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CHAPTER 1

Introduction

The standard cosmological model, ΛCDM, asserts that baryonic matter (i.e., normal matter

that makes up gas and stars) makes up only ∼ 16% of the total mass in the Universe. The

rest of the mass in the Universe is made of a mysterious substance known as “dark matter.”

Because baryonic matter interacts through not only gravity but also electromagnetic forces,

it is directly observable. Dark matter, however, interacts only through gravity, and therefore

cannot be directly observed. However, because dark matter makes up the majority of the

mass in the Universe, it is the primary driver of large-scale structure formation.

Over the past 14 billion years, the Universe has evolved from a state of nearly uniform

density into a complex web of structure. Slight perturbations in the initial dark matter

density field of the Universe shortly after the Big Bang grew over time via gravity, resulting

in huge variations in the density field today. What were once small underdense pockets

evolved into vast cosmic voids, while slightly dense pockets ultimately became massive

overdense regions of dark matter known as “dark matter halos.” These dark matter halos

are the hosts in which galaxies ultimately form and reside. Thus, despite being unable to

directly observe dark matter, we can use observations of the clustering of galaxies (which

are directly observable) to build a map of how matter in the Universe is distributed today.

By comparing observations of galaxy clustering to our models of structure formation in

the Universe, we can gain a better understanding of the physics that governed the initial

conditions and subsequent evolution of the Universe.

On very large physical scales, where galaxies are simple biased tracers of the underly-

ing dark matter distribution, our cosmological model is able to accurately predict the galaxy

clustering that we observe (Scherrer and Weinberg, 1998). On small physical scales, how-

ever, galaxy clustering is affected both by our cosmological model and by the complex
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physics of galaxy formation and evolution, which is not well understood. Thus, it is dif-

ficult to test our cosmological models of structure formation on small scales without first

developing an accurate picture of the connection between galaxies and the dark matter ha-

los in which they reside. The goal of this dissertation is to develop an accurate probe of this

“galaxy-halo connection” in order to improve both our understanding of galaxy formation

and ultimately test our cosmological model.

1.1 ΛCDM Cosmology and the Expanding Universe

The standard cosmological model, ΛCDM, postulates that the Universe is comprised of

∼ 69% dark energy (ΩΛ) and ∼ 31% matter (ΩM), of which ∼ 84% is Cold Dark Matter

(CDM) and ∼ 16% is normal (baryonic) matter (Planck Collaboration et al., 2020). In this

paradigm, dark energy is the negative vacuum pressure causing the accelerated expansion

of the Universe, and cold dark matter is presumed to be a non-relativistic particle which is

only affected by the force of gravity. ΛCDM also asserts that the geometry of the Universe

is flat, and that the Universe began with the Big Bang, followed by a brief inflationary

period of rapid expansion. Observations of the Cosmic Microwave Background radiation

have provided very tight constraints on this standard model of cosmology (Penzias and

Wilson, 1965; Dicke et al., 1965; Spergel et al., 2003).

The fact that the Universe is expanding was discovered through observations of red-

shifted galaxies by Edwin Hubble in the 1920s (Hubble, 1929). If the Universe were only

composed of normal matter, we would expect gravity to gradually slow the expansion of

the Universe over time. Recently, however, observations of distant Type Ia Supernovae

confirmed that the expansion of the Universe is in fact accelerating, leading us to discover

the presence of dark energy (Riess et al., 1998; Perlmutter et al., 1999). Meanwhile, obser-

vations of rotating galaxies led us to discover the existence dark matter (Rubin et al., 1980).

While we have not as of yet detected a dark matter particle, a variety of observations indi-

cate that dark matter is cold (moves slowly, i.e. at non-relativistic speeds) and collisionless
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(i.e., only interacts strongly through the force of gravity) (e.g. Clowe et al., 2006).

1.1.1 Growth of Structure

One of the primary strengths of ΛCDM is its ability to predict the large-scale structure

that we observe in the Universe today. Shortly after the Big Bang, the Universe had an

almost uniform density. Under such conditions, large-scale structure formation would have

been nearly impossible. However, quantum fluctuations in the primordial Universe led to

small pockets of over- and underdense regions. At the moment inflation began, these small

density perturbations grew rapidly, and over time became the large structures that we see

today. Underdense regions became large cosmic voids, while overdense regions collapsed

to become gravitationally-bound dark matter halos, with overdensities ∼ 200 times the

mean density of the Universe. Over time, baryonic matter coalesced within these dark

matter halos to form galaxies.

1.2 Probing Cosmology with Galaxy Surveys

There are several observational probes that we can use to constrain our cosmological model,

one of which is calculating the positions of nearby galaxies to build a map of the distribu-

tion of galaxies in the local Universe. By comparing observations of galaxy clustering in

the Universe to predictions of large-scale structure from ΛCDM, we can simultaneously

constrain both the parameters of our cosmological model and our understanding of the

physics that governs structure formation.

Mapping the distribution of galaxies in the observable Universe requires determining

the distances to thousands of galaxies. This is primarily done through galaxy redshift sur-

veys (e.g., York et al., 2000; Colless et al., 2001; Jones et al., 2004; Dawson et al., 2013).

These surveys involve measuring the spectra of thousands of galaxies in order to calculate

a redshift, z, for each galaxy. As an example, Figure 1.1 depicts the spatial distribution

of galaxies observed in the Sloan Digital Sky Survey (SDSS York et al., 2000). Once we

have a map of the positions of many galaxies, we can measure a multitude of statistics to
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Figure 1.1: Large-scale structure in the Sloan Digital Sky Survey. Each point is a galaxy, and the
color of each point corresponds to the (g-r) color of the galaxy. Earth is located at the center. Image
Credit: https://www.sdss.org/science/orangepie/; M. Blanton and SDSS.

quantify the clustering of these galaxies. These statistics include things like the number

of pairs of galaxies separated by a certain distance, the number of groups of galaxies of a

certain size, the number of voids of a given size, etc.

1.2.1 Redshift-space distortions, k-corrections, and volume-limited samples

The redshift of the galaxy is a result of both the expansion of the Universe (zcosmological) and

the radial peculiar velocity of the galaxy (zdoppler). Thus, the redshift calculated from the

galaxy’s spectrum is the product of these two effects: 1+z= (1+zcosmological)(1+zdoppler).

At low redshift, the distance to the galaxy is approximated as d = cz/H0, where c is the

speed of light and H0 is the Hubble constant (∼ 70(km/s)/Mpc). The contribution of

the galaxy’s peculiar velocity to the redshift (and subsequently the distance calculated) is

known as a “redshift-space distortion.” Redshift-space distortions have a significant impact

on the measured distances of galaxies, particularly at very low redshift, where the galaxy’s
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velocity contributes significantly to the observed redshift of the galaxy.

Galaxy absolute magnitudes are typically measured through a single filter, which spans

only part of the electromagnetic spectrum. In the Sloan Digital Sky Survey, for example,

the filters used are u,g,r,i, and z, each of which covers a specific wavelength range between

300 and 1100nm. Galaxy magnitudes are typically determined using one particular filter

(e.g., the r filter). However, because each galaxy has a different redshift, the part of the

total spectrum of the galaxy that is observed in the r filter differs for each galaxy, which

has an effect on the absolute magnitude determination of the galaxy. Thus, galaxy absolute

magnitudes at different redshifts cannot be directly compared without first correcting for

the effect of the redshift on the observed magnitude. This correction, known as a “k-

correction,” converts the absolute magnitudes of all galaxies into their rest frame absolute

magnitude at a particular redshift (e.g., z = 0.1).

Because bright objects can be observed at farther distances than faint objects, our map

of the distribution of galaxies is biased toward brighter galaxies at farther distances. Be-

cause different types of galaxies cluster in different ways, this selection bias (known as

“Malmquist bias”) can have a significant impact on galaxy clustering measurements. In

order to measure galaxy clustering in a way that is unaffected by our observational limita-

tions, we must construct so-called “volume-limited samples” of galaxies. These samples

contain all of the galaxies brighter than a certain absolute magnitude threshold (in a partic-

ular filter) within a given redshift range. In other words, the sample is “complete” within

the redshift range of interest. A lower redshift sample will be complete down to a lower

magnitude limit than a high-redshift sample, but within the redshift limits of the sample,

there will be no bias toward brighter galaxies at farther distances.

1.3 Modeling Galaxy Clustering

Galaxy redshift surveys provide us with a map of the distribution of galaxies in the nearby

Universe. By comparing this map to our predictions of large-scale structure formation,
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we can use galaxy surveys to test our cosmological model. While we know that structure

formation is primarily driven by dark matter, we also know that, in general, galaxies tend

to form and reside within dark matter halos. Particularly on very large scales, it is safe to

assume that galaxies are simple biased tracers of the underlying dark matter distribution.

Thus, for a given set of cosmological parameters, we can model the evolution of dark matter

structure in the Universe, and compare this prediction on large scales to the observed galaxy

clustering from redshift surveys. This has been used to measure things like the Baryon

Acoustic Oscillation (BAO) signature to constrain ΛCDM (Eisenstein et al., 2005).

In general, ΛCDM has been tested very thoroughly on large scales, and seems to pro-

duce very accurate predictions of large scale structure. However, ΛCDM has not been

thoroughly tested on small scales. Small-scale galaxy clustering therefore has the poten-

tial to be a powerful new probe of cosmological models. Unfortunately, using small-scale

clustering to test ΛCDM is a challenge because on these scales (. 10 h−1Mpc), the spatial

distribution of galaxies is affected not only by our cosmological model but also by all of the

complex physics of galaxy formation and evolution. In other words, on these scales, galax-

ies are no longer simple tracers of the underlying dark matter distribution. Thus, studying

the connection between galaxies and the dark matter halos in which they reside is key to

using small-scale clustering to constrain cosmological models, as well as understanding

galaxy formation and evolution.

1.3.1 N-body Simulations

First and foremost, modeling small-scale galaxy clustering requires highly accurate pre-

dictions of dark matter structure formation on small scales. At early times, the growth of

structure in the Universe can be accurately predicted analytically to first-order using lin-

ear theory (i.e. the Zel’dovich approximation, Zel’Dovich, 1970), or to second-order using

2nd Order Lagrangian Perturbation Theory (2LPT Scoccimarro, 1998; Crocce et al., 2006).

However, on small scales, structure formation becomes highly nonlinear, and cannot be pre-
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dicted accurately today using linear theory or 2LPT. Instead, we can use 2LPT to predict

the density field at very high redshift (e.g., z = 99), and then run an N-body simulation to

model the subsequent evolution of structure on all scales.

Because dark matter comprises ∼ 85% of the matter in the Universe, these simulations

frequently only involve dark matter. Such “dark matter only” (DMO) simulations are use-

ful because they allow us to predict the large-scale distribution of dark matter as well as

the statistical properties of dark matter halos in the Universe (i.e., the number of halos of a

given mass, the clustering of halos, etc.) (Springel et al., 2005). These simulations allow

us to investigate our cosmological model, our assumptions about the initial conditions of

the Universe, and our understanding of the nature of dark matter, dark energy, and gravity,

without having to model complex baryonic physics. However, because we cannot directly

observe dark matter in the Universe, it is difficult to compare the output of a DMO simu-

lation to our observations of galaxy clustering without having a way to connect galaxies to

the dark matter distribution.

1.3.2 Hydrodynamic Simulations

Another type of simulation which can be used to model both dark matter structure evolution

and galaxy formation is a hydrodynamic simulation (e.g. Vogelsberger et al., 2014a). Hy-

drodynamic simulations involve dark matter, as well as baryonic matter. Thus, the physics

involved includes gravity, as well as complicated baryonic physics to model things like star

formation, black hole formation, supernova feedback, and feedback from active galactic

nuclei (AGN). Running these simulations involves specifying the values of hundreds of pa-

rameters to regulate these various physical processes. Additionally, using these simulations

to model galaxy clustering, even on small scales, requires simulating structure formation

in large volumes at high-resolution. Running large, high-resolution hydrodynamic simula-

tions is much more computationally expensive than running DMO simulations, owing to

the more complex physics calculations involved. Furthermore, currently there is no con-

7



Figure 1.2: A massive cluster in the Illustris hydrodynamic simulation at z = 0. The left-hand
side shows the dark matter density, and the right-hand side shows the gas density in the simulation.
Image Credit: Illustris Collaboration / Illustris Simulation (Vogelsberger et al., 2014a,b).

sensus on the correct physics prescriptions to use. Ideally, we would like to run these

simulations many times, while varying cosmological and baryonic physics parameters, in

order to explore a large parameter space and constrain our model. However, the expensive

and complex nature of hydrodynamic simulations makes them ill-suited for such an exer-

cise. Thus, using hydrodynamic simulations is currently not a viable strategy for modeling

small-scale galaxy clustering.

1.3.3 Halo Models

An alternative to modeling galaxy clustering with hydrodynamic simulations is to employ

a so-called “halo model” (Neyman and Scott, 1952; Peebles, 1974; McClelland and Silk,

1977; Scherrer and Bertschinger, 1991; Kauffmann et al., 1997, 1999; Baugh et al., 1999;

Jing et al., 1998; Benson et al., 2000; Ma and Fry, 2000; Peacock and Smith, 2000; Seljak,

2000; Scoccimarro et al., 2001; Sheth et al., 2001; White et al., 2001; Cooray and Sheth,
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2002). These models rely on the assumption that the clustering of galaxies can be fully

described by (i) the clustering of their host halos and (ii) the way in which galaxies occupy

these halos. By assuming that galaxies form and reside within dark matter halos, this

empirical approach allows us to use a few free parameters to connect galaxies to halos

in order to match clustering observations. This strategy involves first running a DMO

simulation with adequate volume and resolution to model structure formation on small

scales, then employing a halofinding algorithm (e.g. Lacey and Cole, 1994; Behroozi et al.,

2013) to identify dark matter halos, and finally using a halo model to connect galaxies to

the dark matter distribution. Thus, we can quantitatively model galaxy clustering on small

scales while bypassing the need for a complete understanding of galaxy formation physics.

One popular flavor of halo model is the Halo Occupation Distribution (HOD) model

(Berlind and Weinberg, 2002; Berlind et al., 2003). The standard form of this model assigns

a number of galaxies to a halo of mass M using five free parameters which only depend

on the halos mass Zheng et al. (2005). This model also contains prescriptions that specify

the relative spatial and velocity distributions of galaxies and dark matter within halos. This

type of HOD model has become the “standard” in halo modeling studies. Because the

standard HOD model contains only a few free parameters, it is simple and computationally

feasible to vary these parameters in order to match the clustering of observed galaxies.

The DMO simulation + standard HOD model approach has many advantages for mod-

eling small-scale galaxy clustering, chief among which are its computational feasibility

and its ability to successfully reproduce several frequently used galaxy clustering statis-

tics (Sinha et al., 2018). This “forward modeling” approach takes a few free parameters

and produces predictions of galaxy clustering that can be directly compared to actual ob-

servations of galaxy clustering from redshift surveys. However, this approach has several

limitations as well. For example, it relies heavily on the assumption that DMO simulations

produce the correct number of halos of different masses (i.e. the correct “halo mass func-

tion”) as well as the correct clustering of halos. It also assumes that the connection between
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galaxies and their halos can be described via a few free parameters which only depend on

the mass of the dark matter halo.

1.4 Summary

The goal of the work presented in this dissertation is to develop an accurate model of

the galaxy-halo connection, through a combination of studies performed on hydrodynamic

simulations and analyses of small-scale galaxy clustering in the Sloan Digital Sky Survey.

In Chapter 2, I use hydrodynamic simulations of galaxy formation to investigate the extent

to which the assumptions of the standard HOD model can affect galaxy clustering statistics.

In Chapter 3, I investigate the impact of baryonic physics on the halo population in three

different hydrodynamic simulations. In Chapter 4, I add flexibility to the standard Halo

Occupation Distribution model to constrain the galaxy-halo connection in the Sloan Digital

Sky Survey using a combination of small-scale galaxy clustering statistics. Finally, in

Chapter 5, I provide a summary and a discussion of future work.
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CHAPTER 2

Testing the Accuracy of Halo Occupation Distribution Modelling using

Hydrodynamic Simulations

This chapter was previously published in the February 2020 edition of Monthly Notices of

the Royal Astronomical Society1 (Beltz-Mohrmann et al., 2020) and is reproduced here,

with minor formatting changes, with the permission of the publisher and my co-authors,

Andreas A. Berlind and Adam O. Szewciw.

Halo models provide a simple and computationally inexpensive way to investigate the

connection between galaxies and their dark matter haloes. However, these models rely on

the assumption that the role of baryons can be easily parametrized in the modelling pro-

cedure. We aim to examine the ability of halo occupation distribution (HOD) modelling

to reproduce the galaxy clustering found in two different hydrodynamic simulations, Illus-

tris and EAGLE. For each simulation, we measure several galaxy clustering statistics on

two different luminosity threshold samples. We then apply a simple five parameter HOD,

which was fit to each simulation separately, to the corresponding dark matter only simu-

lations, and measure the same clustering statistics. We find that the halo mass function is

shifted to lower masses in the hydrodynamic simulations, resulting in a galaxy number den-

sity that is too high when an HOD is applied to the dark matter only simulation. However,

the exact way in which baryons alter the mass function is remarkably different in the two

simulations. After applying a correction to the halo mass function in each simulation, the

HOD is able to accurately reproduce all clustering statistics for the high luminosity sample

of galaxies. For the low luminosity sample, we find evidence that in addition to correcting

the halo mass function, including spatial, velocity, and assembly bias parameters in the

HOD is necessary to accurately reproduce clustering statistics.

1Because this chapter was originally published in a journal in the UK, British English spelling conventions
are used in this chapter.
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2.1 Introduction

Studying the connection between galaxies and the dark matter haloes in which they reside

is one of the keys to understanding galaxy formation and evolution, as well as constrain-

ing cosmological models. In recent years, using hydrodynamic simulations has become a

popular method for investigating this connection (e.g. Vogelsberger et al., 2014a). How-

ever, these simulations are computationally expensive, and are thus ill-suited for exploring

a large parameter space. Moreover, different hydrodynamic simulations produce different

results; we currently lack a consensus on the correct gas physics prescriptions to use.

By contrast, dark matter only simulations are much less computationally expensive, and

although the only physics involved is gravity, they still allow us to predict the large-scale

distribution of dark matter as well as the statistical properties of dark matter haloes in the

Universe. One can then adopt an empirical rather than an ab-initio approach and employ

a halo model in order to connect galaxies to the dark matter distribution. Halo models are

a broad class of models based on the assumption that galaxies form and live inside dark

matter haloes. With a few free parameters that can be fit to clustering observations, one can

connect galaxies to haloes, thus quantitatively modelling galaxy clustering on small scales

while bypassing the need for a complete understanding of galaxy formation physics.

The earliest halo models to describe galaxy clustering were the analytic models of Ney-

man and Scott (1952), Peebles (1974), and McClelland and Silk (1977). Later, Kauffmann

et al. (1997, 1999), and Baugh et al. (1999) showed that semi-analytic models could be

used to predict galaxy clustering by combining the results from N-body simulations with

theories for the formation and evolution of galaxies within haloes. Soon thereafter, Jing

et al. (1998) and Benson et al. (2000) found that galaxy clustering merely depends on halo

occupation statistics as a function of halo mass, potentially sidestepping the need to model

galaxy formation altogether. Subsequently, several papers (e.g. Ma and Fry, 2000; Peacock

and Smith, 2000; Seljak, 2000; Scoccimarro et al., 2001; Sheth et al., 2001; White et al.,

2001; Cooray and Sheth, 2002) expanded on the work of Scherrer and Bertschinger (1991)
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to combine both halo properties and occupation statistics to successfully predict the galaxy

correlation function and power spectrum.

A key ingredient of the halo model is the Halo Occupation Distribution (HOD), which

defines the bias of a population of galaxies by the conditional probability that a dark matter

halo of virial mass M contains N galaxies, together with prescriptions that specify the

relative spatial and velocity distributions of galaxies and dark matter within haloes (Berlind

and Weinberg, 2002; Berlind et al., 2003). These relations can be parametrized with various

degrees of freedom. However, most studies have used simple formulations of the HOD,

with at most five free parameters that specify the mean occupation number of galaxies,

along with the assumptions that galaxies trace dark matter inside haloes. This type of HOD

model, as proposed by Zheng et al. (2005), has become the ‘standard’ in halo modelling

studies.

Halo models have been used to model galaxy clustering in many galaxy redshift sur-

veys, including the Sloan Digital Sky Survey (SDSS; York et al., 2000), the 2dF Galaxy

Redshift Survey (2dFGRS; Colless et al., 2001), the 6dF Galaxy Redshift Survey (6dfGRS;

Jones et al., 2004), and the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS;

Dawson et al., 2013). Many studies have used halo models to investigate the two-point

correlation function of both low redshift galaxies (e.g. Magliocchetti and Porciani, 2003;

Zehavi et al., 2004; Collister and Lahav, 2005; Tinker et al., 2005; Zehavi et al., 2005, 2011;

Watson et al., 2012; Beutler et al., 2013; Piscionere et al., 2015) as well as high redshift

galaxies (e.g. Bullock et al., 2002; Moustakas and Somerville, 2002; Hamana et al., 2004;

Zheng, 2004; Lee et al., 2006; Tinker et al., 2010; Jose et al., 2013; Kim et al., 2014) (as

cited in Sinha et al. (2018)).

Some previous works (e.g. Zehavi et al., 2011) have found statistical tension between

predictions of the halo model and the real Universe when fitting to galaxy clustering mea-

surements in the SDSS. However, these works rely on analytic halo models that do not

adequately control for systematic errors in the modelling procedure, making it difficult to
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interpret the goodness of fit results. Recently, Sinha et al. (2018) used a “fully numerical

mock-based methodology” to test the standard ΛCDM + halo model against the clustering

of SDSS DR7 galaxies. Their procedure carefully controlled for systematic errors, allowing

them to interpret the goodness of fit of their model. They measured the projected corre-

lation function, group multiplicity function, and galaxy number density, and found that

while the model could successfully fit each statistic separately, it was unable to fit them

simultaneously. Their best-fitting model was able to reproduce the clustering of low lumi-

nosity galaxies, but revealed a 2.3σ tension with the clustering of high luminosity galaxies,

indicating a possible problem with the ‘standard’ HOD model.

There are several assumptions built into the standard HOD model that could be incor-

rect. First, the HOD framework relies on the assumption that cosmology and gravity alone

govern the dark matter halo distribution. However, it has been shown that gas physics can

also affect the properties of haloes (e.g. Cui et al., 2012; Bocquet et al., 2016). Second,

the HOD typically assumes that the occupation of galaxies is solely based on halo mass,

and does not depend on secondary halo properties like halo concentration or age. This ig-

nores the possibility that galaxy clustering may be affected by the phenomenon known as

assembly bias (Gao et al., 2005; Wechsler et al., 2006; Croton et al., 2007; Padilla et al.,

2019; Salcedo et al., 2018; Xu and Zheng, 2018; Zehavi et al., 2018; Contreras et al., 2019).

Finally, most HOD modelling assumes that galaxy positions and velocities within haloes

trace the underlying distribution of dark matter.

Zentner et al. (2014) examined the extent to which the presence of assembly bias could

lead to systematic errors in halo occupation statistics inferred from galaxy clustering. The

authors constructed two sets of realistic mock galaxy catalogues with identical HODs: one

with assembly bias and one with assembly bias removed. They then fit standard HODs to

the galaxy clustering in each catalogue, and found that in the case where assembly bias

was removed, the inferred HODs agreed with the true HODs, but when assembly bias was

included, the inferred HODs showed significant systematic errors.
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Hearin et al. (2016) introduced a new class of HOD models, known as ‘decorated

HODs’, designed to incorporate parameters for assembly bias in halo occupation distri-

bution models. The authors used these new models to characterize the impact of assembly

bias on clustering statistics, and found that for SDSS-like samples, assembly bias can affect

galaxy clustering by up to a factor of 2 on 200 kpc scales. They also found that on small

scales (r < 1 Mpc) assembly bias generally enhances clustering, but on large scales it can

either increase or decrease clustering. Vakili and Hahn (2019) and Zentner et al. (2019)

applied this decorated HOD model to galaxies in the SDSS DR7 and found evidence of

galaxy assembly bias for some luminosity samples.

Regarding the spatial distribution of galaxies within haloes, the HOD often uses random

dark matter particles to assign positions and velocities to galaxies, or otherwise assumes

a dark matter density profile for galaxies (e.g. Navarro et al., 1997, NFW). This does not

account for the possibility that galaxies might not move like dark matter due to phenomena

such as mergers, tidal stripping, and dynamical friction, leading to effects like spatial and

velocity bias. Both Watson et al. (2012) and Piscionere et al. (2015) used halo models to

predict the very small-scale clustering of galaxies in the SDSS, and found that more lumi-

nous galaxies do not trace underlying dark matter distributions of their haloes, indicating

the presence of spatial bias. Guo et al. (2015b) looked at galaxy clustering in SDSS DR11

and found observational evidence for central velocity bias (i.e. that central galaxies on av-

erage are not at rest with respect to their host haloes) as well as satellite velocity bias (i.e.

in this case, that luminous satellite galaxies move more slowly than the dark matter). In a

subsequent paper, Guo et al. (2015a) modelled the projected and redshift-space two-point

correlation functions of galaxies in SDSS DR7, and similarly found that luminous central

galaxies and faint satellite galaxies exhibit velocity bias. Furthermore, they found that their

measurements could be successfully interpreted within an extended HOD framework that

includes central and satellite velocity bias parameters to describe the motions of galaxies

within haloes.
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Pujol and Gaztañaga (2014) investigated how well an HOD model could reproduce

the two-point clustering of galaxies in several semi-analytic models, and found that the

HOD failed to reconstruct the galaxy bias for low mass haloes, indicating the presence of

assembly bias. They also found that clustering shows some dependence on the substructure

of the host halo. Subsequently, Pujol et al. (2017) further compared the HOD model to

semi-analytic models, and found that using local density rather than halo mass in the HOD

model was a better predictor of galaxy bias.

In this paper we use hydrodynamic simulations of galaxy formation to investigate the

extent to which all these built-in assumptions to the standard HOD model can affect galaxy

clustering statistics. Although previous works (e.g. Artale et al., 2018; Bose et al., 2019)

have used hydrodynamic simulations to investigate variations in halo occupancy with envi-

ronment, concentration, and formation time, none have looked at the impact of the assump-

tions of the HOD on galaxy clustering statistics compared to clustering in hydrodynamic

simulations. Additionally, previous works have not looked at a wide variety of cluster-

ing statistics, nor have they compared bias effects across multiple different hydrodynamic

simulations.

