, D. T., Mazer, C. D., Kiss, A., & Fremes, S. E. (2016). A

Review of Propensity-Score Methods and Their Use in Cardiovascular Research. Canadian

Journal of Cardiology, 32(2), 259–265. https://doi.org/10.1016/j.cjca.2015.05.015Dudoit,

S., & van der Laan, M. (2005). Asymptotics of cross-validated risk estimation in estimator

selection and performance assessment. Stat Methodol, 2(2), 131–154.

https://doi.org/10.1016/j.stamet.2005.02.003

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. J

Anim Ecol, 77(4), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

Ferri-Garcia, R., & del Mar Rueda, M. (2020). Propensity score adjustment using machine

learning classification algorithms to control selection bias in online surveys. PLoS ONE,

15(4), e0231500. https://doi.org/10.1371/journal.pone.0231500

Franklin, J. M., Eddings, W., Austin, P. C., Stuart, E. A., & Schneeweiss, S. (2017). Comparing

the performance of propensity score methods in healthcare database studies with rare

outcomes. Statist Med, 36(12), 1946–1963. https://doi.org/10.1002/sim.7250

Freedman, D. A., & Berk, R. A. (2008). Weighting regressions by propensity scores. Evaluation

Review, 32(4), 392–409. https://doi.org/10.1177/0193841X08317586

Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. The Annals

of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451

https://doi.org/10.1093/aje/kwn164
https://doi.org/10.1001/jama.276.11.889
https://doi.org/10.1161/CIRCULATIONAHA.105.594952
https://doi.org/10.1016/j.stamet.2005.02.003
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1371/journal.pone.0231500
https://doi.org/10.1002/sim.7250
https://doi.org/10.1177/0193841X08317586
https://doi.org/10.1214/aos/1013203451

30

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression: A Statistical

View of Boosting. The Annals of Statistics, 28(2), 337–407.

https://doi.org/10.1214/aos/1016218222

Griffin, B. A., McCaffery, D. F., Almirall, D., Burgette, L. F., & Setodji, C. M. (2017). Chasing

balance and other recommendations for improving nonparametric propensity score models.

Journal of Causal Inference, 5(2), 169–188. https://doi.org/10.1515/jci-2015-0026

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.).

Springer.

Hirano, K., & Imbens, G. (2001). Estimation of causal effects using propensity score weighting:

An application to data on right heart catheterization. Health Services and Outcome Research

Methodology, 2, 259–278. https://doi.org/10.1023/A:1020371312283

Joffe, & Rosenbaum, P. R. (1999). Invited Commentary: Propensity Scores. American Journal of

Epidemiology, 150(4), 327–333. https://doi.org/10.1093/oxfordjournals.aje.a010011

Ju, C., Combs, M., Lendle, S. D., Frankin, J. M., Wyss, R., Schneeweiss, S., & van der Laan, M.

J. (2019). Propensity score prediction for electronic healthcare databases using Super

Learner and High-dimensional Propensity Score Methods. J Appl Stat, 46(12), 2216–2236.

https://doi.org/10.1080/02664763.2019.1582614

Kang, J. D. Y., & Schafer, J. L. (2007). Demystifying double robustness: A comparison of

alternative strategies for estimating a population mean from incomplete data. Statistical

Science, 22(4), 523–539. https://doi.org/10.1214/07-STS227

Lee, B. K., Lessler, J., & Stuart, E. A. (2010). Improving propensity score weighting using

machine learning. Stat Med, 29(3), 337–346. https://doi.org/10.1002/sim.3782

Li, F., Morgan, K. L., & Zaslavsky, A. M. (2018). Balancing covariates via propensity score

weighting. Journal of the American Statistical Association, 113(521), 390–400.

https://doi.org/10.1080/01621459.2016.1260466

Li, F., Thomas, L. E., & Li, F. (2019). Addressing extreme propensity scores via the overlap

weights. American Journal of Epidemiology, 188(1), 250–257.

https://doi.org/10.1093/aje/kwy201

Li, L., & Greene, T. (2013). A weighting analogue to pair matching in propensity score analysis.

The International Journal of Biostatistics, 9(2), 215–234. https://doi.org/10.1515/ijb-2012-

0030.

https://doi.org/10.1214/aos/1016218222
https://doi.org/10.1515/jci-2015-0026
https://doi.org/10.1023/A:1020371312283
https://doi.org/10.1080/02664763.2019.1582614
https://doi.org/10.1214/07-STS227
https://doi.org/10.1002/sim.3782
https://doi.org/10.1080/01621459.2016.1260466
https://doi.org/10.1093/aje/kwy201
https://doi.org/10.1515/ijb-2012-0030.
https://doi.org/10.1515/ijb-2012-0030.

31

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3),

18-22.

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity score estimation with

boosted regression for evaluating causal effects in observational studies. Psychological

methods, 9(4), 403–425. https://doi.org/10.1037/1082-989X.9.4.403

Morina, D., & Navarro, A. (2014). The R package survsim for the simulation of simple and

complex survival data. Journal of Statistical Software, 59(2), 1–20.

https://doi.org/10.18637/jss.v059.i02

Pirracchio, R., Petersen, M. L., & van der Laan, M. (2014). Improving propensity score

estimators’ robustness to model misspecification using Super Learner. American Journal of

Epidemiology, 181(2), 108–119. https://doi.org/10.1093/aje/kwu253

Polsky, D., Eremina, D., Hess, G., Hill, J., Hulnick, S., Roumm, A., Whyte, J. L., & Kallich, J.

(2009). The importance of clinical variables in comparative analyses using propensity-score

matching: The case of ESA costs for the treatment of chemotherapy-induced anaemia.

Pharmacoeconomics, 27(9), 755–765.

Robins, J. M., Hernan, M. A., & Brumback, B. (2000). Marginal structural models and causal

inference in Epidemiology. Epidemiology, 11(5), 550–560.

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in

observational stdies for causal effects. Biometrika, 70(1), 41–55.

Setoguchi, S., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., & Cook, E. F. (2008). Evaluating

uses of data mining techniques in propensity score estimation: A simulation study.

Pharmacoepidemiol Drug Saf., 17(6), 546–555. https://doi.org/10.1002/pds.1555

Shadish, W. R., Clark, M. H., & Steiner, P. M. (2008). Can nonrandomized experiments yield

accurate answers? A randomized experiment comparing random and nonrandom

assignments. Journal of the American Statistical Association, 103(484), 1334–1344.

Sinisi, S. E., Polley, E. C., Petersen, M. L., Rhee, S. Y., & van der Laan, M. J. (2007). Super

learning: An application to the prediction of HIV-1 drug resistance. Stat Appl Genet Mol

Biol. https://doi.org/10.2202/1544-6115.1240

Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward.

Statistical Science, 25(1), 1–21. https://doi.org/10.1214/09-STS313

https://doi.org/10.18637/jss.v059.i02
https://doi.org/10.1093/aje/kwu253
https://doi.org/10.1002/pds.1555
https://doi.org/10.2202/1544-6115.1240
https://doi.org/10.1214/09-STS313

32

Thomas, L. E., Li, F., & Pencina, M. J. (2020). Overlap weighting: A propensity score method

that mimics attributes of a randomized clinical trial. Journal of the American Statistical

Association, 323(23), 2417–2418. https://doi.org/10.1001/jama.2020.7819

van der Laan, M., Dudoit, S., & van der Vaart, A. W. (2006). The cross-validated adaptive

epsilon-net estimator. Stat Dec., 24(3), 373–395.

van der Laan, M., Polley, E. C., & Hubbard, A. E. (2007). Super Learner. Stat Appl Genet Mol

Biol.

Yoshida, K., Hernandez-Diaz, S., Solomon, D. H., Jackson, J. W., Gagne, J. J., Glynn, R. J., &

Franklin, J. M. (2017). Matching weights to simultaneously compare three treatment groups:

Comparison to three-way matching. Epidemiology, 28(3), 387–395.

https://doi.org/10.1097/EDE.0000000000000627.

https://doi.org/10.1001/jama.2020.7819
https://doi.org/10.1097/EDE.0000000000000627.

33

6 Appendices

6.1 Appendix A. Tables and Figures

Figure 2. Distribution of ASAM for Each Scenario with Logistic or SL Method at n=1000

A) Scenario A (i.e., additivity and linearity); B) scenario B (i.e., nonlinearity C) scenario C (i.e.,

nonadditivity); D) scenario D (i.e., nonadditivity and nonlinearity). The midline represents the

mean value, and the vertical lines show the 2.5% and 97.5% quantiles.

34

Figure 3. Bias for Different Method Combinations between Logistic/SL and Matching/Overlap

Weight at n=1000

A) Scenario A (i.e., additivity and linearity); B) scenario B (i.e., nonlinearity C) scenario C (i.e.,

nonadditivity); D) scenario D (i.e., nonadditivity and nonlinearity). The midline represents the

mean value, and the vertical lines show the 2.5% and 97.5% quantiles.

35

Figure 4. Kaplan-Meier Plot for Right Heart Catheterization Data

 Days # of risk # of event Survival rate Std. err Lower 95% CI Upper 95% CI

Treatment 90 1108 68 0.513 0.0107 0.492 0.534

Control 90 2077 120 0.593 0.00826 0.577 0.609

36

Table 3. Simulation Results Obtained under 4 Scenarios with Different Propensity Score

Estimation and Application Methods (n=500)

T
ru

e m
o
d
el ("S

cen
ario

s")
O

u
tco

m
e M

o
d
el

P
S

 E
stim

atio
n

M
o
d
el

P
S

 W
eig

h
tin

g

m
eth

o
d

B
ias

M
S

E

R
M

S
E

%

 o
f C

I

co
v
erag

e

C
I w

id
th

A

S
A

M

A
. A

d
d
itiv

ity
 an

d
 lin

earity

(M
ain

 effects o
n
ly

)

A
d
ju

sted

U
n
w

eig
h
ted

/

0
.0

0
9
2

0
.0

2
4
8

0
.1

5
7
5

9
4
.5

0
.6

0
1

0
.1

5
5

L
o
g
it

M
atch

in
g

0
.0

1
1
7

0
.0

2
7
9

0
.1

6
7
1

9
4
.0

0
.6

3
3

0
.0

1
0

S
L

M

atch
in

g

0
.0

1
5
0

0
.0

3
5
7

0
.1

8
9
1

9
4
.0

0
.7

0
1

0
.0

4
7

L
o
g
it

O
v
erlap

p
in

g

0
.0

1
1
1

0
.0

2
8
2

0
.1

6
7
8

9
4
.1

0
.6

3
3

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

1
7
2

0
.0

3
5
9

0
.1

8
9
6

9
4
.2

0
.7

0
4

0
.0

6
3

U
n
ad

ju
sted

U

n
w

eig
h
ted

/

-0
.0

7
7
1

0
.0

2
4
6

0
.1

5
6
8

8
9
.8

0
.5

2
9

0
.1

5
5

L
o
g
it

M
atch

in
g

-0
.0

6
8
6

0
.0

2
5
8

0
.1

6
0
7

9
0
.9

0
.5

6
3

0
.0

1
0

S
L

M

atch
in

g

-0
.0

6
2
9

0
.0

3
1
1

0
.1

7
6
5

9
2
.5

0
.6

3
2

0
.0

4
7

L
o
g
it

O
v
erlap

p
in

g

-0
.0

7
8
0

0
.0

2
7
4

0
.1

6
5
5

8
9
.8

0
.5

6
0

0
.0

0
0

S
L

O

v
erlap

p
in

g

-0
.0

7
2
6

0
.0

3
2
5

0
.1

8
0
3

9
1
.7

0
.6

2
9

0
.0

6
3

B
. N

o
n
lin

earity

(M
ain

 effects +
 q

u
ad

ratic

term
s)

