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CHAPTER 1

Preliminaries

1.1 Introduction

Much of geometric group theory is concerned with the large-scale geometry of groups considered as metric

spaces. One of the fundamental concepts of geometry is that of dimension. Thus, one should have a notion

of the dimension of a metric space which only sees its large-scale structure. There are many such notions

of dimension, two of which are the subject of this paper. These are asymptotic dimension (asdim) and

asymptotic Assouad-Nagata dimension (asdimAN). In this dissertation, we consider them in the following

contexts, from most general to most specific.

• Arbitrary metric spaces. For a metric space X equipped with any metric, asdim(X) or asdimAN(X) can

be any natural number, or ∞. When the metric is fixed we always have asdim(X)≤ asdimAN(X).

• Countable groups. If G is a countable group, then we assume G is equipped with a proper left-invariant

metric: in particular, G is discrete. While asdimAN(G) may depend on the proper left-invariant metric

chosen, asdim(G) is independent of this choice.

• Finitely generated groups. If G is a finitely generated group, then G is assumed to be equipped with

the word metric with respect to a finite generating set. In this case both asdim(G) and asdimAN(G) are

independent of the choice of finite generating set.

Remark. For discrete groups, asymptotic Assouad-Nagata dimension and Assouad-Nagata dimension (usu-

ally abbreviated dimAN) are equivalent. Since all groups mentioned in this paper will be discrete, whenever

we speak of groups we will use the shorter “Assouad-Nagata dimension,” which we continue to denote by

asdimAN.

These two invariants have turned out to be useful tools in geometric group theory. We refer the reader to

[1] or [2] for a good introductory survey on asymptotic dimension in group theory, and to [3] for many of the

corresponding results for Assouad-Nagata dimension. In the next section we will give a brief introduction

to asymptotic dimension and Assouad-Nagata dimension, providing the precise definitions and stating the

results needed in later sections. For now we avoid definitions, instead focusing on the history of asymptotic

dimension and Assouad-Nagata dimension, their importance to group theory and to mathematics in general,

and their relationship to each other.
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Asymptotic dimension was introduced by Gromov in his landmark 1993 paper [4], intended to serve as

a large-scale analogue to the Lebesgue covering dimension of a topological space. Since then, the study of

asymptotic dimension has yielded some deep results in mathematics, most notably regarding the Novikov

Conjecture. This conjecture can be rephrased as a statement about the class of all groups, so the Novikov

conjecture is true if every group satisfies it. In 1998, Yu proved the following theorem.

Theorem 1.1.1. [5, Theorem 1.1] Let G be a finitely generated group whose classifying space BG has the

homotopy type of a finite CW-complex. If G has finite asymptotic dimension, then G satisfies the Novikov

conjecture.

The result is all the more powerful since the class of finitely generated groups with finite asymptotic di-

mension is quite large. It includes hyperbolic groups [6], one-relator groups [7], Coxeter groups [8], mapping

class groups, braid groups, and certain types of Artin and Torelli groups [9], and is closed under subgroups,

extension [10], amalgamated products [8], HNN extensions [11], and relative hyperbolicity [12].

Asymptotic Assouad-Nagata dimension (asdimAN) was first defined in 1982 by Assouad and influenced

by the work of Nagata [13]. It can be considered a more “restrictive” version of asymptotic dimension,

in the sense that asdimAN(X) ≤ n is by definition a harder condition to satisfy than asdim(X) ≤ n, hence

asdim(X) ≤ asdimAN(X) for every space X with a fixed metric. In particular, groups with finite Assouad-

Nagata dimension also have finite asymptotic dimension, and thus satisfy the Novikov conjecture. It is

also true that in many cases, theorems regarding asdim have corresponding analogues for asdimAN: see [3]

for examples. However, the study of asymptotic Assouad-Nagata dimension in its own right has produced

some interesting results that set it apart from asymptotic dimension theory. For one, spaces with asymptotic

Assouad-Nagata dimension at most n admit a quasi-symmetric embedding into a product of n+1 metric trees

[14]. Another interesting fact is that a Morita-type theorem holds for asymptotic Assouad-Nagata dimension:

that is, for any metric space X , we have that asdimAN(X ×R) = asdimAN(X) + 1 [15]. Neither of these

properties are known to hold for asymptotic dimension.

So far we have not ruled out the possibility that asymptotic dimension and Assouad-Nagata dimension

are merely the same invariant by different names. However, this is not the case. In 2010, Higes proved the

following theorem.

Theorem 1.1.2. [16] For any n ∈ N∪{∞} there exists a countable, locally finite group Gn and a proper

left-invariant metric dn on Gn such that asdim(Gn,dn) = 0 but asdimAN(Gn,dn) = n.

Asymptotic dimension and Assouad-Nagata dimension may differ even among finitely generated groups.

A result by Brodskiy, Dydak, and Lang on the Assouad-Nagata dimensions of wreath products of groups

provides a class of examples such as the following.
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Theorem 1.1.3. [17] We have asdim(Z2 ≀Z2) = 2 but asdimAN(Z2 ≀Z2) = ∞.

In the examples constructed in [17], the Assouad-Nagata dimension is always infinite. In [16], Higes asks

whether this is always the case.

Question 1.1.4. [16, Question (2)] Does there exist a finitely generated group G such that

asdim(G)< asdimAN(G)< ∞?

Given a way of defining the dimension of an algebraic structure, it is natural to ask whether it is monotonic

with respect to substructures: that is, whether A ⩽ B implies that the dimension of A is no greater than the

dimension of B. Is our dimension like that of a vector space, where this natural monotonicity holds, or is it

like the rank of a free group, where it fails spectacularly? Since asymptotic dimension is well defined for any

countable group, it follows that if G is a countable group and H ⩽ G, then asdim(H)≤ asdim(G). Previously,

it was unknown whether the same was true of Assouad-Nagata dimension.

Question 1.1.5. [3, Questions 8.6 and 8.7] Does there exist a finitely generated group G with a finitely

generated subgroup H such that asdimAN(G)< asdimAN(H)?

In this dissertation we answer both of these questions with the following theorem.

Theorem 1. For every k,m,n ∈ N∪ {∞} with 4 ≤ k ≤ m ≤ n, there exist finitely generated, recursively

presented groups H and G with H ⩽ G, such that

asdim(G) = k

asdimAN(G) = m

asdimAN(H) = n .

Note that if H ⩽ G but asdimAN(H) > asdimAN(G), it must be that H is distorted in G, and that this

distortion collapses H to a space of lesser Assouad-Nagata dimension. However, distortion does not always

affect the Assouad-Nagata dimension of the distorted subgroup. For example, in BS(1,2) = ⟨a,b | b−1aba−2⟩,

the subgroup ⟨a⟩ is distorted, but still has Assouad-Nagata dimension 1. We call distortion which affects

Assouad-Nagata dimension Assouad-Nagata dimension distortion. The author hopes that Assouad-Nagata

dimension distortion will be an interesting phenomenon to study in its own right, and that more examples can

be found in nature.

We construct a group G satisfying the conclusion of Theorem 1 in the following way. First, we adapt

Higes’ example from Theorem 1.1.2 to construct a countable, locally finite abelian group K with proper left-

invariant metrics dm and dn such that asdimAN(K,dm) = m and asdimAN(K,dn) = n. We then build finitely
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generated groups A and B as short exact sequences

1 → KA → A → HA → 1

1 → KB → B → HB → 1
(1.1)

where KA and KB are isomorphic and bi-Lipschitz equivalent to (K,dm) and (K,dn), respectively. The group

G from Theorem 1 is then the amalgamated product A∗φ B, where φ : KA → KB is an amalgamating isomor-

phism. The idea is that asdimAN(KB) = n when considered as a subspace of B, thus asdimAN(B)≥ n. But φ

“crushes” KB to the size of KA within G, lowering the asymptotic dimension of G to m. The difficulty is in

proving that each group mentioned above has the asymptotic and Assouad-Nagata dimension that we claim

it does. For this we use small cancellation theory.

Historically, small cancellation theory has played an important role in geometric group theory. Groups

satisfying the small cancellation condition C′(1/6) are often used to create groups satisfying various exotic

properties, the most famous example being the Rips construction. In our construction of a group G as in

Theorem 1, the groups HA and HB from (1.1) are given by carefully-chosen C′(1/6) presentations. We then

use techniques of small cancellation theory to prove results guaranteeing that A and B satisfy the desired

metric properties. The main result that allows the construction to work is the following theorem, which we

believe is of independent interest.

Theorem 2. If G is a finitely generated C′(1/6) group, then asdimAN(G)≤ 2.

We note that in the finitely presented case, this fully classifies the Assouad-Nagata dimension of C′(1/6)

groups. Since a finitely presented group has asymptotic dimension 1 if and only if it is virtually free [18,19],

Theorem 2 implies that the Assouad-Nagata dimension of a finitely presented C′(1/6) group is 1 if the group is

virtually free, and 2 otherwise. However, the finitely presented case of Theorem 2 was likely already known

to experts. Although apparently not in the literature, a MathOverflow post by Agol [20] shows how to obtain

that asdim(G) ≤ 2 for G a finitely presented C′(1/6) group, using a theorem of Buyalo and Lebedeva that

asdim(G) = dim(∂G)+1 when G is hyperbolic [21].

The real importance of Theorem 2 is that it applies to infinitely presented C′(1/6) groups, and that with this

fact one can readily apply the techniques of small cancellation theory to the study of asymptotic dimension.

Indeed, in the construction of G from Theorem 1, the auxiliary C′(1/6) groups HA and HB must be infinitely

presented for the construction to work. One might then wish to derive Theorem 2 for infinitely presented

groups using the same result for finitely presented groups, but this approach cannot work in general. This is

because in [22], Osajda constructs a sequence of groups and surjective homomorphisms G0 → G1 → G2 →

·· · such that asdim(Gn) = 2 for all n ∈ N, but the inductive limit of the sequence has infinite asymptotic
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dimension.

Instead, the proof of Theorem 2 uses a version of the “tight geodesics” technique pioneered by Bowditch

in [23]. As we believe it is of independent interest, we section it off as Proposition 2.1.4. This technique

has been used previously to show that certain hyperbolic spaces have finite asymptotic dimension [6, 9, 23].

Although infinitely presented C′(1/6) groups are not hyperbolic, they have enough hyperbolic-like properties

to use the tight geodesics strategy. Specifically, the key property is that simple geodesic triangles can take

a limited number of forms, which are classified in Strebel’s appendix to Ghys and de la Harp’s book on

hyperbolic groups [24]. The proof of Theorem 2 seems to be the first application of this technique in a

non-hyperbolic setting.

The paper is organized as follows. The first four sections are devoted to proving Theorem 2. In Sec-

tion 1.2 we review the definitions of asymptotic dimension and asymptotic Assouad-Nagata dimension, and

collect various results from the literature that are needed in later sections. In Section 2.1, we introduce the

notion of an (ε,k)-tight geodesic combing for ε > 0 and k ∈ N, and show that a geodesic metric space ad-

mitting a (ε,k)-tight geodesic combing for some ε > 0 has asymptotic Assouad-Nagata dimension at most

k. In Section 2.2 we give some preliminaries on van Kampen diagrams and the classical small cancellation

condition C′(1/6). We also review the classification of van Kampen diagrams over simple geodesic triangles

in C′(1/6) groups due to Strebel, the essential tool needed in the proof of Theorem 2. In Section 2.3 we use

Strebel’s classification to prove that C′(1/6) groups admit a (1/12,2)-tight geodesic combing, and thus have

Assouad-Nagata dimension at most 2.

Sections 3.1-3.3 are devoted to proving Theorem 1. In Section 3.1, we fix countable group K, constructed

as a direct sum of cyclic groups of increasing order. We then show that for each m,n ∈ N∪{∞} with m < n,

there are two different proper left-invariant metrics on K such that asdimAN(K) = m with respect to one,

and asdimAN(K) = n with respect to the other. In Section 3.2, we use techniques from small cancellation

theory to establish a highly technical lemma. This lemma allows us to quasi-isometrically embed K, with

respect to each proper left-invariant metric, into a finitely generated group. In Section 3.3, we embed K into

finitely generated groups A and B. This is done is such a way that, calling KA the copy of K in A and KB

the copy of K in B, we have that asdimAN(KA) = m and asdimAN(KB) = n. We then identify the two with an

isomorphism φ : KA → KB, and let G = A∗φ B. Our technical small cancellation lemma comes back to help

us a second time by showing that φ “crushes” the image of KB in G to the size of KA. With a few calculations

using well-known extension theorems for asymptotic and Assouad-Nagata dimension, we are able to prove

the following.

Proposition 1. For any m,n ∈ N∪{∞} with m < n, there exists a group G = A∗φ B where G, A, and B are
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finitely generated and recursively presented, such that

1 ≤ asdim(G)≤ 2

m+1 ≤ asdimAN(G)≤ m+2

n+1 ≤ asdimAN(B)≤ n+2 .

Using the free product formulas for asymptotic and Assouad-Nagata dimension and the Morita theorem

for Assouad-Nagata dimension, it is then easy to derive Theorem 1 from Proposition 1.

There are many technical restrictions placed on the presentations of A and B from Proposition 1. In

Section 3.4 we give explicit presentations where these conditions are satisfied. Curiously, although we are

able to give an explicit presentation of a group G satisfying the conditions of Proposition 1, we are not quite

able to do the same for Theorem 1. However, we can explicitly give presentations of two groups, one of

which must be a group satisfying the conclusion of Theorem 1.

1.2 Overview of Asymptotic Dimension

Conventions. When talking about metric spaces, we suppress notation referring to the metric as much as

possible. Thus when we say that X is a metric space, we mean that (X ,d) is a metric space with metric

d. The letter d always stands for a metric, on whatever set makes sense in context. Occasionally we use

subscripts, e.g. dX stands for the metric on X and dY stands for the metric on Y , but only when failing to do

so would cause confusion. Since we are concerned here with asymptotics, a linear function will really mean

a function whose growth is linear, i.e. an affine function, and not a function which is linear in the sense of

linear algebra. In this paper, 0 ∈ N. The set of positive integers is Z+. The set of positive real numbers is

denoted R+, and the set of non-negative real numbers is R+
0 .

1.2.1 Metric spaces

The first appearance of asymptotic dimension is in Gromov’s [4], where it is introduced as a large-scale analog

of the Lebesgue covering dimension, or topological dimension, of a topological space. So before defining

asymptotic dimension, we will define topological dimension. Let X be a topological space, U a cover of X .

The multipilicity of U is defined to be the maximum cardinality of a subset of U whose elements all contain

a common point, if this maximum is finite. We say that the multiplicity of U is ∞ if this maximum is infinite

or there is no maximum. We say that a cover V of X refines U if every element of V is contained in some

element of U .

Definition 1.2.1. Let X be a topological space. Then we write dim(X) ≤ n if for every cover U of X there
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exists a cover V of X of multiplicity at most n+1 which refines U . The topological dimension of X , denoted

dim(X), is defined to be the least n ∈ N such that dim(X)≤ n. If no such n exists, we write dim(X) = ∞.

Before continuing, we fix notation. Let X be a metric space. The open ball of radius r about x ∈ X is

denoted B(x,r). The diameter of a set A ⊂ X , denoted diam(A), is defined to be sup{d(a,a′) | a,a′ ∈ A}. We

say that A is D-bounded if diam(A)≤ D. If A,B ⊆ X , then d(A,B) is defined to be inf{d(a,b) | a ∈ A,b ∈ B},

and we write d(a,B) for d({a},B). If U is an arbitrary family of subsets of X and D > 0, then U is uniformly

D-bounded if diam(U) ≤ D for all U ∈ U . We say that U is uniformly bounded if there exists D > 0 such

that U is uniformly D-bounded.

Now we are ready to define asymptotic dimension.

Definition 1.2.2. Let X be a metric space. We write asdim(X) ≤ n if for every uniformly bounded open

cover U of X , there exists a uniformly bounded open cover V of X of mulitplicity at most n+ 1, such that

U refines V . The asymptotic dimension of X , denoted asdim(X), is defined as the least n ∈ N such that

asdim(X)≤ n. If no such n exists, we write asdim(X) = ∞.

For metric spaces, Definitions 1.2.1 and 1.2.2 are exactly the same except in the last line, where the answer

to the question “which cover refines which?” is reversed. In topological dimension, we start with a cover and

lower its multiplicity by passing to a “smaller” cover. In asymptotic dimension, we start with a cover of a

space and reduce its multiplicity by passing to a “larger” one. For this reason asymptotic dimension is often

considered “dual” to topological dimension. Indeed, there are at least six equivalent definitions of asymptotic

dimension, most of which are “dual” to a definition of topological dimension: for an interesting side-by-side

comparison, see [25]. We list those six definitions after introducing a bit more notation.

For the following definitions, let X be a metric space, V a cover of X , U an arbitrary family of subsets

of X , and r > 0.

The r-multiplicity of V is the maximum, over all x ∈ X , of the number of elements of V met by B(x,r).

If this maximum is infinite or there is no maximum, we write that the r-multiplicity of V is ∞. The Lebesgue

number of V is the infimum of all positive real numbers λ such that, for any A ⊆ X , diam(A) < λ implies

that A ⊆V for some V ∈ V .

We say U is r-disjoint if d(U,U ′)≥ r for all U,U ′ ∈ U .

Given A ⊆ X , an r-path from a to a′ in A is a sequence a = a0, . . . ,an = a′ of elements of A, such that

d(ai,ai+1) < r for all i ∈ {0, . . . ,n−1}. A subset B ⊆ A is r-connected if there is an r-path from b to b′ for

all b,b′ ∈ B. An r-component of A is a maximal r-connected subset of A.

Let K be a countable simplicial complex. Then the uniform metric on K is defined by mapping the vertices

of K to points which form an orthonormal basis for ℓ2, extending affinely, and giving K the subspace metric
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that its image inherits from ℓ2. If K is endowed with the uniform metric, we call K a uniform simplicial

complex. A map ϕ : X → K is D-cobounded if diam(ϕ−1(σ)) < D for all simplices σ in K. For a constant

a > 0, a map ϕ : X → K is a-Lipschitz if d(ϕ(x),ϕ(x′))≤ ad(x,x′) for all x,x′ ∈ X .

Definition 1.2.3. [1, 2, 15, 17] Let X be a metric space, n ∈ N. Then asdim(X)≤ n if for all arbitrarily large

r > 0 there exists an D > 0 such that any one of the following conditions hold:

(a) For every cover U of X which is uniformly r-bounded, there exists a cover V of X such that U refines

V , V has multiplicity at most n+1, and V is uniformly D-bounded.

(b) There exists a cover V of X which has r-multiplicity at most n+1 and is uniformly D-bounded.

(c) There exist n+1 families of sets U0, . . . ,Un whose union covers X , such that each Ui is r-disjoint and

uniformly D-bounded.

(d) There exists a cover {X0, . . . ,Xn} of X such that the r-components of each Xi are uniformly D-bounded.

(e) There exists a cover V of X with Lebesgue number at least r and multiplicity at most n+1, which is

uniformly D-bounded.

(f) There exists a 1
r -Lipschitz, D-cobounded map ϕ : X → K, where K is a uniform simplicial complex of

dimension n.

The equivalence of all of the above definitions except for (d) is proved in [2], and the equivalence of (d)

with, say, (c), is an easy exercise. Note that in Definition 1.2.3, D depends on r. We say that a function

D : R+ → R+ is an n-dimensional control function for X if for all r > 0, X satisfies asdim(X) ≤ n with

D = D(r). Notice that replacing r by some r′ < r weakens any of the predicates (a)-(f). Therefore we can

assume without loss of generality that any n-dimensional control function for X is non-decreasing.

Asymptotic Assouad-Nagata dimension is a version of asymptotic dimension in which the control func-

tion is required to be linear.

Definition 1.2.4. [3, 15] Let X be a metric space. Then we write asdimAN(X)≤ n if there exist a,b > 0 such

that D(r) = ar+b is an n-dimensional control function for X . The asymptotic Assouad-Nagata dimension of

X , denoted asdimAN(X), is defined as the least n ∈N such that asdimAN(X)≤ n, if such an n exists; otherwise

we write asdimAN(X) = ∞.

Given a fixed r > 0, it is quite possible that the n-dimensional control function D(r) arising from the

equivalent definitions of asymptotic dimension depends on which definition you choose. However, through
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tedious calculation it is possible to prove that if the control function according to one definition is linear, then

all of them are.

Some (but not all) properties of asymptotic dimension also hold for asymptotic Assouad-Nagata dimen-

sion. In order to avoid having to say many things twice, if asdim(AN) appears in a sentence, then the sentence

holds true for asdim, and also when asdim is replaced with asdimAN consistently throughout the sentence.

