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CHAPTER 1

Introduction

1.1 Motivation

With the machine learning techniques, such as Deep Neural Networks (DNNs), demonstrating remarkable

achievements in a wide variety of domains, it is no surprise that they have been increasingly used in Cyber-

Physical Systems (CPSs) to perform different complex tasks that cannot be easily solved by conventional

techniques, such as perception, planning, and control [1; 2; 3]. Even if such Learning-Enabled Components

(LECs) are beneficial to increase the autonomy of the system, the safety and reliability of LECs should be

analyzed and ensured before deploying them to real-world systems, especially safety-critical systems [4; 5].

Unfortunately, the characteristics and complexity of the LECs can impede the analysis. LECs encode

knowledge in a form that is not transparent. DNNs, for example, capture features in a multitude of activation

functions that cannot be used inspected to ensure that the LEC operates as intended. High levels of auton-

omy require high-capacity models that further obscure the system operation. Even if an LEC is trained and

tested extensively, it is typically characterized by a nonzero error rate. More importantly, supervised and

reinforcement learning, which are typical learning techniques for training LECs, are built upon an underlying

assumption that the training and test data are sampled from the same distribution. Nevertheless, the training

dataset is necessarily incomplete, and the Out-Of-Distribution (OOD) data are inevitably present when the

LECs are deployed to the real-world system. Furthermore, it is well known that LECs, such as DNNs, are

vulnerable to examples with small deliberately human-crafted perturbations in the input [6]. The OOD or ad-

versarial examples may cause the LEC to be ineffective and predict the results with large errors, and further

compromise the safety of the overall system. As such, it is significantly paramount to develop approaches for

detecting OOD examples, ensuring the safe and reliable operation of CPS. Although detection of OOD ex-

amples in DNNs has received considerable attention [7; 8; 9], most of them do not take into consideration the

dynamical behavior of CPS. It is not applicable to apply them to CPS in a straightforward manner since they

will trigger a large number of false positives and hinder the normal operation of the system. The detection

method considering the dynamical behavior of the CPS still needs to be explored.

Moreover, it is far from sufficient only to employ point-wise detection. Recent work demonstrates that

CPSs are susceptible to specific cyber attacks on sensor measurements or control signals, such as sensor

replay and controller integrity attacks [10; 11]. Such attacks can easily bypass the point-wise detection

methods because all the data points are from the same distribution as the training dataset and will not raise
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any alert. However, the time-series sequence significantly deviates from the normal sequential behavior and

is out of the distribution of normal sequences. As a result, detection of such attacks should consider the

time-series sequences.

1.2 System Model and Research Challenges

CPSs use LECs extensively to perform various tasks in order to increase the level of autonomy. A typical

simplified CPS architecture with LECs (e.g., DNNs) for perception and control is shown in Figure 1.1. A per-

ception component observes and interprets the environment and provides information to a controller which,

possibly using additional sensors (feedback from the plant), applies an action to the plant in order to achieve

some task. In response to this action, the state of the physical plant changes, and the environment must be

observed and interpreted again in order to continue the system operation. An end-to-end control architecture

from perception to actuation can also be used.

Environment

End-to-end control

Perception Control Physical
Plant

Figure 1.1: Simplified CPS control architecture.

An LEC is designed using learning methods such as supervised and reinforcement learning. We assume

that the LECs are successfully trained, and the training and test errors are satisfactory. However, the train-

ing and test datasets at design time are necessarily incomplete and may under-represent safety-critical cases.

OOD examples may lead LEC to predict outputs with large errors and compromise safety. Therefore, detec-

tion of OOD examples is crucial, for example, in order to enable decision-making by switching to a different

control architecture or human supervision. During the system operation, the inputs arrive one by one to the

LEC. After receiving each input, the objective is to compute a valid measure of the degree to which the as-

sumption that the input example is generated from the same probability distribution as the training data is

falsified. However, several challenges make this objective difficult to achieve:

• Large number of false alarms. Although detection of OOD examples in neural networks has received

considerable attention, most of them are based on single input examples [12; 13]. Such detection techniques

do not take into consideration the dynamical behavior of CPS and can exhibit a large number of false alarms,

and cannot be applied to CPS in a straightforward manner. Online detection algorithms must be robust with

a small number of false alarms.
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• High-dimensional input data. For learning-enabled CPS, OOD detection must be performed in real-time,

which is very challenging because inputs to perception and end-to-end control LECs are high-dimensional

measurements from sensors such as cameras, LIDAR, and RADAR. The time and memory requirements

must be similar to the requirements of the LECs used in the CPS architecture.

• Long-term dependencies. The components in CPS are generally interconnected through networks, which

expose surfaces to adversaries to launch cyber attacks. Detection of some specific cyber attacks, such

as replay attacks on sensor measurements, must consider the time-series sequences because point-wise

detection methods will be easily bypassed by nuanced attacks. The long-term dependencies of series data,

especially for the high-dimensional sequence, impose immense obstacles to detecting such attacks.

1.3 Research Contributions

Towards addressing the outlined challenge of detecting OOD examples in learning-enabled CPS in real-time,

several detection approaches are proposed in this dissertation, and extensive evaluations are conducted to

demonstrate their effectiveness. The primary contributions are listed below.

Chapter 3:

In this chapter, we propose an approach for the detection of OOD inputs in learning-enabled CPS. The main

contributions are:

• We propose a real-time OOD detection method that leverages inductive conformal prediction and anomaly

detection. In order to handle high-dimensional inputs in real-time, we propose to compute the noncon-

formity scores using learned models based on Variational AutoEncoders (VAEs) and deep Support Vector

Data Description (deep SVDD). The VAE- and SVDD-based methods allow the efficient computation of

the nonconformity score and the real-time detection of OOD high-dimensional inputs. The robustness of

the detection can be improved considerably by taking into account multiple input examples and comparing

them with the calibration nonconformity scores.

• We propose a method for improving OOD detection by incorporating saliency maps. The saliency map is

computed to quantify how much the input features of the image contribute to the LEC output and then is

used to weight the contribution of the input features to the nonconformity scores. Therefore, the detection

algorithm weights the input features based on their influence on the output of the LEC. The main benefit

of this method is to decrease the impact of nonconformal input features that do not contribute to the LEC

prediction.

• We evaluate our approach using (1) an Advanced Emergency Braking System (AEBS), (2) a Self-Driving

End-to-end Controller (SDEC), and (3) an Autonomous Vehicle Seasonal Dataset (AVSD). For all cases,
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the evaluation results show that the proposed approach has a very small number of false alarms. In addition,

the execution time of the detection method is shorter than the execution time of the original LECs, which

demonstrates that the method can be used in real-time.

Chapter 4:

In this chapter, we extend the approach in Chapter 3 and employ a VAE for classification and regression

model for detecting different OOD data in learning-enabled CPS. The main contributions are:

• We first discuss the causes of the OOD examples and then categorize them into four different types. We

provide formal definitions and some typical examples for these four different types of OOD data present in

learning-enabled CPS.

• We propose an approach for detecting a variety of OOD data in learning-enabled CPS. In order to take into

consideration outputs of the LEC, the proposed approach employs a VAE for classification and regression

model, which is learned jointly by combining the VAE and classifier and regressor and conditioning the

latent representation of the VAE on the target variable of the classifier and regressor.

• We demonstrate the approach using several datasets for classification and regression tasks. The evaluation

results demonstrate that the proposed approach can detect different types of OOD data with a very small

number of false alarms. The execution time is comparable with the sampling period of the typical CPSs,

which enables real-time detection.

Chapter 5:

In this chapter, we follow the definitions for different types of OOD data in Chapter 4 and only focus on

the OOD data in LECs used for classification. We develop OOD detection algorithm based on Adversarial

AutoEncoder (AAE) and make the following contributions:

• We introduce a novel approach for detecting different types of OOD data in LECs that are used for classi-

fication problems. By utilizing a variant of an AAE, the joint distribution of the input and output variables

on the training dataset can be represented. As such, both the input and output of the LEC can be taken into

consideration for OOD detection.

• We conduct extensive experiments on several datasets to evaluate the proposed approach. The results show

that the proposed method has a better detection performance than the method introduced in Chapter 4.

Besides, such a method is computationally efficient and can be used for online detection.
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Chapter 6:

In this chapter, we move our attention from point-wise detection to sequence-wise detection and develop

an approach for detecting sensor replay and controller integrity attacks in CPSs. We make the following

contributions:

• We propose a generative model used for detecting anomalies of high-dimensional time-series data. The

model consists of a VAE and a Recurrent Neural Network (RNN) that is used to learn both spatial and

temporal features of the normal dynamical behavior of the system. Such a model has the capacity of

predicting future, and we can compare the predicted observation with the actual observation to quantify the

nonconformity of actual behavior relative to normal behavior.

• We develop an approach for real-time detection of sensor replay and controller integrity attacks in CPS.

We propose to recursively utilize the RNN to predict the observations for multiple time steps in the future.

By comparing the expected current observations predicted from multiple steps in the past with the current

actual observation, a series of nonconformity scores can be efficiently computed. The nonconformity scores

are then combined with ICAD allowing detection of abnormal behavior in a long sequence.

• We provide comprehensive evaluations for the proposed approach using two case studies: (1) an AEBS and

(1) an autonomous car car racing example. The evaluation validates the effectiveness of our approach for

detecting sensor replay attack and controller integrity attack using high-dimensional sensor observations.

The execution time of the detection method is much shorter than the sampling period of the system, which

demonstrates proposed method can be used for real-time detection.

1.4 Organization

The remainder of this dissertation will be organized as follows:

• Chapter 2 reviews the respective related work in the research of detection of OOD detection in learning-

enabled CPS.

• Chapter 3 proposes an approach for detecting OOD examples in learning-enabled CPS, which is the foun-

dational framework for the subsequent chapters.

• Chapter 4 studies the problem of detecting different types of OOD data in learning-enabled CPS and intro-

duces a detection method using VAE for classification and regression.

• Chapter 5 focuses on different types of OOD data in learning-enabled components used for classification

and develops a detection approach using Adversarial AutoEncoder (AAE).
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• Chapter 6 brings the attention to anomalous behavior in time-series data and proposes an approach for

detecting sensor replay attack and controller integrity attack in CPS.

• Chapter 7 concludes the dissertation.
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CHAPTER 2

Related Work

Learning-enabled components (LECs) in Cyber-Physical Systems (CPSs) may become ineffective because of

the Out-Of-Distribution (OOD) data, which may compromise the safety of the overall system. Therefore, it

is essential to detect OOD data and raise alarms to indicate that LECs may give predictions with large errors.

In this chapter, we review the related work in the research of OOD detection in learning-enabled CPSs. We

begin with a survey over safety assurance in learning-enabled CPSs in Section 2.1. Then, Section 2.2 dis-

cusses the security of CPS. Next, in Section 2.3, we give a state-of-the-art review on anomaly detection, with

a special focus on the methods using deep neural networks. In Section 2.4, we discuss the anomaly detection

specifically in the context of neural networks. We briefly review the related work about novelty detection for

unknown classes and anomaly detection for reinforcement learning in Section 2.5 and Section 2.6, respec-

tively. Finally, we discuss the related work about neural network interpretability in Section 2.7. Figure 2.1

summarizes the related work discussed in this chapter.

Related work

Safety assurance
in learning-enabled CPS

Security of CPSs

Anomaly detection

Conventional anomaly detection

Anomaly detection using deep neural networks

Conformal anomaly detection

Anomaly detection
for neural networks

Out-of-distribution detection

Adversarial detection

Novelty detection for unknown classes

Anomaly detection
for reinforcement learning

Neural network interpretability

Figure 2.1: Summary of related work.

2.1 Safety Assurance in Learning-enabled Cyber-physical Systems

Verification and assurance of CPS with machine learning components is considered in [14] in a broader

context of verified artificial intelligence. The challenges discussed in [14] include the integration of design-
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time and runtime methods to address the undecidability of verification in complex systems and environment

modeling. OOD detection can be used with recovery and reconfiguration techniques to complement design-

time verification. Focusing on design-time techniques, a Feature Space Partitioning Tree (FSPT) is used to

split the input feature space into multiple partitions and to identify those partitions where the training samples

are insufficient in [15]. The method can be used for testing whether a data is OOD which is equivalent to

checking whether this input instance comes from these data-lacking feature space partitions. Compositional

falsification of CPS with machine learning components is introduced in [5] and demonstrated with a simulated

advanced emergency braking system. The approach is applied at design-time for identifying executions

that falsify temporal logic specifications and also identifies regions of uncertainty where additional analysis

and runtime monitoring is required. A related approach for simulation-based adversarial test generation for

autonomous vehicles with machine learning components is presented in [4]. The technique is also used at

design-time to increase the reliability of autonomous CPS and can provide additional training data for OOD

detection.

2.2 Security of Cyber-physical Systems

Attacks on CPS can be summarized as attacks on the actuators, physical plant, and communication net-

works [16]. The attacks on the networks can be divided into two subcategories: (1) Denial of Service (DoS)

attacks, which prevent the sensor readings (or control signals) from being received by the controller (or ac-

tuator); (2) deception attacks, or integrity attacks, which use malicious information to modify the original

normal information in networks. Integrity attacks on the sensor and control signals are investigated in [17]

and [18]. In [10], it is shown that an integrity attack on the control signal could possibly lead a car to a crash.

In [11], a distributed DoS attack targets Vehicular Ad hoc NETworks (VANET) and causes severe conges-

tion on a given road segment. To mitigate these threats, a significant amount of work has been proposed for

attack prevention and detection. A robust control system against DoS attacks is proposed in [19]. Using an

additional authentication control signal, a method for detecting replay attacks is presented in [20; 21]. A

Chi-square detector and Fuzzy logic based classifier are used to detect and identify distributed DoS attacks in

CPS [22]. Neural networks have been used before to detect attacks on CPS. In [23] and [24], neural network

based detectors are for replay and integrity attacks in power systems. These detection methods are limited to

low-dimensional data.

2.3 Anomaly Detection

Anomaly detection still has been an important research topic due to its widespread use in various applications.

In this section, we will survey over the related work on anomaly detection. We firstly discuss the conventional
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anomaly detection methods that do not use deep neural networks. Then, we review the related work on deep

anomaly detection methods that are the anomaly detection approaches using deep neural networks. Finally,

we focus on a specific anomaly detection framework – conformal anomaly detection and discuss the related

work on it.

2.3.1 Conventional Anomaly Detection

Several surveys trying to structure and categorize the existing anomaly detection algorithms have been pub-

lished last few years [25; 26; 27]. In this subsection, we focus on the conventional anomaly detection algo-

rithms which are not using deep neural networks and categorize them into following classes: statistical-based

approaches, neighbor-based approaches, clustering-based approaches, and other approaches not belonging to

above-mentioned classes.

Statistical-based approaches

The underlying assumption of statistical-based anomaly detection methods is ”Normal data instances occur

in high probability regions of a stochastic model, while anomalies occur in the low probability regions of the

stochastic model” [25]. The normal data points are modeled using a stochastic distribution, and therefore, the

anomaly detection can be applied by testing if the unseen data point belongs to this stochastic distribution.

According to whether the parameters of the distribution model is estimated, the statistical-based methods

are split into two main groups: the parametric and non-parametric methods. The formal group assumes

the knowledge of underlying distribution and estimates the parameters of the distribution, whereas the latter

group has no assumption of prior knowledge of the distribution model [25].

Various stochastic distributions can be used for the parametric model in anomaly detection, such as Gaus-

sian distribution [25] and Poisson distribution [28]. Gaussian mixture model (GMM) [29] is a typical para-

metric model, which assumes the data are generated from a given number of Gaussian distributions. The

parameters can be estimated using expectation-maximization (EM) [30]. The low estimated probability den-

sity at the test point indicates the anomaly. In [31], GMM is applied to identify the cancerous masses in

mammograms. The regression model is another straightforward parametric approach to anomaly detection

problems. This method tries to fit the regression model to the data, and the residual of the test data is used to

define the anomaly score [32].

An apparent drawback of the parametric method is that the true structure model of the probability distri-

bution may not exist, or it is too complex to estimate. Non-parametric methods which have no assumption

of prior knowledge of the distribution can overcome this drawback. Kernel density estimation (KDE) [33],

also known as Parzen window estimation, is a common non-parametric method for anomaly detection. This

method approximates the probability distribution function (pdf) of the unknown distribution by placing a
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kernel function to each data point then summing up the local contributions of the kernels. The test point that

lies in the low probability area of the pdf is classified to be an anomaly.

Neighbor-based approaches

Neighbor-based approaches are based on the assumption that ”Normal data instances occur in dense neigh-

borhoods, while anomalies occur far from their closest neighbors” [25]. k-nearest neighbors method is

a straightforward neighbor-based approach. The basic idea of k-nearest neighbors method is defining the

anomaly score of the test data point as the distance to its kth nearest neighbor in a given data set [25]. Also,

some variants are raised, and the anomaly score can be calculated as the sum of the distances to the k nearest

neighbors [34], or as the inverse of the number of nearest neighbors whose distances are smaller than a thresh-

old d [35]. Also, different distance metrics can be applied to compute the similarity between two data points.

The Euclidean distance is normally used for continuous attributes [36]. Hausdorff distance [37] is a popular

distance metric for trajectory data. Local outlier factor (LOF) [38] is another representative neighbor-based

approach. The core of this method is the computation of the LOF score of a data instance p which can be

computed by the ratio of average local density of the k nearest neighbors to the local density of p. Hence, the

higher LOF score indicates an anomalous instance.

Clustering-based approaches

The key idea for clustering-based approach is to use the clustering techniques to group similar data points into

clusters. K-means clustering algorithm [39] aims to partition all data instances into k clusters in which each

data instance belongs to the cluster with the nearest center. The anomalies can be considered as the points that

are not within or nearby any dense clusters. Isolation forest [40] recursively generate trees isolating any data

from the rest of the data by randomly selecting an attribute and then selecting a split value for this attribute.

The isolation score of a point is the average path length from the root of the tree to the node containing the

data instance. A smaller isolation score, or short path length, denotes an anomalous instance since it is easy

to separate from other nominal points.

Other approaches

One-class support vector machine (OC-SVM) [41] is an extended application of SVM algorithm to anomaly

detection problem. By performing the kernel function, the input space is mapped into a high dimensional

space. The approach tries to separate the normal and anomalous instances by finding a hyperplane in the

high dimensional space with a maximal distance from the origin. Similar to OC-SVM, support vector data

description (SVDD) [42] tries to learn a smallest hypersphere that contains all normal instances, and the

anomalies lies outside the hypersphere.
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2.3.2 Anomaly Detection using Deep Neural Networks

A fundamental problem in conventional anomaly detection is to expressively represent large-scale data such

as high-dimensional and temporal data. Deep learning has shown the tremendous potential in dealing with

such complex data, and therefore, several anomaly detection approaches based on deep learning have been

proposed in recent years and demonstrate better performance in detecting the anomalies. In this subsection,

we will make a review of the anomaly detection methods using deep neural networks, also known as deep

anomaly detection.

The deep learning techniques are used for feature extraction only and independent from the anomaly score

computation in some work [43; 44]. The feature extraction, or dimensionality reduction, aims to extract low-

dimensional feature representations from high-dimensional data. Deep learning-based dimension reduction

techniques have demonstrated better capability in extracting semantic-rich features and non-linear feature

relations [45] compared with the methods that are popular in anomaly detection, such as principal component

analysis (PCA) [46], and random projection [47]. In [43], autoencoder networks are trained to learn low-

dimensional feature representations, and subsequently one-class SVMs are applied to detect the anomalies

on these learned low-dimensional representations. Similar to [43], [44] utilizes the deep belief networks

(DBNs) for dimension reduction for high-dimensional tabular data. In addition, some work directly use the

pretrained deep learning models to extract the low-dimensional features, such as VGG [48] and ResNet [49].

Several existing neural network architectures, such as autoencoders and generative adversarial networks,

are utilized in deep anomaly detection algorithms. Although such architectures are not primarily designed for

anomaly detection, the learned representations can still empower the anomaly detection since key regularities

of the normal instances are captured by these neural networks during training [45].

Autoencoder is a commonly-used deep learning architecture for anomaly detection. An autoencoder

consists of an encoder and a decoder. The encoder maps the original input onto a low-dimensional fea-

ture representation, while the decoder tries to reconstruct the data from the low-dimensional space. In other

words, an autoencoder aims to learn a low-dimensional space on which the given data instances can be

well represented and reconstructed. The underlying assumption of the autoencoder-based anomaly detection

methods is ”normal data instances can be better reconstructed from compressed feature space than anoma-

lies” [45]. Therefore, the reconstruction error between the input and reconstructed output is generally used

as the anomaly score.

The first attempt by using autoencoders for anomaly detection is presented in [50]. In [50], an au-

toencoder, also referenced by the name replicator neural network, is built upon on a multi-layer perceptron

with three hidden layers. The replicator neural network, trained solely on the normal data instances, fails
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to reconstruct the anomalous data and generates an output with large reconstruction error. In addition, other

variants of autoencoder can also be used for detecting anomalies, such as convolutional neural network au-

toencoder (CNN-AE) [51], variational autoencoder (VAE) [52], and long short-term memory autoencoder

(LSTM-AE) [53; 54].

Generative adversarial networks (GANs) have demonstrated outstanding capacity in generating realistic

image data. Therefore, GANs are introduced to anomaly detection domain trying to achieve better perfor-

mance in more realistic and complex dataset. A GAN consists of two adversarial modules: a generator G and

a discriminator D. The generator G learns to map from a latent space to the data distribution space, while

the discriminator D maps the input to a single scalar value that can be interpreted as the probability that the

given input is a real input sampled from training data or a fake input generated by G. The generator and

discriminator are simultaneously optimized through a two-player minimax game whose objective is to make

generator generates more realistic inputs and make discriminator identifies real and generated inputs with

lower error rate. GAN-based anomaly detection methods are based on the following assumption: ”normal

data instances can be better generated than anomalies from the latent feature space of the generative network

in GANs” [45].

One of the early work using GAN for anomaly detection is AnoGAN [55]. AnoGAN utilizes the standard

GAN architecture, and the key idea of AnoGAN is that, for a given input x, it tries to search a representation

zγ in the latent feature space so that the corresponding generated instance G(zγ) and input x are as similar

as possible. Since the generator is trained to capture the variability of the normal data, the anomalies are

expected to have less similar generated outputs than normal instances. The anomaly score is defined as

A(x) = (1−λ ) ·R(x)+λ ·D(x)

where λ is a hyperparameter, R(·) is the residual score, and D(·) is the discrimination score. R(·) is defined

as ∑ |x−G(zγ)|, which measures dissimilarity between the input x and the generated output G(zγ). D(·) is

defined as ∑ | f (x)− f (G(zγ))|, where f (·) is the intermediate feature representation of the discriminator. The

large anomaly score indicates the anomalous instances, whereas a small score means a very similar instance

was already seen during the training. For every single input x, the searching process for zγ is required, and

therefore, AnoGAN has the issue of computational inefficiency.

To solve the disadvantage of AnoGAN, efficient GAN-based anomaly detection (EGBAD) and Fast

AnoGAN (f-AnoGAN) are proposed by [56] and [57] respectively. Different from the AnoGAN, EGBAD and

f-AnoGAN encodes the test input x to a latent representation z during testing, which avoids the optimization

process searching for zγ and reduces the computational time. The difference between the EGBAD and f-
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AnoGAN is the way to train the encoder: during training, EGBAD simultaneously learns an encoder E along

with a generator G and discriminator D, whereas f-AnoGAN learns a standard GAN and an encoder suc-

cessively. GANomaly [58] is another GAN-based anomaly detection method extending the idea of EGBAD

and f-AnoGAN. GANomaly changes the generator network in standard GAN to an encoder-decoder-encoder

network which can be represented as: x
GE−−→ z

GD−−→ x̂ E−→ ẑ [45]. Besides, GANomaly defines a new anomaly

score as the l1 distance between the encoded features of original input x and the encoded features of generated

image x̂ expressed as

A(x) = ||GE(x)−E(G(x))||1,

where G is a composition of the encoder GE and the decoder GD. [58] reports GANomaly achieving better

performance compared with VAE, AnoGAN and EGBAD.