A
d
ju

sted

U
n
w

eig
h
ted

/

0
.0

1
1
4

0
.0

2
4
8

0
.1

5
7
5

9
4
.9

0
.6

1
1

0
.1

6
0

L
o
g
it

M
atch

in
g

0
.0

1
9
1

0
.0

3
0
9

0
.1

7
5
9

9
4
.0

0
.6

6
7

0
.0

1
1

S
L

M

atch
in

g

0
.0

2
2
7

0
.0

3
7
3

0
.1

9
3
0

9
3
.9

0
.7

2
3

0
.0

4
5

L
o
g
it

O
v
erlap

p
in

g

0
.0

1
8
7

0
.0

3
0
8

0
.1

7
5
6

9
4
.0

0
.6

6
6

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

1
9
3

0
.0

3
7
1

0
.1

9
2
6

9
3
.7

0
.7

2
4

0
.0

6
2

U
n
ad

ju
sted

U

n
w

eig
h
ted

/

-0
.0

6
2
5

0
.0

2
2
6

0
.1

5
0
4

9
3
.4

0
.5

4
1

0
.1

6
0

L
o
g
it

M
atch

in
g

-0
.0

4
6
2

0
.0

2
6
0

0
.1

6
1
3

9
4
.3

0
.5

9
8

0
.0

1
1

S
L

M

atch
in

g

-0
.0

5
1
2

0
.0

3
0
6

0
.1

7
4
9

9
2
.6

0
.6

5
0

0
.0

4
5

L
o
g
it

O
v
erlap

p
in

g

-0
.0

5
5
3

0
.0

2
6
3

0
.1

6
2
1

9
2
.9

0
.5

9
3

0
.0

0
0

S
L

O

v
erlap

p
in

g

-0
.0

5
3
8

0
.0

3
1
2

0
.1

7
6
6

9
2
.5

0
.6

5
2

0
.0

6
2

C
. N

o
n
-ad

d
itiv

ity
 (M

ain

effects +
 in

teractio
n
 term

s)

A
d
ju

sted

U
n
w

eig
h
ted

/

0
.0

1
8
0

0
.0

2
5
3

0
.1

5
9
1

9
5
.8

0
.6

3
7

0
.2

4
0

L
o
g
it

M
atch

in
g

0
.0

1
9
6

0
.0

3
2
7

0
.1

8
0
7

9
3
.7

0
.6

9
4

0
.0

1
4

S
L

M

atch
in

g

0
.0

2
3
4

0
.0

3
5
2

0
.1

8
7
5

9
5
.1

0
.7

3
1

0
.0

5
2

L
o
g
it

O
v
erlap

p
in

g

0
.0

1
9
9

0
.0

3
2
9

0
.1

8
1
3

9
4
.6

0
.7

0
0

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

2
6
4

0
.0

3
5
8

0
.1

8
9
2

9
5
.4

0
.7

3
8

0
.0

7
8

U
n
ad

ju
sted

U

n
w

eig
h
ted

/

0
.0

8
2
6

0
.0

2
8
3

0
.1

6
8
1

9
1
.8

0
.5

7
1

0
.2

4
0

L
o
g
it

M
atch

in
g

0
.0

5
7
8

0
.0

2
8
7

0
.1

6
9
4

9
4
.5

0
.6

3
2

0
.0

1
4

S
L

M

atch
in

g

0
.0

6
3
6

0
.0

3
3
3

0
.1

8
2
4

9
4
.5

0
.6

8
2

0
.0

5
2

L
o
g
it

O
v
erlap

p
in

g

0
.0

7
3
4

0
.0

3
3
4

0
.1

8
2
8

9
3
.5

0
.6

4
6

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

8
1
2

0
.0

3
8
3

0
.1

9
5
7

9
3
.6

0
.6

9
8

0
.0

7
8

D
. N

o
n
-ad

d
itiv

ity
 an

d

n
o
n
lin

earity

(M
ain

 effects+
 q

u
ad

ratic term

+
 in

teractio
n
 term

)

A
d
ju

sted

U
n
w

eig
h
ted

/

0
.0

3
1
4

0
.0

2
8
0

0
.1

6
7
4

9
4
.1

0
.6

3
3

0
.2

0
0

L
o
g
it

M
atch

in
g

0
.0

3
6
5

0
.0

3
4
4

0
.1

8
5
6

9
3
.6

0
.6

9
2

0
.0

1
2

S
L

M

atch
in

g

0
.0

4
0
9

0
.0

3
9
0

0
.1

9
7
5

9
3
.0

0
.7

2
9

0
.0

4
8

L
o
g
it

O
v
erlap

p
in

g

0
.0

3
5
6

0
.0

3
3
8

0
.1

8
3
7

9
3
.6

0
.6

9
4

0
.0

0
0

S
L

O

v
erlap

p
in

g

0
.0

3
9
8

0
.0

3
8
9

0
.1

9
7
3

9
3
.3

0
.7

3
2

0
.0

6
6

U
n
ad

ju
sted

U

n
w

eig
h
ted

/

-0
.0

9
1
7

0
.0

2
5
2

0
.1

5
8
9

8
6
.7

0
.4

9
1

0
.2

0
0

L
o
g
it

M
atch

in
g

-0
.0

7
5
7

0
.0

2
5
8

0
.1

6
0
5

9
0
.9

0
.5

5
6

0
.0

1
2

S
L

M

atch
in

g

-0
.0

7
9
3

0
.0

3
0
7

0
.1

7
5
1

9
1
.1

0
.6

0
5

0
.0

4
8

L
o
g
it

O
v
erlap

p
in

g

-0
.0

8
5
2

0
.0

2
8
2

0
.1

6
7
8

8
9
.6

0
.5

5
6

0
.0

0
0

S
L

O

v
erlap

p
in

g

-0
.0

8
3
2

0
.0

3
2
1

0
.1

7
9
2

9
0
.9

0
.6

0
8

0
.0

6
6

37

Table 4. Method Application on the RHC Data

True model Outcome Model PS Estimation

Model

PS Weighting

method

Estimated

HR of

Treatment

CI width ASAM

RHC data (True Model

Unknown)

Adjusted Unweighted / 1.257 0.177 0.158

Logit Matching 1.255 0.186 0.004

SL Matching 1.196 0.189 0.044

Logit Overlapping 1.266 0.187 0.000

SL Overlapping 1.205 0.185 0.025

Unadjusted Unweighted / 1.164 0.153 0.158

Logit Matching 1.209 0.171 0.004

SL Matching 1.160 0.182 0.044

Logit Overlapping 1.213 0.170 0.000

SL Overlapping 1.158 0.171 0.025

38

6.2 Appendix B. Formulas and Coefficients of the Treatment Models and the Outcome

Models Fitted on the RHC Dataset for Data Generation and Corresponding True

Hazard Ratio of Treatment for Each Scenario in Simulations

Scenario A

Treatment model (logistic):

trt ~ -0.187 - 0.004 pafi1 – 0.004 age + 0.006 hrt1 – 0.018 resp1 + 0.042 bili1 – 0.670 dnr1 +

0.787 card + 0.581 private + 0.364 medicare + 0.522 priNcare + 0.457 other

Outcome model (Cox PH model):

Surv (survtime, death) ~ 0.229 trt + 0.001 pafi1 + 0.01 age

+ 0.002 hrt1 - 0.001 resp1 + 0.039 bili1 + 0.842 dnr1 - 0.151 card + 0.081 private + 0.015

medicare + 0.084 priNcare + 0.009 other

True hazard ratio of treatment: 1.257

Scenario B

Treatment model (logistic):

trt ~ -1.449 - 0.004 pafi1 – 0.054 age + 0.001 hrt1 – 0.021 resp1 + 0.042 bili1 – 0.617 dnr1 +

0.778 card + 0.554 private + 0.439 medicare + 0.569 priNcare + 0.486 other + 0.01 I(age^2) +

0.001 I(hrt1^2) + 0.001 I(resp1^2)

Outcome model (Cox PH model):

Surv (survtime, death) ~ 0.219 trt + 0.001 pafi1 + 0.03 age

- 0.006 hrt1 - 0.015 resp1 + 0.041 bili1 + 0.856 dnr1 - 0.162 card + 0.071 private + 0.031

medicare + 0.081 priNcare + 0.011 other + 0.01 I(age^2) + 0.001 I(hrt1^2) + 0.001 I(resp1^2)

True hazard ratio of treatment: 1.245

Scenario C

Treatment model (logistic):

trt ~ -1.048 - 0.005 pafi1 + 0.01 age + 0.007 hrt1 – 0.015 resp1 + 0.053 bili1 - 0.185 dnr1 +

2.269 card + 0.527 private + 1.578 medicare + 0.898 priNcare + 0.965 other - 0.006 age*dnr1 +

0.1 age*card + 0.001 age*private – 0.019 age*medicare -0.007 age*priNcare - 0.01 age*other +

0.1 pafi1*card + 0.1 hrt1*card + 0.1 card*resp1 + 0.1 card*bili1

39

Outcome model (Cox PH model):

Surv (survtime, death) ~ 0.215 trt + 0.001 pafi1 + 0.015 age

+ 0.002 hrt1 + 0.001 resp1 + 0.038 bili1 + 2.38 dnr1 + 0.125 card + 0.024 private + 0.09

medicare + 0.622 priNcare – 0.109 other - 0.021 age*dnr1 + 0.1 age*card + 0.001 age*private

– 0.001 age*medicare -0.008 age*priNcare + 0.002 age*other + 0.1 pafi1*card + 0.1 hrt1*card

+ 0.1 card*resp1 + 0.1 card*bili1

True hazard ratio of treatment: 1.24

Scenario D

Treatment model (logistic):

trt ~ -1.572 - 0.005 pafi1 + 0.045 age + 0.003 hrt1 – 0.017 resp1 + 0.053 bili1 – 0.374 dnr1 +

2.032 card + 0.405 private + 0.868 medicare + 0.093 priNcare + 0.667 other + 0.01 I(age^2) +

