Computational methods to engineer antibodies for vaccines and

therapeutics

By

Samuel Schmitz

Dissertation
Submitted to the School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in
Chemistry
February 28, 2022

Nashville, Tennessee

Approved:

Jens Meiler, Ph.D.
James E. Crowe Jr., M.D.
Lars Plate, Ph.D.

Lauren Buchanan, Ph.D.



1 Acknowledgments

I would like to start with an exceptional thank you to Jens Meiler for giving me the once in a
lifetime opportunity to experience Vanderbilt and all of the conferences along the way. Without
Jens, I may never have left Germany and experienced all that is both interesting and unique about
working in America. Jens was instrumental in patiently preparing me for my current career at
Moderna, and is the reason I met my wonderful wife. Many thanks to both Jens Meiler and James
E. Crowe Jr. for funding my PhD in the antibody interface between their labs. I wish to thank both
for mentoring me, providing guidance, and challenging me to become a better scientist through the
spirited discussions throughout my time in the PhD.

I would like to further give thanks for the wonderful and intellectually engaging collaborations
that I was a part of, where I worked with the teams of both Antje Kérner and Anna Kirstein at
the University of Leipzig, Germany. I am grateful to have gotten the chance to support insight
into the structural basis of clinical phenotypes, and was able to learn about new perspectives and
constructively contribute.

Cinque Soto was a pleasant collaborator, supportive with discussions, and shared interesting
papers with me during his time at and even after his departure from Vanderbilt. I give thanks to
his continued support even after my defense, and look forward to staying in contact in the future. It
was also a great experience to have intellectually stimulating discussions with Sergey Ovchinnikov
when I met him at various RosettaCONs.

The Master student Moritz Ertelt, whom I worked with in support of his Master’s thesis project,
was a joyous ball of sunshine and now a life-long friend. I cannot express how wonderful it was to
have someone to complain to about life and science. Also thanks to another life-long friend I found
in Jens’s lab, Francois Berenger, even though he was only in the lab for a short time. It was joy to
work in the same office. Many thanks to the continuing updates from Tokyo.

Many thanks to all of my committee members, both those on the current iteration of the
committee as well as those who left for greener pastures. Thanks to Jens Meiler, James E. Crowe
Jr., Lars Plate, Lauren Buchanen, Cinque Soto, and Terry Lybrand. At last but not least I would
like to point out my wife Emily Schmitz, for proofreading many of my papers and this written
dissertation, my friends for forcing me to gather sunshine out of the lab on occasion, and finally

my family for providing long-distance support and many dog pictures.

ii



Contents

Acknowledgments ii
List of Figures viii
List of Tables xi
Summary 1
Introduction 3
5.1 The Adaptive Immune Response . . . . . . . . . ... ... ... 3
5.2 Combining Next Generation Sequencing And Structural Information . . . . ... .. 5
5.3 Monoclonal Antibodies for Clinical Use . . . . . .. . ... ... ... ... ..... )
5.4 Manufacturability and Immunogenicity of antibodies . . . . . . . . .. .. ... ... 7
5.5 Computational Approaches for antibody design . . . . . . . ... ... ... .. ... 8

5.5.1 Rosetta protein design . . . . . . . ... oL 8
5.6 The role of residue-pair co-evolution in protein design . . . . . . . . ... ... ... 10

5.6.1 Rosetta methods for antibody design . . . . . . . . .. ... ... ... ... 11
5.7 Difficult-to-express (DTE) antibodies . . . . . . . .. .. ... ... .. ... ... 25

5.7.1 Engineering of human-like antibodies . . . . . . . . ... ... ... ... .. 27

Human-likeness of antibody biologics determined by back-translation and com-

parison with large antibody variable gene repertoires 29
6.1 Introduction . . . . . . . . . . . e 29
6.2 Results. . . . . . . e 31

6.2.1 Processing of immune repertoire data and counting SNFs in V, D, J gene-
encoded, and CDR3 . . . . . . . . . . . .. ... 31
6.2.2 Calculation of PGSSMs from single nucleotide counts . . . . . . .. ... .. 32
6.2.3 BLAST database generation and searches for creating a plausible amino acid
germline gene rearrangement . . . . ... ..o Lo oo e e 33
6.2.4 Assignment of a plausible V(D)J rearrangement for an amino acid target
SEQUETICE .« « « v v v v v e e e e e e e e e e e e e e e e 33
6.2.5 Creation of the final PGSSM model and scoring of an amino acid target
SEQUENICE « « v v v v e e e e e e e e e e e e e e e e e e 34
6.2.6 Strategy to reconstruct nucleotide sequences from Ab amino acid sequences . 34
6.2.7 The PGSSMy; acts as a human likeness score in the context of immunomes
from healthy humans . . . . . . . .. .. .. . 35
6.2.8 The PGSSMy; score can be used to identify engineered and atypical antibodies 35
6.2.9 The PGSSMyj score correlates with the phylogenetic distance to human V
germline genes . . . . . .. L. 37

6.2.10 PGSSMy; allows for the recovery of nucleotide sequences for human Abs . . 37

iii



6.2.11 The sequence recovery frequency strongly correlates with the PGSSMyy . . . 39

6.2.12 Ab therapeutics in context of the Ab repertoire of healthy humans . . . . . . 39
6.2.13 Performance and robustness . . . . . . . .. ... oo 40
6.2.14 Output . . . . . . o e e 40
6.3 Discussion . . . . . . . L e e 40
6.4 Materials and methods . . . . . . . ... 44
6.4.1 Curation of sequences from three sources . . . . . ... .. ... ... ..., 44
6.4.2 Calculation of PGSSMy; scores and assessment of human-likeness . . . . . . 45

6.4.3 Phylogenetic tree construction and the evolutionary distance of germline genes 46

6.5 Awailability . . . . ... 46
7 Rosetta design with co-evolutionary information retains protein function 47
7.1 Introduction . . . . . . . . . .. e e e 47
7.2 Results and discussion . . . . . . . .. 49

7.2.1 Assembling a benchmark benchg,e, of ten proteins representing conforma-

tional flexibility . . . . . . . .. 49
7.2.2 The ResCue mover and its energy term . . . . . . .. ... . ... ... ... 49
7.2.3 Sophisticated design protocols sample sequences of higher energy . . . . . . . 50
7.2.4 ResCue recovers networks of co-evolving residues . . . . . .. ... ... ... 51

7.2.5 Preserving evolutionary constraints by means of ResCue improves native se-
quence recovery and sequence similarity . . . . .. ... o000 53
7.2.6 ResCue recovers functionally relevant residues . . . . . . . ... ... ... .. 54
7.2.7 The substrate induced conformational change of the lysine-arginine-ornithine
binding protein LAO . . . . . . . . .. 55
7.2.8 Conformational changes induced by the phosphorylation of the FixJ receiver
domain . . . . ... 60
7.2.9 RasH switches between two states for signal transduction . . . . ... .. .. 60

7.2.10 The conformational switch of the calcium-binding messenger protein calmodulin 60

7.2.11 Pros and cons of ResCue . . . . . . . . . . .. . .. ... 61
7.3 Methods . . . . . . . . 62
7.3.1 Collection of the benchmark benchegey - . . . . . . o o . . . ..o 62
7.3.2 GREMLIN-based co-evolution analysis . . . . . . . .. .. ... ... ..... 62
7.3.3 Assessment of native sequence recovery and sequence similarity . . . . . . . . 63
7.3.4 Protein design with ROSETTA . . . . . ... ... ... .. ... ..., 64
7.3.5 Network analysis of highly coupled residues . . . . . . ... ... ... .... 64

8 The human antibody sequence space and structural design of the V, J, and

CDRH3 domains with Rosetta 65
8.1 Introduction . . . . . . . . e 65
8.2 Results. . . . . 67

v



8.2.1 Calculation of the Bayesian antibody space . . . . ... .. ... ... ..., 68
8.2.2 Extending the nucleotide human-likeness metric with a clustering algorithm . 69
8.2.3 The Rosetta human-like antibody design protocol . . . . . . .. .. ... ... 70
8.2.4 Rosetta design of human-like antibody structures remain thermodynamically
plausible and antigen-specific . . . . . . . ... ... L. 71
8.2.5 Improved human wild-type antibody sequence recovery for the V and J domain 72
8.2.6 Increased human-likeness across the antibody framework region . . . . . . . . 73
8.2.7 The human-likeness of the CDRH3 benefits from repertoire clustering . . . . 74
8.3 Discussion . . . . . . .. 76
8.4 Methods . . . . . . . . e 78
8.4.1 Generation of Single Nucleotide Frequency (SNF) profiles . . . . . . ... .. 78
8.4.2 Bayesian approach to model the human amino acid sequence space . . . . . . 78
8.4.3 Generation of a position specific substitution matrix . . . . . . ... ... .. 79
8.4.4 Design of antibody structures with and without substitution score constraints 80
8.4.5 Human-likeness and SNF alignment generation for the dataset . . . . .. .. 80
8.5 Awailability . . . . .. 80

Assessment and optimization of antibody expressability using Long-Short Term

Memory and structural design 81
9.1 Introduction . . . . . . . . . . e 81
9.2 Results. . . . . . . e 82
9.2.1 Expressability prediction and optimization . . ... ... ... ... ... .. 83
9.2.2 Training performance of 10-fold cross-validation . . . . . . . . . . .. .. ... 84
9.2.3 LSTM-informed structural design with Rosetta . . . . . .. ... ... .. .. 86
9.2.4 Predicted expressability before and after re-design . . . . ... ... ... .. 87
9.2.5 No evidence for reduced structural stability after re-design. . . . . . ... .. 89
9.2.6 Re-engineered antibodies show a preference for certain residues . . . . . . . . 91
9.3 Methods . . . . . . . 93
9.3.1 Plasmablasts isolation and paired heavy and light chain variable regions se-
QUENCING . . .« v v v v o e e e e e e e e e 93
9.3.2 Antibody production, purification, and quantification . . ... ... ... .. 93
9.3.3 Training of LSTM models . . . . . . . . .. . ... .. .. 94
9.3.4 Expressability prediction . . . . . .. ... Lo 94
9.3.5 Structural antibody homology modeling with Rosetta . . . . . . .. ... .. 94
9.3.6 Rosetta design with and without expressability restraints . . . . . ... . .. 94
9.4 Avwailability . . . . .. 96
9.5 Discussion . . . . . . . 96
9.5.1 Acknowledgement . . . . . . . . .. ... 96



10 Conclusion and Future Directions 97

10.1 Human-likeness from large sequence datasets . . . . . . ... ... .. .. ...... 97
10.2 Co-evolving residues characterize protein function and flexibility . . . . ... .. .. 97
10.3 Modeling the antibody sequence space and human-like antibody design. . . . . . . . 98
10.4 Prediction of antibody expressability . . . . . . . .. ... o oL 100
11 Appendices 101
11.1 Antibody human-likeness via back-translation . . . . . . . .. ... .. ... ... .. 101

11.1.1 Random back-translation results in nucleotide sequence identity of roughly
TA% . 103
11.2 Rosetta design with co-evolutionary restraints and benchmark description . . . . . . 105
11.2.1 Benchmak Protein Description . . . . . . . . . .. ... ... ... ... ... 105
11.2.2 Overview of all ten benchmark proteins . . . . . . .. .. .. ... ... ... 105
11.2.3 A network of coupled residues is involved in the binding of ATP in the HPPK 106

11.2.4 The calcium sensor mechanism of S100A6 relies on the coupled residues at
the two binding sites . . . . . . . .. ..o 108

11.2.5 A network of coupled residues contributes to the conformational shift after
phosphate binding in the Phosphate-Binding Protein . . . . . . . . . ... .. 110

11.2.6 A network of coupled residues is involved in the binding of GTP in the small
G protein Arf6-GDP . . . . ... 111

11.2.7 A network of coupled residues is involved in the binding of AMP in the
Adenylate Kinase . . . . . . . . . ... 113

11.2.8 A network of coupled residues is involved in the binding of FAD in the Thiore-
doxin reductase . . . . . . .. L 114
11.2.9 Rosetta Design Protocols . . . . . . . . .. ..o 116
11.2.10Clean and relax . . . . . . . . . .. 116
11.2.11 Unconstraint Rosetta Single State Design (RoSSD) . . . . . ... ... .. .. 117
11.2.12 Design with co-evolutionary constraints (ResCue) . . . . . . . . ... ... .. 117
11.2.13RECON Multistate Designs (MSD) . . . . . . . ... ... ... ... ... 118
11.2.14 Design with a position specific scoring matrix (PSSM) . . . .. ... ... .. 119
11.2.15 Design favoring the wild-type sequence . . . . . . . . . .. ... ... ... .. 120
11.2.16 ResCue full length sequence logos . . . . . . . . . .. . ... ... .. ..., 122
11.2.17 Coupling strength of functionally relevant residues . . . . . . .. .. .. ... 129
11.3 Antibody expressability prediction and engineering using LSTM and Rosetta . . . . 130
11.4 Tensorflow model chart . . . . . . . . . . . .. .. ... 130
11.5 WebLogos of the Flu dataset . . . . . .. .. .. ... .. .. .. ... ...... 131
11.6 WebLogos of designed Flu antibodies with Rosetta . . . . . . . ... ... ... ... 134
11.7 Rosetta score term scaling using single point mutant expressability predictions . . . 136
11.7.1 Antibody sequence dataset description . . . . . . .. ... ... L. 136
11.8 Performance metrics of LSTM and Regression models . . . . . ... ... ... ... 138

vi



11.9 RosettaCM structure predictions of the antibody dataset . . . .. .. ... ... .. 140
11.10Rosetta design with human-like sequence restraints . . . . . . . . . . . ... ... .. 141
11.10.1 Dataset of 27 co-crystalized human antibodies . . . . . ... ... ... ... 141

11.10.2 The sequence identity of the unrestraint “native” Rosetta designs is compa-

rable to that of HL designs . . . . . . . . . .. .. ... L. 142
11.10.3 Rosetta design methods with and without human-likeness restraints . . . . . 142
11.10.4 The effect of Powell optimization of lambda on the substitution scores . . . . 145

vii



© o N O

11

12
13

14

15

16
17
18
19
20
21
22
23
24

25
26
27
28
29

List of Figures

The high sequence diversity of an antibody is facilitated by gene rearrangements and
mutations . . . ... e e e e e e e e 3
Availability of antibody sequences and protein structures as of 2018. . . . . . . . .. 5
The antibody drug market shows substantial growth and multiple successfully de-
veloped therapeutics since 1975 . . . . . . . . . . ... 6
Antibody humanization from fully antibodies (green) to fully human antibodies (blue) 8

Co-evolution of protein residue pairs reflect their spacial contacts and ultimately the

3D-structure. . . . . ... e 10
Methods in Rosetta for antibody structure prediction. . . . . . .. . ... ... ... 13
Incorrect long HCDR3 loop structure prediction . . . . . . .. ... ... ... ... 16
Overview of multistate design protocols in Rosetta . . . . . . . ... ... ... ... 20
Flowchart of scoring Ab sequences with IgReconstruct. . . . . . . . . ... ... ... 32
Nucleotide sequence recovery and human-likeness core for GenBank sequences. . . . 36

The human-likeness score approximates the evolutionary distance from human Ig
germline genes to Ig germline genes belonging to 20 species. . . . . . . . .. ... .. 38
Alignment report generated by IgReconstruct. . . . . . . . ... ... 41
The human-likeness score ranks human Abs highest when compared to either chimeric
ormouse Abs. . . . . L. 43
The human-likeness score cannot discriminate between clinical stage and FDA-
approved biologics. . . . . . . .. L 43

Scoring medically relevant Abs using sequencing data from three individual human

immunome repertoires. . . . . . . . . ... oo e e e e e e e 44
Basic concept and application of ResCue. . . . . . .. .. ... ... ... ...... 50
Distribution of Rosetta total energies for the full benchmark design. . . . . ... .. 51
Performance of four different design approaches. . . . . . . .. ... ... ... ... 52
Improvement of native sequence recovery values and coupling recovery scores . . . . 54
Localization of highly coupled residues in four benchmark proteins . . . . . . .. .. 56
Representation of residue interaction networks. . . . . . . .. ... ... ... .... 57
Sequence logos resulting from five design protocols. . . . . . . . .. ..o 58
3D representation of binding sites. . . . . . .. .. . Lo 59

