Defining the Role of Aerobic Respiration in Uropathogenic Escherichia coli Physiology and Pathogenesis

Bу

Connor James Beebout

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Microbe-Host Interactions

May 13, 2022

Nashville, Tennessee

Approved:

James E. Cassat, M.D., Ph.D.

David M. Aronoff, M.D.

Eric P. Skaar, Ph.D.

Gary A. Sulikowski, Ph.D.

Maria Hadjifrangiskou, Ph.D.

Copyright © 2022 by Connor James Beebout

All Rights Reserved

ACKNOWLEDGMENTS

This work would not be possible without the unyielding support of countless friends, family, colleagues, mentors, and institutions. First and foremost, I thank my mentor, Maria Hadjifrangiskou, for her steady support and guidance over the years that has facilitated my development into the scientist I am today, as well as all past and present members of our lab who have graciously provided their time, ideas, and advice throughout my graduate career. I thank the members of my thesis committee who helped steer me throughout my studies and offered insightful comments to help me improve my experiments, my critical thinking skills, and my ability to present and discuss my work. I thank Vanderbilt University and the Vanderbilt Medical Scientist Training Program for taking a chance on me, as well as the many faculty, staff, and fellow trainees in my department and the School of Medicine who have provided a collegial, collaborative, and engaging community. I thank Vanderbilt University, the National Institutes of Health, and the Ruth L. Kirschstein National Research Service Award for funding my work. And, of course, I thank my family and friends who have served an essential role during this time by keeping me grounded, pretending to care about Escherichia coli, and by selflessly supporting my decision to move across the country to pursue my academic dreams. I would particularly like to thank my parents, Karin and John, my stepfather, Rob, and my brother, Stephen, for providing a stable and supportive upbringing and for raising me to possess the ambition to pursue lofty goals as well as the pragmatism required to achieve them. Above all, I thank my wife, Alexandra, for her patience, dedication, and conversation. She has been a true partner for many years, and someone I cannot imagine life without.

TABLE OF CONTENTS

ACKNOWLEDGMENTSiii		
LIST OF TABLES vii		
LIST OF FIGURES viii		
LIST OF ABBREVIATIONS AND SYMBOLSxi		
Chapter		
1. Introduction1		
Overview1		
Urinary tract infections		
Uropathogenic <i>Escherichia coli</i>		
UPEC pathogenic cycle9		
UPEC metabolism and pathogenesis are inextricably linked		
Structure and function of the <i>Escherichia coli</i> electron transport chain		
Outlook		
2. Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in		
Uropathogenic <i>Escherichia coli.</i> 16		
Abstract		
Introduction17		
Results		
Discussion		
Materials and Methods 40		

	Acknowledgments 46
3.	Subversion of Mitochondrial Metabolism Supports Intracellular Bacterial Pathogenesis
	During Urinary Tract Infection
	Abstract
	Introduction
	Results
	Discussion
	Materials and Methods
	Acknowledgments
Л	Cytochrome <i>bd</i> Promotes Biofilm Antibiotic Tolerance by Regulating Accumulation of
4.	Noxious Chemicals
	NOXIOUS CHEINICAIS
	Abstract
	Introduction
	Results
	Discussion
	Materials and Methods
	Acknowledgments
5.	Conclusions and Future Directions 113
	Conclusions
	Future Directions
٨٣	opendix
~	A. Normalized transcript counts of intracellularly infected urothelial cells

RE	EFERENCES	. 149)
	C. Biofilm mass spectrometry data	. 148	,
	B. Differential gene expression during intracellular infection of urothelial cells.	142	

LIST OF TABLES

Table Page	
Chapter 2: Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in	
Uropathogenic <i>Escherichia coli</i>	
1. Primers and probes used in Chapter 2 40	
Chapter 3: Subversion of Mitochondrial Metabolism Supports Intracellular Bacterial	
Pathogenesis During Urinary Tract Infection	
2. Bacterial strains and plasmids used in Chapter 3	
3. Primers and probes used in Chapter 3 69	
Chapter 4: Cytochrome bd Promotes Biofilm Antibiotic Tolerance by Regulating Accumulation	
of Noxious Chemicals	
4. Results of disk diffusion assays	

5. Primers used in Chapter 4......106

LIST OF FIGURES

Figure Pa	
apter 1: Introduction	Chapt
1. <i>Escherichia coli</i> phylogenetic tree	1.
apter 2: Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in	Chapt
opathogenic <i>Escherichia coli</i>	Uropa
2. Lateral expression of respiratory complexes in <i>Escherichia coli</i> biofilms	2.
3. Expression of respiratory complexes compared to <i>gyrB</i>	3.
4. Expression of respiratory oxidases as a function of the oxygen gradient	4.
5. PNA-FISH on respiratory oxidase deletion mutants	5.
6. Localization of <i>appC</i> transcript in biofilm cryosections	6.
7. Localization of respiratory oxidase transcripts in biofilm wrinkles	7.
8. Cytochrome <i>bd</i> organizes biofilm architecture and extracellular matrix production	8.
9. Temporal development of colony biofilms by UTI89 and respiratory oxidase mutants	9.
10. Extrachromosomal complementation of $\Delta cydAB$ rescues biofilm defects	10.
11. Analysis of $\triangle appBC \triangle cyoAB$:: kanR colony biofilms	11.
12. Cytochrome <i>bd</i> provides nitrosative stress resistance	12.
13. Respiratory heterogeneity provides a fitness advantage during urinary tract infection	13.
14. Ambient oxygen concentration influences respiratory oxidase transcript abundance	14.
15. Expression of respiratory oxidases as a function of oxygen tension	15.

Chapter 3: Subversion of Mitochondrial Metabolism Supports Intracellular Bacterial

Pathogenesis During Urinary Tract Infection

16. Cytochrome <i>bd</i> supports intracellular bacterial replication during bladder infection
17. Deletion of cytochrome <i>bd</i> does not influence type 1 pilus production
18. Cytochrome <i>bd</i> does not impact adherence or invasion of urothelial cells
19. Biochemical dissection of cytochrome bd reveals niche dependent contributions to bladder
pathogenesis
20. Loss of cytochrome <i>bd</i> does not impair flagellar biosynthesis
21. UPEC uses aerobic respiration during intracellular infection of urothelial cells
22. UPEC is not sensitive to rotenone or antimycin A 58
23. Expression of respiratory oxidases in intracellular bacterial populations
24. Intracellular bacterial infection enhances mitochondrial network fusion
25. Intracellular infection of urothelial cells induces a shift toward aerobic glycolysis
26. Intracellular infection modulates urothelial cell metabolism and immune signaling
27. Shifts in urothelial cell metabolism are partially dependent on cytochrome bd
28. Reprogramming of host metabolism modulates urothelial cell survival during intracellular
infection
29. Flow cytometry gating strategy
30. Proposed model

Chapter 4: Cytochrome *bd* Promotes Biofilm Antibiotic Tolerance by Regulating Accumulation of Noxious Chemicals

31. Loss of cytochrome <i>bd</i> increases biofilm antibiotic sensitivity	86
32. Cytochrome <i>bd</i> has minimal effect on planktonic antibiotic susceptibility	90
33. Cytochrome bd does not affect the rate of antibiotic-induced cell death in planktonic cells	93

34. Outer membrane charge is unaffected in $\triangle cydAB$ biofilm cells	. 94
35. Cytochrome <i>bd</i> deficient biofilm cells have elevated uptake of noxious chemicals	. 96
36. Loss of cytochrome <i>bd</i> impairs efflux by diminishing respiratory flux	. 99
37. AcrAB inactivation has minor effects on biofilm development	101
38. Complementation restores TTC reduction in $\triangle cydAB$	102
39. Loss of cytochrome <i>bd</i> does not impair ATP generation	103

Chapter 5: Conclusions and Future Directions

40. Inhibition of cytochrome <i>bd</i> potentiates antibiotics in UPEC colony biofilms
41. Loss of cytochrome <i>bd</i> disrupts extracellular matrix organization
42. MALDI-IMS analysis of UPEC biofilms reveals spatial dysregulation of peptide species 122
43. Cytochrome <i>bd</i> may regulate σ^{S} abundance by modulating ArcB activity
44. Loss of cytochrome <i>bd</i> reduces cyclic di-GMP accumulation in biofilms
45. Cytochrome <i>bd</i> influences the spatial accumulation of cyclic di-GMP in biofilms 126
46. Cytochrome <i>bd</i> is necessary but not sufficient for bacterial persistence in the bladder 128
47. Proposed cross-feeding interactions between oxic and anoxic biofilm regions
48. Loss of cytochrome <i>bd</i> eliminates flagellar motility

LIST OF ABBREVIATIONS AND SYMBOLS

NO	Nitric Oxide
NSF	National Science Foundation
OCR	Oxygen Consumption Rate
OD ₆₀₀	Optical Density at 600 nm
ori:ter	Origin of Replication to Terminus Ratio
PAGE	Polyacrylamide Gel Electrophoresis
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
PDB	Protein Data Bank
pEtN	Phosphoethanolamine
PMSF	Phenylmethylsulfonyl fluoride
PNA-FISH	Peptide-Nucleic Acid Fluorescence in situ Hybridization
PFA	Paraformaldehyde
PVC	Polyvinyl Chloride
REU	Rosetta Energy Units
RFU	Relative Fluorescence Units
RMSD	Root Mean Square Deviation
RNA	Ribonucleic Acid
RND	Resistance-Nodulation-Division
rRNA	Ribosomal RNA
RT-qPCR	Reverse Transcription Quantitative PCR
SD	Standard Deviation
SDS	Sodium Dodecyl Sulfate
SEM	Standard Error of the Mean
SSC	Side Scatter
TBST	Tris Buffered Saline Tween 20
TCA	Tricarboxylic Acid Cycle
TMAO	Trimethylamine Oxide
TTC	Triphenyl Tetrazolium Chloride
UPEC	Uropathogenic Escherichia Coli
UQ	Ubiquinone
UQH ₂	Ubiquinol
YESCA	Yeast Extract-Casamino Acids

CHAPTER 1

Introduction

Figure 1 was reproduced from the following published article with permission of the copyright holder:

Denamur E, Clermont O, Bonacorsi S, and Gordon D. The population genetics of pathogenic *Escherichia coli*. Nature Reviews Microbiology 2021. PMID: 32826992. © Springer Nature Limited 2020.

OVERVIEW

Host-microbial symbioses are complex, co-evolved interactions that exert major influence over human health and disease (1). Given the incredible diversity of microbial life, human-microbial interactions are themselves highly variable and include commensal, mutualistic, and parasitic interactions (1). Until recent decades, infectious diseases have represented the greatest single threat to human health, and they remain among the most common causes of human morbidity and mortality (2). As such, research into microbe-host symbioses has been historically skewed toward focusing on parasitic interactions between humans and pathogens. Through Koch's postulates – the principle that a parasite is causal for a given disease if it is found in all diseased organisms, is not found in healthy organisms, and can cause disease upon introduction to a previously healthy organisms (3-5) – we have successfully identified the causal agent in hundreds of infectious diseases. Furthermore, through the molecular adaptation of Koch's postulates – the principle that a gene product is causal for a given disease if it is found in all disease-causing parasites, that inactivation of the gene attenuates virulence, and that restoration of the gene restores virulence (3-5) – researchers have identified the molecular mediators employed by many parasites to cause disease. These general approaches have served as the conceptual underpinnings of the field of microbial pathogenesis for decades and have dramatically

improved human health both by allowing physicians to precisely tailor treatment to target particular pathogens and by allowing researchers to develop new therapeutic and vaccine approaches to inhibit microbial pathogenesis (2).

Despite the undeniable success of this conceptual framework in describing the pathogenesis of many clinically important pathogens, it fails to adequately describe many others. In their classical formulation, Koch's postulates overlook organisms that cannot be cultured or only cause disease under certain circumstances, and they also fail to apply to the interconnected networks and ecological interactions underpinning host-microbiota interactions (1, 6-9). Furthermore, while the molecular formulation of Koch's postulates neatly describes the pathogenesis of organisms that use a discrete set of virulence factors to mediate disease (*e.g. Clostridioides difficile*, enterohemorrhagic *Escherichia coli, Bacillus anthracis*), the same formulation breaks down when confronted with organisms that lack a core set of virulence determinants. Accordingly, new conceptual frameworks are emerging that broaden our understanding of host-microbial interactions and provide a more complete understanding of the range of human-microbial symbioses that influence health and disease.

In this work, I investigate the pathogenesis of uropathogenic *E. coli* (UPEC). UPEC is the primary causative agent in urinary tract infections, making it one of the most successful bacterial pathogens worldwide (10-12). Rather than deploying a dedicated suite of virulence determinants to mediate disease, UPEC repurposes a wide array of survival and fitness factors such as flagella, iron acquisition systems, and core metabolic pathways that enable it to adapt to the urinary tract and inflict damage on the host (13-17). Instead of a linear gene-protein-disease pathway, during urinary tract infection a confluence of microbial and host factors contribute in a multifactorial manner to determining the ultimate outcome of this host-microbial interaction, with outcomes ranging from asymptomatic colonization to life-threatening infection. By broadening our conceptual frameworks and recognizing that UPEC pathogenesis is integrally connected with its metabolic state, this work expands our understanding of the interconnections between the physiology and metabolism of both host and pathogen while

identifying new targets for the development of therapeutic strategies that aim to treat bacterial infections not by killing pathogens, but by reprogramming bacterial metabolism to limit their virulent potential.

URINARY TRACT INFECTIONS

Urinary tract infections are among the most common human bacterial infections, afflicting an estimated 150 million people per year (12, 14). The prevalence of urinary tract infection is variable between sexes, with greater than 80 percent of cases occurring in females (17, 18). At least half of women will have a urinary tract infection during their lifetime, with approximately one quarter of those infected experiencing recurrent infection within six months (10, 12, 19, 20). This sexual dimorphism is believed to result from a combination of anatomic and behavioral factors that increase the likelihood of fecal flora being exposed to the bladder in females (*e.g.* short urethral-anal distance, incontinence, sexual activity, vaginal dysbiosis) (11, 20). Although nearly all cases of cystitis in young cohorts (less than 50 years old) occur in females, older males and females (greater than 50 years old) have similar rates of infection (20). The increased incidence of infection in older males is caused by increased rates of functional and anatomic abnormalities in this population, most commonly due to increased urinary retention resulting from prostatic hypertrophy as well as higher rates of catheterization (20).

Urinary tract infections manifest across a spectrum of clinical presentations, with patients most commonly experiencing acute symptomatic bladder infection that resolves with outpatient antibiotic therapy (20). Uncomplicated cystitis occurs in otherwise healthy young females (peak incidence between the ages of 15 to 34), and patients typically present with urinary frequency, urgency, and dysuria (10, 11, 18, 21). Complicating matters, many uropathogens can asymptomatically colonize the bladder leading to a condition called asymptomatic bacteriuria. Asymptomatic bacteriuria is observed in up to five percent of pre-menopausal and up to 50 percent of post-menopausal females (20, 22). Because asymptomatic bacteriuria is distinguished from cystitis solely based on the presence of subjective symptoms, it is frequently mistaken for cystitis and treated accordingly. Despite the conflation of these two conditions, asymptomatic bacteriuria is a benign condition that is not believed to precede

symptomatic urinary tract infection. As such, screening and treatment of asymptomatic bacteriuria is contraindicated except in specific circumstances where the risk of complications are increased (*i.e.* pregnancy and preceding urologic procedures) (22, 23).

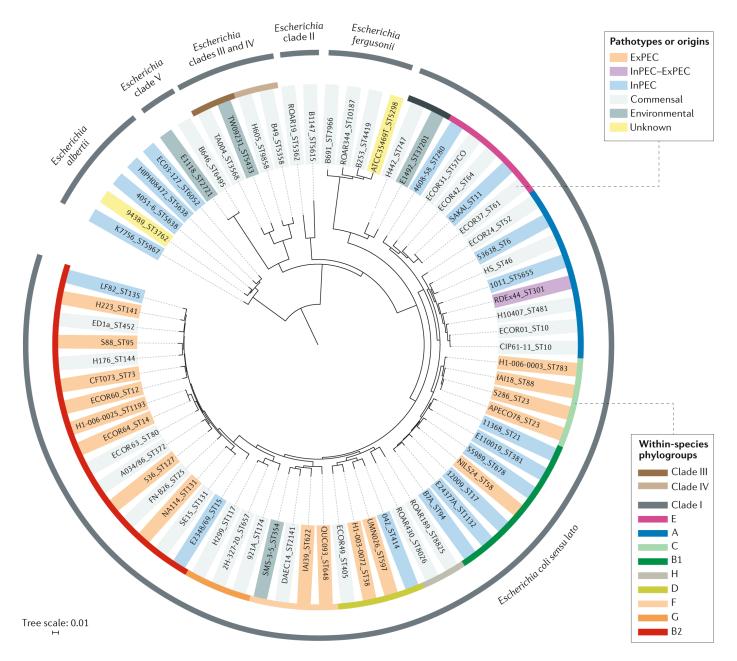
In approximately one to five percent of cystitis cases, the causative uropathogen gains access to the kidney where it establishes a symptomatic infection called pyelonephritis (11, 18, 24). While pyelonephritis canonically results from urinary reflux and flagellum-dependent bacterial ascension from the bladder to the kidneys (25), in rare cases, pyelonephritis can occur in patients with bacteremia as a result of hematogenous spread (20). Pyelonephritis presents with many of the same symptoms as cystitis, but patients will also typically have fever and costovertebral angle tenderness (18, 20). Nausea, vomiting, rigors, and flank pain occur frequently in more severe pyelonephritis cases (18, 20). Although most cases resolve with antibiotic therapy, pyelonephritis is associated with elevated risk of severe outcomes including bacteremia, acute kidney injury, renal and perinephric abscess formation, renal scarring, urinary tract obstruction, and emphysematous infection (20, 24). Accordingly, pyelonephritis often requires inpatient monitoring and intravenous antibiotic therapy (20, 24).

Approximately 25% of pyelonephritis cases have coincident bacteremia (20). Although this bacteremia is generally transient, urosepsis, the most severe manifestation of urinary tract infection, can occur as the result of a dysregulated immune response to bacteria in the bloodstream that leads to hyperactivation of the immune system and uncontrolled cytokine release (26, 27). This hyperactivation of the immune system can cause patients to experience septic shock, in which profound cytokine-induced hypotension can result in multi-organ failure and death (26, 27). Urosepsis occurs most commonly among older patients, and the risk of urosepsis is increased by various factors and comorbidities includina urinarv obstruction. catherization. urogenital procedures. and immunosuppression (28).

Although urinary tract infections can generally be diagnosed clinically, urine dipstick, urinalysis, and urine culture are frequently included as part of a diagnostic work up to confirm infection and identify the causative uropathogen. Urine culture – performed by aerobically culturing urine on MacConkey and

blood agar and enumerating the number of bacterial colony-forming units (CFU) per mL urine – is the gold standard test for diagnosing urinary tract infection, with the presence of at least 10⁵ CFU/mL urine in a symptomatic patient being considered diagnostic for cystitis. However, detecting as few as 10 CFU/mL urine has been shown to be highly predictive of disease in symptomatic patients (positive predictive value 92 percent) (20, 29). In addition to quantifying bacteriuria, subsequent antimicrobial susceptibility testing performed on the cultured bacteria allows antimicrobial treatment to be tailored to the identified uropathogen. While urine culture is the gold standard diagnostic test, it takes at least 24 hours to receive a result. As such, in practice urine dipstick and microscopic urinalysis are frequently used as the primary point-of-care diagnostic tests for suspected urinary tract infection (18, 20). A positive urine dipstick test shows elevated leukocyte esterase (derived from phagocytic influx into the infected bladder) and elevated nitrite (derived from the anaerobic conversion of nitrate to nitrite by E. *coli* and other Enterobacteriaceae). Consistent with these findings, microscopic urinalysis commonly reveals pyuria and bacteriuria in cases of cystitis. Although these tests are the most frequently used, they are often overinterpreted and lead to excessive treatment. Accordingly, expert statements and society guidelines recommend using urine dipstick and urinalysis solely to confirm clinically suspected urinary tract infection, and not as a standalone diagnostic test or as a part of a shotgun workup of a patient with an unexplained febrile illness (18, 20, 22).

Urinary tract infections are among the most common indications for antibiotic prescriptions in adult populations (21). Because most urinary tract infections and an overwhelming majority of uncomplicated urinary tract infections are caused by *E. coli*, treatment of cystitis is typically empirical (10-12, 20, 21). First-line antibiotics for uncomplicated cystitis include nitrofurantoin, trimethoprim-sulfamethoxazole, and fosfomycin (21). Fluoroquinolones have historically been a common treatment for cystitis but have fallen out of favor in recent years due to increasing rates of resistance and the recognition that these antibiotics ought to be reserved for other types of more severe infections (21). Pyelonephritis is typically treated with fluoroquinolones, cephalosporins, aminoglycosides, or trimethoprim-sulfamethoxazole (21). Oral antibiotics are appropriate for outpatient treatment of


pyelonephritis; however, patients requiring hospitalization should be treated with intravenous antibiotics (21). Because urinary tract infections are highly prevalent and typically treated empirically with broadspectrum antibiotics, externalities such as damage to the microbiota and antibiotic resistance are significant concerns. Furthermore, due to the high and ever-changing rates of antibiotic resistance, treatment recommendations should be interpreted with caution, and treatment strategies should be tailored according to local prevalence of antibiotic resistant pathogens and the results of antimicrobial susceptibility testing, when available (20, 21).

UROPATHOGENIC ESCHERICHIA COLI

Uropathogenic *E. coli* (UPEC), the primary cause of urinary tract infections, is responsible for approximately 80 percent of urinary tract infections, making it one of the most successful human bacterial pathogens worldwide (10, 12, 21). *E. coli* is a Gram-negative, facultatively anaerobic γ -Proteobacteria in the family Enterobacteriaceae. As a result of its permissive culture conditions, fast growth rate, amenability to genetic alterations, and a constellation of historical contingencies, *E. coli* has served as a workhorse of molecular biology for nearly 100 years (30-32). Accordingly, *E. coli* is among the most well-characterized organisms on Earth. Many of the fundamental advances of molecular biology occurred using *E. coli*, including the discoveries of the essential processes and machinery required for life, the basic paradigms of genetic regulation, and the foundations of recombinant DNA technologies (30-32).

Although most research into *E. coli* has occurred using K-12 *E. coli* – a lab-adapted model strain – the species *E. coli* is remarkably diverse (**Figure 1**) (13, 33-35). The genome of *E. coli* ranges between 4.2 - 6.0 megabases (Mb) and encodes 3,900 - 5,800 genes (13, 33, 35). Only about 2,000 of these genes are conserved across the species *E. coli* (*i.e.* the core genome), with the remainder of the genome being comprised of non-conserved genes derived from a pan-genome containing at least 15,000 unique genes (13, 33-36). Given the vast diversity of *E. coli* genomes and high rates of horizontal gene transfer, genetic relationships within the species *E. coli* are often described through

multi-locus sequence typing (MLST). These approaches sort *E. coli* into nine core phylogenetic groups (A, B1, B2, C, D, E, F, G, H), five cryptic clades (Clades I – V) containing strains that are phenotypically indistinguishable but phylogenetically divergent from typical *E. coli* strains, and the erstwhile distinct genus *Shigella* (Figure 1) (13, 33, 35, 37). In addition to categorizing based on phylogenetic relationships, *E. coli* is split into commensal and pathogenic strains, with the pathogenic strains further divided into intestinal and extra-intestinal pathogens (Figure 1). The pathogenic strains of *E. coli* are described according to the type of disease they cause (35). These distinctions, termed pathotypes, are either subtypes of intestinal pathogenic *E. coli* – such as enteropathogenic *E. coli* (EPEC) and enterohemorrhagic *E. coli* (EHEC) – or subtypes of extra-intestinal pathogenic *E. coli* (S). While these designations largely track along genetic relationships (for example, UPEC is primarily found in the B2 and D phylogroups), pathotypes are widely spread throughout the phylogenetic tree, indicative of the remarkable degree of horizontal gene transfer has occurred across the species (Figure 1) (13, 33-35).

Figure 1: *Escherichia coli* phylogenetic tree. Phylogenetic tree of *E.* coli constructed by comparing the sequence of 1,302 core genome genes across 72 representative *Escherichia* strains rooted on *Escherichia albertii*. Strains are color-coded according to their phylogroup and pathotype. ExPEC, extraintestinal pathogenic *E. coli*; InPEC, intestinal pathogenic *E. coli*. This figure was reproduced from Figure 1 of the following article with permission of the publisher and copyright holder: Denamur *et al.* Nature Reviews Microbiology 2021. © Springer Nature Limited 2020 (35).

Unlike many other clinically important pathogens in which a single strain can cause distinct types of disease in diverse host niches (*e.g. Pseudomonas aeruginosa* (38) and *Staphylococcus aureus* (39)), *E. coli* pathogenesis is much more restricted, and a given strain or pathotype is only able to cause one type of disease in one niche. Intestinal pathogens are unable to cause disease in the urinary tract, for example, and extra-intestinal pathogens behave as commensals in the gut. Although some

pathotypes are genetically defined by carriage of genetic elements and virulence factors, others are purely phenomenological. For example, EHEC are defined by the carriage of a Shiga toxin encoding prophage that is the primary mediator of disease, whereas a strain is deemed UPEC if it was isolated from a patient with urinary tract infection irrespective of any genetic or phenotypic factor (13). As such, identifying and predicting the pathogenic potential of EHEC is relatively straightforward, but we lack a clear set of genetic or phenotypic features that define a strain as UPEC, and no set of factors can predict whether a given strain can cause disease in the urinary tract (13, 14, 16, 17). Accordingly, only a subset of *E. coli* pathotypes (*e.g.* EHEC) fulfill the classical and molecular Koch's postulates, while others (*e.g.* UPEC) cannot be neatly described by these frameworks. Consequently, there is an increasing recognition that the pathogenesis of UPEC (as well as many other bacteria) cannot simply be described by listing virulence factors and genetic elements. Instead, UPEC pathogenesis can only be described through by integrating bacterial virulence, metabolic, structural, and regulatory factors into a conceptual model that considers the dynamic nature of bacterial physiology in the context of an exceedingly complex host environment.

UPEC PATHOGENIC CYCLE

Like most strains of *E. coli*, UPEC primarily resides in the mammalian gut. In this niche, UPEC behaves as a stably colonizing commensal bacterium with minimal impact on host physiology or disease (13, 35, 40-42). Upon ascension to the bladder, however, UPEC can rapidly establish symptomatic infection. UPEC is thought to gain access to the urinary tract by ascending the urethra after periurethral contamination with fecal flora, but it can also be introduced into the bladder by instrumentation (*e.g.* catheters and surgical intervention) or activated from latent reservoirs within the bladder itself (11, 12, 20, 25, 43, 44). Upon entering the bladder UPEC uses type 1 pili, polymeric adhesive fibers assembled by the chaperone usher pathway, to adhere to mannosylated proteins on the bladder surface such as uroplakin la and $\alpha 3\beta 1$ integrins (45-52). Adherence to the bladder epithelium protects bacteria against shear stress imposed by micturition, and promotes the aggregation

of bacteria into extracellular, surface-associated multicellular bacterial communities termed biofilms (53-56). By forming biofilms in the urinary tract, UPEC establishes a stable niche, and, by secreting an extracellular matrix, physically protects bacteria from a wide array of external stressors, including antibiotics, complement, and phagocytes (53, 55, 57-59). Additionally, gradients of nutrients, waste, and signaling molecules form in biofilms as they expand due to the metabolic activity of biofilm residents in combination with physical limitations on diffusion (60-63). Consequently, bacteria in different regions of the biofilm are exposed to variable environmental conditions which causes them to differentiate into phenotypically distinct subpopulations. Phenotypic differentiation within biofilms greatly enhances biofilm resilience and stress tolerance by expanding the metabolic diversity of resident bacteria (60, 61, 63, 64). As a result of their remarkable stress tolerance, biofilms are a key survival strategy adopted by UPEC in the urinary tract (11, 53).

In addition to providing bacteria with a foothold in the bladder, adherence by type 1 pili facilitates the internalization of UPEC into urothelial cells (44, 47, 48, 65, 66). Upon binding to the urothelial cell surface, UPEC activates focal adhesin kinase, the Rho family GTPase Rac1, PI3K, adenylate cyclase, and other eukaryotic signaling pathways which collectively mediate a rearrangement of the actin network that facilitates bacterial internalization into urothelial cells through a zipper-like mechanism (46, 47, 67-70). Internalized UPEC are found in LAMP1 positive endocytic vesicles, from which they escape into the urothelial cell cytosol through as yet undefined mechanisms (44, 47, 67-69). During this time, the host cell limits bacterial invasion through a non-lytic toll-like receptor (TLR) 4-dependent expulsion mechanism (71-73). In addition to expelling bacteria, some urothelial cells will exfoliate and slough off the bladder surface as part of a suicide mechanism that limits bacterial proliferation (48, 74). Although exfoliation antagonizes bacterial growth in the bladder, it exposes underlying tissue layers for further rounds of infection and enhances the formation of persistent bacterial reservoirs in the bladder (43, 74, 75).

Once in the cytosol, UPEC rapidly expand to form large biofilm like cytoplasmic aggregates called intracellular bacterial communities (IBCs) (65, 76). IBCs undergo rapid clonal expansion within

bladder cells, forming communities containing thousands of bacteria (53, 77, 78). After approximately 12-16 hours of expansion, a subset of bacteria within the IBC form long filaments that escape from urothelial cells where they can reattach to the bladder surface and infect neighboring cells (11, 12, 53, 77, 79, 80). Through this transient intracellular lifecycle, UPEC gains access to a nutrient rich niche where it can rapidly replicate, protected from phagocytes and the toxic effects of immunity and antibiotics.

UPEC METABOLISM AND PATHOGENESIS ARE INEXTRICABLY LINKED

Although type 1 pili and other classical virulence factors are required for the completion of the UPEC infectious cycle in the bladder, despite our best attempts we are currently unable to distinguish pathogenic from non-pathogenic strains on a genetic or phenotypic level (14, 17). Many of the virulence factors present in UPEC are functionally redundant, not present in all pathogenic strains, and shared with non-pathogenic strains (11, 12, 14). Furthermore, these factors are not disease specific, but instead encode gene products such as flagella, iron acquisition systems, global regulatory elements, and core metabolic factors necessary for adaptation to a wide variety of environments inside and outside the human host (13-17, 81, 82). During its infectious cycle UPEC completely reorganizes its metabolism to adapt to a particular niche, and these metabolic shifts are accompanied by dramatic shifts in behavior, including transitioning from a benign commensal in the gut to a highly successful pathogen in the urinary tract (13-17, 41, 81, 82). Importantly, many of the key regulators of these metabolic shifts are also regulators of UPEC virulence determinants (11, 12, 14, 41, 83). Accordingly, in UPEC, metabolic state cannot be considered as distinct from virulence, but rather shifts in metabolism are coincident and share common cause with shifts in virulence potential. Metabolism is not simply a way for bacteria to obtain energy; metabolism is an integral component of virulence.

During the transition from the gut to the bladder, UPEC undergoes a wholesale metabolic reprogramming. Under healthy conditions the gut is anaerobic and most available nutrients are byproducts of mucin degradation by the microbiota. As such, *E. coli* uses anaerobic, carbohydrate-

based metabolism in this niche and specifically requires glycolysis, the Entner-Douderoff pathway, and sugar alcohol catabolism to support its energetic needs in the gut (41, 84, 85). By contrast, the bladder is hypoxic (dissolved oxygen concentration 4-6%) and most available carbon is in the form of small peptides and amino acids (41, 86). As such, rather than using anaerobic carbohydrate-based metabolism, in the bladder UPEC uses a form of aerobic metabolism in which amino acids are imported and shunted through the aerobic arm of the tricarboxylic acid (TCA) cycle, thereby supporting the energetic needs of UPEC and generating anabolic precursors used to drive gluconeogenesis and the synthesis of macromolecules (15, 41, 83, 87, 88). Consistent with this, transposon mutagenesis studies identified *ubil* – an enzyme required for synthesis of the aerobic electron carrier ubiquinone – as a major regulator of UPEC biofilm formation and pathogenesis in the bladder (83, 89), and oxygen availability plays a central role in regulating UPEC biofilm formation (54, 90). While these studies revealed the requirement for aerobic respiration during bladder infection, prior to this work it remained unclear precisely how and why UPEC uses aerobic respiration to support its virulence and to colonize distinct niches in the urinary tract.

STRUCTURE AND FUNCTION OF THE ESCHERICHIA COLI ELECTRON TRANSPORT CHAIN

E. coli encodes a branched, modular respiratory chain that enables it to adapt its metabolism to a broad set of environmental conditions (91, 92). *E. coli* extracts electrons from a wide array of reduced electron donors (*e.g.* NADH, FADH₂, succinate, H₂) and, through the action of one of several dedicated dehydrogenases, transfers these electrons onto a lipid soluble electron carrier (ubiquinone, menaquinone, or demethylmenaquinone) which are differentially involved in aerobic and anaerobic respiration (91-93). This reduced quinol electron carrier then interacts with one of several terminal oxidases and reductases which transfer the electrons onto a terminal electron acceptor (91-93). Each step of this process is coupled to the transfer of protons into the periplasmic space via physical charge separation across the membrane or through direct proton pumping (91, 92). By generating a proton gradient, the cell creates a source of potential energy that can be used to energize various membrane processes including ATP synthesis, solute transport, and flagellar rotation (92, 94).

As a facultative anaerobe, *E. coli* exhibits a high degree of flexibility in its metabolic and respiratory profile. In addition to using oxygen as an electron acceptor via one of three terminal respiratory oxidases, *E. coli* can grow using fermentation or by performing anaerobic respiration using one of five alternative terminal electron acceptors (nitrate, nitrite, TMAO, DMSO, and fumarate) paired with one of seven terminal reductases (90, 91, 93, 95). Because each electron acceptor has a different midpoint potential, they each have different potential energy yields, with oxygen being the most energetically favorable electron acceptor (92, 93). Consequently, *E. coli* has evolved a robust set of pathways that hierarchically regulate expression of respiratory enzymes according to the energetic state of the cell as well as the availability of preferred electron acceptors (92, 93). Interestingly, *E. coli* does not always structure its electron transport chain to maximize energetic yield; instead, *E. coli* frequently uses less efficient modes of electron transfer to increase metabolic flux, particularly during times of rapid growth (92, 93).

To define the role of aerobic respiration in UPEC physiology and pathogenesis, this work focuses on the terminal respiratory oxidases. By functioning as respiratory quinol:O₂ oxidoreductases that couple the flow of electrons to the reduction of molecular oxygen into water, these complexes catalyze the final step in the aerobic electron transport chain and are essential for aerobic respiration (91, 92). *E. coli* encodes three respiratory oxidases derived from two phylogenetically unrelated families (91, 92, 96). Cytochrome *bo*, a heme copper oxidase, is a true proton pump and as such is a highly energetically efficient enzyme (H⁺/e⁻ = 2). By contrast, the two *bd*-type oxidases, cytochromes *bd* and *bd*₂, are not proton pumps and are accordingly less energetically efficient (H⁺/e⁻ = 1) (91, 92, 96). However, the *bd*type oxidases have a remarkably high oxygen affinity (K_D = 30 nM), which is approximately 1000-fold higher than that of cytochrome *bo* (91, 96, 97). As such, despite lower energetic efficiency, *bd*-type oxidases are efficient oxygen scavengers that allow *E. coli* to use aerobic respiration even under microaerobic conditions (91, 96, 97).

In addition to serving as integral components of the aerobic respiratory chain, the bd-type oxidases possess several non-respiratory activities including catalase activity, resistance to respiratory poisons (e.g. nitric oxide, carbon monoxide, hydrogen sulfide, and cyanide), and the ability to reversibly sequester and oxidatively degrade the innate immune effector nitric oxide (91, 92, 95, 96, 98-103). As a result, the *bd*-type oxidases are critical for the physiology and pathogenesis of a wide variety of bacteria including Salmonella enterica, Klebsiella pneumoniae, Streptococcus agalactiae, Brucella abortus, and Mycobacterium tuberculosis (96, 99). Although nearly all studies involving bd-type oxidases have occurred using cytochrome bd, many structural and biochemical properties are shared between the two bd-type oxidases (91, 96, 104-106). The bd-type oxidases exhibit a high degree of sequence and structural similarity representative of a shared evolutionary origin (91, 96, 104). Additionally, both *bd*-type oxidases are induced under low oxygen tensions, and, despite some initial controversy, both have been shown to exhibit an identical energetic efficiency $(H^+/e^- = 1)$ (91, 96, 104-106). While recent studies have begun to tease apart differences in the structure, biochemical activity, and functional role of these two oxidases, little is known about the specific role of cytochrome bd_2 , and future work will be required to adequately characterize differences in the function and regulation of the bd-type oxidases (91, 95, 104, 107, 108).

In this work I investigate the contribution of aerobic respiration to UPEC physiology and pathogenesis in the urinary tract. Through a systematic investigation of the three respiratory oxidases, I identify cytochrome *bd* as a central regulator of UPEC pathogenesis and biofilm formation. Loss of cytochrome *bd* leads to dramatic disruptions to biofilm development (**Chapter 2**), and consequently impairs the ability for UPEC to form robust biofilms capable of withstanding antibiotics and other exogenous threats (**Chapters 2 and 4**). In addition to facilitating the formation of biofilms within the urinary tract and enhancing bacterial resistance to nitric oxide and other innate immune defenses, cytochrome *bd* is also required during infection due to its role in promoting the intracellular replication of UPEC within urothelial cells (**Chapter 3**). Furthermore, by depleting oxygen from the hypoxic urothelial cell cytosol, cytochrome *bd* mediated respiration by intracellular bacteria shifts host cell

metabolism and alters the dynamics of the urothelial cell response to infection (**Chapter 3**). Collectively this work clarifies the role of aerobic respiration during urinary tract infection and defines the multifaceted role of cytochrome *bd* in UPEC physiology and pathogenesis. By revealing the metabolic basis for intracellular bacterial replication and a mechanism by which intracellular bacterial aerobic respiration subverts the host response to infection, this work identifies cytochrome *bd* as a potential drug target and suggests that modulation of bacterial metabolism is a potential therapeutic approach for the treatment of urinary tract infections and other bacterial diseases.