In this work, we focus on two different hydrodynamic simulations, as well as two dif-

ferent luminosity threshold samples of galaxies. We measure several different galaxy clus-

tering statistics on each of our samples. We then fit a five parameter HOD model to each

simulation and sample, and apply these models to the corresponding dark matter only sim-

ulations. We then measure the same galaxy clustering statistics on our HOD galaxies as we

did on our hydrodynamic galaxies. We examine the accuracy with which we can predict

galaxy clustering using our HOD modelling framework, as compared to the full hydro-

dynamic simulations. Finally, we investigate how we might expand the HOD model to

include effects like assembly, spatial, and velocity bias in order to increase the accuracy of

the model. We note that our analysis strictly compares HOD modeling to hydrodynamic

simulations and not to real galaxy surveys. Therefore, conclusions should not be drawn
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about the accuracy of the clustering produced either by the simulations or the HOD models

as compared to real observations. However, the conclusions that we draw about the need to

add freedom to HOD models are still valid.

We discuss our simulations in Section 2.2, and our halo model in Section 2.3. In Sec-

tion 2.4 we discuss our clustering statistics, and in Section 2.5 we discuss the accuracy of

our model. In Section 2.6 we discuss our halo populations, and in Section 2.7 we discuss

possible extensions to our HOD model. Finally, in Section 2.8 we summarize our results

and conclusions.

2.2 Simulations

We use two cosmological N-body simulations for our analysis: Illustris (Nelson et al.,

2015; Vogelsberger et al., 2014b,a; Genel et al., 2014) and EAGLE (Schaye et al., 2015;

McAlpine et al., 2016; The EAGLE team, 2017; Springel, 2005; Crain et al., 2015). The

Illustris-2 simulation has a volume of 753(h−3Mpc3) and a dark matter particle mass of

3.5×107(h−1M�). The EAGLE simulation (RefL100N1504) has a volume of 67.773(h−3Mpc3)

and a dark matter particle mass of 6.6× 106(h−1M�). A summary of the simulation pa-

rameters can be found in Table 2.1.

Each of these hydrodynamic simulations has a corresponding dark matter only (DMO)

counterpart, derived from the same cosmology and initial conditions. These two simula-

tions are ideal for our analysis because they have high enough resolutions for the galaxies

we are interested in, as well as large enough volumes to accurately measure clustering

statistics out to 10h−1Mpc scales. We specifically choose to use Illustris-2 because the

resolution of Illustris-3 is not quite high enough for our purposes, but the resolution of

Illustris-1 is not necessary for the halo mass range that we are interested in. This is be-

cause in this work, the smallest haloes that we will ever populate with galaxies using our

HOD model are on the order of 1011(h−1M�). In Illustris-2-Dark, a halo of this size has

about 2400 particles, so it is well-resolved. Additionally, such a small halo will only ever
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Table 2.1: Simulation parameters. The columns show (from left to right): simulation name,
box size in h−1Mpc, number of dark matter particles, dark matter particle mass (for the
hydrodynamical run) in h−1M�, redshift used, and cosmological parameters. The dark
matter particle mass for Illustris-2-Dark is 4.2× 107(h−1M�), and for EAGLE Dark it is
7.5×106(h−1M�).

Sim. Lbox NDM mDM z h Ωm ΩΛ Ωb σ8 ns

Illustris 75 9103 3.5 ·107 0.13 0.704 0.273 0.727 0.0456 0.809 0.963
EAGLE 67.77 15043 6.6 ·106 0.101 0.6777 0.307 0.693 0.0483 0.829 0.961

be assigned a central galaxy (if it is assigned a galaxy at all), and thus the only halo prop-

erties that we need to know are the position and velocity of the halo, which should be

well-established with 2400 particles.

The Illustris simulation was performed with the moving-mesh code AREPO, while the

EAGLE simulation was performed with the GADGET-3 tree-SPH code, a modified version

of the public GADGET-2 simulation code. Both simulations employ models for star forma-

tion, stellar evolution, gas cooling and heating, supernovae feedback, black hole formation,

and AGN feedback. According to Scannapieco et al. (2012), while GADGET-3 and AREPO

share the same sub-grid physics, their different numerical hydrodynamical techniques can

lead to large discrepancies in their galaxies. In their tests, GADGET-3 formed only about

half as many stars as AREPO, and AREPO has a much higher gas and stellar mass fraction

than GADGET-3. The benefit of using two simulations with different physics for our analy-

sis is that we can compare our results from the two different simulations, providing us with

some theoretical uncertainty on our results.

We are interested in two different samples of galaxies: a “high” luminosity sample, sim-

ilar to that of the volume-limited SDSS DR7 (Abazajian et al., 2009) Mr < −21 sample,

and a “low” luminosity sample, similar to that of the SDSS DR7 Mr < −19 sample. (We

will refer to these samples as M−21
r and M−19

r henceforth.) We choose to use the z = 0.13

snapshot of the Illustris simulation because it is the closest available redshift to the median

redshift of the SDSS M−21
r sample (zmed = 0.132). We choose the z = 0.101 snapshot of

the EAGLE simulation because it is also the closest available redshift to that of the SDSS
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DR7 M−21
r sample. The M−19

r luminosity threshold sample has a median redshift of 0.054.

For the EAGLE simulation, the closest available redshift is still the z = 0.101 snapshot.

Therefore, because the snapshot does not change for our analysis on the EAGLE simula-

tion, we likewise chose not to change the snapshot for the Illustris simulation. However,

there is little evolution between z = 0.13 and z = 0.054, and we do not compare our cluster-

ing statistics to those measured on SDSS data, so our choice of snapshot should not impact

our results.

To create our galaxy samples, for each simulation we find the luminosity threshold

that results in a galaxy number density equivalent to that of the SDSS datasets of interest

(either M−21
r or M−19

r ). The luminosity threshold for each simulation and sample is given

in Table 2.2. We note that the luminosity thresholds are not exactly −21 or −19, which

indicates that the luminosity functions in Illustris and EAGLE are not the same as that in

the SDSS, nor are they the same as each other. (This discrepancy emphasizes the lack

of consensus among hydrodynamic simulations, and thus the advantage of using HOD

modeling with plenty of freedom to model galaxy clustering in the real Universe.) Thus, if

we create our samples based on luminosity, our number density will be different than that

of the SDSS samples. Therefore, we choose to use a different luminosity threshold to do

an accurate number density comparison. We will still refer to the samples as the M−21
r and

M−19
r samples.

After setting the luminosity threshold, we then determine the number of remaining

galaxies in each halo, and average in bins of halo mass. For the M−21
r samples we use 14

evenly spaced logarithmic bins between 11.9 and 14.52. For the M−19
r samples we use 20

evenly spaced logarithmic bins between 11.0 and 14.52. Our halo occupation distributions

for each galaxy sample are shown in Figure 2.1. The Illustris samples are plotted in red,

and the EAGLE samples are plotted in blue.
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2.3 Halo Occupation Modelling

2.3.1 The Halo Occupation Distribution

The Halo Occupation Distribution framework governs the number, positions, and velocities

of galaxies within a dark matter halo based on a few free parameters, which depend only

on the mass of the halo. The version of the HOD that we utilize in this work is the five

parameter ‘vanilla’ HOD model of Zheng et al. (2007) (as cited in Sinha et al. (2018)).

Within their haloes, galaxies are split into centrals and satellites (Kravtsov et al., 2004;

Zheng et al., 2005).

The mean number of central galaxies in a halo of mass M is described by2

〈Ncen〉=
1
2

[
1+ erf

(
logM− logMmin

σlogM

)]
, (2.1)

where Mmin is the mass at which half of halos host a central galaxy, σlogM is the scatter

around this halo mass, and erf(x) is the error function, erf(x) = 2√
π

∫ x
0 exp(−y2)dy. The

central galaxy is always placed at the centre of the halo, and given the mean velocity of the

halo (i.e. we assume that the central galaxy is at rest with respect to the halo).

We determine the number of satellite galaxies to place in each halo by drawing from a

Poisson distribution with a mean given by

〈Nsat〉= 〈Ncen〉×
(

M−M0

M1

)α

, (2.2)

where M0 is the halo mass below which there are no satellite galaxies, M1 is the mass

where haloes contain on average one satellite galaxy, and α is the slope of the power-

law occupation function at high masses. Each satellite galaxy is assigned the position and

velocity of a randomly chosen dark matter particle within the halo, i.e. we assume that

satellite galaxies trace the spatial and velocity distribution of dark matter within the halo.

In summary, our HOD model contains five free parameters that control the number of

2Throughout this paper, log refers to log10.
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galaxies in each halo as a function of halo mass. Our model assumes that all galaxies

live inside dark matter haloes, and that the number of galaxies in a halo depends only on

the mass of the halo and not on any other halo properties, such as age or concentration

(i.e. there is no galaxy assembly bias). However, recent work (e.g. Zentner et al., 2014;

Vakili and Hahn, 2019; Zentner et al., 2019) indicates that galaxy assembly bias is probably

present in luminosity threshold samples, so this assumption is likely incorrect.

Additionally, our model assumes that the number of satellite galaxies in each halo is

governed by a Poisson distribution. However, results from simulations indicates that the

scatter in the number of satellite galaxies at fixed halo mass is probably non-Poissonian

(Boylan-Kolchin et al., 2010; Mao et al., 2015). In fact, Jiménez et al. (2019) found that

the HOD was best able to reproduce the spatial distribution of galaxies in a semi-analytical

model when they used a negative binomial distribution to govern the number of satellite

galaxies in a halo.

Finally, our model assumes that the central galaxy in each halo lives at the centre of

the halo and moves with the mean velocity of the halo (i.e. there is no central spatial or

velocity bias), and that the satellite galaxies in each halo follow the spatial and velocity

distribution of dark matter within the halo (i.e. there is no satellite spatial or velocity bias).

However, observations suggest that both central and satellite galaxies probably do exhibit

spatial bias (e.g. Watson et al., 2012; Piscionere et al., 2015) as well as velocity bias (e.g.

Van den Bosch et al., 2005; Guo et al., 2015b,a).

While we do use this standard ‘vanilla’ HOD in our initial analysis, we will discuss

variations and extensions of this model in Section 2.7.

2.3.2 Fitting the HOD

Next, we need to determine the five parameters that best describe the HOD in each simula-

tion and sample. We do this in the following way. We start with an initial guess for each

parameter. Using this fiducial HOD model, we assign a number of central and satellite
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Table 2.2: HOD parameters for each sample. The columns show (from left to right): the
simulation name, the absolute magnitude limit for the SDSS sample whose number density
we are matching, the absolute magnitude limit used in the case of the given simulation, the
galaxy number density in h3Mpc−3, the five best-fitting HOD parameters for that sample,
and the corresponding reduced chi-square value.

Simulation Mr Mlim
r ng logMmin σlogM logM0 logM1 α χ2/do f

Illustris -21 -22.840 0.0012 12.681 0.532 12.296 13.635 0.994 0.908
Illustris -19 -20.354 0.0149 11.500 0.180 11.659 12.590 0.979 8.560
EAGLE -21 -21.852 0.0012 12.767 0.504 12.467 13.799 1.000 1.498
EAGLE -19 -19.695 0.0149 11.555 0.237 11.717 12.566 0.938 3.635

galaxies to the haloes in the hydrodynamic run of the simulation. (The halo mass that we

use for this is the total friends-of-friends group mass, i.e. including dark matter as well as

baryonic particles.) Because there is some random variation in the HOD modelling frame-

work, we repeat this process 300 times in order to generate 300 different realizations of our

fiducial HOD. We then determine the number of galaxies in each halo (averaged in bins of

halo mass), in the same way that we did for the original galaxies in the simulation. We can

then calculate a χ2 to assess how well our fiducial HOD model fits the simulation:

χ
2 = ∑

i

(Di−Mi)
2

σ2
i

, (2.3)

where Di is the number of galaxies in one halo mass bin from the simulation, Mi is the

number of galaxies in the same halo mass bin averaged over 300 realizations of our fiducial

HOD model, and σi is the standard deviation among the 300 different realizations of our

fiducial HOD. We do this separately for centrals and satellites, and then sum over all of our

halo mass bins. Based on this χ2, we adjust our fiducial HOD parameters and repeat this

process. We use a Nelder-Mead optimization algorithm (Nelder and Mead, 1965; Gao and

Han, 2012; Jones et al., 2001) to minimize χ2.

In Table 2.2, we list the luminosity thresholds for each sample, as well as the best-

fitting HOD parameters for each simulation. Shown in Figure 2.1 are the best fit HODs for

each of our simulations and density samples. While the M−21
r samples in both simulations
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Figure 2.1: Best-fitting HOD for Illustris-2 (left) and EAGLE (right) galaxies. The Illustris-2 high
luminosity (M−21

r ) galaxy sample is plotted with a dashed red line and large circles, and the low
luminosity (M−19

r ) sample is plotted with a dashed red line and small circles, while the EAGLE
high luminosity sample is plotted with a dashed blue line and large squares, and the low luminosity
sample is plotted with a dashed blue line and small squares. The gray lines in each case show 300
realizations of the best-fitting HOD model for that sample. The black line and error bars represent
the mean and standard deviation among these 300 realizations.

each achieved a χ2/DOF of close to 1, the M−19
r samples are not fit as well by the HOD,

particularly in Illustris. This could be an indication that the form of the HOD is not optimal

for describing a low-luminosity galaxy sample, but it can easily describe a high-luminosity

sample.

One of the assumptions made in our modelling procedure is that the probability distri-

bution governing the number of satellite galaxies in a halo is Poissonian. To investigate

this assumption we examine the average number of satellite-satellite pairs per halo in bins

of halo mass,
〈
N(N− 1)

〉
M, or

〈
N2〉

M−
〈
N
〉

M. A Poisson distribution of mean
〈
N
〉

has

variance
〈
N2〉= 〈N〉2

+
〈
N
〉
. Thus, if the number of satellite galaxies comes from a Pois-

son distribution, then
〈
N(N− 1)

〉
M/
〈
N
〉2 should be equal to 1 (Berlind et al., 2003). In

Figure 2.2 we have plotted this quantity for the Illustris (left, red) and EAGLE (right, blue)

M−19
r samples as a function of halo mass. We have also plotted percentiles for our 300
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Figure 2.2: The second moment of the HOD for Illustris-2 M−19
r galaxies (red points, left) and

EAGLE M−19
r galaxies (blue points, right). The dark and light gray shaded regions show the inner

68 and 95% of the realizations of the best-fitting HOD model for that sample, and the black points
are the median of the 300 realizations.

HOD realizations for each sample (shown in gray), as well as the median of the 300 re-

alizations. In our HOD model, the number of satellite galaxies is drawn from a Poisson

distribution by design, so the median of these realizations should be 1 for all halo mass

bins above Mmin (indicated by the vertical green dashed line; below Mmin it is extremely

unlikely that there will be any satellites, so this quantity should be 0.) Both the Illustris and

EAGLE samples are Poissonian at higher halo masses, but appear slightly sub-Poissonian

at lower halo masses. However, neither sample is incompatible with its corresponding dis-

tribution of HOD realizations, so it is reasonable to conclude that the satellite numbers in

Illustris and EAGLE are consistent with our HOD model. (The M−21
r samples have very

few satellites, and thus are very noisy, which is why they are not shown here. They do not

exhibit any non-Poissonian trends.)
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2.3.3 Building mock galaxy catalogs

Once we have determined the best-fitting HOD parameters for our sample, we then need to

actually place galaxies in haloes. We do this on the dark matter only versions of the simula-

tions. As stated earlier, the halo mass of interest is the total mass of the Friends-of-Friends

group (i.e. parent halo). We assign the central galaxy the position of the group, which is

defined as the spatial position within the periodic box of the particle with the minimum

gravitational potential energy (in comoving coordinates). Additionally, we assign the cen-

tral galaxy the velocity of the group, which is the sum of the mass weighted velocities of all

particles/cells in the group. The peculiar velocity is obtained by multiplying this value by

1/a, where a is the scale factor. (In the EAGLE simulation, the velocity of the parent halo

is not provided, so we instead assign the central galaxy the velocity of the central subhalo.)

To place satellite galaxies, we randomly select dark matter particles from the parent halo

and assign galaxies the positions and velocities of these randomly chosen particles. The

only stipulation we make is that we never choose the same random dark matter particle

twice; i.e. we will never place two galaxies on the same particle, but we can place them

on very nearby particles. We repeat this process 1000 times, so that we ultimately have

1000 different realizations of our best-fitting HOD model applied to our dark matter only

simulation. We will refer to these 1000 realizations as mock galaxy catalogues.

2.4 Galaxy Clustering Measurements

Once we have populated the dark matter haloes in each simulation with galaxies, the next

step is to measure a series of clustering statistics on both the galaxies from the original

simulation and the galaxies from our mock catalogues. We measure these statistics in the

same way on the simulation galaxies as we do on our mocks, in order to assess how well our

HOD model can reproduce galaxy clustering properties as compared to a full hydrodynamic

simulation.

The first property that we measure is the number density of galaxies. By comparing
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the number densities of galaxies in our simulations and in our mocks, we can test how

well the HOD fits the simulation, as well as how similar the halo mass functions are in

the hydrodynamic and dark matter only simulations. Figures 2.3-2.6 show results for the

Illustris M−21
r , EAGLE M−21

r , Illustris M−19
r , and EAGLE M−19

r samples, respectively.

The top left panel of each figure shows the distribution of number densities among the

1000 mocks for that sample (together with the mean and standard deviation), as well as the

number density for the corresponding hydrodynamic sample. The shaded region in each

figure shows cosmic variance errors (one standard deviation) calculated from 400 mock

galaxy catalogues of the corresponding SDSS sample (Sinha et al., 2018). The spread

among our 1000 HOD mocks indicates how well we can measure galaxy number density

in a box given the scatter in our HOD model. The spread among 400 SDSS mocks indicates

how accurately a difference in number density could be detected by the SDSS.

In every case, applying the HOD to the dark matter only simulation results in a signifi-

cantly overestimated galaxy number density (by up to 20% for the Illustris M−21
r sample).

For both M−21
r samples (Figures 2.3 and 2.4), this difference in number density is larger

than the cosmic variance error from the SDSS M−21
r sample (shown in green); in other

words, an SDSS-like survey would easily notice this discrepancy. For the M−19
r samples

(Figures 2.5 and 2.6), although the difference between the simulation and the HOD number

density is quite significant, the cosmic variance error (shown in yellow) is larger, indicating

that an SDSS-like survey would not pick up on this difference. None the less, it is shocking

that in every case the HOD (which was fit to the simulation) systematically significantly

overestimates the galaxy number density. This points to a major issue with applying HOD

to a dark matter only simulation: the halo mass function is different in hydrodynamic and

dark matter only simulations. This will be discussed further in Section 2.6.

Next, we measure five additional clustering statistics. Before we can do this, we must

introduce redshift-space distortions into both our simulation galaxies as well as our mock

galaxies. We do this by placing an observer infinitely far away from our box and taking the
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Figure 2.3: All clustering measurements for the M−21
r sample of Illustris-2 galaxies. The red

lines are measured on galaxies from the original hydrodynamic simulation, while the dark red lines
show the average of 1000 realizations of the best-fitting HOD model applied to the dark matter only
simulation. The error bars represent the standard deviation among the 1000 realizations. The shaded
regions around the red lines show cosmic variance errors (one standard deviation) calculated from
400 mock galaxy catalogues of the SDSS M−21

r sample, and thus illustrate the size of deviations
that could be detected by the SDSS.

z-axis as the line of sight coordinate (using periodic boundary conditions). Including these

distortions allows us to probe how well our model reproduces the velocities of the galaxies.

Berlind and Weinberg (2002) investigated galaxy bias in an HOD framework by mea-

suring several clustering statistics. They found that the galaxy correlation function is af-

fected by different parts of the HOD on different scales, and that other clustering statistics

(such as the void probability function and the group multiplicity function) are also sen-

sitive to different combinations of HOD parameters. Sinha et al. (2018) similarly found

that analyses involving several different galaxy clustering statistics have the most power

to constrain galaxy bias. Because of this, the five additional clustering statistics that we

measure in this work are the redshift-space correlation function, the projected correlation
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Figure 2.4: Same as Fig. 2.3 for the M−21
r sample of EAGLE galaxies.

function, the group multiplicity function, the void probability function, and what we call

the “singular probability function” (i.e. the probability of having exactly one galaxy in a

region). These five different clustering statistics are described in detail below.

2.4.1 The projected correlation function

The most commonly used galaxy clustering statistic, the projected correlation function,

removes the effect of redshift-space distortions by first counting pairs of galaxies in bins of

their line-of-sight and projected components, π and rp, and then integrating over π:

wp(rp) = 2
∫

πmax

0
ξ (rp,π)dπ. (2.4)

We count pairs of galaxies in 10 evenly spaced logarithmic bins of projected separation

rp between 0.2 and 5.37h−1Mpc. We then integrate out to πmax of 20h−1Mpc for each

sample. (For computational reasons, πmax must be < 1
3Lbox.) We use the blazing fast
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Figure 2.5: Same as Fig. 2.3 for the M−19
r sample of Illustris-2 galaxies.

code CORRFUNC (Sinha and Garrison, 2017, 2019) to compute our projected correlation

function.

The projected correlation function has been used as the workhorse of HOD modelling

(e.g., Zehavi et al., 2011; Sinha et al., 2018). Recently, Zentner et al. (2019) used mea-

surements of the projected correlation function to constrain assembly bias of SDSS DR7

galaxies within the decorated HOD model of Hearin et al. (2016). The authors found highly

significant central galaxy assembly bias in the M−20
r and M−20.5

r samples, as well as signif-

icant satellite galaxy assembly bias for the M−19
r sample. They did not find any assembly

bias in the M−21
r sample. Meanwhile, Vakili and Hahn (2019) also looked at clustering

measurements of SDSS DR7 galaxies and found that at fixed halo mass, satellite galaxies

show no correlation with halo concentration, and central galaxies shows little correlation

with halo concentration for the M−21
r and M−21.5

r samples, and slight correlation with halo

concentration in the M−20.5
r , M−20

r , and M−19
r samples.

29



Figure 2.6: Same as Fig. 2.3 for the M−19
r sample of EAGLE galaxies.

In the top middle panels of Figures 2.3–2.6 we have plotted the projected correlation

function from the hydrodynamic simulations, as well as the average projected correlation

function of our 1000 dark matter only mocks, for each of our samples. For the M−21
r

samples (Figures 2.3 and 2.4) the HOD does reasonably well at recovering the projected

correlation function from the simulations. Though there are visible discrepancies, these

are not highly significant given the plotted uncertainties. However, for the Illustris M−19
r

sample (Fig. 2.5), the HOD significantly overestimates the projected correlation function

at small scales. In contrast, for the EAGLE M−19
r sample (Fig. 2.6), the HOD significantly

underestimates the projected correlation function at all but the smallest scales. This indi-

cates that although the clustering is correct for high luminosity galaxies, there is a possible

problem with the spatial assumptions made in the HOD, which specifically impacts the

clustering of low luminosity galaxies. The Illustris M−19
r sample is most likely affected by

spatial bias, which impacts small scales, while the EAGLE M−19
r is likely more affected by
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assembly bias, which impacts large scales. We note that the projected correlation function

is not sensitive to velocity information, so any discrepancies must be due to spatial and/or

assembly bias, and not velocity bias. These biases will be discussed further in Section 2.7.

2.4.2 The redshift-space correlation function

The three-dimensional redshift-space two-point correlation function ξ (s) is the excess

number of galaxy pairs above that which is expected for a random distribution of points,

as a function of redshift-space pair separation s (in contrast to the projected separation

rp described above). In this work, we count pairs in 10 bins of separation s between 0.2

and 5.37h−1Mpc (the same bins as those used for the projected correlation function). We

also use CORRFUNC to compute our redshift-space correlation function. Measuring the

redshift-space correlation function allows us to access not only spatial information about

our galaxies, but also velocity information, because the redshift-space distortions of our

galaxies depend on their velocities. Thus, with this measurement, we can examine the va-

lidity of the assumption in the HOD that galaxies trace the velocity distribution of dark

matter within the halo (in addition to examining our assumptions about the spatial distribu-

tion of galaxies).

In the top right panels of Figures 2.3–2.6 we have plotted the redshift-space correlation

function from our simulations, as well as the average redshift-space correlation function of

our 1000 mocks, for each of our samples. Results are qualitatively similar to those using

the projected correlation function. For the M−21
r samples (Figs 2.3 and 2.4) the HOD suc-

cessfully recovers the redshift-space correlation function from the simulations. However,

for the Illustris M−19
r sample (Fig. 2.5), the HOD once again significantly overestimates

the correlation function at small scales, while for the EAGLE M−19
r sample (Fig. 2.6),

the HOD significantly underestimates the correlation function at all but the smallest scales.

This again suggests a problem with the spatial assumptions made in the HOD, as well as the

velocity assumptions, which specifically impact the clustering of low luminosity galaxies.
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This will be discussed further in Section 2.7.

2.4.3 The group multiplicity function

The group multiplicity function is the abundance of galaxy groups as a function of the

number of galaxies in the group, n(N) (e.g., Berlind and Weinberg, 2002). We use the

Berlind et al. (2006a) friends-of-friends algorithm for identifying groups. Galaxies are

linked together if their projected and line-of-sight separations are both less than a corre-

sponding linking length. We adopt the Berlind et al. (2006a) linking lengths of b⊥ = 0.14

and b‖= 0.75, which are given in units of the mean inter-galaxy separation n−1/3
g , where ng

is the sample number density. For our low luminosity samples, we measure groups with the

following numbers of galaxies: 3,4,5,6−7,8−11,> 12. For our high luminosity samples,

we measure groups of 3, 4, 5, and 6 or more galaxies.

In the lower left panels of Figures 2.3–2.6 we have plotted the group multiplicity func-

tion from our simulations, as well as the average group multiplicity function of our 1000

mocks, for each of our samples. For the M−21
r samples (Figures 2.3 and 2.4) the HOD

successfully recovers the group multiplicity function from the simulations. The HOD

also successfully reproduces the group multiplicity function for the EAGLE M−19
r sam-

ple (Fig. 2.6). However, for the Illustris M−19
r sample (Fig. 2.5), the HOD significantly

overestimates the group multiplicity function for the largest groups. This further points to

a problem with the spatial and velocity assumptions made in the HOD, particularly as they

affect the clustering of low luminosity galaxies in Illustris. This will be discussed further

in Section 2.7.

