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Introduction 
 

A learning health system “learns as quickly as possible about the best treatment for each patient—and delivers1.” A 

vital function of the learning health system is the ability to systematically evaluate interventions2. The gold standard 

for intervention evaluation is the randomized control trial (RCT). Sequential Multiple Assignment Randomized Trial 

(SMART) trail designs are a type of RCT developed to imitate real world  practices and a step towards systematic 

evaluation of interventions3. The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) is an example 

of a SMART trial design to evaluate interventions in Major Depressive Disorder (MDD). This was a highly 

impactful trial, but limited in ability to evaluate intervention effectiveness at the various levels of the trial4. 

Electronic Health Records have improved the ability to conduct RCTs, by easing patient recruitment and tracking. 

However, RCTs can be high cost5, and results may not replicate6. Advances in techniques for data collection and 

analysis, including the electronic health record (EHR), allow for the ability to evaluate interventions in an 

observational real-world setting. 

 

Dynamic treatment regimes (DTR) are statistical methods able to model SMART trial designs like the STAR*D 

study7–10. DTRs model sequences of decision rules to make intervention recommendations accounting for dynamic 

nature of the patient environment11. DTR models require accurate and complete representation of the patient 

environment including the patient state, clinician actions and clinically relevant outcomes. This requirement poses 

challenges in the study of observational EHR data. In observational data, interventions are not randomly assigned 

and subject to confounding. Additionally, outcomes in MDD trials are often dependent on surveys that are not 

regularly collected in the EHR. In order to model DTRs with observational EHR data, we must develop accurate 

representations of patient state, clinician actions, and outcomes.   

 

In chapter 1 we characterize medication treatment pathways to provide insight into clinician action trends at 

Vanderbilt University Medical Center (VUMC) in the treatment of MDD. In this study we use a Long-Short Term 

Memory (LSTM) autoencoder model to systematically characterize treatment pathways in MDD. LSTM 

autoencoder models generate representations of medication treatment pathways that account for temporality and 

complex interactions. Patients with similar pathways are clustered by the K-means algorithm. Clusters are 

characterized by analysis of medication utilization sequences and trends, as well as clinical features, such as 

demographics, outcomes and comorbidities. Cluster characterization identifies differences in medication utilization, 

medication heterogeneity, temporal trends, and clinical features between clusters. We find that treatment trajectories 

are associated with MDD endotypes including severe acute, low utilization moderate, and high utilization, chronic, 

severe, but managed.   

 

The severe acute MDD endotype is relatively unmanaged and has higher rates of admission and self-harm/suicide 

attempt. In chapter 2 we begin to study the effectiveness of clinician intervention on avoiding these outcomes. 

Additionally, we generate representations for patient states, clinician actions, and outcomes and assess their utility. 

MDD is a prevalent phenotype commonly treated by forms of cognitive therapy, medication, or some combination. 

In rare cases patients may be referred for electroconvulsive therapy (ECT), or partial hospitalization. We study this 

wider range of clinician actions in chapter 2 and measure associations between clinician actions and outcomes in 

MDD. We hypothesize that clinician actions studied will have protective effects against outcomes indicative of 

severe depression after adjustment for patient state. We study patients with an indication of MDD in the EHR by 

measuring the association between clinician actions taking place during the first 90 days post indication of MDD 

and outcomes taking place in the subsequent 180 days. We adjust for patient state features including demographics, 

severity proxies and comorbidities. We then perform sensitivity analyses of model results. 

 

We find that clinician actions have an increased risk association with outcomes. One clinician action outcome pair 

had a statistically significant reduction in risk—prescribing an initial antidepressant with unplanned admission. 

However, five action variables exhibited statistically significant associations with increased risk of an outcome after 

adjustment for state variables. Patient state representation is limited to what is available in the EHR and potential 

confounders are likely. This finding is consistent through our sensitivity analysis. The results of this study suggest 

potential confounding of intervention effect estimation. Further study of causal inference methods is necessary in 

this population.  
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The study of medication treatment trajectories in chapter 1 provides insight into discrete treatment pathways that 

appear to correspond to endotypes of MDD. This study informs our understanding of how treatment of MDD 

progresses. In chapter 2 we begin to explore evaluation of clinician interventions, focusing on initial clinician 

actions after diagnosis. We identify shortcomings with the data available and methods utilized that prompts further 

exploration of causal inference methods. Also, MDD is a chronic illness, so future studies will evaluate sequences of 

interventions over time extending beyond the initial interventions—building on the findings in chapter 1 and 

leveraging advances in DTR research. 
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Chapter 1-Characterization of medication treatment trajectories in Major Depressive Disorder 
 

Background and Significance 

 

An important step towards systematic evaluation is characterization of in place treatment pathways2. In this study, 

we perform a systematic characterization of treatment pathways of MDD from observational EHR data at VUMC. 

Clinical trials have shown the effectiveness of antidepressants in treatment of MDD relative to placebo12, but there is 

a need for better understanding and representation of long term treatment practices13–15. Efforts to standardize 

treatment pathways have resulted in decreased variance in treatment of MDD over time, but heterogeneity of 

treatment pathways remains between institutions2. Due to the prevalence of MDD and impact on daily life, 

characterization of treatment pathways in MDD may be beneficial to healthcare organizations in improving 

outcomes and quality of care16,17.   

 

Past studies have modeled treatment paths by visualizing medication sequences2,16. We built upon these studies by 

modeling medication treatment pathways in the VUMC Synthetic Derivative18 accounting for temporality as well as 

treatment resistant depression (TRD). TRD is defined as failure to respond to two or more antidepressant trials19. 

TRD is of particular interest in this study for the potential use of treatment pathways in prediction of TRD in future 

studies. In this study, electroconvulsive therapy (ECT) was used as a surrogate for TRD20.  

 

LSTM neural networks are deep learning algorithms that have the ability to model temporal data with complex 

relationships like those characteristic of medication data. An LSTM is a form of Recurrent Neural Network that 

stores information over extended time intervals and employs a gating method to address the exploding gradient 

problem found in some Recurrent Neural Network applications21. Autoencoder models have the ability to generate 

simplified encodings of complex data structures. Autoencoders are composed of two sub-models: an encoder and 

decoder. The encoder receives an input data set and reduces the dimensionality to a hidden layer. The decoder takes 

as input the hidden layer from the encoder model and reconstructs the input data22,23. The hidden layer generated by 

the encoder model is a denoised continuous vector representation of the model input. LSTM autoencoders have been 

used to learn representations for video sequences24 and for biomedical endotyping25. In this study, we hypothesize 

that LSTM autoencoders can effectively represent medication treatment pathways and that characterization of 

encoding clusters will allow for differentiation of clusters by medication treatment pathways and clinically relevant 

variables.  