OUTLOOK

In recent years there has been a growing appreciation of the complexities of the host-pathogen interface, and an increasing understanding of the interconnectedness between bacterial metabolism, virulence, and host response to infection. The recognition that bacterial metabolism is more than simply a way for bacteria to obtain energy, and in fact represents an integral component of virulence, has forced a rethinking of our conceptual frameworks and expanded our understanding of microbial pathogenesis. Analogously, the field of immunology is coalescing around the idea that immune cell metabolism and effector function are integrally connected, and oncologists are increasingly recognizing the influence of cancer cell metabolism on treatment successes and failures (109-115). Consequently, there is an active effort to target metabolism as a means of modulating immune cell effector function and augmenting tumor sensitivity to therapy (113, 114, 116, 117). This evolution of our conceptual models collectively represents a paradigm shift in our understand of the role of metabolism in cellular function and dysfunction across the domains of life and suggests the possibility of modulating microbial metabolism as a mechanism for controlling bacterial behavior and limiting virulence in the post-antibiotic era.

Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in Uropathogenic Escherichia coli

Portions of this chapter have been adapted and reproduced from the following article with permission of the publisher under Creative Commons Attribution 4.0 International (CC BY 4.0) license:

Beebout CJ, Eberly AR, Werby SH, Reasoner SA, Brannon JR, De S, Fitzgerald MJ, Huggins MM, Clayton DB, Cegelski L, and M Hadjifrangiskou. Respiratory heterogeneity shapes biofilm formation and host colonization in uropathogenic *Escherichia coli. mBio* 2019. PMID: 30940709. © 2019 Beebout et al.

ABSTRACT

Escherichia coli encodes a flexible and modular electron transport chain that allows it to colonize a wide variety of environmentally diverse niches. Despite being a facultative anaerobe uropathogenic *E. coli* (UPEC), the leading cause of urinary tract infections, requires aerobic respiration to colonize the urinary tract and to form biofilms – multicellular bacterial communities encased in a self-secreted extracellular matrix. In this study, we aimed to define the role of aerobic respiration in UPEC physiology by characterizing the expression and utilization of respiratory enzymes across niches. Using planktonic, biofilm, and murine infection models, we determine that UPEC heterogeneously expresses respiratory enzymes within and across populations. In biofilms, we determine that two respiratory quinol oxidases – cytochrome *bd* and *bo* – are expressed in spatially distinct subpopulations organized along the biofilm oxygen gradient, and loss of cytochrome *bd* impairs biofilm development by impeding the production and organization of the extracellular matrix. In planktonic populations, UPEC heterogeneously expressing cytochrome

bd. Despite low abundance of cytochrome *bd* expressing cells in planktonic populations, this subpopulation dominates during urinary tract infection, suggestive of a respiratory bet-hedging mechanism. These results demonstrate UPEC heterogeneously expresses respiratory enzymes across niches and identifies a central role for cytochrome *bd* in UPEC physiology and pathogenesis.

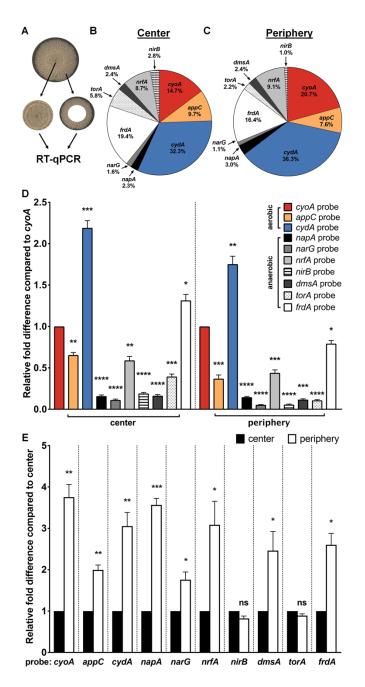
INTRODUCTION

Rather than existing as uniform populations, bacterial cultures, colonies, and biofilms contain phenotypically distinct subpopulations. This intra-strain heterogeneity can be irreversible, arising through the acquisition of mutations, or transient and reversible if it is brought about by stochastic differences in the abundance and activity of regulators in each individual cell or by metabolic adaptation to local environmental conditions. Cell-to-cell heterogeneity oftentimes confers a survival advantage to the population by allowing at least portion of the population to survive in different niches and during sudden changes in environmental conditions.

E. coli is a facultative anaerobe capable of utilizing multiple metabolic pathways to fulfill its energetic requirements. Despite encoding a flexible electron transport chain, previous studies demonstrate that aerobic respiration is required for biofilm formation and bladder colonization by uropathogenic *E. coli* (UPEC), the leading cause of urinary tract infection (41, 54, 83, 87-90). In aerobically respiring *E. coli*, respiratory quinol oxidases comprise essential components of the terminal electron transport chain that couple the flow of electrons to the reduction of molecular oxygen into water (91, 93). *E. coli* encodes two classes of respiratory oxidases with differing oxygen affinities: one low affinity bene copper oxidase, cytochrome *bo* (encoded by the *cyoABCDE* gene cluster), and two high affinity *bd*-type oxidases, cytochromes *bd* (*cydABX*) and *bd*₂ (*appBCX*) (91, 96). Studies in K-12 *E. coli* indicate that cytochrome *bo* is induced at high (atmospheric, 21%) oxygen tensions, whereas the *bd*-type oxidases are induced at low (hypoxic, <15%) oxygen tensions (91, 97). Due to their high oxygen affinity and resistance to various small molecule inhibitors of respiration, the *bd*-type oxidases are

primarily believed to serve as oxygen scavengers capable of facilitating aerobic respiration under hypoxic conditions such as those encountered during infection (91, 96).

In this work we use planktonic, biofilm, and murine infection models to characterize the expression of respiratory oxidases across niches and determine the contribution of aerobic respiratory complexes to UPEC physiology and pathogenesis. We report that UPEC heterogeneously expresses respiratory operons between and across niches. Through guantitative PCR and in situ labelling approaches, we determine that in biofilms this heterogenous expression of respiratory operons occurs within distinct subpopulations that are spatially organized by oxygen availability. This spatial organization of respiration is critical for biofilm development, with the high affinity respiratory oxidase cytochrome bd playing an outsized role in regulating extracellular matrix production and community organization. In planktonic populations, we similarly observe heterogenous expression of respiratory operons, with a minority of cells primarily expressing cytochrome bd under aerobic conditions. Although planktonic populations robustly express all three aerobic respiratory operons, only loss of cytochrome bd impairs UPEC virulence in a well-established murine model of urinary tract infection. In situ analysis of gene expression reveals a shift from heterogeneous expression of aerobic respiratory operons in planktonic populations to homogenous expression of cytochrome bd in urine-associated populations. These findings suggest that the bladder favors cytochrome bd expression and that respiratory heterogeneity in the input pool serves as a potential bet-hedging mechanism to provide a fitness advantage to uropathogenic strains upon introduction to the bladder. Our studies, performed on one of the most common human pathogens and a prolific biofilm producer, reveal the contribution of respiratory heterogeneity to bacterial physiology and unveil a potential avenue for targeting heterogeneity and homogenizing bacterial programming as a therapeutic approach.


RESULTS

Respiratory complexes are heterogeneously expressed in UPEC biofilms

Biofilms are multicellular bacterial communities that are encased in self-secreted extracellular matrix. The biofilm extracellular matrix – composed of exopolysaccharides, proteinaceous fibers, and extracellular DNA – spatially organizes biofilm bacteria and protects biofilm residents from predation, desiccation, assault by antimicrobial agents, and the immune system (53, 57, 61, 62). In addition to providing a physical barrier against external threats, the extracellular matrix serves as a barrier to diffusion which, in conjunction with the metabolic activity of resident bacteria, leads to the establishment of chemical gradients throughout the biofilm community (60, 63). Bacteria at different locales along the gradient respond to the microenvironment differently, and as a result differentiate into distinct and often metabolically cooperative subpopulations (60, 63, 118-120). Previous studies in Pseudomonas aeruginosa and E. coli indicated that oxygen gradients play a key role in regulating the differential expression of genes involved in biofilm formation and metabolic specialization (54, 121-123). Additionally, we previously determined that oxygen availability spatially organizes protein expression in biofilms, and that biofilm formation is greatly diminished under anaerobic conditions, irrespective of growth medium or the presence of alternative terminal electron acceptors (54, 90). From this, we hypothesized that differences in oxygen availability drive the phenotypic differentiation of biofilm bacteria into differentially respiring subpopulations, and that this phenotypic differentiation contributes to the spatial coordination of extracellular matrix production in biofilms.

To define the expression patterns of respiratory enzymes within biofilms, we first determined the relative abundance of aerobic and anaerobic respiratory transcripts in mature colony biofilms grown on yeast extract casamino acids (YESCA) agar – a commonly used biofilm growth medium that mimics the amino acid rich environment of the bladder (54, 124-126). Under these growth conditions UPEC forms elaborate rugose colony biofilms that quickly establish an oxygen gradient from the surface to the interior of the biofilm (**Figure 2A**) (122). Because previous studies identified differences in extracellular matrix abundance and in the localization of transcriptional regulators at the actively growing leading edge (periphery) and center of the colony (122, 127-129), we extracted RNA from the biofilm center and periphery and used RT-qPCR to quantify steady state transcript of each respiratory

operon encoded by *E. coli* (**Figures 2A and 3**) (91, 93). Although overall transcript abundance was significantly increased in the periphery relative to the center (**Figure 2E**) – consistent with the notion that cells at the periphery are more metabolically active – we observed a similar distribution of transcript at the center of the biofilm and the growing edge (**Figure 2B-D**). Consistent with previous studies demonstrating the importance of aerobic respiration in UPEC biofilms, the majority of detected transcript corresponded to aerobic respiratory components (**Figure 2B-C**). The most abundant transcript was that of *cydA* (**Figures 2B-D and 3**), a gene encoding a subunit of the high affinity respiratory oxidase cytochrome *bd*. The abundance of *cydA* transcript was approximately two-fold higher than the abundance of cytochrome *bo* encoding transcript *cyoA*, the second most abundance respiratory oxidase under the conditions tested (**Figure 2B-D**). Although most anaerobic respiratory operons exhibited nearly undetectable baseline expression levels, we detected high levels of transcript corresponding to fumarate reductase (*frdA*) and periplasmic nitrite reductase (*nrfA*) (**Figures 2B-D and 3**). These results reveal the presence of marked respiratory heterogeneity within UPEC biofilms and suggest that respiration via cytochrome *bd* may be preferred within biofilm communities.

Figure 2: Lateral expression of respiratory complexes in *Escherichia coli* biofilms. (A) Image of a mature colony biofilm formed by UPEC strain UTI89 on YESCA agar without supplementation of alternative terminal electron acceptors. The center and periphery of colony biofilms, including both the surface and interior of each region, were harvested and subjected to RNA extraction and RT-qPCR using probes targeting each respiratory operon present in UPEC. (B – C) Pie charts indicating the relative abundance of detected respiratory transcripts in the biofilm center (B) and periphery (C). Aerobic respiratory operons are presented in color, whereas anaerobic respiratory operons are presented in grayscale (D) Graph depicting relative fold differences in respiratory transcript abundance in the biofilm center and periphery as compared to *cyoA* abundance in the same region. (E) Graph depicting relative fold difference in abundance of each transcript in the biofilm periphery as compared to abundance in the same region. (E) Graph depicting relative fold differences in the biofilm periphery as compared to abundance of the same transcript in the biofilm center. The graphs and pie charts depict the average of four biological replicates. Statistical analysis was performed in GraphPad Prism using a two-tailed paired t test. Data are presented as mean \pm SEM. * p < 0.05, ** p < 0.01, **** p < 0.001, ****

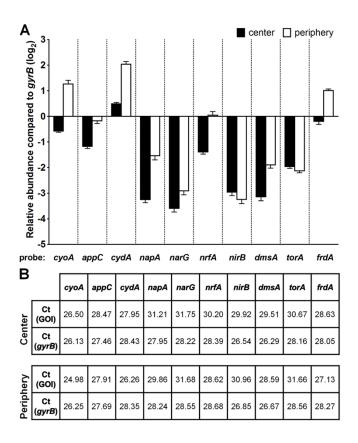


Figure 3: Expression of respiratory complexes compared to *gyrB*. (A) Graph depicting relative abundance of each respiratory transcript in the center and periphery of day 11 colony biofilms as compared to *gyrB*. (B) Average C_T values for each transcript in the center and periphery of colony biofilms. Data are presented as mean ± SEM. All data are representative of four biological replicates.

Respiratory oxidase expression is spatially organized along the biofilm oxygen gradient

To define the spatial organization of respiratory oxidase expression, we performed peptide nucleic acid fluorescence *in situ* hybridization (PNA-FISH) on cryosections of mature colony biofilms using probes targeting each respiratory oxidase operon (*cyoA*, *appC*, and *cydA*) as well as *rrsH* as an endogenous control (**Figure 4**). Because cryosectioning captures both macroscopic and microscopic architecture of biofilms with minimal disruption to the overall structure or organization of the resident bacteria, this approach allows us to define the *in situ* distribution of transcripts in unperturbed communities (**Figure 4A-B**). Each PNA-FISH probe was designed using the validated probe sequences used for qPCR to ensure comparable hybridization efficiencies, and the specificity of each probe was confirmed using both RT-qPCR and through staining of planktonic cells (**Figure 5**). SYTO 9 staining of sections was used as an additional control to localize the entire biofilm community and account for possible hybridization inconsistencies with the *rrsH* control probe (**Figures 4E, K and 6**). To account

for possible mislocalization of signal due to biofilm breakage during the cryosectioning and staining procedure, we focused our analysis on regions devoid of significant breaks in the cryosection.

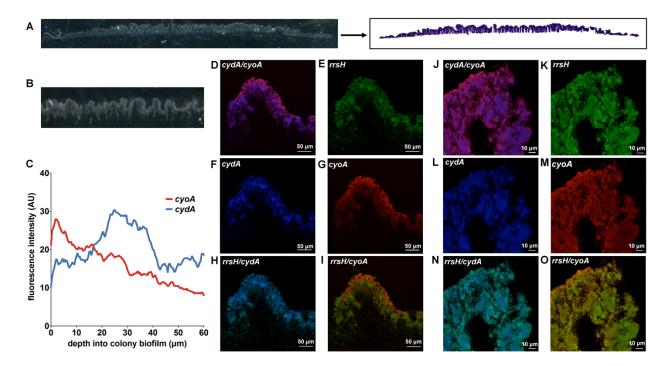
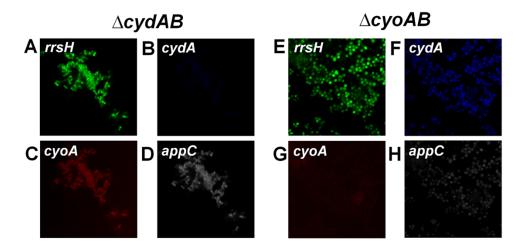
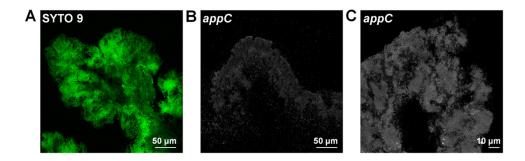




Figure 4: Expression of respiratory oxidases as a function of the oxygen gradient. (A) Representative images depicting a biofilm cryosection before (left) and after (right) fixation and crystal violet staining. (B) Magnified image of a cryosection allows visualization of architectural features of the biofilm (C) Fluorescence intensity of *cyoA* and *cydA* PNA-FISH probes was quantified on ImageJ. Data are presented as the average fluorescence intensity as a function of depth obtained from four images, each with five measurements per image. (D – O) Representative images of PNA-FISH stained biofilm cryosections at 20x magnification (D – I) and 63x magnification (J – O). Cryosections were stained with PNA-FISH probes targeting *cyoA* and *cydA* with *rrsH* (16S rRNA) as an endogenous control. Images are representative of three biological replicates.

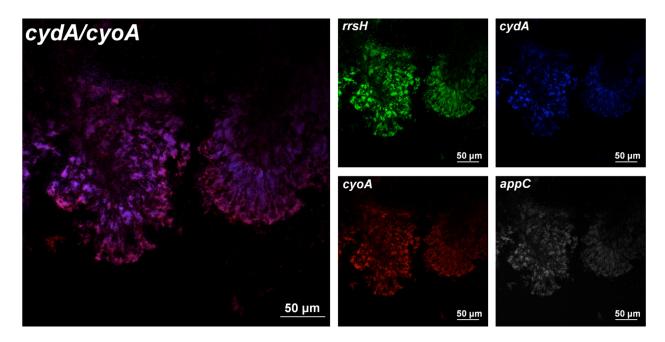
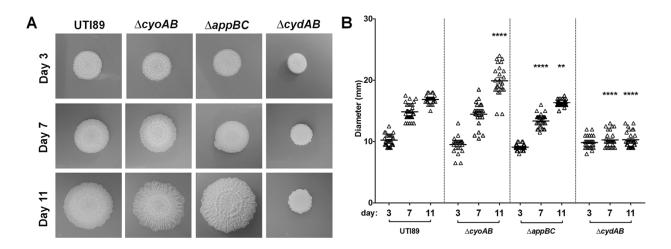


Figure 5: PNA-FISH on respiratory oxidase deletion mutants. Representative images of $\Delta cydAB$ (A – D) and $\Delta cyoAB$ (E – H) cells stained with PNA-FISH probes to assess specificity.

Figure 6: Localization of *appC* transcript in biofilm cryosections. (A) Representative image of SYTO 9 stained biofilm cryosection at 20x magnification. (B – C) Representative images of biofilm cryosections stained with an *appC* PNA-FISH probe at 20x (B) and 63x (C) magnification.

Consistent with previous observations demonstrating that the highest oxygen abundance is at the air-exposed surface of the biomass (121, 122), we observed that cyoA transcript was most abundant in bacteria lining air-exposed surfaces of the biofilm (Figure 4C-D, G, I-J, M, O). In contrast, the highest abundance of cydA transcript was found in densely packed clusters of bacteria in the interior of the biofilm (Figure 4C-D, F, H, J, L, N). Although cytochromes bd and bd₂ are both induced under oxygen-limited conditions (96, 105), we observe different transcript distribution for these two gene clusters. Rather than organizing along the oxygen gradient, *appBC* transcript was observed to be evenly distributed throughout the community (**Figure 6**). Interestingly, we observe basal expression of cytochrome bo across the community with enrichment of cytochrome bd in pockets of cells in the interior (Figure 4J-O), suggesting that individual cells may express multiple respiratory oxidases simultaneously within biofilms. Additionally, while many biofilm wrinkles are empty or sparsely populated with *rrsH* staining cells, we observe other wrinkles that are densely populated (**Figure 7**). We observe reduced intensity of respiratory oxidase staining in the interior of those populated wrinkles (Figure 7), suggesting that respiration in the deeper layers of the biofilm respiration occurs anaerobically (121, 130). Based on our RT-qPCR results (Figure 2B-D), we predict that respiration in the populated wrinkles may be occurring via fumarate reductase or periplasmic nitrite reductase. Given the known role of aerobic respiration in UPEC biofilm formation (54, 83, 90), we focused the remainder of these studies on understand the contribution of cytochrome bd to biofilm architecture.


Figure 7: Localization of respiratory oxidase transcripts in biofilm wrinkles. Representative image of a PNA-FISH stained cryosection depicting a biofilm wrinkle with a central region filled with *rrsH* stained cells at 20x magnification.

Loss of cytochrome *bd* alters biofilm architecture, development, and extracellular matrix abundance

The highly ordered spatial organization of cytochrome *bo* and cytochrome *bd* in biofilms raised the hypothesis that subpopulations expressing each of these respiratory oxidases uniquely contribute to overall biofilm architecture. To test this hypothesis, we created isogenic deletion mutants lacking cytochrome *bo* ($\Delta cyoAB$), cytochrome *bd* ($\Delta cydAB$), or cytochrome *bd*₂ ($\Delta appBC$) and compared biofilms formed by the resulting strains (**Figure 8A**). Colony biofilms formed by the parental strain expand to an average diameter of 16.8 mm over an 11-day incubation period and exhibit elaborate rugose architecture with distinct central and peripheral regions (**Figures 8A and 9**). Strains lacking cytochrome *bo* and cytochrome *bd*₂ exhibited inverse phenotypes relative to one another, with the $\Delta cyoAB$ colony biofilms expanding more than the parental strain (average diameter: 19.9 mm) and the $\Delta appBC$ colony biofilms appearing more compact and with apparently higher rugosity (**Figures 8A and 9**). Strikingly, while $\Delta cyoAB$ and $\Delta appBC$ only displayed minor architecture (**Figures 8A and 9**). Colony biofilms from all strains grew at a similar rate for the first 72 hours (**Figure 9**). However, $\Delta cydAB$ colony growth was significantly stunted between days 3 and 11, with radial expansion remaining at an average diameter of 10.3 mm and colonies exhibiting a wet mass approximately 50 percent of the parental strain after 7 days of growth, even though the CFU produced by the two strains were comparable at this time point (**Figures 8B, D and 9**). Complementation of $\Delta cydAB$ with an extrachromosomal construct expressing *cydABX* under its native promoter rescued the deletion phenotype, indicating that the defects observed in the $\Delta cydAB$ mutant stem solely from the removal of the *cydABX* cluster (**Figure 10**). Deletion of both *cyoAB* and *appBC* from the same strain led to an early onset of rugose phenotype (**Figure 11**). Together, these results demonstrate that cytochrome *bd* is a key contributor to biofilm development and suggest that loss of cytochrome *bd* alters the synthesis and organization of the extracellular matrix.

Figure 8. Cytochrome bd organizes biofilm architecture and extracellular matrix production. (A) Colony biofilms of UTI89 and respiratory oxidase mutants grown on YESCA agar for 11 days. Images are representative of at least 30 biological replicates. (B) Graph depicting wet mass of individual colony biofilms at days 3, 7, and 11 of growth. Data is the average of five biological replicates per day. Data are presented as mean ± SD. (C) Image depicting gross changes to extracellular matrix abundance between UTI89 and $\Delta cydAB$ colony biofilms. extracellular matrix is stained red by the presence of Congo Red in the growth medium. (D) CFU per colony biofilm was measured at days 3, 7, and 11 of growth. Data are presented as mean \pm SD. Data are representative of five biological replicates. (E) Congo Red binding as a percentage of binding in UTI89. Data are presented as mean ± SEM. (F) Solidstate NMR spectra of the extracellular matrix of UTI89 (blue), ∆cydAB (orange), and isolated pEtN cellulose (black). (G) SDS-PAGE gel of UTI89 and $\triangle cvdAB$ extracellular matrix. extracellular matrix was treated with 98% formic acid and vacuum centrifuged prior to analysis to dissociate curli amyloid fibers. (H) Immunofluorescence images of curli (α -CsgA, red) localization in UTI89 and $\Delta cydAB$ colony biofilm cryosections. (I) Colored water droplets were added to the top of day 11 colony biofilms to probe biofilm barrier function. All statistical analysis was performed in GraphPad Prism using a two-tailed unpaired t test. * *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001, **** *p* < 0.0001.

Figure 9: Temporal development of colony biofilms by UTI89 and respiratory oxidase mutants. (A) Representative images of UTI89 and respiratory oxidase mutant colony biofilms grown on YESCA agar taken on day 3, 7, and 11 of growth. (B) Graph depicting colony biofilm diameter at day 3, 7, and 11 of growth. Each point represents an individual colony biofilm. Data are representative of at least 30 biological replicates. Statistical analysis was performed in GraphPad Prism using Welch's t test. * *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001, **** *p* < 0.0001.

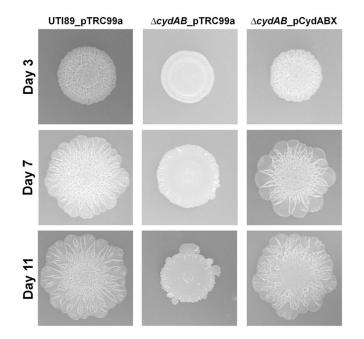
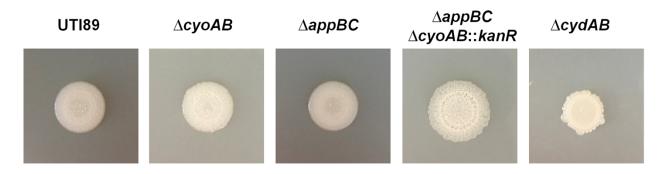
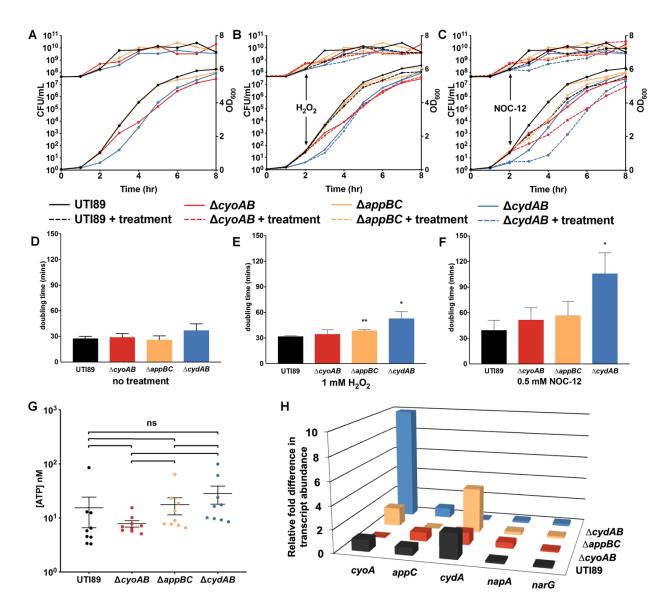



Figure 10: Extrachromosomal complementation of $\triangle cydAB$ rescues biofilm defects. Representative images on UTI89_pTRC99a, $\triangle cydAB_pTRC99a$, and complemented $\triangle cydAB_pCydABX$ under the control of a native promoter. Images were taken of colony biofilms grown on YESCA agar at days 3, 7, and 11 of growth. Images are representative of at least five biological replicates.

Figure 11: Analysis of Δ *appBC* Δ *cyoAB***::***kanR* colony biofilms. Comparison of colony biofilms formed by UTI89, Δ *cyoAB*, Δ *appBC*, Δ *appBC* Δ *cyoAB***::***kanR*, and Δ *cydAB* after six days of growth on YESCA agar. Images are representative of five biological replicates.

Under the growth conditions used, the extracellular matrix of *E. coli* comprises primarily of cellulose and curli amyloid fibers (131). Previous solid-state nuclear magnetic resonance (NMR) spectroscopy analyses on intact extracellular matrix material defined the contributions of cellulose and curli to the *E. coli* biofilm extracellular matrix, and determined that curli and cellulose are present in a 6 to 1 ratio (131). More recently, the extracellular matrix cellulose was determined to be a chemically modified form of cellulose, specifically phosphoethanolamine (pEtN) cellulose (132). To interrogate the effects of cytochrome bd on curli and exopolysaccharide production, we extracted extracellular matrix and performed solid-state NMR analysis to evaluate the abundance of curli and cellulose components (**Figure 8F-G**). The NMR spectra obtained for the parental and $\Delta cydAB$ extracellular matrix are very similar overall, indicating a comparable protein to polysaccharide ratio between the samples (Figure **8F**). Consistent with this analysis, we do not observe changes in protein composition between the parent and $\Delta cydAB$ extracellular matrix samples when analyzed on SDS-PAGE gels (Figure 8G). We additionally do not observe any overt alterations to curli abundance or localization between UTI89 and ∆*cydAB* biofilm cryosections using immunofluorescence (**Figure 8H**). Despite the similar composition, the total amount of extracellular matrix recovered was reduced in $\Delta cydAB$ biofilms, indicative of a decrease in extracellular matrix production (Figure 8C). When quantified by Congo Red depletion assays, $\Delta cydAB$ colony biofilms exhibited a trend toward reduced total extracellular matrix abundance at 7 days (82.1% of parental), and significantly reduced abundance at 11 days (66.6% of parental) (Figure 8E). Because the protein to polysaccharide ratio and curli abundance are unchanged between

the parent and $\triangle cydAB$, these data are suggestive of a change to the overall mixture of matrix components in $\triangle cydAB$, with particular reductions in the abundance of non-curli and non-pEtN cellulose extracellular matrix components.


The extracellular matrix plays a central role in biofilm physiology by providing physical protection against exogenous insults, serving as a structural scaffold, and helping to establish chemical gradients which lead to metabolic differentiation and subpopulation formation (60, 63, 124, 133). As such, disruptions to the matrix can have catastrophic consequences for the biofilm community. We hypothesized that alterations to extracellular matrix abundance and architecture in the $\Delta cydAB$ mutant would render the biofilm more susceptible to exogenous insults. To investigate this possibility, we probed the barrier function of the respiratory oxidase mutant biofilms by applying a drop of colored water to the surface of mature colony biofilms (**Figure 8I**) (134). While the parental strain, $\Delta cyoAB$, and $\Delta appBC$ biofilms repelled the drop, the solution readily penetrated $\Delta cydAB$ biofilms, demonstrating that the alterations to $\Delta cydAB$ biofilm architecture and extracellular matrix abundance increases penetrance of aqueous solutions.

Loss of cytochrome *bd* increases population sensitivity to nitrosative stress

Together, our studies indicate that cytochrome *bd* is highly expressed in biofilms, and that loss of the cytochrome *bd*-expressing subpopulation impairs barrier function and reduces extracellular matrix abundance. These data suggest that the cytochrome *bd*-expressing subpopulation plays a critical role in promoting extracellular matrix synthesis and providing structural integrity to the community. However, it is also possible that cytochrome *bd* is preferentially expressed in the biofilm because cytochrome *bd* provides protection against oxidative and nitrosative stress – byproducts of biofilm metabolism (135, 136) and components of the innate immune response (99, 102, 103). In addition to functioning as a respiratory quinol:O₂ oxidoreductase, previous studies demonstrated that cytochrome *bd* has catalase activity, is capable of oxidizing the respiratory inhibitor nitric oxide, and is insensitive to nitrosative stress due to its unusually fast nitric oxide dissociation rate (99). By contrast,

cytochrome *bo* affords no protection against nitrosative stress and is irreversibly inhibited by nitric oxide (99).

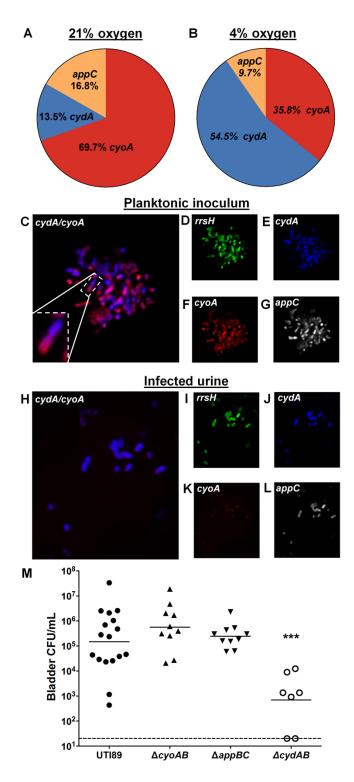
Given these additional functions of cytochrome bd, we performed growth curves at ambient oxygen concentration and evaluated the effects of nitrosative and oxidative stress on the fitness of cells lacking each respiratory oxidase as compared to the parental strain. Without the addition of stressors, both $\triangle c v dAB$ and $\triangle c v oAB$ mutants exhibited a delay in growth, but growth of $\triangle a p p B C$ closely mirrored the parental strain (Figures 12A, D). Despite the delay, all strains reached a similar maximal CFU/mL by the end of the experiment (Figure 12A). ATP measurements of normalized samples taken from each strain during logarithmic phase revealed no significant overall differences in ATP concentrations. suggesting this growth delay is not caused by impaired ATP generation (Figure 12G). Next, to determine whether loss of cytochrome bd impairs resistance to oxidative and nitrosative stress, we measured growth with and without these stressors. Consistent with the reported catalase activity of cytochrome bd, significant increases in the doubling time of both $\Delta cydAB$ and $\Delta appBC$ were observed after treatment with 1 mM H₂O₂ (Figure 12B, E). Although previous studies in K-12 E. coli demonstrated that treatment with 1 mM H₂O₂ reduced the growth rate of $\Delta cyoAB$ by ~70 percent relative to wild-type (137), we did not observe significant reductions in growth rate of $\triangle cvoAB$ after treatment (Figures 12B, E). Addition of the nitric oxide donor NOC-12 to planktonic cultures induced an apparent growth delay in all strains, but only significantly reduced the growth rate of $\triangle cydAB$ (Figures 12C, F). Whereas treatment with NOC-12 increased the doubling time from 27 to 39 minutes in UTI89, in $\Delta cydAB$ the doubling time increased from 37 to 106 minutes after treatment (Figure 12F). Together, these data demonstrate that although cytochrome bd is dispensable for energy generation during planktonic growth, loss of cytochrome bd sensitizes bacteria to oxidative and nitrosative stress, consistent with previous studies on K-12 E. coli and the multi-drug resistant strain ST131 (102, 103).

Figure 12: Cytochrome *bd* **provides nitrosative stress resistance.** (A - C) Growth curves for UTI89, $\Delta cyoAB$, $\Delta appBC$, and $\Delta cydAB$ as measured by CFU per mL (upper lines, left axis) and OD₆₀₀ (lower lines, right axis) with no treatment (A), treated with 1 mM hydrogen peroxide (B), or treated with 0.5 mM of nitric oxide donor NOC-12 (C). (D - F) Doubling time in minutes of each strain between hours 2 and 4 was calculated using CFU per mL data shown in (A - C). (D) no treatment, (E) 1 mM hydrogen peroxide, (F) 0.5 mM NOC-12. (G) ATP levels measured from logarithmic cultures of each strain normalized to OD₆₀₀ = 0.5. (H) RT-qPCR data depicting relative fold difference in respiratory transcript abundance in the center of day 11 colony biofilms in UTI89 and respiratory oxidase mutant strains. In UTI89 (black), data is presented as relative fold difference in abundance of each transcript as compared to *cyoA* abundance. In each mutant strain, data are presented as relative fold difference in transcript abundance as compared to the abundance of the same transcript in UTI89. Statistical analysis was performed on GraphPad Prism using a two-tailed unpaired t test. All data are presented as mean ± SEM and are representative of at least three biological replicates.

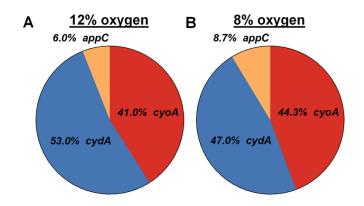
While there was a trend toward increased doubling time in all strains after treatment with NOC-

12, treatment of $\triangle cydAB$ increased doubling time approximately 3-fold relative to its untreated control.

This observation suggests that during aerobic growth cytochrome bd serves as a nitric oxide sink that reversibly sequesters nitric oxide and protects the more efficient cytochrome bo-mediated respiration. Accordingly, loss of cytochrome bd would decrease nitrosative stress resistance and render the dominant respiratory complex, cytochrome bo, susceptible to irreversible inhibition by nitric oxide. As such, treatment of $\triangle cydAB$ with nitric oxide would poison all preformed cytochrome bo complexes in the membrane and force the bacteria to synthesize new oxidases prior to resuming growth. Consistent with this hypothesis, we observe a marked increase (~10-fold relative to UTI89) of cyoA transcript in the interior of $\triangle cydAB$ colony biofilms, where nitric is expected to be most abundant (Fig 12H). These results contrast previous studies in K-12 E. coli, in which loss of cytochrome bd induces a marked upregulation of *appBC* (105). These observations demonstrate that the regulation of respiratory oxidases in UPEC is distinct from that previously defined in K-12 and suggest that cytochrome bd may serve as a nitric oxide sink in biofilms. In conjunction with the disrupted biofilm architecture and altered extracellular matrix abundance in $\Delta cydAB$ biofilms, these data suggest that cytochrome bd-expressing subpopulations are critical, not only for directing extracellular matrix biosynthesis, but also for withstanding harmful metabolic byproducts while in the biofilm state.


Heterogeneous expression of respiratory oxidases at the population level

Our data thus far indicate that in addition to heterogeneity in respiratory oxidase expression in the biofilm state, heterogeneous expression of respiratory oxidases must also be occurring in the planktonic population. Our planktonic studies revealed a lag in growth of the $\Delta cyoAB$ and the $\Delta cydAB$ mutants when these strains were grown under ambient oxygen concentrations, suggesting that in each culture there are subpopulations – like in the biofilm – that stochastically or deterministically express different respiratory components. Such a bet-hedging approach could provide UPEC with the flexibility to quickly adapt to a given niche, be it different locales in the genitourinary tract or in the gastrointestinal tract during host colonization. In the context of urinary tract infection, *E. coli* traverse from the nearly anoxic gut to the perineum, where it encounters atmospheric oxygen concentrations, prior to ascending


the urethra to enter the hypoxic bladder, where the dissolved urinary oxygen concentration is 4-6% (86). This microbial journey is performed by planktonic cells, which can then expand into multicellular communities on and within bladder epithelial cells, as well as on urinary catheters (12, 53).

The high abundance of *cydA* transcript in the hypoxic areas of the biofilm, in conjunction with the defects observed in aerobically grown $\triangle cydAB$ planktonic cultures, raised the hypothesis that a cytochrome *bd*-expressing subpopulation exists in the planktonic state under ambient oxygen conditions and that this cytochrome bd-expressing subpopulation exhibits the greatest fitness advantage during infection. To test this hypothesis, we first analyzed transcript abundance in aerobic cultures used for inoculation during murine infections with RT-gPCR and PNA-FISH (Figure 13). Under these conditions, the majority of transcript corresponds to cyoA (69.7%), with cydA and appC transcripts each comprising approximately 15% of detected transcripts (Figure 13A). Transcript abundance was altered by decreasing ambient oxygen concentrations, with cydA becoming the most abundant transcript in 12%, 8% and 4% oxygen, the latter being the concentration of dissolved oxygen concentration in the urine (Figures 13A-B and 14) (86). This shift in transcript abundance is largely due to a marked induction of *cvdABX* expression under hypoxic conditions (Figure 15). PNA-FISH analysis revealed the presence of bacteria which uniquely express cytochrome bo (Figure 13F). cytochrome bd (Figure 13E), or cytochrome bd_2 (Figure 13G), as well as some cells that have transcript of all three operons (Figure 13C, E-G). Intriguingly, we observed dividing cells in which each daughter had distinct respiratory oxidase transcript abundance (Figure 13C, inset), suggesting that asymmetric distribution of respiratory transcripts during division may be a mechanism by which these subpopulations are generated. This hypothesis is supported by previous studies in E. coli demonstrating that respiratory oxidases exhibit unusually noisy gene expression, and that asymmetric cell division is a major generator of heterogeneity (138-140).