2.4.4 Counts-in-cells statistics

Counts-in-cells statistics measure the probability of finding a given number of galaxies

within a randomly placed finite region (e.g. a sphere) as a function of region size (e.g.

radius). One special case of this is the void probability function (VPF), which measures

the probability of finding no galaxies in a random region of space. Tinker et al. (2006a)
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attempted to constrain galaxy bias using void statistics within an HOD framework, and

found that the VPF, in contrast to the projected correlation function, is quite sensitive to

environmental variations of the HOD. Later, McCullagh et al. (2017) showed that cata-

logues created using SHAM and the semi-analytic model GALFORM, which were designed

to have the same large-scale 2-point clustering, have different VPFs due to their differ-

ent HOD shapes, suggesting that the VPF could be used to rule out certain HOD models.

Recently, Walsh and Tinker (2019) fit the standard HOD model to the two-point correla-

tion function of BOSS galaxies and found that it was able to accurately predict the void

probability function, indicating that galaxy assembly bias does not affect the clustering of

massive galaxies.

Wang et al. (2019) studied the power of the VPF, counts-in-cylinders, and counts-in-

annuli, as well as the projected two-point correlation function and the galaxy-galaxy lensing

signal to constrain galaxy assembly bias from redshift survey data using the decorated

HOD, and found that the counts-in-cells statistics are more efficient at constraining galaxy

assembly bias when combined with the projected correlation function than galaxy-galaxy

lensing is.

Another variation of counts in cells that we use is what we will refer to as the “singular

probability function,” (SPF) or the probability of finding exactly one galaxy in a randomly

placed region. We measure both the VPF and the SPF in spheres of evenly spaced bins of

radius r, beginning with 1h−1Mpc and ending with 10h−1Mpc.

In the lower middle (right) panels of Figures 2.3–2.6 we have plotted the VPF (SPF) of

our simulations, as well as the average of our 1000 mocks, for each of our samples. For

the Illustris M−21
r sample (Fig. 2.3) the HOD struggles to recover the VPF at intermediate

and large scales, and likewise struggles to recover the SPF at intermediate scales. For the

EAGLE M−21
r sample (Fig. 2.4) the HOD shows similar tension in the VPF and the SPF.

For the Illustris M−19
r sample the agreement looks better, but the error bars are very small so

it is difficult to surmise based on looking at Figure 2.5 alone. For the EAGLE M−19
r sample
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(Fig. 2.6) the HOD struggles to reproduce both the VPF and the SPF at most scales. These

problems could indicate issues with the assumptions made in the HOD. They could also be

compounded by the inability of the HOD to reproduce the correct number density, since

counts-in-cells statistics, and the VPF in particular, are very sensitive to number density.

This will be discussed further in Section 2.7.

2.5 Assessing the Accuracy of the HOD Model

In Figures 2.3–2.6 we saw that for some statistics (like number density) the HOD applied to

dark matter only simulations does not provide a good fit to the hydrodynamic simulations

for any of our samples, while for other statistics (like the correlation functions) the HOD

appeared to provide a good fit to the simulations for the high luminosity samples and not

the low luminosity samples. In general, however, the success of the HOD model is difficult

to ascertain visually because error-bars are often small and are likely correlated. In order

to quantify the accuracy with which our HOD model can reproduce the clustering statistics

measured on a hydrodynamic simulation, we calculate χ2 for each clustering statistic

χ
2 = ∑

i j
χiR−1

i j χ j, (2.5)

where

χi =
Di−Mi

σi
, (2.6)

Di is the value of one bin of a clustering measurement on the hydrodynamic simulation

galaxies (either Illustris or EAGLE, and either M−19
r or M−21

r ), Mi is that same measure-

ment averaged over our 1000 mock galaxy catalogues for that sample, and σi is the standard

deviation of that measurement among the 1000 mock galaxy catalogues. Ri j is the correla-

tion matrix for each clustering statistic

Ri j =
Ci j√
CiiC j j

, (2.7)
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which is the covariance matrix normalized by its diagonal elements. The covariance matrix

is calculated as

Ci j =
1

N−1

N

∑
1
(yi− yi)(y j− y j), (2.8)

where the sum is over the N = 1000 mock galaxy catalogues, and yi and y j are two bins of a

clustering statistic, and yi and y j are the mean measurements over the 1000 mocks. We note

that since the hydrodynamic simulation and the HOD mocks come from initial conditions

with the same phases, cosmic variance errors do not apply to this comparison.

From this χ2, we can calculate the corresponding p-value, which represents the proba-

bility that a sample randomly drawn from the best-fitting HOD model could have a χ2 value

greater than the one exhibited by the simulation. In other words, the p-value represents the

probability that the hydrodynamic simulation is consistent with the DMO+HOD model.

The p-value for each clustering measurement uses all the spatial bins of the measurement,

as well as the full covariance matrix for that statistic. These p-values are listed in Table 2.3

(in the rows labeled as “No Correction”).

Looking at Figures 2.3–2.6 or the p-values in Table 2.3, it is immediately clear that the

vanilla HOD model, when applied to haloes from a dark matter only simulation, does not

provide a good fit to the corresponding hydrodynamic simulation for all of the clustering

statistics in question. However, the success of the HOD model is highly dependent on the

simulation and luminosity sample in question. For example, the model generally performs

better for high luminosity galaxies than for low luminosity galaxies. Specifically, for the

Illustris M−21
r sample, all of the clustering statistics are well fit by the HOD model, at least

within a 3σ tolerance, except for number density. For the EAGLE M−21
r sample, even

the number density works well. However, for the low luminosity samples, almost none of

the clustering statistics are well fit by the DMO+HOD model, and in most cases exhibit

discrepancies far greater than > 3σ .

The green shaded regions in Figures 2.3 and 2.4 represent one standard deviation of

cosmic variance errors calculated from 400 mock galaxy catalogues of the SDSS M−21
r
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sample. These mocks were created as part of the Large Suite of Dark Matter Simulations

project (LasDamas; McBride et al., 2009) and used in Sinha et al. (2018). In our M−21
r

Illustris and EAGLE samples, the errors among our 1000 mock galaxy catalogues (which

are different HOD realizations) are much larger than the cosmic variance errors from the

400 SDSS-like mocks. Consequently, though the HOD model appears to be a good fit to

the simulations for high luminosity galaxies, an SDSS size M−21
r survey (which has small

errors due to its large volume) could be sensitive to clustering differences that we are unable

to detect in our analysis due to our smaller volume.

Similarly, the yellow shaded regions in Figures 2.5 and 2.6 represent one standard de-

viation of cosmic variance errors calculated from 400 mock galaxy catalogues of the SDSS

M−19
r sample, constructed in a similar way as those in Sinha et al. (2018). In our M−19

r Il-

lustris and EAGLE samples, the errors among our 1000 mock galaxy catalogues are smaller

than the cosmic variance errors from the 400 SDSS-like mocks. For some statistics (such

as the number density), a survey with the precision of SDSS would not necessarily be able

to detect the differences we have found between the HOD model and the hydrodynamic

simulation. For other clustering statistics (particularly the correlation functions) it is clear

that, although the cosmic variance errors are somewhat broad, there is still an obvious dif-

ference between the HOD model and the simulation, to which even an SDSS-like survey

would be sensitive.

2.6 The Effect of Baryons on the Halo Mass Function

Figures 2.3 – 2.6 revealed that the galaxy number density is not well predicted in any sam-

ple. Recall that, in our vanilla HOD, the number of galaxies in a halo is solely dependent on

the mass of the halo. Thus, the fact that our HOD systematically over-predicts the galaxy

abundance indicates either that the functional form of our HOD is incorrect, or that the

halo mass functions (HMFs) are different in the hydrodynamic simulations compared to

their dark matter only (DMO) counterparts.
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Figure 2.7 compares the abundance of haloes in the hydrodynamic and DMO versions

of the same simulation. The comparison reveals sizeable discrepancies between the halo

mass functions. In Illustris (red), the hydrodynamic HMF is consistently lower than the

DMO HMF above 1012h−1M�, and higher than the DMO HMF at smaller masses. In

EAGLE (blue), the hydrodynamic HMF is below the DMO HMF at all halo masses be-

low 1014h−1M�. In other words, the hydrodynamic HMFs are shifted to lower masses in

both simulations, but the detailed effects of baryons on the HMF are different in the two

simulations.

This result is consistent with both Desmond et al. (2017) and Schaller et al. (2015),

who examined the differences between the halo masses in the EAGLE dark matter only

and hydrodynamic runs, and found the haloes to be less massive on average in the hydro-

dynamic run. Desmond et al. (2017) found that, at low halo masses, stellar feedback in

EAGLE removes baryons from the halo, which in turn reduces the growth rate of the halo.

At slightly higher halo masses, stellar feedback becomes less effective, but AGN feedback

is still capable of expelling baryons. For the most massive haloes, AGN feedback too be-

comes less effective, and thus there is little discrepancy between the hydrodynamic and

DMO halo mass functions.

Our results for the Illustris haloes are consistent with the findings of Vogelsberger et al.

(2014b), who found that the halo mass function in Illustris is most affected at low (<

1010h−1M�) and high (> 1012h−1M�) halo masses, where baryonic feedback processes

(e.g. reionization, SN feedback, and AGN feedback) are strongest, leading to a reduction in

halo mass compared to their DMO counterparts. They found that removing AGN feedback

boosts the massive end of the halo mass function (e.g. Cui et al., 2012). They also found

that haloes around 1011h−1M�, where star formation is most efficient, tend to be more

massive than their DMO counterparts.

In Figure 2.8 we show the ratio of halo masses in the hydrodynamic simulation over

the masses in the DMO simulation as a function of halo mass in the DMO simulation, for
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Figure 2.7: Halo mass functions of hydrodynamic compared to dark matter only simulations in the
case of Illustris-2 (red) and EAGLE (blue). The hydrodynamic versions are plotted with solid lines,
while the dark matter only versions are plotted with dotted lines. The bottom panel shows the ratio
of the hydrodynamic to dark matter only mass functions for the two simulations.

both the Illustris-2 (red) and the EAGLE (blue) simulations. The hydrodynamic and DMO

haloes are matched based on their ranked masses, rather than spatial positions, so that the

point furthest to the right in the figure corresponds to the highest mass DMO halo, paired

with the highest mass hydrodynamic halo. In other words, we essentially abundance match

the haloes in the hydrodynamic and DMO simulations. As a result, the figure shows the

mass correction one would need to apply to the DMO masses in order to recover the global

hydrodynamic HMF. However, applying this correction would not necessarily result in the

correct dependence of the HMF on environment.

Our result is consistent with the results of Vogelsberger et al. (2014b) and Schaller et al.

(2015), who looked at matched haloes in Illustris and EAGLE, respectively. Additionally,

Springel et al. (2018) looked at this same quantity for the IllustrisTNG simulations and

found a trend that is different from both Illustris and EAGLE. Baryons in the IllustrisTNG

seem to have a larger impact on low mass haloes and a smaller impact on high mass haloes
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Figure 2.8: The ratio of halo masses from the hydrodynamic simulations to halo masses from
the dark matter only simulations, as a function of dark matter only halo mass. Illustris-2 haloes
are plotted in red and EAGLE haloes are plotted in blue. The halo mass is the total FoF mass
from all particles, which in the hydrodynamic versions includes baryons. Hydrodynamic and dark
matter only haloes are matched by their mass rank, rather than by position. The displayed ratio thus
represents the correction factor needed to apply to the dark matter only haloes in order to recover
the hydrodynamic mass function. The dashed black lines show simple fits to these relationships,
down to 1011h−1M�, which we discuss in Section 2.8.

compared to Illustris. This is to be expected, since IllustrisTNG has weaker AGN feedback

than the original Illustris simulation, which affects more massive haloes. The effect of

feedback on lower mass haloes in TNG is stronger than that in Illustris due to the wind

model used in TNG.

Figure 2.8 emphasizes the fact that the effect of baryons on the halo mass function is to

decrease the HMF to lower masses. However, it is clear that this effect is very different in

these two different simulations. The effect of baryons on the HMF in the EAGLE simula-

tion is more prominent at lower masses, and the ratio of hydrodynamic halo mass to DMO

halo mass increases almost linearly with log halo mass. In Illustris, the effect of baryons on

the HMF is more prominent at higher masses, and the relationship is more complex than it

is in EAGLE. In other words, the halo mass function is significantly affected by baryonic
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feedback processes, but there is no consensus among hydrodynamic simulations on what

the correct feedback model is.

This halo mass function discrepancy presents a challenge when using an HOD frame-

work to populate haloes from a dark matter only simulation with galaxies. The HOD pa-

rameters only describe how many galaxies to put in a halo of a given mass, but do not take

into account how many haloes there are in a given mass bin. Therefore, because the dark

matter only versions of Illustris and EAGLE have mass functions that are shifted to higher

masses, there are more high mass haloes, so more galaxies are placed overall. Thus, even

when applying the correct HOD parameters as extracted from the hydrodynamic simula-

tion, the overall galaxy number density will be too high when this HOD is applied to the

dark matter only simulation.

One possible solution to this is to adjust the HMF in the dark matter only simulation so

that it is consistent with the HMF in the hydrodynamic version. We do this by identifying

the most massive halo in the dark matter only simulation and assigning it the mass of the

most massive halo in the hydrodynamic version, and then we do the same for the next

most massive halo, and so on. In other words, we multiply the DMO halo masses in

each simulation by their y-axis value in Figure 2.8. This process serves to isolate the

effect of baryons on the halo mass function, allowing us to correct the DMO HMFs so

that they agree with the HMFs from the hydrodynamic simulations. We note that this

technique does not involve matching haloes based on position or particle-IDs. Because of

this, we are not explicitly taking environment into account, so we are not correcting the

conditional HMF. We have examined the conditional HMF in Illustris, however, and have

found that the effect of baryons on the HMF only depends on environment at very high halo

masses. Additionally, we have examined the effect on our clustering statistics if we use

an environment-dependent HMF correction and find that the difference is negligible. We

have also examined the halo correlation functions in Illustris and EAGLE in two different

halo mass bins for the hydrodynamic simulations, the DMO simulations, and the corrected
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DMO simulations, and have found that the corrected DMO halo correlation functions are

in better agreement with the hydrodynamic halo correlation functions.

We now explore to what extent applying mass corrections to DMO halo masses im-

proves the agreement between the clustering statistics of hydrodynamic and DMO+HOD

galaxies. We first multiply each DMO halo mass by the correction shown in Figure 2.8

(i.e. we use our abundance matching technique for each halo as described above, and not

the dashed-black fits shown in the figure). We then make new mock galaxy catalogues by

applying the same best-fitting HOD (from Table 2.2) to our new mass-adjusted dark matter

haloes. We thus have 1000 new mock catalogues for each sample. We then repeat the same

procedure outlined in Sections 2.4 and 2.5 to get new clustering statistics and new p-values,

which we list in Table 2.3 (in the rows labeled “Halo Mass Function”).

Figure 2.9 presents our p-values for the four samples (two simulations and two lumi-

nosity samples) for all six statistics we consider. The left-most point in each panel shows

the original p-value we obtained and discussed in Section 2.5. The second point in each

panel shows the new p-value we get after first applying a correction factor to the DMO

halo masses. Horizontal dashed lines show the 1σ , 2σ , 3σ , 4σ , and 5σ tolerance levels.

As we can see in Figure 2.9, after correcting the masses of haloes, our ability to accurately

predict galaxy number density (top left panel) with our vanilla HOD model shows a dras-

tic improvement for all samples. Thus, the vanilla form of HOD that we have adopted is

sufficient for accurately (better than 2σ tolerance) predicting galaxy number density if it is

applied to the correct population of haloes.

In addition to the improvement in our galaxy number density predictions for all sam-

ples, correcting the halo mass function yields a slight improvement to the other clustering

statistics across all samples. For the M−21
r samples, after correcting the halo mass function,

all clustering statistics are at or better than the 2σ level. Thus, when applied to the correct

halo population, the 5 parameter HOD model is able to accurately predict all clustering

statistics for our high luminosity samples of galaxies. For the low luminosity samples, al-
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though the other clustering statistics do improve, most are still below the 3σ level, with

the exception of the group multiplicity function in the EAGLE M−19
r sample and the sin-

gular probability function in the Illustris M−19
r sample. It is worth noting that the VPF

does improve in all samples after correcting the halo mass function, indicating that part of

the original VPF discrepancy was due to the incorrect number density. However, for the

Illustris M−19
r sample the VPF is still below the 3σ level, and for the EAGLE M−19

r sample

it is still well below 5σ , so we can conclude that not all of the issues with reproducing the

VPF can be attributed to the number density.

These results indicate that although the HOD model for the brightest galaxies is suc-

cessful when applied to the correct halo population, the HOD model for fainter galaxies

is less successful, even when applied to the correct halo population. Thus, there must be

some other assumptions in our HOD that are incorrect when applied to a low luminosity

sample of galaxies. In the next section, we investigate possible extensions to our vanilla

HOD.

2.7 Extensions of the HOD

2.7.1 Spatial bias

In our vanilla HOD model, we assume that each central galaxy lives at the centre of its

halo, and that satellite galaxies trace the spatial distribution of dark matter within the halo.

However, it is possible that these assumptions are incorrect, i.e. that galaxies exhibit spatial

bias. More specifically, central spatial bias occurs when the central galaxy is not located

at the centre of its halo, and satellite spatial bias occurs when the satellite galaxies do not

trace the distribution of dark matter particles within their halo. To test for the presence

of spatial bias, one option is to add spatial bias parameters to our HOD model and find

a new best-fitting model that includes spatial bias. However, a simpler alternative is to

remove the potential effects of spatial bias from the hydrodynamic simulation. If doing

this yields better agreement between clustering statistics from our DMO+HOD mocks and
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Figure 2.9: p-values from comparing the clustering of galaxies in hydrodynamic simulations to the
clustering of mock galaxies in their dark matter only (DMO) counterparts. Each panel shows results
for a different clustering statistic, as listed at the top of each panel. The dark red diamonds and dark
blue squares represent the high luminosity samples of Illustris-2 and EAGLE, respectively, while
the light red inverted triangles and the light blue triangles represent the low luminosity samples
of Illustris-2 and EAGLE, respectively. The horizontal dashed gray lines denote the 1σ , 2σ , 3σ ,
4σ , and 5σ confidence levels. The x-axis in each panel corresponds to different modifications to
the haloes or to the galaxies in the simulations. From left to right, p-values are shown for (i) the
original DMO+HOD model; (ii) the same DMO+HOD model after adjusting the DMO halo mass
function to match the mass function in the hydrodynamic simulation; (iii) additionally removing
satellite spatial bias from the hydrodynamic simulation galaxies; (iv) additionally removing central
and satellite velocity bias from the hydrodynamic simulation galaxies; (v) additionally removing
assembly bias from the hydrodynamic simulation galaxies. The last three p-values in each panel
(with the exception of number density) are the median of many realizations (1000, 1000, and 4000),
with error bars showing the 16th and 84th percentiles. For the low luminosity sample of EAGLE
(light blue), several points are not shown because they fall below 10−7. The values of these points
are given in Tables 2.3.
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the simulation galaxies, this would indicate that there is spatial bias in the hydrodynamic

simulation, and therefore spatial bias parameters will need to be included in any future

HOD modelling work to account for the possibility that there is spatial bias present in

survey data.

We first test for the presence of central spatial bias. We do this by taking the Illustris and

EAGLE galaxies identified as centrals and give them the position of their host halo, which

is the position of the particle with the minimum gravitational potential energy. We do

this without changing any central velocity information or any satellite galaxy information,

in order to isolate the effect of central spatial bias. Thus, if there is any central spatial

bias present in the original simulation, this procedure would remove it, yielding better

agreement with our HOD model. The results of this show no change for either simulation

or sample, indicating that any central spatial bias has a negligible impact on clustering

statistics.

We next test for the presence of satellite spatial bias. We do this by taking the galaxies

identified as satellites in the hydrodynamic simulations and assigning them the positions

of random dark matter particles in their host halo (also in the hydrodynamic simulations).

We do this without changing any satellite velocity information or any central galaxy infor-

mation, in order to isolate the effect of satellite spatial bias. We repeat this process 1000

times, in order to generate 1000 different realizations of our simulation with satellite spa-

tial bias removed. We can therefore generate 1000 different p-values for each clustering

statistic. Table 2.3 (rows labeled “Satellite Spatial Bias”) lists the median p-values from

these 1000 realizations of our simulation with satellite spatial bias removed. We note that

it is possible that placing satellite galaxies on dark matter subhaloes rather than particles

would alleviate some of the tension that we see between our HOD and the hydrodynamic

simulations. However, traditional HOD models do not use subhaloes, in part because the

DMO simulations to which they are applied often do not have high enough resolution to

resolve small subhaloes. Therefore, we do not explore the option of placing satellite galax-
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ies on dark matter subhaloes in this analysis, but note that it would be worth investigating

in future work.

The third point in each panel of Figure 2.9 shows these median p-values that result

from both correcting the DMO halo masses and removing satellite spatial bias from the

hydrodynamic simulations. Error bars show the range of p-values that correspond to the

middle 68% of our 1000 realizations with satellite spatial bias removed. We can see that the

M−21
r samples show either slight improvement or no change after removing satellite spatial

bias, while the M−19
r samples show significant improvement. In particular, the projected

and redshift-space correlation functions are much improved in the M−19
r samples of both

EAGLE and Illustris. From these results, we can conclude that the galaxies in EAGLE

and Illustris do exhibit satellite spatial bias, the effects of which are more prominent when

considering low luminosity galaxies. We can also conclude that the effects shown are

definitively the results of spatial bias and not a difference in halo profile due to the presence

of baryons; if the clustering differences were due to a difference in halo density profile

when baryons are included versus when they are not, then giving the satellite galaxies the

positions of random dark matter particles in the halo (in the hydrodynamic simulation)

would not have a significant effect on clustering.

The extent and nature of the satellite spatial bias is similar in the two different sim-

ulations. In Figure 2.5, it is clear from looking at both the projected and redshift-space

correlation functions that Illustris M−19
r galaxies are less clustered on small scales than the

DMO+HOD mock galaxies, or in other words, Illustris galaxies are less concentrated than

the dark matter. When satellite spatial bias is removed, the satellite galaxies become more

concentrated, and are thus a better fit to the HOD on small scales. The picture looks a bit

different in Figure 2.6, where EAGLE M−19
r galaxies are less clustered than DMO+HOD

mock galaxies on small scales. However, this amplitude difference in the correlation func-

tions extends to large scales and is thus not caused by satellite spatial bias (it is caused by

assembly bias, as we will see later). If we examine the slopes of the correlation functions at
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small scales in Figure 2.6, we see that EAGLE M−19
r galaxies have a shallower slope than

DMO+HOD, which means that they are less concentrated within their haloes (Berlind and

Weinberg, 2002), similar to Illustris M−19
r galaxies.

Despite the improvement that we see in Figure 2.9 when removing spatial bias, many

clustering statistics for the M−19
r samples are still not well predicted by our HOD model,

even after correcting the halo mass function and removing satellite spatial bias from the

simulations. This is especially true for EAGLE M−19
r galaxies, where all statistics except

number density and group multiplicity function still show a significant discrepancy between

hydrodynamic and DMO+HOD galaxies.

2.7.2 Velocity bias

The vanilla HOD model also assumes that each central galaxy moves with the mean ve-

locity of its halo (i.e. there is no central velocity bias), and that satellite galaxies trace

the velocity distribution of dark matter within their halo (i.e. there is no satellite velocity

bias). Once again, it is possible that these assumptions are incorrect, due to the effects of

phenomena such as mergers, dynamical friction, and tidal stripping.

To test for the presence of central velocity bias, we take the Illustris and EAGLE galax-

ies identified as centrals and assign them the velocity of their host halo. By doing this, we

are removing the possibility that the central galaxy might not be at rest with respect to its

host halo. In Illustris, this is the sum of the mass weighted velocities of all particles/cells in

the group, multiplied by 1/a. (In EAGLE, the velocity of the parent halo is not provided, so

this test is not possible. Central galaxies already have the velocity of the central subhalo.)

As in the case of central spatial bias, removing central velocity bias has a negligible effect

on the clustering statistics we consider.

To remove satellite velocity bias, we take the hydrodynamic simulation galaxies identi-

fied as satellites and assign them the velocities of random dark matter particles in the halo.

We do this in combination with other effects (e.g. central velocity bias, central spatial bias,
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satellite spatial bias). In other words, we take the central galaxy and give it the position and

velocity of its host halo, and we take satellite galaxies and give them the positions and ve-

locities of randomly chosen dark matter particles in the halo, so that all spatial and velocity

bias has been removed from the simulation galaxies. We repeat the random selection of

dark matter particles 1000 times, so that we ultimately generate 1000 different realizations

of the simulation galaxies after removing all spatial and velocity bias. The results of this

are shown in Table 2.3, where the p-values given are the median of 1000.

The fourth point in each panel of Figure 2.9 shows these median p-values that result

from correcting DMO halo masses and removing spatial and velocity bias from the hydro-

dynamic simulations. Once again, error bars show the range of p-values that correspond to

the middle 68% of our 1000 realizations with satellite spatial and velocity bias removed.

The figure shows that removing velocity bias provides an additional improvement for our

clustering statistics for the M−19
r samples. In particular, the Illustris M−19

r sample shows

significant improvement in the void probability function and slight improvement in all other

clustering statistics. All statistics now show no significant discrepancy between the hydro-

dynamic galaxies and our DMO+HOD model. The EAGLE M−19
r sample shows improve-

ment in the redshift-space correlation function, as well as both counts-in-cells statistics.

It is to be expected that number density does not change when spatial and velocity bias

are removed, because the number of galaxies is not affected. Additionally the projected

correlation function is by design not affected by velocity, so it is not surprising that there

is no change after removing velocity bias. Despite these improvements, the differences

between the statistics of EAGLE M−19
r galaxies and the DMO+HOD model are still highly

significant.

At this point, after removing all spatial and velocity bias from our simulations, all statis-

tics are well predicted (< 2σ tension) by our HOD model for the Illustris M−19
r sample,

while the number density and group multiplicity function are well predicted (< 2σ ten-

sion) for the EAGLE M−19
r sample. However, the correlation functions and counts-in-cells

48



statistics are still not well predicted for EAGLE M−19
r . This indicates the possibility that

the number of galaxies in a halo may depend on a halo property other than mass, such as

age or concentration. This will be discussed in the next section.