From immunome repertoire processing, to statistical modeling of an amino acid

sequence space, to structural human-like antibody design. . . . . . . . . . .. .. .. 69
Schematic of fast immunome repertoire clustering. . . . . . . . . ... ... ... .. 70
Rosetta energy and binding energy of the human antibody set. . . . . . .. ... .. 72
Wild-type sequence recovery rates of the antibody after Rosetta design. . . . . . .. 73
Human likeness of the V and J domains after Rosetta design. . . . . . . .. ... .. 74

Human-likeness (HL) of the CDRH3 compared to Rosetta designs with limited num-

ber of mutations (native). . . . . .. .. Lo o 76

viii



30
31
32
33

34
35

36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
99
60
61
62
63

64

LSTM architecture to binarily predict if an antibody can be expressed experimentally. 84
Binary LSTM classification performance of (non-)expressing Flu antibodies. . . . . . 85
Design performance of 888 Flu antibodies. . . . . . . . . .. ... ... ... ..... 88
Effect on predicted expressability, engineerability and Rosetta energy of re-engineered

antibodies. . . . . . L e 90
Frequency of heavy chain mutations of the re-engineered designs with strong intensity 92
Heatmap of single nucleotide frequences for the heavy chain sequence with GenBank

ID EU6200063.1. . . . . . . o e e 101
Sequence recovery and human-likeness scores for all 20 species. . . . . . . ... ... 101

Nucleotide sequence recovery for the CDRH3 loop for human and non-human se-

QUETICES. . v v v v v v e e e e e e e e e e e e e e e e 102
CDRHS classification performance using the CDRH3 human-likeness score. . . . . . 102
Energy landscapes for designed sequences . . . . . ... ... ... oL 106
Localization of highly coupled residues in HPPK. . . . . .. .. ... ... ... ... 107
Sequence logos resulting from four design protocols for HPPK. . . . . ... ... .. 108
Localization of highly coupled residues in SI00A6. . . . . . . . .. .. .. ... ... 109
Sequence logos resulting from four design protocols for SI00A6. . . . . . . . ... .. 110
Localization of highly coupled residues in PBP. . . . . . . . . ... ... ... .... 111
Sequence logos resulting from four design protocols for PBP. . . . . . ... ... .. 111
Sequence logos resulting from four design protocols for Arf6. . . . . . . . .. ... .. 112
Localization of highly coupled residues in Arf6. . . . . . . ... .. .. ... ..... 113
Localization of highly coupled residues in the Adenylate kinase. . . . . . . .. .. .. 114
Sequence logos resulting from four design protocols for the Adenylate kinase. . . . . 114
Localization of highly coupled residues in the Thioredoxin reductase. . . . . . . . .. 115
Sequence logos resulting from four design protocls for the Thioredoxin reductase. . . 115
Full sequence weblogo for the ResCue design on LAO. . . . . . ... ... ... ... 122
Full sequence weblogo for the ResCue design on FixJ. . . . ... ... ... ... .. 123
Full sequence weblogo for the ResCue design on RasH. . . . . ... .. ... ... .. 123
Full sequence weblogo for the ResCue design on Calmodulin. . . . . ... ... ... 124
Full sequence weblogo for the ResCue design on HPPK. . . . . .. .. ... ... .. 124
Full sequence weblogo for the ResCue design on S100A6. . . . . . . . ... ... ... 125
Full sequence weblogo for the ResCue design on Arf 6. . . . . ... .. ... ..... 125
Full sequence weblogo for the ResCue design on thioredoxin reductase. . . . . . . . . 126
Full sequence weblogo for the ResCue design on Phosphate binding protein. . . . . . 127
Full sequence weblogo for the ResCue design on adenylate kinase. . . . . . . . . ... 128
Coupling strengths for residues relevant to function. . . . . . . ... ... ... ... 129

The detailed architecture implemented in tensorflow consists of primarily two bi-
directional LSTM layers. . . . . . . . . . . .. . 130

Weblogo for all Flu antibodies. . . . . . . . .. .. ..o 131

X



65
66
67
68
69
70
71
72
73
74
75

Weblogo of all Flu antibodies classified as non-expressing. . . . . .. .. .. .. ... 132
Weblogo of all Flu antibodies classified as non-expressing. . . . . . .. ... .. ... 133
Weblogo of re-engineered Flu wnatibodies with Rosetta. . . . . . . . .. .. .. ... 134

Frequency of heavy chain mutations of the re-engineered designs with strong intensity.135

Visualization of the re-scaling used generating the Rosetta scoring term. . . . . . . . 136
Histograms of pairwise sequence identities of the Flu dataset. . . . . . . .. .. ... 137
Expression levels and chain class content of the Flu dataset. . . . . . . ... ... .. 138

Performance of different LSTM and logarithmic regression expressability predictors . 139
RosettaCM homology model assessment. . . . . . . . . . . .. ... ... ... .... 140
The sequence identity between human-like Rosetta designs and wild-type. . . . . . . 142
Correlation between substitution scores and human-likeness before and after Powell

optimization. . . . . . . . .. L e 145



List of Tables

Characterization of the ten benchmark proteins (benchgeey) used in this study. . . . 49
Example of unique nucleotides at each position of the six triplets (Tynique), that
encode Serine. Tynique is used to look up the observed nucleotide frequencies that
contribute to a specific amino acid. . . . . . .. .. ... Lo 79
Rosetta weights used to increase expressability and keep the number of mutations
at aminimum . . . . . ..o e e e 96
Expected nucleotide sequence recovery for random back-translation. The rightmost
column summed up results in a probability of 0.7368 . . . . . . . . . ... ... ... 104
Weights used for the FavorNative protocol for each benchmark protein. . . . . . .. 122
V germline gene subgroups of the used Flu antibody dataset sorted by their highest
frequency. The majority (= 90%) of sequences was annotated with germline genes
belonging to one of the top three germline gene subgroups (bold) . . . . . ... ... 137
J germline gene subgroups of the used Flu antibody dataset sorted by their highest
frequency. The majority (= 90%) of sequences was annotated with germline genes
belonging to one of the top three to five germline gene subgroups (bold) . . . . . . . 137
PDB ID number, binding partner, CDRH3 length, and change of the CDRH3 human-
likeness (AHL) compared to the native designs, and antibodies for which the CDRH3

human-likeness could be improved (bold). . . . . . ... ... ... 141

xi



4 Summary

The multi-billion antibody drug market shows substantial growth and has many successfully an-
tibody products since 1975. One of the major challenges to produce antibodies as vaccines and
therapeutics is the ability to develop and manufacture them, and adverse effects that can reduce
the efficacy of an antibody product or induce serious health concerns (immunogenicity). Thus, the
projects of these topics evolve around methods to design antibodies with low immunogenic effects,
and a method to predict if an antibody can be expressed, which can ultimately aid in re-engineering
an antibody for increased expressability.

The increasing availability of immunome repertoires, that is the antibody sequences from B-Cells
obtained from peripheral blood samples from human blood donors, and the increasing number of
antibody (co-)crystal structures facilitates the development of methods that combine large sequence
repertoires of observed sequences and computational structural design. Antibodies can specifically
bind to a wide variety of antigens and body-foreign particles. The wide range of specificity is
generated by multiple mechanisms, which include germline gene rearrangements, non-templated
junction segments, and somatic hyper-mutation. The resulting human antibody sequence space is
thus estimated to be at least in the range of 10'® unique antibody sequences. At the same time,
even the largest immunome repertoires list just 10 unique sequence per human individual. Projects
in this thesis deal with the design of antibodies that are more human-like and therefore reduce the
likelihood of inducing immunogenic effects.

The motivation of the four main projects in this dissertation is outlined in Chapter 5. Since
the developed methods are ultimately to be used in conjunction with the structural protein mod-
eling software Rosetta, the developed methods for this dissertation are set into context of existing
protocols relevant to antibody design. The four main method developed are 1) the human-likeness
assessment of antibodies using statistics of complete immunome repertoires. 2) the design of pro-
teins using homologous sequence information to retain protein function during protein design. 3)
the engineering of human-like antibodies with Rosetta and a probablistic human-like sequence
space. 4) the prediction and re-engineering of antibodies for increased expressability.

Chapter 6 describes the human-likeness estimation of antibodies using statistics of complete
immunome repertoires. This is achieved by creating nucleotide frequency statistics for each germline
gene of an antibody, avoiding the need for pairwise alignment of the database. The statistics can
be used to distinguish human from non-human, and engineered antibodies (chimeric or non-human
origin). The back-translation allows to create a nucleotide sequence for each amino acid sequence.

The following chapter 7 describes the usage of co-evolutionary information during Rosetta
design, leading to designed sequences that are more natural and are much more likely to retain
the identity of the wild-type for functional residues. Thus, co-evolutionary information can be
understood as a fingerprint for function. In the benchmark of human-likeness, it was observed
that the highly variable CDRH3 region remains elusive to human-likeness assessment. To further
improve upon this technique it is recommended to ultimately make use of co-evolutionary residue

information in antibody lineages. This will allow the grouping of antibodies that undergo similar



maturation pressure for antigen binding.

The used immunome repertoire is not grouped into lineages and the antibodies specificity re-
mains unknown. Consequently, chapter 8 describes the first step towards sequence pattern analysis
by combining the human-likeness nucleotide frequencies (Chapter 6 with a clustering approach).
In conjunction with Rosetta, it was shown that antibodies designed with clustered human-likeness
profiles are more human-like and render the CDRH3 statistics more meaningful, with increased
human-likeness in some cases.

Finally, the expressability of antibodies was addressed with a Deep Learning approach. The
protein expression in general involves a complex cascade comprising: transcription, translation,
folding, post-translational modifications, vesicle transport and secretion. Deep Learning has the
potential to recognize sequence patterns responsible for low expression independent of its exact bio-
physical cause. Chapter 9 describes the expressability prediction for a set of paired Flu antibodies.
The re-design with Rosetta increased the probability of predicted expressability in all cases while
exhibiting distinct N and C terminal mutational patterns.

All four major projects comprising this dissertation are critically discussed in chapter 10 with its
potentials and limitations, and future approaches to improve upon these techniques are suggested.
With the main takeaways that human-like antibody engineering may profit from incorporating
methods for co-evolutionary analysis and potentially Deep Learning techniques. This may ulti-
mately lead to powerful techniques for computational antibody discovery. Antibody expressability
remains an unsolved and complex challenge requiring an integrated Research and Development

cycle that integrates and collaborates with experimental antibody expression.



5 Introduction

Selected sections of this chapter have been adapted from (Schoeder, Schmitz et al., 2021).

5.1 The Adaptive Immune Response

The immune system defends the host against infection. Innate immunity comprises the skin barrier,
blood chemicals, and immune system cells and serves as a first line of defense. However, it lacks the
ability to recognize certain pathogens and to provide the specific protective immunity that prevents
reinfection. In contrast, adaptive immunity is able to respond dynamically from highly diverse
antigen-specific receptors that enable the immune system to recognize any foreign antigen. In the
adaptive immune response, antigen-specific antibodies proliferate and differentiate to eliminate the
pathogen (Murphy, Weaver, and Janeway 2017). The human Antibody (Ab) consists of a heavy
and light chain, both of which can be divided into a constant and variable region (Fig. la). The
antigen-specificity is for the most part established in the variable region (Fv) and is therefore main
focus of this dissertation.

The ability of the Ab to mature from an unspecific (germline) state and to obtain high binding
affinity to specific epitopes arises from the germline gene rearrangement, non-templated nucleotides
at the junction between gene segments, and somatic hyper-mutation. Genetically both heavy and
light chains can be recombined from different gene loci. Human light chains are differentiated
between the chain class A (chromosome 22) and « chains (chromosome 2), whereas heavy chain loci
are located on chromosome 14 (Fig. The exact sequences of the germline genes can differ between
individuals and different ethnic groups, but the ImnMunoGeneTics information system (IMGT)
system has assembled gene sequences that can be used as reference (Giudicelli, Chaume, and M.-P.
Lefranc 2005). To date 556 V, 52 D, and 34 J human germline gene alleles have been cataloged by
IMGT/GeneDB and resemble the basis for antibody variability by recombination(Fig. 1b).

N terminus

Variable region

b A light-chain locus
Vi

L1 U\ L2 V)2 L V\~30 - N Cyi Ji2 Cy2 dnd Cy4

Kk light-chain locus

a

disulfide L Vel L2 V2 L3 V3 L V.-38 Ju1-5 (o
Constant
region Heavy-chain locus
Ci3 Lt Vel L2 Ve2 L3 Vg3 Ly Viy~40 Dy1-23 Jy1-6 Cu

Figure 1: The high sequence diversity of an antibody is facilitated by gene rearrange-
ments and mutations. Simplified schematic representation of an antibody molecule. The variable
region directly binds the antigen and undergoes B-Cell maturation (a). The germline gene orga-
nization of the heavy and light chain loci in the genome. 29-33 k V light chain loci, 38 A V light
chain loci, and about 40 heavy chain loci (red) across three chromosomes facilitate gene recombi-
nation and sequence variability. The highly variable third loop of the heavy chain can be encoded
by special D-genes (yellow) (b). (Janeway’s Immunobiology page 129-161) (Murphy, Weaver, and
Janeway 2017)

Human antibodies consist of a heavy and a light chain, which share a well-conserved constant
region (Fc) and framework region (Fr) within the variable region (Fv). Antibody variability is
established through the process of recombination of the V, D, and J genes in the creation of the
naive B cell repertoire and by the subsequent somatic hyper-mutation of antibody variable genes in

the stimulated B cells during germinal center reactions. Sequence variation and structural variation



of the antibody manifest in the Complementary Determining Region (CDR) as three highly variable
loop regions in each heavy and light chain, which facilitates antigen recognition. The sequences of
most antibodies are very similar in the Fc and Fr regions if they share the same germline genes.
The high variability in the CDR loop regions of the variable domain impedes accurate structure
prediction and design of antibodies and has posed a significant challenge in modeling the native
conformations of antibody—antigen structures (North, Lehmann, and Dunbrack 2011; Finn et al.
2016).

The segment of the Ab with the greatest sequence variability and therefore potential to differen-
tiate is the third loop of the heavy chain, which is partially based on one or more D gene fragments
(B. S. Briney et al. 2012). Whenever the mature Ab sequence is based upon a germline, we speak
of it as templated. Identifying the position of the CDR and FR regions is a first crucial step in
the characterization of an Ab. Several numbering schemes have been introduced to identify the
CDRs of a given antibody from the sequence and to provide a consistent structure-based alignment
system (Dondelinger et al. 2018). Prominent numbering schemes include Chothia, Kabat, and AHo
numbering schemes, to align CDRs spatially (Chothia et al. 1989; Al-Lazikani, Lesk, and Chothia
1997; Honegger and A. Pliickthun 2001). These numbering schemes are either based on antibody
sequence alignments (Kabat), the structural superposition of crystal structures (Chothia and Aho).
Another commonly used numbering scheme is IMGT numbering, which is derived from the gene
assignment (Brochet, M.-P. Lefranc, and Giudicelli 2008; M.-P. Lefranc, Giudicelli, et al. 2015).

Immune repertoire fingerprinting has been developed to group repertoires together that share a
common disease state or history. Despite generally high variability of antibody repertoires between
individuals, common exposure can lead to a co-evolution of antibody lineages, for example in the
case of HIV (Liao et al. 2013; Doria-Rose et al. 2014) or influenza (Krause et al. 2011; Jiang et al.
2013; Joyce et al. 2016). V and J gene distributions as a result of antibody lineages with high
specificity can be used to identify a common specificity of immunome repertoires (Sevy, Soto, et al.
2019).

Consequently, a clonotype definition has been developed ('VJ3’) that encompasses the V and
J germline gene as well as the length of the Heavy Chain Complementary Determining Region 3
(CDRHS3) region for the analysis of immune repertoires (Soto, Bombardi, et al. 2019). CDRH3
D germline gene(s) are not considered due to the high sequence variability and the resulting low
confidence in germline gene predictions, aggravating the challenging task of a functional charac-
terization of immunome repertoires. Tools that infer germline gene rearrangements like IgBlast
(Ye et al. 2013; Soto, Finn, et al. 2020) or MIXCR (Bolotin et al. 2015) provide germline gene
rearrangements and the partitioning of the Ab into Fr and CDR domains.