0.001 I(hrt1^2) + 0.001 I(resp1^2) – 0.003 age*dnr1 + 0.1 age*card + 0.003 age*private – 0.006

age*medicare + 0.007 age*priNcare – 0.003 age*other + 0.1 pafi1*card + 0.1 hrt1*card + 0.1

card*resp1 + 0.1 card*bili1

Outcome model (Cox PH model):

Surv (survtime, death) ~ 0.215 trt + 0.001 pafi1 + 0.017 age – 0.007 hrt1 – 0.014 resp1 + 0.04

bili1 + 2.328 dnr1 - 0.081 card – 0.003 private + 0.082 medicare + 0.624 priNcare – 0.161 other

+ 0.01 I(age^2) + 0.001 I(hrt1^2) + 0.001 I(resp1^2) – 0.021 age*dnr1 + 0.1 age*card + 0.002

age*private + 0.001 age*medicare – 0.008 age*priNcare + 0.003 age*other + 0.1 pafi1*card +

0.1 hrt1*card + 0.1 card*resp1 + 0.1 card*bili1

True hazard ratio of treatment: 1.24

40

6.3 Appendix C. R Codes for Simulation

knitr::opts_chunk$set(echo = TRUE)

=====================

packages used

=====================

library(survival) ## coxph

library(survey) ## svydesign and svycoxph

library(simsurv) ## simsurv

#packages for SuperLearner function

library(SuperLearner)

library(caret)

library(glmnet)

library(randomForest)

library(RhpcBLASctl)

library(xgboost)

#package for ASAM

library(PSweight)

start.time = Sys.time()

start.time

=====================

simulation parameters

=====================

seed=1026

set.seed(seed)

n= 100 ## size of data set

nsim = 100## number of simulated data sets

lambda_out = .01

censortime = 90

=====================

Create object to save results

=====================

p_trt = rep(NA,nsim)

event_rate = rep(NA,nsim)

times_c<-vector(mode="list", length=nsim)

times_uc<-vector(mode="list", length=nsim)

status_list<-vector(mode="list", length=nsim)

##simulated datasets

dat_cox<-vector(mode="list", length=nsim)

#load("~/R/summer2020/simulation script 3/sim1D_n1000_datasets.RData") #used when running on saved data

for adjusted cox ph model results

ignoring weights

HR_est = rep(NA,nsim)

41

#HR_mse = rep(NA,nsim)

HR_ci = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci) = c("lower","upper")

HR_coverage_ind = rep(NA,nsim)

ci_width_uw=rep(NA,nsim) ##width of CI

incorporating weights: matching weights

HR_est_wt = rep(NA,nsim)

HR_ci_wt = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt) = c("lower","upper")

HR_coverage_ind_wt = rep(NA,nsim)

ci_width=rep(NA,nsim) #width of CI

#CIF_est_wt = matrix(0,nrow = nsim,ncol = n)

#CIF_mse_wt = matrix(0,nrow = nsim,ncol = n)

#CIV_coverage_ind_wt = matrix(0,nrow = nsim,ncol = n)

incorporating weights: overlapping weights

HR_est_wt2 = rep(NA,nsim)

HR_ci_wt2 = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt2) = c("lower","upper")

HR_coverage_ind_wt2 = rep(NA,nsim)

ci_width2=rep(NA,nsim) #width of CI

##from superlearner: coefficients for each ML methods

model_coef=matrix(0, ncol=2, nrow=nsim)

colnames(model_coef)=c('RF', 'XGB')

##ASAM

asam= matrix(0,nrow = nsim,ncol = 3)

colnames(asam) = c("unweighted","matching", "overlap")

for unadjusted cox ph model results

ignoring weights

HR_est_ua = rep(NA,nsim)

#HR_mse = rep(NA,nsim)

HR_ci_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_ua) = c("lower","upper")

HR_coverage_ind_ua = rep(NA,nsim)

ci_width_uw_ua=rep(NA,nsim) ##width of CI

incorporating weights: matching weights

HR_est_wt_ua = rep(NA,nsim)

HR_ci_wt_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt_ua) = c("lower","upper")

HR_coverage_ind_wt_ua = rep(NA,nsim)

ci_width_ua=rep(NA,nsim) #width of CI

incorporating weights: overlapping weights

42

HR_est_wt2_ua = rep(NA,nsim)

HR_ci_wt2_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt2_ua) = c("lower","upper")

HR_coverage_ind_wt2_ua = rep(NA,nsim)

ci_width2_ua=rep(NA,nsim) #width of CI

##from superlearner

model_coef_ua=matrix(0, ncol=2, nrow=nsim)

colnames(model_coef_ua)=c('RF', 'XGB')

##ASAM

asam_ua= matrix(0,nrow = nsim,ncol = 3)

colnames(asam_ua) = c("unweighted","matching", "overlap")

=====================

set up: generate X values

=====================

rhc.dat = read.csv("~/R/summer2020/rhc.csv", stringsAsFactors=T)

dnr1_num<-654

card_num<-1931

private<-1698

medicare<-1458

priNcare<-1236

other<-1343

simulate_cov<-function(n){

 #continuous: Pafi1, age, hrt1, resp1, bili1

 pafi1<-rnorm(n)

 age<-rnorm(n)

 hrt1<-rnorm(n)

 resp1<-rnorm(n)

 bili1<-rnorm(n)

 #binary: dnr1, card

 dnr1<-rbinom(n, 1, dnr1_num/nrow(rhc.dat))

 card<-rbinom(n, 1, card_num/nrow(rhc.dat))

 #categorical: nineclas

 ninclas.private<-rbinom(n,1, private/nrow(rhc.dat))

 ninclas.medicare<-rbinom(n,1, medicare/nrow(rhc.dat))

 ninclas.priNcare<-rbinom(n,1, priNcare/nrow(rhc.dat))

 ninclas.other<-rbinom(n,1, other/nrow(rhc.dat))

 #simulated data frame

 sim.dat<-cbind(pafi1, age, hrt1, resp1, bili1, dnr1, card,

 ninclas.private, ninclas.medicare, ninclas.priNcare, ninclas.other)

 colnames(sim.dat)<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card",

 "private", "medicare", "priNcare", "other")

 sim.dat

}

43

=====================

###set up: generate treatment values

=====================

vars_selected<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card", "ninsclas")

vars_converted<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card",

 "private", "medicare", "priNcare", "other")

ps.formula<- trt~pafi1+age+hrt1+resp1+bili1+dnr1+card+private+medicare+priNcare+other

rhc.X<-cbind(rhc.dat[,vars_selected])

##convert factor variables in rhc.cov into indicator variables

rhc.conv<- model.matrix(~., data= rhc.X)[,-1]

rhc.conv<-cbind(rhc.conv, rhc.dat$swang1) #add trt var into the db

rhc.conv<-data.frame(rhc.conv)

rhc.conv[,14]<-rhc.conv[,11]

rhc.conv[,15]<-rhc.conv[,8]

rhc.conv[,16]<-rhc.conv[,12]

rhc.conv[,17]<-rhc.conv[,9]+rhc.conv[,10]

rhc.conv<-cbind(rhc.conv[,1:7],rhc.conv[,13:17])

colnames(rhc.conv)[6:12]<-c("dnr1", "card", "trt", "private", "medicare", "priNcare", "other")

rhc.conv$trt[which(rhc.conv$trt==1)]<-0

rhc.conv$trt[which(rhc.conv$trt==2)]<-1

#head(rhc.conv)

#true mode: main effects only (Scenario A)

#trt_formula<-as.formula(paste("trt ~", paste(vars_converted, collapse="+")))

#trt_mod<-glm(trt_formula, data=rhc.conv, family=binomial())

#true model with 3 quadratic terms (Scenario B)

#trt_formula<-as.formula(paste("trt ~", paste(vars_converted, collapse="+"),

 #"+ I(age^2) + I(hrt1^2) +I(resp1^2)"))

#trt_mod<-glm(trt_formula, data=rhc.conv, family=binomial())

#true model with 10 interaction terms (Scenario C)

#trt_formula<-as.formula(paste("trt ~", paste(vars_converted, collapse="+"),

 #"+ age*dnr1 + age*card + age*private + age*medicare + age*priNcare +

 #age*other + card*pafi1 + card*hrt1 + card*resp1 + card*bili1"))

#trt_mod<-glm(trt_formula, data=rhc.conv, family=binomial())

#true model with interaction and quadratic terms (Scenario D)

trt_formula<-as.formula(paste("trt ~", paste(vars_converted, collapse="+"),

 "+ age*dnr1 + age*card + age*private + age*medicare + age*priNcare +

 age*other + card*pafi1 + card*hrt1 + card*resp1 + card*bili1 +

 I(age^2) + I(hrt1^2) +I(resp1^2)"))

trt_mod<-glm(trt_formula, data=rhc.conv, family=binomial())

#betas for trt model

beta_trt_mod<-trt_mod$coeff

44

##adjust coefficients

 #all nonliner terms: >0.001 and setting the coefficient for pafi1 equal to 0.001

beta_trt_mod[abs(beta_trt_mod)<0.001]=0.001

 #age^2: at least 0.01

if(beta_trt_mod["I(age^2)"]<0.01){beta_trt_mod["I(age^2)"]=0.01}

 #interaction terms with the card variable: at least 0.1

indx=which(grepl(':card', names(beta_trt_mod)))

beta_trt_mod[indx][beta_trt_mod[indx]<0.1]=0.1

round(beta_trt_mod,3)

=====================

set up: generate event times using cox ph and exponential baseline

=====================

##get survival time of RHC

survtime<-ifelse(is.na(rhc.dat$dthdte), rhc.dat$lstctdte-rhc.dat$sadmdte, rhc.dat$dthdte-rhc.dat$sadmdte)

rhc.conv$survtime<-survtime

death<-(rhc.dat$death=="Yes")^2

rhc.conv$death<-death

#surv_form<-as.formula(paste("Surv(survtime, death)~", "trt +", paste(vars_converted, collapse="+")))

surv_form<-as.formula(paste("Surv(survtime, death)~trt+", paste(vars_converted, collapse="+"),

 "+ age*dnr1 + age*card + age*private + age*medicare + age*priNcare +

 age*other + card*pafi1 + card*hrt1 + card*resp1 + card*bili1 +

 I(age^2) + I(hrt1^2) +I(resp1^2)"))

surv_mod<-coxph(surv_form, data=rhc.conv)

beta_out_mod<-surv_mod$coefficients

##adjust coefficients

 #all nonliner terms: >0.001 and setting the coefficient for pafi1 equal to 0.001

beta_out_mod[abs(beta_out_mod)<0.001]=0.001

 #age^2: at least 0.01

if(beta_out_mod["I(age^2)"]<0.01){beta_out_mod["I(age^2)"]=0.01}

 #interaction terms with the card variable: at least 0.1

indx=which(grepl(':card', names(beta_out_mod)))

beta_out_mod[indx][beta_out_mod[indx]<0.1]=0.1

round(beta_out_mod,3)

