
ASSURANCE MONITORING OF CYBER-PHYSICAL SYSTEMS WITH LEARNING ENABLED

COMPONENTS

By

Dimitrios Boursinos

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

March 31, 2022

Nashville, Tennessee

Approved:

Xenofon Koutsoukos, Ph.D.

Gabor Karsai, Ph.D.

Janos Sztipanovits, Ph.D.

Abhishek Dubey, Ph.D.

Taylor Johnson, Ph.D.

Copyright © 2022 Dimitrios Boursinos
All Rights Reserved

ii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Professor Xenofon Koutsoukos, for his guidance and support through-
out the Ph.D. program as well as Nag Mahadevan and Daniel Stojcsics for their help and great collaboration
in my research. I would also like to thank my many other Institute for Software Integrated Systems colleagues
and the members of my doctoral committee, Professors Janos Sztipanovits, Gabor Karsai, Taylor Johnson and
Ahbishek Dubey.

I would like to acknowledge several of my graduate student peers for their friendship and research col-
laboration including Ibrahim Ahmed, Dr. Charles Hartsell, Tim Krentz, Shreyas Ramakrishna, Dr. Brad
Potteiger, Dr. Feiyang Cai, and Ben Yett among many others.

Finally I would like to thank my family and friends for their continued support and encouragement,
including my parents Grigorios and Evangelia Boursinos, and brother Vasilis Boursinos.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

I Introduction . 1

I.1 Motivation . 1
I.2 Research Challenges . 2
I.3 Research Contributions . 4
I.4 Organization . 5

II Related Work . 6

II.1 Assurance in Machine Learning . 6
II.1.1 Notations and Evaluation Metrics . 7
II.1.2 Calibration Methods . 8
II.1.3 The Conformal Prediction Framework . 10

II.2 Distance Metric Learning . 16
II.2.1 Early Work . 17
II.2.2 Deep Learning Methods . 19

II.3 Object Detection . 21
II.3.1 Early Work . 22
II.3.2 Deep Learning Approaches . 24

III Inductive Conformal Prediction with Distance Learning . 30

III.1 Introduction . 30
III.2 Related Work . 33
III.3 Problem Formulation . 34
III.4 Distance Learning . 35
III.5 ICP Based on Distance Learning . 37
III.6 Assurance Monitoring . 39
III.7 Evaluation . 41

III.7.1 Experimental Setup . 41
III.7.2 Baseline . 42
III.7.3 Preprocessing and Distance Learning . 43
III.7.4 Selecting the Significance Level . 44
III.7.5 Computational Efficiency . 48

III.8 Concluding Remarks . 50

IV Improving Prediction Confidence Using Sequential Sensor Measurements 52

IV.1 Introduction . 52
IV.2 Triplet-based ICP . 53
IV.3 Feedback-loop for Querying the Sensors . 55
IV.4 Evaluation . 56

IV.4.1 Experimental Setup . 56
IV.4.2 Model Performance . 57

iv

IV.4.3 ICP Performance . 58
IV.4.4 Improving Prediction Accuracy . 58

IV.5 Concluding Remarks . 59

V Selective Classification of Sequential Data . 60

V.1 Introduction . 60
V.2 Problem . 61
V.3 Selective Classification . 61
V.4 Multiple Testing Of Single Hypothesis . 64

V.4.1 Inductive Conformal Prediction . 64
V.4.2 Combining Multiple p-values . 66

V.4.2.1 Merging Functions . 66
V.4.2.2 Quantile Combination Approaches . 67
V.4.2.3 Empirical CDF Computation . 69

V.5 Evaluation . 69
V.5.1 Experimental Setup . 70
V.5.2 Siamese Network Evaluation . 70
V.5.3 Softmax Baseline and Selective Classification with Individual Inputs 71
V.5.4 Validity . 73
V.5.5 Selective Classification on Sequences . 75

V.6 Concluding Remarks . 76

VI Reliable Probability Intervals for Classification . 78

VI.1 Introduction . 78
VI.2 Problem . 80
VI.3 Probability Intervals based on Distance Metric Learning 81
VI.4 Inductive Venn Predictors with Dynamic Categories . 85
VI.5 Evaluation Metrics . 88
VI.6 Evaluation . 90

VI.6.1 Experimental Setup . 90
VI.6.2 Baseline Taxonomies . 91
VI.6.3 Evaluation Results . 92
VI.6.4 IVP with Dynamic Categories . 95

VI.7 Concluding Remarks . 97

VII Conclusions . 99

VIIIList of Publications . 100

BIBLIOGRAPHY . 101

v

LIST OF TABLES

Table Page

III.1 Clustering comparison using the silhouette coefficient 44
III.2 ICP performance for the different configurations . 48
III.3 Execution times and memory requirements . 49

IV.1 Triplet-based classifier performance . 57
IV.2 Triplet-based ICP performance comparison between IID test data and data belonging to

sequences . 58

V.1 Scenarios that can be observed for different values of confidence and credibility. 62
V.2 Siamese accuracy evaluation . 71
V.3 ECE Comparison . 74
V.4 AURC Results . 75

VI.1 Silhouette Coefficient Comparison . 92
VI.2 Evaluation metrics results . 93
VI.3 Evaluation metrics results . 96

vi

LIST OF FIGURES

Figure Page

II.1 (a) Siamese network architecture and (b) Triplet network architecture 22
II.2 Object detection example from ImageNet dataset [1]. 23

III.1 Assurance monitoring using ICP based on distance learning. 35
III.2 Embedding representations of input images from the traffic sign recognition dataset. . . . 36
III.3 Baseline DNN architecture . 43
III.4 Illustrative example . 45
III.5 Performance and calibration curves formed using the validation data from the different

datasets using the nearest centroid NC function . 46

IV.1 Feedback loop between the decision-making process and sensing 53
IV.2 Traffic sign over time (in frames) . 57
IV.3 Average error per frame for all the test sequences . 58
IV.4 (a) Error-rate and (b) average number of frames until a decision. 59

V.1 Execution time architecture . 62
V.2 Reliability diagram of a classifier that uses softmax output for assurance assessment. . . . 72
V.3 (a) Assurance Evaluator risk curve, (b) Assurance Evaluator RC curve 73
V.4 (a) Baseline ICP on IID data, (b) Baseline ICP on sequential data, (c) Combination of

p-values based on the min ECDF . 73
V.5 Risk-Coverage Curves . 76

VI.1 IVP classifier based on distance metric learning . 84
VI.2 Execution time workflow . 86
VI.3 Cumulative error intervals comparison between our taxonomies and the literature baselines

on the GTSRB dataset. 94
VI.4 Cumulative probability intervals comparison between the dynamic and static taxonomies

on the GTSRB dataset. 98

vii

CHAPTER I

Introduction

I.1 Motivation

Machine learning (ML) components are being used by many cyber-physical system (CPS) applications be-

cause of their ability to handle dynamic and uncertain environments. Commonly used ML components are

the Deep Neural Networks (DNNs) that are used for perception and decision making tasks in CPS. In au-

tonomous vehicles, for example, perception problems deal with making sense of the surroundings like recog-

nizing correctly traffic signs. Although such components offer many advantages for representing knowledge

in high-dimensional spaces and approximating complex functions, they introduce significant challenges when

they are integrated into CPSs. Typical DNNs are non-transparent and it is not clear how to rationalize their

predictions. Modern architectures are parameterized using million of values which makes reasoning about

their predictions very challenging.

The use of DNNs introduce new types of hazards in CPSs that can have disastrous consequences and

need to be addressed for engineering trustworthy systems. A DNN is designed using learning techniques

that require specification of the task, performance measure for evaluating how well the task is performed,

and experience which typically includes training and testing data. Utilizing DNNs for tasks where different

degrees of autonomy autonomy is required, presents challenges related to the difficulty of evaluating the risk

of the autonomous decisions in tasks that are hard to specify. An example of such task in CPS domain is

the perception of the environment. This is a functionality that is difficult to specify, and typically, specifica-

tions are based on examples. Modern DNN architectures encode the information learned from the training

examples, in a complex manner and it is hard to reason about the encoding and what affects their decisions.

Non-transparency is an obstacle to monitoring because it is more difficult to have confidence that the model

is operating as intended.

Complementing the predictions of DNNs with a confidence measure can be very useful for improving

the trustworthiness of such models and allow their application to safety critical systems. We consider clas-

sification applications in CPS. The objective is to complement the prediction of DNNs with a computation

of trustworthiness. In this dissertation the trustworthiness measure is approached in different ways with the

most common ones being p-values and probabilities. In statistics, the p-value is the probability of obtaining

results at least as extreme as the observed results of a statistical hypothesis test, assuming that the null hy-

pothesis is correct. Each of these approaches offer different guarantees and one may be preferred over the

1

other depending on the application’s specifications. We focus on computationally efficient algorithms that

can be used for real-time monitoring and decision-making. An efficient and robust approach must ensure

a small and well-calibrated error rate while limiting the number of times a trustworthy decisions cannot be

made.

I.2 Research Challenges

Cyber-physical systems (CPS) are engineered systems in which physical and software components are deeply

intertwined. Most modern products in major industrial sectors, such as automotive, avionics, medical devices,

and power systems already are or rapidly becoming CPS driven by new requirements and competitive pres-

sures. These are safety critical fields where the introduction of autonomous components are challenging as

potential incorrect decisions can have very serious consequences [2]. For such components to safely be inte-

grated in CPS they need to be complemented by methods and practices that will assure the safe operation of

the system.

Semi-autonomous and autonomous vehicles are a very significant domain and opportunity for CPS [3].

Modern vehicles are equipped with a number of sensors, like cameras and Light Detection and Ranging (Li-

DAR) sensors, to either achieve fully autonomous driving or assist the human operator in dangerous scenarios.

Even though all these sensors produce a lot of information about the environment and the surroundings of the

vehicle, it can be challenging and tedious to have some desired control actions for all possible scenarios on

continuously changing environments. This shows the need for integrating machine learning components in

CPS that can deal with decision-making in dynamic environments.

The most commonly used machine learning component is the deep neural networks because of their high

knowledge capacity and their ability to receive and make decisions for high-dimensional inputs. They achieve

this by transforming the inputs to a number of sequential feature layers of less-and-less abstraction until a

classifier can be defined in a lower dimensional feature space. The mapping between the different feature

layers is learned using labeled training data and the knowledge of a particular DNN model is stored in its

weight parameters. Modern architectures can have hundreds of layers and are parameterized using millions

of values. This makes it challenging for DNNs to be used in safety critical CPS application because its hard to

understand how a DNN makes a particular decision, or reason about a decision, and how confident a decision

is. This problem with DNNs is also called non transparency. DNNs commonly use a softmax layer to provide

probability-like outputs, meaning the output for each class is in [0,1] and the sum of the outputs of all possible

classes is 1. However, these probabilities are typically overconfident even for inputs coming from the same

distribution as the training data [4] and they cannot be used as reliable confidence measures. This problem is

commonly referred as miscalibration, meaning that the confidence scores that compliment decisions are not

2

accurate indicators of the expected error-rate.

Deploying a CPS with machine learning components in the real world comes with challenges that are hard

to foresee in design-time. CPS usually operate in highly dynamic open worlds where unknown scenarios

may appear. Even using very deep DNN architectures it is hard to have training data for every possible

input a system may face during testing. The unpredictability in the real world will force the system to work

under different conditions. For example, an autonomous vehicle has to drive safely in different weather

conditions. Different operating conditions may introduce different kind of noise into the input data that will

make confident decisions harder. There is a detailed work on the influence of rain on LIDAR sensors in [5].

Also different environmental conditions may require different control decisions to achieve safety. Finally, in

the real world, input data may provide partial information. In the field of autonomous vehicles inputs usually

come as sequences. For example a common task is the traffic sign recognition. Traffic signs many times are

far for the vehicles to be able to recognize them confidently or covered by obstacles so multiple input frames

may be required until a decision can be made. The combination of statistical results computed on subsequent,

time-correlated, and high-dimensional inputs presents a lot of challenges for the development of valid and

well-calibrated assurance monitors, as well as decision-making.

The last set of challenges has to do with technical issues regarding different kinds of system limitations.

Integrating DNNs in CPS comes with restrictions on the computational power. Mobile systems many times

have limited memory that will not allow for computationally expensive models to work. Finally, in au-

tonomous CPS it is desirable for human intervention to be as limited as possible. In real-time systems, the

decision time is usually very short making it impractical for a human operator to take a decision in time. In

such cases, no decision could lead the system into a dangerous state.

We take these areas of research into account when addressing the following research challenges.

• How do we compute well-calibrated confidence metrics with each decision made by a Learning En-

abled Component (LEC) for effective integration in CPS?

• How to minimize the human intervention and maximize the safe operation time?

• How confidence metrics computed on time-correlated data can be combined to produce aggregate con-

fidence metrics for a sequence?

• How to process and take confident decisions on high-dimensional data?

• How can the confidence metrics be expressed in a form that is easy to understood and evaluated by

humans?

3

I.3 Research Contributions

For well-calibrated classification methods to be practical in real life problems they need to be able to be

used on large and high-dimensional datasets. ICP performs well when used in datasets with a small number

of features but does not scale well. Our contributions aim in allowing for predictions with well-calibrated

confidence metrics in real life scenarios. The research contributions of this dissertation are presented as a

series of publications in Chapters III through VI. The contributions in each of these chapters are:

• In Chapter III we present the idea of transforming the high-dimensional inputs into lower-dimensional

embedding representations that can be handled efficiently by ICP. For these representations to be used

with ICP they need to be in a form in which similarity between different data points can be defined. We

use distance metric learning techniques to compute embedding representations such that the euclidean

distance between them is a metric of similarity between the original inputs. Moreover, autonomous sys-

tems are desirable to operate safely for as long as possible and require as little intervention by humans

as possible. We present an optimization method to minimize the instances where a confident decision

cannot be made for a given input. Our presented methods have been implemented and evaluated in

applications such as traffic sign recognition, speaker recognition and robotic navigation.

• Many applications use input data that are part of sequences, such as still frames belonging to a video

footage. Most machine learning techniques, including ICP, operate on the assumption that the data

are independent and identically distributed. In Chapter IV we propose a method that improve the

classification accuracy on sequential data by combining results computed for each individual data point

belonging to the sequence. This approach is based on a feedback loop that controls the sensors and

queries for a new input until a confident prediction can be made. Our presented methods have been

implemented and evaluated in video sequences of traffic sign recognition scenarios as a car approaches

traffic signs.

• Decision making in the presence of uncertainty is an important part in the operation of CPS. The first

major contribution in Chapter V is the use of statistical methods to combine p-values of subsequent

inputs and compute aggregate assurance metrics for sequences. Then, the second main contribution is

the development of decision making methods that we optimize to maximize the amount of decisions

while minimizing the error-rate. Our presented methods have been implemented and evaluated in video

sequences of traffic sign recognition scenarios as a car approaches traffic signs.

• The confidence of a Learning Enabled Component on the correctness of a decision is desirable to be in

terms that can be understood by humans. In Chapter VI the first main contribution is the development

4

of methods that compute the confidence of decisions in terms of probability intervals that are well-

calibrated to represent the actual probability of correctness. The computed probability intervals are

evaluated for their calibration, or how well they estimate the true probabilities and efficiency, or how

informative they are. We evaluated this method in image recognition applications as well as detection

of network attacks. The second main contribution is an extension of probability interval computation

that improves the calibration and efficiency of the probability intervals by learning from unlabeled test

data during execution.

CPS often are designed for safety-critical applications, with a necessity for producing computation and

actuation output in a predictable manner, providing for safe, and consistent operation of the physical process.

As such, CPS such as medical devices, automobiles, and military applications are considered real time sys-

tems, requiring that underlying computation processes execute within stringent time constraints. We optimize

our proposed methods and extensions to minimize their memory and computational requirements to make it

possible for them to be used by less powerful computer found in CPS and in real-time.

I.4 Organization

The rest of the proposal will be sequenced as follows. Chapter II introduces the related work needed for

better understanding the field of our research, the basis of our approaches as well as other approaches on the

same problem in the literature. Chapters III through VI present the research contributions summarized in the

previous section. Chapter VII ends with concluding remarks.

5

CHAPTER II

Related Work

CPS applications use learning enabled components (LECs) for various tasks, like perception and control.

Each decision taken by an LEC must be associated with an assurance metric that quantify the uncertainty

of such decision. This metric must be well-calibrated, meaning it should be an accurate representation of

the actual probability that a decision is correct or it must bound the expected error-rate. Modern machine

learning components tend to not be well-calibrated. However this property is essential for many systems and

therefor many researchers have worked in this area trying to develop methods that compute well-calibrated

assurance metrics for existing ML components. Related research in well-calibrated ML components follows

in Section II.1.

Most of our applications are related to self-driving vehicles and other mobile robots, applications that add

some restrictions on the available computational power. Self-driving vehicles are typically equipped with

cameras generating a large amount of data that have to be processed in real-time. Many of the approaches

that calculate accurate assurance metrics do not perform well with high-dimensional inputs or they are not

fast enough for real-time applications. For this reason it is essential to compute appropriate low-dimensional

representations for the high-dimensional original inputs. Related work in computing appropriate representa-

tions is in Section II.2. Moreover, when the inputs to the system is produced by cameras, usually there are

particular objects on the frame that affect the decision-making process. Object detection has gotten a lot of

attention lately and we present related work in Section II.3.

The related work starts with describing what assurance means with regards to machine learning compo-

nents and why it is needed. There is a review of a number of methods that have approached this problem and

there is a more lengthy description of the Conformal Prediction framework which is used extensively in our

work. Next there is an overview on distance metric learning methods that are used when a metric of similar-

ity is needed between high-dimensional data pairs. Afterwards, object detection methods are described. It is

only the last ten years that deep neural networks are used for this problem but for better understanding of the

problem and the proposed approaches the literature review starts with earlier attempts and continues to the

modern deep learning architectures used in our work.

II.1 Assurance in Machine Learning

Modern deep neural network architectures tend to be poorly calibrated [4, 6, 7]. Neural networks for classi-

fication typically use a softmax layer to produce a probability-like output for each class. The chosen class

6

is the one with the highest probability, however this generated probability measure is often higher than the

actual posterior probability that the prediction is correct. Other factors that affect the calibration in DNNs are

the depth, width, weight decay and Batch Normalization [4].

CPS that use machine learning components for perception and control can benefit from well-calibrated

classifiers. Accurate error-rate bounds provide assurance guarantees in safety-critical applications but also

make the decision confidence interpretable by humans. The significance of accurate confidence metrics was

recognized very early and the earliest work we know of is in the context of forecasting [8, 9]. Modern

classifiers that produce softmax outputs are generally overconfident and several methods have been proposed

that compute scaling factors for calibration. These methods are presented in subsection II.1.2. First it is

important to see how calibration can be evaluated.

II.1.1 Notations and Evaluation Metrics

Consider a dataset {z1, . . . ,zl} of examples, where each zi ∈ Z is a pair (xi,yi) ∈ X ×Y with xi the feature

vector and yi the label of that example. We also consider the classifier f : X → R|Y | with output o = f (x)

scores. A decision is made as ŷ = argmaxi(oi) and has confidence p̂ = maxi(oi). A classifier is considered

calibrated when the confidence p̂ represents the true probability that the prediction ŷ is correct. This means

that given 100 predictions, each of them having a confidence of 0.95, we expect 95 of them to be correctly

classified. Mathematically, calibration is defined as:

P(ŷ = y|p̂ = p) = p, ∀p ∈ [0,1] (II.1)

The calibration as it defined by Eq. II.1 can only be approximated empirically using finitely many samples as

p̂ is a continuous random variable.

A common way to visually inspect the calibration of different models is the reliability diagrams [9, 10].

These are histograms that plot the expected sample accuracy as a function of confidence. A perfectly diagonal

line, where all values of accuracy are equal to their associated confidence values is an indication of a perfectly

calibrated model while deviations in the plotted line are signs of miscalibration. In order to plot the expected

accuracy as a function of the confidence using a finite amount of samples we split the samples into M interval

bins of size 1
M based on their confidence values. Then the expected accuracy for a set of samples Bm in bin

Im =

(
m−1

M
,

m
M

)
is:

acc(Bm) =
1

|Bm| ∑
i∈Bm

(ŷi = yi)

7

The average confidence within Bm is computed as:

conf(Bm) =
1

|Bm| ∑
i∈Bm

p̂i

acc(Bm) and conf(Bm) are approximations of the left and right hand side of Eq. II.1 and a well calibrated

model will have acc(Bm) = conf(Bm) for all bins m ∈ {1, . . . ,m}.

The reliability diagrams make it easy to qualitatively get an idea of the model’s calibration and observe

whether there are samples with specific confidence values that show larger miscalibration. However, when

comparing the calibration between different models it is useful to have a single scalar as an evaluation metric

for calibration. One way to summarize the calibration as it is defined Eq. II.1 for a large number of samples

using a single scalar is to compute the expected value Ê
p
[|P(ŷ = y|p̂ = p)− p|]. The empirical computation of

this expected value is called Expected Calibration Error (ECE) [11] and is a similar idea like the reliability

diagrams. The samples are split into M equally-spaced interval bins of size 1
M based on their confidence

values. Then ECE is the following weighted average:

ECE =
M

∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| , (II.2)

where n is the total number of samples. The lower the value of ECE, the better the calibration of the model.

ECE is frequently used as an evaluation metric by many calibration methods in the literature because of its

simplicity to summarize Eq. II.1. On the other hand, many times in safety critical applications it more useful

to compute the maximum miscalibration of a model than the mean value. This metric is called Maximum

Calibration Error (MCE) [11] and is computed as:

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| (II.3)

II.1.2 Calibration Methods

Having defined metrics for evaluating different calibration methods we can review existing calibration meth-

ods. The available calibration methods generally belong in two categories: parametric and non-parametric.

The parametric methods assume that the probabilities follow certain well-known distributions whose parame-

ters are to be estimated from the training data. The Platt’s scaling method [12] is proposed for the calibration

of Support Vector Machine (SVM) outputs. After the training of an SVM, the method computes the parame-

ters of a sigmoid function to map the non-probabilistic outputs into probabilities. The Platt’s scaling method

has also been used for neural network models in a similar manner [10]. Piecewise logistic regression is an

8

extension of Platt scaling and assumes that the log-odds of calibrated probabilities follow a piecewise linear

function [13]. Platt’s scaling method was originally purposed for binary classifiers. A variant of this that can

be used with multiclass classifiers is the temperature scaling [4] which can be applied in DNNs with a soft-

max output layer. After the training of the DNN, a temperature scaling factor T is computed on a validation

set to scale the softmax outputs. However, while temperature scaling achieves good calibration when the data

in the validation dataset are independent and identically distributed (IID), there is no calibration guarantee

under distribution shifts [14]. Experiments in [15] show that Platt’s scaling and temperature scaling are not

as well calibrated as it is reported and it is difficult to know how miscalibrated they are.

Histogram binning or quantile binning is a commonly used non-parametric approach with either equal-

width or equal-frequency bins. It divides the outputs of a classifier into bins and computes the calibrated

probability as the ratio of correct classifications in each bin [16]. Isotonic Regression is a generalization of

histogram binning by jointly optimizing the bin boundaries and bin predictions [17]. An extention of iso-

tonic regression is a method called ensemble of near-isotonic regression (ENIR) that uses selective Bayesian

averaging to ensemble the nearly-isotonic regression models [18]. Adaptive calibration of predictions (ACP)

also uses the ratio of correct classifications as the posterior probability in each bin, but it obtains bins from a

95% confidence interval around each individual prediction [19]. Estimating calibrated probabilities is a more

significant issue in class imbalance and class overlap problems. Receiver Operating Characteristics (ROC)

Binning uses the ROC curves to construct equal-width bins that provide accurate calibrated probabilities that

are robust to changes in the prevalence of the positive class [20]. Bayesian binning into quantiles (BBQ) ex-

tends the simple histogram-binning calibration method by considering multiple equal frequency Histogram

Binning models and their combination as the calibration result [11].

Another framework developed to produce well-calibrated confidence values is the Conformal Prediction

(CP) [21–23]. The conformal prediction framework can be applied to produce calibrated confidence values

with a variety of machine learning algorithms with slight modifications. Using CP together with machine

learning models such as DNNs is computationally inefficient. In [24], the authors suggest a modified version

of the CP framework, Inductive Conformal Prediction (ICP) that has less computational overhead and they

evaluate the results using DNNs as undelying model. Deep k-Nearest Neighbors (DkNN) is an approach

based on ICP for classification problems that uses the activations from all the hidden layers of a neural net-

work as features [25]. The method is based on the assumption that when a DNN makes a wrong prediction,

there is a specific hidden layer that generated intermediate results that lead to the wrong prediction. Taking

into account all the hidden layers can lead to better interpretability of the predictions. In [26], the authors

present an empirical investigation of decision trees as conformal predictors and analyzed the effects of dif-

ferent split criteria, such as the Gini index and the entropy, on ICP. There are similar evaluations using ICP

9

with random forests [27, 28] as well as SVMs [29]. The above methods are applied to datasets and show

good results when the input data are IID. In [30] we showed that ICP under-performs when the input data

are sequential. Individual frames of a sequence might contain partial information regarding the input and

more frames might be needed for ICP to reach a confident prediction. The performance of ICP in this case

can be improved by designing a feedback-loop configuration that queries the sensors until a single confident

decision can be reached.

Confidence bounds can also be generated for regression problems. In this case instead of sets of multiple

candidate labels we have intervals around a point prediction that include the correct prediction with a desired

confidence. There are ICP methods for regression problems with different underlying machine learning al-

gorithms. In [31], the authors use the k-Nearest Neighbours Regression (k-NNR) as a predictor and evaluate

the effects of different nonconformity functions. Random forests can also be used in regression problems.

In [32], there is a comparison on the generated confidence bounds using k-NNR and DNNs [33]. An alterna-

tive framework used to compute confidence bounds on regression problems is the Simultaneous Confidence

Bands. The method presented in [34] generates linear confidence bounds centered around the point predic-

tion of a regression model. In this approach, the model used for predictions has to be estimated by a sum

of linear models. Models that satisfy this condition are the least squares polynomial models, kernel methods

and smoothing splines. Functional Principal Components (FPC) analysis can be used for the decomposition

of an arbitrary regression model to a combination of linear models [35].

II.1.3 The Conformal Prediction Framework

The conformal prediction (CP) framework [21, 23] uses past experience in the form of collected data to

determine the confidence in the prediction of a new unseen input. Unlike the above methods that attempt to

compute well-calibrated confidences that approximate the real probabilities of an accurate prediction, in CP

the desired confidence is a parameter that can be chosen. Once the confidence, or the significance level as it

is usually called, is set, the CP framework produces a set a set of labels that includes the correct class with

the chosen confidence.

More formally consider a training set {z1, . . . ,zl} of examples, where each zi ∈ Z is a pair (xi,yi) with xi

the feature vector and yi the label of that example. The parameterization of assurance is the significance level

ε ∈ [0,1] and it is chosen to bound the error-rate for each individual prediction. The confidence level can be

defined as 1− ε . Γε is a set predictor parametrized by ε so that for an unseen test input xl+1 the probability

it will not include the correct class yl+1 is less than ε . The set predictor is valid if:

P(yl+1 ̸∈ Γ
ε)≤ ε (II.4)

10

where yl+1 is the correct class for input xl+1. It can be seen that the validity property can be achieved with

the trivial set predictor that include every possible class Γε =YYY . However this does not offer any information

toward the decision-making process. Efficiency of a set predictor is a measure of the number of classes it

includes. Neither validity nor efficiency are enough by themselves as the one does not guarantee the other.

We are looking for the most efficient prediction set among all the valid ones which in turn provides the most

information toward a final prediction with a chosen confidence. A confidence predictor is nested in the sense

that for 0 ≤ ε1 ≤ ε2 ≤ 1, Γε1 ⊇ Γε2 [23]. For smaller significance level values, set predictors are expected to

include more classes.

According to [23] CP makes two kinds of assumptions about the way the examples zi, i = 1, . . . , l +1 are

generated. Under the randomness assumption, the l+1 examples are generated independently from the same

unknown probability distribution. Under the exchangeability assumption the sequence zi, i = 1, . . . , l + 1 is

generated from a probability distribution that is exchangeable: for any permutation π of the set {1, . . . , l+1},

the distribution of the permuted sequence (zπ(1), . . . ,zπ(l+1)) is the same as the distribution of the original

sequence (z1, . . . ,zl+1).

Central to the application of ICP is a nonconformity function or nonconformity measure (NCM) which

shows how different a labeled input is from the examples in the training set. For a given test example zl+1

with candidate label ỹl+1, a nonconformity function α(xl+1,yl+1) assigns a numerical score indicating how

different the example zl+1 is from the examples in {z1, . . . ,zl}. Nonconformity functions can be defined in

different ways [21–23,25,36–38]. For example, a nonconformity function can be defined as the number of the

k-nearest neighbors to zl+1 in the training set that are labeled different than the candidate label ỹl+1 (k-nearest

neighbors nonconformity measure). The labels of the k-NN to xl+1 are stored in a multi-set Ω. The k-NN

nonconformity of input x with a candidate label y is defined as

α(x,y) = |i ∈ Ω : i ̸= y|.

In a similar manner, instead of counting the number of labels of the k-NN that are the same as the

candidate label y of a sample x, we can count how many of the k-NN of label y are are within a certain

range. We can define the Number of Close Examples (NCE) [38] as 1 minus the ratio of the k-NN of x that

belong to the same class as the candidate class that are within a certain proximity range

α(x,y) = 1− |d(x,xi)≤ θ : yi = y|
k

where xi : i = 1, . . . ,k the k-NN of x that are labeled the same as x and d is a distance metric between samples

11

x.

The 1-NN NCM requires to find the most similar example of a test input x in the training set that is labeled

the same as the candidate label y as well as the most similar example in the training set that belongs to any

class other than y and is defined as

α(x,y) =
mini=1,...,n:yi=y d(x,xi)

mini=1,...,n:yi ̸=y d(x,xi)

where d is a distance metric between input examples.

A NCM can be defined in a similar way but instead of using only the closest neighbor to a sample, we

can use k-NN. The Relative Neighborhood Distance (RND) [38] can be defined as

α(x,y) =
∑

k
i=1 d(x,xi)

∑
k
j=1 d(x,x j)

where yi = y : i = 1, . . . ,k, y j ̸= y : j = 1, . . . ,k and d is a distance metric between input examples.