In this work, IgBlastN (Ye et al. 2013) was used to analyze antibody sequences via nucleotide

germline gene alignments. Consequently, the Ab partitioning schema of choice is the germline gene

based IMGT numbering schema (M.-P. Lefranc, Giudicelli, et al. 2015). Chapter 6 describes the

implementation and use cases of a antibody amino-acid partitioning algorithm for protein sequences

similar to IgBlastN for nucleotide sequences.




5.2 Combining Next Generation Sequencing And Structural Information

B lymphocytes are a population of cells that express clonally diverse cell surface antibodies. These
B-cells of peripheral blood samples can be sequenced on a large scale to assess the sequence space
of individuals before, after, or during infections with a pathogen and curated in form of immunome
repertoires. With the decreasing costs of Next Generation Sequencing (NGS) over the past decade
(Koboldt et al. 2013; Metzker 2010), the availability of Ab sequence databases has consequently
increased. NGS immunome repertoires typically comprise T- and B-Cell receptor sequences of the
variable region of antibodies. The Adaptive Immune Receptor Repertoire Community (AIRR)
facilitates to share these special types of datasets (Rubelt et al. 2017). The platform iReceptor is a
portal to access and analyze repertoire repositories across different countries and workgroups in a
uniform manner (Corrie et al. 2018). At the time of its publication iReceptor made over 145 million
sequences available from 17 studies and 13 research labs organized in 4 remote data repositories
(Fig 2a).

Approximately 6800 Ab crystal structures have been deposited at the Protein Databank (PDB)
(Berman et al. 2000) often with detailed insight into the binding mode with the corresponding
antigen as co-crystal structure (Fig. 2b). Out of these, roughly 1000 Ig molecules are annotated as

fully human in the Structural Antibody Database (SAbDab) (Dunbar et al. 2014).
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Figure 2: Availability of antibody sequences and protein structures as of 2018. AIRR-seq
repositories in available in the iReceptor portal allows access of 145 million sequences and growing.
The platform is decentralized and accesses data repositories of different work-groups in multiple
countries (a). Antibody structure deposits in the Structural Antibody Database (SAbDab) has
been steadily growing since 2004 and had approximately 6800 structures available (b).

This dissertation aims to produce new technologies to process large sequence datasets and

antibody engineering tools, to inform the computational structural antibody engineering. Here,

about 350 million unique nucleotide sequences (Soto, Bombardi, et al. 2019) were used in combination

with high-resolution antibody structures from SAbDab (Dunbar et al. 2014) and computational

predictions of antibody structures.

5.3 Monoclonal Antibodies for Clinical Use

Antibodies also represent a class of therapeutic proteins, that can routinely be produced in large
quantities for either therapeutic use or as vaccines. To date, at least 550 therapeutic monoclonal

antibody (mAb)s have been studied in clinical trials and 79 mAbs have been approved by the
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Figure 3: The antibody drug market shows substantial growth and multiple successfully
developed therapeutics since 1975. The estimated market value of mAb therapeutics for each
year. The best selling antibodies in the year 2018 are colored red. The estimated market value has
approximately tripled within the past decade (R.-M. Lu et al. 2020).

Federal Food and Drug Administration (FDA) for clinical use (R.-M. Lu et al. 2020; Kaplon and
Reichert 2019). The success of various antibody products and the market growth highlight the
importance of antibody products for clinical use (Fig. 3).

Advances in sequencing technologies enable the creation of large repertoires containing up to
several hundred million unique sequences from one or more donors. The function of antibodies
involves specific binding to pathogen specific antigens and immune regulatory roles. The six hyper-
variable loops, which are usually referred to as the Complementary Determining Region (CDR),
determines the specific binding of an antibody to its antigen(s). The antibody maturation mech-
anism in B-cells enables large sequence diversity of the CDR by germline-gene recombination and
somatic hyper-mutation (SHM) of the Fv. This leads to a repertoire diversity of at least 103
antibody sequences capable of binding to a large variety of antigens and pathogens (Wooden and
Koff 2018). Antibody repertoires allow the systematic assessment sequence motifs which may be
indicators for antigen-specific, differentiated variable regions. For example, the large-scale compar-
ison of Fv repertoires from different donors gave insight into the extreme variability of sequences
that are for the most part specific for one person ("private”) with little sequence overlap between
individuals (Soto, Bombardi, et al. 2019).

NGS repertoire research can be invaluable for antibody discovery and immunologic research,
however mAbs for clinical use must fulfill additional requirements. First, the mAb as an industrial
product must be capable of being produced in unphysiologically high titers (Mathias et al. 2020).
Second, the mAb must exhibit broad acceptance by the human immune system to avoid adverse
effects and /or compromised efficacy (Ducancel and Muller 2012). The fact that many Ab repertoires

do not distinguish between Ig receptors secreted by the B-Cell and Ig which are not secreted, and



therefore rendered inactive, does aggravate this challenge (Soto, Bombardi, et al. 2019; B. Briney
et al. 2019; DeWitt et al. 2016).

This dissertation describes novel tools to assess and improve the qualification of an Ab for

clinical use, like the design of more human-like antibodies by informing the structural design with

immunome repertoire statistics.

5.4 Manufacturability and Immunogenicity of antibodies

Therapeutic antibodies and vaccines are a class of mAb which are tight and specific binders, in-
hibitors, or steric blockers. Engineering of non-natural Ab is hereby standard practice to create
biologicals that meet these requirements (Spiess, Zhai, and Paul J. Carter 2015; Jost and Andreas
Pliickthun 2014). Antibodies do not necessarily experience evolutionary pressure for high yields
in mammalian cell lines and often show low product titer (Johari et al. 2015). These difficult to
express (DTE) Ab can potentially halt product development in late stages due to low product titers
(Pybus, Dean, et al. 2014). The developability of an product depends on the ability to recognize
and work around DTE candidates. In this dissertation modern Deep Learning (DL) methods are
applied to predict the expressability of antibodies. In combination with computational structural
design, biologicals are re-engineered to improve the predicted expressability while retaining its
biophysical properties.

Additional risk assessment of early-stage mAb biologics development includes screening for
sequence liabilities that r compromise the developability and manufacturability (Jarasch et al.
2015). Clinical-stage mAb are exposed to heat and different pH values that can occur during the
manufacturing to evaluate performance during long-term storage and assess the risk of modification
of the biophysical properties. The CDR is especially susceptible to chemical modification (CM),
which includes deamidation and isomerization processes that can disrupt the binding mode to the
antigen (X. Lu et al. 2019). Over 200 ptm are known and can affect stability, and efficacy of the Ab
product (Amann et al. 2019). Glycosylation in the constant region (Fc) for example is a PTM that
plays a role in mitogenicity (Bolt et al. 1993), and therapeutic efficacy (Mimura et al. 2018; Chen
et al. 2017) by regulating the antibody’s immunobiologic downstream effects. Simultaneously, N-
linked glycosylation of the F'v can sterically prohibit antigen binding, or influence immunogenicity
(Waldmann 2019).

The immunogenic response to antibody products can be caused by CM, PTM, or aggregation
results in an anti-drug antibody (ADA) response. ADA includes human anti-mouse antibody
(HAMA) (Schroff et al. 1985), or human anti-chimeric antibody (HACA) (Afif et al. 2010) upon
artificial engineering can impact patient safety as well as pharmacokinetic properties and ultimately
limit drug efficacy. Surprisingly even fully-human Ab can result in the human anti-human antibody
(HAHA) response (Nechansky 2010a). The natural immune response against engineered antibodies
is an effect of the sequence being very dissimilar to sequences generated by the adaptive human
immune response. Consequently humanization techniques were developed (Tsurushita, Hinton,

and Kumar 2005) that has reduced the immunogenicity of engineered Abs (Hwang and Foote
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2005). One of the more widespread humanization technique for mAb products is CDR grafting,
where the murine Fv is transplanted onto human framework sequences (Maloney et al. 1997),
or only transplanting murine CDR-loops while keeping the Fv framework regions human (Queen
et al. 1989). Until 2017, the different degrees of human-likeness was captured by International
Nonproprietary Name (INN) naming schema which indicates the level of humanization of an mAb.
For example Adalimumab indicates a human antibody (Fig. 4). However, the naming system has
undergone repeated reviews and its details have been changed since 2017 (Mayrhofer and Kunert
2021).

Sequence liability screening for PTM, CM, and aggregation therefore increases the likelihood of
successful development of an mAb into a product that is manufacturable and has been adopted in
product development pipelines (Y. Xu et al. 2013). The variety of factors that influence manufac-
turability, developability, and immunogenicity requires different methodological approaches.

This dissertation addresses these factors by statistically measuring human-likeness for the first

time by assessing nucleotide statistics from complete immunome repertoires. A Deep Learning (DL)

based expressability method was developed to predict if an antibody can be expressed and to

re-engineer antibodies for increased expression rates.

5.5 Computational Approaches for antibody design
5.5.1 Rosetta protein design

The Rosetta protein design software package (Leaver-Fay, Tyka, et al. 2011) employs the Monte
Carlo (MC) simulated-annealing (Xianggian Hu, Beratan, and W. Yang 2009) algorithm for heuris-
tic sampling of the sequence as well as conformational space for a protein. The fundamental concept
behind Rosetta’s protein-design algorithm is the packer. The packer builds new amino acid side-
chains onto a protein scaffold by evaluating a set of rotamers at each position (Ponder and Richards
1987). The large degree of freedom within the protein renders this problem computationally highly

expensive (NP-hard) and can not be solved be enumerating all solutions exhaustively (Pierce and



Winfree 2002). Instead, MC simulated annealing approach attempts to find sub-optimal to optimal
sequence spaces (B. Kuhlman and D. Baker 2000). The semi-random walk over the sequence and
conformational space is evaluated by Rosetta using a scoring function until the solution converges
to a (local) minimum. Thus, the non-deterministic behavior of this design approach demands the
generation of a variety of decoys to be inspected and filtered by the user with biophysical expert
knowledge (Kufareva and Abagyan 2012).

The Rosetta scoring function has historically derived statistical potentials (Simons, Kooperberg,
et al. 1997) that describe residue-pair interactions from the PDB (Berman et al. 2000). This early
version of the scoring function was purely knowledge-based and did not handle amino-acid side-
chain conformations explicitly. Improvements to the scoring function were made by adding physics-
based potentials, like van der Waals interactions, or hydrogen bonding terms (Simons, Ruczinski,
et al. 1999). The addition of rotamer libraries, a Lennard-Jones solvation model (Neria, Fischer,
and Karplus 1996), and electrostatic considerations for hydrogen bonds (Kortemme, Morozov, and
David Baker 2003) facilitated the first all-atom energy function (B. Kuhlman and D. Baker 2000).
The modern Rosetta Energy Function 2015 (REF15) computes the free energy of a bio-molecule’s
conformation as a linear combination of its weighted individual terms (Alford et al. 2017) (Eq. 1).
The Rosetta score AFyyq; is the sum of its individual physics and knowledge-based potentials (F;)
as functions of degree of freedom (©) and residue types (aa). The contribution of each term to the
final score is carefully fine-tuned by a sets of weights w;, allowing to design native-like backbone

torsion angles (Renfrew, Butterfoss, and Brian Kuhlman 2008).

AEtotal = ZZUZEZ(Q,CLG@) (1)

REF15 incorporates a set of 19 weighted energy terms, one of which allows for sequence design.
The Rosetta amino acid reference energies AG:ef facilitate sequence design on a protein confor-
mation. AGgef was optimized empirically to maximize the native sequence recovery and allows
for estimation of the free energy difference between the folded and unfolded state. Thus, reference
energies help to estimate for the energetic change of a mutation (Alford et al. 2017; Jain, Cerutti,
and McCammon 2006).

Rosetta is designed to be easily extended by knowledge based potentials and has experimentally
been used to combine the primarily thermostabilizing scoring function potentials with additional
weighted terms (‘constraints‘). Adding experimental data constraints to the energy function, for
example, further improved de novo structure prediction with paramagnetic constraints (Kuenze
et al. 2019), electron-electron resonance spectroscopy decay traces (Del Alamo et al. 2020), or
information of co-evolving residue pairs (Ovchinnikov, D. E. Kim, et al. 2016).

In this dissertation, novel scoring terms were developed to demonstrate that a) the human-likeness

of antibodies can be improved by adding immunome repertoire sequence constraints and b) co-evolutionary

information can be used for conservative protein design in order to retain protein function, and c) a

Deep Learning (DL) based expression prediction can guide the mutational space towards a greater

likelihood of Ab expressability.
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5.6 The role of residue-pair co-evolution in protein design

The protein sequence of a protein arises from stability, structural, functional, constraints. Evolu-
tionary related, ‘homologous‘ proteins accumulate sequence patterns specific for protein family and
function. Tools have been developed that allow for extracting co-evolving residue pairs (couplings)
that are characteristic for a set of homologous sequences (Morcos et al. 2011; Marks, Colwell, et al.
2011; Ekeberg et al. 2013; D. T. Jones et al. 2012; Kamisetty, Ovchinnikov, and David Baker 2013;
Ovchinnikov, Kamisetty, and David Baker 2014). Methods that extract couplings decompose the
chaining of co-evolving residues (residue A evolves with B, B evolves with C and thus, A evolves
with C), resulting in pairwise terms that do not have to be in direct contact with each other. The
majority of couplings however (> 91%) are within 5-15 A in at least one homologous structure
and thus can be considered in physical contact with each other (Anishchenko et al. 2017). Conse-
quently, the incorporation of co-evolutionary information into Rosetta as additional scoring term
during de movo structure prediction has led to a substantial improvement of the computational
models (Ovchinnikov, D. E. Kim, et al. 2016). Figure 5 visualizes the contact map of the 508 ribo-
somal subunit as a matrix, where each cell represents the correlation strength between two residues
within the protein. The inferred couplings of the 50S ribosomal subunit (blue) match closely with
the residue-pair distances of its corresponding X-ray structure.

Non-local couplings have been proposed to be of phylogenetic origin (Wollenberg and Atchley
2000), results of codon usage (Jacob, Unger, and Horovitz 2015), or allosteric interaction networks
(Stiel et al. 2003). In this dissertation we demonstrate, that non-local couplings can inform the
Rosetta design process in favor of function and protein interaction that may support the design of
highly specific antibodies without the requirement of fully studying the binding mode and antigen.
The hypothesis of leveraging couplings for protein function and dynamics is supported by previ-
ous studies that used co-evolutionary analysis for protein-protein complex prediction (Burger and
Nimwegen 2008; Hopf et al. 2014; Ovchinnikov, Kamisetty, and David Baker 2014), interaction
partners (Bitbol et al. 2016), and modeling of conformational changes (Dago et al. 2012; Schug
et al. 2009).

In this dissertation, we will demonstrate that co-evolutionary analysis can be applied to struc-

tural design with Rosetta to conserve the functional knowledge of a protein without its explicit
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knowledge. Immune repertoires yet can not be systematically be functionally annotated and dis-
covering functional antibodies remains challenging (DeWitt et al. 2016; Soto, Bombardi, et al. 2019;
B. Briney et al. 2019). Immunome repertoire analysis may benefit from elaborate co-evolutionary
analysis of antibody lineages that share functionally relevant sequence patterns. As a first step into
this direction, we extract sequence patterns from large repertoires by applying an efficient cluster-
ing technique capable of processing billions of sequences and demonstrate that antibodies designed
with sequence constraints of appropriate clusters increase their similarity to the repertoire. This
is an indication that sequence sub-populations can be extracted, which support a certain antibody

structure and therefore likely function and sequence patterns.

5.6.1 Rosetta methods for antibody design

Rosetta has been successfully applied on a variety of biological design questions, including protein
design (Leaver-Fay, Jacak, et al. 2011), de novo protein folding (Brian Kuhlman et al. 2003; Rohl
et al. 2004), peptide design and docking (Raveh et al. 2011), enzyme design (Richter et al. 2011),
and small-molecule docking (Nguyen et al. 2013). A number of protocols are specifically tailored

towards antibody design. To place the methods developed for this dissertation in the context of

existing approaches, Rosetta immunogen design protocols that are applicable on human antibodies

are described here.