#get HR of treatment=hazard of exposed/ hazard of unexposed

out_trt<-beta_out_mod[1]

round(out_trt,3)

round(exp(out_trt),3)

for(sim_num in 1:nsim){

 ## +++++

 ## generate X values

45

 ## +++++

 X<-simulate_cov(n)

 ## for main effects model(Scenario A)

 #X_int=X

 ## for with quadratic terms only (Scenario B)

 #X_int=cbind(X,(X[,"age"])^2, (X[,"hrt1"])^2, (X[,"resp1"])^2)

 ## for with interaction terms only (Scenario C)

 #X_int=cbind(X,(X[,"age"])*(X[,"dnr1"]), (X[,"age"])*(X[,"card"]), (X[,"age"])*(X[,"private"]),

 #(X[,"age"])*(X[,"medicare"]), (X[,"age"])*(X[,"priNcare"]), (X[,"age"])*(X[,"other"]),

 #(X[,"card"])*(X[,"pafi1"]), (X[,"card"])*(X[,"hrt1"]), (X[,"card"])*(X[,"resp1"]),

 #(X[,"card"])*(X[,"bili1"]))

 ## for with interaction and quadratic terms (Scenario D)

 X_int=cbind(X, (X[,"age"])^2, (X[,"hrt1"])^2, (X[,"resp1"])^2,

 (X[,"age"])*(X[,"dnr1"]), (X[,"age"])*(X[,"card"]), (X[,"age"])*(X[,"private"]),

 (X[,"age"])*(X[,"medicare"]), (X[,"age"])*(X[,"priNcare"]), (X[,"age"])*(X[,"other"]),

 (X[,"card"])*(X[,"pafi1"]), (X[,"card"])*(X[,"hrt1"]), (X[,"card"])*(X[,"resp1"]),

 (X[,"card"])*(X[,"bili1"]))

 ## +++++

 ## generate trt variable

 ## +++++

 XB_trt<-cbind(1, X_int)%*%beta_trt_mod

 p_treat<-exp(XB_trt)/(1+exp(XB_trt))

 trt<-rbinom(n, 1, p_treat)

 p_trt[sim_num] = round(sum(trt)/n,4)

 ## +++++

 ## generate event times using cox ph and exponential baseline

 ## +++++

 X_frame=data.frame(trt, X_int)

 beta_vect = c(beta_out_mod)

 names(beta_vect) = colnames(X_frame)

 t_temp =simsurv(dist = c("exponential"), lambdas = lambda_out,x = X_frame, betas =beta_vect)

 t = t_temp$eventtime

 times_uc[[sim_num]]<-t

 ## +++++

 ## generate status variable

 ## +++++

 time = pmin(t, censortime) #censored times

 times_c[[sim_num]]<-time

 status = 1-(t > censortime)^2

 status_list[[sim_num]]<-status

 event_rate[sim_num] = sum(status)/n

 dat_cox[[sim_num]] = data.frame(X,trt,time,status) #for censored time

46

 #dat_cox[[sim_num]] = data.frame(X,trt,t,status) #for uncensored time

 colnames(dat_cox[[sim_num]]) = c(vars_converted, "trt", "time", "status")

 #print(paste("sim number: ", sim_num, sep = ""))

}

#view of simulated data

head(dat_cox[[1]])

#save data sets

#save(dat_cox, file = "~/R/summer2020/simulation script 3/sim1D_n1000_datasets.RData")

#load("~/R/summer2020/simulation script 3/sim1D_n1000_datasets.RData")

#Compare simulated data with RHC data

data_mt=as.data.frame(do.call(rbind, dat_cox))

head(data_mt)

dim(data_mt)

#survival time

hist(survtime, xlim=c(0,censortime), ylim=c(0, 600), nclass= 1200, main="RHC survival time") #RHC

hist(sample(data_mt$time, nrow(rhc.dat)), ylim=c(0, 400), nclass= 100, main="simulated survival time") #simulated

#event rates

sum(death)/nrow(rhc.dat) #RHC

sum(data_mt$status)/nrow(data_mt) #simulated data

for(sim_num in 1:nsim){

+++++++++++++++++++++

 ## Fit cox proportional hazard model ignoring weights

 surv_form<-as.formula(paste("Surv(time, status)~", "trt +", paste(vars_converted, collapse="+")))

 cox_mod <- coxph(surv_form, data = dat_cox[[sim_num]])

 cox_mod_sum = summary(cox_mod)

 cox_mod_ci = exp(confint(cox_mod))

 HR_est[sim_num] = cox_mod_sum$coefficients[1,2]

 HR_ci[sim_num,] = cox_mod_ci[1,]

 HR_coverage_ind[sim_num] = (exp(out_trt) >= HR_ci[sim_num,1] &

 exp(out_trt) <= HR_ci[sim_num,2])^2

 ci_width_uw[sim_num]=HR_ci[sim_num,2]- HR_ci[sim_num,1]

#------------------------

 ## fit model with weights

 log_mod = glm(as.formula(paste("trt~", paste(vars_converted, collapse="+"))),

47

 data = dat_cox[[sim_num]], family = "binomial")

 logit_ps = predict(log_mod)

 prob_ps = exp(logit_ps)/(1+exp(logit_ps))

 prob_ps[which(prob_ps==1)]=0.999

 #matching weights and evaluation

 w_ps = pmin(prob_ps,1-prob_ps)/(trt*prob_ps + (1-trt)*(1-prob_ps))

 w_ps[which(w_ps==min(w_ps))]=0.0001 #for bug fixing

 svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox[[sim_num]])

 cox_weighted_mod = svycoxph(surv_form, design = svyDes)

 HR_est_wt[sim_num] = exp(cox_weighted_mod$coefficients[1])

 HR_ci_wt[sim_num,] = exp(confint(cox_weighted_mod))[1,]

 HR_coverage_ind_wt[sim_num] = (exp(out_trt) >= HR_ci_wt[sim_num,1] &

 exp(out_trt) <= HR_ci_wt[sim_num,2])^2

 ci_width[sim_num]=HR_ci_wt[sim_num,2]- HR_ci_wt[sim_num,1]

 #overlap weights and evaluation

 overlap_w_ps= trt + (-1)^trt * prob_ps

 overlap_w_ps[which(overlap_w_ps==min(overlap_w_ps))]=0.0001 #for bug fixing

 svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox[[sim_num]])

 cox_weighted_mod2 = svycoxph(surv_form, design = svyDes2)

 HR_est_wt2[sim_num] = exp(cox_weighted_mod2$coefficients[1])

 HR_ci_wt2[sim_num,] = exp(confint(cox_weighted_mod2))[1,]

 HR_coverage_ind_wt2[sim_num] = (exp(out_trt) >= HR_ci_wt2[sim_num,1] &

 exp(out_trt) <= HR_ci_wt2[sim_num,2])^2

 ci_width2[sim_num]=HR_ci_wt2[sim_num,2]- HR_ci_wt2[sim_num,1]

 #ASAM

 # using SumStat to estimate propensity scores

 #use PSweight package to generate PS

 #msstat1 <- SumStat(ps.formula, trtgrp="1", data=dat_cox[[sim_num]], weight="matching")

 #msstat2 <- SumStat(ps.formula, trtgrp="1", data=dat_cox[[sim_num]], weight="overlap")

 msstat1 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]],

 ps.estimate=prob_ps,

 trtgrp="1", weight="matching")

 msstat2 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]],

 ps.estimate=prob_ps,

 trtgrp="1", weight="overlap")

 #ASAM for unweighted dataset

 asam[sim_num,1]= mean(summary(msstat1)$unweighted[,"SMD"])

 #ASAM for matching weight dataset

 asam[sim_num,2]= mean(summary(msstat1)$matching[,"SMD"])

 #ASAM for overlap weight dataset

 asam[sim_num,3]= mean(summary(msstat2)$overlap[,"SMD"])

 ## +++

 ####----------fit model with unadjusted cox ph mode #####

 ## +++

48

 ## Fit cox proportional hazard model ignoring weights

 surv_form_ua<-as.formula(paste("Surv(time, status)~trt"))

 cox_mod <- coxph(surv_form_ua, data = dat_cox[[sim_num]])

 cox_mod_sum = summary(cox_mod)

 cox_mod_ci = exp(confint(cox_mod))

 HR_est_ua[sim_num] = cox_mod_sum$coefficients[1,2]

 HR_ci_ua[sim_num,] = cox_mod_ci[1,]

 HR_coverage_ind_ua[sim_num] = (exp(out_trt) >= HR_ci_ua[sim_num,1] &

 exp(out_trt) <= HR_ci_ua[sim_num,2])^2

 ci_width_uw_ua[sim_num]=HR_ci_ua[sim_num,2]- HR_ci_ua[sim_num,1]

 ## fit model with weights

 #matching weights and evaluation

 svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox[[sim_num]])

 cox_weighted_mod_ua = svycoxph(surv_form_ua, design = svyDes)

 HR_est_wt_ua[sim_num] = exp(cox_weighted_mod_ua$coefficients[1])

 HR_ci_wt_ua[sim_num,] = exp(confint(cox_weighted_mod_ua))[1,]

 HR_coverage_ind_wt_ua[sim_num] = (exp(out_trt) >= HR_ci_wt_ua[sim_num,1] &

 exp(out_trt) <= HR_ci_wt_ua[sim_num,2])^2

 ci_width_ua[sim_num]=HR_ci_wt_ua[sim_num,2]- HR_ci_wt_ua[sim_num,1]

 #overlap weights and evaluation

 svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox[[sim_num]])

 cox_weighted_mod2_ua = svycoxph(surv_form_ua, design = svyDes2)

 HR_est_wt2_ua[sim_num] = exp(cox_weighted_mod2_ua$coefficients[1])

 HR_ci_wt2_ua[sim_num,] = exp(confint(cox_weighted_mod2_ua))[1,]

 HR_coverage_ind_wt2_ua[sim_num] = (exp(out_trt) >= HR_ci_wt2_ua[sim_num,1] &

 exp(out_trt) <= HR_ci_wt2_ua[sim_num,2])^2

 ci_width2_ua[sim_num]=HR_ci_wt2_ua[sim_num,2]- HR_ci_wt2_ua[sim_num,1]

 #ASAM

 # using SumStat to estimate propensity scores

 #use PSweight package to generate PS

 #msstat1 <- SumStat(ps.formula, trtgrp="1", data=dat_cox[[sim_num]], weight="matching")

 #msstat2 <- SumStat(ps.formula, trtgrp="1", data=dat_cox[[sim_num]], weight="overlap")

 msstat1_ua <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]],

 ps.estimate=prob_ps,

 trtgrp="1", weight="matching")

 msstat2_ua<- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]],

 ps.estimate=prob_ps,

 trtgrp="1", weight="overlap")

 #ASAM for unweighted dataset

 asam_ua[sim_num,1]= mean(summary(msstat1_ua)$unweighted[,"SMD"])