The Nearest Centroid NCM simplifies the task of computing individual training examples that are similar

to a test input when there is a large amount of training data. We expect examples that belong to a particular

class to be close to each other in the embedding space so for each class yi we compute its centroid µyi =
∑

ni
j=1 xi

j
ni

,

where ni is the number of training examples in class yi. The nonconformity function is then defined as

α(x,y) =
d(µy,x)

mini=1,...,n:yi ̸=y d(µyi ,x)

It should be noted that for computing the nearest centroid NCM, CP needs to store only the centroid for each

class.

A nonconformity function does not need to be defined in the input space and take as input the examples

in their original form. Features can be extracted from the input samples and then be used as inputs for the

NCM computation. One such way of defining an NCM is the Deep Nearest Neighbors (DkNN) NCM [25].

This way of computing the NCM is motivated by the architectural design of neural networks in layers. Each

layer deeper in the hierarchy is an increasingly abstract representation of the input domain [39]. These

representations are also called embeddings. The last layer is sufficiently abstract for a linear decision function

to be used for classification. The idea is similar to the k-NN NCM function, only here we first compute the

embedding representations of the input on every layer of a DNN and then compute the k-NN for every layer

representation. For such k-NN to be computed for every layer, all the embedding representations for the

training data z1, . . . ,zl need to be computed and stored using the same trained DNN classifier that is used to

compute the embedding representations of the test sample zl+1. The nonconformity of an input x with the

12

label y is defined as:

α(x,y) = ∑
λ∈1...n

|i ∈ Ωn : i ̸= y|.

where n is the total number of layers and Ωn the multi-set of labels for the training samples whose represen-

tations are closest to the test input’s at layer λ . Because the output of the layers is often high-dimensional the

authors used Locality-Sensitive Hashing (LSH) [40–42] to find the nearest neighbors according to the cosine

similarity between vectors. Unlike the most common uses of hash functions, LSH is designed to maximize the

collision between similar samples. The use of all the layers has better robustness when computing the NCM

when input data are out of distribution even though more memory is required to store the representations of

the training data.

Another family of NCMs is the model agnostic nonconformity functions [36]. Unlike the previous NCMs

that are defined either on the input domain or the embedding representations domain, the model agnostic

NCMs are based on probability estimates which can be computed by different kind of underlying models

like decision trees [26], random forests [43] or the output layer of a DNN, the softmax layer that produces

probability like estimates for each class. The Hinge [43] is based simply on the probability estimate provided

for the correct class label y assigned to sample x:

α(x,y) = 1− P̂(y|x)

where P̂ is the estimated probability output.

Margin [26] is an NCM that considers two class labels: the true class label and the most likely incorrect

class label. The margin NCM is defined as:

α(x,y) = max
y j ̸=y

P̂(y j|x)− P̂(y|x)

meaning a nonconforming example is one which has a low probability estimate for the true class label and/or

a high probability estimate for any other (incorrect) class label.

The last model-agnostic NCM is the Brier score [44] which considers all possible class labels:

α(x,y) =
1
|Y |

Y

∑
y j

(
P[y j|x]− P̂[y j|x]

)2

where P(y|x) = 1 if y j = y and 0 otherwise. Here the nonconformity of an example depends on the probability

estimates of all classes and even small differences regarding the correct class will affect the final score.

Another proposed way of computing the NCMs is using Support Vector Machines (SVMs). This underly-

13

ing algorithm has been used in different applications like medical [45] and chemoinformatics [46]. SVMs are

trained to classify data by computing some optimal hyperplanes to separate the different classes. It is natural

to compute the nonconformity score of an example as a function of its distance to the separating hyperplane.

However, the use of SVMs can introduce a number of challenges depending on the application, like:

1. The dataset may be to large to be handled by an SVM

2. Imbalanced classes

3. The choice of the appropriate kernel

Training SVMs on large datasets is generally challenging, as storing the kernel matrix requires memory

that scales quadratically with the number of data points [47]. Similar increase is observed in the training

time as well [47]. This problem has received a significant amount of research and there has been proposed

different methods for SVM training [47–54]. SVMs work effectively on balanced datasets but are sensitive

to imbalances and produce sub-optimal models in such situations. There are different reasons for this. When

training on imbalanced data the separating hyperplane can be skewed towards the minority class and can

cause the generation of more false negative predictions [55,56]. Another source of boundary skew is that the

ratio between the positive and negative support vectors becomes more imbalanced with the increase in the

imbalance of the dataset [57,58]. As a result a test sample close to the boundary is more likely to be dominated

by negative support vectors and be classified as negative. Finally the choice of an appropriate kernel depends

on the particular application and the used features. In [46] the authors used the Tanimoto Similarity [59] as

a kernel and compared it with a kernel consisting of the composition the Tanimoto similarity with Gaussian

RBF.

Other underlying models that have been used for the computation of nonconformity scores are the Multi-

nomial Naive Bayes [46], decision trees [26] and random forests [38, 43]. The Multinomial Naive Bayes

classifier is suitable for classification when the features are discrete. Its advantages are the simplicity and

fast training. A nonconformity function can be defined as α(x,y) = − log p(y|x), where p is the posterior

probability estimated by Naive Bayes. When the standard decision trees produce probabilities instead of

just the class labels of the decision, they are refered as Probability Estimation Trees (PETs) [60]. PETs’

output probabilities, just like SVMs’ and DNNs’, are not well-calibrated [16]. In [26] the authors propose

a way to define an NC function based on decision-trees using the Margin NC function above. They show

that the decision trees trained to be used as part of the nonconformity framework should use no pruning have

smoothed probability estimates. The choice of split-criterion seemed to not have any significant effect in the

performance of CP. Random forests [61] consist of a large number of individual decision trees that operate

14

as an ensemble. RFs are computationally efficient since each tree is built independently of the others. Each

tree makes a class prediction and the class with the most votes becomes the model’s prediction. With a large

number of decision trees this model is robust to overfitting and noise in the data [61]. The simplest way to

compute a NC score using RFs for an exampe x is 1 minus the ratio of trees that vote for the actual class label

y [38, 43]:

α(x,y) = 1− |yi = y : i = 1, . . . ,n|
n

where n is the number of decision trees and yi the decision of the tree i. Finally, RFs can be used to compute

proximities between pairs of examples. This is a measure of similarity between input samples and can be

used to compute the NCMs that require the computation of distance between examples like the NCE, 1-NN,

RND and Nearest Centroid.

The nonconformity score is an indication of how uncommon a test input is compared to the training data.

Input data that come from the same distribution as the training data will produce low nonconformity scores

and are expected to lead to more confident classifications while unusual inputs will have higher nonconformity

score, indication of less confident classifications. However, this metric by itself does not tell us how unusual

a new example is with respect to the training set. In order to convert the nonconformity scores into well-

calibrated probabilities we use the notion of p-values. The first way to compute the p-value assigned to a

sample xl+g with a candidate label yl+g is called Transductive Conformal Prediction (TCP) [23,62]. Consider

all possible classifications Y1, . . . ,Yc. For all the training data as well as the new test input compute the

nonconformity score with regards to all possible classifications:

α
(Y1)
1 , . . . ,α

(Y1)
l ,α

(Y1)
l+g

...

α
(Yc)
1 , . . . ,α

(Yc)
l ,α

(Yc)
l+g

The p-value assigned to xl+g been classified as Yj is:

p(xl+g,Yj) =
#{i = 1, . . . , l, l +g : α

(Y j)
i ≥ α

(Y j)

l+g }
l +1

(II.5)

This method of computing the p-values is relatively inefficient as it involves the computation of large number

of nonconformity scores. Depending on the choice of underlying model this may not be feasible.

The second way of computing the p-values is called Inductive Conformal Prediction (ICP) [23, 62]. In

this method, the training set is split into the proper training set (z1, . . . ,zm) of size m < l and the calibration

15

set (zm+1, . . . ,zl) of size l −m. This method of computing the p-values for a new test input xl+g is more

efficient as it requires only the computation of the nonconformity scores of the data in the calibration set with

respect to their ground truth labels, α(xi,yi), i = m+1, . . . , l. The same underlying model is used to compute

α(xl+g,Yj), j = 1, . . . ,c, the nonconformity scores of the test input with respect to all possible labels. Then

the p-value for the pair (xl+g,Yj) is:

p(xl+g,Yj) =
#{i = m+1, . . . , l : ai ≥ α

(Y j)

l+g }+1

l −m+1
(II.6)

The computed p-values, either by Eq. (II.5) or by Eq. (II.6) are then used to form the set predictors Γε that

satisfy the validity property of Eq. (II.4). After the desired significance level ε has been chosen a candidate

label Yj is added to Γε if p(xl+g,Yj) > ε . It is shown in [23] that the prediction sets computed by ICP are

valid, that is, the probability of error will not exceed ε for any ε ∈ (0,1) for any choice of the nonconformity

function.

II.2 Distance Metric Learning

Many real-world applications use different distance metrics in various tasks. For example in computer vision

such tasks are image classification and content-based image retrieval (CBIR). Such applications require a

way to quantify the similarity between different images. Then a k-nearest-neighbors (k-nn) classifier can

be used to identify similar images. The metric chosen to define the distance between images can strongly

affect performance. With that, there is a technical problem that should be considered that has to do with

the computational requirements for these tasks. Using k-nn on a high-dimensional space that represents for

example images, is inefficient and require a large memory capacity to store all available images in their

original form. The efficiency can be improved by using distance metric learning to map the original data to

lower-dimensional representations on an embedding space that can be used easier on similarity-based data

retrieval tasks. The task of dimensionality reduction is to find a small number of features to represent a large

number of observed dimensions.

There are many proposed approaches on learning appropriate distance metrics for similarity estima-

tion.We will overview the ones that belong in supervised distance metric learning, which is related to our

proposed methods. The supervised distance metric learning require the collected training data to be labeled.

However, unlike training a classifier where each data point is assigned to a ground truth label and we min-

imize a loss function so that the classification will be the same as the ground truth label, in distance metric

learning, the data points are considered in pairs. The associated loss function is defined using pairwise con-

straints such that its minimization will make data points belonging to the same classes be close to each other

16

and data points belonging to different classes be far from each other. The constraints can be defined either

globally, on all possible pairwise distances, or locally on a sub-region of the embedding space.

II.2.1 Early Work

Many distance metric learning approaches have been proposed for applications where the available data are

labeled and the objective is to keep all the data points of the same classes closes to each other and far apart

from data belonging to different classes. Suppose we have a collection of data points

C = {xi}m
i=1 ⊆ Rn.

Unlike training of classifiers where the label of each data point is a particular class, in distance metric

learning pairs of data points are annotated either as semantically-similar or as semantically-dissimilar. The

learned metric should place similar data points close to each other and far from the dissimilar ones. Suppose

we are given the similarities information as:

S : (xi,x j) ∈ S if xi and x j are similar

and

D : (xi,x j) ∈ D if xi and x j are dissimilar

The distance metric between two data points x and y can be written as:

dM(x,y) = ∥x− y∥M =
√
(x− y)T M(x− y), where M ∈ Rn×n. (II.7)

For the distance metric to satisfy the the non-negativity and triangle inequality properties, M needs to be

positive, semi-definite, M ⪰ 0. M parameterizes a family of Mahalanobis distances over Rn and setting M = I

gives the Euclidean distance. The convex optimization problem for distance metric learning subject to the

constraints in S and D is defined in [63] as a semi-definite programming problem [64]:

min
M ∑

(xi,x j)∈S

∥∥xi − x j
∥∥2

M

s.t. ∑
(xi,x j)∈D

∥∥xi − x j
∥∥

M ≥ 1,

M ⪰ 0.

17

However, this problem cannot be solved efficiently as it does not fall in any special class of semi-definite

programming problems. Numerical analysis, such as the Newton-Raphson method can be used to compute

the distance metric M but this is a very computational intensive task. In [63] the authors suggest the use of

gradient descent and iterative projections [65] to transform the problem to minimizing a quadratic objective

subject to a single linear constraint which can be solved efficiently. This solution is still challenging to be

applied in high-dimensional problems.

In [66] the proposed method parameterizes M = ATWA, where A is any fixed and known real matrix, and

W is a diagonal matrix with non-negative entries. Eq. II.7 then becomes:

dM(x,y) = ∥x− y∥M =
√
((x− y)T A)W (AT (x− y)). (II.8)

We see that the role of A is to apply a linear transformation to the input data so that the distance metric

becomes a Euclidean distance between the transformed inputs. Using this transformation, the optimization

problem can be formalized based on triplet constraints as a convex problem that can be solved efficiently:

min
W

∥M∥2
F +C ∑

i, j,k
ξi jk

s.t. d2
M(xi − xk)−d2

M(xi − x j)≥ 1−ξi jk ∀(xi,x j,xk) ∈ R

where ∥M∥2
F the squared Frobenius norm of M, ξi jk are slack variables like in Support Vector Machine (SVM)

classifiers, and C ≥ 0 is a regularization parameter [67]. The main drawbacks of this approach is that A must

be chosen manually, and the distance metric W is quit simple as it only learns a weighting of the features.

In addition to the above general purpose algorithms, many approaches are designed to learn appropriate

distance metrics for the k-nn classifier in a local way. This means that the constraints are defined in such a way

so that the k-nn of any training data point should belong to the same class and be far from training data that

belong to other classes. One of the most well-known such methods for Mahalanobis distance metric learning

is the Large Margin Nearest Neighbors (LMNN) [68] and has been the base for many other distance learning

methods [69–72]. The distance is learned solving the following optimization problem which is written as a

semidefinite (SDP) program:

min
M ∑

(xi,x j)∈S
d2

M(xi,x j)+µ ∑
i, j,k

ξi jk

s.t. d2
M(xi,xk)−d2

M(xi,x j)≥ 1−ξi jk

18

where (xi,xk) ∈ D, and µ ∈ [0,1] is a parameter that controls the push \pull between the training data

points, typically set through cross-validation. xii jk are slack variables like in SVM classifiers. The authors

propose a solver to optimize the matrix M. Other solvers have been proposed in [73–76].

The proposed methods presented above compute a linear transformation of the original data by computing

a distance metric matrix M. This is because such linear methods can be optimized easier when formalized as

SDPs and they are less likely to overfit. However, when the data have a nonlinear structure it is impossible to

compute linear distance metrics. Two very common general approaches in learning nonlinear patterns are the

SVMs and the DNNs. The idea behind the use of SVMs is to learn a nonlinear transformation of the original

data to a feature space where linear distance metrics can be applied. In [77] the authors propose a nonlinear

mapping of the original data to either a high-dimensional or a low-dimensional feature space using a kernel

function and they use the Mahalanobis distance in this space. The objective is to collapse all examples of

the same class to a single point and push examples in other classes infinitely far away. Similarily to the

previous method, the Pseudometric Online Learning Algorithm (POLA) [78] attempts to learn a metric that

shrinks distances between similarly labeled inputs and expands distances between differently labeled inputs.

However unlike [77] differently labeled inputs will be encouraged to be a specific distance away from each

other given by a margin. POLA can be implemented given a training set, but it can also be used online

when inputs arrive in pairs one after the other. POLA attempts to learn a Mahalanobis metric M and a scalar

threshold b such that similarly labeled inputs are at most a distance of b− 1 apart, while differently labeled

inputs are at least a distance of b+1 apart.

II.2.2 Deep Learning Methods

In recent years deep neural networks (DNNs) have been used extensively in machine learning tasks because

of their ability to compute layers of representations of the input data which can then be used to distinguish

between available classes [39,79]. Features of the input data extracted by DNNs can then be used in different

tasks as lower-dimensional representations of the original inputs [80–84] including in distance metric learn-

ing. Like with SVMs, DNNs compute nonlinear transformations but they can handle high-dimensional input

data easier. The benefits of DNNs over SVMs for nonlinear distance metric learning can be seen in the results

of [85]. The authors present a way for unsupervised pre-training of an encoder DNN. After the pre-training,

the parameters of the last layer are fine-tuned using a Neighbourhood Component Analysis (NCA) objective

function. There have been proposed different ways to train DNNs to produce appropriate representations for

distance metric learning. The Siamese Networks are formed using two copies of the same DNN architecture

that share the same weights as shown in Figure II.1a. They are trained to produce embedding representations

that will minimize a distance metric between input pairs that belong to the set S and maximize the distance

19

between pairs of the set D. In [86] a siamese network was trained for signature verification. The chosen Con-

volutional Neural Network (CNN) architecture was trained to produce embeddings with small angle between

them (cosine=1.0) for pairs of genuine signatures and a large angle (cosine=-1.0) if one of the signatures was

a forgery. The Mean Squared Error (MSE) loss function was used for training as described in [87]. In [88]

the distance metric used for the semantic similarity estimations was the L1 distance. The more significant

difference between this and the method used in [86] is the loss function minimized by the training process.

The loss function is derived from the discriminative learning framework for energy-based models (EBM) and

has the form of a contrastive loss function. It is computed to be

L(W,y,x1,x2) = (1− y)
2
Q
∥Dw∥2 +(y)2Qe

−
2.77

Q
∥Dw∥

where Dw = r1−r2, r1,r2 the embedding representations of inputs x1,x2 and the constant Q is set to the upper

bound of ∥Dw∥. A similar siamese network was used in [89]. In this approach the embedding representations

were chosen to be in a space where the euclidean distance is used for similarity estimation. The loss function

is, again, in the form of the contrastive loss function

L(W,y,x1,x2) = (1− y)
1
2
∥Dw∥2 +(y)

1
2

max(0,m−∥Dw∥2)

where y is a binary flag equal to 0 if the inputs x1 and x2 are semantically similar and equal to 1 otherwise.

m is a margin parameter. In particular, when x1 and x2 are not similar, L = 0 when ∥Dw∥2 ≥ m, otherwise

the parameters of the network are updated to produce more distant representation for those two elements.

The reason behind the use of the margin is that when the distance between pairs of different classes are large

enough and at most m, there is no reason to update the network to put the representations even further away

from each other and instead focus the training on harder examples.

The Triplet Network [90] is a different DNN architecture for distance metric learning. The main difference

between this approach and the previous approaches is that for the training it requires triplets of examples,

instead of pairs, that are the inputs to three copies of the same DNN with shared weights. More specifically,

the triplets are formed using an anchor example x, a positive example x+ that is semantically similar to x and

a negative example x that is semantically different to x. The general architecture can be seen in Figure II.1b.

Similarly to the siamese network, the triplet network is used to produce embedding representations on a

space where the computation of distance is a measure of similarity. The distance metric that is mostly used

in the literature is the Euclidean distance. Different loss functions have been proposed for training of triplet

20

networks. The FaceNet [91] trains the triplet networks by minimizing the following loss function:

L =
N

∑
i

max
(∥∥r− r+

∥∥2
2 −
∥∥r− r−

∥∥2
2 +m,0

)
(II.9)

where m is a margin that is enforced between positive and negative pairs as we want ∥r− r+∥2
2 + m <

∥r− r−∥2
2. Generating all possible triplets is computationally expensive and results in many triplets that

satisfy the goal above. These triplets would not produce gradients and would not contribute to the training

and result in slower convergence, as they would still be passed through the network. The training can be ac-

celerated by choosing hard triplets that satisfy ∥r− r−∥2
2 < ∥r− r+∥2

2 +m that will result in large gradients.

Selecting the hardest negatives can in practice lead to bad local minima early on in training. To avoid this the

authors suggest mining for semi-hard triplets that satisfy ∥r− r−∥2
2 < ∥r− r+∥2

2. The same triplet architec-

ture is used in [90]. In this approach the training of the triplet network is expressed as a 2-class classification

problem using softmax layer. More specifically the 2-classes take values:

d+ =
e∥r−r+∥2

e∥r−r+∥2 + e∥r−r−∥2
and d− =

e∥r−r−∥2

e∥r−r+∥2 + e∥r−r−∥2

Then the MSE is used as a loss function comparing the (d+,d−) with the vctor (1,0) for similar pairs and

(0,1) for different ones. Motivated by the triplet loss function (Eq. II.9) and the center loss [92], the au-

thors in [93] propose the Triplet Center Loss TCL. In the previous triplet architectures, the similarity and

dissimilarity information was embedded into the triplet sample generation. The TCL on the other hand uses

single labeled examples as well as the centroids of each class and tries to efficiently minimize the intra-class

distances of the learned features as well as maximize the inter-class distances of the deep features simultane-

ously. The loss function is defined as:

LTCL =
M

∑
i=1

max
(∥∥ri − cyi

∥∥
2 −min

j ̸=yi

∥∥ri − c j
∥∥

2 +m,0
)

where c1,c2, . . . ,c|Y | the centers of all classes and m the margin parameter similar to the triplet center loss.

The TCL can also be combined with the softmax loss, which is commonly used for classification training,

defining it as Ltotal = λLTCL +Lsoftmax, where λ is a hyper-parameter which controls the trade-off between

the TCL and the softmax loss.

II.3 Object Detection

In many CPS applications the control actions are taken based on some visual inputs. For example an au-

tonomous vehicle decides about control commands like steering, throttle and brake by observing its surround-

21

Net(x) Net(x)

Contrastive
Loss

x1 x2

Weights

r1 r2

(a)

Net(x) Net(x) Net(x)

Triplet Loss

x− x x+

Weights Weights

r− r r+

(b)

Figure II.1: (a) Siamese network architecture and (b) Triplet network architecture

ings with cameras. The presence of different objects of interest, like other vehicles, traffic signs, pedestrians,

and their location in the frame can lead to different control actions. Other CPS applications that require

localization of objects in images include and are not limited to robot vision, security, human computer in-

teraction, intelligent video surveillance and object tracking. Object detection is a fundamental problem in

computer vision and the objective is to locate and identify objects that belong to some given categories in

images. Because of the importance of object detection in applications that use visual inputs, this problem has

received a lot of attention. The first attempts [94] were based on geometric representations to identify objects.

The recent advances in deep learning [39] has lead to the development of multilayer DNN architectures that

can learn feature representation of complex data. This has been the base for most object detection methods

developed in the last two decades. For a more comprehensive presentation of object detection methods, we

will first present early proposed methods and then the recent advances that use DNNs.

II.3.1 Early Work

The first proposed methods made a number of assumptions about the world to simplify the task. In this

simplified world, objects are restricted to polyhedral shapes on a uniform background. Polyhedral shapes

have simple geometric representations and it is easy to project them into 2D images where the detection

takes place. After transforming the real world into a 2D image, lines are projected into lines and polyhedral

faces are projected into polygons. An extended work into projections for object detection was that of L. G.

Roberts [95]. In this work he implemented programs for line detection methods as well as line-fitting when

parts of the edges are obstructed by other objects. Later similar polyhedral assumptions were used in [96–99].

22

dog

bicycle

car

Figure II.2: Object detection example from ImageNet dataset [1].

The main limitations of these methods is the inability to work with curved objects, the requirement of a

uniform background and the challenges that arise from shadows. Because of the large number of assumptions

being made, these early methods was really hard to work on real world scenes but was the base for the

development of more complex detectors.

A significant improvement on the prior methods that overcome many of the previous limitations is the use

of multiple views to compute a unique 3D object representation invariant to affine transformations. According

to Ullman’s theorem, “for rigid transformations, a unique metrical reconstruction is known to be possible from

three orthographic views of four points” [100]. A complete representation that describes an object uniquely

is not easy to be computed. However representations that achieve rigid and affine invariance are easier to be

computed by solving a system of linear equations. The drawback of such simplification is more false positive

matches, since affine representations are not unique. In [101] the authors describe the computation of affine

representations and describe a method for storing the representations of known objects in hash-tables for

real-time detection. In [102] the object representations are computed as a linear combination of 2D images of

an object and achieve rigid invariance. Similar to this, in [103] the authors present a method to automatically

acquire the representation of an object from noisy image sequences. Their method is also incremental making

it possible to process images independently rather than in batches like in the previous methods.

A very significant breakthrough on these geometry-based methods was the development of the Scale

Invariant Feature Transform (SIFT) [104]. Unlike the previous methods that compute global representations

of objects, SIFT computes local representations that are invariable to image scaling, translation, and rotation,

and partially invariant to illumination changes and affine or 3D projection. Very important are the real-

time capabilities of SIFT. SIFT representations are usually high-dimensional making the task of finding the

nearest neighbors, or the most similar objects in a training set, computationally inefficient. The authors

23

proposed a modification of the k-d tree algorithm called the best-bin-first search that find the nearest neighbors

with high probability but less computations [105]. After the success of SIFT many researchers focused

on methods for local representations. The most remarkable of the proposed methods are the Local Binary

Patterns (LBP) [106], Haar-like features [107], Shape Contexts [108], SIFT [109], Histogram of Gradients

(HOG) [110] and region covariances [111].

Statistical classifiers succeeded the geometry-based methods. A method for training an SVM classifier

for face detection was presented in [112]. SVMs were already an established way for classification tasks [67,

113–115]. However, training an SVM on large datasets is a very difficult problem. The training dataset had

50000 images each represented in 102 −103 dimensions. In their work, they propose an optimization method

based on the observation that the number of support vectors are very small. Unlike SVMs, AdaBoost [116]

training process selects only those features known to improve the predictive power of the model, reducing

dimensionality and potentially improving execution time as irrelevant features do not need to be computed.

Significant implementations in face detection problems are [107, 117]. Object feature representations are

usually large. In both of these implementations the authors choose the most critical features to achieve

real-time executions without degrading the detection performance. Neural networks (NNs) are easier to be

trained in larger datasets and got a lot of attention either in the form of Multilayer Perceptron (MLP) [118]

in [119], Probabilistic Desicion-Based Neural Network (PDBNN) in [120], Convolutional Neural Networks

(CNNs) in [121, 122]. These approaches worked on optimizations to reduce the execution time with most

impressive being [121] as their method was operating at a fraction of video rates, 5-10 images per second.

The NN methods were successful in a limited number of applications, mostly in face detection. Later, the

development of deeper architectures of NNs led to accurate and real-time detection methods in more complex

tasks.

II.3.2 Deep Learning Approaches

CNNs were a very common choice as an LEC in the 1990s, like in [123], but their use started to decline the

next years with the increased use of SVMs. However, their potential was shown in [124] when the authors

proposed a deep neural network architecture based on a CNN, they called AlexNet, for the ImageNet LSVRC-

2012 contest where it achieved error rate of 15.3% and it was the first time any contestant had a sub-25%

error rate. Following this success, researchers tried to understand to what extend deep CNNs can be used

for object detection. The answer came with the development of Regions with CNN features (R-CNN) [125].

Object detection, unlike image classification, has the extra task of localizing multiple objects in an image. The

approach of R-CNN is to generate a large number of category-independent region proposals using Selective

Search [126]. Other region proposal methods are [127–129]. Then, the convolutional part of AlexNet [124]

24

is used to extract a 4096-dimensional feature vector for each proposed region. Since the regions can have

any shape and size, they first transform them to constant size 227x227 pixels regardless of their aspect ratio.

Each extracted feature is scored with respect to each class using linear SVMs trained on each class separately.

After all proposed regions are scored, a region is rejected if it has an intersection-over-union (IoU) overlap

with a higher scoring selected region larger than a learned threshold. The presented R-CNN architecture has

a number of optimization properties. There is only one CNN pre-trained and used on all the proposed regions

and the resulted feature are low-dimensional. However, the time needed to compute the region proposals

and their features is 13s per image on a GPU or 53s per image on a CPU making it not practical in real-

time applications. This is mainly due to the fact that the CNN features are extracted per proposed region

without shared computations. The second drawback is that the use of SVMs is usually has expensive memory

requirements. Finally, the training is not easy as the pipeline training different components, the CNN and the

SVMs separately.

Different object detection frameworks were developed to overcome R-CNN’s limitations. The main draw-

back that made the use of R-CNN inefficient and impractical in real-time is that a CNN needs to extract the

features for thousands of warped proposed regions separately. The source of this requirement is the fixed

input size of CNNs. However, convolutional layers can accept inputs of any size and the requirement of fixed

size input only exists due to the fully-connected layers used for classification. SPPNet [130] is equipped with

spatial pyramid pooling [131, 132] to overcome the fixed size input limitation. This is a newly introduced

layer architecture for CNNs placed on top of the last convolutional layer to generate fixed-length feature out-

put for variable input sizes. With this addition, SPPNet computes the feature map from the entire image only

once, and then pool features on each proposed region to generate fixed-length representations. This leads to

a significant improvement in execution time which was reported to be 0.142s on a GPU, 102x speedup in

comparison to R-CNN on the Pascal VOC 2007 dataset [133] making the use of SPPNet in real-time appli-

cations possible. However, this method still involves a multi-stage pipeline with the drawbacks mentioned in

the case of R-CNN.

Two years after the development of R-CNN the same author presented Fast R-CNN [134] building on the

previous work and addressing some of the drawbacks of R-CNN and SPPNet. A significant contribution of

Fast R-CNN is that the training is end-to-end. Similar to SPPnet the feature map from the entire image is

extracted only once. Then for each proposed region, a region of interest (RoI) pooling layer extracts a fixed-

length feature vector from the feature map. This architecture is a contribution of the same work to deal with

proposed regions of arbitrary shapes. This works by dividing the region proposal into equal-sized sections,

the desired dimension of the output and finding the largest value in each section. The fixed-size RoI layer

output is then connected to fully-connected layers to produce the RoI feature vector. This is connected to two

25

two sibling networks one that produces softmax probability estimates over K object classes and another layer

that outputs four real-valued numbers, describing a bounded-box position, for each of the K object classes.

The end-to-end training is achieved by defining a multi-task loss that has one term for the classification loss

and one term for the bound box regression loss. Fast R-CNN uses the very deep VGG16 [135] architecture for

feature extraction and is 213x faster than R-CNN and 10x faster than SPPNet at test-time and more accurate.

