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CHAPTER 1

INTRODUCTION

1.1 Study Context
Natural language processing (NLP) refers to the set of methods for making human lan-
guage accessible for computation. Traditionally, words or characters were represented
using count-based methods or mapped to existing ontologies, but these approaches
were limited as they failed to encode many valuable linguistic properties.

Drawing from linguistic principles, methods were developed to encode distributional
representations of words. These representations are commonly referred to as embed-
dings. Although these captured important semantic and syntactic properties and
improved downstream NLP task performance, early adoption was limited as training
these neural network models proved to be computationally expensive. Advancements
in training techniques and processing capabilities made the use of embeddings more
accessible. Overcoming some of the limitations of early embedding representations,
embedding models were further sub-divided into non-contextual word embeddings
(NCWE) and contextual word embeddings (CWE). NCWE models refer to methods
where each word is represented by a single, static word vector (See Section 2.4). Thus,
NCWE representations poorly reflect words with multiple senses, such as polysemy or
homonymy. By contrast, CWE methods represent words dynamically as they account
for each word’s context when representing each word vector (See Section 2.5.3).

Despite the gains afforded by embedding models on both intrinsic and extrinsic
evaluation, rule-based NLP methods are still commonly used in practice. For example,
Vanderbilt University Medical Center (VUMC) and other hospital systems use a
rule-based NLP tool, De-Id, for de-identification of clinical text documents (D. Gupta,
Saul, and Gilbertson 2004; Danciu et al. 2014). As is common with rule-based
NLP systems, additional engineering and iterative improvements of the original De-Id
software was needed to achieve suitable results at VUMC. The primary advantage
of rule-based NLP methods is model interpretability, which is of critical importance
given the potential health care implications using clinical NLP methods.

Phenotyping is a common application within clinical NLP as leveraging clinical text
can improve phenotype classification performance. Often, NLP approaches can lead to
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striking improvements, e.g. where conditions, procedures, or observations are poorly
coded or unaccounted for in existing medical coding systems (Wiley et al. 2013). Many
existing NLP-based phenotyping algorithms rely on regular expressions or existing
biomedical NLP tools, which incorporate the traditional NLP pipeline. This persists
despite embedding models being far more generalizable and their potential for yielding
state-of-the-art (SOTA) performance on most downstream NLP tasks. In addition,
embedding models require far less text processing and engineering to achieve SOTA
performance relative to earlier clinical NLP methods.

NLP methods continue to evolve, often doing so to overcome the limitations of existing
techniques. Recent advances in embeddings include optimized training of spherical
embeddings and the introduction of Efficient Transformer models.

1.2 Motivation for the Study
Clinical NLP tends to track many of the advancements from the general NLP domain.
Early clinical NLP efforts relied on regular expressions, followed by more sophisticated
NLP pipelines, which comprised a series of steps such as tokenization and dependency
parsing. The output of these NLP approaches was either the object of interest itself,
e.g. clinical concept extraction, or used as features for other tasks, e.g. as an input for
phenotype classification models. Using advanced NLP methods, many of these tedious
and intensive processing steps can be eliminated. For instance, embedding models
allow for easy and efficient processing of raw text and may achieve SOTA results on a
broad range of downstream NLP applications.

Despite these advancements, we have a limited understanding of how well embedding
models encode clinical text information and if or how each differs on downstream
clinical NLP tasks. Each word embedding model tends to differ with respect to the
training objective, which may influence how the generated embeddings encode text
information. Presently, few, if any, clinical intrinsic evaluation benchmarks exist
to study embedding model representations against clinician judgment. Those that
do exist were manually curated and developed prior to the introduction of existing
embedding algorithms in use today.

Clinical text is distinct from general text corpora making it difficult to extrapolate
general NLP findings to the clinical domain. Thus, it remains unclear if and how
performance of many existing and recently developed embedding algorithms may differ
on evaluation tasks derived from clinical text. While intuitively in-domain embeddings
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may be considered ideal model choices, evidence is needed to support the use of
embedding models pre-trained on clinical documents over those pre-trained on general
text corpora.

1.3 Aim and Scope
The aim of this study is to examine and compare embedding model representations of
clinical text as compared to clinician judgment and to investigate if and how model
selection may effect phenotype classification performance.

To assess this, I defined and developed intrinsic and extrinsic evaluation tasks using a
custom radiology report corpus. Our intrinsic evaluation tasks allowed us to compare
embedding model representations against clinician judgment to study the effect of
embedding algorithm selection and choice of corpus used for pre-training. For extrinsic
evaluation, I developed a phenotyping classification task, a common use case for
clinical NLP practitioners, and compare performance for different models to examine
the effect of algorithm type or pre-training corpus.

I hypothesized that embedding models pre-trained on our custom clinical corpus would
outperform others on both intrinsic and extrinsic evaluation tasks. I also expected
to find that embeddings pre-trained on a large biomedical and clinical corpus would
outperform those pre-trained on general corpora for both evaluation tasks. Among
the NCWE models pre-trained on our custom corpus, I hypothesized that spherical
embeddings would provide the best performance on both intrinsic and extrinsic
evaluation based on published findings demonstrating so on general NLP intrinsic and
extrinsic evaluation benchmarks. For the extrinsic evaluation task, I hypothesized that
Efficient Transformer models would perform best, followed by BERT-based models,
and that Bidirectional LSTM models would perform worst for phenotype classification.

1.4 Study Significance
One intended outcome of the study is to develop a data-driven method for creation of
intrinsic evaluation benchmarks by leveraging pre-trained embedding models. This
method aims to improve on the time and resource intensive manual curation process
used to construct existing clinically oriented intrinsic evaluation tasks. This approach
is easy to implement and can be used to expedite the creation of additional clinical
intrinsic evaluation benchmarks, which is important to further our understanding and
trust in these models and their representations.
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A seconded intended outcome of the study is to determine which embedding algo-
rithm(s) and pre-training corpora represents words in greatest agreement with clinician
judgment. The results of our intrinsic evaluation task clarify model and pre-training
corpus selection most useful to optimize word vector representations to align with
clinician appraisal. In addition to improving interpretability and establishing trust,
informing these optimal model preferences is useful for other NLP tasks, such as term
expansion and word sense disambiguation.

Further, a third intended outcome clarifies which embedding model(s) and pre-training
corpora perform best on clinical phenotyping using radiology text. These results
inform the effect of custom model pre-training and how model and corpus choice
influence phenotype classification performance, and which may be most preferable
depending on label balance and access to computing resources.

1.5 Overview of the Study
This thesis consists of 4 further chapters. In Chapter 2, I situate the current study in
related literature and pre-existing work to provide appropriate background for the
remaining chapters. In Chapter 3, I detail the development of intrinsic evaluation
tasks and share how different embedding model configurations influence performance
on these tasks. In Chapter 4, I present extrinsic evaluation tasks and establish how
model selection and pre-training corpus effect training and phenotype classification
performance. Lastly, I conclude with Chapter 5, tying in findings from the preceding
chapters.
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CHAPTER 2

BACKGROUND

2.1 Clinical Text
Free-text clinical documents in the electronic medical record (EMR) contain a wealth
of useful clinical information, much of which is unavailable as structured data elements.
This text may include specific information about clinical findings, patient risk factors
or disease management. Moreover, this free text may contain nuance and language
about diagnostic reasoning, clinical uncertainty, and other information that cannot be
expressed or captured using existing structured terminologies.

Clinical text data is often subject to misspellings, abbreviations and other sources
of ambiguity. Despite this, the semantics (or meaning) of the text is preserved as
clinicians are able to comprehend these varying forms. For example, ‘Cr’, ‘Creat’,
and ‘creat’ are all understood by clinicians to mean creatinine. Such heterogeneity
in representation of terms or concepts presents a unique set of challenges working
with clinical text. To further complicate matters, the syntax, or style of language,
sentence construction, and grammar usage, used in clinical notes is distinct than what
is encountered in other domains.

Importantly, spelling errors or frequent use of abbreviations may be less common
in radiology reports compared to other clinical documents. Radiologists frequently
transcribe their reports, which may be prone to other sources of error. Examples
include incorrect word substitution, failure of word capture, or nonsensical text, which
may be found in final reports if not carefully reviewed by dictating authors (Quint,
Quint, and Myles 2008).

Moreover, the structure of clinical notes need not adhere to any standard and can
also vary by practice setting, clinical note type, and author preference. For instance,
clinician notes traditionally adhered to a particular format called SOAP: Subjective,
Objective, Assessment, and Plan. To improve readability, some clinicians have begun
to adopt the APSO format, wherein the note begins with the Assessment and Plan
sections (Lin et al. 2013). Additionally, many of the documents within the EMR are
often auto-populated from structured data or copied from earlier notes, contributing
to increased note length and redundancies.
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2.2 Ontologies and Knowledge Graphs
Significant effort and resources in biomedical and clinical natural language processing
(NLP) have been devoted to developing and maintaining structured ontologies or
controlled vocabularies. The Unified Medical Language System (UMLS) Metathesaurus
is produced and maintained by the National Library of Medicine. This resource can
be used to link concepts across several existing ontologies. Varied expressions of
the same concept can be mapped to a single concept unique identifier (CUI) in the
Metathesaurus. Maintaining such ontologies requires continued manual curation
and refinement as language and medical understanding evolves, e.g. as new medical
therapies are introduced or novel diseases are discovered.

Lexical hierarchies for the general English language, such as WordNet, have been
used as part of general NLP pipelines to capture semantic properties (Herdağdelen,
Erk, and Baroni 2009). In biomedical NLP, lexical hierarchies, such as the UMLS
Metathesaurus and Medical Subject Headings (MeSH) thesaurus have also proven
useful for NLP tasks and capturing semantics. For example, Rosario and Hearst were
able to reduce their input feature space by converting text to UMLS CUIs, which
they then used to convert to parent MeSH terms. MeSH term representations gave
equivalent semantic relation extraction performance and generalized better than neural
network models using text features as input (Rosario and Hearst 2001). Others have
also leveraged the relationships in these knowledge-based taxonomies to calculate
similarity, e.g. using path finding or information content measures. Garla and Brandt
used the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT),
MeSH, and the UMLS Metathesaurus as knowledge graphs to compute similarity
measures for concept pairs (Garla and Brandt 2012).

Early work involving concept extraction and mapping relied on heuristics or rule-
based systems and often involved manual engineering to get suitable results. Yet,
such customization can often lead to poor generalization. As the field advanced,
text processing in the traditional NLP pipeline began to involve one or more of a
series of steps: tokenization, text normalization, part-of-speech tagging, dependency
parsing, and named entity recognition. Many of these steps improved performance
on downstream NLP tasks. Several NLP tools have been developed over the years to
identify and extract concepts from biomedical text documents often using elements of
this NLP pipeline. Available systems include: MedLEE, MetaMap, KnowledgeMap
Concept Identifier (KMCI), Clinical Text Analysis and Knowledge Extraction System
(cTAKES), Clinical Language Annotation, Modeling, and Processing (CLAMP) toolkit,
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CliNER, and scispacy (Friedman et al. 1994; Aronson 2001; Denny et al. 2003; Savova
et al. 2010; Soysal et al. 2017; Boag et al. 2018; Neumann et al. 2019). Additional
heuristics were also introduced to address the challenges of negation and abbreviation
detection (Chapman et al. 2001; Schwartz and Hearst 2003) Still, the heterogeneity of
clinical text can affect performance of these tools, e.g. misspellings and non-standard
acronyms. Additional challenges include differences in representing conditions or
diagnoses which can vary by region, specialty or clinical practice setting, English
proficiency, typing skills, and fidelity of transcription.

New methods have shifted the paradigm of the traditional NLP pipeline yet again
with the introduction of word embedding models.

2.3 Count-based word representations
Natural language processing (NLP) methods provide an opportunity to leverage un-
structured text for several clinically relevant tasks, such as information extraction,
word sense disambiguation, and clinical phenotyping. Count-based word representa-
tions provide one approach for natural language to be represented numerically for
computation.

2.3.1 One-hot encodings
Traditionally, words were numerically represented using one-hot encodings (OHE). In
this method, each word in the corpus vocabulary is transformed to a feature vector
using a a one-hot representation where the vector contains all zeros except for one 1
at the word index position. Typically, the index of each word is determined by its
position after each word in the corpus vocabulary is sorted. Each word represented
using OHE is a vector with length equal to the size of the corpus vocabulary. An
example of a one-hot representation of words is as follows:

wabacavir =



1
0
0
...
0


,wabasia =



0
1
0
...
0


,wabatacept =



0
0
1
...
0


, · · ·wZyrtec =



0
0
0
...
1


OHE generates sparse vector representations that may become computationally in-
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tractable as the vocabulary grows larger. Moreover, this representation fails to capture
any additional linguistic properties, such as semantic or syntactic information that
may be useful for NLP-related tasks.

2.3.2 n-grams
n-grams: One of the limitations of OHE is that they are unable to account for
neighboring terms that may provide important context and information. n-grams are
obtained by concatenating short overlapping sequences of n words or characters.

As with OHE, n-grams also fail to capture semantic or syntactic information between
words. Moreover, while it does aim to capture context from neighboring words, the
learned representations may fail to generalize (Bengio et al. 2003).

2.3.3 Term-frequency and Inverse document frequency
Term frequency (TF) reflects the frequency by which a given term t appears in a
document d.

TFt,d = count(t, d)

The inverse document frequency (IDF) represents the inverse form of the number
of documents containing a given term (dft) of the overall documents in the corpus
(N). The IDF vector representation penalizes common words and weights rare words
higher.

IDF = log N

dft

The term frequency-inverse document frequency (TF-IDF) score for each term t

combines both the TF and IDF weighting schemes and is simply the product of the
two:

TF-IDF = TF(t) · IDF(t)

TF, IDF or TF-IDF can be used for term weighting and normalization. TF-IDF has
commonly been used in information retrieval and text mining tasks. These weighting
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methods are each a statistical method that may be used to evaluate how important
a word is to a document in a collection or corpus. Figure 2.1 shows an example of
TF-IDF word vector creation extending from the bag of words vectors (See Section
2.3.1). Variations of these approaches have commonly been used to score and rank
relevant documents provided a given query (Jurafsky and Martin 2020).

History and Physical 
 

72 yo M with sig PMH
of HTN, CAD, SCLC,...

Discharge Summary 
 

Admission Date: 7/5/21
...

Text Corpus Bag of Words Vectors TF-IDF Vectors

admission and CAD ...

Document 1 0 1 1 ...

Document 2 1 0 0 ...

Document 3 0 0 1 ...

Procedure Report 

72 yo M w/ CAD s/p
...

Document 1

Document 2

Document 3

admission and CAD ...

Document 1 0.00 0.31 0.23 ...

Document 2 0.45 0.00 0.00 ...

Document 3 0.00 0.00 0.39 ...

Figure 2.1: Term-frequency and Inverse document frequency example.

2.3.4 Dense vector representations
Most of the aforementioned count-based methods create sparse vector representations.
Yet, dense vectors are more computationally efficient and provide better generalization.
Dense vectors can be obtained from sparse vectors by applying dimensionality reduction
techniques. One of the more common approaches of doing so in NLP is by using
Singular Value Decomposition (SVD), which was purportedly popularized in this space
through Latent Semantic Analysis (LSA), which involves SVD computation (Levy,
Goldberg, and Dagan 2015). Additional dense vector approaches are described in
Section 2.4.6.

2.3.5 Limitations of Count-based Methods
As detailed above, many of the count-based methods for word representation fail
to capture information about semantic or syntactic similarity. Those that have
this capability, such as LSA, suffer from other challenges that plague count-based
approaches, including computational inefficiencies and poorer performance relative
to embedding models (Bengio et al. 2003; Baroni, Dinu, and Kruszewski 2014; Levy,
Goldberg, and Dagan 2015). While dimensionality reduction methods like SVD and
principal component analysis (PCA) may be applied to generate dense vectors, these
methods scale poorly when dimensions are on the order of millions or greater, which
is not uncommon for dictionaries based on large corpora. Additionally, sparse vector
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representations fail to generalize well in handling text beyond the training corpus.

2.4 Non-contextual Word Embeddings
One pivotal NLP advancement was the introduction of non-contextual word embed-
dings (NCWEs), also called word vectors, to represent a vocabulary of terms. Word
embedding models are based upon the distributional hypothesis, which, succinctly
put, states that “a word is characterized by the company it keeps” (Firth 1957).
Earlier work in linguistics supports that contextual information provides a suitable
approximation for word meaning as semantically similar words often have similar
contextual distributions (Faruqui and Dyer 2014). Thus, if trained well, the resulting
vector space yields semantically or syntactically similar words mapped close to one
another.