Targeting at the temporal data set, such as image frames in a video sequence, predictability modeling-

based methods, which predict the current data instances using the information from historical instances,

can be applied for anomaly detection [45]. The data instances in a sequence are time-correlated, and the

normal instances are normally adherent to such dependence and can be well predicted, whereas the anomalous

instances are hard to be predicted. An anomaly detection method in videos based on this idea is proposed

by [59]. Given a sequence of video frames x1,x2, . . . ,xt , a deep neural network is trained to predict a future

frame x̂t+1 as close to the ground truth frame xt+1 as possible using all these previous frames. At evaluation

stage, the prediction error between xt+1 and x̂t+1 is used as the anomaly score.

Aforementioned deep anomaly detection algorithms learn the representations of the data set by optimizing

loss functions that are not designed for anomaly detection. There are some deep anomaly detection methods

whose architectures and optimization objects are specifically designed for anomaly detection problem.

Deep one-class classification-based methods are typical deep anomaly detection algorithms that are specif-

ically designed for anomaly detection. As discussed in Section 2.3.1, one-class support vector machine (OC-

SVM) and support vector data description (SVDD) are two quintessential one-classification-based anomaly

detection methods which learn a boundary in a high-dimensional space separating the normal instances from

the rest of the high-dimensional space, and thus, out-of-boundary instances are clustered as anomalies. How-

ever, these conventional methods based on SVM struggle with high-dimensional data. One class neural net-

work (OC-NN) and deep support vector data description (Deep SVDD) are the extensions combining deep

neural network with OC-SVM and SVDD, respectively. OC-NN can be regarded as designing a neural net-

work architecture using an OC-SVM equivalent loss function that tries to optimize a hyperplane to separate

the normal instances from the origin in the representation space. Similar to OC-NN, the idea of deep SVDD

is to train a neural network to map the input data into a hypersphere of minimum volume characterized by
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center ccc and radius R. Benefiting by the neural network, OC-NN and deep SVDD outperform conventional

methods on complex data set.

In addition, reinforcement learning has also attracted significant interest due to its superior performance.

The first attempt trying to apply reinforcement learning to anomaly detection is raised in [60]. The proposed

approach adapts the reinforcement learning method by casting the problem of time series anomaly detection

as a Markov decision process (MDP) and redefining the optimization object of the reinforcement learning as

maximizing the performance of the detector. However, the labeled anomalous instances are required in this

method. Also, inverse reinforcement learning (IRL) is employed for sequential anomaly detection in a recent

study [61]. The proposed method takes a set of normal trajectories as input, and the normal behavior can

be understood by the reward function inferred by IRL. A low reward value assigned by the reward function

indicates an anomalous observation.

2.3.3 Conformal Anomaly Detection

Most anomaly detection algorithms define the anomaly threshold in terms of the distance, density, or data

likelihood, which are typically not normalized, and it is hard to tune to regulate the balance between the

sensitivity and the rate of false alarms of the detector. Conformal anomaly detection (CAD) is proposed in

[37] based on conformal prediction (CP) [62]. The main idea of these methods is to test if a new input example

conforms to the training data set by utilizing a nonconformity measure which assigns a numerical score

indicating how different the input example is from the training data set. The next step is to define a p-value as

the fraction of observations that have nonconformity scores greater than or equal to the nonconformity scores

of the training examples. The p-value is then used for estimating the confidence of the prediction for the

test input. In order to use the approach online, inductive conformal anomaly detection (ICAD) is introduced

in [63], where the original training set is split into a proper training set and a calibration set, and the p-values

are computed relative to calibration examples. If a p-value is smaller than a predefined anomaly threshold ε ,

the test example can be classified as an anomaly. An important property of the approach is that the rate of

detected conformal anomalies is well calibrated, that is with very high probability it is less or approximately

equal to a predefined threshold ε ∈ (0,1) [63].

Several anomaly detection approaches based on the CAD and ICAD are raised, but the nonconformity

measures are defined differently. Kernel density estimation (KDE) [64] and k-nearest neighbor [65] noncon-

formity measures are used for anomaly detection of the single point. For sequential anomaly detection of time

trajectories, the sum of Hausdorff distances to k nearest neighbors, the average of Mahalanobis distances to

the k nearest neighbors, and the sub-sequence local outlier factor are employed as the nonconformity mea-

sure in [37; 66], [67], and [63], separately. However, existing nonconformity measures cannot scale to the
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high-dimensional inputs.

Later, conformal prediction and conformal anomaly detection are extended for testing exchangeability of

data [68; 69] and detecting change-point [70; 64]. Exchangeability testing and change-point detection can be

performed by testing the hypothesis that p-values are independent and uniformly distributed. Such hypothesis

can be tested by using martingales that are constructed using the p-values [69]: a martingale will grow only if

the p-values are not independent and uniformly distributed. Several different martingales are raised and used

in the literature, such as power martingale [68], simple mixture martingale [68] and plug-in martingale [69].

2.4 Anomaly Detection for Neural Networks

Although neural networks generalize well if the training and testing data are sampled from the same distribu-

tion, OOD data may still lead to incorrect outputs or outputs with large errors. In addition, recent studies show

that the well trained neural networks are vulnerable to examples with small specially human-crafted pertur-

bations in the input that cause large-error predictions [6; 71]. Therefore, anomaly detection becomes more

and more important to make the neural network more robust and reliable. Although some of the anomaly

detection approaches discussed in 2.3 can be adopted for anomaly detection for neural networks, they are

not specially designed in the context of deep neural networks. As the categories in [72], we will survey the

anomaly detection for neural networks over two paradigms: OOD examples (unintentional) detection and

adversarial examples (intentional) detection.

2.4.1 Out-of-distribution Detection for Neural Networks

In some of the existing work, detectors which only take the inputs into consideration and do not use any

internals of the monitored neural network is designed to detect OOD examples. Several anomaly detection

approaches discussed in Section 2.3 which are not specifically in context of neural networks can be adopted

for OOD detection for neural networks, such as VAE-based [13] and GAN-based [73] methods. Several new

approaches for detecting OOD examples are raised in the context of neural networks. Based on autoencoder-

based method, several work are proposed to improve the performance of detecting anomalies in deep learning

systems. An approach using k-NN distance in the latent space of the autoencoder is proposed in [74] to

improve detection performance over using only the reconstruction error. However, it is required to iterate

over the training set during testing, which is not computational efficiency and not practical for real-world

applications. In [74], the Mahalanobis distance is employed in the latent space between the test sample and

the mean vector of the training set with the reconstruction loss of the test sample to construct an anomaly

score.

In [75], a multi-class model is trained to discriminate between geometric transformations applied to the
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input image, and such transformations encourage the classifier to learn some geometric features that are

useful for anomaly detection. The classifier can be trained over a self-labeled data set created by applying

various different geometric transformations to the original training data. At inference time, the authors apply

each transformation on the test image, and each of the transformed images is fed to the classifier. The

anomaly score is defined as the combined log-likelihood of a transformed image conditioned on each of the

applied transformations [75] and can be used to detect OOD instance. The information from the monitored

neural network, such as predictions and features in the hidden layers, can be used for detecting the OOD

examples. A baseline method to detect OOD examples in neural network for classification is proposed in [7].

The method is based on the idea that a well-trained neural network tends to assign higher softmax scores

to in-distribution examples than OOD examples. Thus, an example with a lower predicted softmax score

than a threshold is classified as an OOD instance. However, the softmax score gap between in- and out-

of-distribution examples are not large enough and this technique fails to classify some of the in- and OOD

examples. Hence, the authors in [8] go further and propose ODIN (OOD detector for neural networks) by

using temperature scaling in the softmax function and adding small perturbations to inputs, which enlarge

the softmax score gap between in- and OOD examples, thus lead a better detection performance. Despite the

fact that the ODIN shows significant improvements on detection performance compared with the baseline, it

needs OOD data to fine-tune the parameters for temperature scaling and input preprocessing. Recently, two

strategies are proposed in [9] for freeing ODIN from the needs of tuning with OOD data.

A method of learning confidence estimates for neural networks is proposed in [76], which adds an addi-

tional branch to yield a confidence logit. Also, the loss function should be adjusted to fit the new architecture

training two branches simultaneously. The OOD detection can be performed by evaluating the learned confi-

dence estimates: the input is marked as an OOD instance if the confidence estimate is less than a threshold.

A unified framework for detecting OOD and adversarial examples is presented in [77]. The basic idea

is to measure the probability density of the test example on low-level feature spaces of neural networks.

Specifically, a class-conditional Gaussian distribution is fitted to the pre-trained low-level features. Next, for

a test example, a confidence score can be defined as the negative of Mahalanobis distance to the closest class-

conditional Gaussian distribution. Besides, weighted averaging the confidence scores from different layers of

the neural network can further improve the detection performance.

2.4.2 Adversarial Examples Detection in Neural Networks

It is well known that an adversary can craft an example that looks similar to a normal input but can mislead the

neural network predict an erroneous output. Consequently, detecting such adversarial examples has received

considerable critical attention.

16



A straightforward detection method is training a binary adversarial example classifier. In [78], the detec-

tor is trained on the intermediate feature representations of a pre-trained classifier (monitored neural network)

over the original data set and adversarial examples. The results show that the method can detect the adver-

sarial examples with high accuracy. In addition, while the detector is trained against a specific adversary, it

generalizes well to similar and weaker adversaries.

PixelDefend is proposed in [79] to detect adversarial inputs. A generative model PixelCNN [80] is trained

using the training dataset firstly, which defines the joint distribution over all pixels. Then, for a test image,

the probability density is computed using the PixelCNN and ranked among the density values of all training

examples. Such rank can be used as an indicator telling whether the input image is normal or under attack.

Besides, PixelDefend is also able to purify the input image to correctly classify the image despite such

adversarial modifications.

In [81], two features, density estimates and bayesian uncertainty estimates, are combined to detect adver-

sarial examples. The former uses estimates from kernel density estimation of the training set in the feature

space of the last hidden layer to detect adversarial examples. This method cannot detect the data that lie far

from the data manifold. Thus, the latter method estimates the uncertainty of the prediction using a dropout

neural network, and the uncertainty can be used to detect the adversarial examples. The paper reports that the

combined detector can achieve 85−93% detection accuracy on a number of standard classification tasks.

The authors in [82] expect the deep features in the neural network are more robust than the final classifi-

cation results to adversarial examples and tries to analyze the activations of neurons in hidden layers to detect

adversarial examples. The approach performs a k-NN similarity search among the deep features obtained

from the training images to the given test image. Then, the score assigned by the k-NN classifier to the class

predicted by the neural network can be used as the confidence of the classification. The results show that the

method is able to filter out many adversarial examples. However, this method is not computational efficient

for large real-world data set since it is required to store all the deep features of training images and iterate

over all of them during testing.

I-defender is proposed in [83], which utilizes the intrinsic properties of the pre-trained neural network to

detect adversarial examples. The basic idea of this method is that when a neural network is under attack and

is misled to predict an erroneous output, the distribution of the hidden states is different from the distribution

obtained by the normal data of the same class. Gaussian mixture model (GMM) is utilized to approximate the

hidden state distribution of each class. For a test example, the likelihood of its hidden states can be computed

and compared with the corresponding class threshold to tell whether the test example is adversarial or not.

In [84], the authors identify two common channels that are exploited by the adversarial examples: the

provenance channel and the activation value distribution channel. The former implies that the slight changes
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in the activation values of neurons in a layer may lead to substantial changes of the activation status of neurons

in the next layer, and eventually lead to misclassification. The latter means that while the provenance changes

slightly, the activation values of the neurons may be significantly different from those in the presence of

benign inputs. Thus, detecting adversarial examples can be performed by checking provenance and value

invariant violations during neural network computation. This can be achieved by training a set of one-class

classification models for individual layers only using activation values and status from benign examples. At

test time, a test input is fed into neural network, and the one-class classification models tell if the test input

induces the states that violate the invariant distribution during neural network computation.

2.5 Novelty Detection for Unknown Classes

Since the new class unseen during training appears in the test phase, the traditional classifier will wrongly

recognize this unknown sample as one of the known classes. Open set recognition was proposed to overcome

this limitation. The open set classifier should perform two tasks: novelty detection for unknown classes and

classification for known classes. According to [85], the methods for open set recognition can be categorized

into traditional methods and deep learning-based methods. In this section, we focus and provide a state-of-art

review of the deep learning-based methods. SoftMax layer is used in deep learning-based classifier converting

the outputs of penultimate layer into final probabilities of known classes. The SoftMax layer is a significant

obstacle to adapt deep neural networks for open set recognition due to its closed-set nature [86]. Therefore,

an OpenMax layer is proposed in [86] to extend the SoftMax layer to enable the model to predict the un-

known class. The first step of this method is to use the scores from the penultimate layer to estimate how far

the input is from the known training data. Then, such information is fed into OpenMax layer to redistribute

probabilities from SoftMax and get the class probability of an unknown sample. Extending the OpenMax

method, generative adversarial networks (GANs) are employed to synthesize images from unknown classes

to train the neural network [87]. Besides, based on the similar idea of OpenMax, a method called deep open

classification is presented in [88], which replaces the SoftMax layer with a 1-vs-rest layer of Sigmoids. A

class conditioned autoencoder (C2AE) is trained for open-set recognition in [85]. The training process is

divided to two sub-tasks: (1) the encoder firstly learns to perform classification for known classes, and (2) the

decoder learns to reconstructed the input using the encoded representations conditioned by the class identity.

The reconstruction error is used to identify the unknown class, and the decision boundary is computed by ex-

treme value theory (EVT). Recently, conditional Gaussian distribution learning (CGDL) method is presented

in [85]. The proposed method applied a probabilistic ladder network trying to learn conditional Gaussian dis-

tributions by forcing different latent features to approximate different Gaussian models. The reconstruction

error and the probability of the test sample locating in the latent space are combined to detect the unknown
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class.

2.6 Out-of-distribution Detection for Reinforcement Learning

Although out-of-distribution detection in neural networks has received considerable attention, the out-of-

distribution detection method for reinforcement learning is still an open problem. It was only recently that

an uncertainty-based out-of-distribution detection approach for reinforcement learning is proposed in [89].

The approach focuses only on the Q-learning and proposes to use the uncertainty estimated by approximate

Bayesian inference methods or ensembling techniques to detect out-of-distribution examples.

2.7 Neural Network Interpretability

Understanding how the neural networks make decisions is helpful to anomaly detection, and thus, we discuss

the related work on neural network interpretability. Saliency maps are a visualization tool for identifying

which parts of the input that contribute most to the LEC predictions and are used in [90; 91] to help to

understand if the models focus on reasonable cues in an input image. The whole features in input images

are treated equally in existing OOD detection methods . However, the saliency map indicates that not all

the pixels contribute equally to the final prediction of the neural network. Therefore, OOD detection may be

oversensitive and raise alarms when parts of the input that do not affect the LEC output are changed slightly.

Saliency maps can be computed using gradient-based methods [92] and deconvolution [93]. The former

approach uses backpropagation to compute the partial derivatives with respect to the pixels in the input image

and the latter uses deconvolution to map the feature activities in intermediate layers to the input pixel space.

Guided-backpropagation [94] extends the deconvolution method by changing the backpropagation rule for

input-gradients to produce cleaner saliency maps. Layer-wise relevance propagation (LRP) is introduced

in [95] as a method to compute partial prediction contributions for input representations by propagating the

prediction back until the input layer using the network weights and the neural activations created by the

forward pass. A technique for generating class activation maps (CAM) using global average pooling (GAP)

in CNNs is proposed in [96]. The class activation map for a particular category indicates the discriminative

image regions used by the CNN to predict that category. Grad-CAM [97] is an extension of the CAM and uses

the global-average-pooled gradients to weight the feature maps. VisualBackProp [98] is originally developed

as a debugging tool and computes the saliency maps by backpropagating the information of the feature maps

from deeper layers while simultaneously increasing the resolution.
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CHAPTER 3

Real-time Out-of-distribution Detection 1

3.1 Introduction

Learning-Enabled Components (LECs) such as neural networks are used in many classes of Cyber-Physical

Systems (CPSs). Semi-autonomous and autonomous vehicles, in particular, are CPS where LECs can play

a significant role in perception, planning, and control if they are complemented with methods for analyzing

and ensuring safety [4; 5]. However, there are characteristics of LECs that can complicate safety analysis.

LECs encode knowledge in a form that is not transparent. Deep Neural Networks (DNNs), for example,

capture features in a multitude of activation functions that cannot be inspected to ensure that the LEC op-

erates as intended. High levels of autonomy require high-capacity models that further obscure the system

operation. Even if an LEC is trained and tested extensively, it is typically characterized by a nonzero error

rate. More importantly, the error estimated at design time may be different than the true error because of

Out-Of-Distribution (OOD) data.

Since training datasets are necessarily incomplete, safety assessment at design time is also incomplete.

Design-time verification and analysis methods must be combined with runtime monitoring techniques that

can be used for safety assurance. In real-world CPS, the uncertainty and variability of the environment may

result in data that are not similar to the data used for training. Although models such as DNNs generalize

well if the training and test data are sampled from the same distribution, OOD data may lead to large errors.

An LEC is trained and tested using data available at design time but must be deployed in a real system and

operate under possibly different conditions. Testing ensures that the error is satisfactory for a large number of

examples. However, during the system operation, the LEC may still encounter OOD inputs. OOD detection

must quantify how different are the new test data are from the training data and raise an alarm to indicate that

the LEC may give a prediction with a large error. Detection methods must be robust and limit the number of

false alarms while being computational efficient for real-time monitoring.

The proposed approach is based on Conformal Prediction (CP) [62; 99] and Conformal Anomaly Detec-

tion (CAD) [66]. The main idea of these methods is to test if a new input example conforms to the training

dataset by utilizing a NonConformity Measure (NCM) which assigns a numerical score indicating how dif-

ferent the input example is from the training dataset. The next step is to define a p-value as the fraction of

observations that have nonconformity scores greater than or equal to the nonconformity scores of the training

1This chapter is adapted with permission from [F. Cai and X. Koutsoukos. “Real-time out-of-distribution detection in learning-
enabled cyber-physical systems,” in 11th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), April 2020.]
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examples, which is then used for estimating the confidence of the prediction for the test input. In order to

use the approach online, Inductive Conformal Anomaly Detection (ICAD) is introduced in [63], where the

original training set is split into the proper training set and the calibration set, and the p-values are com-

puted relative to calibration examples. If a p-value is smaller than a predefined anomaly threshold ε , the test

example can be classified as an anomaly. The approach is used for sequential anomaly detection of time tra-

jectories in [66] by using the nearest neighbors and Hausdorff distance measuring the nonconformity between

trajectories. Combined with exchangeability martingales, ICAD is used for change-point detection in [70].

However, there are still challenges in applying such methods for real-time detection of high-dimensional

inputs in CPS. Existing methods rely on NCMs computed using k-Nearest Neighbors (k-NN) and Kernel

Density Estimation (KDE) and cannot scale to LECs with high-dimensional inputs. OOD detection using a

single example is typically not robust and may result in a large number of false alarms that inhibit the CPS

operation. Methods based on martingales that incorporate multiple examples are not applicable directly to

CPS because the input sequence is time-correlated and not exchangeable.

The main contribution of the chapter is an approach for real-time detection of OOD inputs. The approach

leverages inductive conformal prediction and anomaly detection. In order to handle high-dimensional in-

puts in real-time, Variational AutoEncoders (VAEs) [100] and deep Support Vector Data Description (deep

SVDD) [101] are utilized for efficient computation of the nonconformity score, which enables the real-time

detection of OOD high-dimensional inputs. In order to use multiple examples for detection, we apply dif-

ferent heuristic techniques for VAE- and SVDD-based methods. VAE is a generative model that allows

generating multiple examples in real-time similar to the input and computing multiple p-values that increase

the robustness of detection. Deep SVDD is a model trained to perform anomaly detection, and in our method,

it is combined with a test based on a sliding window. It should be noted that the VAE and deep SVDD neural

networks may exhibit an intrinsic error of computing nonconformity scores. However, the robustness of the

detection is improved considerably by taking into account multiple input examples and comparing them with

the calibration nonconformity scores.

Another contribution of the chapter is a method for improving the OOD detection by incorporating

saliency maps. Saliency maps aim to identify parts of the input that contribute most to the LEC predic-

tions [92; 93]. In our approach, a saliency map is computed to quantify how much the input features con-

tribute to the LEC output and then is used to weight the contribution of the input features to the nonconformity

scores. Therefore, the detection algorithm weights the input features based on their influence on the output

of the LEC. The main benefit of this method is to decrease the impact of nonconformal input features that

do not contribute to the LEC prediction. For high-dimensional inputs such as images, for example, it is

possible that parts of the image do not affect the LEC output. As an illustrative example, the VAE may
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have difficulty generating fine-granularity details of the original input image, however, such fine-granularity

details may not affect the LEC output. We integrate two algorithms for computing saliency maps into the

approach: (1) Intergrated-Gradients Optimized Saliency (I-GOS) [102] and (2) VisualBackProp (VBP) [98].

The algorithms are very efficient and can be used in real time.

The final contribution is the empirical evaluation using (1) an Advanced Emergency Braking System

(AEBS), (2) a Self-Driving End-to-end Controller (SDEC), and (3) an Autonomous Vehicle Seasonal Dataset

(AVSD). The first two case studies are implemented in CARLA [103], an open-source simulator for self-

driving cars. AVSD evaluates the approach using the Ford autonomous vehicle seasonal dataset [104]. The

AEBS uses a perception LEC to detect the nearest front obstacle on the road and estimate the distance from

the host vehicle based on camera images. The distance together with the velocity of the host car are used as

inputs to a reinforcement learning controller whose objective is to comfortably stop the vehicle. OOD inputs

are generated by varying a precipitation parameter provided by CARLA, which introduces visual effects that

may cause large error in the distance estimation resulting in a collision. The simulation results demonstrate

a very small number of false positives and a detection delay less than 1s. For the SDEC that comes with

CARLA [103], the empirical evaluation shows that the proposed method can be used to detect a class of

physically realizable attacks in end-to-end autonomous driving presented in [105]. The attacks are realized

by painted lines on the road to cause the self-driving car to follow a target path. The objective of the AVSD

is to estimate the heading changes of a host vehicle from images captured by a camera. A neural network is

trained in specific weather conditions and traffic scenarios but may encounter different ones. The evaluation

results show that the proposed approach is effective using a real-world dataset. For all cases, the execution

time of the detection method is comparable to the execution time of the original LECs, which demonstrates

that the method can be used in real time.

3.2 Problem Formulation

CPSs are greatly benefited by using LECs that can handle the uncertainty and variability of the real world. A

typical simplified CPS architecture with LECs (e.g., DNNs) for perception and control is shown in Figure 1.1.

A perception component observes and interprets the environment and provides information to a controller,

which, possibly using additional sensors (feedback from the plant), applies an action to the plant in order to

achieve some task. In response to this action, the state of the physical plant changes and the environment

must be observed and interpreted again to continue the system operation. An end-to-end control architecture

from perception to actuation can also be used.

An LEC is designed using learning methods such as supervised and reinforcement learning. We assume

that the LECs are successfully trained, and the training and test errors are satisfactory. However, the training
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and test datasets at design time are necessarily incomplete and may under-represent safety-critical cases.

OOD inputs, in particular, which have not been used for training or testing, may lead to large errors and

compromise safety.

The problem considered in this chapter is robustly detecting OOD inputs in real time. OOD detection is

crucial, for example, in order to enable decision making by switching to a different control architecture or

human supervision. During the system operation, the inputs arrive one by one to the perception LEC. After

receiving each input, the objective is to compute a valid measure of the degree to which the assumption that

the input example is generated from the same probability distribution as the training data is falsified.

Online detection algorithms must be robust with a small number of false alarms. The detection algorithms

using a single example are typically not robust and may result in a large number of false alarms. The inputs

in CPS are time-correlated, and therefore, they are not independent, which imposes a significant challenge to

use multiple examples in detection.