Exercise 1.2.5. The following facts about asymptotic dimension and asymptotic Assouad-Nagata dimension

are quite useful, but also easy to prove.

• For any metric space (X ,d) we have asdim(X ,d)≤ asdimAN(X ,d).

• For any metric space (X ,d) and A ⊆ X , we have asdim(AN)(A,d|A×A)≤ asdim(AN)(X ,d).

• If X is a bounded metric space, then asdim(AN)(X) = 0.

• If T is a tree, then asdim(AN)(T )≤ 1.

Here we define types of maps between metric spaces that we will refer to frequently. A set B ⊆Y is called

cobounded if there exists a constant c > 0 such that d(y,B)≤ c for all y ∈ Y .

Definition 1.2.6. Let X and Y be metric spaces, and let f : X → Y be a function. Suppose that there exist

nondecreasing, unbounded functions ρ0,ρ1 : R+
0 → R+

0 , such that for all x,x′ ∈ X ,

ρ0(d(x,x′))≤ d( f (x), f (x′))≤ ρ1(d(x,x′)). (1.2)

• Then f is a coarse embedding.

• If f (X) is cobounded in Y , then f is a coarse equivalence, and X and Y are coarsely equivalent.

• If there exist constants a1,b1 > 0 such that (1.2) is satisfied with ρ1(d) = a1d+b1, then f is asymptot-

ically Lipschitz.

• If f is asymptotically Lipschitz and there exist constants a0 and b0 with a0 > 0 such that (1.2) is

satisfied with ρ0(d) = max{a0d +b0,0}, then f is a quasi-isometric embedding.

• If f is a quasi-isometric embedding and f (X) is cobounded in Y , then f is a quasi-isometry, and X and

Y are quasi-isometric.

• Suppose a1 > 0 is a constant such that (1.2) is satisfied with ρ1(d) = a1d. Then f is called a1-Lipschitz.

We say that f is Lipschitz if there exists an a1 > 0 such that f is a1-Lipschitz.
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• If f is Lipschitz and there exists a constant a0 > 0 such that (1.2) is satisfied with ρ0(d) = a0d, then f

is bi-Lipschitz. Note that a bi-Lipschitz map must be injective.

• If f is bi-Lipschitz and surjective, then f is a bi-Lipschitz equivalence, and X and Y are bi-Lipschitz

equivalent.

It is not hard to show that asymptotic dimension is a coarse invariant: that is, if asdim(X) = n and X and

Y are coarsely equivalent, then asdim(Y ) = n as well. Similarly, asymptotic Assouad-Nagata dimension is a

quasi-isometry invariant.

One very useful result in asymptotic dimension theory is the Hurewicz-type mapping theorem for asymp-

totic dimension, so called because its statement parallels a theorem of Hurewicz about topological dimension

[1]. In order to state it, we need to define the notion of a control function for maps between metric spaces.

For Definitions 1.7-1.9, let X and Y be metric spaces, and f : X → Y a function.

Definition 1.2.7. [3] Let D f : R+×R+ → R+ be a function of two variables r and K. For each fixed K > 0,

we denote by D f ,K : R+ → R+ the function defined by D f ,K(r) = D f (r,K). Then D f is an n-dimensional

control function for f if, for every A ⊆ X such that f (A) is K-bounded, D f ,K is an n-dimensional control

function for A with the metric inherited from X .

Definition 1.2.8. We write asdim( f )≤ n if f has an n-dimensional control function. The asymptotic dimen-

sion of f , denoted asdim( f ), is the defined to be the least n ∈ N such that asdim( f )≤ n, if such an n exists;

otherwise we write asdim( f ) = ∞.

Definition 1.2.9. We write asdimAN( f ) ≤ n if there exist constants a,b,c such that D f (r,K) = ar + bK +

c is an n-dimensional control function for f . The asymptotic Assouad-Nagata dimension of f , denoted

asdimAN( f ), is defined to be the least n ∈ N such that asdimAN( f ) ≤ n, if such an n exists; otherwise, we

write asdimAN( f ) = ∞.

The Hurewicz-type mapping theorem is the following. The asdim version was proved by Bell and Dran-

ishnikov [10], and the version for asdimAN is due to Brodksiy, Dydak, Levin and Mitra [3].

Theorem 1.2.10 (Hurewicz-type mapping theorems). [3,10] Let X and Y be metric spaces, and let f : X →Y

be asymptotically Lipschitz. Then

asdim(AN)(X)≤ asdim(AN)( f )+ asdim(AN)(Y ).

The Hurewicz-type mapping theorems are powerful tools in the study of asymptotic dimension and

asymptotic Assouad-Nagata dimension. They are used in the proof of the subadditivity of asymptotic and
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asymptotic Assouad-Nagata dimension with respect to Cartesian products (Lemma 1.2.11) as well as the

group-theoretic extension theorems for asymptotic and Assouad-Nagata dimension (Lemma 1.2.13). In Sec-

tion 2.1, we use Theorem 1.2.10 to provide the best possible upper bound on the asymptotic Assouad-Nagata

dimension of a metric space provided by the existence of an (ε,k)-tight geodesic combing (definition to

come).

We adopt the convention that the Cartesian product of two metric spaces is always endowed with the ℓ1

product metric. That is, if X and Y are metric spaces, then X ×Y is equipped with the metric defined by

dX×Y ((x,y),(x′,y′)) = dX (x,x′)+dY (y,y′)

for all x,x′ ∈ X and y,y′ ∈ Y . With this convention in mind, if ∼ stands for either “is coarsely equivalent

to,” “is quasi-isometric to,” or “is bi-Lipschitz equivalent to,” then we have that X ∼ X ′ and Y ∼ Y ′ implies

X ×Y ∼ X ′×Y ′. In addition, asdim and asdimAN are subadditive with respect to taking Cartesian products,

in a sense that is made precise by the following pair of theorems. We will use them often throughout this

paper.

Lemma 1.2.11. [1, 3] Let X ,Y be metric spaces. Then

asdim(AN)(X ×Y )≤ asdim(AN)(X)+ asdim(AN)(Y )

Since R is a tree, Exercise 1.2.5 and Lemma 1.2.11 readily imply that asdimAN(Rn) ≤ n. Establishing a

lower bound for the asymptotic dimension of a space seems to be harder, in general, than establishing an up-

per bound. However, to prove that asdim(Rn)≥ n, one can use a lemma of Brodskiy, Dydak and Lang, which

states, roughly, that asdim(X) ≥ n if arbitrarily large r-discrete n-dimensional cubes embed into X without

much distortion [17]. A lemma of Higes (see Lemma 3.1.5), an essential tool in this dissertation, is the corre-

sponding lemma for asymptotic Assouad-Nagata dimension. Thus we have asdim(Rn) = asdimAN(Rn) = n,

justifying the use of the word “dimension.”

1.2.2 Countable groups with proper norms

We denote the identity element of an arbitrary group by 1, and of an abelian group by 0. Let G be a group. A

norm on G is a function ∥ · ∥ : G → R+
0 such that, for all g,h ∈ G,

• ∥g∥= 0 if and only if g = 1.

• ∥g∥= ∥g−1∥.
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• ∥gh∥ ≤ ∥g∥+∥h∥.

Some authors call this a length function or weight function on G.

A norm is proper if {g∈G | ∥g∥≤D} is finite for all D≥ 0. There is a natural one-to-one correspondence

between norms and left-invariant metrics, given by d(g,h) = ∥g−1h∥ and ∥g∥ = d(1,g), and a left-invariant

metric on a group is proper if and only if the corresponding norm is proper.

Every countable group admits a proper norm; futhermore, if ∥ · ∥0 and ∥ · ∥1 are two norms on the same

countable group G, then the identity map from (G,∥·∥0) to (G,∥·∥1) is a coarse equivalence [26, Proposition

1.1]. Therefore for any countable group G we define asdim(G) to be the asymptotic dimension of G with

respect to any proper norm. Since asymptotic dimension is a coarse invariant, this is independent of the

choice of proper norm, depending only on the group’s inherent algebraic structure. In this way asdim is an

invariant of countable groups. Since any subgroup of a countable group is countable, if G is a countable

group and H ⩽ G, then asdim(H)≤ asdim(G).

A group is called locally finite if all of its finitely generated subgroups are finite. We will use the following

fact many times throughout this paper.

Exercise 1.2.12. Let G be a countable group. Then asdim(G) = 0 if and only if G is locally finite.

Asymptotic Assouad-Nagata dimension is decidedly not a coarse invariant. While this fact is not new,

we demonstrate it in Section 3.1 when we construct, for each m,n ∈ N, a countable group K and two proper

norms ∥ · ∥m and ∥ · ∥n on K such that asdimAN(K,∥ · ∥m) = m but asdimAN(K,∥ · ∥n) = n.

1.2.3 Finitely generated groups with the word norm

Let G be a group, and suppose that S is a generating set of G. Then by definition each g ∈ G can be expressed

as a product of elements of S or their inverses. The word norm on G with respect to S is defined by declaring

that ∥g∥S is the minimum number of terms in such a product (see Section 2.2.1 for a more precise definition).

It is easy to check that this is in fact a norm on G in the sense described in the last subsection. Note that

∥ · ∥S is proper if and only if S is finite. Therefore if G is a finitely generated group, asdim(G) is exactly

asdim(G,∥ · ∥S) where S is any finite generating set.

If G is a finitely generated group and S and T are two finite generating sets of G, then the identity map

from (G,∥ · ∥S) to (G,∥ · ∥T ) is a quasi-isometry. Therefore for any finitely generated group G we define

asdimAN(G) to be asdimAN(G,∥ · ∥S) for any finite generating set of G. Since asdimAN is invariant under

quasi-isometry, asdimAN(G) is independent of the choice of finite generating set, depending only on the

group itself. In what follows, we will not need to compare word norms arising from different generating sets
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of the same group, so we refer to the word norm on a finitely generated group G by ∥ ·∥G, or ∥ ·∥ if the group

is understood.

Suppose that G is a finitely generated group and H ⩽ G. Let ∥ ·∥G denote the restriction to H of the word

norm on G. Then certainly ∥·∥G is a proper norm on H. It may happen that H is not finitely generated, which

is our principle motivation for finding ways to calculate the Assouad-Nagata dimension of countable groups

with respect to different proper norms. If H is finitely generated, let ∥ ·∥H denote the word norm on H. Then

it may happen that (H,∥ ·∥H) and (H,∥ ·∥G) are not quasi-isometric, in which case we say that H is distorted

in G.

The following theorems are known as the extension theorems for asymptotic and Assouad-Nagata dimen-

sion. The theorem for asdim is due to Bell and Dranishnikov, while Brodskiy, Dydak, Levin and Mitra later

proved the asdimAN version. Both proofs use the appropriate Hurewicz-type mapping theorem in an essential

way.

Lemma 1.2.13 (Extension Theorems). [3, 10] Let

1 → K → G → H → 1

be a short exact sequence, where G and H are finitely generated groups equipped with the word norm with

respect to some finite generating set, and the norm on K is the restriction to K of the word norm on G. Then

asdim(AN)(G)≤ asdim(AN)(K)+ asdim(AN)(H) .

These results are quite powerful tools in the field. For example, the extension theorem for asymptotic

dimension implies that the class of finitely generated groups of finite asymptotic dimension is closed under

extension and thus, by Theorem 1.1.1, greatly enlarges the class of finitely generated groups known to satisfy

the Novikov conjecture. The extension theorems are also an essential tool in the proof of Theorem 1.

Another tool we will use is the free product formulas for asymptotic and Assouad-Nagata dimension. The

theorem for asdim is due to Dranishnikov, and its counterpart for asdimAN is due to Brodskiy and Higes.

Theorem 1.2.14. [8, 27] Let A and B be finitely generated groups. Then

asdim(AN)(A∗B) = max{asdim(AN)(A),asdim(AN)(B),1}

In fact, the result for asymptotic dimension is even stronger. Namely by [8], we have that if A and B are

finitely generated groups with a common subgroup C, then asdim(A∗C B)≤max{asdim(A),asdim(B),asdim(C)+
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1}. In particular, the class of finitely generated groups of finite asymptotic dimension is closed under taking

amalgamated products. Currently it is not known whether the same holds for Assouad-Nagata dimension.

Like the result on amalgamated products, the following theorem distinguishes the state of the art of

asymptotic Assouad-Nagata dimension theory from that of asymptotic dimension theory. It is known as the

Morita-type theorem for asymptotic Assouad-Nagata dimension.

Theorem 1.2.15 (Morita-type theorem for asdimAN). [15] Let X be a metric space. Then

asdimAN(X ×R) = asdimAN(X)+1 .

It is currently unknown whether the same result holds for asymptotic dimension. Note that since R is

quasi-isometric to Z, we have the following group-theoretic corollary.

Corollary 1.2.16. Let G be a countable group equipped with a proper norm ∥ · ∥G. Then

asdimAN(G×Z,∥ · ∥G×Z) = asdimAN(G,∥ · ∥G)+1 .

In particular, if G is a finitely generated group, then

asdimAN(G×Z) = asdimAN(G)+1 .

1.2.4 Aside: finitely generated groups of finite asymptotic dimension

At this point we have collected all the tools from asymptotic dimension theory that we will need in the proof

of Theorem 1. However, in order for the reader to get a better sense of how asymptotic dimension behaves

within the class of finitely generated groups, it seems appropriate to mention some of the major results in the

field. If the reader is unfamiliar with any terminology used here, they need not worry: any concepts needed

for the remainder of the paper will be explained in full later.

In 1993, Gromov posed the question of whether every finitely generated group admits a coarse embedding

into a Hilbert space [4]. In 2000, Yu improved on his 1998 result, showing that groups with finite asymptotic

dimension satisfy a condition called Property A, which is equivalent to C∗-exactness. Yu then proved that

groups with Property A admit a coarse embdedding into a Hilbert space, and that any group which coarsely

embeds into a Hilbert space satisfies the Novikov Conjecture [28]. While Gromov constructed examples of

groups, now called Gromov monsters, which do not coarsely embed into Hilbert space [29], at the moment it

is unknown whether or not all groups satisfy the Novikov Conjecture.

In the last section we reviewed many closure properties of the class of finitely generated groups of finite
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asymptotic dimension. One closure property which we did not review, but is nevertheless a significant result,

is that finitely generated groups of finite asymptotic dimension are closed under taking HNN extensions. That

is, if G is a finitely generated group, A and B are subgroups of G, and φ : A → B is an isomorphism, then

asdim(G∗φ )≤ max{asdim(G),asdim(A)+1} [11]. Finitely generated groups of finite asymptotic dimension

are also closed under relative hyperbolicity. That is, if G is a finitely generated group which is hyperbolic

relative to a set of finitely generated peripheral subgroups {H0, . . . ,Hn}, and each Hi has finite asymptotic

dimension, then asdim(G) is finite [12].

Since Zn is quasi-isometric to Rn, we have that, as one would expect, asdim(AN)(Zn) = n. Other groups

which are known to have finite asymptotic dimension include hyperbolic groups [6], one-relator groups [7],

Coxeter groups [8], mapping class groups, braid groups, and certain types of Artin groups and Torelli groups

[9], and C′(1/6) groups (Theorem 2). A finitely generated group constructed from any of the aforementioned

types of groups using extensions, amalgamated products, HNN extensions or relative hyperbolicity construc-

tions, has finite asymptotic dimension. This means that the class of groups which coarsely embed into a

Hilbert space, and thus satisfy the Novikov conjecture, is quite large.

Some examples of groups with infinite asymptotic dimension are Gromov monsters, Z ≀Z, and Thomp-

son’s group F . Gromov monsters have infinite asymptotic dimension because they do not coarsely embed into

Hilbert space, while Z ≀Z and F have infinite asymptotic dimension because each contain Zn subgroups for

all n ∈ N. In particular there is no relationship between finite asymptotic dimension and finite presentability,

since F can be given by the finite presentation ⟨a,b | [ab−1,a−1ba], [ab−1,a−2ba2]⟩.

Since Fn is a tree, asdim(Fn) ≤ 1, so we cannot expect any general relationship between the asymptotic

dimension of a group and its quotients. Nor is finite asymptotic dimension preserved under inductive limits,

as there exists a sequence of finitely generated groups and surjective homomorphisms G0 → G1 → G2 → . . .

such that asdim(Gn)≤ 2 for all n ∈ N, but the limit group G∞, defined to be the common quotient of all Gn,

has infinite asymptotic dimension [22].

The asymptotic dimension of most groups is not known, although in some cases an exact formula has

been found. The asymptotic dimension of Mod(S2,p), the mapping class group of a surface of genus 2 with

p punctures, is computed inductively in [9]. By a result of Buyalo and Lebedeva, asdim(G) = dim(∂G)+1

if G is hyperbolic [21]. A group has asymptotic dimension zero if and only if it is locally finite [17], and a

finitely presented group has asymptotic dimension 1 if and only if it is virtually free [19]. Currently there is

no known classification of finitely presented groups with asymptotic dimension 2.

There is obviously no straightforward relation between the asymptotic dimension and topological dimen-

sion of a given metric space, since one can easily construct examples of spaces with (topological, asymptotic)

dimension equal to (m,n) for any m,n ∈ N∪{∞}. However, by the result of Buyalo and Lebedeva, there is
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a relation between the topological dimension of a compact hyperbolic manifold and the asymptotic dimen-

sion of its universal cover. Namely, if M is a compact hyperbolic manifold and M̃ is its universal cover, we

have that asdim(π1(M)) = dim(∂M̃)+1 = dim(M). This relationship fails immediately for non-hyperbolic

groups, since every finitely presented group is isomorphic to the fundamental group of a four-dimensional

compact manifold, but Thompson’s group F is finitely presented and has infinite asymptotic dimension.

One other relation between topological dimension and asymptotic dimension comes through asymptotic

cones. Asymptotic cones were introduced by Gromov in [4], and can be thought of as a method of looking at

a metric space from infinitely far away. Without going into detail, an asymptotic cone of a metric space X is

defined with respect to a (usually non-principle) ultrafilter ω on N and a sequence of positive real scaling con-

stants k = (ki)i∈N, and so is often denoted Coneω(X ,k). In geometric group theory, it is often useful to exam-

ine the asymptotic cones of finitely generated groups equipped with the word norm. In 2008, Dydak and Higes

proved that for any countable group equipped with a proper norm we have dim(Coneω(G,k))≤ asdimAN(G)

[30]. This inequality can be strict; for each n ∈ N∪{∞} there exists a countable locally finite group G with

a proper norm, with respect to which asdimAN(G) = n but dim(Coneω(G,k)) = 0 for any scaling sequence

k = (kn) and non-principal ultrafilter ω [16]. At present, no other relations between dim(Coneω(G,k)) and

either asdim(G) or asdimAN(G) are known.
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CHAPTER 2

Assouad-Nagata dimension of C′(1/6) groups

2.1 Tight geodesic combings

In this section, we introduce the notion of an (ε,k)-tight geodesic combing of a geodesic metric space, defined

for some ε > 0 and k ∈N. For a geodesic metric space, the property of having a (ε,k)-tight geodesic combing

is similar to that of having tight geodesics, a property defined by Bowditch in [23]. We then prove that if a

geodesic metric space X admits a (ε,k)-tight geodesic combing for some ε > 0, then asdimAN(X) ≤ k (see

Proposition 2.1.4). This is eventually how we provide an upper bound for the Assouad-Nagata dimension of

a finitely generated C′(1/6) group in Section 2.3.

Definition 2.1.1. Let X be a geodesic metric space with base point x ∈ X . Then a geodesic combing of the

pointed metric space (X ,x) is a set T = {Ty | y ∈Y}, where Y is a cobounded subset of X and Ty is a geodesic

from x to y for each y ∈ Y .

Whenever Γ is a connected graph, directed or otherwise, we assume that any edge of Γ may be traversed

contrary to its orientation, and that Γ is equipped with the combinatorial metric, so that Γ is naturally a

geodesic metric space.

Example 2.1.2. Suppose that Γ is a connected graph equipped with the combinatorial metric, and let x∈V (Γ)

be a base point. A geodesic tree rooted at x is a subgraph T of Γ such that T is a tree, and for all y ∈ V (Γ),

the unique path from x to y in T is geodesic in Γ. If T is a geodesic tree rooted at x and V (T ) = V (Γ), then

we call T a geodesic spanning tree rooted at x. If T is a geodesic spanning tree rooted at x and y ∈V (Γ), let

[x,y] be the path from x to y in T . Then {[x,y] | y ∈V (Γ)} is a geodesic combing of (Γ,x).

Suppose that {Ty | y ∈Y} is a geodesic combing of a pointed geodesic metric space (X ,x). For each y ∈Y

and s > 0, let

T (y,s) =
⋃
{Ty′ | y′ ∈ Y ∩B(y,s)}

and for each t ≥ 0, let

S(t) = {x′ ∈ X | d(x,x′) = t}

be the sphere of radius t centered at x in X .