 

Methods 

 

Data Description 

 

The patient cohort for this study included patients aged 18 to 90, diagnosed with MDD seen at least two times, six 

months apart, at VUMC located in the United States Mid-South in Nashville, TN. Patients with MDD were 

identified that had at least one of the following ICD-9 codes: 311.x, 296.2x, 296.3x, 300.4x or ICD-10 codes: 

F32.xx, F33.xx, F34.1 and their index diagnosis took place prior to 12/31/2016 to ensure a minimum of three years 

of medication data. We excluded any patients with a diagnosis of Bipolar Disorder or Schizophrenia and those that 

were not prescribed an antidepressant (see Table 1.5) within three years of diagnosis. 

 

Medications were extracted for three years following first MDD diagnosis and subset to include only prescriptions. 

Because the population with TRD was of particular interest for downstream prediction of TRD status before it 

occurred, the cohort with MDD who received ECT, a surrogate for TRD in some studies20, had medication data 

censored one day prior to ECT treatment date. Medications were grouped using the World Health Organization 

Anatomical Therapeutic Chemical (ATC) classification level 517. Medications included in the study are listed in the 

Appendix Table A.1. 

 

Unsupervised Feature Learning 
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Medication data were converted to a categorical quarterly time series with indicators for each medication class if 

observed during a quarter. The resulting dataset had dimension N x M x T, with N the number of patients, M the 

number of medication classes, and T the number of quarters in our observation window.  

 

An LSTM autoencoder was fit on the medication data to generate a continuous-multidimensional representation of 

each patient’s medication pathway. The model was built using the Keras Python library26. We tested multiple model 

structures in order to tune the number of encoder layers as well as the dimension of the encoder layers. We 

performed a grid search on 15 candidate models with one to three encoder layers and final encoder layer dimensions 

of 8, 16, 24, 32 and 64. Models were evaluated based on reconstruction mean squared error (MSE) on a 25% 

validation test set. Model selection was based on visual inspection of plots with encoding dimension on the x axis 

and MSE on the y. The model with an MSE such that increasing encoding dimension does not meaningfully reduce 

MSE was selected for clustering. 

 

The encodings of the selected model were clustered using the K-means algorithm. The Elbow Method was utilized 

for selection of K—the number of clusters. In this method the sum squared distance from the cluster centroid is 

plotted against K and the “elbow” is selected by visual inspection as the point at which increasing K does not 

meaningfully reduce sum squared distance from the centroid27. 

 

Cluster Characterization 

 

We characterized clusters by performing an analysis of demographics, clinical outcomes, comorbidities, and 

utilization trends. Demographics include gender, age and race. The clinical outcomes measured in the study are all 

cause mortality, admission, ER Visit and a TRD surrogate—ECT –within the three-year period of analysis. 

Comorbidities are identified using Agency for Healthcare Research and Quality (AHRQ) Clinical Classification 

Software (CCS)28 to map ICD 9 and 10 codes to clinically meaningful comorbidities. We perform a Chi-square test 

of association between clusters and categorical demographics—gender and race—and perform ANOVA for 

continuous variables—age and comorbidity count—with post-hoc Bonferroni corrected confidence intervals to 

measure differences between clusters. Mental health comorbidity association with clusters were also analyzed by 

Chi-square with post-hoc Bonferroni corrected significance tests to identify clusters with enriched comorbidity 

prevalence.  

 

Medication and visit utilization analysis included: calculating the mean number of prescriptions per patient, mean 

unique number of prescription classes per patient and single medication treatment rates—the proportion of patients 

prescribed a single medication class for the entire period of analysis. Trend graphs visualized three-quarter rolling 

averages of medication utilization. By cluster medication sequences were visualized by sunburst plots. For 

visualization purposes medications were combined into clinically meaningful groupings as defined by physicians 

from the VUMC department of psychiatry. These groupings are available in Appendix Table A.1. Additionally, we 

account for instances in which patients are prescribed multiple medications in a short time period. We will refer to 

these cases as Multi-medication-therapy and define it as any instance in which a patient is prescribed two different 

mediations (ATC 5 level) within a five-day period. 

 

Results 

 

Model Selection 

 

Autoencoder models were fit and validation MSE was plotted by encoding dimension for each of the model 

structures in Figure 1. The three-layer encoder model outperforms the one and two encoder layer models at each 

candidate encoding dimension. Validation MSE in the three-layer encoder model is 0.0034 with encoding dimension 

equal to 24. At dimension 32 and 64 the validation MSE is 0.0032 and 0.0020 respectively. As can be seen in Figure 

1, the rate at which the three-layer encoder model MSE (green) is decreasing is reduced at dimension 24. The model 

with three encoding layers and encoding layer dimension of 24 is selected for our final model. Encodings from the 

selected model were cluster using the K-means algorithm. The elbow method was utilized for selection of K—the 

number of clusters. Visual inspection of the Figure 1 (right) indicates that the “elbow” occurs at K=5.  
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Figure 1.1. Autoencoder and K-means clustering model selection plots. The reconstructed MSE for each candidate 

model is plotted with lines colored by the number of encoding layers (left). The within cluster sum squares are 

plotted for the K-means algorithm with K=1 through K=14 (right). 

 

Cluster Characterization 

 

Summary statistics by cluster were calculated for demographics, outcomes and comorbidities. 46,454 patients met 

the inclusion criteria for this study. Five clusters were identified, cluster 2 being the largest (n=13,908, 29.1%). 

ANOVA and Chi-square tests were conducted for association between clusters and variables of interest. For each of 

the variables tested differences between clusters were found to be statistically significant. Post-hoc Bonferroni 

corrected confidence interval margin of errors are included in Table 1.1. The majority of patients in the study are 

female (66.4%) and Cluster 4 is higher proportion female (70.4%, 95% CI = 69.4%-71.4%). Cluster 5 has elevated 

mortality (3.6%, 95% CI = 3.3%-3.9%) and Cluster 2 has elevated admissions (66.6%, 95% CI = 66.0%-67.2%) and 

ECT (0.56%, 95% CI = 0.46%-0.66%). Cluster 3 has the highest CCS comorbidity count on average (17.6, 95% CI 

= 17.3-17.6). 

 

Table 1.1. Clinical characteristics by cluster. For each metric in the table the margin of error for a Bonferroni 

corrected 95% confidence interval is included in parentheses.   
Cluster   

  
1 2 3 4 5 P-value Total 

Demographics N 6,238 13,908 10,616 5,112 10,580  46,454 

% Female 68.2 

(0.9)% 

64.5 

(0.6)% 

67.4 

(0.7)% 

70.4 

(1.0)% 

65.1 

(0.7)% 

<0.001 66.4% 

Mean Age 48.8 

(0.6) 

45.8 

(0.4) 

48.5 

(0.5) 

47.6 

(0.6) 

47.1 

(0.5) 