Faster R-CNN [83, 136] was developed to build on the Fast R-CNN architecture and deal with its limi-

tations. Even though Fast R-CNN significantly reduced the execution time for the detection process, it still

relies on the very large number of region proposals produced by Selective Search which is its speed bottle-

neck. The Faster R-CNN introduces the novel Region Proposal Networks (RPNs) that is connected to the

feature map produced by the CNN in Fast R-CNN. To generate region proposals a small network is slid over

the feature map. Each sliding windows produces a low-dimensional feature vector which is fed into two sib-

ling fully-connected layers, a box-regression layer and a box-classification layer. This means that the same

fully-connected layers are shared on all spatial locations. The sliding window they use has size 3x3 which

corresponds to 228x228 pixel input windows. At each sliding window location they predict region proposals

with 3 different scales and 3 different aspect ratios, which they call anchors. So for each location, given

the k = 9 anchors the box-regression layer has 4k outputs corresponding to the coordinates of k boxes and

2k scores that estimate the probability of object or no object for each proposal. The loss function is similar

to multi-task loss of Fast R-CNN and has one term for the binary class box-classification (object or not)

and one for the box-regression that is computed using the Intersection-over-Union (IoU) overlap between

the predicted regions/anchors and the ground truth bounded boxes. Using the VGG16 model [135], Faster

R-CNN has 5 FPS testing execution time on a GPU while improving the detection accuracy over the previous

proposed methods on PASCAL VOC 2007 dataset using only 300 proposals per image.

Faster R-CNN was further extended by Mask R-CNN [137] to add image pixelwise segmentation capa-

bilities. Mask R-CNN has exactly the same architecture as Faster R-CNN with the addition of a network

branch on top of RPN, and for each Region of Interest (RoI) it predicts a segmentation mask in parallel with

the existing branches for box regression and box classification. The mask branch is a small Fully Convolu-

tional Network (FCN) [138, 139] that predicts a segmentation mask in a pixel-to-pixel manner. However the

RoI pooling layer was not designed with image segmentation in mind and performs coarse spatial quanti-

zation for feature extraction. Mask R-CNN proposes an alternative, quantization-free layer, called RoIAlign

that preserves the exact spatial locations, to fix the misalignment. The mask branch only adds a small com-

putational overhead and can run at about 200ms per frame on a GPU using a ResNet-101-FPN [140, 141]

backbone network. Even though Mask R-CNN can be executed in real-time, the design is not optimized

for speed. Trade-offs between speed and accuracy are analysed in [142, 143] by varying image sizes and

26

proposal numbers. Further, working on speed optimization for the Faster R-CNN architecture, Light Head R-

CNN [144] was proposed. This network achieves faster execution by substituting elements of Faster R-CNN

with faster alternatives. In their design they use a thin feature map and a tiny Xception like network [145] for

the proposals recognition. These modifications achieve 102 FPS testing execution time on the COCO dataset.

The R-CNN and all its extensions are region-based methods, meaning they first compute some region

proposals and based on those they compute the bounded boxes and their class. Different methods have been

proposed based on a unified framework that directly detect bounded boxes and object classification from full

images with a single feed-forward CNN without region proposals. This greatly simplifies training which

takes place end-to-end as the whole pipeline is a single network. The simpler design also leads to faster

execution times and less computational expensive approaches that can in smaller mobile devices. The most

significant approaches based on this framework are YOLO, SSD and CornerNet.

YOLO or You Only Look Once [146] is an object detection algorithm based on a single convolutional

network that predicts multiple bounding boxes and the class probabilities for these boxes simultaneously.

This approach first divides the input image into an S×S grid. Each grid cell predicts B bounding boxes and

confidence scores for those boxes. The feature map of the input image is generated using a CNN inspired

by the GoogleNet [147] and fully connected layers that predict the output probabilities and coordinates. This

design is fast because of its simplisity and can run at 45 FPS on a GPU. Using a CNN with 9 layers instead of

the24 layers above, it can run at 150 FPS. However, since each cell only predicts a limited number of bounded

boxes, 2 in this case, there may be nearby objects in the same cell that will not be detected. Further, YOLO

makes more localization errors than Fast and Faster R-CNN, resulting from the coarse division of bounding

box location, scale and aspect ratio.

After the success of YOLO different versions were proposed. YOLOv2 or YOLO9000 [148] implements

various improvements to the YOLO detection method. The custom GoogleNet network is replaced with the

simpler DarkNet19 with batch normalization [149] removing the fully connected layers and using boxes of

various sizes and aspect ratios learned via k means. YOLOv2 runs faster than the previous YOLO method

while its accuracy outperforms Faster R-CNN. YOLOv3 [150] was proposed to increase the accuracy of

the previous methods in the cost of slower execution time at 30 FPS. This has to do with the increase in

complexity of the underlying CNN architecture. YOLOv2 used Darknet19, an originally 19-layer network

supplemented with 11 more layers for object detection. This architecture often struggled with small object

detection. YOLOv3 uses a variant of Darknet53, which originally has 53 layers, by stacking onto it 53 more

layers. Moreover YOLOv3 replaces the softmax layer for object classification with a logistic regression on to

produce a score on each class. Depending on the score of each class, an object can belong to more than one

classes. The recent YOLOv4 [151] was developed aiming to make training on less powerful single GPUs with

27

a smaller mini-batch size possible. It is based on the CSPDarknet53 [152] backbone network. The accuracy

of the network is improved with the influence of state-of-the-art Bag-of-Freebies and Bag-of-Specials. Bag-

of-Freebies refer to methods that make the object detector receive better accuracy without increasing the

inference cost. One such method is data augmentation. The purpose of data augmentation is to increase the

variability of the input images that will lead to a detection model with higher robustness. This is achieved by

augmenting the training set with copies of the existing images on which different transformations are applied

like photometric and geometric distortions. Other data augmentation methods try to simulate object occlusion

like random erase [153] and CutOut [154]. The choice of Mean Squared Error (MSE) as loss function also

belongs to this category. Bag-of-Specials refer to post-processing methods that only increase the inference

cost by a small amount but can significantly improve the accuracy of object detection. In this category belong

the reception field enhancement [130, 155, 156]. Introducing attention mechanisms [157, 158] also belong to

this category. YOLOv4 improves YOLOv3’s accuracy and FPS by 10% and 12%, respectively.

SSD [159] was developed right after the original YOLO [146] to preserve real-time speed without sac-

rificing too much detection accuracy. It is faster than YOLO and its accuracy is slightly better than Faster

R-CNN’s. To achieve fast detection speed while retaining high detection accuracy, SSD introduces a single-

shot detector for multiple categories which is as accurate but faster than the region proposals and pooling of

R-CNN and all its extensions. To achieve high detection accuracy, it produces predictions of different scales

and aspect ratios from feature maps of different scales, an idea similar to what is used in Faster R-CNN. The

additions doesn’t affect its end-to-end training simplicity while improve the speed vs accuracy trade-off.

CornerNet [160] differentiates from all the previous object detection methods based on deep learning in

the sense that an object bounded box is detected as a pair of key points (top-left and bottom-right). This

eliminates the need for designing a set of anchor boxes that has a number of drawbacks. First, a very large

set of anchor boxes is needed to ensure sufficient overlap with most ground truth boxes. As a result, only

a small fraction of anchor boxes will overlap with ground truth causing a big imbalance between positive

and negative examples. Second, as we saw in the previous methods, the use of anchor boxes introduces a

number of hyperparameters like the number of boxes, their size and their aspect ratios. The choice of these

parameters is based on ad-hoc heuristics and they are hard to be optimized. As a single stage approach,

CornerNet uses a single CNN to predict a heatmap for the top-left corners of all instances of the same object

category, a heatmap for all bottom-right corners, and an embedding vector for each detected corner which

groups the pairs of corners belonging to the same object [161]. The backbone for this stacked architecture is

the hourglass network [162]. A novel component of CornerNet is a new type of pooling layer, called corner

pooling. This serves in helping the CNN better localize corners of bounded boxes. It takes in two feature

maps, it max-pools all feature vectors to the right from the first feature map, max-pools all feature vectors

28

directly below from the second feature map, and then adds the two pooled results together. CornerNet’s

accuracy outperforms all existing one-stage detectors, except the very recent YOLOv4 [151], with the cost of

an execution time of 4 FPS. Its extension, CenterNet [163], detects each object as a triplet, rather than a pair,

of key points, which improves both precision and recall and the resulting accuracy outperforms all existing

one-stage detectors.

29

CHAPTER III

Inductive Conformal Prediction with Distance Learning

III.1 Introduction

Cyber-Physical systems (CPS) can benefit by incorporating machine learning components that can handle

the uncertainty and variability of the real-world. Typical components such as deep neural networks (DNNs)

can be used for performing various tasks such as perception of the environment. In autonomous vehicles, for

example, perception components aim at making sense of the surroundings like recognizing correctly traffic

signs. However, such DNNs introduce new types of hazards that can have disastrous consequences and need

to be addressed for engineering trustworthy systems. Although DNNs offer advanced capabilities, they must

be complemented by engineering methods and practices that allow effective integration in CPS.

A DNN is designed using learning techniques that require specification of the task, a measure for evaluat-

ing how well the task is performed, and experience which typically includes training and testing data. Using

the DNN during system operation presents challenges that must be addressed using innovative engineering

methods. Perception of the environment is a functionality that is difficult to specify, and typically, specifica-

tions are based on examples. DNNs exhibit some nonzero error rate, the true error rate is unknown, and only

an estimate from a design-time statistical process is known. Further, DNNs encode information in a complex

manner and it is hard to reason about the encoding. Non-transparency is an obstacle to monitoring because it

is more difficult to have confidence that the model is operating as intended.

Our objective in this chapter is to complement the prediction of DNNs with a computation of confidence

that can be used for decision making. We consider DNNs used for classification in CPS. In addition to the

class prediction, we compute set predictors with a given confidence using the conformal prediction frame-

work [23]. We focus on computationally efficient algorithms that can be used for real-time monitoring. An

efficient and robust approach must ensure a small and well-calibrated error rate while limiting the number of

alarms. This enables the design of monitors which can ensure a bounded small error rate while limiting the

number of inputs for which an accurate prediction cannot be made.

Computing well-calibrated confidence is extremely important for designing autonomous systems because

accurate measures of confidence are necessary to estimate the risk associated with each decision. The main

limitation of existing methods comes from the fact that it is very difficult to select desired confidence values

according to the application requirements and ensure bounded error-rate. This is especially important in

autonomous CPS applications where decisions can be safety critical. Another important challenge is to

30

investigate how the computed confidence measures can be used for decision making by autonomous systems

and how to handle data for which a confident decision cannot be taken.

The proposed approach is based on conformal prediction (CP) [21, 23]. CP aims at associating reliable

measures of confidence with set predictions for problems that include classification and regression. An im-

portant feature of the CP framework is the calibration of the obtained confidence values in an online setting

which is very promising for real-time monitoring in CPS applications. These methods can be applied for a

variety of machine learning algorithms that include DNNs. The main idea is to test if a new input example

conforms to the training data set by utilizing a nonconformity measure (NCM) which assigns a numerical

score indicating how different the input example is from the training data set. The next step is to define a

p-value as the fraction of observations that have nonconformity (NC) scores greater than or equal to the NC

scores of the training examples which is then used for estimating the confidence of the prediction for the

test input. In order to use the approach online, inductive conformal prediction (ICP) has been developed for

computational efficiency [23, 24]. In ICP, the training dataset is split into the proper training dataset that is

used for learning and a calibration dataset that is used to compute the predictions for given confidence levels.

Existing methods rely on NCMs computed using techniques such as k-Nearest Neighbors and Kernel Density

Estimation and do not scale for high-dimensional inputs in CPS.

DNNs have the ability to compute layers of representations of the input data which can then be used to

distinguish between available classes [39, 79]. In our previous work, we developed an approach for mapping

high-dimensional inputs into lower-dimensional representations to make the application of ICP possible for

assurance monitoring of CPS in real-time [37]. The approach utilizes the vector of the neuron activations in

the penultimate layer of the DNN for a particular input. This low-dimensional representation can be used

to compute NC scores efficiently for high-dimensional inputs. In problems where the input data are high-

dimensional, such as the classification of traffic sign images in autonomous vehicles, ICP based on these

learned embedding representations produces confident predictions. Moreover the execution time and the re-

quired memory is significantly lower than using the original inputs and the approach can be used for real-time

assurance monitoring of the DNN. The use of low-dimensional learned embedding representations results in

improved performance compared with ICP based on the original inputs. However, the underlying DNN is

still trained to perform classification and does not learn necessarily optimal representations for computing

NC scores.

The main challenge addressed in this chapter is the efficient computation of embedding representations

that allows assurance monitoring based on conformal prediction in real-time. The novelty of the approach

lies on using distance metric learning to generate representations of the input data and use Euclidean distance

as a measure of similarity. Unlike training a classifier where each training input is assigned a ground truth

31

label and the objective is to minimize a loss function so that the prediction of the classifier will be the same

as the label, in distance metric learning, the inputs are considered in pairs. The associated loss function is

defined using pairwise constraints such that its minimization will make representations of inputs that belong

to the same class be close to each other and representations of inputs belonging to different classes be far

from each other. Preliminary results on using appropriate representations for a robotic navigation benchmark

with low-dimensional inputs are presented in [164].

The main contribution of this chapter is the leverage of distance metric learning for assurance monitoring

of learning-enabled CPS. The presented methods and experimental results have appeared in [165]. The

proposed approach based on ICP can be used in real time for high-dimensional data that are typically used in

CPS. Different NC functions can be used in ICP to evaluate whether new unknown inputs are similar to the

data that have been used for training a learning-enabled component such as a DNN. A NC function assigns

a score to a labeled input reflecting how well it conforms to the training dataset. Because the choice of

the NC function is very important, the proposed approach utilizes neural network architectures for distance

metric learning based on siamese [166] and triplet networks [167] to learn representations and define NC

functions based on Euclidean distance. Specifically, the proposed functions compute the NC scores of a new

labeled input using (1) the labels of its closest neighbors, (2) how far the closest neighbor of the same class

is compared to any other neighbor, and (3) how far the label’s centroid is compared to the centroids of the

other labels. The main benefit of the approach is that by utilizing distance metric learning in ICP, we reduce

the computational requirements without sacrificing accuracy or efficiency.

An important advantage of the approach is that it allows the computation of the optimal significance

level that can be used by the assurance monitor to ensure a bounded error rate while limiting the number of

inputs for which an accurate prediction cannot be made. Unlike most common machine learning classifiers

that assign a single label to an input, ICP computes a set of candidate labels that contains the correct class

given a selected significance level. Small significance level values reduce the classification errors but may

result in set predictors with multiple candidate labels. In autonomous systems, it is not only important to

have predictions with well-calibrated confidence but also to be able to choose the desired significance level

based on the application requirements. Even though reducing the number of possible classes may be helpful

when the information is provide to a human, in an autonomous system it is desirable that the prediction is

unique. Therefore, we assume that set predictions that contain multiple classes lead to a rejection of the

input and require human intervention. For this reason, it is desirable to minimize the number of test inputs

with multiple predictions. If the prediction is unique, then the monitor ensures a confident prediction with

well-calibrated error rate defined by the significance level. If the predicted set contains multiple predictions,

the monitor rejects the prediction and raises an alarm. Finally, if the predicted set is empty the monitor

32

indicates that no label is probable. We distinguish between multiple and no predictions, because they may

lead to different action in the system. For example, no prediction may be the result of out-of-distribution

inputs while multiple possible predictions may be an indication that the significance level is smaller than the

accuracy of the underlying DNN.

This chapter presents a comprehensive empirical evaluation of the approach using three datasets for clas-

sification problems in CPS of increasing complexity. The first dataset is the SCITOS-G5 robot navigation

dataset [168] for which we use a fully connected feedforward network architecture. The second is a speech

recognition dataset which contains audio files of human speech [169]. For this problem, we learn the em-

bedding representations using a DNN with 1D convolutional layers. The third dataset is the German Traffic

Sign Recognition Benchmark (GTSRB) [170]. For this dataset, we use a modified version of the VGG16

architecture [171] to learn and generate the embedding representations. We used different combinations of

NC functions and distance metric learning architectures and compare them with ICP without distance metric

learning. The results demonstrate that that the selected or computed significance levels bound the error-rate

in all cases. Moreover, the representations learned by the siamese or triplet networks result in well-formed

clusters for different classes and individual training data typically can be captured by their class centroid.

Such representations reduce the memory requirements and the execution time overhead while still ensure a

bounded small error-rate with limited number of prediction sets containing multiple candidate labels.

The problem definition and the proposed architecture are presented in Section III.3. Sections III.4-III.6

present the details of ICP based on distance learning and assurance monitoring. Finally, we evaluate the

performance of our suggested approach on three different applications in Section III.7.

III.2 Related Work

The findings of the state-of-the-art methods described above illustrate the significance of computing well-

calibrated and accurate confidence measures. Typically, the main objective is to complement existing ma-

chine learning models that are generally unable to produce an accurate estimation of confidence for their

predictions with post-processing techniques in order to compute well-calibrated probabilities. An important

advantage of such approaches is that they are independent of the underline predictive machine learning mod-

els. Therefore, there is no need to redesign and optimize the objective functions used for training which could

lead to optimization tasks with high computational complexity.

The proposed work based on ICP produces prediction sets and computes a significance level that will

bound the expected error-rate. Similar to existing methods, since the approach is based on ICP, it can be used

with any machine learning component without the need of retraining. ICP methods provide very promis-

ing results especially when the input data are not very high-dimensional and there are not stringent time

33

constraints. However, ICP can be impractical when the inputs are, for example, images because of the ex-

cessive memory requirements and high execution times. The proposed approach aims to learn appropriate

lower-dimensional representations of high-dimensional inputs that make the task of computing confidence

measures based on similarities much easier.

III.3 Problem Formulation

A perception component in a CPS aims to observe and interpret the environment in order to provide informa-

tion for decision making. For example, in autonomous vehicles a DNN can be used to classify traffic signs.

The problem is to complement the prediction of the DNN with a computation of confidence. An efficient and

robust approach must ensure a small and well-calibrated error rate while limiting the number of alarms to

enable real-time monitoring. That is, maximize the autonomous operation time while keeping the error-rate

bounded according to the application requirements. Finally, the computation of well-calibrated predictions

must be computationally efficient for applications with high-dimensional inputs that require fast decision as,

for example, in autonomous vehicles.

During the system operation of a CPS, inputs arrive one by one. After receiving each input, the objective

is to compute a valid measure of the confidence of the prediction. The objective is twofold: (1) provide

guarantees for the error rate of the prediction and (2) design a monitor which limits the number of input

examples for which a confident prediction cannot be made. Such a monitor can be used, for example, by

generating warnings that require human intervention.

The conformal prediction framework allows computing set predictors for a given confidence expressed

as a significance value [23]. The confidence is generated by comparing how similar a test is to the training

data using different nonconformity functions. In our previous work [164] we used DNNs to produce em-

bedding representations for more efficient application of ICP. The additional problem we are solving is the

computation of appropriate embedding representations that will lead to more confident decisions. The pro-

posed approach is illustrated in Figure III.1. The main idea is to use distance learning and enable DNNs to

learn a lower-dimensional representation for each input on an embedding space where the Euclidean distance

between the input representations is a measure of similarity between the original inputs themselves. The ICP

approach is applied using the low-dimensional embedding representations and estimates the similarity be-

tween a new input and the available data in the training set using a NC function. Using such a representation

not only reduces the execution time and the memory requirements but is also more efficient in producing

useful predictions. Based on a chosen significance level, ICP generates a set of possible predictions. If the

computed set contains a single prediction, the confidence is a well-calibrated and a valid indication of the

expected error. If the computed set contains multiple predictions or no predictions, an alarm can be raised to

34

indicate the need for additional information.

In CPS, it is desirable to minimize the number of alarms while performing the required computations

in real-time. Evaluation of the method must be based on metrics that quantify the error rate, the number

of alarms, and the computational efficiency. For real-time operation, the time and memory requirements of

the monitoring approach must be similar to the computational requirements of the DNNs used in the CPS

architecture. Figure III.1 illustrates the proposed architecture for assurance monitoring. At design time, a

DNN is trained to produce embedding representations using distance metric learning techniques. Then, NC

scores are computed for a labeled calibration set that is not used for training of the DNN. During system

operation, the assurance monitor employs the trained DNN to map new sensor inputs to lower-dimensional

representations. Using the NC scores of the calibration data, the method produces prediction sets including

well-calibrated confidence of the predictions. Ideally, a prediction set should include exactly one class to

enable decision making. Alarms can be raised if either the prediction set include multiple possible classes or

if it does not contain any.

Environment ICP
Assurance
Monitoring System

Distance
Learning

DNN

Calibration
NC Scores

Sensor
Inputs

Prediction
Sets

Figure III.1: Assurance monitoring using ICP based on distance learning.

III.4 Distance Learning

The ICP framework requires computing the similarity between the training data and a test input. This can

be done efficiently by learning representations of the inputs for which the Euclidean distance is a metric

of similarity, meaning that similar inputs will be close to each other as illustrated in Figure III.2. There are

different approaches based on DNN architectures that generate embedding representations for distance metric

learning.

A siamese network is composed using two copies of the same neural network with shared parame-

ters [166] as shown in Figure II.1a. During training, each identical copy of the siamese network is fed with

35

DNN

DNN

DNN

Original Inputs Embedding Representations

Figure III.2: Embedding representations of input images from the traffic sign recognition dataset.

different training samples x1 and x2 belonging to classes y1 and y2. The embedding representations produced

by each network copy are r1 = Net(x1) and r2 = Net(x2). The learning goal is to minimize the Euclidean

distance between the embedding representations of inputs belonging to the same class and maximize it for

inputs belonging to different classes as described below:

mind(r1,r2), if y1 = y2

maxd(r1,r2), otherwise
(III.1)

This optimization problem can be solved using the contrastive loss function [172]:

L(r1,r2,y) = y ·d(r1,r2)+(1− y)max[0,m−d(r1,r2)]

where y is a binary flag equal to 0 if y1 = y2 and to 1 if y1 ̸= y2 and m is a margin parameter. In particular,

when y1 ̸= y2, L = 0 when d(r1,r2) ≥ m, otherwise the parameters of the network are updated to produce

more distant representations for those two elements. The reason behind the use of the margin is that when the

distance between pairs of different classes are large enough and at most m, there is no reason to update the

network to put the representations even further away from each other and instead focus the training on harder

examples.

Another architecture trained to produce embedding representations for distance learning is the triplet

network [167]. A triplet is composed using three copies of the same neural network with shared parameters

as shown in Figure II.1b. The training examples consist of three samples, the anchor sample x, the positive

36

sample x+ and the negative sample x−. The samples x and x+ belong to the same class while x− belongs

to a different class. The embedding representations produced by each network copy will be r = Net(x),

r+ = Net(x+) and r− = Net(x−). The optimization problem described by the Equations III.1 is solved by

training the triplet network copies using the triplet loss function:

L(r,r+,r−) = max[d(r,r+)−d(r,r−)+m,0]

.

The margin parameter m separates pairs of different classes by at most m and it is used so that the network

parameters will not be updated trying to push a pair even further away when a positive sample is already at

least m closer to an anchor than a negative sample. Instead, the training is more efficient when harder triplets

are used. The input triplets to the network copies can be sampled randomly from the training data. However,

as training progresses it is harder to randomly find triplets that produce L(r,r+,r−) > 0 that will update the

triplet network parameters. This leads to slow training and underfitted models. The training can be improved

by carefully mining the training data that produce a large loss [173]. For each training iteration, first, the

anchor training data are randomly chosen. For each anchor, the hardest positive sample is chosen, meaning

a sample from the same class as the anchor that is located the furthest away from the anchor. Then, the

triplets are formed by mining hard negative samples that satisfy d(r,r−) < d(r,r+) or semi-hard negatives

that satisfy d(r,r−)< d(r,r+)+m. This way the formed triplet batches will produce gradients to update the

shared weights between the DNN copies.

III.5 ICP Based on Distance Learning

We consider a training set {z1, . . . ,zl} of examples, where each zi ∈ Z is a pair (xi,yi) with xi the feature vector

and yi the label of that example. For a given unlabeled input xl+1 and a chosen significance level ε , the task

is to compute a prediction set Γε for which P(yl+1 /∈ Γε)< ε , where yl+1 the ground truth label of the input

xl+1. ICP computes well-calibrated prediction sets with the underlying assumption that all examples (xi,yi),

i = 1,2, . . . are independent and identically distributed (IID) generated from the same but typically unknown

probability distribution.

Central to the application of ICP is a nonconformity function or nonconformity measure (NCM) which

shows how different a labeled input is from the examples in the training set. For a given test example zi with

candidate label ỹi, a NC function assigns a numerical score indicating how different the example zi is from the

examples in {z1, . . . ,zi−1,zi+1, . . . ,zn}. There are many possible NC functions that can be used [21–23,36,37].

For example, a NC function can be defined as the number of the k-nearest neighbors to zl+1 in the training set

37

with label different than the candidate label ỹl+1 (k-nearest neighbors NCM). The input space is often high-

dimensional which makes storing the whole training set impractical and the computation of the NC scores

inefficient. To address this challenge, the proposed approach leverages distance metric learning methods to

learn representations that enable applying ICP in real-time.

Nonconformity functions that can be defined in the embedding space learned by siamese and triplet

networks are (1) the k-Nearest Neighbors (k-NN) [25], (2) the one Nearest Neighbor (1-NN) [21], and (3) the

Nearest Centroid [23]. The k-NN NCM finds the k most similar examples of a test input x in the training data

and counts how many of those are labeled different than the candidate label y. We denote f : X → V the

mapping from the input space X to the embedding space V defined by either a siamese or a triplet network.

Using the trained neural network, the encodings vi = f (xi) are computed and stored for all the training data

xi. Given a test input x with encoding v = f (x), we compute the k-nearest neighbors in V and store their

labels in a multi-set Ω. The k-NN NCM of input x with a candidate label y is defined as

α(x,y) = |i ∈ Ω : i ̸= y|. (III.2)

The 1-NN NCM requires to find the most similar example of a test input x in the training set that is labeled

the same as the candidate label y as well as the most similar example in the training set that belongs to any

class other than y and is defined as

α(x,y) =
mini=1,...,n:yi=y d(v,vi)

mini=1,...,n:yi ̸=y d(v,vi)
(III.3)

where v = f (x), vi = f (xi), and d is the Euclidean distance metric in the V space.

The Nearest Centroid NCM simplifies the task of computing individual training examples that are similar

to a test input when there is a large amount of training data. We expect examples that belong to a particular

class to be close to each other in the embedding space so for each class yi we compute its centroid µyi =
∑

ni
j=1 vi

j
ni

,

where vi
j is the embedding representation of the jth training example from class yi and ni is the number of

training examples in class yi. The NC function is then defined as

α(x,y) =
d(µy,v)

mini=1,...,n:yi ̸=y d(µyi ,v)
(III.4)

where v = f (x). It should be noted that for computing the nearest centroid NCM, we need to store only the

centroid for each class.

The NC score is an indication of how uncommon a test input is compared to the training data. Input data

that come from the same distribution as the training data will produce low NC scores and are expected to

38

lead to more confident classifications while unusual inputs will have higher NC score. However, this measure

does not provide clear confidence information by itself but it can be used by comparing it with NCM scores

computed using a calibration set of known labeled data. Consider the training set {z1, . . . ,zl}. This set is

split into two parts, the proper training set {z1, . . . ,zm} of size m < l that will also be used for the training

of the siamese or triplet network and the calibration set {zm+1, . . . ,zl} of size l −m. The NC scores a(xi,yi),

i = m+ 1, . . . , l, of the examples in the calibration set are computed and stored before applying the online

monitoring algorithm. Given a test input x with an unknown label y, the method generates a set |Γε | of

possible labels ỹ so that P(y /∈ |Γε |)< ε . For all the candidate labels ỹ, ICP computes the empirical p-value

defined as

p j(x) =
|{α ∈ A : α ≥ α(x, j)}|

|A| .

which is the fraction of NC scores of the calibration data that are equal or larger than the NC score of

a test input. A candidate label is added to Γε if p j(x) > ε . It is shown in [23] that the prediction sets

computed by ICP are valid, that is the probability of error will not exceed ε for any ε ∈ [0,1] for any choice

of NC function. Our approach focuses on computing small prediction sets in an efficient manner that allow

assurance monitoring approach in real-time.

III.6 Assurance Monitoring

In CPS, it is not only important to have predictions with well-calibrated confidence but also to be able to

choose the desired significance level based on the application requirements. ICP computes a prediction set

Γε with a chosen significance level ε and Γε may include any subset of all possible classes. Even though

reducing the number of possible classes may be helpful when the information is provided to a human, in an

autonomous system it is desirable that the prediction is unique, i.e., |Γε | = 1. Therefore, we assume that set

predictions that contain multiple classes, i.e., |Γε | > 1, lead to a rejection of the input and require human

intervention. For this reason, it is desirable to minimize the number of test inputs with multiple predictions

and we define a monitor with output defined as

out =

0, if |Γε |= 0

1, if |Γε |= 1

reject, if |Γε |> 1

.

If the set Γε contains a single prediction, the monitor outputs out = 1 to indicate a confident prediction

with well-calibrated error rate ε . If the predicted set contains multiple predictions, the monitor rejects the

39

prediction and raises an alarm. Finally, if the predicted set is empty the monitor outputs out = 0 to indicate

that no label is probable. We distinguish between multiple and no predictions, because they may lead to a

different action in the system. For example, no prediction may be the result of out-of-distribution inputs while

multiple possible predictions may be an indication that the significance level is smaller than the accuracy of

the underlying DNN. Choosing a relatively small significance level that can consistently produce prediction

sets with only one class is important. To do this, we apply ICP on the data in the calibration/validation set and

compute the smallest significance level ε that does not produce any prediction set with |Γε | > 1. Assuming

the distribution of the test set is the same as the one of the calibration/validation set we expect the same value

of ε to minimize the prediction sets with multiple classes on the test data.

The assurance monitoring approach is illustrated by Algorithm 1 and 2. Algorithm 1 shows the tasks

that need to be performed at design time where first a distance metric learning network f is trained using the

proper training set (X ,Y) so that the computed embedding representations will form clusters for each class.

Then, using the calibration data, both the NC scores A and the optimal significance level ε are computed

and stored. Algorithm 2 shows the tasks that are performed at runtime for a sensor input xt . The input first

needs to be mapped to its embedding representation vt . Then using the same NC function that is used for the

calibration data, we compute the NC scores and the p-values assuming every label j as candidate label. Then

the p-values p j and ε are used to compute the set of candidate labels Γε .

Algorithm 1 – Training, Calibration and Significance Level computation.