Antibody Structure Prediction. In protein structure prediction, two major approaches are
used: (1) de novo folding in the absence of a structural reference or template and (2) comparative
modeling, which takes advantage of the availability of a structurally similar template to build a
target model (Brian J. Bender et al. 2016). Given the large number of experimental antibody
structures deposited in the PDB and the conserved immunoglobulin (Ig) fold, the large number of
homology templates provides little to no need for de novo folding of the complete Fv domain. This
makes antibodies ideal targets for comparative modeling approaches. However, the true challenge
of antibody structure prediction lies in the correct orientation and fold of the CDRs, as all further
scientific questions concerning antigen binding depend on the accuracy of the modeled loop confor-
mations. Excluding HCDR3, five of the six loops usually fall into canonical clusters as defined by
North et al., which can greatly simplify structure prediction (North, Lehmann, and Dunbrack 2011;
Adolf-Bryfogle, Q. Xu, et al. 2015). Here, we will review three available protocols for antibody
structure prediction from sequence in Rosetta: RosettaAntibody, AbPredict, and RosettaCM.

The RosettaAntibody application uses a three-step protocol for modeling the variable domain
from sequence (compare Figure 6A): (1) template selection for the framework and the five canon-
ical loops, (2) grafting of selected templates into a preliminary model, and (3) HCDR3 de novo
loop modeling while simultaneously optimizing the VH-VL interface orientation (Weitzner, Jeli-
azkov, et al. 2017; Weitzner, Kuroda, et al. 2014; Sivasubramanian, Sircar, et al. 2009). For
template selection, a BLAST sequence search matches the parsed sequence to a modified copy
of the PylgClassify database provided as part of Rosetta to assign both the Fv template and

CDR conformations. This assignment can be checked with the identify_cdr_clusters application in
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Rosetta such that any mismatches or other poor assignments within the template selection can be
manually modified (Weitzner, Jeliazkov, et al. 2017; Sivasubramanian, Sircar, et al. 2009). As a
next step, the initial VH-VL orientation is diversified by sampling VH-VL orientations from the
BLAST list based on light-heavy orientational coordinates (LHOC), a metric that combines the VL
and VH opening angles, the packing angle between the VH and VL domains, and the interdomain
distance (Marze, Lyskov, and Gray 2016). Somatic hypermutation at the interface results in mul-
tiple angles between VL and VH even from sequences derived from the same germline genes such
that a small difference in VH-VL distance and orientation may result in a drastic change in the
CDR placement. This modulation of chain interface relationships has been investigated recently
by Cisneros et al., who found VH-VL interface residues were reverted to the germline sequence,
which resulted in significant loss of affinity, and indicated that the rigidification of the VH-VL
interface, which will determine its orientation, is a major driver for affinity maturation (Cisneros
et al. 2019). RosettaAntibody selects 10 different framework matches as starting structures for
loop grafting. The selected template loops are superimposed on the framework based on two over-
lapping residues and optimized through a cycle of minimizations, random torsional sampling and
cyclic coordinate descent (CCD) (Wang, Bradley, and David Baker 2007; Canutescu and Dunbrack
2003). Subsequently, HCDR3 conformations are modeled with the next-generation kinematic loop
closure (KIC) algorithm in a low-resolution step (Stein and Kortemme 2013). The full model is
then refined in full atom mode, with the VH-VL orientation reoptimized with rigid-body docking,
(Gray et al. 2003) and the model is subsequently refined with an additional high-resolution step
of next-generation KIC, residue side chain packing, and minimization (Weitzner, Jeliazkov, et al.
2017; Sivasubramanian, Sircar, et al. 2009).

Accurate modeling of the target antibody with RosettaAntibody relies on the availability of
templates in the database that are highly similar in sequence to the antibody target. Most of the
antibody structures determined so far are either human- or mouse-derived. Given the variability
of the species-specific germline repertoire, such as the varying number of V genes or the different
structural features represented, modeling of non-human or non-murine antibodies may be prob-
lematic due to the lack of appropriate templates. Therefore, when antibodies from other species
are being modeled, it may be advisable to either curate a custom database or provide selected
templates manually.

RosettaAntibody participated in both the 2011 and 2014 antibody modeling assessments (AMASs)
(Almagro, Beavers, et al. 2011; Almagro, Teplyakov, et al. 2014). RosettaAntibody performed well
overall on the basis of MolProbity scores and loop Cae RMSDs in AMA I (Almagro, Beavers, et al.
2011). In AMA II, RosettaAntibody was compared to six other software suites on a set of 11
unpublished antibody structures. It predicted 42 of 55 non-HCDR3 loops with an accuracy of
better than 1Aand generated the best HCDR3 model for 4 of 11 antibody structures from the
other six competing methods (Weitzner, Kuroda, et al. 2014; Almagro, Teplyakov, et al. 2014).
Subsequent analysis of the AMA II results identified some areas in the protocol that had weakened

its performance: the lack of good loop templates, the inaccurate modeling of the HCDR3 due to
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Figure 6: Methods in Rosetta for antibody structure prediction. (A) Schematic workflow
of the RosettaAntibody application, in which HCDR1-2 and LCDR1-3 are modeled from tem-
plates in the loop database, and HCDRS3 is de novo folded and grafted on a selected framework.
(B) Schematic of the AbPredict protocol, which assembles an antibody from templates in four
fragment databases, containing VL, LCDR3, VH, and HCDR3 templates. (C) Schematic overview

of RosettaCM, which creates models by threading and hybridization of template structures based
on user-provided sequence alignments.



limitations in the loop modeling protocols, and the wrong orientation of the VH-VL interfaces
(Weitzner, Kuroda, et al. 2014). All of these issues were addressed in the present RosettaAntibody
protocol, which samples a variety of VH-VL starting structures60 and incorporates next-generation
KIC with HCDR3 conformational constraints (Weitzner, Jeliazkov, et al. 2017; Weitzner and Gray
2017). The problem of missing starting structures, which prevents accurate sampling of rare CDR
loop conformations, can be further improved only when more structural data are deposited in
the PDB that are continuously integrated into PylgClassify and the RosettaAntibody database
(Weitzner, Jeliazkov, et al. 2017; Adolf-Bryfogle, Q. Xu, et al. 2015).

A similar approach that combines antibody structural templates in another way has been im-
plemented in the AbPredict protocol (compare Figure 6B) (Norn, G. Lapidoth, and Fleishman
2017). AbPredict selects low-energy combinations of backbone fragments derived from experimen-
tally determined structures of antibodies in the PDB (Norn, G. Lapidoth, and Fleishman 2017).
The template antibodies are segmented into four parts: (1) heavy chain CDR3, (2) light chain
CDR3, and (3 and 4) heavy and light chain V gene regions each containing CDR1 and CDR2
and the framework as defined by the conserved core disulfide in the variable region. Additionally,
AbPredict considers the rigid-body orientation between VL. and VH, which is represented by the
spatial distance of the disulfide’s cysteine residues to L88 and H92 (Kabat numbering). Briefly, a
database of randomly recombined backbone fragments and rigid-body orientations with the target
sequence length is created. After the target sequence has been threaded on a random starting
conformation, a Monte Carlo search that samples backbone fragments from the curated database,
repacks side chains, and minimizes the whole structure is executed, which is output as scFv (Norn,
G. Lapidoth, and Fleishman 2017; G. D. Lapidoth et al. 2015).

AbPredict has been benchmarked using the AMA II antibody set and compared to the methods
presented therein. It performed in the upper third of all compared methods and showed benefi-
cial performance in the prediction of the HCDR3 stem and the rigid-body orientation (Norn, G.
Lapidoth, and Fleishman 2017).

Because AbPredict draws from an antibody template database provided as part of Rosetta,
the representation of rare CDR loop length combinations is again a potential limitation, especially
because AbPredict requires that target and template length match. A protocol capture is included
within Rosetta.

Although antibody-tailored homology modeling protocols like RosettaAntibody can take advan-
tage of knowledge-derived features of antibody structure, Rosetta’s general multitemplate homology
modeling protocol, RosettaCM can also be used (Figure 6C) (Song et al. 2013). RosettaCM might
be advantageous in specific cases, especially if the antibody structure shows noncanonical struc-
ture elements such as unusual loop lengths or conformations, which would not be available in the
antibody template databases. Using the DetailedControls option, RosettaCM can be employed to
model only specific ranges of peptide sequences within a protein, for example, just one CDR. A
similar approach was used to model G protein-coupled receptor loop regions with great accuracy

(Brian Joseph Bender et al. 2019).
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Overall, for most antibody structure prediction tasks, a good starting point is to employ Roset-
taAntibody as described in the tutorial section. Depending on specific features of the target an-
tibody such as template availability or unusual loop length, models may need further refinement.
In this case, the user can consider using only selected templates or perform a partial remodel-
ing with RosettaCM. It is advisable to run smaller test runs with only a few output models in
the beginning and monitor the outcome for reasonable modeling performance by looking at the
total_score, a metric for predicted protein stability, which should be negative. In production runs,
up to 10000 models should be created, depending on the complexity of the modeling task and the
specific requirements of the protocol. Using metrics such as the total_score and Ca RMSD, the
performance of the modeling run and the quality of the models can be assessed. This can also be
used to compare the modeling performance of different protocols.

This work makes use of a RosettaCM (Song et al. 2013) based multi-template homology modelling

protocol for antibodies (Kodali et al. 2021). Structural models were used to demonstrate that the

predicted likelihood of expression can be increased via re-design in conjunction with a novel scoring

term.

HCDRS3 Structure Prediction. Structure prediction of HCDR3 has been challenging to date
due to its high length and conformational diversity. Although half of HCDR3 loops are shorter than
16 residues, HCDR3 has been described to adopt loop sizes far longer, up to 32 residues, and even
longer outliers have been described (IMGT nomenclature) (North, Lehmann, and Dunbrack 2011).
The mean HCDR3 loop length has been determined to be 16 residues (B. S. Briney et al. 2012).
Ultralong HCDR3 loops (> 28 amino acids) have been described as necessary for the neutralization
of disease states such as HIV or malaria, (Pancera et al. 2010; Henderson et al. 2007; McLellan
et al. 2011) making the accurate modeling of long HCDR3 loops increasingly important for the
structure prediction of therapeutically relevant antibodies.

Canonical loop clustering fails in the case of HCDR3 due to its high degree of diversity. Pylg-
Classify lists HCDR3 up to lengths of 5-9 residues, which are more restrained in their structural
diversity, but structural clusters are not defined for longer HCDR3 lengths (Adolf-Bryfogle, Q. Xu,
et al. 2015). However, the HCDR3 “torso” region, encompassing the first three (T1-T3) and the last
four residues (T4-T7) of HCDR3 (based on the IMGT numbering scheme), can be classified into
“kinked” (“bulged”) or “extended” (“non-bulged”) (Morea et al. 1998; Shirai, Kidera, and Naka-
mura 1996). The kinked conformation is predominant in antibodies, although structure prediction
software rarely samples this conformation type (Finn et al. 2016; Weitzner and Gray 2017). In the
past, sequence-based approaches have been employed to make a distinction between the kinked and
extended conformation, relying on the presence of an arginine or lysine in the second position and
an aspartic acid in the second to last position of the HCDR3 loop to classify an antibody as having
a kinked conformation (North, Lehmann, and Dunbrack 2011; Morea et al. 1998). Although these
amino acids are present in a large number of kinked conformations, they fail to cover the entirety
of existing kinks (Finn et al. 2016). Therefore, other metrics for describing the kink conformation

have been introduced and used as penalties during loop modeling. In an independent protocol to
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Figure 7: Incorrect long HCDRS3 loop structure prediction. (A) Model of FluA-20 created
with RosettaCM. HCDR1 and HCDR2 are predicted very well; however, the HCDR3 loop has an
incorrect conformation that will impair future studies using this model. (B) Experimental structure
of FluA-20 for comparison. (C) CDRH3 RMSD for 5 different Rosetta structure prediction methods.
Short represents HCDR3 loop lengths of 1-6 amino acids (AA), medium of lengths 7 to 13 AA, and
long of lengths 14 to 20 AA

more accurately model near-native HCDR3 loop conformations, Finn et al. described in greater
detail the range of dihedral angles present in the torso region and identified a set of rules to guide
kinked conformation sampling (Finn et al. 2016). The dihedral angle restraints are defined by the
1 angle at the sixth torso residue (T6) and are added as a Rosetta constraint file using a circular
harmonic scoring function that penalizes the incorrect torso residues.

In RosettaAntibody, this limitation was overcome by integrating a structurally derived filter
based on the kink definition by Shirai et al (Shirai, Kidera, and Nakamura 1996). so that bulged
conformations are enriched (Weitzner, Kuroda, et al. 2014). To refine the definition of a “kinked”
HCDR3 loop, Weitzner et al. integrated the conformation bias constraint to increase the likeli-
hood of sampling native-like geometries of the last two C-terminal dihedral angles of HCDR3 plus
the following framework residue’s dihedral angle (as defined by the Chothia numbering scheme)
(Weitzner and Gray 2017). Weitzner et al. hypothesized that the kink increases the degree of
HCDR3 structural diversity by disrupting the propagation of S-strand pairing. Such a trend was
also observed for proteins from other families where similar kinks occur in ligand recognition sites
(Weitzner, Dunbrack, and Gray 2015).

Homology modeling of influenza hemagglutinin protein-specific human monoclonal antibody
FluA-20 provides an illustrative example of challenging HCDR3 loop modeling (Figure 7A-B).
While the best scoring homology model created with a RosettaCM protocol had accurate HCDR1
and HCDR2 predictions, the HCDR3 tip is flipped compared to the crystal structure. Structure
prediction methods have difficulty with FluA-20 due to its 18-residue HCDR3 loop. The rules
and protocols that Finn et al. and Weitzner et al. provide are a good starting point to improve
native-like HCDR3 placement despite its noncanonical conformation. Accurate prediction of all
CDR loops, especially HCDR3, from an antibody modeling protocol is paramount in obtaining
biologically relevant results in downstream protocols, such as antibody—antigen docking.

The RosettaCM based homology modeling protocol used in this dissertation (Kodali et al. 2021)

outperformes the single-template RosettaCM protocol for long CDRH3 loops.

Antibody—Antigen Docking. The structural study of antibody—antigen complexes is crucial

for the understanding of antibody—antigen interactions, guides optimization and design approaches

16



of both docking partners, and ultimately helps develop new antibody-based therapies. Prediction of
antibody—antigen complexes with computational protein—protein docking is of particular interest
in investigating antibody function, as high-resolution experimental models of antibody—antigen
complexes are rare due to the difficulty of co-crystallization. While more and more antibody—antigen
complexes are now becoming available through the use of cryo-EM, the experimental data may not
fully support atomic-level accuracy in all regions.

In Rosetta, a general protocol called RosettaDock can be employed for rigid-body docking with
full backbone flexibility of two interacting proteins (Chaudhury, Berrondo, et al. 2011; Chaudhury
and Gray 2008; Gray et al. 2003). This protocol was reviewed previously by Bender et al (Brian J.
Bender et al. 2016). and will be discussed only briefly here. A low-resolution docking step, where
docking poses are identified by rigid-body movements about the surface of the binding partner(s)
(namely rotation and translation moves), is followed by a high-resolution step in full atom mode
with fine-grained docking moves and side chain optimization stages (Gray et al. 2003). RosettaDock
requires as input a structure of both docking partners, optimally with a user-defined starting point.
However, RosettaDock also can perform a global docking step to identify low-energy docking poses
(Gray et al. 2003; Chaudhury, Berrondo, et al. 2011).