Further, for learning-enabled CPS, OOD detection must be performed in real time, which is very chal-

lenging because inputs to perception and end-to-end control LECs are high-dimensional measurements from

sensors such as cameras, LIDAR, and RADAR. The time and memory requirements must be similar to the

requirements of the LECs used in the CPS architecture. Typical NCMs such as the k-Nearest Neighbor (k-

NN) NCM [63] and the Kernel Density Estimation (KDE) NCM [64] cannot scale to high-dimensional inputs

because they require either storing the training dataset or estimating the density in a high-dimensional space.

3.3 VAE-based Detection

Variational AutoEncoder (VAE) is a generative model that learns parameters of a probability distribution

to represent the data [100]. A VAE consists of an encoder, a decoder, and a loss function. The objective

is to model the relationship between the observation x and the low-dimensional latent variable z using the

loss function L(θ ,φ ;x) = Ez∼qφ (z|x)[log pθ (x|z)]−DKL[qφ (z|x)||p(z)], where θ and φ are neural network

parameters. The first term in the loss function is the model fit, and the second is the KL divergence between

the approximate posterior and the prior of z. A popular choice for the prior is the Gaussian distribution. VAE-

based methods can utilize the reconstruction error or reconstruction accuracy for anomaly detection [52]. In

this section, we introduce a VAE-based detection method based on Inductive Conformal Anomaly Detection

(ICAD). The VAE allows generating multiple examples that are similar to the input. If these examples are not

conformal to the training data, many of the corresponding nonconformity scores will be very large indicating

the test example is out of the distribution of the training dataset.
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3.3.1 Offline Training and Nonconformity Measure

Let us consider an LEC y = f (x) defining a mapping from input x to output y. It should be noted that in

this work only the inputs are taken into consideration for OOD detection. The set of input examples used

for training is denoted by Dtrain = {xi}l
i=1. During the system operation, a sequence of inputs denoted by

(x′1, . . . ,x
′
t , . . .) is processed one by one. The task of the OOD detection is to quantify how different the input

sequence is from the training dataset. If the difference is large, the algorithm raises an alarm indicating that

the LEC may generate an output y with a large error compared to the test error obtained at design time.

Since the observations of the environment are highly time-correlated, the collected training data are not

exchangeable. As suggested in [62], reshuffling – a random permutation for the training dataset – is performed

before training the VAE. After reshuffling, the training dataset is split into a proper training set Dproper =

{xi}m
i=1 and a calibration set Dcalibration = {xi}l

i=m+1. For each example in the calibration set, a function A is

used to compute the NCM that assigns a numerical score indicating how different a test example is from the

training dataset. The nonconformity scores of the calibration examples are sorted and stored in order to be

used at runtime.

Given a new input x′t , the nonconformity score α ′t is computed using the nonconformity function A rela-

tive to the proper training set, α ′t = A
(
{xi}m

i=1,x
′
t

)
. The computation requires evaluating the nonconformity

(strangeness) of x′t relative to {xi}m
i=1. The choice of the nonconformity function A must ensure computing

informative nonconformity scores in real time. Using k-NN, for example, requires storing the training dataset,

which is infeasible for high-dimensional inputs. Instead, we learn an appropriate neural network architecture

that is trained offline using the proper training set and encodes the required information in its parameters.

This neural network monitors the inputs to the perception or end-to-end control LEC and is used to compute

the nonconformity scores in real time.

For a VAE, an in-distribution input x should be reconstructed with a relatively small reconstruction error.

Conversely, an OOD input will likely have a larger error. The reconstruction error is a good indication of

the strangeness of the input relative to the training set, and it is used as the NCM. We use the squared error

between the input example x and generated output example x̂ as the NCM defined as

α = AVAE(x, x̂) = ||x− x̂||2. (3.1)

During the offline phase, for each example x j : j ∈ {m+ 1, . . . , l} in the calibration dataset, we sample

a single reconstructed input x̂ j from the trained VAE and compute the nonconformity score α j using Equa-

tion (3.1). The precomputed nonconformity scores of the calibration data are sorted and stored in order to be

used at runtime. The steps that are performed offline are summarized in Algorithm 1.
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Algorithm 1 VAE-based out-of-distribution detection

Input: a training set Dtrain = {xi}l
i=1; a test sequence (x′1, . . . ,x

′
t , . . .); number of calibration examples l−m;

number of examples N generated by the VAE; threshold τ and parameter ω of CUSUM detector
Output: boolean variable Anomt
Offline:

1: Split the training set Dtrain = {xi}l
i=1 into the proper training set Dproper = {xi}m

i=1 and calibration set
Dcalibration = {xi}l

i=m+1
2: Train a VAE using the proper training set
3: for j = m+1 to l do
4: Generate x̂ j using the trained VAE
5: α j = AVAE(x j, x̂ j)
6: end for

Online:
7: S0 = 0
8: for t = 1,2, . . . do
9: for k = 1 to N do

10: Sample x̂′t,k using the trained VAE
11: α ′t,k = AVAE(x′t , x̂

′
t,k)

12: pt,k =
|{i=m+1,...,l}|αi≥α ′t,k|

l−m
13: end for
14: Mt =

∫ 1
0 ∏

N
k=1 ε pε−1

t,k dε
15: St = max(0,St−1 +Mt −ω)
16: Anomt ← St > τ
17: end for

3.3.2 Online Detection

Given a test input x′t , the p-value pt is computed as the fraction of calibration examples that have nonconfor-

mity scores greater than or equal to α ′t

pt =
|{i = m+1, . . . , l}|αi ≥ αt |

l
. (3.2)

It should be noted that the computation of the p-value can be performed efficiently online since it requires

storing only the calibration nonconformity scores. Besides, since the nonconformity scores for the calibration

data are sorted in the offline phase, the calculation of p-values can be accelerated by using a binary search. If

pt < ε , the example x′t can be classified as an anomaly. Using a single p-value for detecting OOD examples

can lead to an oversensitive detector with a large number of false alarms that inhibit the operation of the CPS.

Our objective is to incorporate multiple examples into the detection algorithm and compute a set of p-values

to test if there are many small p-values indicating an OOD input.

Given an input example x′t at time t, the encoder portion of a VAE is used to approximate the posterior

distribution of the latent space and sample N points {z′t,k}N
k=1 from the posterior that are used as input to the

decoder portion in order to generate multiple new examples {x̂′t,k}N
k=1. Typically, the posterior of the latent
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space is approximated by a Gaussian distribution. Sampling from the posterior generates encodings {z′t,k}N
k=1

so that the decoder is exposed to a range of variations of the input example and outputs {x̂′t,k}N
k=1.

For each generated example x̂′t,k, k ∈ {1, . . . ,N}, the nonconformity score α ′t,k is computed as the recon-

struction error between the test input x′t and the generated example using Equation (3.1). Then, the p-value

pt,k is computed as the fraction of calibration examples that have nonconformity scores greater than or equal

to α ′t,k using Equation (3.2). It should be noted that, although the generated examples {x̂′t,k}N
k=1 satisfy the

exchangeability assumption, they are sampled from a Gaussian distribution conditioned by the input and are

not sampled from the same distribution as the calibration dataset. Therefore, the N p-values {pt,k}N
k=1 are not

independent and uniformly distributed in [0,1]. However, if the input x′t is sampled from the same distribution

as the training dataset, the p-values will be large, and they can be used for OOD detection.

At runtime, for every new input example x′t received by the perception or end-to-end control LEC at time

t, a power martingale [69] can be computed based on the sequence of p-values for some ε as

Mε
t =

N

∏
k=1

ε pε−1
t,k ,

and the simple mixture martingale [69] can be defined as

Mt =
∫ 1

0
Mε

t dε =
∫ 1

0

N

∏
k=1

ε pε−1
t,k dε. (3.3)

Both martingales will grow only if there are many small p-values in {pt,k}N
k=1, which will indicate an OOD

input. If most of the p-values are relatively greater than 0, the martingales are not expected to grow. We use

simple mixture martingale in our approach to avoid parameter tuning required for the power martingale.

In order to robustly detect when Mt becomes consistently large, we use the cumulative sum (CUSUM)

procedure [106]. CUSUM is a nonparametric stateful test and can be used to generate alarms for OOD inputs

by keeping track of the historical information of the martingale values. The detector is defined as S0 = 0

and St = max(0,St−1 +Mt −ω), where ω prevents St from increasing consistently when the inputs are in

the same distribution as the training data. An alarm is raised whenever St is greater than a threshold St > τ ,

which can be optimized using empirical data [106]. Typically, after an alarm, the test is reset with St = 0.

Algorithm 1 describes the VAE-based real-time OOD detection. The NCM can be computed very effi-

ciently by executing the learned VAE neural network and generating N new examples. The complexity is

comparable to the complexity of the perception or end-to-end LEC that is executed in real time.
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3.4 SVDD-based Detection

VAEs and other autoencoder architectures are trained to perform a task other than anomaly detection, assum-

ing that the reconstruction accuracy will be better for in-distribution examples. Deep Support Vector Data

Description (deep SVDD) is an architecture trained to perform anomaly detection [101]. The idea is to train

a DNN to map the input data into a hypersphere of minimum volume characterized by center ccc and radius

R. The input space X is transformed to a compressed output space Z while minimizing the volume of the

hypersphere that encloses most of the input representations. Given a training dataset {xi}n
i=1, the one-class

deep SVDD [101] is based on the loss

min
W

1
n

n

∑
i=1
||φ(xi;W)− ccc||2 + λ

2

L

∑
ℓ=1
||WWW ℓ||2F ,

where φ(· ;W) : X →Z denotes the neural network with L hidden layers and sets of weightsW = {WWW ℓ}L
ℓ=1

is the center of the hypersphere, and the last term is a weight regularizer with hyperparameter λ > 0, where

|| · ||F is the Frobenius norm. One-class deep SVDD learns to map the data as close to center ccc as possible

by penalizing the distance from representations to the center. The deep SVDD neural network must not have

bias terms or bounded activation functions, and the center ccc can be selected as the mean of the representations

from the initial inference on some training data to avoid trivial solutions that map the input space to a single

point [101]. Given a new test example x, the distance of the representation φ(x;W∗) to the center ccc of the

hypersphere reflects how different the test example is from the training dataset and can be used as a NCM.

In contrast to VAEs, deep SVDD is not a generative model and cannot be used to sample multiple examples.

In order to use effectively the SVDD architecture in our approach, we use a sliding window containing a

sequence of inputs as explained below.

3.4.1 Offline Training and Nonconformity Measure

The offline phase of the SVDD-based detection algorithm is similar to the VAE-based algorithm, but the

only difference is the NCM. After reshuffling the training dataset and splitting it into proper training dataset

and calibration dataset, a deep SVDD model is trained using the proper training dataset. The center of the

hypersphere ccc is fixed as the mean of the representations from the initial pass on the proper training data.

After training, the neural network function φ(x,W∗) maps an input example x to a representation close to the

center ccc. In-distribution inputs are likely concentrated in a relatively small area in the output space, while

the OOD inputs will be far away from the center. The distance of the representation to the center ccc of the

hypersphere can be used to evaluate the strangeness of the test example relative to the proper training set and
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is defined as the NCM

α = ASVDD(x) = ||φ(x;W∗)− ccc||2. (3.4)

The SVDD-based method also uses a learned model to calculate the nonconformity score, and it can be used

to compute the nonconformity score in real time. During the offline phase, the nonconformity scores for the

calibration data are precomputed using Equation (3.4) and sorted in order to be used at runtime. The offline

phase for the SVDD-based detector is shown in Algorithm 2.

Algorithm 2 SVDD-based out-of-distribution detection

Input: a training set Dtrain = {xi}l
i=1; a test sequence (x′1, . . . ,x

′
t , . . .); number of calibration examples l−m;

sliding window size N; detector threshold τ
Output: boolean variable Anomt
Offline:

1: Split the training set Dtrain = {xi}l
i=1 into the proper training set Dproper = {xi}m

i=1 and calibration set
Dcalibration = {xi}l

i=m+1
2: Train a SVDD model using the proper training set
3: for j = m+1 to l do
4: α j = ASVDD(x j)
5: end for

Online:
6: for t = 1,2, . . . do
7: α ′t = ASVDD(x′t)
8: pt =

|{i=m+1,...,l}|αi≥α ′t |
l−m

9: Mt =
∫ 1

0 ∏
t
i=t−N+1 ε pε−1

i dε
10: Anomt ←Mt > τ
11: end for

3.4.2 Online Detection

In order to improve the robustness of OOD detection, it is desirable to use a sequence of inputs. However,

in contrast to the VAE, SVDD is not a generative model and cannot be used to generate multiple examples

similar to the input. In the SVDD-based method, we are using a sliding window of inputs {x′i}t
i=t−N+1. In

CPS, the inputs arrive at the perception or end-to-end LEC one by one and they are time-correlated, and

therefore, the inputs within the sliding window are not independent. In order to apply this method to CPS,

the size of the sliding window N should be carefully chosen based on the auto-correlation analysis on the

nonconformity scores of the input sequence {α ′i}t
i=t−N+1. Within this sliding window, the main factor that

differentiates consecutive observations are random disturbances and noise. Although the p-values are not

guaranteed to be independent and uniformly distributed, OOD inputs will still result in small p-values, and

the martingale test can be used to identify sequences with many small values.
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In this case, the simple mixture martingale at time t can be defined as

Mt =
∫ 1

0
Mε

t dε =
∫ 1

0

t

∏
i=t−N+1

ε pε−1
i dε. (3.5)

Such martingale will grow only if there are many small p-values in this sliding window indicating OOD

inputs are present in the sequence. It should be noted that the martingale Mt does not depend on the order of

the input examples {x′i}t
i=t−N+1. Also, Mt must be initialized for the first steps using, for example, random

independent and uniformly distributed p-values. Since we already use a sliding window to compute Mt , we

employ a stateless detector based on the value Mt and a predefined threshold τ expressed as Mt > τ .

Algorithm 2 describes the SVDD-based real-time OOD detection. Compared with the VAE, the SVDD

based method is more efficient since it does not require generating multiple examples at each step. The

martingale Mt can be computed recursively by incorporating the p-value for the new input and omitting the

last one in the sliding window.

3.5 Saliency Maps

The proposed OOD detection approach aims to identify inputs that are nonconformal to the training dataset.

Although the LEC predictions for such inputs may not have large errors, they are generated from a different

probability distribution. However, it is possible that some nonconformal features of the input do not contribute

to the LEC prediction. For high-dimensional inputs such as camera images, for example, it is possible

that parts of the image do not affect the LEC output. As an illustrative example, if the VAE has difficulty

generating fine-granularity details of the original input image, the algorithm presented in Section 3.3 will

result in large nonconformity scores. However, such fine-granularity details may not affect the LEC output.

This section extends the proposed approach by incorporating saliency maps that quantify the spatial support

of the LEC prediction of a given input image into the OOD detection.

The purpose of saliency maps is to identify parts of the input image that contribute most to the LEC

predictions [92; 93]. In our approach, a saliency map is computed to quantify how much the input features of

the image contribute to the LEC output. Then, the saliency map is used to weight the contribution of the input

features to the nonconformity scores. Therefore, the detection algorithm weights the input features based on

their influence on the output of the perception or end-to-end LEC in the CPS architecture.

We utilize two algorithms for computing the saliency maps, Integrated-Gradients Optimized Saliency (I-

GOS) and VisualBackProp (VBP). I-GOS is introduced in [102] that optimizes for the saliency map so that

the classification scores on the masked image would maximally decrease, which reflects the input features that

have greatest influence on the prediction. VBP is an algorithm that aims to highlight important regions that

29



contribute towards the predictions made by convolutional neural networks [98]. The intuition of VBP is that

the feature maps contain less irrelevant information to the prediction when moving deeper into the network.

Since the resolution of the feature maps becomes lower for deeper layers, VBP computes the saliency map

by back-propagating the information of feature maps from deeper layers while simultaneously increasing the

resolution.

Consider an LEC y = f (x) defining a mapping from the input x to output y used to perform regression

or classification. The input image x is of size H×W ×C where H,W, and C denote the height, width, and

channel, respectively. We denote each input element as xh,w,c where h ∈ {0, . . . ,H−1},w ∈ {0, . . . ,W −1},

and c ∈ {0, . . . ,C− 1}. I-GOS is initially designed for the classification problem. As for regression, the

algorithm can be modified by optimizing a saliency map s′ so that the regression result on the saliency-

masked image would maximally change. In order to use the saliency map in the detection algorithm, we

convert s′ to a grayscale image s of size H×W . VBP uses the feature maps outputted by the convolutional

layers and can be used for both regression and classification tasks. In VBP, the generated saliency map s is

already grayscaled of size H×W . Moreover, in order to deal with the problem that different images will have

different total contributions, the saliency map should be normalized by the sum of contributions for all pixels

in the image. In summary, we can define a function s = G(x0; f ) that generates a grayscale saliency map s for

the LEC f given input image x0 using either I-GOS or VBP.

3.5.1 VAE-based Detection with Saliency Maps

We define the NCM by weighting the squared error between the input example x and a generated example x̂

from the VAE using the saliency map s

α = AVAE-S(x, x̂,s) =
1

H×W ×C

H−1

∑
h=0

W−1

∑
w=0

C−1

∑
c=0

sh,w(xh,w,c− x̂h,w,c)2. (3.6)

Therefore, the input features that influence the LEC predictions contribute more to the NCM.

During the offline phase of the algorithm, similar to the VAE-based detection method introduced in

Sec. 3.3, the training dataset is reshuffled and split into a proper training set and a calibration set. The

proper training dataset is used to train both the LEC and the VAE network. For each example in the calibra-

tion dataset, we compute the saliency map, and the nonconformity score is computed using Equation (3.6).

The nonconformity scores of the calibration data are sorted and stored for monitoring at runtime.

At runtime, given an input example x′t , the saliency map s′t = G(x′t ; f ) is used to compute the nonconfor-

mity score. As described in Sec. 3.3, for each input example x′t , N examples {x̂′t,k}N
k=1 are generated from the

VAE. For each generated example x̂′t,k, the nonconformity score α ′t,k is computed by α ′t,k = AVAE-S(x′t , x̂
′
t,k,s

′
t)
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Algorithm 3 VAE-based out-of-distribution detection using saliency maps

Input: a training set Dtrain = {xi}l
i=1; a test sequence (x′1, . . . ,x

′
t , . . .); number of calibration examples l−m;

monitored LEC f (·); number of examples N generated by the VAE; threshold τ and parameter ω of
CUSUM detector

Output: boolean variable Anomt
Offline:

1: Split the training set Dtrain = {xi}l
i=1 into the proper training set Dproper = {xi}m

i=1 and calibration set
Dcalibration = {xi}l

i=m+1
2: Train a VAE using the proper training set
3: for j = m+1 to l do
4: Generate x̂ j using the trained VAE
5: Compute the saliency map s j = G(x j; f )
6: α j = AVAE-S(x j, x̂ j,s j)
7: end for

Online:
8: for t = 1,2, . . . do
9: Compute the saliency map s′t = G(x′t ; f )

10: for k = 1 to N do
11: Generate x̂′t,k using the trained VAE
12: α ′t,k = AVAE-S(x′t , x̂

′
t,k,s

′
t)

13: pt,k =
|{i=m+1,...,l}|αi≥α ′t,k|

l−m
14: end for
15: Mt =

∫ 1
0 ∏

N
k=1 ε pε−1

t,k dε
16: if t = 1 then
17: St = 0
18: else
19: St = max(0,St−1 +Mt−1−δ )
20: end if
21: Anomt ← St > τ
22: end for

(Equation (3.6)). The corresponding p-value pt,k is calculated as Equation (3.2). Most of the p-values are ex-

pected to be much greater than 0, and the martingale Mt computed by Equation (3.3) is used to test if x′t is an

OOD input. Finally, a CUSUM detector is used to generate alarms for OOD inputs. Algorithm 3 summarizes

the VAE-based OOD detection using saliency maps.

3.5.2 SVDD-based Detection with Saliency Maps

In order to incorporate the saliency maps into the SVDD-based detection method, the input x is masked by

the saliency map s and is used as the new input to the SVDD network. Each element of the masked image

denoted by x̃ is computed by x̃h,w,c = xh,w,c · sh,w.

During the offline phase, we compute the saliency map for each example in the training dataset and use

it to mask the example to create a new training dataset {x̃i}l
i=1. Then, the new training dataset {x̃i}l

i=1 is

reshuffled and split into the proper training set {x̃i}m
i=1 and calibration set{x̃i}l

i=m+1. The proper training

set is used to train a new SVDD network which maps the inputs to a representation in a lower-dimensional

31



hypersphere suitable for anomaly detection. The NCM ASVDD is defined as the distance of the representation

to the center of the hypersphere (Equation (3.4)). For each example in the new calibration dataset, the

nonconformity score is computed using ASVDD and sorted for runtime monitoring.

Algorithm 4 SVDD-based out-of-distribution detection using saliency maps

Input: a training set Dtrain = {xi}l
i=1; a test sequence (x′1, . . . ,x

′
t , . . .); number of calibration examples l−m;

monitored LEC f (·); sliding window size N; detector threshold τ
Output: boolean variable Anomt
Offline:

1: for i = 1 to l do
2: Compute the saliency map si = G(xi; f )
3: Mask the input xi using the saliency map si and get x̃i
4: end for
5: Split the training set {x̃i}l

i=1 into the proper training set {x̃i}m
i=1 and calibration set {x̃i}l

i=m+1
6: Train a SVDD model using the proper training set
7: for j = m+1 to l do
8: α j = ASVDD(x̃ j)
9: end for

Online:
10: for t = 1,2, . . . do
11: Compute the saliency map s′t = G(x′t ; f )
12: Mask the input x′t using the saliency map s′t and get input x̃′t
13: α ′t = ASVDD(x̃′t)
14: pt =

|{i=m+1,...,l}|αi≥α ′t |
l−m

15: Mt =
∫ 1

0 ∏
t
i=t−N+1 ε pε−1

i dε
16: Anomt ←Mt > τ
17: end for

During runtime monitoring, given the test input x′t , the algorithm computes the saliency map s′t = G(x′t ; f )

and uses saliency-masked input x̃′t as the input to the SVDD network in order to compute the nonconformity

score α ′t as well as the p-value for the test example. Similar to Sec. 3.4, a sliding window is used to adapt the

martingale test, and a stateless detector is applied to generate alarms for OOD examples. The SVDD-based

detection algorithm using saliency maps is shown in Algortithm 4.

3.6 Evaluation

We evaluate the proposed approach using (1) an Advanced Emergency Braking System (AEBS), (2) a Self-

Driving End-to-end Controller (SDEC), and (3) an Autonomous Vehicle Seasonal Dataset (AVSD). The

AEBS and SDEC are implemented using CARLA [103], an open-source simulator for self-driving cars.

AVSD evaluates the approach using the Ford autonomous vehicle seasonal dataset [104]. All the experiments

presented in this chapter are conducted on a 16-core i9 desktop with 32GB RAM and a single RTX 2080

GPU with 8GB video memory.
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3.6.1 Advanced Emergency Braking System

3.6.1.1 Experimental Setup

The architecture of the AEBS is shown in Figure 3.1. A perception LEC is used to detect the nearest front

obstacle on the road and estimate the distance. The distance together with the velocity of the host car are used

as inputs to a reinforcement learning controller whose objective is to generate the appropriate braking force

in order to safely and comfortably stop the vehicle.

Perception RL
Control Vehicle

Camera Distance Brake

Velocity

Figure 3.1: Architecture of AEBS.

The desirable behavior is illustrated in Figure 3.2. The AEBS detects a stopped lead car and applies the

brake to decelerate and avoid the potential collision. The initial velocity of the host vehicle is v0, and the initial

distance between the host car and the obstacle is d0. The goal of the controller is to stop the car between Lmin

and Lmax. The sampling period used in the simulation is ∆t = 1/20s. In order to simulate realistic scenarios,

we introduce uncertainty into the system. The initial velocity v0 is uniformly sampled between 90km/h and

100km/h, and the initial distance d0 is approximately 100m. CARLA allows controlling the precipitation in

the simulation using a parameter, which takes values in [0,100]. For training the perception LEC, and also

the VAE and deep SVDD used for OOD detection, the precipitation parameter is randomly sampled from the

interval [0,20]. The uncertainty introduced affects the error of the perception LEC. It should be noted that

this is just a visual effect, and it does not affect the physical behavior of the car.

d0 LminLmax 0

v0

Figure 3.2: Illustration of AEBS.