Require: training data (X ,Y), calibration data (Xc,Y c)
Require: DNN architecture f for distance metric learning
Require: Nonconformity function α

1: Train f using (x,y) ∈ (X ,Y) ▷ Training
2: // Compute the representations
3: V = f (X)
4: V c = f (Xc)
5: // Compute the nonconformity scores for the calibration data
6: A = {α(vc,yc) : (vc,yc) ∈ (V c,Y c)} ▷ Calibration
7: for each vc

i in V c, i = 1..l −m do
8: for each label j ∈ 1..n do
9: Compute the nonconformity score α(vc

i , j)

10: pi j = p j(vc
i) =

|{α∈A:α≥α(vc
i , j)}|

|A| ▷ empirical p-value
11: end for
12: Store all pi j
13: end for
14: Compute ε such that for each i ∈ [1..l −m] no more that than 1 of the p-values pi j ≥ ε

40

Algorithm 2 – Assurance Monitoring.

Require: Nonconformity function α and nonconformity scores A
Require: training data or centroids (V,Y) depending on the used nonconformity function α

Require: trained siamese or triplet neural network f for distance metric learning
Require: test input zt = (xt ,yt)
Require: significance level threshold ε

1: // Generate prediction sets for each test data xt
2: Compute embedding representation vt = f (xt)
3: for each label j ∈ 1..n do
4: Compute the nonconformity score α(vt , j)
5: p j(zt) =

|{α∈A:α≥α(z, j)}|
|A| ▷ empirical p-value

6: if p j(z)≥ ε then
7: Add j to the prediction set Γε ▷ Γε formation
8: end if
9: end for

10: if |Γε |= 0 then
11: return 0
12: else if |Γε |= 1 then
13: return 1
14: else
15: return Reject
16: end if

III.7 Evaluation

Our assurance monitor design leverages distance metric learning techniques to compress the input data to

lower dimensions in order to make the ICP application more efficient and with lower memory requirements.

The objective of the evaluation is to compare how the suggested architecture performs against the baseline

ICP approaches as well as investigate the validity/calibration and efficiency (size of set predictions).

III.7.1 Experimental Setup

For the evaluation, we experiment with 3 datasets of variable complexity and input size. First, we use a

dataset generated by the SCITOS-G5 mobile robot [168]. This robot is equipped with 24 ultrasound sensors

around it that are sampled at a rate of 9 samples per second. Its task is to navigate itself around a room

counter-clockwise in close proximity to the walls. The possible actions the robot can take to accomplish this

are “Move-Forward”, “Sharp-Right-Turn”, “Slight-Left-Turn”, and “Slight-Right-Turn”. The SCITOS-G5

dataset contains 5456 raw values of the ultrasound sensor measurements as well as the decision it took in

each sample. Because of the small sensor number, the inputs have one dimension and their size is relatively

small. Second, we use a speech recognition dataset which contains 7501 audio samples from speeches of

five prominent leaders; Benjamin Netanyahu, Jens Stoltenberg, Julia Gillard, Margaret Thatcher and Nelson

Mandela, made available by the American Rhetoric [169]. Each audio sample has 1 second duration, the

sampling rate is 16kHz and use Pulse-code modulation (PCM) encoding. Third, the German Traffic Sign

41

Recognition Benchmark (GTSRB) dataset is a collection of traffic sign images to be classified in 43 classes

(each class corresponds to a type of traffic sign) [170]. The dataset has 26640 labeled images of various sizes

between 15x15 to 250x250 depending on the distance of the traffic sign to the vehicle. For all datasets we split

the available data so that 10% of the samples is used for testing. From the remaining 90% of the data, 80%

is used for training and 20% for calibration and/or validation. In the ICP implementations that use the k-NN

NC function the number of neighbors k are chosen to be 20, 15 and 40 respectively for the 3 datasets, values

that produce stability to outlier data points. The choice of DNN architectures happened according to the

complexity of each application so that they will be simple enough to reduce the computational requirements

but at the same time achieve good accuracy and data clustering without overfitting. All the experiments run

in a desktop computer equipped with Intel(R) Core(TM) i9-9900K CPU, 32 GB RAM and a Geforce RTX

2080 GPU with 8 GB memory.

III.7.2 Baseline

The proposed approach assigns the original inputs into embedding representations for which the Euclidean

distance is a measure of similarity between the inputs themselves. In order to understand the effect of the

distance metric learning in ICP we compare it with the approaches we used in our previous work [37]. First,

the most basic way of applying ICP is using only the original inputs. Then we compare it with the approach

we presented in our previous work that uses embedding representations without distance metric learning and

this will be the baseline in the following experiments.

The baseline approach computes the embedding representations using the activations of the penultimate

layer of a DNN. A DNN is trained as a classifier to predict the class of the input data. The vector of activations

of the neurons in the penultimate layer will be considered as the embedding representation of the input. In

Figure III.3 there is an illustration of how the embedding representations are generated in the baseline using

a DNN with 4 input neurons that classify inputs to two possible classes. The embedding representations are

generated in the penultimate layer and are typically reduced in size compared to the inputs. For an accurate

comparison between the baseline and the proposed improvements using either the triplet or the siamese

network all of these approaches use the same DNN architecture, meaning the embedding representations will

also be of the same size.

42

In #1

In #2

In #3

In #4

Out #1

Out #2

Hidden
layer 1

Hidden
layer 2

Penultimate
layer

Figure III.3: Baseline DNN architecture

III.7.3 Preprocessing and Distance Learning

The difficulty to compute the NC functions and the memory demands increase as the input size increases.

Here we see how the original high-dimensional inputs are mapped to lower-dimensional representations so

that the application of ICP will be more efficient as well as the Euclidean distance between two embedding

representations is a metric of similarity, property useful in the computation of the NC scores. We evaluate

how the use of the embedding representations affect the application of ICP when it is applied on datasets

of increasing complexity. First, the input data to the SCITOS-G5 mobile robot is a vector of 24 values.

We use a fully connected feedforward DNN to generate embedding representations with size 8. The DNN

is trained in either a siamese or triplet network for distance metric learning. The triplet network is trained

without mining since this is a small dataset. Second, the speech recognition dataset contain audio samples

with duration 1 second. For each audio sample, we add different kind of noises like dishwasher, running tap

and exercise bike on half the volume of the speech sample. Then we use FFT to convert the audio samples

to their frequency domain. The sampling rate of the speech files is 16kHz, so in the frequency domain it

has 8000 components according to the Nyquist–Shannon sampling theorem [174]. A convolutional DNN is

used to generate embedding representations of each audio wave in the frequency domain with size 32. In

the case when the triplet architecture is used for the DNN’s training, the semi-hard negatives mining produce

the best results. Finally, the GTSRB dataset contains traffic sign images of variable sizes. In order to be

able to use a single DNN to produce embedding representations for the image data, every image is either up-

sampled by interpolation or down-sampled to 96x96x3. A convolutional DNN is used to generate embedding

representations with size 128. In the triplet case, the training produced better results when mining for hard

negatives is used.

We first look at how well the distance metric learning methods cluster data of each class. A commonly

43

used metric of the separation between classes is the Silhouette [175]. For each sample, we first compute the

mean distance between i and all other data points in the same cluster in the embedding space

a(i) =
1

|Ci|−1 ∑
j∈Ci,i̸= j

d(i, j) .

Then we compute the smallest mean distance from i to all the data points in any other cluster

b(i) = min
k/∈i

1
|Ck| ∑

j∈Ck

d(i, j) .

The silhouette value is defined as

s(i) =
b(i)−a(i)

max{a(i),b(i)} .

Each sample i in the embedding space is assigned a silhouette value −1 ≤ s(i) ≤ 1 depending on how close

and how far it is to samples belonging to the same and different classes respectively. The closer s(i) is to 1,

the closer the sample is to samples of the same class and further from samples belonging to other classes. To

compare the representations learned using the different methods as well as compute how much the clustering

improves over the original inputs, we compute the mean silhouette over the training data and the validation

data separately. In Table III.1, we see that the representations learned by either the siamese or the triplet

network form well-defined clusters and are improved over the baseline clusters. On the other hand, the

original inputs are not arranged in clusters.

Training Silhouette Validation Silhouette

SCITOS-G5
Triplet Embeddings 0.72 0.64

Siamese Embeddings 0.94 0.8
Baseline Embeddings 0.23 0.23

Original Inputs -0.03 -0.03

Speaker Recognition
Triplet Embeddings 0.64 0.58

Siamese Embeddings 0.8 0.66
Baseline Embeddings 0.19 0.19

Original Inputs -0.03 -0.03

GTSRB
Triplet Embeddings 0.43 0.43

Siamese Embeddings 0.75 0.72
Baseline Embeddings 0.23 0.24

Original Inputs -0.22 -0.23

Table III.1: Clustering comparison using the silhouette coefficient

III.7.4 Selecting the Significance Level

First, we illustrate the assurance monitoring algorithm with a test example from the GSTRB dataset. The left

side of the Figure III.4 shows the image of a 60km/h speed limit sign. Using nearest centroid as the NC func-

44

tion and the siamese network, Algorithm 2 can be used to generate sets of possible predicted labels. In the

following, we vary the significance level ε and we report the set predictions. When ε ∈ [0.001,0.004), the pos-

sible labels are ’Speed limit 50km/h’, ’Speed limit 60km/h’, ’Speed limit 80km/h’; when ε ∈ [0.004,0.006),

the possible labels are ’Speed limit 50km/h’, ’Speed limit 60km/h’; and finally when ε ∈ [0.006,0.0124], the

algorithm produces a single prediction ’Speed limit 60km/h’ which is obviously correct.

Original Input Prediction Sets

ε [0.001,0.004)∈

ε [0.004,0.006)∈

ε [0.006,0.0124]∈

Figure III.4: Illustrative example

For monitoring of CPS, one can either choose ε to be small enough given the system requirements or

compute ε to minimize the number of multiple predictions. Since the number of multiple predictions de-

creases when ε increases, we can select ε as the smallest value that eliminates multiple predictions for a

calibration/validation set. This can be seen in Figure III.5 where for each dataset, the optimal ε is selected as

the significance level value where the performance curve goes to 0. The nearest centroid NC function is used

for the plots in this figure.

45

S
ia

m
e

se
 N

et
w

or
k

O
ri

gi
na

l I
n

pu
ts

B
as

el
in

e
T

rip
le

t N
et

w
or

k

SCITOS-G5 Speaker
Recognition GTSRB

Figure III.5: Performance and calibration curves formed using the validation data from the different datasets
using the nearest centroid NC function

Table III.2 shows the results for the different datasets and the various NC functions. First using the cal-

46

ibration/validation dataset, we select ε to eliminate sets of multiple predictions and we report the errors in

the predictions for the testing dataset. The algorithm successfully did not generate any set with multiple

predictions for the testing datasets for any of the NC functions other than the 1-NN when it was used in the

SCITOS-G5 dataset with representations computed with the triplet network. In this particular case there was

no ε that could eliminate the prediction sets with multiple classes and even when ε = 1, 38.6% of the test

inputs produced prediction sets with multiple classes. The error-rates are well-calibrated and bounded by

the computed or the chosen significance level. One way to compare the different NCMs is by looking at the

significance level that is required for ICP to make single predictions. The use of embedding representations

could always produce single predictions using significance levels much lower than when the original inputs

are used. The significance of the distance metric learning techniques is apparent in the case of the nearest

centroid NCM on all the datasets. This is an appealing NCM for its simplicity and the reduced memory re-

quirements. When used as part of the baseline the performance was not as good as the more expensive NCMs.

However, leveraging the better clustering that distance metric learning methods achieve, the nearest centroid

NCM performs as well or better than the rest of the NCMs on making predictions with low significance level

while retaining the computational efficiency. We also evaluate how well the different approaches bound the

error-rate for two different values of the significance level. The errors are bounded in most cases no matter

if embedding representations are used or not. The percentage of set predictions on the test data that have

multiple candidate classes tend to increase the lower the chosen ε is compared to the estimated optimal ε .

47

Estimate ε ε=0.01 ε=0.02
Dataset Architecture NC Function ε Errors Errors Multiples Errors Multiples

SCITOS-G5

Triplet
k-NN 0.087 9.2% 0% 100% 0% 100%
1-NN 1.0 61.4% 0.4% 88.3% 1% 71.1%

Nearest Centroid 0.095 8.4% 0% 96.2% 0.5% 84.6%

Siamese
k-NN 0.066 6.6% 0% 100% 0% 100%
1-NN 0.078 8.2% 0.4% 71.8% 2.2% 21.4%

Nearest Centroid 0.062 7.1% 0.2% 45.8% 1.5% 13.4%

Baseline
k-NN 0.093 7.9% 0% 100% 0.7% 36.3%
1-NN 0.074 7.5% 0.9% 35.7% 1.3% 27.8%

Nearest Centroid 0.133 16.1% 0.7% 67.9% 1.6% 55.9%

Original
Inputs

k-NN 0.198 22.3% 0.7% 72.1% 1.6% 58.4%
1-NN 0.122 12.6% 1% 57.9% 3.7% 37.5%

Nearest Centroid 0.428 43.5% 0.5% 96.9% 0.7% 95.8%

Speaker
Recognition

Triplet
k-NN 0.058 5.2% 1.5% 16.6% 2.5% 10%
1-NN 0.063 5.9% 2.1% 22.6% 2.8% 14.1%

Nearest Centroid 0.058 6.3% 1.9% 20.1% 2.5% 14%

Siamese
k-NN 0.041 3.6% 0% 100% 2.3% 7.3%
1-NN 0.045 4.5% 0.9% 16.1% 2% 7.6%

Nearest Centroid 0.043 4% 1.5% 14.8% 1.9% 7.1%

Baseline
k-NN 0.03 3.1% 0.9% 6.7% 1.6% 2.5%
1-NN 0.033 3.6% 0.9% 6.9% 2.3% 2.9%

Nearest Centroid 0.141 14.6% 0.5% 78.2% 2.1% 61.9%

Original
Inputs

k-NN 0.295 29.6% 0% 100% 0% 100%
1-NN 0.231 22.9% 0.7% 84.82% 1.3% 76.7%

Nearest Centroid 0.336 33.3 0.7% 100% 1.6% 98.3%

GTSRB

Triplet
k-NN 0.04 4.8% 1.5% 9.3% 2.6% 4.6%
1-NN 0.031 3.8% 1.4% 8.2% 2.7% 2.9%

Nearest Centroid 0.067 6.3% 1.5% 22.6% 2.5% 13.9%

Siamese
k-NN 0.031 3.1% 0.9% 7.4% 1.8% 3.4%
1-NN 0.035 3.3% 0.8% 9.5% 1.5% 4.8%

Nearest Centroid 0.038 3.8% 1.2% 8.7% 2.5% 4.1%

Baseline
k-NN 0.011 1.1% 1% 0.1% 2% 0%
1-NN 0.003 0.3% 1% 0% 2.1% 0%

Nearest Centroid 0.182 19.4% 0.9% 71.8% 1.9% 62.8%

Original
Inputs

k-NN 0.731 71.7% 1.2% 98.5% 1.2% 98.5%
1-NN — — — — — —

Nearest Centroid 0.824 82.7% 0.9% 100% 2% 100%

Table III.2: ICP performance for the different configurations

III.7.5 Computational Efficiency

In order to evaluate if the approach can be used for real-time monitoring of CPS, we measure the execution

times and the memory requirements. Different NC functions lead to different execution times and memory

requirements. We compare the average execution time over the testing datasets required for generating a

prediction set after the model receives a new test input in Table III.3. The 1-NN NC function on the in-

put space of the GTSRB dataset has excessive memory requirements. Below we present the computational

requirements for each NC function and explain the higher requirements of the 1-NN function in more detail.

48

Dataset Architecture NC Function Execution Time Memory

SCITOS-G5

Triplet
k-NN 0.2ms 700.6 kB
1-NN 1.8ms 2 MB

Nearest Centroid 56µs 324.8 kB

Siamese
k-NN 0.2ms 700.6 kB
1-NN 1.6ms 2 MB

Nearest Centroid 56µs 324.8 kB

Baseline
k-NN 0.2ms 700.6 kB
1-NN 1.6ms 2 MB

Nearest Centroid 58µs 324.8 kB

Original
Inputs

k-NN 0.3ms 2.4 MB
1-NN 1.9ms 4.1 MB

Nearest Centroid 59µs 763.1 kB

Speaker Recognition

Triplet
k-NN 0.2ms 15.3 MB
1-NN 2.1ms 24.6 MB

Nearest Centroid 74µs 13.1 MB

Siamese
k-NN 0.2ms 15.3 MB
1-NN 2ms 24.6 MB

Nearest Centroid 0.1ms 13.1 MB

Baseline
k-NN 0.3ms 15.3 MB
1-NN 2.3ms 24.6 MB

Nearest Centroid 71µs 13.1 MB

Original
Inputs

k-NN 53ms 723.9 MB
1-NN 274ms 2.3 GB

Nearest Centroid 0.1ms 378.7 MB

GTSRB

Triplet
k-NN 0.6ms 70.1 MB
1-NN 24.6ms 1.4 GB

Nearest Centroid 0.7ms 38.4 MB

Siamese
k-NN 0.5ms 70.1 MB
1-NN 21.8ms 1.4 GB

Nearest Centroid 0.6ms 38.4 MB

Baseline
k-NN 0.6ms 70.1 MB
1-NN 24.4ms 1.4 GB

Nearest Centroid 0.7ms 38.4 MB

Original
Inputs

k-NN 654ms 8.9 GB
1-NN — —

Nearest Centroid 4.8ms 2.1 GB

Table III.3: Execution times and memory requirements

Table III.3 reports the average execution time for each test input and the required memory space using

different NC functions. Datasets with high-dimensional inputs are challenging for applying ICP in real-time

and the results demonstrate the impact of the embedding representations use on the execution times. All the

NC functions require storing the the calibration NC scores which are used for computing the test p-values

online. The DNN weights need to be stored when embedded representations need to be calculated for every

new test input. Furthermore each NCM has a different memory overhead. In the k-NN case, the embeddings

of the training data are stored in a k−d tree [176] that is used to compute efficiently the k nearest neighbors.

This data structure is used both for the k-NN and 1-NN NC functions. In the 1-NN case, it is required to find

49

the nearest neighbor in the training data for each possible class which is computationally expensive resulting

in larger execution time. The nearest centroid NC function requires storing only the centroids for each class

and the additional memory required is minimal.

In conclusion, the evaluation results demonstrate that monitoring based on ICP has well-calibrated error

rates in all configurations. Further the use of embedding representations reduces the computational require-

ments and can lead to decisions with improved significance level. Using distance metric learning methods

the training data form well-defined clusters that is essential in the case of the nearest centroid NCM. This

improvement makes it a good NCM option for all of the used datasets as it performs as well as the other

NCMs but with significantly less computational requirements.

III.8 Concluding Remarks

Cyber-physical systems (CPS) incorporate machine learning components such as DNNs for performing var-

ious tasks such as perception of the environment. When used for safety-critical applications they need to

satisfy specific requirements that are defined taking into account the acceptable risk and its cost for incorrect

decisions. Although DNNs offer advanced capabilities on the decision making process, they cannot provide

guarantees on the estimated error-rate. To achieve this they must be complemented by engineering methods

and practices that allow effective integration in CPS where an accurate estimate of confidence is needed.

This chapter considers the problem of complementing the prediction of DNNs with a well-calibrated

confidence. For classification tasks, the inductive conformal prediction framework allows selecting the sig-

nificance level according to the requirements of each application. This is a parameter that defines the ac-

ceptable error-rate and is a trade-off between errors and alarms. We presented computationally efficient

algorithms based on representations learned by underlying DNN models that make possible for ICP to be

used for real-time monitoring. The proposed approach was evaluated on three different benchmarks of in-

creasing complexity from a mobile robot with ultrasound sensors, to speaker recognition and traffic sign

recognition. The evaluation results demonstrate that monitoring based on the inductive conformal prediction

framework using embedding representations instead of the original inputs has well-calibrated error-rates and

can minimize the number of alarms when a confident decision cannot be made. When appropriate embed-

ding representations are computed using distance metric learning methods input data that belong to the same

class form well-defined clusters. This property is very important when the similarity of a test input to the

test data is estimated. That way the training set can be efficiently represented by the centroids of each class

which reduces the computational requirements without any loss in performance when compared to the more

computationally expensive approaches.

During the experiments we identified a number of challenges that can lead to poor performance of the

50

proposed method. First, when the datasets are imbalanced both the siamese and the triplet architectures

may not learn embedding representations that cluster the under-represented classes well. This affects the

efficiency of the NC functions. Second, the training of the triplet networks require mining of training data

that will form triplets that lead to large gradients for minimizing the triplet loss function. There is ongoing

research for mining algorithms for faster training. One open question for future research is how to utilize all

the candidate decisions in the prediction set to deal with the cases when a confident decision cannot be made

that will satisfy the significance-level requirements.

51

CHAPTER IV

Improving Prediction Confidence Using Sequential Sensor Measurements

IV.1 Introduction

Autonomous systems are equipped with sensors to observe the environment and take control decisions. Such

systems can benefit from methods that allow to improve prediction and decision making through a feedback

loop that queries the sensor inputs when more information is needed [177]. Such a paradigm has been

used in a variety of applications such as multimedia context assessment [178], aerial vehicle tracking [179],

automatic target recognition [180], self-aware aerospace vehicles [181], and smart cities [182]. In particular,

autonomous systems can utilize perception learning-enabled components (LECs) to observe the environment

and make predictions used for decision making and control. LECs such as deep neural networks (DNNs) can

generalize well on test data that come from the same distribution as the training data and their predictions

can be trusted. However, during the system operation the input data may be different than the training data

resulting to large prediction errors. An approach to address this challenge is to quantify the uncertainty of the

prediction and query the sensors for additional inputs in order to improve the confidence of the prediction.

The approach must be computationally efficient so it can be executed in real-time for closing the loop with

the system.

Computing a confidence measure along with the model’s predictions is essential in safety critical applica-

tions where we need to take into account the cost of errors and decide about the acceptable error rate. Neural

networks for classification typically have a softmax layer to produce probability-like outputs. However, these

probabilities cannot be used reliably as they tend to be too high, they are overconfident, even for inputs com-

ing from the training distribution [4]. The softmax probabilities can be calibrated to be closer to the actual

probabilities scaling them with factors computed from the training data. Different methods that have been

proposed to compute scaling factors include temperature scaling [4], Platt scaling [12], and isotonic regres-

sion [17]. Although such methods can compute well-calibrated confidence values, it is not clear how they can

be used for querying the sensors for additional inputs. Conformal prediction (CP) is another framework used

to compute set predictions with well-calibrated error bounds [23]. The set predictions can be computed ef-

ficiently leveraging a calibration data set [62]. However, such approaches do not scale for high-dimensional

inputs such as camera images. In our prior work, we have developed methods handling high-dimensional

inputs using inductive conformal prediction (ICP) [37, 164].

This chapter extends our prior work presented in Chapter III by designing a feedback loop between LECs

52

used for classification and the sensors of an autonomous system in order to improve the confidence of the

predictions. The presented methods and experimental results have appeared in [183]. We design a classifier

using ICP based on a triplet network architecture in order to learn representations that can be used to quantify

the similarity between test and training examples. Given a significance level, the method allows computing

confident set predictions. A feedback loop that queries the sensors for a new input is used to further refine

the predictions and increase the classification accuracy. The method is computationally efficient, scalable to

high-dimensional inputs, and can be executed in a feedback loop with the system in real-time. Using the

feedback loop to query the sensors until a confident decision can be made introduces a delay on the decision.

The trade-off between accuracy and delay is balanced using a parameter during design-time. The approach

is evaluated using a traffic sign recognition dataset. The results show that using multiple sensor readings

for a single decision reduces the error rate when compared to decisions based on single measurements. The

feedback loop was tuned such that the extra overhead on the time needed for a decision allows for real-time

application.

IV.2 Triplet-based ICP

Environment Triplet based
ICP

Decision
Making

Autonomous
Systemsensor

inputs
prediction

sets
decision

query
sensors

Figure IV.1: Feedback loop between the decision-making process and sensing

We consider an autonomous system that takes actions based on its state in the environment as shown

in Figure IV.1. For example, a self-driving vehicle needs to take control actions based on the traffic signs

it encounters. We design a classifier using ICP based on a triplet network architecture in order to learn

representations that can be used to quantify the similarity between test and training examples. Given a

significance level, the method allows computing confident set predictions. A feedback loop that queries the

sensors for a new input is used to further refine the predictions and increase the classification accuracy.

The input data in CPS are often high-dimensional which can make ICP inefficient as we saw in the

previous chapter. The method presented in this chapter combines ICP with a triplet network to avoid this

limitation. Triplet networks are DNN architectures trained to learn representations of the input data for

distance learning [167]. The last layer of a triplet network computes a representation of the input. Assuming

a trained triplet network and an input x, we write the transformation that takes place by the triplet network as

f (x). For training, a triplet network is composed using three copies of the same neural network with shared

53

parameters. It is trained on batches formed with triplets of data points. Each of these triplets has an anchor

data point x, a positive data point x+ that belong to the same class as x and a negative data point x− of a

different class. The objective is to maximize the distance between inputs of different classes | f (x)− f (x−)|

and minimize the distance of inputs belonging to the same class | f (x)− f (x+)|. To achieve this, training uses

the loss function:

Loss(x,x+,x−) = max(| f (x)− f (x+)|− | f (x)− f (x−)|+α,0)

where α is the margin between positive and negative pairs.

The simplest way to form triplets is to randomly sample anchor data points from the training set and

augment them by randomly selecting one training sample with the same label as the anchor and one sample

with a different label. However, for many of these (x,x+,x−) triplets | f (x)− f (x−)|>> | f (x)− f (x+)|+α ,

which provides very little information for distance learning and leads to slow training and poor performance.

The training can be improved by carefully mining the training data [173]. For each training iteration, first,

the anchor training samples are randomly selected. For each anchor, the hardest positive sample is chosen,

that is a sample from the same class as the anchor that is located the furthest away from the anchor. Then, the

triplets are formed by mining all the hard negative samples, that is the samples that satisfy | f (x)− f (x−)|<

| f (x)− f (x+)|. When the training is completed, only one of the three identical DNN copies is used to map

an input x to its embedding representation f (x).

Consider a training set {z1, . . . ,zl}, where each zi ∈ Z is a pair (xi,yi) with xi the feature vector and yi the

label. We also consider a test input xl+1 which we wish to classify. The underlying assumption of ICP is that

all examples (xi,yi), i = 1,2, . . . are independent and identically distributed (IID) generated from the same

but typically unknown probability distribution. For a chosen classification significance level ε ∈ [0,1], ICP

generates a set of possible labels Γε for the input xl+1 such that P(yl+1 /∈ Γε)< ε .

ICP uses a function called nonconformity measure (NCM), which computes a metric that indicates how

different an example zl+1 is from the examples of the training set z1, . . . ,zl . A NCM that can be computed

efficiently in real-time is the k-Nearest Neighbors (k-NN) [25] defined in the embedding space generated by

the triplet network. The k-NN NCM finds the k most similar examples in the training data and counts how

many of those are labeled different than the candidate label y of a test input x. We denote f : X → V the

mapping from the input space X to the embedding space V defined by the triplet’s last layer. After the training

of the triplet is complete, we compute and store the embeddings vi = f (xi) for the training data xi. Given a

test example x with embedding v = f (x), we compute the k-nearest neighbors in V and store their labels in a

54

multi-set Ω. The k-NN nonconformity of the test example x with a candidate label y is defined as:

α(x,y) = |i ∈ Ω : i ̸= y|

For statistical significance testing, p-values are assigned based on the computed NCM scores using a

calibration set of labeled data that are not used for training. The training set (z1 . . .zl) is split into two parts,

the proper training set (z1 . . .zm) of size m < l that is used for the training of the triplet network and the

calibration set (zm+1 . . .zl) of size l −m that is used only for the computation of the p-values. The empirical

p-value assigned to a possible label j of an input x is defined as the fraction of nonconformity scores of the

calibration data that are equal or larger than the nonconformity score of a test input:

p j(x) =
|{α ∈ A : α ≥ α(x, j)}|

|A| .

The p-values are used to form the sets of candidate labels for a given significance level ε . The label j is added

to Γε if p j(x)> ε .

IV.3 Feedback-loop for Querying the Sensors

Only the prediction sets Γε that have exactly one candidate label can directly be used towards the final

decision. When |Γε | ̸= 1 the approach queries the sensors for a new input. Incorrect classifications are more

likely to happen during the first time steps of the process as every sensor input offers new information that may

lead to a more confident prediction. For example, in the traffic sign recognition task, it is more likely for an

incorrect classification to happen when the sign is far away from the vehicle and the image has low resolution

as shown in Figure IV.2. To avoid such incorrect classifications, in our method the final decision is made

only after k consecutive identical predictions. The parameter k represents a trade-off between robustness and

decision time, as larger k leads to additional delay but more confident decisions. Further, very low k values

may lead to incorrect decisions while very large values may not allow a timely a decision.

The ICP framework produces well-calibrated prediction sets Γε when inputs are IID. Depending on how

small the chosen significance level is, Γε may include a different number of candidate labels. The classifica-

tion of an input requires |Γε |= 1. In our previous work [37, 164], we use a labeled validation set to compute

the minimum significance level ε to reduce the prediction sets with more than one candidate label. However,

in dynamic systems, sensor measurements change over time. Each new input in a sequence is related to pre-

vious inputs and the inputs are not IID. In this case, even though the calculated significance level ε will not

lead to |Γε |> 1, the actual error rate may not be bounded by ε .

55

The main idea is to utilize a feedback-loop in order to lower the error-rate. In order to reduce the incorrect

predictions that may occur especially for low quality inputs, we require that |Γε | = 1 with identical single

candidate label for k consecutive sensor measurements. When this condition is satisfied for an input sequence,

the prediction can be used for decision making by the autonomous system.

Algorithm 3 – Training and Calibration.

Require: training data (X ,Y), calibration data (Xc,Y c)
Require: DNN architecture f for distance metric learning
Require: Nonconformity function α

1: Train f using (x,y) ∈ (X ,Y) ▷ Training
2: // Compute the representations
3: V = f (X)
4: V c = f (Xc)
5: // Compute the nonconformity scores for the calibration data
6: A = {α(vc,yc) : (vc,yc) ∈ (V c,Y c)} ▷ Calibration
7: return A

Algorithm 4 – Runtime Sensor Querying.