 #ASAM for matching weight dataset

 asam_ua[sim_num,2]= mean(summary(msstat1_ua)$matching[,"SMD"])

 #ASAM for overlap weight dataset

 asam_ua[sim_num,3]= mean(summary(msstat2_ua)$overlap[,"SMD"])

49

}

=====================

Summarize Simulation Results

=====================

results_frame = data.frame(matrix(0,nrow = 6,ncol = 6))

colnames(results_frame) = c("Bias", "MSE","RMSE","% CI coverage", "CI width","ASAM")

rownames(results_frame) = c("no weights","matching weights", "overlap weights",

 "no weights (unadj)","matching weights (unadj)", "overlap weights (unadj)")

results_frame[1,] = c(mean((HR_est -exp(out_trt))), #mean of bias

 mean((HR_est -exp(out_trt))^2),

 sqrt(mean((HR_est -exp(out_trt))^2)),

 round(sum(HR_coverage_ind)/nsim*100,3),

 mean(ci_width_uw),

 mean(asam[,1]))

results_frame[2,] = c(mean((HR_est_wt -exp(out_trt))), #mean of bias

 mean((HR_est_wt -exp(out_trt))^2),

 sqrt(mean((HR_est_wt -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt)/nsim*100,3),

 mean(ci_width),

 mean(asam[,2]))

results_frame[3,] = c(mean((HR_est_wt2 -exp(out_trt))), #mean of bias

 mean((HR_est_wt2 -exp(out_trt))^2),

 sqrt(mean((HR_est_wt2 -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt2)/nsim*100,3),

 mean(ci_width2),

 mean(asam[,3]))

results_frame[4,] = c(mean((HR_est_ua -exp(out_trt))), #mean of bias

 mean((HR_est_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_ua)/nsim*100,3),

 mean(ci_width_uw_ua),

 mean(asam_ua[,1]))

results_frame[5,] = c(mean((HR_est_wt_ua -exp(out_trt))), #mean of bias

 mean((HR_est_wt_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_wt_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt_ua)/nsim*100,3),

 mean(ci_width_ua),

 mean(asam_ua[,2]))

results_frame[6,] = c(mean((HR_est_wt2_ua -exp(out_trt))), #mean of bias

 mean((HR_est_wt2_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_wt2_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt2_ua)/nsim*100,3),

 mean(ci_width2_ua),

50

 mean(asam_ua[,3]))

round(results_frame,5)

save(results_frame, file = "~/R/summer2020/simulation script 3/sim1D_n1000_results_frame_logistic.RData")

save(asam, file="~/R/summer2020/simulation script 3/sim1D_n1000_asam_logistic.RData")

biases=cbind(HR_est -exp(out_trt), #adjusted models

 HR_est_wt -exp(out_trt),

 HR_est_wt2 -exp(out_trt),

 HR_est_ua -exp(out_trt), #unadjusted models

 HR_est_wt_ua -exp(out_trt),

 HR_est_wt2_ua -exp(out_trt))

save(biases, file="~/R/summer2020/simulation script 3/sim1D_n1000_biases_logistic.RData")

for adjusted cox ph model results

#####---------------------------------

ignoring weights

HR_est = rep(NA,nsim)

HR_ci = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci) = c("lower","upper")

HR_coverage_ind = rep(NA,nsim)

ci_width_uw=rep(NA,nsim) ##width of CI

incorporating weights: matching weights

HR_est_wt = rep(NA,nsim)

HR_ci_wt = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt) = c("lower","upper")

HR_coverage_ind_wt = rep(NA,nsim)

ci_width=rep(NA,nsim) #width of CI

incorporating weights: overlapping weights

HR_est_wt2 = rep(NA,nsim)

HR_ci_wt2 = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt2) = c("lower","upper")

HR_coverage_ind_wt2 = rep(NA,nsim)

ci_width2=rep(NA,nsim) #width of CI

##ASAM

asam= matrix(0,nrow = nsim,ncol = 3)

colnames(asam) = c("unweighted","matching", "overlap")

for un-adjusted cox ph model results

#####---------------------------------

ignoring weights

HR_est_ua = rep(NA,nsim)

#HR_mse = rep(NA,nsim)

HR_ci_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_ua) = c("lower","upper")

HR_coverage_ind_ua = rep(NA,nsim)

ci_width_uw_ua=rep(NA,nsim) ##width of CI

incorporating weights: matching weights

HR_est_wt_ua = rep(NA,nsim)

HR_ci_wt_ua = matrix(0,nrow = nsim,ncol = 2)

51

colnames(HR_ci_wt_ua) = c("lower","upper")

HR_coverage_ind_wt_ua = rep(NA,nsim)

ci_width_ua=rep(NA,nsim) #width of CI

incorporating weights: overlapping weights

HR_est_wt2_ua = rep(NA,nsim)

HR_ci_wt2_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt2_ua) = c("lower","upper")

HR_coverage_ind_wt2_ua = rep(NA,nsim)

ci_width2_ua=rep(NA,nsim) #width of CI

##from superlearner: coefficients for ML methods

model_coef=matrix(0, ncol=2, nrow=nsim)

colnames(model_coef)=c('RF', 'XGB')

##ASAM

asam_ua= matrix(0,nrow = nsim,ncol = 3)

colnames(asam_ua) = c("unweighted","matching", "overlap")

=====================

Simulation of PS and evaluation

=====================

for(sim_num in 1:nsim){

 #print(paste("sim number: ",sim_num,sep = ""))

 ## ++++++++++++++++++++++++++++++++

 ## Fit cox proportional hazard model ignoring weights

 ## +++++

 surv_form<-as.formula(paste("Surv(time, status)~", "trt +", paste(vars_converted, collapse="+")))

 ##the following code are not used because adjusted and unweighted results have been calculated at logistic truck above.

 #cox_mod <- coxph(surv_form, data = dat_cox[[sim_num]])

 #cox_mod_sum = summary(cox_mod)

 #cox_mod_ci = exp(confint(cox_mod))

 #HR_est[sim_num] = cox_mod_sum$coefficients[1,2]

 #HR_ci[sim_num,] = cox_mod_ci[1,]

 #HR_coverage_ind[sim_num] = (exp(out_trt) >= HR_ci[sim_num,1] &exp(out_trt) <= HR_ci[sim_num,2])^2

 #ci_width_uw[sim_num]=HR_ci[sim_num,2]- HR_ci[sim_num,1]

#--

52

 ## fit model with weights (if n=1000)

 x_train=dat_cox[[sim_num]][,vars_converted]

 sl_multi = SuperLearner::SuperLearner(Y=dat_cox[[sim_num]]$trt, X=x_train,

 family=binomial(), SL.library=c("SL.randomForest", "SL.xgboost"))

 multi_pred = predict(sl_multi, x_train, onlySL = TRUE)

 prob_ps =multi_pred$pred

 prob_ps[which(prob_ps==1)]=0.999

 ## fit model with weights (if n=100 or 500)

 #x_train=dat_cox[[sim_num]][,vars_converted]

 ### create customized random Forest and XGBoost methods

 #create_rf = create.Learner("SL.randomForest", params=list(ntree = 1000, nodeside=5, nPerm=2))

 #create_xgb=create.Learner("SL.xgboost", params = list(nrounds=5), tune = list(eta=0.5, max_depth =10))

 ### apply SL function

 #sl_multi = SuperLearner(Y = dat_cox[[sim_num]]$trt, X = x_train, family=binomial(),

 # SL.library = c(create_rf$names, create_xgb$names))

 multi_pred = predict(sl_multi, x_train, onlySL = TRUE)

 prob_ps =multi_pred$pred

 prob_ps[which(prob_ps==1)]=0.999

 #matching weights and evaluation

 w_ps = pmin(prob_ps,1-prob_ps)/(trt*prob_ps + (1-trt)*(1-prob_ps))

 w_ps[which(w_ps==min(w_ps))]=0.0001 #for bug fixing

 svyDes = svydesign(id=~0,weights=w_ps, data=dat_cox[[sim_num]])

 cox_weighted_mod = svycoxph(surv_form, design = svyDes)

 HR_est_wt[sim_num] = exp(cox_weighted_mod$coefficients[1])

 HR_ci_wt[sim_num,] = exp(confint(cox_weighted_mod))[1,]

 HR_coverage_ind_wt[sim_num] = (exp(out_trt) >= HR_ci_wt[sim_num,1] &

 exp(out_trt) <= HR_ci_wt[sim_num,2])^2

 ci_width[sim_num]=HR_ci_wt[sim_num,2]- HR_ci_wt[sim_num,1]

 model_coef[sim_num, 1:2]= sl_multi$coef[1:2]

 #overlap weights and evaluation

 overlap_w_ps= trt + (-1)^trt * prob_ps

 overlap_w_ps[which(overlap_w_ps==min(overlap_w_ps))]=0.0001 #for bug fixing

 svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox[[sim_num]])

 cox_weighted_mod2 = svycoxph(surv_form, design = svyDes2)

 HR_est_wt2[sim_num] = exp(cox_weighted_mod2$coefficients[1])

 HR_ci_wt2[sim_num,] = exp(confint(cox_weighted_mod2))[1,]

 HR_coverage_ind_wt2[sim_num] = (exp(out_trt) >= HR_ci_wt2[sim_num,1] &

 exp(out_trt) <= HR_ci_wt2[sim_num,2])^2

 ci_width2[sim_num]=HR_ci_wt2[sim_num,2]- HR_ci_wt2[sim_num,1]

 #ASAM

 #importing user-supplied propensity scores "prob_ps"

53

 msstat1 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]],

 ps.estimate=prob_ps,

 trtgrp="1", weight="matching")

 msstat2 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]],

 ps.estimate=prob_ps,

 trtgrp="1", weight="overlap")

 #ASAM for unweighted dataset

 asam[sim_num,1]= mean(summary(msstat1)$unweighted[,"SMD"])

 #ASAM for matching weight dataset

 asam[sim_num,2]= mean(summary(msstat1)$matching[,"SMD"])

 #ASAM for overlap weight dataset

 asam[sim_num,3]= mean(summary(msstat2)$overlap[,"SMD"])

 ## +++

 ####----------fit model with unadjusted cox ph mode #####

 ## +++

 ## Fit cox proportional hazard model ignoring weights

 surv_form_ua<-as.formula(paste("Surv(time, status)~trt"))

 ##the following code are not used because adjusted and unweighted results have been calculated at logistic truck above.