The concept of distributed word representations and their ability to capture word
semantics in an efficient and generalizable manner was detailed decades ago (Hinton,
McClelland, and Rumelhart 1986; Rumelhart, Hinton, and Williams 1986). Yet,
early efforts using neural networks for language modeling relied on central processing
units (CPUs) for computation and took several weeks to train (Bengio et al. 2003;
Collobert and Weston 2008; Turian, Ratinov, and Bengio 2010; Mikolov, Chen, et al.
2013). For example, Bengio et al. report training their model for 3 weeks using 40
CPUs and Collobert and Weston trained for 8 weeks on a single CPU (Bengio et al.
2003; Collobert and Weston 2008). Despite lengthy training times, these early neural
network-generated word vectors were transformative as they significantly outperformed
other approaches on a range of NLP applications (Bengio et al. 2003; Collobert and
Weston 2008; Collobert et al. 2011; Agirre et al. 2009; Mnih and Hinton 2008; Turian,
Ratinov, and Bengio 2010; Socher et al. 2012).

2.4.1 word2vec
In 2013, Mikolov et al. introduced the word2vec algorithm, which extended these earlier
methods and reduced the embedding model training time from several weeks to mere
hours (Mikolov, Chen, et al. 2013). Shortly after its initial release, the authors found
that additional modifications to the training procedure, specifically negative sampling
and subsampling of frequent words, improved training speeds further and generated
more accurate word representations based on intrinsic evaluation tasks, i.e. tasks
comparing model representations against human judgment (Mikolov, Sutskever, et al.
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2013). A more detailed overview of intrinsic evaluation is presented in Section 2.6.

Algorithms such as word2vec are trained on an unannotated corpus and use an
unsupervised learning approach comprising shallow neural networks that map each
word in a vocabulary to a real-valued vector (‘dense vector’) in an embedding space
of specified dimensionality D. In effect, this allows each word to be represented by a
single vector of fixed length D, e.g. the term ‘hypertension’ may be represented as a
vector [0.32, 0.79, 0.36, 0.5, 0.65] in an embedding space where D = 5.

This contrasts with earlier methods that relied on count-based approaches, many of
which yielded sparse vector representations and captured little, if any, syntactic or
semantic information. Unlike sparse vectors, dense word vectors are more compu-
tationally tractable, are capable of capturing synonymy, and less susceptible to the
“curse of dimensionality” (Bengio et al. 2003; Mikolov, Chen, et al. 2013; Jurafsky
and Martin 2020).

word2vec allows for training using either a skip-gram method or a continuous bag of
words (CBOW) strategy. The CBOW model learns to predict the center word within
a window of specified length using the sum of the vector representations of the words
within that window. Whereas CBOW uses the context words to predict the center
word, the skip-gram algorithm learns to predict the context word from the center
word (Mikolov, Chen, et al. 2013; Mikolov, Sutskever, et al. 2013). Conceptually,
the CBOW training approach may be thought to generate better representations by
combining tokens in each context window. Yet, skip-gram models have been shown
to outperform CBOW on most benchmarks. Additionally, Levy and Goldberg find
that the skip-gram method is also the fastest to train and requires less disk space and
memory consumption (Levy, Goldberg, and Dagan 2015).

2.4.2 Beyond word2vec
In contrast to word2vec, the fastText algorithm can create word vectors for character
n-grams rather than the complete words. Thus, embedding models trained using
fastText are capable of computing word representations for words not present within
the training corpus and may generalize better given this ability to handle out-of-
vocabulary words (Bojanowski et al. 2017).

While initially applied to words in a text corpus, clinical embedding models have
also been extended to concept unique identifiers, phrases, sentences and documents
(Beam et al. 2019; Choi, Chiu, and Sontag 2016; Baumel et al. 2017; Kalyan and
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Sangeetha 2020; Henry, Cuffy, and McInnes 2017). Such embedding models have also
been adapted to represent patient-level longitudinal EMR data as demonstrated by
Zhang et al.’s Patient2Vec (J. Zhang et al. 2018).

2.4.3 Properties of NCWEs
Each dimension of an embedding is thought to reflect a latent property of the word,
which may help capture useful semantic and syntactic properties (Turian, Ratinov,
and Bengio 2010). These real-valued word vectors occupy a point in vector space and
nearby points within this space should represent semantically similar terms.

As highlighted in Figure 2.2, one can use vector similarity metrics, such a cosine
similarity or cosine multiplication similarity, to compute how similar word pairs
are using their word vector representations (Levy and Goldberg 2014). Word pair
similarity measurement is discussed further in Section 2.6.3.

Similarity( , ) = 0.74
vector representing word 1 vector representing word 2

Figure 2.2: Vector similarity methods can be used to compute a numeric value representing the
similarity of two words based on each word’s vector representation.

The quality of embeddings depends on several factors, most of important of which
are the size and quality of the training corpus, model architecture and model hy-
perparameter selection (Chiu et al. 2016). Embedding sizes commonly seen in the
literature range from 25 to 500 dimensions (Rao and McMahan 2019). Yin and Shen
conducted an in-depth study of embedding dimension size on different benchmarks,
including WordSim353. They compared performance for dimensions of size 0 to 10,000
and found that with increasing dimension size, performance initially improved, then
slightly decreased before plateauing (Yin and Shen 2018). A similar increase and
decay was also reported by Agirre et al. in their experiments with dimension size on
intrinsic evaluation performance (Agirre et al. 2009). TH et al. found that using word
vectors with a dimension of at least 200 provided the best performance (TH, Sahu,
and Anand 2015).

Use of word embeddings have been shown to dramatically improve NLP model and
machine learning model performance (Mikolov, Chen, et al. 2013; Mikolov, Sutskever,
et al. 2013; Joulin et al. 2016). Furthermore, domain-specific word embeddings have

12



been shown to significantly improve semantic relations, such as those developed using
radiology reports (Z. Jiang et al. 2015; Zech et al. 2018).

2.4.4 Augmenting Non-contextual Embeddings with Knowledge Graphs
Knowledge graphs or lexical hierarchies, such as those introduced in Section 2.2, were
also used to represent terms as an alternative to count-based word representations
(See Section 2.3) prior to the adoption of non-contextual embedding models (Agirre
et al. 2009; Rosario and Hearst 2001; Rosario and Hearst 2004; Garla and Brandt
2012). Agirre et al. showed that NCWEs trained using a web crawl corpus were
comparable to knowledge graph-based approaches, specifically WordNet, on word
similarity benchmarks. They also found that the combination of the two performed
better than either approach alone (Agirre et al. 2009). Using a model agnostic
post-processing procedure, Faruqui et al. demonstrated that knowledge graphs could
be used to improve word vector representations based on word similarity and other
intrinsic evaluation tasks (Faruqui et al. 2015). For a more detailed overview of
intrinsic evaluation, see Section 2.6. Such methods to augment word embeddings
with biomedical knowledge graphs have also shown gains in biomedical NLP task
performance (Yu et al. 2017; Boag and Kané 2017; Banerjee et al. 2017; Banerjee et
al. 2018).

2.4.5 Limitations of Non-contextual Embeddings
One of the major limitations of NCWEs is their inadequacy in handling words with
multiple senses, such as polysemy or homonymy (Jurafsky and Martin 2020). For
example, the word calculus may refer to the mathematics subject or mineral deposition.
Non-contextual embeddings typically represent calculus as only one vector form, rather
than the many forms it theoretically may take. Contextual embedding models (detailed
in Section 2.5) use the surrounding context, e.g. that the text refers to renal anatomy
to deduce that calculus in this context refers to a kidney stone.

2.4.6 Other weighting schemes
There are many other weighting schemes that have been introduced, among these
are Pointwise Mutual Information (PMI), Latent Semantic Analysis (LSA), and
Latent Dirichlet Allocation (LDA). Each of these three can create distributional
representations of words, which capture word context information. Yet, LDA can
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become computationally expensive on large datasets. Additionally, neural networks
have been shown to outperform LSA in their ability to preserve linear regularities
among words (Mikolov, Chen, et al. 2013).

I introduce the reader to PMI as variants of this approach have been shown to
generate word vector representations comparable to embedding models, which are
to be discussed in the next section (Section 2.4) (Levy and Goldberg 2014; Levy,
Goldberg, and Dagan 2015). Positive PMI (PPMI) is merely a variant of PMI where
all negative values are replaced with 0. PPMI representations have previously been
shown to outperform PMI on semantic similarity tasks. Levy and Goldberg find
that a few modifications to the PPMI matrix, namely context distribution smoothing
and singular value decomposition (SVD), can induce word vector representations
that yield comparable performance to word2vec and GloVe embeddings on a series of
general intrinsic evaluation tasks (Levy, Goldberg, and Dagan 2015). While Baroni et
al. find that dense SVD representation were inferior to the embedding representations
presented in Section 2.4 (Baroni, Dinu, and Kruszewski 2014), Levy and Goldberg find
that that these inferior results were likely because the authors used the traditional
SVD eigenvalue matrix with a value of 1. By simply modifying the eigenvalue to 0.5 or
0, they generated dense representations on par with word2vec and GloVe embeddings
on a series of intrinsic evaluation benchmarks (Levy, Goldberg, and Dagan 2015).

2.5 Deep Learning for NLP
2.5.1 Recurrent Neural Networks
Text can be thought of a sequence of characters or words. Many neural network
architectures, such as convolutional neural networks (CNN), only accept a fixed-sized
input and produce a fixed-sized output. Using such models on text often involves
padding or truncating inputs to a fixed length for processing. By contrast, recurrent
neural networks (RNN) perform sequential processing of inputs and can handle inputs
of varying length. The design of RNNs also allows for the sequence order to be
preserved. Each component of the RNN architecture builds upon the previous so-
called hidden output step. RNNs can perform many of the aforementioned parts of
the traditional NLP pipeline (Section 2.2). For example, RNNs can be used for part-
of-speech tagging and named entity recognition. With fewer pipeline processing steps,
they can directly perform many downstream NLP tasks as well, e.g. text classification,
summarization, and speech recognition.
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In practice, RNNs can become unstable during training, particularly when handling
longer input sequences (Bengio, Simard, and Frasconi 1994). The exploding gradient
problem can arise if the gradient becomes too large. In effect, this may cause excessive
updating of model weight parameters during training. A common solution to the
exploding gradient problem is gradient clipping. Gradient clipping involves scaling
down the gradient prior to applying the gradient descent optimization update during
training (Goodfellow, Bengio, and Courville 2016). Another drawback of traditional
RNN architectures is referred to as the vanishing gradient problem. With an increasing
number of time steps such as with longer input sequences, traditional RNNs have
increasing difficulty preserving information. Long short-term memory (LSTM) and
the Gated recurrent unit (GRU) models are variants of the traditional RNN that
improve the ability to retain long-term information thus overcoming the vanishing
gradient problem (Hochreiter and Schmidhuber 1997; Cho et al. 2014; Goodfellow,
Bengio, and Courville 2016).

2.5.2 Attention Mechanisms
Another solution to the vanishing gradient problem is the use of an attention mechanism.
Additional benefits of attention are improved model performance and interpretability.
Attention is a general deep learning technique and has even been combined with
CNN and RNN architectures for image captioning (Xu et al. 2015). Attention allows
the model to focus on a particular part(s) of the input sequence. There are several
variants of attention, but each involves the following sequence: calculation of attention
scores, applying softmax to these scores to obtain an attention distribution, and
computing a weighted sum of this attention distribution to generate an attention
vector. Attention variants often differ in how the attention scores are calculated.
These variants include additive attention, multiplicative attention, basic dot-product
attention, and scaled dot-product attention (Genthial et al. 2019). This latter type,
scaled dot-product attention, is the attention mechanism used in the Bidirectional
Encoder Representations from Transformers (BERT) architecture (Figure 2.3) (Devlin
et al. 2019). Additionally, attention mechanisms may operate on only part of the
input sequence (local attention) or on the entire input sequence (global attention).

2.5.3 Contextual Word Embeddings
Embeddings from Language Models (ELMo) ushered in contextualized word embedding
(CWE) models helping to overcome some of the limitations of NCWE models (See
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Section 2.4.5). Existing state-of-the-art (SOTA) methods in NLP use contextual word
embedding models, such as BERT, and perform extremely well on a wide range of
tasks according to established benchmarks. Each of these models demonstrates the
benefits of fine-tuning the models for domain-specific tasks.

2.5.3.1 Transformer Architecture
ELMo was developed by simultaneously training two bidirectional LSTM models with
a language modeling objective: a forward language model and a backward language
model (Peters et al. 2018). Vaswani et al. developed the transformer architecture,
which is based entirely on attention blocks as shown in Figure 2.3 (Vaswani et al. 2017).
By eliminating RNN components, the transformer effectively decreases the model’s
path length. Additionally, unlike RNNs and their variants, which receive each token
as input at each time step, transformers can take the entire sequence as input. The
model dramatically outperformed other architectures and gave state-of-the-art results
while also generalizing to other NLP tasks beyond machine translation (Vaswani et
al. 2017). This led to the development of several transformer language models, such
as Google’s Bidirectional Encoder Representations from Transformers (BERT) and
Facebook’s Robustly Optimized BERT Pretraining Approach (RoBERTa) (Devlin et
al. 2019; Liu et al. 2019).

Figure 2.3: Architecture of the original Transformer model by Vaswani et al., 2017 (Source: Tay et
al., 2020)

This new class of language models was referred to a large language models as their
parameter size was orders of magnitude greater than previous models. One of the
major advantages of these and other language models, such as ELMo and Universal
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Language Model Fine-tuning for Text Classification (ULMFiT), is their utility for
transfer learning (Peters et al. 2018; Howard and Ruder 2018). These contextual word
embedding (CWE) models pre-trained on a large dataset, e.g. an English Wikipedia
corpus, could then be fine-tuned on a smaller or niche dataset, e.g. clinical notes, and
provide stellar results. One can fine-tune a few or all of a model’s layers. Devlin et
al. demonstrated that fine-tuning only the last four hidden layers for the Conference
on Natural Language Learning (CoNLL) NER task performed almost as well as
fine-tuning all layers (Devlin et al. 2019).

BERT and RoBERTa were trained on general text corpora, e.g. BERT was trained
using BookCorpus and English Wikipedia (Devlin et al. 2019). As with non-contextual
embeddings, these models can be adapted to a domain-specific context using a targeted
domain corpus. Researchers have pre-trained the BERT model using biomedical and
clinical documents; these include BioBERT, SciBERT, BlueBERT, and ClinicalBERT
(Alsentzer et al. 2019; Beltagy, Lo, and Cohan 2019; Lee et al. 2020; Peng, Yan, and
Lu 2019).

BERT pre-training involves two main tasks: masked language modeling (MLM) and
next sentence prediction (NSP). By contrast, RoBERTa uses MLM and does not rely
on NSP for pre-training (Liu et al. 2019). For each input sequence, BERT’s MLM
selects 15% of token at random; 80% of these are replaced by a [MASK] token, 10% are
replaced by another random token, and the remaining 10% are left unchanged. During
pre-training, BERT attempts to reconstruct the original token that was masked as
shown in Figure 2.4 (Devlin et al. 2019). Tenney et al. probed the layers of the BERT
model and found that they learn different elements of the traditional NLP pipeline,
which is described in Section 2.2 (Tenney, Das, and Pavlick 2019).

2.5.3.2 Tokenization in BERT
For text tokenization, BERT relies on the WordPiece algorithm (Devlin et al. 2019).
For out-of-vocabulary (OOV) words, some tokenization algorithms often use a single
word vector to represent unknown words. The WordPiece algorithm can maintain a
shorter vocabulary and handle OOV words by representing words as subwords. As
shown in Figure 2.5, the base BERT model does not have the word bullae in its
vocabulary, but does contain the word bull. The base BERT model’s WordPiece
tokenizer converts the word bullae to the subwords bull and ##ae, i.e. it represents
this single word using two tokens. On average, subword tokenization models such as
WordPiece have approximately four characters per subword (Clark et al. 2021).
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BERT tokenizer

Wow! This [MASK] tastes great.

[CLS] 'wow' 'this''!' [MASK] 'tastes' 'great' '.' [SEP]

BERT model

[CLS] 'wow' 'this''!' 'tastes' 'great' '.' [SEP]

'burrito''pizza' 'pasta' 'ramen''biryani'

...

...

Learned masked word probability

Figure 2.4: Masked language modeling involves random masking of tokens. The language model is
optimized to reconstruct the masked token, and aided in doing so by using the context words.

WordPiece Tokenizer

BERT-base tokenizer

Apical bullae and no evidence of pneumothorax

'apical', 'bull', '##ae', 'and', 'no', 'evidence', 'of', 'p', '##ne', '##um', '##otho', '##ra', '##x'

Input sentence

Figure 2.5: Example of BERT’s WordPiece tokenization on sample clinical text.
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Transformers accept the tokenized input sequence and convert it to a set, which
lacks inherent order. This contrasts with RNNs, which maintain sequence order
through sequential processing. Thus, to provide positional information, Vaswani et
al. introduced a sinusoidal positional encoding in the transformer architecture. As
shown in Figure 2.3, positional encodings are applied to the tokenized embedding
vector to provide positional information before the input vector is passed to the
first self-attention layer (Vaswani et al. 2017). More recent work using alternative
positional encoding methods have demonstrated improvements in model convergence
and performance (Su et al. 2021).