<0.001 47.3 

Race/Ethnicity Black/Non-

Hispanic 

9.6 

(0.6)% 

10.3 

(0.5)% 

8.6  

(0.5)% 

10.9 

(0.8)% 

8.7  

(0.5)% 

 9.5% 

Black/Hispanic-

Latino 

0.0 

(0.0)% 

0.1  

(0.1)% 

0.1  

(0.1)% 

0.1  

(0.1)% 

0.1  

(0.1)% 

 0.1% 

White/Non-

Hispanic 

85.6 

(0.8)% 

83.7 

(0.5)% 

86.9 

(0.6)% 

84.9 

(0.9)% 

85.6 

(0.6)% 

<0.001 85.3% 

White/Hispanic-

Latino 

1.2 

(0.2)% 

1.7  

(0.2)% 

1.4  

(0.2)% 

1.2  

(0.3)% 

1.5  

(0.2)% 

 1.5% 

Other 3.7 

(0.2)% 

4.3  

(0.2)% 

3.0  

(0.2)% 

2.9  

(0.3)% 

4.0  

(0.2)% 

 3.7% 

Outcomes Mortality % 2.4 

(0.3)% 

1.5 

(0.2)% 

2.2 

(0.2)% 

1.3 

(0.3)% 

3.6 

(0.3)% 

<0.001 2.2% 

Admission % 42.1 

(1.0)% 

66.6 

(0.6)% 

45.1 

(0.8)% 

42.6 

(1.1)% 

47.9 

(0.8)% 

<0.001 51.5% 
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Cluster   

  
1 2 3 4 5 P-value Total 

ER Visit % 28.9 

(0.9)% 

27.9 

(0.6)% 

28.5 

(0.7)% 

29.5 

(1.0)% 

27.3 

(0.7)% 

0.024 28.2% 

ECT % 0.24 

(0.1)% 

0.56 

(0.1)% 

0.20 

(0.07)% 

0.17 

(0.09)% 

0.27 

(0.08)% 

<0.001  

Comorbidities Mean CCS 

Comorbidity 

Count 

16.0 

(0.3) 

13.3 

(0.2) 

17.6 

(0.3) 

15.6 

(0.3) 

16.7 

(0.3) 

<0.001 15.7 

 

Medication utilization statistics by cluster are included in Table 1.2 and trend plots of medication and visit 

utilization in Figures 1.2 and 1.3. Clusters 2 and 4 have the lowest mean count of prescriptions (3.0, 3.6) during the 

period of analysis and the lowest number of unique prescriptions by medication class (1.5, 1.4) as well as the highest 

rates of single medication treatment (66.4%, 68.9%). Clusters 3 and 5 have the highest prescription counts (12.4, 

9.8) and the lowest rates of single medication treatment (31.7%, 37.2%). 

 

Table 1.2. Medication utilization summary statistics by cluster.   
Cluster  

1 2 3 4 5 

N 6,238 13,908 10,616 5,112 10,580 

Mean prescription count 5.5 3.0 12.4 3.6 9.8 

Mean unique prescription class 

count (ATC Level 5) 

1.7 1.5 2.3 1.4 2.2 

Single Medication Treatment Rates 58.5% 66.4% 31.7% 68.9% 37.2% 

 
 

 

Figure 1.2. Pareto plot of time to antidepressant prescription from diagnosis. Histogram of density (blue) and 

cumulative density (orange). 
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Figure 1.3. Medication and visit utilization trends. Three quarter moving average plots of the percentage of patients 

with a prescription (left) and visit (right) during each quarter of the period of analysis by cluster. 

 

 

The most common initial medication type prescribed was selective serotonin reuptake inhibitors (SSRI) in the 

patients studied (50.1%). This ranged from 47.7% in cluster 4 up to 51.4% in cluster 3. For patients receiving an 

SSRI initially, the majority of these patients did not receive another prescription within the period of analysis 

(66.2%) and 9.1% were prescribed a SSRI as their second antidepressant. In our study population 18.4% of patients 

received multi-medication-therapy. Rates of multi-medication-therapy range between 11.5% in cluster 1 and 22.6% 

in cluster 2.  

 

Quarter from Diagnosis 

% Patients with prescription % Patients with visit % Patients with prescription 
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Figure 1.4. Sunburst plot of medication sequences by cluster. The first (inner) level of the plot represents the 

distribution of initial antidepressant types with the second level representing the second antidepressant type 

prescribed and so on. 

 

The Chi-square analysis of association between mental health comorbidities and clusters was conducted to identify 

comorbidity-cluster pairs that deviated from expected frequency given the overall comorbidity frequency within the 

population and the cumulative comorbidity burden within the cluster. Results of the analysis are included in Table 

1.3. 

 

Table 1.3. Chi-square analysis of mental health comorbidities by cluster. Chi-square analysis to test association 

between cluster and mental health comorbidities. Post-hoc Bonferroni corrected significance tests of the Chi-square 

statistic are performed for each comorbidity-cluster pair at the 90%, 95%, and 99% significance levels (indicated by 

color).  
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Discussion 

 

Overall, we find that the unsupervised learning methods are able to separate the study population into clusters using 

medication data alone. We find differences in medication utilization, medication heterogeneity, temporal trends, as 

well as statistically significant differences between clusters in clinical features. This work builds on the 

characterization of treatment pathways research2,16,29 by leveraging machine learning methods that account for 

temporality and extending characterization to analyze relevant clinical features associated with treatment pathways. 

 

Cluster characterization analysis examined three dimensions to describe the autoencoder and clustering outputs: 

utilization, medication heterogeneity, and temporal trends. Table 1.2 displays both utilization (mean prescription 

count) and medication heterogeneity (mean unique prescriptions, single medication treatment rates). The medication 

sequences in the sunburst plots (Figure 1.4) visualize medication heterogeneity between clusters and the quarterly 

moving average plots of percent patients with prescription and visit provide insight into temporal trends (Figure 

1.3). In differentiating between clusters, medication utilization trends are a key factor. The profiles of clusters 3 and 

5 are similar in aggregate medication utilization statistics, as well as medication sequences. However, medication 

utilization trends downward initially after diagnosis, but utilization sustains a consistent level in quarters 6 through 

12 from MDD diagnosis. Conversely, cluster 5 medication utilization trends downward throughout the period of 

analysis. 

 

In addition, we describe the clusters by clinical features such as demographics, comorbidities and outcomes. 

Differences between each of the demographics measured are found to be statistically significant between clusters. 

Outcomes measured include mortality, admission, ER visits, and ECT. Themes emerge from characterization 

analysis. For example, cluster 2 is characterized by higher rates of substance use disorders and self-harm as well as 

higher provision of ECT. These factors suggest this cluster captures high acuity psychiatric patients with depression 

at our medical center. This finding is also supported by medication treatment patterns, cluster 2 has high initial 

medication utilization and the highest rate of multi-medication treatment among the clusters. Clusters 1 and 4 are 

characterized by low utilization, outcomes and comorbidity profile. We suggest patients in these clusters have a 

moderate severity chronic MDD. Clusters 3 and 5 convey high utilization, and high comorbid burden with relatively 

low rates of substance abuse and self-harm. We assert clusters 3 and 5 are patients with severe, chronic, but 

managed MDD. 

 

Our study is limited to analysis of data from a single institution. Our institution is an open system with finite 

specialty mental health access: patients included in our study might receive care at an institution other than VUMC 

or the patients in this study might be incident users of antidepressants30. We seek to limit this risk by requiring two 

visits to VUMC at least six months apart. Additionally, there are limitations in representation of the medication data. 