Require: Nonconformity function α and calibration nonconformity scores A
Require: training data or centroids (V,Y) depending on the used nonconformity function α

Require: trained triplet neural network f for distance metric learning
Require: sequence of frames S
Require: significance level threshold ε

Require: parameter k for consecutive identical predictions
1: for each frame fi ∈ S do
2: Query the sensors for a new input xi
3: Compute embedding representation vi = f (xi)
4: for each label j ∈ 1..n do
5: Compute the nonconformity score α(vi, j)
6: p j(zt) =

|{α∈A:α≥α(z, j)}|
|A| ▷ empirical p-value

7: if p j(z)≥ ε then
8: Add j to the prediction set Γε ▷ Γε formation
9: end if

10: end for
11: if |Γε |= 1 then
12: Frame prediction is Γε

1
13: if k−1 previous frames resulted in the same prediction then
14: return Γε

1
15: end if
16: end if
17: end for

IV.4 Evaluation

IV.4.1 Experimental Setup

We apply the proposed method to the German Traffic Sign Recognition Benchmark (GTSRB). A vehicle uses

an RGB camera to recognize the traffic signs that are present in its surroundings. The dataset consists of 43

56

t = 1 t = 10 t = 20 t = 30

Figure IV.2: Traffic sign over time (in frames)

classes of signs and provides videos with 30 frames as well as individual images. The data are collected in

various light conditions and include different artifacts like motion blur. The image resolution depends on how

far the sign is from the vehicle as shown in Figure IV.2. Since the input size depends on the distance between

the vehicle and the sign, we convert all inputs to size 96x96x3. 10% of the available sequences is randomly

sampled to form the sequence test set. 10% of the individual frames is randomly sampled to form another

test set. All the remaining frames are shuffled and 80% of them are used for training and 20% are used for

calibration and validation.

The triplet network is formed using three identical convolutional DNNs with shared parameters. We use

a modified version of the VGG-16 architecture using only the first four blocks because of the reduced input

size. A dense layer of 128 units is used to generate the embedding representation of the inputs. All the

experiments run in a desktop computer equipped with and Intel(R) Core(TM) i9-9900K CPU and 32 GB

RAM and a Geforce RTX 2080 GPU with 8 GB memory.

Training Accuracy Validation Accuracy IID Testing Sequence Testing
0.991 0.987 0.986 0.948

Table IV.1: Triplet-based classifier performance

IV.4.2 Model Performance

The triplet network can be used for classification of inputs using a k-Nearest Neighbors classifier in the

embedding space. We first investigate how well the triplet network classifier is trained looking at the accuracy

of the two test sets. One basic hypothesis of machine learning models is that the training and testing data sets

should consist of IID samples. This is confirmed in Table IV.1 where the accuracy for the testing set of IID

examples is similar to the training accuracy while the testing accuracy for the set that includes sequences is

lower.

In order to investigate which frames are responsible for the larger error-rate in the sequences we plot

the average error-rate per frame for the 30 frames of all the test sequences in Figure IV.3. The early frames

of each sequence tend to have more incorrect classifications as expected since the sign images have lower

57

0 5 10 15 20 25 30
frames

4

6

8

10

12

14

%
 o

f e
rro

rs

Figure IV.3: Average error per frame for all the test sequences

resolution.

IID Test Sequences Test
ε Errors Multiples Errors Multiples

0.017 1.7% 0% 5.6% 0%

Table IV.2: Triplet-based ICP performance comparison between IID test data and data belonging to sequences

IV.4.3 ICP Performance

We apply ICP on single inputs to understand how the classifier performs without the feedback loop. The ICP

is evaluated for both test sets in Table IV.2. An error corresponds to the case when the ground truth for a

sensor input is not in the computed prediction set. We compute the smallest significance level ε that does

not produce sets of multiple classes using the validation set. Similar to the point classifier, the ICP classifier

produces well-calibrated predictions only for the IID test inputs.

IV.4.4 Improving Prediction Accuracy

We can improve the LEC classification performance using the feedback loop as described in Section IV.3.

As we can see in Figure IV.3, the first frames of a sign tend to have more incorrect predictions as they

have lower resolution and they lack details. Based on the feedback loop, the LEC uses a new input from

the camera until the prediction remains the same for k consecutive frames. Experimenting with different

values of k, Figure IV.4 shows that as k increases, the error-rate decreases for most of the ε values but the

number of frames required to take a decision increases. When ε < 0.003 the classifier enhanced with the

feedback loop could not reach a decision. We also evaluate the efficiency of this classifier regarding to the

real-time requirements. A decision for each new sensor query takes on average 1ms, which can be used with

typical video frame rates. The memory required to apply the method consists of the memory used to store the

58

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10

12

14

er
ro

r r
at

e
%

k=1
k=3
k=5

(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10

de
la

y
(n

um
be

r o
f f

ra
m

es
) k=1

k=3
k=5

(b)

Figure IV.4: (a) Error-rate and (b) average number of frames until a decision.

representations of the proper training set and the nonconformity scores of the calibration data (45.9MB) and

the memory used to store the triplet network (28.5MB) for a total of 74.4MB.

IV.5 Concluding Remarks

The ICP framework can be used to produce prediction sets that include the correct class with a given con-

fidence. When the inputs to the system are sequential and not IID, applying ICP is not straightforward.

Motivated by DDDAS, we design a feedback loop for handling sequential inputs by querying the sensors

when a confident prediction cannot be made. The evaluation results demonstrate that when the inputs to the

autonomous system are not IID, the error-rate cannot be bounded. However, the addition of the feedback loop

can lower the error-rate by classifying a number of consecutive inputs until a confident decision can be made.

The running time and memory requirements indicate that this approach can be used in real-time applications.

59

CHAPTER V

Selective Classification of Sequential Data

V.1 Introduction

Cyber-Physical Systems (CPS) integrate computing, monitoring and control for operation in the physical

world. Perception of the environment is a complex process because of the existence of objects that are

difficult to model and have complex interaction with the controlled system. Deep Neural Networks (DNN)

have the capacity to be trained and generalize their knowledge to make predictions in dynamic environments.

CPS can benefit from the integration of DNNs but assurance guarantees are needed that are very challenging

to compute. In CPS applications such as autonomous vehicles that needs to recognize traffic signs and take

the correct control decisions, the cost of an incorrect classification is much higher than not making any

classification when there is no clear distinction between the best prediction and the alternatives. In such a

setting, the operation cost over time can be minimized using selective classifiers that evaluate the risk in each

classification and either accept the classification or reject it.

Most discriminative machine learning (ML) frameworks make predictions with some notion of confidence

under the assumption that the input data are independent and identically distributed (IID) [184]. When there

is dependence between the input data this assumption does not hold and the confidence metrics are not

accurate. This is an important challenge for CPS to overcome in order to use such frameworks. Sensors

in a CPS perceive processes in the physical world that have some duration and individual time instances

have some, usually unknown, dependence to previous instances. This leads to miscalibration of confidence

estimates and error-rate guarantees are not satisfied [183].

Our approach for improving the confidence of the predictions is based on Inductive Conformal Prediction

(ICP) [62]. ICP aims in producing prediction sets that satisfy any error-rate bound guarantees under the IID

assumption. The main idea is to test if a new input example conforms to the training data set by utilizing a

nonconformity measure which assigns a numerical score indicating how different the input example is from

the training data set. For any test input, a p-value is assigned to each possible class to decide if a class should

be part of the prediction set or not in order to satisfy the chosen error-rate guarantees. This property is valid

when the test inputs are IID.

In this chapter we first present how decisions can be made based on p-values computed by ICP. Then,

we improve the calibration of the prediction sets computed by ICP and the classification accuracy when the

input data are time correlated. We use statistical methods for computing aggregated p-values resulted from

60

subsequent inputs in a sliding window. We approach the problem as a multiple hypothesis testing problem

and show how different combination methods recover ICP validity. The presented methods and experimental

results have appeared in [185]. Our main contribution is the design of a selective classifier based on ICP

that we call assurance evaluator. This classifier decides if a classification is possible based on the computed

p-values for each class. When the highest p-value among all the classes is much higher than the second

highest computed p-value we can trust the classification more than cases where at least two of the highest

p-values are close to each other. Another contribution of this work is the computation of low-dimensional,

appropriate, embedding representations of the original inputs in a space where the Euclidean distance is

a measure of similarity between the original inputs. This is needed in order to find semantic similarities

between data points and handle high-dimensional inputs in real-time. We evaluate the presented approaches

on the German Traffic Sign Recognition Benchmark (GTSRB) which provides sequential images of signs as

a vehicle moves towards traffic signs.

V.2 Problem

A perception component in a CPS aims to observe and interpret the environment in order to provide infor-

mation for decision making. In safety-critical systems, predictions on unseen inputs need to have a well-

calibrated and bounded error-rate according to predefined safety rules. An efficient and robust approach must

ensure a small and well-calibrated error rate while limiting the number of alarms to enable real-time moni-

toring. Finally, it must be computationally efficient for applications operating on high-dimensional data that

require low latency like, for example, in autonomous vehicles.

During the system operation of a CPS, inputs arrive one by one. The inputs may be dependent on each

other as shown in Figure IV.2, for example, in a traffic sign recognition system. After receiving each input,

the objective is to compute a valid prediction set that satisfies a bound on the error-rate as well as produce

classifications based on their trustworthiness. The objective is twofold: (1) provide guarantees for the error-

rate of the classification and (2) design an assurance evaluator which minimizes the number of input examples

for which a confident prediction cannot be made. The assurance evaluator operates as a selective classifier

that generates warnings when no classification can be made and human intervention is needed.

V.3 Selective Classification

ICP computes p-values for each class to construct prediction sets with a chosen significance level. However,

its applications are not limited to cases where valid prediction sets are needed. We use multiple hypothesis

testing methods to combine the p-values computed on multiple time instances. The aggregate p-values in-

dicate the trustworthiness of each class for particular inputs, over a time horizon, and can be used for point

61

Environment Siamese
Network ICP

Multiple
Testing

Assurance
Evaluator

System

Calibration
NC Scores

Sensor
Inputs

Embedding
Representat.

Current
input

p-values

Credibility

Confidence

Decision

Figure V.1: Execution time architecture

predictions. We define the credibility and confidence metrics based on the two highest aggregate p-values,

p(c), p(c−1), of all possible classes pi, i = 1, . . . ,c:

credibility = p(c) (V.1)

confidence = 1− p(c−1) (V.2)

For a test input xl+1 and classification ŷ = argmaxi=1,...,c pi, the credibility shows how credited ŷ is and the

confidence shows how special it is compared to the other possible labels. These two metrics define the four

scenarios shown in Table V.1. The preferred situation is when the largest p-value is close to one and the

Table V.1: Scenarios that can be observed for different values of confidence and credibility.

Credibility Confidence Description
High High The prefered situation that usually leads into accepting

a classification. pŷ is high and much higher than the p-
values of the other classes.

High Low pŷ is high but there are other high p-values so choosing
a single credible class may not be possible.

Low High None of the p-values are high for a credible decision.
Low Low Not applicable.

rest close to zero. We use an assurance evaluator to decide if a trusted classification can be made and, if

not, it will raise an alarm which may require further investigation. For this operation we use the concept of

selective classification [186,187]. A selective classifier (f ,g) decides whether to keep the classification from

62

an underlying model or reject it and is defined as:

(f ,g)(x)≜

f (x), if g(x) = 1

reject, if g(x) = 0
(V.3)

where f is the ICP based classifier, and g : X →{0,1} is a selective function that we call assurance evaluator.

Consider a function k that evaluates the classifications of f and a threshold θ . The selective function g is

defined as, gθ (x|k, f) = 1[k(x, ŷ f (x)| f) > θ]. A selective classifier is evaluated using the coverage and risk

metrics. The coverage, φ(f ,g), measures the frequency that the classifications of f are accepted. The risk,

R(f ,g), is the error-rate in the accepted classifications. These measures can be empirically evaluated using

any finite labeled set Sm. The empirical coverage φ̂ and risk r̂ are computed as:

φ̂(f ,g|Sm)≜
1
m

m

∑
i=1

g(xi) (V.4)

r̂(f ,g|Sm)≜

1
m

∑
m
i=1 l(f (xi),yi)g(xi)

φ̂(f ,g|Sm)
(V.5)

where l(f (xi),yi) = 1 if f (xi) = yi otherwise l(f (xi),yi) = 0.

For a given classifier f we optimize the assurance evaluator g based on the area under the risk-coverage

(RC) curve (AURC) defined in [188]. Consider a set of n labeled points Vn and let the set Θ ≜ {k(x, ŷ f (x)| f) :

(x,y) ∈ Vn} of threshold values. Using these threshold values to define the selective function g we can

compute n empirical risk and coverage values and plot a RC curve. When two assurance evaluators are

compared, preferable is the one with lower risk at the same coverage. So a metric for evaluation of pairs

(f ,g) is the AURC:

AURC(k, f |Vn) =
1
n ∑

θ∈Θ

r̂(f ,gθ |Vn). (V.6)

The assurance evaluator is constructed with a choice of a classification evaluator function k and a threshold

θ . A function k needs to be chosen to minimize AURC, which intuitively minimizes the average empirical

risk. We express k as a linear combination of the credibility and confidence, computed by ICP,

k(x, ŷ f (x)) = a · credibility(x, ŷ f (x))

+b · confidence(x, ŷ f (x))
(V.7)

We compute the optimal parameters a and b that minimize the AURC with a grid search in [−1,1]. Based

on the RC curve and the application requirements regarding the accepted risk and coverage of the assurance

63

evaluator (r∗,φ ∗), a threshold θ is chosen such that (r̂, φ̂) = (r∗,φ ∗).

V.4 Multiple Testing Of Single Hypothesis

ICP forms prediction sets with theoretical guarantees on the error-rate based on computations of p-values for

each class. When the inputs to be classified are composed of sequential data arriving one after the other, it is

natural to utilize statistical methods for combining individual p-values to improve the accuracy and efficiency

over the individual classifications. We, first, briefly present how ICP computes p-values and prediction sets

and in then second part of this section we present different ways of computing aggregate p-values.

V.4.1 Inductive Conformal Prediction

Given a test input xl+1, ICP computes a prediction set Γε of labels with enough evidence to be the true label.

We consider the more fundamental question: given a test input xl+1 belonging in class yl+1 ∈ Y , is label

ŷl+1 : ŷl+1 ∈ Y the true label? Hypothesis testing is a statistical method used to make decisions on whether

a hypothesis is true based on a finite number of data. The question to be answered is translated into two

competing and non-overlapping hypothesis. (1) The null hypothesis, H0, is the argument believed to be true

and (2) the alternative hypothesis, H1, is the argument to be proven true based on the collected data. We

determine whether to accept or reject the alternative hypothesis based on the likelihood of the null hypothesis

being true. Considering again a test input xl+1, the question whether ŷl+1 is the true class, is written using the

above notation. We are certain that exactly one of the labels in Y is true so ŷl+1 = yl+1 is the null hypothesis.

This hypothesis needs to be rejected for the c−1 incorrect labels so ŷl+1 ̸= yl+1 is the alternative hypothesis.

The p-value is a measure of how likely it is that the pair (xl+1, ŷl+1) has occurred under the null hypothesis,

ŷl+1 = yl+1. It is the probability for this data point to occur or something that is as, or more, extreme. On

the assumptions that the null hypothesis is true and that the sampling distribution is given by a probability

density function (PDF), the distribution of p-values is uniform in the interval [0,1].

The null distribution is usually unknown in practice and ICP approaches it using a labeled calibration

set. First we consider a training set {z1, . . . ,zl} of examples, where each zi ∈ Z is a pair (xi,yi) with xi

the feature vector and yi the label of that example. This set is split into the proper training set {z1, . . . ,zm}

of size m < l and the calibration set {zm+1, . . . ,zl} of size l −m. Central to the framework is the use of

nonconformity measures (NCM), a metric that indicates how different an example zl+1 is from the examples

of the training set. Assuming that the test data are generated from the same distribution as the calibration

data, the null distribution is the distribution of the nonconformity (NC) scores of the calibration set pairs

(xi,yi), i = m + 1, . . . , l. When the input data are high-dimensional, for example images, computing the

Euclidean distance between two inputs is not a proper way to estimate their similarity. The Euclidean distance

64

does not take into consideration the spatial relationships of pixels so small translations or rotations between

similar images may lead to a large distance. We use a siamese network to transform the original inputs into

lower dimensional embedding representations in a space where the Euclidean distance is a measure of how

semantically similar the original inputs are. A siamese network is composed using two copies of the same

neural network with shared parameters [166]. More information on this architecture and how it is trained are

given in Section II.2.

NCM is a function that computes the dissimilarity between an example zl+1 and the examples of the

training set z1, . . . ,zl . There are many different possible NCMs that can be used [21–23, 36, 37, 164]. Having

used all the above NCMs in our previous research work, we find the nearest centroid to have good trade-

off characteristics between the NC scores quality, the memory requirements and the applicability in real-

time systems when combined with distance metric learning. The nearest centroid NCM simplifies the task

of computing individual training examples that are similar to a test input when there is a large amount of

training data. We expect the embedding representations of examples that belong to a particular class to be

close to each other, so for each class yi we compute its centroid µyi =
∑

ni
j=1 vi

j
ni

, where vi
j is the embedding

representation of the jth training example from class yi and ni is the number of training examples in class yi.

The NC function is then defined as

α(x,y) =
d(µy,v)

mini=1,...,n:yi ̸=y d(µyi ,v)
(V.8)

where v the embedding representation of the feature vector x. It should be noted that for computing the

nearest centroid NCM, we need to store only the centroid of each class.

The trustworthiness of a particular class given a test input is expressed as a p-value. It is computed as

the fraction of the calibration NC scores that are greater or equal to the NC score computed for the current

hypothesis testing. Assume a test input xl+1, vl+1 = f (xl+1), and we test the null hypothesis, the class y j is

the correct class, yl+1 = y j:

p j(xl+1) =
|{α ∈ A : α ≥ α(xl+1,y j)}|

|A| (V.9)

where A the set of calibration NC scores and α(xl+1,y j) the NC score of the pair (xl+1,y j). This hypothesis

is accepted if p j(xl+1) > ε , where ε the significance level. This process is repeated for all possible classes

y j, j = 1, . . . , |Y |. All the classes that were not rejected for a chosen ε are added in the prediction set Γε .

ICP computes well-calibrated prediction sets, defined as P(yl+1 /∈ Γε) < ε , for any choice of ε with the

underlying assumption that all examples (xi,yi), i = 1,2, . . . are IID generated from the same but typically

unknown probability distribution and exchangable [189]. However, the choice of ε is important for the

65

computation of efficient prediction sets. The best case scenario for Γε is |Γε | = 1 and the only class that

satisfies p j(xl+1)> ε is the ground truth class.

V.4.2 Combining Multiple p-values

The problem of multiple hypothesis testing appears when a decision about a null hypothesis needs to be made

after a number of tests K > 1. According to the problem we consider in this paper, the same null hypothesis

is tested over K consecutive frames of a sequence. The p-values p1, . . . , pK , obtained from the K individual

hypothesis tests need to be combined into a single p-value. Since the individual tests take place on consequent

frames of a sequence, it is expected the p-values are dependent with each other. For this combination to be

used in the ICP framework, the combined p-values during testing should lead to valid prediction sets with

error-rate equal to the chosen significance-level.

V.4.2.1 Merging Functions

In [190], authors propose general methods for combining a number of p-values without making any assump-

tions about their dependence structure. Different functions for combining p-values can be derived from the

generalized mean p-value (GMP):

Mr,K(p1, . . . , pK) =

(
pr

1 + · · ·+ pr
K

K

)1/r

(V.10)

where r ∈ [−∞,∞], K = 2,3, . . . ,. Merging functions for combing p-values without the independence

assumption are constructed as

pcomb = ar,KMr,K(p1, . . . , pK)

Special cases of merging functions that we use in our evaluation and are derived from (V.10) are the minimum,

maximum, arithmetic mean and geometric mean. When r −→−∞ the resulting merging function is known as

the Bonferroni method and one of the most well-known methods for multiple testing:

pmin = K min(p1, . . . , pK) (V.11)

Similarly when r −→ ∞:

pmax = max(p1, . . . , pK) (V.12)

(V.11) and (V.12) are generalized in [191] to use order statistics of the p-values:

pord =
K
k

p(k) (V.13)

66

where p(k) is the kth smallest p-value of the p1, . . . , pK . When r = 1 individual p-values are combined using

the arithmetic average. However the arithmetic average of a number of p-values is not always a p-value.

In [192], Theorem 1, it is shown that multiplying the arithmetic average with a factor of 2 is a p-value.

parith avg =
2
K

K

∑
i=1

pi (V.14)

When r = 0 individual p-values are combined using the geometric average:

pgeom avg = e×
(

K

∏
i=1

pi

)1/K

(V.15)

V.4.2.2 Quantile Combination Approaches

The general quantile combination approach produces p-values that are uniformly distributed in [0,1] when

the combined p-values are independent. If X1,X2, . . . ,Xn samples from a continuous distribution X with

CDF FX , then the samples Ui = FX (Xi) follow a uniform distribution U with CDF FU (u) = u. The proof is

straightforward and is added here for completeness.

FU (u) = P[U ≤ u] = P[FX (X)≤ u] = P
[
X ≤ F−1

X (u)
]
= FX

(
F−1

X (u)
)
= u (V.16)

The advantage of leveraging this property is that p-values can be combined using any arbitrary function

f and then transform the resulting p-values to a uniform distribution using the CDF of f . However, in

our application the p-values computed by ICP on consequent frames are not independent and cannot be

considered as independent samples from a continuous distribution. This means that the transformed p-values

may not be uniformly distributed affecting the global validity of ICP. Since we do not know the dependence

structure between the inputs, these methods could still result in an ICP valid in regions of interest and we

experiment with their use in CPS. There is a large number of quantile combination methods proposed in the

literature that transform and combine p-values using functions with CDF that can be expressed in closed form

or can be computed efficiently. However, because of their independence requirement, this is not an exhaustive

list of methods but an evaluation of the most commonly used ones. A number of quantile combination

methods is evaluated using ICP computed p-values for multiple underlying model ensembles in [193, 194].

One way of combining multiple p-values is using their product. This is commonly known as the Fisher’s

method [195]. Assuming that p1, p2, . . . , pk are samples from a uniform distribution, then

hi =−2log pi

67

follows a chi-squared distribution with 2 degrees of freedom. The sum of independent chi-squared distribu-

tions is also a chi-squared distribution with degrees of freedom equal to the sum of the degrees of freedom of

the individual chi-squared distributions. The CDF of the chi-squared distribution is expressed in closed form

so a sequence of k independent p-values can be combined efficiently as

pprod = P

{
y ≤−2

K

∑
i=1

log pi

}
= t

K−1

∑
i=0

(− log t)i

i!
(V.17)

where t = ∏
K
i=1 pi.

A similar approach is the Stouffer’s z-transform [196], which first maps the uniformly distributed and

independent p-values to random variables that follow the normal distribution

hi = Φ
−1(1− pi)

where Φ is the cumulative normal distribution. The random variables hi, i = 1, . . . ,K are then combined such

that

h =
∑

K
i=1 hi√

K
.

The sequence of p-values, pi, i = 1, . . . ,K, is combined by sampling the CDF of h

pz = P

{
y ≤ ∑

K
i=1 hi√

K

}
= 1−Φ(h) (V.18)

which is not in closed form but easily computed by most mathematical software. This method is extended

in [197] to assign weights on independent experiments. This can be useful in our applications as more recent

inputs may be more significant than older ones. We call it the weighted Stouffer’s method:

pz weighted = 1−Φ

 ∑
K
i=1 wiZi√
∑

K
i=1 w2

i

 (V.19)

The weights we assign are larger for recent inputs in a sliding window and decrease over time so that wi =

i/∑
K
j=1 j.

To keep our evaluation of quantile combination methods consistent with the merging function presented

earlier, order statistics functions, like min and max, can be used to produce p-values by sampling their CDF.

Let p(r) be the rth smallest among K independent p-values. These p-values follow the Beta(r,K − r + 1)

distribution [198]. In this case the CDF is an incomplete beta function. It cannot be expressed in closed form

but it is easily computed by most mathematical software.

68

The Cauchi combination test [199] is more recent and although it is based on the quantile combination

methods, it is developed to be applied under arbitrary correlation structures. Assuming that p1, p2, . . . , pk are

samples from a uniform distribution, then the components

hi = tan{(0.5− pi)π}

follow a standard Cauchi distribution. The sum T = ∑
K
i=1 hi also has a standard Cauchi distribution under the

null and the its CDF can be computed in closed form:

pCauchi = P

{
y ≤

K

∑
i=1

hi

}
=

1
2
− arctanT

π
(V.20)

Expressed in closed form, similar to the previous methods, it has low computational requirements.

V.4.2.3 Empirical CDF Computation

In practice, p-value transformations using CDFs are not always possible. The reason is twofold: (1) not all

arbitrary combination functions have a CDF that can be expressed in closed form and (2) the p-values to

be combined may be dependent. Instead of using CDFs we compute an Empirical Cumulative Distribution

Function (ECDF) from a set of calibration sequences. We first compute the combined p-values that are

consistent with the null hypothesis using any arbitrary law f (p1, . . . , pK). Then the ECDF FX (x) is computed

on the finite set of combined p-values. During test time when a sliding window of K frames is present, the

p-values of each class are combined with an arbitrary law and the computed ECDF is used to recover validity

of the combined p-values

pcomb = FX [f (p1, . . . , pK)] (V.21)

where FX is the computed ECDF. To understand the effects of ECDF, during evaluation we use simple com-

bination laws consistent with the CDFs above.

V.5 Evaluation

Our assurance evaluator design leverages distance metric learning techniques to compress the input data to

lower dimensions in order to make the ICP application more efficient and with lower memory requirements.

The first part of the evaluation compares the performance of our assurance evaluator with a baseline evaluator

based on thresholds on the softmax outputs of a DNN classifier. This is a unit test without considering

the combination of multiple inputs. The second part of the evaluation extends the assurance evaluator for

applications on sequential data and compares our multiple hypothesis testing approach based on ICP with the

69

baseline snapshot ICP application.

V.5.1 Experimental Setup

We apply the proposed method to the German Traffic Sign Recognition Benchmark (GTSRB). A vehicle

uses an RGB camera to recognize the traffic signs that are present in its surroundings. The dataset consists

of 43 classes of signs and provides videos of 30 frames as well as individual images that are not part of

sequences. The data are collected in various light conditions and include different artifacts like motion blur

and obstructions by other objects. The image resolution depends on how far the sign is from the vehicle

as shown in Figure IV.2. Since the input size is variable, we convert all inputs to size 30x30x3. 10% of

the available sequences is randomly sampled to form the sequences used for testing. From the remaining

sequences, 20% is used to compute the ECDFs an the remaining sequences form the training set. The training

set is split into the proper training set and the calibration set with a ratio of 5:1. 90% of the individual images

that are not part of sequences augment the proper training set and the calibration set with the same ratio as

above and the remaining 10% forms another test set so that we can use it as unity test for the baseline ICP.

The siamese network is formed using two identical convolutional DNNs with shared parameters. The

architecture we chose to use is the one described in [200] for a similar application. A dense layer of 256 units

is used to generate the embedding representation of the inputs. All the experiments run in a desktop computer

equipped with and Intel(R) Core(TM) i9-9900K CPU and 32 GB RAM and a Geforce RTX 2080 GPU with

8 GB memory.

V.5.2 Siamese Network Evaluation

We first investigate how well the siamese network is trained looking at two separate metrics. One is the clas-

sification accuracy. The siamese network can be used for classification of inputs using a k-Nearest Neighbors

classifier in the embedding space. One basic hypothesis of machine learning models is that the training and

testing data sets should consist of IID samples. This is confirmed in Table V.2 where the accuracy for the

test set of IID examples is similar to the training accuracy while the testing accuracy for the set that includes

sequences is lower.

Then we evaluate how well the siamese network clusters data of each class. A commonly used metric of

the separation between classes is the silhouette [175]. For each sample, we first compute the mean distance

between i and all other data points in the same cluster in the embedding space

a(i) =
1

|Ci|−1 ∑
j∈Ci,i̸= j

d(i, j) .

70

Then we compute the smallest mean distance from i to all the data points in any other cluster

b(i) = min
k/∈i

1
|Ck| ∑

j∈Ck

d(i, j) .

The silhouette value is defined as

s(i) =
b(i)−a(i)

max{a(i),b(i)} .

Each sample i in the embedding space is assigned a silhouette value −1 ≤ s(i) ≤ 1 depending on how close

it is to samples belonging to the same class and how far it is to samples belonging to different classes. The

closer s(i) is to 1, the closer the sample is to samples of the same class and further from samples belonging

to other classes. To compare the representations learned in the different sets of data, we compute the mean

silhouette value.

Table V.2: Siamese accuracy evaluation

Accuracy Silhouette
Training 0.962 0.48

Validation 0.95 0.45
Test IID 0.955 0.44

Test Sequences 0.923 0.51

V.5.3 Softmax Baseline and Selective Classification with Individual Inputs

In most real world application making a classification is not enough. Classifications need to be complemented

with estimations of the expected error-rate. In a safety-critical application like the traffic sign recognition the

expected error-rate is a metric that is used for decision-making and its accurate estimation is more important

than the average accuracy of the classifications. In such applications the use of highly accurate DNN architec-

tures that lack well-calibrated assurance metrics can be unsafe. To understand this problem with commonly

used, accurate, architectures we train a DNN classifier with the same architecture as the one used for the

DNNs in the siamese network. In the case of the DNN classifier we add a softmax layer with 43 outputs

after the embedding layer. The softmax layer outputs for each class a value in [0,1] indicating the certainty

in predicting each class. To understand if the softmax values are accurate regarding the predictions on the

sequential test data we split the predictions in 25 bins according to the softmax value assigned to them. Then

for each of the beans with at least one entry we compute the average softmax value of the predictions as well

as the true accuracy of the predictions in the bean. The plot of the accuracy with respect to the softmax output

is called reliability diagram and it is shown in Figure V.2. In this plot we see that the softmax output assigned

to the DNN’s predictions are generally overconfident. The problem is significant in large softmax outputs as

71

predictions with softmax outputs ≈ 0.94, that could be considered trustworthy, have true accuracy of only

0.66.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Softmax Output

A
cc

ur
ac

y

Softmax Reliability Diagram
Perfect Calibration

Figure V.2: Reliability diagram of a classifier that uses softmax output for assurance assessment.