Definition 2.1.3. Let (X ,x) be a pointed geodesic metric space, Y a cobounded subset of X , and T = {Ty |

y ∈ Y} a geodesic combing of (X ,x). Let ε > 0 and k ∈ N. Then we say that T is (ε,k)-tight if for all r > 0,
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y ∈ Y , and t ≤ d(x,y)− r, we have |T (y,εr)∩S(t)| ≤ k.

Figure 2.1 illustrates this definition.

x

y

B(y,εr)

r

T (y,εr)

S(t)

at most k points of intersection

≥

Figure 2.1: An (ε,k)-tight geodesic combing.

Proposition 2.1.4. Let (X ,x) be a pointed geodesic metric space. If X admits an (ε,k)-tight geodesic combing

for some ε > 0, then asdimAN(X)≤ k.

Proof. Suppose that Y is a cobounded subset of X and T = {Ty | y ∈ Y} is an (ε,k)-tight geodesic combing

of (X ,x). Let dx : Y → R+
0 be defined by dx(y) = d(x,y). For any n ∈ N and r > 0, let

A(n,r) = {y ∈ Y | nr ≤ d(x,y)≤ (n+2)r}= d−1
x ([nr,(n+2)r])

be the nth annulus of width 2r in Y .

We claim that for each n ∈ N and r > 0, there exists a cover V (n,r) of A(n,r) which has εr-multiplicity

at most k and is uniformly bounded by 6r. To see this, define an equivalence relation ∼ on A(n,r) by

declaring that y ∼ y′ if Ty and Ty′ pass through the same element of S((n−1)r). Let V (n,r) be the set of ∼

equivalence classes. Clearly y ∼ y′ implies that there is a path in Ty ∪Ty′ from y to y′ of length at most 6r,

hence V (n,r) is uniformly 6r-bounded. Furthermore, since T is (ε,k)-tight, for each y ∈ A(n,r) we have

that |T (y,εr)∩ S((n− 1)r)| ≤ k, hence any open ball of radius εr in A(n,r) can meet at most k equivalence

classes.

Now we claim that asdimAN(dx) ≤ k− 1. Let s,K > 0 be given. Now fix r = max( 1
ε

s,K). Let A ⊆ Y

be such that dx(A) is K-bounded. Then A ⊆ A(n,K) ⊆ A(n,r). By the previous argument, there exists a

cover V (n,r) of A(n,r) (and thus of A) with εr-multiplicity at most k, which is uniformly bounded by 6r.
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Therefore V (n,r) has s-multiplicity at most k and is uniformly bounded by 6r = 6max( 1
ε

s,K) ≤ 6
ε

s+ 6K.

Thus Ddx(s,K) := 6
ε

s+6K is a (k−1)-dimensional control function for dx that is linear in both s and K, and

we have asdimAN(dx)≤ k−1.

It is easy to check that asdimAN(R+
0 ) ≤ 1, and that dx is 1-Lipschitz and therefore asymptotically Lips-

chitz. Therefore by Theorem 1.2.10,

asdimAN(Y )≤ asdimAN(dx)+ asdimAN(R+
0 ) = (k−1)+1 = k .

Since Y is quasi-isometric to X , asdimAN(X)≤ k.

A straightforward application of Zorn’s Lemma shows that if Γ is a connected graph and x ∈ V (Γ), then

Γ has a geodesic spanning tree rooted at x. Hence Example 2.1.2 shows that every connected graph has a

geodesic combing, which may or may not be (ε,k)-tight for some ε > 0 and k ∈N. Since every quasigeodesic

metric space is quasi-isometric to a connected graph, Example 2.1.2 is more general than it appears at first

glance.

Clearly if a connected graph Γ admits a (ε,k)-tight geodesic combing for some ε > 0 and k ∈N, then we

may assume without loss of generality that it is given by a geodesic spanning tree. If T is a geodesic spanning

tree of Γ, we say that T is (ε,k)-tight if the geodesic combing it induces is (ε,k)-tight. In Section 2.3 we

show that if Γ is the Cayley graph of a finitely generated C′(1/6) group with respect to any finite generating

set, then any geodesic spanning tree of Γ is (1/12,2)-tight.

2.2 Preliminaries on van Kampen diagrams and small cancellation

We assume that the reader is familiar with van Kampen diagrams and the C′(λ ) condition. However, in the

literature there are myriad definitions of van Kampen diagram, each with subtle differences. In addition, our

definition of a “piece” (and thus, of the C′(λ ) condition) is not stated in the usual way. This is in order to

ensure that certain concepts we introduce later (namely signed and unsigned face counts) are well defined.

Therefore in Section 2.2.1 and Section 2.2.2 we fix terminology and notation. In summary, our approach is

to treat van Kampen diagrams as graphs embedded in the plane, so that the 2-cells are simply the bounded

faces enclosed by the graph. In this way we manipulate van Kampen diagrams directly in the plane and

keep topological considerations to a minimum. We include inessential edges and faces in our definition. It

is assumed that presentations are not closed under cyclic shifts and inverses, and a piece is defined, not as a

common prefix of two words, but as a common prefix of cyclic shifts of two words or their inverses. If this

summary is enough for the reader, they may choose to skip to Section 2.2.3, referring to Sections 2.2.1 and

2.2.2 should the need arise.
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In Section 2.2.3, we present a classification of van Kampen diagrams over simple geodesic triangles in

C′(1/6) groups. This result, due to Strebel, is the essential tool used in the proof of the main theorem. Then

we prove some lemmas regarding the geometry of simple geodesic triangles in C′(1/6) groups that are used

repeatedly in Section 2.3.

2.2.1 The C′(λ ) condition

Let S be a set. Let S−1 be the set of formal inverses of S, let 1 be a new symbol not in S, and declare 1−1 = 1.

Let

S1 = S∪{1}

S◦ = S∪S−1 ∪{1}.
(2.1)

The length of a word w in the free monoid S∗◦ is denoted |w|. There is a unique word of length 0 called

the empty word and denoted ε . We define w0 to be ε for any w ∈ S∗◦. A word w ∈ S∗◦ is reduced if w does not

contain a subword of the form 1,ss−1, or s−1s for any s ∈ S, and cyclically reduced if every cylcic shift of w

(including w itself) is reduced.

Let R be a language over the alphabet S◦, that is, R ⊆ S∗◦. Then R∗ denotes the closure of R under taking

cyclic shifts and formal inverses of its elements. We say that R is reduced if every element of R is reduced,

and cyclically reduced if R∗ is reduced. We say that R is cyclically minimal if it does not contain two distinct

words, one of which is a cyclic shift of the other word or its inverse. That is, R is cyclically minimal if

R∩{r}∗ = {r} for each r ∈ R.

A (group) presentation is a pair ⟨S | R⟩, where S is a set and R ⊆ S∗◦. The notation G = ⟨S | R⟩ means

that ⟨S | R⟩ is a presentation and G ∼= F(S)/⟨⟨R⟩⟩, where F(S) is the free group with basis S, and ⟨⟨R⟩⟩ is the

normal closure of R as a subset of F(S).

Whenever S is a generating set of a group G, there is a natural monoid epimorphism from S∗◦ to G that

evaluates a word in S∗◦ as a product of generators and their inverses, and sends 1 to the identity element. If G

and S are understood, then for a word w ∈ S∗◦, we denote by w̄ the image of w under this epimorphism. If we

are considering multiple groups with generators S but different relations, it helps to include the group in the

notation. Thus if w̄ = g ∈ G, then we may write w =G g. If u,v ∈ S∗◦ we may write u =G v to mean ū = v̄ in G.

If both G and S are understood, the word norm on G with respect to S is denoted ∥ · ∥ and defined by

∥g∥= min{|w| | w ∈ S∗◦,w =G g} .

We might also denote the word norm on G with respect to S by ∥ ·∥G or ∥ ·∥S if the group or generating set is
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ambiguous. A word w ∈ S∗◦ is called geodesic in G if |w|= ∥w̄∥. If u,w ∈ S∗◦, g ∈ G, w is geodesic in G, and

w =G u =G g, then w is called a geodesic representative of u or of g. If K,C ≥ 0 are fixed constants, then we

say that a word w ∈ S∗◦ is (K,C)-quasigeodesic if |w| ≤ K∥w̄∥+C.

Given two words u,v ∈ S∗◦, we say that p is a piece (of u and of v) if there exists u′ ∈ {u}∗,v′ ∈ {v}∗ such

that p is a common prefix of u′ and v′.

Definition 2.2.1. Let S be a set, R ⊆ S∗◦ a language, and λ a real number with 0 < λ < 1. Then R satisfies

C′(λ ) if, whenever u,v ∈ R and u′ ∈ {u}∗,v′ ∈ {v}∗ witness that p is a piece of u and v, then either u′ = v′ or

|p|< λ min(|u|, |v|).

In this case we say that R is a C′(λ ) language. If G is a group and G = ⟨S | R⟩ for some C′(λ ) language

R, then ⟨S | R⟩ is called a C′(λ ) presentation and G is called a C′(λ ) group.

In most treatments of the C′(λ ) condition, it is assumed that R=R∗, and a piece is defined to be a common

prefix of two distinct words in R. In our case, however, it is important to assume that R is cyclically minimal

(in particular R ̸= R∗), in order to ensure that the concept of the signed r-face count of a van Kampen diagram

(Definition 3.2.1) is well defined. For this reason we give the definition above, which, though not the usual

definition of the C′(λ ) condition, is clearly equivalent.

2.2.2 van Kampen diagrams

Let Γ be a connected graph. By a path in Γ we mean a combinatorial path, i.e. an alternating sequence of

vertices and edges, as opposed to a continuous map from a closed interval. We allow paths to have repeated

edges or vertices: in graph-theoretic terms, our “path” is really a walk. Points in the interiors of edges

generally don’t matter to us, so we write x ∈ Γ to mean that x ∈V (Γ). Likewise, if α is a path in Γ, then x ∈ α

means that x is a vertex visited by α .

Let Γ be any directed graph, and suppose that Lab : E(Γ) → S1 (see (2.1)) is a function which assigns

labels from S1 to the edges of Γ. Then we extend Lab to a map from the set of all paths in Γ to S∗◦ in the

following natural way.

• If e = (x,y) is a directed edge labeled s, then Lab(x,e,y) = s and Lab(y,e,x) = s−1.

• If α = (x0,e1,x1, . . . ,xn−1,en,xn) is a path, then

Lab(α) = Lab(x0,e1,x1)Lab(x1,e2,x2) · · ·Lab(xn−1,en,xn).

For a path α we define ℓ(α), the length of α , to be the number of edges traversed by α , counting

multiplicity. Equivalently, ℓ(α) = |Lab(α)|.
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A plane graph is a graph which is topologically embedded in R2. A face of a plane graph M is the closure

of a connected component of R2 ∖M. Let F be a face of a finite directed plane graph M with edges labeled

by elements of S1. Choosing a base point x ∈ ∂F and an orientation counterclockwise (+) or clockwise (−),

there is a unique circuit which traverses ∂F exactly once, called the boundary path and denoted (∂F,x,±). If

all properties of (∂F,x,±) that we care about are preserved after changing its base point and orientation, then

we leave these choices out of the notation and write ∂F . We write ∂M instead of ∂F if F is the unbounded

face; from now on, “face” will mean “bounded face” unless otherwise stated. The boundary label of F is

Lab(∂F,x,±), sometimes denoted by just Lab(∂F).

Definition 2.2.2. A van Kampen diagram over a presentation ⟨S | R⟩ is a finite, connected, directed plane

graph M with edges labeled by elements of S1, such that if F is a face of M, then either Lab(∂F) ∈ R∗ or

Lab(∂F) =F(S) 1.

A subdiagram of a van Kampen diagram M is a simply connected union of faces of M. If M is a van

Kampen diagram and D is a subdiagram of M, then we call D simple if ∂D is a simple closed curve in the

plane. Likewise, a face F of M is called simple of ∂F is a simple closed curve.

Let α and β be two paths in a van Kampen diagram. Then we say that α intersects β trivially if α ∩β

contains at most one vertex, and that α intersects β nontrivially otherwise. We say that α and β intersect

simply if α ∩β a single subpath of both α and (β or the reverse path of β ). Note that this is not the same as

saying that α ∩β is connected. We apply this terminology to faces as well. For example, if we say that F and

α intersect simply, it means that there is a choice of base point x ∈ ∂F such that (∂F,x,+) and α intersect

simply. If we say that two faces F and F ′ intersect simply, it means that (∂F,x,+) and (∂F ′,x,−) intersect

simply for some x ∈ ∂F ∩∂F ′.

A face F is called essential if Lab(∂F)∈ R∗ and inessential if Lab(∂F) =F(S) 1. If R is cyclically reduced

then these cases are mutually exclusive. A face with boundary label r ∈ R is called an r-face. An edge e is

called essential if Lab(e)∈ S, and inessential if Lab(e) = 1. We call a van Kampen diagram bare if it contains

no inessential faces, and padded otherwise. Generally speaking, one needs to consider inessential edges and

faces in order to make precise arguments with van Kampen diagrams, although in the next section we will

only need to consider bare van Kampen diagrams.

Let M be a van Kampen diagram, and suppose F and F ′ are distinct faces of M. Then we say that F

cancels with F ′ if there exists an edge e = (x,y) in ∂F ∩∂F ′ such that Lab(∂F,x,+) = Lab(∂F ′,x,−). Then

we have the following geometric interpretation of the C′(λ ) condition, which follows immediately from the

definition.

Lemma 2.2.3. Let ⟨S | R⟩ be a presentation where R satisfies C′(λ ), and let M be a van Kampen diagram

22



over ⟨S | R⟩. Suppose that F,F ′ are essential faces of M and α is a common subpath of ∂F and ∂F ′. Then

either F and F ′ cancel, or ℓ(α)< λ min(ℓ(∂F), ℓ(∂F ′)).

A van Kampen diagram is called reduced if no two of its faces cancel. A van Kampen diagram is minimal

if, among all van Kampen diagrams with the same boundary label, it minimizes first the number of essential

faces, then the number of inessential faces.

Whenever G is a group generated by S, the Cayley graph of G with respect to S is denoted Γ(G,S).

Lemma 2.2.4 (van Kampen Lemma). [31, Chapter V, Section 1] Let G = ⟨S | R⟩ and w ∈ S∗◦. Then w =G 1

if and only if there exists a van Kampen diagram M over ⟨S | R⟩ and x ∈ ∂M such that Lab(∂M,x,+) =

w. Furthermore, given g ∈ G, there exists a combinatorial map f : M → Γ(G,S) preserving labels and

orientations of edges, such that f (x) = g. In particular, f does not increase distances, i.e. is 1-Lipschitz.

2.2.3 Van Kampen diagrams for simple geodesic triangles in C′(1/6) groups

Let a,b,c be distinct elements of G = ⟨S | R⟩, and let [a,b], [b,c], [c,a] be fixed geodesics between them in

Γ(G,S). Then [a,b]∪ [b,c]∪ [c,a] is called a geodesic triangle and denoted ∆(a,b,c). We say that ∆(a,b,c)

is a simple geodesic triangle if the boundary path ∂∆(a,b,c) := [a,b] ∗ [b,c] ∗ [c,a] is a simple closed curve

in Γ(G,S). If σ is a circuit in Γ(G,S) beginning at a group element g ∈ G, we say that M is a van Kampen

diagram for σ if, for some x ∈ ∂M, Lab(∂M,x,+) = Lab(σ) and the combinatorial map f : M → Γ(G,S)

sends x to g.

If Γ is a directed graph, the underlying graph of Γ is the undirected graph obtained by removing the

orientation of every edge of Γ. If Γ is a graph and e = (x,y) is an edge of Γ, then subdividing e means adding

a vertex z and edges (x,z) and (z,y) to Γ, and removing e. A subdivision of Γ is a graph obtained from Γ by

a finite sequence of subdivisions of edges.

Theorem 2.2.5. [24] Suppose that G = ⟨S | R⟩, S is finite, R satifies C′(1/6), ∆ is a simple geodesic triangle

in Γ(G,S), and M is a bare, reduced van Kampen diagram over ⟨S | R⟩ for ∂∆. Then the underlying graph of

M is a subdivision of a member of one of the four infinite families of plane graphs depicted in Figure 2.2.

I-II III IV V

Figure 2.2: Types of van Kampen diagrams for a simple geodesic triangle in Γ(G,S)
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In Figure 2.2, the blue edges and dots signify a sequence of parallel edges which may or may not be

present. Vertices are located at the corners and at every juncture of edges. Our notation is slightly different

from Strebel’s notation in [24]: our I-II encompasses Strebel’s I2, I3 and II, as well as the van Kampen

diagram consisting of a single face, and our III is Strebel’s III1.

For the remainder of this section, suppose that G is a group with presentation ⟨S | R⟩, S is finite, R satisfies

C′(1/6), ∆ = ∆(a,b,c) is a simple geodesic triangle in Γ(G,S), M is a minimal van Kampen diagram for ∂∆,

f : M → Γ(G,S) is the combinatorial map, α = [b,c],β = [c,a], and γ = [a,b]. Note that f |∆
∂M : ∂M → ∆

is bijective, and isometric when restricted to each of the subpaths of ∂M corresponding to α,β , or γ . Thus

without harm we blur the distinction between ∂M and ∂∆, and refer to vertices, edges, paths etc. in ∂M by

their images in ∆.

extremal face
interior side

exterior side

Figure 2.3: Examples of exterior and interior sides, and extremal faces

A face F of M is called extremal if F contains a,b, or c. A side of F is a maximal subpath of ∂F whose

internal vertices all have degree 2 and do not include a,b, or c. A side is called exterior if it is contained

in ∂M, and interior otherwise. An exterior side must be a subpath of α,β , or γ , so all exterior sides are

geodesic. We call a face triangular if it has exactly three sides, quadrilateral if it has exactly four sides, etc.

Figure 2.3 shows an example of a van Kampen diagram of type V with two triangular faces, four quadrilateral

faces, and two pentagonal faces.

For a face F of M, let i(F) denote the number of interior sides of F . The following argument appears so

frequently in the proofs that follow that it is worthwhile to section it off as a lemma.

Lemma 2.2.6. Let F be a face of M and σ an exterior side of F. Then

∑{ℓ(τ) | τ is a side of F other than σ} ≥ 1
2ℓ(∂F).

In particular,

∑{ℓ(τ) | τ is an exterior side of F other than σ}>
(

1
2 −

i(F)
6

)
ℓ(∂F).

Proof. If σ is an exterior side, then σ is geodesic, from which the first inequality follows. The second
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inequality follows from the first inequality and Lemma 2.2.3.

Definition 2.2.7. Let A be the union of all faces F of M such that ∂F does not share an edge with α , if at

least one such F exists: otherwise, set A = {a}. We call A the a-corner of M. Similarly define B and C,

the b-corner and c-corner of M. A face which is not included in a corner, i.e. one that shares at least one

edge with each of α,β , and γ , is called a middle face. This is unique if it exists, and is denoted D. Thus

A,B,C,D divide M into three or four (possibly overlapping) regions. Figure 2.4 illustrates where the corners

and middle faces are in van Kampen diagrams of various types.

I-II I-II IV

a a a a

cc c cb b b bIII

a-corner A
b-corner B
c-corner C
middle face D

Figure 2.4: Examples of corners and middle faces

A corner may contain no faces if M is of type I-II. A corner containing at least one face contains an

extremal face, which is either triangular, or possibly quadrilateral if M is of type IV or V. This may be

followed by a sequence of quadrilateral faces; which may be followed by a pentagonal face if M is of type

III, IV or V; which may be followed by two pentagonal faces, each with one exterior side, if M is of type IV.

We divide the boundary of the b-corner into three parts

αB = ∂B∩α γB = ∂B∩ γ ιB = ∂B∖ (α ∪ γ)

and assign similar notation for the other two corners. The next proposition shows that αB,γB, and ιB are of

comparable length, and if one is small, then the entire corner is small.

Proposition 2.2.8. The following inequalities hold, and analogous inequalities hold after switching the roles

of a,b, and c.

(a) ℓ(ιB)< 2min(ℓ(αB), ℓ(γB)). If M has a middle face, ℓ(ιB)< min(ℓ(αB), ℓ(γB)).

(b) max(ℓ(αB), ℓ(γB))< 3min(ℓ(αB), ℓ(γB)). If M has a middle face, max(ℓ(αB), ℓ(γB))< 2min(ℓ(αB), ℓ(γB)).

(c) If F is a face of A or D that borders both B and C, then ℓ(∂F ∩ (ιB ∪αD ∪ ιC))< ℓ(α).
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Proof. Assume that M is of type IV, the most complicated case. If M is of a different type the arguments are

analogous but shorter. Assume without loss of generality that ℓ(αB)≤ ℓ(γB).