Our methods seek to address some of those limitations by representing medications as a time-series and leveraging 

an LSTM auto-encoder. In this work, we do not explicitly seek to capture concurrent medications. However, 

concurrent medications may be implicitly captured to some degree by the quarterly time series representation. In this 

study we limit to including only medications from VUMC at the time they are prescribed. Information about 

duration of prescription, adherence, or dose changes are not included in our model but remain germane to effective 

treatment of MDD. 

 

Future work should seek to expand treatment pathway characterization to additional health systems and to analyze 

additional phenotypes. In addition, health information exchanges can provide a more complete picture of the patient 

health record31.  

 

Conclusion 

 

We clustered the output of an LSTM autoencoder on time-series of antidepressant prescriptions in patients 

diagnosed with MDD. We identified common, clinically relevant patterns in prescribing practices. Cluster 

characterization established that prescribing practices differ on multiple dimensions: utilization, medication 

heterogeneity, temporal trends. Clusters are found to be associated with a clinically meaningful features including 

demographics, outcomes, and comorbidities. This method provides insight into endotypes of MDD. 
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Chapter 2-Modeling association between clinician interventions and outcomes in Major 

Depressive Disorder with observational Electronic Health Record data 

 
Background and Significance 

 

Prior EHR studies in MDD have characterized treatment trajectories2 and developed predictive models of 

outcomes13,14,32,33. While these models often consider interpretability of model parameters, few are intended to make 

inferences about effects of clinical interventions. Such approaches have the potential to provide new intervention 

insights, as in a recent study that used observational EHR data to model COVID-19 intervention effects34. 

Observational studies are essential in medication safety research35. Examples include studies of the effects of 

Methylphenidate on suicide attempts and psychotic disorders36,37, and the risk of bone fractures in hemodialysis 

patients treated with proton pump inhibitors38. Our current study builds on prior work by mining the EHR for 

features predictive of depression outcomes and fitting a statistical model to study associations between interventions 

and outcomes. 

 

Regression analysis is a longstanding method for estimation of intervention effects39,40. It allows for estimation with 

adjustment for covariates that may confound the effects of the study. Selection of potential confounder variables is a 

non-trivial task—as the confounders are not always measured and adjustment for extraneous variables can reduce 

study power and introduce bias41,42. In observational studies the risk for confounding is always high and causal 

relationships between observed variables may be unknown. Sensitivity analyses provide insight into the validity of 

model performance and confounding risk43. Additionally, causal inference researchers have developed methods with 

the ability to adjust for unobserved confounding under certain circumstances44–47. 

 

Objective 

 
In our study, we collaborated with clinical experts to understand and model interventions in MDD. We hypothesized 

that by integrating clinical expertise into data collection and model construction we could reduce confounding due to 

the observational nature of our study. The features in our model fall under the following categories: clinical 

interventions, states (patient history/status) and outcomes. Our objective was to model the effect of interventions on 

outcomes and assume that the relationships between interventions and outcomes are influenced by patient state. It 

follows that, if we can sufficiently represent the patient state using available EHR data we will be able to model the 

true effects of interventions on outcomes in a systematic manner39. Our secondary hypothesis is that after adjustment 

for state variables, the provider interventions studied will generally be protective and reduce the risk of negative 

outcomes4,48,49. If successful, we will have generated a representation of physician interventions from EHR data that 

influence clinical outcomes. These representations can be leveraged in systematic evaluation of clinician 

interventions when evaluating patients with MDD. A sensitivity analysis will be performed to assess model validity 

and inform future studies of causal inference methods in this population. 

 

Methods 

 

Our study included patients aged 18-90 years with an initial MDD event between 2013 and 2018. MDD events are 

defined based on ICD diagnosis codes, antidepressant prescription, or problem list mention of depression, and could 

be a first episode or recurrent episode. The ICD codes used to indicate depression are included in the appendix table 

A.4. Patients were required to have two visits at least 180 days apart at VUMC prior to the initial MDD event to 

reduce chances that patients were receiving a majority of care at an institution other than VUMC. Patients with a 

Schizophrenia or Bipolar Disorder ICD code were excluded. 

 

The purpose of our model was to estimate effects of provider interventions on outcomes. To accomplish this, we 

structured our data temporally into intervention and outcome periods. In the intervention period, provider 

interventions were recorded indicating that a specific intervention took place during that period. In the outcome 

period, which follows the intervention period, we recorded outcome indicators. We defined the intervention period 

as the 90 days following the index MDD event (see figure 1.2) and the outcome period as the 180 days following the 

end of the intervention period, or days 91-270 following the index MDD event. This structure assumes that provider 

interventions taking place during the intervention period will influence future outcomes. 
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We selected the feature sets belonging to the categories: interventions, states, and outcomes based on the expertise 

of clinicians in the VUMC Department of Psychiatry and Behavioral Science. Intervention features include 

prescribing an antidepressant, prescribing a second antidepressant different from the index medication, increasing 

antidepressant dosage, reducing antidepressant dosage, referral or consult for behavioral health services, ECT 

consult and partial hospitalization.  

 

For all interventions, orders data were queried. Interventions that were not related to medications were supplemented 

by notes data. Regular expressions were developed to identify mentions of a referral or consult for behavioral health 

related therapy, ECT consult and partial hospitalizations in both the notes and orders data. Antidepressant data were 

extracted from the RD by ATC code17 according to a list of antidepressants created by clinical experts from the 

VUMC department of psychiatry. The list of medications has been included in Table 3 in the supplementary 

materials with ATC code. 

 

Study outcomes were selected while considering clinician input as well as EHR availability. The resulting outcomes 

included utilization related outcomes—unplanned all-cause admissions and high utilization—as well as self-

harm/suicide attempt. Healthcare utilization related outcomes have been shown in prior studies to be associated with 

severe depression50–52 and are leveraged in this study to assess effectiveness of treatment interventions. Unplanned 

admissions were defined as patients admitted to the hospital excluding any admissions that may be considered part 

of planned treatment according to the Center for Medicare and Medicaid Services Unplanned Readmissions 

Algorithm53. High utilization was defined as any patient with two or more inpatient or emergency room visits with 

an MDD ICD code during the outcome period. The self-harm/suicide attempt outcome is ICD code based, codes 

were mapped to the AHRQ CCS28 codes. The CCS provides a grouping of ICD codes intended to be clinically 

meaningful. Patients with a code belonging to the suicide and self-inflicted injury grouping were defined as having a 

self-harm/suicide attempt event.  

 

The patient state includes demographics variables: age, gender and race/ethnicity; as well as comorbidities. 