To improve the reliability of the decisions we use selective classification based on ICP, that is descrbed

in Section V.3. In this part of the evaluation we investigate the performance of the selective classification

with respect to the accuracy and calibration when the inputs are considered individually. The siamese net-

work that is evaluated in Section V.5.2 is used to to compute embedding representations of the training and

calibration data. We extract the centroids of the training embedding representations use them to compute the

nonconformity scores of the calibration data. The decisions are taken based on the p-values computed for all

the possible labels of an input using the equations (V.7, V.1, V.2). In order to compute the optimal parameters

a and b we perform a grid search to identify the pair that minimizes equation V.6 when computed on the la-

beled calibration sequential data. The optimal parameters are computed to be a = 0 and b = 0.1. Then, these

parameters are used to form the assurance evaluator that is used to make decisions on the test sequences. In

the Figure V.3a we see the value of risk (the error-rate of the accepted decisions) with respect to the chosen

threshold for both the calibration and test sequences. Figure V.3b shows the RC curve when the threshold

takes all possible values. In order to decide for the threshold parameter we we choose an operation point on

the RC curve that produces the best trade-off characteristics between the risk and coverage values. We see

that regardless the choice of threshold, the observed risk on the test sequences is bounded by the expected

risk computed on the calibration sequences. For example, an operation point with 89% coverage and 6% risk

on the calibration sequences, will result in 91% coverage and 4% risk on the test data.

72

9.6 ·10−2 9.8 ·10−2 0.1

0

5·10−2

10·10−2

Threshold

R
is

k

Calibration
Test

(a)

0 0.2 0.4 0.6 0.8 1

0

5·10−2

10·10−2

Coverage

R
is

k

Calibration
Test

(b)

Figure V.3: (a) Assurance Evaluator risk curve, (b) Assurance Evaluator RC curve

0 0.1 0.2

0

0.2

0.4

0.6

Significance Level

C
al

ib
ra

tio
n

&
Pe

rf
or

m
an

ce

Performance
Calibration

(a)

0 0.1 0.2

0

0.2

0.4

0.6

Significance Level

Performance
Calibration

(b)

0 0.1 0.2

0

0.2

0.4

0.6

Significance Level

Performance
Calibration

(c)

Figure V.4: (a) Baseline ICP on IID data, (b) Baseline ICP on sequential data, (c) Combination of p-values
based on the min ECDF

V.5.4 Validity

ICP is proven to be valid when the input data are IID and exchangeable regardless the choice of the signifi-

cance level and NCM. The first problem we work on is to recover the validity in cases where the input data

are dependent. We examine the property, P(yl+1 /∈ Γε) < ε in the baseline ICP using the test set containing

IID and the test set containing sequences. For this, we plot the performance and calibration curves shown in

Figure V.4. For different values of the significance level, the calibration curve show the percentage of test

data with their ground truth class not contained in their prediction set, while the performance curve shows the

percentage of test data that lead to prediction sets of more than one class. ICP is valid in the case of IID data

but it under-estimates the true error-rate when data are sequential.

We evaluate the validity of ICP using the Expected Calibration Error (ECE). A well-calibrated ICP com-

putes prediction sets with significance levels that are representative of the true error-rate. Formally a model

73

is well-calibrated when

P(yl+1 ∈ Γ
ε |1− ε = p) = p, ∀p ∈ [0,1] (V.22)

where p is the actual prediction accuracy. However, ε is a continuous random variable so the probability in

(V.22) cannot be approximated using finitely many samples. According to (V.22) a measure of miscalibration

can be expressed as E
ε
[|P(yl+1 ∈ Γε |1− ε = p)− p|]. The Expected Calibration Error (ECE) [11] computes

an approximation of this expected value across samples of the significance level:

ECE =
1
M

M

∑
i=1

|acc(εi)+ εi −1| (V.23)

Assuming n test examples, acc(εi)=
1
n

∑
n
i=11(yi ∈Γε

i) and εi the significance level samples. In this evaluation

εi =
i

1000 : i = 1, . . . ,200, as ε > 0.2 would not have any practical use in most CPS applications. Table V.3

shows the calibration results of ICP when we combine multiple sequential inputs in a sliding windows of

different size. For comparison when the baseline ICP is used, ECE is 0.042.

Table V.3: ECE Comparison

Sliding Window Size
Method 2 3 4 5 6 7 8 9

Merging

Arith Avg 0.018 0.009 0.006 0.006 0.007 0.009 0.010 0.011
Geom Avg 0.038 0.035 0.032 0.029 0.027 0.025 0.023 0.022

Min 0.090 0.122 0.147 0.166 0.182 0.195 0.206 0.216
Max 0.014 0.033 0.043 0.050 0.055 0.059 0.062 0.065

CDF

Fisher 0.086 0.120 0.144 0.162 0.176 0.188 0.198 0.208
Stouffer 0.126 0.180 0.214 0.235 0.252 0.264 0.275 0.285

Stouffer W 0.111 0.157 0.188 0.208 0.223 0.235 0.244 0.252
Min 0.018 0.012 0.007 0.008 0.009 0.011 0.014 0.016

Cauchi 0.052 0.059 0.063 0.065 0.067 0.068 0.070 0.071

ECDF

Sum 0.026 0.029 0.027 0.026 0.025 0.024 0.023 0.023
Product 0.023 0.025 0.025 0.025 0.025 0.025 0.025 0.024

Min 0.018 0.014 0.012 0.010 0.009 0.008 0.009 0.010
Max 0.026 0.030 0.029 0.027 0.024 0.021 0.018 0.015

Baseline ICP 0.042

Combining p-values using the ECDF based methods consistently improve the calibration over the base-

line approach and have among the lowest ECE of all methods we tried. The same is observed for the merging

functions that confirms the literature remarks about their validity under arbitrary dependence regardless their

simplicity. Larger sliding window sizes affect the combination functions in different ways and do not guar-

antee better calibration. For example a low p-value that corresponds to a correct class will remain in the

history for a longer time and depending on the combination function can significantly lower the aggregate

p-value. Combining p-values using the quantile combination approaches, with the exception of the order

74

statistics function min, produces prediction sets with large calibration error confirming their inability to deal

with dependence between the performed statistical tests. Combining multiple p-values by using only their

minimum value and transforming it into a p-value using the incomplete beta function seems to not be af-

fected by the dependence structure of the inputs. However, when using the calibration sequences to capture

these dependencies and learn the ECDF instead of using the incomplete beta function, further improves the

calibration in sliding window sizes greater than six.

V.5.5 Selective Classification on Sequences

The assurance evaluator identifies when a prediction is trustworthy. ICP computes the credibility and con-

fidence from the p-values of all classes [Eqs. (V.1), (V.2)] and the assurance evaluator combines them to

minimize the risk for any given coverage. We compare the decision performance of the baseline ICP and ICP

based on combining p-values from multiple inputs. We also investigate how the sliding window size affects

the decision quality. This comparison is based on the AURC which evaluates the average risk for different

coverage values. In this part of the evaluation we combine p-values using the ECDF-based approaches as they

showed stability against dependence between subsequent inputs. Table V.4 shows the AURC value for all the

ECDF methods and for different sliding windows. For comparison the computed AURC for the baseline ICP

is 0.011.

Table V.4: AURC Results

ECDF
Sliding
Window

Size
Sum Product Min Max

2 0.007 0.007 0.007 0.007
3 0.005 0.005 0.005 0.006
4 0.004 0.004 0.004 0.005
5 0.004 0.004 0.004 0.004
6 0.003 0.003 0.004 0.004
7 0.003 0.003 0.004 0.004
8 0.003 0.003 0.003 0.004
9 0.003 0.003 0.003 0.003

Baseline 0.011

All four alternatives show that when predictions are based on sliding windows of more than one input, the

average risk is always lower than in the case of predictions based on a single input at a time. Moreover, the

size of the sliding window also affects the risk. Our evaluation results show that predictions based on larger

sliding windows have lower average risk. Figure V.5 shows the RC curves based on the four ECDF methods

with sliding window size 9 compared with the RC curve produced with the baseline ICP.

75

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

·10−2

R
is

k

ECDF Sum
Baseline

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

·10−2

ECDF Prod.
Baseline

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

·10−2

Coverage

R
is

k

ECDF Min
Baseline

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

·10−2

Coverage

ECDF Max
Baseline

Figure V.5: Risk-Coverage Curves

V.6 Concluding Remarks

CPS use machine learning components for dynamic tasks that are hard to model such as perception of the

environment. These components make predictions with a non-zero error-rate which makes their use in safety

critical systems challenging. We designed a selective classifier that evaluates the trustworthiness of each

prediction based on credibility and confidence values computed by ICP. In order to make efficient use of ICP

we used a siamese network to map high-dimensional inputs to appropriate embedding representations. To

recover the validity of ICP when subsequent inputs are time-correlated we combined the computed p-values

using different multiple hypothesis testing methods. The experimental results using the GTSRB dataset, first

demonstrate that taking into account one input at a time lead to over-confident classifiers. When p-values

from more than one input data are combined using either merging functions or quantile functions based on

ECDFs, we can recover the validity of the prediction sets. The approach is optimized to minimize the risk

76

given a data coverage. The evaluation results showed that the use of more than one subsequent inputs is

beneficial and larger sliding window sizes lead to lower risk. The use of more than one subsequent inputs is

also beneficial for computing the credibility and confidence needed for the selective classifer. Classifications

based on multiple inputs experience less risk for the same coverage compared to classifications based on

single inputs. Comparison between different window sizes show that larger sliding windows lead to lower

risk.

77

CHAPTER VI

Reliable Probability Intervals for Classification

VI.1 Introduction

Modern Deep Neural Network (DNN) architectures have the capacity to be trained using high-dimensional

data and make accurate predictions in dynamic and uncertain environments. This ability makes them a

common choice for many autonomous system applications. However, when DNNs are used as black boxes

in safety-critical systems, they may result in disastrous consequences if it is not possible to reason about their

predictions.

The training of a Learning Enabled Component (LEC) requires specification of the task, performance

measure for evaluating how well the task is performed, and experience in the form of training and testing

data. An LEC, such as a DNN, during system operation exhibits some nonzero error rate and the true error

rate is unknown and can only be approximated during design time using the available data. The problem

is that the approximations are not always good. Confidence values, such as the softmax probabilities which

are used by most DNNs for classification, are usually greater than the actual posterior probability that the

prediction is correct. Important factors that make modern DNNs overconfident are the depth, width, and

techniques like weight decay, and batch normalization [4].

Our objective is to complement the predictions made by DNNs with a computation of confidence. The

confidence can be expressed as probability intervals that characterize the correctness of the DNN prediction.

An efficient and robust approach must ensure that the actual accuracy of a DNN is contained in the computed

intervals and the width of the intervals is small. We focus on computationally efficient algorithms that can be

used in real-time. The proposed approach is based on the Inductive Venn Predictors (IVP) framework [21].

IVP computes the probability intervals for an unknown input leveraging knowledge it has acquired from pre-

vious predictions on labeled data. IVPs are defined by a taxonomy which splits data into categories according

to their similarity. Well-calibrated probability intervals are generated by computing the class distribution of

labeled data in each category. Most of the IVP or Venn Predictors (VP) applications in the literature are eval-

uated on low-dimensional data [21, 33, 201–204]. In this chapter we use distance metric learning methods

to transform high-dimensional data into lower-dimensional embedding representations so that IVP can by

applied in applications with high-dimensional data, like images.

In the previous chapters we measured the likelihood of a prediction based on p-values. Even though

p-values can be used to produce prediction sets with a well-calibrated error-rate bound, their interpretation

78

is less direct than that of probabilities and it is harder to reason about their meaning. Moreover many times

they are confused with probabilities. However the difference is significant. As shown in Chapter III, a set

predictor is formed according to the p-values associated with each possible class and the probability of error

is less or equal to a chosen significance level. The difference to true probabilities is in the inequality in the

above definition that introduces the notion of bounded error-rate in the ICP framework. In this chapter the

problem is the same as in chapter III, to compute a well-calibrated confidence metric, but using probability

intervals that provide better intuition.

The estimation of reliable predictive uncertainty has become an important part of many modern machine

learning components used in safety-critical applications. Even though many of the proposed methods pro-

duce well-calibrated models, their application in the real world is challenging. In [205, 206], new training

algorithms and loss functions are proposed to achieve well-calibrated DNNs. These approaches require train-

ing DNN models from scratch and cannot be used with pre-trained ones. Another category of calibration

methods like the Platt’s scaling [12] and temperature scaling [4] proposes ways of post-processing the out-

puts of already trained models to produce calibrated confidence measures. In [14, 15], it is shown that these

methods are not as well-calibrated as it is reported especially when the validation data are not independent

and identically distributed (IID) and in the presence of distribution shifts. The Conformal Prediction (CP)

framework is developed to compute prediction sets to satisfy a desired significance level [21–23]. The confi-

dence value assigned to each possible class is in the form of p-values which is less intuitive than estimating

the confidence as probabilities. Another way of obtaining confidence information about predictions is by

using algorithms based on the Bayesian framework. The use of this framework, however, require some prior

knowledge about the distribution generating the data. In the real world, this distribution is unknown and it

has to be chosen arbitrarily. In [207], it is shown that the predictive regions produced by Gaussian Processes,

a popular Bayesian machine learning approach, may be incorrect and misleading when the correct prior is

not known.

The main contribution of our work is that we compute low-dimensional, appropriate, embedding repre-

sentations of the original inputs in a space where the Euclidean distance is a measure of similarity between the

original inputs, in order to handle high-dimensional inputs in real-time. Then, we implement four different

taxonomies that split the low-dimensional data into categories based on their similarity. Our third contribution

is the implementation of categories that can increase in size to include unlabeled data during runtime in real-

time as they are encountered. ICP is used to compute candidate labels for the unlabeled and they are placed

to their corresponding categories according to the chosen taxonomy. Last, we present an empirical evaluation

of the approach using two datasets for image classification problems with a large number of classes as well

as detection of botnet attacks in an IoT device. The underlying models are chosen according to the input size

79

and shape keeping into account the low-latency and low-power properties to meet the resource constraints of

the variety of use cases [208].

VI.2 Problem

A perception component in an autonomous system aims to observe and interpret the environment in order

to provide information for decision-making. For example, a DNN can be used for classifying traffic signs

in autonomous vehicles. The problem is to complement the prediction of the DNN with a computation of

confidence. An efficient and robust approach must ensure a small and well-calibrated error rate to enable

real-time operation. An accurate estimation of a relatively small error-rate, according to the specification, can

maximize the autonomous operation while limiting the number of inputs for which an accurate prediction

cannot be made.

During system operation, for each new input a prediction is made, usually by a LEC and the objective is

to compute a valid measure of the prediction’s confidence. The objective is twofold: (1) provide guarantees

for the error rate of the prediction and (2) limit the number of input examples for which a confident prediction

cannot be made. Well-calibrated confidence in terms of probabilities can be used for decision-making, for

example, by generating warnings when human intervention is required. To improve properties like calibration

and efficiency, the assurance monitoring and classification system needs to take into account and adapt to data

observed during runtime in real-time without suspending the operation.

The Venn Prediction (VP) framework can produce predictions with well-calibrated confidence intervals

that guarantee to include the true probabilities for each class output to occur [21]. The confidence intervals

for a test input are generated by considering the class distribution of labeled inputs assigned to the same

category that are collected offline and are available to the system. In the literature, VP implementations

use Support Vector Machines (SVMs) or DNN classifiers to create categories of labeled data [21, 202, 204].

The additional problem we are considering is the computation of appropriate embedding representations

that can lead to more efficient VPs. The main idea is to use distance metric learning and enable DNNs to

learn a lower-dimensional representation for each input on an embedding space where the Euclidean distance

between the input representations is a measure of similarity between the original inputs themselves. Using

such representations we define taxonomies to form categories of similar input data. This not only reduces

the memory requirements but is also more efficient in producing more informative intervals. The efficiency

and calibration of IVP improves as categories contain more data. The accuracy of the predictions as well as

the efficiency and calibration of the probability intervals are affected by the availability of labeled data. Out

of two probability intervals, more efficient, or informative, is considered the one with the lowest uncertainty

regarding the true accuracy. A common problem for classification components that make use of ML models

80

is the acquisition of appropriate labeled data. To address the problem of limited availability of labeled data

we assign pseudo-labels to the unlabeled data that can be classified confidently. During execution time, input

data arrive one by one. Their conformity with the training set is evaluated using the ICP framework. Using

hypothesis testing, the labels that are less likely to describe the newly arrived data are rejected and the rest

are used to update the class distribution in the categories.

VI.3 Probability Intervals based on Distance Metric Learning

Venn Predictors is a machine learning framework that can be combined with existing classifier architectures

for producing well-calibrated multi-probability predictions under the IID assumption [21, 23]. This means

that the confidence assigned to a prediction is a probability distribution which in effect defines lower and

upper bounds regarding the probability of correctness for all possible classes. VPs are well-calibrated and the

probability bounds asymptotically contain the corresponding true conditional probabilities (proof in [21]).

However the framework is computationally inefficient as it requires training the underlying algorithm after

every new test input. Computational efficiency can be addressed using the Inductive Venn Predictors [202,

203], an extension of the VP framework.

Central to the VP and IVP frameworks is the definition of a Venn taxonomy. This is a way of clustering

data points into a number of categories according to their similarity and is based on an underlying algorithm.

For example a taxonomy can be defined to put in the same category examples that are classified in the same

class by a DNN. The main idea of our approach is that the taxonomy can be defined efficiently by learning

embedding representations of the inputs for which the Euclidean distance is a measure of similarity. To

compute the embedding representations of the inputs we train a siamese network using contrastive loss [89,

166].

We consider the training examples, z1, . . . ,zl from ZZZ, where each zi is a pair (xi,yi) with xi the feature

vector and yi the corresponding label. We also consider a test input xl+1 which we wish to classify. IVP

assumes that all the examples z1, . . . ,zl+1 are independent and identically distributed (IID) generated from

the same but usually unknown probability distribution. The available training examples are split into two

parts: the proper training set with q examples and the calibration set with l − q examples. The examples in

the proper training set are used to train the siamese network which is used to define different Venn taxonomies.

The roll of the taxonomy is to divide the l−q calibration examples into a number of categories based on their

similarity. This process takes place during the design time.

As proved in [21] the probability intervals assigned to each classification by the VP are well-calibrated

regardless of the choice of the Venn taxonomy and this holds in practice for IVP as well [202]. However, the

choice of the taxonomy affects the efficiency of the IVP. The probability intervals are desirable to be relatively

81

narrow to minimize the uncertainty in the probability of correctness as well as create better separation between

the probabilities of each class. In [209] we proposed four different Venn taxonomies based on distance metric

learning. The first two taxonomies are based on a k-Nearest Neighbors classifier. The naive approach, that we

call k-NN V1, trains a k-NN classifier using the embedding representations of the proper training set. Then the

calibration data, as well as each new test input, are placed to a category that is defined by the k-NN prediction

using the computed embedding representations. That is, for a data point xl+1 that needs to be placed into

a category, its embedding representation is computed using the siamese network, rl+1 = Net(xl+1) and its k

nearest training data are found. Depending on the class ŷl+1 that most neighbors belong to, the data point is

assigned to the category

kl+1 = ŷl+1. (VI.1)

This taxonomy creates a number of categories that is equal to the number of classes in the dataset. Then, we

extended this taxonomy to more accurately split the data into categories by taking into account how many

of the k nearest training data points are labeled different than the predicted class. For a data point xl+1 with

embedding representation rl+1 that needs to be placed into a category we compute the k-nearest neighbors in

the training set and store their labels in a multi-set Ω. We call this taxonomy k-NN V2 and the category where

xl+1 is placed is computed as:

kl+1 = ŷl+1 × (k−
⌊

k
c

⌋
)+ |i ∈ Ω : i ̸= ŷl+1| (VI.2)

where ŷl+1 is the k-NN classification of rl+1, k is the number of nearest neighbors and c is the number

of different classes. This taxonomy aims at further improving the similarity of the data in each category

leveraging the classifier’s confidence. It is expected that the more similar labeled neighbor training data

points, the higher the chance of the corresponding class being the correct one. That way each category of

k-NN V1 is further split into k−
⌊ k

c

⌋
new categories.

By utilizing the ability of siamese networks to form clusters of similar data we can further reduce the

Venn taxonomy computational requirements when there is a large amount of training data. Each class cluster

i corresponding to class Yi, i = 1 . . . ,c can then be represented by its centroid µi =
∑

ni
j=1 ri

j
ni

, where ri
j is the

embedding representation of the jth training example from class Yi and ni is the number of training examples

labeled as Yi. We propose another family of taxonomies based on the Nearest Centroids. The NC V1 places

the calibration data as well as each new test input to a category that is the same as the class assigned to their

82

nearest centroid. The category where an example xl+1 is placed is computed as:

kl+1 = arg min
j=1,...,c

d(rl+1,µ j) (VI.3)

where d the Euclidean distance. This leads to a number of categories that is equal to the number of classes in

the dataset. An extension of this taxonomy, the NC V2, attempts to form more accurate categories by taking

into account the classification confidence. We expect data points of the same class to be more similar to each

other when their embedding representations are placed at similar distances to their class centroid. That way

each category of NC V1 is further split into two categories based on how close an example xl+1 is to its nearest

centroid:

kl+1 = 2× arg min
j=1,...,c

d(rl+1,µ j)+h, (VI.4)

h =

0, if d(rl+1,µmin)≤ θ

1, otherwise

where µmin = argmin j=1,...,c d(rl+1,µ j) is the distance to the nearest centroid and θ a chosen distance thresh-

old.

After placing the calibration data into categories using the underlying algorithm for the taxonomy, during

execution time we consider a test input xl+1 and place it in a category kl+1. The true class yl+1 is unknown

so all possible classes Yj are considered as candidates one after the other. The empirical probability assigned

to each candidate class is:

p(Yj) =
|{(x∗,y∗) ∈ kl+1 : y∗ = Yj}|

|kl+1|
. (VI.5)

kl+1 will always be non-empty as it will contain at least the new example xl+1. This creates a probability

distrubution for the label yl+1 computed as the ratio of data belonging to each class in a category. That way

we can compute the maximum and minimum probabilities assigned to each class Yj. When the true class

is assumed to be Yj then the count of examples labeled as Yj in kl+1 will increase by one and result in the

maximum probability assigned to class Yj, U(Yj). For all the other classes Yi, i = 1, . . . ,c : i ̸= j the computed

probability will be their minimum probability L(Yj). These are the two bounds that define the probability

intervals [L(Yj),U(Yj)] for each class. The predicted class for the classification is computed as:

jbest = arg max
j=1,...,c

p(Yj) (VI.6)

83

where p(Yj) is the mean of the probability interval assigned to Yj. Along with the class Yjbest the IVP frame-

work outputs the probability interval [L(Yjbest),U(Yjbest)]. By temporarily placing the new example to each

of the n categories, one at a time, we compute a set of probability distributions that compose the multi-

probability prediction of the IVP, Pki
l+1 = {pki(Yj) : ki ∈ {k1, . . . ,kn},Yj ∈ {Y1, . . . ,Yc}}. That way the initial

probability intervals assigned to each class for each category as well as the class classification can be com-

puted offline using the labeled calibration data. The steps taking place during execution are illustrated in

Figure VI.1.

Environment Siamese
Network

Distance-
based

Taxonomy

Probability
Distributions

Set

Calibration
Data

Proper
Training

Data

xl+1 rl+1 kl+1

Yjbest

[L(Yjbest),U(Yjbest)]

Figure VI.1: IVP classifier based on distance metric learning

Algorithm 5 – Training and Calibration.

Require: Training data (X ,Y), calibration data (Xc,Y c)
Require: DNN architecture f for distance metric learning based on the siamese network
Require: Taxonomy from Eqs. VI.1, VI.2, VI.3, VI.4

1: Train f using (x,y) ∈ (X ,Y) ▷ Training
2: // Compute the representations
3: V = f (X)
4: V c = f (Xc)
5: for each (vc

i ,y
c
i) in (V c,Y c), i = 1..l −m do

6: Compute the assigned category ki using the chosen taxonomy ▷ Calibration
7: Add yc

i to ki
8: end for
9: Store the resulted class distribution of each category

84

Algorithm 6 – Assurance Monitoring and Classification with Static Categories.

Require: Taxonomy from Eqs. VI.1, VI.2, VI.3, VI.4
Require: Class distribution of each category
Require: Trained siamese network f for distance metric learning
Require: Test input xl+1

1: Compute the assigned category kl+1 using the chosen taxonomy
2: for each label j ∈ 1..n do

3: L(Yj) =
|{(x∗,y∗) ∈ kl+1 : y∗ = Yj}|

|kl+1|+1

4: U(Yj) =
|{(x∗,y∗) ∈ kl+1 : y∗ = Yj}|+1

|kl+1|+1
5: end for
6: Classify xl+1 into jbest = argmax j=1,...,c p(Yj)
7: Return probability interval [L(Yjbest),U(Yjbest)]

VI.4 Inductive Venn Predictors with Dynamic Categories

Categories with more data lead to computation of probability intervals that are narrower and better calibrated.

The categories are commonly formed during design time using labeled data that were not used for training

and remain unchanged during execution. However, many times the available data during design time are not

enough to form categories that satisfy specifications regarding the probability intervals. Our method utilizes

dynamic categories that expand in size during runtime by including newly encountered data with pseudo-

labels. For the pseudo-labeling we use the ICP framework for its error-rate guarantees it provides. ICP

approaches the labeling as a hypothesis testing problem that rejects the labels that are less likely to be correct.

Given a test input xl+1, ICP computes a prediction set Γε of labels with enough evidence to be the true label,

where ε the significance level of the hypothesis testing. Hypothesis testing is a statistical method used to

make decisions on whether a hypothesis is true based on a finite number of data. The null hypothesis, H0, is

the argument believed to be true and the alternative hypothesis, H1, is the argument to be proven true based on

the collected data. We determine whether to accept or reject the alternative hypothesis based on the likelihood

of the null hypothesis being true, given by p-values. We are certain that exactly one of the labels in Y is true

so ŷl+1 = yl+1 is the null hypothesis. This hypothesis needs to be rejected for the c− 1 incorrect labels so

ŷl+1 ̸= yl+1 is the alternative hypothesis. ICP computes prediction sets Γε such that P(yl+1 /∈ Γε) < ε , for

any choice of ε with the underlying assumption that all examples (xi,yi), i = 1,2, . . . are IID generated from

the same but typically unknown probability distribution and exchangeable [189].

We utilize the error-rate bound guarantees of ICP to update the IVP categories in real-time during sys-

tem execution. The process is shown in Figure VI.2. The new unlabeled input x is first transformed to a

low-dimensional embedding representation v. According to the chosen taxonomy, the representation v corre-

sponds to one of the predefined categories. The prediction ŷ as well as the probability interval [L(ŷ),U(ŷ)] is

computed using the IVP framework and the class distribution in the assigned category. After the prediction

85

output, in phase B, we evaluate if we can pseudo-label the input x and add it to the assigned category pool. We

use ICP to compute the set Γε of candidate labels that show evidence of being correct. The class distribution

in the category computed by the IVP taxonomy is updated to include the labels in Γε .

Environment
Siamese
Network

Taxonomy
IVP

Classifier

Categories

Augmenting
Decision

Logic
ICP

Calibration
NC Scores

Training
Data

Centroids

x v

ŷ

[L(ŷ), U(ŷ)]

p-values

phase A

phase B

Figure VI.2: Execution time workflow

The usage of ICP is similar like in the previous chapters and it is based on distance metric learning. The

proper training set and the calibration set used for ICP are the same that were used to train the siamese net-

work and assign data to categories for the IVP framework. The same siamese network that was trained for

IVP is used to define the ICP NCMs. In Chapter III, I presented different NCMs based on low-dimensional

embedding representation. According to the application a particular NCM may be more suitable. The advan-

tage of the nearest centroid NCM, in Equation III.4 is that it requires minimal memory and computational

power as for the NC scores to be computed, only the centroids of the training data need to be stored. This

is more significant in relatively large datasets. However, this methods only works well when our distance

learning methods can create tight clusters around the centroids. If this is not possible because of the dataset

complexity we can use the k-NN NCM, in Equation III.2. This function does not assume tight clustering of

data belonging to the same class around a single cluster. Data with different characteristics may belong in

the same class and distance metric learning methods can produce multiple clusters for a given class. This

function, on the other hand, requires the whole training set to be stored and more computational power to

compute the k-NN of a given test input in the training set.

86

The NC scores give us an indication of which classes appear to conform better with an input. However

their values can range depending on the dataset and it is hard to set thresholds and choose the pseudo-labels

for unlabeled inputs. ICP normalizes the NC scores and translates it into p-values using a calibration dataset

(Xc,Y c). The nonconformity scores of the calibration data are computed in design time and stored in A,

where:

A = {α(x,y) : (x,y) ∈ (Xc,Y c)}.

For a test example with feature vector x and a candidate prediction j, the nonconformity can be computed

similarly to the calibration examples. The empirical p-value for each candidate label j is:

p j(x) =
|{α ∈ A : α ≥ α(x, j)}|

|A| .

Then, a set prediction Γε for the input x can be computed as the set of all labels j such that p j(x) > ε .

The category κ that x is assigned to is computed by the IVP taxonomy of choice and if |Γε | ≥ 1, the class

distribution in κ is updated to include the labels in Γε .

Algorithm 7 – Assurance Monitoring and Classification with Dynamic Categories.

Require: Taxonomy from Eqs. VI.1, VI.2, VI.3, VI.4
Require: Nonconformity function α

Require: Calibration nonconformity scores A
Require: Significance level threshold ε

Require: Class distribution of each category
Require: Trained siamese network f for distance metric learning
Require: Test input xl+1

1: Compute the embedding representation vl+1 = f (xl+1)
2: Compute the assigned category kl+1 using the chosen taxonomy
3: for each label j ∈ 1..n do

4: L(Yj) =
|{(x∗,y∗) ∈ kl+1 : y∗ = Yj}|

|kl+1|+1

5: U(Yj) =
|{(x∗,y∗) ∈ kl+1 : y∗ = Yj}|+1

|kl+1|+1
6: end for
7: Classify xl+1 into jbest = argmax j=1,...,c p(Yj)
8: Return probability interval [L(Yjbest),U(Yjbest)]
9: for each label j ∈ 1..n do

10: Compute the nonconformity score α(xl+1, j)
11: p j(x) =

|{α∈A:α≥α(xl+1, j)}|
|A|

12: if p j(z)≥ ε then
13: |{(x∗,y∗) ∈ kl+1 : y∗ = Yj}|= |{(x∗,y∗) ∈ kl+1 : y∗ = Yj}|+1
14: |kl+1|= |kl+1|+1
15: end if
16: end for

87

VI.5 Evaluation Metrics

The performance of IVP based on the proposed taxonomies is evaluated regarding the accuracy, calibration

and efficiency. The objective is for the computed probability intervals to contain the true probability of cor-

rectness for each prediction. The probability interval for a given input x with predicted class ŷ is [L(ŷ),U(ŷ)].