Let B =
⋃k+3

i=0 Bi, where

• B0 is the extremal face containing b.

• B1, . . .Bk is a (possibly empty) sequence of quadrilateral faces such that B j−1 borders B j for all j ∈

{1, . . . ,k}.

• Bk+1 is the pentagonal face with two exterior sides, if it exists: otherwise, Bk+1 = B0.

• Bk+2 and Bk+3 are the pentagonal faces with one exterior side bordering α and γ , respectively.

Bk+1

Bk

B1

B0

α0α1αkαk+1

γk

γk+1

γ0

γ1
ι1

ιk

ιk+3

ιk+1

γk+2

αk+2

Bk+3

ιk+2

Bk+2

b

ιB

γB

αB

Figure 2.5: The b-corner of M.

We assign the following labels in order to streamline notation: see Figure 2.5.

αi = ∂Bi ∩α for i ∈ {0, . . . ,k+2}

γi = ∂Bi ∩ γ for i ∈ {0, . . . ,k+1}, and γk+2 = ∂Bk+3 ∩ γ

ιi = ∂Bi ∩∂Bi+1 for i ∈ {0, . . . ,k+2}, and ιk+3 = ∂Bk+1 ∩∂Bk+3

Let i ∈ {0, . . . ,k}. Then applying Lemma 2.2.6 to γi, we obtain ℓ(αi) >
1
6ℓ(∂Bi). Since ιi is an interior
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side of Bi, ℓ(ιi)<
1
6ℓ(∂Bi) by the C′(1/6) condition. Therefore

ℓ(ιi)< ℓ(αi) for i ∈ {0, . . . ,k} . (2.2)

Now consider Bk+1. Applying Lemma 2.2.6 to γk+1 yields ℓ(ιk+3)+ℓ(ιk+1)+ℓ(αk+1)+ℓ(ιk)>
1
2ℓ(∂Bk+1),

and therefore ℓ(αk+1) + ℓ(ιk) >
1
6ℓ(∂Bk+1) since ιk+1 and ιk+3 are interior sides. We know by (2.2) that

ℓ(ιk) < ℓ(αk), so 1
6ℓ(∂Bk+1) < ℓ(αk)+ ℓ(αk+1). Since ιk+3 is an interior side of Bk+1, we have ℓ(ιk+3) <

1
6ℓ(∂Bk+1). Thus

ℓ(ιk+3)< ℓ(αk)+ ℓ(αk+1) . (2.3)

Notice that ∂Bk+2 consists of four interior sides and αk+2. Therefore

ℓ(αk+2)>
1
3ℓ(∂Bk+2) . (2.4)

Since ιk+1 and ιk+2 are interior sides of Bk+2, we have ℓ(ιk+1) <
1
6ℓ(∂Bk+2) and ℓ(ιk+2) <

1
6ℓ(∂Bk+2).

Combining this with (2.4) yields

ℓ(ιk+1)<
1
2ℓ(αk+2)

ℓ(ιk+2)<
1
2ℓ(αk+2) .

(2.5)

Applying Lemma 2.2.6 to γk+2, we find that

ℓ(ιk+2)+ ℓ(ιk+3)>
1
6ℓ(∂Bk+3) . (2.6)

Now ιB consists of two interior sides of Bk+2 and two interior sides of Bk+3. Thus

ℓ(ιB)<
1
3ℓ(∂Bk+2)+

1
3ℓ(∂Bk+3) . (2.7)

Combining inequalities (2.2-2.7), we have

ℓ(ιB)<
1
3ℓ(∂Bk+2)+

1
3ℓ(∂Bk+3)

< ℓ(αk+2)+
1
3ℓ(∂Bk+3)

< ℓ(αk+2)+2ℓ(ιk+2)+2ℓ(ιk+3)

< 2ℓ(αk+2)+2(ℓ(αk+1)+ ℓ(αk))≤ 2ℓ(αB) .
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If M has a middle face, then ιB = ιk and inequality (2.2) gives that ℓ(ιB)< ℓ(αB). This proves part (a). Since

γB is geodesic,

ℓ(γB)≤ ℓ(ιB)+ ℓ(αB)< 2ℓ(αB)+ ℓ(αB) = 3ℓ(αB),

and if M has a middle face this bound is lowered to 2ℓ(αB). This establishes part (b).

Now we prove part (c). If F is the middle face of M, then ∂F ∩ ιB = ιB, and ℓ(ιB)< ℓ(αB). If instead F

is a face of A, then ∂F ∩ ιB = ιk+3 in Fig. 2.5, and ℓ(ιk+3)< ℓ(αk+1)+ ℓ(αk)< ℓ(αB) by inequality (2.3). In

either case we have ℓ(∂F ∩ ιB)< ℓ(αB); similarly, ℓ(∂F ∩ ιC)< ℓ(αC). Thus we have ℓ(∂F ∩(ιB∪α ∪ ιC))≤

ℓ(∂F ∩ ιB)+ ℓ(∂F ∩α)+ ℓ(∂F ∩ ιC)< ℓ(αB)+ ℓ(αD)+ ℓ(αC) = ℓ(α).

2.3 Assouad-Nagata dimension of finitely generated C′(1/6) groups

In this section we prove the following proposition.

Proposition 2.3.1. Let G = ⟨S | R⟩, where S is finite, and R is a cyclically reduced C′(1/6) language. Then

any geodesic spanning tree of Γ(G,S) is (1/12,2)-tight.

We divide this section into two parts. In Section 2.3.1, we fix all notation and assumptions, and give a

description of a van Kampen diagram which is obtained by fixing a geodesic spanning tree of Γ(G,S) rooted

at 1 and assuming it is not (ε,2)-tight for some ε > 0. All lemmas in Section 2.3.2 are proved under the

assumptions stated in Section 2.3.1. We determine ε along the way, choosing at each stage an ε small enough

to make the lemmas work. In the end we reach a contradiction with any ε ≤ 1
12 , meaning that the spanning

tree must have been (1/12,2)-tight all along.

2.3.1 Construction of a van Kampen diagram

Let G = ⟨S | R⟩ be a finitely generated C′(1/6) group. Fix a geodesic spanning tree T of Γ(G,S) rooted at 1.

Let let ∥ · ∥ be the word norm on G with respect to S, and let d be the corresponding metric. For each g ∈ G,

let [1,g] be the unique path from 1 to g in T .

Suppose to the contrary that T is not (ε,2)-tight. Let r ∈ N witness that T is not (ε,2)-tight. Then there

exists an x ∈ G such that ∥x∥ ≥ r and B(x,εr) contains two elements y,y′ such that the geodesics [1,x], [1,y],

and [1,y′] each pass through different elements of the sphere of radius ∥x∥− r in Γ(G,S). Because T is a tree,

for every distinct g,h ∈ G, there is a unique vertex of Γ(G,S) where the geodesics [1,g] and [1,h] diverge. Let

a be the point at which [1,x] diverges from [1,y], and let a′ be the point at which [1,x] diverges from [1,y′].

Then we have that d(a,x)≥ r, d(a′,x)≥ r,d(a,y)> r− εr, and d(a′,y′)> r− εr. Without loss of generality

suppose that ∥a′∥ ≥ ∥a∥.
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Let [x,y] and [x,y′] be arbitrarily chosen geodesics. Let ∆(1,x,y) be the geodesic triangle in Γ(G,S) with

sides [1,x], [1,y] and [x,y]; similarly define ∆(1,x,y′). Note that ∆(1,x,y) is not a tripod, since ℓ([x,y]) <

εr < 2(r − εr) ≤ ℓ([x,a]) + ℓ([a,y]). Therefore ∆(1,x,y) contains exactly one maximal simple geodesic

triangle, and a is the vertex of this triangle which is closest to 1. Let ∆ = ∆(a,b,c) be the maximal simple

geodesic triangle in ∆(1,x,y), where a,b, and c are the points closest to 1,x, and y, respectively. Similarly let

∆′ = ∆(a′,b′,c′) be the maximal simple geodesic triangle of ∆(1,x,y′) where a′,b′, and c′ are the vertices of

∆(a′,b′,c′) which are closest to 1,x, and y′, respectively. Note that d(b,x)< εr, d(b′,x)< εr, and d(a′,x)> r,

thus we have that ∥a∥ ≤ ∥a′∥< ∥b∥ ≤ ∥b′∥ or ∥a∥ ≤ ∥a′∥< ∥b′∥ ≤ ∥b∥.

y′

1

a

c

y

a′

c′
b′

b

x

M
M′

α

α ′

β

β ′

h

h′
γ

γ ′

Figure 2.6: N = M∪[1,x] M′

Let M and M′ be minimal van Kampen diagrams for ∆ and ∆′, respectively. Attaching the appropriate

geodesic segments and gluing M and M′ along [1,x], we obtain a van Kampen diagram, call it N, for the

circuit [1,y]∗ [y,x]∗ [x,y′]∗ [y′,1]. Thus N is the diagram shown in Figure 2.6, allowing that b,b′ may appear

in either order along [1,x], and that M and M′ may take any of the forms depicted in Figure 2.2. We retain all

notation used in the previous section to describe the geometry of the simple geodesic triangles ∆ and ∆′ and

their van Kampen diagrams M and M′, using the symbol ′ where appropriate. Thus α is the geodesic opposite

a, C′ is the c′-corner, which is opposite γ ′, etc. The vertices labeled h and h′ in Figure 2.6 are the vertices of

γ,γ ′ at the extremities of the b and b′ corner, respectively.

Since M is reduced, no two faces of M cancel: similarly for M′. However, in principle a face of M may

cancel with a face of M′, so N may or may not be reduced. If F is a face of M, then we refer to the number of

sides of F with respect to M, not N. Thus for example if F is a quadrilateral face in M, we will still refer to
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it as a quadrilateral face, even though a side of ∂F might be split into multiple sides in N if it borders [1,x].

Likewise, we call a side of a face F of M exterior if it is exterior in M, even though it may not be a subpath

of ∂N.

Note that the combinatorial map f might not be injective when restricted to ∂M ∪ ∂M′. For example, it

may happen that f (α ′) intersects f (α) or f (β ) in Γ(G,S). However, it is important to note that [1,x], [1,y]

and [1,y′] do not intersect at any vertex of Γ(G,S) farther from the identity than a′, so f is injective when

restricted to β ∪β ′∪ γ ∪ γ ′.

2.3.2 Proof that a certain geodesic spanning tree is tight

All lemmas in this subsection are proved under the standing assumptions described in Section 2.3.1, which

are not restated. The argument is as follows. First, we examine how faces of M and M′ may line up along

their common boundary, and determine that there is a face of M′ that shares more than a third of its boundary

with γ and does not cancel with any face of M. Playing around with inequalities provided by the C′(1/6)

condition, we find that this situation implies that ε > 1
12 . Since we were free to choose ε from the start, this

is the desired contradiction, proving that T is in fact (1/12,2)-tight.

Lemma 2.3.2. Let h,h′ be the vertices of γB,γ
′
B, respectively, which are closest to a′. Then min(d(a′,h),d(a′,h′))>

(1−3ε)r.

Proof. By Proposition 2.2.8, ℓ(γB)< 3ℓ(αB) and so d(h,x) = ℓ(γB)+d(b,x)< 3ℓ(αB)+d(b,x)≤ 3(ℓ(α)+

d(b,x)) = 3d(c,x)≤ 3d(y,x)< 3εr. Since d(a,x)> r, we have d(a,h)> (1−3ε)r. Similarly for h′.

Now we examine how faces of M and M′ may meet up along γ ∪ γ ′. We say that a face F of N cancels if

there is some face F ′ of M such that F and F ′ cancel. If F and F ′ are faces of M and M′, respectively, we say

that F ′ subsumes F if F does not cancel with F ′ but (F ∩ γ)⊆ (F ′∩ γ ′). We say that F is subsumed if there

is some face F ′ that subsumes F . We use the same terminology when the roles of F , M, and γ are switched

with those of F ′, M′, and γ ′.

Lemma 2.3.3. Let F,F ′ be faces of M,M′. If F cancels with F ′, then ∂F ∩ γ = ∂F ′∩ γ ′.

Proof. Suppose that F cancels with F ′, but ∂F∩γ ̸= ∂F ′∩γ ′. Let ∂F∩γ = [p,q] and ∂F ′∩γ ′ = [p′,q′]. Then

either p ̸= p′ or q ̸= q′. Suppose that ∥p∥< ∥p′∥: the other cases are similar. Let σ be the side of F in N which

is incident to p′ and is not contained in ∂F ′. Let τ ′ be the side of F ′ incident to p′ which is not contained in

γ ′: see Figure 2.7. Then σ ∗ τ ′ is a subpath of either a face bordering F ′ or the geodesic [1,y′]. Since F and

F ′ cancel, if Lab(σ) ends with a letter s, then Lab(τ ′) begins with s−1. Therefore either the boundary label

of some face is not freely reduced, or Lab([1,y′]) is not freely reduced. The former contradicts the fact that R

is cyclically reduced, and the latter contradicts that [1,y′] is geodesic.
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Figure 2.7: Diagram for the proof of Lemma 2.3.3

Lemma 2.3.4. Let F be a face of M such that F is not the middle face, and such that either F is triangular,

F is quadrilateral, or F is pentagonal with only one exterior side. Then F is not subsumed.

Proof. Let σ = ∂F ∩ γ , and let τ be the other exterior side of ∂F if there is one, either τ = ∂F ∩α or

τ = ∂F ∩β . If F is triangular or quadrilateral, then applying Lemma 2.2.6 to τ yields that ℓ(σ) > 1
6ℓ(∂F).

If F is pentagonal and has only one exterior side, then σ is the only exterior side of F , so ℓ(σ) > ℓ(∂F)−
4
6ℓ(∂F) = 1

3ℓ(∂F). In all cases, if σ is also a subpath of the boundary of a face F ′ which does not cancel

with F , then this contradicts the C′(1/6) condition.

Corollary 2.3.5. If a face F of N is subsumed, then either F is the middle face, or F is a pentagonal face

with two exterior sides. In either case F borders a face in B, so h ∈ ∂F.

In Lemmas 2.3.6-2.3.11, E ′ is the extremal face at a′, and

ρ
′ = ∂E ′∩ γ

′

σ
′ = ∂E ′∩β

′

τ
′ = ∂E ′∖ (ρ ′∪σ

′).

Lemma 2.3.6. If ε ≤ 1
6 , then ℓ(τ ′)< 1

6ℓ(∂E ′).

Proof. There are three cases to consider: either E ′ is triangular (Case 1 in Figure 2.8), E ′ is quadrilateral

(Case 2), or A′ contains no faces and E ′ is the middle face (Case 3). In Case 1, τ ′ is an interior side and the

result is immediate. In Cases 2 and 3, we may apply Proposition 2.2.8 (c) to get that ℓ(τ ′) < ℓ(α ′) < εr.

Also, in these cases E ′ borders B′, so h ∈ E ′. Since a′ ∈ E ′ by definition, [a′,h′] ⊆ ℓ(ρ ′) and so ℓ(∂E ′) >

2ℓ(ρ ′)≥ 2d(a′,h′)> 2(1−3ε)r. Therefore ℓ(τ ′)< εr
2(1−3ε)r ℓ(∂E ′) = ε

2−6ε
ℓ(∂E ′). Solving ε

2−6ε
≤ 1

6 yields

ε ≤ 1
6 .
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Figure 2.8: Diagram for the proof of Lemma 2.3.6

From now on (that is, Corollary 2.3.7-Corollary 2.3.10), it is assumed that ε ≤ 1
6 , and this will not be

restated in the hypotheses. Knowing Lemma 2.3.6, we may then apply Lemma 2.2.6 to ρ ′ and σ ′ in turn to

obtain the following.

Corollary 2.3.7. ℓ(ρ ′)> 1
3ℓ(∂E ′) and ℓ(σ ′)> 1

3ℓ(∂E ′).

Lemma 2.3.8. E ′ does not cancel.

Proof. Suppose that E ′ cancels with some face F of M. Since F ∩ γ = E ′ ∩ γ ′ by Lemma 2.3.3 and a′ ̸∈ B,

we have that F is not a face of B. Therefore F borders β . Now there are two cases. Either there is an interior

side of F which is incident to both γ and β (Case 1 in Figure 2.9), or F is the extremal face at a and a = a′

(Case 2). In Case 1, let θ be the side of F incident to a′ and β . In Case 2, let θ be the edge of ∂F ∩β which

is incident to a′. Since F and E ′ cancel, let θ ′ be the path starting from a′ which is a subpath of ∂E ′ and has

label Lab(θ). Let p, p′ be the endpoints of θ ,θ ′, respectively.

E ′F

a′
θ θ ′

E ′F

a′

θ ′ p p′

p

p′

θ

Case 1 Case 2

Figure 2.9: Diagram for the proof of Lemma 2.3.8

Now observe that in either case, ℓ(θ ′) = ℓ(θ)< 1
6ℓ(∂F) = 1

6ℓ(∂E ′). By Corollary 2.3.7, ℓ(σ ′)> 1
3ℓ(∂E),
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so θ ′ is a subpath of σ ′. Therefore p′ ∈ σ ′ ⊆ β ′. Also, p ∈ β by definition. Since Lab(θ) = Lab(θ ′) and the

combinatorial map f : N → Γ(G,S) is label-preserving, f (p) = f (p′). But f is injective when restricted to

β ∪β ′ since T is a tree, so this is a contradiction.

Lemma 2.3.9. ℓ(ρ ′)> (1−3ε)r.

Proof. Since ∥a′∥ ≥ ∥a∥, either ρ ′ extends beyond γ or ρ ′ is a subpath of γ . If ρ ′ extends beyond γ , then

a′ ∈ ρ ′ and b ∈ ρ ′, so [a,b′]⊂ ρ ′ and ℓ(ρ ′)≥ d(a′,b)> (1− ε)r > (1−3ε)r.

Suppose then that ρ ′ is a subpath of γ . Since E ′ does not cancel, the C′(1/6) condition implies that each

face of M bordering E ′ must cover less than one sixth of ∂E ′. Recall that ℓ(ρ ′)> 1
3ℓ(∂E ′) by Corollary 2.3.7.

Therefore E ′ must border at least three faces of M, so E ′ subsumes some face F . Since F is subsumed,

(∂F ∩ γ)⊆ ρ ′ and h ∈ (∂F ∩ γ) by Corollary 2.3.5. Since ρ ′ contains a′ as well, we have that [a′,h]⊆ ρ ′ and

thus ℓ(ρ ′)≥ d(a′,h)> (1−3ε)r.

Corollary 2.3.10. ℓ(ρ ′∩ [a′,h])> 1−6ε

3−9ε
ℓ(∂E ′).

Proof. First, observe that ℓ([h,x])< 3εr and ℓ(ρ ′)> (1−3ε)r. Therefore ℓ([h,x])< 3ε

1−3ε
ℓ(ρ ′), so

ℓ(ρ ∩ [a′,h]) = ℓ(ρ ′∖ [h,x])≥ ℓ(ρ ′)− ℓ([h,x])> ℓ(ρ ′)−
(

3ε

1−3ε

)
ℓ(ρ ′) =

(
1−6ε

1−3ε

)
ℓ(ρ ′).

By Corollary 2.3.7, ℓ(ρ ′)> 1
3ℓ(∂E ′). Therefore

ℓ(ρ ′∩ [a′,h])>
(

1−6ε

1−3ε

)
ℓ(ρ ′)>

(
1−6ε

3−9ε

)
ℓ(∂E ′).

Lemma 2.3.11. If ε ≤ 1
9 , there is a face F of M satisfying all of the following conditions.

(a) F is subsumed by E ′.

(b) F is either the middle face of M or the pentagonal face of A with two exterior sides.

(c) ℓ(∂F ∩∂E ′)>
( 1−6ε

3−9ε
− 1

6

)
ℓ(∂E ′).

(d) ℓ(∂F)< 6εr.

Proof. From the previous corollary we know that more than 1−6ε

3−9ε
of ∂E ′ must be covered by faces which are

not in B. Since E ′ does not cancel, if 1−6ε

3−9ε
≥ 1

6 , then E ′ subsumes some face F of M∖B. Solving 1−6ε

3−9ε
≥ 1

6

yields ε ≤ 1
9 , so choose ε ≤ 1

9 and part (a) follows. Part (b) follows immediately from Corollary 2.3.5.

Furthermore, Corollary 2.3.5 implies that no other faces of M∖B can be subsumed by E ′. Now E ′ subsumes
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F implies that ℓ(∂F ∩∂E ′)< 1
6ℓ(∂E ′), so there is still a subpath of ρ ′ of length more than

( 1−6ε

3−9ε
− 1

6

)
ℓ(∂E ′),

and thus of positive length, to be covered. Therefore E ′ must border one additional face of M ∖B. Call this

face E. Since E cannot be subsumed by E ′, we have that part of ∂E extends beyond γ ′, so a′ ∈ ∂E. Therefore

we have the situation depicted in Figure 2.10.