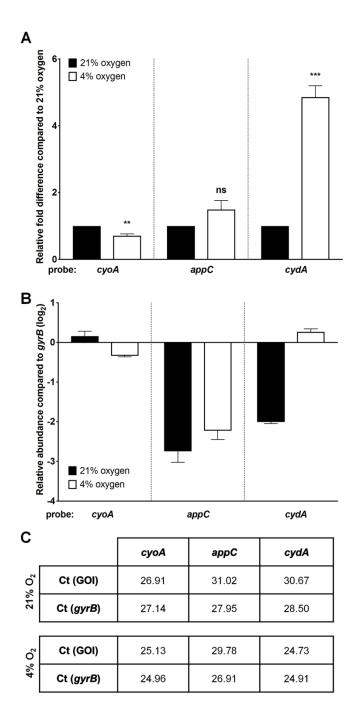

34

Figure 13: Respiratory heterogeneity provides a fitness advantage during urinary tract infection. (A – B) Pie charts depicting relative abundance of *cydA*, *cyoA*, and *appC* transcripts detected using RT-qPCR in planktonic cultures grown at 21% oxygen in the manner used to prepare cultures to inoculate mice (A), as well as planktonic cultures grown at 4% oxygen (B). Data are representative of three biological replicates. (C – G) PNA-FISH was used to detect respiratory oxidase transcripts from cultures used to inoculate mice. Data is representative of three biological replicates. (H – L) PNA-FISH was used to detected respiratory oxidase transcripts in the urine of mice infected with UTI89. Urine was pooled from 20 mice. (M) Graph depicting bladder titers obtained from mice infected with UTI89 or respiratory oxidase mutant strains at 24 hours post infection. Each point represents a mouse. Statistical analysis was performed in GraphPad Prism using a two-tailed Mann-Whitney test. Line represents geometric mean. *** *p* < 0.001.

Figure 14: Ambient oxygen concentration influences respiratory oxidase transcript abundance. Pie charts depicting relative abundance of *cydA*, *cyoA*, and *appC* transcripts detected using RT-qPCR in planktonic cultures grown at 12% (A) or 8% oxygen (B). Data is representative of three biological replicates.

Figure 15: Expression of respiratory oxidases as a function of oxygen tension. (A) RT-qPCR data depicting relative fold difference in abundance of each respiratory oxidase transcript of planktonic bacteria grown at 4% oxygen as compared to 21% oxygen. (B) Relative abundance of each transcript at 21% and 4% oxygen as compared to *gyrB*. (C) Raw Ct values for each transcript at 21% and 4% oxygen. Data are presented as mean ± SEM. All data are representative of three biological replicates.

Expression of cytochrome bd is dominant during acute urinary tract infection

Previous studies reported that deletion of cytochrome bd impairs UPEC virulence in a murine

model of urinary tract infection (102). To gauge the contribution of each respiratory oxidase during

infection, we evaluated the fitness of $\triangle cyoAB$, $\triangle appBC$, and $\triangle cydAB$ mutants compared to the parent

strain in a murine model of acute urinary tract infection. Consistent with the previous report (102), $\Delta cydAB$ exhibited a ~2 log decrease in bladder colonization by 24 hours relative to the parent strain, while the mutants deleted for *cyoAB* and *appBC* colonize mice at the same level as the parent strain (**Figure 13M**). Subsequent PNA-FISH on pooled urine obtained from mice infected with the parent strain revealed a marked enrichment in cytochrome *bd*-expressing cells and a corresponding reduction in the number of cells expressing cytochrome *bo* (**Figure 13H-L**). This suggests that the bladder environment either induces transcription of *cydABX* or that only subpopulations of bacteria expressing *cydABX* are capable of efficiently colonizing the bladder. Together these data reveal the presence of subpopulations of bacteria that differentially express respiratory oxidases as a potential bet-hedging mechanism to promote adaptation to low oxygen availability and bladder colonization.

DISCUSSION

Cytochrome *bd* is a multifunctional protein that is central to respiration and can maintain activity in the face of nitrosative stress (99). As such, bacteria expressing cytochrome *bd* presumably exhibit a fitness advantage during growth conditions that are low in oxygen or high in metabolic byproducts that increase nitric oxide concentration. The biofilm state, while protecting the bacterial residents from predation and desiccation, constitutes a high-density environment with several chemical gradients that result from the consumption and production of metabolites. Accordingly, expressing an enzyme that can facilitate tolerance to metabolic byproducts, such as nitric oxide, would ensure that biofilm residents do not perish as a consequence of their own metabolic excretions. Our study elucidates the distribution of respiratory oxidase expression in the biofilm state and indicates that the bulk of biofilm residents express cytochrome *bd*, particularly in the densely populated interior. The cytochrome *bd*-expressing bacteria are not necessarily using cytochrome *bd* for respiration, as many of them also have low levels of cytochrome *bo* and *bd*₂ transcripts (**Figures 4-6**). Rather, the production of cytochrome *bd* may be leveraged towards providing tolerance to nitrosative stress, which irreversibly inhibits cytochrome *bo*. Indeed, in $\Delta cydAB$ biofilms we observe a marked increase in cytochrome *bo* expression (**Figure 12H**), suggesting that loss of cytochrome *bd* impairs nitric oxide tolerance and that increased production of cytochrome *bo* may be a compensatory mechanism that allows biofilm bacteria to respire in the presence of high levels of nitric oxide.

In addition to acting as a respiratory inhibitor, nitric oxide regulates cyclic di-GMP abundance and thereby governs the switch from motility to aggregation and biofilm expansion (141, 142). Consequently, if cytochrome *bd* decreases nitric oxide availability, it would indirectly influence extracellular matrix production. Consistent with this hypothesis, loss of the cytochrome *bd*-expressing subpopulation reduces extracellular matrix abundance and leads to gross alterations of biofilm architecture (**Figure 8**). From this, we speculate that the cytochrome *bd*-expressing subpopulation may promote biosynthesis of the extracellular matrix by influencing the nitric oxide – cyclic di-GMP signaling axis.

Most importantly, this work revealed the presence of planktonic subpopulations that express distinct respiratory oxidases during growth. In conjunction with the observation that only cytochrome bd expression is critical for fitness during infection, this finding suggests that basal expression of cytochrome bd under aerobic conditions serves as a bet-hedging mechanism that promotes the expansion of bacteria during the transition from the aerobic perineum to the hypoxic bladder. In addition to allowing for efficient respiration in the hypoxic bladder, expression of cytochrome bd provides resistance against nitrosative stress – a metabolic byproduct and component of the innate immune response – and promotes the formation of resilient biofilm communities. Alternatively, cytochrome bd may serve as an oxygen scavenger, thereby reducing oxygen tension and allowing distinct UPEC subpopulations to utilize anaerobic respiratory pathways. Consistent with this hypothesis, the alternative terminal electron acceptors nitrate and TMAO are known to be present in the urine, and the anaerobic reduction of nitrate to nitrite by *Enterobacteriaceae* is the basis of a commonly used clinical test used to diagnose urinary tract infection. Together our observations characterize expression of respiratory oxidases across niches, define the contribution of aerobic respiratory operons to biofilm formation and bladder colonization, and suggest the presence of respiratory bet-hedging behavior in

39

UPEC. These data clarify the role of respiration in UPEC physiology and suggest the possibility of targeting heterogeneity as a method for homogenizing bacterial populations and impeding their ability to colonize the urinary tract.

MATERIALS AND METHODS

Bacterial Strains

All studies were performed in *E. coli* cystitis isolate UTI89 (44). All gene deletions ($\Delta cyoAB$, $\Delta appBC$, and $\Delta cydAB$) were performed using the λ -red recombinase system (143). Complementation constructs were created in plasmid pTRC99a with *cydABX* under the control of its native promoter as previously described (144). Primers used for gene deletions and complementation plasmid construction are listed in **Table 1**.

Primer/Probe	Sequence $(5' \rightarrow 3')$	Purpose
cydA_KO_Fwd	ATGATGTTAGATATAGTCGAACTGTCGCGCTTA CAGTTTGCCTTGACCGCGATGTACGTGTAGGCT GGAGCTGCTTC	<i>cydAB</i> knockout
cydB_KO_Rev	GTTACGTTCAATATCTTCTTTGGTGATACGACC GAACATTTTCCAGTCATATGAATATCCTCCTTAG	cydAB knockout
cydA_KO_Test_Fwd	GATCAAATTGGTGAGATCGTGAC	<i>cydAB</i> knockout
cydB_KO_Test_Rev	CTAACAGAAGTGCCATCACG	cydAB knockout
cydA1_Fwd_Xbal	CTGCAGTCTAGACTGGTCAAGTTATCCATCATT CACT	cydABX complementation
cydX_Rev_Sacl	CGTATTGAGCTC/TTGCGATAATCTTACTCATCA GATGTC	<i>cydABX</i> complementation
appC_KO_Fwd	ATGTGGGATGTCATTGATTTATCGCGCTGGCAG TTTGCTCTGACCGCGGTGTAGGCTGGAGCTGC TTC	appBC knockout
appB_KO_Rev	TTAGTACAGCTCGTTTTCGTTACGGCGGAGAGT TTCTGTCGTCATGCCATATGAATATCCTCCTTAG	appBC knockout
appC_KO_Test_Fwd	ACGCAGACGTCACGGCG	appBC knockout
appB_KO_Test_Rev	TGCACAGTCAGGTGCCAGC	appBC knockout
cyoB_KO_Fwd	TCAGTTGCCATTTTTCAGCCCTGCCTTAGTAATC TCATCGGTGTAGGCTGGAGCTGCTTC	cyoAB knockout
cyoA_KO_Rev	GTCATTATTTGCAGGCACTGTATTGCTCAGTGG CTGTAATTCTGCGCTGCATATGAATATCCTCCTT AG	<i>cyoAB</i> knockout
cyoB_KO_Test_Fwd	CATCCAGATAAGACCGGAAGTG	cyoAB knockout

cyoA_KO_Test_Rev	GCAACATATGTGACCTGATAGC	cyoAB knockout
cyoA_Fwd	CAATGCCCTGTTCCGGGTAGATG	qPCR
cyoA_Rev	ACGGTACCTATCTTAATCATCATCTTCC	qPCR
cyoA probe	NED-TCGTCGTGTGCCAGCGGCTTG	qPCR
appC_Fwd	CGATGTCGCATTACGCTCG	qPCR
appC_Rev	GGTGCAGGTTCTGTTTGCCACT	qPCR
appC probe	NED-CTGCGTATGAAGTCGCGCAAG	qPCR
cydA_Fwd	GTGGCTACCGGTCTGACCATG	qPCR
cydA_Rev	CCAACCGAAGAAGAACAGACCTAC	qPCR
cydA probe	FAM-CGCTGGCAATCGAAGGTCTGATG	qPCR
narG_Fwd	TCTCGCTATACTGGACACCTGA	qPCR
narG_Rev	CCGTATAGTCCACCGGATTCAT	qPCR
narG probe	NED-TGCCGTCTGCGCCGCAGT	qPCR
napA_Fwd	CTTCCGCGTGTGGTACTGC	qPCR
napA_Rev	GTGCCGCTCGGGATATTCC	qPCR
napA probe	FAM-CGTCTGCCTGCGGACATGGTGGTGAC	qPCR
nrfA_Fwd	GGTCAGTGCCATGTGGAGT	qPCR
nrfA_Rev	CGACAGGGAGTTAGTCCAGTCA	qPCR
nrfA probe	NED-CCGTGGGATGACGGCATGAAAGTCGAA	qPCR
nirB_Fwd	CTGGTGCTGAACGCTATCG	qPCR
nirB_Rev	ATAGCAGCAATCAGGTCGC	qPCR
nirB probe	FAM-AACTGCCGGACAGCGCGCAAATCTG	qPCR
frdA_Fwd	CCTCGACCTGCGTCACCTCGGC	qPCR
frdA_Rev	TTCTGGCACGAATGGCGTA	qPCR
frdA probe	FAM-CGGATCGACGCCAACGTA	qPCR
dmsA_Fwd	GCT ATC TCG ATG CTG GCG A	qPCR
dmsA_Rev	GTTCAATGGCATCGGTCCAC	qPCR
dmsA probe	NED-CGGCGCGCGCGAAGGTTCATACAGCTTAC	qPCR
torA_Fwd	CGTGGATGATTGTCGTTCTGG	qPCR
torA_Rev	TTGTCGTGAACAGGCGGA	qPCR
torA probe	NED-GGCTGGCACTATAACGGCGCAGGCAC	qPCR
gyrB_Fwd	GATGCGCGTGAAGGCCTGATTG	qPCR
gyrB_Rev	CACGGGCACGGGCAGCATC	qPCR
gyrB probe	VIC-ACGAACTGCTGGCGGA	qPCR
cyoA PNA	CGTCGTGTGCCA – Lys (Atto425)	PNA-FISH
cydA PNA	CGATTGCCAGCG – Lys (Cy5)	PNA-FISH
appC PNA	TGCGCGACTTCATA – Lys (TexasRed)	PNA-FISH
rrsH PNA	AGTAATTCCGATTAACG – Lys (Atto532)	PNA-FISH

Table 1: Primers and probes used in Chapter 2.

Growth conditions

For all analyses, strains were propagated overnight at 37°C with shaking in Lysogeny broth (LB) (Fisher) at pH 7.4. To form colony biofilms, 10 μ L of overnight culture was spotted onto 1.2x Yeast Extract/Casamino Acids (YESCA) agar (122) and allowed to grow at room temperature. Growth curves to assess tolerance to nitrosative or oxidative stress were performed in LB broth at 37°C with shaking, starting from an overnight culture normalized to optical density at 600 nm (OD₆₀₀) = 0.05. At 2 hours post-inoculation, cultures were split into equal volumes and treated with 0.5 mM NOC-12, 1 mM H₂O₂, or left unperturbed. OD₆₀₀ and CFU per mL measurements were taken every hour for 8 hours.

RT-qPCR

RNA was extracted from day 11 colony biofilms or planktonic cultures using the RNeasy kit (Qiagen). RNA was DNase treated using Turbo DNase I (Invitrogen), and reverse transcribed using SuperScript III Reverse Transcriptase (Invitrogen). cDNA was amplified in an Applied Biosystems StepOne Plus Real-Time PCR machine using TaqMan MGB chemistry with the primers and probes listed in **Table 1**. All reactions were performed in triplicate with four different cDNA concentrations (100, 50, 25, or 12.5 ng per reaction). Relative fold difference in transcript abundance was determined using the $\Delta\Delta C_T$ method (145) with target transcripts normalized to *gyrB* abundance from a total of 3 – 4 biological replicates.7

Peptide nucleic acid fluorescence in situ hybridization (PNA-FISH)

Day 11 biofilms were flash frozen in Tissue-Tek O.C.T. compound (Electron Microscopy Sciences) and cryosectioned as described previously (118). The PNA-FISH hybridization protocol was adapted from Almeida *et al* (146). Biofilm cryosections were fixed in 4% paraformaldehyde (PFA) for 30 minutes at room temperature, then dehydrated for 10 minutes in 50% ethanol. After dehydration, 100 µL of

hybridization solution (see below for details) was applied to the slides. All hybridizations were performed at 60°C for 30 minutes. Next, slides were submerged in pre-warmed wash solution for 30 minutes, mounted using ProLong Diamond (ThermoFisher), and imaged using a Zeiss 710 confocal laser scanning microscope (CLSM). For planktonic cells, 1 mL of culture was sedimented, fixed in 4% PFA, resuspended in 50% ethanol, incubated at -20°C for 30 minutes, and resuspended in 100 µL hybridization solution. After hybridization, cells were pelleted, resuspended in 500 µL pre-warmed wash solution, and incubated at 60°C for 30 minutes. Finally, cells were pelleted and resuspended in 100 µL sterile water before being applied to microscope slides for imaging. Wash solution contained 5 mM Tris-HCl pH 7.4, 15 mM NaCl, and 1% Triton X-100. Hybridization solution contained 10% w/v dextran sulfate, 30% formamide, 50 mM Tris-HCl pH 7.4, 10 mM NaCl, 5 mM EDTA, 0.1% Triton X-100, and 200 nM of each PNA-FISH probe. Probe sequences were based on the probes used for qPCR (efficiency of hybridization: *rrsH*: 81; *cydA*: 107; *cyoA*: 115; *appC*: 73) and were synthesized by PNA Bio (Newbury Park, CA).

ATP measurements

ATP was quantified from mid-log (4 hours after subculture) planktonic cultures using Cell-Glo Titer kit (Promega). Cultures were normalized to $OD_{600} = 0.5$, pelleted, and resuspended in PBS. 50 µL of bacterial suspension was mixed with an equal volume of Cell-Glo Titer reagent and incubated shaking at room temperature for 15 minutes. After incubation, luminescence was measured on a SpectraMax i3 plate reader (Molecular Devices). Luminescence was converted to concentration of ATP using a standard curve on the same plate.

Extracellular matrix extraction

Extracellular matrix was extracted using established methods (131). Briefly, biofilms were grown on YESCA agar containing 25 µg/mL Congo Red. After 60 hours, biofilms were homogenized in cold 10 mM Tris-HCl pH 7.4 using an Omni Tissue Homogenizer (motor speed 9) five times for one minute per

cycle. Next, the homogenate was centrifuged three times for 10 minutes at 5,000*g* to remove cells. The supernatant was spiked with NaCl (final concentration 170 mM) and centrifuged for one hour at 13,000*g* to pellet the matrix. The extracellular matrix pellet was washed in 10 mM Tris-HCl pH 7.4 with 4% SDS and incubated at room temperature rocking overnight. Next, the suspended extracellular matrix was centrifuged at 13,000*g* for one hour, resuspended in cold 10 mM Tris-HCl pH 7.4, and centrifuged at 30,000*g* for 20 minutes. Pelleted extracellular matrix was resuspended in Milli-Q water and flash frozen.

Congo Red depletion assays

Extracellular matrix abundance was quantified using Congo Red depletion assays adapted from established protocols (147). Colony biofilms grown on YESCA agar were harvested into PBS at specific time points and homogenized. 40 µg/mL Congo Red (final concentration) was added to homogenized biofilms, which were then incubated at 37°C for 1 hour. After incubation, extracellular matrix was pelleted by centrifugation, the supernatant was removed, and supernatant absorbance (490 nm) was measured using a SpectraMax i3 plate reader (Molecular Devices).

Solid-state NMR measurements

All NMR experiments were performed in an 89 mm bore 11.7T magnet using either an HCN Agilent probe with a DD2 console (Agilent Technologies) or a home-built four-frequency transmission line probe with a Varian console. Samples were spun at 7143 Hz in either 36 µL capacity 3.2 mm Zirconia rotors or thin-walled 5 mm outer diameter Zirconia rotors. The temperature was maintained at 5°C with an FTS chiller (FTS Thermal Products, SP Scientific, Warminster, PA) supplying nitrogen at -10°C. The field strength for ¹³C cross polarization was 50 kHz with a 10% ¹H linear ramp centered at 57 kHz. The CPMAS recycle time was 2 s for all experiments. ¹H decoupling was performed with continuous wave decoupling. ¹³C chemical shifts were referenced to tetramethylsilane as 0 ppm using a solid adamantine sample at 38.5 ppm. The 15.6 mg wild-type ¹³C CPMAS spectrum was the result of 32,768 scans and

the 8.3 mg mutant spectrum was the result of 100,000 scans. NMR spectra were processed with 80 Hz line broadening.

SDS-PAGE gels

A portion of the lyophilized extracellular matrix sample used for solid-state NMR analysis was resuspended in 98% formic acid and vacuum centrifuged. The samples were then reconstituted in SDS-PAGE sample buffer containing 8 M urea and 50 mM DTT and further diluted to desired concentrations. All samples were centrifuged briefly at 10,000*g* to remove any insoluble material and used for electrophoresis. The gels were stained with instant blue and de-stained in water.

Immunofluorescence

Immunofluorescence targeting CsgA, the major curli subunit, was performed as previously described (54). Biofilm cryosections were fixed in 4% PFA for 30 minutes at room temperature and blocked overnight in 5% BSA at 4°C. Sections were washed in PBS, incubated with rabbit α-CsgA antibodies (GenScript) (1:1000) at room temperature for 1 hour, washed in PBS, and incubated with AlexaFluor 647 goat α-rabbit IgG (ThermoFisher) (1:1000) at room temperature for 1 hour. Slides were counterstained with SYTO 9 and imaged using CLSM.

Murine infections

Murine infections were performed as described previously (148). In brief, UTI89 and each mutant strain were inoculated individually into 5 mL LB medium and grown shaking at 37°C for 4 hours. Next, this culture was diluted 1:1000 into 10 mL fresh media and grown statically at 37°C for 24 hours. After 24 hours, this culture was diluted 1:1000 into 10 mL fresh media and grown for another 24 hours at 37°C statically. Next, 7 – 8 week old C3H/HeN female mice were transurethrally inoculated with 50 μ L PBS containing 10⁷ CFU bacteria. Mice were sacrificed at 24 hours post infection after which bladders were removed and homogenized for CFU enumeration. All animal studies were approved by the Vanderbilt

University Medical Center Institutional Animal Care and Use Committee (IACUC) (protocol numbers M/12/191 and M1500017-01) and carried out in accordance with all recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the IACUC.

Statistical analysis

All statistical analyses were performed in GraphPad Prism using the most appropriate test. Details of test used, error bars, and statistical significance cutoffs are presented in figure legends.

ACKNOWLEDGMENTS

We thank Dr. Jonathan Schmitz, Dr. Gerald Van Horn, Dr. Mariana X. Byndloss, and members of the Hadjifrangiskou laboratory for critical evaluation of the manuscript and helpful discussions. This work was supported by the following NIH grants: R01 Al107052 (MH), DiaComp DK076169 (MH), T32 GM007347 (CJB), K08 DK106472 (DBC) and the Vanderbilt University Medical Center Pediatric Urology Research Fund. LC acknowledges support from the National Science Foundation CAREER Award 1453247. SHW is a recipient of an NSF Predoctoral Fellowship.

CHAPTER 3

Subversion of Mitochondrial Metabolism Supports Intracellular Bacterial Pathogenesis During Urinary Tract Infection

At the time this dissertation was submitted, a modified version of this chapter was submitted for publication and was undergoing peer review with the following title:

Beebout CJ, Robertson GL, Reinfeld BI, Blee AM, Morales GH, Brannon JR, Chazin WJ, Rathmell WK, Rathmell JC, Gama V, and Hadjifrangiskou M. Subversion of mitochondrial metabolism supports intracellular bacterial pathogenesis during urinary tract infection. Under Review 2022.

ABSTRACT

Urinary tract infections are among the most common human bacterial infections and place a significant burden on healthcare systems due to associated morbidity, cost, and antibiotic use. Despite being a facultative anaerobe, uropathogenic *Escherichia coli* (UPEC), the primary cause of urinary tract infections, requires aerobic respiration to establish infection in the bladder. Here, we provide evidence that the widely conserved respiratory oxidase cytochrome *bd* is required for intracellular infection of urothelial cells. We show that intracellular oxygen scavenging by cytochrome *bd* alters mitochondrial physiology by reducing the efficiency of mitochondrial respiration, stabilizing the hypoxia inducible transcription factor HIF-1, and promoting a shift toward aerobic glycolysis. This bacterially induced reprogramming of host metabolism antagonizes apoptosis, thereby protecting intracellular bacteria from urothelial cell exfoliation and preserving their replicative niche. These results reveal the metabolic basis for intracellular bacterial pathogenesis during urinary tract infection and identify subversion of mitochondrial metabolism as a bacterial strategy to facilitate persistence within the urinary tract.

INTRODUCTION

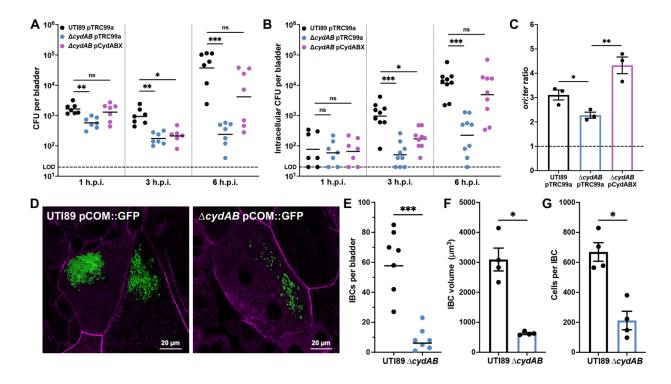
Urinary tract infections are among the most common human bacterial infections, afflicting an estimated 150 million people per year (10-12). Urinary tract infections manifest across a spectrum of

clinical presentations, with patients most commonly experiencing acute bladder infection that resolves with outpatient antibiotic therapy (20). In a minority of cases, pathogenic bacteria can gain access to the kidneys and bloodstream where they can establish severe, potentially life-threatening infections (20). Nearly two-thirds of women will experience urinary tract infection during their lifetime, and a quarter of those infected will experience recurrent infection within six months (10, 11). As a result of the high rates of infection and recurrence, urinary tract infections are a major cause of morbidity and a key driver of antibiotic prescriptions.

Uropathogenic *E. coli* (UPEC), the primary cause of urinary tract infections, is responsible for approximately 80% of urinary tract infections, making it one of the most successful human bacterial pathogens worldwide (10, 12, 21). During bladder infection UPEC enters a transient intracellular lifecycle, where it replicates to form multicellular communities within the cytosol of urothelial cells (10-12, 44, 47, 65). This intracellular lifecycle allows bacteria to replicate to high numbers in a protected and nutrient-rich niche prior to escaping and infecting neighboring cells (44, 47, 65, 80). Although decades of research have meticulously defined the stages of UPEC pathogenesis in the bladder, relatively little is known regarding how bacteria adapt their metabolism to thrive within urothelial cells (81, 82).

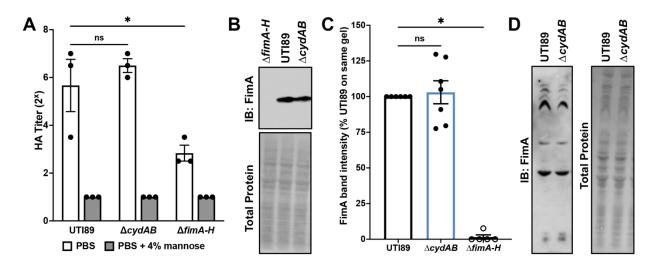
Despite being a facultative anaerobe, previous work established that oxygen plays a central role in the ability of UPEC to colonize the bladder and form stress tolerant biofilms in the urinary tract (**Chapter 2**) (15, 54, 89, 90, 95, 149). Although *E. coli* encodes three respiratory oxidases capable of mediating aerobic respiration – a heme copper oxidase, cytochrome *bo*, and two *bd*-type oxidases, cytochromes *bd* and *bd*₂ – only loss of cytochrome *bd* impacts bacterial fitness in the bladder (91, 95, 102). Unlike cytochrome *bo*, the *bd*-type oxidases have a remarkably high oxygen affinity, allowing them to support respiration under microaerobic conditions such as those encountered during infection (91, 92, 96). Additionally, while cytochrome *bd* canonically functions as a respiratory quinol:O₂ oxidoreductase, this complex also possesses non-respiratory activities including the ability to reversibly sequester and oxidatively degrade the respiratory poison and innate immune effector nitric oxide (99,

48


103). Consequently, cytochrome *bd* plays a central role in the physiology and pathogenesis of a wide array of human pathogens including *Salmonella enterica*, *Klebsiella pneumoniae*, *Streptococcus agalactiae*, and *Mycobacterium tuberculosis* (96, 99).

In this work, we investigate the contribution of bacterial aerobic respiration to urinary tract infection pathogenesis. We determine that oxygen scavenging by cytochrome *bd* supports intracellular bacterial pathogenesis during bladder infection both by supporting bacterial replication and by depleting oxygen from the urothelial cell cytosol. Intracellular bacterial aerobic respiration alters mitochondrial physiology, stabilizes the hypoxia inducible transcription factor HIF-1, and reprograms urothelial cell metabolism. This metabolic shift antagonizes apoptosis and protects intracellular bacterial from urothelial cell exfoliation. These findings define the metabolic underpinnings of intracellular bacterial pathogenesis during urinary tract infection and reveal a mechanism by which bacterial aerobic respiration reprograms host cell metabolism to support bacterial survival in the urinary tract.

RESULTS


Cytochrome *bd* supports intracellular bacterial replication during bladder infection

Although previous work established that cytochrome *bd* is necessary for bladder colonization, the mechanisms underlying this requirement remain unclear. To define the contribution of cytochrome *bd* to colonization of the urinary tract, we infected mice with wild-type cystitis isolate UTI89, an isogenic mutant lacking cytochrome *bd* ($\Delta cydAB$), or $\Delta cydAB$ complemented with the cytochrome *bd* encoding operon (*cydABX*) under native transcriptional control (95, 149) and enumerated bacterial bladder titer during the first six hours of infection. Loss of cytochrome *bd* causes a reduction in bacterial titer within one hour of infection that is rescued by extrachromosomal complementation, demonstrating cytochrome *bd* is necessary for the initial establishment of bladder infection (**Figure 16A**). Interestingly, this reduction in titer increases in magnitude over time, indicating cytochrome *bd* is required for expansion of bacterial populations in the bladder (**Figure 16A**).

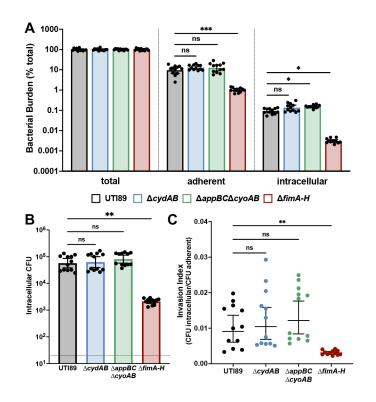


Figure 16: Cytochrome *bd* **supports intracellular bacterial replication during bladder infection.** (A) Bladder bacterial titer 1-, 3-, and 6-hours post-infection (h.p.i.); geometric mean; Kruskal-Wallis test. (B) Bladder intracellular bacterial titer 1, 3, and 6 h.p.i.; geometric mean; Kruskal-Wallis test. (C) *ori:ter* copy number ratio of intracellular bacteria 3 h.p.i; mean ± SEM, unpaired t test. (D) Representative images of wild-type and $\Delta cydAB$ IBCs 6 h.p.i.; green, bacteria; magenta, actin. (E) Number of IBCs per bladder; geometric mean; Mann-Whitney test. (F-G) Quantification of the volume (F) and number of cells per IBC (G); mean ± SEM; Mann-Whitney test. Experiments were performed with a minimum of three biological replicates. Each point represents a biological replicate. * *p* < 0.05, ** *p* <0.01, *** *p* <0.001, **** *p* <0.0001.

During the first six hours of infection, UPEC uses type 1 pili to adhere to urothelial cells, invade into the cytosol, and replicate to form densely populated intracellular bacterial communities (IBCs) (47-49, 78). Wild-type and $\Delta cydAB$ display a similar, mannose-sensitive hemagglutination titer, indicating both strains elaborate functional type 1 pili (50) (**Figure 17A**). In addition, we observe similar abundance and polymerization of the primary type 1 pilus subunit FimA between strains, demonstrating cytochrome *bd* does not impact type 1 pilus production (**Figure 17B-D**). Consistent with these findings, gentamicin protection assays reveal that $\Delta cydAB$ and a strain encoding cytochrome *bd* as its sole respiratory oxidase ($\Delta appBC\Delta cyoAB$) are equally efficient at adherence and invasion of urothelial cells, indicating cytochrome *bd* does not impact the ability of UPEC to adhere to or invade urothelial cells *in* *vitro* (**Figure 18**). These results suggest cytochrome *bd* facilitates the expansion of bacterial bladder populations by supporting intracellular pathogenesis.

Figure 17: Deletion of cytochrome *bd* **does not influence type 1 pilus production.** (A) Bacterial hemagglutination titer with or without the competitive FimH inhibitor D-mannose; mean ± SEM; one-way ANOVA. (B) Anti-FimA immunoblot performed on normalized samples boiled in acidified SDS to depolymerize type 1 pili. (C) Quantification of FimA band intensity normalized to percent of UTI89 on the same gel; mean ± SEM; Kruskal-Wallis test. (D) Anti-FimA immunoblot performed on normalized samples with polymerized type 1 pili. Experiments were performed with a minimum of three biological replicates. Each point represents a biological replicate. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Figure 18: Cytochrome *bd* **does not impact adherence or invasion of urothelial cells.** (A) Relative titer of adherent and intracellular bacterial in infected urothelial cells; geometric mean ± 95% C.I.; Kruskal-Wallis test. (B) Intracellular bacterial colony forming units (CFUs); geometric mean ± 95% C.I.; Kruskal-Wallis test. (C) Invasion index; geometric mean ± 95% C.I.; Kruskal-Wallis test. Experiments were performed with a minimum of three biological replicates. Each point represents a biological replicate. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.001.

To define the role of cytochrome *bd* during intracellular infection of urothelial cells, we quantified intracellular bacterial bladder titer across the first six hours of infection. Wild-type and $\triangle cydAB$ have indistinguishable intracellular titers one hour post-infection, indicating cytochrome bd similarly does not impact bacterial invasion of urothelial cells in vivo (Figure 16B) (78). Whereas intracellular titers of wildtype and the complemented strain ($\Delta cydAB$ pCydABX) increase rapidly during the first six hours of infection, $\Delta cydAB$ intracellular titers remain static between one and three hours and only increase modestly thereafter, indicating loss of cytochrome bd impairs intracellular bacterial replication (Figure **16B**). To validate these findings, we extracted genomic DNA from intracellular bacteria three hours post-infection and performed qPCR to quantify the copy number ratio of the origin of replication and terminus (*ori:ter* ratio) as a proxy for chromosomal replication rate (150). UPEC lacking cytochrome bd have a reduced *ori:ter* ratio as compared to wild-type, indicating cytochrome *bd* is required for efficient replication of intracellular bacteria (Figure 16C). Consistent with these results, loss of cytochrome bd causes gross deficiencies in the formation of IBCs (**Figure 16D**). Mice infected with $\Delta cydAB$ have nearly 10-fold fewer IBCs per bladder than those infected with wild-type (**Figure 16E**). Additionally, the IBCs formed by $\Delta cvdAB$ are smaller and less populated than wild-type IBCs (**Figure 16F-G**). Together these data demonstrate that cytochrome bd is required for UPEC intracellular pathogenesis during bladder infection.

Biochemical dissection of cytochrome *bd* reveals niche dependent contributions to bladder pathogenesis

Cytochrome *bd* is a multifunctional respiratory complex that plays a critical role in the physiology and pathogenesis of a diverse group of bacteria (96, 99). In addition to functioning as a respiratory oxidase, cytochrome *bd* possesses non-respiratory activities, most notably the ability to reversibly sequester and oxidatively degrade nitric oxide (99, 103). Because both respiration and nitric oxide tolerance are critical for UPEC colonization of the bladder (15, 89, 102), we sought to create a cytochrome *bd* variant that functionally separates the respiratory and non-respiratory activities of cytochrome *bd*, allowing us to biochemically define the contribution of cytochrome *bd* to intracellular bacterial pathogenesis.

Lysine-252 (K252) is a universally conserved periplasmic residue of CydA that facilitates quinol binding and aids in the coordination of heme b_{558} , the prosthetic group that accepts electrons from quinols (**Figure 19A**) (151, 152). Because this residue forms hydrogen bonds with heme b_{558} yet lacks contacts with heme d, the prosthetic group that interacts with nitric oxide (99, 152), we hypothesized that disrupting K252 would inhibit respiration without influencing the non-respiratory activities of cytochrome bd. Consistent with this, previous work demonstrated that a CydA_K252A variant has impaired quinol oxidation ($V_{max} = 5\%$ wild-type CydA) but near wild-type abundance of heme d (151). Furthermore, Rosetta predicts minimal destabilization of the CydA_K252A protein relative to wild-type CydA (Cartesian $\Delta\Delta G = 3.46$ REU). Together, these analyses suggest the CydA_K252A variant has impaired respiratory activity but retains the ability to detoxify nitric oxide.

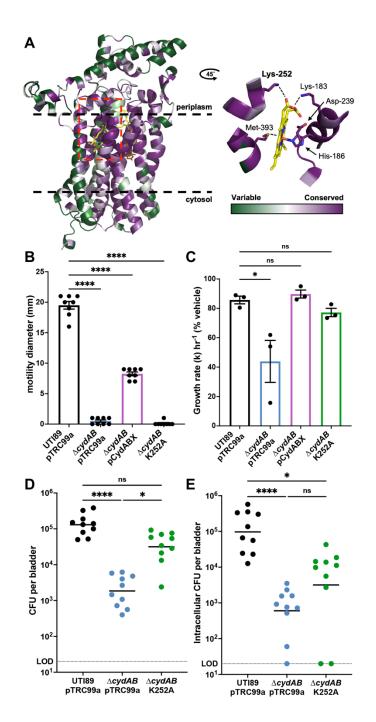
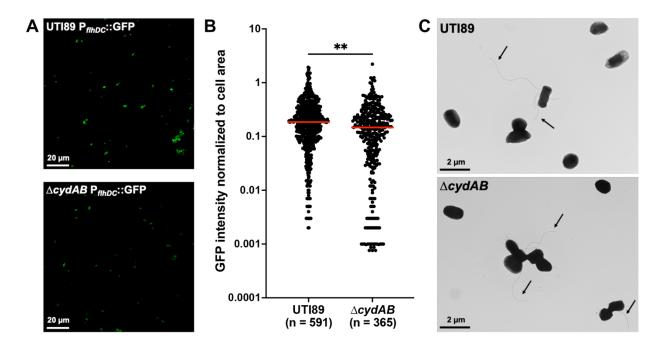
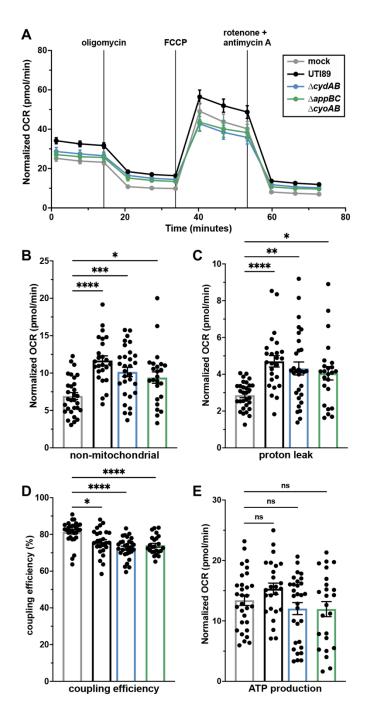
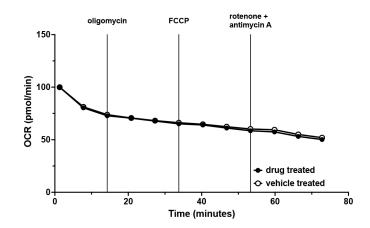



Figure 19: Biochemical dissection of cytochrome *bd* reveals niche dependent contributions to bladder pathogenesis. (A) Left, full-length model of cytochrome *bd* subunit CydA color coded according to ConSurf amino acid conservation score. Right, magnified image of the region surrounding heme b_{558} from a CydA cryo-EM structure (PDB ID: 6rko) depicting the coordinating residues. Dashed lines indicate approximate bounds of the inner membrane. Red box denotes magnified region shown in the right panel. (B) Flagellar motility radius; mean ± SEM; one-way ANOVA. (C) Bacterial growth rate in NOC-12 treated cultures compared to vehicle treated controls; mean ± SEM; one-way ANOVA. (D) Bladder bacterial titer 6 h.p.i.; geometric mean; Kruskal-Wallis test. (E) Bladder intracellular bacterial titer 6 h.p.i.; geometric mean; Kruskal-Wallis test. Each point represents a biological replicate. * p < 0.05, ** p < 0.001, **** p < 0.001.