2.7.3 Assembly/secondary bias

Halo assembly/secondary bias is the phenomenon whereby halo clustering depends on a

secondary parameter, such as age or concentration, at fixed halo mass (e.g., Gao et al.,

2005; Wechsler et al., 2006; Salcedo et al., 2018). If the number of galaxies in a halo de-

pends on this secondary parameter, the clustering of galaxies will inherit this additional

halo clustering, a phenomenon known as galaxy assembly bias (e.g., Croton et al., 2007;

Zentner et al., 2014). Galaxy assembly bias could be present in Illustris or EAGLE, but it is

explicitly not present in our DMO+HOD model. We now remove any effects of assembly

bias from our hydrodynamic simulation galaxies, with the understanding that if this proce-

dure improves our ability to predict clustering statistics with our DMO+HOD model, this

is an indication that future HOD modelling should incorporate parameters that deal with

assembly bias.

To remove the presence of assembly bias from our simulation galaxies, we identify

pairs of haloes with similar masses, and swap the positions and velocities of their galaxies.

This is done after already removing all spatial and velocity bias. In other words, we first

generate 1000 realizations of the simulation galaxies after removing spatial and velocity

bias (as described above), and then exchange galaxies in haloes of similar mass. When

we exchange galaxies in pairs of haloes, we shift the galaxy positions by the difference in

halo centre positions, so that a galaxy is in the same position relative to the halo centre,

but the halo centre has been switched. For the velocities, we take the peculiar velocity of

a galaxy and subtract the mean halo velocity, thus putting the galaxy in the frame of the

halo. We then add this velocity to the velocity of the new halo to get the new velocity of

the galaxy. In other words, we keep the velocity of the galaxy in the frame of its halo the

49



same, and simply give it a new halo velocity. We use four different combinations of halo

pairs, ultimately resulting in 4000 realizations of our simulation galaxies after removing all

spatial, velocity, and assembly bias.

This procedure of exchanging galaxies in haloes of similar mass effectively removes

assembly bias from our data because it nullifies any environmental effects on the number

of galaxies in each halo. If the number of galaxies in each halo was already only dependent

on halo mass, then this procedure should not produce any change in clustering statistics.

However, if the number of galaxies in a halo had a dependence on a property other than

halo mass, then swapping galaxies in haloes with similar masses would remove the effect

of this phenomenon on our clustering statistics. The results of this are detailed in Table 2.3.

Once again, the p-values given are the median of many realizations (in this case 4000).

The last point in each panel of Figure 2.9 shows these median p-values that result from

removing assembly bias (in addition to correcting the HMF and removing all spatial and

velocity bias). Once again, error bars show the range of p-values that correspond to the

middle 68% of our 4000 realizations. Removing assembly bias results in all clustering

statistics being well predicted by our HOD for both simulations and luminosity samples.

In the M−21
r samples, all clustering statistics were already well predicted, so there is very

little change. More importantly, in the M−19
r samples, there are slight improvements in

all clustering statistics for the Illustris galaxies, and there are major improvements for the

correlation functions and counts-in-cells statistics for the EAGLE galaxies. Of particular

note is the void probability function for the EAGLE M−19
r sample, which remained below

5σ until assembly bias was removed, at which point it reached 1σ confidence that the HOD

model is a good fit to the simulation. This agrees with the results of Chaves-Montero et al.

(2016), who detected galaxy assembly bias in the EAGLE simulation, and found that the

signature of assembly bias was stronger for low mass galaxies. This is also consistent with

the results of Tinker et al. (2006a), which suggested that VPF is sensitive to the presence

of assembly bias. More recently, Walsh and Tinker (2019) also showed that counts-in-cells
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statistics can be powerful probes of assembly bias.

2.8 Summary and Discussion

In this work, we have examined the validity of using halo occupation distribution modelling

to reproduce galaxy clustering statistics. Halo models provide a simple and computation-

ally inexpensive way to investigate the connection between galaxies and their dark matter

haloes, but they rely on the assumption that the role of baryons can be easily parametrized

in the modelling procedure. Using two different hydrodynamic simulations, Illustris-2 and

EAGLE, we have investigated the accuracy of using a simple five-parameter HOD to re-

produce clustering when applied to a high luminosity sample of galaxies as well as a low

luminosity sample. The HOD was fit to each simulation and luminosity sample separately,

and applied to haloes from the dark matter only counterparts of Illustris and Eagle to cre-

ate mock galaxy catalogues. Our clustering statistics were measured in the same way on

our simulation galaxies as they were on our mock catalogues. Our main results are the

following:

• Overall, the vanilla HOD model is more successful when applied to a high luminosity

sample of galaxies than it is when applied to a low luminosity sample of galaxies.

• The simple five-parameter HOD model is able to accurately (within 3σ tolerance)

reproduce correlation functions, the group multiplicity function, the void probability

function, and the singular probability function, for the high luminosity sample of

galaxies in both Illustris and EAGLE, as well as the number density in EAGLE.

• In our M−21
r Illustris and EAGLE samples, the errors among our 1000 mocks are

much larger than the cosmic variance errors from the 400 SDSS-like mocks. In

other words, an SDSS size M−21
r survey would perhaps be sensitive to clustering

differences that we are unable to detect in our analysis. In our M−19
r Illustris and

EAGLE samples, the errors among our 1000 mocks are smaller than the cosmic
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variance errors from the 400 SDSS-like mocks. This means that a survey with the

precision of SDSS might not be able to detect the differences that we find between

hydrodynamic galaxies and the HOD model. A future survey like the Dark Energy

Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016), however, will

have better precision than the SDSS due to its larger volume, allowing it to potentially

detect these small differences in clustering measurements.

• In general, the halo mass function is shifted to higher masses when baryons are not

included, resulting in an over prediction of galaxy number density when an HOD

is applied to the haloes from the dark matter only simulations. After correcting the

dark matter only halo mass function, the vanilla HOD model is able to accurately

reproduce all clustering statistics in the high luminosity sample of galaxies in both

Illustris and EAGLE. It also able to accurately reproduce galaxy number density in

both low luminosity samples.

• Even after correcting the halo mass function, the vanilla HOD model is still unable

to accurately (within 3σ tolerance) reproduce most of the other five clustering statis-

tics for the low luminosity samples of galaxies in Illustris-2 and EAGLE. However,

after removing the potential effects of spatial, velocity, and assembly bias from the

galaxies in the original simulations, the HOD model (with mass function correction)

is able to accurately reproduce all clustering statistics in both samples and both sim-

ulations.

These results demonstrate the prominent differences between the EAGLE and Illustris

simulations, in terms of the ways that baryons affect halo masses and galaxy clustering. For

example, the EAGLE and Illustris simulations are very different in terms of the amount of

spatial, velocity, and assembly bias they exhibit. Additionally, neither EAGLE nor Illustris

reproduces the galaxy luminosity function from the SDSS. Therefore, we cannot use the

results from our analysis of the clustering in these two hydrodynamic simulations to draw
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conclusions about galaxy clustering in the real Universe. Because of this, we do not attempt

to infer the true amounts of spatial, velocity, and assembly bias in the real Universe based

on this work, but rather recommend that any future work involving HOD modelling should

include free parameters for these biases. Moreover, our work suggests that future work

aiming to use HOD modelling to study cosmology would benefit from focusing on high

luminosity galaxy samples, which seem to be less affected by the aforementioned biases.

Additionally, different clustering statistics are sensitive to different biases. For example,

the void probability function seems to be particularly sensitive to the presence of assembly

bias, while the redshift space correlation function is sensitive to satellite velocity bias,

as can be seen in the low luminosity sample of EAGLE galaxies. Therefore, properly

constraining HOD parameters (especially when including spatial, velocity, and assembly

bias parameters), necessitates measuring several different clustering statistics.

Of particular note is the difference in how baryons alter the halo mass function between

the two different simulations. Any future work hoping to use HOD modelling will have

to first correct the dark matter only haloes by shifting the mass function to lower masses,

so that it more closely resembles what the mass function would look like with baryons

included in the simulation. However, the exact nature of this correction to the halo mass

function clearly depends upon which hydrodynamic prescriptions are regarded as the truth.

The large difference that we see between the two simulations in Figure 2.8 demonstrates

the extent to which mass corrections depend on the details of supernova and AGN feedback

physics. This result is somewhat alarming because, unlike the other biases we examine in

this study, the effect of baryons on the halo mass function cannot be easily parametrized,

making it unclear how one must proceed with halo modelling of observed clustering mea-

surements.

At a minimum, we recommend that future halo modelling efforts repeat their analyses

a couple times, applying different corrections to the dark matter only halo masses. This

will provide a rough estimate of the systematic uncertainty due to baryonic effects on the
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Table 2.4: Our fits to the halo mass ratios in Illustris-2 and EAGLE, as well as TNG100-2.
In the third column, x is equal to logMhalo.

Simulation Mass Range Mhalo,Hydro/Mhalo,DMO

Illustris-2 1.00 ·1011 < M < 9.57 ·1012 −0.10771x+2.21907
Illustris-2 M > 9.57 ·1012 0.07174x−0.10774
EAGLE M > 1.00 ·1011 0.05956x+0.16413

TNG100-2 1.00 ·1010 < M < 2.74 ·1012 −0.10171x2 +2.37863x−12.97684
TNG100-2 2.74 ·1012 < M < 1.06 ·1013 0.00189x+0.84450
TNG100-2 M > 1.06 ·1013 0.09429x−0.35479

halo mass function. For example, if a study finds strong evidence of assembly bias when

applying no correction to the halo masses, but then the evidence disappears when the anal-

ysis is repeated using a mass correction, one should not claim any detection of assembly

bias. To facilitate such a procedure, we fit simple functions to the mass corrections shown

in Figure 2.8. In the case of EAGLE we fit a single line, while for Illustris we fit a broken

line. These fits are shown as dashed lines in Figure 2.8. In Table 2.4 we list the parameters

for these fits to the mass corrections in Illustris and EAGLE.

We have tested these fits and confirmed that they produce the same results as doing

the full abundance matching correction that we performed in our analysis. Additionally,

we present fits to the same mass correction in IllustrisTNG (Naiman et al., 2018; Pillepich

et al., 2018a; Nelson et al., 2018; Marinacci et al., 2018; Springel et al., 2018). TNG is

more recent than both Illustris and EAGLE, and makes use of updated feedback mecha-

nisms, which results in a halo mass correction that is different than what we see in either

Illustris or EAGLE. We make no assumptions about which of these simulations produces

the correct relationship between the masses of their hydrodynamic and DMO haloes, but we

recommend that future halo modelling work makes use of one or more of these corrections.

Rather than viewing these results as evidence that dark matter only simulations are in-

sufficient for halo modelling and should thus not be used to study galaxy clustering, we

interpret these results as confirmation that there is no consensus among hydrodynamic sim-

ulations. Therefore, dark matter only simulations and halo models are still very relevant
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tools for investigating the galaxy-halo connection, as long as the halo model is given suffi-

cient freedom, and the effect of baryons on the halo mass function is accounted for.
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CHAPTER 3

The impact of baryonic physics on the abundance, clustering, and concentration of

halos

This chapter was previously published in the November 2021 edition of The Astrophysical

Journal (Beltz-Mohrmann and Berlind, 2021) and is reproduced here, with minor format-

ting changes, with the permission of the publisher and my co-author, Andreas A. Berlind.

We examine the impact of baryonic physics on the halo distribution in hydrodynamic

simulations compared to that in dark matter only (DMO) simulations. We find that, in

general, DMO simulations produce halo mass functions (HMF) that are shifted to higher

halo masses than their hydrodynamic counterparts, due to the lack of baryonic physics.

However, the exact nature of this mass shift is a complex function of mass, halo defini-

tion, redshift, and larger-scale environment, and it depends on the specifics of the baryonic

physics implemented in the simulation. We present fitting formulae for the corrections one

would need to apply to each DMO halo catalogue in order to reproduce the HMF found

in its hydrodynamic counterpart. Additionally, we explore the dependence on environment

of this HMF discrepancy, and find that, in most cases, halos in low density environments

are slightly more impacted by baryonic physics than halos in high density environments.

We thus also provide environment-dependent mass correction formulae that can reproduce

the conditional, as well as global, HMF. We show that our mass corrections also repair the

large-scale clustering of halos, though the environment-dependent corrections are required

to achieve an accuracy better than 2%. Finally, we examine the impact of baryonic physics

on the halo mass - concentration relation, and find that its slope in hydrodynamic simu-

lations is consistent with that in DMO simulations. Ultimately, we recommend that any

future work relying on DMO halo catalogues incorporate our mass corrections to test the

robustness of their results to baryonic effects.

56



3.1 Introduction

Studying the connection between galaxies and their dark matter halos is one of the keys to

understanding galaxy formation and evolution, as well as constraining cosmological mod-

els. In recent years, using hydrodynamic simulations has become a popular method for

investigating this connection (e.g. Vogelsberger et al., 2014a). However, these simulations

are not only computationally expensive, but are also inconsistent. We currently lack a con-

sensus on the correct baryonic physics prescriptions to use; thus, different hydrodynamic

simulations produce widely varying results.

By contrast, dark matter only (DMO) simulations are much less computationally ex-

pensive, and although the only physics involved is gravity, they still allow us to predict the

large-scale distribution of matter in the universe. However, a DMO simulation produces

a halo mass function (HMF) that on average is shifted to higher masses than the HMF

produced by a hydrodynamic simulation with the same cosmology and initial conditions

(e.g., Cui et al., 2014). This is because in a hydrodynamic simulation the presence of bary-

onic physics like stellar feedback, star formation, and feedback from active galactic nuclei

(AGN) has an impact on the masses of dark matter halos. This effect is non-trivial: the

impact of baryonic physics varies with halo mass, as well as halo definition, environment,

and redshift. And of course, the effect of baryonic physics depends on the details of the

feedback prescriptions implemented, which varies from one hydrodynamic simulation to

the next.

Several recent works have focused on comparing hydrodynamic simulations to models

of the galaxy-halo connection (e.g. Hadzhiyska et al., 2020, 2021a,c). Beltz-Mohrmann

et al. (2020) examined the accuracy of halo occupation distribution (HOD) modeling com-

pared to hydrodynamic simulations. They extracted HOD models from the galaxies in the

Illustris and EAGLE simulations, and subsequently applied these HOD models to the cor-

responding DMO simulations (i.e. Illustris-Dark and EAGLE-Dark). They found that these

HOD models, when applied to the DMO halos, were unable to reproduce the galaxy cluster-
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ing seen in the hydrodynamic simulations. This was in part because the HMFs in the DMO

simulations were shifted to higher masses, leading to an overestimate in the overall number

density of galaxies, as well as discrepancies in other clustering statistics (e.g. correlation

function and void probability function). The authors found that applying a correction to the

DMO halo masses led to a significant improvement in the galaxy clustering.

This issue with DMO halo mass functions could present a challenge for any work at-

tempting to use halo modeling to constrain the galaxy-halo connection (e.g. Sinha et al.,

2018), as well as any work attempting to constrain cosmology (e.g. Lange et al., 2019b). If

one’s goal is merely to produce mock galaxy catalogues with the same clustering as seen

in survey data, then one does not need to worry about this mass discrepancy; in this case,

the parameterization of the galaxy-halo connection is unimportant, so long as the clustering

mimics the real universe. However, if one’s goal is to accurately constrain the galaxy-halo

connection, then this mass discrepancy presents a problem. Moreover, if one is attempting

to use DMO simulations plus halo modeling to constrain cosmology, then obtaining the

correct halo mass function is essential, unless the HOD is able to fully absorb the effect

without perturbing the resulting cosmological parameters.

Several previous works have investigated the effects of baryonic physics on the halo

mass function. Cui et al. (2012) compared three simulations: a dark matter only simu-

lation, a hydrodynamic simulation with non-radiative physics, and a hydrodynamic sim-

ulation with radiative processes. They found that the fractional difference between halo

masses in the hydrodynamic and DMO simulations is almost constant for halos above

log(M∆c/h−1M�) > 13.5, but that for higher overdensity halos, as well as smaller mass

halos, differences in halo mass appear which depend on halo mass as well as baryonic

physics.

Later, Cui et al. (2014) further examined the effects of baryonic physics on the halo

mass function, focusing on the role of AGN feedback. They found that for both friends-

of-friends (FoF) and spherical overdensity (SO) halos, AGN feedback suppresses the HMF
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to a level below that of DMO simulations. They found that the ratio between the HMFs

in the hydrodynamic and DMO simulations increases with overdensity, but does not have

any redshift or mass dependence. They found that halos in hydrodynamic simulations have

shallower inner density profiles, which lends them to halo mass loss caused by “the sudden

displacement of gas induced by thermal AGN feedback.” The authors provide fitting func-

tions to describe the halo mass variations between the full-physics and DMO simulations

at different overdensities, which can recover the HMFs from hydrodynamic simulations for

halo masses larger than 1013h−1M�.

Sawala et al. (2013) examined the effect of baryons on the abundance of structures and

substructures and found that halo masses are reduced for halos smaller than 1012M�, and

the effect grows with decreasing mass. Later, van Daalen et al. (2014) looked at the im-

pact of baryonic processes on the two-point correlation functions of galaxies, subhalos, and

matter in large hydrodynamic simulations, and found that the changes due to the inclusion

of baryons are not limited to small scales. The authors found that the large-scale effects

are due to the change in subhalo mass caused by feedback associated with galaxy forma-

tion. They concluded that predictions of galaxy-galaxy and galaxy-mass clustering from

models based on collisionless simulations will have errors greater than 10% on scales < 1

Mpc, unless the simulation results are modified to account for the effects of baryons on the

distributions of mass and satellites.

Velliscig et al. (2014) used hydrodynamic simulations from the OverWhelmingly Large

Simulations (OWLS) project to study how the physical processes related to galaxy forma-

tion (e.g. star formation, supernova and AGN feedback, etc.) impact the properties of

halos. They found that the “gas expulsion and associated dark matter expansion induced

by supernova-driven winds are important for halos with masses M200 < 1013M�, lowering

their masses by up to 20% relative a DM-only model.” They also found that AGN feed-

back impacts halo masses up to cluster scales (M200 ∼ 1015M�). Moreover, they found that

baryonic physics alters the total mass profiles of halos out to several times the virial radius,
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which cannot be explained by a change in halo concentration. They concluded that the

decrease in total halo mass leads to a decrease in the HMF of 20%. The authors provided

analytic fitting formulae to correct halo masses and mass functions from DMO simulations.

Subsequently, Khandai et al. (2015) investigated the properties of halos in the MassiveBlack-

II hydrodynamical simulation, and found that baryons strongly affect the halo mass func-

tion when compared to dark-matter-only simulations, while Schaller et al. (2015) exam-

ined the effects of baryons on halos in the EAGLE simulation at low masses, and Chaves-

Montero et al. (2016) used subhalo abundance matching to investigate the effect of baryons

on the halo occupation distribution and assembly bias in the EAGLE simulation.

Bocquet et al. (2016) used the Magneticum simulations to investigate the impact of

baryons on the halo mass function, and found that baryonic effects globally decrease the

masses of galaxy clusters, which, at a given mass, results in a decrease of their number den-

sity. They found that this effect disappears at high redshift (z > 2) and for high halo masses

above 1014h−1M�. They concluded that when using a survey like eROSITA, ignoring the

impact of baryonic physics on the halo mass function leads to an underestimate in Ωm by

about 0.01. The authors also provided HMF fitting formulae.

Despali and Vegetti (2017) examined the impact of baryonic physics on the subhalo

populations in EAGLE and Illustris, and found that the presence of baryons reduces the

number of subhalos, especially at the low-mass end. They found that the variations in the

subhalo mass function depend on those in the halo mass function, which is shifted by the

effect of stellar and AGN feedback.

Finally, Castro et al. (2021) (and earlier Balaguera-Antolı́nez and Porciani (2013)) ad-

dressed the impact of baryonic physics on clusters. They found that ignoring baryonic

effects on the halos mass function and halo bias could significantly alter cosmological pa-

rameter constraints, particularly in the upcoming generations of galaxy cluster surveys.

Most of these works concur that baryonic physics lead to a net reduction in the masses

of halos, and consequently the HMF. However, the magnitude and mass dependence of
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the effect differ between different works, likely because of the different hydrodynamic

simulations used. This calls for a systematic study that compares the impact of baryons

on the HMF across a variety of recent hydrodynamic simulations with different baryonic

physics and feedback prescriptions, and over a wide range of redshifts and halo definitions.

Furthermore, no previous work has examined the environmental dependence of baryonic

effects on the halo mass function, nor simultaneously examined the impact of baryonic

physics on halo clustering and halo concentrations as a function of mass, all of which are

important ingredients for halo models of galaxy clustering.

In this work, we investigate the impact of baryonic physics on the halo mass function in

three different simulations: Illustris, IllustrisTNG, and EAGLE. We consider three differ-

ent redshifts and five different halo definitions. Moreover, we investigate the environmental

dependence of the effect of baryons on the halo mass function. For all these cases, we pro-

vide formulae that can be used to correct the halo masses from DMO simulations to match

the halo mass functions from their hydrodynamic counterparts. Finally, we investigate the

effect of baryonic physics on halo clustering and on the halo mass - concentration relation.

We discuss the simulation data in Section 3.2. In Section 3.3 we discuss the effects of

baryons on halo populations, and in Section 3.4 we discuss our corrections. In Section 3.5

we discuss the environmental dependence of the halo mass function, and in Section 3.6 we

discuss the halo mass - concentration relation. Finally, in Section 3.7 we summarize our

results and conclusions.

3.2 Simulation Data

For this analysis we use three cosmological N-body simulations: Illustris (Nelson et al.,

2015; Vogelsberger et al., 2014b,a; Genel et al., 2014), IllustrisTNG (Marinacci et al., 2018;

Naiman et al., 2018; Nelson et al., 2018; Pillepich et al., 2018b,a; Springel et al., 2018), and

EAGLE (Schaye et al., 2015; McAlpine et al., 2016; The EAGLE team, 2017; Springel,

2005; Crain et al., 2015). Specifically, we use Illustris-1, TNG100-1, TNG300-1, and
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Table 3.1: The columns show (from left to right): simulation name, box size in (h−1Mpc),
number of dark matter particles, dark matter particle mass (for the hydrodynamical run) in
(h−1M�), gas particle mass in (h−1M�), redshift used, and cosmological parameters. The
dark matter particle mass for Illustris-1-Dark is 5.3 · 106(h−1M�); for TNG100-1-Dark it
is 6.0 ·106(h−1M�); for TNG300-1-Dark it is 7.0 ·107(h−1M�); and for EAGLE Dark it is
7.5 ·106(h−1M�).

Sim. Lbox NDM mDM mgas h Ωm ΩΛ Ωb σ8

Illustris-1 75 18203 4.4 ·106 9.2 ·105 0.704 0.2726 0.7274 0.0456 0.809
TNG100-1 75 18203 5.1 ·106 9.4 ·105 0.6774 0.3089 0.6911 0.0486 0.8159
TNG300-1 205 25003 4.0 ·107 7.6 ·106 0.6774 0.3089 0.6911 0.0486 0.8159

EAGLE 67.77 15043 6.6 ·106 1.2 ·106 0.6777 0.307 0.693 0.04825 0.8288

EAGLE RefL100N1504. Each of these hydrodynamic simulations has a corresponding

dark matter only counterpart. A summary of the simulation parameters can be found in

Table 3.1.

The Illustris and IllustrisTNG simulations were performed with the AREPO code, while

the EAGLE simulation was performed with GADGET-3. All three simulations model star

formation, stellar evolution, gas cooling and heating, supernovae feedback, black hole for-

mation, and AGN feedback. GADGET-3 and AREPO contain different numerical hydrody-

namical techniques, leading to large discrepancies in the galaxy populations they produce

(Scannapieco et al., 2012). Additionally, though Illustris and TNG were performed with

the same code, they vary in the strength of their feedback prescriptions. Illustris contains

much stronger AGN feedback than either the TNG or EAGLE simulations (Weinberger

et al., 2017), which leads to substantial differences in their results.

We choose to compare these three simulations because they are publicly available and

all have dark matter only (DMO) counterparts to their hydrodynamic simulations. More-

over, each simulation has adequate resolution and volume to allow us to examine its halo

mass function between 1010 and 1014h−1M�. Finally, the three simulations have differ-

ent baryonic physics prescriptions, which allows us to compare how variations in physics

impacts our results.

In this work, we utilize halo catalogues from each simulation at z = 0,1, and 2. In all
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three simulations, halos were identified using a standard friends-of-friends (FoF) algorithm

(Davis et al., 1985) with a linking length of b = 0.2 times the mean interparticle separation.

The FoF algorithm was run on the dark matter particles, and in the hydrodynamic simula-

tions baryonic particles were attached to the same FoF group as their nearest dark matter

particle. Each FoF group has a mass, which we refer to in this work as MFoF. Additionally,

for each FoF group, masses were calculated for several different spherical overdensity (SO)

definitions, which we will make use of in this paper. Specifically, these halo definitions are

M200b (the total mass of the group enclosed in a sphere whose mean density is 200 times the

mean density of the Universe at the time the halo is considered), M200c and M500c (the total

mass of the group enclosed in a sphere whose mean density is 200 or 500 times the critical

density of the Universe at the time the halo is considered), and Mvir (the total mass of this

group enclosed in a sphere whose mean density is ∆c times the critical density of the Uni-

verse at the time the halo is considered, where ∆c derives from the solution of the collapse

of a spherical top-hat perturbation from Bryan and Norman 1998.) For each halo definition

and redshift, we only consider halos above > 1010h−1M�. In Illustris, the number of halos

above this threshold ranges from about 60 to 101 thousand, while in IllustrisTNG, the num-

ber ranges from about 70 to 120 thousand, and in EAGLE, the number ranges from about

53 to 85 thousand. The exact number of halos depends on the halo definition and redshift,

but it generally is lowest for M500c halos at z = 2 and is highest for MFoF halos at z = 1.

3.3 The Effect of Baryons on the Halo Mass Function

The most straightforward way to investigate the population of halos in a simulation is by

looking at the halo mass function (HMF), which displays the abundance of halos as a

function of mass. In Figure 3.1, we show the halo mass functions for M200b halos at z = 0

for both the hydrodynamic and dark matter only versions of Illustris-1, TNG100-1, and

EAGLE. Illustris is plotted in blue, TNG in green, and EAGLE in orange. It should be

noted that the halo masses from the hydrodynamic simulations include both dark matter
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particles and baryonic particles. The hydrodynamic versions are plotted with dashed lines,

while the DMO versions are plotted with solid lines. A corrected version of the DMO HMF

is plotted with a dotted line and will be discussed further in the next section. In the residual

panel, we plot the ratio of the hydrodynamic HMF to the DMO HMF (solid), as well as the

ratio of the hydrodynamic HMF to the corrected DMO HMF (dotted) for each simulation.