The perception LEC is implemented using a Convolutional Neural Network (CNN), which is trained using

supervised learning with a training dataset consisting of 8160 images obtained by varying the simulation

parameters as described above. The perception LEC has three layers of 24/36/48×(5×5) filters with ReLU

activations and 2× 2 strides, two layers of 64/64× (3× 3) filters with ReLU activations and 1× 1 strides,

three fully connected layers of 100/50/10 units with ReLU activations and an output layer of size 1 with

Sigmoid activation. After 100-epoch training, the mean absolute errors for training and testing are 0.54m
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and 0.56m respectively and are used to select Lmin and ensure safety. The reinforcement learning controller

is trained using the DDPG algorithm [107] with 1000 episodes and reward function which aims to stop the

vehicle between Lmin = 1m and Lmax = 3m. A simulation run is shown in Figure 3.3. Initially, the distance

between the host and the lead car is 98.02m, and the velocity of the host car is 97.13km/h (= 26.98m/s).

After 140 steps or 7.00s, the host vehicle stops at 1.85m from the lead car.

3.6.1.2 VAE and SVDD training

The dataset with the 8160 images used for training the perception LEC is used as the proper training dataset.

In addition, using simulations with the same random parameters, we collect 2040 images for the calibration

set. It should be emphasized that the proper training set and the calibration set should be reshuffled before

training the VAE or deep SVDD. We use a VAE with four layers of 32/64/128/256× (5× 5) filters with

Exponential Linear Unit (ELU) activations and 2×2 max-pooling, one fully connected layer of size 1568 with

ELU activation, 1024 latent space, and a symmetric deconvolutional decoder. A simple two-phase learning

schedule is employed with initial searching learning rate η = 10−4 for 250 epochs, and subsequently fine-

tuning η = 10−5 for 100 epochs. This model is used in the VAE-based OOD detection method both with and

without the saliency maps in order to compute the NCM.

The deep SVDD is similar with four convolutional layers of 32/64/128/256× (5× 5) filters with ELU

activations and 2× 2 max-pooling, followed by one fully connected layer of 1568 units. As suggested

in [101], we first train a deep convolutional autoencoder (DCAE) to initialize the deep SVDD. After 250 (η =

10−4)+100 (η = 10−5) epochs of DCAE training, we copy the weights to the SVDD and set the hypersphere

center ccc to the mean of the reduced space of the initial forward inference. The one-class deep SVDD objective

is used as the loss, and the neural network is trained for additional 150 (η = 10−4)+100 (η = 10−5) epochs.

Since the inputs to the SVDD-based detector are different for the case saliency maps are used, two different

deep SVDD networks are trained using the original inputs and saliency-masked inputs, respectively.

3.6.1.3 Experimental Results

To characterize the performance of the OOD detection, we use multiple simulation episodes that include in-

distribution and OOD examples. Each episode starts with a random initial velocity v0 of the host car. The

AEBS is activated upon detection of the lead car by the camera as implemented in CARLA. We vary the

precipitation parameter r as

r =


r0 for t < t0

r0 +β (t− t0) for t0 ≤ t ≤ t1

r0 +β (t1− t0) for t > t1
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Figure 3.3: An episode with in-distribution inputs in AEBS (detector parameter: (1) VAE-based: N = 10,
ω = 6, τ = 156; (2) SVDD-based: N = 10, τ = 14).

where r0 is the initial precipitation uniformly sampled from [0,10]; t0 ∈ {10,11, . . . ,30} is selected randomly

as the time step the precipitation starts to increase; t1 ∈ {90,91, . . . ,110} is selected randomly as the time
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Figure 3.4: An episode with OOD inputs in AEBS (detector parameter: (1) VAE-based: N = 10, ω = 6,
τ = 156; (2) SVDD-based: N = 10, τ = 14).

step the precipitation stops increasing; and β ∈ [0.1,0.5] is a randomly selected slope. In some episodes r is

always below 20 (in-distribution), while in other episodes r exceeds 20 and it is assumed that the perception
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LEC receives OOD inputs. We simulate 200 episodes, and 108 of them are in-distribution while 92 of them

contain OOD inputs.

In order to show that the VAE and deep SVDD model are trained successfully and can be used for OOD

detection, we plot the distributions of the nonconformity scores using different NCMs (VAE- and SVDD-

based using or not using saliency maps) in Figure 3.5. More specifically, for VAE-based NCMs, an input

is fed into the VAE model to generate a single example, and the nonconformity score is computed as the

reconstruction error between the input and generated example (if saliency map is used, the nonconformity

score should be weighted by the saliency map); for SVDD-based NCMs, SVDD model maps the input to

the hypersphere, and the nonconformity score is the distance between the representation to the center (if

saliency map is used, the input to SVDD model should be masked by the saliency map). From the plots,

we can see that, for all different NCMs, the nonconformity scores of in-distribution data are much smaller

than OOD data. Furthermore, we also measure the overlapping area in each plot, which indicates the false

alarm rate of the detector. The overlapping area of the distributions is inevitable since the precipitation

parameter is increased gradually during our data collection, which results in some OOD data having small

changes from the in-distribution data. Comparing Figure 3.5a with Figure 3.5b, the SVDD-based NCMs have

better performance than the VAE-based NCMs. Moreover, in order to compare the performance between

the methods using one example and multiple examples, we also plot the distributions of the logarithm of

martingales using different NCMs (VAE- and SVDD-based using or not using saliency maps) in Figure 3.6.

In VAE-based methods, for each input, multiple examples are generated, and the martingale is computed

based on the corresponding p-values. As for SVDD-based methods, the martingale value is computed by

applying the sliding window technique. The overlapping area in Figure 3.6 using multiple examples are

smaller than ones of corresponding plots in Figure 3.5 using a single example, which demonstrates that the

performance of the detector can be improved by incorporating multiple examples.

We illustrate the approach using two episodes, and we plot the ground-truth and the predicted distance to

the lead car, the velocity of the host car, the p-value of the VAE-based method, and the output of the detector

S computed using the logarithm of Mt and ω = 6. Since Mt takes very large values, logMt is used. We also

plot the p-value of the SVDD-based method and the logarithm of the SVDD-based martingale.

The results of the VAE- and SVDD-based methods with saliency maps are plotted similarly. Figure 3.7

shows one frame of the camera image and its saliency maps generated by I-GOS and VBP. Due to space

limitations, we include only the results of the VAE-based using I-GOS and the SVDD-based method using

VBP. We use N = 10 for the number of examples generated by the VAE For the SVDD-based method, in order

to reasonably choose the size of the sliding window, we perform the auto-correlation analysis: we measure

the auto-correlation coefficients on the nonconformity scores of the input sequence and compute the mean
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Figure 3.5: Distributions of the nonconformity scores in AEBS.

absolute auto-correlation within different time scales, which is shown in Figure 3.8. The auto-correlation

becomes smaller than 0.1 when the time scale is greater than 9. Therefore, we can choose the time scale

greater than 9. In the illustrative episode, the size of the sliding window is set to 10.

Figure 3.3 shows simulation results for the in-distribution case. Most of the p-values are much greater

than 0, and the martingale for all four approaches is small. The VAE-based method is more sensitive than the

SVDD as indicated by the larger value around 5s. In this scenario, there is a speed limit traffic sign that is not

accurately reconstructed by the VAE resulting in smaller p-values. After the car passes the traffic sign, the

p-values increase, and the martingale decreases. The effect in the SVDD-based method is attenuated, since

we use a sliding window.

An episode with OOD inputs is shown in Figure 3.4. The parameter r exceeds 20 at time step 40 (2.0s).

The error of the perception LEC starts increasing and reaches almost 9m. The controller is misled by the

perception LEC and does not stop the car which collides with the lead car (velocity is greater than 0 when

ground-truth distance comes to 0). For all four detection methods, the martingale grows as the p-values

become smaller.
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Figure 3.6: Distributions of the martingales in AEBS.

(a) Original image (b) Saliency Map (I-GOS) (c) Saliency Map (VBP)

Figure 3.7: Original image and its saliency maps for AEBS.

We evaluate the approach for the 200 episodes generated by considering different values of N. We run

each episode, and if an alarm is raised, we stop the simulation, and we check if the alarm is false. We

compute the detection delay as the number of frames from the time r exceeds 20. We select the detector

parameters ω and τ using a simple search for achieving the average detection delay less than 25 frames and

the number of false alarms less than 2. It should be emphasized that we can choose the detector parameters

only based on the nonconformity scores of in-distribution data as the other unsupervised detection method.

However, in our method, some OOD data can be collected to improve the detector’s performance. With
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Figure 3.8: Mean absolute auto-correlation of the nonconformity scores in AEBS.

more OOD episodes collected, the parameters can be better tuned, and the detector’s performance can be

further improved. Table 3.1 reports the results for the VAE and SVDD-based methods. Further, in order to

compare the performance of the detectors, we use the same parameters for the methods with saliency maps,

and Table 3.1 summarizes the results. The number of false alarms is very small, and the delay for detection is

smaller than 20 frames or 1s for all four detection methods. The VAE-based method uses a cumulative sum

(CUSUM) procedure, which is parameterized by ω and τ . These two parameters control the trade-off among

false positive, false negative, and detection delay. The large value of ω and τ will result in the detector under-

sensitive, and the detector will have a large number of false negatives and long detection delay. On the other

side, the small value of ω and τ will have an over-sensitive detector. Similar to the VAE-based method, the

SVDD-based method is parameterized by the size of sliding window N and the threshold of stateless detector

τ . The large value of N and the small value of τ will lead to an under-sensitive detector, and vice versa.

From the results for the methods with saliency maps, it can be seen that the detector is more robust to

small variations in the input that do not affect the LEC prediction (and the prediction error). For example,

when the precipitation parameter exceeds slightly the defined threshold for OOD inputs (20), the prediction

error remains very small. Figure 3.4 shows that for small changes from the in-distribution data, the p-values

are larger in the case of saliency maps, and therefore, OOD detection occurs later which is more consistent

with the prediction error. The results are similar for the other experiments as summarized in the increased

average delay in Tables 1-4. The detection delay in the methods with saliency maps is slightly greater, which

is because the detection methods with saliency maps consider the influence of the input on the LEC output.

In addition, missed alarms is an attractive performance metric for such a detection system in CPS. Therefore

we tune the parameters achieving 0 false positives and report the missed alarms (false negatives) in Table 3.2.

The results reveal that our approach has a small number of missed alarms for different values of N.
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Table 3.1: False alarms and average delay in AEBS.

NCM
Parameters

(N,ω,τ)/(N,τ) False positive False negative
Average delay

(frames)

VAE

5,5,42 2/108 0/92 17.91
5,5,49 0/108 0/92 19.84

10,6,156 0/108 0/92 18.65
10,10,106 0/108 0/92 19.30
20,16,250 2/108 0/92 17.63
20,18,240 0/108 0/92 18.46

VAE, IGOS

5,5,42 1/108 0/92 22.32
5,5,49 1/108 0/92 24.04

10,6,156 0/108 0/92 23.36
10,10,106 0/108 0/92 23.70
20,16,250 1/108 0/92 21.14
20,18,240 0/108 0/92 22.83

SVDD

10,12 1/108 0/92 14.38
10,14 0/108 0/92 17.78
15,13 2/108 0/92 13.48
15,15 0/108 0/92 15.36
20,16 1/108 0/92 12.02
20,17 0/108 0/92 13.29

SVDD, VBP

10,12 2/108 0/92 15.32
10,14 1/108 0/92 18.10
15,13 1/108 0/92 14.68
15,15 0/108 0/92 16.42
20,16 1/108 0/92 13.28
20,17 0/108 0/92 14.32

Table 3.2: Missed alarms and average delay in AEBS.

NCM
Parameters

(N,ω,τ)/(N,τ)
Missed alarms

(False negative)
Average delay

(frames)

VAE
5,6,43 1/92 19.54

10,8,132 0/92 19.46
20,19,235 1/92 19.02

VAE, I-GOS
5,5,53 1/92 24.08

10,8,130 2/92 24.05
20,20,232 0/92 23.96

SVDD
10,15 1/92 18.12
15,14 0/92 14.70
20,18 0/92 13.94

SVDD, VBP
10,15 1/92 19.21
15,14 0/92 15.78
20,18 1/92 14.76

3.6.2 Self-driving End-to-end Control

3.6.2.1 Experimental Setup

The CARLA simulator comes with a Self-Driving End-to-end Controller (SDEC) trained using imitation

learning. The SDEC uses camera images as inputs and computes steering, acceleration, and brake actuation

signals applied to the car. The architecture is shown in Figure 3.9.

The SDEC is implemented using a CNN trained by conditional imitation learning with 14 hours of driving
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Figure 3.9: Architecture of SDEC.

data recorded by human drivers [103]. The sampling period used here is ∆t = 1/10s. For this example, our

objective is to evaluate if the method can be used to detect a class of adversarial attacks. An approach for

designing physically realizable attacks in end-to-end autonomous driving is presented in [105], and a novel

class of hijacking attacks is introduced where painted lines on the road cause the self-driving car to follow a

target path. Figure 3.10b shows an image with the painted pattern on the road.

(a) Original image (b) Saliency map (I-GOS, Origi-
nal)

(c) Saliency map (VBP, Original)

(d) Attacked image (e) Saliency map (I-GOS, At-
tacked)

(f) Saliency map (VBP, Attacked)

Figure 3.10: Original image, physical adversarial image and their saliency maps for SDEC.

In order to train the VAE and SVDD, we collect training data using episodes without attacks. First,

we generate 633 images in two different weather patterns (clear noon and cloudy noon) and three different

scenarios (turning right, turning left, and going straight). Then, we reshuffle and randomly split the training

data into 506 images for the proper training dataset and 127 images for the calibration set. We use the same

VAE and SVDD architectures and hyperparameters as in the AEBS.

3.6.2.2 Experimental Results

The evaluation focuses on the Right Corner Driving case, which is reported as more vulnerable [105]. We

run 105 simulation episodes described in [105] with different attacks such as positions and rotations of the

two black lines which are chosen to cause traffic infractions. In 69 out of the 105 episodes, the attack is

successfully causing a vehicle crash. Our approach detects the attacks in all 105 episodes. We plot the p-

values and detector output S of the VAE-based method, the p-values and the logarithm of the SVDD-based
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martingale for episodes with and without attacks shown in Figure 3.11 and 3.12, respectively. The size

of the sliding window N for SVDD-based method is chosen based on the auto-correlation analysis on the

nonconformity scores of the input sequence. The mean absolute auto-correlation is smaller than 0.1 when

the time scale is greater than 7, and therefore, we can choose N = 10 in our illustrative episodes. In addition,

Figure 3.11 and 3.12 show the results of the detection methods using saliency maps. Figure 3.10 shows the

original (in-distribution) image, physical adversarial image, and their saliency maps. For the in-distribution

(no-attack) episode, most of the p-values are much greater than 0, while the martingales for all approaches are

small. In the adversarial episode, there are two black lines painted on the road as shown in Figure 3.10d, and

the vehicle is misled to a crash. The p-values are almost 0, and the martingales grow very large, indicating

the input images are out of distribution.
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Figure 3.11: An episode with in-distribution inputs in SDEC (detector parameter: (1) VAE-based: N = 10,
ω = 1, τ = 30; (2) SVDD-based: N = 10, τ = 2).
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Figure 3.12: An episode with attacked inputs in SDEC (detector parameter: (1) VAE-based: N = 10, ω = 1,
τ = 30; (2) SVDD-based: N = 10, τ = 2).

3.6.3 Autonomous Vehicle Seasonal Dataset

3.6.3.1 Experimental Setup

In order to evaluate the approach in a real-world environment, we use the Ford Autonomous Vehicle Seasonal

Dataset (AVSD) [104], which is used to train a perception neural network whose task is to predict the heading

changes of the host vehicle from the images captured by a camera. The sampling rate of the camera is

∆t = 1/7s. The dataset provides the raw images and ground-truth pose (position and orientation) of the

vehicle in a global frame. The images are collected under seasonal variation in weather and include various

lighting, construction, and traffic conditions experienced in typical urban environments [104]. For using the

dataset to evaluate our approach, we pre-process the data to compute heading changes of the host vehicle
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by converting quaternions to Euler angles and calculating the yaw difference, and we synchronize the input

images with the heading changes.

We select the dataset for one vehicle (V1) and one drive (Log 1) as the training dataset. The set contains

data collected in cloudy weather and freeway, overpass, and bridge drive scenarios. We reshuffle and ran-

domly split the training data into 3556 images for the proper training dataset and 889 for the calibration set.

The proper training dataset is used to train the perception, VAE, and SVDD networks.

The perception network is a CNN whose architecture is similar to the NVIDIA end-to-end self-driving

controller [108]. After 100-epoch training, the mean absolute error for training and testing are 0.012° and

0.016°, respectively. The VAE and SVDD networks used for detection use the same architectures and hyper-

parameters as in the AEBS and SDEC examples.

3.6.3.2 Experimental Results

We evaluate the approach using 100 episodes, 50 of which are in distribution and 50 are out of distribution.

For OOD data, we use a set (Log 3) with data collected in sunny weather and residential driving scenario.

Each episode contains 140 sequential frames and has duration 20s. We illustrate the approach using two

episodes, and we plot the prediction errors of the heading change, the p-values and detector output of the

VAE-based method with and without saliency maps, and the p-values and the logarithm of the SVDD-based

martingale with and without saliency maps. The results are shown in Figure 3.13 and Figure 3.14, respec-

tively. Similar to the AEBS and SDEC, in order to choose a reasonable size of sliding window N for SVDD-

based method, we analyze the auto-correlation function on the nonconformity scores of the input sequence.

The mean absolute auto-correlation is smaller than 0.1 when the time scale is greater than 6. In our illustrative

episode, we choose N = 10.

We also show the in-distribution and OOD input images and their saliency maps in Figure 3.15. For the

in-distribution episode, most of the p-values are far away from 0, and the martingales in all approaches are

small indicating there is no OOD input detected. In the OOD episode, the predicted errors are greater than

the in-distribution episode. For all approaches, the p-values are small, and the martingales grow very large

showing the input images are not in the same distribution as the training dataset.

We also report the number of false alarms and average detection delay time in Table 3.3, and the number

of missed alarms in Table 3.4 by considering different values of N and detector parameters ω and τ . From

the results, the number of false alarms and missed alarms are very small and the delay for detection is smaller

than 20 frames. The results also show that the SVDD-based methods have short detection delay than the

VAE-based methods.
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Figure 3.13: An episode with in-distribution inputs in AVSD (detector parameter: (1) VAE-based: N = 10,
ω = 8, τ = 55; (2) SVDD-based: N = 10, τ = 5).

3.6.4 Computational Efficiency

The VAE-based and SVDD-based methods can compute the nonconformity scores in real-time without stor-

ing training data. Table 3.5 reports the minimum (min), first quartile (Q1), second quartile or median (Q2),

third quartile (Q3), and maximum (max) of (1) the execution times of the LECs in AEBS, SDEC, and AVSD,

(2) the execution times of the I-GOS- and VBP-based saliency map algorithms, and (3) the execution times

of the VAE-based and SVDD-based detectors with and without saliency maps for different values of N.

The results show that the VBP-based algorithm is slightly more efficient than the I-GOS. Since the VAE-
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Figure 3.14: An episode with OOD inputs in AVSD (detector parameter: (1) VAE-based: N = 10, ω = 8,
τ = 55; (2) SVDD-based: N = 10, τ = 5).

based method uses N examples in each time step to compute the nonconformity scores, the execution time

is larger than the execution time of the SVDD-based method. The execution time of SVDD-based detection

method is independent of the window size N since the martingale can be computed recursively for the sliding

window. The execution times are similar to the execution times of the perception and end-to-end control LECs

and much smaller than the corresponding sampling time (50ms in AEBS , 100ms in SDEC and 1000/7ms

in AVSD), and thus, the methods can be used for real-time OOD detection.
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(a) In-distribution image (b) Saliency map (I-GOS, In-
distribution)

(c) Saliency map (VBP, In-
distribution)

(d) OOD image (e) Saliency map (I-GOS, OOD) (f) Saliency map (VBP, OOD)

Figure 3.15: In-distribution and OOD images and their saliency maps for AVSD.

Table 3.3: False alarms and average delay in AVSD.

NCM
Parameters

(N,ω,τ)/(N,τ) False positive False negative
Average delay

(frames)

VAE

5,3,36 0/50 0/50 11.32
5,5,15 0/50 1/50 13.63

10,5,105 0/50 0/50 12.14
10,8,55 0/50 0/50 10.78

20,10,235 0/50 0/50 12.18
20,17,140 0/50 0/50 11.30

VAE, I-GOS

5,3,36 0/50 0/50 13.42
5,5,15 0/50 0/50 16.10

10,5,105 0/50 0/50 15.08
10,8,55 0/50 0/50 12.74

20,10,235 0/50 0/50 15.32
20,17,140 0/50 0/50 14.12

SVDD

10,4 0/50 0/50 10.62
10,5 0/50 0/50 12.58
15,4 0/50 0/50 11.24
15,6 0/50 0/50 12.68
20,5 0/50 0/50 10.14
20,6 0/50 0/50 11.66

SVDD, VBP

10,4 0/50 0/50 11.46
10,5 0/50 0/50 13.32
15,4 0/50 0/50 11.34
15,6 0/50 0/50 12.78
20,5 0/50 0/50 10.74
20,6 0/50 0/50 12.32

3.7 Conclusion

In this chapter, we demonstrated a method for OOD detection in learning-enabled CPS. The method is based

on inductive conformal prediction and anomaly detection but uses VAEs and deep SVDD to learn models to

efficiently compute the nonconformity of new inputs relative to the training set and enable real-time detection

of high-dimensional OOD inputs. In addition, the saliency maps can be incorporated to improve the robust-

ness of the detector. Our evaluation is based on two simulation case studies of an AEBS and an SDEC as well

as a real-world dataset for autonomous driving . The results demonstrate a very small number of false posi-

tives and detection delay while the execution time is comparable to the execution time of the original LECs.
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Table 3.4: Missed alarms and average delay in AVSD.

NCM
Parameters

(N,ω,τ)/(N,τ)
Missed alarms

(False negative)
Average delay

(frames)

VAE
5,4,24 1/50 12.48
10,6,90 0/50 11.68

20,15,180 0/50 12.02

VAE, I-GOS
5,4,24 0/50 15.04
10,6,92 0/50 14.38

20,15,175 0/50 14.68

SVDD
10,6 1/50 13.21
15,5 0/50 11.74
20,7 0/50 12.10

SVDD, VBP
10,6 0/50 13.75
15,5 0/50 12.22
20,7 0/50 12.84

Table 3.5: Execution times of VAE- and SVDD-based detection methods.
N min (ms) Q1 (ms) Q2 (ms) Q3 (ms) max (ms)

AEBS N/A 3.48 3.85 3.91 3.96 4.20
SDEC N/A 2.20 2.37 2.45 2.36 3.31
RPNN N/A 0.51 0.52 0.52 0.53 0.56
I-GOS N/A 4.32 4.37 4.41 4.43 4.47
VBP N/A 1.37 1.38 1.38 1.39 1.41

VAE
5 15.43 15.47 15.49 15.50 15.60

10 31.33 31.41 31.43 31.45 31.77
20 64.54 64.70 64.72 64.75 65.00

VAE, I-GOS
5 20.18 20.21 20.24 20.29 20.32

10 36.44 36.46 36.49 34.52 34.61
20 70.54 70.59 70.64 70.71 70.84

SVDD
10 2.12 2.35 2.44 2.45 2.52
15 2.16 2.23 2.34 2.41 2.49
20 2.28 2.33 2.34 2.59 2.60

SVDD, VBP
10 3.43 3.49 3.50 3.65 3.70
15 3.46 3.51 3.60 3.68 3.79
20 3.53 3.57 3.69 3.70 3.82

Promising future work is to combine the outputs of the neural network into OOD detection. Another possible

direction is to explore the physically realizable adaptive adversarial attacks and to adapt our approach to such

attacks.
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CHAPTER 4

Out-of-distribution Detection using Variational Autoencoder for Classification and Regression 1

4.1 Introduction

Recently, machine learning techniques, such as Deep Neural Networks (DNNs), are extensively used in

a broad range of domains since they can tackle complex tasks that conventional techniques cannot easily

solve. On the other hand, Cyber-Physical Systems (CPSs) are generally deployed in environments with high

uncertainty and variability, which requires a high level of autonomy. It is not surprising that CPSs increasingly

employ Learning-Enabled Components (LECs) to perform different complex tasks [109]. Although LECs

have achieved remarkable performance, their safety and reliability should be analyzed before deploying them

to real-world systems, especially safety-critical systems. Unfortunately, the characteristics and complexity

of the LECs complicate such analysis. Learning techniques, such as supervised and reinforcement learning,

are typically used to train LECs. Such learning techniques are built upon an underlying assumption that the

training and test distribution are similar. However, even if an LEC is trained extensively, Out-Of-Distribution

(OOD) data are inevitably present when the LEC is used in the real world. OOD data may lead the LEC to

be ineffective and incur erroneous predictions, which may undermine the safety of the system. Therefore,

runtime OOD detection is very significant and necessary to guarantee the safety and reliability of the system.