2.5.3.3 Self-Attention in BERT
BERT and other BERT-based models consist of a series of self-attention layers (often
referred to as multi-head self-attention); the base BERT model has 12 such layers. Each
layer transforms the input using linear layers and applies attention to the sequence.
The maximum input sequence length of the BERT model is 512 tokens, two of which
are the special tokens CLS and SEP. The CLS token of the BERT model is a hidden
state representation of the entire input sequence, which is of size 768 in the base
BERT model (Devlin et al. 2019). This fixed-size vector representation of the input
sequence can then be represented as a vector in downstream NLP tasks, such as text
classification.

2.5.3.4 The Introduction of Efficient Transformers
The matrix operations underlying BERT model’s local self-attention mechanism are of
O(n2) time and memory complexity (Figure 2.3). The computational complexity grows
quadratically with the length of the sequence input, which places an upper-bound on
the length of the input BERT can operate on. This functionally limits the model’s
ability to operate on longer sequences of text. Researchers have recently proposed new
variations of the original transformer model to address the O(n2) bottleneck. These
models are commonly referred to as Efficient Transformer models (Figure 2.6).

Transformer-XL is one of the first transformer models to successfully address the issue of
BERT’s input sequence length limitation (Dai et al. 2019). Many more recent Efficient
Transformer models overcome the O(n2) bottleneck by using alternative attention
mechanisms. The Reformer model relies on two different self-attention layers: local
self-attention and Locality Sensitive Hashing self-attention layers (Kitaev, Kaiser, and
Levskaya 2020). The Longformer model replaces the BERT self-attention mechanism
with a local sliding window attention and a global attention mechanism (Beltagy,
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Peters, and Cohan 2020). For a comprehensive review of Efficient Transformers as of
2020, I refer the reader to an excellent survey by Tay et al. (Tay et al. 2020).

Figure 2.6: Taxonomy of Efficient Transformer Architectures (Source: Tay et al., 2020).

2.5.3.5 Limitations of Contextual Word Embeddings
One of the primary limitations of contextual word embeddings is their large size.
There is also a growing trend of ever-increasing size of these large language models.
Thus, working with CWE models requires access to graphics processing units (GPU)
or tensor processing units (TPU) with sufficiently large memory capacity. Increasing
CWE model size may also hamper the ability to share and distribute these models.
Additionally, while transformer models have demonstrated SOTA or near-SOTA
performance on a range of downstream NLP tasks, it is still unclear how these models
encode linguistic information.

2.6 Intrinsic Evaluation
Quantitative evaluation of NLP models can generally be categorized into intrinsic
and extrinsic evaluation methods. Intrinsic evaluation reflects the correlation between
the algorithms and human judgment. This includes testing for syntactic or semantic
relationships between words. While much emphasis in NLP-related research is on
extrinsic evaluation of NLP methods, it is vital to conduct rigorous intrinsic evaluation.
For instance, intrinsic evaluation using word vector analogies has highlighted gender,
racial and religion-based biases in word embeddings trained using Google News or
Reddit corpora (Bolukbasi et al. 2016; Manzini et al. 2019).
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Commonly used approaches to collecting human judgment of word pair similarity or
relatedness have relied on services such as Amazon Mechanical Turk or surveying
those with domain proficiency, such as medical students, residents or clinicians in the
clinical domain (Schnabel et al. 2015; Pedersen et al. 2007; Pakhomov et al. 2010;
Ye and Fabbri 2018). Semantic relatedness or semantic similarity based upon human
judgment is often computed as a correlation coefficient by comparing aggregate human
determined scores to similarity metrics, such as cosine similarity, from word vectors.
The models in greater agreement to human judgment are considered better models
(Mikolov, Chen, et al. 2013; Baroni, Dinu, and Kruszewski 2014; Schnabel et al. 2015;
Bakarov 2018).

2.6.1 Semantic Similarity
Semantic similarity as I use it here refers to the attributional similarity or synonymy of
words; words that are synonyms have a high degree of semantic similarity.1 Semantic
similarity is considered a special case of the more general concept of semantic related-
ness (Resnik 1995; Turney 2006). Humans may view terms or entities as being related
despite them not being synonymous. Relatedness may be based upon features such as
likeness, meronymy, antonymy, or by functional or frequent relationship (Turney 2006).
For example, the terms scalpel and surgeon or lung and nodule are not synonyms
but are related. The semantic relation between the words lung and nodule can be
quantified using a measure of relation between these two words to provide a real-valued
number, e.g. similarity(wlung, wnodule) ∈ R. One way to assess similarity of terms or
concepts is to ask humans to judge how similar the two are to one another.

2.6.2 Qualitative Evaluation
NLP practitioners working with topic models, such as the aforementioned LDA (Section
2.4.6), commonly use qualitative methods to evaluate the quality of model performance
and judge their semantic properties. Qualitative evaluation alone may not be the best
approach to judge the human interpretability of a model’s latent space. Recognizing
the limitations of qualitative evaluation methods, Chang et al. proposed quantitative
methods to measure the semantic meaning of inferred topics against human judgment.
The authors proposed two tasks to assess semantic coherence: word intrusion and topic
intrusion. For each word, the top k nearest neighbor words was selected along with

1Semantic similarity also includes relational similarity, which reflects the relation between words.
Words that are analogous to one another have a high degree of relational similarity (Turney 2006).
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a bottom ranked word. Human annotators were then asked to identify the intruder
word or topic from the random ordering of this set. Amazon Mechanical Turk was
used to survey human judgment of word or topic coherence for each prompt (Chang
et al. 2009).

As is seen in the topic model literature, many embedding model papers demonstrated
the effectiveness of their methodology in capturing semantic relations by sharing
qualitative examples of the top k nearest neighbors for select words. For example,
Collobert and Weston created an embedding model using an English Wikipedia corpus
and reported that for the word France, the top nearest neighbors were Spain, Italy,
and Russia (Collobert and Weston 2008). As did Chang et al. for topic models,
Mikolov et al. criticize the limitations of qualitative evaluation of embedding models.
Alongside introducing the word2vec algorithm, they introduced a novel word analogy
task to illustrate the semantic and syntactic properties of word2vec trained embeddings
(Mikolov, Chen, et al. 2013).

2.6.3 Quantitative Evaluation
Several datasets within the linguistics literature assess human judgment of term
relationships, many of which pre-date the introduction of word embedding methods.
Construction of such datasets has previously relied on existing lexicons or knowledge
graphs, corpora, or both (Turney 2006). Several existing lexicons and knowledge
graphs describe relations that may be used for quantitative evaluation of concept
relationships. Early examples using existing relationship taxonomies include the
use of WordNet, Medical Subject Headings (MeSH), and Unified Medical Language
System (UMLS) to quantitatively assess concept relations (Resnik 1995; Rosario and
Hearst 2001; Rosario and Hearst 2004). Corpus-based approaches are based on the
distributional hypothesis, i.e. semantically similar words are thought to have similar
distributional behavior within a corpus (Resnik 1995).

Often in the context of NLP methods, intrinsic evaluation involves judging the
similarity or relatedness of pre-selected word pairs. Semantic similarity and semantic
relatedness are linguistically distinct concepts. Similarity is a quantitative measure
of how alike two concepts are. For example, artery and vein are not synonyms, but
both terms are similar in that they are blood-carrying vessels. Relatedness of terms
can also be quantified, but this is a more general concept of association. For example,
scalpel and surgeon are not synonyms, but are certainly related concepts (Pedersen et
al. 2007; Jurafsky and Martin 2020).
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Calculating similarity between two words (w1, w2) for non-contextual embeddings can
easily be computed using each words embedding vector representation (θ1, θ2). This is
most commonly calculated using cosine similarity. Human judgment of term similarity
is commonly calculated using ordinal-scale surveys. A correlation coefficient is then
computed using the calculated cosine similarity and human assessment values.

cosine similarity(w1, w2) = θ1 · θ2

‖ θ1 ‖‖ θ2 ‖

In the general NLP domain, many similarity benchmarks exist, including WordSim-353,
the MEN dataset, and SimLex-999 (Finkelstein et al. 2001; Agirre et al. 2009; Bruni,
Tran, and Baroni 2014; Hill, Reichart, and Korhonen 2015). Additional intrinsic
evaluation tasks have also been proposed. The use of pre-specified analogies is a
popular approach for intrinsic evaluation of embedding models (Mikolov, Chen, et al.
2013; Mikolov, Sutskever, et al. 2013; Bolukbasi et al. 2016; Manzini et al. 2019).
Schnabel et al. proposed the comparative intrinsic evaluation task and also recommend
other methods for intrinsic evaluation of word embedding models: relatedness, analogy,
categorization and selectional preference (Schnabel et al. 2015). Ye and Fabbri use a
similar design to the comparative intrinsic evaluation task for clinical NLP assessment
(Ye and Fabbri 2018).

Contextual word embedding (CWE) models, such as BERT, use a different training
objective than NCWEs. Specifically, BERT-based models include a masked-language
modeling (MLM) pre-training strategy as shown in Figure 2.4 (Devlin et al. 2019).
Given the different training objective of CWEs, Devlin suggests that these models
may not provide meaningful cosine similarity measurements (“BERT Vector Space
Shows Issues with Unknown Words · Issue #164 · Google-Research/Bert,” n.d.).

Given this limitation, researchers have proposed intrinsic evaluation tasks in keeping
with the BERT modeling approach. Goldberg and Ettinger respectively evaluate BERT
models using previously published cloze (‘fill-in-the-blank’) tasks and compare the
‘gold-standard’ masked word with BERT word predictions (Goldberg 2019; Ettinger
2020). An example of a cloze task prompt used to study BERT-based models and
survey participants is shown in Figure 2.7.

Clinical Intrinsic Evaluation tasks

There are two frequently used methods to produce a set of clinically similar terms:
existing ontologies and EMR-based embeddings (Ye and Fabbri 2018). Previous studies
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Fill-in-the-blank: Write which word do you believe fits best?

"Infiltrate in the right middle lobe is seen concerning for _______."

BlueBERT 
(PubMed + MIMIC-III)

Your response: 
 

Write only a single word. 

'pneumonia'

BERT-original 'example'

RadBERT (ours) 'pneumonia'

Figure 2.7: Example cloze prompt. Predictions from BERT and BERT-based models are illustrative
and were not shown to survey participants.

have use knowledge-based measures of semantic similarity by leveraging existing clinical
ontologies to quantify similarity. Existing clinical benchmarks comparing similarity
or relatedness of clinical concepts include Hliaoutakis’ work, MayoSRS, original and
modified MNSRS (Pedersen et al. 2007; Hliaoutakis 2005; McInnes, Pedersen, and
Pakhomov 2009; Pakhomov et al. 2010; Pakhomov et al. 2016) (See Table 2.1) . The
concept pairs that comprise each of these benchmarks were manually curated by a
physician from existing medical ontologies, such as Medical Subject Headings (MeSH)
or Unified Medical Language System (UMLS).

Hliaoutakis examined the similarity of 36 clinical concepts that were drawn from the
MeSH ontology by a physician. Evaluators were then asked to judge concept similarity
on a 1-4 scale using an online survey (Hliaoutakis 2005).2 Term pairs used to construct
MayoSRS were also compiled by a physician. Human judgment for concept pairs in the
MayoSRS study was assessed by surveying 13 medical coders on a 1-10 scale using a
larger set of 120 pairs. Of the 120 term pairs, the 30 pairs with the highest agreement
among the coders were then annotated by 9 medical coders and 3 rheumatologists on
a 4 point scale (Pedersen et al. 2007). For UMNSRS, pairs of clinical concepts were
collected from the Unified Medical Language System (UMLS) and then a physician
manually selected single word terms to create concept pairs for each of six semantic
type categories. Four medical residents were then surveyed to judge similarity of 566
concept pairs and another 4 medical residents assessed the relatedness of 587 pairs

2Hliaoutakis survey remains active and can be found at http://www.intelligence.tuc.gr/mesh/.
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Table 2.1: Published clinical concept pairs assessed using human judgment.

Method Metric Data Pair count
UMNSRS-Similarity similarity UMLS 566
UMNSRS-Relatedness relatedness UMLS 588
Modified UMNSRS-Sim similarity UMLS 449
Modified UMNSRS-Rel relatedness UMLS 458
MayoSRS relatedness SNOMED-CT 101
MiniMayoSRS (MayoSRS subset) relatedness SNOMED-CT 29/30
Hliaoutakis similarity MeSH 36

(Pakhomov et al. 2010).

To assess human judgment of concept pair similarity or relatedness, the researchers
conducted surveys of medical coders or clinicians. Importantly, these were created
before word2vec and subsequent non-contextual word embedding (NCWEs) models
were introduced. These benchmarks are publicly available and have been used by
others to study the effects of different training corpora or other training strategies
(Sajadi 2014; TH, Sahu, and Anand 2015; Pakhomov et al. 2016; Z. Jiang et al. 2015;
Yu et al. 2017; S. Jiang et al. 2020; Y. Wang et al. 2018; Mao and Fung 2020).

Few available clinical NLP benchmarks for CWEs exist. The Biomedical Language
Understanding Evaluation (BLUE) benchmark contains 5 extrinsic evaluation tasks:
sentence similarity, named entity recognition, relation extraction, document classi-
fication and inference (Peng, Yan, and Lu 2019). I was unable to find any publicly
available intrinsic evaluation tasks designed to examine CWEs for the clinical or
biomedical domains.

2.7 Extrinsic Evaluation
Intrinsic evaluation NLP benchmarks are scarce relative to those for extrinsic evalua-
tion. The dearth of intrinsic evaluation benchmarks is likely due to the high cost of
conducting surveys to obtain human judgments. Extrinsic evaluation of embedding
models relates to the study of performance on any of a number of downstream NLP
tasks. These tasks can include text classification, machine translation, named entity
recognition, relation extraction, and question answering. The most significant cost
towards developing extrinsic evaluation tasks is label annotation. This cost of labeling
data for clinical tasks may be greater than in the general NLP domain as it may
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require highly specialized annotators.

Many extrinsic evaluation datasets are available for a variety of general domain NLP
tasks. For example, publicly available text classification datasets include Amazon
product reviews, IMDb movie reviews, and Reuters news articles; public named entity
recognition datasets include CoNLL and Ontonotes. Additionally, General Language
Understanding Evaluation benchmark (GLUE) and SuperGLUE are benchmarks that
comprise a diverse set of general natural language understanding tasks (A. Wang et
al. 2018, 2019). More recently, the Long Range Arena benchmark was introduced to
evaluate and compare performance among Efficient Transformer models (Tay et al.
2021).

Much like GLUE serves for general NLP, Peng et al. developed Biomedical Language
Understanding Evaluation (BLUE) benchmark (Peng, Yan, and Lu 2019). BLUE is
comprised of a variety of biomedical and clinical NLP tasks. Of the 10 tasks in the
BLUE benchmark set, only one evaluates document classification performance, and
involves multi-label classification of PubMed abstracts for hallmarks of cancer (Baker
et al. 2015).

Over the last several years, a series of clinical NLP challenges have been issued that may
be used for extrinsic evaluation. Among these are the Shared Tasks for Challenges in
NLP for Clinical Data by the National NLP Clinical Challenges (n2c2) and clinical or
biomedical challenges from the Text REtrieval Conference (TREC) (Roberts, Voorhees,
and Hersh, n.d.; Roberts et al., n.d.). The n2c2 (formerly i2b2) challenges included
text de-identification, text classification, concept extraction, and assertion and relation
classification tasks and often covered a range of clinical conditions (O. Uzuner, Luo,
and Szolovits 2007; O. Uzuner et al. 2008; Ozlem Uzuner 2008; Ö. Uzuner et al. 2011;
Stubbs et al. 2015; Stubbs, Kotfila, and Uzuner 2015). To compare select NCWE and
CWE models, Si et al. use the i2b2 2010 and 2012 clinical concept extraction challenges
(Si et al. 2019). Given varying desired clinical NLP objectives, the majority of clinical
NLP papers performing extrinsic evaluation of NLP methods do so using custom
datasets. For example, Gehrmann et al. created a custom extrinsic evaluation dataset
for clinical phenotyping comprising 1,610 discharge summaries manually annotated
for 10 different phenotypes. They then compared different NLP techniques on their
phenotype classification performance (Gehrmann et al. 2018).