We then interrogated the energetics and nitric oxide sensitivity of $\Delta cydAB$ complemented with either pCydABX or CydA K252A. Respiratory activity was assessed by measuring flagellar motility, a process energized by quinol oxidation via the proton gradient. Loss of cytochrome bd eliminates flagellar motility without impeding flagellar biosynthesis, indicating quinol oxidation by cytochrome bd energizes flagellar rotation (Figure 19B and 20). CydA K252A fails to restore flagellar motility, in agreement with previous work indicating CydA K252A does not substantially contribute to guinol oxidation (Figure 19B) (151). Nitric oxide sensitivity was assessed by measuring growth inhibition after treatment with nitric oxide donor NOC-12. Whereas deletion of cytochrome bd exacerbates nitric oxide mediated growth inhibition, complementation with either pCydABX or CydA K252A restores nitric oxide tolerance to wild-type levels (Figure 19C). Collectively, these data demonstrate that the respiratory and non-respiratory activities of cytochrome bd are functionally separable, and that CydA K252A is a respiration deficient variant that retains the ability to detoxify nitric oxide. Because cytochrome bd is widely distributed among pathogenic bacteria and K252 is universally conserved, we anticipate the CydA K252A variant will have broad applicability toward studying the contribution of cytochrome bd to bacterial physiology.


Figure 20: Loss of cytochrome *bd* does not impair flagellar biosynthesis. (A) Representative images of wild-type and $\triangle cydAB$ transformed with a transcriptional reporter for FlhDC, the master regulator of flagellar expression. (B) GFP intensity normalized to cell area; median; unpaired t test. (C) Representative transmission electron microscopy images of bacterial cells. Arrows indicate flagella. Images are representative of three biological replicates. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

We next leveraged CydA_K252A to biochemically define the role of cytochrome *bd* in bladder pathogenesis. At six hours post-infection, complementation with CydA_K252A restores total bladder titers to wild-type levels, suggesting cytochrome *bd* supports colonization of the bladder lumen through its non-respiratory activities, presumably by detoxifying nitric oxide (**Figure 19D**). This is consistent with the fact that urine contains high concentrations of nitrogenous waste, and bacterial infection induces a robust influx of phagocytes into the bladder (74). Unexpectedly, complementation with CydA_K252A fails to restore intracellular bladder titers to wild-type levels, indicating cytochrome *bd* mediated quinol oxidation is required for intracellular pathogenesis (**Figure 19E**). These results demonstrate that the biochemical mechanisms by which cytochrome *bd* promotes bladder pathogenesis are niche dependent, and that cytochrome *bd* mediated respiration is specifically required during intracellular infection.


UPEC uses aerobic respiration during intracellular infection of urothelial cells

Based on the observation that cytochrome *bd* mediated quinol oxidation supports intracellular bacterial pathogenesis, we sought to quantify intracellular bacterial aerobic respiration. To do so, we measured the oxygen consumption rate (OCR) of intracellularly infected urothelial cells and observe a consistently elevated OCR relative to mock infected controls (**Figure 21A**). Importantly, because the respiratory chain of *E. coli* differs substantially from that encoded by mammalian cells, *E. coli* is insensitive to the complex I and III inhibitors rotenone and antimycin A (**Figure 22**) (91, 153, 154). As such, these agents specifically inhibit mammalian mitochondrial respiration and allow a direct measure of non-mitochondrial (*i.e.* bacterial) OCR. We observe a 69% increase in non-mitochondrial OCR of

intracellularly infected cells, indicating the elevated OCR is caused by intracellular bacterial oxygen consumption and not an off-target effect on mitochondrial respiration (**Figure 21B**).

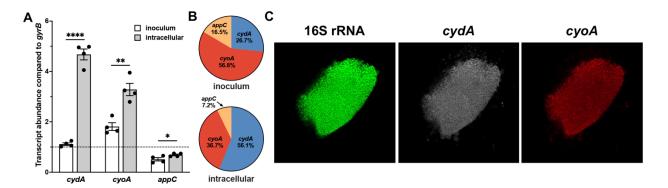


Figure 21: UPEC uses aerobic respiration during intracellular infection of urothelial cells. (A) Oxygen consumption rate (OCR) of intracellularly infected urothelial cells; mean \pm SEM. (B-E) non-mitochondrial OCR (B), proton leak (C), mitochondrial coupling efficiency (D), and ATP production (E) measured by extracellular flux assays; mean \pm SEM; Brown-Forsythe and Welch ANOVA. Each point in (B-E) represents a biological replicate. * *p* < 0.05, ** *p* <0.01, *** *p* <0.001, **** *p* <0.0001.

Figure 22: UPEC is not sensitive to rotenone or antimycin A. OCR readings of wild-type UPEC treated with vehicle (open circles) or treated with oligomycin, FCCP, and rotenone/antimycin A (closed circles) presented as percent OCR of time = 0; mean \pm SEM. Data was fit to a one phase decay model (R² > 0.9 for both groups) and statistically analyzed by comparing *k* (*p* = 0.6402). Data is representative of five biological replicates, each with at least three technical replicates.

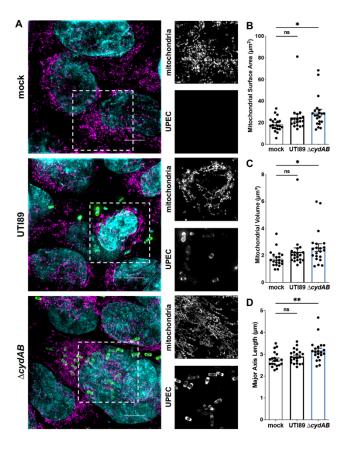

To determine the specific contribution of cytochrome *bd* to intracellular bacterial respiration, we measured OCR in urothelial cells intracellularly infected with $\Delta cydAB$ or $\Delta appBC\Delta cyoAB$. Both $\Delta cydAB$ and $\Delta appBC\Delta cyoAB$ infected cells exhibit an intermediate phenotype between wild-type and mock infected cells, and the increase in non-mitochondrial OCR is partially reduced relative to wild-type infected cells (**Figure 21A-B**), indicating UPEC can use multiple respiratory oxidases during intracellular infection. Consistent with this, RT-qPCR analyses reveal intracellular bacterial populations have robust expression of both cytochromes *bd* and *bo*, and transcript encoding both respiratory oxidases is homogenously distributed within IBCs (Pearson correlation: 16S rRNA-*cyoA* = 0.93; 16S rRNA-*cydA* = 0.94) (**Figure 23**). Together these results suggest UPEC uses a mixed respiratory program to facilitate aerobic respiration within urothelial cells.

Figure 23: Expression of respiratory oxidases in intracellular bacterial populations. (A) Abundance of respiratory oxidase transcripts in the inoculum used for infections and intracellular bacterial populations compared to *gyrB*. Dotted line indicates *gyrB* abundance; mean ± SEM; unpaired t test. (B) Relative abundance of respiratory oxidase transcript in the inoculum and intracellular populations. (C) Representative peptide nucleic acid *in situ* hybridization (PNA-FISH) image of IBCs. Experiments were performed with a minimum of three biological replicates. Each point represents a biological replicate. * *p* < 0.05, ** *p* <0.01, *** *p* <0.001, **** *p* <0.001.

We next determined the influence of intracellular bacterial respiration on mitochondrial metabolism by interrogating mitochondrial electron transport chain efficiency. Intracellularly infected urothelial cells have increased proton leak and decreased coupling efficiency relative to mock infected cells, indicating intracellular infection impairs mitochondrial respiration (**Figure 21C-D**). Despite disruptions to the electron transport chain, intracellularly infected urothelial cells have similar ATP production as mock infected cells (**Figure 21E**), suggesting a compensatory mechanism allows urothelial cells maintain their energetic state during intracellular infection.

To further characterize the influence of intracellular infection on mitochondrial physiology, we performed structured illumination microscopy on intracellularly infected urothelial cells to analyze mitochondrial network morphology. In contrast to the punctate mitochondria observed in mock infected cells, we observe tubular mitochondrial networks in intracellularly infected cells (**Figure 24A**). Mitochondrial size and major axis length are increased in intracellularly infected cells as compared to mock infected cells (**Figure 24B-D**), indicating intracellular infection leads to an acute enhancement in mitochondrial fusion. Because mitochondrial fusion increases electron transport chain efficiency (155-157), these results suggest intracellularly infected urothelial cells may increase mitochondrial fusion to compensate for inefficient respiration.

Figure 24: Intracellular bacterial infection enhances mitochondrial network fusion. (A) Representative structured illumination microscopy images of intracellularly infected or mock infected urothelial cells. Scale bar, 5 µm. Dashed box indicates area of interest shown in single color panels at right; cyan, DAPI; magenta, mitochondria; green, bacteria. (B-D) Quantification of mitochondrial surface area (B), volume (C), and major axis length (D) of intracellularly infected urothelial cells; mean ± SEM; one-way ANOVA. Each point represents the average value for an individual cell. Experiments were performed on at least three biological replicates. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Intracellular bacterial respiration induces a shift toward aerobic glycolysis

The oxygen affinity of cytochrome *bd* is approximately 1000-fold higher than that of both cytochrome *bo* and human cytochrome *c* oxidase, suggesting cytochrome *bd* promotes intracellular pathogenesis by allowing UPEC to scavenge oxygen in the hypoxic cytosol (91, 158). As such, we predicted intracellular bacterial oxygen consumption would deplete cytosolic oxygen, impede mitochondrial respiration, and induce a shift toward aerobic glycolysis. Indeed, several studies have identified Warburg-like metabolic shifts associated with intracellular bacterial infection of immune cells, and urothelial cells upregulate genes involved in glucose metabolism in response to IBC formation (81, 82, 156, 157). To test whether intracellular infection depletes cytosolic oxygen and promotes a shift toward aerobic glycolysis, we performed immunoblots on urothelial cells to quantify the abundance of

the hypoxia inducible transcription factor HIF-1. Consistent with this hypothesis, intracellularly infected cells have a 30% increase in HIF-1 α protein abundance relative to mock infected cells (**Figure 25A**), indicating intracellular infection stabilizes HIF-1.

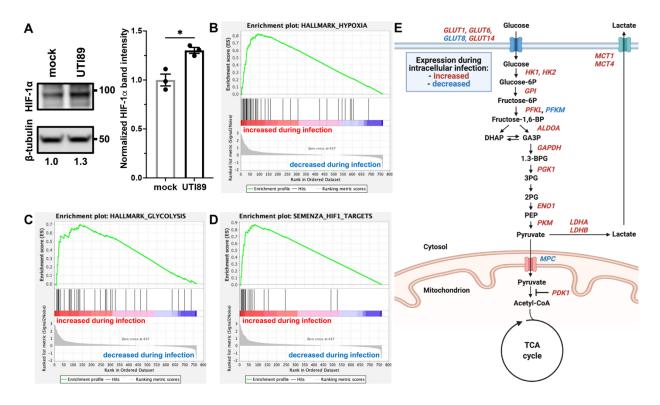


Figure 25: Intracellular infection of urothelial cells induces a shift toward aerobic glycolysis. (A) Right, HIF-1 α immunoblot performed on intracellularly infected or mock infected urothelial cells. Left, Quantification of HIF-1 α band intensity normalized to β -tubulin; mean ± SEM; unpaired t test. (B-D) Gene set enrichment analyses of hypoxia hallmark genes (B), glycolysis hallmark genes (C), and HIF-1 target genes (D). (E) Schematic depicting metabolic genes with significant differences in transcript abundance between intracellularly infected and mock infected cells. Each point represents a biological replicate. Experiments were performed with a minimum of three biological replicates.

To determine the metabolic consequences of intracellular infection, we next extracted RNA from intracellularly infected urothelial cells and transcriptionally profiled a panel of genes involved in metabolism and cellular stress response. In agreement with immunoblot data, gene set enrichment analyses reveal that intracellularly infected urothelial cells have elevated abundance of hypoxia and glycolysis related transcripts, including canonical HIF-1 targets (**Figure 25B-D and Appendices A-B**). Intracellularly infected cells have increased abundance of transcript encoding 3 glucose transporters, 9 glycolytic enzymes, lactate dehydrogenase, and two lactate exporters (**Figure 25E, 26A, and**

Appendices A-B). In addition, we observe decreased abundance of transcript encoding the mitochondrial pyruvate importers *MPC1* and *MPC2* as well as increased abundance of transcript encoding PDK1 – a kinase that inactivates pyruvate dehydrogenase and antagonizes oxidative phosphorylation (**Figure 25E and 26A**).

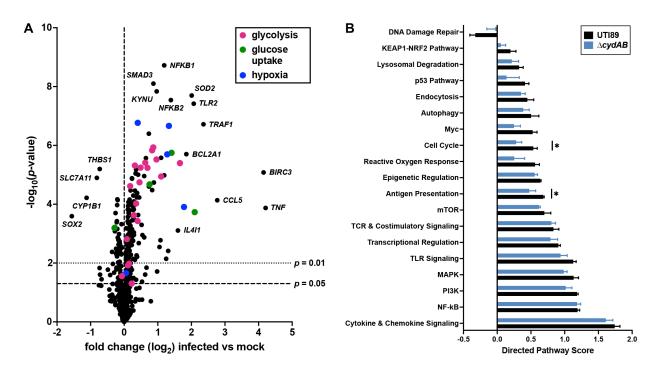


Figure 26: Intracellular infection modulates urothelial cell metabolism and immune signaling. (A) Volcano plot depicting changes in transcript abundance between wild-type and mock infected urothelial cells. Transcripts involved in glycolysis, glucose uptake, and hypoxia are denoted by color. (B) Directed pathway expression score for pathways not directly involved in central metabolism in wild-type and $\triangle cydAB$ infected compared to mock infected urothelial cells; mean ± SEM; unpaired t test. Data is representative of at least three biological replicates per group. * p < 0.05, ** p < 0.01, *** p < 0.001.

To define the role of cytochrome *bd* in these metabolic changes, we compared gene expression between wild-type and $\Delta cydAB$ infected urothelial cells. Intracellular infection with wild-type or $\Delta cydAB$ similarly increases the expression of pathways involved in the canonical urothelial cell response to infection – including NF- κ B signaling, TLR signaling, and cytokine and chemokine signaling – suggesting infection with either strain elicits a similar overall immune response (**Figure 26B and Appendices A-B**) (71, 74). By contrast, deletion of cytochrome *bd* partially abrogates the increased expression of HIF-1 regulated metabolic genes (**Figure 27A-F and Appendices A-B**) and decreases the extracellular acidification rate (ECAR) of intracellularly infected urothelial cells, a proxy for lactate secretion (**Figure 27G**), demonstrating intracellular bacterial respiration is necessary for this metabolic shift. Intriguingly, although both cytochromes *bd* and *bo* contribute to intracellular bacterial respiration (**Figures 21 and 23**), the basal ECAR of $\Delta appBC\Delta cyoAB$ infected cells is similar to wild-type infected cells, indicating oxygen scavenging by cytochrome *bd* is primarily responsible for these alterations in urothelial cell metabolism (**Figure 27G**). Together, these results indicate intracellular bacterial respiration depletes oxygen from the urothelial cell cytosol, stabilizes HIF-1, and reprograms the metabolism of infected cells.

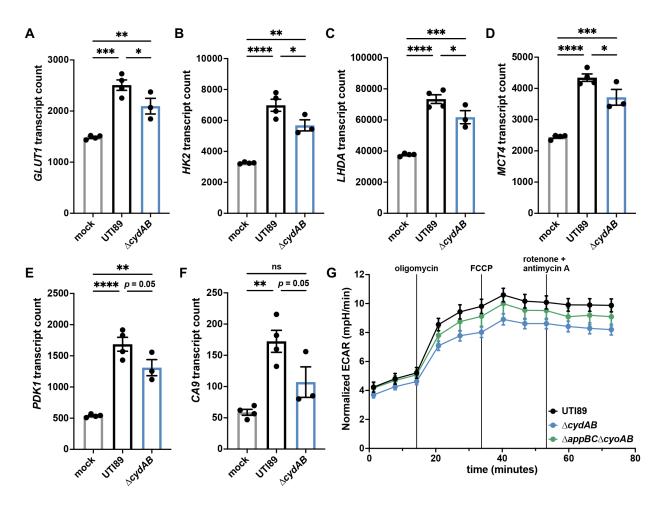


Figure 27: Shifts in urothelial cell metabolism are partially dependent on cytochrome *bd.* (A-F) Normalized counts of select HIF-1 regulated metabolic transcripts; mean \pm SEM; one-way ANOVA. (F) Extracellular acidification rate (ECAR) of intracellularly infected urothelial cells; mean \pm SEM. Each point represents a biological replicate. Experiments were performed on at least three biological replicates. * *p* < 0.05, ** *p* <0.001, *** *p* <0.0001.

Intracellular bacterial respiration modulates urothelial cell survival

Previous work demonstrates that shifts toward aerobic glycolysis antagonize pro-apoptotic proteins and delay the onset of apoptosis in cancer and immune cells (159-161). As such, we hypothesized that HIF-1 dependent metabolic changes induced by intracellular infection would impede apoptosis, delay exfoliation of urothelial cells, and allow bacteria sufficient time to complete their intracellular lifecycle. To test this, urothelial cells were intracellularly infected with GFP-labelled UPEC, stained with the apoptosis marker annexin V, and analyzed by flow cytometry (**Figures 28A and 29**). Strikingly, intracellularly infected cells are approximately five-fold less likely to undergo apoptosis than uninfected cells in the same well (odds ratio 0.19; p < 0.0001) (**Figure 28A-B**). Consistent with these findings, during intracellular infection we observe increased mitochondrial fusion and increased transcript of two anti-apoptotic factors, *BIRC3* and *BCL2A1* (**Figures 24 and 26A**). These results indicate intracellular bacterial infection antagonizes apoptosis in urothelial cells.

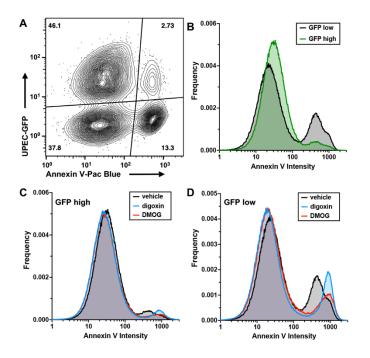
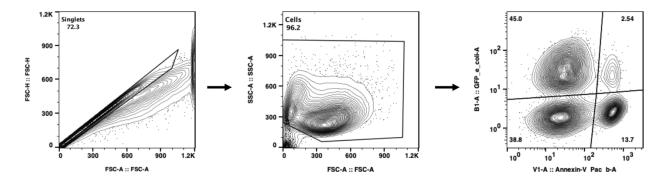



Figure 28: Reprogramming of host metabolism modulates urothelial cell survival during intracellular infection. (A) Representative flow cytometry plot depicting annexin V staining in intracellularly infected (GFP^{high}) and uninfected (GFP^{low}) urothelial cells from the same well. (B) Plot depicting annexin V staining intensity in intracellularly infected (GFP^{high}) and uninfected (GFP^{low}) urothelial cells. (C-D) Histograms depicting annexin V staining intensity in GFP^{high} (C) and GFP^{low} (D) urothelial cells treated with DMSO vehicle, DMOG, or digoxin at the time of infection. Experiments were performed with three biological replicates. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Figure 29: Flow cytometry gating strategy. Single cells were selected by gating on FSC-A and FSC-H. Debris and bacteria were subsequently excluded by gating out the FSC-A^{low}, SSC-A^{low} population. The remaining population was analyzed for UPEC (GFP) and annexin V (Pacific Blue). Because we are interested in quantifying cell death, dead cells were not specifically excluded from analyses.

To determine whether HIF-1 dependent metabolic changes influence urothelial cell fate during intracellular infection, we treated urothelial cells with dimethyloxalylglycine (DMOG) or digoxin at the time of infection to pharmacologically stabilize or inhibit HIF-1, respectively. Treatment with DMOG, a prolyl hydroxylase inhibitor that post-translationally stabilizes HIF-1 α , reduces the number of apoptotic cells relative to vehicle treated controls (odds ratio 0.62, *p* < 0.0001) (**Figure 28C-D**), indicating HIF-1 dependent metabolic changes protect urothelial cells from apoptosis during intracellular infection. In agreement with these data, previous work demonstrates that stabilization of HIF-1 prior to infection has cytoprotective effects during urinary tract infection (162). By contrast, treatment with digoxin, a potent inhibitor of *HIF1A* translation, increases annexin V staining intensity without increasing the number of apoptotic cells (mean staining intensity of GFP^{high}/annexin^{high} cells: 586 and 821 RFU for vehicle and digoxin treated, respectively), suggesting inhibition of HIF-1 signaling accelerates the induction of apoptosis without causing more cells to commit to cell death pathways (**Figure 28C-D**). Together, these data indicate intracellular infection antagonizes urothelial cell apoptosis and identify HIF-1 as a regulator of urothelial cell fate during bladder infection.

DISCUSSION

These results collectively demonstrate that aerobic respiration is essential for the intracellular pathogenesis of UPEC during bladder infection. Although the need for aerobic metabolism during urinary tract infection is well established, it has remained unclear precisely how and why UPEC deploys aerobic respiratory enzymes during infection (87-89, 95). In this work, we determine that UPEC uses cytochrome *bd* to support bladder pathogenesis in a niche dependent manner, and that aerobic respiration supports the replication of bacteria during intracellular infection. Furthermore, intracellular bacterial aerobic respiration reprograms host cell metabolism, thereby protecting intracellular bacteria from urothelial exfoliation and preserving their replicative niche. From these data, we propose that although bladder infection induces a robust inflammatory response that initiates exfoliation of urothelial cells and limits bacterial proliferation, intracellular infection antagonizes urothelial cell apoptosis by reprogramming host cell metabolism (**Figure 30**). This bifurcation of urothelial cell fate allows UPEC to complete its intracellular pathogenic cascade while simultaneously exposing underlying bladder tissue layers for subsequent rounds of infection, thereby facilitating bacterial persistence in the bladder.

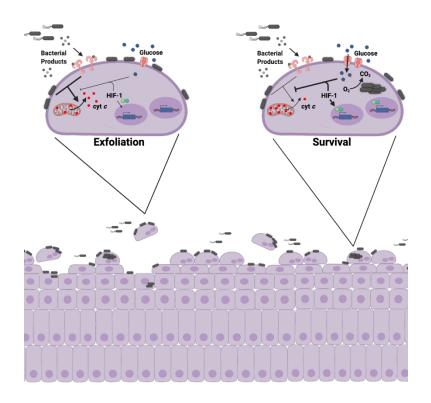


Figure 30: Proposed model. Schematic depicting the proposed model of how intracellular infection modulates urothelial cell metabolism and survival. Left, during bladder infection UPEC induces a strong

inflammatory response that triggers urothelial cell apoptosis and exfoliation. Urothelial cell exfoliation exposes underlying tissue layers to infection and promotes bacterial persistence in the bladder. Right, by consuming oxygen and activating HIF-1 signaling, intracellular bacterial aerobic respiration alters urothelial cell metabolism and antagonizes apoptosis, allowing UPEC to complete its intracellular infection cascade and evade exfoliation.

Our findings add to a growing body of work suggesting reprogramming of bacterial metabolism is a potential therapeutic strategy for treating bacterial infections and increasing the efficacy of antibiotics (41, 163-166). In the context of UPEC, previous work demonstrates that deletion of cytochrome *bd* reduces fitness in the bladder, impairs biofilm formation, and sensitizes bacteria to innate immune defenses and antibiotics (95, 102, 103, 149). Importantly, deletion of cytochrome *bd* does not kill UPEC, but rather reprograms its metabolism in a manner that impedes virulence in the bladder without influencing its ability to survive in the anaerobic gut (41, 87, 95, 149). As such, inhibition of cytochrome *bd* is expected to impose relatively minimal selective pressures on UPEC. Furthermore, several potent natural small molecule inhibitors of *E. coli* cytochrome *bd* have been identified, and inhibition of cytochrome *bd* is a promising strategy for the treatment of *Mycobacterium tuberculosis* (107, 167-169). In combination with data presented in this work, these studies collectively identify cytochrome *bd* as a target for the development of antimicrobial approaches to aid in the treatment of urinary tract infection and other bacterial diseases.

This study additionally has implications for clinical medicine, as it suggests that increases in urinary glucose will increase the risk of urinary tract infection by reducing urothelial exfoliation, facilitating intracellular bacterial replication, and promoting the formation of bacterial reservoirs in the bladder tissue. Consistent with this, diabetes is a known risk factor for urinary tract infection and increases in hemoglobin A1c are independently associated with increased risk of urinary tract infection in a dose-dependent manner (20, 170). Additionally, dapagliflozin – a sodium-glucose transport protein 2 (SGLT2) inhibitor that induces glycosuria – is associated with increased risk of urinary tract infection, and the United States Food and Drug Administration (FDA) has issued a warning regarding increased risk of severe urinary tract infections in patients taking SGLT2 inhibitors (20, 171-173). Future work is

needed to clarify the impact of glycosuria on bacterial pathogenesis in the bladder, particularly in the context of diabetes and use of SGLT2 inhibitors.

The results of this study clarify the role of aerobic respiration and cytochrome *bd* in UPEC pathogenesis in the urinary tract while simultaneously expanding our understanding of the metabolic requirements of intracellular bacteria. Through an integrated investigation of metabolism at the host-pathogen interface, this work identifies the metabolic basis for UPEC intracellular replication during bladder infection and reveals a mechanism by which UPEC subverts urothelial cell metabolism to enhance its intracellular pathogenesis and evade host defenses in the urinary tract.

MATERIALS AND METHODS

Bacterial Strains

All studies were performed in uropathogenic *E. coli* cystitis isolate UTI89 and isogenic derivatives created using the λ -Red recombinase system (143). Genetically manipulated strains, complementation constructs, plasmids, primers, and probes are listed in **Tables 2 and 3**. All deletion mutants and most plasmids were created and validated in previous studies (see **Table 2**). CydA_K252A was generated using the Q5 Site-Directed Mutagenesis Kit (New England BioLabs) according to manufacturer's protocols and verified by Sanger sequencing. Bacterial strains are stored at -80°C in 50% glycerol and propagated from a single colony overnight in shaking lysogeny broth (LB) at 37°C unless otherwise noted. Antibiotics were added during routine culture and during experiments as needed to maintain plasmids. For mouse and cell culture infections, bacterial cultures were grown in 10 mL static LB for 24 hours at 37°C, sub-cultured 1:1,000 into 10 mL fresh LB and grown statically for another 24 hours. Cultures were normalized to optical density at 600 nm (OD₆₀₀) = 3.4 in PBS and diluted 1:10 in PBS prior to infection.

Name	Description	Source
UTI89	Wild-type UPEC cystitis isolate	Mulvey et al 2001; doi: 10.1128/IAI.69.7.4572- 4579.2001

UTI89∆ <i>cydAB</i>	Cytochrome <i>bd</i> deletion mutant	Beebout et al 2019; doi:		
		10.1128/mBio.02400-18		
UTI89∆ <i>appBC</i> ∆ <i>cyoAB</i>	Cytochrome <i>bd</i> ₂ and cytochrome <i>bo</i> deletion	Beebout et al 2021; doi:		
	mutant	10.1038/s41522-021-		
		00210-x		
UTI89∆ <i>fimA-H</i>	Type 1 pilus deletion mutant	Kostakioti and		
		Hadjifrangiskou et al 2012;		
		doi: 10.1128/IAI.00283-12		
pTRC99a	Empty vector	Amann et al 1988; doi:		
		10.1016/0378-		
		1119(88)90440-4		
pCydABX	Cytochrome <i>bd</i> complementation construct	Beebout et al 2019; doi:		
	under native transcriptional control (pTRC99a	10.1128/mBio.02400-18		
	derived)			
CydA_K252A	Cytochrome <i>bd</i> complementation construct	This study		
	containing CydA_K252A variant under native			
	transcriptional control (pTRC99a derived)			
pCOM::GFP	GFP expression plasmid	Lee and Falkow 1998; doi:		
		10.1128/IAI.66.8.3964-		
		3967.1998		
P _{flhDC} ::GFP	FlhDC transcriptional reporter	Wright et al 2005; doi:		
		10.1128/IAI.73.11.7657-		
		7668.2005		

Table 2: Bacterial strains and plasmids used in Chapter 3.

Name	Sequence	Purpose	Source
cyoA_Fwd	CAATGCCCTGTTCCGGGTAGAT	qPCR	Beebout et al 2019; doi:
	G		10.1128/mBio.02400-18
cyoA_Rev	ACGGTACCTATCTTAATCATCAT	qPCR	(95) Beebout et al
	CTTCC		2019; doi:
			10.1128/mBio.02400-18
cyoA probe	NED-	qPCR	Beebout et al 2019; doi:
	TCGTCGTGTGCCAGCGGCTTG		10.1128/mBio.02400-18
appC_Fwd	CGATGTCGCATTACGCTCG	qPCR	Beebout et al 2019; doi:
			10.1128/mBio.02400-18
appC_Rev	GGTGCAGGTTCTGTTTGCCACT	qPCR	Beebout et al 2019; doi:
			10.1128/mBio.02400-18
appC probe	NED-	qPCR	Beebout et al 2019; doi:
	CTGCGTATGAAGTCGCGCAAG		10.1128/mBio.02400-18
cydA_Fwd	GTGGCTACCGGTCTGACCATG	qPCR	Beebout et al 2019; doi:
			10.1128/mBio.02400-18
cydA_Rev	CCAACCGAAGAAGAACAGACCT	qPCR	Beebout et al 2019; doi:
	AC		10.1128/mBio.02400-18
cydA probe	FAM-	qPCR	Beebout et al 2019; doi:
	CGCTGGCAATCGAAGGTCTGAT		10.1128/mBio.02400-18
	G		
gyrB_Fwd	GATGCGCGTGAAGGCCTGATT	qPCR	Beebout et al 2019; doi:
	G		10.1128/mBio.02400-18

CACGGGCACGGGCAGCATC	qPCR	Beebout et al 2019; doi:
		10.1128/mBio.02400-18
VIC-ACGAACTGCTGGCGGA	qPCR	Beebout et al 2019; doi:
		10.1128/mBio.02400-18
CGCAACAGCATGGCGATAAC	qPCR	Haugan et al 2018; doi:
		10.1038/s41598-018-
		33264-7
TTCGATCACCCCTGCATACA	qPCR	Haugan et al 2018; doi:
	•	10.1038/s41598-018-
		33264-7
TCAACGTGCGAGCGATGAAT	qPCR	Haugan et al 2018; doi:
		10.1038/s41598-018-
		33264-7
TTGAGCTGCGATTCATCGAG	qPCR	Haugan et al 2018; doi:
		10.1038/s41598-018-
		33264-7
AGTAATTCCGATTAACG – Lys	PNA-FISH	Beebout et al 2019; doi:
(Atto532)		10.1128/mBio.02400-18
CGATTGCCAGCG – Lys (Cy5)	PNA-FISH	Beebout et al 2019; doi:
		10.1128/mBio.02400-18
CGTCGTGTGCCA – Lys (Atto425)	PNA-FISH	Beebout et al 2019; doi:
		10.1128/mBio.02400-18
GCAGAAAACCGCTCTGGCTGCT	CydA	This study
ATCGAAG	mutagenesis	
ACGTCGCCCATTTCGTAG	CydA	This study
	mutagenesis	
GTCTGTTATTGTTCTGGGTGAT	CydA	This study
G	mutagenesis	-
CGTAAGGGATCTGGATCGC	CydA	This study
	mutagenesis	-
	CGCAACAGCATGGCGATAAC TTCGATCACCCCTGCATACA TCAACGTGCGAGCGATGAAT TTGAGCTGCGAGCGATGAAT AGTAATTCCGATTCATCGAG AGTAATTCCGATTAACG – Lys (Atto532) CGATTGCCAGCG – Lys (Cy5) CGTCGTGTGCCA – Lys (Atto425) GCAGAAAACCGCTCTGGCTGCT ATCGAAG ACGTCGCCCATTTCGTAG GTCTGTTATTGTTCTGGGTGAT G	VIC-ACGAACTGCTGGCGGAqPCRCGCAACAGCATGGCGATAACqPCRTTCGATCACCCCTGCATACAqPCRTCAACGTGCGAGCGATGAATqPCRTTGAGCTGCGATTCATCGAGqPCRAGTAATTCCGATTAACG - LysPNA-FISH(Atto532)CGATTGCCAGCG - Lys (Cy5)PNA-FISHCGTCGTGTGCCA - Lys (Atto425)PNA-FISHGCAGAAAACCGCTCTGGCTGCTCydAACGTCGCCCATTTCGTAGCydAGCAGAAAACCGCTCTGGCTGCTCydAACGTCGCCCATTTCGTAGCydAGTCTGTTATTGTTCTGGGTGATCydAGCTAAGGGATCTGGATCGCCydA

Table 3: Primers and probes used in Chapter 3.

Cell Lines

Cell culture infections were performed using 5637 human transitional bladder epithelial cells (ATCC HTB-9) originally derived from a 68-year-old white male with Grade II bladder carcinoma. 5637 cells (hereafter referred to as urothelial cells) were propagated and infected in RPMI 1640 (Gibco) supplemented with 10% fetal bovine serum (Gibco) unless otherwise noted. Urothelial cells were grown to confluence prior to infection.

Animal Models

All animal studies conform to regulatory standards and were approved by the Vanderbilt University Medical Center Institutional Animal Care and Use Committee (IACUC) (protocol: M1500017). Mice were co-housed in cages containing five animals, and each cage was randomly allocated to experimental groups. Mouse infections were performed as described previously (148). 6- to 7-week-old female C3H/HeN mice (Envigo) were transurethrally inoculated with 10⁷ colony forming units (CFUs) of UPEC in 50 μ L PBS. At pre-determined time points, mice were sacrificed, and organs were harvested into ice-cold, sterile PBS prior to endpoint experiments.

Mouse infections

As described previously, 6- to 7-week-old female C3H/HeN mice (Envigo) were transurethrally inoculated with 10⁷ colony forming units (CFUs) of UPEC in 50 µL PBS (148). At pre-determined time points, mice were sacrificed, and organs were harvested into ice-cold, sterile PBS prior to endpoint experiments. To quantify total CFU per organ, organs were homogenized using an Omni tissue homogenizer and serially diluted. To quantify intracellular CFUs, bladders were washed in PBS and treated with 100 µg/mL gentamicin in PBS for 90 minutes. After gentamicin treatment bladders were washed in PBS, homogenized, serially diluted, and plated to quantify CFUs. For confocal laser scanning microscopy, bladders were stretched in PBS and fixed overnight at 4°C in 3.2% paraformaldehyde. After fixation, bladders were washed in PBS, counter stained with Alexa Fluor 647 Phalloidin (ThermoFisher Scientific) and mounted with ProLong Diamond Antifade (ThermoFisher Scientific). Microscopy was performed on a Zeiss LSM 710 Confocal Microscope. IBCs were enumerated by manual counting using fluorescence microscopy and analyzed using BiofilmQ (v0.2.2) (174). Z-stacks were loaded into BiofilmQ, and intensity was normalized for each Z-stack analyzed. Global parameters of each IBCs were analyzed using default settings.

Cell culture infections

71

As described previously, for infection experiments bacteria were added to urothelial cell monolayers at a multiplicity of infection (MOI) of 5-10, centrifuged at 600 x *g* for 5 minutes to facilitate and synchronize attachment, and incubated for two hours at 37°C in 5% CO₂ (47, 175). For intracellular infections, monolayers were washed thoroughly with PBS, and fresh RPMI 1640 containing 100 µg/mL gentamicin (Gibco) was added to each well to kill extracellular bacteria. Monolayers were incubated another two hours and washed with PBS prior to endpoint experiments. To quantify total CFUs, monolayers were lysed with 0.1% Triton X-100 (Fisher) and serially diluted. To quantify adherent CFUs, monolayers were washed three times in PBS to remove extracellular bacteria, lysed with 0.1% Triton X-100, and serially diluted. To quantify intracellular CFUs, monolayers were washed three times in PBS, added to each well to each well to each well to kill extracellular bacteria, lysed with 0.1% Triton X-100, and serially diluted. To quantify intracellular CFUs, monolayers were washed three times in PBS, added to each well to each well to kill extracellular bacteria. After another 2 hours of incubation, monolayers were washed three times in PBS, lysed with 0.1% Triton X-100, and serially diluted.

Hemagglutination assays

Elaboration of type 1 pili was determined using mannose sensitive hemagglutination assays, as previously described (50). Cultures were grown statically at 37°C for 24 hours in LB, sub-cultured 1:1,000 and grown another 24 hours statically at 37°C. Cultures were normalized to OD₆₀₀ = 1.0 in PBS, concentrated 10x, and resuspended in PBS or PBS with 4% mannose to competitively bind the type 1 pilus adhesin FimH. Concentrated culture was added to a 96 well plate and diluted in two-fold increments. Next, guinea pig erythrocytes (Innovative Research) were washed in PBS and suspended in PBS or PBS with 4% mannose. Normalized erythrocytes were added to diluted bacterial culture and incubated statically overnight at 4°C. Hemagglutination titer was determined by measuring the lowest dilution that visibly inhibited hemagglutination.