The residuals reveal sizeable discrepancies between the DMO and hydrodynamic halo

mass functions. In general, the hydrodynamic HMFs are shifted to lower masses in all three

simulations, but this shift is mass dependent, and varies by simulation. In particular, the

Illustris (blue) hydrodynamic HMF is consistently lower than the Illustris-Dark HMF above

1012h−1M�, as well as below 1011h−1M�. In TNG100 (green), the hydrodynamic HMF is

lower than the DMO HMF between 1012 and 1014h−1M�, as well as below 1012h−1M�. In

EAGLE (orange), the hydrodynamic HMF is lower than the DMO HMF at all halo masses

below about 1013h−1M�.

In all three simulations, the discrepancies between the hydrodynamic and DMO halo

mass functions reach the twenty percent level for much of the halo mass range. We em-

phasize that not only is this a significant difference, but it is also not trivial to correct. It

is not equivalent to a difference in halo definition, which would be a constant offset and

would not vary by simulation; this effect exhibits a trend with halo mass, and depends on

the feedback implemented in the hydrodynamic simulation.

Our HMF results for Illustris are consistent with the findings of Vogelsberger et al.

(2014b), who found that the halo mass function in Illustris is most affected at halo masses

below 1010h−1M� and above 1012h−1M�, where baryonic feedback processes (e.g. reion-

ization and SN/AGN feedback) are strongest, leading to a reduction in halo mass compared

to their DMO counterparts. They also found that halos around 1011h−1M�, where star

formation is most efficient, tend to be more massive than their DMO counterparts.

Our HMF results for TNG100 are consistent with the findings of Springel et al. (2018),

who found that baryons in the TNG simulation have a larger impact on low mass halos and
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Figure 3.1: Halo mass functions of hydrodynamic compared to dark matter only simu-
lations in the case of Illustris-1 (blue), TNG100-1 (green), and EAGLE RefL100N1504
(orange). The hydrodynamic versions are plotted with dashed lines, while the DMO ver-
sions are plotted with solid lines, and the corrected DMO versions are plotted with dotted
lines. The bottom panel shows the ratio of the hydrodynamic HMF to either the DMO or
the corrected DMO HMF for all three simulations. The halo definition shown is M200b.

a smaller impact on high mass halos compared to Illustris. TNG has weaker AGN feedback

than the original Illustris simulation, which leads to there being less discrepancy between

the DMO and hydrodynamic HMFs at the high mass end. TNG also has a different wind

model than Illustris, which leads to stronger feedback effects on lower mass halos, leading

to more discrepancy at the lower mass end of the HMF in TNG.

Our HMF results for the EAGLE simulation are consistent with Desmond et al. (2017)

and Schaller et al. (2015), who examined the differences between the halo masses in the

EAGLE DMO and hydrodynamic runs, and found the halos to be less massive on average

in the hydrodynamic run. Desmond et al. (2017) found that, at low halo masses, stellar

feedback in EAGLE strips baryons from the halo, which reduces the growth rate of the
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halo. At higher halo masses, stellar feedback becomes less effective, but AGN feedback is

still capable of expelling baryons in all but the most massive halos.

Another way to visualize the discrepancy between the halo mass distributions from hy-

drodynamic and DMO simulations is to plot the fractional difference between their masses.

In Figures 3.2 and 3.3 we plot this fractional difference for M200b (top) and M500c (bottom)

halos in Illustris, TNG100, and EAGLE at z = 0 and z = 2, respectively. Illustris halos

are plotted in blue, TNG100 halos in green, and EALGE halos in orange. The x-axis is

the DMO halo mass in units of h−1M�, and the y-axis is the fractional difference of hy-

drodynamic and DMO halo mass. In the left-hand column, we use the total hydrodynamic

halo mass (i.e. dark matter and baryonic particles) to calculate this fractional difference. In

the middle column, we use only the dark matter component of the hydrodynamic halo to

calculate this fractional difference, and we normalize by one minus the universal baryonic

mass fraction, 1−Ωb/Ωm, or (Ωm−Ωb)/Ωm. In the right-hand column, we use only the

baryonic component (i.e. gas and star particles) of the hydrodynamic halo to calculate this

fractional difference, and we normalize by the universal baryonic mass fraction Ωb/Ωm.

In each panel of Figures 3.2 and 3.3 hydrodynamic and DMO halos are paired based on

their ranked masses, rather than spatial positions or particle IDs. Thus, the most massive

DMO halo is paired with the most massive hydrodynamic halo, and so on. In other words,

we essentially “abundance match” the halos in the hydrodynamic and DMO simulations

(we do this separately for each redshift and halo definition, as well as each column in

the figures; therefore, one cannot compare an individual point from one column or row to

the next). We adopt this procedure because the fractional mass differences calculated in

this way represent the correction one would need to apply to the halo masses from one

of the DMO simulations in order to exactly recover the global halo mass function from

the corresponding hydrodynamic simulation. While this abundance matching technique

does not produce the exact same results as position or particle matching would, the overall

trends seen are the same, although the scatter is drastically reduced by abundance matching
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Figure 3.2: The fractional difference between halo masses from the hydrodynamic simu-
lations to halo masses from the DMO simulations, as a function of DMO halo mass, all at
z = 0. The hydrodynamic mass in the y-axis of each column is (from left to right): total
mass, mass of dark matter particles, and mass of baryonic (gas and star) particles. In the lat-
ter two cases, masses are normalized to account for the global difference between the total,
dark matter, and baryon matter densities. The top row displays M200b halos, and the bottom
row displays M500c halos. Hydrodynamic and dark matter only halos are matched by their
mass rank, rather than by position. The displayed ratio thus represents the correction factor
needed to apply to the dark matter only halos in order to recover the hydrodynamic halo
mass function. Polynomial fit correction functions, as described in Section 3.4, are plotted
in the first column of panels as solid lines.

(Vogelsberger et al., 2014b; Schaller et al., 2015; Springel et al., 2018).

Examining the top left panel of Figure 3.2, we can see that the same trends are present

here as were present in the halo mass functions shown in Figure 3.1. The results at z = 0

for M200b halos Illustris (consistent with Vogelsberger et al. 2014b and Springel et al. 2018)

indicate that stellar feedback slightly reduces the masses of the lowest mass halos (by up

to ∼ 10%), while star formation efficiency slightly increases the masses of halos around

1011h−1M�, and AGN feedback severely reduces the masses of high mass halos (by up to

∼ 20%). The results for TNG100 (consistent with Springel et al. 2018) indicate that stellar

feedback reduces the masses of low mass halos (by up to ∼ 15%), while star formation

efficiency peaks at slightly higher masses than in Illustris (but is not quite so efficient as
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Figure 3.3: The fractional difference between halo masses from the hydrodynamic simu-
lations to halo masses from the DMO simulations, as a function of DMO halo mass, all at
z = 2. All features are the same as in Fig. 3.2.

to increase halo masses), while AGN feedback is less strong than in Illustris, and does not

effect the highest mass halos, but reduces the masses of intermediate mass halos by up to

∼ 10%. The results for EAGLE (consistent with Schaller et al. 2015) indicate that stellar

feedback severely reduces the masses of low mass halos (by up to ∼ 20%), while AGN

feedback is similar to that in TNG, and reduces the masses of intermediate mass halos (by

∼ 10%) but does not impact the highest mass halos.

Looking at the second and third columns of Figure 3.2, we can see that feedback has a

much more extreme effect on the baryons in a halo than it does on the dark matter particles.

Thus, most of the mass difference is due to a loss or gain of baryons, and not dark matter.

For example, in the EAGLE simulation, there is an extreme lack of baryons at lower halo

masses, while in the Illustris simulation, there is a significant lack of baryons at higher halo

masses, but for both simulations, the amount of dark matter in each halo remains relatively

constant.

The differences between the three simulations in the third column of Figure 3.2 indicate
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that these three hydrodynamic simulations disagree in terms of the baryon content of their

halos. Precise observational constraints on the baryon fraction as a function of halo mass

could in principle allow us to differentiate between these three simulations. Gonzalez et al.

(2013) measured the baryons contained in both the stellar and hot-gas components for

galaxy clusters and groups with M500 > 1014M� at z = 0.1, and found that the weighted

mean baryon fraction for halos with M500 > 2× 1014M� is 7% below the universal value

when using a Planck cosmology. This is consistent with the results from the TNG and

EAGLE simulations at the high mass end, but is not in agreement with the results from

the Illustris simulation. The more significant differences between the three simulations,

however, occur at lower halo masses. Eckert et al. (2017) examined the baryonic content of

halos in the ECO and RESOLVE galaxy surveys (Moffett et al., 2015). While these results

do extend to lower halo masses, they only include cold baryonic content, so we cannot

make a direct comparison to the baryonic content in the three hydrodynmaic simulations.

In the future, more precise observational constraints on the baryon content of low-mass

halos could allow us to rule out certain hydrodynamic simulations.

Comparing the top and bottom rows of Figure 3.2, we can see that the discrepancy

between hydrodynamic and DMO halo masses is more extreme for M500c halos than it is

for M200b halos, indicating that feedback has stronger impact on the inner regions of a halo.

This is most evident when looking at the baryonic component of Illustris M500c halos (in

the third column of the second row of Figure 3.2), where feedback and star formation have

an extreme effect on the percentage of baryons in a halo.

We can also see that the trends present in each simulation at z = 0 are quite different

from those at z = 2, which are shown in Figure 3.3. For example, we can see clearly from

the M500c Illustris halos that at z = 2, stellar and AGN feedback have not kicked in yet, and

star formation efficiency is quite strong, resulting in a strong overabundance of gas and star

particles. Because of this, essentially all M500c Illustris halos at z = 2 have a higher mass in

the hydrodynamic simulation than they do in the DMO simulation (by ∼ 10%). However,

69



by z = 0, stellar feedback has kicked in for halos at or below 1010h−1M�, while AGN

feedback has kicked in for halos above 5× 1011h−1M�, resulting in these halos having

lower masses in the hydrodynamic simulation than their DMO counterparts. Meanwhile,

in TNG100 and EAGLE, it appears that stellar feedback has already kicked in by z = 2, but

AGN feedback has not, leading to less of a reduction in halo mass at the high mass end, but

a similar result at low masses.

3.4 Correcting the DMO Halo Mass Function

Overall, Figures 3.2 and 3.3 emphasize the fact that the effect of baryonic physics on the

halo mass function is to shift the HMF to lower masses. This shift can be as large as 25

percent. However, it is clear that this effect varies dramatically from one simulation to

the next. This presents a problem for anyone using DMO halo catalogues to constrain

the galaxy-halo connection or cosmology (Beltz-Mohrmann et al., 2020). The solution to

this problem is not as simple as adding a parameter to the model, because it is a problem

with the dark halo population itself. Additionally, the solution is not as simple as applying

a constant offset to all DMO halo masses, because the discrepancy depends on the mass

regime. Finally, once again, the solution depends on which hydrodynamic simulation is

regarded as having the correct baryonic physics.

One possible solution is to apply a correction to each of the halos in a DMO simulation,

so that the HMF better mimics the mass function from a hydrodynamic simulation. This

correction should serve to adjust each DMO halo so that it has the mass of its corresponding

hydrodynamic halo. We can use the fractional difference in halo mass shown in Figures 3.2

and 3.3 to identify a functional form for this correction.

To do this, we fit a polynomial to the fractional difference in halo masses between

our hydrodynamic and DMO simulations (i.e., column one of Figures 3.2 and 3.3). The

polynomial fits to each halo mass relationship were found using NumPy’s polyfit function.

After examining the effectiveness of several polynomials to correct the halo mass function,
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we found that a 7th order polynomial was the lowest order that could accurately capture the

halo mass trend and allow us to correct the DMO halo mass function. We have additionally

looked at the Bayesian Information Criteria (BIC) for polynomials ranging from 3rd order

to 12th order and found that the mean BIC (averaged over each halo definition and redshift

combination) continues to decrease until we reach 7th order, but does not continue to de-

crease significantly for higher orders. Thus, we decided that a 7th order polynomial was

the lowest order we could use for our fits and still accurately correct the halo mass function.

The corrected DMO halo masses (in units of 1010h−1M�) are given by

Mh,corrected = (y+1)×Mh,DMO (3.1)

where Mh,DMO is the unlogged original halo mass in units of 1010h−1M�, and

y = ax7 +bx6 + cx5 +dx4 + ex3 + f x2 +gx+h, (3.2)

where x = log10(Mh,DMO) and a through h are the polynomial coefficients for a given sim-

ulation and halo definition. These fits (for M200b and M500c halos at redshifts 0 and 2) are

plotted with solid lines in the first column panels of Figures 3.2 and 3.3. The fits at redshifts

0, 1, and 2 for all halo definitions are listed in Tables 3.2, 3.3, and 3.4.

Once again, this correction in based on “abundance matching” the halos between hy-

drodynamic and DMO simulations. Thus, applying this correction will assign to the most

massive DMO halo the mass of the most massive hydrodynamic halo, and so on. After ap-

plying our corrections to each DMO simulation, we can examine our new corrected DMO

halo mass functions. In Figure 3.1, we have plotted these corrected HMFs for M200b halos

at z = 0 with dotted lines. Looking at the residual panel, we can see that the corrections

lead to significant improvement, and almost perfectly reproduce the HMFs from the hy-

drodynamic simulations (deviations are less than 5%), which was precisely the goal of our

abundance matching method.
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Unfortunately, the Illustris, TNG100, and EAGLE simulations do not contain any halos

with masses above about 4× 1014h−1M� at z = 0. This upper limit decreases for z = 1

and z = 2 halos, and is also somewhat dependent on halo definition. We do not make any

assumptions about the masses of our halos beyond our data. Thus, our mass corrections

should not be applied to any DMO halos above the limits given in Tables 3.2, 3.3, and 3.4.

Rather, any DMO halo above our limits should be left unaltered. (This is very important;

because our mass corrections are seventh order polynomials, extending them beyond our

mass limits will lead to very large changes in halo mass.)

It is noteworthy that in TNG100 and EAGLE, the mass correction is already almost zero

at the high mass end. However, in Illustris, for z = 0 halos, this is not the case. This means

that applying the Illustris halo mass correction will lead to a slight discontinuity in the halo

mass function. This discontinuity could be alleviated by, for example, extrapolating the fit

at the high mass end; however, because doing this would not be based on any data, we do

not provide any extrapolations of our fits here. Additionally, our mass corrections should

only be applied to halos with masses above 1010h−1M�. We do not present corrections for

halos below 1010h−1M� in this work due to the mass resolutions of the simulations that we

use. (Once again, it is very important not to apply the corrections to any DMO halos below

1010h−1M� due to the nature of the seventh order polynomial fits.)

We recommend that any future work using halos from a DMO simulation do the follow-

ing: for a given halo definition and redshift, apply at least one of our halo mass corrections

to correct the halo mass function. Once the mass corrections are applied, the remaining

analysis (e.g. HOD, CLF, etc.), can be performed on the corrected halo catalogues. In this

way, one can investigate the robustness of their results to changes in the halo mass func-

tion. Ideally, we recommend applying all three corrections (i.e. each correction based on

Illustris, TNG100, and EAGLE) since the variation among them represents the theoretical

uncertainty in baryonic physics.

We have created a PYTHON module for implementing our halo mass corrections, which
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is publicly available at https://github.com/gbeltzmo/halo mass correction. This module

takes in an array of halo masses, a halo definition (M200b, MFoF, Mvir, M200c, or M500c),

a redshift (0, 1, or 2), and a simulation (Illustris, TNG, or EAGLE), and returns the corre-

sponding corrected halo masses. If a given halo mass is outside the accepted mass range,

the code will issue a warning, and will return the original (uncorrected) halo mass.

One question worth investigating is whether applying our mass corrections to a box with

a very different resolution produces accurate results. To investigate this, we applied the

TNG correction (based on the TNG100-1 simulation) to the TNG300-1-Dark box (which

is about a factor of 8 lower in resolution than the TNG100-1-Dark simulation) to see if

we could reproduce the halo mass function from the TNG300-1 simulation. Looking only

at the 1010−1014h−1M� mass range, this correction almost perfectly reproduces the halo

mass function from TNG300-1, with all deviations less than 5% (compared to 17% devia-

tions without the correction). This indicates that as long as the mass corrections are only

applied within the appropriate mass regime, the corrections are accurate even when used

with simulations of different volumes and resolutions.

Szewciw et al. (in prep) have applied our mass corrections to Mvir halos (z=0) from a

large DMO simulation (Las Damas; McBride et al., 2009) and examined how their HOD

parameter constraints on SDSS galaxies varied with the different halo mass corrections.

They found that for both their luminosity samples (M−19
r and M−21

r ), the different halo

mass corrections lead to changes in all their HOD parameters. The biggest changes are

seen in logMmin and logM1, and in most cases the Illustris-based mass correction leads

to the biggest change, although for the M−19
r sample it is the EAGLE-based correction

that leads to the biggest difference in logMmin. While it is to be expected that the halo

mass corrections lead to changes in the mass parameters of the HOD, these changes are

simulation dependent, and are not trivial to predict. The halo mass corrections ultimately

do not lead to better χ2 values for the best fitting models, nor do they lead to the models

being ruled out.
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3.5 Environmental Dependence

Our “abundance matching” technique does not explicitly take halo environment into ac-

count when correcting the halo masses. This means that while our mass corrections suc-

cessfully reproduce the global halo mass function from our hydrodynamic simulations,

they will not correct the conditional HMF if baryonic effects on halo mass are environment

dependent.

Fitting halo mass corrections in which halos are matched between DMO and hydro

based on position or particle IDs would inherently take halo environment into account.

However, there are several issues with this technique. Firstly, matching halos based on po-

sition or particle IDs does not guarantee that every halo in the hydrodynamic simulation has

a match in the DMO simulation. Secondly, this method of matching introduces a significant

amount of scatter into the hydrodynamic-to-DMO halo mass relationship. Therefore, if one

were to use this relationship to correct halos from a large DMO simulation, one would have

to either ignore the scatter (in which case the result is essentially the same as the abundance

matching correction), or take the scatter into account by binning halos by mass and then

drawing their corrected mass from a distribution within that bin. While this accounts for the

scatter, it still does not account for halo environment. Additionally, this is not the cleanest

method for correcting DMO halo masses; when applied to any of the three simulations used

in this work, this method does not successfully reproduce the correct global or conditional

HMF from the hydrodynamic simulations.

One alternate possibility is to use our original “abundance matching” technique, but

to separate halos by environment. We can do this by measuring the large-scale environ-

ment around each of our DMO and hydrodynamic halos. We can then split our halos into

those with high-density environments and those with low-density environments, and subse-

quently “abundance match” between DMO and hydro, matching only halos within similar

environments. For example, the most massive DMO halo in a high-density environment

would be matched with the most massive hydrodynamic halo in a high-density environ-
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ment, while the most massive DMO halo in a low-density environment would be matched

with the most massive hydrodynamic halo in a low-density environment, and so on. This

procedure will yield mass corrections that are guaranteed to recover the correct conditional

HMF.

To do this for each of our simulations, we first have to measure the large-scale environ-

ment around each of our halos. To measure halo environment, we calculate the total mass

of halos within 5 Mpc spheres centered on each halo of interest (excluding the mass of the

halo of interest itself). In other words, we do not sum up all particles, but rather sum up the

masses of all halos in the halo catalog whose centers fall within the sphere (excluding the

main halo). We do not impose any lower mass limit on the halos included in this sum. We

measure environments for all DMO halos above 1010h−1M�, and all hydrodynamic halos

that are matched to them using the abundance matching method described above.

We can thus define an environment factor δ for each halo, such that δ =(ρsphere/ρbox)−

1, where ρsphere is the mass of halos in a 5 Mpc sphere around the halo divided by the vol-

ume of a 5 Mpc sphere, and ρbox is the sum of all halo masses in the box divided by the

volume of the box. We measure halo environment in this way for all three of our simulations

- hydrodynamic and DMO alike. We repeat this measurement for each of our different halo

definitions and redshifts. We then split our halos into “high-” and “low-density” environ-

ments based on the median environment (δmed) for that simulation. This is done separately

for each halo definition and redshift, and is also done separately for the hydrodynamic

and DMO simulations. Thus, each simulation/halo definition/redshift combination has a

slightly different δmed. Subsequently, DMO halos in high-density environments are “abun-

dance matched” with hydrodynamic halos also in high-density environments, and likewise

for halos in low-density environments.

Shown in Figure 3.4 are the results of this environment-dependent abundance matching

technique for M200b halos at z = 0 in Illustris-1 (blue), TNG100-1 (green), and EAGLE

(orange). Halos in high-density environments are plotted in darker colors, and halos in
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Figure 3.4: Fractional difference between hydrodynamic and DMO M200b halos from Illustris-1
(blue), TNG100-1 (green), and EAGLE (orange) at z = 0. In this plot, hydrodynamic and DMO
halos are first split into high and low density environments, and then are abundance matched with
corresponding halos in similar environments. High density environments are plotted in darker col-
ors, and low density environments are plotted in lighter colors. Each trend is fit with a seventh order
polynomial, which is given in Table 3.5.

low-density environments are plotted in lighter colors. Each of these relationships is once

again fit with a seventh order polynomial, which is plotted here with a solid line. The fits

for M200b and Mvir halos at z = 0, along with the δmed and mass limit, are given in Table 3.5.

We can see from Figure 3.4 that for each simulation, the relationship between hy-

drodynamic and DMO halos closely resembles that seen in Figure 3.2 for M200b halos,

but we do detect a difference between the high- and low-density environments. In Illus-

tris and TNG100, the differences between environments appear for all DMO halos above

5×1010h−1M�, where hydrodynamic halos in high-density environments are slightly more

massive relative to DMO halos than those in low-density environments. In EAGLE, be-

low 2× 1010h−1M� the high- and low-density trends are the same; between 2× 1010 and

5× 1011h−1M� the hydrodynamic halos in high-density environments are slightly more

massive relative to DMO halos than those in low-density environments; at higher masses
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this relationship is reversed. Additionally, for all three simulations, the highest mass hydro-

dynamic and DMO halos are exclusively found in high-density environments, as expected.

While our original “abundance matching” halo mass correction reproduces the global

halo mass function from a given hydrodynamic simulation, our environment-dependent

halo mass correction reproduces both the global and the conditional halo mass function. To

examine whether it is important to implement this more complicated halo mass correction,

we can see how well our different mass corrections reproduce the halo clustering found in

hydrodynamic simulations by measuring the halo correlation function, ξ (r).

In Figure 3.5 we plot the halo correlation functions for M200b halos at z = 0 in TNG300-

1. We use the TNG300-1 box for this analysis because the smaller hydrodynamic boxes

contain too few halos to accurately examine the clustering of halos. We calculate the halo

correlation function in two different mass bins: halos greater than 1011h−1M� and halos

greater than 1012h−1M�. For the lower mass sample, we measure ξ in 13 bins of separation

r between 0.49 and 15h−1Mpc, and for the higher mass sample we measure ξ in 10 bins

of separation r between 1.07 and 15h−1Mpc. We compute ξ with the blazing fast code

CORRFUNC (Sinha and Garrison, 2017, 2019). We measure ξ on halos from the following

versions of TNG300: (i) hydrodynamic simulation, (ii) the DMO simulation, (iii) the DMO

simulation with the global “abundance matching” halo mass correction, (iv) and the DMO

simulation with the environment-dependent halo mass correction. In this figure, the correc-

tions are done on a halo-by-halo basis; in other words, we do not use our polynomial fits

to make these corrections, but rather we directly assign DMO halos the exact masses of the

corresponding “abundance matched” hydrodynamic halos. In this way, we can assess the

ability of a given mass correction to reproduce the bias seen in the full-physics version of

TNG300 without introducing any error due to our fits. In the bottom panel of Figure 3.5 we

plot the ratio of each subsequent ξ (DMO, DMO with “abundance matching” correction,

or DMO with environment dependent correction) to the hydrodynamic ξ .

For both mass samples, the DMO halos do not exhibit the same correlation function as
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do the hydrodynamic halos; the residual panel shows that the difference in ξ for the low

(high) mass sample is about 8% (7%) at the smallest scales, and for both mass samples it is

about 4% for all scales above 2h−1Mpc. After applying the global “abundance matching”

halo mass correction (dot-dashed lines), the difference in ξ reduces to about 2% for both

mass samples for all scales above 2h−1Mpc (the difference is slightly larger for the high

mass sample). This difference reaches about 6% on the smallest scales for both mass

samples. We emphasize that this lingering discrepancy in ξ after applying the abundance

matching mass correction is not due to the accuracy of our seventh-order polynomial fit,

because in this figure we are not using our fits, but rather matching individual halos. In

other words, at this point the global halo mass function has been perfectly corrected, so the

remaining differences in ξ must be due to other factors.

After applying the environment-dependent halo mass correction (solid lines), the dis-

crepancies in ξ shrink once again. For both mass samples, the discrepancy between the

environment-dependent corrected DMO halo correlation function and the hydrodynamic

halo correlation function is less than 1% for all scales above 2h−1Mpc. At smaller scales,

the environment-dependent correction is still an improvement over the original correction

or no correction, although the discrepancy still reaches about 5 or 6% at the smallest scales

we consider. This is due to the fact that halo exclusion occurs at smaller scales in the hydro-

dynamic simulation than it does in the DMO simulation. Because our halo mass corrections

have no impact on the sizes or positions of halos, they cannot improve the halo correlation

function until it reaches a scale where both the DMO and hydrodynamic simulations are

not lacking halo pairs due to halo exclusion.

These results indicate that the impact of baryonic physics on the halo mass function

is dependent on the environment of the halo, which in turn affects the ability of a DMO

simulation to reproduce the halo clustering observed in hydrodynamic simulations. Our

original “abundance matching” halo mass corrections are able to reproduce the global halo

mass function seen in hydrodynamic simulations, and are able to reproduce the halo clus-
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Figure 3.5: The halo correlation functions for M200b halos at z = 0 in TNG300-1 (light green),
TNG300-1-Dark (dark green), TNG300-1-Dark with the abundance matching correction (green),
and TNG300-1-Dark with the environment-dependent abundance matching correction (light green).
Halo correlation functions are plotted for halos greater than 1011h−1M� (solid), and greater than
1012h−1M� (dotted). The bottom panel shows the ratios of each DMO halo correlation function for
a given mass bin.

tering to within a few percent. However, if higher accuracy is needed, it is important

to account for environment-dependent baryonic effects. Our environment-dependent halo

mass corrections reproduce both the global and the conditional halo mass function from

hydrodynamic simulations, and they reproduce the halo clustering to within less than 1%.

In Tables 3.5, 3.6, and 3.7 we provide our environment-dependent halo mass corrections

for all halo definitions in Illustris, TNG, and EAGLE at z= 0, z= 1, and z= 2, respectively.

Additionally, corrections are also available in our PYTHON module (https://github.com/

gbeltzmo/halo mass correction).