Comorbidities are encoded using AHRQ CCS codes28. We select comorbidities to include in each outcome model 

using a bootstrapped elastic net54–56. The elastic net is a form of penalized regression often used for model variable 

selection. The elastic net is a combination of the L1 and L2 penalties with a mixing parameter 𝛼. The parameter 𝛼 

ranges from 0 to 1, when set to 1 the penalty is equivalent to L1 penalized regression, and when set to 0, the L2 

penalty. The L1 penalty shrinks regression coefficients to zero more aggressively, so we set 𝛼 = 0.5. The elastic net 

method results in a more exhaustive variable selection by allowing for correlated comorbidities to be selected 

together55. To select the comorbidities to include for each outcome, we perform 20 bootstrap replications of the 

elastic net model for the full set of CCS codes in our population on each of the outcomes studied. Comorbidities 

included in each of the 20 bootstrap replication models were included as state variables in the corresponding 

outcome model. Additionally, the variables unplanned admission, high utilization, self-harm/suicide attempt, and ER 

visit that take place after the index MDD event and prior to the end of the intervention period were included as part 

of the patient state as a proxy for MDD severity50–52.  

 

We fit separate logistic regression models for each outcome—which regress the outcomes against intervention and 

state variables. We then perform a test for significance of interventions by the likelihood ratio test (LRT). The LRT 

is a commonly used statistical method to compare competing models. In our case—models with and without the 

interventions. Testing the hypothesis that addition of the intervention variables improves model fit. Due to sparse 

nature of the high utilization and self-harm/suicide attempt outcomes the interventions ECT referral and partial 

hospitalization were not included in these models. We observe both these interventions at low rates (Table 2.1) and 

were not able to reliably estimate coefficients and standard errors for these variables.  
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Figure 2.1-Overview of data extraction and processing 

 

Our secondary analysis examines intervention feature associations with outcomes, and we perform a sensitivity 

analysis. This includes reporting model variable coefficients with corresponding confidence intervals for both 

intervention and state features. The sensitivity analysis reports the E-value, which is a measure of the odds ratio 

(OR) that a potential unobserved confounder would have to have with both the intervention and the outcome to 

produce a null effect in the intervention (OR = 1)43. In addition, we analyze changes in intervention feature 

coefficients as covariates are added to the model and perform a subgroup analysis. In the covariate analysis, we 

began with unadjusted odds ratios then add to the model in order: intervention features, demographics, severity 

proxies, and comorbidities and report intervention feature coefficients. The subgroup analysis measured changes to 

intervention feature coefficients as the data were subset by factors hypothesized to alter intervention effects. The 

subset groups include exclusion of patients with a cancer diagnosis, exclusion of patients with a pregnancy diagnosis 

code, those with a low comorbid burden, exclusion of patients with a substance abuse diagnosis code, and patients 

prescribed at least one antidepressant. We define a low comorbid burden as patients in the lowest quartile of the 

count of unique CCS codes. The threshold for inclusion in this group is less than or equal to 5 unique CCS codes.    

 

All analyses were conducted in R Version 3.6.  

 

Results 

 

We identified 27,319 patients that met entry criteria. Of those, the most common index MDD event was diagnosis 

code (47.8%). All patients with an index MDD event identified in the problem list or antidepressant prescription had 

a later MDD diagnosis code. During the intervention period 59.7% of patients were prescribed an antidepressant.  Of 

those prescribed an antidepressant, 29.6% were prescribed a second, different antidepressant during the intervention 

period. The most common outcome was unplanned admission (13.7%), while self-harm/suicide attempt and high 

utilization were relatively rare (0.5% and 1.2%). Overall, 64.2% of patients in our study received at least one 

intervention. Patients in each of the outcome categories were more likely to have received an intervention relative to 

the population total (unplanned admission = 67.4%, high utilization = 81.7%, self-harm/suicide attempt = 81.0%). 
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Table 2.1-Study Summary Statistics 

  
Unplanned Admission 

N=3,746 

High Utilization  

N=333 

Self-harm/ 

suicide attempt  

N=147 

Total  

N=27,319  

 

 
N % N % N % N % 

 

Index MDD Event 
 

  
 

  
 

  
   

Diagnosis Code 1,396 37.3% 102 30.6% 48 32.7% 13,065 47.8% 
 

Antidepressant 1,605 42.8% 166 49.8% 82 55.8% 10,050 36.8% 
 

Problem List 745 19.9% 65 19.5% 17 11.6% 4,204 15.4% 
 

Gender 
         

Female 2,250 60.1% 189 56.8% 75 51.0% 17,621 64.5% 
 

Race/Ethnicity 
         

Asian 37 1.0% <11 <3.3% <11 2.7% 379 1.4% 
 

Black 477 12.7% 46 13.8% 23 15.6% 2,996 11.0% 
 

White-hispanic/latino 52 1.4% <11 <3.3% <11 2.0% 387 1.4% 
 

White-not hispanic/latino 3,080 82.2% 270 81.1% 113 76.9% 22,478 82.3% 
 

Other 100 2.7% <11 <3.3% <11 2.7% 1,079 3.9% 
 

Age 
         

Mean Age (SD) 50.1 (17.3) 49.1 (17.5) 37.7 (15.7) 48.1 (18.1) 
 

Interventions 
         

Prescribe antidepressant 2,324 62.0% 264 79.3% 115 78.2% 16,308 59.7% 
 

Second antidepressant 866 23.1% 137 41.1% 52 35.4% 4,840 17.7% 
 

Increase dosage 63 1.7% 11 3.3% <11 <7.5% 678 2.5% 
 

Reduce dosage 32 0.9% 12 3.6% <11 <7.5% 208 0.8% 
 

Behavioral Health referral 825 22.0% 106 31.8% 39 26.5% 4,150 15.2% 
 

ECT consult 17 0.5% <11 <3.3% <11 <7.5% 55 0.2% 
 

Partial hospitalization 11 0.3% <11 <3.3% <11 <7.5% 116 0.4% 
 

Total w/ Intervention 2,525 67.4% 272 81.7% 119 81.0% 17,535 64.2% 
 

 

Comorbidity selection 

 

The bootstrapped elastic net method for comorbidity selection resulted in 38, 5, and 14 comorbidities for the 

outcomes unplanned admission, high utilization and self-harm/suicide attempt respectively. Selected comorbidities 

are included in appendix table A.1. Mood disorders were common across all three outcome models and each 

included gastrointestinal related comorbidities (Other gastrointestinal disorders, Upper gastrointestinal disorders). 

Substance abuse and alcohol related disorders were included as comorbidities in the unplanned admissions and self-

harm/suicide attempt models. 

 

Model Results 

 

We regressed each outcome against intervention and state variables and performed a LRT of association between 

interventions and outcomes after adjustment for state variables. Interventions were found to have statistically 

significant association with each outcome. We observed that prescribing an initial antidepressant had a protective 

effect—or a statistically significant reduction in the odds of an unplanned admission. Multiple variables exhibited 
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statistically significant associations with increased risk of an outcome, including prescribing a second antidepressant 

and behavioral health referral with unplanned admission, prescribe a second antidepressant and dose decrease with 

high utilization, as well as prescribing a second antidepressant with self-harm/suicide attempt.  