Clinical Phenotyping for Extrinsic Evaluation

Clinical phenotyping is an important application within clinical research, clinical trial
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recruitment, and population surveillance. Most clinical phenotyping studies involve
the development of a curated dataset for identification of one or more phenotypes of
interest. Shivade et al. conducted a literature review of clinical phenotyping methods
and found that nearly 50% of studies relied on NLP (Shivade et al. 2014). Other
phenotyping techniques included rule-based systems, statistical or machine learning-
based approaches, and hybrid methods (Shivade et al. 2014; Zeng et al. 2019).
They concluded that there are few robust tools or off-the-shelf models available for
phenotyping (Shivade et al. 2014). This emphasizes the need to evaluate NLP models
for phenotyping.
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CHAPTER 3

INTRINSIC EVALUATION OF WORD EMBEDDING MODELS

Many clinical natural language processing methods rely on non-contextual word
embedding (NCWE) or contextual word embedding (CWE) models.1 Yet, few, if any,
intrinsic evaluation benchmarks exist comparing embedding representations against
clinician judgment. For a more detailed discussion on intrinsic evaluation, I refer the
reader to Section 2.6. Below I share an approach to developing intrinsic evaluation
tasks for embedding models using a corpus of radiology reports: term pair similarity
for NCWEs and cloze task accuracy for CWEs. Using surveys, I collected clinicians’
responses for each of these two tasks. I then quantified the agreement between clinician
judgment against custom and publicly available embedding model representations.

3.1 Methods
3.1.1 Study Design
I curated a corpus of radiology reports from the Vanderbilt University Medical Center
(VUMC) Research Derivative, an extract of the electronic health record from legacy
and Epic record data, normalized to the OMOP common data model (Danciu et
al. 2014). Radiology reports were selected from the earliest available record until
October 21, 2020. I selected only those radiology reports with study descriptions
corresponding to computed tomography (CT) scans inclusive of the chest using the
‘Study Description’ metadata. Candidate study descriptions containing comprehensive
thoracic imaging were identified and confirmed with a VUMC radiologist. Study
description codes used for note selection are listed in Table 3.1. Excluded study types
included cardiac CT imaging that tend to lack full lung views and those considered
to be unreliable, such as ones marked for billing. Report collection was limited to
those for patients 18 years of age or older. This study was approved by the VUMC
Institutional Review Board.

Text from the publicly available Fleischner Society Glossary of Terms for Thoracic
Imaging published in 2008 was also collected to represent a corpus containing terms

1For more details about non-contextual word embedding models, please see Section 2.4. See
Section 2.5.3 for a detailed discussion on contextual embedding models.
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Table 3.1: List of CT Study Description codes with description used for inclusion.

Study Description Code Exam Description
CT804B CT READ RESEARCH
CTAC3 CT ANGIOGRAPHY CHEST
CTACAP1 CT ANGIO CHST/ABD/PEL W/WO CONTRAST
CTACAR CT ANGIOGRAPHY CARDIAC
CTACG CT ANGIO CHEST GATED
CTACOR CTA Coronary Arteries Complete W or WO Cardiac Calcium Score
CTACPE CT ANGIO CHEST PE PROTOCOL PEDS
CTCA2 CT CHEST W ABDOMEN W/WO CON
CTCAP CT CHST/ABD/PEL W/IV CONTRAST
CTCAP2 CT CHEST W ABDOMEN PELVIS W/WO CON
CTCAP3 CT CHEST W ABDOMEN W/WO PELVIS W CON
CTCAPTLWO CT CHST/ABD/PEL/TSP/LSP W/O C
CTCAPW CT CHST/ABD/PEL/TSP/LSP WITH C
CTCAPWO CT CHST/ABD/PEL WITHOUT CONTRAST
CTCARNC CT Cardiac Non Coronary
CTCAW CT CHEST AND ABDOMEN W CONTRAST
CTCAWO CT CHEST AND ABDOMEN WO CONTRAST
CTCH1 CHEST CT WITHOUT CONTRAST
CTCH2 CHEST CT WITH CONTRAST
CTCH3 CHEST CT WITH/WITHOUT CONTRAST
CTCHEPE CTA Chest W Embolus
CTCHR CT CHEST HIGH RES WITHOUT CONT
CTLUNGSCR CT LUNG SCREENING
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more relevant within radiology reports (Hansell et al. 2008).

3.1.2 Text Pre-processing
Pre-processing of the raw clinical text included removal of unicode characters and
HTML parsing to plain text using the Beautiful Soup library in Python. I concatenated
hyphenated terms by converting ‘-’ characters to ‘_’, e.g. status-post was converted to
status_post. Dates and times, age, medical record numbers, email addresses, phone
numbers, social security numbers and location information were identified using the
presidio Python package, a custom regular expression to handle numeric values of 7
or more digits, and the spaCy library tokenizer (Microsoft Presidio 2020; Honnibal
et al. 2020). Identified terms were then replaced with the corresponding general
token, e.g. DATE_TIME, MRN. Stop words for the radiology report corpus were not
excluded. I pre-processed text from the Fleischner glossary using the same process
above except that I also performed stop word exclusion using the spaCy English stop
word vocabulary (Honnibal et al. 2020).

3.1.3 Non-contextual embedding models
Custom embeddings: I used the gensim library implementations of the word2vec
and fastText models (Mikolov, Chen, et al. 2013; Bojanowski et al. 2017; Řehůřek
and Sojka 2010). Joint spherical embedding models have recently been shown to
generate embeddings with superior performance on general NLP benchmarks for word
similarity, document clustering, and document classification. In this study, spherical
embedding models were created using the source code provided by the authors (Meng
et al. 2019). Each word2vec and fastText models were trained using the skip-gram
method described in in Section 2.4.1 (Mikolov, Chen, et al. 2013; Mikolov, Sutskever,
et al. 2013).

Based on earlier studies detailed in Section 2.4.3, I constructed custom embedding
models of 200 dimensions. I used similar training parameters for each custom embed-
ding models: fixed dimension of 200, initial learning rate of 0.025, context window of
5, excluded words occurring fewer than 5 times, sampling threshold of 0.001, negative
sampling rate of 5 and trained for 10 epochs.

Public embeddings: I used BioWordVec, which is a 200-dimensional fastText model
trained using both a PubMed corpus and text from the Medical Information Mart
for Intensive Care (MIMIC-III) dataset and made available by the authors (Y. Zhang
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Create custom word embeddings 
(word2vec, fastText, spherical

embedding)

CT chest radiology
report acquisition

Text pre-processing

Compare
vocabularies & retain

shared terms
(n = 1,059)

Process text from
Fleischner Society

Glossary 
(n = 1,207)

Public embeddings 
(English Wiki,

Pubmed + MIMIC-III)

Manual Review and
Selection of shared

terms
(n = 326)

Randomly select kth nearest neighbor
from each of our embeddings 

k ∈ {1,5,50}

Manual review to select term-
pairs from kth neighbor 

(n = 326)

Exclude term-pairs if either
term is not in custom or

public embeddings 
(n = 281)

Public Embeddings 
- English Wiki word2vec, n = 4,530,030 words 
- English Wiki spherical embedding, n = 239,672 
- BioWordVec, n = 1,654,542

Custom Embeddings
- word2vec, n = 51,002 words 
- fastText, n = 51,002 
- spherical embedding, n = 51,126

Figure 3.1: Algorithm for data-driven generation of term pairs from a radiology report corpus using
custom non-contextual embedding models.
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et al. 2019).2 Briefly, the PubMed corpus includes title, abstract, and article text
data for approximately 30,000,000 open access articles at the time BioWordVec was
created. The MIMIC-III database contains over 2 million clinical documents related
to care of patients admitted to critical care units at a single academic medical center
(Johnson et al. 2016). Additionally, I used a publicly available gensim word2vec
model trained using the skip-gram method on the English Wikipedia corpus (February
2017) obtained from the University of Oslo’s Nordic Language Processing Laboratory
word vector repository (Fares et al. 2017). I also used a spherical embedding model
trained on the English Wikipedia corpus provided by Meng et al (Meng et al. 2019).

3.1.4 Contextual embedding models
Custom embeddings: The pre-processed text of the radiology report corpus was
exported to a txt file with each document per line. I used the transformers library to
create a custom tokenizer and for pre-training on the radiology report corpus (Wolf et
al. 2020). For pretraining our custom BERT-based model, referred to as RadBERT, I
used the same configuration parameters as the original BERT model (Devlin et al.
2019). Pre-training the RadBERT model took approximately 2.5 days using two 12GB
graphics processing units (GPU).

Public embeddings: I compared RadBERT to the original BERT model and a
publicly available BERT-based model pre-trained using a PubMed and MIMIC-III
corpus, BlueBERT (Devlin et al. 2019; Peng, Yan, and Lu 2019) . Each of these
models was downloaded from the HuggingFace Models repository (“Hugging Face
Models and Datasets,” n.d.).

3.1.5 Term pair selection
I compared the pre-processed Fleischner Society Glossary tokens with the vocabulary
of each of the 6 NCWE models. I retained only those terms shared between the
Fleischner Society Glossary that were present in all 6 embedding vocabularies. The
resulting 1,059 shared terms (‘query words’) were manually reviewed by a physician
(MSK), and a subset of these terms (326 terms) were manually selected for possible
inclusion in the survey. For each of the 326 query words, I randomly select the kth

most similar term using each of the 3 custom embeddings, where k ∈ {1, 5, 50}. This
2The original published BioWordVec model was trained using the PubMed corpus, but the more

recent implementation is jointly trained on the PubMed corpus and MIMIC-III corpus and is publicly
available for download at https://github.com/ncbi-nlp/BioSentVec.
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Table 3.2: Example use of the kth most similar term from custom embeddings to inform term pair
creation.

Custom Embedding Models
Query Word k word2vec fastText spherical embedding Manual Review Selection
abscess 1 empyema empyema osteomyelitis empyema
adenocarcinoma 50 peritonei bronchoalveolar status_post bronchoalveolar

method was adapted from Schnabel et al. (Schnabel et al. 2015). As the examples
in Table 3.2 show, for each query word, I retrieved 3 candidate terms. One of these
three was then selected to construct a term pair. A physician (MSK) then manually
reviewed the three candidate terms, i.e. the kth most similar term to the query word
for each of the custom embedding models. For each of the 326 query words, if 2 or
3 of the embedding generated candidate terms were similar, I selected this term to
form a term pair. If all 3 of the proposed candidate terms was different, a candidate
term was arbitrarily selected by MSK. As I used the custom embeddings to generate
term pairs, some of the selected terms for each query word were not present in the
publicly available embeddings. For accurate comparison and generation of correlation
coefficients, I excluded those term pairs where the word was not present in each of the
6 embeddings being evaluated.

3.1.6 Cloze task generation
A physician (MSK) selected a random subset of radiology reports, from which rep-
resentative selections of text were extracted and modified to reflect commonly seen
radiographic descriptions and findings. A total of 20 cloze prompts were created for use
in the survey. Each cloze task prompt was 1-3 sentences in length to provide sufficient
context for human and models to identify the masked term. BERT-based models
use WordPiece tokenization, which may generate sub-words (Devlin et al. 2019).
Accurate comparison between the CWEs requires that the masked word be present
in its complete word form as a token within each model’s vocabulary, i.e. not as a
subword (Goldberg 2019; Ettinger 2020). For example, using the BERT tokenizer and
our custom tokenizer, apical was tokenized to (apical) for both. Tokenizing the word
bullae with the BERT tokenizer yielded sub-words, (bull, ##ae). Using our custom
tokenizer, bullae was tokenized to bullae. In this example, apical would be considered
eligible for masking in our cloze test because the full word is retained by each of our
tokenizers. Bullae would be ineligible because one or more of the tokenizers returns
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sub-words rather than the complete word. Each cloze task prompt was tokenized with
each of the 3 BERT-based models being studied using the transformers library (Wolf
et al. 2020). Only overlapping complete word forms from each model were selected
for masking.

3.1.7 Survey administration
I created and administered a survey of 281 term pairs and 20 cloze task prompts using
the Research Electronic Data Capture (REDCap) tool hosted at VUMC (Harris et al.
2009). A convenience sample of 15 healthcare trainees or professionals were asked to
participate in the survey. The instructions provided to participants was adapted from
another concept similarity survey, WordSim353 (Finkelstein et al. 2001). Study data
were collected and managed in REDCap.

Human judgment of term pair similarity was assessed using a 7-point ordinal scale.
For the cloze task portion, survey participants were asked to enter only a single word
for each prompt for accurate comparison to BERT-based models because these models
have single word vocabularies (Ettinger 2020).

3.1.8 Survey analysis
Upon completion, survey results were analyzed using R (version 4.0.3). For each
term pair, the mean and standard deviation was calculated. Pearson and Spearman
correlation coefficient values were calculated with the gensim library using the mean
values from the survey and cosine similarity for each NCWE (Řehůřek and Sojka 2010).
To evaluate these models in relation to existing benchmarks and published results, I
also calculated Pearson and Spearman correlation coefficients using the original and
modified versions of the UMNSRS-similarity and UMNSRS-relatedness benchmarks
introduced above (Section 2.6.3) (Pakhomov et al. 2010; Pakhomov et al. 2016). If
either concept in a concept pair was not present in the embedding model vocabulary,
that concept pair was not used to calculate the correlation coefficient.

To evaluate CWE models, I composed 20 fill-in-the-blank prompts that reflect text
that may appear in a CT chest radiology report, e.g. “Infiltrate in the right middle
lobe is seen concerning for __.” To assess human judgment, survey participants
were asked to input free-text for what they determined to be the most likely single
word. Survey results were manually reviewed and tabulated to construct a list of the
words provided for each cloze task prompt ordered by frequency. Each of the CWE
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models were then used to also predict the expected word for each cloze task. For
word prediction accuracy, I designated the word entered with the highest frequency
from the survey as the “expected” word. Accuracy was defined as the percentage of
items for which the “expected” word is among the CWE model’s top k predictions
for k ∈ {1, 5} (Ettinger 2020). I then compared the accuracy for each of the CWEs.
I used the transformers library to find the top k predicted words by also providing
special tokens as detailed by Goldberg (Goldberg 2019; Ettinger 2020).

3.2 Results
The VUMC radiology report corpus contained 479,850 documents and comprised
a total of 124,892,727 tokens. These documents included other associated clinical
documents, including critical result messages. For the NCWEs, custom models
developed using the word2vec and fastText methods each had a vocabulary of 51,002
words, whereas the custom spherical embedding model vocabulary comprised 51,126
words. The English Wikipedia word2vec, English Wikipedia spherical embedding, and
BioWordVec embedding models comprised of 4,530,030, 239,672, and 1,654,542 words,
respectively.

3.2.1 Comparison to Fleischner glossary
Using exact matching, the overlap between each of the 3 custom embedding models
and words from the Fleischner glossary was 1,207 distinct words. The intersection
between the Fleischner glossary vocabulary and BioWordVec, word2vec (Wikipedia)
and spherical embedding (Wikipedia) models was 1,272, 1,138 and 1,124 words,
respectively. The overlap of the embedding model vocabularies with the Fleischner
glossary yielded a shared 1,059 words (Figure 3.1).

3.2.2 Non-contextual embedding model similarity
The cosine similarity distribution using the described term pair selection approach
returned an approximately normal distribution for the custom word2vec and fastText
models and BioWordVec centered near 0.5. The custom spherical embedding model
and the public models trained using an English Wikipedia corpus were skewed (Figure
3.2).
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Figure 3.2: Distribution of cosine similarity scores on RadSim281. Custom fastText and word2vec
models and BioWordVec are near-normal, whereas Wikipedia-trained models and custom spherical
embeddings are skewed.
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Table 3.3: Performance of the 6 embedding models on our custom term pair similarity benchmark,
RadSim281.

Model Pearson coefficient Spearman coefficient
word2vec (ours) 0.34 0.35
fastText (ours) 0.40 0.41
spherical emb (ours) 0.40 0.44
BioWordVec 0.60 0.61
word2vec (Wiki) 0.31 0.32
spherical emb (Wiki) 0.26 0.27

3.2.3 Survey participant characteristics
A total of 13 participants completed the survey. Of these 13, 9 identified as attending
physicians. The remaining identified as a medical student (1), resident (1), fellow (1),
nurse (1) and advanced practice provider (1). Clinical background for the resident,
fellow and attending physicians included anesthesiology (1), emergency medicine (1),
family medicine (1), internal medicine (5) and radiology (1). The number of years
in practice post-residency for the fellow and attending physicians was a median of 3
years. Participants reported currently practicing or training in different regions within
the US: Northeast (1), Midwest (7), South (4) and West (1).