Figure 3.6 shows the results of applying these environment-dependent halo mass cor-
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Figure 3.6: The discrepancy in halo correlation functions for M200b halos at z = 0 in Illustris
(left), TNG (middle), and EAGLE (right). In each panel, we show the discrepancy between the
hydrodynamic halo correlation function and that in DMO (dark), DMO with the original halo mass
correction (medium), and DMO with the environment dependent halo mass correction (light). The
top panels are the correlation function discrepancies for halos greater than 1011h−1M�, and the
bottom panels are for halos greater than 1012h−1M�.

rections to Illustris (left), TNG (middle), and EAGLE (right). Each panel shows the dis-

crepancy between the hydrodynamic correlation function and that in DMO (dark), DMO

with the original halo mass correction (medium), and DMO with the environment depen-

dent halo mass correction (light). In this figure, the mass corrections used are the fits given

in Tables 3.2 and 3.5 for M200b halos at z = 0. The top panels show the correlation func-

tion discrepancies for halos above than 1011M�, and the bottom panels show the same for

halos above 1012M�. (We do not show halos below 1011M� because in all three simula-

tions the environment dependent corrections do not deviate from the original corrections

below 1011M�. Additionally, the clustering of low mass halos is more complicated, and its

investigation is beyond the scope of this paper.)

In each simulation, the DMO halos exhibit some clustering discrepancy compared to

the hydrodynamic halos. For the lower mass sample (top panels), DMO underestimates

the clustering by about 3% on average in Illustris, and TNG, and by about 5% on average

in EAGLE. In Illustris, the original mass correction actually makes the clustering slightly

worse, while the environment-dependent correction is an improvement on small-scales,

and a slight overcorrection on large scales. In TNG, the original mass correction provides
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little to no improvement over DMO, but the environment-dependent correction improves

the clustering almost completely. In EAGLE, the original and the environment-dependent

corrections are in very close agreement, and both improve the clustering almost entirely

compared to DMO.

For the higher mass sample (bottom panels), the error bars are large due to a lack of high

mass halos. However, in each case, the DMO simulations underestimate the clustering of

halos compared to the hydrodynamic simulations. This discrepancy is smallest in Illustris,

and as a result, both the original and the environment-dependent mass corrections yield

a slight overestimation of clustering. In TNG, the original mass correction provides little

to no improvement, while the environment-dependent correction once again improves the

clustering almost completely. In EAGLE, both the original and the environment-dependent

corrections provide a slight improvement compared to DMO.

Applying these corrections to a large DMO simulation is slightly more complicated,

because it requires calculating the large-scale environment for each halo of interest (only

those above 1010h−1M�), and then separating these halos into “high” and “low” density en-

vironments based on the median environment δmed, and applying the corresponding mass

correction. (In our module, an environment argument must be passed, which can be “all,”

“high,” or “low,” wherein the code assumes it is applying the correction to all halos, only

halos in high density environments, or only halos in low density environments, respec-

tively.)

We have provided the δmed that we found for each simulation/halo definition/redshift

in Tables 3.5, 3.6, and 3.7. If applying our environment dependent corrections, we suggest

using the δmed that we provide for a given correction, rather than finding a new δmed that

is specific to your sample. This is because our corrections are based on splitting halos into

high- and low-density environments using a δmed for all halos above 1010h−1M�. However,

δmed does increase with halo mass. Thus, for a halo catalogue that only includes halos

with masses above 1012h−1M�, for example, the pertinent δmed would be higher. This
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means that halos which we identified as being in high-density environments might now be

identified as being in low-density environments. In this case, it would not be appropriate to

apply our environment-dependent halo mass corrections to this sample. This is admittedly

a limitation of our environment-dependent halo mass corrections. The effect of using the

“wrong” value of δmed is very slight, but we still recommend using the value of δmed that

we provide to ensure that the mass corrections are applied to the appropriate halos.

We once again provide upper mass limits for our halo mass corrections, and emphasize

the importance of not applying the corrections to any halos above these mass limits or

below 1010h−1M�.

3.6 Halo Mass - Concentration Relation

Halo modeling often uses the internal structure of halos to determine the placement of

satellite galaxies within the halo (e.g. Zehavi et al., 2011; Zentner et al., 2014). This often

involves assuming that the spatial distribution of satellite galaxies within halos follows an

NFW profile (Navarro et al., 1996), which includes a parameter for the concentration of the

halo. Up to this point, we have investigated and quantified the impact of baryonic physics

on the halo mass function, as well as the halo correlation function. We now examine the

impact of baryonic physics on halo concentration.

The concentration c of a halo is defined as the ratio of the virial radius Rvir of the

halo to the scale radius Rs (Navarro et al., 1997). The relationship between halo mass and

concentration has been previously studied in simulations, and it has been found that halo

concentration has a weak power-law dependence on halo mass, with a slope of approxi-

mately −0.13 (Bullock et al., 2001). This relationship has a great deal of scatter, and is

predicated on the assumption that the density within a dark matter halo follows an NFW

profile.

Ragagnin et al. (2019) investigated the dependence of halo concentration on mass and

redshift in the Magneticum hydrodynamic simulations, and later Ragagnin et al. (2021)
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examined the cosmology dependence of halo masses and concentrations in hydrodynamic

simulations. Bose and Loeb (2020) examined the mass and concentration of host halos in

IllustrisTNG as they relate to velocity dispersion. Additionally, Wang et al. (2020) studied

the density profiles of early-type galaxies (ETGs) in IllustrisTNG at z = 0, and found that

the profiles are steeper in the hydrodynamic simulation than their counterparts in the DMO

simulation. They also found that the density profiles of the ETG dark matter halos are well

described by steeper than NFW profiles.

In order to investigate the effect of baryonic physics on the halo mass - concentration

relation in Illustris, TNG100, and EAGLE, we must first calculate the concentration for

each halo (above 1010h−1M�) in these simulations. While concentration is not directly

provided in any of these simulations’ halo catalogues, we can estimate the concentration

from the various halo mass definitions that are provided: M200b, M200c, and M500c. The

method works as follows. Assuming that each halo obeys an NFW profile, we can integrate

the profile and use the virial mass and virial radius of the halo to determine the scale density

ρ0 of the halo, substituting Rvir/c for Rs:

Mvir =
∫ Rvir

0
4πr2

ρ(r)dr (3.3)

ρ0 =
Mvirc3

4πR3
vir[ln(1+ c)− c

1+c ]
. (3.4)

We can then substitute this to solve for any other halo mass Mh and radius Rh (e.g.

M200b and R200b):

Mh =
Mvir

ln(1+C)− c
1+c

[ln(1+ cRh/Rvir)−
cRh

cRh +Rvir
]. (3.5)

We can rearrange this equation to find the ratio of Mvir to Mh as a function of Rvir, Rh,

and c:
Mvir

Mh
=

ln(1+ c)− c
1+c

ln(1+ cRh/Rvir)− cRh
cRh+Rvir

. (3.6)
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For each of our simulations, we have three known values of Mh: M200b, M200c, and

M500c, and three corresponding values of Rh. To find the value of concentration for each

halo, we loop over possible values of c between 0 and 2000 and find the one that minimizes

the sum of the squared fractional difference between the left- and right-hand side of the

previous equation over the three halo definitions. In other words,

A =
Mvir

Mh
(3.7)

and

B =
ln(1+ c)− c

1+c

ln(1+ cRh/Rvir)− cRh
cRh+Rvir

, (3.8)

and we find the value of c for each halo that minimizes

(
B200b−A200b

A200b
)2 +(

B200c−A200c

A200c
)2 +(

B500c−A500c

A500c
)2. (3.9)

We have tested this method of determining concentration on a DMO halo catalogue

for which we know the concentration values for each halo (calculated by the ROCKSTAR;

Behroozi et al. 2013). For this particular DMO halo catalogue, using the given values of

concentration led to a halo mass - concentration relation with a slope of −0.104± 0.004,

while using our method of determining concentration led to a slope of −0.098± 0.006.

Therefore, we can conclude that our method leads to the correct overall halo mass - con-

centration relation.

After confirming its accuracy, we applied this method to each of our hydrodynamic

and DMO simulations to determine the concentration of each halo. In Figure 3.7 we plot

log(c) as a function of log(Mvir) (in units of h−1M�) for Illustris (left), TNG100 (middle),

and EAGLE (right) halos. The results for the DMO simulations are plotted as gray points,

while the results for the hydrodynamic simulations are plotted in blue, green, and orange,

respectively. We then bin the points by mass, and plot the mean and standard deviation of

90



Figure 3.7: Concentration as a function of Mvir halo mass (in units of h−1M�) for Illustris (left),
TNG100 (center), and EAGLE (right) halos at z = 0. DMO halos are plotted in gray for each
simulation, while hydrodynamic halos are plotted in blue (Illustris), green (TNG100), and orange
(EAGLE). The larger points in each panel are the mean concentrations in bins of halo mass for each
DMO (black) and hydrodynamic (blue/green/orange) simulation, along with their standard devia-
tions. Additionally, we fit a line to these binned points for each simulation, with the corresponding
slope and y-intercept shown in the legend of each panel.

these bins (in black for DMO or blue/green/orange for the hydrodynamic simulations). We

subsequently fit a line to these means, which we plot with a dashed line. (Note that the

dashed line is not connecting the points, but rather is a fit to the points.) The slope and

y-intercept for each simulation are given in Figure 3.7, along with the standard error in the

slope.

Based on these results, we can see that all three DMO simulations have halo mass -

concentration relations that are consistent with each other and with what we expect from

previous studies. The Illustris DMO simulation has a halo mass - concentration relation

with a slope of −0.125± 0.004, while the TNG DMO simulation has a halo mass - con-

centration relation with a slope of −0.122±0.005, and the EAGLE DMO simulation has a

halo mass - concentration relation with a slope of −0.113±0.010 (only slightly shallower

than expected).

The Illustris hydrodynamic simulation has a halo mass - concentration relation with a

slope of −0.239± 0.011, which is steeper than we would expect, and not consistent with

that of the DMO simulation. The TNG100 hydrodynamic simulation has a halo mass - con-

centration relation with a slope of −0.118±0.012, and the EAGLE hydrodynamic simula-

tion has a slope of −0.102±0.014, both of which are consistent with their corresponding

91



DMO simulations. In each of these cases, the scatter among both the DMO and hydro-

dynamic halos is quite large, but there does not appear to be a systematic offset between

the DMO and hydrodynamic distributions for any simulation. Based on these results, we

can conclude that in TNG and EAGLE, baryonic physics does not significantly impact the

halo mass - concentration relation, while in Illustris, baryonic physics results in a slightly

steeper halo mass - concentration relation compared to that in Illustris-Dark.

We would also like to know what the halo mass - concentration relation would look like

in each of these simulations if we corrected the DMO halo masses, but did not alter their

concentrations. Another way of saying this is if someone were to apply our mass correction

to a large DMO box, but not change the halo concentration parameter, how would that

impact the halo mass - concentration relation? To investigate this, we apply our “abundance

matching” halo mass correction to our DMO halos for each simulation, and then plot the

original DMO halo concentrations as a function of these corrected masses. In this case,

we once again do a direct halo-by-halo correction rather than applying our seventh-order

polynomial fit, in order to perfectly reproduce the mass function from the hydrodynamic

simulation. Thus, the concentration (which we found via the method outlined above using

the original halo masses and radii) of the most massive DMO halo is plotted against the

mass of the most massive hydrodynamic halo (i.e. the “corrected” DMO halo mass), and

so on. We then find the mean concentration in bins of mass, and fit a new line to this

relationship. This new fit is plotted as a dotted line in each panel of Figure 3.7, and the

slope and y-intercept are given in the legend of each panel.

In each case, the “corrected” halo mass - concentration relation has a slope that is still

consistent with what we would expect for halos obeying an NFW profile. In all three cases,

applying the correction achieves a slope that is slightly closer to the hydrodynamic results.

This is most significant in Illustris, where the slope becomes steeper, although still does not

agree fully with the hydrodynamic results. In TNG and EAGLE, the DMO, hydrodynamic,

and corrected results are all consistent with one another.
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Based on this, for any work relying on halo masses and concentrations from a DMO

simulation, we believe that depending on how one wants to employ the halo mass - concen-

tration relation, one can either correct only the halo masses (and leave the concentrations

untouched, with little impact on the results), or one can correct the halo concentrations as

well using the slopes from the full-physics versions of Illustris, TNG, or EAGLE (shown in

Figure 3.7). Either way, the impact of baryonic physics on the concentration-mass relation

is likely to be small.

3.7 Conclusions

The implementation of baryonic physics in hydrodynamic simulations results in halo mass

functions that are generally shifted to lower masses than those produced by dark matter

only simulations. This is because stellar and AGN feedback removes baryonic particles (as

well as some dark matter particles) from halos over time. This effect varies with halo mass:

stellar feedback has more of an impact on lower mass halos, while AGN feedback has

more of an impact on higher mass halos. Additionally, particularly efficient star formation

can serve to increase the masses of some hydrodynamic halos (compared to their DMO

counterparts).

In this work, we have quantified the relationship between the masses of halos in hy-

drodynamic simulations and those in corresponding DMO simulations. The impact of

baryonic physics on the halo mass function depends on redshift, as well as halo defini-

tion. Additionally, because different hydrodynamic simulations contain different baryonic

physics prescriptions, the halo mass discrepancy between hydrodynamic and DMO halos

varies widely from one simulation to the next. Furthermore, the impact of baryonic physics

on halo mass depends somewhat on the large-scale environment of the halo: in Illustris and

TNG, halos in low-density environments are more impacted by baryonic physics, leading

to greater discrepancies in their masses compared to their DMO counterparts. In EAGLE,

halos in high-density environments exhibit a greater mass discrepancy between hydrody-
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namic and DMO simulations. This indicates that in hydrodynamic simulations in general,

the strength of feedback (and its ability to impact halo mass) has a dependence on the

density of the halo’s environment.

We have found that this relationship as a function of DMO halo mass is well-fit with a

seventh-order polynomial. We provide these fits for Illustris, IllustrisTNG100, and EAGLE

halos for M200b, MFoF, Mvir, M200c, and M500c halos at z= 0,1, and 2. These fits are based on

matching halos by mass (i.e. “abundance matching”) across hydrodynamic and DMO sim-

ulations. In other words, these are the corrections one would need to apply to the halos from

Illustris-Dark, for example, to reproduce the halo mass function in the full-physics version

of Illustris. We also provide these same fits after taking halo environment into account,

which can be used to reproduce the conditional as well as the global mass function. Fur-

thermore, we have shown that these corrections for halo mass also reproduce the large-scale

clustering of halos, though the environment-dependent corrections are required to achieve

an accuracy better than 2%. Finally, we have shown that baryonic effects do not impact

the halo concentration-mass relation substantially. Our halo mass corrections are publicly

available as a PYTHON module at https://github.com/gbeltzmo/halo mass correction.

Any work relying on halo catalogues from DMO simulations (e.g., halo occupation dis-

tribution modeling, conditional luminosity function modeling, stellar-to-halo mass relation

modeling, etc.) could potentially be impacted by inaccuracies in the halo mass function.

In particular, as these types of analyses start to be used more to constrain cosmological

parameters, it is imperative that any conclusions are robust to changes in the halo mass

function on the order of what we find in this work. For example, a DMO simulation cre-

ated with a given set of cosmological parameters can produce a halo mass function that,

after being adjusted with one of our mass corrections, resembles a HMF from a different

cosmology. Thus, without understanding the uncertainty in the halo mass function due to

baryonic physics, it may be challenging to distinguish between these cosmological models.

We recommend that any future work utilizing a halo catalogue from a DMO simulation

94

https://github.com/gbeltzmo/halo_mass_correction


repeat their analysis after applying at least one of our halo mass corrections (and ideally

more than one). This will provide a rough estimate of the systematic uncertainty in one’s

results due to baryonic effects on the halo mass function. We make no assumptions about

which of the three hydrodynamic simulations used in this work produces the “correct” halo

mass function, but rather provide our halo mass corrections as a method for determining

the robustness of one’s modelling results to changes in the halo mass function.
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CHAPTER 4

Toward Accurate Modeling of Galaxy Clustering on Small Scales: Extending the

Halo Model

Halo models provide a simple and flexible framework for accurately modeling the small-

scale clustering of galaxies. The standard Halo Occupation Distribution (HOD) model

relies on the assumption that the number of galaxies in a given halo is solely dependent on

the halo’s mass. In this work, we employ a “decorated” HOD model, which allows for the

possibility that halo occupation exhibits some dependence on a secondary halo property (a

phenomenon known as assembly bias, or secondary bias). We choose to use halo concen-

tration as the secondary halo property on which to model this assembly bias. Building on

the framework established in Szewciw et al. (2022) (hereafter S22), we identify an opti-

mal set of clustering statistics measured on a variety of scales to constrain this decorated

HOD model. We use this modeling framework to constrain the galaxy-halo connection in

SDSS DR7. For low-luminosity galaxies, our constraints indicate the presence of strong

central galaxy assembly bias and moderate satellite galaxy assembly bias. Additionally,

our best-fit model exhibits significantly less tension with the clustering of SDSS galaxies

than was found in S22. For high-luminosity galaxies, our results are consistent with zero

assembly bias for both central and satellite galaxies, and our best-fit model does not relieve

the tension found in S22. These results emphasize the importance of including secondary

bias parameters in the HOD modeling framework, as well as the value of using a variety of

clustering statistics to probe different aspects of the galaxy-halo connection.

4.1 Introduction

Halo models are motivated by our understanding that galaxies form and reside in gravita-

tionally bound, virialized regions of dark matter known as halos (e.g. Neyman and Scott,

1952; Peebles, 1974; McClelland and Silk, 1977; Scherrer and Bertschinger, 1991; Kauff-
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mann et al., 1997; Jing et al., 1998; Baugh et al., 1999; Kauffmann et al., 1999; Benson

et al., 2000; Ma and Fry, 2000; Peacock and Smith, 2000; Seljak, 2000; Scoccimarro et al.,

2001; Sheth et al., 2001; White et al., 2001; Cooray and Sheth, 2002). These models as-

sume that the clustering of galaxies can be fully described by (i) the clustering of their host

halos and (ii) the way in which galaxies occupy these halos.

A key ingredient of the halo model is the Halo Occupation Distribution (HOD), which

specifies via a few parameters the probability that a halo of mass M contains N galaxies

(above some luminosity threshold) (Berlind and Weinberg, 2002; Berlind et al., 2003).

The standard form of the HOD (Zheng et al., 2005) contains at most five free parameters

that specify the mean occupation number of galaxies and assumes that galaxies trace the

dark matter inside halos. Constraining these parameters when fitting to observational data

provides a useful empirical measurement against which we can test competing theories of

galaxy formation and evolution.

Many works have used the standard HOD to model the clustering of galaxies in recent

redshift surveys (e.g., Zehavi et al., 2011; Guo et al., 2016). However, several of these

studies yield fits which would rule out the ΛCDM + HOD model if taken at face value. The

errors used in these studies are typically derived via the jackknife method, which has been

shown to produce biased results (Norberg et al., 2009). Sinha et al. (2018) (S18 hereafter)

developed a numerical mock-based modeling procedure that significantly improved the

accuracy of HOD modeling. They compared the clustering of galaxies in the Sloan Digital

Sky Survey (SDSS, York et al., 2000) to a ΛCDM + standard HOD model, measuring

the projected correlation function, group multiplicity function, and galaxy number density.

Carefully controlling for systematic errors allowed them to interpret the goodness of fit

of their model. They found that their best-fit HOD model was unable to jointly fit the

clustering statistics, revealing significant tension between SDSS and their ΛCDM + HOD

model. Because this tension did not exist when they considered only measurements of the

projected correlation function (as is done in many studies), S18 demonstrated the value of
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adding additional statistics in small-scale clustering analyses.

Szewciw et al. (2022) extended the procedure used in S18 in order to maximize the

return from spectroscopic surveys. They included the same clustering statistics used in S18

(galaxy number density, projected correlation function, and group multiplicity function)

as well as four additional clustering statistics: redshift-space correlation function, group

velocity dispersion, mark correlation function, and counts-in-cells statistics. They were

able to significantly tighten the constraints on their five-parameter HOD model, as well as

increase the tension found in S18.

This increase in tension suggests a need to expand the standard HOD model to include

additional features. For example, the standard HOD model assigns galaxies to halos based

solely on the halo’s mass, but it is possible that halo occupation depends on additional

(secondary) features of the halo (e.g. concentration), a phenomenon known as assembly

bias (Gao et al., 2005; Berlind et al., 2006b; Wechsler et al., 2006; Croton et al., 2007).

Several works have examined the potential for the presence of assembly bias to affect

constraints on the galaxy-halo connection and cosmology. For example, Zentner et al.

(2014) examined the potential for assembly bias to induce systematic errors in inferred

halo occupation statistics. They built mock galaxy catalogs that exhibited assembly bias

as well as companion mock catalogs with identical HODs but no assembly bias. They fit

HOD models to the galaxy clustering in each catalog, and found that the inferred HODs

described the true HODs well in the mocks without assembly bias, but in the mocks with

assembly bias the inferred HODs exhibited significant systematic errors. Later, McCarthy

et al. (2019) used a mock galaxy catalog with assembly bias to study how assembly bias

might affect cosmological constrains. Specifically, they used the large-scale redshift-space

distortion to probe f σ8. They found that on small scales (e.g. a few to tens of h−1Mpc)

galaxy assembly bias can introduce systematic uncertainties in cosmological constraints.

They concluded that galaxy assembly bias can only be ignored when modeling scales above

8 h−1Mpc, where clustering is determined purely by the large scale bias.
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A number of works have investigated the presence of assembly bias in dark matter only

simulations. For example, Villarreal et al. (2017) used dark matter only simulations to

examine the dependence of assembly bias on halo definition, and found that the effect of

assembly bias for low mass halos can be mitigated through the use of a mass-dependent

halo definition with a smaller spherical overdensity threshold for lower mass halos. This

mass-dependent halo definition subsumes backsplash halos into larger host halos. They

also found shape- and spin-dependent clustering to be significant for all halo definitions,

with weaker mass dependence. They conclude that no halo definition mitigates all mani-

festations of assembly bias.

Salcedo et al. (2018) explored halo assembly bias in the Large Suite of Dark Matter

Simulations and found that a clustering bias exists if halos are binned by mass or by any

other halo property, indicating that no single halo property encompasses all the spatial

clustering information of the halo population. They also found that the mean values of some

halo properties depend on their halo’s distance to a more massive neighbor, and concluded

that this “neighbor bias” largely accounts for the secondary bias seen in halos binned by

mass and split by concentration or age. However, they also found that halos binned by other

mass-like properties still show a secondary bias even when the neighbor bias is removed.

Meanwhile, Mao et al. (2018) presented a summary of secondary halo biases of high-mass

halos due to various halo properties (e.g. concentration, spin, several proxies of assembly

history, and subhalo properties) in the MultiDark Planck 2 simulation. They found that,

while concentration, spin, and the abundance and radial distribution of subhalos exhibit

significant secondary biases, properties that directly quantify halo assembly history do not.

Mansfield and Kravtsov (2020) used the Bolshoi simulations to examine the physi-

cal processes that lead to halo assembly bias, focusing on the origin of assembly bias in

the mass range corresponding to the hosts of typical galaxies. Using halo concentration

as a proxy of halo formation time, they found that splashback subhalos are responsible for

two-thirds of the assembly bias signal, but do not account for the entire effect. After splash-
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back subhalos are removed, they found that the remaining assembly bias signal is due to a

small fraction of halos in dense regions. They tested several additional physical processes

thought to contribute to assembly bias, and concluded that three main processes modify the

assembly bias of small-mass halos: large-scale tidal fields, gravitational heating due to the

collapse of large-scale structures, and splashback subhalos located outside the virial radius.

Behroozi et al. (2021) examined the correlation of different properties of dark matter

halos (e.g. growth rate, spin, concentration) with environment in the Small MultiDark

Planck simulation. They demonstrated that these halo properties imprint distinct signatures

in the galaxy two-point correlation function and in the distribution of distances to galaxies’

kth nearest neighbors. Finally, they computed two-point correlation functions for SDSS

galaxies binned by half-mass radius at z = 0, showing that classic galaxy size models (i.e.

galaxy size being proportional to halo spin) as well as other recent proposals show signifi-

cant tensions with observational data. They demonstrated that the agreement with observed

clustering can be improved with a simple empirical model in which galaxy size correlates

with halo growth.

Several other works have explored assembly bias in semi-analytic models of galaxy

formation. For example, Pujol and Gaztañaga (2014) looked at two-point clustering in

semi-analytic models from the Millennium Simulation, and found evidence that galaxy

clustering is affected by assembly bias in low-mass halos (M < 3× 1011h−1M�). Later,

Pujol et al. (2017) examined the bias of central galaxies in semi-analytic models and found

that using local density as a secondary property correctly predicts galaxy bias, while using

solely halo mass does not. Zehavi et al. (2018) examined the dependence of the galaxy

occupation of dark matter halos on large-scale environment and halo formation time using

semi-analytic models applied to the Millennium simulation. They found that early-forming

halos (and to a lesser extent halos in denser environments) are more likely to host central

galaxies at lower halo mass, but also tend to host fewer satellite galaxies.

Contreras et al. (2019) examined the evolution of assembly bias using a semi-analytic
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model of galaxy formation applied to the Millennium-WMAP7 N-body simulation. They

found that at z = 0, the dependence of both halo clustering and halo occupation on halo

concentration and halo formation time are similar. At higher redshift, the assembly bias

signature weakens for halos selected by age, and reverses and increases for halos selected

by concentration. Meanwhile, the halo occupation variation with halo age stays mostly

constant with increasing redshift, but decreases for concentration.

Finally, a handful of works have examined assembly bias in hydrodynamic simulations.

For example, Artale et al. (2018) used the EAGLE and Illustris hydrodynamic simulations

to examine the variations in galaxy occupancy of dark matter halos with the large-scale en-

vironment and halo formation time. They found that for low-mass halos at fixed halo mass,

halos in denser environments are more likely to host a central galaxy, and early-formed ha-

los are even more likely to host a central galaxy. Additionally, these halos are likely to host

more massive central galaxies. Meanwhile, early-formed halos host fewer satellite galax-

ies. Later, Bose et al. (2019) examined the galaxy-halo connection in the IllustrisTNG

simulations, and found that halos in dense environments, with low concentrations, late

formation times, and high angular momenta are richest in their satellite population. Addi-

tionally, at low mass, halos with high-concentrations in overdense environments are more

likely to host a central galaxy. They conclude that at fixed halo mass, concentration is a

strong predictor of the stellar mass of the central galaxy.