The objective of OOD detection is to quantify the degree of difference between the new test instances and the

training data, and raise false alarms indicating the LEC may compute a large-error output due to the OOD

data.

Although many efforts exist for OOD detection in neural networks [7], different types of OOD data are

not investigated systematically. The first contribution of this chapter is the definitions for different types of

OOD data present in learning-enabled CPS. We first discuss the cause of OOD examples and then categorize

them into four different types: OOD data caused by (1) covariate shift, (2) target shift, (3) concept shift, and

(4) label concept shift. We also provide typical examples for each type of OOD data aiming at classification

and regression tasks. The categorization for the OOD data is based on the categorization of the dataset

shift for the training and test distributions [110]. Note that dataset shifts focus on differences between the

distributions of the training dataset and test dataset, while OOD detection aims at comparing a single test

example with the distribution of the training dataset.

The main contribution of the chapter is an approach for detecting a variety of OOD data in learning-

1This chapter is adapted with permission from [Detection of dataset shifts in learning-enabled cyber-physcial systems,” in 4th IEEE
International Conference on Industrial Cyber-Physical Systems (ICPS), May 2021.]
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enabled CPS. Typical OOD detection techniques may result in a large number of false alarms due to the

dynamical nature of CPS. In Chapter 3, a method that aims to improve the robustness of detection by using

multiple examples sampled from a Variational AutoEncoder (VAE) model is proposed. The method is based

on Inductive Conformal Anomaly Detection (ICAD) [63], and it is efficient so it can be used online. The

chapter follows a similar approach but utilizes VAE for classification and regression models. The main

benefit of such models is that they take into account both the input and output of the LEC, which enables the

detection of different types of OOD data present in CPS.

Another contribution of the chapter is the comprehensive evaluation using several datasets for classifica-

tion and regression tasks. We design experiments for various types of OOD data and use the same model

for OOD detection. The experimental results show the proposed approach can detect different types of OOD

data with a very small number of false alarms. The execution time is comparable with the sampling period of

the typical CPSs, which enables real-time detection.

The outline of this chapter is as follows. Section 4.2 formulates the problem of detection of OOD data

and discusses different types of OOD data in learning-enabled CPSs. Section 4.3 introduces the VAE for

classification and regression model and presents the detection algorithm based on this model. Section 4.4

shows the evaluation results, and Section 4.5 concludes the chapter.

4.2 Out-of-distribution Data in Learning-enabled Cyber-physical Systems

4.2.1 Formal Definition of Out-of-distribution Data

The chapter focuses on the detection of a variety of OOD data in learning-enabled CPSs. We first analyze the

causes of different OOD data and categorize them based on the underlying dataset shifts.

4.2.1.1 OOD data caused by covariate shift

Covariate shift is one of the most basic and common dataset shifts observed in real-world problems [111].

Suppose that an LEC f is trained with the dataset Dtrain. A typical assumption is that inputs x are IID drawn

from Ptrain(x). The LEC can make predictions for some y based on the conditional probability P(y|x) given

x. Covariate shift occurs when the distribution of the input, P(x) changes after training but the conditional

probability P(y|x) remains the same. Generalizing this definition, the OOD data caused by covariate shift can

be defined as the data where the input variable x is not sampled from the same distribution of the training

dataset Ptrain(x), while the underlying relationship between input and output P(y|x) remains unchanged.
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4.2.1.2 OOD data caused by label shift

Label shift describes the case where the distribution over output variable P(y) changes but the output-

conditional distribution, P(x|y) remains unchanged. OOD data caused by label shift can be defined as the

data where the output variable y is not sampled from the training distribution Ptrain(y) whereas the conditional

probability of x given y remains the same, i.e. Ptrain(x|y) = Ptest(x|y).

4.2.1.3 OOD data caused by concept shift

A concept shift is simply a contextual shift where the underlying relationship between input and output

changes while the distribution over the input is preserved [112]. Using the definition, for the OOD data

caused by concept shift, we assume that the input variable x is from the same distribution as the training

dataset Ptrain(x) while the relationship between input and output changes, i.e. Ptrain(y|x) ̸= Ptest(y|x).

4.2.1.4 OOD data caused by label concept shift

For the case of label concept shift, the distribution over the output stays the same, but the conditional prob-

ability of x given y changes. OOD data caused by label concept shift can be defined as the data where the

output variable y is sampled from the same distribution as the training dataset Ptrain(y), whereas the condi-

tional probability of x given y changes such that Ptrain(x|y) ̸= Ptest(x|y).

4.2.2 Examples of OOD Data

4.2.2.1 Classification

Consider the well-known digit recognition problem for the MNIST dataset [113]. The classification model is

trained on the MNIST dataset, which only contains black and white handwritten digits. However, if a colorful

handwritten digit or a handwritten digit with a different background is used as a test input, a classification

model is very likely to make erroneous predictions. In this case, the test images are not from the same

distribution as the training dataset. However, the classification results should be independent of the color or

the background of the digits, and therefore the underlying relationship P(y|x) should not change. Such test

examples can be defined as OOD data caused by covariate shift. Further, the classification model can be

influenced by OOD data caused by label shift, for example, when the probability distribution for the digit

class Ptrain(y) is not uniform or some classes of digits are not present in the training dataset.

OOD data caused by label concept shift arise in fault diagnosis and identification, where a classification

model is used to predict the type of fault based on sensor measurements. For example, consider the fault

diagnosis model for a gearbox [114] which aims at classifying the type of damage that may occur. Typically,

the model is trained using data obtained under specific load conditions and tested under similar conditions re-
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sulting in satisfying accuracy. However, if the model is tested under a higher load condition, the performance

will be degraded. In this case, although damage types in the test examples are still the same, the underlying

relationship P(x|y) changes due to additional load.

4.2.2.2 Regression

Covariate shifts occur in perception LECs used in autonomous vehicles. Consider, for example, an Advanced

Emergency Braking System (AEBS) for an automobile that is designed to detect obstacles in Chapter 3. In

this case, the perception LEC performs regression, and its performance can be degraded in the case of OOD

data caused by covariate shift which arises when the environmental conditions for the test data are different

from conditions considered during training. Such components may also be susceptible to OOD data caused

by label shift. Similar to the classification problem, it is typically assumed that the probability distribution

of the output, e.g., distance to the obstacle, Ptrain(y) is uniform. However, in real-life situations, unique

traffic patterns may impose a distribution, Ptest(y) that does not match this assumption. Further, it is usually

assumed that the vehicle types and conform to typical specifications (e.g., size and shape). However, such

specifications may change, for example, in response to autonomous vehicle technologies and the regression

model may not be able to correctly estimate the distance to a vehicle of type or size not used during training.

In this case, the conditional probability P(x|y) changes, and such data can be regarded as OOD data caused

by label concept shift. Additional examples and datasets relating to applications in industrial informatics are

evaluated in Section 4.4.

4.2.3 Problem Formulation

Consider an LEC f :X →Y that is well trained to perform classification or regression using a training dataset

Dtrain = {(xi,yi)}l
i=1, where each example pair (xi,yi) contains the input xi ∈ X and corresponding label

yi ∈ Y . During the system operation, the LEC receives a sequence of inputs {x′1, . . . ,x′t , . . .} one by one and

predicts the targets {y′1, . . . ,y′t , . . .}. Such models are deployed with the assumption that the training and test

examples are drawn from the same distribution. However, when the test data pair (x′t ,y
′
t) is not sampled from

the same distribution as the training dataset, the LEC f can become ineffective, make erroneous predictions,

and undermine the safety of the system. Therefore, it is crucial to compute a measure quantifying the degree

to which OOD data are present in the input sequence. OOD detection should consider all the various types of

OOD data that may be present. Further, online detection algorithms must be robust with a small number of

false alarms and computationally efficient so they can be executed in real time.
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4.3 Detection of Out-of-distribution Data in Learning-enabled Cyber-physical Systems

4.3.1 VAE for Classification and Regression

A Variational AutoEncoder (VAE) is a generative model trying to learn an underlying probability distribu-

tion over the high-dimensional input points. Comparing with an autoencoder, a VAE models a relationship

between the high-dimensional input data point and a low-dimensional latent representation in a probabilistic

manner, which improves the capacity of generating new data [100]. A VAE for regression model, which

aims to learn a conditional latent representation on a specific regression target variable, is presented in [115].

The model can be adapted for classification by conditioning the latent representation on a classification target

variable. Figure 4.1 shows the architecture of the VAE for classification and regression models. The predictor

module in the figure can be a standard classification or regression network.
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Figure 4.1: Variational autoencoder for classification and regression model. Note that ”Predictor” can be a
classification or regression network.

The core idea of the model is to condition the latent encodings z on the target variable c inferred by the

predictor, which performs classification or regression. Therefore, the latent distribution can be represented

by a conditional Gaussian distribution p(z|c) in lieu of p(z). Specifically, compared with the VAE, there are

two additional components: the predictor and the latent generator. The predictor employs a classification or

regression network q(c|x) to infer the target variable c, and the latent generator feeds the target variable c into

the latent space conditioning the latent distribution on the predicted variable. In the case of classification, the

target variable c is the one-hot vector of the predicted label, and in the case of regression, c is the regression

output.

The VAE for classification and regression model can be trained in two phases: the prediction phase and

the VAE phase. In the prediction phase, the predictor is trained to perform the prediction task regularizing

the distribution of the prediction variable c with the ground-truth prior p(c). The parameters of the predictor

network are fixed after the prediction phase. Then, in the VAE phase, the encoder, decoder, and latent
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generator are jointly trained using the loss function

L(θ ,φc,φz;x) =Ez∼qφz (z|x)[log pθ (x|z)]

−Ec∼qφc (c|x)[DKL(qφz(z|x)||p(z|c))].
(4.1)

Similar to a traditional VAE, the first term is used to enable the decoder to reconstruct the input from the latent

representation with a small reconstruction error. The second term aims to minimize the Kulback-Leibler (KL)

divergence between the approximate posterior and the prediction specific prior p(z|c).

In practice, the balance between these two terms should be carefully tuned to control the trade-off be-

tween the fidelity of reconstruction and quality of samples from the model [116]. Recently, a calibrated

decoder architecture called σ -VAE, which can automatically tune the trade-off and improve the quality of

the generated samples, is developed in [116], The idea of σ -VAE is to add a weighting parameter σ between

the reconstruction term and KL-divergence term. The parameter σ can be computed analytically and does

not require manual tuning. Implementation details can be found in [116]. This technique can also be used

with the proposed VAE for classification and regression models in a similar fashion by adding the weighting

parameter σ in the reconstruction term in Eq. (4.1).

4.3.2 Inductive Out-of-distribution Detection

Our approach is based on Inductive Conformal Anomaly Detection (ICAD), which requires a suitable Non-

Conformity Measure (NCM) defined to quantify how different a test example is relative to the training

dataset [63]. The VAE for classification and regression models are used to define the NCM. There are two

significant benefits of using such models. First, the approach can scale up to the high-dimensional inputs and

second, the models encode both input and output variables of the regression or classification tasks into the

latent representations, and consequently, can be used to detect different types of OOD data.

4.3.2.1 Nonconformity measures

A test example x and its predictive label y′ are encoded as z in the latent space of the VAE for classifica-

tion and regression model, and subsequently, the decoder portion generates a reconstructed example x̂ by

sampling. If the input-output pair (x,y′) is sampled from the same joint distribution of the training dataset

Ptrain(x,y), the test example x should be reconstructed with a relatively small reconstruction error. Therefore,

the reconstruction error, or the squared error between the test input x and its reconstructed example x̂, can be

used as an NCM

ARC(x) = ||x− x̂||2. (4.2)
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It is possible that some input features have rare or no contribution to the LEC prediction. Take an image

input as an example, the reconstruction-based NCM will result in a large nonconformity score when the

generative model has difficulty generating fine-granularity details of the original input. Therefore, the input

features should be treated differently based on their influence on the LEC output. Layer-wise Relevance

Propagation (LRP) is typically used as a tool for interpreting neural networks by identifying which input

features contribute most to the LEC predictions [95]. Considering an input x, by running a backward pass in

the predictor portion of the VAE for classification and regression model, LRP computes a relevance r, which

has the same size as the input x. In order to deal with the problem that different inputs will have different total

contributions, the relevance should be normalized by the sum of contributions for all features in the input.

Let’s define a function r = G(x) to represent the LRP algorithm computing a relevance map r for a given

input x. The NCM with LRP is computed by weighting the reconstruction error using the relevance map r

ARC-LRP(x) = ||r · (x− x̂)||2. (4.3)

An important property introduced by the VAE for classification and regression models is that the latent

representations are disentangled by the target variable since the prior is conditioned on the target variable.

Specifically, in the classification problem, the representations will be clustered by the target class. Therefore,

for a test example x and its predictive label y′, the distance of the representation z to its corresponding class

center cy′ can be defined as the distance-based NCM

Adist(x) = ||x− cy′ ||2, (4.4)

where the center cy′ can be computed as the mean of the representations of the training data with the class label

y′. Note that such distance-based NCM cannot be used for regression since the target variable is continuous.

4.3.2.2 Detection method

The method is divided into offline and online phases. During the offline phase, the training dataset Dtrain =

{(xi,yi)}l
i=1 is split into a proper training dataset Dproper = {(xi,yi)}m

i=1 and a calibration dataset Dcalibration =

{(xi,yi)}l
i=m+1. Then, we train a VAE for classification and regression model using the proper training set

Dproper. For each example x j : j ∈ {m+ 1, . . . , l} in the calibration set, the encoder portion of the model

approximates the posterior distribution of the latent space and samples a point z j from it. The nonconformity

score αΓ
j of this example can be computed by the NCMs defined earlier (Eq. (4.2), (4.3), and (4.4)). Specif-

ically, for the reconstruction-based NCMs ARC and ARC-LRP, the sampled point z j is used to reconstruct the
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input; for the distance-based NCMs Adist, the sampled point z j is directly used to compute the distance to the

cluster center. The precomputed nonconformity scores for data in the calibration set are sorted as {α j}l
j=m+1

for online detection.

During oneline detection, a sequence of test inputs (x′1, . . . ,x
′
t , . . .) arrive to the LEC one by one. Based on

the approach in Section 3.3, multiple examples are incorporated to improve the robustness of the detection.

For each test input x′t , N points {z′t,1, . . . ,z′t,N} are sampled from the learned posterior distribution in the latent

space. Then, for each generated point z′t,k, the nonconformity score α ′t,k can be computed using the same

NCM A used for calibration data. The p-value pt,k can be computed as the ratio of calibration nonconformity

scores that are at least as large as α ′t,k,

pt,k =
|{i = m+1, . . . , l}|αi ≥ α ′t,k|

l−m
.

If the test data x′t is sampled from a distribution similar to the distribution of the training dataset, most of the

values in this p-value set {pt,k}N
k=1 should be relatively larger than 0. However, if there are many small values

in the p-value set, the test example x′t is very likely to be OOD. A martingale can be used to test if there are

many small p-values in the set [69]

Mt =
∫ 1

0
Mε

t dε =
∫ 1

0

N

∏
k=1

ε pε−1
t,k dε.

If the test example x′t is OOD, the martingale value Mt will increase dramatically due to many small p-values

in the set. Further, as described in Section 3.3.2, a stateful CUSUM detector S can be used to generate alarms

when the martingale becomes consistently large. It should be noted that, if the input is not an example in a

time sequence, the stateful CUSUM detector should be omitted, and the martingale value can be used directly.

Algorithm 5 summarizes the proposed method.

4.4 Evaluation

In this section, we demonstrate the effectiveness of the approach using several datasets for classification and

regression. All experiments presented in this chapter are conducted on a 6-core Ryzen 5 desktop with a single

GTX 1080Ti GPU.

4.4.1 IoT Network Intrusion

4.4.1.1 Experimental setup

The number of Internet of Things (IoT) devices has increased dramatically, and IoT devices provide a large

surface for intruders to deploy malicious cyber-attacks. Intrusion detection in IoT networks is very important
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Algorithm 5 OOD data detection using VAE for classification and regression

Input: a training set Dtrain = {(xi,yi)}l
i=1; a test sequence (x′1, . . . ,x

′
t , . . .); number of calibration examples

l −m; number of examples N sampled from the posterior; threshold τ and parameter ω of CUSUM
detector

Output: boolean variable Anomt
Offline:

1: Split the training setDtrain = {(xi,yi)}l
i=1 into the proper training setDproper = {(xi,yi)}m

i=1 and calibration
set Dcalibration = {(xi,yi)}l

i=m+1
2: Train a VAE for classification and regression f using the proper training set Dproper
3: for j = m+1 to l do
4: Sample z j using the trained model
5: α j = A(x j)
6: end for

Online:
7: for t = 1,2, . . . do
8: Compute the relevance map r′t = G(x′t ; f )
9: for k = 1 to N do

10: Generate x̂′t,k using the trained model
11: α ′t,k = A(x′t)

12: pt,k =
|{i=m+1,...,l}|αi≥α ′t,k|

l−m
13: end for
14: Mt =

∫ 1
0 ∏

N
k=1 ε pε−1

t,k dε
15: if t = 1 then
16: St = 0
17: else
18: St = max(0,St−1 +Mt−1−δ )
19: end if
20: Anomt ← St > τ
21: end for

for mitigating such attacks. We use two IoT intrusion datasets, N-BaIoT [117] and IoTID20 [118], to evaluate

the proposed approach. N-BaIoT is a multivariate sequential dataset collected from 9 commercial IoT devices

using two of the most common IoT botnet families: BASHLITE and Mirai. Our experiments focus on the

data collected on a WiFi video doorbell. The dataset has 115 features extracted from the network packets,

including packet size, packet count, etc. IoTID20 is another IoT botnet dataset collected from 2 typical

IoT devices – a smart speaker and a WiFi camera. The dataset has 76 features extracted from raw network

packet files. Compared with N-BaIoT, IoTID20 has more types of IoT attacks, including 5 categories and

9 subcategories. However, the data in IoTID20 are not sequential. We use the entire IoTID20 dataset in

our experiment. In the following, we design and conduct different experiments using these two datasets to

validate the effectiveness of our approach for various types of OOD data.
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4.4.1.2 Evaluation metrics

We use different evaluation metrics for non-sequential and sequential data. For non-sequential data, the

Area Under Receiver Operating Characteristic (AUROC) curve is used to assess the detection performance.

The ROC curve plots the true positive rate against the false positive rate by varying the detection threshold.

The AUROC is a threshold-free metric and is considered as the evaluation metric for OOD detection. The

worst value of AUROC is 0.5 yielded by an uninformative classifier with a random guess. The best value of

AUROC is 1.0, implying that the nonconformity scores for all the OOD data are greater than the score for the

in-distribution data. For sequential data, the number of false positives and false negatives are used to evaluate

the performance. We run the detection algorithm against multiple in-distribution and OOD sequences. We

consider in-distribution sequences as false positives if alarms are raised and OOD sequences as false negatives

if no alarm is raised.

4.4.1.3 Novelty detection for unknown classes

Novelty detection for unknown classes is a representative example of OOD data caused by label shift, since

the label variable y is not sampled from the distribution of the training dataset, but the output-conditional

distribution P(x|y) remains the same. In this experiment, the training dataset includes not only the normal

data but also some types of intrusion data. The objective is to detect the unknown types of intrusion data.

Specifically, for the experiment using the N-BaIoT dataset, the training dataset consists of the normal data

and data under attack by the BASHLITE botnet, and the data under attack by Mirai are considered as the

OOD data caused by label shift. In the IoTID20 dataset, normal data and two categories of intrusion data

(DoS and Mirai) are included in the training dataset, and the rest two categories (MITM and Scan) are the

unknown classes. We note that because this experiment is deliberately designed to evaluate the approach for

detecting OOD data caused by label shift, there is no baseline to compare in the literature.

We train both VAE for classification and σ -VAE for classification models. The VAE architecture is

similar to the autoencoder architecture in [117]. For the N-BaIoT dataset, we select 25 normal sequences,

25 sequences attacked by BASHLITE, and 50 sequences attacked by Mirai as the test sequences. We report

the False positives and False negatives by considering different numbers of generated examples N, CUSUM

detection parameters ω and τ , and learning models (VAE and σ -VAE for classification) in Table 4.1. We use

the reconstruction-based NCMs and distance-based NCMs for both learning models. The results show that

all four different methods can detect novelty for unknown classes with zero false alarms.

For the IoTID20 dataset, the AUROC is reported in Table 4.2 for different learning models and different

NCMs. For reconstruction-based NCMs, the method using σ -VAE for classification has a larger AUROC

than using VAE for classification showing the σ -VAE for classification model can improve the reconstruction
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quality, and further improve the detection performance. As for the distance-based NCMs, it is interesting that

the method using σ -VAE for classification model has worse performance than one using VAE for classifica-

tion. This is because that the disentanglement ability of σ -VAE for classification model is not as good as VAE

for classification model since the KL divergence loss in σ VAE for classification model is greater than the

one in VAE for classification model during training. Further, we also report the AUROC based on generating

a single example from the latent space, and the evaluation results demonstrate the performance improvement

by incorporating multiple examples.

4.4.1.4 Intrusion detection

In order to compare our approach with existing work, we consider intrusion detection without classifying

the type of attack. A deep autoencoder is employed to detect malicious intrusions for the N-BaIoT dataset

in [117]. In this experiment, only the normal data are used for training . The intrusion detection experiment

can be viewed as a case for OOD data caused by label shift, where only the normal class is included in the

training dataset. It should be noted that the VAE for classification model degrades to a VAE model because

only the normal data is included in the training dataset. For the N-BaIoT dataset, we select 50 normal

sequences, 25 sequences attacked by BASHLITE, and 25 sequences attacked by Mirai as the test sequences.

We report the false positives and false negatives by considering different numbers of generated examples N,

CUSUM detection parameters ω and τ , NCMs, and learning models in Table 4.1. From the results, both

methods can also achieve the same zero false alarms for detecting intrusions as the deep autoencoder method

in [117]. In practice, as more data are collected, more categories of labeled intrusion data will be present in

the training dataset and a VAE for classification can be used .

Table 4.1: False alarms for detecting OOD data in N-BaIoT dataset.

Types NCM N,ω,τ False
positives

False
negatives

Novelty
detection

ARC
5,2,50 0/50 0/50

10,4,40 0/50 0/50

Aσ ,RC
5,2,50 0/50 0/50

10,4,40 0/50 0/50

Adist
5,2,50 0/50 0/50

10,4,40 0/50 0/50

Aσ ,dist
5,2,50 0/50 0/50

10,4,40 0/50 0/50

Intrusion
detection

ARC
5,2,50 0/50 0/50

10,4,40 0/50 0/50

Aσ ,RC
5,2,50 0/50 0/50

10,4,40 0/50 0/50

For the IoTID20 dataset, we report the AUROC by considering different learning models in Table 4.2.
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The results show that the performance of the methods using σ -VAE for classification is better than those

using VAE for classification, reflecting again that the improvement in quality of generated examples can also

enhance the detection performance.