Immunoblots

For FimA immunoblots, bacterial cultures were grown statically at 37°C for 24 hours in LB, sub-cultured 1:1,000, grown another 24 hours statically at 37°C, and normalized to OD₆₀₀ = 1.0. Samples were boiled in SDS or boiled in acidified SDS to depolymerize FimA subunits. After transfer, membranes were stained with Ponceau S to ensure similar loading, blocked in 1% BSA 1% milk in TBST, and blotted with 1:5,000 rabbit FimA antisera (176) overnight at 4°C. Membranes were then treated with 1:10,000 goat anti-rabbit IgG HRP conjugate (Promega) and developed using SuperSignal West Chemiluminescent Substrate (ThermoFisher Scientific). For HIF-1 α immunoblots, urothelial cells were intracellularly infected or mock infected as described above and transferred to 4% oxygen to increase HIF-1a abundance. Cells lysed in RIPA buffer (Millipore Sigma) containing 0.2 µM PMSF and 50 µg total protein was loaded per sample. Membranes were blocked in 5% milk-TBST, blotted with 1:1,000 anti-HIF-1 α (Cell Signaling Technologies; Rabbit mAb 14179) or 1:1,000 anti- β -tubulin (Cell Signaling Technologies; Rabbit mAb 2128) in 5% BSA-TBST with 0.02% sodium azide overnight at 4°C, and treated with 1:5,000 goat anti-rabbit IgG HRP conjugate (Promega) in 5% milk-TBST. Membranes were stained with Ponceau S to ensure similar transfer and developed using SuperSignal West Chemiluminescent Substrate (ThermoFisher Scientific). Protein levels were calculated by normalizing HIF-1 α band density to β -tubulin band density on imageJ.

Quantitative PCR

RNA was extracted using TRIzol Reagent (Invitrogen) according to manufacturer's protocols. 20 μ g nuclease free glycogen (Millipore Sigma) was added to facilitate RNA precipitation. RNA was DNase treated using Turbo DNase I (Invitrogen), and reverse transcribed using SuperScript III Reverse Transcriptase (Invitrogen). cDNA was amplified in an Applied Biosystems StepOne Plus Real-Time PCR machine using TaqMan reagents. Relative fold difference in transcript abundance was determined using the $\Delta\Delta C_T$ method (145). Transcripts were normalized to *gyrB* abundance. For *ori:ter* qPCR, genomic DNA (gDNA) was isolated and treated with RNAse A using the Wizard Genomic DNA Purification Kit (Promega) following manufacturer's protocols. qPCR was performed using SYBR Green

(Applied Biosystems), and the *ori:ter* ratio was calculated by comparing the abundance of origin of replication and terminus sequences to gDNA extracted from late stationary phase bacteria (expected *ori:ter* ratio = 1) using the $\Delta\Delta C_T$ method (145, 150). All qPCR experiments were performed using cDNA or gDNA from at least three biological replicates. Each reaction was performed in technical triplicate at two different cDNA or gDNA concentrations. All primers and probes were validated in previous studies and are listed in **Table 3**.

Modeling of CydA

A full-length model of CydA was generated using Rosetta (v3.12) (177). The RosettaCM – Comparative Modeling protocol was followed as described (178) using the CydA FASTA sequence NCBI NP_415261.2 and templates PDB ID: 6rko and PDB ID: 6rx4 (152, 179). A transmembrane span file was generated using the RosettaMP application Span From PDB (MPSpanFromPDB) for PDB ID: 6rko (180, 181). The final model with the lowest score out of 1,000 was selected and used as the input for subsequent stability calculations and amino acid conservation analysis. Heme groups were manually added to the full-length model generated by RosettaCM for representative purposes. To do so, the full-length model was overlayed with a published cryo-EM structure (PDB ID: 6rko) using the ChimeraX (v1.2) MatchMaker tool and atom coordinates of 6rko were saved relative to the full-length model. From MatchMaker, the root mean square deviation (RMSD) across all atom pairs was 1.128 Å.

Amino acid conservation analysis

CydA amino acid evolutionary sequence conservation was analyzed using ConSurf (182-184) and mapped onto the full-length model of CydA. Homolog search was performed using the HHMER algorithm and the UNIREF-90 database. 500 homologs with 50-99% sequence identity were automatically selected and aligned using the MAFFT-L-INS-I method. Conservation scores were calculated using a Bayesian method with the best fit evolutionary model (LG). Final graphical

representations and images were generated using PyMOL Molecular Graphics System (v2.0.7; Schrödinger, LLC).

Stability calculations of CydA_K252A

The free energy change of the CydA_K252A variant compared to wild-type CydA was modeled using Rosetta (v2021.38) (177). The Cartesian $\Delta\Delta G$ protocol was followed as described (185, 186) using the full-length model of CydA as the input, including all-atom refinement using the Rosetta Relax application (187-190) and using the mpframework_smooth_fa_2012_cart weights for membrane proteins (180). The relaxed model with the lowest score out of 100 was selected and the Rosetta energy change ($\Delta\Delta G$) was then calculated as the average score difference between three iterations of CydA_K252A and wildtype models: $\Delta\Delta G = \Delta G_{K252A} - \Delta G_{WT}$. The final $\Delta\Delta G$ value was reported for the CydA_K252A variant in Rosetta energy units (REU). A mutation is classified as stabilizing if the change in free energy is \leq -1, as destabilizing if the change is \geq 1, and neutral if it falls between these values, with larger absolute values predicted to be more significant.

Analysis of flagellar motility

Flagellar motility was assessed by stabbing overnight cultures into 0.25% LB agar supplemented with 0.001% triphenyl tetrazolium chloride (TTC) and 100 μ g/mL ampicillin. Plates were incubated for 7 hours at 37°C, and flagellar motility was quantified by measuring the diameter of motility front. To analyze expression of the flagellar master regulator FlhDC, UTI89 and $\Delta cydAB$ were transformed with a FlhDC transcriptional reporter (P_{flhDC}::GFP), grown to mid-logarithmic phase, and imaged using confocal laser scanning microscopy. Expression of *flhDC* was determined by measuring GFP intensity on imageJ and normalizing to cell area. To visualize flagella, cells were extracted from 11-day old colony biofilms grown on 1.2X yeast extract casamino acids (YESCA) agar and normalized in PBS. Bacterial samples were fixed with 1% glutaraldehyde (Electron Microscopy Sciences) and allowed to absorb onto freshly glow discharged formvar/carbon-coated copper grids for 10 minutes. Grids were

then washed in dH₂O and stained with 1% aqueous uranyl acetate (Ted Pella Inc.) for one minute. Excess liquid was gently wicked off and grids were allowed to air dry. Samples were viewed on a JEOL 1200EX transmission electron microscope (JEOL USA) equipped with an AMT 8-megapixel digital camera (Advanced Microscopy Techniques).

Nitric oxide growth inhibition assay

Overnight cultures were diluted to $OD_{600} = 0.05$ in LB containing 100 µg/mL ampicillin. After two hours of growth, cultures were split into two flasks. One flask was treated with 0.5 mM nitric oxide donor NOC-12 (Millipore Sigma), and the other flask was treated with 0.1 M NaOH vehicle. OD was measured every hour for 8 hours. Data were fit to the Gompertz growth equation ($R^2 > 0.99$ for all replicates) on GraphPad Prism, and growth inhibition was calculated by quantifying the percent change in growth rate constant (*k*) in NOC-12 and vehicle treated controls.

PNA-FISH

Peptide nucleic acid *in situ* hybridization (PNA-FISH) experiments were performed as described previously (95, 146). Infected bladders were harvested six hours post-infection, stretched in PBS, and fixed in 3.2% paraformaldehyde at 4°C overnight (148). Bladders were washed in PBS and treated with PNA-FISH probes complementary to RNA encoding *cydA* (cytochrome *bd*), *cyoA* (cytochrome *bo*), and *rrsH* (16S rRNA) in hybridization solution for 60 minutes at 60°C. After hybridization, bladders were washed in 60°C wash solution for 30 minutes, mounted in ProLong Diamond (Invitrogen), and imaged by confocal laser scanning microscopy. Pearson correlation between 16S rRNA, *cydA*, and *cyoA* staining intensity was determined using the Coloc2 plug-in on FIJI with default settings. Wash solution: 5 mM Tris-HCI (pH 7.4), 15 mM NaCI, and 1% Triton X-100. Hybridization solution: 10% (w/v) dextran sulfate, 30% formamide, 50 mM Tris-HCI (pH 7.4), 10 mM NaCI, 5 mM EDTA, 0.1% Triton X-100, 200 nM each PNA-FISH probe.

Extracellular flux assays

Extracellular flux assays were performed using an Agilent Seahorse XFe96 Analyzer with the Mito Stress Test kit (Agilent) (191). HTB-9 urothelial cells were grown to confluency in an Agilent Seahorse XF96 cell culture microplate and infected at an MOI of 5-10 as described above. Cultures were incubated at 37°C in 5% CO₂ for 2 hours, washed in PBS, and the media was replaced with Seahorse XF RPMI (Agilent) containing 100 µg/µL gentamicin, 10 mM glucose, 2 mM glutamine, and 1 mM pyruvate. After changing the media, cells were incubated for one hour in 5% CO₂ and transferred to a non-CO₂ incubator for one hour. Cells were treated with oligomycin (1.5 µM), FCCP (0.5 µM), and rotenone/antimycin A (0.5 µM). Raw OCR and ECAR values were normalized using Seahorse Wave software (Agilent) to the number of eukaryotic cells per well as determined by a Cytation 5 imaging reader (BioTek). Bacterial extracellular flux assays were adapted from previous reports (192). Agilent Seahorse XF96 cell culture microplates were coated in 15 µL 1 mg/mL poly-D-lysine (Millipore Sigma) in 100 mM Tris HCl pH 8.4. After overnight drying, plates were washed twice in sterile water. To assess the impact of mitochondrial targeting drugs on bacterial OCR, cultures were grown to mid-logarithmic phase in Seahorse XF RPMI (Agilent) containing 10 mM glucose, 2 mM glutamine, and 1 mM pyruvate. 10⁷ CFU were added to each well, and attachment was facilitated by centrifugation at 4,000 rpm for 10 minutes. Bacteria were treated with oligomycin (1.5 µM). FCCP (0.5 µM), and rotenone/antimycin A (0.5 µM) or mock treated with vehicle. Following standard guality control practices, each well was inspected prior to analysis for flags, failures, or aberrant response to drug treatment, and a subset of wells was excluded from subsequent analysis. Criteria were established prior to analysis and applied evenly across samples without consideration of experimental group. Parameter calculation was performed using Seahorse Analytics software (Agilent).

Mitochondrial imaging and analysis

Urothelial cells were intracellularly infected at an MOI 5-10 or mock infected as described above. Cells were washed in PBS and fixed in 4% paraformaldehyde for 20 minutes at room temperature followed

77

by permeabilization in 1% Triton-X-100 for 5 minutes at room temperature. After blocking in 10% BSA, immunostaining was performed with anti-HSP60 (1:200; Cell Signaling Technologies; 12165S) and anti-rabbit IgG Alexa Fluor 546 (1:500; ThermoFisher Scientific; A10040). Super-resolution mitochondrial images were acquired using a Nikon SIM microscope equipped with a 1.49 NA 100x Oil objective and Andor DU-897 EMCCD camera. Quantification of mitochondrial morphology was performed in NIS-Elements (Nikon) as described previously (193). Mitochondria were segmented in 3D and skeletonized using the resulting binary 3D mask. All mitochondria within each cell were averaged resulting in one data point per cell. Acquisition and analysis of mitochondrial imaging data was performed by a blinded experimenter.

Transcriptional profiling

RNA was extracted was intracellularly infected urothelial cells using TRIzol Reagent (Invitrogen) according to manufacturer's protocols. 20 µg nuclease free glycogen (Millipore Sigma) was added to facilitate RNA precipitation. 100 ng purified RNA (20 ng/µL) was hybridized for 20 hours and analyzed using the nCounter Human Metabolic Pathways Panel (NanoString Technologies) according to manufacturer's protocols. RNA was analyzed from at least three biological replicates per condition. Raw data were normalized and subjected to background thresholding using default settings. Normalized data were analyzed using the nCounter Advanced Analysis platform (v2.0.134) plugin for nSolver using default settings (Benjamini-Yekutieli method). Gene set enrichment analysis were performed as described previously (194). Raw NanoString read counts were normalized using the nSolver Analysis Software (v4.0) and used as input expression files. Data were annotated using the Human Gene Symbol with Remapping MSigDB (v7.4) Chip platform and analyzed under default settings using HALLMARK GLYCOLYSIS, HALLMARK HYPOXIA, or SEMENZA HIF1 TARGETS gene sets obtained from the Broad Institute Molecular Signatures Database (v7.4). Transcriptional profiling data has been deposited in the Gene Expression Omnibus (GEO) database (accession: GSE188981) and is also contained in **Appendix A**.

Flow Cytometry

Urothelial cells were intracellularly infected with UTI89 pCOM::GFP at an MOI 5-10 as described above. Urothelial cells were treated with 100 µM dimethyloxalylglycine (DMOG; Millipore Sigma), 100 nM digoxin (Millipore Sigma), or DMSO vehicle at the time of infection. Infected monolayers were washed in PBS and homogenized with 0.25% Trypsin-EDTA (Gibco). Single cell suspensions were sedimented, washed in cold PBS, sedimented, and stained with Annexin V Pacific Blue (ThermoFisher Scientific) in annexin binding buffer for 15 minutes according to manufacturer's protocols. Cells were analyzed using a MACSQuant 10 Analyzer (Miltenyi Biotec). At least 300,000 cells were analyzed per replicate. Data analysis was performed in FlowJo (v10.0.7r2). Single cells were selected by gating on FSC-A and FSC-H. Debris and bacteria were subsequently excluded by gating out the FSC-A^{low}, SSC-A^{low} population. The remaining population was analyzed for UPEC (GFP) and annexin V (Pacific Blue). Because we are interested in quantifying cell death, dead cells were not specifically excluded from analyses. The gating strategy is depicted in **Figure 29**.

Statistical analyses

All experiments were performed using a minimum of three biological replicates. Power analyses were performed to determine group size for mouse infection and extracellular flux assays using the ClinCalc browser-based calculator. For mouse infections, power analyses indicate a group size of at least seven is sufficient to detect a 25% difference in mean CFU between test groups, assuming a standard deviation equal to 20% the mean with a power of 90%. For extracellular flux assays, power analyses indicate a group size of at least 21 would be sufficient to detect a 10% difference in mean between test groups, assuming a standard deviation equal to 20% the MedCalc browser-based calculator. All other statistical analyses were performed in GraphPad Prism. All statistical tests are two-tailed unless otherwise noted. Details

of group size, test used, error bars, and statistical significance cutoffs are presented in figure legends and text.

ACKNOWLEDGMENTS

The authors would like to thank Kelsey Voss and Hope Woods for technical assistance and helpful advice. This work was supported by National Institutes of Health (NIH) grants F30AI150077 (CJB), T32GM007347 (CJB, BIR), F99NS125829 (GLR), F30CA247202 (BIR), F32CA250258 (AMB), T32AI112541 (GHM), T32GM007569 (JRB), R01AI127793 (WJC), R01AI101171 (WJC), R01DK105550 (JCR), R35GM128915 (VG), RF1MH123971 (VG), R01AI107052 (MH), P20DK123967 (MH), and the Howard Hughes Medical Institute Gilliam Fellowship (GLR). Transmission electron microscopy was performed by Wandy Beatty at the Molecular Microbiology Imaging Facility (Washington University in St. Louis). Confocal laser scanning and structured illumination microscopy were performed at the Vanderbilt Cell Imaging Shared Resource, which is supported by NIH grant DK20593. NanoString analysis was performed at the Vanderbilt Technologies for Advanced Genomics core facility, which is supported by NIH grants UL1RR024975, P30CA68485, P30EY08126, and G20RR030956. Access to the Vanderbilt Advanced Computing Center for Research and Education was supported in part by NIH grants S10RR031634 and S10OD023680. Some images were created using BioRender.com.

Cytochrome *bd* Promotes Biofilm Antibiotic Tolerance by Regulating Accumulation of Noxious Chemicals

Portions of this chapter have been adapted and reproduced from the following article with permission of the publisher under Creative Commons Attribution 4.0 International (CC BY 4.0) license:

Beebout CJ, Sominsky LA, Van Horn GT, and M Hadjifrangiskou. Cytochrome *bd* promotes biofilm antibiotic tolerance by regulating accumulation of noxious chemicals. npj Biofilms and Microbiomes 2021. PMID: 33863914. © 2021 Beebout et al.

ABSTRACT

Nutrient gradients in biofilms cause bacteria to organize into metabolically versatile communities capable of withstanding threats from external agents including bacteriophages, phagocytes, and antibiotics. We previously determined that oxygen availability spatially organizes respiration in uropathogenic *Escherichia coli* biofilms, and that the high affinity respiratory quinol oxidase cytochrome *bd* is necessary for extracellular matrix production and biofilm development. In this study we investigate the physiologic consequences of cytochrome *bd* deficiency in biofilms and determine that loss of cytochrome *bd* induces a biofilm-specific increase in expression of general diffusion porins, leading to elevated outer membrane permeability. In addition, loss of cytochrome *bd* impedes the proton mediated efflux of noxious chemicals by diminishing respiratory flux. As a result, loss of cytochrome bd enhances cellular accumulation of noxious chemicals and increases biofilm susceptibility to antibiotics. These results identify an undescribed link between biofilm respiration and stress tolerance, while suggesting the possibility of inhibiting cytochrome *bd* as an anti-biofilm therapeutic approach.

INTRODUCTION

Biofilms are multicellular bacterial communities commonly encountered in the environment and during infection. Because bacteria in biofilms are intrinsically resistant to a variety of stressors, including antibiotics, phagocytes, and bacteriophages, the ability to form biofilms is a critical bacterial survival strategy (53, 59-61, 195-197). Accordingly, the vast majority of bacteria in the environment and in the human body – up to 80 percent according to recent estimates (198) – are believed to exist in the biofilm state. Due to the stress tolerance of biofilms and the lack of biofilm-specific therapies, a biofilm associated infection typically necessitates chronic suppressive antibiotic treatment or surgical removal of the infected material (199). Improvements in anti-biofilm therapeutics are critically needed and would greatly advance our ability to reduce infection burden.

Within biofilms, bacteria consume or alter chemicals as they diffuse through the community, thus generating a variety of nutrient gradients that ensure individual bacteria are exposed to highly variable local environmental conditions (60). This environmental heterogeneity induces bacteria to differentiate into metabolically distinct, and oftentimes cooperative, subpopulations which enhance the overall resilience and versatility of the community (54, 60, 61, 63, 120). We previously hypothesized that the presence of oxygen gradients in biofilms would generate differentially respiring subpopulations, each of which uniquely contributes to biofilm development. Indeed, our work with uropathogenic *E. coli* (UPEC) – the primary cause of urinary tract infections and one of the most common human bacterial pathogens (10-12) – indicates that differential oxygen availability across biofilm regions leads to heterogenous expression of respiratory enzymes, with the aerobic quinol oxidases being the most abundantly expressed (**Chapter 2**) (95).

E. coli is a facultative anaerobe that encodes a modular electron transport chain containing a multitude of interchangeable dehydrogenases, quinol electron carriers, and terminal oxidases/reductases (91, 93). This architecture provides *E. coli* an enormous degree of metabolic flexibility, allowing bacteria to colonize diverse niches. Despite being a facultative anaerobe, previous

82

studies establish that UPEC requires aerobic respiration during infection and to form biofilms (**Chapters 2** and **3**) (54, 83, 87-90, 95). During bladder infection, UPEC consumes amino acids which feed into the TCA cycle to energize the aerobic respiratory chain (87-89). UPEC encodes three aerobic respiratory quinol oxidases: one proton pumping heme-copper oxidase, cytochrome *bo*, and two non-proton pumping *bd*-type oxidases, cytochrome *bd* and cytochrome *bd*₂ (91, 96). Cytochrome *bo* is a low oxygen affinity respiratory oxidase transcriptionally and biochemically optimized for use under atmospheric oxygen tensions (200-202). By contrast, the *bd*-type oxidases have high oxygen affinity and are optimized for use under low oxygen tensions (200-202). Importantly, the *bd*-type oxidases also provide resistance against oxidative and nitrosative stress, suggesting these enzymes may play a critical role in enhancing stress tolerance under microaerobic conditions encountered in biofilms and the urinary tract (99, 102, 103).

Given the importance of aerobic respiration to UPEC pathogenesis and biofilm formation, as well as the oxygen regulated transcriptional control of respiratory oxidases, we previously investigated the spatial distribution of respiration in biofilms (95). In agreement with studies in *Pseudomonas aeruginosa*, we determined that expression of the two most abundant oxidases, cytochrome *bd* and *bo*, is inversely correlated in the community along the biofilm oxygen gradient, suggesting *E. coli* biofilms contain differentially respiring subpopulations (**Chapter 2**) (95, 123). We then sought to disentangle the contributions of each respiratory oxidase to biofilm physiology. Surprisingly, despite robust expression of all three aerobic respiratory oxidases, only loss of cytochrome *bd* has any significant effect on biofilm development. Cytochrome *bd* deficiency induces severe architectural disturbances in biofilms and reduces their ability to prevent external stressors from entering the biomass (95). Deletion of the locus that encodes cytochrome *bd* leads to upregulation of the low-affinity oxidase cytochrome *bo* and impairs biofilm development without compromising ATP levels (95). This study established the presence of differentially respiring subpopulations in *E. coli* biofilms, and argues respiratory heterogeneity is a fundamental contributor to biofilm physiology.

In this work we aimed to determine how cytochrome *bd* expressing biofilm subpopulations contribute to *E. coli* biofilm physiology. To do so, we interrogated and compared the cellular physiology of cytochrome *bd* deficient cells in the planktonic and biofilm state. We determine that loss of cytochrome *bd* increases the abundance of multiple outer membrane proteins in biofilm cells, including general diffusion porins responsible for antibiotic uptake. Consequently, cytochrome *bd* deficient biofilm cells have increased outer membrane permeability and more readily take up noxious chemicals from the environment. In addition to enhancing cellular uptake of noxious chemicals, loss of cytochrome *bd* impairs their efflux by impeding the proton dependent activity of resistance-nodulation-division (RND) efflux pumps and possibly other tripartite export proteins. As a result, loss of cytochrome *bd* increases biofilm susceptibility to multiple clinically relevant antibiotics. Interestingly, this increased sensitivity is a biofilm-specific phenomenon, as deletion of cytochrome *bd* has no effect on antibiotic susceptibility in planktonic cells. This study reveals a previously undescribed link between respiration and biofilm stress tolerance in *E. coli* and suggests the possibility of inhibiting cytochrome *bd* as a therapeutic strategy for preventing and treating urinary tract infections.

RESULTS

Loss of cytochrome bd increases biofilm antibiotic sensitivity

We previously determined that uropathogenic *E. coli* (UPEC) exhibits marked respiratory heterogeneity in biofilms, and that loss of cytochrome bd – but not other respiratory quinol oxidases – induces significant disruptions to biofilm development and urinary tract infection pathogenesis (**Chapters 2 and 3**) (95). Furthermore, we demonstrated that these disruptions are solely attributable to cytochrome *bd* deficiency, as extrachromosomal complementation of $\Delta cydAB$ with a plasmid encoding the *cydABX* operon under native transcriptional control fully rescues the observed biofilm deficits (95). Based on these observations, we hypothesized that cytochrome *bd* is necessary for the formation of metabolically versatile biofilm communities capable of withstanding antibiotics and other

external stressors. To test this, we first evaluated the effects of antibiotics on biofilms formed by the well-characterized uropathogenic *E. coli* cystitis isolate UTI89 and an isogenic mutant strain lacking cytochrome *bd* ($\Delta cydAB$) (95).

A recent meta-analysis demonstrates that measuring biofilm antimicrobial susceptibility using a single method or a single drug concentration is often inadequate due to a high degree of variability between methods (203). As such, we sought to investigate the susceptibility of $\Delta cydAB$ biofilms antibiotic susceptibility across a range of conditions. First, we grew polyvinyl chloride (PVC)-associated biofilms for 48 hours, treated with a panel of antibiotics for another 72 hours, and measured overall biofilm abundance by the crystal violet assay (204). Treatment of wild-type biofilms with supralethal doses of β -lactams (ampicillin), aminoglycosides (gentamicin), or fluoroquinolones (ciprofloxacin) led to a 40 – 75 percent reduction in total biomass but did not eradicate the biofilm, highlighting the resilience of biofilms in the face of our current therapeutic strategies (**Figure 31A**). After normalizing biomass to the untreated control of each strain, we determined both strains have similar relative reductions in biomass after treatment with β -lactams or fluoroquinolones, but $\Delta cydAB$ biofilms are significantly more susceptible to aminoglycosides than the parental strain (**Figure 31A**).

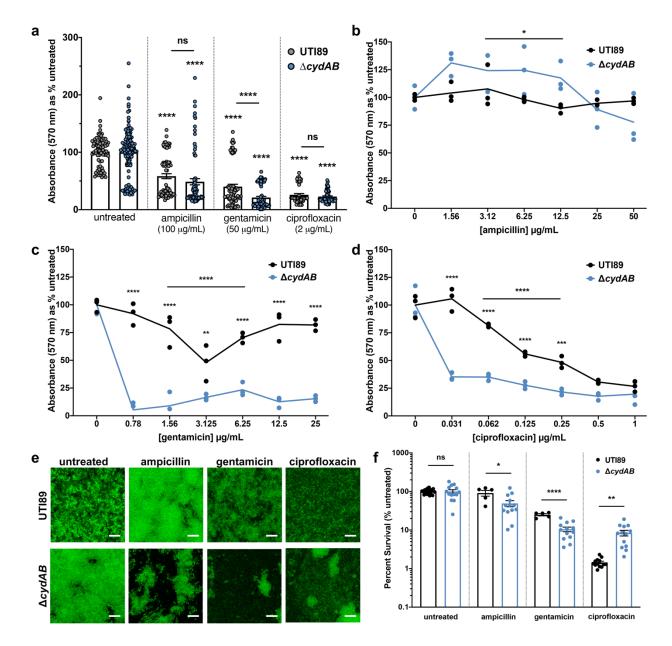


Figure 31: Loss of cytochrome bd increases biofilm antibiotic sensitivity. (A) PVC associated airliquid interface biofilms were grown for 48 hours, treated with antibiotics for 72 hours, and biomass was quantified using the crystal violet assay. Biofilm biomass was quantified for wild-type UTI89 and isogenic cytochrome bd deficient strain $\triangle cydAB$. Data were normalized to the untreated control of each strain. The mean absorbance value in each treatment group was compared to the untreated control of the same strain (asterisks), and to the mean value of the other strain in the same treatment group (horizontal line with asterisks) using a two-tailed Welch's t test. Data represent at least three biological replicates with at least eight technical replicates each. Each dot represents an independent well. (B-D) Dose response curves depicting the total biomass of biofilms after treatment with decreasing concentrations of ampicillin (B), gentamicin (C), or ciprofloxacin (D). Data were analyzed using a twoway ANOVA to evaluate overall differences between strain across the range of concentrations tested (horizontal line with asterisks), with multiple comparisons used to evaluate differences in mean at each concentration (asterisks). Data represent three biological replicates with three technical replicates each. Each dot represents the mean value of a biological replicate. Solid lines connect mean values at each concentration. (E) Representative images of antibiotic treated biofilms stained with STYO9 and imaged by confocal laser scanning microscopy. At least five images were acquired along the air-liquid interface of three biological replicates. Scale bar is 20 µm. (F) Survival of bacteria in colony biofilms after antibiotic treatment. Colony biofilms were grown on YESCA agar for 72 hours, and biofilms were

transferred to a new plate with or without antibiotics. After 24 hours of antibiotic treatment, biofilms were homogenized and plated to enumerate CFUs. Mean values in each treatment group were statistically compared using a two-tailed unpaired t test. Data are representative of at least five biological replicates. Each dot represents a biological replicate. For all graphs, data are presented as mean ± SEM. * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001.

To define biofilm antibiotic sensitivity more thoroughly and to more closely approximate antibiotic concentrations encountered by bacteria under clinically relevant conditions, we grew PVC-associated biofilms as previously described and treated with decreasing concentrations of antibiotics (**Figure 31B-D**). Interestingly, at lower β -lactam concentrations we observe minimal effect on total biomass, and $\Delta cydAB$ biofilms exhibit a small, but statistically significant increase in biomass relative to wild-type (**Figure 31B**). By contrast, $\Delta cydAB$ biofilms are significantly more sensitive to both aminoglycosides and fluoroquinolones across the range of concentrations tested (**Figure 31C-D**). This effect was most pronounced at lower antibiotic concentrations similar to serum antibiotic concentrations achieved clinically.

Although the crystal violet assay represents a convenient method of assessing biofilm biomass, it does not provide meaningful insights into biofilm architecture or physiology (205). To characterize the structural effect of antibiotics on $\Delta cydAB$ biofilms, we grew biofilms on PVC coverslips, treated with antibiotics as described above, and imaged the biofilms using confocal laser scanning microscopy (**Figure 31E**). As expected, antibiotic treatment had relatively minor effects on the structural characteristics of wild-type biofilms (**Figure 31E**). Whereas β -lactam treatment led to topographic changes in wild-type biofilms without affecting the apparent density of cells, aminoglycoside or fluoroquinolone treatment had minimal effect (**Figure 31E**). By contrast, treatment with all three classes of antibiotics led to widespread structural disruption of $\Delta cydAB$ biofilms and reduced cell density (**Figure 31E**), grossly consistent with the reductions in biomass observed by crystal violet assays.

The above data indicate that antibiotic treatment induces a more significant loss of biomass in $\Delta cydAB$ biofilms as compared to those biofilms formed by the wild-type strain. To determine whether the antibiotic-induced biomass reductions are caused by increased cell death, we quantified percent

survival of biofilm cells after 24 hours of antibiotic treatment in a colony biofilm model (206). Treatment of wild-type biofilms with β-lactams had no significant effect on biofilm CFUs, whereas treatment with aminoglycosides or fluoroquinolones led to significant reductions in CFUs per biofilm (**Figure 31F**). When compared to wild-type, $\Delta cydAB$ biofilms had significantly reduced cell survival after treatment with β-lactams (91 and 49 percent survival in UTI89 and $\Delta cydAB$, respectively) and aminoglycosides (25 and 10 percent survival in UTI89 and $\Delta cydAB$, respectively), indicating $\Delta cydAB$ biofilm cells are more sensitive to antibiotic-induced cell death (**Figure 31F**). By contrast, $\Delta cydAB$ biofilm cells are somewhat less sensitive to fluoroquinolone treatment than wild-type (2 and 8 percent survival in UTI89 and $\Delta cydAB$, respectively) (**Figure 31F**). In total, despite some expected variability between experimental approaches (203), these data demonstrate that loss of cytochrome *bd* renders biofilms more susceptible to the clinically important β-lactam, aminoglycoside, and fluoroquinolone classes of antibiotics.

Cytochrome *bd* does not affect planktonic susceptibility to antibiotics

Our results thus far indicate that cytochrome *bd* affects the ability of biofilms to withstand antibiotics. To determine whether cytochrome *bd* influences antibiotic sensitivity in the planktonic state, we performed broth microdilution assays to measure the minimum inhibitory concentration (MIC) of ampicillin, gentamicin, and ciprofloxacin against each strain (**Figure 32A**). Surprisingly, we observe no significant differences in MIC between strains for ampicillin and ciprofloxacin, and a small increase in MIC for $\Delta cydAB$ for gentamicin (1.8 and 2.9 µg/mL for UTI89 and $\Delta cydAB$, respectively). These MIC values are similar to previously reported values for UTI89, although we observe a somewhat elevated MIC for ampicillin as compared to previous studies (207). Next, to assess antibiotic sensitivity across a range of clinically relevant antibiotics, we performed disk diffusion assays according to Clinical & Laboratory Standards Institute (CLSI) guidelines and procedures followed by the clinical microbiology laboratory at Vanderbilt University Medical Center (208). These analyses revealed that $\Delta cydAB$ had a slightly larger zone of inhibition for most antibiotics tested (median percent difference: 6.5 percent; range: 0 – 13 percent) (**Figure 32B and Table 4**). $\Delta cydAB$ had a significantly larger zone of inhibition after treatment with six antibiotics: meropenem, cefazolin, ceftazidime, aztreonam, sulfamethoxazoletrimethoprim, and nitrofurantoin (**Figure 32B, underlined**). Of note, two of these antibiotics – sulfamethoxazole-trimethoprim and nitrofurantoin – are first line treatments for urinary tract infections (209). Interestingly, we do not observe differences in sensitivity to gentamicin using disk diffusion assays despite the observed increase in MIC, highlighting the effects of distinct growth conditions (static liquid culture versus solid agar surface) on metabolism and antibiotic susceptibility. Although clinical guidelines and CLSI breakpoints would deem both strains equally susceptible to antibiotics (**Table 4**) (208), these analyses reveal a small but consistent trend toward increased antibiotic susceptibility in $\Delta cydAB$, which may be indicative of metabolic derangements also present in the planktonic state.

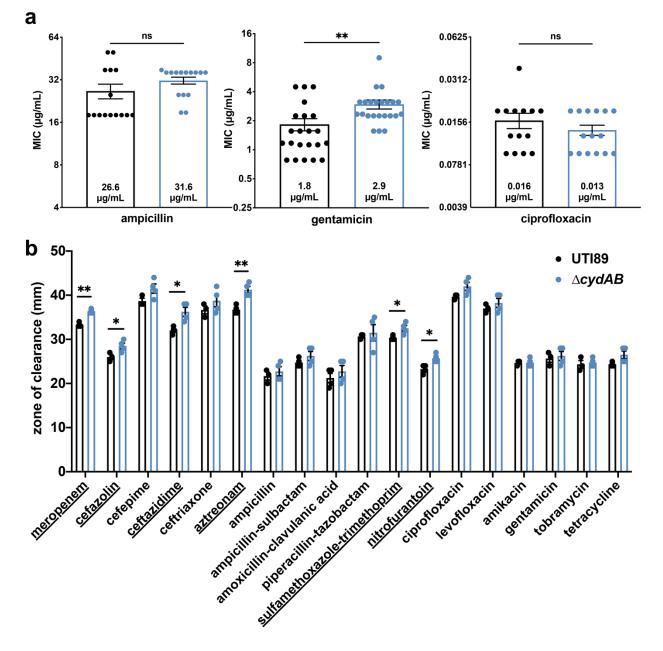


Figure 32: Cytochrome *bd* has minimal effect on planktonic antibiotic susceptibility. (A) Graph depicting minimum inhibitory concentration (MIC) for ampicillin, gentamicin, and ciprofloxacin. Data are representative of at least six biological replicates. Data were analyzed using a two-tailed unpaired t test. (B) Graph depicting the zone of inhibition from disk diffusion assays. Data are representative of at least three biological replicates. Each dot represents a biological replicate. Mean values were statistically compared using two-tailed Welch's t test. Underlined antibiotics attained statistical significance. For all panels, data are presented as mean \pm SEM. * *p* <0.05, ** *p* <0.01, *** *p* <0.001.

Antibiotic Name	Antibiotic Class	Mechanism of Action	Breakpoint (mm)	UTI89 (mm)	S/R	∆ <i>cydAB</i> (mm)	S/R
meropenem	carbapenem	cell wall inhibitor	16	33.2	S	36.3	S
cefazolin	cephalosporin	cell wall inhibitor	15	26.0	S	28.5	S

cefepime	cephalosporin	cell wall inhibitor	18	38.6	S	41.5	S
ceftazidime	cephalosporin	cell wall inhibitor	21	32.0	S	36.2	S
ceftriaxone	cephalosporin	cell wall inhibitor	23	36.6	S	38.7	S
aztreonam	monobactam	cell wall inhibitor	21	36.7	S	41.2	S
ampicillin	penicillin	cell wall inhibitor	17	21.6	S	22.7	S
ampicillin- sulbactam	penicillin-β lactamase inhibitor	cell wall inhibitor	15	24.7	S	26.2	S
amoxicillin- clavulanic acid	penicillin-β lactamase inhibitor	cell wall inhibitor	18	21.2	S	22.7	S
piperacillin- tazobactam	penicillin-β lactamase inhibitor	cell wall inhibitor	21	30.6	S	31.5	S
sulfamethoxazole- trimethoprim	sulfonamide- dihydrofolate reductase inhibitor	folate biosynthesis inhibitor	16	30.3	S	32.5	S
nitrofurantoin	nitrofuran	reactive cellular damage	17	23.2	S	25.7	S
ciprofloxacin	fluoroquinolone	topoisomerase inhibitor	21	39.6	S	42.0	S
levofloxacin	fluoroquinolone	topoisomerase inhibitor	17	37.0	S	38.2	S
amikacin	aminoglycoside	translation inhibitor	17	24.6	S	24.7	S
gentamicin	aminoglycoside	translation inhibitor	15	25.6	S	26.2	S
tobramycin	aminoglycoside	translation inhibitor	15	24.3	S	24.7	S
tetracycline	tetracycline	translation inhibitor	15	24.3	S	26.5	S

Table 4: Results of disk diffusion assays. Disk diffusion assays were performed to measure antibiotic sensitivity in UTI89 and $\triangle cydAB$. CLSI breakpoints were used to determine sensitivity versus resistance to each antibiotic. Reported zone of inhibition is the average of at least three biological replicates.

To determine whether the observed changes in antibiotic sensitivity are physiologically relevant, we performed time kill kinetics assays to measure the rate of antibiotic induced cell death in planktonic cultures (**Figure 33**). Cultures were grown to mid-logarithmic phase, split in two, and one flask was

treated with antibiotics at 5x the minimal inhibitory concentration. The survival curves were analyzed using a two-way ANOVA to statistically compare the rate of antibiotic-induced cell death between strains over time. To fully evaluate the potential role of cytochrome bd in planktonic antibiotic sensitivity, these assays were performed on wild-type, $\Delta cydAB$, and a strain that encodes cytochrome bd as its sole aerobic respiratory oxidase ($\triangle appBC \triangle cyoAB$). These assays revealed no statistically significant differences in the rate of antibiotic killing between strains after treatment with β -lactams, aminoglycosides, fluoroquinolones, or a clinically relevant synergistic combination of β-lactams and aminoglycosides (Figure 33A-D). We observe a high degree of variability in survival during the early time points (15 - 30 minutes) of cultures treated with aminoglycosides as compared with other antibiotics, raising the possibility that there is heterogeneous early response to aminoglycoside treatment (Figure 33B, D). These results may reflect differences in antibiotic uptake or efficacy resulting from alterations in the electron transport chain composition and proton motive force. In total, these results indicate that, despite small changes in antibiotic susceptibility observed between strains, loss of cytochrome bd has no significant or clinically relevant effect on antibiotic susceptibility in the planktonic state. These results are in agreement with recent work in K-12 E. coli demonstrating that loss of cydB has no discernible effect on planktonic sensitivity to reactive oxygen species or aminoglycosides (210). In combination with previous data, these results demonstrate that loss of cytochrome *bd* specifically increases bacterial susceptibility to antibiotics in the biofilm state.