3.2.4 Term pair similarity
The computed Pearson correlation coefficient (ρp) and Spearman correlation coefficient
(ρs) values comparing mean survey similarity scores to cosine similarity for each
model are shown in Table 3.3. Of each of the 6 models studied, BioWordVec yielded
the highest ρp and ρs of 0.60 and 0.61, respectively. Among the embedding models
trained using our radiology corpus, the word2vec model returned the lowest correlation
between human and model similarity scores (ρp 0.34; ρs 0.35). ρp and ρs values from
our custom fastText model were 0.40 and 0.41; for our spherical embedding model,
ρp and ρs were calculated as 0.40 and 0.44, respectively. For the English Wikipedia
trained word2vec model, ρp and ρs were 0.31 and 0.32, respectively; the spherical
embedding Wikipedia model returned a ρp of 0.26 and ρs of 0.27.
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Table 3.4: Performance of the 6 embedding models on the original UMNSRS (Pakhomov et al., 2010)
and modified UMNSRS (Pakhomov et al., 2016) benchmarks.

Original UMNSRS Modified UMNSRS

Model Pearson Spearman % OOV Pearson Spearman % OOV

Similarity
word2vec (ours) 0.46 0.44 61.66 0.46 0.43 51.45
fastText (ours) 0.52 0.49 61.66 0.52 0.49 51.45
spherical emb (ours) 0.35 0.34 61.66 0.37 0.35 51.45
BioWordVec 0.64 0.62 17.84 0.65 0.62 3.34
word2vec (Wiki) 0.38 0.38 60.07 0.39 0.39 48.11
spherical emb (Wiki) 0.28 0.27 59.89 0.30 0.29 47.44

Relatedness
word2vec (ours) 0.34 0.34 64.05 0.34 0.34 53.28
fastText (ours) 0.41 0.40 64.05 0.41 0.39 53.28
spherical emb (ours) 0.34 0.32 64.05 0.35 0.34 53.28
BioWordVec 0.57 0.57 20.27 0.57 0.57 3.93
word2vec (Wiki) 0.36 0.35 61.84 0.37 0.36 48.25
spherical emb (Wiki) 0.29 0.27 61.50 0.33 0.31 47.38
Note: % OOV is the percentage of out-of-vocabulary words; excluded for correlation calculation.

Table 3.5: Comparison of word2vec model performance between ours (skip-gram) and Pakhomov et
al., 2016 (CBOW) on the modified UMNSRS Similarity and Relatedness benchmark.

Similarity Relatedness
Corpus Source Pakhomov et al. Ours Pakhomov et al. Ours
Clinical text 0.60 0.43 0.57 0.34
Wikipedia 0.48 0.39 0.45 0.36
PubMed corpus 0.62 NA 0.58 NA

3.2.5 Performance on UMNSRS benchmarks
ρp and ρs results from each of our 6 embedding models on the original and modified
forms of UMNSRS-Similarity and UMNSRS-Relatedness are shown in Table 3.4. For
comparison of word2vec model performance on different training corpora, I present
previously published algorithm performance on the modified UMNSRS benchmarks
relative to our own findings in Table 3.5 (Pakhomov et al. 2016).

3.2.6 Cloze task accuracy
RadBERT, our model pre-trained on a radiology report corpus, and BlueBERT each
have Top-1 and Top-5 accuracy of 85% and 95%, respectively; the original BERT
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Table 3.6: Top-1 and Top-5 cloze task accuracy for each masked language model.

Accuracy (%)
Language Model Top-1 Top-5
BERT-original 25 30
BlueBERT 85 95
RadBERT (ours) 85 95

model had 25% Top-1 and 30% Top-5 accuracy (Table 3.6).

3.3 Discussion
The described term pair creation approach yields a near normal distribution of cosine
similarity scores for the custom word2vec and fastText models and the BioWordVec
model. This supports the ability of this approach to capture a normally distributed
breadth of similarity scores using word2vec or fastText models trained on biomedical
text. I also found that models trained using an English Wikipedia corpus are right
skewed in Fig. 3.2. Additionally, these models consistently performed least well in
relation to those models trained using a domain-specific corpus on the RadSim281,
original UMNSRS and modified UMNSRS term similarity benchmarks. These findings
suggest poor agreement between models trained using general corpora and clinical
judgment.

To my knowledge, this analysis is the first to use spherical embeddings trained
using clinical text documents. In contrast to the excellent performance of spherical
embeddings reported on general NLP text similarity benchmarks, I found that spherical
embeddings often performed less well than other models (Table 3.3 and 3.4) (Meng
et al. 2019). The only exception being that the custom spherical embedding model
performed better than the custom word2vec model and at least as well as the custom
fastText model on RadSim281. The spherical embedding model proposed by Meng et
al. uses directional similarity and jointly learns word and paragraph embeddings. This
has been shown to provide improved word similarity and document clustering over
other text embedding methods by leveraging both word-word and word-paragraph
co-occurrence information. Yet, relative to other text documents, clinical text often
contains disparate information in neighboring paragraphs, and this may be an ill-
suited substrate for this training strategy. This may cause the model to consider truly
dissimilar words as being somewhat similar and may explain the left skew of cosine
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similarity scores from the spherical embedding model relative to the other 5 models
as shown in Fig. 3.2. Additional study is required to attempt to replicate the benefits
of spherical embedding models for document clustering or document classification in
the clinical domain.

Among the custom NCWE models, the fastText model performed about as well as the
spherical embedding model on RadSim281 (Table 3.3) and achieves the highest ρp and
ρs on the original and modified UMNSRS benchmarks (Table 3.4). One of the primary
benefits of fastText embedding models is that each word can be represented as a bag
of character n-grams, which gives these models the ability to handle out-of-vocabulary
words and generalize better. Bojanowski et al. assess the correlation between human
judgment and cosine similarity comparing word2vec and fastText models with and
without sub-word information using 10 different benchmarks covering 7 different
languages. Similar to my own findings, they found that fastText models tend to
outperform word2vec models on most term pair similarity benchmarks including the
English Rare Word dataset (Bojanowski et al. 2017).

I reported both Pearson and Spearman correlation coefficients for comparison to earlier
studies, some of which provide only the ρp and others only the ρs. The originally
proposed BioWordVec fastText model was trained using PubMed and Medical Subject
Headings (MeSH) (Y. Zhang et al. 2019). I used the publicly available BioWordVec
model trained on PubMed and MIMIC-III corpora. On the UMNSRS benchmarks,
I found similar, but slightly lower, ρp and ρs values compared to the published
values (Table 3.4). Pakhomov et al. evaluate performance on the modified UMNSRS
benchmarks using a continuous bag of words (CBOW) word2vec model. Results of
their analyses using different training corpora in comparison to our own are shown in
Table 3.5. Our findings for ρs using our skip-gram word2vec model and the spherical
embedding model trained using an English Wikipedia corpus are much lower on both
the UMNSRS-similarity and UMNSRS-relatedness benchmarks compared to their
findings (Table 3.4). Yet, our results from the BioWordVec model are comparable to
the ρs values they computed using model trained on a PubMed corpus. Although I
used the skip-gram training approach and they used the CBOW method, others have
found that the skip-gram method provides better or equivalent performance on the
UMNSRS benchmarks (Sajadi 2014; Chiu et al. 2016). Thus, this discrepancy is less
likely explained by the use of the skip-gram modeling technique instead of CBOW.

For models trained on the VUMC radiology report corpus or Wikipedia, I was unable
to account for one or both concepts for approximately 50% of the modified UMNSRS
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concept pairs (Table 3.4). Given that half of these embedding vocabularies are
not adequately represented among the concept pairs, our results are likely suffering
from bias. This highlights that intrinsic evaluation performance can suffer if a
large proportion of the term pair vocabulary is not present within the embedding
vocabulary. This discrepancy may also reflect sensitivity of term pair similarity on
training parameter selection between the studies. Prior studies show a tradeoff between
intrinsic and extrinsic evaluation based upon model and hyperparameter choice. Agirre
et al. find that using a context window approach yields better results on similarity
tasks, whereas embeddings trained using their bag of words method performed better
on relatedness tasks. They also find that increasing the context window size improves
correlation between model and human judgment (Agirre et al. 2009). Moreover, in
the biomedical domain, Chiu et al. find that larger context windows lead to gains
in intrinsic evaluation measures with decreased performance on certain downstream
tasks (Chiu et al. 2016). Thus, one must be aware of this and select architectures and
parameters best suited for the desired objective.

NCWE models can also be augmented with knowledge graphs, which have been shown
to lead to better representations (Sajadi 2014; Yu et al. 2017; Boag and Kané 2017;
Banerjee et al. 2017; Banerjee et al. 2018). I attempted to enrich the embedding
models using the RadLex ontology, but was met with little success as I found limited
RadLex term coverage in our corpus, which is a challenge noted previously (Percha et
al. 2018). This difficulty may be offset with expansion of the RadLex terminology or
by using other existing ontologies that provide improved term coverage.

To my knowledge, this study is the first attempt in clinical NLP towards developing
intrinsic evaluation benchmarks for CWEs. I found that the original BERT model
performs poorly on cloze tasks that reflect radiology report text. I also show equivalent
top-1 and top-5 cloze task accuracy between BlueBERT and our custom BERT model
(Table 3.6). These findings appear to suggest that the publicly available BlueBERT
model pre-trained using the PubMed and MIMIC-III corpora perform well even
in comparison to a model pre-trained using a targeted domain corpus of radiology
reports from which the cloze task prompts were established. Further study of the
generalizability of BlueBERT on other intrinsic evaluation tasks is required. The
implication of a generalizable clinical BERT-based model may mitigate the need to
pre-train custom BERT-based models for different clinical purposes. This becomes
especially important given the sizable financial and environmental costs incurred
by language model training (Strubell, Ganesh, and McCallum 2019). One of the
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limitations of the BlueBERT model is that it uses the original BERT model vocabulary,
rather than training a custom tokenizer using the PubMed and MIMIC-III corpora
(Peng, Yan, and Lu 2019).

BERT-based models can only accept a maximum sequence input length of 512 tokens
(Devlin et al. 2019). Many clinical terms are not present within the original BERT
vocabulary and are thus tokenized to subwords for model input. This restricts the
number of words that may be used as input for the original BERT and BlueBERT
models, whereas a custom tokenizer would have helped mitigate this potential for
inform loss to some degree.

While I did find that models trained using the MIMIC-III corpus (BioWordVec
and BlueBERT) perform admirably relative to their counterparts, the MIMIC-III
corpus reflects an intensive care unit (ICU) patient population and may present
an additional source of bias worth consideration (Johnson et al. 2016). The ICU
patient population tends to be of higher acuity. Moreover, the conditions managed
in the ICU and the document layout and language used by ICU providers may be
distinct and not representative of non-ICU care or clinical documents. The limitations
of this narrow clinical frame may be remedied by the additional inclusion of the
PubMed corpus (PMC) for BioWordVec and BlueBERT training. However, the PMC
language is arguably more technical and scientific than what is typically seen within
clinical documents, which presents yet another limitation and potential source of
bias. Additionally, the BioWordVec model is much larger than each of our custom
embeddings, which may preclude its use for those without access to sufficient computer
memory and disk resources.

It remains unclear if a tradeoff between intrinsic and extrinsic evaluation performance
exists for CWEs as is reported in NCWEs. Moreover, further study is required to
determine if and to what degree the differences in cloze task performance persist after
model fine-tuning.

Few, if any, benchmarks exist for intrinsic evaluation of CWE and NCWE models
in the clinical domain. Given the potential impact these and other models may
have on medical decision making, it is vital to probe models to identify potential
flaws and biases. Furthermore, we must be cognizant of existing biases inherent
within the clinical data used to train these models. If our models encode biased
representations, their deployment may propagate these biases forward and maintain
or exacerbate existing healthcare disparities. Probing of models trained on general
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corpora using intrinsic evaluation methods have unearthed gender, racial and religious
biases (Bolukbasi et al. 2016; Manzini et al. 2019). With limited model probing tasks
within clinical NLP, I contend that this area requires further study especially given
the evidence of racial and other disparities present within clinical documentation,
management and outcomes (Balderston et al. 2021).

Among this study’s limitations is that I restricted intrinsic evaluation tasks for NCWE
and CWE models to single words. Future studies may use methods to generate
multi-word terms while still allowing for comparison within the embedding space
(Mikolov, Sutskever, et al. 2013; Rose et al. 2010; Campos et al. 2018). Moreover,
the term pair generating method excluded term pairs that were not present in all of
the embedding vocabularies. Most terms were excluded because they were not in the
NCWE vocabularies trained on a Wikipedia corpus. This design choice may have
biased term pair selection away from relevant medical terms and towards common
English words. Another limitation is that radiology report corpus was primarily
limited to CT scans inclusive of the chest. One may find improved results using a
corpus of radiology reports from all imaging modalities. Likewise, the corpus was
curated from a single academic medical center, which limits the size of the corpus and
influences the conditions and findings identified in reports to those found within the
region.

3.4 Conclusion
This work introduces two new intrinsic evaluation methods for use among clinical
NLP researchers: term pair similarity to compare NCWEs and cloze task accuracy for
CWE models. For NCWEs trained on a domain-specific corpus, these results highlight
that fastText models tend to outperform word2vec and spherical embedding models.
I also demonstrate that the gains afforded by spherical embedding models in general
NLP intrinsic evaluation tasks fail to translate to the clinical domain. This emphasizes
the need for caution and rigorous evaluation prior to adoption of methods that may
excel in general NLP tasks. Importantly, I found that embedding models trained using
PubMed and MIMIC-III corpora - BioWordVec and BlueBERT - perform at least as
well and often better than models trained on a targeted domain corpus on intrinsic
evaluation tasks. This provides additional evidence in support of these biomedical
corpora capturing word representations in agreement with clinician judgment. Further
study is needed to the establish additional benchmarks and probing tasks. These
will help to facilitate language model evaluation to assess for potential biases and
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determine agreement with clinician judgment. Such analyses are necessary to engender
trust and promote understanding of NLP models for broader clinical adoption.
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CHAPTER 4

EXTRINSIC EVALUATION OF WORD EMBEDDING MODELS

The previous chapter focused on intrinsic evaluation methods comparing word em-
bedding representations against clinical judgment. In this chapter, I present extrinsic
evaluation tasks for a clinical phenotyping objective. Using each of the contextual and
non-contextual embeddings, I train binary and multi-label phenotype classification
models and compare classification performance between them.

4.1 Methods
4.1.1 Study Design
I curated a corpus of radiology reports from the Vanderbilt University Medical Center
(VUMC) Research Derivative, an extract of the electronic health record from legacy and
Epic record data, normalized to the OMOP common data model (Danciu et al. 2014).
Radiology reports were selected from the earliest available record until October 21,
2020. I selected only those radiology reports with study descriptions corresponding to
computed tomography (CT) scans inclusive of the chest using the ‘Study Description’.
Candidate study descriptions containing comprehensive thoracic imaging were then
identified and confirmed with a VUMC radiologist. Study description codes used for
note selection are listed in Table 3.1. Excluded films included cardiac CT imaging
that tend to lack full lung views and those considered to be unreliable, such as ones
marked for billing. Report collection was limited to those for patients 18 years of age
or older. This study was approved by the VUMC Institutional Review Board.

4.1.2 Text processing
Pre-processing of the raw clinical text included removal of unicode characters and
HTML parsing to plain text using the Beautiful Soup library in Python. I concatenated
hyphenated terms by converting ‘-’ characters to ‘_’, e.g. status-post was converted to
status_post. Dates and times, age, medical record numbers, email addresses, phone
numbers, social security numbers and location information were identified using the
presidio Python package, a custom regular expression to handle numeric values of 7
or more digits, and the spaCy library tokenizer (Microsoft Presidio 2020; Honnibal et
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al. 2020). Identified terms were then replaced with the corresponding general token,
e.g. DATE_TIME, MRN. Stop words for our radiology report corpus were not excluded.
Processed text was stored using the Apache Parquet file format (Apache Software
Foundation 2020).

4.1.3 Non-contextual embedding models
Custom embeddings: I used the gensim library implementations of the word2vec
and fastText models (Mikolov, Chen, et al. 2013; Bojanowski et al. 2017; Řehůřek
and Sojka 2010). Joint spherical embedding models have recently been shown to
generate embeddings with superior performance on general NLP benchmarks for word
similarity, document clustering, and document classification. In this study, spherical
embedding models were created using the source code provided by the authors (Meng
et al. 2019). Each word2vec and fastText model was trained using the skip-gram
method descrived in Section 2.4.1 (Mikolov, Chen, et al. 2013; Mikolov, Sutskever,
et al. 2013). I used similar training parameters for each of our custom embedding
models: fixed dimension of 200, initial learning rate of 0.025, context window of 5,
excluded words occurring fewer than 5 times, sampling threshold of 0.001, negative
sampling rate of 5 and trained for 10 epochs.