 

Table 2.2-Model summary, LRT, and intervention coefficients 

  
Unplanned Admission High Utilization 

 
Self-harm/Suicide Attempt 

 
LRT 2.0x10-18 LRT 6.1x10-7 LRT 4.7x10-8 

p-value p-value p-value 
  

95% CI 
 

95% CI 
 

95% CI 
 

OR lower upper OR lower upper OR lower upper 

Prescribe Initial Med 0.67 0.58 0.78 1.14 0.71 1.87 1.82 0.94 3.73 

Prescribe Second Med 1.19 1.00 1.42 1.58 1.04 2.41 2.09 1.12 3.86 

Dose Increase 1.00 0.61 1.58 0.97 0.29 2.52 1.18 0.28 3.48 

Dose Decrease 1.36 0.65 2.64 3.80 1.15 10.15 2.05 0.24 8.65 

Behavioral Health Referral 1.23 1.04 1.46 1.31 0.85 1.99 1.49 0.77 2.77 

ECT Referral 1.57 0.51 4.45       

Partial Hospitalization 1.15 0.34 3.02       
 

         
          

95% CI’s are Bonferroni 
corrected for multiple 

analyses 

 Statistically significant increased risk of outcome 

 Statistically significant decreased risk of outcome 

 

 

State Variable Effects 

 

Figure 2.2 displays forest plots of state variable effects. For the unplanned admissions outcome, having a pregnancy 

complication during the intervention period had the largest effect (OR = 4.37, 95% CI = 3.30-5.77) and the second 

largest effect was normal pregnancy (OR = 3.46, 95% CI = 2.53-4.74). For high utilization the state variable with 

largest effect was having an unplanned admission during the intervention period (OR = 2.39, 95% CI = 1.83-3.13). 

Patients with a alcohol (OR = 2.66, 95% CI = 1.62-4.26) and substance disorders (OR = 2.37, 95% CI = 1.54-3.60) 

during the intervention period have statistically significant increased risk of self-harm/suicide attempt. Mood 

disorders were protective in each outcome model. Self-harm/suicide attempts during the intervention period were 

protective against self-harm/suicide attempt during the outcome period (OR = 0.033, 95% CI = 0.0019-0.15).  
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Figure 2.2-Patient state variable forest plots by outcome model. Top ten increased risk and protective effect ORs. 

 

Sensitivity Analysis 

 

The sensitivity analysis conducted in this study includes measurement of the required strength of hypothetical 

confounders, changes to intervention coefficients due to model covariates and subsets of the population. The E-value 

provides a measure of the strength of association potential confounders would need to have with both the 

intervention and the outcome to nullify the effect. E-values for interventions found to be statistically significant are 

reported in appendix table A.2. Dose decrease in the high utilization model has the highest E-value, 7.06, meaning a 

hypothetical confounder would have to have a relatively strong association—odds ratio magnitude greater than 

7.06—with both self-harm/suicide attempt and prescribing an initial medication to nullify the observed effect. 

 

In our covariate analysis we observed a majority of unadjusted intervention variables with a statistically significant 

increased risk of negative outcomes (65%). A single intervention outcome pair had an unadjusted protective effect—

dose increase with unplanned admission. The association between prescribing an initial medication and unplanned 

admission flipped from unadjusted increased risk (OR = 1.12) to protective in the full model (OR = 0.67) and is 

significant at the 99.9% level.  
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Table 2.3-Covariate Analysis 

Significance thresholds for Tables 3 and 4    
99.9% 

significant decreased risk 

   
99%    
95%    
90%    

99.9% 

significant increased risk 

   
99%    
95%    
90% 

Unplanned Admission (N = 3,746, 13.7%) Significance thresholds are Bonferroni corrected 
 

Unadjusted Interventions 
Interventions + 

Demographics 

Interventions + 

Demographics + 
Severity Proxies 

Full Model 

Prescribe Initial Antidepressant 1.12 0.98 0.96 0.84 0.67 

Prescribe Second Antidepressant 1.48 1.38 1.35 1.17 1.19 

Dose Increase 0.64 0.58 0.64 0.76 1.00 

Dose Decrease 1.14 1.16 1.20 1.24 1.36 

Behavioral Health Referral 1.72 1.62 1.65 1.38 1.23 

ECT Referral 2.82 2.11 2.05 1.76 1.57 

Partial Hospitalization 0.66 0.49 0.55 0.67 1.15       

High Utilization (N = 333, 1.2%) 
  

Prescribe Initial Antidepressant 2.61 1.72 1.70 1.43 1.14 

Prescribe Second Antidepressant 3.31 2.24 2.21 1.67 1.58 

Dose Increase 1.35 0.75 0.79 0.85 0.97 

Dose Decrease 5.10 3.41 3.50 3.28 3.80 

Behavioral Health Referral 2.65 2.01 1.99 1.46 1.31       

Self-harm and Suicide Attempt (N = 147, 0.5%) 
  

Prescribe Initial Antidepressant 2.43 1.81 1.92 1.86 1.82 

Prescribe Second Antidepressant 2.55 1.77 1.79 2.09 2.09 

Dose Increase 2.28 1.50 1.05 1.19 1.18 

Dose Decrease 3.70 2.10 2.00 2.04 2.05 

Behavioral Health Referral 2.02 1.62 1.38 1.50 1.49 

 

In our subgroup analysis we subset the study dataset to groups of interest and report intervention coefficients. The 

subgroups analyzed are: patients with no cancer diagnoses, patients with no pregnancy related diagnoses, low 

comorbid burden, no substance abuse codes, and those with at least one antidepressant prescription during the 

intervention period. In the unplanned admission model, prescription of an initial antidepressant is significant at the 

99.9% level in each of the subgroups with the exception of the at least one med subset because it is not included in 

this model. Prescribing a second antidepressant is significant at the 99.9% level in high utilization and self-

harm/suicide attempt models in the exclude substance abuse subgroup. 
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Table 2.4-Subgroup Analysis 

 
Unplanned Admission  

Full Model 
Exclude 

Cancer 

Exclude 

Pregnancy 

Low 
Comorbidities 

(<= 5 CCS) 

Exclude 
Substance 

Abuse 

Prescribed 

>= 1 Med 

Model N 27,319 21,731 26,038 8,524 21,968 16,308 

Outcome N (%) 3,746 

(13.7%) 

2,540 

(11.7%) 

3,375 

(13.0%) 
602 (7.1%) 

2,780 

(12.7%) 

2,324 

(14.2%) 

Prescribe Initial Antidepressant 0.67 0.70 0.71 0.54 0.62 NA 

Prescribe Second Antidepressant 1.19 1.16 1.16 1.25 1.25 1.13 

Dose Increase 1.00 1.02 1.00 1.43 1.05 1.01 

Dose Decrease 1.36 1.49 1.42 1.61 1.18 1.39 

Behavioral Health Referral 1.23 1.20 1.21 1.14 1.29 1.26 

ECT Referral 1.57 1.38 1.49 6.65 3.01 1.73 

Partial Hospitalization 1.15 1.20 1.07 2.68 1.42 1.07 
 

      

High Utilization       
 

      

Outcome N (%) 333 (1.2%) 209 (1.0%) 319 (1.2%) 52 (0.6%) 240 (1.1%) 264 (1.6%) 