SnugDock is an antibody- and antigen-specific extension of the RosettaDock protocol that is
especially useful for docking homology modeling-derived antibody structures. SnugDock incor-
porates antibody-specific moves to overcome limitations of homology model-based inaccuracy in
rigid-body docking that were observed in docking challenges (Weitzner, Jeliazkov, et al. 2017;
Sircar and Gray 2010). Specifically, SnugDock adds a refinement step for HCDR2 and HCDR3
loops after low-resolution docking, allowing for greater loop backbone sampling with small, shear,
and CCD moves. During the high-resolution phase, explicit sampling of the rigid-body VH-VL
orientation and HCDR2 and HCDR3 conformations is achieved by CDR minimization, and loop
backbone perturbation accompanied by additional small, shear, or CCD moves. SnugDock also can
be combined with EnsembleDock, providing a database of input models for a higher diversity of
starting structures (Weitzner, Jeliazkov, et al. 2017; Sivasubramanian, Sircar, et al. 2009; Sircar
and Gray 2010). SnugDock (together with EnsembleDock) has been benchmarked on a set of 11
antibody—antigen complex structures, resulting in four medium and seven acceptable ratings us-
ing the critical assessment of prediction of interactions (CAPRI) criteria (Sircar and Gray 2010).
SnugDock performed significantly better than did the standard RosettaDock protocol. However,
SnugDock can also overfit, closing voids and constructing unnaturally tight interfaces (Sircar and
Gray 2010). A protocol capture for SnugDock has been published by Weitzner et al (Weitzner,
Jeliazkov, et al. 2017).

Generally, a docking approach will greatly benefit from including experimentally obtained re-
straints, which can be used to limit the conformational space to relevant structures. Examples of
such experimentally derived restraints are alanine or site-directed mutagenesis, hydrogen—deuterium
exchange mass spectrometry (HDX) or also HDX-NMR, NMR chemical shift perturbations, low-

resolution cryo-EM, and chemical cross-linking data (Sivasubramanian, Chao, et al. 2006; Thorn-
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burg et al. 2013). In the presence of a low-resolution EM map, however, it can be very difficult to
dock an antibody in the right orientation, and a combination of structural methods may be neces-
sary to obtain a high-confidence antibody—antigen complex model (Thornburg et al. 2013). Both
SnugDock and RosettaDock are compatible with a wide variety of general constraints and filters in
Rosetta. The general performance of a docking attempt can be assessed by calculating the interface
energy for the created models, and also the Cae RMSD, for example, to the best scoring model. In
many cases, some kind of experimental or knowledge-derived restraints are available that can also
guide model selection, either manually or using filters in Rosetta. As docking normally has a high
number of degrees of freedom, it is advisable to sample a high number of models when performing
production runs for thoroughly sampling the conformational landscape (e.g., 10000, depending on
the complexity of the problem).

In this dissertation, co-crystal structures were used for antibody design. To estimate the effect

of mutations on the binding affinity to the antigen, Rosetta was used to calculate the Rosetta

interface energy normalized by the size of the binding interface.

Antibody Design. Where structure prediction seeks to identify the optimal three-dimensional
protein fold for a particular one-dimensional amino acid sequence, protein design seeks to find
potential amino acid sequences that can maintain at least one previously determined, stable three-
dimensional protein structure. Therefore, in contrast to antibody structure prediction and docking,
where an antibody of fixed sequence is considered, antibody design modifies the sequence of an
antibody to improve antibody affinity, specificity, and breadth, guided by knowledge-based sampling
strategies.

Single-State Design. Single-state design protocols focus on the optimization of the binding
affinity of a single antibody to a specific antigen. Such an approach can be used either to improve
an already existing interaction or to create a new interaction for a nonbinding antibody—antigen
pair. This refinement of an antibody sequence can be seen as a computational analogy to the
natural affinity maturation process (Willis, B. S. Briney, et al. 2013). Somatic hypermutation
introduces changes in sequence in the highly variable CDR regions during clonal expansion, leading
to a high adaption to the presented antigen and to the expression of the tightest binder in a
plasma cell. Rosetta on the contrary samples random mutations, using its energy function and
Monte Carlo sampling to differentiate between beneficial and destabilizing mutations. While such
a design process can proceed naively, naturally occurring patterns can be used as knowledge-based
restraints to restrict the sequence search space.

Sequence design in the presence of an antigen can be performed by a very basic design algo-
rithm in Rosetta, focusing the design to amino acids within the antibody—antigen interface. An
example for this procedure is given in Bender et al (Brian J. Bender et al. 2016). First, a Python
script is used to identify residues that are within a distance of specified residues that define the
antibody—antigen protein interface. Subsequently, these interface residues are listed in a so-called
“resfile”, or a space-delimited file that designates designable residues, labeled by their residue num-

ber and chain identification, and to what entities, e.g., amino acid side chains, each residue may
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be designed. In essence, the resfile controls which residue side chains can be mutated through de-
sign, repositioned through repacking, or kept rigid during design. Because interface design includes
more than one protein, it is important to consider which side of the interface should be “mutated”;
typically, it is desired to optimize the binding interface of the antibody through design while main-
taining the antigen-binding interface. Therefore, it is most common to specify the residues within
the antibody’s interface as designable residues, while the antigen interface residues are limited to
repacking to accommodate amino acid changes in the interface (Figure 8A).

The Rosetta design protocol optimizes the sequence on the basis of the overall energy of the
complex, including the internal energy of the antibody and antigen, rather than the binding energy
specifically. The resulting binding energy can be evaluated afterward by using InterfaceAnalyzer.
Ideally, the binding affinity increases or decreases in value, while the overall energy (as a measure-
ment for stability) does remain relatively constant. These criteria provide an initial filter to select
models for further evaluation. More rigorous analysis, however, should evaluate each proposed mu-
tation independently for its contribution to the total energy and binding energy in relation to the
native model. A notable application using a similar protocol and analysis was the redesign of PG9,
a human monoclonal antibody targeting the HIV envelope glycoprotein, where a RosettaDesign
variant displayed increased potency and neutralization breadth (Willis, Sapparapu, et al. 2015).

This method is generally applicable to protein—protein interactions, and as such, it does not
use any information about the natural sequence profiles for antibodies. Furthermore, its ability
to sample backbone conformations is limited, which in turn limits accurate prediction of residues
critical for forming antibody—antigen interaction. To circumvent such a limitation, it may be
advisable to run the protocol on an ensemble of pregenerated starting conformations, or to integrate
a backrub step, (Smith and Kortemme 2008) which will introduce greater backbone conformational
flexibility.

Multi-state design (MSD) is a popular approach to inform Rosetta about protein flexibility. In

this dissertation, we benchmarked our design approach that incorporates co-evolutionary information

against MSD since both, ensemble of structures and evolutionary information allows the design of

structures that favor protein flexibility. We show, that design using co-evolutionary information is

capable of producing more natural protein sequences and retains residues that have been discovered

to be functionally relevant in previous studies.

RosettaAntibodyDesign (RAbD). RosettaAntibodyDesign (RAbD) is capable of both de
novo antibody design from a nonbinding antibody and also affinity maturation of an already existing
antibody. It classifies the antibody into regions, including framework, the five canonical loops,
and the HCDR3 loop, similar to the methodology in RosettaAntibody. Additionally, it can also
redesign the DE loop, or H/LCDRA4, as reported by Lehmann et al. for anti-EGFR scFv antibodies
(Lehmann et al. 2015). RADbD starts from an assembled antibody—antigen complex and allows for
both sequence and graft design based on the canonical clusters described by North et al.: (North,
Lehmann, and Dunbrack 2011) GraftDesign exchanges a whole CDR for another from the canonical

cluster database, and SequenceDesign optimizes the sequence on the basis of the canonical cluster
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sequence profiles. The protocol is highly tunable by using a CDR instruction file, which allows users
to include and exclude clusters, loop length, or PDB entries on the basis of the user’s preferences. An
example for this can be found in the tutorial section in the Supporting Information. Briefly, RAbD
consists of an outer loop, which performs the graft design if enabled, and then passes the structure to
an inner loop of sequence design, side chain repacking, CDR minimization, and optional integrated
docking with epitope and paratope constraints. The structure is energy-minimized through the
use of cluster-based CDR dihedral constraints and uses the Metropolis Monte Carlo criterion in
the inner and outer loop for optimization. The default cycle number is set to 25 outer loops and
one inner loop. The RAbD Metropolis Monte Carlo criterion can be set to the total energy (the
protein stability score) or can be set to look specifically at the interface energy (corresponding to the
computational binding affinity) using the integrated InterfaceAnalyzer methodology, as described
above (Adolf-Bryfogle, Kalyuzhniy, et al. 2018).

RADD therefore samples through all experimentally observed antibody conformations of differ-
ent lengths and their corresponding sequence and structure space, allowing the design of loops with
different lengths if desired. The protocol was benchmarked on a set of about 60 antibody—antigen
complex structures and tested in two experimental antibody design cases, where it improved binding
affinities for both antibodies.

AbDesign. AbDesign relies on backbone fragment recombination from experimental structures
of antibodies deposited in the PDB, mimicking V(D)J recombination and allowing more native-like
packing between the heavy and light chain than other antibody design protocols (G. D. Lapidoth
et al. 2015; Baran et al. 2017). In short, AbDesign first predicts candidate apo structures of an
antibody and, then following antibody docking, optimizes the antibody-binding interface against
the target antigen. Like AbPredict, each heavy and light chain is segmented into one segment
containing the CDR1, CDR2, and framework region (resembling the part of the protein encoded
by the V gene) and another containing CDR3. Conformational representatives of each of the four
segments are selected from precomputed Rosetta databases containing backbone segment torsion
and sequence profiles. The selected segments are inserted, or grafted, onto the template scaffold
by being subjected to CCD moves (Canutescu and Dunbrack 2003) using dihedral and coordinate
constraints. Afterward, the individual antibody segments are scored against the original segment,
and if the difference is <1 Aacross all segments, the predicted antibody model is kept for design.
In addition, the antibody sequence is optimized on the basis of conformation-dependent position-
specific scoring matrices (PSSMs) for each segment cluster, thereby combining knowledge-based
sequence space with backbone plasticity. Following sequence and backbone optimization, the pool
of generated models is docked onto the target antigen using low-resolution docking. This is followed
by a last design step. It is important to note that the sequence constraint is less strict for residues in
the antigen interface, thereby encouraging a high degree of sequence variability for the optimization
of the binding energy upon design, whereas the more conserved framework regions have stricter
constraints, to encourage selection of naturally occurring sequences to maintain stability. Using a

many-valued fuzzy-logic approach (Warszawski, Netzer, et al. 2014) in the final selection, antibodies
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are chosen on the basis of stability (total energy), binding energy, buried surface area, packing
between the heavy and light chain, (Sheffler and David Baker 2009) and shape complementarity
(Lawrence and Colman 1993) between the antibody and antigen (G. D. Lapidoth et al. 2015).
AbDesign was benchmarked on a set of nine antibody—antigen complexes and evaluated on
sequence recapitulation and interface side chain rigidity (G. D. Lapidoth et al. 2015). Furthermore,
AbDesign was used for two de novo designs of scFv in combination with yeast display and error-
prone PCR in five consecutive cycles over which the protocol was adapted to its final version.
Major modifications were necessary, however, because the first designs expressed poorly, which was
attributed to cavities in designs, unpaired buried charges, and the loss of long-range hydrogen bonds
(Baran et al. 2017). Even with the two successfully predicted scFv models, crystallization of the
models as Fabs (notably without antigen) revealed structural differences between the experimentally
determined models and the AbDesign models, especially in HCDR3 and HCDR1 (Baran et al. 2017).

RADbD is one of the most feature-rich Rosetta antibody design protocols. In contrast to

AbDesign, it allows the integration of sequence profiles. These profiles are sourced from a few

thousand clustered PDB structures. In this dissertation, a new protocol to incorporate sequence

statistics derived from complete immunome repertoires was developed that ultimately will awill th

design of the challenging CDRH3 region.

Balancing between Sampling and Stability. The protocols presented above represent
multiple options to design antibodies in Rosetta. The optimal choice of protocol depends on the
design task. The more changes are made to the native antibody that initially is expressible and
capable of being crystallized, the less likely are the designs to be expressed and stable (Baran et al.
2017; Sevy, N. C. Wu, et al. 2019). Like in affinity maturation, however, it is often necessary
during protein design to sample a broad sequence and conformation space to identify the optimal
combination of antibody sequence and structure to achieve both high specificity and binding affinity
for a target antigen. This can require sampling beyond energy barriers that confine the native
antibody’s sequence and structure space to a local energy minimum, and in such cases, protocols
that provide a means for more extensive sampling may be superior to more conservative approaches
that limit the sampling space to a local energy minimum. In general, if the goal is to improve
the binding affinity of an antibody within an already determined antibody—antigen complex, it is
generally advisable to begin with a more conservative approach. Otherwise, it is often a good idea
to use more than one protocol and to compare results for convergence onto the same sampling space.
Even after cross-checking multiple approaches, it may be necessary to alter the chosen protocol to
account for problems like expressibility or solubility. However, to overcome energy maxima in the
conformational landscape, it might be necessary to sample more thoroughly, and in these cases,
protocols with more sampling can be superior compared to more conservative approaches. Upon
comparison or establishment of protocols, a smaller size of models can be sampled and evaluated
for chosen parameters, which could include the interface energy as metric for predicted binding
affinity, but also sequence similarity, type of newly created interactions, or other knowledge-derived

metrics depending on the complexity and the specific questions of the design task. The number of
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models that should be created for a design task can vary quite heavily depending on the number
of positions to design and the protocol used. Generally, more output models will be needed for less
conservative approaches.

The Rosetta designs generated in the studies of this dissertation were compared to already

published, similar Rosetta protocols or to unrestrained Rosetta design runs, without additional

scoring terms (control). The control group acts as baseline the estimate the rate of improvement

when a novel scoring term was added.

Multistate Design (MSD). While single-state design considers just a single antibody or
antibody—antigen structure, MSD protocols provide a wide platform for addressing several types of
higher-complexity design problems. Most commonly, MSD encompasses the design of one antibody
in the presence of more than one antigen. The goal can be to optimize the breadth of the antibody
to bind multiple antigens, find an antibody that can bind to multiple conformations of a single
antigen, or to optimize the selectivity of the antibody through negative design against a subgroup
of antigens.

For all three of these possibilities, protocols have been developed in Rosetta and used in the
field of antibody design.

Broadly neutralizing antibodies (bnAbs) have proven to be a powerful therapeutic tool. A
highly optimized antibody is at risk of losing its binding affinity when small changes in the antigen’s
amino acid composition occur, whereas bnAb maintains its ability to bind to antigens from multiple
strains, subtypes, or even species. The bnAb therefore is more likely to provide protection for a
longer period of time. Such breadth is normally mediated through limited but tight binding to
conserved residues that are functionally less susceptible to antigenic drift.

One classical MSD task includes designing an antibody initially known to bind to a single anti-
gen to optimize its sequence to form multiple novel binding interactions with one or more antigens.
The Rosetta MSD design protocol using the REstrained CONvergence (RECON, 8B) algorithm
was originally developed to perform such a task to increase antibody breadth by constraining the
sampled sequence space to adopt multiple (binding) conformations (Sevy, Jacobs, et al. 2015; Sevy,
N. C. Wu, et al. 2019). Broad antigen recognition, or polyspecificity, may be linked to germline
antibody sequences; it has been hypothesized that naive germline antibodies exhibit greater con-
formational flexibility, which enables polyspecificity (Babor and Kortemme 2009). Interestingly,
using RECON MSD to design the sequence space of a single antibody when in complex with a
set of antigens reverted an antibody’s sequence back toward its germline gene sequence (Figure
8A). Conversely, using single-state design-introduced mutations will make the difference from the
germline gene sequence greater (Willis, B. S. Briney, et al. 2013).