Public embeddings: I used BioWordVec, which is a 200-dimensional fastText model
trained using both a PubMed corpus and text from the Medical Information Mart for
Intensive Care (MIMIC-III) dataset and made available by the authors (Y. Zhang et
al. 2019).1 Briefly, the PubMed corpus includes title, abstract, and article text data
for approximately 30,000,000 open access articles at the time the BioWordVec model
was published. The MIMIC-III database contains over 2 million clinical documents
related to care of patients admitted to critical care units at a single academic medical
center (Johnson et al. 2016). Additionally, I used a publicly available gensim word2vec
model trained using the skip-gram method on the English Wikipedia corpus (February
2017) obtained from the University of Oslo’s Nordic Language Processing Laboratory
word vector repository (Fares et al. 2017). I also used a spherical embedding model
trained on the English Wikipedia corpus provided by Meng et al (Meng et al. 2019).

1The original published BioWordVec model was trained using the PubMed corpus, but the more
recent implementation is jointly trained on the PubMed corpus and MIMIC-III corpus and is publicly
available for download at https://github.com/ncbi-nlp/BioSentVec.
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4.1.4 Contextual embedding models
Custom embeddings: The pre-processed text of the radiology report corpus was
exported to a txt file with each document per line. I used the transformers library to
create a custom tokenizer and for pre-training on the radiology report corpus (Wolf et
al. 2020). For pretraining our custom BERT-based model, referred to as RadBERT, I
used the same configuration parameters as the original BERT model (Devlin et al.
2019). Pre-training the RadBERT model took approximately 2.5 days using two 12GB
graphics processing units (GPU).

Public embeddings: I compared RadBERT to the original BERT model and a
publicly available BERT-based model pre-trained using a PubMed and MIMIC-III
corpus, BlueBERT (Devlin et al. 2019; Peng, Yan, and Lu 2019) . Each of these
models was downloaded from the HuggingFace Models repository (“Hugging Face
Models and Datasets,” n.d.).

Efficient Transformers: Each of the three CWE models studied, base BERT,
BlueBERT, and RadBERT, was converted to the Longformer model architecture
using modified code provided by the Longformer author. The Longformer model
maximum input length was set to 4,096 tokens by copying and extending each BERT-
based models original position embeddings. Unlike the RoBERTa model used by the
Longformer authors, I began with BERT-based models. In the RoBERTa model,
the first two position embeddings are reserved and need to be accounted for when
generating new positional embeddings from the original RoBERTa-based models. The
0- and 1-indexed spaces are not reserved in BERT-based models, and I modified
the authors code to account for this difference. The Longformer model architecture
uses two attention mechanisms: local windowed attention and global attention. I
converted each BERT-based model’s self-attention layers to Longformer self-attention.
Also, for each model layer, I copied the Longformer self-attention to create the global
attention component as described by the authors (Beltagy, Peters, and Cohan 2020).
This process was compiled as a Python script, which I ran to convert each of the
BERT-based models to their Longformer equivalent.

4.1.5 Manual Document Annotation
For annotation, I used the active learning-based annotation tool Prodigy, which is
authored by the developers of the spaCy NLP library (Montani and Honnibal 2018).
After text processing, our corpus was converted from CSV to the JSONL format to
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facilitate capture of manual annotation and related metadata as recommended by the
Prodigy tool authors.

CT scan report classification: In addition to CT scan reports, our corpus included
other clinical documents, such as critical alert messages and chest X-ray reports.
I wished to limit the scope of our annotation to only CT scan reports. To do so,
I developed a binary classification model to detect CT scan reports. I loaded our
complete corpus into Prodigy, which stores this information and annotation data in a
SQLite database. I annotated the first 2,050 clinical documents presented using the
Prodigy annotation interface and active learning model. Options for annotation include
accept, reject, or ignore. This annotated dataset was then used to train a classification
model initialized using the blank English spaCy model. I used the Prodigy command-
line text classification training function; 1,640 of our 2,050 annotated documents were
used for training and 410 for evaluation.

Sampling of corpus for annotation: I loaded our CT report classification model
using spaCy and applied it to all documents in our corpus (Honnibal et al. 2020).
Model predictions took a real-valued number from 0 to 1. I retained only those
documents with predictions > 0.75 as being a CT scan report to be included for
manual annotation. Using the sample method in the Pandas library, I selected 5,000
random notes using a random seed of 42. This sample of notes was then exported to
a JSONL file for further annotation.

Term expansion: In addition to active learning, Prodigy provides additional func-
tionality to accelerate annotation. I used our custom word2vec embeddings for term
expansion using Prodigy’s terms.teach command. For example, for pneumothorax, I
used our custom word2vec embedding to find similar terms such as pneumothoraces
and hydropneumothorax. This expanded list of terms was saved in a JSONL file
and provided using the patterns flag to Prodigy’s active learning-based annotation
function text.teach.

Phenotype annotation: The 5,000 reports sampled for annotation were loaded into
Prodigy, which stored the text and metadata in a new SQLite database. Using the
Prodigy annotation interface, MSK completed binary labeling of the 5,000 notes for
each phenotype of interest, i.e. each note was annotated at least once for the presence
or absence of pneumothorax and again for the presence or absence of granulomatous
disease.

As part of Prodigy’s active learning process, some notes may be shown to the annotator
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on more than one occasion. This is especially true for notes where the active learning
model is uncertain, e.g. when label predictions are near 0.5. After our annotations were
complete, I exported this information from the Prodigy SQLite database to a JSONL
file, which I loaded using the Pandas library for further processing. Given that some
documents were annotated more than once, I performed de-duplication of annotations.
Disagreement between annotations for documents with multiple annotations were
re-examined and resolved by MSK.

4.1.6 Model Setup
For extrinsic evaluation of different contextual and non-contextual embedding models,
I defined two phenotype classification tasks: binary classification and multi-label
classification. Using each of the custom and public NCWE and CWE models included
in this study, I developed models for binary and multi-label classification. The
binary classification task evaluated for the presence or absence of granulomatous
disease. Our multi-label classification setup looked for the presence or absence of
either granulomatous disease or pneumothorax.

Cross validation: Each model in this study was trained using a 5-fold nested cross-
validation (CV) procedure. Nested cross validation includes an outer loop and inner
loop. In the outer loop, the data is fragmented into a test fold and non-test folds.
These non-test folds are further split to training folds and a validation fold within the
inner loop. Our training fold comprised of 3,000 documents and the validation and
test folds consisted of 1,000 documents each.

For binary classification, I used the scikit-learn implementation of Stratified k-fold
cross validation using the StratifiedKFold method (Pedregosa et al. 2011). For
multi-label classification, I used an iterative stratification method described by Sechidis
et al. using the MultilabelStratifiedKFold method in the iterative-stratification
Python package (Sechidis, Tsoumakas, and Vlahavas 2011).

Tokenizing text for logistic regression and BiLSTM models: I use the keras
Tokenizer method and fit this tokenizer on the training fold text (Chollet et al. 2015).
This trained tokenizer was then used to tokenize text from the training, validation
and test folds. The text of each document was tokenized to a maximum length of
4,096 tokens, and those documents with fewer tokens are zero-padded at the end. The
exception to this is tokenization of our binary classification logistic regression model,
which is tokenized using the whatlies toolkit due to ease of use and compatibility with
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scikit-learn (See Section 4.1.7).

Training details: Model development and training were performed using Python
3.7.2 (Van Rossum and Drake 2009). Neural network models were trained using
PyTorch 1.7.1. Each of our binary and multi-label classification models were trained
using binary cross entropy with logits loss implemented in PyTorch (Paszke et al.
2019). The exception being our binary classification logistic regression model, which
was trained using scikit-learn (See Section 4.1.7). Unless otherwise stated, I trained
using mixed precision training to reduce memory consumption and improve training
speed (Micikevicius et al. 2018).

Metrics: For binary classification tasks, I computed accuracy, precision, recall, and
F1-score. Multi-label classification metrics reported are accuracy and row-wise micro-
averaged precision, recall, and F1-score; I also included the macro-averaged F1-score
for comparison. Each of our metrics was computed using the scikit-learn methods to
calculate accuracy and precision, recall and F1-score (Pedregosa et al. 2011).

4.1.7 Logistic Regression Models
Binary classification: The whatlies toolkit makes it easy to integrate use of word
embedding models with different APIs, including spaCy and scikit-learn (Warmerdam,
Kober, and Tatman 2020). Interfacing NCWE models with the scikit-learn modeling
API using whatlies requires that the NCWE models be in a spaCy embedding model
format. Each of the six NCWE models studied were originally saved in the word2vec file
format. Thus, I converted each of these to the spaCy format using spaCy’s command-
line function init-model (Honnibal et al. 2020). The whatlies SpacyLanguage
method was used to process the text, which it does by using the embedding model as a
look-up table for each word in the document and returning the summed representation
of the individual token vectors (Warmerdam, Kober, and Tatman 2020). In other
words, each document is distilled into a summed, fixed-vector representation, which
is then used by scikit-learn’s LogisticRegression method for model training using
the default settings. Importantly, the default scikit-learn implementation of logistic
regression uses `2 regularization, or weight decay.

I used grid-search for hyperparameter optimization in the inner loop of our nested
CV procedure over the following parameters: `2 regularization or no regularization; C
parameter over the log scale from 10−4 to 104.

Multi-label classification: The scikit-learn LogisticRegression method does not
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allow for multi-label classification setups. Thus, I implemented our multi-label logistic
regression model using PyTorch. Our NCWE models were loaded using the gensim
package and processed to generate an embedding matrix (Řehůřek and Sojka 2010). I
tokenized the input text as described in Section 4.1.6. Our logistic regression model
architecture begins with an embedding layer using the PyTorch Embedding method.
Our embedding layer weights are frozen, and are not updated during training. The
tokenized text is passed to the embedding layer, which serves as a look-up table for
each token in a given document. For each document, the average of all its individual
token vectors is returned. This mean vector representation is then passed to a linear
transformation layer. For training this model, I used the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (LBFGS) optimizer implemented in PyTorch. I evaluated
model performance using other optimizers (SGD, Adam, AdamW) with and without
weight decay, but used LBFGS as this gave the best results during evaluation.

4.1.8 Bidirectional LSTM Models
Binary classification: Each NCWE model was loaded using the gensim package to
construct an embedding matrix (Řehůřek and Sojka 2010). The text was tokenized
as described in Section 4.1.6. The initial layer of our Bidirectional LSTM (BiLSTM)
model is the embedding layer, a look-up table for each token in a tokenized document.
The embedding layer weights are simply those of our loaded embedding matrix. These
embedding weights are frozen during training, i.e. the weights remain fixed. The
embedding layer output is then sequentially processed by the BiLSTM layer using the
PyTorch LSTM method. Our BiLSTM layer consisted of 2 layers, featured a hidden
dimension size of 128, and used Dropout with a drop probability of 0.3 during training
as a regularization method to reduce overfitting. I then applied mean and max pooling
to the BiLSTM layer output and concatenated the results of each of these pooling
operations. This concatenated representation was then ultimately passed to the linear
transformation layer for classification. I used the PyTorch implementation of the
AdamW optimizer and the one cycle learning rate scheduler with maximum learning
rate of 0.001 (Smith 2018). When using the English Wikipedia trained spherical
embeddings at a maximum learning rate of 0.001, the model failed to converge. This
was resolved by increasing the maximum learning rate to 0.01. Each of these models
was trained for 30 epochs using a batch size of 256 and mixed precision training using
16-bit floating point weight values.

Multi-label classification: The multi-label classification setup, network architecture
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and training parameters are identical to that described for the binary classification
task except for modifying the linear transformation layer to output a vector of length
2 to generate prediction for each of our two phenotypes. Models trained using our
custom spherical embeddings and English Wikipedia trained spherical embeddings
failed to converge when trained using a maximum learning rate of 0.001. Increasing
the maximum learning rate to 0.01, I found that the model trained with English
Wikipedia trained spherical embeddings converges for all 5 folds. Folds 1 and 4 trained
using our custom spherical embedding model failed to converge appropriately despite
trial of different learning rates (0.001, 0.01, 0.05), stochastic weight averaging, or
use of 32-bit floating point values. Of note, when training with 32-bit floating point
values, I reduced the batch size to 128 as training with a batch size of 256 exceeded
our available GPU memory.

4.1.9 BERT-based Models
Binary classification: The base, uncased BERT model, BlueBERT, our custom
pre-trained model RadBERT and each model’s corresponding tokenizer were loaded
using the transformers Python library (Wolf et al. 2020). The BlueBERT model
uses the same tokenizer as the uncased BERT base model, whereas RadBERT uses
a custom trained tokenizer (Peng, Yan, and Lu 2019). Tokenization using BERT-
based models relies on the WordPiece algorithm as detailed in Section 2.5.3. More
details about BERT-based models and their tokenization methodology can be found
in Sections 2.5.3 and 3.1.6. For each model, input text was tokenized using the models’
corresponding tokenizer. Rather than tokenizing all input text to the maximum
BERT-based model input length of 512 tokens, I use dynamic padding and uniform
length batching. Documents with tokenized output in excess of 512 tokens were
truncated to the maximum model input length. The tokenized output was then passed
to the embedding layer, which functions as a look-up table, before being passed to
each model. The hidden state output from each BERT-based model is a tensor with
size 768. I then applied a linear transformation layer to the model’s hidden state
representation for the phenotype classification task. Models were developed using
PyTorch and the transformers library (Paszke et al. 2019; Wolf et al. 2020). For
fine-tuning, I used the AdamW optimizer with the default learning rate of 2e−5 and a
learning rate scheduler with linear warmup followed by linear decay using weight decay
of 0.01 and the default 0 warmup steps. I used a batch size of 32 and trained for 10
epochs. I also trained each using mixed-precision training and gradient checkpointing.
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Multi-label classification: Network architecture, tokenization and model setup are
identical to that described for the binary classification task. I use similar parameters
for model fine-tuning as well, except here I train with a reduced batch size of 16 due
to GPU memory constraints.

4.1.10 Efficient Transformer Models
Binary classification: As with our BERT-based models (Section 4.1.9), I loaded
the Longformer equivalent of each of these three models and their tokenizers using
the transformers library (Wolf et al. 2020). I used dynamic padding and uniform
length batching for tokenization and batch loading, respectively. The maximum model
input length for the Longformer variants of our BERT-based models was 4,096 tokens.
Tokenized output exceeding this maximum model sequence length were truncated
to 4,096 tokens. Tokens are fed into the embedding layer, and this output is then
passed to the Longformer model. Lastly, I applied a linear transformation to the
Longformer model hidden state output for phenotype classification. I used PyTorch
and the transformers library for model fine-tuning. Similar to with our BERT-based
models, I used the AdamW optimizer with the default learning rate of 2e−5 and a
learning rate scheduler with linear warmup followed by linear decay using weight
decay of 0.01 and the default 0 warmup steps. I trained using a batch size of 8 for
10 epochs. Mixed-precision training and gradient checkpointing were also used to
expedite training and overcome memory constraints.

Multi-label classification: Our method for multi-label classification was identical
to that used for binary classification except I reduced the batch size to 4 and applied
gradient accumulation.

4.1.11 Statistical Analyses
For each model, I computed the mean and standard deviation for each metric based
on the results from our 5-fold nested cross validation procedure. When comparing
the results from two models, I computed the Wilcoxon signed rank test. I used the
Kruskal-Wallis test as our omnibus test to compare three or more models. I specified
an a priori significance threshold of 0.05. Statistical analyses were conducted using R
version 4.0.3 (R Core Team 2020).
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Table 4.1: Label Distribution by Cross-validation Fold. ’Negative’ indicates the absence of a condition,
and ’Positive’ indicates that the condition is present.

Condition (Granulomatous Disease, Pneumothorax)
Fold Negative, Negative Positive, Negative Negative, Positive Positive, Positive

1 526 439 22 13
2 525 440 23 12
3 523 442 25 10
4 523 443 25 9
5 528 437 19 16

4.2 Results
4.2.1 Annotation
To limit annotation to CT scan reports, I created a binary classifier. Baseline accuracy
prior to model training was 0.412. Upon training, our final classification model
achieved a receiver operating characteristic curve-area under the curve value of 0.999.
I conducted manual annotation of 5,000 randomly selected documents and found that
all 5,000 were CT scan reports.

4.2.2 Label Distribution
Of the 5,000 total annotated reports, 2,261 (45.2%) of the reports had evidence of
granulomatous disease whereas 2,739 (54.8%) did not. Pneumothorax was present in
174 (3.5%) of reports and absent in the remaining 4,826 (96.5%).

As is shown in Table 4.1, 60 documents had evidence of both granulomatous disease
and pneumothorax and 2,625 reports had no evidence of granulomatous disease or
pneumothorax.

4.2.3 Binary Classification
Logistic Regression models: Results for each of our binary classification models are
shown in Table 4.2 and Figure 4.1. Mean accuracy, F1-score, precision, and recall was
highest for the logistic regression models trained using our custom spherical embedding
(JoSE) model. Models trained using the English Wikipedia trained spherical embedding
(JoSE) model yielded the lowest mean accuracy, F1-score, precision, and recall.