C B

F E ′

E
a′

ρσ

τ

h

Figure 2.10: Diagram for the proof of Lemma 2.3.11

Notice that ℓ(∂E ∩ ∂E ′) < 1
6ℓ(∂E ′) and ℓ((∂F ∪ ∂E)∩ ∂E ′) = ℓ(ρ ′ ∩ [a′,h]) > 1−6ε

3−9ε
ℓ(∂E ′). Therefore

ℓ(∂F ∩∂E ′)>
( 1−6ε

3−9ε
− 1

6

)
ℓ(∂E ′). This proves part (c).

Let ρ = ∂F ∩γ and σ = ∂F ∩β . Then ℓ(ρ)< 1
6ℓ(∂F) since E ′ subsumes F . Since F is either the middle

face or the pentagonal face of A with two exterior sides, F has exactly one interior side, call it τ , which does

not border either α,B, or C. By Proposition 2.2.8, the sum of the lengths of the other sides of F other than

ρ,σ , or τ is less than ℓ(α)< εr. Thus by Lemma 2.2.6 applied to σ , we have that ℓ(ρ)+ℓ(τ)+εr ≥ 1
2ℓ(∂F).

But max(ℓ(ρ), ℓ(τ))< 1
6ℓ(∂F), so we have εr > 1

6ℓ(∂F), or ℓ(∂F)< 6εr. This proves part (d).

We return to Proposition 2.3.1, which we are now ready to prove.

Proof of Proposition 2.3.1. Suppose that T is a geodesic spanning tree of Γ(G,S) rooted at 1, and T is not

(ε,2)-tight. If ε ≤ 1
12 , then all of the previous lemmas hold. But then, in the notation of Lemma 2.3.11, we

have

6εr > ℓ(∂F)> 6ℓ(∂F ∩∂E ′)> 6
( 1−6ε

3−9ε
− 1

6

)
ℓ(∂E ′)> 1−9ε

1−3ε
2ℓ(ρ ′) = 2−18ε

1−3ε
(1−3ε)r = (2−18ε)r.

Thus 6ε > 2−18ε or ε > 1
12 , a contradiction. Therefore T is (1/12,2)-tight.
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Combining this with Proposition 2.1.4, we have the following theorem.

Theorem 2.3.12. If G is a finitely generated C′(1/6) group, then asdimAN(G)≤ 2.
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CHAPTER 3

Asymptotic and Assouad-Nagata dimension of finitely generated groups and their subgroups

3.1 Adapting a construction of Higes

In order to prove Theorem 1, we will need to construct a countable group which can attain any positive

Assouad-Nagata dimension. To be specific, in this section we construct a countable, locally finite group K

and proper norms {∥ · ∥n|n ∈ Z+∪{∞}} such that asdimAN(K,∥ · ∥n) = n for every n ∈ Z+∪{∞}. The idea

is to take a direct sum of cyclic groups, block every n of them together, and scale the blocks appropriately.

Note that since K is locally finite, asdim(K) = 0 no matter the choice of proper norm.

This idea is already present in Higes’ work. Namely, in [16] Higes constructs, for any n ∈ Z+ ∪{∞}, a

group Gn and a proper norm ∥ · ∥n on G such that asdim(Gn,∥ · ∥n) = 0 but asdimAN(Gn,∥ · ∥n). However,

in Higes’ examples, if m ̸= n, then Gm and Gn are not isomorphic. For our purposes, it is necessary that the

group remain fixed, with only the norm varying. The rest of this section is devoted to working out the details

of this construction.

3.1.1 Scaled normed groups and direct sums

Formally, a normed group should be an ordered pair (G,∥ · ∥G). But from now on, whenever we say that G

is a normed group, it is understood that G is equipped with a norm, which is always called ∥ · ∥G. With this

convention in mind we eliminate the norm from the notation wherever possible.

If G is a normed group and s is a positive real number, then the function s∥ · ∥G : G → R+
0 ,g 7→ s∥g∥G is

also a norm on G. We call the normed group (G,s∥ · ∥G) a scaled normed group, and denote it briefly by sG.

Given two normed groups G0 and G1 and scaling constants s0,s1, we define their scaled direct product

s0G0 × s1G1 to be the group G0 ×G1 endowed with the norm ∥ · ∥(s0,s1) defined by

∥(g0,g1)∥(s0,s1) = s0∥g0∥G0 + s1∥g1∥G1

for all g0 ∈ G0 and g1 ∈ G1. This is just the ℓ1 product norm on s0G0 × s1G1. For any k ∈ N, we define the

scaled direct product of finitely many scaled normed groups ∏
k
i=0 siGi by iterating this construction. Note

that for finite direct products we have that ∏
k
i=0 siGi is bi-Lipschitz equivalent to ∏

k
i=0 Gi without scaling.

To avoid frequently having to state that certain sets are nonempty, we declare ∏i∈ /0 Gi to be the trivial

group. Let I be a set and (Gi)i∈I an I-tuple of groups. For g = (gi)i∈I ∈ ∏i∈I Gi, we denote the support of g

by supp(g); that is, supp(g) = {i ∈ I | gi ̸= 1}. By definition
⊕

i∈I Gi is the subgroup of ∏i∈I Gi consisting
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of all g ∈ ∏i∈I Gi such that supp(g) is finite. The notion of scaled direct products can then be extended to

general direct sums in the following natural way.

Definition 3.1.1. Let I be a set, let (Gi)i∈I be an I-tuple of normed groups, and let s = (si)i∈I an I-tuple of

scaling constants. Let G =
⊕

i∈I Gi. Then the scaled direct sum
⊕

i∈I siGi is defined to be the normed group

(G,∥ · ∥s), where ∥ · ∥s is given by

∥g∥s = ∑
i∈I

si∥gi∥Gi

for all g ∈ G. We call ∥ · ∥s the norm induced by s.

The following lemma just states that, for our purposes, we may assume all scaling constants are positive

integers.

Lemma 3.1.2. Let I be a set, s = (si)i∈I an I-tuple of scaling constants bounded away from zero. Then⊕
i∈I siGi is bi-Lipschitz equivalent to

⊕
i∈I s′iGi, where s′i is a positive integer for all i ∈ I.

Proof. Suppose that ε > 0 is such that si ≥ ε for all i ∈ I. Let s′ = (s′i)i∈I = (⌈si⌉)i∈I , and let g = (gi)i∈I ∈⊕
i∈I Gi. Then clearly ∥g∥s ≤ ∥g∥s′ , and

∥g∥s′ = ∑
i∈I

⌈si⌉∥gi∥Gi ≤ ∑
i∈I

(
si+1

si

)
si∥gi∥Gi ≤

(
1+ 1

ε

)
∑
i∈I

si∥gi∥Gi =
(
1+ 1

ε

)
∥g∥s .

3.1.2 A fixed group with varying norms

The next set of lemmas deal specifically with direct sums of cyclic groups. Here we assume that a cyclic

group comes equipped with the natural word norm, that is ∥x∥Zℓ
= min(x, ℓ−x) for all x ∈Zℓ, and ∥x∥Z = |x|

for all x ∈ Z. Unless otherwise noted, tuples are sequences indexed by N, e.g. (si) stands for (si)i∈N.

Definition 3.1.3. Let (xi) ∈
⊕

i∈NZℓi . The geodesic form of (xi) is the unique sequence of integers (yi) such

that for all i ∈ N,

• yi ≡ xi mod ℓi , and

• yi ∈
{
−
⌊
ℓi−1

2

⌋
, . . . ,−1,0,1, . . . ,

⌊
ℓi
2

⌋}
.

Note that if s = (si) is a sequence of scaling constants, x = (xi)∈
⊕

i∈N siZℓi , and (yi) is the geodesic form

of x, then we have

∥x∥s = ∑
i∈N

si|yi| . (3.1)
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Definition 3.1.4. For s ∈ R+ and k,n ∈ N, assume that the set

s{0, . . . ,k}n = {0,s,2s, . . . ,ks}n ⊂ Rn

is equipped with the ℓ1 metric. Then an expanded n-dimensional cube is a space isometric to s{0, . . . ,k}n for

some s ≥ 1 and k ∈ N.

In accordance with Definition 3.1.4, whenever s is a scaling constant and s ≥ 1, we call s an expansion

constant. Sequences of expanded cubes are useful for establishing lower bounds on the asymptotic Assouad-

Nagata dimension of a metric space.

Lemma 3.1.5. [16, Corollary 2.7] Let X be a metric space, n ∈ N. If X contains a sequence of expanded

n-dimensional cubes s j{0, . . . ,k j}n where lim j→∞ k j = ∞, then asdimAN(X)≥ n.

Suppose that P is a set with |P| ≥ n, (ℓi)i∈P is a P-tuple of natural numbers, and sP is an expansion

constant. Let kP be a natural number with kP ≤ min{ℓi/2 | i ∈ P}. Then by (3.1), sP
⊕

i∈PZℓi contains an

expanded n-dimensional cube sP{0, . . . ,kP}n. This observation along with Lemma 3.1.5 is what allows us

to construct a countable group which can achieve any positive Assouad-Nagata dimension. To smooth the

process, we introduce the following ad hoc notation.

Definition 3.1.6. For each m ∈ Z+∪{∞}, let Pm = {P(m, j) | j ∈ N} be the partition of N given by

P(m, j) =


{ jm, jm+1, . . . ,( j+1)m−1} if m ∈ Z+

{ j2, j2 +1, . . . ,( j+1)2 −1} if m = ∞ .

Definition 3.1.7. Let s = (si) be a sequence, m ∈ Z+ ∪{∞}. Let the m-inflation of s, denoted m× s, be the

sequence defined by

(m× s)i = s j ⇔ i ∈ P(m, j) .

For example, if s = (1,2,3, . . .), then 2× s = (1,1,2,2,3,3, . . .) and ∞× s = (1,2,2,2,3,3,3,3, . . .). By

definition,

si =


(m× s)im if m ∈ Z+

(m× s)i2 if m = ∞

and (m× s)i =


s⌊i/m⌋ if m ∈ Z+

s⌊
√

i⌋ if m = ∞ .

(3.2)

Lemma 3.1.8. Let d ∈ N, and let (c0, . . . ,cd−1) be a finite sequence of scaling constants. Let m ∈ Z+∪{∞}

be fixed, let (si) be an increasing sequence of expansion constants, and let (ℓi) be an increasing sequence of
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positive integers. Let

Zd =
d−1⊕
i=0

ciZ , Km =
⊕
i∈N

(m× s)iZℓi .

Then asdimAN(Zd ×Km)≥ d +m.

Proof. By Lemma 3.1.2, we may assume without loss of generality that all si are positive integers. Since

finite direct products preserve bi-Lipschitz equivalence, we may also assume that all ci are equal to 1, so that

Zd = Zd .

Now note that

Zd ×Km = Zd ×
⊕
j∈N

s j
⊕

i∈P(m, j)

Zℓi


,

where Zd × s j
⊕

i∈P(m, j)
Zℓi is an isometrically embedded subgroup for each j ∈ N. Let

k j = min{⌊ℓi/2⌋ | i ∈ P(m, j)}=


⌊ℓ jm/2⌋ if m ∈ Z+

⌊ℓ j2/2⌋ if m = ∞ .

Then lim j→∞ k j = ∞.

If m ∈ Z+, then |P(m, j)| = m for all j ∈ N. Then since s j is a positive integer, Zd × s j
⊕

i∈P(m, j)
Zℓi con-

tains an isometrically embedded expanded (d +m)-dimensional cube s j{0, . . . ,k j}d+m for all j ∈ N. Since

lim j→∞ k j = ∞, by Lemma 3.1.5 we have asdimAN(Zd ×Km)≥ d +m.

If m = ∞, let n ∈ Z+. Then |P(m, j)| = ( j+1)2 − j2 = 2 j+1 ≥ n for all j ≥ n. Therefore s j
⊕

i∈P(m, j)
Zℓi

contains the expanded n-dimensional cube s j{0, . . . ,k j}n for all j ≥ n. Since lim j→∞ k j = ∞, by Lemma 3.1.5

we have asdimAN(K∞) ≥ n. Since n ∈ Z+ was chosen arbitrarily, asdimAN(K∞) = ∞, thus asdimAN(Zd ×

K∞) = ∞.

Now, in the notation of Lemma 3.1.8, we wish to impose certain conditions on the sequence (si) of

expansion constants to guarantee that asdimAN(Zd ×Km) = d +m exactly. We will use a lemma of Higes; in

order to do so we need to introduce a little notation, and consider a different norm on countable direct sums

of scaled normed groups.

Definition 3.1.9. Let (Gi) be a sequence of normed groups and s = (si) a sequence of scaling constants. Let
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G =
⊕

i∈N Gi. For convenience, let us define the height function h : G → N by

h(g) =


0 if g = 1

max(supp(g)) otherwise.

Now define the quasi-ultranorm on G induced by s, denoted ∥ · ∥qu
s , by

∥g∥qu
s = sh∥gh∥Gh (3.3)

for all g = (gi) ∈ G, where h = h(g).

In [16], Higes calls the metric associated to this norm the quasi-ultrametric generated by the sequence of

metrics (dGi), where dGi is the metric associated to the scaled norm si∥·∥Gi for each i ∈N. For this reason we

call the norm in (3.3) the quasi-ultranorm on G induced by s, and put “qu” in the superscript. The next lemma

says that if all Gi are finite then, under mild assumptions about the growth of the sequence s, the norms ∥ · ∥s

and ∥ · ∥qu
s are, for our purposes, interchangeable.

Lemma 3.1.10. Let (Gi) be a sequence of finite normed groups and s = (si) a sequence scaling constants.

Let G =
⊕

i∈N Gi. Suppose that Gi,∥ · ∥Gi ,si satisfy the following conditions for all i ∈ N:

• ∥gi∥Gi ≥ 1 for all gi ∈ Gi ∖{1}.

• diam(Gi+1)≥ diam(Gi).

• si+1 ≥ 2si diam(Gi).

Then the norm ∥ · ∥s and quasi-ultranorm ∥ · ∥qu
s induced by s are bi-Lipschitz equivalent.

Proof. Clearly ∥g∥qu
s ≤ ∥g∥s for all g ∈ G.

We now prove by induction on h(g) that ∥g∥s ≤ 2∥g∥qu
s . This is clear when h(g) = 0. Now suppose that

h(g)= k ≥ 1. Write g as g′g′′, where g′j = g j exactly when j = k and is equal to 1 otherwise, and h(g′′)= i< k.

Then we have

∥g∥s ≤ ∥g′∥s +∥g′′∥s = ∥g′∥qu
s +∥g′′∥s ≤ ∥g′∥qu

s +2∥g′′∥qu
s

≤ ∥g′∥qu
s +2sk−1 diam(Gk−1)

≤ ∥g′∥qu
s + sk ≤ 2∥g′∥qu

s = 2∥g∥qu
s .
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Lemma 3.1.11. [16, Proof of Corollary 4.11] Let (ℓi) be an increasing sequence of positive integers with

ℓ0 ≥ 2. Let m be a fixed positive integer. Let s = (si) be a sequence of expansion constants such that

si+1 ≥ 1+ si diam(Zm
ℓi
) = 1+(m⌊ℓi/2⌋)si .

Let Kqu
m = (

⊕
i∈NZm

ℓi
,∥ · ∥qu

s ). Then for any k ∈ N we have asdimAN(Zk ×Kqu
m ) = k+m.

We use this lemma in the case k = 0,m = 1 to obtain the slightly generalized lemma that we need.

Lemma 3.1.12. Let d ∈ N, and let (c0, . . . ,cd−1) be a finite sequence of scaling constants. Let (ℓi) be a

sequence of positive integers, and let m ∈Z+∪{∞} be fixed. Let (s j) be an increasing sequence of expansion

constants such that, if m ∈ Z+, we have

s j+1 ≥ (ℓ( j+1)m)s j

for all j ∈ N. Now let

Zd =
d−1⊕
i=0

ciZ Km =
⊕
i∈N

(m× s)iZℓi .

Then asdimAN(Zd ×Km) = d +m.

Proof. The lower bound is established in Lemma 3.1.8. For the upper bound, suppose that m ∈ Z+. Then

Km =
m−1⊕
r=0

(⊕
j∈N

s jZℓ jm+r

)
.

Since (ℓi) is increasing, for all j ∈ N and r ∈ {0, . . . ,m−1} we have that

s j+1 ≥ (ℓ( j+1)m)s j ≥ (ℓ jm+r)s j ≥ (2⌊ℓ jm+r/2⌋)s j = (2diam(Zℓ jm+r))s j ≥ 1+ s j diam(Zℓ jm+r) .

Therefore for any fixed r ∈ {0, . . . ,m − 1}, the sequences (ℓ jm+r),(Zℓ jm+r), and (s j) together satisfy the

assumptions of Lemmas 3.1.10 and 3.1.11. Hence for all r ∈ {0, . . . ,m−1},

asdimAN

(⊕
j∈N

s jZ jm+r

)
= asdimAN

(⊕
j∈N

Z jm+r,∥ · ∥s

)
= asdimAN

(⊕
j∈N

Z jm+r,∥ · ∥qu
s

)
= 1 .

Thus by Lemma 1.2.11,

asdimAN(Km)≤
m−1

∑
r=0

asdimAN

(⊕
j∈N

s jZ jm+r

)
≤ m ,
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and asdimAN(Zd) = asdimAN(Zd) = d. Therefore asdimAN(Zd ×Km)≤ d +m.

The importance of Lemma 3.1.12 lies in the fact that if (ℓi) is fixed and m,n ∈ Z+∪{∞} are distinct, then

Km and Kn are merely the same group with different norms. Later, we will construct two finitely generated

groups A and B with subgroups that are isomorphic and bi-Lipschitz equivalent to Km and Kn, respectively.

Since Km and Kn are isomorphic, we construct a finitely generated group G which is the amalgamated product

of A and B along an isomorphism between Km and Kn. The isomorphism “collapses” Kn, so that the Assouad-

Nagata dimension of G is not much more than m, while the Assouad-Nagata dimension of B is at least n.

To construct A,B, and G such that all of the aforementioned geometric properties hold, we use some small

cancellation theory. This is the topic of the next section.

3.2 Operations on van Kampen diagrams and signed r-face counts

The goal of this section is to prove Lemma 3.2.18, which states that words of a certain form are quasigeodesic

in certain central extensions of C′(λ ) groups, where 0 < λ < 1/12. This is a generalization [32, Lemma

5.10], originally used to construct finitely generated groups with circle-tree asymptotic cones. The proof of

Lemma 3.2.18 is a technical argument that involves performing surgery on van Kampen diagrams.

In Section 3.2.1, we define signed and unsigned r-face counts, where r is a relation of a presentation.

We also introduce various operations on van Kampen diagrams, and examine how each of these operations

affects the signed and unsigned r-face counts. In Section 3.2.2, we collect some facts about van Kampen

diagrams over C′(1/6) presentations that are used in the proof of Lemma 3.2.18. Finally, in Section 3.2.3, we

prove Lemma 3.2.18.

3.2.1 Operations on van Kampen diagrams

Given a van Kampen diagram M over a presentation ⟨S | R⟩, there are various ways to deform M within the

plane to get another van Kampen diagram M′. To check that the resulting graph M′ is really a van Kampen

diagram, it suffices to show that the operation preserves connectedness and produces a planar embedding of

M′. If one also requires that M′ is a van Kampen diagram over the same presentation, one needs to check that

any new faces enclosed by the operation have a boundary label which is either in R∗ or equal to the identity

in F(S). In this section we list a few operations on van Kampen diagrams that are needed for the proof of

Lemma 3.2.18. In our case it will be necessary to keep track of how each operation affects the boundary label

Lab(∂M), as well as two quantities that we call the signed and unsigned r-face counts.

Definition 3.2.1. Let M be a van Kampen diagram over a presentation ⟨S | R⟩, where R is cyclically minimal.

Let r ∈ R. Then the (unsigned) r-face count κ(M,r) is the total number of r-faces in M.
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Definition 3.2.2. Let M be a van Kampen diagram over a presentation ⟨S | R⟩ where R is cyclically minimal,

and let r ∈ R. Then the signed r-face count σ(M,r) is defined as follows.

• If F is a face of M, then

σ(F,r) =


1 if Lab(∂F,x,+) = r for some x ∈ ∂F

−1 if Lab(∂F,x,−) = r for some x ∈ ∂F

0 otherwise.

• σ(M,r) = ∑{σ(F,r) | F is a face of M}.

The assumption that R is cyclically minimal ensures that each face contributes to the signed or unsigned

r-face count of at most one r ∈ R. Note that if F and F ′ are two faces of M that cancel with each other, then

σ(F,r) =−σ(F ′,r) for all r ∈ R.