Design of polyspecificity requires that the antibody of interest be spatially aligned with all
antigens for which a common binding motif should be found, which comprise the antibody’s intended
targets, and that a common antibody-binding interface be the subject of design. For RECON MSD,
the antibody interface of interest is based on a known antibody—antigen complex structure, such

that any novel binding interfaces are based on the superimposition of target antigens to the known
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antibody—antigen complex. RECON MSD is novel with respect to other MSD protocols in that
rather than treating design as a combinatorial problem, it reduces the design of a large conformation
space by treating each structure, or state, included in the design as a separate design problem, thus
making RECON MSD very efficient. More specifically, design sampling identifies the lowest-relative
free energy sequence for each single conformation but will accept a redesigned sequence only if the
sequence has the lowest average energy across all states. RECON MSD assumes that the native
sequence is close to the sequence that is ideal for conformational flexibility or polyspecificity and
encourages the selection by using a convergence restraint to favor the selection of native sequences.
Convergence is further encouraged by using multiple rounds (typically four rounds) of design. To
converge on a common sequence, a sequence similarity restraint is introduced. The restraint is kept
small in early rounds of design to sample a broad sequence and conformational space specific to
each antigen and ramped up in later rounds of design to find convergence over multiple antigens.
In the case in which selection of a sequence does not converge for a designed position, the last
step in the protocol forces a selection based on the lowest fitness over all sampled amino acids for
nonconverging positions. In the end, this sequence convergence encouraged through restraints is
hypothesized to find minima in the energy landscape more rapidly (Figure 8B). The independent
sequence search allows trajectories to adopt sequences that are favorable in one state but might not
be in another state, which in contrast to classic MSD algorithms prevents the exclusion of these
intermediate states. Thus, the encouraged convergence bypasses high-energy states. RECON was
benchmarked in comparison to the traditional Rosetta MSD, where it showed improved performance
to recapitulate evolutionary sequence profiles, a metric chosen to represent polyspecificity (Sevy,
Jacobs, et al. 2015). RECON was further refactored to run in parallel on separate processors using
message passing interface (MPI) communication, which enables massive parallel design against a
large number of antigens (Sevy, N. C. Wu, et al. 2019). It was applied to design broad influenza
hemagglutinin H1 antibodies based on the C05-H3 complex structure (Ekiert et al. 2012) and could
propose mutations that showed an enhanced breadth against additional virus strains, including a
strain with a known escape mutation (Sevy, N. C. Wu, et al. 2019). In this work, criteria that yield
greater success in design were identified. For example, a high drop of energy for some antigens,
especially the antigen that is bound by the antibody in the original complex structure, indicates
nonfavorable mutations (Sevy, N. C. Wu, et al. 2019). Mutations that establish new hydrogen
bonds, relieve clashes with the antigen, or create more van der Waals interactions are favorable.
To increase the sampling space, the protocol can be combined with backrub moves, which creates
a backbone ensemble and enables the sampling of a larger sequence space (Sevy, Jacobs, et al.
2015). Generally, the evaluation criteria are similar to a single design task, however, considering
only such amino acid changes that improve predicted binding affinity (e.g., interface energy) for
all multistate design targets while not compromising protein stability (total_score). An example
protocol for multistate design with the RECON design protocol can be found in the Supporting
Information.

The BROAD (BReadth Optimization for Antibody Design) algorithm has been developed to
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enhance MSD performance further than RECON MSD. The RECON protocol becomes computa-
tionally expensive when designing antibodies against large panels of antigens, or many different
conformations of a protein. BROAD includes support-vector machines to classify antibody binders
versus nonbinders and optimizes breadth through the use of integer linear programming. This
method is very fast and can be applied to large sets of antigens (e.g., a large panel of different viral
strains). The method has been tested computationally, but the protocol has not yet been applied
to an experimental application (Sevy, Panda, et al. 2018).

Vaccine Design through Thermostabilization. A major challenge of vaccine design is the
flexibility and instability of immunogenic proteins. For now, computational generation of novel
epitope-presenting proteins, such as with the methods described above, requires several rounds of
testing and optimization both computationally and experimentally. Another approach is to simply
stabilize a protein of interest (Goldenzweig, Goldsmith, et al. 2016). In the latter, the needs of
thermostabilizing a protein structure and maintaining its function were achieved through amino acid
changes guided by information about the protein sequence’s evolutionary diversity. The rationale is
that evolution does not allow for destabilizing mutations as those would render the protein inactive.
The protocol represents the evolutionary diversity with a PSSM, which it uses to sample possible
mutations. The effect of a mutation on the stability of the protein and its interactions are evaluated
by a AAG calculation in Rosetta. Stabilization is achieved by a combinatorial search of groups
of amino acid changes that can have an additive effect on protein stability. This protocol was
benchmarked on multiple proteins to predict known stabilizing mutations without choosing known
destabilizing mutations (Goldenzweig, Goldsmith, et al. 2016). Additionally, the protocol was
tested for thermostabilization of human acetylcholinesterase (hAChE), which is usually expressed
in eukaryotic cells and could be obtained in large amounts in Escherichia coli expression. Of the
five chosen designs that had 17-67 mutations in total, four maintained activity while having higher
deactivation temperatures (Goldenzweig, Goldsmith, et al. 2016). The protocol is available as a
Web server, called the Protein Repair One Stop Shop (PROSS, http://pross.weizmann.ac.il).

This approach also has been applied to a vaccine design project, namely, the thermostabi-
lization of Plasmodium falciparum reticulocyte-binding protein homologue 5, a relevant target for
malaria vaccine development. In total, 18 mutations were introduced and yielded a design that
was expressed in F. coli and showed higher stability, while maintaining its immunogenicity. An
experimentally determined structure proved that the design was very similar to the original protein
(Campeotto et al. 2017).

In this study, a novel method was benchmarked that restraints the design with co-evolutionary

information. It has been shown that the evolutionary design protocol outperforms classic sequence

profiles (PSSM)s and is likely to improve stability and conserved function.

5.7 Difficult-to-express (DTE) antibodies

Historically, the foundation of monoclonal antibody production was made 1975 by the immortal-

ization of B-lymphocytes (Kéhler and Milstein 1975). Briefly, antibody-secreting B-cells extracted
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from a model system (e.g. mouse) are fused with immortal myeloma cancer cells induced virally
or chemically. The hybrid cell line (hybridoma) can be used to identify, characterize and produce
monoclonal antibodies as a result of a murine immune response. The technology is still popular
and has been used with recent successes in recent mAb discovery using murine hybridoma for diag-
nostics and research (Aguiar et al. 2016; Parray et al. 2020) and was awarded with the nobel prize
in physiology and medicine of 1984 (Leavy 2016).

The method evolved after hybridoma instability issues and human anti-mouse antibody (HAMA)
antibody responses in patients, reducing the antibody efficacy as therapeutic and inducing adverse
effects (immunogenicity). During the 1990s chimeric antibodies were developed with 1) a human
Fc region and mouse Fv regions to reduce the HAMA response and 2) humanization strategies were
employed to remove T-cell epitopes in the Fv.

Humanization, also referred to as reshaping, complementary determining region (CDR)-grafting,
veneering, resurfacing, specificity-determining residue (SDR)-transfer, or Delmmunization, include
strategies to reduce the immunogenicity of antibodies of non-human origin. The design of the
humanized antibody sequence is critical for reproducing the affinity, specificity, and function of
the original molecule while minimizing HAMA responses elicited in patients. A natural strategy
is to keep the engineered antibody human from the very beginning of the design phase which may
circumvent the biggest challenges faced in late-stage humanization processes. In this dissertation,
a method was developed that allows the structural affinity maturation of antibodies using a human
germline gene restraints.

Recombinant cell lines large-scale for mAb expression include CHO, NS0, Sp2/0, HEK-293,
and PER.C6. The vast majority of approximately 70% of presently industrially produced proteins
is conducted in Chinese ovary hamster (CHO) cell lines (Jayapal et al. 2007). Modern fed-batch
cultivation processes using CHO cell lines are able to produce monoclonal antibodies in the range of
multiple grams per liter (Kunert and Reinhart 2016). Protein synthesis is mediated by a complex
process that involves tightly regulated and balanced network of steps involving different cellular
compartments (Alberts et al. 2017). For an antibody product to be expressed and secreted, the
journey begins with ribosomal synthesis in the endoplasmatic reticulum (ER). The first regulatory
lever for the expression rate is the nucleotide sequence codon usage itself. Codon usage is specific
for the production system and directly affects the efficiency of messenger RNA transcription (Z.
Zhou et al. 2016). Folding in the ER lumen is facilitated by specific protein chaperones that
belong to the heat-shock protein family such as the 70kDa binding immunoglobulin protein (BIP),
calnexin/calreticulin of the leptin protein family, and peptidyl-prolyl isomerases (Braakman and
Hebert 2013; Ellgaard and Helenius 2003). Cystine form disulfide bridges between two residues
add additional rigidity and support the proteins tertiary structure. Disulfide bridges are covalent
bonds and formed by isomerases after the folding process (Appenzeller-Herzog 2011).

Correctly folded proteins are transported to the Golgi apparatus, a part of the intracellular
vesicular transportation system, where post-translational modifications (PTM) occur before the

protein is transported into vesicles for secretion. Misfolded proteins are degraded in the proteosome
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as part of the ER~associated degradation pathway (Xudong Wu and Rapoport 2018).

With pitfalls on many levels of protein expression, starting from transcription, to folding, to
vesicular transport and PTM, the complexity of the challenge to optimize protein expression re-
quires substantial experimental data-collection. In case of a lack of an appropriate data source, a

model cannot be created that describes protein expression in sufficient detail. In this dissertation,

the Deep-Learning architecture Long short-term memory (LSTM) was employed to extract relevant

sequence patterns that influence expressability by one or more unknown bio-physiological effects,

automatically from a limited amount of data. An additional Rosetta energy term is then developed

to support the design of antibodies with increased expression rates.

5.7.1 Engineering of human-like antibodies

Methods for detecting human-likeness in antibody amino acid sequences support the screening
and engineering of antibodies with immunogenic effects, tend to reduce the efficacy of Abs in a
clinical setting. The H-Score method to estimate human-likeness developed by Abhinadan et al.
in 2007 was based on pairwise sequence identity calculations (Abhinandan and Martin 2007). The
method evolved by replacing pairwise sequence calculations with Basic Local Alignment Search
Tool (BLAST) databases. The resulting T20 score was also derived from a dataset of about 38,700
sequences (Gao et al. 2013). To take germline gene family specificity of immunogenic effects into
account, the germline gene aware G-Score was developed (Thullier et al. 2010). Seeliger et al
(Seeliger 2013). demonstrated the usefulness of a heuristic scoring function to increase human-
likeness and reduce immunogenic effects. The heuristic scoring function is capable of suggesting
mutations to reduce immunogenicity and increase human-likeness based on a pairwise probabilistic
model.

The Human String Content (HSC) is an alternative method to decrease immunogenic effects
by increasing the germline similarity to 9-mer fragments of germline genes in order to reduce the
class I MHC binding affinity (Lazar et al. 2007). The HSC has successfully been combined with
structure-based antibody design to produce humanized antibodies with high affinity (Choi et al.
2015). The methods H-Score, T20 and the heuristic scoring function have been developed from
small amino acid sequence datasets of several thousand sequences. Recent advances in deep-learning
methods enabled Wollacott et al. to precisely capture human-likeness of antibody sequences using
a Long short-term memory (LSTM) model trained on 25,000 sequences (Wollacott et al. 2019).
Human-likeness scores are usually derived from small datasets, and are primarily concerned with
the question of how to separate human from non-human antibodies instead of developing a sequence
model that explains how an Ab can emerge from a repertoire.

Computational assessment of Human-likeness has first been described as an alignment of several
hundred amino-acid Ab sequences (Abhinandan and Martin 2007). The alignment human, or
murine sequences allows for statistical assessment of the frequency of each amino acid type at each
position and can be used as a distinct species specific antibody profile. This technique has been

evolved to be more scalable on larger sequence sets (approximately 10,000) (Gao et al. 2013; Seeliger
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2013).

The Rosetta Antibody design protocol (RAbD) (Adolf-Bryfogle, Kalyuzhniy, et al. 2018) allows
for inclusion of sequence restraints from human antibody sequences available as structures deposited
in the Protein Databank (PDB) (Berman et al. 2000), and from conformational loop clusters (Adolf-
Bryfogle, Q. Xu, et al. 2015). The limitation of this approach is, that the number of available human
antibodies ranges at the time of writing between 1,000 and 2,0000 unique antibodies. The sequence

profiles developed in this dissertation are based on complete immunome repertoires and further are

expanded using probabilistic modeling of an amino acid sequence space
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6 Human-likeness of antibody biologics determined by
back-translation and comparison with large antibody variable

gene repertoires

This chapter has been published under (Schmitz et al., 2020).

6.1 Introduction

Antibodies (Abs) bind to epitopes on the surface of microbial pathogens like bacteria and viruses.
Abs are produced by B lymphocytes that use genetic mechanisms to increase sequence diversity of
the expressed repertoire. These genetic mechanisms include recombination of variable (V), diversity
(D), and joining (J) gene segments as well as enzymatic modification and addition of non-templated
(N) or palindromic (P) nucleotides in the V-D, D-J and V-J junction regions (Jung and Alt 2004).
The variable domain of an antibody is encoded by the three genes (V, D, and J) for heavy chain
sequences, and two genes (V, and J) for light chain sequences. The variable domain can further
be divided into framework regions (FR) and complementarity determining regions (CDR). The
introduction of somatic mutations in the variable domains occurs in recombined genes during the
secondary immune responses (Jung, Giallourakis, et al. 2006). The resulting sequence space of the
combined set of naive and mature sequences of the V domain in an individual organism depends on
general characteristics of the Ab genes for a species and on the prior experience of the individual
including pathogen exposures. We previously determined the immunome (adaptive immunome
receptor repertoire) comprising Ab sequences for three healthy human blood donors using very
deep next-generation sequencing (NGS) (Soto, Bombardi, et al. 2019). The Ab sequences of this
dataset either cover the full variable domain or start midway into the FR region.

The analysis of human Ab sequences usually comprises the partitioning into V, D, and J gene-
encoded domains, and the determination of the FR and CDR as well as somatic mutations. Various
computational tools are available to assign inferred genes and domains to portions of Ab sequences
by making species-specific germline gene calls (Ye et al. 2013; Bolotin et al. 2015; Russ, Ho, and
Longo 2015; Xihao Hu et al. 2018; Brochet, M.-P. Lefranc, and Giudicelli 2008; Gaéta et al.
2007). Germline genes also may vary in individuals and ethnic subgroups, potentially biasing the
maturation process in ways that may be of clinical relevance (Brovkina et al. 2018). The increasing
availability of large immunome datasets (Soto, Bombardi, et al. 2019; DeWitt et al. 2016; B.
Briney et al. 2019; Corrie et al. 2018; Kovaltsuk et al. 2018) was leveraged to create a position- and
gene-specific scoring matrix (PGSSM) for datasets in order to describe the human Ab sequence
space. For this study we used the sequencing dataset from the Soto et al (Soto, Bombardi, et al.
2019). dataset composed of the antibody sequencing from the blood compartment of three healthy
human donors. The PGSSMs were derived from this dataset and consisted of 326 million unique
antibody sequences. The PGSSM was used to model the single nucleotide frequencies (SNFs) per
position in the germline gene, allowing us the estimation of similarity of an Ab sequence to a given
immunome repertoire collection. SNFs can arise from different sources such as: allelic differences,

hypermutation, or sequencing errors. The method developed in this study attempts to capture

29



frequencies caused by hypermutations by grouping all SNFs to their respective germline gene. The
size of immune repertoire dataset ensures that any errors that arise from sequencing are minimized.

Our PGSSMs are germline gene-specific (Sheng et al. 2017) for templated regions, and length-
dependent for the heavy chain complementarity-determining region three (CDRH3). This approach
allows us to model SNF's that exclude insertions, but include non-templated (N) and palindromic
(P) nucleotide additions that bracket the CDR3. This feature enables us to derive the nucleotide
sequence that maximizes the nucleotide frequencies in the PGSSM model so that the resulting
nucleotide has a high human likeness. In this study, we attributed each optimized nucleotide
sequence with a score for the variable (V) and joining (J) domain (PGSSMy;) and characterized
the properties of the PGSSMy;. We show that the PGSSMyj represents a similarity measure
between an amino acid sequence and a given immune repertoire. Thus, the PGSSMyj could in
principle be used to engineer an antibody sequence to make it more human-like in the future
(Olimpieri, Marcatili, and Tramontano 2015).