Table 4.2: AURO for detecting OOD data in IoTID20 dataset.
Types NCM Single example Multiple examples

Novelty
detection

ARC 0.797 0.810
Aσ ,RC 0.881 0.881
Adist 0.872 0.872

Aσ ,dist 0.803 0.801
Intrusion
detection

ARC 0.768 0.802
Aσ ,RC 0.825 0.835

4.4.2 Gearbox Fault Detection

We evaluate the performance of detecting OOD data caused by label concept shift using a gearbox fault

detection dataset [114]. The objective is to classify the type of damage that may occur on a gearbox. The

state of the gearbox is measured using accelerometers attached at various locations. The gearbox can operate

under two different loading conditions (low- and high-load) at five different constant shaft speeds. Normal

behavior and five fault types are simulated for each shaft speed and loading condition. For each case which is

the combination of fault type, shaft speed, and load condition, 4 seconds of data are collected at a sampling

rate of 66.67kHz. In this experiment, we consider the output shaft vibration data. The dataset is divided

into two main subsets: low-load and high-load. For each subset, regardless of the shaft speed, the dataset

is aggregated with respect to the type of fault. The data is converted into the frequency domain using Short

Time Fourier Transform (STFT). Our experiment uses the subset from the low-load (including all normal and

fault data) as the training dataset, and a VAE for classification model is trained to perform fault classification

and OOD data detection. The data from the high-load subset are regarded as the OOD data. The distribution

over output P(y) stays the same, but the conditional probability P(x|y) changes. This experiment is designed

to evaluate the approach for OOD detection caused by label concept shift.

There are 4 fully-connected layers with 450/300/200/150 units in the encoder portion of VAE for classi-

fication model, and the decoder has the symmetric architecture of encoder. The evaluation results are shown

in Table 4.3. The classification accuracy for In-Distribution (ID) data is much more higher than Out-Of-

Distribution (OOD) data since the conditional probability changes. The results reveal that the method using

ARC does not have a promising performance as the method using Adist.
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Table 4.3: Classification accuracy and AUROC for detecting OOD data in gearbox dataset.
NCM Single example Multiple examples Accuracy(ID/OOD)
ARC 0.573 0.581 99.1% / 60.5%
Adist 0.690 0.698

4.4.3 MNIST Dataset

In this subsection, we evaluate our approach on the well-known digit recognition dataset MNIST [113], to

demonstrate effectiveness of our approach on an image dataset. First, we train a VAE for classification

model on MNIST dataset to evaluate the approach in detecting OOD data caused by covariate shift. The

encoder and latent generator portions of the model are listed in the Table 4.4. The classifier has a similar

architecture with the encoder but the last layer is a fully-connected layer with 10 units, and the decoder is

mirrored from the encoder. For the test data, the colorful MNIST [119] and SVHN [120] are used as the OOD

dataset. These two datasets have the same labels of ten digits as the MNIST dataset, however, the inputs are

from different distributions: for colorful MNIST, the inputs are the MNIST images synthesized with colorful

backgrounds; for SVHN, the inputs are the digit images from street view house numbers. The data from these

two datasets can be regarded as the OOD data caused by covariate shift since the input variable is sampled

from a distribution different than the training dataset, but the conditional probability of y given x stays the

same. We report the AUROC of the detection task in Table 4.5 using different NCMs. The AUROC is almost

close to 1.0, which demonstrates that the approach can detect the OOD data caused by covariate shift.

Table 4.4: VAE for classification architecture in MNIST.

Encoder

Conv 32× (4×4) (stride 2), Batch norm, LeakyReLU
Conv 64× (4×4) (stride 2), Batch norm, LeakyReLU
Conv 128× (4×4) (stride 2), Batch norm, LeakyReLU
Conv 256× (4×4) (stride 2), Batch norm, LeakyReLU
FC 512, Batch norm, LeakyReLU
FC 20 (mean) || FC 20, Sigmoid (Std. dev.)

Latent
generator FC 20

We also evaluate novelty detection for unknown classes using the MNIST dataset, which is a typical

example of OOD data caused by label shift. In our experiment, following the experimental settings in [121],

we randomly sample 6 classes in MNIST as known classes, and the rest 4 classes are unknowns. The training

dataset only contains the 6 known classes, but the test dataset contains all 10 classes. The data from unknown

classes can be viewed as the OOD data caused by label shift. The AUROC using different NCMs are reported

in Table 4.5. The results also reveal that the reconstruction-based NCM using σ -VAE for classification has

a better performance than the NCM using VAE for classification. The distance-based NCM using VAE
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for classificatin model has a comparable performance with the reconstruction-based NCM using σ -VAE

for classification model. Although the performance of our approach is not as good as the state-of-the-art

method [121](AUROC: 0.994), we use a more shallow neural network allowing for online detection.

Moreover, we also perform the ablation analysis by directly using the VAE-based method introduced in

Chapter 3 to detect the OOD examples. The results of using VAE-based method are reported in Table 4.5

denoted by AVAE. Although there is no difference between the methods using VAE and VAE for classification

in the detection of OOD data caused by covariate shift, as for the OOD data caused by label shift, the novel

method using VAE for classification obviously reveals better performance than VAE-based method. This is

because the VAE for classification take into account not only the input but also the output.

Table 4.5: AUROC for detecting OOD data in MNIST dataset.
Types NCM Single example Multiple examples

Covariate shift
ARC 1.000 1.000

Aσ ,RC 1.000 1.000
AVAE 1.000 1.000

Label shift

ARC 0.852 0.878
Aσ ,RC 0.879 0.879
Adist 0.874 0.870

Aσ ,dist 0.803 0.805
AVAE 0.704 0.723

4.4.4 Advanced Emergency Braking System

We also evaluate the approach using a perception LEC of the Advanced Emergency Braking System (AEBS),

which attempts to predict the distance to the nearest front obstacle and apply an appropriate brake force to

safely stop the host vehicle. We implement the AEBS in an open-source simulator for autonomous driving

research – CARLA [103]. The perception LEC is a typical regression LEC, whose objective is to estimate the

distance to the approaching obstacle using the raw images captured by an on-board camera. In order to collect

the training dataset, we control the precipitation parameter, available in CARLA, which is randomly sampled

between 0 to 20. We totally collect 19900 images, where P(y) is nearly uniformly distributed between 0m

to 50m so that the training dataset is almost balanced. Then, we randomly split the training dataset into a

proper training set (15920 images) and a calibration set (3980 images). We plot the histogram of ground-truth

distance for the training data set in Figure 4.2. The histogram shows that there is nearly equal amount of data

corresponding to each interval of the distance range under consideration We should note that the probability

distribution of the ground-truth distance, Ptrain(y) is nearly uniformly distributed in the range [0m,50m] so

that the training dataset is almost balanced.

We implement the VAE for regression model using a convolutional neural network, whose encoder and
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Figure 4.2: Histogram of ground-truth distance in training dataset.

latent generator modules are listed in Table 4.6. The regressor has the almost same architecture as encoder

but two additional fully-connected layers with 256/1 units. The decoder has symmetric architecture of en-

coder. The regressor is successfully trained with satisfying training and test errors after 250-epoch training.

Additionally, we plot the low-dimensional representations of the latent encodings in in Figure 4.3 by apply-

ing t-distributed Stochastic Neighbor Embedding (t-SNE) [122]. The distance-related dimensions are well

disentangled from the latent space by using VAE for regression model.
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Figure 4.3: 2-dimensional latent representations estimated by VAE for regression.

The nonconformity scores for data in the calibration set are precomputed and sorted for the online detec-

tion. For each test example during the online phase, the VAE for regression model generates N = 10 examples

used for detection. We illustrate our approach using an in-distribution episode firstly and plot the absolute

prediction error between the ground-truth and predicted distance to the obstacle, the p-value, and the output

of the detector S computed using the logarithm of martingale Mt and ω = 4 in Figure 4.4. In this experiment,
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Table 4.6: VAE for regression architecture in AEBS.

Encoder

Conv 32× (5×5) (stride 2), Batch norm, ELU
Conv 64× (5×5) (stride 2), Batch norm, ELU
Conv 128× (5×5) (stride 2), Batch norm, ELU
Conv 256× (5×5) (stride 2), Batch norm, ELU
FC 1568, Batch norm, ELU
FC 1024 (mean) || FC 1024, Sigmoid (Std. dev.)

Latent
generator

FC 256, Batch norm, ELU
FC 1024

we use reconstruction-based nonconformity measures with and without LRP in our detection algorithm, and

both results are plotted for comparing, which are denoted by (ARC) and (ARC-LRP) respectively in the plots.

The results of the in-distribution episode show that, for nonconformity measure ARC, the p-values are

almost much greater than 0, and thus, the detector stays in a low value indicating there is no OOD data

presented in the sequence. As for the nonconformity measure ARC-LRP the p-values are far away from 0 at

first, but decrease at the end of the episode. The reason for this phenomenon is, near the end of the episode,

the lead vehicle occupies more pixels in the image, more pixels are very relevant to the LEC output, and the

nonconformity scores are computed by taking more pixels into account. Although the p-values decrease a

little, the detector S is still smaller than the threshold 40 indicating there is no OOD data presented during the

episode.
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Figure 4.4: An episode with in-distribution data in AEBS (detector parameter: N = 10, ω = 4, τ = 40).
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In AEBS, the precipitation parameter can be controlled to enforce the input of test examples different from

the training dataset. Specifically, the precipitation parameter in the training dataset is randomly sampled from

[0,20]; however in testing, the precipitation parameter is randomly sampled from [30,100].

An OOD episode caused by covariate shift is shown in Figure 4.5. The error of the perception LEC is

palpably larger than the error for in-distribution data and it can exceed 15m. The p-values come down to

almost 0 and the detector indicates the OOD data are present in the sequence. We evaluate the approach

using the 50 in-distribution episodes and 50 OOD episodes caused by covariate shift. We report the false

positives and false negatives for detection OOD data caused by covariate shift using two different NCMs

(ARC and ARC-LRP) in Table 4.7. From the results, we can see that the approach can detect OOD data caused

by covariate shift with few false alarms.
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Figure 4.5: An episode with OOD data caused by covariate shift in AEBS (detector parameter: N = 10,
ω = 4, τ = 40).

For OOD data caused by label shift, all data ranging from 15m to 45m are excluded from the training

dataset, which is illustrated in Figure 4.6. We retrain the VAE for regression model and report the false alarms

for detection such type of OOD data in Table 3.1, which demonstrate the effectiveness of the approach. The

method using NCM with LRP has fewer false alarms than the method without LRP, which validates that the

LRP algorithm can improve the robustness of the detection. An OOD episode caused by label shift is shown

in Figure 4.7, which contains the data between 0m to 50m. In this case, the neural network does not work
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Table 4.7: False alarms for detecting OOD data in AEBS.

Types NCM N,ω,τ False
positives

False
negatives

Covariate shift
ARC

5,2,50 0/50 0/50
10,4,40 0/50 0/50

ARC-LRP
5,2,50 4/50 0/50

10,4,40 3/50 0/50

Label shift
ARC

5,2,50 N/A 13/50
10,4,40 11/50

ARC-LRP
5,2,50 N/A 3/50

10,4,40 2/50

Label concept
shift

ARC
5,2,50 0/50 0/50

10,4,40 0/50 0/50

ARC-LRP
5,2,50 4/50 0/50

10,4,40 3/50 0/50

properly, and the results show the neural network predicts the outputs with large errors. The p-values come

to nearly zero and the detector grows up, which indicates the OOD data are present during the episode.
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Figure 4.6: Histogram of ground-truth distance of training dataset that excludes data ranging from 15m to
45m.

We also evaluate the approach for detecting OOD data caused by label concept shift, and a different size of

lead vehicle which never appeared is used in the training dataset. For testing, we collect 50 episodes doubling

the size of the leading vehicle, and one episode is illustrated in Figure 4.8. It can be viewed as OOD data

caused by label concept shift because the condition probability P(x|y) changes. It is reasonable to see that

the predicted distance is much smaller than the ground-truth distance at the beginning of the episode since

the double-size car occupies more pixels in the image than the normal-size car. The p-value becomes small

and the detector indicates the OOD data are present in the test episode. From the experiment, we observe

that the method with LRP has a shorter detection delay compared to the method without LRP since the LRP

algorithm makes the NCM focusing on features contributing to the LEC output. We report the false alarms

for detecting such OOD data in Table 3.1.
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Figure 4.7: An episode with OOD data caused by label shift in AEBS (detector parameter: N = 10, ω = 4,
τ = 40).

4.4.5 Autonomous Vehicle Seasonal Dataset

4.4.5.1 Experimental setup

We also evaluate our approach in a real-world Autonomous Vehicle Seasonal Dataset (AVSD) provided by

Ford [104]. The dataset is collected under the seasonal variation in weather, lighting, construction, and

traffic conditions experienced in dynamic urban environments [104], and provides the raw images captured

by the on-board camera and ground-truth position and orientation of the host vehicle in a global frame.

The perception task is to predict the heading changes of the host vehicle using the images captured by the

camera. The dataset (V1) collected in cloudy weather and freeway, overpass, and bridge drive scenarios is

selected as the training dataset. For using the dataset for training, we preprocess the data to compute heading

changes of the vehicle by converting the quaternions to Euler angles and calculating the yaw difference and

we synchronize the input images with the heading changes. Besides, the training dataset is randomly split

into 3556 images for the proper training set and 889 for the calibration set. The proper training dataset is

used to train the VAE for regression model. In the VAE for regression model, the regressor part is a CNN

whose architecture is similar to the NVIDIA end-to-end self-driving controller [108], and the VAE and latent

generator is the same as architectures we used in AEBS. The model is trained by 250(η = 10−4)+100(η =

10−5) epochs, and mean absolute error for training and testing are 0.012° and 0.016° respectively.
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Figure 4.8: An episode with OOD data caused by label concept shift in AEBS (detector parameter: N = 10,
ω = 4, τ = 40).

4.4.5.2 Experimental Results

For testing, we evaluate our approach using 50 episodes which are from the same distribution as the training

dataset, and 50 episodes which are collected in sunny weather and residential driving scenario, which can

be regarded as the OOD data caused by covariate shift. We illustrate our approach using two episodes and

plot the prediction errors of the heading change, the p-values, and detector output of the reconstruction-

nonconformity measures with and without the LRP algorithm. The results are shown in Figure 4.9 and

Figure 4.10 respectively.

For the in-distribution episode, the prediction errors are very small, p-values are randomly distributed

between 0 and 1, and the detector indicates there are no dataset shifts happening during the episode. In the

covariate shift episode, the predicted errors are greater than the in-distribution episode. The p-values are

small and the martingales grow very large showing the dataset shift happens in the test episode. We also

report the number of false alarms by considering different values of N and detector parameters σ and τ in

Table 4.8. From the results, the number of false alarms is zero.
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Figure 4.9: An episode with in-distribution data in AVSD (detector parameter: N = 10, ω = 10, τ = 14).

Table 4.8: False alarms for detecting OOD data caused by covariate shift in AVSD.

NCM
Parameters

(N,ω,τ)/(N,τ) False positive False negative

ARC

5,3,36 0/50 1/50
10,10,14 0/50 0/50
20,10,235 0/50 0/50

ARC-LRP

5,3,36 0/50 1/50
10,10,14 0/50 0/50
20,10,235 0/50 0/50

4.4.6 Computational Efficiency

In order to characterize the real-time nature of our detection approach, we consider the AEBS example and

we measure the execution time in one episode using different NCMs. We plot the results in the boxplot in

Fig 4.11. From the plot we can observe that the execution time of the method using LRP is slightly longer

than that of the method without LRP due to the LRP computations. Further, the execution time is shorter than

the sampling period of AEBS, 50 ms, and therefore the approach is appropriate for real-time OOD detection.

Note that the number of the examples generated from the VAE for regression model is fixed at 10 when
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Figure 4.10: An episode with OOD data caused by covariate shift in AVSD (detector parameter: N = 10,
ω = 10, τ = 14).

measuring these execution times. As the number of N increases, the execution time will also increase.
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Figure 4.11: Execution times of proposed method.
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4.5 Conclusion

In this chapter, we analyze the causes for the OOD data, and categorize them into four different types. Focus-

ing on such OOD, we propose a detection approach based on inductive conformal anomaly detection which

utilizes VAE for classification and regression models to compute the nonconformity measures. The main ad-

vantage of the proposed method is that it takes both inputs and outputs into consideration for detecting various

types of OOD data. Multiple experiments are designed and conducted on different datasets for both classifi-

cation and regression tasks. The experimental results demonstrate that the approach can detect different types

of OOD data with small false alarms. Further, the execution time of the method is very small enabling real-

time detection. A promising direction to improve the performance of the method is to incorporate attention

mechanisms into VAE models.
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CHAPTER 5

Out-of-distribution Detection using Adversarial Autoencoder 1

5.1 Introduction

Over the past decade, machine learning components, such as Deep Neural Networks (DNNs), have made

remarkable achievements, resulting in state-of-the-art performance in various tasks, especially in image clas-

sification systems [123; 124]. Nevertheless, there are still several challenges restricting the deployment of

machine learning components to safety-critical real-world systems. Machine learning models are built upon

an underlying assumption that the training and test data are sampled from the same distribution. In a real-

world system, however, even if a machine learning component is well-trained over an extensive training

dataset, Out-Of-Distribution (OOD) data are still inevitable during testing, and they may cause the model

to make erroneous predictions and degrade the performance considerably. Hence, detection of OOD data is

significant for the safety of machine learning components. When OOD data are fed into the predictive model,

the detector can raise alarms for human intervention or redesign of the model.

Although there are many studies on OOD detection in machine learning components, especially for clas-

sification, the manifestations of OOD data are still unexplored. OOD detection methods in the literature [7;

125] attempt to determine whether an input example is from the same distribution as the training dataset,

which only detects the change in the distribution of the input variable. Another research direction is novelty

detection for unknown classes [86; 126]. The novelties from unknown classes can be regarded as another

type of OOD data, where the change in the distribution of the output variable is also observed. A related

research topic to OOD data is dataset shift, which occurs when the joint distribution of the input and output

variables differ between the training and testing phases [110]. However, there is still a specific difference

between dataset shift and OOD data: dataset shift focuses on two distributions – the distributions of the

training dataset and test dataset; in contrast, the OOD data focuses on the distribution of the training dataset

and a single test example. In Chapter 4, the OOD data are categorized into four types: OOD data caused by

covariate shift, label shift, concept shift, and label concept shift. In this chapter, we follow these definitions

and put special focus on the detection of OOD data in machine learning components used for classification.

In order to efficiently detect different types of OOD data in machine learning components, we propose

the inductive conformal out-of-distribution detection, which is based on the Inductive Conformal Anomaly

Detection (ICAD) framework [63]. The core of the ICAD method is the definition of a nonconformity mea-

1This chapter is adapted with permission from [F. Cai, A. Ozdagli, N. Potteiger, and X. Koutsoukos, “Inductive conformal out-of-
distribution detection based on adversarial autoencoder,” in IEEE International Conference on Omni-Layer Intelligent Systems (COINS),
August 2021.]
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sure, which is a function measuring the dissimilarity between a test example and the training dataset. Our

approach utilizes a variant of an Adversarial Autoencoder (AAE) [127] to define the nonconformity measure,

which can disentangle the label information from the latent representation by estimating a class variable in

addition to the latent representation. By using such an architecture, the joint distribution of the input and out-

put variables on the training dataset can be represented. Therefore, both the input and output of the machine

learning component can be taken into consideration for OOD detection.

Moreover, the detection method using a single example may result in a large number of false alarms. The

robustness of the detector can be improved by incorporating multiple examples into the detection algorithm

as Chapter 3. Our method follows this idea and employs an AAE to generate multiple examples for robust

detection. Although multiple examples are considered, our approach focuses on comparing a single test

example with the training distribution nonetheless. We also design two different nonconformity measures,

quantifying the degree to which the test example is not sampled from the same distribution as the training

dataset. We conduct extensive experiments on several datasets to evaluate our approach. The results show

that our approach can efficiently detect different types of OOD data and can be used for online detection.

The rest of this chapter is organized as follows: Section 5.2 formulates the problem of OOD detection

in machine learning components for classification. Section 5.3 describes our proposed approach – inductive

conformal OOD detection. Section 5.4 utilizes multiple datasets to demonstrate our detection method, and

Section 5.5 provides the concluding remarks for this chapter.

5.2 Out-of-distribution Detection in Machine Learning Components for Classification

In this section, we formulate the OOD detection problem in machine learning components for classification.

Since the categorization of the OOD data has already been introduced in Section 4.2.1, we will not repeat it

here.

5.2.1 Problem Formulation

Consider a machine learning component f for a classification problem, which is well-trained using a set of

labeled samples Dtrain = {(xi,yi)}l
i=1, where each example (xi,yi) consists of the input xi ∈ X and corre-

sponding label yi ∈ Y , and it is sampled from a joint distribution Ptrain(x,y). During the system operation, a

test example xl+1 is consumed by the component to estimate a predictive class y′l+1. The implicit assumption

for the effectiveness of machine learning techniques is that the test example pair (xl+1,y′l+1) is sampled from

the same joint distribution of the training dataset Ptrain(x,y). However, the training dataset Dtrain = {(xi,yi)}l
i=1

is necessarily incomplete, and therefore, OOD data are commonly present. The machine learning component

f may become ineffective due to the OOD data and make predictions with large errors. In this case, it is
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desirable to raise alarms or retrain the model, and therefore, detection of OOD data is of importance for the

safety of the machine learning component.

The detection must be performed efficiently and preferably online, which means that the execution time

should be comparable to the execution time of the machine learning component. It is very challenging because

machine learning components are increasingly used for tasks with high-dimensional data.

5.3 Adversarial Autoencoder and Out-of-distribution Detection

In this section, we introduce inductive conformal out-of-distribution detection, which is based on a variant of

an Adversarial Autoencoder (AAE) and the Inductive Conformal Anomaly Detection (ICAD) framework.

5.3.1 Adversarial Autoencoder

An AAE is a generative model which is trained in an adversarial manner to force the aggregated posterior

of the latent coding space of the autoencoder to match an arbitrary known distribution [127]. Specifically,

assuming x is the input and z is the low-dimensional latent representation, a basic AAE model consists of an

encoder (generator in adversarial network) G(x) trying to encode the input into the low-dimensional latent

representation, a decoder De(z) trying to reconstruct the original input data from the encodings, and a dis-

criminator D(z) trying to identify the hidden samples z generated by the generator or sampled from the true

prior. The whole architecture is trained jointly in two phases: the reconstruction phase and regularization

phase. In the reconstruction phase, the encoder G(x) and decoder De(z) are updated to minimize the recon-

struction error. In the regularization phase, the discriminator D(z) is trained to distinguish the true samples

(sampled from the prior distribution p(z)) from the generated samples (sampled from the posterior distribu-

tion q(z|x)), while the generator G(x) is trained to deceive the discriminator D(z) by outputting samples that

closely resemble data sampled from the prior distribution p(z).

In order to disentangle the label information from the latent representation, a class variable y can be

predicted by the encoder G(x) in addition to the latent variable z, and the one-hot vector of the predicted class

is provided to the decoder De(y,z) to generate class-conditioned output (Figure 4.1). This architecture can be

regarded as a supervised variant of a semi-supervised AAE introduced in [127]. A supervised classification

phase is performed after the reconstruction and regularization phases, whose objective is to minimize the

cross-entropy cost between the target distribution p(y) and the approximation of the target distribution q(y|x).