Operation 3.2.3 (Removing an inessential edge). Suppose that e = (x,y) is an inessential edge of a van

Kampen diagram M over a presentation ⟨S | R⟩, where R is cyclically reduced and cyclically minimal, and

Lab(∂M) is cyclically reduced. Then e is on the boundary of exactly two inessential bounded faces. There

are two possibilities.

(a) If x ̸= y, contract e to remove it. This will produce a connected, planar embedding of the new graph.

This changes two inessential faces with labels 1u and 1v to two inessential faces with labels u and v.

Since R is cyclically reduced, this does not affect the r-face count for any r ∈ R.

(b) If x = y, delete e to remove it. Since e is a loop, this will leave the graph connected. This replaces

two inessential faces on either side of e with labels u1 and 1v with a single inessential face labeled uv.

Again since R is cyclically reduced, this operation does not affect σ(M,r) for any r ∈ R.

Note that neither (a) nor (b) can introduce new self-intersections in the boundary path of any face of M. Also,

since Lab(∂M) is cyclically reduced, neither operation affects Lab(∂M).

Operation 3.2.4 (Removing a simple subdiagram with trivial boundary label). Let M be a van Kampen

diagram over ⟨S | R⟩, where R and Lab(∂M) are both cyclically reduced. Suppose that M contains a sim-

ple subdiagram D such that ∂D contains no inessential edges and Lab(∂D) =F(S) 1. Then ∂D = α+α−,

where Lab(α−) = Lab(α+)
−1. We may then remove D by replacing D with a simple inessential face F and

deforming α+ onto α− through the interior of F . This does not affect the boundary label of M.

Note that if F and F ′ are simple faces that intersect simply, and F cancels with F ′, then F ∪F ′ is a simple

subdiagram of M with trivial boundary label, which may be removed by applying Operation 3.2.4. Perhaps
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α+

α−

D

α+

α−

F
α+ = α−

Figure 3.1: Removing a simple subdiagram with trivial boundary label

surprisingly, Operation 3.2.4 does not always preserve the signed r-face count, as the following example

shows.

Example 3.2.5. Figure 3.2 depicts a van Kampen diagram M over the presentation

⟨a,b | a2,aba−1b⟩ with boundary label bb−1, such that σ(M,aba−1b) = 2.

a

a

a

a

b

b

b

Figure 3.2: Operation 3.2.4 does not always preserve the signed r-face count of a van Kampen diagram

However, Operation 3.2.4 does preserve the signed r-face count of van Kampen diagrams over C′(1/6)

presentations. This is because C′(1/6) presentations are aspherical. The definition of a spherical van Kampen

diagram is the same as that of a van Kampen diagram with R2 replaced by S2: in particular, every face

is bounded. A presentation ⟨S | R⟩ is aspherical if every bare spherical van Kampen diagram over ⟨S | R⟩

contains a pair of faces that cancel. The following is a special case of a lemma of Olshanskii.

Lemma 3.2.6. [33, Lemma 31.1 part 2)] Let ⟨S | R⟩ be an aspherical presentation, and suppose that M is a

van Kampen diagram over ⟨S | R⟩ with boundary label w, where w =F(S) 1. Then σ(M,r) = 0 for all r ∈ R.

Operation 3.2.7 (Padding a vertex). Suppose that x is a vertex of M which appears twice in the boundary

path of some face (bounded or unbounded) of M. Choose ε > 0 small enough so that B(x,ε) ⊂ R2 contains

only the ends of edges incident to x. Now B(x,ε)∖M consists of finitely many connected components: let

these be denoted C0,C1, . . . ,Ck. For each i ∈ {0, . . . ,k}, insert a clone xi of x into Ci, and connect it to x with

an inessential edge. Then duplicate the edges on either side of xi, attaching the endpoint meant for x to xi
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instead: see Figure 3.3. The resulting graph has the same essential faces and boundary path as M, and one

fewer vertex that is a point of self-intersection of the boundary path of a face. Each new inessential face has

boundary label 1ss−1 for some s ∈ S.

x

b

a

x

ab

b
a

1Ci

xi

Figure 3.3: Padding a vertex

Operation 3.2.8 (Quotienting simple faces). Suppose that G = ⟨S | RG⟩ and H = ⟨S | RH⟩ is a quotient of G,

so every word in RG represents the identity element of H. Suppose that MG is a van Kampen diagram over

⟨S | RG⟩. Let F be a simple face of MG, and let MF be a chosen van Kampen diagram over ⟨S | RH⟩ with

boundary label Lab(∂F). Then we may quotient F to a copy of MF without affecting the boundary label of

MG: see Figure 3.4. Applying this operation once produces a van Kampen diagram over ⟨S | RG ∪RH⟩. If F

is the last face of MG with label in RG ∖RH , then this results in a van Kampen diagram over ⟨S | RH⟩. Thus,

if this operation can be applied to every essential face of MG in sequence, then we obtain a “quotient van

Kampen diagram” MH over ⟨S | RH⟩ with the same boundary label as MG.

F

MG

MF

Figure 3.4: Quotienting a simple face

Operation 3.2.9 (Excising a subpath of ∂M). Let M be a van Kampen diagram over a presentation ⟨S | R⟩,

where R is cyclically minimal and cyclically reduced. Let z ∈ ∂M, and suppose we can write (∂M,z,+) as

α ∗β , where α and β are paths of positive length. Suppose that α = α0 ∗ρ ∗α1, where Lab(ρ) is a cyclic

shift of r±1 for some r ∈ R. Let x be the initial and y the terminal vertex of ρ , and suppose x ̸= y. Then we
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may contract x to y through the unbounded face, identifying the two vertices to obtain a new van Kampen

diagram M′. Now M′ has exactly one new face F ′, where (∂F ′,x,−) = ρ , so M′ is a van Kampen diagram

over the same presentation ⟨S | R⟩. Also, (∂M′,z,+) = α ′ ∗β , where α ′ = α0 ∗α1: see Figure 3.5. Note that

ρ may intersect itself: in that case ∂F ′ will have self-intersections in M′, but this is fine. The only topological

feature of M which is essential to this operation is that x and y are distinct.

ρ

x

y

ρ

x = y

β

α

β

α ′

Figure 3.5: Excising a subpath of ∂M

Now ℓ(α ′) = ℓ(α)− |r|, and the sequence of edges of β is unaffected by the operation. Also, for all

r′ ∈ R,

κ(M′,r′) =


κ(M,r′)+1 if r′ = r

κ(M,r′) otherwise.

σ(M′,r′) =


σ(M,r′)−1 if r′ = r and Lab(ρ) is a cyclic shift of r

σ(M,r′)+1 if r′ = r and Lab(ρ) is a cyclic shift of r−1

σ(M,r′) otherwise.

Note that, since R is cyclically reduced, these last three cases are all distinct. Indeed, it is an easy exercise

to show that if a word r ∈ R is a cyclic shift of r−1, then r is not reduced.

3.2.2 Reductions that preserve signed r-face counts

Later we will need to use Lemma 3.2.23, a result that applies only to bare, reduced van Kampen diagrams

over C′(1/6) presentations. At the same time, we would like to apply this result to van Kampen diagrams

with signed r-face counts that are carefully controlled. Thus, we need to establish a method of taking a van

Kampen diagram over a C′(1/6) presentation, and making it bare and reduced without affecting the signed r-

face counts. In this subsection, we develop such a process, which is encapsulated in Lemma 3.2.16. We then

prove Lemma 3.2.17, which allows us to construct certain “quotient” van Kampen diagrams with controlled
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r-face counts.

Lemma 3.2.10. Let M be a van Kampen diagram over ⟨S | R⟩ such that R is cyclically minimal and cyclically

reduced, and Lab(∂M) is cyclically reduced. Then there exists a van Kampen diagram M′ such that all of the

following conditions hold.

(a) Lab(∂M′) = Lab(∂M).

(b) σ(M′,r) = σ(M,r) for all r ∈ R.

(c) Every inessential face of M′ has boundary label ss−1 or 1ss−1 for some s ∈ S.

(d) All inessential edges of M′ are loops.

Proof. Let I be the set of all inessential faces in M whose boundary labels are not equal to 1ss−1 or ss−1 for

some s ∈ S. Let F ∈ I. If ∂F consists of a single inessential edge loop, we simply contract this loop to remove

F ; it is easy to see that this preserves the boundary label as well as the signed and unsigned face counts of

M, and whether M satisfies (c) or (d). Therefore we assume that ∂F is at least two edges long. Now we

repeatedly pad vertices of ∂F (Operation 3.2.7) until F is simple. Since each inessential face added in the

process has boundary label 1ss−1 for some s ∈ S, this does not increase |I|.

We claim that, without loss of generality, we may assume that ∂F contains no inessential edges. Suppose

that ∂F contains an inessential edge e. Since ∂M and R are both cyclically reduced, e lies on the boundary

of exactly two inessential, bounded faces, one of which is F : call the other one F ′. Then for some u,u′ ∈ S∗◦

we have Lab(F) = 1u and Lab(F ′) = 1u′. We know that e must have distinct endpoints since ∂F is a simple

closed curve and ℓ(∂F) ≥ 2. Therefore we may remove e using Operation 3.2.3 (a). This changes the

boundary label of F from 1u to u, and the boundary label of F ′ from 1u′ to u′. Thus it does not change

whether or not F or F ′ is a member of I. Therefore removing e does not change |I|, and without loss of

generality we may assume that ∂F contains no inessential edges.

Since F is simple, Lab(∂F) =F(S) 1, and ∂F contains no inessential edges, we may remove F using

Operation 3.2.4. This reduces |I| by 1. Since Lab(∂M) is cyclically reduced, none of the previous operations

affect Lab(∂M). Since only inessential faces were removed, and R is cyclically reduced, σ(M,r) is also

preserved for all r ∈ R. Repeating this process, we obtain a diagram M′ for which (a) and (b) hold and |I|= 0,

i.e. such that (a)-(c) hold. At this point we may repeatedly apply Operation 3.2.3 (a) to remove all inessential

edges of M′ with distinct endpoints, so that (d) holds in M′. Reasoning as in the previous paragraph, one can

see that this does not interfere with conditions (a)-(c). Thus (a)-(d) hold in M′, finishing the construction.
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Lemma 3.2.11. Let G be a group given by presentation ⟨S | R⟩, where R is cyclically minimal and cyclically

reduced, and s ̸=G 1 for any s ∈ S. Let M be a van Kampen diagram over ⟨S | R⟩ such that Lab(∂M) is

cyclically reduced. Then there exists a van Kampen diagram M′ over ⟨S | R⟩ such that all of the following

conditions hold.

(a) Lab(∂M′) = Lab(∂M).

(b) σ(M′,r) = σ(M,r) for all r ∈ R.

(c) Every inessential face of M′ is contained in a simple subdiagram whose boundary label is equal to ss−1

for some s ∈ S.

Proof. We may assume that we have a van Kampen diagram M′ that satisfies (a)-(d) of Lemma 3.2.10. We

prove here that, in the presence of the assumption that s ̸=G 1 for all s ∈ S, it follows that M′ also satisfies

conclusion (c) of the current lemma.

Let F be an inessential face of M′. There are two cases: either Lab(∂F) = ss−1 or Lab(∂F) = 1ss−1 for

some s ∈ S.

If Lab(∂F) = ss−1, then since s ̸=G 1, we have that F is simple. Thus F itself is a simple subdiagram of

M′ which contains F and has boundary label ss−1.

Suppose on the other hand that Lab(∂F) = 1aa−1, where a ∈ S. Let e be the inessential edge of ∂F .

Since ∂M′ and R are both cyclically reduced, e lies on the boundary paths of exactly two inessential, bounded

faces, one of which is F : call the other one F ′. Since F ′ is an inessential face of M′ with an inessential edge

on its boundary path, we have that Lab(F ′) = 1bb−1 for some b ∈ S. Now e is a loop since M′ satisfies (d) of

Lemma 3.2.10. Since a ̸=G 1, the endpoints of each of the a-labeled edges of ∂F are distinct: similarly for

the b-labeled edges of ∂F ′. Therefore F ∪F ′ takes the form depicted in Figure 3.6, allowing that the roles of

F and F ′ may be switched.

b

a

b

1

a

F ′

F

Figure 3.6: Diagram for the proof of Lemma 3.2.11
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Notice that in Figure 3.6, F ∪F ′ is enclosed in a simple subdiagram with boundary label aa−1 (or bb−1, if

the roles of F and F ′ are switched). This finishes the second case, thus (c) holds for M′ and we are done.

Corollary 3.2.12. Let G be a group given by an aspherical presentation ⟨S | R⟩, where R is cyclically minimal

and cyclically reduced, and s ̸=G 1 for all s ∈ S. Let M be a van Kampen diagram over ⟨S | R⟩ such that

Lab(∂M) is cyclically reduced. Then there exists a van Kampen diagram M′ such that all of the following

conditions hold.

(a) Lab(∂M′) = Lab(∂M).

(b) σ(M′,r) = σ(M,r) for all r ∈ R.

(c) M′ is bare.

Proof. We may assume that M′ satisfies (a)-(c) of Lemma 3.2.11. Now all inessential faces of M′ are con-

tained in simple subdiagrams of M′ with boundary label ss−1 for some s ∈ S. Thus we may make M′ bare

by repeatedly applying Operation 3.2.4. Operation 3.2.4 always preserves the boundary label of a van Kam-

pen diagram, so (a) holds. Since ⟨S | R⟩ is aspherical, it follows from Lemma 3.2.6 that each application of

Operation 3.2.4 preserves σ(M′,r) for all r ∈ R. Thus (a)-(c) hold for M′, and we are done.

Often one would like to take a van Kampen diagram M which is not reduced, and reduce it using Op-

eration 3.2.4. However, the canceling faces may not be simple, or may not intersect each other simply. A

common solution is to pad the van Kampen diagram with inessential faces. However, if M is a van Kampen

diagram over a C′(1/6) presentation, then M is topologically well-behaved enough to perform this operation

without the use of inessential faces. We make this statement precise in the following two lemmas. The second

is a consequence of the first, which is the famous Greendlinger Lemma.

Lemma 3.2.13 (Greendlinger Lemma). [31, Chapter V, Theorem 4.5] Let M be a bare and reduced van

Kampen diagram over a cyclically reduced C′(λ ) presentation, where λ ≤ 1/6, such that M has at least one

bounded face and Lab(∂M) is cyclically reduced. Then there exists a face F of M such that ∂F and ∂M share

a common subpath of length more than 1
2ℓ(∂F).

Lemma 3.2.14. Let M be a bare van Kampen diagram over a cyclically reduced C′(1/6) presentation. Then

(a) If M is reduced, then every face of M is simple.

(b) If M is reduced, then every two faces of M that intersect nontrivially also intersect simply.

(c) If M is not reduced, then there exists a pair of faces that cancel and intersect simply.
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Proof. We refer the reader to [31, Chapter V, Lemma 4.1] for the proof of part (a). For part (b), suppose that

M is a counterexample with the minimum number of faces, and that F and F ′ are two faces of M that do not

intersect simply, i.e. such that ∂F intersects ∂F ′ in more than one maximal common subpath. Then ∂F and

∂F ′ together enclose at least one simple subdiagram of M, call it D. Since M is reduced, so is D. By the

Greendlinger Lemma, there exists a face E of D such that ∂E intersects ∂D in a subpath of length at least

1
2ℓ(∂E). Therefore ∂E intersects one of F or F ′, say F , in a common subpath of length at least 1

4ℓ(∂E). But

then E and F cancel, contradicting the assumption that M is reduced.

For part (c), suppose that M is a counterexample with the minimum number of faces. Then M is not

reduced, and there are two faces F and F ′ that cancel but do not intersect simply. Therefore ∂F and ∂F ′

together enclose a simple subdiagram D. Again D must be reduced, this time by minimality of M. By an

argument similar to the one in the preceding paragraph, there is a face E of D that cancels with F . By

assumption, E and F cannot intersect simply. But then D∪F is a subdiagram of M that is a counterexample

with strictly fewer faces than M, since it does not include F ′. This contradicts minimality of M, finishing the

proof.

One can then use Lemma 3.2.14 to prove the following corollary.

Corollary 3.2.15. Let G be a group given by presentation ⟨S | R⟩, where R is cyclically reduced and satisfies

C′(1/6). Then for every r ∈ R, if u is a proper subword of an element of {r}∗, then u ̸=G 1. In particular,

(a) For all generators s ∈ S, if s ̸∈ R then s ̸=G 1.

(b) If M is a bare van Kampen diagram over ⟨S | R⟩, then every face of M is simple.

(c) If M is a bare van Kampen diagram over ⟨S | R⟩ which is not reduced, then there exists a pair of

cancelling faces that are simple and intersect simply.

Proof. Suppose otherwise, and choose u ∈ S∗◦ to be a word of minimum length which is a proper subword of

{r}∗ for some r ∈ R. Without loss of generality, suppose that u is a prefix of r, so that r = uv for some v ∈ S∗◦.

Clearly v =G 1, so by minimality of u we have that |v| ≥ |u|, hence |u| ≤ 1
2 |r|.

Let M be a reduced van Kampen diagram over ⟨S | R⟩ such that Lab(∂M) = u. Since R is cyclically

reduced, so is u: in particular, M has at least one bounded face. By the Greendlinger Lemma, there exists

a face F of M such that F shares a common subpath of length more than 1
2ℓ(∂F) with ∂M. Let the label

of this common subpath be w. Then w is a piece of r and Lab(∂F), of length more than 1
2ℓ(∂F). By the

C′(1/6) condition, Lab(∂F) = r. But then |w|> 1
2 |r| ≥ |u|. Since w is the label of a subpath of ∂M, this is a

contradiction.
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Conclusions (a) and (b) follow directly. Part (c) follows from part (b) of the current corollary and

Lemma 3.2.14 (c).

Lemma 3.2.16. Let M be a van Kampen diagram over a C′(1/6) presentation ⟨S | R⟩, where R is cyclically

minimal and cyclically reduced, and |r| ≥ 2 for all r ∈ R. Then there exists a van Kampen diagram M′ over

⟨S | R⟩ such that

(a) Lab(∂M′) = Lab(∂M).

(b) σ(M′,r) = σ(M,r) for all r ∈ R.

(c) M′ is bare and reduced.

Proof. We may assume that M′ satisfies (a)-(c) of Corollary 3.2.12. Thus we only have to show that it is

possible to transform M′ so that it is reduced, while preserving the boundary label and signed r-face count

for each r ∈ R, and without adding any inessential faces.

Suppose that M′ is not reduced. Since M′ is bare, by Corollary 3.2.15 there exist two simple faces F and

F ′ that cancel and intersect simply. Thus F ∪F ′ is a simple subdiagram of M with trivial boundary label.

Now remove F ∪F ′ with Operation 3.2.4. Since ⟨S | R⟩ is C′(1/6), and therefore aspherical, this operation

preserves σ(M′,r) for all r ∈ R. Repeating, we end up with a reduced van Kampen diagram.

Lemma 3.2.17. Let G,H be groups given by presentations

G = ⟨S | RG⟩

H = ⟨S | RH⟩

where ⟨S |RH⟩ is a cyclically reduced C′(1/6) presentation, and |rH | ≥ 2 for all rH ∈RH . Suppose that rG =H 1

for all rG ∈ RG, so H is a quotient of G. Let MG be a van Kampen diagram over ⟨S | RG⟩, and for each face

F of MG, let MF be a van Kampen diagram over ⟨S | R⟩ with boundary label Lab(∂F). Then there exists a

“quotient van Kampen diagram” MH over ⟨S | RH⟩ such that

(a) Lab(∂MG) = Lab(∂MH).

(b) σ(MH ,r) = ∑{σ(MF ,r) | F is an essential face of MG}.

(c) MH is bare and reduced.

Proof. Start with MG. By repeatedly padding vertices, we may assume that all essential faces of MG are

simple.
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Now take an essential simple face F of MG, and quotient it to MF . This may introduce self-intersections

among essential faces in MG. Pad vertices again until all essential faces of MG are simple, and repeat as

many times as necessary to quotient all essential faces that were originally in MG. Since padding vertices and

quotienting simple faces preserve the boundary label, we obtain a van Kampen diagram MH over ⟨S | RH⟩,

possibly with many inessential faces, such that Lab(∂MH) = Lab(∂MG). Thus (a) holds. In addition, for all

r ∈ RH ,

σ(MH ,r) = ∑{σ(MF ,r) | F is a face of MG} ,

so (b) holds as well.

Note that we do not require RG to by cyclically reduced for any of the previous steps to work. However,

RH is cyclically reduced, thus by Lemma 3.2.16 we may ensure that (c) holds, without interfering with

conditions (a) or (b).