Methods for detecting human-likeness in antibody amino acid sequences support the screening
and engineering of antibodies with immunogenic effects, which tend to reduce the efficacy of Abs in
a clinical setting. The H-Score method to estimate human-likeness developed by Abhinadan et al.
in 2007 was based on pairwise sequence identity calculations (Abhinandan and Martin 2007). The
method evolved by replacing pairwise sequence calculations with Basic Local Alignment Search
Tool (BLAST) databases. The resulting T20 score was also derived from a dataset of about 38,700
sequences (Gao et al. 2013). To take germline gene family specificity of immunogenic effects into
account, the germline gene aware G-Score was developed (Thullier et al. 2010). Seeliger et al
(Seeliger 2013). demonstrated the usefulness of a heuristic scoring function to increase human-
likeness and reduce immunogenic effects. The heuristic scoring function is capable of suggesting
mutations to reduce immunogenicity and increase human-likeness based on a pairwise probabilistic
model.

The Human String Content (HSC) is an alternative method to decrease immunogenic effects
by increasing the germline similarity to 9-mer fragments of germline genes in order to reduce the
class I MHC binding affinity (Lazar et al. 2007). The HSC has successfully been combined with
structure-based antibody design to produce humanized antibodies with high affinity (Choi et al.
2015). The methods H-Score, T20 and the heuristic scoring function have been developed from
small amino acid sequence datasets of several thousand sequences. Recent advances of deep-learning
methods enabled Wollacott et al. to precisely capture human-likeness of antibody sequences using
a Long-Short-Term-Memory (LSTM) model trained on 25,000 sequences (Wollacott et al. 2019).
Human likeness scores are usually derived from small datasets, and are primarily concerned with
the question of how to separate human from non-human antibodies instead of developing a sequence
model that explains how an Ab can emerge from a repertoire.

In this study, we developed the algorithm IgReconstruct, which draws conclusions about Ab
human-likeness that are distinctly different from other methods. Firstly, our method is based

on single nucleotide frequencies. Secondly, to estimate the similarity of a target Ab amino acid
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sequence to a given repertoire, a germline gene rearrangement tailored to the nucleotide frequency
observations made in the repertoire is generated. Thirdly, the target Ab amino acid sequence is
back-translated to the nucleotide sequence to allow a fine-grained comparison with the observed
immune repertoire nucleotide frequencies. IgReconstruct scales well with large repertoires consisting

of hundreds of millions of sequences, and will be useful for computational antibody engineering.

6.2 Results

We calculated position- and gene-specific PGSSM matrices (Figure 11.1) from a publicly available
human immunome repertoire of 326 million antibody Ab sequences (Soto, Bombardi, et al. 2019).
The PGSSM matrices encode the observed single nucleotide frequencies in the repertoire. The
PGSSM matrices were used to calculate the PGSSMyj score (Figure 9, Equation 2) for any given
antibody sequence, which essentially represents the similarity of a given antibody sequence to
the immunome repertoire. We then curated a set of in total of 181,355 GenBank (Benson et al.
2013) sequences from 20 different species (see Material and Methods for a sequence breakdown by
species). To measure the performance of our PGSSM method with an independent dataset, we
used the GenBank sequences and estimated the similarity to the human immunome repertoire of
326 million naturally occurring antibody Ab sequences.

Human Likeness was assessed by calculating the Z-Score of the PGSSMy score (Equation 3),
for which we used the distribution of PGSSMyj scores of human GenBank sequences as reference.
As expected, human GenBank antibody sequences were most similar to the antibody sequences in
our human immunome repertoire.

We demonstrated that our statistical PGSSM model captures a human-like antibody sequence
space by recovering the human-like nucleotide sequences. We further were able to calculate a score
of the V and J gene-encoded regions to quantify the similarity of an antibody sequence to a given
immunome repertoire. The PGSSMyj score is the average of SNFs in the V and J gene-encoded
region of the optimized sequence (Equation 2). We successfully used the score to distinguish
between human, non-human, and engineered antibodies. We assessed the scores for 475 antibodies
in clinical trials or approved by the U.S. Food and Drug Administration (FDA), indicating a high

level of human likeness, but distinguishable difference from natural human antibody sequences.

6.2.1 Processing of immune repertoire data and counting SNFs in V, D, J gene-

encoded, and CDR3

Our NGS sequence dataset was annotated with [gBLASTn results comprising germline gene align-
ments (Figure 9, A1). We only considered Ab sequences without sequencing ambiguity that contain
nonstandard nucleotide letters. A collection of 196,755,218 heavy chain and 128,815,779 light chain
sequences was used to create PGSSMs (325,570,997 in total). The dataset was processed with Ig-
BLASTn and inferred germline gene alignments were assigned. We generated a full-length PGSSM
for each of the 287 VH, 79 VK, 72 VL, 37 D, 13 JH, 9 JK, and 9 JL germline gene alleles. In-frame

(+open reading frame (ORF)) germline reference sequences that are pre-annotated with CDR and
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Figure 9: Flowchart of scoring Ab sequences with IgReconstruct. The algorithm can be
divided into three tasks (a-c) with three steps (1-3) in each task. (a) The IgReconstruct algorithm
starts with the generation of Position and Gene Specific Scoring Matrices (PGSSM) for the variable
(V, light blue bars), diversity (D, red bars), joining (J, green bars) and CDR3 (dark blue bars)
regions of the Ab nucleotide sequence (yellow bars). In this study, nucleotide sequences were
obtained from a large immunome repertoire dataset. (b) For a given amino acid Ab sequence
(purple bars), the V, D, and J germline gene rearrangement is determined from the alignment to
the PGSSMs by creating a hierarchic tree of aligned nucleotide PSSMs. (c) The highest scoring
rearrangement then is mapped to germline gene-dependent V, D, J and germline gene independent
CDR3 PSSMs. The resulting nucleotide model is used to determine a back-translation which
maximizes the observed nucleotide frequencies in the repertoire. The V and J regions of back-
translated sequence is then scored (PGSSMyj) after the observed nucleotide frequencies in the
repertoire

FR start positions were pulled from IMGT/GENE-DB (Giudicelli, Chaume, and M.-P. Lefranc
2005). Each of the matrices ultimately contains the frequency of observed G, A, T or C nucleotides
for each position in each human germline gene (SNF). Here, we defined the CDR3 sequence as the
sequence that starts with the first untemplated position after the V germline gene-encoded align-
ment and stops one position before the first J germline gene-encoded residue. For each observed

heavy chain CDR3 loop (CDRHS3) length, we created a germline gene independent PGSSM.

6.2.2 Calculation of PGSSMs from single nucleotide counts

To generate the PGSSMs, we first counted nucleotide observations in each germline gene as well
as CDR3 loops. We extracted the V, D, and J gene alignments for each sequence as well as the
untemplated region of the CDR3 loops. For some light chains and heavy chain sequences with high
mutation frequency, no unambiguous D gene assignment was possible, whereas V, and J alignments

are present for all analyzed sequences. Here, we refer to this D gene segment uncertainty with (D).
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IgBLASTn generates alignments that contain in some cases overlaps of a few residues between V,
(D), and J genes. In this case, we prioritized the alignments in the following descending order: V,
J, (D). Each column of a PGSSM matrix corresponds to a nucleotide position in a germline gene.
We then incremented either the G, A, T, C or gap cell in each aligned column of the PGSSM,
avoiding double counts caused by gene overlaps (Figure 9, A2). We converted the observed counts
into frequencies for each column after adding one pseudo-count to each cell, which resembles the
SNFs. In addition to germline gene dependent V, D, and J PGSSMs, we generated germline gene

independent CDR3 PGSSMs for each observed loop-length in the same manner (Figure 9, A3).

6.2.3 BLAST database generation and searches for creating a plausible amino acid

germline gene rearrangement

In order to construct a PGSSM for a given amino acid target Ab sequence, we create a germline
gene rearrangement as the first step (Figure 9, B1). For this purpose, we translated all human nu-
cleotide germline genes using the reference sequences in the InMunoGeneTics information system(®)
(IMGT) database (Giudicelli, Chaume, and M.-P. Lefranc 2005) in all reading frames, allowing non-
productive sequences, and generated separate BLAST databases (Stephen F. Altschul et al. 2009)
containing V, D, and J genes while not distinguishing between heavy, kappa, or lambda chains. For
each target Ab amino acid sequence, our algorithm conducts three independent BLAST searches
with e-value thresholds of 20 (V), 100 (D), or 50 (J). The number of alignments was limited to 3
(V), 100 (D), or 10 (J). Word sizes were 4 (V), 2 (D), or 3 (J). BLAST hits were discarded if a
stop codon was observed in the aligned region or if a corresponding PGSSM was not available. The
length and position of the CDR3 is defined by the V, and J germline gene alignments. For each
combination of V, and J BLAST hits, we assigned its distinct CDRH3 PGSSM, which is solely

chosen by the length of the non-templated part of the CDRHS3.

6.2.4 Assignment of a plausible V(D)J rearrangement for an amino acid target se-

quence

Our algorithm chooses a plausible V(D)J rearrangement for an amino acid sequence by scoring the
combinations of BLAST hits. First, we create a V-J-D-CDRH3 tree hierarchy in the form of a
nested data structure for each possible V(D)J alignment (Figure 9, B2). We prevented incorrect
alignments from being added to the tree, such as D alignments that were not overlapping with the
CDR3, and J alignments not overlapping with the FR4 region. Both regions were calculated for
each V germline gene dynamically following the IMGT Unique Numbering scheme, (M.-P. Lefranc,
Pommié, Ruiz, et al. 2003; M. P. Lefranc 1997) which encodes the positions of FR and CDR as
fixed positions in gapped germline genes. The pattern [WF|GXG in the J gene-encoded region
marks the end of the CDR3. We also ensured the rearrangements were consistent regarding chain
type (heavy, kappa, or lambda).

Second, to choose a final V(D)J rearrangement from the tree, we rescored all recombinations of

V, (D), and J alignments after trimming all overlapping regions (Figure 9, B3). We calculated the
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BLOSUMG62 scores for each alignment after pruning the aligned region from overlaps. Overlapping
alignments were trimmed or kept with the following descending priority: V, J, D. For example, a
D gene alignment overlapping with N residues of a J gene alignment shortens the scoring area of
the D gene alignment by N residues. The remaining V(D)J recombinations then were sorted after
summing the scores of the individual alignments. We discarded all rearrangements but the one
with the highest score. This process does not require D germline gene alignments, since BLAST D
germline genes could not be aligned in about 50% of all cases.

It is important to point out, that the germline gene rearrangement tree is individually generated
for each antibody and depends on the unique SNF of the repertoire. A rearrangement in the tree
is preferred if a compatible and optional CDRH3 PSSM has been found. A CDRH3 PSSM is
compatible if it can bridge the distance between the last aligned V residue and the first J residue.
Hence, the chosen V, J, D, CDRH3 rearrangement is dependent on observed CDRH3 lengths in

the repertoire.

6.2.5 Creation of the final PGSSM model and scoring of an amino acid target se-

quence

We used the V(D)J rearrangement chosen earlier and mapped the aligned amino acids corresponding
to V, (D) or J genes to their nucleotide counterparts. In addition, we assigned one CDR3 PSSM
depending on the length of the loop (Figure 9, C1). We concatenated each V, (D), J and (CDR3)
PGSSM such that overlapping parts were discarded. We again respected the domain priority in
the descending order V, J, D, CDR3 (Figure 9, C2). Despite the important role of the CDRH3
PSSM for back-translation as well as scoring of the germline gene rearrangement, we chose to
not include the untemplated CDRH3 region in the score calculation for two reasons. Firstly, the
germline D gene and CDRH3 PSSMs cannot always be assigned. Success depends on the chain
type and the availability of CDRH3 PSSMs of a certain length, i.e., the CDRH3 must be observed
in the repertoire. Secondly, the CDRH3 PSSM contains all CDRH3 loops of 128,815,779 heavy
chain sequences, solely grouped by length. As a result, we do not expect predictive capabilities to
the PSSM regarding human-likeness (Figure 11.1b), even though it supports the generation of a
back-translated sequence in this region (Figure 11.1a).

We therefore restricted calculation of the PGSSM score to V and J PGSSMs, whereas residues
without assigned V or J PGSSM remain unscored (Equation 2). Mann-Whitney statistics were
used to assess the significance between PGSSMy j scores of human, non-human Abs and Ab drugs.

To assess the human likeness of the PGSSMy; score, we calculated the Z-Score using mean
and standard deviation of PGSSMy; scores obtained for all human GenBank antibody sequences

separated by heavy or light chain type (Equation 3).

6.2.6 Strategy to reconstruct nucleotide sequences from Ab amino acid sequences

The concatenated nucleotide PGSSM (Figure 9, C2 and Figure 11.1) aligned and cropped to fit the

amino acid target sequence was used to calculate the PGSSMyj score. Naturally, this approach
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also can deduce a nucleotide sequence that maximizes the SNFs (Figure 9, C3). Such a nucleotide
back-translation is codon-optimized and exhibits the highest possible similarity to the PGSSM and
its underlying immune repertoire data. Creating an optimized nucleotide sequence eliminates a
potential sequence bias of reported nucleotide sequence and increases the robustness of our method
in scenarios where only amino acid sequences are available. This situation occurs frequently in
artificial computational protein Ab design in which typically the design process is performed without
regard to germline gene rearrangements or nucleotide sequences (Adolf-Bryfogle, Kalyuzhniy, et al.
2018; Sircar, E. T. Kim, and Gray 2009). The generation of our nucleotide sequence comprises
two steps. First, we interrogated for each amino acid the aligned nucleotide PGSSM and chose the
triplet with the smallest hamming distance to the wild-type germline gene. For the untemplated
CDRH3, we skipped this step. Second, if multiple triplets after step one are available, we chose the
triplet, which maximizes the cumulative SNF.

Figure 9 depicts the complete strategy from amino acid Ab target sequence to nucleotide re-
construction. This method presents per-nucleotide frequency statistics for almost the complete
Ab variable domain, including the junction areas of the CDR3 loop and the loop itself. The few
exceptions to this assignment are N and C termini without alignments, short light chain junctions,
or residues encoded by insertions in the templated regions. Figure 11.1 shows the complete PGSSM

rearrangement of the heavy chain with GenBank accession number EU620063.

6.2.7 The PGSSMy; acts as a human likeness score in the context of immunomes from

healthy humans

We calculated the PGSSMy; (Equation 2) for all reconstructed nucleotide sequences in the context
of three human healthy immunome repertoires (Figure 10b). The scores for human heavy and light
sequences were significantly higher with 93.6% =+ 3.5% (heavy chain) and 93.7 + 2.9% (light chain),
respectively, than the scores for other species.

The non-human primates Callithrix jacchus (91.1 £+ 2.2%/90.9 £ 2.9%), Chlorocebus sabaeus
(89.1 + 2.4%/91.5 + 2.7%) and Macaca fascicularis (89.2 + 2.4%/91.7 + 2.1%) scored significantly
lower with P values from a Mann-Whitney test « 10-7. The lowest scoring species include Gallus
gallus (Red junglefowl) and Salmo salar (Atlantic salmon) with 78.6 £ 1.9%/82.0 £+ 1.5% and 79.3%
+ 3.7%/N.A (heavy chain/light chain). The lower bound of PGSSMy; as well as sequence recovery
is constrained by the chance to guess nucleotides of a fixed amino acid sequence correctly, which
is approximately 73.68% (Appendix). Scores around the value of 73.68% are strong indicators for

sequence alterations such as engineered sequences.

6.2.8 The PGSSMy; score can be used to identify engineered and atypical antibodies

Some sequences of the species Homo sapiens are outliers in that they score significantly lower
than the 95% confidence interval. For Abs annotated with Mus musculus, a number of high-
scoring outliers outside the 95% confidence interval occurred (Figure 11.1b). These findings can be

attributed to engineered or other non-natural Abs. For the case of Mus musculus, sequences often
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Figure 10: Native nucleotide sequence recovery and PGSSMy; score for Ab sequences
taken from GenBank. Amino acid sequences were downloaded from GenBank (Benson et al.
2013) and then back-translated to nucleotide sequences using IgReconstruct. (a) The sequence re-
covery rate after back-translation with IgReconstruct is highest for human (H. sapiens) sequences
when compared to that for sequences from non-human primates (C. jacchus, C. sabaeus, M. fascicu-
laris), mouse (M. musculus), rat (R. norvegicus) or rabbit (O. cuniculus). (b) The PGSSMyj score
for the same set of back-translated nucleotide sequences also scores highest for amino acid sequences
derived from humans. Light colors (left bar in each subplot) represent light chain sequences, dark
colors (right bar in each subplot) represent heavy chain sequences. A Mann-Whitney test shows
statistically significant (x, p « 10-7) recovery rates and scores for human sequences compared to
the other species.

can be associated to studies involving transgenic mice with human Ab loci (Sok et al. 2016; Longo
et al. 2017; Sudrez et al. 2006; M. Tian et al. 2016; Protopapadakis et al. 2005).