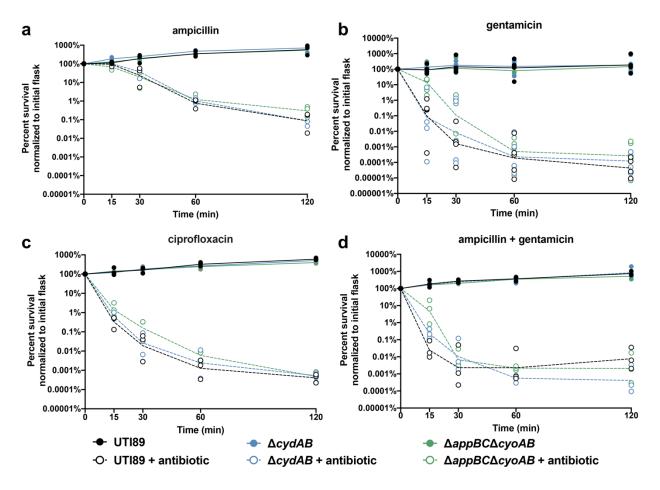


Figure 33: Cytochrome *bd* does not affect the rate of antibiotic-induced cell death in planktonic cells. (A-D) Time kill kinetics assays were performed to evaluate the susceptibility of UTI89 (black), $\Delta cydAB$ (blue), and $\Delta appBC\Delta cyoAB$ (green) to ampicillin (A), gentamicin (B), ciprofloxacin (C), or a combination of ampicillin and gentamicin (D) at 5x MIC. Data were analyzed by a two-way ANOVA with Tukey's multiple comparisons test and determined to have no significant differences between strains. Data are representative of at least three biological replicates. Lines connect geometric mean at each time point. Each dot represents a biological replicate.

Loss of cytochrome bd alters the outer membrane of biofilm cells

Our data indicate that loss of cytochrome *bd* increases biofilm sensitivity to antibiotics without significantly affecting planktonic sensitivity. In principle, such a biofilm-specific effect could be caused by changes to the extracellular matrix, outer membrane, or cellular metabolism. In our previous work, we reported that $\Delta cydAB$ biofilms have changes to the abundance, composition, and organization of the extracellular matrix, suggesting that changes in the extracellular matrix may play a role in antibiotic tolerance by influencing community organization and modulating antibiotic sequestration (**Chapter 2**) (95). In this study, we investigate how cytochrome *bd* impacts biofilm antibiotic tolerance by influencing the outer membrane and cellular energetics.

Prior to import into the cell, antibiotics must interact with and traverse the negatively charged outer membrane. This step is particularly important for charged antibiotics such as cationic aminoglycosides. As such, one possible explanation for the alterations in antibiotic efficacy is that $\Delta cydAB$ cells have changes to the charge of their outer membrane with consequent effects on antibiotic import. To test this possibility, we measured the interaction of equine cytochrome *c* with the outer membrane of biofilm and planktonic cells (211). Cytochrome *c* is a polycationic molecule known to interact electrostatically with the negatively charged bacterial cell envelope (211). Quantifying the binding of cytochrome *c* to the cell envelope can be used as a proxy for determining the relative charge of the cell envelope, as described previously (211). In planktonic cells, we observe less cytochrome *c* binding to the outer membrane (63 percent of wild-type), suggesting wild-type cells have a more negatively charged outer membrane than $\Delta cydAB$ (Figure 34). However, in biofilm cells, no significant difference in cytochrome *c* binding is observed between wild-type and $\Delta cydAB$ (Figure 34) suggesting the outer membrane has a similar charge in both strains. These results indicate that changes to outer membrane charge cannot explain the altered antibiotic sensitivity of $\Delta cydAB$ biofilm cells.

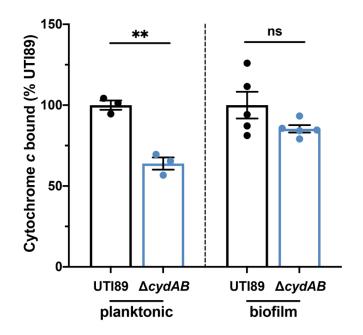


Figure 34: Outer membrane charge is unaffected in $\triangle cydAB$ biofilm cells. Outer membrane charge was investigated by measuring the binding of cationic cytochrome *c* to planktonic and biofilm cells. Data were analyzed by a two-tailed unpaired t test. Data are representative of at least three biological

replicates, and are presented as mean ± SEM. Each dot represents a biological replicate. * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001

We next sought to investigate how loss of cytochrome *bd* influences outer membrane permeability. To do so, we extracted the outer membrane and extracellular matrix from colony biofilms using established methods and performed liquid chromatography tandem mass spectrometry (LC-MS/MS) (**Figure 35A and Appendix C**) (131). These experiments identified 30 outer membrane associated or secreted proteins with significantly altered abundance between wild-type and $\Delta cydAB$ (defined as fold change \geq 1.5 and *p* < 0.05) (**Figure 35A and Appendix C**). Of these, two proteins are of significantly decreased abundance in $\Delta cydAB$ biofilms, and 28 proteins are of significantly increased abundance. Notably, seven of the 28 proteins with increased abundance in $\Delta cydAB$ are outer membrane channel proteins responsible for the uptake of environmental compounds (**Figure 35A-B**, **blue dots and Appendix C**), suggesting $\Delta cydAB$ biofilm cells may have a more permeable outer membrane. Consistent with this, two proteins with significantly elevated abundance – OmpF and OmpC – are classical general diffusion porins responsible for the non-specific uptake of hydrophilic small molecules including β-lactams, fluoroquinolones, and aminoglycosides (212-214).

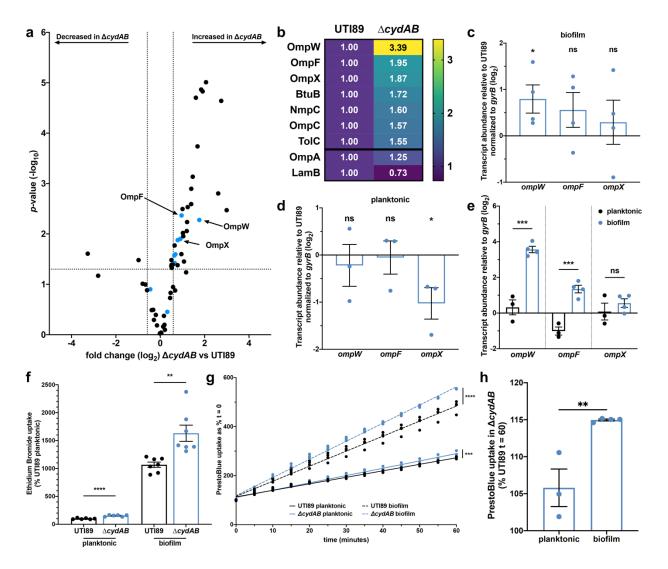


Figure 35: Cytochrome bd deficient biofilm cells have elevated uptake of noxious chemicals. (A) Volcano plot depicting all outer membrane or secreted proteins detected by LC-MS/MS performed on outer membrane and extracellular matrix extracts. Blue dots represent outer membrane channel proteins. (B) Heat map depicting the relative difference in abundance of outer membrane proteins in UTI89 and $\Delta cydAB$. Each cell contains fold difference in abundance relative to UTI89. OmpA and LamB did not attain statistical significance. Data in (A-B) are representative of three biological replicates per strain. (C-E) RT-qPCR was performed to determine the relative fold difference in outer membrane protein transcript abundance normalized to gyrB abundance between UTI89 and $\Delta cydAB$ in samples derived from homogenized colony biofilms grown on YESCA agar for 11 days (C) and planktonic cells (D). (E) Difference in outer membrane protein transcript abundance between $\Delta cydAB$ biofilm and planktonic cells was evaluated by comparing the abundance of each transcript to gyrB abundance. Data in (C-E) are representative of four biological replicates and were analyzed using a two-tailed unpaired t test. (F) Cellular uptake of membrane impermeant ethidium bromide into planktonic cells and cells extracted from homogenized biofilms. Data are representative of at least six biological replicates and were analyzed by a two-tailed unpaired t test. (G) Cellular uptake of resazurin-based dve PrestoBlue into planktonic cells (solid lines) and cells extracted from homogenized biofilms (dashed lines) was quantified over time. Data were fit to a linear regression model and analyzed by statistically comparing the slope. Data are representative of at least three biological replicates. (H) Percent difference in PrestoBlue uptake at 60 minutes in $\Delta cydAB$ cells as compared to UTI89. Data were analyzed with a two-tailed unpaired t test. Except where noted all data are presented as mean ± SEM, and each dot represents a biological replicate. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

To validate the mass spectrometry results, we performed RT-gPCR on RNA extracted from whole, homogenized colony biofilms. Based on the finding that outer membrane channel proteins are significantly more abundant in $\Delta cydAB$ biofilms, in combination with the known role for this class of proteins in antibiotic uptake, we chose to measure transcript abundance of the three outer membrane proteins with the most increased abundance in $\triangle cydAB$ (OmpW, OmpF, and OmpX) (Figure 35B). Consistent with the proteomics data, RT-gPCR revealed that $\Delta cydAB$ biofilms have significantly more abundant *ompW* transcript (1.9-fold greater than wild-type), and elevated abundance of both *ompF* and ompX transcript (1.6 and 1.4-fold greater than wild-type, respectively), albeit below the threshold of significance (Figure 35C). To determine if the observed increase in *omp* transcript is biofilm specific, we performed RT-qPCR targeting the same genes with RNA derived from planktonic cultures (Figure **35D**). Interestingly, in planktonic cells we observe no significant difference in *ompW* and *ompF* abundance between strains, and significantly decreased *ompX* transcript in $\triangle cydAB$ (Figure 35D). Finally, we compared abundance of each transcript between $\Delta cydAB$ planktonic and biofilm cells and observe that $\Delta cv dAB$ biofilm cells have significantly elevated steady state transcript of ompW and ompFas compared to $\triangle cydAB$ planktonic cells (Figure 35E). These results are in agreement with previous studies in K-12 E. coli demonstrating that several outer membrane proteins, including OmpC, OmpF, and NmpC, have elevated expression in biofilms relative to planktonic cultures (215). Together these results indicate that cytochrome bd deficient cells have elevated expression of several outer membrane proteins in the biofilm state. Guided by these results, we next sought to investigate how loss of cytochrome bd influences cellular accumulation of noxious chemicals.

Cytochrome *bd* deficient biofilm cells have enhanced uptake of noxious chemicals

Because outer membrane proteins serve as the primary site of cellular entry for hydrophilic small molecules, the increased abundance of outer membrane proteins suggests that $\Delta cydAB$ biofilm cells may have a more permissive outer membrane, and therefore increased uptake of antibiotics and other noxious chemicals. To test this, we measured accumulation of ethidium bromide into planktonic cells


as well as cells extracted from colony biofilms (**Figure 35F**). Ethidium bromide is outer membrane impermeant and fluoresces after intercalation into DNA. In planktonic cells we observe a small, but statistically significant increase in ethidium bromide accumulation in $\triangle cydAB$. In biofilm cells, ethidium bromide uptake is significantly elevated for both strains and highest in $\triangle cydAB$ biofilm cells (approximately 10- and 16-fold elevated in UTI89 and $\triangle cydAB$, respectively), consistent with the observed increase in outer membrane protein abundance in biofilms (**Figure 35E-F**). These data demonstrate that biofilm cells have elevated outer membrane permeability, higher uptake of noxious chemicals as compared to planktonic cells, and that loss of cytochrome *bd* enhances cellular uptake of these compounds.

The increased ethidium bromide accumulation represents a net increase in uptake and could be explained by alterations to the rate of influx, efflux, or both. To differentiate these possibilities, we quantified influx kinetics using resazurin-based PrestoBlue, a dye that becomes fluorescent after import into the cytosol (216). In planktonic cells we observe a small, but statistically significant increase in the rate of dye influx in $\Delta cydAB$ relative to wild-type (slope: 2.6 and 3.0 for wild-type and $\Delta cydAB$, respectively) (**Figure 35G**). Consistent with ethidium bromide uptake data, in biofilm cells we observe a significant increase in the rate of accumulation for both strains (**Figure 35F-G**). In addition to the overall increase in influx, we observe a significantly increased rate of influx in $\Delta cydAB$ biofilm cells as compared to wild-type biofilm cells (slope: 6.1 and 7.4 for wild-type and $\Delta cydAB$, respectively) (**Figure 35G**). In biofilm cells, the maximal fluorescence value obtained after 60 minutes was 15 percent higher in $\Delta cydAB$ compared to wild-type – an approximately 2.5-fold greater difference than that observed in planktonic cells (six percent) (**Figure 35H**). Together these results indicate that biofilm cells have an elevated rate of influx compared to planktonic cells, and that loss of cytochrome *bd* enhances cellular influx of noxious compounds.

Loss of cytochrome bd impairs efflux of noxious chemicals in biofilm cells

98

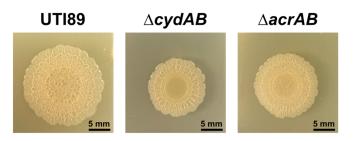
In addition to affecting the rate of antibiotic influx, loss of cytochrome *bd* may also influence the efficiency of efflux. To test this, we measured the rate of ethidium bromide efflux from wild-type and $\Delta cydAB$ cells. Cells were loaded with ethidium bromide under energy-limited conditions, and efflux was monitored over time using fluorescence based methods (**Figure 36A-B**) (217). Cells were either left in energy-limited conditions as a control for passive decay in signal, or re-energized by the addition of glucose (217). The data were fit to a one phase decay model, and differences between strains were determined by statistically comparing the best fit models.

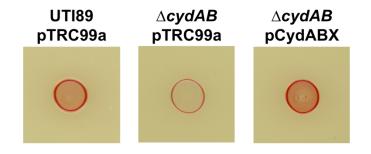
Figure 36: Loss of cytochrome *bd* impairs efflux by diminishing respiratory flux. (A-B) Efflux of ethidium bromide was measured in planktonic cells (A) and cells extracted from homogenized colony biofilms (B). Data were fit to a one phase decay model, and statistical comparisons were made between the curve of best fit for each strain. Data are presented as mean \pm 95 percent confidence interval. (C) RT-qPCR was performed to measure *acrB* transcript abundance normalized to *gyrB* abundance in UTI89 and $\Delta cydAB$ planktonic and biofilm cells. Mean values were statistically compared with a two-tailed unpaired t test. Data are presented as mean \pm SEM, and each dot represents a biological replicate. (D-E) Respiratory flux was quantified in wild-type, $\Delta ubil$ (ubiquinone synthase mutant), and respiratory oxidase mutants by measuring triphenyl tetrazolium chloride (TTC) reduction. (D) Quantification of TTC reduction per unit area in spot colonies. Data were analyzed by a one-way

ANOVA with Dunnett's multiple comparisons test. Data are presented as mean ± SEM, and each dot represents a biological replicate. (E) Representative images of TTC reduction assays. Red color indicates respiratory activity. Data in (A-C) are representative of three biological replicates, and data in (D-E) are representative of at least eight biological replicates. * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001.

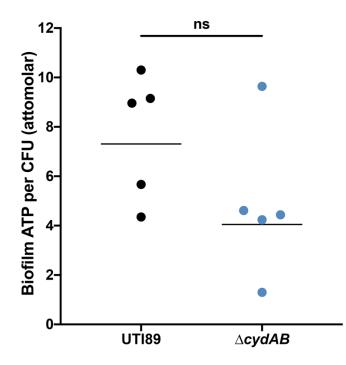
We first measured the rate of efflux in planktonic cells (**Figure 36A**). As expected, the slowest decay in signal was observed in a mutant strain lacking *acrAB*, the resistance-nodulation-division (RND) efflux pump primarily responsible for efflux of ethidium bromide (**Figure 36A**) (217). The rate of efflux was significantly elevated in both wild-type and $\Delta cydAB$ as compared to $\Delta acrAB$ (UTI89 vs $\Delta acrAB$: *p* = 0.002; $\Delta cydAB$ vs $\Delta acrAB$: *p* < 0.0001) (**Figure 36A**). Surprisingly, the rate of efflux was significantly elevated in $\Delta cydAB$ as compared to wild-type (*p* = 0.02) (**Figure 36A**), indicating loss of cytochrome *bd* enhances efflux under aerobic conditions in planktonic cells.

Next, we homogenized colony biofilms, removed the extracellular matrix, and extracted cells to measure the rate of ethidium bromide efflux in biofilm cells (**Figure 36B**). As expected, $\Delta acrAB$ biofilm cells again have the slowest rate of efflux, and the rate of efflux did not significantly differ between $\Delta acrAB$ planktonic and biofilm cells (p = 0.23) (**Figure 36B**). Consistent with data from planktonic cells, we observe a significantly elevated rate of efflux in wild-type biofilm cells as compared to $\Delta acrAB$ biofilm cells (p < 0.0001) (**Figure 36B**). The rate of efflux did not significantly differ between wild-type planktonic and biofilm cells (p = 0.53). Strikingly, the rate of efflux in $\Delta cydAB$ biofilm cells was indistinguishable from $\Delta acrAB$ biofilm cells (p = 0.45) (**Figure 36B**), indicating that loss of cytochrome *bd* functionally inactivates efflux in biofilm cells. $\Delta cydAB$ biofilm cells have a significant reduction in efflux both compared to $\Delta cydAB$ planktonic cells (p < 0.0001) and compared to wild-type biofilm cells (p = 0.0005). Although $\Delta acrAB$ biofilms exhibit some minor structural anomalies relative to wild-type, they are morphologically distinct from $\Delta cydAB$ biofilms, suggesting a lack of AcrAB efflux activity does not fully explain the biofilm developmental defects observed in $\Delta cydAB$ (**Figure 37**). These results indicate that loss of cytochrome *bd* impairs efflux of noxious chemicals in a biofilm-specific manner.




Figure 37: AcrAB inactivation has minor effects on biofilm development. Representative images of UTI89, $\Delta cydAB$, and $\Delta acrAB$ biofilms grown on YESCA agar for 11 days. Data are representative of at least five biological replicates.

Loss of cytochrome bd impairs respiratory flux and diminishes the proton motive force


The impaired efflux in $\Delta cydAB$ biofilm cells could be explained by changes in the expression, abundance, or activity of efflux pumps. To investigate these possibilities, we performed RT-qPCR on samples derived from planktonic and biofilm cells to measure the abundance of *acrB* transcript. Interestingly, *acrB* transcript is approximately 50-fold more abundant in biofilm cells relative to planktonic cells, and we observe no significant difference in abundance between wild-type and $\Delta cydAB$ (**Figure 36C**). Additionally, our proteomics results reveal no significant difference in AcrA abundance between strains (fold change 0.99 in UTI89 compared to $\Delta cydAB$, *p* = 0.95). These data argue the impaired efflux in $\Delta cydAB$ biofilm cells is not explainable by changes in *acrAB* expression or abundance; rather, loss of cytochrome *bd* appears to reduce the activity of AcrAB – and potentially other proton dependent tripartite exporters – in biofilm cells.

Because cytochrome *bd* is a respiratory quinol oxidase that contributes to electron flow and the establishment of the proton motive force, we hypothesized that loss of cytochrome *bd* would impair respiratory flux, diminish the proton motive force, and consequently impair the proton mediated efflux through RND, major facilitator superfamily (MFS), and multidrug and toxin extrusion (MATE) family transporters (218). To test this hypothesis, we quantified respiratory flux using triphenyl tetrazolium chloride (TTC) reduction assays (**Figure 36D-E**). TTC is a redox sensitive dye that undergoes an irreversible color change upon reduction by NADH dehydrogenase and is commonly used as an indicator of respiratory activity (123). Cells lacking cytochrome *bd* displayed significantly diminished overall TTC reduction as compared to wild-type, indicating that loss of cytochrome *bd* diminishes flux

through the electron transport chain and impairs the generation of the proton motive force (**Figure 36D-E**). Importantly, the diminished TTC reduction in $\Delta cydAB$ is rescued by extrachromosomal complementation with a plasmid encoding the *cydABX* operon under native transcriptional control (**Figure 38**) (95). Despite the observed impairments in respiratory flux, we observe no significant reduction in ATP levels in $\Delta cydAB$ colony biofilms (**Figure 39**), consistent with our previous reports (95). This suggests that these cells likely are not fermenting, as under fermentative conditions the F₀F₁-ATPase is reversed and consumes ATP to generate a proton gradient (219). Rather, the reduced respiratory flux is likely due to inefficient respiration in hypoxic biofilm regions where cytochrome *bd* is most highly expressed (95). Consistent with this, loss of cytochrome *bo* or *bd*₂ did not significantly impact TTC reduction, arguing that cytochrome *bd* is the dominant respiratory enzyme under the conditions tested and its loss cannot be compensated for by expression of other respiratory oxidases (**Figure 36D-E**). Together these data argue that loss of cytochrome *bd* impedes efflux of noxious chemicals by disrupting respiratory flux and impairing the proton dependent activity of efflux pumps.

Figure 38: Complementation restores TTC reduction in $\triangle cydAB$. Representative images of TTC reduction assays. Red color indicates respiratory activity. Strains were transformed with pTRC99a (empty vector) or pCydABX (*cydABX* operon under native transcriptional control). Data are representative of four biological replicates per strain.

Figure 39: Loss of cytochrome *bd* **does not impair ATP generation.** Graph depicting ATP concentration in colony biofilms normalized to CFUs in the same biofilm. Line depicts geometric mean. Each dot represents a biological replicate. Data were analyzed by a Mann-Whitney test.

DISCUSSION

Living in spatially structured biofilm communities affords resident bacteria significant protection from a wide array of exogenous threats, including antibiotics and host immune defenses. While this has been demonstrated in several different studies, the composite mechanisms that lead to resilience in the biofilm remain largely uncharacterized. In this work, we build upon our previous findings that revealed a spatial organization in respiratory oxidase expression in *E. coli* biofilms (95). Here, we expand our understanding of how cytochrome *bd* expression influences biofilm-specific resistance to antibiotics. We demonstrate that loss of cytochrome *bd* increases antibiotic susceptibility in a biofilmspecific manner by regulating the cellular accumulation of antibiotics and other noxious chemicals. This enhanced accumulation results from a combination of increased abundance of general diffusion porins and decreased efficiency of proton mediated efflux. Consistent with these findings, alterations in the expression or activity of porins and efflux pumps is a common contributor to antibiotic resistance in clinical isolates (212, 214, 220).

We report that disrupting cytochrome bd-mediated respiration in uropathogenic E. coli leads to a general enhancement of antibiotic susceptibility specifically when bacteria are found in the biofilm state. A likely explanation for the distinct antibiotic susceptibility phenotypes observed between $\Delta cydAB$ planktonic and biofilm cells is that E. coli encodes a highly flexible respiratory chain – allowing bacteria to adapt to loss of cytochrome bd by altering the expression of other oxidases (91, 96) – and that the spatial organization of biofilms imparts unique metabolic constraints not encountered in well-mixed planktonic cultures. Indeed, we previously reported that expression of cytochrome bo was increased nearly tenfold in $\Delta cydAB$ biofilms, indicating that rather than simply impeding respiration, loss of cytochrome bd forces bacteria to instead transition to respiring via cytochrome bo (95). Such a transition likely has minimal effect in shaking, logarithmic phase planktonic cultures, where all cells are expected to have access to near atmospheric levels of oxygen, as cytochrome bo is a low affinity respiratory quinol oxidase optimized for use under atmospheric oxygen tensions (91, 96). In fact, because it is a proton pumping oxidase, cytochrome bo is more energetically efficient than cytochrome bd (H^+/e^- ratio: 2 and 1 for cytochrome bo and bd, respectively), potentially explaining the increased efflux observed in $\Delta cydAB$ planktonic cells. In spatially structured biofilms, by contrast, most cells are exposed to subatmospheric oxygen levels (60). As such, cytochrome bd is the dominant respiratory enzyme in these cells, and the low oxygen affinity of cytochrome bo ensures that simply overexpressing this oxidase cannot compensate for lack of cytochrome bd. As a result of the unique biochemistries of these respiratory oxidases and the spatially structured nature of biofilms, loss of cytochrome bd reduces the efficiency of respiration and proton mediated efflux in a biofilm-specific manner.

While our results stand in contrast to the antibiotic resistance phenotype generated by respiratory deficiency in small colony variants described in *Staphylococcus aureus* and other species (221), they are consistent with studies in *Mycobacterium tuberculosis* in which targeting of the electron transport chain is a promising avenue for the development of novel classes of antibiotics (168, 169). In recent years two electron transport chain inhibitors – bedaquiline, an ATPase inhibitor, and pretomanid, a nitric oxide donor and respiratory poison – have been approved by the Food and Drug Administration

104

(FDA) for the treatment of multidrug resistant *M. tuberculosis* (169, 222). Additionally, promising results from a phase 2 clinical trial were recently reported for telacebec (Q203), an inhibitor of the terminal cytochrome oxidase supercomplex bc_1 - aa_3 (223). In addition to the known clinical utility of these agents, preclinical studies have identified numerous small molecule inhibitors of all electron transport chain components (NADH dehydrogenases, succinate dehydrogenases, respiratory oxidases, ATPase), some of which are known to eradicate even highly drug resistant isolates (168, 169). Although the potential for disrupting energetics as a therapeutic approach has not been thoroughly evaluated outside Mycobacterial species, in combination with our findings these studies raise the possibility of inhibiting cytochrome bd to treat or prevent urinary tract infections. Notably, previous work has identified several natural small molecule quinol analogs that serve as potent inhibitors of E. coli respiratory oxidases, including several molecules that preferentially inhibit bd-type oxidases (167, 169). Importantly, the bdtype oxidases are unique to bacteria, suggesting inhibitors of cytochrome bd could be used clinically to inhibit biofilm formation, potentiate the effects of antibiotics, and impede virulence in the urinary tract. Together, this work reveals that the spatial stratification of respiration is a fundamental driver of *E. coli* biofilm stress tolerance and suggest the possibility of reprogramming the electron transport chain as an anti-biofilm therapeutic approach.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions

All studies were performed in uropathogenic *E. coli* cystitis isolate UTI89 (44) and isogenic deletion mutants. For all analyses, strains were propagated from a single colony in Lysogeny broth (LB) (Fisher) at pH 7.4 overnight at 37°C with shaking unless otherwise noted. Genetically manipulated strains were created using λ -red recombinase system (143). Respiratory oxidase mutant strains, *ubil* mutant strains, *and* $\Delta cydAB$ complementation constructs were created in previous studies (89, 95). Primers used for gene deletions and gPCR are listed in **Table 5**.

Primer	Sequence (5' → 3')	Purpose
acrAB_KO_Fwd	TCAATGATGATCGACAGTATGGCTGTGCTCGATAT CTTCATTCTTGCGGCGTGTAGGCTGGAGCTGCTTC	acrAB deletion
acrAB_KO_Rev	ATGCCCGCCGTTGGCGTAGTAACAGTCAAAACTGA ACCTCTGCAGATCACCATATGAATATCCTCCTTAG	acrAB deletion
acrAB_KOtest_Fwd	TGGTTCAATACTCCTTAATGTTCGTAG	acrAB deletion
acrAB_KOtest_Rev	GGCGGTCGTTCTGATGC	acrAB deletion
acrB_qPCR_Fwd	GTGTAGTGGTGCGTGCTCT	qPCR
acrB_qPCR_Rev	TATCGTCAGTTCTCCATTACCATTGT	qPCR
ompW_qPCR_Fwd	TATGGCGACCGACAACATTGG	qPCR
ompW_qPCR_Rev	CGTAAGGACGGAATTTGCTGC	qPCR
ompF_qPCR_Fwd	CGTTAGAGCGGCGTGC	qPCR
ompF_qPCR_Rev	CACTGGGTTACACCGATATGCTG	qPCR
ompX_qPCR_Fwd	ACTGGCGGTTACGCACA	qPCR
ompX_qPCR_Rev	CGGACCAGCAGTGATGCC	qPCR

Table 5: Primers used in Chapter 4.

Crystal Violet Biofilm Assays

Determination of biofilm biomass was performed using the crystal violet assay as previously described (204). Overnight cultures were diluted to optical density 600 nm (OD_{600}) = 0.05, and 100 µL of the diluted culture was aliquoted into a 96 well polyvinyl chloride (PVC) plate (Costar). Plates were incubated in a humid chamber at room temperature, washed and stained with crystal violet, and disaggregated using 35 percent acetic acid. For antibiotic assays, biofilms were grown for 48 hours, antibiotics or vehicle was added to each well, and biofilms were grown another 72 hours prior to determining biomass. Total biomass was determined by measuring the absorbance at 570 nm using a SpectraMax i3 microplate reader (Molecular Devices).

Microscopy

Plastic coverslips (Fisher) were placed in the diluted culture in a six well plate and allowed to grow 48 hours at room temperature. Antibiotics were added at 48 hours, and biofilms were allowed to grow another 72 hours before being fixed in 4% PFA and stained with SYTO 9 (ThermoFisher). Images were taken using a Zeiss 710 confocal laser scanning microscope. To obtain a representative sample of the biofilms, at least three images were taken along the air-liquid interface from at least five biological replicates.

Biofilm Survival Assays

Colony biofilm survival assays were performed as previously described (206). Briefly, 10 µL overnight culture was spotted on a piece of filter paper covered in a thin layer of 1.2x yeast extract casamino acids (YESCA) agar and allowed to incubate at room temperature. After 72 hours, biofilms were transferred to new YESCA agar with or without antibiotics. After 24 hours of treatment, biofilms were homogenized by two rounds of vortexing and sonication, serially diluted, and plated to enumerate colony forming units (CFUs).

Disk Diffusion Assays

Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Testing was performed on 5% Mueller-Hinton agar using commercially available antimicrobial disks (BD) according to Clinical & Laboratory Standard Institute (CLSI) guidelines, M100-ed30 (208). The following disks were used for antimicrobial susceptibility testing: meropenem (10 µg), cefazolin (30 µg), cefepime (30 µg), ceftazidime (30 µg), ceftriaxone (30 µg), aztreonam (30 µg), ampicillin (10 µg), ampicillin-sulbactam (10/10 µg), amoxicillin-clavulanic acid (20/10 µg), piperacillin-tazobactam (100/10 µg), trimethoprim-sulfamethoxazole (1.25/23.75 µg), nitrofurantoin (300 µg), ciprofloxacin (5 µg), levofloxacin (5 µg), amikacin (30 µg), gentamicin (10 µg), tobramycin (10 µg), and tetracycline (30 µg).

Broth Microdilution Assays

Broth microdilution assays were performed to determine the minimum inhibitory concentration (MIC), as previously described (224). Briefly, antibiotics were serially diluted two-fold in a 96-well plate. To increase the precision of the MIC estimate, two independent dilution series were used for each antibiotic. Overnight cultures were diluted to OD = 0.06 in Mueller-Hinton Broth (BD Difco), and 100 µL was added to each well. Cultures were incubated overnight at 37 °C, and MIC was determined by assessing the row at which visible growth of bacteria was inhibited.

Time Kill Kinetics Assay

Overnight cultures were subcultured in 20 mL Mueller-Hinton Broth (BD Difco) to an $OD_{600} = 0.05$ and grown 3-4 hours to mid logarithmic phase. Each strain was normalized to an $OD_{600} = 0.5$ in PBS and split into two flasks. One flask of each strain was inoculated with antibiotic to a final concentration at 5 times the MIC of wild-type; the other flask served as an untreated control. After addition of the antibiotic, 100 µL of culture was removed from each flask at each time point (0, 15, 30, 60, and 120 minutes) for CFU enumeration.

RT-qPCR

RNA was extracted from day 11 colony biofilms or planktonic cultures using the RNeasy kit (Qiagen). RNA was DNase treated using Turbo DNase I (Invitrogen), and reverse transcribed using SuperScript III Reverse Transcriptase (Invitrogen). cDNA was amplified in an Applied Biosystems StepOne Plus Real-Time PCR machine using SYBR green and primers listed in **Table 5**. All reactions were performed using cDNA from at least three biological replicates. Each reaction was performed in triplicate with at least two different cDNA concentrations. A melt curve analysis was performed using genomic DNA and for every reaction with cDNA to verify primer specificity. Relative fold difference in transcript abundance was determined using the $\Delta\Delta C_T$ method (145). Transcripts were normalized to *gyrB* abundance.

108

Cytochrome *c* binding assay

Outer membrane charge was assessed by measuring the amount of cationic cytochrome *c* binding to cells, as previously described (211). Planktonic cells were extracted from mid-logarithmic phase cultures. Biofilm cells were extracted from homogenized colony biofilms grown for 11 days on YESCA agar. Cells were normalized to OD = 2.0 and washed twice in 20 mM MOPS (pH 7.0). Cationic equine cytochrome *c* (Sigma) was added to 0.5 mg/mL. Cells were incubated with cytochrome *c* for 10 minutes at room temperature. After incubation, cells were pelleted by centrifugation, and unbound cytochrome *c* was measured from the supernatant by quantifying absorption at 530 nm.

Proteomics

Outer membrane and extracellular matrix samples were extracted as described previously (131). Biofilms were grown for 11 days on 1.2x YESCA agar containing 40 µg/mL Congo Red. Biofilms were homogenized in cold 10 mM Tris-HCl pH 7.4 using an Omni Tissue Homogenizer five times for one minute per cycle. To increase yield and robustness, each sample is a pooled collection of 100 individually grown biofilms. Data is representative of three pooled replicates per strain. The homogenate was centrifuged three times for 10 minutes at 5,000 x g to remove cells. NaCl was added to the supernatant (final concentration 170 mM) and centrifuged for one hour at 13,000 x q to pellet the extracellular matrix. The extracellular matrix pellet was washed in 10 mM Tris-HCl pH 7.4 with 4% SDS and incubated at room temperature rocking overnight. 25 ug of protein was precipitated by adding 1/3 volume of 100 percent w/v trichloroacetic acid. After washing 2 times with ice cold acetone, the protein pellet was resuspended in 8 M urea 100 mM tris pH 8.5, reduced using TCEP, alkylated with iodoacetamide, diluted back to 2 M urea and digested with 0.5 ug of trypsin overnight at 37 °C. Resulting peptides were analyzed by high resolution data dependent LC-MS/MS. Briefly, peptides were autosampled onto a 200 mm by 0.1 mm (Jupiter 3 micron, 300A), self-packed analytical column coupled directly to a Q-exactive plus mass spectrometer (ThermoFisher) using a nanoelectrospray source and resolved using an aqueous to organic gradient. Both the intact masses (MS) and fragmentation patters (MS/MS) of the peptides were collected in a data dependent manner utilizing dynamic exclusion to maximize depth of proteome coverage. Resulting peptide MS/MS spectral data were searched against the bacterial protein database using MaxQuant-LFQ along with subsequent MS1-based integrations and normalizations (225). Statistical comparisons of resulting normalized protein quantitative values were performed using ProStaR (226). Protein name, gene name, and subcellular localization of each identified peptide was manually determined using the UniProt and EcoCyc databases (227, 228).

Ethidium Bromide Uptake Assay

Colony biofilms were grown at room temperature on YESCA agar. After 11 days, biofilms were homogenized by vortexing and sonication in PBS. After homogenization, a portion of the cellular fraction was removed and normalized to $OD_{600} = 0.5$ in PBS. Ethidium bromide (Bio-Rad) was added to a final concentration of 10 µg/mL. Cells were then incubated at 37 °C for 10 minutes. Next, the suspensions were pelleted, supernatant removed, and cells were resuspended in 300 µL PBS. Fluorescence of ethidium bromide was measured at 360/590 nm. Each fluorescence measurement is the average of three technical replicates.

PrestoBlue Uptake Assay

Uptake of PrestoBlue (Invitrogen) was performed as previously described (216). Planktonic cultures were grown to mid-logarithmic phase and normalized to $OD_{600} = 1.0$ in PBS. Biofilm cells were extracted from homogenized colony biofilms and normalized to $OD_{600} = 1.0$ in PBS. For each growth condition, 180 µL of culture was mixed with 20 µL PrestoBlue in a 96-well plate. Fluorescence at 560/590 nm was measured every five minutes for one hour. Each fluorescence measurement is the average of three technical replicates.

Ethidium Bromide Efflux Assay

Efflux of ethidium bromide was performed as described previously (217). Planktonic cultures were grown to mid-logarithmic phase, washed twice in PBS, and normalized to $OD_{600} = 0.5$. Biofilm cells were extracted from homogenized colony biofilms, washed twice with PBS, and normalized to $OD_{600} = 0.5$. Cells were loaded with ethidium bromide (10 µg/mL) in energy deplete conditions (PBS with 10 µg/mL proton ionophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP)) for one hour at 37°C. Cells were washed in PBS and resuspended in PBS ± 0.4% w/v glucose. Efflux was monitored by measuring fluorescence at 360/590 nm in technical triplicate at 37°C every minute for 15 minutes.

TTC Reduction Assays

Triphenyl tetrazolium chloride (TTC) reduction assays were performed as described previously (123). 10 µL of overnight culture was spotted onto 1.2x YESCA agar containing 0.001% (w/v) TTC. After 24 hours of growth, colonies were imaged using an Epson digital scanner. Images were subjected to automatic thresholding to subtract background, and TTC reduction was quantified by measuring pixel intensity on imageJ. Colony area was determined on Adobe Photoshop.

ATP quantification

ATP quantification was performed on cells extracted from homogenized colony biofilms grown on YESCA agar for 11 days. One aliquot of biofilm cells was removed, and ATP concentration was determined using the Cell-Glo Titer kit (Promega) according to manufacturer's protocols. Briefly, 50 µL of bacterial suspension was mixed with an equal volume of Cell-Glo Titer reagent and incubated with shaking at room temperature for 15 minutes. Luminescence was measured on a SpectraMax i3 plate reader (Molecular Devices) and converted to ATP concentration using a standard curve. A separate aliquot of the same sample was serially diluted for CFU enumeration. To account for differences in the number of cells between samples, ATP concentration was normalized to CFU per biofilm.

Statistical analyses

Statistical analyses were performed in GraphPad Prism. Details of sample size, test used, error bars, and statistical significance cutoffs are presented in the text or Figure legends.

ACKNOWLEDGMENTS

We thank members of the Hadjifrangiskou and Schmitz labs for helpful discussions and critical reading of the manuscript. Proteomics studies were performed at the Vanderbilt Mass Spectrometry Research Center with the help of W. Hayes McDonald, and microscopy was performed at the Vanderbilt Cell Imaging Shared Resource. This work was supported by the National Institutes of Health under the following grants: R01AI107052 (MH), P20DK123967 (MH), T32GM007347 (CJB), and F30AI150077 (CJB).