3.2.3 A technical lemma

This section is devoted to proving the following lemma. In essence it is similar to [32, Lemma 5.10], but

for our purposes we need the more general version stated here. In order to avoid constantly reiterating the

assumptions, the notation used in this lemma will be “globally fixed” for this section. Thus until the next

section, G will always refer to the group with presentation given in Lemma 3.2.18, etc. Any new notation

introduced in the body of this section will also remain fixed until the beginning of the next section.

Lemma 3.2.18. Let λ be a real number, where 0 < λ < 1/12. Let {ℓi | i ∈ N} be a set of positive integers,

where each ℓi ≥ 2. Let S be a finite set. Let

U = {ui | i ∈ N} ⊂ S∗◦ V = {vi | i ∈ N} ⊂ S∗◦

be languages, and let ũ ∈ S∗◦ be a word, such that the following conditions are satisfied for all i, i′ ∈ N.

(a) U ∪V is cyclically minimal and cyclically reduced, and satisfies C′(λ ).

(b) 2 ≤ |ui| ≤ |vi|.

(c) If p is a piece of ũ and ui, then |p|< λ |ui|, and the same statement holds if ui is replaced with vi.

(d) If ui = ui′ , vi = vi′ , or ui = vi′ , then i = i′.
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Now let

G = ⟨S | RG⟩ := ⟨S | [s,ui],u
ℓi
i ,uiv−1

i : s ∈ S, i ∈ N⟩

H = ⟨S | RH⟩ := ⟨S |U ∪V ⟩= ⟨S | ui,vi : i ∈ N⟩ .

Let (ki) be a sequence of integers where |ki| ≤ ℓi/2 for all i ∈ N, and ki = 0 for all but finitely many i ∈ N.

Let u ∈ S∗◦ be a word of the form

u = ũ
∞

∏
i=0

uki
i .

Then u is
(

3
1−12λ ,

0
)

-quasigeodesic in G.

Note that if U ∪V is C′(λ ), then so is (U ∪V ∪{u−1
i })∖{ui}. Therefore assume without loss of generality

that all ki are nonnegative.

Let w be a geodesic representative of u in G. Then uw−1 =G 1, so by the van Kampen Lemma, there

exists a van Kampen diagram MG with Lab(∂MG) = uw−1.

Lemma 3.2.19. There exists a van Kampen diagram MH over ⟨S |U ∪V ⟩ such that

(a) MH is bare and reduced.

(b) ∂MH = α ∗β , where Lab(α) = u and Lab(β ) = w−1.

(c) σ(MH ,ui)+σ(MH ,vi)≡ 0 mod ℓi for all i ∈ N.

(d) σ(MH ,ui)≡ 0 mod ℓi for all i ∈ N such that ui = vi.

Proof. Each face F of MG has boundary label equal to either [s,ui], uℓi
i , or uiv−1

i . Each of these words

represents the trivial elment of H. For each face F of MG, choose a van Kampen diagram MF over ⟨S | RH⟩,

of one of forms depicted in Figure 3.7.

ui ui

ℓi

ui

ui

ui
s

ui

vi

Figure 3.7: Chosen quotient van Kampen diagrams for each face of MG
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Applying Lemma 3.2.17, there exists a bare, reduced van Kampen diagram MH with Lab(MH)=Lab(MG)=

uw−1, such that for all i ∈ N,

σ(M,ui)+σ(M,vi) = ∑{σ(MF ,ui)+σ(MF ,vi) | F is a face of MG} .

Thus (a) and (b) hold. Now notice that for all MF depicted in Figure 3.7, σ(MF ,ui)+σ(MF ,vi)≡ 0 mod ℓi.

Also, if ui = vi, then σ(MF ,ui)≡ 0 mod ℓi. Thus (c) and (d) hold as well.

Let MH be the van Kampen diagram from Lemma 3.2.19. Let k = ∑i∈N ki. Then we may write

α = α̃ ∗α0 ∗ · · · ∗αk ∗β

where Lab(α̃) = ũ, and for all j ∈ {0, . . . ,k} we have Lab(α j) = ui for some i ∈ N.

Lemma 3.2.20. There exists a van Kampen diagram M′
H over ⟨S |U ∪V ⟩ and natural numbers {hi | i ∈ N}

satisfying all of the following conditions for all i ∈ N.

(a) M′
H is bare and reduced.

(b) κ(M′
H ,ui) = κ(MH ,ui)−hi.

(c) ∂M′
H = α ′ ∗β ′, where Lab(α ′) = ũ∏

∞
i=0 uki−hi

i and Lab(β ′) = w.

(d) No face F of M′
H intersects α ′ in a common subpath of length at least 2λℓ(∂F).

(e) 0 ≤ hi ≤ ki ≤ ℓi/2.

Proof. If MH already satisfies (d), then all conditions are satisfied by setting M′
H = MH and hi = 0 for all

i ∈N. Therefore suppose that MH does not satisfy (d), i.e. there exists a face F of MH such that ∂F intersects

α in a common subpath of length at least 2λℓ(∂F). Then there must be a common subpath of ∂F and α̃

or α j for some j ∈ {0, . . . ,k}, of length at least λℓ(∂F). The former possibility is excluded by condition

(c) of Lemma 3.2.18. Thus ∂F intersects α j in a common subpath of length at least λℓ(∂F) for some

j ∈ {0, . . . ,k}. Call this common subpath γ . Since Lab(α j) = ui for some i ∈ N, by the C′(λ ) condition we

have that Lab(∂F) = ui as well.

Now apply Operation 3.2.9 to excise α j from α . Let F ′ be the new ui-face created by this operation. Then

γ is a common subpath of F and F ′ of length at least λℓ(∂F) = λℓ(∂F ′), so F and F ′ cancel. Since MH was

reduced, F and F ′ are the only pair of faces that cancel at this stage. Therefore by Corollary 3.2.15 (c), F

and F ′ are simple and intersect simply. Thus F ∪F ′ is a simple subdiagram of M with trivial boundary label,

which we may remove with Operation 3.2.4.
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Let M̂H be the van Kampen diagram obtained in this way. Then clearly M̂H satisfies (a). We added one

ui-face and removed two, so κ(M̂H ,ui) = κ(MH ,ui)− 1. Since ui ̸= u j whenever i ̸= j, no u j-face counts

were affected for any j ̸= i. Therefore (b) is satisfied with hi = 1. Now after excising α j the boundary path

becomes α̂ ∗ β := α̃ ∗α0 ∗ · · · ∗α j−1 ∗α j+1 ∗ · · · ∗αk ∗ β . Removing F ∪F ′ does not change the boundary

label, so (c) is satisfied with hi = 1. Because of this, we may iterate the process. By construction, M̂H has

one fewer face than MH which fails to satisfy (d). Therefore repeat as many times as there are faces in MH

failing to satisfy (d) to get M′
H . Each such face must be a ui-face for some i ∈ N, so for each i ∈ N, let hi be

the number of ui-faces in MH failing to satisfy (d). Since the boundary label becomes shorter at each step, by

(c) it follows that hi ≤ ki for all i ∈ N. Therefore M′
H satisfies (e), and we are done.

For the next step in the proof, the following ad hoc lemma is useful.

Lemma 3.2.21. Let M be a bare, reduced van Kampen diagram over a cyclically reduced C′(1/6) presenta-

tion. Let α be a subpath of ∂M such that no face F of M intersects α in a common subpath of length at least

1
4ℓ(∂F). Then every face of M that intersects α nontrivially, intersects α simply.

Proof. Suppose that F is a face of M such that ∂F shares more than one vertex with α , but ∂F does not

intersect α simply. Then there exist subpaths of α and ∂F that together enclose a simple subdiagram D of

M. Since M, and therefore D, is reduced, by the Greendlinger Lemma there exists a face F ′ of D such that

∂F ′ shares a common subpath of length at least 1
2ℓ(∂F ′) with ∂D. Thus ∂F ′ intersects either ∂F or α in a

common subpath of length at least 1
4ℓ(∂F ′). The latter possibility is ruled out by assumption, so F cancels

with F ′ by the C′(1/6) condition. But this contradicts our assumption that M is reduced.

Definition 3.2.22. Let M be a van Kampen diagram over a presentation ⟨S | R⟩. Then the perimeter sum of

M, denoted PS(M), is defined by

PS(M) = ∑{ℓ(∂F) | F is a face of M} .

Note that if M is bare, then

PS(M) = ∑
r∈R

|r|κ(M,r) .

To obtain bounds on ℓ(α ′) in terms of ℓ(β ), and on ℓ(α) in terms of ℓ(α ′), we use the following fact

about van Kampen diagrams over C′(1/6) presentations. It is the final puzzle piece in the proof.

Lemma 3.2.23. [32, Lemma 3.8] Let M be a bare and reduced van Kampen diagram over a cyclically

reduced C′(λ ) presentation, where λ ≤ 1/6. Then (1−6λ )PS(M)≤ ℓ(∂M).

With this in mind, we resume our proof.
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Lemma 3.2.24. ℓ(α ′)< 2ℓ(β ).

Proof. Note that an edge of α ′ is shared by the boundary path of some face of M′
H if and only if it is not also

an edge of β ′. We have by Lemma 3.2.20 (d) that no face F intersects α ′ in a common subpath of length at

least 2λℓ(∂F)< 1
6ℓ(∂F)< 1

4ℓ(∂F). Therefore by Lemma 3.2.21, every face whose boundary path shares an

edge with α ′ intersects α ′ in a single common subpath. Thus

PS(MH)>
1

2λ
ℓ(α ′∖β

′)≥ 1
2λ

(
ℓ(α ′)− ℓ(β ′)

)
= 1

2λ

(
ℓ(α ′)− ℓ(β ′)

)
On the other hand, ℓ(∂M′

H) = ℓ(α ′)+ ℓ(β ′). Thus by Lemma 3.2.23,

1
2λ

(
ℓ(α ′)− ℓ(β ′)

)
< PS(M′

H)≤ 1
1−6λ

ℓ(∂M′
H) =

1
1−6λ

(
ℓ(α ′)+ ℓ(β ′)

)
(1−6λ )(ℓ(α ′)− ℓ(β ′))< 2λ (ℓ(α ′)+ ℓ(β ′))

(1−8λ )ℓ(α ′)< (1−4λ )ℓ(β ′)

ℓ(α ′)< 1−4λ

1−8λ
ℓ(β ′)< 2ℓ(β ′) = 2ℓ(β ) ,

since 0 < λ < 1/12.

Lemma 3.2.25. PS(MH)≥ 2(ℓ(α)− ℓ(α ′)).

Proof. Let I = {i ∈ N | ui = vi}. By Lemma 3.2.19, if i ∈ I then σ(MH ,ui) ≡ 0 mod ℓi. If i ̸∈ I, then

σ(MH ,ui)+σ(MH ,vi) ≡ 0 mod ℓi. Note that κ(MH ,ui)+ κ(MH ,vi) ≥ κ(MH ,ui) ≥ hi by Lemma 3.2.20

(b). Since hi ≤ ℓi/2, it follows that there are at least 2hi faces in MH with boundary label either u±1
i or v±1

i .

If ui = vi, this says that κ(MH ,ui)≥ 2hi. If ui ̸= vi, this means κ(MH ,ui)+κ(MH ,vi)≥ 2hi. Therefore

PS(MH) = ∑
r∈RH

|r|κ(MH ,r)

= ∑
i∈I

|ui|κ(MH ,ui)+∑
i ̸∈I

(|ui|κ(MH ,ui)+ |vi|κ(MH ,vi))

≥ ∑
i∈I

|ui|κ(MH ,ui)+∑
i ̸∈I

|ui|(κ(MH ,ui)+κ(MH ,vi))

≥ ∑
i∈I

2hi|ui|+∑
i ̸∈I

2hi|ui|= ∑
i∈N

2hi|ui|= 2(ℓ(α)− ℓ(α ′)) ,

where the last equality follows from Lemma 3.2.20 (c).

Now we are ready to prove Lemma 3.2.18.
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Proof of Lemma 3.2.18. Continuing to use the terminology and notation built up in this section, since w is

a geodesic representative of u, |u| = ℓ(α), and |w| = ℓ(β ), it suffices to prove that ℓ(α) < 3
1−12λ

ℓ(β ). By

Lemmas 3.2.23, 3.2.24, and 3.2.25,

2(ℓ(α)− ℓ(α ′))≤ PS(MH)≤ 1
1−6λ

ℓ(∂MH) =
1

1−6λ
(ℓ(α)+ ℓ(β ))

(1−12λ )ℓ(α)≤ (2−12λ )ℓ(α ′)+ ℓ(β )< ℓ(α ′)+ ℓ(β )< 3ℓ(β )

ℓ(α)< 3
1−12λ

ℓ(β ).

Therefore u is
(

3
1−12λ

,0
)

-quasigeodesic, as desired.

For this to be a meaningful bound we must have 0 < λ < 1/12, explaining our initial choice of λ .

3.3 Proof of Theorem 1

In this section we prove the following proposition.

Proposition 3.3.1. Let m,n ∈Z+∪{∞} with m < n. Then there exist finitely generated, recursively presented

groups G and B such that B ⩽ G and

1 ≤ asdim(G)≤ 2

m+1 ≤ asdimAN(G)≤ m+2

n+1 ≤ asdimAN(B)≤ n+2 .

Since the proof requires many auxiliary lemmas, we again “globally fix” all notation in this section.

Let m be a fixed positive integer, and let n ∈ Z+ ∪{∞} with m < n. Let (ℓi) be an increasing sequence

of positive integers with ℓ0 ≥ 2. Let SA,SB be disjoint finite sets, and let 0 < λ < 1/12. Suppose we have two

languages

UA = {ui | i ∈ N} ⊂ (SA)
∗
◦ VB = {vi | i ∈ N} ⊂ (SB)

∗
◦

satisfying all of the following conditions for all i, i′, j ∈ N.

(a) UA,VB are cyclically minimal and cyclically reduced, and satisfy C′(λ ).

(b) There exists a nonempty word y ∈ (SB)
∗
◦ such that, for all h ∈ Z, if p is a piece of yh and vi, then

|p|< λ |vi|.

(c) 2 ≤ |ui| ≤ |vi|.
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(d) If ui = ui′ or vi = vi′ , then i = i′.

(e) The sequence of word lengths (|ui|) is constant on blocks of the partition Pm and (|vi|) is constant on

blocks of Pn (see Definition 3.1.6).

(f) |u( j+1)m| ≥ ℓ( j+1)m|u jm|. If n ∈ Z+ then |v( j+1)n| ≥ ℓ( j+1)n|v jn|, and if n = ∞ then

|v( j+1)2 | ≥ ℓ( j+1)2 |v j2 |.

(g) UA,VB are recursive.

We construct an example of languages UA,VB satisfying (a)-(f) in the next section, and show that they can

be recursive in the process. Assuming we already have UA,VB satisfying (a)-(g), let HA,HB be given by the

presentations

HA = ⟨SA |UA⟩ HB = ⟨SB |VB⟩

and let A,B be central extensions of HA,HB, respectively, defined by

A = ⟨SA | RA⟩ := ⟨SA | [a,ui],u
ℓi
i : a ∈ SA, i ∈ N⟩

B = ⟨SB | RB⟩ := ⟨SB | [b,vi],v
ℓi
i : b ∈ SB, i ∈ N⟩ .

Since all elements in RA,RB represent the trivial element in HA,HB, respectively, there are natural epimor-

phisms πA : A → HA and πB : B → HB. Recall that for a word w in (SA)
∗
◦ or (SB)

∗
◦, we denote by w̄ the element

of A or B, respectively, that w represents. Let

KA = Ker(πA) = ⟨ūi : i ∈ N⟩⩽ Z(A)

KB = Ker(πB) = ⟨v̄i : i ∈ N⟩⩽ Z(B)

where we consider KA as a normed group, equipped with the restriction to KA of the word norm on A with

respect to the generating set SA, which we denote ∥ · ∥A: similarly for KB.

By condition (c), there exist sequences s = (s j), t = (t j) such that |ui|= (m× s)i and |vi|= (n× t)i for all

i ∈ N. Define normed groups Km, Kn similar to the normed group defined in Lemma 3.1.12, as follows:

Km =
⊕
i∈N

|ui|Zℓi =
⊕
i∈N

(m× s)iZℓi Kn =
⊕
i∈N

|vi|Zℓi =
⊕
i∈N

(n× t)iZℓi .

Suppose that x is a word over SA satisfying (b) with respect to UA, except possibly the condition that x is not
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the empty word. Now condition (d) guarantees that s and t are increasing sequences of positive integers, such

that for all j ∈ N, s j+1 ≥ s jℓ( j+1)m and t j+1 ≥ t jℓ( j+1)n if n ∈ Z+. Condition (e) guarantees that s0 ≥ 2 and

t0 ≥ 2. Therefore all hypotheses of Lemmas 3.1.8 and 3.1.12 are satisfied, and we have

asdimAN(|x|Z×Km) =


m if x = ε

m+1 otherwise
asdimAN(|y|Z×Kn) = n+1 .

Now KA is abelian, KA satisfies ūℓi
i = 1 for all i ∈N, and, since KA is central in A, we have ⟨x̄,KA⟩ ∼= ⟨x̄⟩×KA.

All the corresponding statements hold for y and KB. Therefore there exist natural epimorphisms φA and φB

defined by

φA : |x|Z×Km → ⟨x̄,KA⟩ φB : |y|Z×Kn → ⟨ȳ,KB⟩

(h,z) 7→ x̄h
∏
i∈N

ūzi
i (h,z) 7→ ȳh

∏
i∈N

v̄zi
i

for all h∈Z and z=(zi)∈Km or Kn. In the case that x= ε we have that |x|= 0 and 0Z= {0}, so φA : Km →KA.

Lemma 3.3.2. Each of the epimorphisms φA,φB is bi-Lipschitz, hence each is a quasi-isometry and an iso-

morphism.

Proof. We prove the statement for φA. Let ∥ · ∥ be the norm on Km. Let h ∈ Z and z = (zi) ∈ Km. Let (ki) be

the geodesic form of z (see Definition 3.1.3). Then

∥φA(h,z)∥A =

∥∥∥∥∥x̄h
∏
i∈N

ūki
i

∥∥∥∥∥
A

≤

∣∣∣∣∣xh
∏
i∈N

uki
i

∣∣∣∣∣= h|x|+ ∑
i∈N

|ki||ui|= ∥(h,z)∥.

Now ki ≤ ℓi/2 for all i ∈ N, and xh satisfies condition (c) of Lemma 3.2.18. Furthermore,

A = ⟨SA | [a,ui],u
ℓi
i : a ∈ SA, i ∈ N⟩= ⟨SA | [a,ui],u

ℓi
i ,ui(ui)

−1 : a ∈ SA, i ∈ N⟩

and UA∪UA =UA = {ui | i ∈N} is a cyclically reduced, cyclically minimal C′(λ ) language, where 2 ≤ |ui| ≤

|ui| and ui = ui′ implies that i = i′ for all i, i′ ∈N. Thus we may apply Lemma 3.2.18 with G = A,U =UA,V =

UA, and ũ = xh. This yields

∥(h,z)∥= h|x|+ ∑
i∈N

|ui||ki|=

∣∣∣∣∣xh
∏
i∈N

uki
i

∣∣∣∣∣≤
(

3
1−12λ

)∥∥∥∥∥x̄h
∏
i∈N

ūki
i

∥∥∥∥∥
A

=
(

3
1−12λ

)
∥φA(h,z)∥A ,

hence
(

1−12λ

3

)
∥(h,z)∥ ≤ ∥φA(k,z)∥A ≤ ∥(h,z)∥ and φA is bi-Lipschitz.
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By replacing x or y with ε , we obtain the following.

Corollary 3.3.3. Both φA|Km : Km →KA and φB|Kn : Kn →KB are bi-Lipschitz maps. Therefore asdimAN(KA)=

asdimAN(Km) = m and asdimAN(KB) = asdimAN(Kn) = n.

Corollary 3.3.4. We have

1 ≤ asdim(A)≤ 2 1 ≤ asdim(B)≤ 2

m ≤ asdimAN(A)≤ m+2 n+1 ≤ asdimAN(B)≤ n+2 .

Also, if x ̸= ε , then asdimAN(A)≥ m+1.

Proof. We establish the bounds for A: the argument for B is similar. Since A is finitely generated and infinite,

asdimAN(A)≥ 1. By Corollary 3.3.3, asdimAN(A)≥ asdimAN(KA) = m. If x ̸= ε ,

asdimAN(A)≥ asdimAN(⟨x̄,KA⟩) = asdimAN(|x|Z×Km) = m+1

since |x| > 0. This gives the lower bounds on the asymptotic and Assouad-Nagata dimension of A. For the

upper bounds, note that A is constructed so that there is a short exact sequence

1 → KA → A → HA → 1

where HA is a finitely generated C′(1/6) group and hence asdim(HA)≤ asdimAN(HA)≤ 2 by Theorem 2.3.12.