I also compared the 4 word2vec and fastText models. There was no significant
difference in model performance for accuracy, F1-score, or precision (p = 0.057, p =
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Table 4.2: Binary classification performance for Logistic Regression models.

Metric word2vec (ours)1 fastText (ours)1 JoSE (ours)1 word2vec (Wiki)1 JoSE (Wiki)1 BioWordVec1 p-value2

Accuracy 0.777 (0.012) 0.794 (0.010) 0.801 (0.015) 0.785 (0.015) 0.723 (0.025) 0.766 (0.014) 0.001
F1-score 0.745 (0.012) 0.766 (0.014) 0.772 (0.016) 0.754 (0.019) 0.683 (0.027) 0.735 (0.019) 0.002
Precision 0.722 (0.015) 0.746 (0.022) 0.748 (0.014) 0.728 (0.026) 0.661 (0.027) 0.715 (0.025) 0.004
Recall 0.771 (0.022) 0.788 (0.012) 0.799 (0.024) 0.781 (0.019) 0.708 (0.037) 0.755 (0.014) 0.004
1 Data are presented as mean (SD). 2 p-value from Kruskal-Wallis test.

0.101, p = 0.168, respectively) but recall was found to be significantly different
(p = 0.043).
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Figure 4.1: Binary Classification: Performance metrics for each of our Logistic Regression models by
non-contextual embedding model type based on 5-fold cross validation.

Bidirectional LSTM models: Model performance for each of our Bidirectional
LSTM (BiLSTM) models is shown in Table 4.3 and Figure 4.2. Mean accuracy,
F1-score, and recall was highest for our BiLSTM model trained using the BioWordVec
non-contextual word embedding model. Mean precision was highest for the BiLSTM
model trained using the English Wikipedia trained word2vec model. The BiLSTM
model trained using our custom spherical embedding (JoSE) model yielded the lowest
mean accuracy, F1-score, and recall values compared to the other models. Our BiLSTM
model trained using the English Wikipedia spherical embedding model had the lowest
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Table 4.3: Binary classification performance for Bidirectional LSTM models.

Metric word2vec (ours)1 fastText (ours)1 JoSE (ours)1 word2vec (Wiki)1 JoSE (Wiki)1 BioWordVec1 p-value2

Accuracy 0.991 (0.003) 0.982 (0.007) 0.968 (0.030) 0.991 (0.003) 0.980 (0.007) 0.992 (0.005) 0.034
F1-score 0.990 (0.004) 0.980 (0.008) 0.965 (0.034) 0.990 (0.003) 0.977 (0.008) 0.991 (0.005) 0.025
Precision 0.995 (0.005) 0.989 (0.008) 0.976 (0.040) 0.996 (0.004) 0.971 (0.012) 0.995 (0.003) 0.042
Recall 0.985 (0.004) 0.971 (0.010) 0.955 (0.042) 0.985 (0.005) 0.984 (0.005) 0.986 (0.010) 0.120
1 Data are presented as mean (SD). 2 p-value from Kruskal-Wallis test.

mean precision. The variance in metric values was greatest for our BiLSTM model
trained using our custom spherical embedding (JoSE) model.

I compared each of our four word2vec and fastText models. Accuracy and F1-score were
significantly different between the four models (p = 0.048, p = 0.039, respectively), and
precision and recall were not significantly different (p = 0.381, p = 0.056, respectively).
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Figure 4.2: Binary Classification: Performance metrics for each of our Bidirectional LSTM models
by non-contextual embedding model type based on 5-fold cross validation.

BERT-based models: Performance metrics for each of our three studied BERT-
based models are shown in Table 4.4 and Figure 4.3. Mean accuracy, F1-score,
precision, and recall was highest for our custom RadBERT model. The omnibus test
indicates a significant difference in accuracy, F1-score, and recall between the models
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Table 4.4: Binary classification performance for BERT-based models.

Metric BERT-base1 BlueBERT1 RadBERT (ours)1 p-value2

Accuracy 0.956 (0.008) 0.945 (0.021) 0.982 (0.002) 0.007
F1-score 0.949 (0.010) 0.938 (0.022) 0.980 (0.002) 0.007
Precision 0.989 (0.003) 0.966 (0.045) 0.987 (0.004) 0.500
Recall 0.912 (0.020) 0.912 (0.018) 0.974 (0.003) 0.009
1 Data are presented as mean (SD). 2 p-value from Kruskal-Wallis test.

(p = 0.007, p = 0.007, p = 0.009, respectively). The results of the Wilcoxon-rank sum
test show no significant difference between the base BERT and BlueBERT models in
terms of accuracy, F1-score, precision, and recall (p = 0.344, p = 0.310, p = 0.310, p >
0.9, respectively).
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Figure 4.3: Binary Classification: Performance metrics for each of our BERT-based models based on
5-fold cross validation.

Efficient Transformer models: Performance metrics for each of our Efficient
Transformer models is shown in Table 4.5. Results of our omnibus test show no
significant difference for each of our model metrics.
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Table 4.5: Binary classification performance for Efficient Transformer models.

Metric BERT-base1 BlueBERT1 RadBERT (ours)1 p-value2

Accuracy 0.987 (0.004) 0.987 (0.004) 0.990 (0.002) 0.6
F1-score 0.986 (0.005) 0.986 (0.004) 0.989 (0.002) 0.7
Precision 0.977 (0.006) 0.977 (0.007) 0.980 (0.005) 0.8
Recall 0.996 (0.005) 0.995 (0.006) 0.998 (0.002) 0.8
1 Data are presented as mean (SD). 2 p-value from Kruskal-Wallis test.
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Figure 4.4: Binary Classification: Performance metrics for each of our Efficient Transformer models
based on 5-fold cross validation.
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Model Comparison: Figure 4.5 shows the distribution of accuracy, F1-score, pre-
cision, and recall for each of our BiLSTM, BERT-based, and Efficient Transformer
models. I also compared performance metrics between BERT-based and Efficient
Transformer models in Figure 4.6.
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Figure 4.5: Binary Classification: Comparison of performance metrics between (A) Bidirectional
LSTM models, (B) BERT-based models, and (C) Efficient Transformer models.

4.2.4 Multi-label Classification
Logistic Regression models: Results for each of our logistic regression models are
shown in Table 4.6 and Figure 4.7. Logistic regression models trained using our custom
fastText embedding model had the highest mean accuracy, precision, recall, and micro-
and macro-F1 score. Our omnibus test results indicates a significant different between
the models for each of the metrics studied. The model using English Wikipedia trained
spherical embeddings (JoSE) had the poorest performance across all metrics.

I also compared each of our four word2vec and fastText models. Accuracy, micro-
and macro-F1 score, precision, and recall were not significantly different between the
models (p = 0.176, p = 0.453, p = 0.361, p = 0.412, p = 0.426, respectively).

Bidirectional LSTM models: Performance metrics for each of our BiLSTM models
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Figure 4.6: Binary Classification: Comparison of performance metrics between (A) BERT-based
models and (B) Efficient Transformer models.

Table 4.6: Multi-label classification performance for Logistic Regression models.

Metric word2vec (ours)1 fastText (ours)1 JoSE (ours)1 word2vec (Wiki)1 JoSE (Wiki)1 BioWordVec1 p-value2

Accuracy 0.747 (0.007) 0.766 (0.016) 0.757 (0.016) 0.752 (0.018) 0.691 (0.011) 0.744 (0.016) 0.007
Micro F1 0.333 (0.014) 0.342 (0.010) 0.330 (0.013) 0.333 (0.014) 0.301 (0.005) 0.329 (0.004) 0.013
Macro F1 0.620 (0.040) 0.644 (0.028) 0.598 (0.029) 0.589 (0.061) 0.520 (0.032) 0.607 (0.031) 0.019
Precision 0.332 (0.014) 0.341 (0.011) 0.330 (0.014) 0.333 (0.015) 0.301 (0.004) 0.329 (0.004) 0.013
Recall 0.334 (0.013) 0.343 (0.010) 0.333 (0.013) 0.336 (0.014) 0.303 (0.005) 0.330 (0.004) 0.012
1 Data are presented as mean (SD). 2 p-value from Kruskal-Wallis test.
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Figure 4.7: Multi-label Classification: Performance metrics for each of our Logistic Regression models
by non-contextual embedding model type based on 5-fold cross validation. The left-most graph is a
zoomed in view of the micro-F1, precision, and recall values.
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Table 4.7: Multi-label classification performance for Bidirectional LSTM models.

Metric word2vec (ours)1 fastText (ours)1 JoSE (ours)1 word2vec (Wiki)1 JoSE (Wiki)1 BioWordVec1 p-value2

Accuracy 0.948 (0.016) 0.944 (0.015) 0.785 (0.235) 0.930 (0.043) 0.948 (0.005) 0.952 (0.007) 0.8
Micro F1 0.443 (0.005) 0.443 (0.007) 0.300 (0.201) 0.442 (0.003) 0.440 (0.004) 0.445 (0.004) 0.4
Macro F1 0.490 (0.009) 0.488 (0.009) 0.348 (0.202) 0.481 (0.022) 0.496 (0.011) 0.492 (0.004) 0.9
Precision 0.442 (0.005) 0.441 (0.007) 0.299 (0.200) 0.440 (0.003) 0.438 (0.004) 0.443 (0.004) 0.5
Recall 0.447 (0.005) 0.447 (0.007) 0.302 (0.203) 0.446 (0.002) 0.444 (0.003) 0.449 (0.003) 0.2
1 Data are presented as mean (SD). 2 p-value from Kruskal-Wallis test.

shown in Table 4.7 and Figure 4.8. These include results from folds with poor model
convergence using our custom spherical embedding model (JoSE) as described in
Section 4.1.8. Excluding the folds that failed to converge using our custom spherical
embedding model, I achieved mean accuracy 0.956, mean micro-F1 score 0.446, mean
macro-F1 score of 0.495, mean precision 0.444, and mean recall of 0.450. Models
trained using the BioWordVec embedding model yielded the highest mean accuracy,
micro-F1, precision, and recall values. The highest macro-F1 score was seen for
BiLSTM models trained using English Wikipedia trained spherical embedding (JoSE)
models. As shown in Table 4.7, the omnibus test reveals no significant difference
between the models across all metrics.

I also compared each of our four word2vec and fastText models. Accuracy, micro-
and macro-F1 score, precision, and recall were not significantly different between the
models (p = 0.570, p = 0.378, p = 0.531, p = 0.505, p = 0.135, respectively).

BERT-based models: Results from our multi-label classification task for each of
the three BERT-based models are shown in Table 4.8. Our custom model, RadBERT,
had the highest mean accuracy, precision, recall, and micro- and macro-F1 scores.
BluBERT had the lowest performance across all metrics. As shown in Table 4.8, our
omnibus test shows a significant difference across all metrics.

Comparing multi-label classification performance between the base BERT and Blue-
BERT models using the Wilcoxon rank-sum test, I found that macro-F1 score is
significantly higher for the base BERT model (mean 0.929, s.d. 0.005 vs. mean 0.761,
s.d. 0.087; p = 0.008) but there was no significant difference for the other studied
metrics.

Efficient Transformer models: Performance metrics for each of our Efficient
Transformer models are shown in Table 4.9. Mean accuracy, precision, recall, and
micro- and macro-F1 scores are highest for our RadBERT model and lowest for the
BlueBERT model. Accuracy and macro-F1 scores were found to be significantly
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Figure 4.8: Multi-label Classification: Performance metrics for each of our Bidirectional LSTM
models by non-contextual embedding model type based on 5-fold cross validation. The left-most
graph is a zoomed in view of the macro- and micro-F1, precision, and recall values.

Table 4.8: Multi-label classification performance for BERT-based models.

Metric BERT-base1 BlueBERT1 RadBERT (ours)1 p-value2

Accuracy 0.941 (0.010) 0.928 (0.014) 0.981 (0.006) 0.005
Micro F1 0.440 (0.006) 0.432 (0.011) 0.465 (0.005) 0.008
Macro F1 0.929 (0.005) 0.761 (0.087) 0.962 (0.017) 0.002
Precision 0.441 (0.006) 0.434 (0.010) 0.465 (0.005) 0.007
Recall 0.440 (0.007) 0.431 (0.012) 0.465 (0.005) 0.007
1 Data are presented as mean (SD). 2 p-value from Kruskal-Wallis test.
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Figure 4.9: Multi-label Classification: Performance metrics for each of our BERT-based models based
on 5-fold cross validation. The left-most graph is a zoomed in display of the micro-F1, precision, and
recall values.
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Table 4.9: Multi-label classification performance for Efficient Transformer models.

Metric BERT-base BlueBERT RadBERT (ours) p-value
Accuracy 0.975 (0.009) 0.965 (0.007) 0.990 (0.002) 0.004
Micro F1 0.466 (0.005) 0.464 (0.004) 0.472 (0.004) 0.072
Macro F1 0.866 (0.075) 0.823 (0.043) 0.964 (0.019) 0.007
Precision 0.467 (0.004) 0.465 (0.004) 0.472 (0.004) 0.063
Recall 0.466 (0.005) 0.465 (0.005) 0.472 (0.005) 0.200
1 Data are presented as mean (SD). 2 p-value from Kruskal-Wallis test.

different as shown in Table 4.9.

Model comparison: Figure 4.11 shows micro-F1, precision, and recall scores for
the BiLSTM, BERT-based, and Efficient Transformer models. I compare micro-F1,
precision, and recall performance between BERT-based and Efficient Transformer
models in Figure 4.12.

4.3 Discussion
I developed two extrinsic evaluation tasks to compare contextual and non-contextual
embedding models: binary and multi-label classification. I then trained models using
each CWE and NCWE model and compared their performance on these extrinsic
evaluation tasks.

Label distribution for the binary classification task was well-balanced as 45.2% of the
reports suggested evidence of granulomatous disease and the remaining 54.8% did
not. The radiology reports used in this study were sourced from a hospital system in
an endemic fungal region. As such, this high prevalence of granulomas noted on CT
reports is to be expected. Histoplasma capsulatum is a fungus that typically causes
benign and asymptomatic disease in immunocompetent hosts. In endemic areas, up
to 90% of the population may be exposed to this species during their lifetime. A
subset of these patients may develop granulomas, which can appear as incidental
pulmonary nodules (IPN) and may complicate IPN evaluation and management (Azar
et al. 2020).

The pneumothorax labels used in this study are heavily imbalanced with only 3.5% of
the reports highlighting the presence of this condition. Many of the documents do
contain language about pneumothoraces, but this is most often to indicate the absence
of this condition. This information is commonly reported, even if findings are negative,
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Figure 4.10: Multi-label Classification: Performance metrics for each Efficient Transformer model
based on 5-fold cross validation. The left-most graph is a zoomed in display of the micro-F1, precision,
and recall values.
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Figure 4.11: Multi-label Classification: Comparison of micro-F1 score, precision, and recall between
(A) Bidirectional LSTM models, (B) BERT-based models, and (C) Efficient Transformer models.
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Figure 4.12: Multi-label Classification: Comparison of micro-F1 score, precision, and recall between
(A) BERT-based models and (B) Efficient Transformer models.
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in CT scan reports as it may warrant careful monitoring and often urgent intervention.
Thus, our multi-label classification task includes two labels; one with well-balanced
classes (granulomatous disease) and the other imbalanced (pneumothorax).

Non-contextual embeddings

Interestingly, the general domain word2vec model trained on an English Wikipedia
corpus performed at least as well as, if not better than, our custom NCWE mod-
els trained using the word2vec or fastText algorithms and BioWordVec on both
extrinsic evaluation tasks. This finding suggests that there may not be a clear or
sizable advantage in using an in-domain non-contextual embedding model on extrinsic
evaluation performance. For instance, I found that logistic regression and BiLSTM
models using the English Wikipedia trained word2vec embedding were equivalent
or marginally outperformed models trained with our custom word2vec model and
BioWordVec on all studied performance metrics (Tables 4.2, 4.3, 4.6, 4.7).

Similarly, our binary and multi-label classification results show that models trained
using either the word2vec or fastText algorithm do not reveal a consistent or demon-
strable advantage over one another. Comparing only word2vec and fastText embed-
dings, the logistic regression model trained using our custom fastText embeddings
performed best. Yet, the BioWordVec embeddings, which were trained using the
fastText algorithm, performed less well in all metrics compared to our custom and
English Wikipedia trained word2vec embeddings (Table 4.2 and 4.6). Comparing
BiLSTM models trained only on word2vec and fastText NCWE models, the opposite
to what was found with logistic regression models was seen. Among BiLSTM models,
BioWordVec performed better than or as well as both custom and Wikipedia trained
word2vec embeddings, and our custom fastText embeddings ostensibly performed less
well, but this difference was not significantly different (Table 4.3).