Beltz-Mohrmann et al. (2020) investigated the ability of the standard HOD model to re-

produce the small-scale galaxy clustering seen in hydryodynamic simulations. Comparing

to the Illustris and EAGLE simulations, they found strong evidence for the need to extend

the standard HOD model to include assembly bias parameters, particularly when inves-

tigating the clustering of lower-luminosity galaxies. Meanwhile, Xu and Zheng (2020)

examined central galaxy assembly bias in the Illustris simulation and found that galaxy

stellar mass has a tighter correlation with peak maximum halo circular velocity than with

halo mass. Once the correlation with peak velocity is accounted for, stellar mass has nearly
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no dependence on any other halo assembly variables.

Hadzhiyska et al. (2020) and Hadzhiyska et al. (2021a) investigated the assumptions

of the standard HOD model by comparing predictions of galaxy clustering to the Illus-

trisTNG simulations, and found that the standard HOD model fails to predict the correct

galaxy clustering. They also explored using different secondary parameters in an HOD

model that included assembly bias, and found that the local environment of the halo and

the velocity dispersion anisotropy are the most effective measures of assembly bias for pre-

dicting clustering consistent with IllustrisTNG. They also found that at fixed halo mass,

galaxies in one type of environment cluster differently from galaxies in another, and con-

cluded that combining mass and local environment information about the halo leads to a

more complete model of the galaxy-halo connection. Hadzhiyska et al. (2021c) further

explored halo occupation in IllustrisTNG, and found that at fixed halo mass, galaxies in

high-density environments cluster ten times more strongly than those in low-density re-

gions. Finally, Hadzhiyska et al. (2021b) compared galaxy clustering in IllustrisTNG and

the Santa-Cruz semi-analytic model and found good agreement between the two models

for two-point clustering and galaxy assembly bias signatures. They also found that both

models exhibited a similar response in halo occupancy and clustering to secondary halo

properties such as formation history and concentration.

Contreras et al. (2021) used the IllustrisTNG simulation, the SAGE semi-analytic model,

and subhalo abundance matching (SHAM) to investigate the differences in predictions of

galaxy assembly bias, and found that all three models produced an assembly bias signal of

different magnitude, redshift evolution, and dependence with selection criteria and num-

ber density. They found that by including an extension to SHAM that allows for arbitrary

amounts of assembly bias, they were able to reproduce the galaxy assembly bias signature

in both SAGE and IllustrisTNG, for all redshifts and galaxy number densities.

A few recent works have attempted to constrain assembly bias in observational surveys.

Zentner et al. (2019) used the projected correlation function to constrain an HOD model
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with assembly bias in SDSS. They detected central galaxy assembly bias in the Mr <−20

and Mr <−20.5 samples, and detected satellite galaxy assembly bias in the Mr <−19 sam-

ple, but found no evidence for galaxy assembly bias in the Mr <−21 sample. Meanwhile,

Vakili and Hahn (2019) used the Small MultiDark-Planck high resolution N-body simu-

lation to model galaxy clustering in SDSS. They examined the concentration-dependence

of halo occupation, and found that the satellite population is not correlated with halo con-

centration at fixed halo mass. They also found no correlation between the occupation of

centrals and halo concentration in the most luminous samples (Mr < −21.5,−21), and

modest correlation in the Mr < −20.5,−20,−19.5 samples. Additionally, Salcedo et al.

(2020) investigated the level of galaxy assembly bias in the Sloan Digital Sky Survey using

the ELUCID simulation, and found no evidence for significant galaxy assembly bias in the

local Universe for galaxies above a stellar mass threshold of 1010.2h−1M�.

More recently, Lange et al. (2022) used an HOD model with both assembly bias and

velocity bias parameters to marginalize over uncertainties in the galaxy-halo connection

and obtain cosmological constraints from the BOSS LOWZ sample. Using Vmax as their

assembly bias property, they do not find significant evidence of either central or satellite

galaxy assembly bias. However, Lange et al. (2019a) explored how galaxy assembly bias

affects cosmological inference and found a degeneracy between assembly bias and f σ8.

Ultimately, they found that not including galaxy assembly bias in the model leads to a

small shift in the posterior of f σ8, indicating that it is important to account for galaxy

assembly bias to obtain unbiased cosmological constraints.

Finally, McCarthy et al. (2022) used HOD modeling to investigate assembly bias in

redshift (velocity) space in SDSS, with an extended construction of early- and late-forming

galaxies. They found that while early- and late-forming central galaxies have consistent

host halo masses, early-forming central galaxies exhibit large velocity bias, with central

galaxies moving at more than 50 percent of the dark matter velocity dispersion inside host

halos, signaling an assembly bias effect.
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In this work, we model the clustering of SDSS galaxies using an HOD model with

assembly bias parameters to constrain the galaxy-halo connection for both low- and high-

luminosity galaxies. We build on the procedures developed in Sinha et al. (2018) and

Szewciw et al. (2022), using a fully numerical, mock-based modeling procedure, with a

wide variety of galaxy clustering statistics and a careful treatment of systematic errors.

In Section 4.2 we describe our data, and in Section 4.3 we describe our simulations and

halo catalogs. In Section 4.4 we describe our halo model, and in Section 4.5 we describe

our full modeling procedure (including our mock galaxy catalogs, covariance matrices,

clustering measurements, and MCMC framework). In Section 4.6 we describe our selection

of optimal observables for constraining our HOD model, and in Section 4.7 we describe

our results. We summarize our findings in Section 4.8.

4.2 Observational Data

In this work, we use the same observational dataset as that used in S22. We utilize the large

scale structure samples from the NYU Value Added Galaxy Catalog (NYU-VAGC; Blan-

ton et al., 2005) from the seventh data release (DR7; Abazajian et al., 2009) of the Sloan

Digital Sky Survey (SDSS; York et al., 2000). The absolute magnitudes of the galaxies in

this sample have been k-corrected to rest-frame magnitudes at redshift z = 0.1, but have

not been corrected for passive luminosity evolution. From this sample, we construct two

volume-limited subsamples, each complete down to a specified r-band absolute magnitude

threshold (Mr <−19 and Mr <−21). We refer to these samples as the −19 and −21 sam-

ples throughout this paper. The luminosity thresholds, redshift limits, median redshifts,

effective volumes, and number densities of our samples are listed in Table 4.1. The co-

moving distances of the SDSS galaxies in our samples are determined using a flat ΛCDM

cosmological model with Ωm = 0.302 and h = 1. Our distances are in units of h−1Mpc, and

our absolute magnitudes are actually Mr +5logh1. Fiber collisions are handled in the same

way as in S22. For more details, see Sinha et al. (2018) and S22.
1Throughout this paper, log refers to log10.
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Table 4.1: The columns list (from left to right): the absolute magnitude threshold of each
sample at z = 0.1; the minimum, maximum, and median redshifts; the effective volume;
and the galaxy number density of each sample. The volumes and number densities of the
samples are corrected for survey incompleteness.

Mlim
r zmin zmax zmedian Veff(h−3Mpc3) ng(h3Mpc−3)

−19 0.02 0.07 0.0562 6,087,119 0.01453
−21 0.02 0.158 0.1285 67,174,396 0.00123

4.3 Simulations and Halo Catalogs

In our modeling procedure, we make use of the same dark matter only (DMO) cosmo-

logical N-body simulations as those used in S22. These simulations are from the Large

Suite of Dark Matter Simulations project (LasDamas; McBride et al., 2009), and were

run on the Texas Advanced Computing Center’s Stampede supercomputer using the public

code GADGET-2 (Springel, 2005). Power spectra were generated with CMBFAST (Seljak

and Zaldarriaga, 1996; Zaldarriaga et al., 1998; Zaldarriaga and Seljak, 2000), and initial

conditions were generated with 2LPTIC (Scoccimarro, 1998; Crocce et al., 2006, 2012).

All simulations were run with the following cosmological parameters, based on results

from the Planck experiment (Planck Collaboration et al., 2014): Ωm = 0.302, ΩΛ = 0.698,

Ωb = 0.048, h = 0.681, σ8 = 0.828, and ns = 0.96. The details of these simulations are

given in Table 4.2. We identify halos with a spherical over-density (SO; Lacey and Cole,

1994) threshold of Mvir (Bryan and Norman, 1998) using the ROCKSTAR phase-space tem-

poral halo finder (Behroozi et al., 2013). Finally, for computational purposes, we randomly

downsample to keep only 5% of the dark matter particles in each halo, with no loss of

accuracy (see S22).

4.4 Halo Model

The Halo Occupation Distribution framework governs the number, positions, and velocities

of galaxies within dark matter halos. The standard HOD model assigns galaxies to halos

based on five free parameters, which depend only on the halo’s mass (Zheng et al., 2007).

Galaxies are split into centrals and satellites within their halos (Kravtsov et al., 2004; Zheng
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Table 4.2: Simulation parameters. The columns list (from left to right): what each sim-
ulation is used for, the absolute magnitude threshold of the corresponding SDSS sample,
the name of the simulation, the seeds used, the (comoving) boxsize (in h−1Mpc), number
of particles, mass resolution (in h−1M�), (comoving) force softening (in h−1kpc), and the
number of simulations.

Use Sample Simulation Seeds Lbox Npart mpart ε Nsim

Matrix -19 Consuelo 4001 - 4100 420 14003 2.26 ·109 8 100
Matrix -21 Carmen 2001 - 2100 1000 11203 5.97 ·1010 25 100
MCMC -19 ConsueloHD 4002, 4022 420 22403 5.53 ·108 5 2
MCMC -21 CarmenHD 2007, 2023 1000 22403 7.46 ·109 12 2

et al., 2005). In this model, the mean number of central galaxies in a halo of mass M is

described by

〈Ncen〉=
1
2

[
1+ erf

(
logM− logMmin

σlogM

)]
, (4.1)

where Mmin is the mass at which half of halos host a central galaxy, σlogM is the scatter

around this halo mass, and erf(x) is the error function, erf(x) = 2√
π

∫ x
0 exp(−y2)dy.

The central galaxy is always placed at the center of the halo, and assigned the mean

velocity of the halo. The number of satellite galaxies in a given halo is drawn from a

Poisson distribution with mean

〈Nsat〉= 〈Ncen〉×
(

M−M0

M1

)α

, (4.2)

where M0 is the halo mass below which there are no satellite galaxies, M1 is the mass

where halos contain one satellite galaxy on average, and α is the slope of the power-law

occupation function at high masses. Each satellite galaxy is given the position and velocity

of a randomly selected dark matter particle within the halo.

In this work we use the decorated HOD (dHOD) model of Hearin et al. (2016), used

previously in Zentner et al. (2019). In this model, galaxies are assigned to halos based on

both the halo’s mass and a secondary halo property. In order to apply the decorated HOD,

we first split halos by mass into bins of width 0.05 dex. Then, within each mass bin, we
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split halos into two groups based on the median value of the secondary property s in each

bin. We then assign galaxies to halos based on

〈Ncen|M,shigh〉= 〈Ncen|M〉+δNcen, (4.3)

〈Ncen|M,slow〉= 〈Ncen|M〉−δNcen, (4.4)

〈Nsat|M,shigh〉= 〈Nsat|M〉+δNsat, (4.5)

and

〈Nsat|M,slow〉= 〈Nsat|M〉−δNsat, (4.6)

where

δNcen = AcenMIN[〈Ncen|M〉,1−〈Ncen|M〉] (4.7)

for central galaxies and

δNsat = Asat〈Nsat|M〉 (4.8)

for satellite galaxies.

Acen and Asat are between −1 and 1; values of 0 indicate no assembly bias. A key point

is that, regardless of the strength of the assembly bias, 〈Ncen〉 and 〈Nsat〉 are preserved for

a given halo mass. In other words, at fixed mass, for the same 5-parameter standard HOD

model, the decorated HOD has the same halo occupation distribution when averaged over

all halos.

One frequently used secondary property is halo concentration, c, which is defined as

the ratio of the virial radius Rvir of the halo to the scale radius Rs (Navarro et al., 1997).

For a given halo, concentration can be found using the relationship between virial mass,

maximum circular velocity, and concentration at z = 0:

vcirc(Mvir) =
6.72×10−3M1/3

vir
√

c√
ln(1+ c)− c/(1+ c)

(4.9)
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where Mvir is the virial mass of the halo in units of h−1M�, and vcirc is the maximum

circular velocity of the halo in units of km/s (Klypin et al., 2011). In our case, we implement

halo concentration as our secondary bias property, and use vcirc/M1/3
vir as a proxy for halo

concentration.

4.5 Modeling Procedure

4.5.1 Building mock galaxy catalogs

We build mock galaxy catalogs to use as our model by populating the two high-resolution

simulations for each sample (ConsueloHD and CarmenHD) with galaxies. Once we pop-

ulate our dark matter halos with galaxies, we build realistic mock galaxy catalogs that

resemble our SDSS samples of interest. To do this, we transpose the mock galaxies from

Cartesian to spherical coordinates by positioning an observer at the center of the box and

converting the positions of the galaxies into RA, DEC, and comoving distances. We can

then carve out four independent mock galaxy catalogs from each simulation box, and incor-

porate the same systematic effects that plague our observational dataset, such as redshift-

space distortions, sample geometry, and incompleteness. For more details, see S22.

4.5.2 Covariance Matrices

If we wish to take advantage of the information present at small scales to constrain the

galaxy-halo connection, it is essential that we carefully understand and minimize the un-

certainty in our modeling procedure. To do this, we run 100 low-resolution simulations for

each sample (Consuelo and Carmen) which differ in the phases of the density modes of

the power spectrum, which is controlled by a seed supplied to 2LPTIC. We populate these

low-resolution simulations with galaxies using the HOD parameters listed in Table 4.3. We

then build 400 mock galaxy catalogs for each sample, from which we can construct a co-

variance matrix to represent cosmic variance. The elements of the covariance matrix are
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Table 4.3: Fiducial HOD parameters for covariance matrices. The HOD parameters used
to construct the covariance matrices in our analysis.

Mlim
r logMmin σlogM logM0 logM1 α Acen Asat

−19 11.54 0.22 12.01 12.74 0.92 0 0
−21 12.72 0.46 7.87 13.95 1.17 0 0

given by

Ci j =
1

N−1

N

∑
1
(yi− yi)(y j− y j) (4.10)

where the sum is taken over the N = 400 mocks. The values yi and y j are the ith and jth

observables measured on each mock, while yi and y j are the mean values of the ith and jth

observables, respectively. Each diagonal element, Cii, of the matrix is the variance across

400 mocks for observable i, and
√

Cii is the cosmic variance uncertainty of observable i.

For an arbitrary observable, we refer to this uncertainty as σobs.

4.5.3 Clustering Statistics

Several works have demonstrated the power of using a variety of different clustering statis-

tics to constrain the galaxy-halo connection (Berlind and Weinberg, 2002; Sinha et al.,

2018; Hadzhiyska et al., 2021a; Szewciw et al., 2022). In our analysis, we employ the

following clustering statistics: the projected correlation function wp(rp) (e.g. Zehavi et al.,

2002, 2004; Zheng, 2004; Zehavi et al., 2005; Zheng et al., 2007; Zehavi et al., 2011; Leau-

thaud et al., 2012; Zentner et al., 2014; Coupon et al., 2015), the redshift-space correlation

function ξ (s) (e.g. Tinker et al., 2006b; Parejko et al., 2013; Guo et al., 2015a; Padilla

et al., 2019; Beltz-Mohrmann et al., 2020; Tonegawa et al., 2020), the group multiplicity

function n(N) (e.g. Berlind et al., 2006a; Zheng and Weinberg, 2007; Sinha et al., 2018;

Beltz-Mohrmann et al., 2020), the average group velocity dispersion function σv(N), the

mark correlation function mcf(s) (e.g. Zu and Mandelbaum, 2018), and two special cases

of counts-in-cells PN(R): the void probability function P0 (VPF(R)) and the singular prob-

ability function P0 (SPF(R)) (e.g. Tinker et al., 2006a, 2008; McCullagh et al., 2017; Walsh
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and Tinker, 2019; Wang et al., 2019; Beltz-Mohrmann et al., 2020). A detailed description

of each of these clustering statistics is given in S22. To calculate wp(rp), ξ (s), mcf(s),

VPF(R), and SPF(R) we make use of the publicly available code CORRFUNC (Sinha and

Garrison, 2017, 2019). In our modeling procedure, we measure each clustering statistic in

the same way (i.e., either on the full box/es or on the mock galaxy catalogs) as was done in

S22.

4.5.4 MCMC

We explore the HOD parameter space with a Markov Chain Monte Carlo (MCMC) algo-

rithm, using a privately developed C-implementation of the popular affine-invariant sam-

pler EMCEE (Foreman-Mackey et al., 2013), which we call EMCEE IN C2. We impose flat

priors on the same parameter ranges given in Sinha et al. (2018), as well as flat priors of

[-1.0,1.0] on Acen and Asat for both samples.

At each point in the chain, we evaluate the likelihood that a particular HOD model

could have generated a dataset with the same clustering as SDSS. This likelihood is given

by

L (D|M) =
exp(−1

2(D−M)C−1(D−M)T )√
(2π)Kdet(C)

, (4.11)

where D is the K-dimensional vector of observables measured on the SDSS dataset, M

is the corresponding vector of observables measured on the HOD model, and C is the

K-dimensional covariance matrix of these observables representing cosmic variance (see

Equation 4.10). (The the term within the exponential is essentially χ2, multiplied by a

factor of −1/2.)

In the HOD framework, the process of populating halos with galaxies in the is stochas-

tic, and is controlled with a “population seed.” For a fixed HOD model, changes in this

population seed can lead to significant differences in clustering statistics. To minimize the

noise in our results due to this random variation, at each point in the chain we populate

2https://github.com/aszewciw/emcee in c

110



halos four times, using four fixed population seeds. Thus the clustering measurements

for a given point in HOD parameter space are the average measurements over these four

population seeds.

4.6 Choosing Optimal Observables

In order to constrain the dHOD when fit to SDSS, we must first choose a set of observables

to use in our MCMC. We seek a subset of observables that produce the tightest constraints

on our HOD parameters, at the cost of little noise. Noise is introduced into the covariance

matrix due to the fact that we are constructing it from only 400 mocks. This noise propa-

gates into the likelihood function and thus into our posterior results. Increasing the number

of observables we use increases this noise, highlighting the need to choose our observables

wisely.

To choose an “optimal” set of high-information, low-noise observables, we employ the

importance sampling algorithm described in S22. In this algorithm, we first run MCMCs

on four mock galaxy catalogs to create fiducial non-uniform grids of HOD points. When

constructing these four fiducial grids, the likelihood of each point is calculated using only

ngal and wp(rp ∼ 0.3 h−1Mpc). We then use importance sampling on these grids to explore

the constraining power of different combinations of clustering statistics. The algorithm

chooses observables one by one, each time selecting the observable that, when combined

with all previously chosen observables, produces the tightest projected constraints on all

HOD parameters of interest. When choosing an observable, we consider how it performs

on across all four grids, minimizing any bias due to cosmic variance. Thus, at the end

of running this algorithm, we have a list of observables (ordered in terms of cumulative

constraining power) and a corresponding list of cumulative projected constraints for each

sample. (We refer the reader to S22 for a more complete description of this procedure.)

To choose the fiducial HOD from which the mocks used in this algorithm are con-

structed, we first run chains on our SDSS samples using matrices made from the HOD
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Table 4.4: Initial SDSS best-fit results.

Mlim
r logMmin σlogM logM0 logM1 α Acen Asat

−19 11.456 0.141 11.64 12.701 0.94 0.75 -0.33
−21 12.763 0.538 11.14 13.939 1.05 -0.35 -0.25

parameters given in Table 4.3 and the 36 optimal observables chosen for each sample in

S22 (listed in Table 4.5 under “vHOD”). These chains are run using a dHOD with concen-

tration as the assembly bias parameter. The best-fit HOD parameters from these chains are

listed in Table 4.4. We use these best-fit HOD parameters to build four mock galaxy cata-

logs for each sample, which are then used to construct the four grids used in our algorithm,

as described above.

There are two key differences in our implementation of this algorithm compared to S22.

First, when choosing the third observable for each sample, we only attempt to constrain Acen

and Asat. This is because these parameters are entirely unconstrained when using only ngal

and wp(rp ∼ 0.3 h−1Mpc), which causes the MCMC to explore unrealistic HOD models;

thus, it is essential to choose an observable early on that provides constraining power for

these parameters. After the third observable is chosen, we make all successive choices by

attempting to jointly constrain all HOD parameters (excluding logM0 for the −21 sample).

Second, in the S22 algorithm, new grids are created (by running new MCMCs using the

already chosen observables) whenever the old grids become insufficiently dense for im-

portance sampling. S22 creates these new grids after choosing five observables for each

sample, and again for the −19 sample after choosing eight observables. In our case, we

build denser grids after choosing three, five, ten, and twenty observables for each sample.

In Figure 4.1, we show our estimated constraint for each HOD parameter (excluding

logM0) as we choose successive observables. The results for the −19 sample are shown in

blue, and the results for the−21 sample are shown in red. The solid lines show the average

constraint across the four mocks used in the algorithm described above. In Table 4.5, we

list the observables chosen (in order) that we use for each sample (labeled “dHOD”). We
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Figure 4.1: Constraints on each HOD parameter as we increase the number of observables, for the
−19 sample (blue) and the −21 sample (red). The solid line in each panel shows the average mock
constraint (1-σ ) across four mocks, and the shaded region is an estimate of the uncertainty (inner
68%) in our constraints. The dot indicates the optimal number of observables for each sample, and
the dashed line indicates the corresponding constraining power for each parameter.

also list the observables chosen in the previous analysis using a “vanilla” HOD model (i.e.,

no assembly bias, labeled “vHOD”). The observables chosen in this work that were not

chosen in the previous analysis are shown in bold.

After ordering the observables from greatest to least constraining power, we need to

choose the total number of observables to use in our analysis. To do this, we employ

the same procedure as S22. Briefly, we estimate an error associated with each projected

constraint (for a given number of observables K) by resampling the covariance matrix 100

times, and then importance sampling the chain with each of these resampled matrices.

Doing so lets us approximate the error in our constraint due to the number (and specific

combination) of observables we are using in our analysis. The shaded regions in each

panel of Figure 4.1 show this error for each HOD parameter as we increase K. We choose
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the lowest value of K such that the constraint at this value is within one standard error of

the constraint at all higher values of K. We require that this condition is met for all HOD

parameters (except logM0 for the −21 sample). The optimal number of observables for

each sample is indicated with a dot in each panel, and the corresponding constraining power

is shown with a dashed line. For the −19 sample, the optimal number of observables is 36.

For the −21 sample, the optimal number of observables is 41. Using these observables, we

confirm that we can recover the truth when running chains on mocks created with different

HOD parameters (i.e. different amounts of assembly bias) for each sample.

It is noteworthy that for both the −19 and −21 samples, the third observable (chosen

to constrain only Acen and Asat) is a small bin of the average group velocity dispersion

function (σv(N) 3 for −19 and σv(N) 1 for −21). It is also noteworthy that for both

samples, the majority of the first twenty observables chosen in this analysis (16/20 or 17/20)

were also chosen in the previous analysis to constrain an HOD model without assembly

bias. Meanwhile, about half of the observables chosen beyond the initial twenty (8/16

or 9/21) are unique to this analysis. In particular, all of the observables chosen for the

−21 beyond the first 36 are unique to this analysis. This possibly indicates that the initial

observables are chosen for their ability to constrain the standard HOD parameters, while

the later observables are selected for their ability to constrain the assembly bias parameters.

This may also indicated that it is difficult to constrain assembly bias until the standard HOD

parameters are constrained.

For the −19 sample, the unique observables chosen for this analysis include a large

and small scale of ξ (s), five scales of PN(R), and four large scales of mcf(s). For the −21

sample, the unique observables chosen for this analysis include two bins of σv(N), two

intermediate scales of wp(rp), one small scale and two large scales of mcf(s), one interme-

diate bin of n(N), two large scales of ξ (s), and two bins of VPF(R). It worth mentioning

that for the −19 sample, it is difficult to accurately constrain the decorated HOD model

until the parameter logM0 is constrained. This occurs by about 15 observables, particularly
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Table 4.5: Optimal Observable Order. The type of clustering statistic and the bin number
(1-indexing) for the observables chosen (in order) for each sample. “vHOD” refers to the
observables chosen for each sample in S22. “dHOD” refers to the observables chosen in
this work.

Index -19 vHOD -19 dHOD -21 vHOD -21 dHOD
1 ngal ngal ngal ngal
2 wp(rp) 2 wp(rp) 2 wp(rp) 2 wp(rp) 2
3 wp(rp) 4 σv(N) 3 ξ (s) 8 σv(N) 1
4 VPF(R) 3 ξ (s) 8 wp(rp) 4 ξ (s) 9
5 wp(rp) 8 n(N) 3 mcf(s) 9 ξ (s) 3
6 ξ (s) 1 SPF(R) 1 wp(rp) 1 mcf(s) 10
7 n(N) 3 wp(rp) 3 ξ (s) 9 wp(rp) 5
8 ξ (s) 5 n(N) 2 mcf(s) 7 n(N) 1
9 n(N) 2 wp(rp) 8 ξ (s) 4 σv(N) 3
10 n(N) 4 ξ (s) 1 ξ (s) 7 mcf(s) 3
11 n(N) 1 wp(rp) 4 mcf(s) 10 ξ (s) 1
12 SPF(R) 4 VPF(R) 2 ξ (s) 1 ξ (s) 8
13 ξ (s) 13 mcf(s) 1 wp(rp) 14 ξ (s) 5
14 mcf(s) 14 ξ (s) 10 n(N) 1 wp(rp) 1
15 ξ (s) 6 SPF(R) 2 SPF(R) 4 n(N) 2
16 n(N) 5 ξ (s) 4 mcf(s) 3 SPF(R) 4
17 ξ (s) 2 n(N) 1 ξ (s) 6 mcf(s) 5
18 SPF(R) 2 n(N) 5 σv(N) 4 σv(N) 4
19 ξ (s) 10 wp(rp) 1 ξ (s) 5 mcf(s) 14
20 mcf(s) 2 SPF(R) 4 ξ (s) 3 SPF(R) 3
21 mcf(s) 3 mcf(s) 7 n(N) 4 wp(rp) 3
22 σv(N) 1 mcf(s) 11 wp(rp) 7 σv(N) 5
23 σv(N) 3 σv(N) 5 wp(rp) 3 σv(N) 2
24 ξ (s) 9 SPF(R) 3 mcf(s) 8 ξ (s) 7
25 σv(N) 4 ξ (s) 3 VPF(R) 3 n(N) 3
26 mcf(s) 1 n(N) 4 ξ (s) 2 n(N) 4
27 σv(N) 2 mcf(s) 2 n(N) 5 ξ (s) 4
28 n(N) 6 σv(N) 2 n(N) 2 ξ (s) 2
29 VPF(R) 1 VPF(R) 4 ξ (s) 11 n(N) 5
30 wp(rp) 1 mcf(s) 8 σv(N) 3 wp(rp) 8
31 wp(rp) 6 wp(rp) 6 σv(N) 2 wp(rp) 4
32 wp(rp) 5 ξ (s) 9 SPF(R) 2 ξ (s) 6
33 σv(N) 5 n(N) 6 mcf(s) 5 mcf(s) 8
34 wp(rp) 3 mcf(s) 14 SPF(R) 3 ξ (s) 10
35 σv(N) 7 VPF(R) 5 mcf(s) 4 ξ (s) 11
36 n(N) 7 mcf(s) 12 SPF(R) 1 mcf(s) 7
37 – – – mcf(s) 12
38 – – – ξ (s) 14
39 – – – VPF(R) 5
40 – – – VPF(R) 2
41 – – – mcf(s) 1
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Figure 4.2: Projected constraints (1-σ ) of each clustering statistic (combined with ngal) for each
HOD parameter. The constraints for the −19 and −21 mocks are shown in blue and red, respec-
tively. The height of each smaller vertical bar shows the projected constraints on one mock, while
the larger open bar shows the average constraint across four mocks.

after ξ (s) 1 and wp(rp) 4 are included. Our analyses using mock galaxy catalogs indicate

that a failure to include these particular observables leads to biased constraints on Acen and

Asat. In the −21 sample, the parameter logM0 remains unconstrained. This is consistent

with the results of S22, which found that constraining logM0 is important for obtaining

accurate results in the −19 sample, but not in the −21 sample.