CHAPTER 5

Conclusions and Future Directions

CONCLUSIONS

Prior to this work, it was unknown exactly why and how UPEC uses aerobic respiration during its lifecycle. Additionally, little was known regarding how UPEC supports its replication during intracellular infection of urothelial cells, and it was completely unknown why host cells tolerate unrestrained intracellular bacterial expansion. My dissertation work has begun to address these gaps in the field. In this work, I demonstrate that UPEC heterogeneously expresses respiratory complexes during both planktonic and biofilm modes of growth, and that this heterogeneity of respiration supports adaptation across niches (Chapter 2). These findings are suggestive of a respiratory bet-hedging mechanism in E. coli, challenging the previous assumption that respiratory oxidases are expressed solely as a function of oxygen tension. Furthermore, I identify the high affinity respiratory oxidase cytochrome bd as a central regulator of biofilm development and pathogenesis in the urinary tract (Chapters 2 and 3). Deletion of cytochrome *bd* impedes biofilm development by disrupting the production and organization of the biofilm extracellular matrix – a critical factor that protects biofilm bacteria from external stressors (Chapter 2). By disrupting extracellular matrix formation and by altering outer membrane physiology. deletion of cytochrome bd increases biofilm sensitivity to a panel of clinically relevant antibiotics (Chapters 2 and 4). In addition to impeding biofilm development, loss of cytochrome bd exerts profound effects on UPEC during bladder infection (Chapter 2 and 3). Through this work I determine that cytochrome bd is specifically required during intracellular infection of urothelial cells, and that intracellular aerobic respiration mediated by cytochrome bd reprograms host cell metabolism to antagonize apoptosis and preserve the intracellular replicative niche of UPEC in the bladder (Chapter 3). This work clarifies the role of aerobic respiration in urinary tract infection and defines a multifaceted role for cytochrome bd in UPEC physiology and pathogenesis. Furthermore, by revealing the critical importance of cytochrome bd to UPEC biofilm formation and intracellular replication during bladder

infection – both critical components of UPEC pathogenesis – this work identifies cytochrome *bd* as a promising drug target and lays the foundation for future work investigating the possibility of reprogramming bacterial metabolism as a therapeutic strategy for urinary tract infection and other bacterial diseases.

FUTURE DIRECTIONS

This work opens multiple fruitful avenues for further exploration. To facilitate efficient transfer of this information to a future researcher, I have grouped some of the key outstanding areas of interest into broad projects that could be used as the basis for future work in the laboratory. These proposals are intended to serve as a roadmap of future studies, rather than a discrete list of next steps.

Project 1: Characterize the metabolic and immune response of urothelial cells to intracellular infection. Rationale: HIF-1, a hypoxia inducible transcription factor, is a key regulator of central metabolism in humans and has been shown to influence cell survival, particularly in the context of cancer and immune cells (229-232). HIF-1 activity is primarily regulated in a post-translational, oxygendependent manner (229-234). Under atmospheric oxygen tensions, prolyl hydroxylases chemically modify the HIF-1 α subunit of HIF-1, allowing it to be recognized by the E3 ubiguitin ligase von Hippel-Lindau (VHL) (229-234). Ubiquitylation of HIF-1 α by VHL facilitates its proteolytic degradation, thereby maintaining HIF-1 at low basal levels under atmospheric oxygen tensions (229-234). Because prolyl hydroxylases use molecular oxygen as a substrate, decreases in oxygen tension dramatically reduce the efficiency of these enzymes (229-234). Consequently, under low oxygen tensions HIF-1 α experiences minimal proteolytic degradation, causing protein levels and HIF-1 activity to rapidly increase (229-234). Upon translocation to the nucleus, HIF-1 acts as a transcription factor which, among other activities, serves to reprogram cellular metabolism and adapt the cell to low oxygen availability by repressing oxidative phosphorylation and inducing aerobic glycolysis. These activities are believed to function both to metabolically adapt cells to lower oxygen availability and to facilitate

cellular growth and proliferation by increasing the availability of anabolic byproducts of central metabolism (229-234). Data presented in this work reveals that intracellular infection of urothelial cells stabilizes HIF-1α, leads to induction of HIF-1 regulated genes, and shifts central metabolism toward a more glycolytic phenotype (**Figures 25-27**). In addition, pharmacologic modulation of HIF-1 modulates urothelial cell death during intracellular infection, implicating HIF-1 as a major regulator of urothelial cell fate (**Figure 28**). In this project, I propose to clarify the mechanism of HIF-1 activation during intracellular infection and define the consequences of HIF-1 regulated metabolic alterations on urothelial cell survival and bacterial pathogenesis in the bladder.

Aim 1: Define the role of HIF-1 in urothelial cell response to infection. My studies demonstrate that HIF-1 is centrally involved in the urothelial cell response to infection. However, several questions regarding the mechanism of activation as well as downstream consequences of HIF-1 dependent metabolic changes on bacterial pathogenesis and urothelial cell survival remain unanswered. To further characterize the influence of HIF-1 on urothelial cell response to infection, I propose to:

- 1.1) Monitor HIF-1 activation during murine infection using reporter strains, flow cytometry, and immunofluorescence imaging
- 1.2) Assess the contribution of bacterial oxygen consumption to HIF-1 activation by infecting with a respiratory null strain
- 1.3) Define HIF-1 dependent metabolic changes using knockout cell culture and mouse lines
- 1.4) Identify mechanistic links between HIF-1 dependent metabolic changes and urothelial cell apoptosis
- 1.5) Determine the influence of HIF-1 on bacterial reservoir formation in the bladder

Aim 2: Characterize the influence of immune signaling on urothelial cell metabolic adaptations during intracellular infection. Although the observed transcriptional and metabolic changes are consistent with a model in which intracellular bacterial oxygen consumption stabilizes HIF-1 α and

promotes a shift toward aerobic glycolysis – and indeed our data demonstrates cytochrome *bd* mediated aerobic respiration is partially responsible for this metabolic shift (**Figure 27**) – HIF-1 activity is influenced by myriad cellular signaling pathways. Among these pathways include PI3K, mTORC, Akt, and NF-kB, all of which are directly or indirectly activated during bladder infection (74, 161, 229, 235-237). Additionally, cGAS-STING, an innate immune signaling pathway that can detect intracellular pathogens by recognizing cytosolic dsDNA and cyclic dinucleotides, has been shown to stabilize HIF-1 α during intracellular infection of macrophages by *Brucella abortus* (238-241). While this pathway is expected to recognize intracellular UPEC, intracellular immune sensing pathways have not been investigated in the context of urinary tract infection. To clarify the immune response to intracellular infection, I propose to:

- 2.1) Characterize the influence of TLR-NF-kB signaling on urothelial metabolic adaptations using MyD88 knockout cell culture and mouse lines
- 2.2) Characterize the influence of PI3K-mTORC-Akt signaling on urothelial metabolic adaptations using chemical inhibitors
- 2.3) Determine whether cGAS-STING is activated by intracellular infection and investigate functional consequences of cGAS-STING activation during intracellular infection

Aim 3: Determine the impact of glycosuria on urothelial cell survival and intracellular bacterial replication. The results of this work suggest HIF-1 dependent increases in glucose uptake antagonize apoptosis and protect intracellular bacteria from exfoliation (Figures 28 and 30). As such, I hypothesize that increases in urinary glucose concentration (glycosuria) increases the risk of urinary tract infection by inhibiting urothelial cell apoptosis, facilitating intracellular bacterial replication, and aiding in the formation of latent bacterial reservoirs in the bladder tissue. Consistent with this, diabetes is a known risk factor for urinary tract infection and increases in hemoglobin A1c are independently associated with a dose-dependent increase in risk of urinary tract infection (20, 170). Additionally, dapagliflozin – a

sodium-glucose transport protein 2 (SGLT2) inhibitor that induces glycosuria – is associated with increased risk of urinary tract infection, and the United States Food and Drug Administration (FDA) warns of increased risk of severe urinary tract infections in patients taking SGLT2 inhibitors (20, 171-173). To clarify the impact of glycosuria on bacterial pathogenesis in the bladder, I propose to:

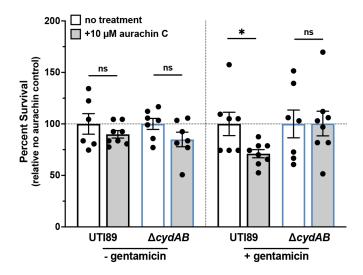
- 3.1) Define the impact of extracellular glucose availability and glucose uptake on urothelial cell survival during intracellular infection in cell culture and murine models of glycosuria
- 3.2) Quantify bacterial bladder colonization and intracellular bacterial community (IBC) formation in murine models of glycosuria
- 3.3) Perform a retrospective study of the clinical records to assess possible associations of glycosuria with urinary tract infection incidence and recurrence

Completion of this project will define immune and metabolic mechanisms by which intracellular bacterial infection alters urothelial cell physiology and provide translational insights into potential links between glycosuria and urinary tract infection pathogenesis.

Project 2: Investigate the efficacy of inhibiting cytochrome *bd* as an antimicrobial therapeutic strategy for urinary tract infections. <u>Rationale</u>: Cytochrome *bd* is a respiratory quinol oxidase that plays a central role in the physiology and pathogenesis of a diverse group of bacterial pathogens (96, 99). In UPEC, deletion of cytochrome *bd* reduces fitness in the bladder, impairs biofilm formation, and sensitizes bacteria to innate immune defenses and antibiotics (**Figures 8, 9, 13, 16, and 31**) (95, 102, 103, 149). Importantly, deletion of cytochrome *bd* does not kill UPEC, but rather reprograms its metabolism in a manner that impedes virulence in the bladder without influencing its ability to survive in the anaerobic gut (**Figures 8 and 12**) (41, 87, 95, 149). As such, inhibition of cytochrome *bd* is expected to impose relatively minimal selective pressures on UPEC. In combination with data presented in this work, these studies collectively identify cytochrome *bd* as a promising target for the development of antimicrobial approaches to aid in the treatment of urinary tract infection and other

bacterial diseases. In this project, I propose a series of studies that will characterize small molecule inhibitors of cytochrome *bd* and test their efficacy as a standalone therapy for urinary tract infection or in combination with antibiotics.

Aim 1: Characterize small molecule inhibitors of cytochrome *bd in vitro*. Cytochrome *bd* represents a promising target for the development of novel therapeutics for treating urinary tract infections. Indeed, several potent natural small molecule inhibitors of *E. coli* cytochrome *bd* have been identified, and inhibition of cytochrome *bd* is a promising strategy for the treatment of *Mycobacterium tuberculosis* (107, 167-169). To assess the potential efficacy of cytochrome *bd* inhibition for treating urinary tract infections, I propose to:


- 1.1) Synthesize a panel of natural small molecule inhibitors of cytochrome bd
- 1.2) Quantify the potency and efficacy of cytochrome *bd* inhibitors using purified respiratory oxidases in both membrane preparations and in whole cells
- 1.3) Determine the effects of cytochrome *bd* inhibitors on UPEC growth and energetics *in vitro*

Aim 2: Determine whether cytochrome *bd* **inhibitors potentiate antibiotic treatment.** Biofilms are multicellular bacterial communities commonly encountered during infection (57, 59, 195). Biofilms are highly resistant to a variety of external stressors, including immune defenses and antibiotics (60, 61). As such, biofilms are a key bacterial virulence factor and a major contributor to clinical treatment failure (59, 195). In UPEC, deletion of cytochrome *bd* impairs biofilm formation and renders biofilms more susceptible to a wide array of clinically relevant antibiotics (**Figures 8, 9, 13, and 31**) (95, 149). Accordingly, I hypothesize that chemical inhibition of cytochrome *bd* will increase biofilm sensitivity to antibiotics. Indeed, preliminary studies suggest treatment with aurachin C, a potent inhibitor of cytochrome *bd*, increases biofilm sensitivity to gentamicin in a cytochrome *bd*-dependent manner (**Figure 40**). To build upon this work, I propose to:

2.1) Characterize the impact of cytochrome *bd* inhibitors on UPEC biofilm formation

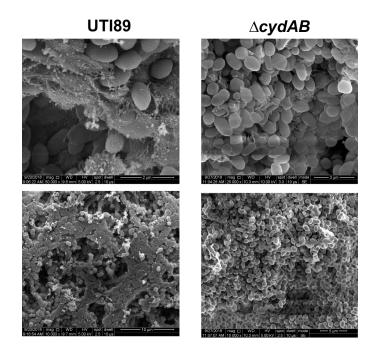
2.2) Determine whether inhibition of cytochrome *bd* increases biofilm sensitivity to clinically relevant

Figure 40: Inhibition of cytochrome *bd* **potentiates antibiotics in UPEC colony biofilms.** Colony biofilms were grown for 48 hours at room temperature on yeast extract casamino acids (YESCA) agar atop a piece of filter paper covered by a thin layer of agar. After 48 hours, biofilms were transferred to a new YESCA agar plate containing vehicle, 10 µM aurachin C, 50 µg/mL gentamicin, or 10 µM aurachin C and 50 µg/mL gentamicin. After another 24 hours of growth, biofilms were harvested into ice cold sterile PBS and homogenized by two rounds of vortexing and sonication. After homogenization, the number of colony-forming units (CFU) per biofilm was enumerated by serial dilution. The effect of antibiotics and aurachin C was quantified by calculating the percent survival in treated biofilms relative to vehicle treated controls of the same genotype; mean ± SEM; Mann-Whitney test. Each dot represents a biological replicate. * *p* < 0.05, ** *p* <0.01, *** *p* <0.001, **** *p* <0.001.

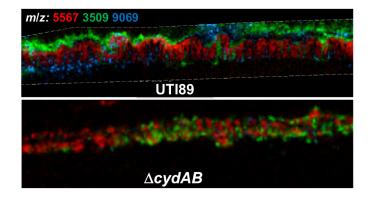
Aim 3: Test the efficacy of cytochrome *bd* inhibitors in a murine model of urinary tract infection.

Based on the data from the previous aims, the most promising compounds will be selected for

evaluation of efficacy in vivo. Using these molecules, I propose to:


- 3.1) Characterize pharmacokinetics, safety, and toxicity of cytochrome bd inhibitors in mice
- 3.2) Quantify the impact of cytochrome bd inhibition on bacterial colonization of the bladder
- 3.3) Investigate whether cytochrome *bd* inhibitors potentiate antibiotics and aid in the clearance of urinary tract infection
- 3.4) Characterize off-target effects of cytochrome *bd* inhibitors on the microbiome composition

Completion of this project will characterize a panel of cytochrome *bd* inhibitors and provide a preclinical foundation for further investigation of cytochrome *bd* inhibitors as therapeutics for urinary tract infection.


Project 3: Define mechanisms by which cytochrome *bd* influences the spatial and temporal organization of the biofilm extracellular matrix. <u>Rationale</u>: Biofilms are multicellular bacterial communities commonly encountered in the environment and during infection (57-59, 61, 195, 198). By secreting a highly structured extracellular matrix, bacteria in biofilms organize into robust and metabolically versatile communities capable of withstanding threats from external agents including bacteriophages, phagocytes, and antibiotics (60, 61). Accordingly, the spatiotemporal development of the extracellular matrix is critical for community development and resilience. My studies demonstrate that loss of cytochrome *bd* disrupts the synthesis and organization of the extracellular matrix, consequently impairing the ability for bacteria to resist external stressors (**Figures 8, 9, 13, and 31**) (95). In this project, I propose to define changes to the $\Delta cydAB$ biofilm extracellular matrix in both space and time and determine the mechanisms by which cytochrome *bd* influences extracellular matrix production and organization.

Aim 1: Characterize the spatial and temporal influence of cytochrome *bd* on extracellular matrix organization. Loss of cytochrome *bd* leads to gross morphological disruptions to biofilm organization and reduced extracellular matrix production (**Figure 8**). Consistent with these changes, scanning electron microscopy and mass spectrometric analysis of purified extracellular matrix reveals dramatic alterations to extracellular matrix composition and organization in cytochrome *bd* deficient biofilms (**Figures 8, 35, and 41**). Additionally, matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) analysis of biofilm cross-sections demonstrates that loss of cytochrome *bd* leads to alterations in the spatial organization of protein expression within the community (**Figure 42**). To determine the effect of cytochrome *bd* on the spatiotemporal organization of the extracellular matrix, I propose to:

- 1.1) Identify spatially dysregulated peptide species in biofilm cross-sections using MALDI-IMS
- 1.2) Characterize changes in extracellular matrix composition across space and time in cytochrome bd deficient biofilms using biochemical approaches, transcriptional reporter strains, and chemical probes
- 1.3) Correlate changes in extracellular matrix production with expression of respiratory oxidases

Figure 41: Loss of cytochrome *bd* **disrupts extracellular matrix organization.** Representative scanning electron micrographs of UPEC colony biofilms grown for 11 days on yeast extract-casamino acids (YESCA) agar and prepared for electron microscopy following previously published methods (242). Consistent with previous studies in K-12 *E. coli*, wild-type UPEC colony biofilms (left) are wrinkled and have a highly structured extracellular matrix ultrastructure (128, 129, 242, 243). Wild-type cells are embedded in a thick extracellular matrix (top) and the surface of the biofilm is coated in a thick layer of curli and phosphoethanolamine (pEtN) cellulose (bottom) (131, 132, 242). By contrast, $\Delta cydAB$ biofilm cells (right) are largely devoid of extracellular matrix. In $\Delta cydAB$ biofilms we observe sparse patches of extracellular matrix – grossly similar in structure to the canonical wild-type curli and pEtN cellulose network – as well as individual cells surrounded by a loose network of fibers that are visually consistent with curli fibers. Overall, the extracellular matrix of $\Delta cydAB$ biofilms is visually disorganized and patchy, in stark contrast with the thick surface coating of extracellular matrix in wild-type biofilms. Images are representative of three biological replicates. Images acquired by John Brannon, PhD.

Figure 42: MALDI-IMS analysis of UPEC biofilms reveals spatial dysregulation of peptide species. Colony biofilms were grown for 11 days at room temperature on YESCA agar and flash frozen in Tissue-Tek OCT compound and cryosections. Cryosections were placed on ITO coated slides and analyzed by MALDI-IMS as described previously (54). A subset of *m/z* species with spatially restricted localization patterns in UTI89 biofilms (green – surface, red – interior, blue – throughout) were observed to have spatial delocalization in biofilms lacking cytochrome *bd*. Images are representative of three biological replicates. Images acquired by Jessica Moore, PhD.

Aim 2: Investigate the impact of cytochrome *bd* mediated quinol oxidation on the ArcAB- σ^{s}

signaling axis. Previous work across species has demonstrated links between cellular redox state and extracellular matrix production, and studies in *E. coli* have shown that chemical gradients in biofilms induce a spatial stratification of sigma factor expression and extracellular matrix synthesis that is critical for community structuring (121, 123, 127, 128, 147, 244-246). In UPEC biofilms, respiratory oxidase expression is similarly stratified according to oxygen availability, and cytochrome *bd* is enriched in hypoxic regions of the biofilm (**Figures 2 and 4**). Because cytochrome *bd* is a respiratory oxidase that plays a central role in regulating cellular energetics, I hypothesize that cytochrome *bd* organizes extracellular matrix synthesis by regulating energetics and redox balance in hypoxic regions of the biofilm.

In *E. coli* changes to redox state are sensed by ArcB, a membrane embedded histidine kinase whose activity is regulated by the redox state of the quinone pool (**Figure 43**) (247). Under atmospheric conditions, quinols are rapidly oxidized to quinones by respiratory quinol oxidases such as cytochrome *bd.* Oxidized quinones in turn induce the formation of intermolecular disulfide bonds between ArcB monomers which sterically inhibit the autophosphorylation reaction necessary for ArcB activity (248, 249). Under oxygen-limiting conditions, respiratory efficiency is decreased and there is an accumulation

of quinols. Reduced quinols can donate electrons to cysteine residues in ArcB, thereby reducing the inhibitory disulfide bonds and relieving the repression of ArcB (248, 249). While ArcB is classically thought of as redox sensor that regulates respiration and carbon catabolism, ArcB also regulates the general stress response alternative sigma factor, σ^{S} – a central regulator of extracellular matrix production (250-255). When activated, the ArcAB system represses transcription of the σ^{S} encoding gene (*rpoS*) and facilitates the proteolytic degradation of σ^{S} (**Figure 43**). From this, I hypothesize that ArcB inhibits extracellular matrix production, and that cytochrome *bd* promotes extracellular matrix production in hypoxic biofilm regions by maintaining the quinone pool in an oxidized state, thereby impeding the activation of ArcB. Consistent with this model, preliminary work indicates deletion of cytochrome *bd* decreases the abundance of σ^{S} and *rpoS* transcript, suggesting cytochrome *bd*, ArcAB- σ^{S} , and extracellular matrix production, I propose to:

- 2.1) Define the energetic state of cytochrome *bd* deficient biofilm cells *in vitro* and *in situ* using chemical probes and microscopy
- 2.2) Determine the effect of cytochrome *bd* mediated respiration on biofilm formation using a quinol oxidation deficient variant of cytochrome *bd*
- 2.3) Assess whether cytochrome *bd* mediated quinol oxidation modulates ArcB disulfide bond formation under oxygen limiting conditions
- 2.4) Investigate the effect of cytochrome *bd* mediated quinol oxidation on σ^{S} accumulation
- 2.5) Characterize the influence of the ArcAB-σ^S signaling axis on biofilm development and extracellular matrix production

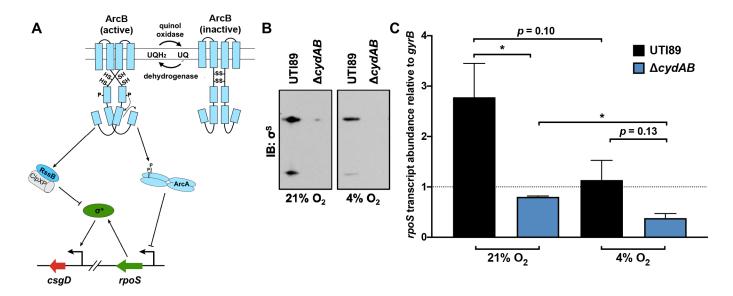
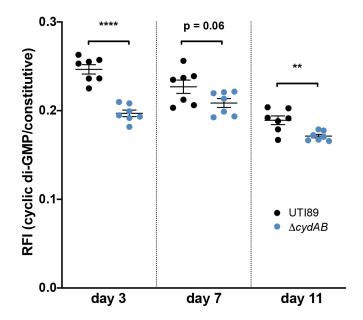



Figure 43: Cytochrome *bd* may regulate σ^{s} abundance by modulating ArcB activity. (A) Schematic depicting the ArcAB- σ^{s} signaling network. Under high oxygen tensions, respiratory quinol oxidases rapidly oxidize ubiquinol (UQH₂) into ubiquinone (UQ). By removing electrons from cysteine residues in the histidine kinase ArcB, ubiquinone induces the formation of disulfide bonds that inhibit activation of ArcB. Under conditions of low oxygen tension or decreased respiratory efficiency, reduced ubiquinol accumulates in the membrane. Ubiquinol donates electrons to ArcB, thereby reducing disulfide bonds and relieving repression of ArcB histidine kinase activity. Upon activation, ArcB phosphorylates the response regulator ArcA, which, among other targets, transcriptionally represses the σ^{s} encoding gene *rpoS*. In addition to phosphorylating ArcA, ArcB phosphorylates RssB. In combination with the CIpXP protease, phosphorylated RssB facilitates the proteolytic degradation of σ^{s} . I propose that by maintaining the quinone pool in an oxidized state, cytochrome bd represses ArcB and indirectly promotes σ^{s} accumulation. (B) Immunoblots of σ^{s} in planktonic cells grown at either 21% or 4% oxygen. Cultures were grown to mid-logarithmic phase and normalized prior to loading samples. Similar loading and transfer efficiency was assessed by Ponceau S staining. (C) RT-gPCR analysis of rpoS transcript abundance in mid-logarithmic phase bacteria grown at either 21% or 4% oxygen. Dotted line indicates abundance of the housekeeper gene gyrB; mean ± SEM; unpaired t test. All experiments were performed on at least three biological replicates. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Aim 3: Determine whether cytochrome *bd* **influences cyclic di-GMP signaling.** Although cytochrome *bd* canonically functions as a respiratory quinol oxidase, this complex also possesses non-respiratory activities including the ability to sequester and degrade nitric oxide (96, 99, 102, 103). Importantly, nitric oxide – a byproduct of anaerobic respiration and a key innate immune effector – activates phosphodiesterase enzymes which degrades cyclic di-GMP, a ubiquitous nucleotide second messenger that promotes bacterial adherence and biofilm formation (141, 256). As such, I hypothesize that cytochrome *bd* promotes extracellular matrix production by degrading endogenously produced nitric oxide and maintaining high levels of cyclic di-GMP in hypoxic biofilm regions. Indeed, preliminary

work demonstrates that deletion of cytochrome *bd* decreases cyclic di-GMP abundance (**Figure 44**) and alters the spatial patterns of cyclic di-GMP accumulation in biofilms (**Figure 45**). To define the role of cytochrome *bd* in cyclic di-GMP signaling, I propose to:

- 3.1) Determine how cytochrome bd influences the accumulation of cyclic di-GMP
- 3.2) Define the influence of cytochrome *bd* mediated quinol oxidation and nitric oxide tolerance on cyclic di-GMP accumulation using a quinol oxidation deficient variant of cytochrome *bd*
- 3.3) Characterize and correlate the spatial accumulation of cyclic di-GMP and *cydA* transcript in biofilms
- 3.4) Perform a transposon mutagenesis screen to identify phosphodiesterases that are involved with the cytochrome *bd*-nitric oxide-cyclic di-GMP signaling axis

Figure 44: Loss of cytochrome *bd* **reduces cyclic di-GMP accumulation in biofilms.** To determine whether cytochrome *bd* influences cyclic di-GMP accumulation in biofilms, UTI89 and $\Delta cydAB$ were transformed with pMMB67EH-Gm-Bc3-5, a reporter plasmid containing a constitutively expressed fluorescent protein and another fluorescent protein under the regulatory control of a cyclic di-GMP responsive riboswitch. Colony biofilms were grown from both strains at room temperature on YESCA agar supplemented with 50 µg/mL gentamicin to maintain the reporter plasmid. At pre-determined time points, were harvested into ice cold sterile PBS and homogenized by two rounds of vortexing and sonication. After homogenization, the cellular fraction was extracted to measure the fluorescence intensity of both fluorescent proteins. Relative fluorescence intensity (RFI) was calculated by quantifying the ratio of cyclic di-GMP dependent fluorescence to constitutive fluorescence; mean ± SEM; unpaired t test. Each dot represents a biological replicate. * *p* < 0.05, ** *p* <0.01, *** *p* <0.001.

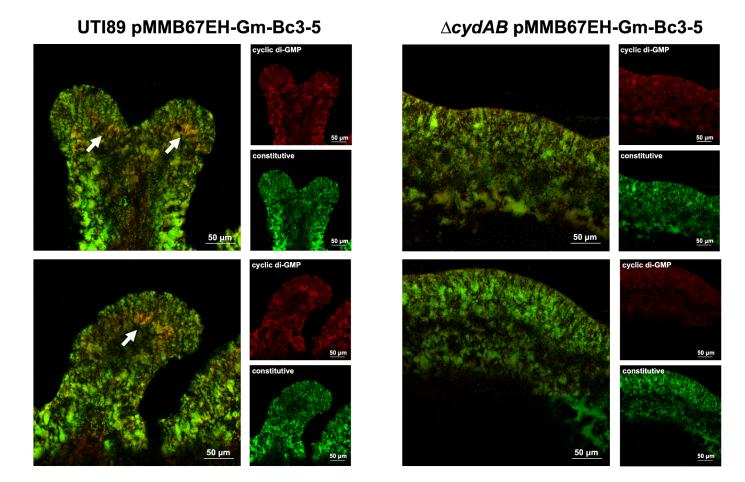


Figure 45: Cytochrome *bd* influences the spatial accumulation of cyclic di-GMP in biofilms. To investigate the spatial patterns of cyclic di-GMP accumulation, I grew biofilms with the pMMB67EH-Gm-Bc3-5 cyclic di-GMP reporter plasmid on YESCA agar. After 11 days, biofilms were flash frozen, and fluorescence was visualized in biofilm cryosections using confocal laser scanning microscopy. Cyclic di-GMP dependent fluorescence (red) accumulates heterogeneously in wild-type biofilms with foci localizing to the interior of biofilm ridges, consistent with the known role for cyclic di-GMP in promoting extracellular matrix production and biofilm wrinkling. By contrast, in $\Delta cydAB$ biofilms fluorescence accumulates in a relative homogenous manner near the surface of the community, and discrete foci near ridges are not observed. Images are representative of three biological replicates.

Completion of this project will determine the influence of cytochrome *bd* on the spatiotemporal organization of the extracellular matrix and define biochemical mechanisms by which cytochrome *bd* regulates extracellular matrix production.

Project 4: Investigate the contribution of respiratory complexes to UPEC physiology and pathogenesis. <u>Rationale</u>: *E. coli* possesses a modular electron transport chain that affords it a remarkable degree of metabolic flexibility (91, 93). In addition to using oxygen as an electron acceptor via one of three terminal respiratory oxidases, *E. coli* can grow using fermentation or by performing

anaerobic respiration using one of five alternative terminal electron acceptors (nitrate, nitrite, TMAO, DMSO, and fumarate) in tandem with one of seven terminal reductases (90, 91, 93, 95). Although the biochemical activities of each of these respiratory complexes is well-established, we have surprisingly little knowledge regarding precisely how and when UPEC deploys each of these enzymes during physiologically relevant conditions and during infection.

The presence of urinary nitrite – a byproduct of anaerobic nitrate respiration – is a hallmark of infection by Enterobacteriaceae and the basis for a common clinical diagnostic test for urinary tract infection. As such, it has historically been assumed that UPEC subsists off anaerobic nitrate respiration in the bladder. Despite this, work from several groups clearly demonstrates that cytochrome *bd* mediated aerobic respiration is required during bladder infection (41, 87-89, 95, 102, 257). Although cytochrome *bd* has the strongest effect on UPEC pathogenesis, all three respiratory oxidases are expressed during bladder infection (**Figures 13, 16, 21, and 23**). Additionally, we observe robust expression of all three terminal oxidases and two terminal reductases (fumarate reductase and a nitrite reductase) in biofilms (**Figure 2**), suggesting UPEC uses multiple aerobic and anaerobic respiratory pathways within biofilms (95). In this project, I propose several studies that will clarify the role of other respiratory subpopulations in UPEC physiology and pathogenesis.

Aim 1: Determine the influence of cytochrome *bo* **on bacterial persistence in the bladder.** Although *E. coli* encodes three terminal respiratory oxidases (cytochrome *bo*, *bd*, *bd*₂), only loss of cytochrome *bd* impairs bacterial colonization of the bladder (**Figure 13 and 16**) (95, 102). Despite this, several lines of evidence suggest cytochrome *bo* also plays an important role during bladder infection. First, deletion of cytochrome *bo* causes subtle, but reproducible alterations to biofilm formation – a key survival strategy used by UPEC to colonize the urinary tract (**Figure 8**). Additionally, UPEC robustly expresses and uses both cytochromes *bd* and *bo* to facilitate aerobic respiration during intracellular infection of urothelial cells (**Figures 21 and 23**). Finally, deletion of cytochromes *bo* and *bd*₂ alters the kinetics of infection in a murine model of chronic cystitis and reduces bacterial bladder titer four weeks post-infection (**Figure 46**), suggesting cytochrome *bo* contributes to bacterial persistence in the bladder. To define the role of cytochrome *bo* in UPEC biofilm formation and bladder pathogenesis, I propose to:

- 1.1) Use transcriptional reporter strains to track expression of respiratory oxidases across niches during infection
- 1.2) Characterize the contribution of cytochrome *bo* to bacterial colonization and persistence in the urinary tract
- 1.3) Define the influence of cytochrome *bo* on the biofilm extracellular matrix

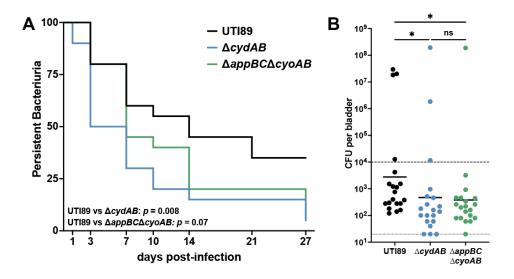


Figure 46: Cytochrome *bd* is necessary but not sufficient for bacterial persistence in the bladder. To investigate the contribution of cytochrome *bd* to bacterial persistence in the bladder, mice were infected with wild-type UTI89, $\Delta cydAB$, and $\Delta appBC\Delta cyoAB$. Urine bacterial titer was monitored over time in each mouse, and mice with fewer than 10⁴ CFU/mL urine were considered to have resolved bacteriuria. (A) Kaplan-Meier curve depicting the proportion of mice that resolved infection; n = 20 per group; Mantel-Cox test. (B) Bladder titers of mice 28 days post-infection; geometric mean; Mann-Whitney test. Each dot represents a biological replicate. * *p* < 0.05, ** *p* <0.01, *** *p* <0.001, **** *p* <0.0001.

Aim 2: Characterize the contribution of anaerobic respiratory complexes to UPEC pathogenesis

and biofilm physiology. Although the urine contains oxygen and cytochrome bd is required for efficient

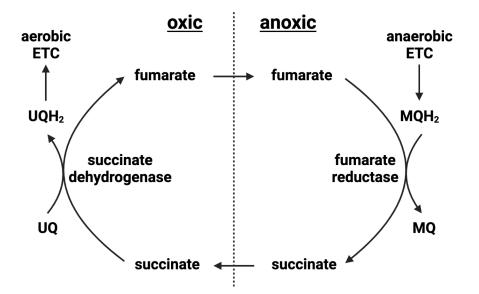
bladder colonization, UPEC also respires nitrate during bladder infection (86, 95, 102). Because nitrate

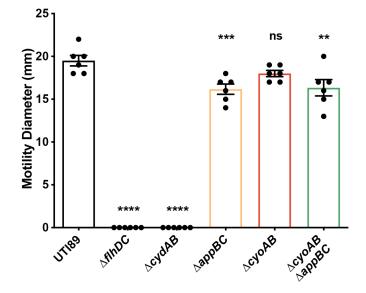
respiration is repressed by oxygen, this suggests that oxygen scavenging cytochrome bd may be

required to deplete urinary oxygen and derepress nitrate respiration. In addition to using anaerobic

respiration during infection of the bladder, UPEC robustly expresses both nitrite and fumarate reductases in biofilms (**Figure 2**) (95). Expression of anaerobic respiratory complexes in the bladder and in biofilms suggests UPEC uses heterogeneous respiratory pathways to support its metabolic needs during its infectious lifecycle. Additionally, the high expression of fumarate reductase in biofilms raises the possibility that a fumarate/succinate cross-feeding interaction exists between aerobic and anerobic biofilm subpopulations (**Figure 47**) (64). To characterize the contribution of these anaerobic respiratory complexes to UPEC pathogenesis and biofilm formation, I propose to:

- 2.1) Define the role of nitrate respiration in UPEC pathogenesis in the bladder
- 2.2) Determine whether oxygen scavenging by cytochrome *bd* is required to create an effectively anoxic environment that permits nitrate respiration
- 2.2) Characterize the spatiotemporal expression patterns of fumarate reductase and nitrite reductase in biofilms
- 2.3) Determine whether deletion of fumarate reductase and nitrite reductase influences biofilm development and extracellular matrix production
- 2.4) Investigate a possible cross-feeding interaction between aerobic and anaerobic subpopulations in biofilms




Figure 47: Schematic depicting proposed cross-feeding interactions between oxic and anoxic regions of the biofilm. Under aerobic conditions, succinate is converted to fumarate via succinate

dehydrogenase. Electrons from succinate are transferred onto ubiquinol, which serves as a lipid soluble electron carrier that shuttles electrons to terminal respiratory oxidases. Under anaerobic conditions, fumarate reductase extracts electrons from reduced menaquinol species to generate succinate. I propose that fumarate is exported from cells in oxic biofilm regions via the succinate transporters DauA and DctA and subsequently shuttled to anoxic regions where it is imported and used as an anaerobic terminal electron acceptor. The succinate generated in this reaction is then exported via the anaerobic fumarate/succinate antiporter DcuB and shuttled to oxic biofilm regions where cells take up succinate and use it as an electron donor to facilitate aerobic respiration. Such a fumarate/succinate cross-feeding mechanism would allow for a shuttling of electrons between aerobic and anaerobic biofilm subpopulations, thereby enhancing the efficient of respiration in the community as a whole.

Aim 3: Define mechanisms by which cytochrome bd regulates flagellar motility. Flagella are critical bacterial appendages that aid in chemotaxis, attachment to surfaces, and - in the case of urinary tract infection – facilitate bacterial ascension to the kidneys (25). Flagellar motility is energized by the proton motive force, which itself is generated by respiratory oxidases and other components of the electron transport chain. As such, I hypothesized that loss of respiratory oxidases would impair flagellar motility by impairing the generation and maintenance of the proton motive force. Surprisingly, although deletion of cytochrome bd ablates flagellar motility, deletion of the other respiratory oxidases has no effect (Figure 48), indicating cytochrome bd has a unique role in regulating flagellar motility. Interestingly, loss of cytochrome bd does not impact biosynthesis of flagella (Figure 20), suggesting disruptions to flagellar motility are caused by functional impairments to flagellar rotation. Because cytochrome bd is a respiratory oxidase. I hypothesize that cytochrome bd promotes flagellar motility in a quinol oxidation-dependent manner by contributing to the proton motive force. Alternatively, cytochrome bd may promote accumulation of cyclic di-GMP by sequestering and detoxifying nitric oxide (see also **Project 3**). Because cyclic di-GMP represses flagellar rotation, cytochrome bd may also repress flagellar motility in a quinol oxidation-independent manner. To clarify the mechanism by which cytochrome bd regulates flagellar motility and functional consequences of impaired motility in UPEC pathogenesis, I propose to:

- 3.1) Quantify expression of respiratory oxidases in motile populations
- 3.2) Determine if impaired motility in cytochrome *bd* deficient UPEC is caused by an inability to rotate flagella

- 3.3) Measure the relative impact of respiration and nitric oxide-cyclic-di-GMP signaling on flagellar motility using a quinol oxidation deficient variant of cytochrome *bd*
- 3.4) Determine whether loss of cytochrome bd impairs flagellum mediated ascension to the kidneys

Figure 48: Loss of cytochrome *bd* **eliminates flagellar motility.** Flagellar motility radius of UTI89 and isogenic mutants lacking the master regulator of flagellar biosynthesis ($\Delta flhDC$) or respiratory quinol oxidase performed at 37°C under aerobic conditions; mean ± SEM; one-way ANOVA. Each dot represents a biological replicate. * *p* < 0.05, ** *p* <0.01, **** *p* <0.001, **** *p* <0.0001.