Since KA is locally finite, asdim(KA) = 0. Now by Lemma 1.2.13,

asdim(A)≤ asdim(KA)+ asdim(HA)≤ 2

asdimAN(A)≤ asdimAN(KA)+ asdimAN(HA)≤ m+2 .

By Corollary 3.3.3, the maps φA|Km : Km → KA and φB|Kn : Kn → KB are isomorphisms. Therefore the

map defined by ūi 7→ v̄i for all i ∈ N extends to an isomorphism from KA to KB. Let φ : KA → KB be this

isomorphism. Let

G = A∗φ B := ⟨A⊔B | aφ(a)−1 : a ∈ A⟩ .
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Let S = SA ⊔SB. Then G admits the presentation

G = ⟨S | RG⟩ := ⟨S | [s,ui],u
ℓi
i ,uiv−1

i : s ∈ S, i ∈ N⟩ ,

which is recursive if UA and VB are recursive. Let

H = ⟨S | RH⟩ := ⟨SA ⊔SB |UA ⊔VB⟩= ⟨SA ⊔SB | ui,vi : i ∈ N⟩ .

Since UA and VB are C′(λ ) languages over disjoint alphabets, H is a C′(λ ) group. Furthermore, all words in

RG represent the trivial element of H, so there is a natural epimorphism π : G → H. Let K = Ker(π). Then

K = ⟨ūi : i ∈ N⟩⩽ Z(G) .

We consider K as a normed group, where the norm on K is the restriction to K of the word norm on G with

respect to S. Thus we have a short exact sequence

1 → K → G → H → 1 .

Let b ∈ SB. Considering the relations of K and the fact that K is central in G, there exists a natural epimor-

phism φK : Z×Km → ⟨b̄,K⟩ given by

φK(h,z) = b̄h
∏
i∈N

ūzi
i

for all h ∈ Z and z = (zi) ∈ Km. Now we have the following.

Lemma 3.3.5. The epimorphism φK is bi-Lipschitz, in particular φK is a quasi-isometry and an isomorphism.

Proof. The proof is similar to that of Lemma 3.3.2. The only difference is that now we apply Lemma 3.2.18

with U =UA,V =VB, and ũ = bh. Since b is a word over an alphabet disjoint from SA, clearly condition (c)

of Lemma 3.2.18 is satisfied with ũ = bh for any h ∈ N. Since 2 ≤ |ui| ≤ |vi| and ui ̸= vi′ for all i, i′ ∈ N, all

hypotheses of Lemma 3.2.18 are satisfied.

We are now ready to prove Proposition 3.3.1.

Proof of Proposition 3.3.1. Let B,G be defined as in this section. The bounds on asdimAN(B) are established

in Corollary 3.3.4. Since G is finitely generated and infinite, asdim(G) ≥ 1. For the lower bound on the
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Assouad-Nagata dimension of G, note that

asdimAN(G)≥ asdimAN(⟨b̄,K⟩) = asdimAN(Z×Km) = m+1 .

By Theorem 2.3.12, we have asdim(H) ≤ asdimAN(H) ≤ 2. Applying the extension theorems to the short

exact sequence 1 → K → G → H → 1 yields that asdim(G)≤ 2 and asdimAN(G)≤ m+2.

We give a presentation of a group G satisfying the conditions of Proposition 3.3.1 in the next section. For

now, we derive the main result of this paper as a corollary.

Theorem 3.3.6. For all k,m,n ∈ N∪ {∞} with 4 ≤ k ≤ m ≤ n, there exist finitely generated, recursively

presented groups G and H with H ⩽ G, such that

asdim(G) = k

asdimAN(G) = m

asdimAN(H) = n .

Proof. Applying Proposition 3.3.1 with m−3 and n−2, there exist finitely generated, recursively presented

groups G0 and B0 with B0 ⩽ G0, such that

1 ≤ asdim(G0)≤ 2

m−2 ≤ asdimAN(G0)≤ m−1

n−1 ≤ asdimAN(B0)≤ n .

Let

G1 =


G0 ×Z2 if asdimAN(G0) = m−2

G0 ×Z if asdimAN(G0) = m−1 .

Then asdimAN(G1) = m by the Morita-type theorem for Assouad-Nagata dimension (Corollary 1.2.16). By

the extension theorem for asymptotic dimension (Lemma 1.2.13), we have that asdim(G1)≤ asdim(G0)+2≤

4. Now let G = G1 ∗Zk. Then since 4 ≤ k ≤ m, by the free product formulas for asymptotic and Assouad-

Nagata dimension (Theorem 1.2.14) it follows that asdim(G) = k and asdimAN(G) = m. Note that B0 and
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B0 ×Z are both subgroups of G. Therefore, let

H =


B0 ×Z if asdimAN(B0) = n−1

B0 if asdimAN(B0) = n .

Again by the Morita-type theorem for Assouad-Nagata dimension, we have that asdimAN(H) = n. This

completes the proof.

3.4 A concrete example

In this section we construct an example of a group of the sort described in Proposition 3.3.1. In doing so, we

show that such a group can be given by an explicit presentation, i.e. is recursively presented. The following

lemma shows one way of constructing C′(λ ) languages, which was used by Bowditch in [34] to construct

2ℵ0 small cancellation groups in distinct quasi-isometry classes.

Lemma 3.4.1. Let U = {ui | i ∈ N} ⊂ {a,x}∗◦ be a language where we define

ui = (amixmi)ni

for some positive integers mi,ni, for each i ∈N. Let k ≥ 2 be an integer, and suppose that all of the following

conditions hold.

(a) ni ≥ k for all i ∈ N.

(b) mi ̸= mi′ for all distinct i, i′ ∈ N.

Then all of the following conclusions hold for all i ∈ N.

(i) U is cyclically minimal and cyclically reduced, and satisfies C′ ( 1
k−1

)
.

(ii) For all h ∈ Z, if p is a piece of xh and ui, then |p|< 1
k−1 |ui|.

(iii) 2 ≤ |ui|.

(iv) If ui = ui′ then i = i′.

Proof. If ui ∈U , then no cyclic shift of u−1
i is in U : if ũi is a cyclic shift of ui that belongs to U , then |ũi|= |ui|

and ũi must begin with a and end with x, in which case ũi = ui. Therefore U is cyclically minimal. Since all

ui are positive words (that is, do not contain letters a−1 or x−1), it is clear that U is cyclically reduced. For the

same reason, when talking about pieces of some ui and another positive word w, it suffices to consider only
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cyclic shifts of ui and w, and we may ignore cyclic shifts of u−1
i or w−1. To show that U satisfies C′( 1

k−1 ),

suppose i, i′ ∈ N are distinct. Let p be a maximal piece of ui and ui′ . Since mi ̸= mi′ , suppose without loss

of generality that mi < mi′ . Then p must have the form amixmi . But then ni|p| ≤ |ui| and ni′ |p| ≤ |ui′ |. Since

ni,ni′ ≥ k, we have |p| ≤ 1
k min(|ui|, |ui′ |) < 1

k−1 min(|ui|, |ui′ |). Therefore U satisfies C′ ( 1
k−1

)
. Conclusion

(ii) says only that any power of x makes up less than 1
k−1 of a cyclic shift of some ui. But a maximal subword

of a cyclic shift of ui of the form xh must be xmi , which has length at most 1
2ni

|ui| ≤ 1
2k |ui| < 1

k−1 |ui|, so this

is clear. Parts (iii) and (iv) are obvious.

Lemma 3.4.2. Let m∈Z+∪{∞}, and let Pm = {P(m, j) | j ∈N} be the partition of N given in Definition 3.1.6.

Let k ≥ 2 be an integer. For each i ∈N, let ri = i−min(P(m, j)) whenever i ∈ P(m, j). Let (p j) be an increasing

sequence of positive integers. Let U = {ui | i ∈ N} ⊂ {a,x}∗◦ be given by

ui =

(
ak(p j−ri)

xk(p j−ri)
)k(ri+1)

whenever i ∈ P(m, j). Let (ℓi) be an increasing sequence of positive integers. Suppose that the sequence (p j)

satisfies

p j+1 ≥ p j + logk(ℓ( j+1)m)+ |P(m, j+1)| if m ∈ Z+

p j+1 ≥ p j + logk(ℓ( j+1)2)+ |P(m, j+1)| if m = ∞ .

(3.4)

Then all of the following conclusions hold for all i ∈ N.

(i) U is cyclically minimal and cyclically reduced, and satisfies C′ ( 1
k−1

)
.

(ii) For all h ∈ N, if p ∈ {a,x}∗◦ is a piece of xh and wi, then |p|< 1
k−1 |ui|.

(iii) 2 ≤ |ui|.

(iv) If ui = ui′ , then i = i′.

(v) The sequence of word lengths (|ui|) is constant on blocks of Pm.

(vi) If m ∈ Z+ then |u( j+1)m| ≥ ℓ( j+1)m|u jm|, and if m = ∞ then |u( j+1)2 | ≥ ℓ( j+1)2 |u j2 |.

Proof. Note that, if i∈P(m, j), then |ui|= 2kp j−rikri+1 = 2kp j+1 ≥ 2, which depends only on j. This establishes

(iv) and (v). Define the sequence s = (s j) by

s j = 2kp j+1
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for all j ∈ N. Then |ui|= (m× s)i.

For (vi), note that logk(s( j+1)m) = logk(2)+ p j+1+1. If m ∈Z+, then we have p j+1 ≥ p j + logk(ℓ( j+1)m),

implying that s j+1 ≥ ℓ( j+1)ms j for all j ∈ N. If m = ∞, then logk(s j+1) ≥ p j+1 ≥ p j + logk(ℓ( j+1)2), so

s j+1 ≥ ℓ( j+1)2s j for all j ∈ N. This establishes (vi).

For parts (i)-(iv), we use Lemma 3.4.1. Obviously part (a) of Lemma 3.4.1 is satisfied, so we only need

to check part (b). For this is suffices to show that if i ∈ P(m, j), i′ ∈ P(m, j′), and i ̸= i′, then p j − ri ̸= p j′ − ri′ . If

j′ = j then this is immediate. If j′ = j+1 then we have

p j′ − ri′ = p j+1 − ri′ ≥ p j+1 −|Pj+1|+1 > p j ≥ p j − ri .

This shows that p j − ri increases with j no matter the choice of i ∈ P(m, j), so we are done.

We are ready to construct our example. Let m,n ∈ Z+ ∪{∞} with m < n. Let SA = {a,x}, SB = {b,y}

be disjoint two-element alphabets. Let k = 14 and let ℓi = 14i for all i ∈ N. Let (p j),(q j) be increasing

sequences of positive integers. Let UA = {ui | i ∈ N} ⊂ (SA)
∗
◦ be the language constructed with respect to

m,k,(ℓi) and (p j) as in Lemma 3.4.2. Similarly define VB = {vi | i ∈N} ⊂ (SB)
∗
◦ with respect to n,k,(ℓi), and

(q j).

Lemma 3.4.3. Suppose that for all i, j ∈ N we have

(a) p j+1 ≥ p j +( j+2)m.

(b) q j+1 ≥ q j +( j+2)n if n ∈ Z+, and q j+1 ≥ q j +( j+2)2 if n = ∞.

(c) p⌊i/m⌋ ≤ q⌊i/n⌋ if n ∈ Z+, and p⌊i/m⌋ ≤ q⌊
√

i⌋ if n = ∞.

Then UA,VB satisfy conditions (a)-(f) listed in the proof of Proposition 3.3.1.

Proof. Note that

logk(ℓ( j+1)n)+ |P(n, j+1)|= log14(14( j+1)n)+n = ( j+2)n if n ∈ Z+

logk(ℓ( j+1)2)+ |P(n, j+1)|= log14(14( j+1)2
)+(2 j+1)≤ ( j+2)2 if n = ∞ .

Therefore assumptions (a) and (b) guarantee that (p j) and (q j) satisfy (3.4) with respect to (ℓi) and m,n,

respectively, and so UA,VB satisfy all conditions listed in the proof of Proposition 3.3.1, except possibly that

|ui| ≤ |vi| for all i ∈ N. Now, if i ∈ P(n, j) ∈ Pn, then j = ⌊i/n⌋ if n ∈ Z+, and j = ⌊
√

i⌋ if n = ∞. It follows

that assumption (c) is necessary and sufficient to guarantee that |ui| ≤ |vi| for all i ∈ N.
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Example 3.4.4. Let

p j = m( j+2)2 q j =


n2( j+3)2 if n ∈ Z+

m( j+3)4 if n = ∞.

Then (p j),(q j) satisfy the hypotheses of Lemma 3.4.3. The verification of this is no more than a tedious

calculation, so we omit it. Note that, in the notation of Lemma 3.4.2,

ri =


i mod n if n ∈ Z+

i2 −⌊
√

i⌋2 if n = ∞ .

Also, if i ∈ P(n, j), then j = ⌊i/n⌋ if n ∈ Z+, and j = ⌊
√

i⌋ if n = ∞. So, expanding the forms of ui and vi

according to Lemma 3.4.2 with respect to the sequences (p j) and (q j) given above yields

ui =

(
a14m(⌊i/m⌋+2)2−(i mod m)

x14m(⌊i/m⌋+2)2−(i mod m)
)14(i mod m)+1

vi =


(

b14n2(⌊i/n⌋+3)2−(i mod n)
y14n2(⌊i/n⌋+3)2−(i mod n)

)14(i mod n)+1

if n ∈ Z+

(
b14m(⌊

√
i⌋+3)4−(i−⌊

√
i⌋2)

y14m(⌊
√

i⌋+3)4−(i−⌊
√

i⌋2)
)14(i−⌊

√
i⌋2)+1

if n = ∞ .

Then the languages {ui | i ∈ N} and {vi | i ∈ N} satisfy conditions (a)-(f) listed in the proof of Proposi-

tion 3.3.1, and are clearly recursive. Thus the group G with presentation

G = ⟨a,b,x,y | [a,ui], [x,ui], [b,ui], [y,ui],u14i

i ,uiv−1
i : i ∈ N⟩

is a finitely generated, recursively presented group of Assouad-Nagata dimension at most m+2, containing

a finitely generated subgroup of Assouad-Nagata dimension at least n+1.
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CHAPTER 4

Directions for Further Research

The author hopes that the work done in this dissertation will serve as a springboard for future mathematical

research. Thus, in this section we give an overview of various unresolved questions related to the subject of

this paper, proceeding from the most general to the most specific.

The first question is more of a broad area of research than a particular open problem. There are many

properties that are related to asymptotic dimension: bi-exactness, Assouad-Nagata dimension, Property A,

and asymptotic dimension growth, to name a few. At the same time, there are many different types of small

cancellation conditions and related properties: conditions C(n) and T (n), graded small cancellation, lacunar

hyperbolicity, and so on. Theorem 2 establishes one connection between these two types of properties, so

naturally one could ask the following.

Question 4.0.1. What other connections are there between small cancellation conditions and properties

related to asymptotic dimension?

Next, note that Theorem 1 essentially establishes a “non-relation” between two types of dimension in

finitely generated groups. In other words, the relation asdim(G) ≤ asdimAN(G) for all finitely generated

groups G is immediate, and Theorem 1 shows that this is the only general relation between asdim(G) and

asdimAN(G), assuming asdim(G)≥ 4. However, there are other ways of measuring the dimension of a finitely

generated group. One such way is to find the topological dimension of an asymptotic cone of the group. In

[30], Dydak and Higes show that for any finitely generated group G, non-principle ultrafilter ω , and scaling

sequence k, we have the relation

dim(Coneω(G,k))≤ asdimAN(G) .

Question 4.0.2. Are there any other relations between asdim(G), asdimAN(G), and dim(Coneω(G,k)) that

hold for all finitely generated groups G?

We conjecture that the answer is no. To put it another way, we conjecture that, given positive integers

(ℓ,m,n) with ℓ ≤ n and m ≤ n, there exists a finitely generated group G, a non-principle ultrafilter ω , and a

scaling sequence k, such that asdim(G) = ℓ, dim(Coneω(G,k)) = m, and asdimAN(G) = n.

One can view Theorem 1 as an improvement of Higes’ result [16], pushing “countable” to “finitely gen-

erated.” Can we push “finitely generated” to “finitely presented?”
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Question 4.0.3. Does there exist a finitely presented group G such that asdim(G) < asdimAN(G)? If so, is

there such an example where asdimAN(G) is finite?

Question 4.0.4. Does there exist a finitely presented group G with a finitely generated subgroup H such that

asdimAN(G)< asdimAN(H)? If so, can H be taken to be finitely presented?

We conjecture that the answer to all of these questions is yes. Given a finitely generated, recursively

presented group G, the Higmann embedding theorem shows how to construct a finitely presented group into

which G embeds. The construction uses a finite sequence of HNN-extensions. We also have the following

recent result of Tselekidis.

Theorem 4.0.5. [11] Let H be a finitely generated group, let φ : A → B be an isomorphism between two

subgroups of H, and let G = H∗φ be the HNN-extension of H over this isomorphism. Then asdim(G) ≤

max{asdim(H),asdim(A)+1}.

This suggests that it may be possible to take a group of the sort described in Theorem 1 and embed it

in a finitely presented group whose asymptotic dimension is not much greater. The problem is controlling

the Assouad-Nagata dimension of the larger group. Thus the first step towards a construction seems to be

proving the appropriate analogue of Theorem 4.0.5 for Assouad-Nagata dimension.

Looking at the proof of Theorem 1 from Proposition 1, one may get the impression that the condition k ≥ 4

is more decorative than essential. It gives us the ability to control asdim(G), asdimAN(G), and asdimAN(H)

precisely, but if one doesn’t mind a little uncertainty about asdimAN(G) and asdimAN(H), one can instead

use Proposition 1 and lower asdim(G) to 2. But as written, Proposition 1 does not rule out the (intuitively

unlikely) possibility that, for example, all finitely generated groups G satisfying the conclusion of Proposi-

tion 1 have an Assouad-Nagata dimension which is even. Can we have our cake and eat it, too? That is, can

we have precise control over asdimAN(G) and asdimAN(H) as in Theorem 1, while still lowering asdim(G)

as much as possible?

Question 4.0.6. Let k,m,n∈N∪{∞} with k≤m≤ n. Does there exist a finitely generated group G containing

a finitely generated subgroup H such that

asdim(G) = k

asdimAN(G) = m

asdimAN(H) = n

assuming k ≥ 2? What about when k = 1?
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We conjecture that there are such groups for any k ≥ 2, but when k = 1 it is much less clear what the

answer should be.

In Proposition 1, the slight uncertainty about asdim(G),asdimAN(G) and asdimAN(H) follows from the

fact that G = A ∗φ B where the bounds on the asymptotic and Assouad-Nagata dimension of G, A and B are

obtained using the extension theorems. These only provide an upper bound for the asymptotic and Assouad-

Nagata dimension of an extension, rather than an exact formula, and in general it is unclear when the inequal-

ity provided by each extension theorem is strict. In order to relax the condition k ≥ 4 in Theorem 1, it seems

that a more detailed study of the asymptotic and Assouad-Nagata dimensions of extensions of C′(1/6) groups

is needed, at least if one wishes to use the results or techniques of this dissertation. In particular, it would be

useful to know the following.

Question 4.0.7. Suppose that 1→K →G→H → 1 is a short exact sequence, where H is a finitely generated

C′(1/6) group and K ⩽ Z(G). How can we characterize asdim(G) and asdimAN(G) in terms of asdim(K),

asdimAN(K), asdim(H), and asdimAN(H)? How does this change if K is not central in G?

To answer Question 4.0.7, one might begin by simply classifying the asymptotic and Assouad-Nagata

dimensions of C′(1/6) groups. This is a more specific question and thus easier to settle, at least in theory,

but even the answer to this is unclear. To review what we know so far, suppose that G is a finitely generated

C′(1/6) group. If asdim(G) = 0, then G is locally finite; since G is finitely generated by assumption, this

means that G is finite and asdimAN(G) = 0. If G is infinite and finitely presented, then by results of Fujiwara

and Whyte [18] and Gentimis [19], we have that asdim(G) = 1 if and only if G is virtually free, in which

case asdimAN(G) = 1 as well. Thus if G is infinite, finitely presented, and not virtually free, then we have

asdim(G) = asdimAN(G) = 2. This leaves open the case when G is infinitely presented.

Question 4.0.8. Let G be a finitely generated, infinitely presented C′(1/6) group. When does asdim(G) = 1

and when does asdim(G) = 2? When does asdimAN(G) = 1 and when does asdimAN(G) = 2? Is it possible

that asdim(G) = 1 but asdimAN(G) = 2?
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