Of note, I trained each of our logistic regression and BiLSTM models by freezing the
embedding layer weights, i.e. the embedding model weights remained fixed to their
original values. This strategy was selected as our objective was to perform extrinsic
evaluation of each embedding models’ learned representations based on the trained
corpus and algorithm. Unfreezing these weights and allowing them to be updated
during fine-tuning may yield different results.

The special case of Spherical embeddings

Our results highlight the inconsistency and instability in extrinsic evaluation perfor-
mance using spherical embedding (JoSE) models. I found that logistic regression and
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BiLSTM models trained using spherical embeddings (JoSE) provided either the best or
worst performance on different metrics. Using logistic regression, our custom spherical
embeddings trained performed best across all metrics (Table 4.2; Figure 4.1). By
contrast, the BiLSTM model trained using our custom spherical embeddings yielded
the lowest mean accuracy, F1-score, and recall compared to all other embeddings
(Table 4.3; Figure 4.2). With the exception of the logistic regression model trained
using our custom spherical embeddings, there is larger variance in performance for
each model trained with spherical embeddings as evidenced in Figures 4.2 and 4.8.
The instability of spherical embeddings is further evidenced by our experience with
BiLSTM model fine-tuning; model convergence issues were only noted with BiLSTM
models using either our custom or English Wikipedia trained spherical embeddings.
As described in Section 4.1.8, BiLSTM models using our custom spherical embeddings
and English Wikipedia trained spherical embeddings only converged after increasing
the learning rate. Table 4.1 shows that the label distribution in each of our 5 folds is
similar, which makes this unlikely to have contributed to training issues. The spherical
embedding training algorithm jointly learns word and paragraph embeddings, and has
been shown to outperform other embedding models on a variety of general-domain
NLP tasks: intrinsic evaluation, document clustering, and document classification
(Meng et al. 2019). Clinical text is quite distinct from other general text corpora as
described in Section 2.1. In clinical documents, neighboring paragraphs can contain
very different information. This idiosyncratic document structure may make the
spherical embedding joint learning strategy ill-suited for use in the clinical domain.

I found in Section 3.2.2 that term pair cosine similarity judged by our custom spherical
embedding model was skewed relative to the equivalent models trained using the
word2vec and fastText algorithms (See Figure 3.2). Although it is plausible that
this skewed representation may have influenced the need for a higher learning rate,
the English Wikipedia trained word2vec embedding model was also found to be
skewed and did not require similar modification. Thus, these challenges seem to be
unique to spherical embedding models and further evaluation of spherical embedding
representations and training strategies is needed.

Contextual embeddings

BERT-based models: For both binary and multi-label classification, I consistently
found that our custom RadBERT model outperformed the base BERT model and
BlueBERT model. As shown in Tables 4.4 and 4.8, our omnibus test shows a significant
difference between the models on all metrics except for precision in the case of binary
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classification (p = 0.53). Additionally, the variance of the RadBERT model across all
studied metrics is smaller than seen in the other models (Tables 4.4 and 4.8; Figures
4.3 and 4.9). Overall, these findings demonstrate the consistent gains in performance
afforded by pre-training a BERT-based model on an in-domain corpus a general model
(base BERT model) or biomedical model (BlueBERT).

Despite being pre-trained on a large biomedical and sizable clinical text corpus, the
BlueBERT model surprisingly performed no better than the base BERT model in
either the binary or multi-label classification tasks. In fact, I found that the multi-label
classification macro-F1 score for the base BERT model was significantly higher than
that for the BlueBERT model. The lack of improved classification performance using
BlueBERT compared to the base BERT model runs counter to previously published
findings of BlueBERT and other clinical or biomedical BERT-based models (Peng,
Yan, and Lu 2019; Beltagy, Lo, and Cohan 2019; Alsentzer et al. 2019; Lee et al. 2020).
BlueBERT was pre-trained on the PubMed corpus, which includes title, abstract,
and article text for tens of millions covering a breadth of scientific literature, and an
intensive care clinical text corpus. This combined biomedical and clinical text corpus
may contain relatively few radiology reports as a subset of the MIMIC-III corpus.
As described in Section 2.1, clinical text is quite distinct from other domains and
may vary by specialty, clinical setting, region of practice, and other factors. Thus,
BlueBERT and many other biomedical BERT-based models trained on similar corpora
may not be considered an in-domain model for processing radiology report text.

An additional limitation of the BlueBERT model is that it relies on the original BERT
tokenizer, rather than a custom tokenizer trained on PubMed and MIMIC-III corpora
(Peng, Yan, and Lu 2019). One of the advantages of using a custom tokenizer is the
ability to capture more information given the input sequence length limitation of
BERT-based models of 512 tokens. As depicted in Figure 4.13, our custom RadBERT
tokenizer can capture more information in fewer tokens than the original BERT
tokenizer. This may help limit the possibility of information loss and could partly
explain RadBERT’s superior performance. SciBERT is one example of a publicly
available biomedical BERT-based model pre-trained on a large biomedical corpus that
uses a custom tokenizer (Beltagy, Lo, and Cohan 2019). A novel transformer model
was recently introduced to overcome some of these limitations of tokenization and
maintaining a vocabulary. Character Architecture with No tokenization In Neural
Encoders, or CANINE, performs tokenization-free language modeling by operating
directly on unicode character sequences rather than tokens (Clark et al. 2021).
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WordPiece Tokenizer

BERT-base tokenizer

Our custom tokenizer

Apical bullae and no evidence of pneumothorax

'apical',  'bullae',  'and',  'no',  'evidence',  'of',  'pneumothorax'

'apical', 'bull', '##ae', 'and', 'no', 'evidence', 'of', 'p', '##ne', '##um', '##otho', '##ra', '##x'

Input sentence

Figure 4.13: Example of text tokenization comparing our custom tokenizer and the BERT-base
tokenizer. The input sequence is 7 words in length. Our custom tokenizer returns 7 tokens; BERT-
original returns 13 tokens.

One of the limitations of BERT and BERT-based language models is their large
size. Training of these models requires access to sufficiently large GPU memory and
can take several hours to days for pre-training depending on the GPU or tensor
processing capacity (TPU) one has available. Despite this large upfront training cost,
the advantage includes the ability to apply these models to achieve state-of-the-art
(SOTA) or near-SOTA performance on a wide range of downstream NLP tasks with
relatively little effort.

Researchers are actively developing methods to reduce the model size and training
efficiency without significantly compromising model performance, such as model
distillation (M. Gupta and Agrawal 2021). Sanh et al. used model distillation to
reduce the size of a BERT model by 40% while maintaining 97% of the BERT model
natural language understanding ability. The DistilBERT model also 60% faster than
the base BERT model (Sanh et al. 2020).

Efficient Transformer models: Our efficient transformer models are the Longformer
model equivalent of the BERT-based models: base, uncased BERT, BlueBERT, and
our custom RadBERT model. For binary classification, the performance across all
studied metrics is comparable (Table 4.5 and Figure 4.4). For multi-label classification,
our results indicate that the Longformer variant of RadBERT provides a modest
improvement over the other models at least in terms of accuracy and macro-F1 score.
Beltagy et al. show that pre-training Longformer models adapted from BERT-based
model further can provide additional performance improvements (Beltagy, Peters, and
Cohan 2020). I did not perform additional pre-training of each of our Longformer
models, but this may be considered in future work to evaluate for gains in model
performance.

Each of our Longformer models uses the same tokenizers as their BERT-based model
counterparts. Thus, our Efficient Transformer models are equally subject to the same
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limitations of these tokenizers as outlined above. The Longformer models scale linearly
with input sequence length, whereas the BERT-based models scale quadratically. This
reduced complexity, allows the Longformer models to accept longer input sequence
lengths. This may partly mitigate the potential for information loss seen with the
equivalent BERT-based models. Despite the improvement in computational complexity,
the additional parameters to account for the local sliding window attention and global
attention renders these models larger than their BERT-based counterparts. This even
larger model size may again serve as an impediment for use among those without
access to adequate GPU or TPU resources. Methods for language model compression,
such as knowledge distillation and pruning, may also be effective at reducing model
size and speed while maintaining performance (M. Gupta and Agrawal 2021). As
efficient transformer methods have only recently been introduced, the effects of such
compression methods on these novel models remains to be explored.

Comparison of Model Architectures

Overall, each of our logistic regression models consistently perform less well than the
other model architectures studied: BiLSTM, BERT-based, and Efficient Transformer
models. For the binary classification task, each of our BiLSTM models tended
to outperform the base BERT and BlueBERT models. The exception being our
BiLSTM model trained using our custom spherical embedding model. BiLSTM
model performance was also comparable to RadBERT and each of our three Efficient
Transformer models (Figure 4.5). Ezen-Can et al. compared classification performance
between BiLSTM and base BERT models fine-tuned on a small corpus. Similar to
our binary classification findings, they found that their BiLSTM model significantly
outperformed the BERTmodel (Ezen-Can 2020). As expected, BiLSTMmodels trained
more quickly than the BERT-based and Efficient Transformer models. Additionally,
BiLSTM models typically comprise far fewer parameters and have a much smaller
memory footprint than BERT models. This makes BiLSTM models much more
accessible, especially in settings with GPU constrained resources.

On the multi-label classification task, our BiLSTM models were similar in performance
to the BlueBERT and base BERT models and performed less well than RadBERT
and the Efficient Transformer models (Figure 4.11). In other words, the performance
gains of BiLSTM models over base BERT and BlueBERT observed in the binary
classification task fail to hold in the multi-label classification setting. Recall that
multi-label classification includes the pneumothorax label, which is heavily imbalanced
(See Section 4.2.2). Thus, this difference in performance may be due to BiLSTM
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models being less resilient to class imbalance than BERT-based models. One of the
advantages of transformer models is they perform well even on imbalanced classification
tasks (Tayyar Madabushi, Kochkina, and Castelle 2019). For training, I used the
binary cross entropy loss function, but one may find improvement in BiLSTM model
performance using other loss functions that may be better-suited for imbalanced
classification, such as Dice loss (Li et al. 2020).

As shown in Figures 4.6 and 4.12, each of the Longformer models often performs better
than their BERT-based model counterparts. The exception being equivalent or slightly
reduced precision for each of our Longformer variants in the binary classification
setting. This improvement in model performance is in accordance with Beltagy et
al.’s findings, which showed that the Longformer variant of RoBERTa outperformed
the base RoBERTa model (Beltagy, Peters, and Cohan 2020). These gains are likely
attributable to the Longformer model’s ability to accept longer text input sequences
(4096 tokens, compared to 512 tokens for BERT-based models) and avoid information
loss. Additionally, Beltagy et al.’s ablation studies evaluating the utility of the local
sliding window attention and global attention suggest that the Longformer model’s
dual attention scheme may provide an additional advantage over BERT’s singular
local self-attention mechanism (Beltagy, Peters, and Cohan 2020).

During annotation, I commonly found that radiology reports often used capitalization
to emphasize atypical findings, e.g. “LEFT-sided pneumothorax.” Although I use the
uncased BERT models in this study, use of the cased model may improve classifica-
tion performance for conditions where capitalization is used to emphasize abnormal
radiographic findings. Future studies should also examine if these findings are upheld
across other transfomer or efficient transformer architectures, such as OpenAI’s Gen-
erative Pre-trained Transformer 2 (GPT-2) or Google Research’s efficient transformer
models Reformer and Big Bird (Radford et al. 2019; Kitaev, Kaiser, and Levskaya
2020; Zaheer et al. 2020). Other transformer and efficient transformer models rely
on alternative pre-training strategies or use different attention mechanisms, and it
remains to be seen how these may impact clinical NLP performance.

4.4 Conclusion
This study explored extrinsic evaluation performance of different word embedding
models using binary and multi-label phenotype classification tasks. Overall, neural
network frameworks yield significant gains over logistic regression models. In select
circumstances, Bidirectional LSTM models can perform as well as, if not better than,
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publicly available BERT-based models, and may be most preferred if computing re-
sources are constrained. Among non-contextual embedding models, no one embedding
illustrated a clear and consistent advantage over the others using either logistic regres-
sion or BiLSTM frameworks. The word2vec or fastText-based embeddings appear to
be equally performant and may be preferred over spherical embeddings for phenotype
classification. Moreover, the use of in-domain non-contextual word embeddings may
not be as vital for downstream NLP classification performance as would be expected.
BERT-based models provide a robust baseline and pre-training a custom BERT model
and tokenizer offers a demonstrable performance improvement over BiLSTM and
publicly available BERT-based models. Efficient Transformer models are as robust
and tend to provide the best phenotype classification results compared to their BERT
model counterparts. Efficient Transformer models provide many of the advantages
of BERT-based models while also being capable of processing long text sequences
making it ideal for clinical NLP tasks involving lengthy clinical documents, such as
radiology reports.
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CHAPTER 5

CONCLUSIONS

Given the paucity and limitations of existing clinical intrinsic evaluation (IE) bench-
marks, I developed two new IE methods: term pair similarity to assess non-contextual
word embeddings and cloze task accuracy for contextual word embedding models.
Using this method, I was able to quantitatively compare embedding model representa-
tions against clinician judgment. Each of our IE tasks revealed that models pre-trained
on a combined biomedical and clinical text corpus were better or equivalent to models
pre-trained on our domain-specific clinical corpus. As expected, our custom embedding
models outperformed publicly available embeddings trained on general corpora, such
as English Wikipedia. I had hypothesized that spherical embedding models would
provide the best IE performance, mirroring the results from published findings on
general domain benchmarks. Yet, our findings suggest that the training objective
for the spherical embedding algorithm, albeit well-suited for general corpora, may be
improper for use with many clinical documents due to their idiosyncratic structure.

We detail our data-driven approach for more rapid development of term pair similarity
IE tasks. This may serve as a framework for other researchers to efficiently develop
additional IE benchmarks and probing tasks. Developing and conducting intrinsic
evaluation of these and other clinical NLP models is necessary to promote trust and
clinical adoption of these tools.

While ensuring that model representations are well aligned with clinician judgment
is pivotal, such models must also demonstrate effective performance on downstream
clinical NLP tasks. I curated a set of 5,000 radiology reports and annotated each
for the presence or absence of 2 clinical conditions for our extrinsic evaluation (EE)
tasks. Comparing performance using different algorithms, there is a clear advantage
using neural network methods over logistic regression models. Embedding models
pre-trained on a domain-specific corpus appeared to provide improved classification
performance for transformer (BERT-based) and Efficient Transformer models. Yet, the
advantage from domain-specific pre-training did not extend to non-contextual word
embedding models. These findings suggest that the use of in-domain non-contextual
word embeddings may not be as vital for phenotype classification performance as
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originally hypothesized. As hypothesized, the Efficient Transformer models overall
were robust and outperformed their BERT model counterparts. Contrary to our
hypothesis, BiLSTM models trained using word2vec of fastText embeddings were
competitive with our custom RadBERT model and each of Efficient Transformer
models in our binary classification task and competitive with the publicly available
BERT-base models on multi-label classification. Although transformer models are
often considered state-of-the-art, I found that BiLSTM models work just as well and
should be a viable option for clinical NLP involving long text documents or where
computing resources are limited.

Overall, intrinsic evaluation performance fails to correlate with extrinsic evaluation
findings; our models that perform best on IE tasks often do not perform best on EE
tasks. For instance, on cloze task evaluation our custom RadBERT model was equiva-
lent to the publicly available BlueBERT model, but on EE, RadBERT consistently
outperforms the BlueBERT model. Moreover, among our non-contextual embeddings,
the publicly available word2vec model pre-trained on the English Wikipedia corpus
was among the poorest models in our IE task, but was comparable in performance
with our custom NCWEs and BioWordVec. These findings illustrate that different
word representations may perform better for different tasks.

Extending from this work, I aim to develop additional model evaluation tasks to
investigate for bias and protected health information (PHI) retention. Lehman et
al. used a series of probing tasks in an effort to extract PHI from a BERT model
pre-trained on the MIMIC-III clinical text corpus and were unsuccessful in doing
so (Lehman et al. 2021). It remains unclear if and how successful such probing
efforts would be on a BERT model pre-trained using other clinical text corpora, such
as VUMC’s de-identified or PHI-containing clinical documents. Further study in
this area may help facilitate development and distribution of useful language models
for clinical NLP research. I also wish to extend our work with clinical embeddings
to develop clinical text data augmentation methods. In the general NLP domain,
text data augmentation, akin to image augmentation procedures, is an effective
training strategy shown to improve classification performance and generalizability.
Yet, clinical text fails to adhere to traditional grammar rules and other general
linguistic properties, necessitating development of text data augmentation specific
to clinical text. Furthermore, I wish to compare phenotyping performance using
other Efficient Transformer models and other novel transformer architectures, such as
the tokenization-free CANINE model. Lastly, I wish to augment our non-contextual
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embedding models using biomedical knowledge graphs to see how this may impact
intrinsic and extrinsic evaluation performance.
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