 #cox_mod <- coxph(surv_form_ua, data = dat_cox[[sim_num]])

 #cox_mod_sum = summary(cox_mod)

 #cox_mod_ci = exp(confint(cox_mod))

 #HR_est_ua[sim_num] = cox_mod_sum$coefficients[1,2]

 #HR_ci_ua[sim_num,] = cox_mod_ci[1,]

 #HR_coverage_ind_ua[sim_num] = (exp(out_trt) >= HR_ci_ua[sim_num,1] &exp(out_trt) <=

HR_ci_ua[sim_num,2])^2

 #ci_width_uw_ua[sim_num]=HR_ci_ua[sim_num,2]- HR_ci_ua[sim_num,1]

 ## fit model with weights

 #matching weights and evaluation

 svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox[[sim_num]])

 cox_weighted_mod_ua = svycoxph(surv_form_ua, design = svyDes)

 HR_est_wt_ua[sim_num] = exp(cox_weighted_mod_ua$coefficients[1])

 HR_ci_wt_ua[sim_num,] = exp(confint(cox_weighted_mod_ua))[1,]

 HR_coverage_ind_wt_ua[sim_num] = (exp(out_trt) >= HR_ci_wt_ua[sim_num,1] &

 exp(out_trt) <= HR_ci_wt_ua[sim_num,2])^2

 ci_width_ua[sim_num]=HR_ci_wt_ua[sim_num,2]- HR_ci_wt_ua[sim_num,1]

 model_coef_ua[sim_num, 1:2]= sl_multi$coef[1:2]

 #overlap weights and evaluation

 svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox[[sim_num]])

 cox_weighted_mod2_ua = svycoxph(surv_form_ua, design = svyDes2)

 HR_est_wt2_ua[sim_num] = exp(cox_weighted_mod2_ua$coefficients[1])

 HR_ci_wt2_ua[sim_num,] = exp(confint(cox_weighted_mod2_ua))[1,]

 HR_coverage_ind_wt2_ua[sim_num] = (exp(out_trt) >= HR_ci_wt2_ua[sim_num,1] &

54

 exp(out_trt) <= HR_ci_wt2_ua[sim_num,2])^2

 ci_width2_ua[sim_num]=HR_ci_wt2_ua[sim_num,2]- HR_ci_wt2_ua[sim_num,1]

 #ASAM

 # using SumStat to estimate propensity scores

 msstat1_ua <- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]],

 ps.estimate=prob_ps,

 trtgrp="1", weight="matching")

 msstat2_ua<- SumStat(zname="trt", xname=vars_converted, data=dat_cox[[sim_num]],

 ps.estimate=prob_ps,

 trtgrp="1", weight="overlap")

 #ASAM for unweighted dataset

 asam_ua[sim_num,1]= mean(summary(msstat1_ua)$unweighted[,"SMD"])

 #ASAM for matching weight dataset

 asam_ua[sim_num,2]= mean(summary(msstat1_ua)$matching[,"SMD"])

 #ASAM for overlap weight dataset

 asam_ua[sim_num,3]= mean(summary(msstat2_ua)$overlap[,"SMD"])

}

=====================

Summarize Simulation Results

=====================

results_frame = data.frame(matrix(0,nrow = 6,ncol = 6))

colnames(results_frame) = c("Bias", "MSE","RMSE","% CI coverage", "CI width","ASAM")

rownames(results_frame) = c("no weights","matching weights", "overlap weights",

 "no weights (unadj)","matching weights (unadj)", "overlap weights (unadj)")

results_frame[1,] = c(mean((HR_est -exp(out_trt))), #mean of bias

 mean((HR_est -exp(out_trt))^2),

 sqrt(mean((HR_est -exp(out_trt))^2)),

 round(sum(HR_coverage_ind)/nsim*100,3),

 mean(ci_width_uw),

 mean(asam[,1]))

results_frame[2,] = c(mean((HR_est_wt -exp(out_trt))), #mean of bias

 mean((HR_est_wt -exp(out_trt))^2),

 sqrt(mean((HR_est_wt -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt)/nsim*100,3),

 mean(ci_width),

 mean(asam[,2]))

results_frame[3,] = c(mean((HR_est_wt2 -exp(out_trt))), #mean of bias

 mean((HR_est_wt2 -exp(out_trt))^2),

 sqrt(mean((HR_est_wt2 -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt2)/nsim*100,3),

 mean(ci_width2),

 mean(asam[,3]))

results_frame[4,] = c(mean((HR_est_ua -exp(out_trt))), #mean of bias

 mean((HR_est_ua -exp(out_trt))^2),

55

 sqrt(mean((HR_est_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_ua)/nsim*100,3),

 mean(ci_width_uw_ua),

 mean(asam_ua[,1]))

results_frame[5,] = c(mean((HR_est_wt_ua -exp(out_trt))), #mean of bias

 mean((HR_est_wt_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_wt_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt_ua)/nsim*100,3),

 mean(ci_width_ua),

 mean(asam_ua[,2]))

results_frame[6,] = c(mean((HR_est_wt2_ua -exp(out_trt))), #mean of bias

 mean((HR_est_wt2_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_wt2_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt2_ua)/nsim*100,3),

 mean(ci_width2_ua),

 mean(asam_ua[,3]))

round(results_frame,5)

save(results_frame, file = "~/R/summer2020/simulation script 3/sim1D_n1000_results_frame_SL.RData")

save(asam, file="~/R/summer2020/simulation script 3/sim1D_n1000_asam_SL.RData")

biases=cbind(HR_est -exp(out_trt), #adjusted models

 HR_est_wt -exp(out_trt),

 HR_est_wt2 -exp(out_trt),

 HR_est_ua -exp(out_trt), #unadjusted models

 HR_est_wt_ua -exp(out_trt),

 HR_est_wt2_ua -exp(out_trt))

save(biases, file="~/R/summer2020/simulation script 3/sim1D_n1000_biases_SL.RData")

colMeans(model_coef) #the frequency of ML method chosen for each time

colMeans(model_coef_ua) #the frequency of ML method chosen for each time

end.time = Sys.time()

run_time = end.time - start.time

start.time; end.time; run_time

56

6.4 Appendix D. R Codes for Method Application on the RHC Dataset Code

knitr::opts_chunk$set(echo = TRUE)

=====================

packages used

=====================

library(survival) ## coxph

library(survey) ## svydesign and svycoxph

library(simsurv) ## simsurv

#packages for SuperLearner function

library(SuperLearner)

library(caret)

library(glmnet)

library(randomForest)

library(RhpcBLASctl)

library(xgboost)

#package for ASAM

library(PSweight)

=====================

simulation parameters

=====================

start.time = Sys.time()

seed=0123

#seed=345 #original seeddd

set.seed(seed)

rhc.dat = read.csv("~/R/summer2020/rhc.csv", stringsAsFactors=T)

n= nrow(rhc.dat)## size of data set

nsim = 10 ## number of simulated data sets

=====================

Create object to save results

=====================

p_trt = rep(NA,nsim)

event_rate = rep(NA,nsim)

times_c<-vector(mode="list", length=nsim)

times_uc<-vector(mode="list", length=nsim)

status_list<-vector(mode="list", length=nsim)

##simulated datasets

dat_cox<-vector(mode="list", length=nsim)

for adjusted cox ph model results

ignoring weights

HR_est = rep(NA,nsim)

#HR_mse = rep(NA,nsim)

HR_ci = matrix(0,nrow = nsim,ncol = 2)

57

colnames(HR_ci) = c("lower","upper")

HR_coverage_ind = rep(NA,nsim)

ci_width_uw=rep(NA,nsim) ##width of CI

incorporating weights: matching weights

HR_est_wt = rep(NA,nsim)

HR_ci_wt = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt) = c("lower","upper")

HR_coverage_ind_wt = rep(NA,nsim)

ci_width=rep(NA,nsim) #width of CI

incorporating weights: overlapping weights

HR_est_wt2 = rep(NA,nsim)

HR_ci_wt2 = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt2) = c("lower","upper")

HR_coverage_ind_wt2 = rep(NA,nsim)

ci_width2=rep(NA,nsim) #width of CI

##from superlearner: coefficients for each ML methods

model_coef=matrix(0, ncol=2, nrow=nsim)

colnames(model_coef)=c('RF', 'XGB')

##ASAM

asam= matrix(0,nrow = nsim,ncol = 3)

colnames(asam) = c("unweighted","matching", "overlap")

for unadjusted cox ph model results

ignoring weights

HR_est_ua = rep(NA,nsim)

#HR_mse = rep(NA,nsim)

HR_ci_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_ua) = c("lower","upper")

HR_coverage_ind_ua = rep(NA,nsim)

ci_width_uw_ua=rep(NA,nsim) ##width of CI

incorporating weights: matching weights

HR_est_wt_ua = rep(NA,nsim)

HR_ci_wt_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt_ua) = c("lower","upper")

HR_coverage_ind_wt_ua = rep(NA,nsim)

ci_width_ua=rep(NA,nsim) #width of CI

incorporating weights: overlapping weights

HR_est_wt2_ua = rep(NA,nsim)

HR_ci_wt2_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt2_ua) = c("lower","upper")

HR_coverage_ind_wt2_ua = rep(NA,nsim)

ci_width2_ua=rep(NA,nsim) #width of CI

58

##from superlearner

model_coef_ua=matrix(0, ncol=2, nrow=nsim)

colnames(model_coef_ua)=c('RF', 'XGB')

##ASAM

asam_ua= matrix(0,nrow = nsim,ncol = 3)

colnames(asam_ua) = c("unweighted","matching", "overlap")

=====================

###set up: manage RHC dataset

=====================

vars_selected<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card", "ninsclas")

vars_converted<-c("pafi1", "age", "hrt1", "resp1", "bili1", "dnr1", "card",

 "private", "medicare", "priNcare", "other")

ps.formula<- trt~pafi1+age+hrt1+resp1+bili1+dnr1+card+private+medicare+priNcare+other

rhc.X<-cbind(rhc.dat[,vars_selected])

##convert factor variables in rhc.cov into indicator variables

rhc.conv<- model.matrix(~., data= rhc.X)[,-1]

rhc.conv<-cbind(rhc.conv, rhc.dat$swang1) #add trt var into the db

rhc.conv<-data.frame(rhc.conv)

rhc.conv[,14]<-rhc.conv[,11]

rhc.conv[,15]<-rhc.conv[,8]

rhc.conv[,16]<-rhc.conv[,12]

rhc.conv[,17]<-rhc.conv[,9]+rhc.conv[,10]

rhc.conv<-cbind(rhc.conv[,1:7],rhc.conv[,13:17])

colnames(rhc.conv)[6:12]<-c("dnr1", "card", "trt", "private", "medicare", "priNcare", "other")

rhc.conv$trt[which(rhc.conv$trt==1)]<-0

rhc.conv$trt[which(rhc.conv$trt==2)]<-1

#head(rhc.conv)

=====================

set up: get outcome model coefficients ("true" model)