5.3.2 Inductive Conformal Out-of-distribution Detection

The task of anomaly detection is to determine whether the test example conforms to the normal data. In-

ductive Conformal Anomaly Detection (ICAD) is an anomaly detection framework with the property of
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Figure 5.1: A variant of the adversarial autoencoder model.

well-calibrated false alarms [63]. The ICAD method is based on a definition of a nonconformity measure,

which is a function measuring the dissimilarity between a test example and the training dataset. Recently, in

order to enable online detection for high-dimensional data, learning models are trained to represent the dis-

tribution of the input variable of the training dataset and are utilized for the computation of a nonconformity

measure [128]. However, nonconformity measures considering only the input variable may not be sufficient

for the detection of some specific types of OOD data because the output variable can also lead the input and

output pair out of the joint distribution of the training dataset. The variant of AAE can encode a label variable

in addition to a latent variable, and consequently, both input and output can be represented in such a model.

In the following, we first introduce two different nonconformity measures based on AAE. Subsequently, we

describe the inductive conformal OOD detection method based on these nonconformity measures.

5.3.2.1 Nonconformity measures

For a test example x, the encoder portion of the AAE represents x and its predictive label y′ in a latent space,

and the decoder portion generates a new example x̂ by sampling from the encodings. If x and its predictive

label y′ are from the same joint distribution of the training dataset, the example x should be reconstructed with

a relatively small reconstruction error. Therefore, the reconstruction error between the input x and generated

output x̂ can be used as the reconstruction-based nonconformity measure Arc defined as

Arc = ||x− x̂||2. (5.1)

The reconstruction-based nonconformity measure treats all features of the input equally. However, a
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relatively small part of the features in the input may have a significant effect on the final prediction. Therefore,

it is not reasonable to treat all input features equally when they contribute to the output of the predictive

model differently. A novel nonconformity measure based on saliency maps is introduced to compensate

for such a defect. A saliency map algorithm aims to quantify the contributions of the input features to the

predictive result of a machine learning model [92]. Specifically, we utilize the gradient-based saliency map

algorithm [92]. It generates the saliency map by computing the derivative of the SoftMax score Sy of class y

with respect to the input x at a given point x0

w =
∂Sy

∂x
|x0 .

The derivative w reflects the influence of input features on the final prediction and is used to define the

saliency-based nonconformity measure by weighting the reconstruction error as

Asaliency = ||w · (x− x̂)||2. (5.2)

The saliency map w is computed using the portion used for the classification task in the encoder of the AAE,

and the reconstructed output x̂ is also generated by the AAE.

5.3.2.2 Detection method

Given a test input xl+1 and its predictive label y′l+1, the OOD detection method aims to determine whether

the test input-prediction pair (xl+1,y′l+1) is sampled from the same joint distribution of the training dataset

Dtrain = {(xi,yi)}l
i=1. The proposed method is based on the framework of ICAD, and therefore, the detection

algorithm is divided into offline and online phases. During the offline phase, the training datasetDtrain is split

into two sets: a proper training set Dproper = {(xi,yi)}m
i=1 and a calibration set Dcalibration = {(xi,yi)}l

i=m+1.

An AAE F is trained over a proper training setDproper for the computation of nonconformity measures. Let A

be either nonconformity measure function defined before. After that, for each data x j, j = m+1, . . . , l in the

calibration set, a new example x̂ j is generated using the trained AAE F , and its corresponding nonconformity

score αΓ
j is computed according to the nonconformity measure A. In order to reduce the time complexity of

the p-value computation during the online phase, nonconformity scores of the calibration data are sorted and

stored as {α j}l
j=m+1.

At the online detection stage, given the test example xl+1, in order to improve the robustness of the

detection, N examples {x̂l+1,k}N
k=1 are generated from the AAE. For each generated example x̂l+1,k, its non-

conformity score αl+1,k can be computed using the same nonconformity measure A as the calibration set.
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Subsequently, two different techniques can be applied to aggregate these N nonconformity scores for detec-

tion.

One option is to compute the expected nonconformity score ᾱl+1 of N nonconformity scores, and the

p-value pl+1 can be computed as the ratio of calibration nonconformity scores that are at least as large as

ᾱl+1:

pl+1 =
|{i = m+1, . . . , l}|αi ≥ ᾱl+1|

l−m
. (5.3)

A smaller p-value reflects an unusual test example with respect to the training examples. If the p-value pl+1

is smaller than a threshold ε , this test example will be classified as an OOD instance.

Additionally, we can use a martingale test [69; 128] for N nonconformity scores to detect OOD data.

For each nonconformity score of a generated example αl+1,k, the corresponding p-value pl+1,k is calculated

using Eq. (5.3). Then, a simple mixture martingale [69] is applied, which is defined as

Ml+1 =
∫ 1

0

N

∏
k=1

ε pε−1
l+1,kdε. (5.4)

Such martingale value will grow only if there are many small p-values in {pl+1,k}N
k=1, and the detector will

raise an alarm when the martingale value Ml+1 is greater than a predefined threshold τ . The martingale test is

expected to have a better performance than the expected p-value of nonconformity scores since it can enlarge

the nonconformity gap between in-distribution and OOD instances.

The whole procedure of the detection algorithm is summarized in Algorithm 6.

5.4 Evaluation

To demonstrate the effectiveness of the proposed approach, we conduct extensive experiments for the detec-

tion of different types of OOD data using several datasets. In this section, we describe the implementation

details first. Then, we describe the experimental setup and present evaluation results for three different types

of OOD. Finally, we measure and report the execution time of the proposed method.

5.4.1 Experiment Implementation

5.4.1.1 Neural network architecture

The AAE is trained to perform both classification and detection tasks. For different types of inputs, we

use different architectures of the AAE. For the image input (Experiment 1-2), in order to allow for online

detection, we implement the AAE with a relatively shallow convolutional network: the encoder contains

three convolutional layers and one fully connected layer. The decoder has symmetric one fully connected

layer and three deconvolutional layers. Furthermore, three fully connected layers form the discriminator. For
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Algorithm 6 Inductive Conformal Out-of-distribution Detection using Adversarial Autoencoders

Require: Input training set Dtrain = {(xi,yi)}l
i=1; number of calibration examples m; number of examples N

generated by the adversarial autoencoder; test example xl+1; threshold ε of p-value of expected noncon-
formity score, or threshold τ of martingale value

Offline:
1: Split the training setDtrain = {(xi,yi)}l

i=1 into the proper training setDproper = {(xi,yi)}l
i=1 and calibration

set Dproper = {(xi,yi)}l
i=m+1

2: Train an adversarial autoencoder F using the proper training set Dproper
3: for j = m+1 to l do
4: Generate x̂ j using the trained adversarial autoencoder
5: αΓ

j = A(x j, x̂ j)
6: end for
7: {αm+1, . . . ,αl} = sort({αΓ

m+1, . . . ,α
Γ
l })

Online (p-value of expected nonconformity score):
8: for k = 1 to N do
9: Generate x̂l+1,k using the trained adversarial autoencoder

10: αl+1,k = A(xl+1, x̂l+1,k)
11: end for
12: ᾱl+1 =

1
N ∑

N
k=1 αl+1,k

13: pl+1 =
|{i=m+1,...,l}|αi≥ᾱl+1|

l−m
14: Anoml+1← pl+1 > ε
Online (martingale test):
15: for k = 1 to N do
16: Generate x̂l+1,k using the trained adversarial autoencoder
17: αl+1,k = A(xl+1, x̂l+1,k)

18: pl+1,k =
|{i=m+1,...,l}|αi≥αl+1,k|

l−m
19: end for
20: Ml+1 =

∫ 1
0 ∏

N
k=1 ε pε−1

l+1,kdε
21: Anoml+1←Ml+1 > τ

the non-image input (Experiment 3), the AAE is implemented with three fully connected layers. The decoder

has a symmetric architecture, and the discriminator contains three fully-connected layers.

5.4.1.2 Evaluation metrics

The Receiver Operating Characteristic (ROC) curve plots the true positive rate against the false positive

rate by varying the detection threshold. The Area Under ROC (AUROC) curve is a threshold-free metric

and is considered as the evaluation metric for OOD detection. The worst value of AUROC is 0.5 yielded

by an uninformative classifier with a random guess. The best value of AUROC is 1.0, implying that the

nonconformity scores for all the OOD data are greater than the score for any in-distribution data.

5.4.2 Out-of-distribution Data Caused by Covariate Shift

Experiment 1: The OOD data caused by covariate shift is present when the input variable x is sampled from a

different distribution of training dataset, but the underlying relationship between the input and output P(y|x)

remains unchanged. MNIST [113], colorful MNIST [119], and SVHN [120], are the image classification
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datasets with the same labels of ten digits, while the inputs are from different distributions: for MNIST, the

inputs are black and white images with handwritten digits; for colorful MNIST, the inputs are the MNIST

images synthesized with colorful backgrounds; for SVHN, the inputs are the digit images from the street

view house numbers. In our experiment, we train the AAE with the MNIST dataset and test it with colorful

MNIST (Experiment 1-1) and SVHN (Experiment 1-2). It can be regarded as the OOD data caused by

covariate shift since the input variable is sampled from a different distribution of training dataset, but the

conditional probability of y given x stays the same.

Results of Experiment 1: We report the accuracy of the classification task and the AUROC of the detection

task in Table 5.1 using different nonconformity measures and different techniques applied to nonconformity

scores (”Ave” is for the technique using expected p-value of N nonconformity scores; ”Mart” is for the

technique using martingale test). As it can be seen from the table, the accuracy of the classification for the

in-distribution data is not degraded. Further, the AUROC in Experiment 1-1 and 1-2 are almost close to 1.0.

Therefore, the proposed method can be used to detect the out-of-distribution data caused by covariate shift.

Besides, it should be noted that for this experiment, no baselines can be compared in the literature.

Table 5.1: AUROC for inductive out-of-distribution detection.
Accuracy Arc(Ave/Mart) Asaliency(Ave/Mart)

Experiment 1-1 99.3% 0.998/0.999 0.999/0.999
Experiment 1-2 1.000/1.000 1.000/1.000
Experiment 2-1 99.5% 0.943/0.932 0940/0.931
Experiment 2-2 97.2% 0.840/0.847 0.829/0.821
Experiment 2-3 90.1% 0.692/0.683 0.683/0.690
Experiment 3 96.3% 0.682/0.693 0.674/0.681

5.4.3 Out-of-distribution Data Caused by Label Shift

Experiment 2: Novelty detection for unknown classes is a representative example of the OOD data caused

by label shift, where the label variable y is not sampled from the same distribution of the training dataset, but

the output-conditional distribution P(x|y) remains the same. In our experiment, following the experimental

settings in [126], we randomly sample 6 classes in MNIST (Experiment2-1) [113], SVHN (Experiment 2-

2) [120], and CIFAR10 (Experiment 2-3) [129] as known classes, and rest 4 classes are unknowns. The

training dataset only contains the 6 known classes, but the test dataset contains all 10 classes.

Results of experiment 2: In this case, we report the evaluation results in Table 5.1. The results demonstrate

the effectiveness of our approach for detecting the OOD data caused by label shift. Although the AUROC of

our approach is smaller than the other state-of-the-art methods [126; 130], our approach uses a more shallow

neural network allowing for online detection.
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5.4.4 Out-of-distribution Data Caused by Concept Shift

Experiment 3: The OOD data caused by concept shift is present when the output variable y is sampled

from the training dataset, but the conditional probability of P(x|y) changes. A gear dataset is used in the

experiment to evaluate our approach for detecting such OOD data. Gearbox fault detection dataset [114]

focuses on classifying the type of damage that may occur on a generic gearbox. The state of the gearbox

is measured using accelerometers attached at various locations. The gearbox can operate at five different

constant shaft speeds under two different loading conditions (low- and high-load). For each shaft speed and

loading conditions, six fault types are simulated (normal, chipped gear tooth, broken gear tooth, bent shaft,

imbalanced shaft, broken gear tooth with bent shaft). For each case which is the combination of fault type,

shaft speed, and load condition, about 4 seconds of data are collected at a sampling rate of 66.67 kHz twice.

To make the dataset suitable for this research, preprocessing is performed: In this chapter, only the output

shaft vibration data is considered. The dataset is divided into two main subsets; those are low-load and

high-load. For each subset, regardless of shaft speed, the dataset is aggregated with respect to the type of

fault. All available data is converted into the frequency domain using Short Time Fourier Transform. Our

experiment uses the subset from the low-load as the training dataset and both subsets from low- and high-load

as the testing dataset. The distribution over output P(y) stays the same, but the conditional probability P(x|y)

changes. Thus, it can be regarded as the OOD data caused by concept shift.

Results of experiment 3: Evaluation results corresponding to the experiment are shown in Table 5.1.

Although there is no baseline in the literature used to compare with, as it can be seen from this table, the

approach can detect OOD data caused by concept shift using different nonconformity measures without loss

of classification accuracy.

5.4.5 Execution Time

In order to characterize the efficiency of the approach, we measure and report execution times for Experiment

1-1 using two different nonconformity measures and martingale test using a box plot in Figure 5.2. The

execution times are measured on a 6-core Ryzen 5 desktop with a single GTX 1080Ti GPU.

From the results, the execution times of the method using nonconformity measure Asaliency are slightly

longer than the method using Arc due to the extra execution time for computing the saliency maps. The

execution times for all two nonconformity measures are very short, which is comparable to the inference

time of typical machine learning component [1]. Therefore, our approach is applicable for online detection.

Moreover, the number of the examples generated from AAE N is fixed at 10 in experiments. As the number

of N increases, the execution time will also increase since the AAE model needs to be inferred N times to

generate N examples.
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Figure 5.2: Execution times of proposed method.

5.5 Conclusion

In this chapter, we formalize the problem of detecting OOD data in machine learning components for clas-

sification and categorize the OOD data according to their causes. Then, we present an approach based on

inductive conformal anomaly detection. An adversarial autoencoder model is adopted to characterize the

joint distribution of the training dataset, allowing online detection for high-dimensional data. Experiments

using several datasets demonstrate the effectiveness of the approach for the detection of different types of

OOD data. Moreover, the execution time is very small, and consequently, the approach can be used for

online out-of-distribution detection. Evaluation with real-world image datasets is a part of future work.
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CHAPTER 6

Real-time Detection of Sensor Replay and Controller Integrity Attacks in Cyber-Physical Systems

6.1 Introduction

Cyber-Physical Systems (CPSs) involve the integration of sensors, actuators, and computation into physical

systems using networking, and they are increasingly deployed in a wide range of domains such as aerospace,

automotive, healthcare, manufacturing, and transportation [131]. Networking interconnections between com-

ponents expose attack surfaces to adversaries who can launch various cyber attacks. Attacks to networked

CPS can be deployed on either the sensor network that sends the sensor measurements to the controller or

the actuator network that sends the control signals to physical system. In general, attacks can be catego-

rized into two possible classes in [16]: (1) Denial of Service (DoS) attacks, where the adversary prevents the

information from being transmitted, and (2) deception or integrity attacks, where the adversary sends false

information to the controller or actuator.

Recent work demonstrates that successful attacks can lead the system to abnormal behavior which may

significantly undermine the safety of the system and even cause loss of human life [10; 11]. Therefore,

detection of attacks is paramount to the safe and reliable operation of CPS and has received considerable

attention in the literature [132; 21]. In this chapter, we narrow down the scope to (1) replay attacks, a special

kind of integrity attack to the sensor network and (2) integrity attacks to the actuator network. We consider

the CPS domain of autonomous driving and we present an approach for efficiently and robustly detecting

such attacks in real time.

The detection method relies only on high-dimensional observations from a camera in contrast to ap-

proaches that use additional input signals and need to change the architecture of the system [20; 21]. De-

tection of integrity attacks needs to consider time-series observation sequences because point-wise detection

methods, such as the methods introduced in previous chapters, can only detect very simple integrity attacks

and can be easily bypassed by more nuanced attacks. Although considerable efforts are made for detecting

anomalies and attacks in time-series data [133; 10], typical approaches focus on low-dimensional data. The

problem is challenging for high-dimensional data, for example, from camera and LIDAR sensor measure-

ments in autonomous vehicles. Further, the detection must be performed in real time as observations become

available during the system operation.

The first contribution of the chapter is a generative model used for detecting anomalies of high-dimensional

time-series data. The model is inspired by the world model [134] for learning the long-term behavior of
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dynamical systems. By training this model with empirical data, we can capture the spatial and temporal

characteristics of the normal dynamical system behavior. The model has the capacity of predicting future

observations by (1) first utilizing the encoder of a VAE to compress a high-dimensional observation into a

latent representation, (2) then using an RNN to predict the future encoding based on the compressed latent

encoding and historical information, and (3) finally converting the predicted encoding to a predicted obser-

vation using the decoder of the VAE. The expected observation predicted by the model is compared with

the actual observation to quantify the nonconformity of actual behavior relative to normal behavior learned

during training.

The second contribution is an approach for real-time detection of sensor replay and controller integrity

attacks in CPS. It is well known that RNNs typically lack the ability to capture the long-term dependencies.

We propose to recursively use the RNN to predict the observations for multiple time steps in the future.

During testing, the expected current observations predicted from multiple steps in the past are compared

with the current actual observation, resulting in a series of nonconformity scores. These nonconformity

scores are then combined using Inductive Conformal Anomaly Detection (ICAD) [63] allowing detection of

abnormal behavior in a long sequence. Benefiting from the deep learning generative model, the approach is

computationally efficient, thereby enabling real-time detection.

The final contribution of the chapter is the comprehensive evaluation for the approach using two case

studies: (1) an Advanced Emergency Braking System (AEBS) implemented in CARLA simulator [103], and

(2) an autonomous car racing example implemented in OpenAI Gym [135]. For the AEBS, we focus on

detecting sensor replay attacks that affect the perception component that is used to estimate the distance to

a front obstacle. The adversary has access to the sensor observations during the system operation and uses

prerecorded data when the host vehicle is approaching the obstacle in order to deceive the controller and

affect the braking, which in turn causes the vehicle to collide with the obstacle. Three attack scenarios with

different sensor replay attacks are used to evaluate the proposed approach. The simulation results show that

the method can detect these sensor replay attacks with a small number of false alarms and a short detection

delay. For autonomous car racing, a controller is trained to perform the autonomous driving task using

the world model [134]. We consider an integrity attack to this controller where the adversary modifies the

control signal with a malicious command to lead the car off the racing track. The evaluation against such

an attack validates the effectiveness of the proposed approach for detecting controller integrity attacks using

the high-dimensional sensor observations. For both examples, the execution time of the detection method is

much shorter than the sampling period of the system, which demonstrates proposed approach can be used for

real-time detection.

The rest of the chapter is organized as follows: Section 6.2 presents the system and threat model, and
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then formulates the detection problem. Section 6.3 reviews the world model. Inspired by the world model,

Section 6.4 introduces a generative model used for attack detection, which is a fundamental component in

the proposed approach. Section 6.5 presents the algorithm for detecting sensor replay and controller integrity

attacks. Section 6.6 presents the evaluation results, and Section 6.7 concludes the chapter.

6.2 Problem Formulation

In order to formulate the problem, let us consider an autonomous vehicle, whose simplified architecture is

illustrated in Figure 6.1. The sensors which may include Inertial Measurement Unit (IMU), Global Position-

ing System (GPS), camera, and LIDAR observe the states of the autonomous vehicle and the environment,

and feed the information to the controller through the sensor network. In order to realize a specific task, the

controller interprets the sensor measurements, makes control decisions following predefined control logic,

and sends the control commands, such as gas, brake, and steer signals, to the actuator through the actuator

network. In response to the control commands, the states of the vehicle change, along with the environment

of the vehicle, and the sensors are used again to close the operation loop of the system.

Autonomous
Vehicle

SensorActuator

Controller

Figure 6.1: A typical CPS architecture.

Although the system may be well designed and tested, the sensor and actuator networks can still be

vulnerable to cyber attacks when the system operates in the real world. A successful attack may lead to

abnormal behavior of the system and greatly undermine the safety of the system. Therefore, detecting cyber

attacks on CPS is of great significance.

In this chapter, we focus on replay attacks on the sensor networks and integrity attacks on the actuator

networks, and consider the problem of efficiently and robustly detecting such attacks using only the sequence

of high-dimensional observations from a camera. An alternative method could be to design detection methods

that explore between sensors that observe the environment and vehicle sensors such as the IMU and GPS.

However, such methods need to assume that some sensors are not attacked and require fusion of sensor

measurements which may increase the attack surface. For this reason, the objective in the proposed approach

is to detect attacks using only the high-dimensional observations. For the controller integrity attacks, it is also

assumed that the sensor network and the control network are not attacked at the same time since in this case

the adversary will be able to completely hide the effects of the attack.
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During system operation, the time-series high-dimensional observations become available sequentially.

At each time step, the objective of the detection is to quantify how strange the time series up to the current

step is relative to the normal system behavior. Online detection requires the algorithm to use only the actual

observation sequence that is not complete.

6.3 World Model

The world model is proposed for learning both spatial and temporal representations of a complex physical

environment in [134]. By using compressed features, a controller can be trained to perform the required

task. The architecture of the world model is shown in Figure 6.2, and it contains two components, Vision

(V) and Memory (M). The vision model is a Variational Autoencoder (VAE), which encodes the current

high-dimensional observation xt into the low-dimensional latent representation zt . The memory model is

a Recurrent Neural Network (RNN), which takes the low-dimensional encoding zt and the historical infor-

mation embedded in the hidden states of RNN ht , to predict the latent encoding zt+1 in the next time step.

In [134], a simple single-layer linear controller C is trained separately from V and M to perform a specific

task. It should be noted that the control signal can be used when the memory RNN makes the predictions

for the future, which allows the memory M to take into account the influence of the control signal on the

dynamical behavior. An important property of the world model is that after training, it can be used to imag-

ine a virtual environment, called dream environment by recursively running the RNN to predict the latent

encodings for future steps. This can be illustrated using Figure 6.2 where instead of using the compressed

representations zt of the actual observation xt , the prediction from the last time step z′(t−1)→t can be used as

the input to the RNN to predict z′(t−1)→(t+1) for the next step. In this fashion, the controller can be trained

within this dream environment by only using a single seed observation instead of an actual environment.

xt−1

Encoder

zt−1 ht−1

RNN

z′(t−1)→t

Controller
at−1

xt

Encoder

zt ht

RNN

z′t→(t+1)

Controller
at

Figure 6.2: The architecture of the world model.
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Figure 6.3: Illustration of 1-step nonconformity measure using the proposed generative model.

6.4 Generative Model for Detection

In this section, we propose a sequential generative model that is used for the detection of anomalies in high-

dimensional sequences. The proposed model is inspired by the world model for learning the temporal and

spatial representations of physical environments [134]. The model contains a VAE to encode the spatial

information into a latent space representation and an RNN to encode the temporal dependencies into the

hidden state. The idea is to compute a representation of the normal dynamical system behavior by training

this generative model using empirical normal data.

The main advantage of the proposed model is that it allows predicting observations for future steps.

Specifically, given the observation (image) xt−1, the encoder of the VAE compresses the high-dimensional

data point to a latent representation zt−1. Then, the RNN is used to predict the latent representation zt in the

next step t. This part is similar to the world model. However, the world model directly utilizes the predicted

low-dimensional representation zt to train the agent policy, while the proposed generative model uses this

representation to reconstruct the original image x′(t−1)→t . The expected observation x′(t−1)→t can be predicted

based on the previous observation xt−1 as illustrated in the top of Figure 6.3. Similar to the world model, the

influence of the control signals can be considered by feeding the signals to the RNN to predict the next state.

The proposed generative model predicts the observations for multiple steps in the future similarly to the

dream environment in the world model. In Figure 6.3, after getting the z′(t−1)→t in the first inference of the

RNN, the RNN continues to predict the next latent representation z′(t−1)→(t+1) by using a virtual encoding

z′(t−1)→t instead of the actual encoding zt . Recursively, the RNN can be used to compute m latent encodings

(z′(t−1)→t , . . . ,z
′
(t−1)→(t+m−1)). Using the decoder, these encodings are converted to a series of predicted

observations (x′(t−1)→t , . . . ,x
′
(t−1)→(t+m−1)). In this manner, the model can generate sequential data by only

using a single seed input.