Equivalently, the probability that ŷ is not the correct classification will be in the complimentary interval

[1−U(ŷ),1−L(ŷ)], called error probability interval. The true probability of correctness for a single predic-

tion is unknown so the correctness of the computed intervals is evaluated over a number of samples. To do

this we use the following metrics:

• cumulative errors

En =
n

∑
i=1

erri, (VI.7)

erri =

1, if classification ŷi is incorrect

0, otherwise

• cumulative lower and upper error probabilities

LEPn =
n

∑
i=1

[1−U(ŷi)], UEPn =
n

∑
i=1

[1−L(ŷi)] (VI.8)

To compare the IVP implementations based on our proposed taxonomies with the baseline taxonomies,

scalar metrics are used that represent the performance regarding accuracy, calibration, and efficiency. Unlike

the NN classifiers that produce a single softmax probability for each class, the IVP framework produces

probability intervals. For the computation of the evaluation metrics the probability assigned to a class Yj

will be p(Yj) like in (VI.6). The accuracy of an IVP implementation is evaluated as the number of correct

classifications over the number of attempted classifications and it is computed as

accuracy = 1− En

n
. (VI.9)

An efficient, or informative, IVP is one that makes predictions with small diameter probability intervals and

their median is as close to zero or one. The most popular quality metrics for probability assessments are the

negative log-likelihood (NLL) and the Brier score (BS) [210]. NLL is the simplest out of the two and only

considers the probability assigned to the predicted class in (VI.6). It is computed as

NLL =−
n

∑
i=1

c

∑
j=1

t j
i log(o j

i), (VI.10)

88

where o j
i = p(Yj) of example i and t j

i the one-hot representation of the ground truth classification label yi of

example i, that is

t j
i =

1, if classification yi = Yj

0, otherwise

This metric is minimized by producing intervals that are narrow and have median probability close to one

assigned to the correct class. Computational issues may occur as the log score explodes if we observe an

event that the classifier considers impossible. BS is computed as

BS =
1
n

n

∑
i=1

c

∑
j=1

(o j
i − t j

i)
2 (VI.11)

This is, in effect, the mean squared error of the predictions. Unlike NLL, BS considers the probabilities

assigned to all possible classes and will penalize probability intervals assigned to incorrect classes that are

not close to zero. There are different views in the literature regarding which scoring rule is more appropriate.

[211] emphasizes in the importance of the locality property, meaning, the scoring rule should only depend on

the probability of events that actually occur and only NLL satisfies this. On the other hand, [212] states that

a scoring rule should be symmetric and only BS satisfies this. This means that if the true class probability is

p and the predicted probability is p̂, then the score should be equal to the case where the true probability is p̂

and the predicted probability is p. However, we think that both metrics produce useful insights in probability

assessment so both are reported in our experiment results. The interval size has a significant role on how

informative and interpretable a prediction is. We evaluate the size of the probability intervals by computing

the average interval diameter as

D =
∑

n
i=1 U(ŷi)−∑

n
i=1 L(ŷi)

n
(VI.12)

A well-calibrated IVP computes probability intervals that are representative of the true correctness likeli-

hood. Formally a model is well-calibrated when

P(ŷ = Y |p̂ = p) = p, ∀p ∈ [0,1] (VI.13)

However, p̂ is a continuous random variable so the probability in (VI.13) cannot be approximated using

finitely many samples. According to (VI.13) a measure of miscalibration can be expressed as Ê
p
[|P(ŷ = y|p̂ = p)− p|].

The Expected Calibration Error (ECE) [11] computes an approximation of this expected value across bins:

ECE =
M

∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (VI.14)

89

where |Bm| is the number of samples in bin Bm, n is the total number of samples and acc(Bm) and conf(Bm)

are the accuracy and confidence of bin Bm respectively as defined in [11]. Many times in safety critical

applications it is more useful to compute the maximum miscalibration of a model than the mean value. This

metric is called Maximum Calibration Error (MCE) [11] and is computed as:

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| (VI.15)

VI.6 Evaluation

In this section, we evaluate the IVPs that use distance-based taxonomies with regard to accuracy, calibration,

and efficiency. Additionally, for the evaluation of our proposed taxonomies, we use metrics regarding the

performance of the siamese network in clustering similar input data, the execution time of the framework,

and the required memory. Then we evaluate our implementation of dynamic taxonomies and compare them

with their static distance-based taxonomies counterparts.

VI.6.1 Experimental Setup

The embedding representation computations, part of our proposed taxonomies, are not application-specific

and can improve the performance of IVP in cases where inputs are high-dimensional. We evaluate the perfor-

mance of IVP with distance-learning in two different classification problems. First, we have two case studies

in image classification. The German Traffic Sign Recognition Benchmark (GTSRB) dataset is a collection of

traffic sign images to be classified in 43 classes [170]. The labeled sign images are of various sizes between

15x15 to 250x250 pixels depending on the observed distance. We convert all the images to a fixed shape of

96x96 pixels. The second dataset is the Fruits360 [213]. This dataset contains images of 131 different kinds

of fruits and vegetables. The input data are used in their original size, 100x100 pixels.

The second classification problem we consider is the detection of botnet attacks in IoT devices. As part

of the evaluation in [214], authors made available data regarding network traffic while infecting different

common IoT devices two families of botnets. Mirai and BASHLITE are two common IoT-based botnets and

their harmful capabilities are presented in [215]. In the dataset there are data for the following ten attacks:

• BASHLITE Attacks

1. Scan: Scanning the network for vulnerable devices

2. Junk: Sending spam data

3. UDP: UDP flooding

4. TCP: TCP flooding

90

5. COMBO: Sending spam data and opening a connection to a specified IP address and port

• Mirai Attacks

1. Scan: Scanning the network for vulnerable devices

2. Ack: Ack flooding

3. Syn: Syn flooding

4. UDP: UDP flooding

5. UDPplain: UDP flooding with fewer options, optimized for higher PPS

Including the benign network traffic we approach this as a classification problem with eleven classes. The

available data are in the form of 115 statistical features extracted from the raw network traffic. The same 23

features, presented in [214], are extracted from five time windows of the most recent 100ms, 500ms, 1.5sec,

10sec, 1min. The features summarize the traffic in each of these time windows that has (1) the same source

IP address, (2) the same source IP and MAC address, (3) been sent between the source and destination IP

address, (4) been sent between the source and destination TCP/UDP sockets. These features are computed

incrementally and in real-time.

The available data are used throughout the evaluation process the same way in every dataset. 10% of the

data are taken out to be used for testing and the rest is the training set. The training set is then split into the

proper training set and the calibration set. The proper training set is randomly chosen as 80% of the training

set and is used to train the underlying models and for the computation of the categories. The calibration set

is the remaining 20% of the available training data is used only to form the categories during the design time.

The reported evaluation results are computed on the separate test set. All the experiments run in a desktop

computer equipped with and Intel(R) Core(TM) i9-9900K CPU and 32 GB RAM and a Geforce RTX 2080

GPU with 8 GB memory.

VI.6.2 Baseline Taxonomies

To understand the effect of the distance metric learning in IVP we compare it with approaches that use DNN

classifiers as underlying algorithms. A variety of Venn taxonomy definitions based on DNNs is proposed

in [204]. V1 assigns two examples to the same category if their maximum softmax outputs correspond to

the same class. V2, divides the examples in the categories defined by V1 into two smaller categories based

on the value of their maximum softmax output. Their chosen threshold for the maximum output to create

the two smaller categories is 0.75. V3 divides the examples in the categories defined by V1 into two smaller

91

categories but this time based on the second highest softmax output. Their chosen threshold for the second-

highest output is 0.25. V4 divides each category of taxonomy V1 in two, based on the difference between the

highest and second-highest softmax outputs. The threshold for this difference is 0.5. In the same paper, they

proposed a fifth taxonomy that creates the categories based on which classes have softmax outputs above a

certain threshold. This taxonomy creates 2C number of categories making its use infeasible in our evaluation

datasets.

VI.6.3 Evaluation Results

The difficulty to assign an input to a category and the memory demands increase as the size and complexity

of the inputs increases. Our goal is to evaluate our method using general-purpose and lightweight DNNs. For

the image classification problems, we use the MobileNet architecture for both the embedding representation

computation as well as the classifier used for the baseline taxonomies for its low latency and low memory

requirements. The trade-off between accuracy and latency is configured by the hyperparameter α . We set

α = 0.5 in the case of GTSRB and α = 1 for the Fruit360. In both cases the embedding representation

vectors are of size 128. In the case of the botnet attacks detection, the input data are arranged in vectors of

115 values so we use a fully connected DNN with two hidden layers, the first has 10 units, and the second

which produces the embedding representations has 32 units.

After training the siamese network and before it is used as part of the taxonomies we need to evaluate

how well it performs in clustering similar inputs. For comparison, we use the embedding space produced

by the penultimate layer of the DNN classifier [39]. A commonly used metric of the separation between

class clusters is the silhouette coefficient [175]. This metric evaluates how close together samples from the

same class are, and far from samples of different classes and takes values in [-1,1]. The results on the

silhouette analysis for the test inputs from both datasets are shown in Table VI.1. The siamese network

produces representations that are well clustered based on their similarity and better than the representations

produced by the classifier DNN. This is important for constructing efficient categories using our proposed

distance-based taxonomies.

Table VI.1: Silhouette Coefficient Comparison

Classifier Embeddings Siamese Embeddings

GTSRB 0.56 0.98

Fruits360 0.52 0.85

Ecobee Thermostat 0.27 0.46

For illustration, the cumulative upper and lower error probabilities as well as the cumulative error are

92

plotted on the same axis in Figure VI.3 for all the taxonomies used in our comparison and test data from the

GTSRB dataset.

Table VI.2: Evaluation metrics results

Dataset Taxonomy Accuracy NLL BS D ECE MCE Time Memory

GTSRB

V1 0.994 111.835 0.013 0.009 0.005 0.005 3.6ms 11.2MB
V2 0.992 58.104 0.055 0.014 0.011 0.583 6.6ms 11.2MB
V3 0.993 75.394 0.038 0.012 0.008 0.750 3.7ms 11.2MB
V4 0.991 70.279 0.053 0.013 0.009 0.750 2.9ms 11.2MB

k-nn V1 0.998 41.575 0.005 0.009 0.004 0.004 3.2ms 19MB
k-nn V2 0.998 41.126 0.005 0.009 0.004 0.004 3.6ms 19.8MB
NC V1 0.998 41.575 0.005 0.009 0.004 0.004 2.9ms 3.9MB
NC V2 0.996 38.444 0.046 0.017 0.007 0.500 3ms 3.9MB

Fruits360

V1 0.983 1089.938 0.043 0.019 0.008 0.113 4.4ms 41MB
V2 0.986 816.893 0.144 0.025 0.013 0.407 4ms 41.2MB
V3 0.985 870.470 0.154 0.025 0.012 0.392 4.6ms 41.2MB
V4 0.985 836.295 0.159 0.025 0.013 0.384 2.7ms 41.2MB

k-nn V1 0.993 532.314 0.025 0.019 0.010 0.073 3.3ms 127.5MB
k-nn V2 0.993 466.311 0.088 0.022 0.011 0.243 3.7ms 128.1MB
NC V1 0.991 605.087 0.027 0.019 0.010 0.045 3.6ms 14MB
NC V2 0.988 725.556 0.208 0.035 0.018 0.500 3.5ms 14.2MB

Ecobee
Thermostat

V1 0.823 4732.483 0.218 3.8e-04 0.003 0.009 0.7ms 52.2kB
V2 0.830 4310.008 0.200 6.1e-04 0.003 0.014 0.7ms 53.2kB
V3 0.830 4311.460 0.200 6.2e-04 0.002 0.015 0.7ms 53.2kB
V4 0.830 4306.791 0.200 6.1e-04 0.003 0.040 0.6ms 53.2kB

k-nn V1 0.935 2872.725 0.113 4.2e-04 0.001 0.003 1.9ms 43.8MB
k-nn V2 0.935 2299.023 0.096 19.3e-04 0.006 0.375 2.4ms 43.8MB
NC V1 0.794 5550.013 0.255 4e-04 0.006 0.017 1ms 24kB
NC V2 0.794 5541.171 0.255 5.8e-04 0.006 0.023 0.9ms 25kB

The evaluation results are shown in Table VI.2. For both datasets, we observe that using the proposed

distance-based taxonomies, IVP produces more accurate classifications. Even though the baseline V1 tax-

onomy produces probability intervals that are as narrow as the intervals produced by some of the proposed

taxonomies, the proposed taxonomies produce better quality intervals by keeping the intervals assigned to

the correct class close to 1 and the intervals of the incorrect classes close to 0, as shown by the NLL and BS

metrics. The differences in ECE are not significant but most of the proposed taxonomies produce probabili-

ties that are better calibrated in the whole probability space [0,1] with no areas of miscalibration as indicated

by MCE.

The times required for the computation of a classification and the probability intervals when a new input

arrives are similar in both the baseline and our proposed taxonomies and indicate they can be used for real-

time operation. The speed bottleneck is the computations by the DNNs for either the classifications or the

representation mapping. The k-NN computation step in the low-dimensional embedding representation space

adds minimal overhead in the execution time, because the use of k−d trees [176] for fast k-NN computation.

93

0 1,000 2,000

0

20

40

sample #

C
um

ul
at

iv
e

er
ro

r LEP
UEP
CE

(a) k-nn V1

0 1,000 2,000

0

20

40

sample #

C
um

ul
at

iv
e

er
ro

r LEP
UEP
CE

(b) V1

0 1,000 2,000

0

20

40

sample #

C
um

ul
at

iv
e

er
ro

r LEP
UEP
CE

(c) k-nn V2

0 1,000 2,000

0

20

40

sample #

C
um

ul
at

iv
e

er
ro

r LEP
UEP
CE

(d) V2

0 1,000 2,000

0

20

40

sample #

C
um

ul
at

iv
e

er
ro

r LEP
UEP
CE

(e) NC V1

0 1,000 2,000

0

20

40

sample #

C
um

ul
at

iv
e

er
ro

r LEP
UEP
CE

(f) V3

0 1,000 2,000

0

20

40

sample #

C
um

ul
at

iv
e

er
ro

r LEP
UEP
CE

(g) NC V2

0 1,000 2,000

0

20

40

sample #

C
um

ul
at

iv
e

er
ro

r LEP
UEP
CE

(h) V4

Figure VI.3: Cumulative error intervals comparison between our taxonomies and the literature baselines on
the GTSRB dataset.

94

The memory requirements have two main parts: the memory required to store the DNN weights and the

memory required to store the categories after calibration. The proposed taxonomies have the additional

requirement to store either the embedding representations of the training data to be used by the k-NN or

the centroid of each class. The representations of the training data are stored in a k− d tree [176] for fast

k-NN computation. With the use of low-dimensional representations, the additional memory required for the

nearest centroid based taxonomies is small compared to the underlying DNN size.

VI.6.4 IVP with Dynamic Categories

IVP implementations typically form the categories during design time using labeled data and the categories

remain the same during execution. In Section VI.4, we introduced a paradigm of updating the categories

during execution using unlabeled data in order to further improve the computed probability intervals. In this

section we apply this method in CPS test cases to understand how it affects the performance and it is evaluated

using the same evaluation metrics presented in Section VI.5. The taxonomies based on the siamese network

we introduced earlier showed better overall performance than other DNN-based taxonomies and will be the

baseline in the evaluation of IVP with dynamic categories. The same distance metric based taxonomies are

used for both IVP applications. This means that, when a new unlabeled test input arrives, both IVP with static

categories and IVP with dynamic categories compute the probability intervals and the classification the same

way. When the categories are dynamic, after the initial classification, ICP is used to compute the confidence of

each label being correct in the form of p-values and append the current categories by including the confident

labels. This extra step introduces an important design time parameter. There are many NCMs for ICP with

different trade-offs according to the application. Table VI.1 presents the silhouette coefficient comparison

for the embeddings computed by the siamese network for different datasets and can help us decide the most

appropriate NCM for each application. In the case of GTSRB, the siamese network which is used for IVP

taxonomies as well as ICP NCMs, forms very clear clusters unlike the Ecobee Thermostat security dataset.

This means that the training data in the GTSRB dataset can be replaced by their class centroids and use the

nearest centroid NCM for its lower computational requirements. On the other hand, this is not possible for

the botnet attacks detection on the Ecobee Thermostat because the clusters are not as dense. In the later case,

we use the k-NN NCM which is less sensitive to sparser clustering.

The effects of dynamically appending the categories during execution is shown in Figure VI.4. The plots

show the cumulative lower and upper bounds computed over time during execution using the unlabeled test

data from the GTSRB dataset. Furthermore we compute the cumulative accuracy over time by considering

the ground truth labels of the test data. All four distance-based taxonomies lead to lower and upper bounds

computation that asymptotically bound the true cumulative accuracy, as shown in [21]. Both the static and

95

Table VI.3: Evaluation metrics results

Dataset Taxonomy Accuracy NLL BS D ECE MCE

GTSRB

k-nn V1 static 0.998 41.575 0.005 0.009 0.004 0.004
k-nn V1 dynamic 0.998 40.130 0.005 0.007 0.003 0.003

k-nn V2 static 0.998 41.126 0.005 0.009 0.004 0.004
k-nn V2 dynamic 0.998 39.728 0.005 0.007 0.003 0.003

NC V1 static 0.998 41.575 0.005 0.009 0.004 0.004
NC V1 dynamic 0.998 40.130 0.005 0.007 0.003 0.003

NC V2 static 0.996 38.444 0.046 0.017 0.007 0.500
NC V2 dynamic 0.996 36.339 0.046 0.015 0.006 0.500

Ecobee
Thermostat

k-nn V1 static 0.935 2872.725 0.113 4.2e-04 0.0014 0.003
k-nn V1 dynamic 0.935 2873.090 0.113 3.7e-04 0.0013 0.001

k-nn V2 static 0.935 2299.023 0.096 19.3e-04 0.0058 0.375
k-nn V2 dynamic 0.935 2296.795 0.096 18.6e-04 0.0052 0.375

NC V1 static 0.794 5550.013 0.255 4e-04 0.006 0.017
NC V1 dynamic 0.794 5592.070 0.257 3.5e-04 0.021 0.059

NC V2 static 0.794 5541.171 0.255 5.8e-04 0.006 0.023
NC V2 dynamic 0.794 5582.567 0.257 5e-04 0.020 0.059

dynamic IVP classifiers are deployed with the same categories formed by the calibration data with each of

the respective taxonomies. As the classifier considers more test data, the initial categories, in the dynamic

cases, get extended. This not only lead to probability intervals that remain valid, but they get narrower over

time compared to their static counterparts.

The results for both CPS related datasets are shown in Table VI.3. Each of the metrics used for evaluation

is explained in Section VI.5. As we noted earlier the nearest centroid-based taxonomies are not a good choice

for the botnet attack detection dataset as the clusters produced by the siamese network do not have clear

centroids so in this particular application we focus on the results produced by the k-NN based taxonomies

that have a more ideal performance. We still report the NC based taxonomies results for completeness. The

extension to dynamic categories does not have any effect in the classification accuracy. The class jbest that

an input is classified to is chosen using Equation VI.6. The new data with pseudo-labels that were added

to populate the existing categories during execution do not change the class distribution in each category

enough to change the IVP classification for any given category assignment. The effects of our method is

more obvious in the efficiency and calibration related metrics. The number of data in each category affect the

width of the computed probability intervals and more data produce narrower, more informative, probability

intervals. This is clear for any choice of taxonomy in both datasets. The NLL also improves in the case of

GTSRB but has a less obvious change in the botnet attacks detection dataset. The last, and most important

observation from these results is in the calibration related metrics. By pseudo-labeling and extending the

categories during execution, IVP not only computes narrower probability intervals, but these intervals are

96

better calibrated for all taxonomies in both datasets as indicated by the ECE and MCE metrics.

The use of ICP for pseudo-labeling new unlabeled inputs and appending the existing classes add a minimal

overhead of around 0.01ms. That is because of the efficient computation of the k-NN but also the re-use of

the already computed embedding representation of each test input in the initial classification phase. Since the

ICP framework that is used to integrate new data in the existing categories shares the same siamese network

and embedding representations of the training data that are used for IVP there is no memory overhead.

VI.7 Concluding Remarks

Although DNNs offer advanced capabilities, they must be complemented by engineering methods and prac-

tices for them to provide accurate measures of prediction confidence. For classification tasks, the IVP frame-

work computes probability intervals that contain the probability of the prediction’s correctness by examining

the underlying model’s accuracy on similar data. We presented computationally efficient algorithms based

on appropriate embedding representations learned by siamese networks that make it possible for IVP to be

used with high-dimensional data for real-time applications. Then, we extended these algorithms to utilize un-

labeled test inputs gathered during execution to further improve in efficiency and calibration. The evaluation

results demonstrate that the IVP framework using distance-based taxonomies produces high accuracy and

probability intervals that are efficient and well-calibrated. The computed probability intervals get narrower

and get better calibrated over time when unlabeled test inputs are utilized in the computations. Our choice of

lightweight DNNs and small embedding representation size make the approach computationally efficient and

can be used in real-time.

97

0 1,000 2,000
0.97

0.98

0.99

1

sample #

C
um

ul
at

iv
e

ac
cu

ra
cy

CLAP
CUAP

CA

(a) k-nn V1 dynamic

0 1,000 2,000
0.97

0.98

0.99

1

sample #

C
um

ul
at

iv
e

ac
cu

ra
cy

CLAP
CUAP

CA

(b) k-nn V1 static

0 1,000 2,000
0.97

0.98

0.99

1

sample #

C
um

ul
at

iv
e

ac
cu

ra
cy

CLAP
CUAP

CA

(c) k-nn V2 dynamic

0 1,000 2,000
0.97

0.98

0.99

1

sample #

C
um

ul
at

iv
e

ac
cu

ra
cy

CLAP
CUAP

CA

(d) k-nn V2 static

0 1,000 2,000
0.97

0.98

0.99

1

sample #

C
um

ul
at

iv
e

ac
cu

ra
cy

CLAP
CUAP

CA

(e) NC V1 dynamic

0 1,000 2,000
0.97

0.98

0.99

1

sample #

C
um

ul
at

iv
e

ac
cu

ra
cy

CLAP
CUAP

CA

(f) NC V1 static

0 1,000 2,000

0.96

0.98

1

sample #

C
um

ul
at

iv
e

ac
cu

ra
cy

CLAP
CUAP

CA

(g) NC V2 dynamic

0 1,000 2,000

0.96

0.98

1

sample #

C
um

ul
at

iv
e

ac
cu

ra
cy

CLAP
CUAP

CA

(h) NC V2 static

Figure VI.4: Cumulative probability intervals comparison between the dynamic and static taxonomies on the
GTSRB dataset.

98

CHAPTER VII

Conclusions

The increased use of autonomous systems in dynamic and complex environments has created many research

problems in the CPS domain. Modern LEC architecture have the capacity to achieve high accuracy in fully

autonomous systems. However in most cases they lack transparency and a way to reason for their decisions.

Due to this, there needs to be a larger emphasis on techniques regarding prediction confidence calibration

and explainability. For them to be used in real life applications they need to be complemented with a mech-

anism that can evaluate the risk of each autonomous decision in a way that humans can comprehend. This

dissertation proposes different methods for the computation of well-calibrated assurance metrics based on

the Inductive Conformal Prediction and Inductive Venn Predictors framework for CPS that utilize LECs. The

methods we developed aim to solve the problems introduced by LEC in safety-critical systems by utilizing

algorithms that are proven to produce well-calibrated predictions as well as distance metric learning methods

for this to be practical in the majority of autonomous applications that are high-dimensional. Additionally

incorporating techniques that express the prediction confidence as true probabilities helps humans interpret

decision uncertainties and better trust the autonomous actions. Furtermore, the effectiveness of our methods

in areas like calibration, efficiency and accuracy is supported by extensive evaluation on multiple real-life

datasets. Even though extensions of the presented methods are still needed to achieve robustness in more

complicated applications, we hope this work will help future contributions in this research area.

99

CHAPTER VIII

List of Publications

Published

1. D. Boursinos and X. Koutsoukos. Assurance Monitoring of Cyber-Physical Systems with Machine

Learning Components. In Proceedings of TMCE 2020, Dublin, Ireland , May 2020.

2. D. Boursinos and X. Koutsoukos. Trusted Confidence Bounds for Learning Enabled Cyber-Physical

Systems. In Workshop for Assured Autonomous Systems 2020, San Francisco, CA, May 2020. (Best

Paper Award)

3. D. Boursinos and X. Koutsoukos. Improving Prediction Confidence in Learning-Enabled Autonomous

Systems. In DDDAS 2020, Boston, MA , October 2020.

4. D. Boursinos and X. Koutsoukos. Assurance Monitoring of Learning Enabled Cyber-Physical Sys-

tems Using Inductive Conformal Prediction based on Distance Learning. In Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, May 2021.

5. D. Stojcsics, D. Boursinos, N. Mahadevan, X. Koutsoukos, G. Karsai. Fault-Adaptive Autonomy in

Systems with Learning-Enabled Components. In Sensors, August 2021.

6. D. Boursinos and X. Koutsoukos. Reliable Probability Intervals for Classification Using Inductive

Venn Predictors based on Distance Learning. In 2021 IEEE International Conference on Omni-Layer

Intelligent Systems (COINS), pp. 1–7, August 2021.

7. D. Boursinos and X. Koutsoukos. Selective Classification of Sequential Data Using Inductive Confor-

mal Prediction. In 2022 IEEE International Conference on Assured Autonomy (ICAA), Puerto Rico,

March 2022.

In Preparation

1. D. Boursinos and X. Koutsoukos. Inductive Venn Predictors based on Distance Learning with Dy-

namic Categories for Reliable Probability Intervals.

100

BIBLIOGRAPHY

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical
Image Database,” in CVPR09, 2009.

[2] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Concrete problems in ai
safety,” arXiv preprint arXiv:1606.06565, 2016.

[3] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control technology, vol. 12, no. 1,
pp. 161–166, 2011.

[4] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,” in Pro-
ceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, pp. 1321–
1330, JMLR.org, 2017.

[5] R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar
systems,” Advances in Radio Science: ARS, vol. 9, p. 49, 2011.

[6] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty esti-
mation using deep ensembles,” in Advances in neural information processing systems, pp. 6402–6413,
2017.

[7] M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why relu networks yield high-confidence predic-
tions far away from the training data and how to mitigate the problem,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 41–50, 2019.

[8] A. H. Murphy, “A new vector partition of the probability score,” Journal of applied Meteorology,
vol. 12, no. 4, pp. 595–600, 1973.

[9] M. H. DeGroot and S. E. Fienberg, “The comparison and evaluation of forecasters,” Journal of the
Royal Statistical Society: Series D (The Statistician), vol. 32, no. 1-2, pp. 12–22, 1983.

[10] A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities with supervised learning,” in Pro-
ceedings of the 22nd international conference on Machine learning, pp. 625–632, 2005.

[11] M. P. Naeini, G. F. Cooper, and M. Hauskrecht, “Obtaining well calibrated probabilities using bayesian
binning,” in Proceedings of the... AAAI Conference on Artificial Intelligence. AAAI Conference on
Artificial Intelligence, vol. 2015, p. 2901, NIH Public Access, 2015.

[12] J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likeli-
hood methods,” in ADVANCES IN LARGE MARGIN CLASSIFIERS, pp. 61–74, MIT Press, 1999.

[13] J. Zhang and Y. Yang, “Probabilistic score estimation with piecewise logistic regression,” in Proceed-
ings of the twenty-first international conference on Machine learning, p. 115, 2004.

[14] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Lakshminarayanan, and
J. Snoek, “Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset
shift,” in Advances in Neural Information Processing Systems, pp. 13991–14002, 2019.

[15] A. Kumar, P. S. Liang, and T. Ma, “Verified uncertainty calibration,” in Advances in Neural Information
Processing Systems, pp. 3792–3803, 2019.

[16] B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates from decision trees and naive
bayesian classifiers,” in Icml, vol. 1, pp. 609–616, Citeseer, 2001.

[17] B. Zadrozny and C. Elkan, “Transforming classifier scores into accurate multiclass probability esti-
mates,” in Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’02, (New York, NY, USA), pp. 694–699, ACM, 2002.

101

[18] M. P. Naeini and G. F. Cooper, “Binary classifier calibration using an ensemble of piecewise linear
regression models,” Knowledge and information systems, vol. 54, no. 1, pp. 151–170, 2018.

[19] X. Jiang, M. Osl, J. Kim, and L. Ohno-Machado, “Calibrating predictive model estimates to support
personalized medicine,” Journal of the American Medical Informatics Association, vol. 19, no. 2,
pp. 263–274, 2012.

[20] M. Sun and S. Cho, “Obtaining calibrated probability using roc binning,” Pattern Analysis and Appli-
cations, vol. 21, no. 2, pp. 307–322, 2018.

[21] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World. Berlin, Heidel-
berg: Springer-Verlag, 2005.

[22] G. Shafer and V. Vovk, “A tutorial on conformal prediction,” J. Mach. Learn. Res., vol. 9, pp. 371–421,
June 2008.

[23] V. Balasubramanian, S.-S. Ho, and V. Vovk, Conformal Prediction for Reliable Machine Learning:
Theory, Adaptations and Applications. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1st ed., 2014.

[24] H. Papadopoulos, V. Vovk, and A. Gammermam, “Conformal prediction with neural networks,” in 19th
IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), vol. 2, pp. 388–395,
IEEE, 2007.

[25] N. Papernot and P. McDaniel, “Deep k-nearest neighbors: Towards confident, interpretable and robust
deep learning,” 2018.

[26] U. Johansson, H. Boström, and T. Löfström, “Conformal prediction using decision trees,” in 2013
IEEE 13th international conference on data mining, pp. 330–339, IEEE, 2013.

[27] S. Bhattacharyya, “Confidence in predictions from random tree ensembles,” Knowledge and Informa-
tion Systems, vol. 35, pp. 391–410, 5 2013.