=====================

##get survival time of RHC

survtime<-ifelse(is.na(rhc.dat$dthdte), rhc.dat$lstctdte-rhc.dat$sadmdte, rhc.dat$dthdte-rhc.dat$sadmdte)

rhc.conv$survtime<-survtime

death<-(rhc.dat$death=="Yes")^2

rhc.conv$death<-death

surv_form<-as.formula(paste("Surv(survtime, death)~", "trt +", paste(vars_converted, collapse="+")))

surv_mod<-coxph(surv_form, data=rhc.conv)

beta_out_mod<-surv_mod$coefficients

beta_out_mod

out_trt<-beta_out_mod[1] #get HR of treatment=hazard of exposed/ hazard of unexposed

out_trt

59

exp(out_trt)

dat_cox=rhc.conv

colnames(dat_cox)[c(ncol(rhc.conv)-1,ncol(rhc.conv))]=c("time","status")

for(sim_num in 1:nsim){

+++++++++++++++++++++

 ## Fit cox proportional hazard model ignoring weights

 surv_form<-as.formula(paste("Surv(time, status)~", "trt +", paste(vars_converted, collapse="+")))

 cox_mod <- coxph(surv_form, data = dat_cox)

 cox_mod_sum = summary(cox_mod)

 cox_mod_ci = exp(confint(cox_mod))

 HR_est[sim_num] = cox_mod_sum$coefficients[1,2]

 HR_ci[sim_num,] = cox_mod_ci[1,]

 HR_coverage_ind[sim_num] = (exp(out_trt) >= HR_ci[sim_num,1] &

 exp(out_trt) <= HR_ci[sim_num,2])^2

 ci_width_uw[sim_num]=HR_ci[sim_num,2]- HR_ci[sim_num,1]

#------------------------

 ## fit model with weights

 log_mod = glm(as.formula(paste("trt~", paste(vars_converted, collapse="+"))),

 data = dat_cox, family = "binomial")

 logit_ps = predict(log_mod)

 prob_ps = exp(logit_ps)/(1+exp(logit_ps))

 prob_ps[which(prob_ps==1)]=0.999

 #matching weights and evaluation

 trt=dat_cox$trt

 w_ps = pmin(prob_ps,1-prob_ps)/(trt*prob_ps + (1-trt)*(1-prob_ps))

 svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox)

 cox_weighted_mod = svycoxph(surv_form, design = svyDes)

 HR_est_wt[sim_num] = exp(cox_weighted_mod$coefficients[1])

 HR_ci_wt[sim_num,] = exp(confint(cox_weighted_mod))[1,]

 HR_coverage_ind_wt[sim_num] = (exp(out_trt) >= HR_ci_wt[sim_num,1] &

 exp(out_trt) <= HR_ci_wt[sim_num,2])^2

 ci_width[sim_num]=HR_ci_wt[sim_num,2]- HR_ci_wt[sim_num,1]

 #overlap weights and evaluation

 overlap_w_ps= trt + (-1)^trt * prob_ps

 svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox)

 cox_weighted_mod2 = svycoxph(surv_form, design = svyDes2)

 HR_est_wt2[sim_num] = exp(cox_weighted_mod2$coefficients[1])

 HR_ci_wt2[sim_num,] = exp(confint(cox_weighted_mod2))[1,]

 HR_coverage_ind_wt2[sim_num] = (exp(out_trt) >= HR_ci_wt2[sim_num,1] &

 exp(out_trt) <= HR_ci_wt2[sim_num,2])^2

60

 ci_width2[sim_num]=HR_ci_wt2[sim_num,2]- HR_ci_wt2[sim_num,1]

 #ASAM

 msstat1 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox,

 ps.estimate=prob_ps,

 trtgrp="1", weight="matching")

 msstat2 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox,

 ps.estimate=prob_ps,

 trtgrp="1", weight="overlap")

 #ASAM for unweighted dataset

 asam[sim_num,1]= mean(summary(msstat1)$unweighted[,"SMD"])

 #ASAM for matching weight dataset

 asam[sim_num,2]= mean(summary(msstat1)$matching[,"SMD"])

 #ASAM for overlap weight dataset

 asam[sim_num,3]= mean(summary(msstat2)$overlap[,"SMD"])

 ## +++

 ####----------fit model with unadjusted cox ph mode #####

 ## +++

 ## Fit cox proportional hazard model ignoring weights

 surv_form_ua<-as.formula(paste("Surv(time, status)~trt"))

 cox_mod <- coxph(surv_form_ua, data = dat_cox)

 cox_mod_sum = summary(cox_mod)

 cox_mod_ci = exp(confint(cox_mod))

 HR_est_ua[sim_num] = cox_mod_sum$coefficients[1,2]

 HR_ci_ua[sim_num,] = cox_mod_ci[1,]

 HR_coverage_ind_ua[sim_num] = (exp(out_trt) >= HR_ci_ua[sim_num,1] &

 exp(out_trt) <= HR_ci_ua[sim_num,2])^2

 ci_width_uw_ua[sim_num]=HR_ci_ua[sim_num,2]- HR_ci_ua[sim_num,1]

 ## fit model with weights

 #matching weights and evaluation

 svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox)

 cox_weighted_mod_ua = svycoxph(surv_form_ua, design = svyDes)

 HR_est_wt_ua[sim_num] = exp(cox_weighted_mod_ua$coefficients[1])

 HR_ci_wt_ua[sim_num,] = exp(confint(cox_weighted_mod_ua))[1,]

 HR_coverage_ind_wt_ua[sim_num] = (exp(out_trt) >= HR_ci_wt_ua[sim_num,1] &

 exp(out_trt) <= HR_ci_wt_ua[sim_num,2])^2

 ci_width_ua[sim_num]=HR_ci_wt_ua[sim_num,2]- HR_ci_wt_ua[sim_num,1]

 #overlap weights and evaluation

 svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox)

 cox_weighted_mod2_ua = svycoxph(surv_form_ua, design = svyDes2)

 HR_est_wt2_ua[sim_num] = exp(cox_weighted_mod2_ua$coefficients[1])

 HR_ci_wt2_ua[sim_num,] = exp(confint(cox_weighted_mod2_ua))[1,]

61

 HR_coverage_ind_wt2_ua[sim_num] = (exp(out_trt) >= HR_ci_wt2_ua[sim_num,1] &

 exp(out_trt) <= HR_ci_wt2_ua[sim_num,2])^2

 ci_width2_ua[sim_num]=HR_ci_wt2_ua[sim_num,2]- HR_ci_wt2_ua[sim_num,1]

 #ASAM

 msstat1_ua <- SumStat(zname="trt", xname=vars_converted, data=dat_cox,

 ps.estimate=prob_ps,

 trtgrp="1", weight="matching")

 msstat2_ua<- SumStat(zname="trt", xname=vars_converted, data=dat_cox,

 ps.estimate=prob_ps,

 trtgrp="1", weight="overlap")

 #ASAM for unweighted dataset

 asam_ua[sim_num,1]= mean(summary(msstat1_ua)$unweighted[,"SMD"])

 #ASAM for matching weight dataset

 asam_ua[sim_num,2]= mean(summary(msstat1_ua)$matching[,"SMD"])

 #ASAM for overlap weight dataset

 asam_ua[sim_num,3]= mean(summary(msstat2_ua)$overlap[,"SMD"])

}

=====================

Summarize Simulation Results

=====================

results_frame = data.frame(matrix(0,nrow = 6,ncol = 6))

colnames(results_frame) = c("Bias", "MSE","RMSE","% CI coverage", "CI width","ASAM")

rownames(results_frame) = c("no weights","matching weights", "overlap weights",

 "no weights (unadj)","matching weights (unadj)", "overlap weights (unadj)")

results_frame[1,] = c(mean((HR_est -exp(out_trt))), #mean of bias

 mean((HR_est -exp(out_trt))^2),

 sqrt(mean((HR_est -exp(out_trt))^2)),

 round(sum(HR_coverage_ind)/nsim*100,3),

 mean(ci_width_uw),

 mean(asam[,1]))

results_frame[2,] = c(mean((HR_est_wt -exp(out_trt))), #mean of bias

 mean((HR_est_wt -exp(out_trt))^2),

 sqrt(mean((HR_est_wt -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt)/nsim*100,3),

 mean(ci_width),

 mean(asam[,2]))

results_frame[3,] = c(mean((HR_est_wt2 -exp(out_trt))), #mean of bias

 mean((HR_est_wt2 -exp(out_trt))^2),

 sqrt(mean((HR_est_wt2 -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt2)/nsim*100,3),

 mean(ci_width2),

 mean(asam[,3]))

62

results_frame[4,] = c(mean((HR_est_ua -exp(out_trt))), #mean of bias

 mean((HR_est_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_ua)/nsim*100,3),

 mean(ci_width_uw_ua),

 mean(asam_ua[,1]))

results_frame[5,] = c(mean((HR_est_wt_ua -exp(out_trt))), #mean of bias

 mean((HR_est_wt_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_wt_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt_ua)/nsim*100,3),

 mean(ci_width_ua),

 mean(asam_ua[,2]))

results_frame[6,] = c(mean((HR_est_wt2_ua -exp(out_trt))), #mean of bias

 mean((HR_est_wt2_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_wt2_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt2_ua)/nsim*100,3),

 mean(ci_width2_ua),

 mean(asam_ua[,3]))

round(results_frame,5)

save(results_frame, file = "~/R/summer2020/simulation script 2/sim1A_RHC_results_frame_logistic.RData")

estimated HRs of treatment from fitted models

round(cbind(mean(HR_est), #adjusted unweighted

mean(HR_est_wt), #adjusted, matching weight

mean(HR_est_wt2), #adjusted, overlap weight

mean(HR_est_ua), #unadjusted unweighted

mean(HR_est_wt_ua), #unadjusted matching weight

mean(HR_est_wt2_ua)), 3) #unadjusted overlap weight

for adjusted cox ph model results

#####---------------------------------

ignoring weights

HR_est = rep(NA,nsim)

HR_ci = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci) = c("lower","upper")

HR_coverage_ind = rep(NA,nsim)

ci_width_uw=rep(NA,nsim) ##width of CI

incorporating weights: matching weights

HR_est_wt = rep(NA,nsim)

HR_ci_wt = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt) = c("lower","upper")

HR_coverage_ind_wt = rep(NA,nsim)

ci_width=rep(NA,nsim) #width of CI

incorporating weights: overlapping weights

HR_est_wt2 = rep(NA,nsim)

HR_ci_wt2 = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt2) = c("lower","upper")

HR_coverage_ind_wt2 = rep(NA,nsim)

63

ci_width2=rep(NA,nsim) #width of CI

##ASAM

asam= matrix(0,nrow = nsim,ncol = 3)

colnames(asam) = c("unweighted","matching", "overlap")

for un-adjusted cox ph model results

#####---------------------------------

ignoring weights

HR_est_ua = rep(NA,nsim)

#HR_mse = rep(NA,nsim)

HR_ci_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_ua) = c("lower","upper")

HR_coverage_ind_ua = rep(NA,nsim)

ci_width_uw_ua=rep(NA,nsim) ##width of CI

incorporating weights: matching weights

HR_est_wt_ua = rep(NA,nsim)

HR_ci_wt_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt_ua) = c("lower","upper")