Given the results of the chains run on mocks using only ngal, wp(rp ∼ 0.3 h−1Mpc), and

the third chosen observable for each sample, we can use importance sampling to estimate

the constraining power we would achieve for each HOD parameter had we run a chain

using only one clustering statistic (e.g. wp(rp)) plus ngal. We display the results of this

exercise in Figure 4.2. In each panel, the y-axis shows the projected constraint (1-σ ) for a

particular HOD parameter as we use different clustering statistics. The constraints for the

−19 and −21 mocks are shown in blue and red, respectively. The height of each smaller
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vertical bar shows the projected constraints on one mock, while the larger open bar shows

the average constraint across four mocks.

For the central and satellite parameters, our results are similar (though not identical) to

the results from S22. For the assembly bias parameters, it is interesting to note that for both

samples, no single clustering statistic provides significant constraining power for either Acen

or Asat. ξ (s) seems to have the most constraining power for both Acen and Asat, for both

samples, but it performs only slightly better than the other clustering statistics. Due to the

nature of importance sampling, these results should be interpreted as estimates, purely for

visual purposes. However, this figure illustrates that while no single clustering statistic

provides significant constraining power for assembly bias, the combination of different

scales of different clustering statistics is able to produce tighter constraints on the assembly

bias parameters than any one statistic.

4.7 Results

In this section we present the results from using the optimal observables we identified in the

previous section to constrain the galaxy-halo connection of SDSS galaxies using a deco-

rated HOD model with concentration-based assembly bias. The results for the −19 sample

are shown in Figure 4.3, while the results for the−21 sample are shown in Figure 4.4. Dark

and light blue regions depict the 1- and 2-σ regions, respectively. The best-fit parameters

are listed in Table 4.6, along with their corresponding p-values (labeled “dHOD”), as well

as the results from previous analyses using a standard (“vanilla”) HOD model (Sinha et al.,

2018; Szewciw et al., 2022). The constraints for each parameter are listed in Table 4.7.

For the−19 sample, our best-fit results indicate strong positive central galaxy assembly

bias (Acen = 0.793), and moderate negative satellite galaxy assembly bias (Asat = -0.368).

In other words, central galaxies strongly preferentially reside in halos with higher concen-

trations, while satellite galaxies preferentially reside in halos with lower concentrations.

This is consistent with previous results (e.g. Lange et al., 2022) which also found positive
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Figure 4.3: HOD parameter constraints for the SDSS −19 sample, using concentration as the
secondary halo property and the “dHOD” optimal observables (listed in Table 4.5).

Figure 4.4: HOD parameter constraints for the SDSS −21 sample, using concentration as the
secondary halo property and the 41 “dHOD” optimal observables (listed in Table 4.5). The best-fit
parameters are indicated with crosshairs.

central galaxy assembly bias and negative satellite galaxy assembly bias. Additionally, this

best-fit model yields a significant decrease in tension compared to the results of S22 (2.0σ

compared to 4.5σ ). Unfortunately, even for our optimal combination of observables, it is

difficult to tightly constrain central galaxy assembly bias for this sample. This challenge is

akin to the difficulty in tightly constraining σlogM in the −19 sample; both Acen and σlogM

result in a change in the scatter in central galaxy occupation for a given halo mass. Despite

the lack of tight constraints on Acen, we are able to strongly rule out a model with zero

assembly bias.

For the −21 sample, we are able to obtain slightly tighter constraints on Acen than we
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Table 4.6: Final SDSS best-fit results. Best-fit HOD parameters from all chains. We also
indicate the goodness of fit of each parameter combination with a p-value.

Mlim
r Model/Obs. logMmin σlogM logM0 logM1 α Acen Asat p-val.
−19 vHOD/NWG 11.552 0.229 12.107 12.707 0.905 – – 0.384

vHOD/OPT36 11.445 0.099 11.651 12.703 0.958 – – 10−6

dHOD 11.455 0.141 11.757 12.685 0.925 0.793 -0.368 0.047
−21 vHOD/NWG 12.691 0.377 12.075 13.938 1.191 – – 0.151

vHOD/OPT36 12.728 0.467 9.015 13.929 1.112 – – 10−5

dHOD 12.774 0.554 9.447 13.926 1.067 -0.090 -0.240 10−6

are able to obtain in the −19 sample. However, our best-fit results are consistent with

zero assembly bias. Additionally, this model does not result in any decrease in tension

compared to the results from S22. (In fact, the tension actually increased slightly compared

to the previous analysis.) This finding is consistent with the results of Beltz-Mohrmann

et al. (2020), which found assembly bias to be present in hydrodynamic simulations for

lower luminosity galaxies, but not a significant source of clustering discrepancy for higher

luminosity galaxies. It is thus to be expected that for the −21 sample, the addition of

assembly bias parameters to the model did not result in any relief of tension.

The remaining tension found for both the −19 and −21 samples could indicate that the

HOD model needs to be made even more flexible with the inclusion of spatial and velocity

bias parameters (Beltz-Mohrmann et al., 2020). Additionally, these results are for a fixed

cosmology sample; it is possible that a slight change in cosmological parameter values

could also result in a further relief of this tension. Finally, it is possible that a different

secondary halo property could be more strongly correlated with galaxy clustering, and that

using a property other than concentration (like environment) could result in a better model.

4.8 Conclusions

In this work we have explored extending the standard HOD model to include parameters

for assembly bias, using halo concentration as the secondary halo characteristic for mod-

eling this assembly bias. We have identified an optimal set of observables for constraining
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Table 4.7: SDSS Constraints. Marginalized constraints on SDSS for each chain. We
present the median parameter values along with upper and lower limits corresponding to
the 84 and 16 percentiles respectively.

Mlim
r HOD Param. vHOD/NWG vHOD/OPT36 dHOD
−19 logMmin 11.597+0.124

−0.055 11.442+0.016
−0.015 11.469+0.019

−0.017
σlogM 0.289+0.293

−0.192 0.106+0.074
−0.065 0.159+0.074

−0.077
logM0 10.385+1.519

−2.935 11.674+0.089
−0.094 11.750+0.093

−0.095
logM1 12.803+0.046

−0.058 12.691+0.028
−0.029 12.685+0.029

−0.031
α 0.969+0.028

−0.047 0.954+0.019
−0.019 0.930+0.025

−0.028
Acen – – 0.673+0.245

−0.529
Asat – – −0.361+0.107

−0.103
−21 logMmin 12.694+0.071

−0.058 12.748+0.015
−0.015 12.737+0.019

−0.020
σlogM 0.391+0.150

−0.201 0.517+0.029
−0.029 0.494+0.038

−0.040
logM0 9.220+2.136

−2.183 9.015+2.017
−2.036 8.980+2.019

−2.013
logM1 13.941+0.021

−0.024 13.919+0.014
−0.014 13.914+0.015

−0.015
α 1.195+0.051

−0.057 1.088+0.031
−0.033 1.110+0.035

−0.039
Acen – – 0.236+0.290

−0.297
Asat – – −0.148+0.181

−0.156

this model using the algorithm presented in S22. Our best-fit results indicate the presence

of strong positive central galaxy assembly bias and moderate negative satellite galaxy as-

sembly bias for low-luminosity galaxies, with a model that does not include assembly bias

significantly ruled out. This result also yields a decrease in tension compared to a previous

analysis without assembly bias parameters in the model. For high-luminosity galaxies, we

do not find significant evidence for assembly bias, nor do we find any significant reduction

in tension by including assembly bias parameters in the model. It is possible that using a

different secondary halo property to model assembly bias could yield improved results, and

so further exploration is needed.

It is also possible that galaxies do not trace the spatial distribution of dark matter within

halos (i.e. there is spatial bias Watson et al., 2012; Piscionere et al., 2015; Beltz-Mohrmann

et al., 2020), or that they do not trace the velocity distribution of dark matter within halos

(i.e. there is velocity bias Van den Bosch et al., 2005; Guo et al., 2015b,a; Beltz-Mohrmann

et al., 2020). Additionally, the standard HOD model assumes that the number of satellite

galaxies in each halo is governed by a Poisson distribution, but recent results indicate that
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this is probably not the case (Boylan-Kolchin et al., 2010; Mao et al., 2015; Jiménez et al.,

2019). Finally, it is possible that a change in cosmological parameters could lead to better

clustering agreement. In future work, we hope to explore all of these possibilities.

Additionally, it is possible that a change in halo definition or the removal of backsplash

halos from our sample could lead to a reduction in the assembly bias signature that we

find for low-luminosity galaxies (Villarreal et al., 2017; Mansfield and Kravtsov, 2020).

In future work, it is worth investigating whether accounting for this possibility leads to

improved agreement between our model and the observed clustering of galaxies.
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CHAPTER 5

Conclusions

In order to take advantage of the power of small-scale galaxy clustering to probe and con-

strain cosmological models, it is crucial that we can confidently and accurately marginalize

over the uncertainty of galaxy formation physics. In particular, upcoming spectroscopic

surveys like the Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration et al.,

2016; Levi et al., 2019) will make unprecedentedly precise measurements of the distribu-

tion of galaxies, which will allow us to detect minute differences in clustering. Obtaining

unbiased cosmological constraints from these measurements requires that we have a full

understanding of the connection between galaxies and the dark matter halos in which they

reside. In this dissertation I have worked to develop an accurate model of the galaxy-halo

connection, through a combination of studies performed on hydrodynamic simulations and

analyses of small-scale galaxy clustering in the Sloan Digital Sky Survey.

5.1 Summary

In Chapter 2, I examined the ability of halo occupation distribution (HOD) modelling to

reproduce the galaxy clustering found in two different hydrodynamic simulations. I fit a

simple five parameter HOD model to each simulation, and applied it to the corresponding

dark matter only simulations. I then measured several galaxy clustering statistics on the

galaxies from the hydrodynamic simulations and the galaxies from the HOD model. I first

found that the halo mass function is shifted to lower masses in the hydrodynamic simula-

tions, which resulted in a galaxy number density that was too high when the HOD model

was applied to the dark matter only simulations. After applying a correction to the halo

mass function in each simulation, I found that the HOD is able to accurately reproduce all

clustering statistics for a high luminosity sample of galaxies. For a low luminosity sample,

I found evidence that in addition to correcting the halo mass function, including spatial,

122



velocity, and assembly bias parameters in the HOD is necessary to accurately reproduce

clustering statistics.

In Chapter 3, I examined the impact of baryonic physics on the halo distribution in hy-

drodynamic simulations compared to that in dark matter only (DMO) simulations. I found

that, in general, DMO simulations produce halo mass functions (HMFs) that are shifted

to higher halo masses than their hydrodynamic counterparts, due to the lack of baryonic

physics. However, the exact nature of this mass shift is a complex function of mass, halo

definition, redshift, and larger-scale environment, and it depends on the specifics of the

baryonic physics implemented in the simulation. I provided fitting formulae for the cor-

rections one would need to apply to each DMO halo catalog in order to reproduce the

HMF found in its hydrodynamic counterpart. Additionally, I explored the dependence

on environment of this HMF discrepancy, and find that, in most cases, halos in low density

environments are slightly more impacted by baryonic physics than halos in high density en-

vironments. Therefore, I also provided environment-dependent mass correction formulae

which can reproduce the conditional, as well as global, HMF. I showed that these mass cor-

rections also repair the large-scale clustering of halos, though the environment-dependent

corrections are required to achieve an accuracy better than 2%. Finally, I examined the im-

pact of baryonic physics on the halo mass - concentration relation, and found that its slope

in hydrodynamic simulations is consistent with that in DMO simulations.

In Chapter 4, I employed a decorated HOD model that includes parameters for central

and satellite galaxy assembly bias to model the clustering of SDSS galaxies. Using concen-

tration as the secondary halo property to model assembly bias, I identified an optimal set of

clustering statistics to constrain this decorated HOD model in both a high-luminosity sam-

ple and a low-luminosity sample. Ultimately, I found evidence for strong positive central

galaxy assembly bias and moderate negative satellite galaxy assembly bias among low-

luminosity galaxies, with zero assembly bias significantly ruled out. This model led to a

significant reduction in tension compared to previous analyses that did not model assembly
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bias. For high-luminosity galaxies, I did not find significant evidence for assembly bias,

nor did I find any significant reduction in tension by including assembly bias parameters in

the model.

5.2 Future Work

In future work, it is worth investigating additional secondary halo bias properties that may

contribute to the observed assembly bias signature. For example, it is possible that using

halo environment would lead to better agreement between the model and the clustering of

SDSS galaxies. It is also worth investigating whether misidentification of backsplash halos

as host halos contributes significantly to the observed phenomenon of assembly bias.

Furthermore, due to the lingering tension found between the best-fit decorated HOD

model and the clustering of SDSS galaxies in Chapter 4, it is imperative that we add even

more flexibility to the HOD model in future work. We can accomplish through the addition

of spatial and velocity bias parameters, which allow for the possibility that galaxies do not

trace the distribution of dark matter within their host halos.

Finally, the ultimate goal of all of this work is to develop an accurate model of the

galaxy-halo connection that can be implemented to constrain our cosmological model us-

ing small scales. Using small-scale galaxy clustering to constrain our cosmological model

requires generating accurate, high-resolution, and large-volume predictions of large-scale

structure formation while varying cosmological parameters. Running enough N-body sim-

ulations to finely sample the cosmological parameter space for this purpose is computation-

ally infeasible. One alternative is to use the cosmological “rescaling” method presented by

Angulo and White (2010), in which the output of a simulation with one cosmological model

is rescaled to mimic the output of a simulation with a different cosmological model. This

method involves running only a few N-body simulations with different parameters, and then

rescaling them to explore the parameter space. Thus, we could explore cosmological and

HOD parameter space simultaneously, and forward model small-scale galaxy clustering as
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a function of both cosmology and HOD parameters.

Another option is to run a large number of cosmological N-body simulations and build

an “emulator.” In this framework, we would measure a variety of galaxy clustering statistics

on each simulation as we varied HOD parameters, and then effectively interpolate between

different measurements in order to estimate the clustering in any arbitrary cosmology. This

method is computationally intensive, but has been used in a variety of recent studies (e.g.

DeRose et al., 2019). Ultimately, given a method for accurately predicting structure for-

mation in different cosmologies, combined with a flexible model of the galaxy-halo con-

nection, small-scale galaxy clustering has the potential to become a powerful probe of both

our cosmological model, as well as our understanding of galaxy formation and evolution.
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D., D’Avella, D., Deil, C., Depagne, É., Dietrich, J. P., Donath, A., Droettboom, M.,
Earl, N., Erben, T., Fabbro, S., Ferreira, L. A., Finethy, T., Fox, R. T., Garrison, L. H.,
Gibbons, S. L. J., Goldstein, D. A., Gommers, R., Greco, J. P., Greenfield, P., Groener,
A. M., Grollier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A. J., Hosseinzadeh,
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C. S., Jenkins, A., Katz, N., and Lacey, C. G. (2003). The Halo Occupation Distribution
and the Physics of Galaxy Formation. The Astrophysical Journal, 593:1–25.

Beutler, F., Blake, C., Colless, M., Jones, D. H., Staveley-Smith, L., Campbell, L., Parker,
Q., Saunders, W., and Watson, F. (2013). The 6dF Galaxy Survey: dependence of
halo occupation on stellar mass. Monthly Notices of the Royal Astronomical Society,
429:3604–3618.

127



Blanton, M. R., Schlegel, D. J., Strauss, M. A., Brinkmann, J., Finkbeiner, D., Fukugita,
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Clowe, D., Bradač, M., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., and
Zaritsky, D. (2006). A Direct Empirical Proof of the Existence of Dark Matter. The
Astrophysical Journal Letters, 648(2):L109–L113.

Colless, M., Dalton, G., Maddox, S., Sutherland, W., Norberg, P., Cole, S., Bland-
Hawthorn, J., Bridges, T., Cannon, R., Collins, C., Couch, W., Cross, N., Deeley, K.,
De Propris, R., Driver, S. P., Efstathiou, G., Ellis, R. S., Frenk, C. S., Glazebrook, K.,
Jackson, C., Lahav, O., Lewis, I., Lumsden, S., Madgwick, D., Peacock, J. A., Peterson,
B. A., Price, I., Seaborne, M., and Taylor, K. (2001). The 2dF Galaxy Redshift Survey:

128



spectra and redshifts. Monthly Notices of the Royal Astronomical Society, 328:1039–
1063.

Collister, A. A. and Lahav, O. (2005). Distribution of red and blue galaxies in groups: an
empirical test of the halo model. Monthly Notices of the Royal Astronomical Society,
361:415–427.

Contreras, S., Angulo, R. E., and Zennaro, M. (2021). A flexible modelling of galaxy
assembly bias. Monthly Notices of the Royal Astronomical Society, 504(4):5205–5220.

Contreras, S., Zehavi, I., Padilla, N., Baugh, C. M., Jiménez, E., and Lacerna, I. (2019).
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Ilbert, O., Koekemoer, A. M., Le Fèvre, O., Lilly, S., McCracken, H. J., Salvato, M.,
Schrabback, T., Scoville, N., Smith, T., and Taylor, J. E. (2012). New Constraints on the
Evolution of the Stellar-to-dark Matter Connection: A Combined Analysis of Galaxy-
Galaxy Lensing, Clustering, and Stellar Mass Functions from z = 0.2 to z =1. The
Astrophysical Journal, 744(2):159.

Lee, K.-S., Giavalisco, M., Gnedin, O. Y., Somerville, R. S., Ferguson, H. C., Dickinson,
M., and Ouchi, M. (2006). The Large-Scale and Small-Scale Clustering of Lyman Break
Galaxies at 3.5 ¡ z ¡ 5.5 from the GOODS Survey. The Astrophysical Journal, 642:63–80.

Levi, M., Allen, L. E., Raichoor, A., Baltay, C., BenZvi, S., Beutler, F., Bolton, A., Cas-
tander, F. J., Chuang, C.-H., Cooper, A., Cuby, J.-G., Dey, A., Eisenstein, D., Fan, X.,
Flaugher, B., Frenk, C., Gonzalez-Morales, A. X., Graur, O., Guy, J., Habib, S., Hon-
scheid, K., Juneau, S., Kneib, J.-P., Lahav, O., Lang, D., Leauthaud, A., Lusso, B., de la
Macorra, A., Manera, M., Martini, P., Mao, S., Newman, J. A., Palanque-Delabrouille,
N., Percival, W. J., Allende Prieto, C., Rockosi, C. M., Ruhlmann-Kleider, V., Schlegel,
D., Seo, H.-J., Song, Y.-S., Tarle, G., Wechsler, R., Weinberg, D., Yeche, C., and Zu, Y.
(2019). The Dark Energy Spectroscopic Instrument (DESI). In Bulletin of the American
Astronomical Society, volume 51, page 57.

Ma, C.-P. and Fry, J. N. (2000). Deriving the Nonlinear Cosmological Power Spectrum
and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions. The
Astrophysical Journal, 543:503–513.

Magliocchetti, M. and Porciani, C. (2003). The halo distribution of 2dF galaxies. Monthly
Notices of the Royal Astronomical Society, 346:186–198.

Mansfield, P. and Kravtsov, A. V. (2020). The three causes of low-mass assembly bias.
Monthly Notices of the Royal Astronomical Society, 493(4):4763–4782.

Mao, Y.-Y., Williamson, M., and Wechsler, R. H. (2015). The Dependence of Subhalo
Abundance on Halo Concentration. The Astrophysical Journal, 810:21.

134



Mao, Y.-Y., Zentner, A. R., and Wechsler, R. H. (2018). Beyond assembly bias: exploring
secondary halo biases for cluster-size haloes. Monthly Notices of the Royal Astronomical
Society, 474(4):5143–5157.

Marinacci, F., Vogelsberger, M., Pakmor, R., Torrey, P., Springel, V., Hernquist, L., Nelson,
D., Weinberger, R., Pillepich, A., Naiman, J., and Genel, S. (2018). First results from
the IllustrisTNG simulations: radio haloes and magnetic fields. Monthly Notices of the
Royal Astronomical Society, 480:5113–5139.

McAlpine, S., Helly, J. C., Schaller, M., Trayford, J. W., Qu, Y., Furlong, M., Bower, R. G.,
Crain, R. A., Schaye, J., Theuns, T., Dalla Vecchia, C., Frenk, C. S., McCarthy, I. G.,
Jenkins, A., Rosas-Guevara, Y., White, S. D. M., Baes, M., Camps, P., and Lemson, G.
(2016). The EAGLE simulations of galaxy formation: Public release of halo and galaxy
catalogues. Astronomy and Computing, 15:72–89.

McBride, C., Berlind, A., Scoccimarro, R., Wechsler, R., Busha, M., Gardner, J., and
van den Bosch, F. (2009). LasDamas Mock Galaxy Catalogs for SDSS. In American
Astronomical Society Meeting Abstracts #213, volume 41 of Bulletin of the American
Astronomical Society, page 253.

McCarthy, K. S., Zheng, Z., and Guo, H. (2019). The effects of galaxy assembly bias
on the inference of growth rate from redshift-space distortions. Monthly Notices of the
Royal Astronomical Society, 487(2):2424–2440.

McCarthy, K. S., Zheng, Z., Guo, H., Luo, W., and Lin, Y.-T. (2022). On the constraints
of galaxy assembly bias in velocity space. Monthly Notices of the Royal Astronomical
Society, 509(1):380–394.

McClelland, J. and Silk, J. (1977). The correlation function for density perturbations in an
expanding universe. II - Nonlinear theory. The Astrophysical Journal, 217:331–352.

McCullagh, N., Norberg, P., Cole, S., Gonzalez-Perez, V., Baugh, C., and Helly, J. (2017).
Revisiting HOD model assumptions: the impact of AGN feedback and assembly bias.
arXiv e-prints.

McKinney, W. (2010). Data structures for statistical computing in python. In Proceedings
of the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX.

McKinney, W. (2011). pandas: a foundational python library for data analysis and statistics.
Python for High Performance and Scientific Computing, 14.

Moffett, A. J., Kannappan, S. J., Berlind, A. A., Eckert, K. D., Stark, D. V., Hendel, D.,
Norris, M. A., and Grogin, N. A. (2015). ECO and RESOLVE: Galaxy Disk Growth in
Environmental Context. The Astrophysical Journal, 812(2):89.

Moustakas, L. A. and Somerville, R. S. (2002). The Masses, Ancestors, and Descendants of
Extremely Red Objects: Constraints from Spatial Clustering. The Astrophysical Journal,
577:1–10.

135



Naiman, J. P., Pillepich, A., Springel, V., Ramirez-Ruiz, E., Torrey, P., Vogelsberger, M.,
Pakmor, R., Nelson, D., Marinacci, F., Hernquist, L., Weinberger, R., and Genel, S.
(2018). First results from the IllustrisTNG simulations: a tale of two elements - chemical
evolution of magnesium and europium. Monthly Notices of the Royal Astronomical
Society, 477:1206–1224.

Navarro, J. F., Frenk, C. S., and White, S. D. M. (1996). The Structure of Cold Dark Matter
Halos. The Astrophysical Journal, 462:563.

Navarro, J. F., Frenk, C. S., and White, S. D. M. (1997). A Universal Density Profile from
Hierarchical Clustering. The Astrophysical Journal, 490:493–508.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. Computer
Journal, 7:308–313.

Nelson, D., Pillepich, A., Genel, S., Vogelsberger, M., Springel, V., Torrey, P., Rodriguez-
Gomez, V., Sijacki, D., Snyder, G. F., Griffen, B., Marinacci, F., Blecha, L., Sales, L.,
Xu, D., and Hernquist, L. (2015). The illustris simulation: Public data release. Astron-
omy and Computing, 13:12–37.

Nelson, D., Pillepich, A., Springel, V., Weinberger, R., Hernquist, L., Pakmor, R., Genel,
S., Torrey, P., Vogelsberger, M., Kauffmann, G., Marinacci, F., and Naiman, J. (2018).
First results from the IllustrisTNG simulations: the galaxy colour bimodality. Monthly
Notices of the Royal Astronomical Society, 475:624–647.

Neyman, J. and Scott, E. L. (1952). A Theory of the Spatial Distribution of Galaxies. The
Astrophysical Journal, 116:144.
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J. P., Bersanelli, M., Bielewicz, P., Bobin, J., Bock, J. J., Bonaldi, A., Bond, J. R., Borrill,
J., Bouchet, F. R., Bridges, M., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E.,
Cappellini, B., Cardoso, J. F., Catalano, A., Challinor, A., Chamballu, A., Chary, R. R.,
Chen, X., Chiang, H. C., Chiang, L. Y., Christensen, P. R., Church, S., Clements, D. L.,
Colombi, S., Colombo, L. P. L., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia,
F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G.,
Delabrouille, J., Delouis, J. M., Désert, F. X., Dickinson, C., Diego, J. M., Dolag, K.,
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