Prescribe Initial Antidepressant 1.14 1.16 1.12 0.96 0.90 NA 

Prescribe Second Antidepressant 1.58 1.57 1.58 1.55 1.99 1.51 

Dose Increase 0.97 1.03 1.00 1.14 1.04 0.91 

Dose Decrease 3.80 4.60 3.95 5.70 2.32 3.75 

Behavioral Health Referral 1.31 1.24 1.32 0.97 1.38 1.30 
 

      

Self-harm and Suicide Attempt  
      

Outcome N (%) 147 (0.5%) 129 (0.6%) 141 (0.05%) 46 (0.5%) 86 (0.4%) 115 (0.7%) 

Prescribe Initial Antidepressant 1.82 1.84 1.70 2.07 1.52 NA 

Prescribe Second Antidepressant 2.09 2.02 2.10 2.83 3.55 2.15 

Dose Increase 1.18 1.28 1.15 1.65 1.39 1.04 

Dose Decrease 2.05 2.33 2.08 3.01 2.44 2.00 

Behavioral Health Referral 1.49 1.49 1.76 0.65 1.37 1.71 

 

Discussion 

 

In this study we sought to effectively represent provider interventions in the treatment of MDD using data available 

in the EHR and measure the association between provider interventions and outcomes after adjustment for patient 

state. We observed significant associations between provider interventions and the outcomes included in our study. 

Our secondary analysis measured the effects of specific provider interventions on outcomes. We hypothesized that, 

after adjustment for the patient’s state, provider interventions would be protective. However, this result was not 

observed. Provider interventions tend to be associated with an increased risk of the outcomes studied after 

adjustment for patient state—we observed five increased risk intervention outcome pairs to just one protective 

association.  

 

The sensitivity analysis provides further insight, showing that unadjusted associations between provider 

interventions and outcomes are strong, positive, and statistically significant. However, adjustment for patient state 

variables does reduce the effect size in many cases. For example, the unadjusted odds of an unplanned admission for 

patients prescribed an antidepressant is 12% higher than those not prescribed an antidepressant holding all other 

factors constant. After adjustment for patient state, patients being prescribed an antidepressant have a 33% reduction 

in odds of unplanned admission relative to those not prescribed an antidepressant. This effect is significant at the 

99.9% level and consistent through our subgroup analysis. Patients receiving a psych referral or consult are at 2.65 

times the risk of high utilization relative to those with no referral or consult. After adjustment for patient state this 
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risk is reduced to 1.31 times and is not statistically significant. This suggests that the patient state representation is 

reducing the increased risk effect sizes, but may be insufficient to identify true effects. 

 

Even after adjustment for state variables we find that most interventions are associated with an increased risk of the 

outcomes in our study. We hypothesized that interventions in this study would have protective associations with 

outcomes after adjustment for patient state variables.  However, the patient state representation is limited to what is 

available in the EHR. There are likely important factors influencing the outcomes of patients with MDD that are not 

included in this study, such as depression severity, diet, exercise, medication adherence, and genetics. These factors 

potentially introduce confounder bias to this study. Potential confounding bias is supported by the E-value analysis. 

The E-values range from 1.76 to 7.06 and five of the six E-values are less than 4. There are eight state variable-

outcome pairs in this study with adjusted OR magnitude greater than 4. It is reasonable to expect that there are 

unobserved confounders of the statistically significant intervention-outcome associations that could nullify the 

observed effect.  

 

In addition to confounder bias, adjustment for state variables may introduce risk of a collider bias41,57. It is possible 

that state variables, such as comorbidities have a mediating effect between interventions and the outcomes studied. 

If an unobserved variable exists that is associated with the mediator and outcomes, adjustment for the mediator can 

cause a collider effect to mask the true effect of interventions on outcomes. An example case being, if an 

intervention were causing one of the state variables, such as substance abuse, and there was an unobserved variable 

causal of substance abuse and the outcomes studied. Adjusting for substance abuse would cause a collider bias. 

However, in our covariate analysis section we fit the models with and without adjustment for patient state variables. 

As we add variables we observe a decreasing trend in odds ratios, suggesting a confounder bias that is partially 

addressed by patient state adjustment rather than a collider bias. 

 

The subgroup analysis finds consistent treatment effects within subgroups of the population that were informed by 

prior work, as well as the analysis of state variable effects in figure 2.2. The low comorbidities and exclude 

substance abuse subgroups were intended to identify lower severity subpopulations where treatments were more 

effective. This analysis did not provide evidence for heterogeneous treatment effects. However, it may be beneficial 

to apply more data driven selections of subpopulations for analysis of heterogeneous treatment effects in this 

population58,59. 

 

As stated previously, the primary limitation is the incompleteness of information available in the EHR. Lack of 

depression severity measures, objective diagnostic evaluation to confirm MDD and patient lifestyle data impacts our 

study population and patient state representations leading to potential confounding of our results. The study 

outcomes were also limited by EHR availability. Survey based  measures of depression severity are common in 

MDD trials4,60,61, but were not regularly available in the EHR for the study population. In addition, we perform 

multiple analyses throughout the study. To account for multiple analyses, we perform a Bonferroni correction, 

reducing the power of our study. Future work will focus on addressing the potential unobserved confounding 

identified in this study. Causal inference methods such as instrumental variables62 and latent variable based 

models44,46 may be applied to this dataset for more meaningful results. There are also potential opportunities to 

improve patient state representations by further mining the EHR.  

 

Conclusion 

 

The results of this study suggest that insufficient covariates are accessible in the EHR to identify the true effects of 

clinician interventions on outcomes in the MDD population. Further study of methods that have the potential to 

adjust for unobserved confounding are necessary, as well as improved documentation of factors effecting outcomes 

in MDD.   
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Summary 
 

In chapter 1 we lay the groundwork for systematic evaluation of interventions by modeling and characterizing in-

place treatment trajectories of MDD. This study provides insight into distinct treatment pathways that correspond to 

endotypes of MDD, while informing our understanding of how treatment of MDD progresses. In chapter 2 we begin 

to explore evaluation of clinician interventions, focusing on initial—post MDD diagnosis—interventions. We 

outline in chapter 2 some of the potential confounders of our study. These include depression severity, social 

support, lifestyle factors, medication adherence, and genetics. Representation of depression severity is of primary 

concern. There are potential tools for measuring MDD severity including the Patient Health Questionnaire (PHQ) 

surveys. PHQ surveys have been shown to be associated with the Hamilton Depression Rating Scale63. Regular 

collection of PHQ surveys have potential to improve the ability to perform systematic evaluation of intervention in 

the MDD population by providing a consistent measure of depression severity. For the time-period studied these 

data are not widely available in the VUMC EHR. However, as part of an initiative to improve assessment of patient 

reported outcomes at VUMC, PHQ-8 utilization is increasing—with over 20,000 PHQ-8 surveys completed from 

1/1/2021 to 10/10/2021.  