HR_coverage_ind_wt_ua = rep(NA,nsim)

ci_width_ua=rep(NA,nsim) #width of CI

incorporating weights: overlapping weights

HR_est_wt2_ua = rep(NA,nsim)

HR_ci_wt2_ua = matrix(0,nrow = nsim,ncol = 2)

colnames(HR_ci_wt2_ua) = c("lower","upper")

HR_coverage_ind_wt2_ua = rep(NA,nsim)

ci_width2_ua=rep(NA,nsim) #width of CI

##from superlearner: coefficients for ML methods

model_coef=matrix(0, ncol=2, nrow=nsim)

colnames(model_coef)=c('RF', 'XGB')

##ASAM

asam_ua= matrix(0,nrow = nsim,ncol = 3)

colnames(asam_ua) = c("unweighted","matching", "overlap")

=====================

Simulation of PS and evaluation

=====================

for(sim_num in 1:nsim){

64

 ## ++++++++++++++++++++++++++++++++

 ## Fit cox proportional hazard model ignoring weights

 ## +++++

 surv_form<-as.formula(paste("Surv(time, status)~", "trt +", paste(vars_converted, collapse="+")))

 cox_mod <- coxph(surv_form, data = dat_cox)

 cox_mod_sum = summary(cox_mod)

 cox_mod_ci = exp(confint(cox_mod))

 HR_est[sim_num] = cox_mod_sum$coefficients[1,2]

 HR_ci[sim_num,] = cox_mod_ci[1,]

 HR_coverage_ind[sim_num] = (exp(out_trt) >= HR_ci[sim_num,1] &

 exp(out_trt) <= HR_ci[sim_num,2])^2

 ci_width_uw[sim_num]=HR_ci[sim_num,2]- HR_ci[sim_num,1]

#--

 ## fit model with weights

 x_train=dat_cox[,vars_converted]

 sl_multi = SuperLearner::SuperLearner(Y=dat_cox$trt, X=x_train,

 family=binomial(), SL.library=c("SL.randomForest", "SL.xgboost"))

 multi_pred = predict(sl_multi, x_train, onlySL = TRUE)

 prob_ps =multi_pred$pred

 prob_ps[which(prob_ps==1)]=0.999

 #matching weights and evaluation

 w_ps = pmin(prob_ps,1-prob_ps)/(trt*prob_ps + (1-trt)*(1-prob_ps))

 svyDes = svydesign(id=~0,weights=w_ps, data=dat_cox)

 cox_weighted_mod = svycoxph(surv_form, design = svyDes)

 HR_est_wt[sim_num] = exp(cox_weighted_mod$coefficients[1])

 HR_ci_wt[sim_num,] = exp(confint(cox_weighted_mod))[1,]

 HR_coverage_ind_wt[sim_num] = (exp(out_trt) >= HR_ci_wt[sim_num,1] &

 exp(out_trt) <= HR_ci_wt[sim_num,2])^2

 ci_width[sim_num]=HR_ci_wt[sim_num,2]- HR_ci_wt[sim_num,1]

 model_coef[sim_num, 1:2]= sl_multi$coef[1:2]

 #overlap weights and evaluation

 overlap_w_ps= trt + (-1)^trt * prob_ps

 svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox)

 cox_weighted_mod2 = svycoxph(surv_form, design = svyDes2)

 HR_est_wt2[sim_num] = exp(cox_weighted_mod2$coefficients[1])

 HR_ci_wt2[sim_num,] = exp(confint(cox_weighted_mod2))[1,]

 HR_coverage_ind_wt2[sim_num] = (exp(out_trt) >= HR_ci_wt2[sim_num,1] &

 exp(out_trt) <= HR_ci_wt2[sim_num,2])^2

 ci_width2[sim_num]=HR_ci_wt2[sim_num,2]- HR_ci_wt2[sim_num,1]

 #ASAM

65

 #importing user-supplied propensity scores "prob_ps"

 msstat1 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox,

 ps.estimate=prob_ps,

 trtgrp="1", weight="matching")

 msstat2 <- SumStat(zname="trt", xname=vars_converted, data=dat_cox,

 ps.estimate=prob_ps,

 trtgrp="1", weight="overlap")

 #ASAM for unweighted dataset

 asam[sim_num,1]= mean(summary(msstat1)$unweighted[,"SMD"])

 #ASAM for matching weight dataset

 asam[sim_num,2]= mean(summary(msstat1)$matching[,"SMD"])

 #ASAM for overlap weight dataset

 asam[sim_num,3]= mean(summary(msstat2)$overlap[,"SMD"])

 ## +++

 ####----------fit model with unadjusted cox ph mode #####

 ## +++

 ## Fit cox proportional hazard model ignoring weights

 surv_form_ua<-as.formula(paste("Surv(time, status)~trt"))

 cox_mod <- coxph(surv_form_ua, data = dat_cox)

 cox_mod_sum = summary(cox_mod)

 cox_mod_ci = exp(confint(cox_mod))

 HR_est_ua[sim_num] = cox_mod_sum$coefficients[1,2]

 HR_ci_ua[sim_num,] = cox_mod_ci[1,]

 HR_coverage_ind_ua[sim_num] = (exp(out_trt) >= HR_ci_ua[sim_num,1] &

 exp(out_trt) <= HR_ci_ua[sim_num,2])^2

 ci_width_uw_ua[sim_num]=HR_ci_ua[sim_num,2]- HR_ci_ua[sim_num,1]

 ## fit model with weights

 #matching weights and evaluation

 svyDes = svydesign(id=~0, weights=w_ps, data=dat_cox)

 cox_weighted_mod_ua = svycoxph(surv_form_ua, design = svyDes)

 HR_est_wt_ua[sim_num] = exp(cox_weighted_mod_ua$coefficients[1])

 HR_ci_wt_ua[sim_num,] = exp(confint(cox_weighted_mod_ua))[1,]

 HR_coverage_ind_wt_ua[sim_num] = (exp(out_trt) >= HR_ci_wt_ua[sim_num,1] &

 exp(out_trt) <= HR_ci_wt_ua[sim_num,2])^2

 ci_width_ua[sim_num]=HR_ci_wt_ua[sim_num,2]- HR_ci_wt_ua[sim_num,1]

 model_coef_ua[sim_num, 1:2]= sl_multi$coef[1:2]

 #overlap weights and evaluation

 svyDes2 = svydesign(id=~0, weights=overlap_w_ps, data=dat_cox)

 cox_weighted_mod2_ua = svycoxph(surv_form_ua, design = svyDes2)

 HR_est_wt2_ua[sim_num] = exp(cox_weighted_mod2_ua$coefficients[1])

 HR_ci_wt2_ua[sim_num,] = exp(confint(cox_weighted_mod2_ua))[1,]

 HR_coverage_ind_wt2_ua[sim_num] = (exp(out_trt) >= HR_ci_wt2_ua[sim_num,1] &

66

 exp(out_trt) <= HR_ci_wt2_ua[sim_num,2])^2

 ci_width2_ua[sim_num]=HR_ci_wt2_ua[sim_num,2]- HR_ci_wt2_ua[sim_num,1]

 #ASAM

 # using SumStat to estimate propensity scores

 msstat1_ua <- SumStat(zname="trt", xname=vars_converted, data=dat_cox,

 ps.estimate=prob_ps,

 trtgrp="1", weight="matching")

 msstat2_ua<- SumStat(zname="trt", xname=vars_converted, data=dat_cox,

 ps.estimate=prob_ps,

 trtgrp="1", weight="overlap")

 #ASAM for unweighted dataset

 asam_ua[sim_num,1]= mean(summary(msstat1_ua)$unweighted[,"SMD"])

 #ASAM for matching weight dataset

 asam_ua[sim_num,2]= mean(summary(msstat1_ua)$matching[,"SMD"])

 #ASAM for overlap weight dataset

 asam_ua[sim_num,3]= mean(summary(msstat2_ua)$overlap[,"SMD"])

}

=====================

Summarize Simulation Results

=====================

results_frame = data.frame(matrix(0,nrow = 6,ncol = 6))

colnames(results_frame) = c("Bias", "MSE","RMSE","% CI coverage", "CI width","ASAM")

rownames(results_frame) = c("no weights","matching weights", "overlap weights",

 "no weights (unadj)","matching weights (unadj)", "overlap weights (unadj)")

results_frame[1,] = c(mean((HR_est -exp(out_trt))), #mean of bias

 mean((HR_est -exp(out_trt))^2),

 sqrt(mean((HR_est -exp(out_trt))^2)),

 round(sum(HR_coverage_ind)/nsim*100,3),

 mean(ci_width_uw),

 mean(asam[,1]))

results_frame[2,] = c(mean((HR_est_wt -exp(out_trt))), #mean of bias

 mean((HR_est_wt -exp(out_trt))^2),

 sqrt(mean((HR_est_wt -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt)/nsim*100,3),

 mean(ci_width),

 mean(asam[,2]))

results_frame[3,] = c(mean((HR_est_wt2 -exp(out_trt))), #mean of bias

 mean((HR_est_wt2 -exp(out_trt))^2),

 sqrt(mean((HR_est_wt2 -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt2)/nsim*100,3),

 mean(ci_width2),

 mean(asam[,3]))

results_frame[4,] = c(mean((HR_est_ua -exp(out_trt))), #mean of bias

 mean((HR_est_ua -exp(out_trt))^2),

67

 sqrt(mean((HR_est_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_ua)/nsim*100,3),

 mean(ci_width_uw_ua),

 mean(asam_ua[,1]))

results_frame[5,] = c(mean((HR_est_wt_ua -exp(out_trt))), #mean of bias

 mean((HR_est_wt_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_wt_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt_ua)/nsim*100,3),

 mean(ci_width_ua),

 mean(asam_ua[,2]))

results_frame[6,] = c(mean((HR_est_wt2_ua -exp(out_trt))), #mean of bias

 mean((HR_est_wt2_ua -exp(out_trt))^2),

 sqrt(mean((HR_est_wt2_ua -exp(out_trt))^2)),

 round(sum(HR_coverage_ind_wt2_ua)/nsim*100,3),

 mean(ci_width2_ua),

 mean(asam_ua[,3]))

round(results_frame,5)

save(results_frame,

 file = "~/R/summer2020/simulation script 2/sim1A_n1000_results_frame_SL.RData")

colMeans(model_coef) #the frequency of ML method chosen for each time

colMeans(model_coef_ua) #the frequency of ML method chosen for each time

estimated HRs of treatment from fitted models

round(cbind(mean(HR_est), #adjusted unweighted

mean(HR_est_wt), #adjusted, matching weight

mean(HR_est_wt2), #adjusted, overlap weight

mean(HR_est_ua), #unadjusted unweighted

mean(HR_est_wt_ua), #unadjusted matching weight

mean(HR_est_wt2_ua)), 3) #unadjusted overlap weight

end.time = Sys.time()

run_time = end.time - start.time

start.time; end.time; run_time