[28] D. Devetyarov and I. Nouretdinov, “Prediction with confidence based on a random forest classifier,” in
Artificial Intelligence Applications and Innovations, (Berlin, Heidelberg), pp. 37–44, Springer Berlin
Heidelberg, 2010.

[29] L. Makili, J. Vega, S. Dormido-Canto, I. Pastor, and A. Murari, “Computationally efficient svm multi-
class image recognition with confidence measures,” Fusion Engineering and Design, vol. 86, no. 6,
pp. 1213 – 1216, 2011. Proceedings of the 26th Symposium of Fusion Technology (SOFT-26).

[30] D. Boursinos and X. Koutsoukos, “Improving prediction confidence in learning-enabled autonomous
systems,” in InfoSymbiotics/DDDAS2020, 2020.

[31] H. Papadopoulos, V. Vovk, and A. Gammerman, “Regression conformal prediction with nearest neigh-
bours,” Journal of Artificial Intelligence Research, vol. 40, pp. 815–840, 2011.

[32] U. Johansson, H. Boström, T. Löfström, and H. Linusson, “Regression conformal prediction with
random forests,” Machine Learning, vol. 97, no. 1-2, pp. 155–176, 2014.

[33] H. Papadopoulos and H. Haralambous, “Reliable prediction intervals with regression neural networks,”
Neural Networks, vol. 24, no. 8, pp. 842–851, 2011.

[34] J. Sun and C. R. Loader, “Simultaneous confidence bands for linear regression and smoothing,” The
Annals of Statistics, vol. 22, no. 3, pp. 1328–1345, 1994.

[35] J. Goldsmith, S. Greven, and C. Crainiceanu, “Corrected confidence bands for functional data using
principal components,” Biometrics, vol. 69, no. 1, pp. 41–51, 2013.

102

[36] U. Johansson, H. Linusson, T. Löfström, and H. Boström, “Model-agnostic nonconformity functions
for conformal classification,” in 2017 International Joint Conference on Neural Networks (IJCNN),
pp. 2072–2079, 5 2017.

[37] D. Boursinos and X. Koutsoukos, “Assurance monitoring of cyber-physical systems with machine
learning components,” in Tools and Methods of Competitive Engineering, pp. 27–38, 2020.

[38] S. Bhattacharyya, “Confidence in predictions from random tree ensembles,” in 2011 IEEE 11th Inter-
national Conference on Data Mining, pp. 71–80, IEEE, 2011.

[39] G. E. Hinton, “Learning multiple layers of representation,” Trends in cognitive sciences, vol. 11, no. 10,
pp. 428–434, 2007.

[40] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt, “Practical and optimal lsh for
angular distance,” in Advances in neural information processing systems, pp. 1225–1233, 2015.

[41] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via hashing,” in Proceed-
ings of the 25th International Conference on Very Large Data Bases, VLDB ’99, (San Francisco, CA,
USA), pp. 518–529, Morgan Kaufmann Publishers Inc., 1999.

[42] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions,” in 2006 47th annual IEEE symposium on foundations of computer science (FOCS’06),
pp. 459–468, IEEE, 2006.

[43] D. Devetyarov and I. Nouretdinov, “Prediction with confidence based on a random forest classifier,”
in IFIP International Conference on Artificial Intelligence Applications and Innovations, pp. 37–44,
Springer, 2010.

[44] G. W. Brier, “Verification of Forecasts Expressed in Terms of Probability,” Monthly Weather Review,
vol. 78, pp. 1–3, 01 1950.

[45] V. N. Balasubramanian, R. Gouripeddi, S. Panchanathan, J. Vermillion, A. Bhaskaran, and R. Siegel,
“Support vector machine based conformal predictors for risk of complications following a coronary
drug eluting stent procedure,” in 2009 36th Annual Computers in Cardiology Conference (CinC),
pp. 5–8, IEEE, 2009.

[46] P. Toccaceli, I. Nouretdinov, and A. Gammerman, “Conformal predictors for compound activity pre-
diction,” in Symposium on Conformal and Probabilistic Prediction with Applications, pp. 51–66,
Springer, 2016.

[47] H. Yu, J. Yang, and J. Han, “Classifying large data sets using svms with hierarchical clusters,” in
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 306–315, 2003.

[48] L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, “Large scale kernel machines. neural information
processing series,” 2007.

[49] K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, H. Cui, and E. Y. Chang, “Parallelizing support vector machines
on distributed computers,” in Advances in Neural Information Processing Systems, pp. 257–264, 2008.

[50] K. Woodsend and J. Gondzio, “Hybrid mpi/openmp parallel linear support vector machine training,”
The Journal of Machine Learning Research, vol. 10, pp. 1937–1953, 2009.

[51] Y. You, H. Fu, S. L. Song, A. Randles, D. Kerbyson, A. Marquez, G. Yang, and A. Hoisie, “Scaling
support vector machines on modern hpc platforms,” Journal of Parallel and Distributed Computing,
vol. 76, pp. 16–31, 2015.

[52] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin, “Large linear classification when data cannot fit
in memory,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 5, no. 4, pp. 1–23,
2012.

103

[53] A. Z. Zeyuan, C. Weizhu, W. Gang, Z. Chenguang, and C. Zheng, “P-packsvm: Parallel primal gradi-
ent descent kernel svm,” in 2009 Ninth IEEE International Conference on Data Mining, pp. 677–686,
IEEE, 2009.

[54] H. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik, “Parallel support vector machines: The
cascade svm,” Advances in neural information processing systems, vol. 17, pp. 521–528, 2004.

[55] K. Veropoulos, C. Campbell, N. Cristianini, et al., “Controlling the sensitivity of support vector ma-
chines,” in Proceedings of the international joint conference on AI, vol. 55, p. 60, 1999.

[56] R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector machines to imbalanced datasets,”
in European conference on machine learning, pp. 39–50, Springer, 2004.

[57] G. Wu and E. Y. Chang, “Adaptive feature-space conformal transformation for imbalanced-data learn-
ing,” in Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 816–
823, 2003.

[58] G. Wu and E. Y. Chang, “Class-boundary alignment for imbalanced dataset learning,” in ICML 2003
workshop on learning from imbalanced data sets II, Washington, DC, pp. 49–56, 2003.

[59] T. Gartner, Kernels for structured data, vol. 72. World Scientific, 2008.

[60] F. Provost and P. Domingos, “Tree induction for probability-based ranking,” Machine learning, vol. 52,
no. 3, pp. 199–215, 2003.

[61] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, Oct 2001.

[62] H. Papadopoulos, “Inductive conformal prediction: Theory and application to neural networks,” in
Tools in artificial intelligence, Citeseer, 2008.

[63] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, “Distance metric learning with application to
clustering with side-information,” in Advances in neural information processing systems, pp. 521–528,
2003.

[64] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review, vol. 38, no. 1, pp. 49–95,
1996.

[65] R. T. Rockafellar, Convex Analysis. Princeton university press, 1970.

[66] M. Schultz and T. Joachims, “Learning a distance metric from relative comparisons,” in Advances in
neural information processing systems, pp. 41–48, 2004.

[67] C. Cortes and V. Vapnik, “Support vector machine,” Machine learning, vol. 20, no. 3, pp. 273–297,
1995.

[68] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning for large margin nearest neigh-
bor classification,” in Advances in neural information processing systems, pp. 1473–1480, 2006.

[69] S. Parameswaran and K. Q. Weinberger, “Large margin multi-task metric learning,” in Advances in
neural information processing systems, pp. 1867–1875, 2010.

[70] D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet, and K. Q. Weinberger, “Non-linear metric learning,” in
Advances in neural information processing systems, pp. 2573–2581, 2012.

[71] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin nearest neighbor classifi-
cation.,” Journal of Machine Learning Research, vol. 10, no. 2, 2009.

[72] K. Q. Weinberger and L. K. Saul, “Fast solvers and efficient implementations for distance metric
learning,” in Proceedings of the 25th international conference on Machine learning, pp. 1160–1167,
2008.

104

[73] L. Torresani and K.-c. Lee, “Large margin component analysis,” in Advances in neural information
processing systems, pp. 1385–1392, 2007.

[74] N. Nguyen and Y. Guo, “Metric learning: A support vector approach,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 125–136, Springer, 2008.

[75] K. Park, C. Shen, Z. Hao, and J. Kim, “Efficiently learning a distance metric for large margin nearest
neighbor classification,” in Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
pp. 453–458, 2011.

[76] M. Der and L. K. Saul, “Latent coincidence analysis: A hidden variable model for distance metric
learning,” in Advances in Neural Information Processing Systems, pp. 3230–3238, 2012.

[77] A. Globerson and S. T. Roweis, “Metric learning by collapsing classes,” in Advances in neural infor-
mation processing systems, pp. 451–458, 2006.

[78] S. Shalev-Shwartz, Y. Singer, and A. Y. Ng, “Online and batch learning of pseudo-metrics,” in Pro-
ceedings of the twenty-first international conference on Machine learning, p. 94, 2004.

[79] Y. Bengio, Learning deep architectures for AI. Now Publishers Inc, 2009.

[80] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-shelf: An astounding
baseline for recognition,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 512–519, 2014.

[81] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in European
conference on computer vision, pp. 818–833, Springer, 2014.

[82] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat: Integrated recogni-
tion, localization and detection using convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[83] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region
proposal networks,” in Advances in neural information processing systems, pp. 91–99, 2015.

[84] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-level perfor-
mance in face verification,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1701–1708, 2014.

[85] R. Salakhutdinov and G. Hinton, “Learning a nonlinear embedding by preserving class neighbourhood
structure,” in Artificial Intelligence and Statistics, pp. 412–419, 2007.

[86] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a“ siamese”
time delay neural network,” in Advances in neural information processing systems, pp. 737–744, 1994.

[87] Y. LeCun et al., “Generalization and network design strategies,” Connectionism in perspective, vol. 19,
pp. 143–155, 1989.

[88] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively, with application
to face verification,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 1, pp. 539–546, IEEE, 2005.

[89] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant mapping,”
in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 2, pp. 1735–1742, IEEE, 2006.

[90] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in International Workshop on
Similarity-Based Pattern Recognition, pp. 84–92, Springer, 2015.

[91] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition
and clustering,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 815–823, 2015.

105

[92] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach for deep face
recognition,” in European conference on computer vision, pp. 499–515, Springer, 2016.

[93] X. He, Y. Zhou, Z. Zhou, S. Bai, and X. Bai, “Triplet-center loss for multi-view 3d object retrieval,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1945–1954,
2018.

[94] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE transactions on information theory,
vol. 8, no. 2, pp. 179–187, 1962.

[95] L. G. Roberts, Machine perception of three-dimensional solids. PhD thesis, Massachusetts Institute of
Technology, 1963.

[96] A. Guzmán, “Decomposition of a visual scene into three-dimensional bodies,” in Proceedings of the
December 9-11, 1968, fall joint computer conference, part I, pp. 291–304, 1968.

[97] D. Waltz, “Understanding line drawings of scenes with shadows,” in The psychology of computer
vision, Citeseer, 1975.

[98] M. B. Clowes, “On seeing things,” Artificial intelligence, vol. 2, no. 1, pp. 79–116, 1971.

[99] A. Macworth, “Interpreting pictures of polyhedral scenes,” Artificial intelligence, vol. 4, no. 2, pp. 121–
137, 1973.

[100] S. Ullman, Interpretation of Visual Motion. MIT Press, 1979.

[101] Y. Lamdan and H. J. Wolfson, “Geometric hashing: A general and efficient model-based recognition
scheme,” in [1988 Proceedings] Second International Conference on Computer Vision, pp. 238–249,
1988.

[102] S. Ullman and R. Basri, “Recognition by linear combinations of models,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 13, no. 10, pp. 992–1006, 1991.

[103] D. Weinshall and C. Tomasi, “Linear and incremental acquisition of invariant shape models from
image sequences,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 5,
pp. 512–517, 1995.

[104] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the seventh
IEEE international conference on computer vision, vol. 2, pp. 1150–1157, Ieee, 1999.

[105] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-neighbour search in high-
dimensional spaces,” in Proceedings of the 1997 Conference on Computer Vision and Pattern Recog-
nition (CVPR ’97), CVPR ’97, (USA), p. 1000, IEEE Computer Society, 1997.

[106] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture
classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 7, pp. 971–987, 2002.

[107] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Pro-
ceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition.
CVPR 2001, vol. 1, pp. I–I, IEEE, 2001.

[108] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,”
IEEE transactions on pattern analysis and machine intelligence, vol. 24, no. 4, pp. 509–522, 2002.

[109] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of com-
puter vision, vol. 60, no. 2, pp. 91–110, 2004.

[110] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE com-
puter society conference on computer vision and pattern recognition (CVPR’05), vol. 1, pp. 886–893,
IEEE, 2005.

106

[111] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A fast descriptor for detection and classifica-
tion,” in European conference on computer vision, pp. 589–600, Springer, 2006.

[112] E. Osuna, R. Freund, and F. Girosit, “Training support vector machines: an application to face detec-
tion,” in Proceedings of IEEE computer society conference on computer vision and pattern recognition,
pp. 130–136, IEEE, 1997.

[113] V. Vapnik, The nature of statistical learning theory. Springer, 1995.

[114] C. J. Burges, “Simplified support vector decision rules,” in ICML, vol. 96, pp. 71–77, 1996.

[115] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in
Proceedings of the fifth annual workshop on Computational learning theory, pp. 144–152, 1992.

[116] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an applica-
tion to boosting,” Journal of computer and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[117] R. Xiao, L. Zhu, and H.-J. Zhang, “Boosting chain learning for object detection,” in Proceedings Ninth
IEEE International Conference on Computer Vision, pp. 709–715, IEEE, 2003.

[118] T. Kohonen, Self-organization and associative memory. Springer-Verlag, 1984.

[119] G. Burel and D. Carel, “Detection and localization of faces on digital images,” Pattern Recognition
Letters, vol. 15, no. 10, pp. 963 – 967, 1994.

[120] S.-H. Lin, S.-Y. Kung, and L.-J. Lin, “Face recognition/detection by probabilistic decision-based neural
network,” IEEE transactions on neural networks, vol. 8, no. 1, pp. 114–132, 1997.

[121] R. Vaillant, C. Monrocq, and Y. Le Cun, “Original approach for the localisation of objects in images,”
IEE Proceedings-Vision, Image and Signal Processing, vol. 141, no. 4, pp. 245–250, 1994.

[122] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE Transactions
on pattern analysis and machine intelligence, vol. 20, no. 1, pp. 23–38, 1998.

[123] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[124] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neu-
ral networks,” in Advances in Neural Information Processing Systems (F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, eds.), vol. 25, pp. 1097–1105, Curran Associates, Inc., 2012.

[125] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object de-
tection and semantic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 580–587, 2014.

[126] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective search for object
recognition,” International journal of computer vision, vol. 104, no. 2, pp. 154–171, 2013.

[127] I. Endres and D. Hoiem, “Category independent object proposals,” in European Conference on Com-
puter Vision, pp. 575–588, Springer, 2010.

[128] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image windows,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2189–2202, 2012.

[129] J. Carreira and C. Sminchisescu, “Cpmc: Automatic object segmentation using constrained parametric
min-cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1312–
1328, 2011.

[130] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for
visual recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 37, no. 9,
pp. 1904–1916, 2015.

107

[131] K. Grauman and T. Darrell, “The pyramid match kernel: Discriminative classification with sets of
image features,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1,
vol. 2, pp. 1458–1465, IEEE, 2005.

[132] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recog-
nizing natural scene categories,” in 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), vol. 2, pp. 2169–2178, IEEE, 2006.

[133] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object
classes (voc) challenge,” International journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[134] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International Conference on Computer Vision
(ICCV), December 2015.

[135] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[136] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region
proposal networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6,
pp. 1137–1149, 2017.

[137] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international
conference on computer vision, pp. 2961–2969, 2017.

[138] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015.

[139] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic segmentation,”
IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 4, pp. 640–651, 2017.

[140] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neu-
ral networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1492–1500, 2017.

[141] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for
object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2117–2125, 2017.

[142] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadar-
rama, et al., “Speed/accuracy trade-offs for modern convolutional object detectors,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 7310–7311, 2017.

[143] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,”
arXiv preprint arXiv:1905.11946, 2019.

[144] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun, “Light-head r-cnn: In defense of two-stage
object detector,” arXiv preprint arXiv:1711.07264, 2017.

[145] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

[146] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time ob-
ject detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 779–788, 2016.

[147] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1–9, 2015.

108

[148] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 7263–7271, 2017.

[149] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing inter-
nal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[150] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[151] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal speed and accuracy of object
detection,” arXiv preprint arXiv:2004.10934, 2020.

[152] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh, “CSPNet: A new
backbone that can enhance learning capability of cnn,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, pp. 390–391, 2020.

[153] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data augmentation.,” in AAAI,
pp. 13001–13008, 2020.

[154] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural networks with cutout,”
arXiv preprint arXiv:1708.04552, 2017.

[155] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic im-
age segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[156] S. Liu, D. Huang, et al., “Receptive field block net for accurate and fast object detection,” in Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 385–400, 2018.

[157] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 7132–7141, 2018.

[158] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “CBAM: Convolutional block attention module,” in
Proceedings of the European conference on computer vision (ECCV), pp. 3–19, 2018.

[159] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot
multibox detector,” in European conference on computer vision, pp. 21–37, Springer, 2016.

[160] H. Law and J. Deng, “CornerNet: Detecting objects as paired keypoints,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pp. 734–750, 2018.

[161] A. Newell, Z. Huang, and J. Deng, “Associative embedding: End-to-end learning for joint detection
and grouping,” in Advances in neural information processing systems, pp. 2277–2287, 2017.

[162] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose estimation,” in Euro-
pean conference on computer vision, pp. 483–499, Springer, 2016.

[163] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet: Keypoint triplets for object
detection,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 6569–6578,
2019.

[164] D. Boursinos and X. Koutsoukos, “Trusted confidence bounds for learning enabled cyber-physical
systems,” in Workshop on Assured Autonomous Systems at SP2020, 2020.

[165] D. Boursinos and X. Koutsoukos, “Assurance monitoring of learning-enabled cyber-physical systems
using inductive conformal prediction based on distance learning,” Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing, vol. 35, no. 2, p. 251–264, 2021.

[166] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image recognition,”
in ICML deep learning workshop, vol. 2, Lille, 2015.

109

[167] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in International Workshop on
Similarity-Based Pattern Recognition, pp. 84–92, Springer, 2015.

[168] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[169] E. Kiplagat, “American rhetoric (online speech bank).” https://americanrhetoric.com/speechbank.htm.

[170] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer: Benchmarking machine learn-
ing algorithms for traffic sign recognition,” Neural Networks, vol. 32, pp. 323 – 332, 2012. Selected
Papers from IJCNN 2011.

[171] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[172] I. Melekhov, J. Kannala, and E. Rahtu, “Siamese network features for image matching,” in 2016 23rd
International Conference on Pattern Recognition (ICPR), pp. 378–383, IEEE, 2016.

[173] H. Xuan, A. Stylianou, and R. Pless, “Improved embeddings with easy positive triplet mining,” arXiv
preprint arXiv:1904.04370, 2019.

[174] C. Shannon, “Communication in the presence of noise,” Proceedings of the IRE, vol. 37, pp. 10–21, 1
1949.

[175] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,”
Journal of Computational and Applied Mathematics, vol. 20, pp. 53 – 65, 1987.

[176] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Commun. ACM,
vol. 18, pp. 509–517, Sept. 1975.

[177] F. Darema, “Grid computing and beyond: The context of dynamic data driven applications systems,”
Proceedings of the IEEE, vol. 93, no. 3, pp. 692–697, 2005.

[178] A. Aved and E. Blasch, “Multi-int query language for dddas designs,” Procedia Computer Science,
vol. 51, pp. 2518–2532, 12 2015.

[179] B. Uzkent, M. J. Hoffman, and A. Vodacek, “Integrating hyperspectral likelihoods in a multidimen-
sional assignment algorithm for aerial vehicle tracking,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 9, no. 9, pp. 4325–4333, 2016.

[180] E. Blasch, G. Seetharaman, and F. Darema, “Dynamic Data Driven Applications Systems (DDDAS)
modeling for automatic target recognition,” in Automatic Target Recognition XXIII (F. A. Sadjadi and
A. Mahalanobis, eds.), vol. 8744, pp. 165 – 174, International Society for Optics and Photonics, SPIE,
2013.

[181] D. Allaire, J. Chambers, R. Cowlagi, D. Kordonowy, M. Lecerf, L. Mainini, F. Ulker, and K. Willcox,
“An offline/online dddas capability for self-aware aerospace vehicles,” Procedia Computer Science,
vol. 18, pp. 1959 – 1968, 2013. 2013 International Conference on Computational Science.

[182] R. M. Fujimoto, N. Celik, H. Damgacioglu, M. Hunter, D. Jin, Y.-J. Son, and J. Xu, “Dynamic data
driven application systems for smart cities and urban infrastructures,” in 2016 Winter Simulation Con-
ference (WSC), pp. 1143–1157, IEEE, 2016.

[183] D. Boursinos and X. Koutsoukos, “Improving prediction confidence in learning-enabled autonomous
systems,” in Dynamic Data Driven Applications Systems (F. Darema, E. Blasch, S. Ravela, and
A. Aved, eds.), (Cham), pp. 217–224, Springer International Publishing, 2020.

[184] M. Kääriäinen and J. Langford, “A comparison of tight generalization error bounds,” in Proceedings
of the 22nd International Conference on Machine Learning, pp. 409–416, Association for Computing
Machinery, 2005.

110

https://americanrhetoric.com/speechbank.htm

[185] D. Boursinos and X. Koutsoukos, “Selective classification of sequential data using inductive conformal
prediction,” in 2022 IEEE International Conference on Assured Autonomy (ICAA) (ICAA’22), (virtual,
Puerto Rico), Mar. 2022.

[186] R. El-Yaniv et al., “On the foundations of noise-free selective classification.,” Journal of Machine
Learning Research, vol. 11, no. 5, 2010.

[187] Y. Wiener and R. El-Yaniv, “Agnostic selective classification,” Advances in neural information pro-
cessing systems, vol. 24, pp. 1665–1673, 2011.

[188] Y. Geifman, G. Uziel, and R. El-Yaniv, “Bias-reduced uncertainty estimation for deep neural classi-
fiers,” in 7th International Conference on Learning Representations, ICLR, New Orleans, LA, USA,
May 6-9, 2019, 2019.

[189] G. Shafer and V. Vovk, “A tutorial on conformal prediction.,” Journal of Machine Learning Research,
vol. 9, no. 3, 2008.

[190] V. Vovk and R. Wang, “Combining p-values via averaging,” Biometrika, vol. 107, no. 4, pp. 791–808,
2020.

[191] B. Rüger, “Das maximale signifikanzniveau des tests: “lehneho ab, wennk untern gegebenen tests zur
ablehnung führen”,” Metrika, vol. 25, pp. 171–178, 1978.

[192] L. Rüschendorf, “Random variables with maximum sums,” Advances in Applied Probability, vol. 14,
no. 3, pp. 623–632, 1982.

[193] P. Toccaceli, “Conformal predictor combination using Neyman–Pearson Lemma,” in Conformal and
Probabilistic Prediction and Applications, pp. 66–88, PMLR, 2019. ISSN: 2640-3498.

[194] P. Toccaceli and A. Gammerman, “Combination of conformal predictors for classification,” in Pro-
ceedings of the Sixth Workshop on Conformal and Probabilistic Prediction and Applications (A. Gam-
merman, V. Vovk, Z. Luo, and H. Papadopoulos, eds.), vol. 60 of Proceedings of Machine Learning
Research, pp. 39–61, PMLR, 13–16 Jun 2017.

[195] R. A. Fisher et al., “224a: Answer to question 14 on combining independent tests of significance.,”
1948.

[196] S. A. Stouffer, E. A. Suchman, L. C. Devinney, S. A. Star, and R. M. Williams Jr., The American
soldier: Adjustment during army life. (Studies in social psychology in World War II), Vol. 1. Princeton
Univ. Press, 1949.

[197] T. Lipták, “On the combination of independent tests,” Magyar Tud Akad Mat Kutato Int Kozl, vol. 3,
pp. 171–197, 1958.

[198] S. M. Ross, Introduction to Probability Models. Academic Press, 2014.

[199] Y. Liu and J. Xie, “Cauchy combination test: A powerful test with analytic p-value calculation under
arbitrary dependency structures,” Journal of the American Statistical Association, vol. 115, no. 529,
pp. 393–402, 2020. PMID: 33012899.

[200] K. Aslansefat, S. Kabir, A. Abdullatif, V. Vasudevan, and Y. Papadopoulos, “Toward improving confi-
dence in autonomous vehicle software: A study on traffic sign recognition systems,” Computer, vol. 54,
no. 8, pp. 66–76, 2021.

[201] V. Vovk, G. Shafer, and I. Nouretdinov, “Self-calibrating probability forecasting.,” in NIPS, pp. 1133–
1140, 2003.

[202] A. Lambrou, I. Nouretdinov, and H. Papadopoulos, “Inductive venn prediction,” Annals of Mathemat-
ics and Artificial Intelligence, vol. 74, no. 1-2, pp. 181–201, 2015.

111

[203] A. Lambrou, H. Papadopoulos, I. Nouretdinov, and A. Gammerman, “Reliable probability estimates
based on support vector machines for large multiclass datasets,” in IFIP International Conference on
Artificial Intelligence Applications and Innovations, pp. 182–191, Springer, 2012.

[204] H. Papadopoulos, “Reliable probabilistic classification with neural networks,” Neurocomputing,
vol. 107, pp. 59–68, 2013.

[205] G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton, “Regularizing neural networks by
penalizing confident output distributions,” arXiv preprint arXiv:1701.06548, 2017.

[206] A. Kumar, S. Sarawagi, and U. Jain, “Trainable calibration measures for neural networks from kernel
mean embeddings,” in Proceedings of the 35th International Conference on Machine Learning (J. Dy
and A. Krause, eds.), vol. 80 of Proceedings of Machine Learning Research, (Stockholmsmässan,
Stockholm Sweden), pp. 2805–2814, PMLR, 10–15 Jul 2018.

[207] H. Papadopoulos, V. Vovk, and A. Gammerman, “Regression conformal prediction with nearest neigh-
bours,” J. Artif. Int. Res., vol. 40, p. 815–840, Jan. 2011.

[208] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks for mobile vision applications,” 2017.

[209] D. Boursinos and X. Koutsoukos, “Reliable probability intervals for classification using inductive venn
predictors based on distance learning,” in 2021 IEEE International Conference on Omni-Layer Intelli-
gent Systems (COINS), pp. 1–7, 2021.

[210] G. W. Brier, “Verification of forecasts expressed in terms of probability,” Monthly Weather Review,
vol. 78, no. 1, pp. 1 – 3, 01 Jan. 1950.

[211] R. Benedetti, “Scoring rules for forecast verification,” Monthly Weather Review, vol. 138, no. 1,
pp. 203–211, 2010.

[212] R. Selten, “Axiomatic characterization of the quadratic scoring rule,” Experimental Economics, vol. 1,
no. 1, pp. 43–61, 1998.

[213] H. Mureşan and M. Oltean, “Fruit recognition from images using deep learning,” arXiv preprint
arXiv:1712.00580, 2017.

[214] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, and Y. Elovici, “N-
baiot—network-based detection of iot botnet attacks using deep autoencoders,” IEEE Pervasive Com-
puting, vol. 17, no. 3, pp. 12–22, 2018.

[215] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT: Mirai and Other Botnets,”
Computer, vol. 50, no. 7, pp. 80–84, 2017.

112

	LIST OF TABLES
	LIST OF FIGURES
	I Introduction
	I.1 Motivation
	I.2 Research Challenges
	I.3 Research Contributions
	I.4 Organization

	II Related Work
	II.1 Assurance in Machine Learning
	II.1.1 Notations and Evaluation Metrics
	II.1.2 Calibration Methods
	II.1.3 The Conformal Prediction Framework

	II.2 Distance Metric Learning
	II.2.1 Early Work
	II.2.2 Deep Learning Methods

	II.3 Object Detection
	II.3.1 Early Work
	II.3.2 Deep Learning Approaches

	III Inductive Conformal Prediction with Distance Learning
	III.1 Introduction
	III.2 Related Work
	III.3 Problem Formulation
	III.4 Distance Learning
	III.5 ICP Based on Distance Learning
	III.6 Assurance Monitoring
	III.7 Evaluation
	III.7.1 Experimental Setup
	III.7.2 Baseline
	III.7.3 Preprocessing and Distance Learning
	III.7.4 Selecting the Significance Level
	III.7.5 Computational Efficiency

	III.8 Concluding Remarks

	IV Improving Prediction Confidence Using Sequential Sensor Measurements
	IV.1 Introduction
	IV.2 Triplet-based ICP
	IV.3 Feedback-loop for Querying the Sensors
	IV.4 Evaluation
	IV.4.1 Experimental Setup
	IV.4.2 Model Performance
	IV.4.3 ICP Performance
	IV.4.4 Improving Prediction Accuracy

	IV.5 Concluding Remarks

	V Selective Classification of Sequential Data
	V.1 Introduction
	V.2 Problem
	V.3 Selective Classification
	V.4 Multiple Testing Of Single Hypothesis
	V.4.1 Inductive Conformal Prediction
	V.4.2 Combining Multiple p-values
	V.4.2.1 Merging Functions
	V.4.2.2 Quantile Combination Approaches
	V.4.2.3 Empirical CDF Computation

	V.5 Evaluation
	V.5.1 Experimental Setup
	V.5.2 Siamese Network Evaluation
	V.5.3 Softmax Baseline and Selective Classification with Individual Inputs
	V.5.4 Validity
	V.5.5 Selective Classification on Sequences

	V.6 Concluding Remarks

	VI Reliable Probability Intervals for Classification
	VI.1 Introduction
	VI.2 Problem
	VI.3 Probability Intervals based on Distance Metric Learning
	VI.4 Inductive Venn Predictors with Dynamic Categories
	VI.5 Evaluation Metrics
	VI.6 Evaluation
	VI.6.1 Experimental Setup
	VI.6.2 Baseline Taxonomies
	VI.6.3 Evaluation Results
	VI.6.4 IVP with Dynamic Categories

	VI.7 Concluding Remarks

	VII Conclusions
	VIII List of Publications
	 BIBLIOGRAPHY