 

Future studies will use the addition of PHQ-8 data and will assess the utility of causal inference methods to reduce 

confounding. One such method is the deconfounder algorithm developed by Wang and Blei in 201844. This model 

infers a latent structure of confounding that can be identified by observed intervention selection. This method 

employs latent factor models to capture the latent structure of clinician actions. For example, high severity patients 

are more likely to receive an ECT consultation. A correctly fit latent factor model would be able to extract and 

represent severity as a continuous variable. The latent variables generated by the latent factor model can be used as 

substitute confounders to make inference about clinician interventions.  

 

We have shown that the chronic nature of MDD results in dynamic patient states and clinician interventions 

requiring longitudinal evaluation. We model and characterize treatments in chapter 1 and can expand on this study 

by employing DTRs. As discussed earlier, these methods allow for intervention individualization based on the 

dynamic nature of a patient’s state. DTRs optimize over future outcomes and recommend an intervention policy 

given the patient state. The ability to model DTRs in MDD will be dependent on accurately modeling intervention 

effects. A dynamic treatment regime based on the models in chapter 2 would likely recommend no actions in many 

cases—as a majority of the clinician actions studied are associated with increased risk of negative outcomes. The 

logistic regression model utilized in chapter 2 is one of the simplest models that can be used for this type of 

problem. DTR models such as Q-Learning and Marginal Structural Models lend themselves better to longitudinal 

data, interactions, and heterogeneous treatment effects. 

 

Treatment of MDD is complex, but through advances in data collection and analysis methods we can better 

understand this phenotype and evaluate interventions. This thesis has characterized in place treatment practices and 

identified some of the difficulties in evaluation of medical interventions in the MDD population. DTR models 

informed by the research presented here will allow for the ability to mine what can be considered best practices from 

the EHR and identify where those practices may deviate from what is commonly done. 
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Appendix 
 

Table A.1. Medications included in the study by Anatomical Therapeutic Chemical classification (ATC) and 

clinical grouping 

 

Clinical Grouping Medication Name (ATC Level 5) 

Selective serotonin reuptake inhibitors (SSRI) citalopram 

fluoxetine 

paroxetine 

escitalopram 

fluvoxamine 

sertraline 

Tricyclic antidepressants doxepin 

amitriptyline 

desipramine 

nortriptyline 

protriptyline 

clomipramine 

maprotiline 

amoxapine 

imipramine 

Monoamine oxidase inhibitors, non-selective (MAOI) tranylcypromine 

phenelzine 

isocarboxazid 

Second generation antipsychotic medications aripiprazole 

quetiapine 

olanzapine 

ziprasidone 

Other antidepressants vilazodone 

bupropion 

vortioxetine 

trazodone 

mirtazapine 

nefazodone 

Centrally acting sympathomimetics methylphenidate 

dexamfetamine 

Mood Stabilizers lithium 

lamotrigine 

Serotonin-norepinephrine reuptake inhibitors (SNRI) desvenlafaxine 

duloxetine 

venlafaxine 

milnacipran 
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Table A.2. Comorbidities selected by elastic net  

 
Unplanned Admissions High Utilization Self-harm/Suicide Attempt 

-Bacterial Infection -Cystic fibrosis -Coagulation and hemorrhagic 

disorders 

-Immunizations and screening for 

infectious disease 

-Viral Infection -Coagulation and 

hemorrhagic disorders 

-Adjustment disorders -Osteoporosis 

-Abortion related disorders -Diseases of white blood 
cells 

-Mood disorders -Systemic lupus erythematosus and 
connective tissue disorders 

-Complications mainly 

related to pregnancy 

-Alcohol related disorders -Diseases of the heart -Cardiac and circulatory congenital 

anomalies 

-Indications for care in 

pregnancy 

-Substance related 

disorders 

-Other gastrointestinal disorders -Cancer of bronchus/lung 

-Complications during labor -Miscellaneous mental 

health disorders 

  -Disorders of lipid metabolism 

-Complications of birth  -Delirium, dementia, 

amnestic 

  -Alcohol related disorders 

-Normal pregnancy and or 

delivery 

-Mood disorders   -Substance related disorders 

-Infective arthritis and 

osteomyelitis 

-Hereditary/degenerative 

nervous system 

  -Mood disorders 

-Osteoporosis -Epilepsy convulsions   -Paralysis 

-Genitourinary congenital 

anomalies 

-Coma, stupor and brain 

damage 

  -Eye disorders 

-Nervous system congenital 

anomalies 

-Other nervous system 

disorders 

  -Respiratory infections 

-Complications -Hypertension   -Chronic obstructive pulmonary 
disease and bronchiectasis 

-Factors influencing 

healthcare 

-Diseases of the heart   -Upper gastrointestinal disorders 

-Cancer of lymphatic and 

hematopoietic tissue 

-Respiratory infections     

-Maintenance 

chemotherapy/radiotherapy 

-Non-infectious 

gastroenteritis 

    

-Cancer of urinary organs -Other gastrointestinal 

disorders 

    

-Nutritional endocrine and 
metabolic disorders 

-Disorders of teeth and 
jaw 

    

-Thyroid disorders -Upper gastrointestinal 

disorders 

    

 
Table A.3. Intervention variable E-values 

 Unplanned Admission High Utilization 
Self-Harm/ 

Suicide Attempt 

Prescribe Initial Med 2.34   

Prescribe Second Med 1.66 2.53 3.60 

Dose Increase    

Dose Decrease  7.06  

Behavioral Health Referral 1.76   

ECT Referral    

Partial Hospitalization    
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Table A.4. Antidepressant List with ATC code 

 

Code Name Code Name Code Name 

N06BA04 methylphenidate N06AA10 nortriptyline N06AX16 venlafaxine 

N06BA02 dexamfetamine N06AA11 protriptyline N06AX17 milnacipran 

N05AH04 quetiapine N06AA04 clomipramine N06AX06 nefazodone 

N05AH03 olanzapine N06AA21 maprotiline N06AX23 desvenlafaxine 

N05AE04 ziprasidone N06AA17 amoxapine N03AX09 lamotrigine 

N05AN01 lithium N06AA02 imipramine N05AX12 aripiprazole 

N06AF04 tranylcypromine N06AX24 vilazodone N06AB04 citalopram 

N06AF03 phenelzine N06AX12 bupropion N06AB03 fluoxetine 

N06AF01 isocarboxazid N06AX21 duloxetine N06AB05 paroxetine 

N06AA12 doxepin N06AX26 vortioxetine N06AB10 escitalopram 

N06AA09 amitriptyline N06AX05 trazodone N06AB08 fluvoxamine 

N06AA01 desipramine N06AX11 mirtazapine N06AB06 sertraline 

 

Table A.5. Depression ICD codes list  
Code Description 

ICD-9 311.x Depressive disorder, not elsewhere classified 

296.2x Major depressive disorder single episode 

296.3x Major depressive disorder recurrent episode 

300.4x Dysthymic disorder 

ICD-10 F32.xx Major depressive disorder, single episode 

F33.xx Major depressive disorder, recurrent 

F34.1 Dysthymic disorder 
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