A large number of low scoring human sequences are annotated with patents related to engineer-
ing and or animal Ab sources (US20050002930A1, JP2007524605A, EP2150565A2) often directed to
human cancer and immune disorder treatments (JP2009221224A, EP2150565A2, W0O2005063299A3,
W02004085474A2) like prostate cancer (WO0173032A2, JP2003528591A), or patents evolving in
the vicinity of anti-human Abs (W02005067477A3). Another possible explanation for the low scor-
ing GenBank entries are their annotations designating them as unpublished or having incomplete
publication records (e.g., GenBank IDs: EU620060, FW576479, DQ187727). Our observations
match previously reported concerns of incorrectly annotated Abs (Martin and Rees 2016).

Heavy chain/light chain sequences of structures from the Protein Database (PDB) (Berman
et al. 2000) with IDs 1GAF (79.9%/86.3%), 1AXS (80%/83.9%), 1BBJ (81.9%/84.7%) 4UOK
(88.0%/82.8%), and 4UOM (80.7%/90.0%) were scored. These PDBs were reported previously as
incorrectly annotated with human origin (Martin and Rees 2016). The low PGSSMyj scores (<lo
of GenBank sequences assigned as human) also underlines the probable non-human origin of all
heavy chains and most light chains.

One shotgun sequenced human light chain of the transcriptome with ORF expressed sequence
tags described in 2000 (Dias Neto et al. 2000) exhibits two insertions and a region of five deletions,

dropping the sequence score to 77.16%. Other examples for sequences with presumably human
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background but atypical mutation patterns are broadly neutralizing HIV Abs (Xueling Wu, T.
Zhou, et al. 2011; Liao et al. 2013) like VRCO1 and its derivatives that occurred after long-term lin-
eage evolution (Xueling Wu, Zhang, et al. 2015). These highly matured Abs can indicate sensitivity
to the progress in sequencing methods. Low-scoring HIV mAbs may highlight the challenge for
the human system to generate the right combination of rare mutations against the highly variable
sequences of HIV envelope protein (Bhatti, Usman, and Kandi 2016).

Another example of Abs with rare mutations are fetal lymphocyte progenitors, (Kolar et al.
2004) highly mutated Abs of tonsillar IgD-cells, (Seifert et al. 2009) or expanded multiple sclerosis
associated lineages in immortalized B cells (Fraussen et al. 2013). Some of these Abs are related
to tissue location or to autoimmune diseases, and might therefore not be typical of Abs found

circulating in the peripheral blood, which is the current context of our Ab analysis method.

6.2.9 The PGSSMy; score correlates with the phylogenetic distance to human V

germline genes

We further interrogated the PGSSMy ; properties and estimated their correlation with the phyloge-
netic distances between human and non-human species. The phylogenetic distance was calculated
as the sum of the branch length between the two closest germline genes of the same class (heavy,
kappa, lambda) of two species. We calculated a phylogenetic tree between the available IMGT ref-
erence germline sequences. Nucleotide frequencies in V and J gene-encoded domains are on average
low in number and guide the overall sequence space of a species. This germline gene preference of
nucleotides is directly captured in the PGSSM frequencies and ultimately in the PGSSMy 5 score.

The average PGSSMyj score for all studied sequences is plotted against the phylogenetic dis-
tance from the assigned human V gene to its closest V gene of the organism of origin separately for
heavy chain (Figure 11a) and light chain V genes (Figure 11b). GenBank sequences of the species
Mus musculus are frequently the subject of lineage evolution and of engineering studies, and such
sequences exhibit highly artificial mutation patterns, which causes a low correlation between phylo-
genetic distance and score. We therefore separated Mus musculus sequences and highlighted these
in red color. The correlation of heavy chains remains less affected due to the higher number of
datapoints.

Single nucleotide frequencies in Abs roughly recapitulate phylogenetic distances. One can thus
use the PGSSMy; to confirm or question the Ab species annotation. The PGSSMy; therefore can

be used as a measure of the degree of recombinant engineering with known phylogenetic relations.

6.2.10 PGSSMy; allows for the recovery of nucleotide sequences for human Abs

We performed a nucleotide sequence recovery benchmark to demonstrate that triplet indepen-
dent observations of single nucleotide frequencies can approximate the human Ab sequence space.
181,335 GenBank sequences of 20 different species were translated with IgBLASTn (Ye et al. 2013).
The nucleotide sequence was optimized by maximizing the PGSSMyj score.

Back-translation recovery rates peak for human sequences, with an average heavy and light chain

37



16 1.6

Gallus gallus

Homo sapiens

Mus musculus

Mus musculus (Engineered)
Oryctolagus cuniculus

o o, o Sus scrofa
1.0 U oo ° 1.0 .

1.4 e o o Q 1.4

1.2 12 eqe o °

0.8 0 Q5 0.8 ° ° * . q
0.6 . 0.6 s

0.4

Minimal evolutionary distance

0.2 0.2

0.0 . © 0 0 e e @0 © 0.0 %0 o oo ooenOed(GWED ©
75 80 85 20 95 100 75 80 85 90 95 100
Average PGSSMy, [%] (Grouped by V gene family)

d 100

100
C Callithrix jacchus

Chlorocebus sabaeus
Engineered

Homo sapiens
Macaca fascicularis
Mus musculus
Oryctolagus cuniculus
Rattus norvegicus

95 95

90 90

85 85

Sequence recovery [%]

80 80

75 75
75 80 85 90 95 100 75 80 85 90 95 100

PGSSMyj [%]

Figure 11: The PGSSMy; score approximates the evolutionary distance from human
immunoglobulin germline genes to immunoglobulin germline genes belonging to 20
species. Amino acid sequences were downloaded from GenBank (Benson et al. 2013) and then
back-translated to nucleotide sequences using IgReconstruct. (a) The average PGSSMyj scores
for heavy chain Ab sequences or (b) light chain Ab sequences are plotted against the phylogenetic
distance from the assigned human germline gene using IgReconstruct (see Methods section for
details). The PGSSMyj scores correlate with the phylogenetic distance with a Spearman rank
correlation coefficient of p = -0.83 (P = 2e-41, a = 0.01) for heavy chain Ab sequences and p =
-0.83 (P = 2e-37, o = 0.01) for light chains Ab sequences. (c) Sequence recovery between native
heavy chain sequences and back-translated nucleotide sequences, made using IgReconstruct, gave a
Spearman rank correlation coefficient of p = 0.92 (P = 0, @ = 0.01). (d) Sequence recovery between
native light chain sequences and back-translated nucleotide sequences using IgReconstruct gave a
Mann-Whitney correlation coefficient of p = 0.86 (P = 0, & = 0.01). Mouse (M. musculus) Abs
engineered to be human-like are colored red (top right corner of subplot a and b)

recovery of 95.9 + 2.6% or 97.2 £+ 2.8%, respectively (Figure 10a, Figure 11.1a). As expected, when
we leveraged the human PGSSMy; score to determine the most likely human nucleotide sequence
for Abs of different species, correct nucleotide identification dropped, labeling these Abs as non-
human. For non-human primates, recovery rates were Callithrix jacchus (93.5 + 1.5%/93.3 +
2.2%), Chlorocebus sabaeus (93.4 + 1.9%/94.5 £+ 2.7%) and Macaca fascicularis (92.8 4+ 1.9%/94.7
+ 1.9%). The lowest scoring species included Gallus (Red junglefowl) and Salmo salar (Atlantic
salmon) with heavy/light chain scores as low as 82.7 £ 1.1%/82.9 + 1.4% and 82.6 £+ 2.2%/N.A. A
comparison of PGSSMyj scores with sequence recovery rates (Figure 10) shows striking similarity,
suggesting that the PGSSMy y score is a predictor of sequence recovery. Figure 11.1 depicts the

similarity of sequence recovery (a) with PGSSMy; score (b) for all 20 species.
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6.2.11 The sequence recovery frequency strongly correlates with the PGSSMy;

A third property of PGSSMy s is the ability to estimate the nucleotide sequence recovery rate. We
calculated the correlation between average nucleotide mutation frequency (PGSSMy; score) with
the sequence identities determined in our sequence recovery benchmark. The recovered sequence is
of importance to determine the minimal distance to its context for Ab-dataset comparisons. With
a Mann-Whitney correlation coefficient of R = 0.92, P = 0 for heavy chains (Figure 11c) and R
= 0.86, P = 0 for light chains (Figure 11d), the PGSSMy; is approximately the sequence recovery

rate for human sequences + 5%.

6.2.12 Ab therapeutics in context of the Ab repertoire of healthy humans

We used 475 unique Abs that are either approved by the U.S. FDA or are in clinical trials (Jain,
Sun, et al. 2017; Poiron 2021). All biologics were either annotated with the INN designations
(Parren, Paul J Carter, and Andreas Pliickthun 2017) HU, ZU, XI, and XIZU as reported by Jain
et al (Jain, Sun, et al. 2017). or annotated with Human, Humanized, Chimeric, and Mouse in
case of antibodies taken from IMGT/mAb-DB (Poiron 2021). For this study, we chose appropriate
labels for HU (Human), ZU (Humanized), XI (Chimeric), and XIZU (Humanized Chimeric Hybrid)
to match the designations used in IMGT/mAb-DB. The sequences were treated the same way
independent from its labeling in the algorithm. We investigated the Ab sequences in the context of
our three individual immunome repertoires and in the context of one large merged repertoire. For
Z-Score calculation, mean and standard deviation (o) from GenBank sequences (Figure 10b) were
used (Equation 3).

We compared the Z-Score of PGSSMy; either grouped by clinical stage (Figure 14) or source
subsystem, which indicates the origin and type of engineering of the biologics (Figure 13) (Parren,
Paul J Carter, and Andreas Pliickthun 2017). Drugs with a human source scored highly similar to
GenBank sequences (Z-Score around 0), followed by humanized, chimeric and murine Abs. This
trend was consistent for both drug datasets processed. Scores of sequences from mice still score in
a similar range of GenBank Mus musculus sequences. This finding shows that antibody sequences
from IMGT/mAb-DB with a murine background remain distinguishable from biologics with human
origin. On the other hand, humanized and chimeric sequences populate a scoring range closer to
human and non-human primate sequences. Pooling drugs by their clinical status shows that drugs
in Phase 2 to 3 clinical trials and approved Abs have an average Z-score of -0.56 + 1.05 (Phase 2),
-0.77 + 1.35 (Phase 3), and -1.18 + 1.45 (Approved). On average, human drugs appear human-like
with a Z-Score greater than -2, caused by the high number of human (57) and humanized (68)
drugs compared to 13 chimeric. The low number of available sequences aggravates the challenge
to draw reliable conclusions. The PGSSMy; indicates that there is a non-human sequence space
compatible with the human system. However, we hereby choose a Z-Score cutoff of -2 or greater
to roughly group the majority of clinical stage antibodies (Figure 14, horizontal red line). For
our next experiment, we used this cutoff to distinguish between biologics/human antibodies, and

non-human antibodies.
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To further investigate the role of public and private repertoires on the eligibility of Abs as
drugs, we calculated PGSSMyj scores using each of the three individual immunome repertoires.
The majority of staged antibodies exhibit a cutoff of -2 or greater (Figure 14). Hence, we roughly
defined any of the three scores as human-like as long as the Z-Score of the PGSSMy; was greater
or equal to -2. Figure 15 depicts the number of human-like scores for non-human (orange), human
GenBank Abs (blue), and biologics (green), separated by light chains (a) and heavy chains (b).
We observed high agreement between the three scores for human and therapeutic Abs. We also
observed high agreement rates between all three repertoires, including 70.0% of all biologics and
92.3% of all human GenBank heavy chain sequences and 81.8% of all biologics and 94.6% of all
human GenBank light chain sequences. In contrast only 8.8% light chain and 8.8% heavy chain
sequences of biologics and 1.3% of light chain biologics and 2.6% of heavy chain human GenBank

sequences were scored as non-human in all three cases.

6.2.13 Performance and robustness

The initial release of our algorithm requires amino acid Ab sequences that cover at least a fraction of
the V and J gene-encoded region, which can be successfully aligned via BLAST. The algorithm then
places optional D PGSSMs as well germline gene CDR3 loop PGSSMs in the appropriate locations
if available. Templated regions as well CDR3 junctions are modeled statistically; insertions are
represented in the statistical SNF model as gaps.

We compared the germline gene families with the top five germline gene families assigned
by IgBLASTp, the IgBLAST tool for protein sequences (Table 1). Our method reliably assigns

germline V genes to our sequences when [gBLASTp is taken as reference.

6.2.14 Output

We provide a webservice called IgReconstruct (http://meilerlab.org/index.php/servers/IgReconstruct),
which takes amino acid sequences of Ab variable domain in FASTA format as input. The output
is presented graphically in a downloadable PDF file (Figure 12), and a spreadsheet with equivalent
machine-readable information. The PDF report presents the query amino acid sequence aligned to
its reconstructed nucleotide sequence, V, (D), and J germline gene alignments. The germline gene
alignments indicate sequence identity with a dot and residue type replacements with a one-letter
code. The variable region is annotated in the form of branches for the predicted IMGT-CDR1-3.
V(D)J domains are colored blue, red, and green and match the colors used in the IgReconstruct
flowchart (Figure 9). In case of overlapping alignments, the region is colored according to the

hierarchy of the rearrangement tree.

6.3 Discussion

We have shown that statistics of SNF's of the variable region using large human immunome reper-
toires are capable of modeling the human Ab sequence space by predicting nucleotide sequences

from amino acid sequences (Figure 10). With more and more large NGS nucleotide sequence
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Figure 12: Alignment report generated by IgReconstruct. An example alignment re-
port for the human heavy chain Ab sequence with the GenBank accession number
AF044419. Reports generated by IgReconstruct provide information on the query amino acid se-
quence (first row), the back-translation (second row) and alignments to the germline gene sequences
(third and following row if applicable). The color code blue (V gene), red (D gene), and green (J
gene) refers to the aligned germline PSSMs which were used to create the back-translated sequence.
Columns without color are not aligned to a specific germline gene. Dots represent the germline
sequence; mutations are shown using the one-letter amino acid code. CDR loops 1 to 3 are inferred
based on alignments to the V and J germline genes. The numbers on top of the amino acid sequence
was implemented using the IMGT numbering scheme (M. P. Lefranc 1998). Non-templated regions
at the V-D and D-J junctions flanking the D gene alignment (red) are covered by the CDRH3
PSSM, but are not visualized in the color scheme. The PDF report gives a quick insight into the
nature of the germline gene rearrangement which is used to generate the back-translation and the
human-likeness score

datasets becoming publicly available, (Soto, Bombardi, et al. 2019; DeWitt et al. 2016; B. Briney
et al. 2019; Corrie et al. 2018; Kovaltsuk et al. 2018) IgReconstruct resembles an approach to link
the nucleotide sequence space with resources of Abs where primarily amino acid information is
available, like de-novo computational models or structural databases (Berman et al. 2000; Dunbar
et al. 2014). Approaches of structural modeling of Abs (Adolf-Bryfogle, Kalyuzhniy, et al. 2018)
have been made to include amino acid sequence profiles of V and CDR3. IgReconstruct may pave
the way to completely model the germline gene rearrangement of an amino acid sequence at the
nucleotide level and provide full access to large-scale human immunome repertoire statistics.

We demonstrated that the PGSSMyj score, derived from the SNF statistics of an individual
Ab, is an appropriate distance measure of a particular chosen Ab to a nucleotide immunome
repertoire or arbitrary large set of sequences (context). For this, we fulfilled the requirement to find
the minimal distance by suggesting the most probable nucleotide sequence for a given repertoire
(context-dependent<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>