We should emphasize that it is also possible to include the control signals to make predictions for multiple
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steps. The control signals should be recursively generated by controller to feed to the RNN for predicting the

next latent encoding. However, the actual observations are not available during the prediction process, and

therefore, it is not applicable to use the observation directly in the controller. To overcome this limitation, the

controller can use a low-dimensional representation encoded by the VAE as the input, similar to the controller

in the world model [134].

The training procedure of the generative model consists of the following steps. After collecting the em-

pirical training dataset, the VAE is trained first by minimizing the reconstruction error and the KL divergence

between the prior and posterior [100]. Next, we compute and store the latent representations for the training

data by feeding them into the trained VAE model. The last step is to train the RNN using the sequences of the

latent representations of the training data. The objective is to predict the probability distribution of the latent

representation in the next time step. In order to model the probability distribution of the latent representation,

a Mixture Density Network (MDD) [136] is connected after the RNN as the output layer as in the training for

the world model [134]. After training, the model can generate a sequence of consecutive images from a single

input and the sequence is very similar to the actual sequence. Further, the model can predict the sequence

of observations for N steps, and this prediction can be repeated at every time step resulting in N predictions

corresponding to a specific time step in the future from N different time steps in the past.

6.5 Attack Detection

The detection method is based on Inductive Conformal Anomaly Detection (ICAD), which requires a suitable

NonConformity Measure (NCM) defined to measure the difference between a test example and the training

dataset. In this section, we first introduce a novel NCM that utilizes the proposed generative model. Then,

based on this NCM, we present an ICAD algorithm for detecting sensor replay and controller integrity attacks.

6.5.1 Nonconformity Measure

Let us consider a set of normal sequences denoted by Γtrain = {Xi}n
i=1, where Xi is a time-series of data points

(xi
1, . . . ,x

i
li
) with variable length li. During runtime, a sequence of test observations (xn+1

1 , . . . ,xn+1
ln+1

) arrive to

the system one by one. At time step t, the objective is to first quantify how different the time-series up to t

(xn+1
1 , . . . ,xn+1

t ) is from the set of normal sequences Γtrain used for training, and then raise an alarm if the test

sequence deviates considerably from the sequences used at design time.

Most of the NCMs used in ICAD, such as k-Nearest Neighbor (k-NN) NCM [64] and VAE-based NCM

defined in Chapter 3, however, focus on point-wise detection. Namely, they aim to check if a single test

instance xt conforms to the empirical training dataset Γtrain. Such methods lack the capacity of capturing the

temporal dependencies of time-series data, and cannot be used for detection of sensor replay and controller
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integrity attacks.

As discussed in Section 6.4, we propose a generative neural network model which aims to learn com-

pressed spatial and temporal representations of the physical system and environment, and can be used to

predict future observations. By training the generative model using the normal sequences Γtrain, the model

captures the distribution of complex high-dimensional observation sequences. Therefore, if the actual obser-

vations do not conform to the predictions from the generative model, the sequence of observations can be

regarded as anomalous behavior. Following the description of the model in Section 6.4 and Figure 6.3, we

compute the squared error between the current actual observation xt and predicted current observation from

the last time step x′(t−1)→t to compute the nonconformity, which is termed as 1-step NCM.

Although an RNN is used in the proposed model to take into account dependence on information at the

previous step, it is very hard to learn long-term dependencies, especially for high-dimensional sequences.

The 1-step NCM defined above can be used only across two adjacent time steps, and it is insensitive to

attacks where the time-series sequence is changed gradually and slowly. In order to overcome this limitation,

the generative model is used to predict the observations for multiple time steps in the future. The difference

between the actual observation and the expected observation that is predicted from multiple steps in the past

can be used to monitor long-term dependencies. The detailed description for predicting observations for

multiple steps can be found in Section 6.4. We denote the process of predicting observation x′(t−k)→t after k

steps based on the observation xt−k at t− k as

x′(t−k)→t = P(xt−k,k),

and the k-step NCM at time t can be naturally defined as

αt,k = ||xt − x′(t−k)→t ||2. (6.1)

It should be noted that the control signal can be incorporated in the prediction process by feeding the con-

trol signal into the RNN. Therefore, using the same definitions of NCM, the NCM can capture the anomalies

in the sequence of observations caused by malicious control signals.

6.5.2 Detection Algorithm

After the definition of the NCM based on the proposed generative model, we introduce the detection algo-

rithm. The algorithm is divided into offline and online phases as describe below.
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6.5.2.1 Offline phase:

During the offline phase, the training set of sequences Γtrain = {Xi}n
i=1, is split into a proper training set

Γproper = {Xi}m
i=1 and a calibration set Γcalibration = {Xi}n

i=m+1. The proper training set Γproper to train the

generative model.

The next step is to compute the nonconformity scores for the sequences in the calibration set. In order

to model the long-term dependencies, the difference between the actual current observation and the expected

current observation predicted from multiple steps earlier is incorporated into the computation of the noncon-

formity. For each observation xi
t in the calibration set from the sequence Xi : i ∈ {m+1, . . . ,n}, we compare

the observation with N expected observations predicted from 1 to N steps earlier. Therefore, we compute N

different nonconformity scores by using 1-step, 2-step, ..., N-step NCM (Equation (6.1)). It is worth noting

that the choice of N depends on the dynamic evolution of the system. For a slowly evolving system, a large N

should be chosen in order to be able to capture a significant change within N steps, which will be beneficial

for detection. Moreover, for each observation xi
t in the calibration dataset, we predict the observations for the

next N steps (x′t→t+1,x
′
t→t+2, . . . ,x

′
t→t+N). Although these observations are not used at the current time step,

they are available for the calculation of nonconformity scores at the next N time steps.

Because the prediction accuracy will decrease as the number of prediction step k increases, the noncon-

formity score computed by comparing with a prediction from a longer past is very likely to be greater than the

one computed by comparing with prediction from a shorter past. The nonconformity scores of the calibration

data are used for comparing with nonconformity scores of the test data during online phase. Therefore, for

fairly comparison, after computing the N nonconformity scores for each observation in the calibration data,

the nonconformity scores are clustered into N different sets based on the number k of steps between the actual

and predicted observations. Therefore, the k-th calibration set Ck contains all the nonconformity scores using

the k-step NCM, that is Ck = {α i
t,k : (i, t) = {m+1, . . . ,n}×{1, . . . , li}}. Each cluster of nonconformity scores

is sorted and stored for use during the online phase. The detailed algorithms for the offline phase is shown in

Algorithm 7.

6.5.2.2 Online phase:

During the online phase, we consider a sequence of observation (xn+1
1 , . . . ,xn+1

ln+1
) arriving at the detector one

by one. At time step t, for the observation xn+1
t , we compute N nonconformity scores {αn+1

t,1 , . . . ,αn+1
t,N } in

the same way as calibration data, i.e., by computing N squared errors between the actual observation xn+1
t

and the expected observations {x′n+1
(t−N)→t , . . . ,x

′n+1
(t−1)→t} predicted from time steps t−N to t−1. Using N non-

conformity scores improves detection by considering long-term dependencies and also improves robustness.

Next, for each nonconformity score αn+1
t,k : k ∈ {1, . . . ,N}, we compute its corresponding p-value as the

90



Algorithm 7 Offline phase of detecting sensor replay and controller integrity attacks.
Input: a training set of sequences Γtrain = {Xi}n

i=1; number of calibration sequences n−m; number of ob-
servations predicted from past N;

Output: N calibration sets of nonconformity scores {Ci}N
i=1

1: Split the training set of sequences Γtrain = {Xi}n
i=1 into a proper training set of sequences Γproper =

{Xi}m
i=1 and a calibration set of sequences Γcalibration = {Xi}n

i=m+1
2: Train the generative model P (a VAE and a RNN) using the proper training set of sequences Γproper
3: for i = m+1 to n do
4: for t = 1 to li do
5: ▷ Compute the N nonconformity scores
6: for k = 1 to N do
7: α i

t,k = ||xi
t − x′i(t−k)→t ||2

8: end for
9: ▷ Predict the observations for next N time steps

10: for k = 1 to N do
11: x′it→(t+k) = P(xi

t ,k)
12: end for
13: end for
14: end for
15: Construct N calibration sets of nonconformity scores {Ci}N

i=1, where Ck = {α i
t,k : i = m+ 1, . . . ,n; t =

1, . . . , li}

fraction of nonconformity scores in k-th calibration set Ck that are greater or equal to αn+1
t,k . This p-value can

be expressed as

pt,k =
|{αk ∈ Ck|αk ≥ αn+1

t,k }|
|Ck|

.

It is possible that αn+1
t,k1

< αn+1
t,k2

for k1 < k2 since the observation predicted from t−k2 may not be as accurate

as the one predicted from t− k1. By clustering the nonconformity scores of the calibration data based on the

number of prediction step k used in their computation, we do not need to compare the actual observations

with predictions made at different time steps which may be of different quality. Merging these nonconformity

scores, for example, using average is not appropriate and will result in loss of information since the p-value

for αn+1
t,k1

could be larger than the p-value for αn+1
t,k2

. Again, since the nonconformity scores for the calibration

data are sorted in the offline phase, the calculation of p-values can be accelerated by using binary search

algorithm.

The next step is to use the martingale to test if there are many small p-values in the set of {pt,k}N
k=1 [69],

which is defined in Equation (3.3). If there are many small p-values, Mt will be very large indicating a

sequence of observations that are not conformal to the training data. By incorporating the control signal into

the prediction process, the NCM can measure the anomalies caused by malicious control signals, and our

detection method can thus detect the controller integrity attacks.

Using the same idea as Section 3.3.2, a CUSUM stateful detector test is applied to the sequence of
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martingale values in order to detect the anomaly robustly. The detailed algorithm of the online phase can be

found in Algorithm 8.

Algorithm 8 Online phase of detecting sensor replay and controller integrity attacks.
Input: a test sequence Xn+1, where each sequence Xi = (xi

1, . . . ,x
i
li
), i = 1, . . . ,n+ 1; N calibration sets of

nonconformity scores {Ci}N
i=1; number of observations predicted from past N; threshold τ and parameter

ω of CUSUM detector
Output: boolean variable Anomt

1: for t = 1 to ln+1 do
2: ▷ Compute the N nonconformity scores and p-values
3: for k = 1 to N do
4: αn+1

t,k = ||xn+1
t − x′n+1

(t−k)→t ||2

5: pt,k =
|{αk∈Ck|αk≥αn+1

t,k }|
|Ck|

6: end for
7: ▷ Compute the martingale value
8: Mt =

∫ 1
0 ∏

N
k=1 ε pε−1

t,k dε
9: ▷ CUSUM procedure

10: if t = 1 then
11: St = 0
12: else
13: St = max(0,St−1 +Mt−1−δ )
14: end if
15: Anomt ← St > τ
16: ▷ Predict the observations for next N timesteps
17: for k = 1 to N do
18: x′n+1

t→(t+k) = P(x
n+1
t ,k)

19: end for
20: end for

6.6 Evaluation

In this section, we evaluate the proposed approach for detecting (1) sensor replay attacks using an Advanced

Emergency Braking System (AEBS) implemented in the CARLA simulator [103], and (2) controller integrity

attacks using an autonomous car racing example implemented in OpenAI Gym [135]. The experiments are

performed on a Ubuntu Linux virtual machine with a 48-core CPU and an RTX 6000 GPU, which is provided

by Chameleon Cloud Platform [137] supported by the National Science Foundation.

6.6.1 Advanced Emergency Braking System

Advanced Emergency Braking System (AEBS) is a typical CPS, whose objective is to detect the an ap-

proaching obstacle and safely stop the host vehicle. A perception component receives the image captured

by an onboard camera and uses a convolutional neural network to estimate the distance to a front obstacle.

The distance, along with the velocity of the host vehicle, is used by a reinforcement learning controller to

generate an appropriate brake force to stop the host vehicle avoiding a potential collision. More details about
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the AEBS can be found in Section 3.6.1.

6.6.1.1 Experimental setup

We collect 100 episodes by varying the start position of the host vehicle. The data is split into two partitions:

80 episodes are used as the proper training set and 20 as the calibration set. We collect 100 additional episodes

that are used as normal test sequences.

The detection method utilizes a generative model consisting a VAE and an RNN, which are trained using

the proper training set. We use similar network architectures and training hyperparameters as in [134]. Since

the controller is not considered in this experiment, the RNN in the generative model uses only the latent rep-

resentations from the VAE and does not include the controller signals in its input. We compare the proposed

method against a VAE-based method that considers only individual frames presented in Chapter 3.

6.6.1.2 Replay attack I

The sensor replay attack occurs when an adversary (1) collects the sensor observations and (2) replays the

collected data at different time instants of an episode. Using a replay attack, the adversary can spoof the

camera images with images recorded earlier from the same camera. The objective of the adversary is to cause

the predicted distance to the obstacle to be larger than the actual distance. In this case, the controller will

be deceived to apply a soft brake force even when the host vehicle is very close to the obstacle, which will

eventually cause the host vehicle to collide with the obstacle.

We use 100 episodes of normal sequences and 100 episodes of sequences under attack to evaluate the

detection method. In the sequences under attack, the video segment that is recorded between the time period

t0 to t0 +40 is replayed in a forward order at time step t1. The time instants t0 and t1 are randomly sampled

from {5, . . . ,30} and {80, . . . ,100}, respectively.

In order to characterize the detection performance, we report the false alarms and the average detection

delay by considering different values for the prediction horizon N and CUSUM parameters ω and τ that

are shown in Table 6.1. The results show that the proposed method can detect such sensor replay attack

with a few false alarms and a very short delay. In contrast, the VAE-based method that uses only individual

frames performs considerably worse than the proposed method exhibiting large number of false positives and

negatives and large delay of detection.

We show the simulation results for a specific sequence under attack in Figure 6.4 where we plot the

predicted distance to the obstacle, p-values, and stateful detector S-values for the VAE-based and proposed

method. In the episode shown, the replay attack starts at time step 96 corresponding to 4.8s from the be-

ginning of the episode (with a sampling rate of 50ms.) The frames used in the attacks are form the same
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Table 6.1: False alarms and detection delay for detecting sensor replay attack I in AEBS.
Types N,ω,τ False positive False negative Average delay

(frames)

VAE

10,1,147 14/100 82/100 12.44
10,0,243 17/100 81/100 14.21

20,−2,282 26/100 71/100 12.38
20,3,260 14/100 83/100 10.82

Proposed

10,11,6 6/100 7/100 0.08
10,13,3 5/100 8/100 0.05

20,13,15 13/100 3/100 0.16
20,22,4 5/100 10/100 0.05

distribution as the training dataset, and therefore, the VAE-based method that uses individual frames cannot

detect the attack and trigger an alarm. Since the proposed method uses a model that captures the temporal

dependencies of the observation sequences, the p-values become very small once the attack occurs, and can

be detected using the approach.
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Figure 6.4: An episode under the sensor replay attack I in AEBS (detector parameter: (1) VAE: N = 20,
ω = 3, τ = 260; (2) Proposed: N = 20, ω = 13, τ = 15).
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6.6.1.3 Replay attack II

In the experiment described above, the replay attack results in abrupt changes in the observation sequences

that can be easily detected by the proposed approach. In this experiment, we consider a type of replay attack

that changes the observations gradually and slowly. In this scenario, at the time step t1, an adversary starts to

replay the collected from time t0 in reverse, that is from the camera point of view, the vehicle starts moving

backwards. Suppose the normal sequence is denoted as (x1, . . . ,xt1−1,xt1 ,xt1+1, . . . ,xl). Using this attack, this

sequence becomes (x1, . . . ,xt1−1,xt1 ,xt1−1, . . . ,x1), where t1 is randomly selected in {80, . . . ,100}. We collect

100 episodes with this replay attack for evaluation.

Figure 6.5 illustrates the detection process. It is not surprising that the VAE-based detector trained on

individual frames cannot detect this type of attack. In the proposed approach, the p-values start to decrease

when the attack is deployed and the detector generates alarms indicating that the sequence is abnormal.

Table 6.2 reports the false alarms and average detection delay for the two methods. The results demonstrate

that the approach can detect the slowly changing replay attack with a small false alarms. The number of

false alarms for detecting the replay attack II is larger than the replay attack I because in replay attack II, the

changes at the observation sequences are very gradual. The performance of detector for a large time horizon

(e.g., N = 20) is improving since it takes a longer time for such an attack to change the observation sequence.

Table 6.2: False alarms and detection delay for detecting sensor replay attack II in AEBS.
Types N,ω,τ False positive False negative Average delay

(frames)

VAE

10,1,148 14/100 78/100 38.68
10,0,227 17/100 75/100 38.08
20,−3,0 100/100 0/100 0.04

20,27,296 0/100 100/100 N/A

Proposed

10,7,6 14/100 21/100 25.62
10,8,3 15/100 20/100 25.81

20,4,149 12/100 15/100 25.46
20,7,98 11/100 16/100 25.02

6.6.1.4 Stuck sensor attack

The sensor may get stuck due to an attack. In this experiment, we simulate a scenario where the attack results

in the camera sensor getting stuck which can be viewed as a particular type of replay attack. We assume that

the camera sensor is stuck at time step t1, where t1 is randomly sampled in {80, . . . ,100} and therefore, the

observation sequence can be denoted as (x1, . . . ,xt1 , . . . ,xt1).

We plot the p-values and the detector S-values for both two detection approaches in Figure 6.6. For the

VAE-based method, the p-values are between 0 and 1, and S-values are almost 0 through the whole episode

reflecting that it cannot be used for detection of such a sequence. In contrast, the proposed method can

detect such sequence with a very small delay. Once the camera gets stuck, the p-values start to decrease
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Figure 6.5: An episode under the sensor replay attack II in AEBS (detector parameter: (1) VAE: N = 20,
ω = 27, τ = 296; (2) Proposed: N = 20, ω = 7, τ = 98).

approaching 0, and the S-value increases and exceeds the threshold of the CUSUM detector. We also report

the false alarms and average detection delay in Table 6.3. The number of false alarms for this scenario is

larger than the two previous attacks because there is no considerable change in the observations.

Table 6.3: False alarms and detection delay for detecting stuck sensor attack in AEBS.
Types N,ω,τ False positive False negative Average delay

(frames)

VAE

10,12,210 0/100 100/100 N/A
10,23,4 0/100 100/100 N/A

20,−3,98 64/100 25/100 11.70
20,0,28 58/100 30/100 9.73

Proposed

10,−2,64 16/100 21/100 17.08
10,−2,72 14/100 23/100 17.89
20,−2,57 14/100 16/100 16.00
20,−1,35 12/100 18/100 14.53
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Figure 6.6: An episode under the stuck sensor attack in AEBS (detector parameter: (1) VAE: N = 20, ω = 0,
τ = 28; (2) Proposed: N = 20, ω =−1, τ = 35).

6.6.2 Autonomous Car Racing

We evaluate the approach for detecting controller integrity attacks in an autonomous car racing example

from OpenAI Gym [135]. The task here is to use the pixel inputs from the top-down camera looking at a

racing environment to learn a controller for the throttle, brake and steer signal so that the autonomous car

follows the track. In [134], a world model is trained to extract the spatial and temporal representation of

the autonomous car racing environment, and a reinforcement controller is trained by using the compressed

features from the world model. It should be noted that in this example, the control signal along with the latent

space representation, are used as inputs to the RNN in the generative model to predict the future states and

observations. Therefore, we can evaluate if the approach can detect anomalies caused by the integrity attacks

on the control signal using only the observation sequence from the top-down camera.
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6.6.2.1 Experimental setup

We use the same network architecture and training process as in [134] to train the world model including the

controller. Using the trained model, we collect 900 episodes by randomizing the starting position of the car.

800 of these episodes are used as calibration data while 100 episodes are used for testing as normal sequences.

As discussed in Sec. 6.5, the control signals must be incorporated in the detection method because they are

used in the RNN to predict the future observations.

6.6.2.2 Experimental results

In order to generate the observation sequences under attack, the original control signal is replaced with a full

gas, zero brake, and full opposite steer control signal at a random time step t ∈ {50, . . . ,79}, which will cause

the car to drive off the track. We collect 100 episodes that are used for testing positive abnormal sequences.

We evaluate both the VAE-based and the proposed method using 100 episodes with normal sequences and

100 episodes with abnormal sequences. The attack parameters are selected to evaluate how fast we can detect

an attack with catastrophic consequences.

We plot the detection results for an abnormal sequence in Figure 6.7 for both approaches. In this episode,

the attack starts at time step 64, and the car then turns sharply to the left off the track. Such abnormal behavior

of the car deviates significantly from what is expected by the world model as illustrated in Figure 6.8. The

proposed method can capture such deviations because the p-values become small and the CUSUM detector

generates alarms. The VAE-based detector performs much worse because it can reconstruct the observations

for individual frames quite well.

We also report the number of false alarms and average detection delay in Table 6.4 by considering different

values of the prediction horizon N and CUSUM parameters ω and τ . From the results, we can see that the

number of false alarms is decreasing with larger prediction horizon. Not surprisingly, the VAE-based method

performs much worse than the proposed method.

Table 6.4: False alarms and detection delay for detecting controller integrity attacks in autonomous car racing
example.

Types N,ω,τ False positive False negative Average delay
(frames)

VAE

10,−2,53 62/100 29/100 11.63
10,0,9 55/100 39/100 9.68

20,−3,98 64/100 25/100 11.70
20,0,28 58/100 30/100 9.73

Proposed

10,−2,33 27/100 12/100 8.82
10,−1,15 22/100 20/100 11.49
20,−3,73 12/100 13/100 8.75

20,0,6 7/100 18/100 7.87
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Figure 6.7: An episode under the controller integrity attacks in autonomous car racing example (detector
parameter: (1) VAE: N = 20, ω = 0, τ = 9; (2) Proposed: N = 20, ω = 0, τ = 6).

Actual
observations

Predicted
observations

Timestep 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Figure 6.8: Comparison between the actual and predicted observations when the control signal is under attack
in autonomous car racing example; all the predicted observations are predicted at time step 59.

6.6.3 Computational Efficiency

In order to detect the attacks in real time, the execution times of the detector must be smaller than the sampling

period of the system. Because the proposed detector in both examples use similar network architectures as

in [134], we focus on the AEBS and report the minimum (min), first quartile (Q1), second quartile or median

(Q2), third quartile (Q3), and maximum (max) of the execution times for for different values of N. Of course,

the execution times become longer as N increases. The execution times are much smaller than the sampling

period 50ms, and therefore, the method can be used for real-time detection.

Table 6.5: Execution times (ms) for detecting sensor replay attack in AEBS.
N min Q1 Q2 Q3 max
10 13.22 13.43 13.47 13.55 14.92
20 25.95 26.16 26.27 26.41 30.77
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6.7 Conclusion

In this chapter, we propose and demonstrate an approach for detecting sensor replay and controller integrity

attacks in CPS. The method is based on inductive conformal anomaly detection and utilizes a novel generative

model inspired by the world model for efficiently measuring the nonconformity of the high-dimensional

observation sequences relative to the normal system behavior, thereby allowing for real-time detection. The

evaluation is performed using two simulation case studies: an advanced emergency braking system and an

autonomous car racing example. The results show a small number of false alarms and small detection delay,

and the execution time of the detection algorithm is much smaller than the sampling period of the systems.

The proposed approach can be extended to detect abnormal behaviors that are not limited to attacks.
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CHAPTER 7

Conclusions

Cyber-physical systems are greatly benefited by using learning-enabled components that can handle the un-

certainty and variability of the real world. However, during the system operation, the learning-enabled com-

ponents may still encounter data that are different from the data used for training. Out-of-distribution data

may lead to a large prediction error and compromise the safety of the system. This dissertation proposes

several detection algorithms based on inductive conformal anomaly detection framework. By using different

learning models, the training distribution is represented, and the nonconformity between the test example and

training data can be efficiently quantified, which enables the real-time detection for high-dimensional inputs.

Additionally, the effectiveness of algorithms is supported by extensive evaluation on multiple simulated sys-

tems and datasets. Although further efforts are still needed to improve the robustness of detection in the face

of more complicated scenarios, we hope our work will be helpful for future exploration.
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