Aim 4: Characterize the expression and activity of respiratory oxidases on a single cell level. Expression of respiratory enzymes is regulated by a panoply of signaling pathways that respond to the energetic state of the cell as well as the availability of electron acceptors (91, 93). Based on the structure of these regulatory networks, conditions that induce expression of one respiratory pathway typically repress expression of all other respiratory pathways. As such, bacteriologists have historically assumed a mutual exclusivity to respiratory enzyme expression except under transitional states. However, my work has generated several lines of evidence that apparently contradict this paradigm and suggest that individual bacterial cells can use multiple respiratory enzymes simultaneously. First, population level RT-qPCR and *in situ* analysis of gene expression in homogenously aerated planktonic cultures reveals that UPEC robustly expresses all three respiratory oxidases under aerobic conditions, and some cells contain transcript corresponding to all three oxidases simultaneously (**Figures 4 and 13**). Additionally,

deletion of cytochrome *bd*, which canonically is expressed and used only under microaerobic conditions, imparts a significant growth defect on homogenously aerated cultures (**Figure 12**), indicating cytochrome *bd* is used under fully aerobic conditions. Furthermore, loss of cytochrome *bd* impairs proton-dependent flagellar motility without disrupting proton-dependent ATP production (**Figures 12, 19, and 48**), raising the possibility that there exists a functional separation in the energetic inputs to these two processes. Finally, UPEC respires nitrate in the oxygenated bladder despite oxygen repressing nitrate respiration, suggesting oxygen consumption by cytochrome *bd* may deplete cytosolic oxygen, create an effectively anaerobic environment within the cell, and permit nitrate respiration to proceed despite the presence of environmental oxygen.

Together these data suggest that individual cells may use multiple respiratory complexes simultaneously to support different processes within the cell; rather than a single cell using a single respiratory complex to add to a shared proton pool, my work suggests different respiratory complexes co-exist within a given cell, and that each complex may have distinct contributions to energetically intensive processes. Consistent with this hypothesis, super resolution microscopy studies demonstrate that respiratory enzymes are not freely diffusible in the membrane, but instead are localized within discrete membrane microdomains (258-260). The heterogeneity of proton-producing and protonconsuming enzymes suggests that the proton pool is not uniformly distributed but has local maxima and minima near proton-producing and proton-consuming enzymes, respectively (258-260). Consequently, this model predicts that if a particular respiratory enzyme were colocalized within membrane microdomains with a particular proton-consuming enzyme, there should be a functional link between these two enzymes that cannot be compensated for by the activity of other respiratory enzymes. For example, if cytochrome bd is colocalized with flagella, we would expect loss of cytochrome bd to have an outsized impact on motility even though other respiratory enzymes can in principle generate a proton gradient and energize flagellar rotation. As a precedent for this spatially restricted signaling model, although cyclic di-GMP is freely diffusible in the cytosol, cyclic di-GMP signaling occurs within hyper-localized signaling nodes where individual diguanylate cyclases and

132

phosphodiesterases specifically regulate a subset of cyclic di-GMP dependent processes without affecting other cyclic di-GMP dependent processes or the cytosolic cyclic di-GMP concentration (246, 261, 262). To investigate this hypothesis and characterize the expression and utilization of respiratory enzymes on a single cell level, I propose to:

- 4.1) Perform single cell RNA sequencing to quantify respiratory oxidase expression within single cells
- 4.2) Use translational fusions to visualize expression of respiratory complexes within single cells
- 4.3) Use fluorescence resonance energy transfer (FRET) and bacterial two-hybrid screens to probe for co-localization of respiratory complexes with the flagellar motor and other proton utilizing proteins

Completion of this project will characterize the role of aerobic and anaerobic respiratory enzymes in the physiology and pathogenesis of UPEC and will determine the single cell expression and utilization patterns of respiratory enzymes.

APPENDIX

Probe Name	Accession #	NS Probe ID	Class Name	Analyte Type	mock	mock	mock	mock	UT189	UT189	UTI89	UT189	ΔcydAB	∆cydAB	∆cydAB
	NM_000014.4	NM_000014.4:1685	Endogenous	mRNA	20		20	20	20	20	20				
	NM_016228.3	NM_016228.3:1510	Endogenous	mRNA	1088.31	1137.95	1132.48	1118.55	989.54	912.34		963.52			
	NM_001088.2		Endogenous	mRNA	20		20	20	20	20					
	NM_005157.3		Endogenous	mRNA	1068.55		1077.96	1015.35	1028.94	1117.42					
	NM_006111.2 NM_198834.1	NM_006111.2:450 NM_198834.1:3681	Endogenous Endogenous	mRNA mRNA	1684.67 723.34	1730.43 757.98	1693.06 718.98	1707.79 703.53	1768.56 764.39	1765.26 742.23		1680.65 711.94			
	NM_001093.3		Endogenous	mRNA	45.15	42.11	30.86	36.62	49.53	41.95		53.17	42.62		
	NM_001608.3		Endogenous	mRNA	20		22.63	24.41	20	20					
	NM_012287.5		Endogenous	mRNA	532.4		551.32	516		520.84					
ACAT1	NM_000019.3		Endogenous	mRNA	369.67	394.66	344.58	361.75	365.87	342.57	398.13	374.77	380.12	322.83	350.32
	NM_005891.2		Endogenous	mRNA	5068.11		4926.94	5098.95	4530.03	4448.69		4719.04			
	NM_138326.2	NM_138326.2:468	Endogenous	mRNA	20		20	20	20	20		20			
	NM_130767.2		Endogenous	mRNA	20		22.63	33.29	28.14	23.3		27.23	20		
	NM_004035.5 NR_045667.2		Endogenous	mRNA mRNA	1992.25 53.62	1990.93 46.03	2008.83 48.34	1897.54 43.28	2500.3 50.66	2488.85 34.96		2495.04 38.9			
	NM_000666.2	NM_000666.2:109	Endogenous Endogenous	mRNA	46.09		48.34	43.28	43.9	44.28					
	NM 000022.2		Endogenous	mRNA	631.16		711.78	720.18	643.93	650.18					
	NM_001012969.2		Endogenous	mRNA	214.46		177.95	220.82	198.13	180.6		162.1			
	NM_000667.3	NM_000667.3:1004	Endogenous	mRNA	20		20	20	20	20		20			
	NM_000668.4	NM_000668.4:1532	Endogenous	mRNA	23.52	22.52	23.66	22.19	24.77	20	30.13	28.53	24.19	20	20
ADH1C	NM_000669.3	NM_000669.3:976	Endogenous	mRNA	84.66	113.6	115.2	108.75	95.69	110.69	117.29	111.52	99.06	99.02	103.23
	NM_000670.3		Endogenous	mRNA	20		20	20	20	20			20		
	NM_000672.3		Endogenous	mRNA	31.04	24.48	29.83	28.85	33.77	40.78		42.79			
	NM_000673.3		Endogenous	mRNA	20		20	20	20	20		20			
	NM_001123.2		Endogenous	mRNA	3295.02		3448.86	3340.12	3411.03	3532.86		3213.46			
	NM_000675.3	NM_000675.3:1095	Endogenous	mRNA mRNA	27.28 449.62	20.57 437.75	27.77 496.81	31.07 480.49	47.28 521.22	54.76 494.04		40.2			
	NM_001010982.4 NM_000030.2		Endogenous	mRNA	449.02		490.81	480.49	20	494.04		27.23			
	NM_031900.3		Endogenous Endogenous	mRNA	20		20	20	20	20			20		
	NM_016282.2		Endogenous	mRNA	1097.71	1046.88	1058.42	1113	1148.27	1130.23		1086.72			
	NM_001818.2	NM_001818.2:321	Endogenous	mRNA	20		20	20	20	20					
	NM_001014431.1		Endogenous	mRNA	1952.75		2063.35	1968.56	2201.97	2231.34					
AKT1S1	NM_032375.3	NM_032375.3:1850	Endogenous	mRNA	1059.15	1065.48	1066.65	1110.78	1062.71	1118.58		1032.25			1101.47
	NM_001626.4		Endogenous	mRNA	2020.47	2049.69	1905.97	1969.67	1895.77	1937.71					
	NM_005465.4	NM_005465.4:287	Endogenous	mRNA	2462.57	2392.44	2348.27	2437.95	2697.31	2647.31		2749.21			
	NM_000690.2		Endogenous	mRNA	26.34		20	25.52	25.89	25.63		31.12			
	NM_184041.2	NM_184041.2:1455	Endogenous	mRNA	15328.49		16796.84	16095.81 20		27787.45					
	NM_000035.3 NM_000697.1	NM_000035.3:1470 NM_000697.1:1945	Endogenous Endogenous	mRNA mRNA	20		20	20 22.19	20	25.63 20		32.42			
	NM_001140.3		Endogenous	mRNA	20		23.66	34.4	41.65	33.79					
	NM_000698.2		Endogenous	mRNA	722.4		699.44	675.79	809.42	821.46					
	NM_152435.2		Endogenous	mRNA	39.51	55.82	40.11	44.39	73.17	46.61		58.36			
	NM_000036.2		Endogenous	mRNA	20		20		20	20					
AMPD2	NM_004037.6	NM_004037.6:3095	Endogenous	mRNA	289.71	335.9	342.52	346.22	342.23	337.91	295.91	282.7	332.89	328.26	336.04
AMPD3	NM_000480.2	NM_000480.2:3033	Endogenous	mRNA	824.93	853.95	804.36	862.22	1415.07	1426.19	1484.92	1234.55	1390.3	1348.29	1261.81
	NM_001091.2	NM_001091.2:274	Endogenous	mRNA	20		20	20	20	20					
			Endogenous	mRNA	20		20	20	20	20					
	NM_001159.3		Endogenous	mRNA	60.2		48.34	61.03	57.41	57.09		49.28			
	NM_021575.2	NM_021575.2:665	Endogenous	mRNA	4680.57	4727.11	4731.5	4818.2	4973.58	5100.04		4752.76			
	NM_000039.1 NM_001643.1	NM_000039.1:149 NM_001643.1:60	Endogenous	mRNA	20		20	20	20	20					
	NM_000482.3		Endogenous Endogenous	mRNA mRNA	20		20	20	23.64	20					
	NM_000384.2		Endogenous	mRNA	22.58		24.69	24.41	32.65	23.3					
	NM_000483.3		Endogenous	mRNA	32.92		34.97	31.07	46.16	38.45					
	NM_000040.1		Endogenous	mRNA	20		20		20	20					
APOE	NM_000041.2	NM_000041.2:96	Endogenous	mRNA	75.25	93.03	63.77	78.79	92.31	71.08	75.32	81.7	79.48	99.02	74.68
APOM	NM_019101.2	NM_019101.2:496	Endogenous	mRNA	54.56	69.53	67.89	77.68	104.7	83.89	75.32	80.4	70.26	78.67	84.56
	NM_000485.2		Endogenous	mRNA	1869.97	1921.4	1862.77	1940.82	1946.43	1990.14		1942.6			
	NM_000044.2		Endogenous	mRNA	20		20	20	20	20					
	NM_001662.2		Endogenous	mRNA	2440.93		2549.87	2670.98	2629.76	2607.69		2706.41			
	NM_000045.3	NM_000045.3:673	Endogenous	mRNA	20		20.57	25.52	20	20					
	NM_006015.4 NM_020732.3	NM_006015.4:5495 NM_020732.3:6335	Endogenous Endogenous	mRNA mRNA	1198.36 1267.03		1231.22 1296.02	1269.47 1311.63	1316.01 1285.61	1282.87 1408.71		1339.59 1317.54			
	NM_152641.2	NM_020732.3.0333 NM_152641.2:3355	Endogenous	mRNA	1207.03		1230.02	11116.33	1323.89	1381.92		1260.49			
	NM 005718.4	NM_005718.4:970	Endogenous	mRNA	26279.29		26215.62	27396.72		28669.5					
	NM_004316.3	NM_004316.3:1650	Endogenous	mRNA	20275.25		20	20	20333.73	20005.5		20350.34			
	NM_018489.2		Endogenous	mRNA	1703.48		1653.97	1536.9		1687.19		1637.85			
ASL	NM_000048.3	NM_000048.3:130	Endogenous	mRNA	1368.61	1385.72	1373.17	1259.48	1374.55	1214.13	1250.34	1263.08	1303.91	1304.88	1178.34
			Endogenous	mRNA	20					20					
	NM_183356.2		Endogenous	mRNA	475.96		453.61	501.57	437.92	450.93					
	NM_000049.2		Endogenous	mRNA	20		20		20	20					
	NM_001080464.2 NM_000050.4		Endogenous Endogenous	mRNA mRNA	20 3247.99		20 3481.77	20 3530.98		20 4606					
	NM_001675.2		Endogenous	mRNA	13678.62					14487.97					
			Endogenous	mRNA	1024.34		1017.27	1074.16		949.63					
	NM_018179.3	NM_018179.3:2505	Endogenous	mRNA	1336.63		1417.39			1064.98					
	NM_021934.4		Endogenous	mRNA	989.54		1027.56		1036.82	927.49		1030.95			
	NM_018036.5	NM_018036.5:1722	Endogenous	mRNA	609.53		598.64			636.19					
	NM_004045.3		Endogenous	mRNA	1990.37					1871.29					
	NM_001687.4		Endogenous	mRNA	1735.46		1784.6			1887.61					
	NM_007100.3	NM_007100.3:184	Endogenous	mRNA	3633.65		3680.29	3725.17	3860.21	3788.03					
			Endogenous	mRNA	4404.96		4679.05			4772.62					
	NM_001128149.2 NM_004322.3	NM_001128149.2:3600 NM 004322.3:652	Endogenous	mRNA mRNA	917.11 947.21		867.1 908.24	873.31 942.11	955.76 1157.27	1006.72 1109.26		887.01 1182.68			
	NM 000657.2	-	Endogenous Endogenous	mRNA	126.98		908.24	942.11	1157.27 122.71	1109.26					
	NM_004049.2	-	Endogenous	mRNA	109.11		140.92	132.03	368.12	343.73					
	NM_138578.1		Endogenous	mRNA	5644.71		5683.98			5760.7					
	NM_001713.2		Endogenous	mRNA	20		20		20	20					
			Endogenous	mRNA	20		21.6	20	22.52	31.46					21.96
	NM_182962.1	NM_182962.1:3	Endogenous	mRNA	20.69	21.54	20	27.74	150.85	138.66	164.63	145.24	139.38	143.78	141.66
	NM_001715.2		Endogenous	mRNA	20		20			20					
BLK		NM_004333.3:565	Endogenous	mRNA	1157.91		1159.22			1281.71					
BLK BRAF	NM_004333.3					040.00	800.24	797.86	810.54	695.62	791.96	785.86	878.87	701 3	833.52
BLK BRAF BRCA1	NM_004333.3 NM_007294.3	NM_007294.3:787	Endogenous	mRNA	849.39										
BLK BRAF BRCA1 BRCA2	NM_004333.3 NM_007294.3 NM_000059.3	NM_007294.3:787 NM_000059.3:115	Endogenous Endogenous	mRNA	210.7	190.96	174.86	180.88	163.23	139.82	150.64	169.88	154.35	169.55	187.79
BLK BRAF BRCA1 BRCA2 BRCC3	NM_004333.3 NM_007294.3 NM_000059.3 NM_024332.3	NM_007294.3:787 NM_000059.3:115 NM_024332.3:458	Endogenous Endogenous Endogenous	mRNA mRNA	210.7 1088.31	190.96 1108.57	174.86 1142.76	180.88 1081.93	163.23 1158.4	139.82 1218.79	150.64 1247.11	169.88 1191.76	154.35 1103.49	169.55 1174.67	187.79 1155.28
BLK BRAF BRCA1 BRCA2 BRCC3 BRIP1	NM_004333.3 NM_007294.3 NM_000059.3 NM_024332.3 NM_032043.1	NM_007294.3:787 NM_000059.3:115 NM_024332.3:458 NM_032043.1:1130	Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA	210.7 1088.31 1755.21	190.96 1108.57 1729.45	174.86 1142.76 1761.97	180.88 1081.93 1743.3	163.23 1158.4 1641.35	139.82 1218.79 1532.22	150.64 1247.11 1572.07	169.88 1191.76 1486.13	154.35 1103.49 1652.93	169.55 1174.67 1474.44	187.79 1155.28 1745
BLK BRAF BRCA1 BRCA2 BRCC3 BRIP1 BTK	NM_004333.3 NM_007294.3 NM_000059.3 NM_024332.3	NM_007294.3:787 NM_000059.3:115 NM_024332.3:458 NM_032043.1:1130 NM_000061.1:570	Endogenous Endogenous Endogenous	mRNA mRNA	210.7 1088.31	190.96 1108.57 1729.45 20	174.86 1142.76	180.88 1081.93 1743.3 20	163.23 1158.4 1641.35 20	139.82 1218.79	150.64 1247.11 1572.07 20	169.88 1191.76 1486.13 20	154.35 1103.49 1652.93 20	169.55 1174.67 1474.44 20	187.79 1155.28 1745 20

CA12 CA9	NM_001218.3 NM 001216.2	NM_001218.3:2445 NM 001216.2:960	Endogenous Endogenous	mRNA mRNA	117.58 47.03	135.14 69.53	129.6 56.57	120.95 62.14	166.61 159.86	206.24 215.56	178.62 181.85	171.18	169.32 85.24	176.34	121.9
CAB39	-	NM_001130849.1:1238		mRNA	3625.18	3737.03	3503.37	3549.84	3997.55	3726.28	4184.67	4248.3	3969.33	4371.77	4286.19
CACNA1A	NM_001127221.1	NM_001127221.1:4470	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CACNA1E	NM_000721.2	NM_000721.2:9325	Endogenous	mRNA	20	20	21.6	20	20	20	20	25.94	20	20	2
CACNB4 CACNG2	NM_000726.3 NM_006078.3	NM_000726.3:504 NM_006078.3:3740	Endogenous Endogenous	mRNA mRNA	23.52	36.23 20	28.8 20	27.74 20	33.77 20	30.29 20	23.67 20	27.23 20	20 20	28.49 20	27.4
CACNG2	NM_006539.2	NM_006539.2:1780	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	27.13	2
CACNG7	NM_031896.3	NM_031896.3:990	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	2
CAD	NM_004341.3	NM_004341.3:2380	Endogenous	mRNA	998.01	1109.55	1141.73	982.06	915.24	970.6	982.41	940.18	909.97	1036.31	926.8
CARD11	NM_032415.2	NM_032415.2:1075	Endogenous	mRNA	1299.01	1289.74	1239.45	1266.14	1476.99	1392.4	1365.48	1444.63	1465.17	1417.47	1509.9
CAT	NM_001752.2	NM_001752.2:1130	Endogenous	mRNA	1281.14	1366.13	1395.79	1418.16	1321.63	1451.83	1376.24	1352.56	1284.33	1322.52	1401.2
CBL CBR4	NM_005188.2 NM_032783.4	NM_005188.2:7485 NM_032783.4:520	Endogenous Endogenous	mRNA mRNA	525.81 2164.39	546.45 2091.8	521.49 2130.21	504.9 2133.9	639.43 1923.91	622.21 1945.87	630.55 2087.49	612.09 1868.68	590.91 2011.16	667.36 1927.49	633.6 2110.
CCL13	NM_005408.2	NM_005408.2:320	Endogenous	mRNA	890.78	865.71	870.19	922.14	937.75	963.61	1023.3	937.58	888.09	967.13	977.3
CCL19	NM_006274.2	NM_006274.2:401	Endogenous	mRNA	20	20	20	20	23.64	20	20	20	20	20	20
CCL4	NM_002984.2	NM_002984.2:201	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	27.13	20
CCL5	NM_002985.2	NM_002985.2:277	Endogenous	mRNA	22.58	30.36	23.66	29.96	112.58	82.73	81.78	132.27	119.79	107.16	84.56
CCNA1 CCNA2	NM_003914.3 NM_001237.2	NM_003914.3:1605 NM_001237.2:1210	Endogenous Endogenous	mRNA mRNA	20 4863.05	20 4531.24	20 4616.3	20 4653.97	20 4636.98	20 4742.32	20 4827.05	20 4706.07	20 4769.87	20 4586.09	4716.6
CCNB2	NM_004701.2	NM_004701.2:980	Endogenous	mRNA	2582.97	2614.74	2548.84	2659.89	2486.79	2537.78	2789.06	2585.81	2546.77	2517.53	2552.1
CCND1	NM_053056.2	NM_053056.2:690	Endogenous	mRNA	16545.66	16257.44	16538.67	16574.08	16851.4	15721.91	15268.81	16480.98	16915.13	16464.34	17201.8
CD14	NM_000591.2	NM_000591.2:885	Endogenous	mRNA	32.92	44.07	36	56.59	39.4	39.62	35.51	38.9	36.86	36.62	41.73
CD163	NM_004244.4	NM_004244.4:1630	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CD180 CD19	NM_005582.2 XM_011545981.1	NM_005582.2:1036 XM_011545981.1:713	Endogenous Endogenous	mRNA	20	20 26.44	20 20	20	20						
CD209		NM_001144899.1:950	Endogenous	mRNA	20	20.11	20	20	20	20	20	20	20	20	20
CD244		NM_001166663.1:22	Endogenous	mRNA	57.38	45.05	45.26	54.37	70.92	86.22	77.47	64.84	86.39	77.32	71.38
CD247	NM_000734.3	NM_000734.3:1350	Endogenous	mRNA	20	21.54	23.66	35.51	20	30.29	34.43	20	20	20	23.06
CD27	NM_001242.4	NM_001242.4:326	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CD274 CD276	NM_014143.3 NM_001024736.1	NM_014143.3:1243 NM_001024736.1:2119	Endogenous Endogenous	mRNA mRNA	257.73 2407.07	274.21 2617.68	256.12 2588.96	325.13 2432.4	361.37 2948.35	291.3 2968.9	360.47 3003.19	411.08 2963.18	400.85 2699.97	406.93 3018.05	353.61 2965.08
CD270		NM_001243078.1:2065	Endogenous	mRNA	2407.07	2017.08	2388.90	2432.4	2948.33	2908.9	20	2903.18	2033.37	20	2303.08
CD36	NM_000072.3	NM_000072.3:707	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CD3D	NM_000732.4	NM_000732.4:110	Endogenous	mRNA	21.63	24.48	20	27.74	25.89	23.3	26.9	20	36.86	32.55	20
CD3E	NM_000733.2	NM_000733.2:75	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CD3G CD4	NM_000073.2 NM_000616.4	NM_000073.2:404 NM_000616.4:975	Endogenous Endogenous	mRNA	20	20 20	20	20							
CD4 CD40LG	NM_000074.2	NM_000074.2:1225	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CD6	NM_001254751.1	NM_001254751.1:1722	Endogenous	mRNA	41.39	52.88	56.57	46.61	42.78	38.45	39.81	47.98	43.77	66.47	42.83
CD63	NM_001780.4	NM_001780.4:350	Endogenous	mRNA	14144.24	14441.81	14304.57	14985.03	16416.86	15937.47	15787.45	16291.65	15642.32	16235.1	15332.75
CD68	NM_001251.2	NM_001251.2:1140	Endogenous	mRNA	94.06	102.83	102.86	119.84	136.22	134	122.67	128.38	127.86	137	115.31
CD84 CD8A	NM_001184879.1 NM_001768.6	NM_001184879.1:28 NM_001768.6:2029	Endogenous	mRNA mRNA	20	20 20	20 20	20 20	20 23.64	20 20	20 20	20 20	24.19 20	20	20
CD8A CD8B	NM_172099.2	NM_172099.2:439	Endogenous Endogenous	mRNA	20	20	20	39.95	31.52	38.45	20	20	20	20	24.10
CDA	NM_001785.2	NM_001785.2:322	Endogenous	mRNA	764.73	740.35	779.67	794.53	806.04	822.62	777.97	772.89	867.35	858.62	792.88
CDC20	NM_001255.2	NM_001255.2:430	Endogenous	mRNA	4783.1	4766.28	4762.36	4690.59	4631.35	4389.27	4462.28	4462.28	4484.21	4660.69	4378.43
CDCA5	NM_080668.3	NM_080668.3:308	Endogenous	mRNA	766.61	769.73	782.76	858.89	851.07	794.66	818.86	955.74	802.85	845.06	793.98
CDCA8 CDK9	NM_018101.2	NM_018101.2:1665	Endogenous	mRNA	1108.06 980.14	950.91	1073.85 1036.82	1025.34 1080.82	963.64 958.02	988.08 1024.2	991.02 1001.78	910.35 1085.42	1051.65 1030.92	933.22	1059.74
CEACAM3	NM_001261.2 NM_001815.3	NM_001261.2:400 NM_001815.3:527	Endogenous Endogenous	mRNA mRNA	20	1075.28 20	20	20	22.52	20	20	20	20	964.42 29.84	1135.52 20
CENPA		NM_001042426.1:979	Endogenous	mRNA	1802.24	1735.33	1688.94	1852.04	1696.51	1688.36	1751.77	1653.42	1624.13	1698.25	1742.81
CHMP2A	NM_014453.3	NM_014453.3:241	Endogenous	mRNA	1283.96	1322.06	1282.65	1387.09	1426.33	1386.58	1397.76	1394.06	1391.45	1445.95	1411.16
CHMP6	NM_024591.4	NM_024591.4:346	Endogenous	mRNA	1074.2	1133.06	1074.87	1120.77	1123.5	1144.22	1074.95	1073.75	1154.17	1113.63	1095.98
CLOCK	NM_004898.2	NM_004898.2:2350	Endogenous	mRNA	616.11	656.13	601.72	606.99	625.92	626.87	646.69	570.59	611.64	583.26	605.1
CLSPN CMKLR1	NM_022111.2 NM_004072.2	NM_022111.2:442 NM_004072.2:762	Endogenous Endogenous	mRNA mRNA	2527.47	2577.53 20	2561.18 20	2591.09 20	2462.02 20	2420.1 20	2444.73 20	2393.89 20	2608.97 20	2513.46 20	2768.5
COL4A1	NM_001845.4	NM_001845.4:780	Endogenous	mRNA	3386.26	3450.09	3432.4	3216.94	3583.27	3870.76	3854.33	3750.33	3553.5	3583.69	3785.42
COL6A1	NM_001848.2	NM_001848.2:3665	Endogenous	mRNA	2055.27	2028.14	2207.35	2065.1	2807.63	2723.05	2834.25	2763.47	2825.52	2902.76	2636.72
COL6A3	NM_004369.3	NM_004369.3:2782	Endogenous	mRNA	20	23.5	20.57	29.96	37.15	29.13	33.36	32.42	28.8	20	26.36
COPS6	NM_006833.4	NM_006833.4:860	Endogenous	mRNA	9553.03	9539.41	9543.24	9706.31	9930.27	9986.84	10149.08	9942.54	9897.98	10357.69	9969.25
COX14 COX4I1	NM_001318797.1	NM_001257133.1:672 NM_001318797.1:50	Endogenous Endogenous	mRNA mRNA	2100.42 10754.21	2087.88 11208.15	2174.44 10977.09	2170.52 11074.54	2099.53 11793.39	2233.67 11935.04	2155.28 11893.32	2121.56 11668.57	2144.77 11266.39	2217.76 12077.64	2164.51 11120.14
COX411 COX5A	NM_004255.3	NM_004255.3:315	Endogenous	mRNA	11981.73	11774.19	11799.96	11926.77	12924.78	13137.52	13129.67	12680.07	12648.63	12856.23	12626.84
COX5B	NM_001862.2	NM_001862.2:240	Endogenous	mRNA	10809.71	10445.27	10507.03	10787.13	11257.53	11477.12	11457.52	11029.25	11176.54	11506.59	10931.25
COX6A1	NM_004373.2	NM_004373.2:260	Endogenous	mRNA	21553.57	20912.08	21187.88	22143.53	22700.82	22509.14	22364.12	22634.28	22321.99	22885.67	23183.62
COX6B1	NM_001863.4	NM_001863.4:264	Endogenous	mRNA	11421.11	11247.32	11325.78	11717.04	12207.67	12478.02	12330.18	12311.78	11730.59	12346.22	12076.65
COX7B	NM_001866.2 NM_001867.2	NM_001866.2:159 NM 001867.2:57	Endogenous Endogenous	mRNA mRNA	13639.12	13158.92	13259.53 2454.21	13685.6 2515.63	14049.4 2553.21	14197.84 2510.98	14375.71	14241.42	13988.25 2504.15	14296.76 2719.64	2575.23
COX8A	NM_004074.2	NM_004074.2:0	Endogenous	mRNA	6479.05	6529.03	6535.65	6926.58	7097.88	7390.8	6865.05	6757.6	6817.89	7030.37	6955.85
CPA3	NM_001870.2	NM_001870.2:220	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CPS1	NM_001875.3	NM_001875.3:5560	Endogenous	mRNA	26.34	27.42	20	35.51	36.02	24.47	24.75	28.53	20	27.13	26.36
CPT1A	NM_001876.3	NM_001876.3:1355	Endogenous	mRNA	151.44	135.14	166.63	144.26	182.37	154.97	191.53	159.51	172.78	166.84	162.53
CREB3L3 CS		NM_001271995.1:1050	Endogenous Endogenous	mRNA mRNA	22.58	20	3555.83	3529.87	20	20 3897 56	20 4191 12	20 4023 96	20 3922 1	20 4090.99	20 3810.67
CS CSF3R	NM_004077.2 NM_000760.3	NM_004077.2:740 NM_000760.3:2066	Endogenous	mRNA mRNA	3614.84	3685.12 20	3555.83 20	3529.87 20	3897.36 20	3897.56 20	4191.12 20	4023.96 20	3922.1 20	4090.99	3810.67
CTCF		NM_001191022.1:490	Endogenous	mRNA	2240.58	2123.13	2094.21	2011.84	2025.23	1962.18	2152.05	2025.6	2065.29	1983.1	2148.03
CTLA4	NM_005214.3	NM_005214.3:405	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CTPS1	NM_001301237.1	NM_001301237.1:580	Endogenous	mRNA	3331.71	3609.72	3488.97	3437.77	3179.13	2959.58	3153.83	3060.44	3290.88	3414.13	3161.65
CTSA		NM_001127695.1:1540		mRNA	3271.51	3228.77	3247.25	3302.39	3369.38	3409.35	3349.67	3335.36	3459.05	3387	3443.88
CTSD CTSL	NM_001909.3 NM_001912.4	NM_001909.3:1495 NM_001912.4:1072	Endogenous Endogenous	mRNA mRNA	8206.99 1221.88	9698.06 1181.04	9070.09 1159.22	9801.74 1256.15	9404.54 1153.9	8354.41 1225.78	8077.73 1215.91	10047.58 1226.77	8145.99 1320.04	10174.57 1235.71	7985.94
CTSS	NM_004079.3	NM_004079.3:685	Endogenous	mRNA	1562.38	1652.09	1632.37	1673.39	2426	2529.63	2697.6	2533.94	2218.49	2453.78	2478.59
CTSW	NM_001335.3	NM_001335.3:1075	Endogenous	mRNA	22.58	28.4	28.8	26.63	31.52	24.47	31.2	33.72	20	31.2	20
CTSZ	NM_001336.3	NM_001336.3:827	Endogenous	mRNA	5370.05	5704.45	5574.95	5546.15	6003.64	5763.03	6109.68	6041.77	5773.15	6170.4	5412.92
CXCL9	NM_002416.2	NM_002416.2:2012	Endogenous	mRNA	20	21.54	20	25.52	20	20	20	20	20	20	20
CXCR6 CYBB	NM_006564.1 NM_000397.3	NM_006564.1:97 NM_000397.3:2686	Endogenous Endogenous	mRNA mRNA	20	20 20	20 27.13	20							
CYP1A1	NM_000499.3	NM_000499.3:695	Endogenous	mRNA	82.78	50.92	70.97	58.81	55.16	39.62	49.5	49.28	48.38	52.9	91.15
CYP1A2	NM_000761.3	NM_000761.3:617	Endogenous	mRNA	23.52	25.46	36	33.29	31.52	37.29	26.9	40.2	26.49	20	37.34
CYP1B1	NM_000104.3	NM_000104.3:1715	Endogenous	mRNA	672.55	694.33	637.72	668.02	335.47	267.99	303.44	379.96	414.67	367.59	657.8
CYP4A11	NM_000778.3	NM_000778.3:1727	Endogenous	mRNA	20	20	20	20	27.02	20	20	25.94	20	20	20
CYP4A22		NM_001010969.3:285	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CYP8B1	NM_004391.2	NM_004391.2:1634	Endogenous	mRNA	20	20 80.3	20 81.26	20 62.14	20 76.55	20 75.74	20 72.09	20 84 29	20	20 74.6	20
D2HGDH DAO	NM_001287249.1 NM_001917.4	NM_001287249.1:550 NM_001917.4:965	Endogenous Endogenous	mRNA mRNA	79.01	80.3	81.26	62.14 20	76.55	75.74 20	72.09	84.29 20	73.72	/4.6	70.28
DCK	NM_000788.2	NM_000788.2:310	Endogenous	mRNA	1095.83	1197.69	1157.16	1189.57	1214.69	1139.56	1193.31	1163.23	1110.4	1243.85	1128.93
DDC	NM_000790.3	NM_000790.3:803	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	31.85
	NM_022783.3	NM_022783.3:790	Endogenous	mRNA	20	21.54 1429.79	20.57	20	20	20	20	20	20	20	20
DEPTOR DERA	NM_015954.2	NM_015954.2:960	Endogenous	mRNA	1449.51		1457.51	1535.79	1497.25	1407.55	1543.02	1556.16	1438.68	1494.78	

Deeles No. 2003 No. 2004 No. 2004 <	GLUCY		NM_001102369.2:442	Endogenous	mRNA	583.19	551.35	542.07	503.79	539.24	503.36	573.52	456.47	573.63	537.15	522.73
Display <		NM_080916.2	NM_080916.2:902	Endogenous	mRNA	4254.46	4020.05	3970.35	4074.72	3978.41	3938.34	4017.88	4066.75	4258.44	3925.51	4345.49 20
Dirol M. 19960 M. 19960 Model and M. 19960 Sine Model And M. 1996 Model And M. 1997 Model And M. 1997 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>344.83</td></th<>																344.83
Condition MAX Description PMA Description Descriptio	UOX1		NM_175940.1:4855													31.85
Char MA DBSD BIAS BIAS BI																37.34
Inter Mod. 20022 Mod. 20022 2000 Sequence of the seq																1043.27 1970.13
Inst.MU,ZUDLZ<																1370.13
IMMMA <td></td> <td>7480.78</td>																7480.78
IntolM. BURDELLOMMargeno <td></td> <td>157.04</td>																157.04
IndexMM 200754 100SequenceAltaA																331.65
Dipole MM, MARCHA 2000 Dispanse Phila List List <thlist< th=""> List</thlist<>																14943.99 47.22
PT MM (2009) MM (2																73.58
INM Nom Descr Mol Descr Descr <																818.14
Dish Mod (2006) Mod (2006) Mod (2006) Mod (2007) Mod (2007) <td></td> <td>240.5</td>																240.5
Chel Mode Mode <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>801.67</td></th<>																801.67
Index Imm Imm </td <td></td> <td>809.36 1898.75</td>																809.36 1898.75
Image MA MA MA MA				-												12406.11
PAMDEMA MDesc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc 																694.05
NACA M. M. 20015.7.9 Forder Internal 1015.2 96.81 97.82 90.73 </td <td></td> <td>695.15</td>																695.15
IMMC0MMCMMC0MMCAMM																20
NACEMALMULLMU																892.82 9278.5
MALEMAL_ONDERSIZEMonomesan representationalMonomesan representationalMonomesan representationalMonomesan 																1852.62
netende																20
Ind Ind <td></td> <td>2588.4</td>																2588.4
Incl.NMOUTURENMDiamDia																32.95
IntM. 0.0109.4M. 0.0109.4.031Organo.mRM.13.9013.20 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td></t<>			-													20
IPM MM, ØG120.1121 IPM IPM IPM IPM <																1258.51
Pir1MMM </td <td></td> <td>132.88</td>																132.88
nH MM MM<				Endogenous												23.06
IP110 MM, 001132 IMM, 001137 IPMA MMA Q D D D D<																4187.35
INPE MM_2002978.2 MM_2000978.2																341.53 23.06
IPPE MM C289A IPA Parts			-													627.06
Dittles MM, 133868-2.47 Endregenos mRMA Bos 420 20 20 20 20																249.29
IDEAL MM_000022_ MM_000022.2435 Endegence mPMA 95.68 44.07 54.01 45.5 42.78 57.28 67.28 77.24<				Endogenous												20
Index Index <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td></th<>																20
IDMM NML_202021.1 Indegroom. Indegroom. IPM1 91.7.0 <																20 40.63
IPMP1 MM, 024003 3.120 Indigence. Indige																923.57
IPCD NM OBG657.21 Endgemons RNMA D20 D20 D20 D20 <																20
GENC NM ODD1312 IM ODD332 IM ODD334 IM				Endogenous	mRNA											20
CABABAB NM OP7278-1 SMO SP728 SMO21 OP7280 SMO21 SMO21 SMO21 <																20
CADL NM_000817.2 MM_001272975 IM_001257991 MM_001257991 MM_001257991 MM_001257991 MM_001257991 MM_001257991 MM_00125791 MM_0012571 M																20 6181.64
GARL N.M. 207392. N.M. 207392. N.M. 207392. N.M. 207392. N.M. 207392. N.M. 207392. N.M. 200484. N.M. 200484. N.M. 200484. N.M. 200484. N.M. 2004879. N.M. 2002879.11.38 N.M. 200287.31.38 N.M. 20028																120.8
CAPPID NM_001256793 NM_040256793 NM_040256793 NM_0403242797 NM_0402842797 NM_040844-327 NM_0408700 REA 20 20																20
GAPCO NM. 0012862791 NM. 0012862791 Stable Modernova mRNA 29408.01 2958.00 2917.03 2948.95 297.73 2948.95 297.73 2948.95 297.73 2948.95 297.73 2948.95 297.73 2948.95 297.73 2948.95 297.73 2948.95 297.73 2948.95 297.84 297.83 297.85 297.85 297.85 297.85 297.85 297.85 297.85 297.85 297.85 297.85 297.85 297.85 297.85 297.85 277.81 297.85																86723.04
IMM_0008193 IMM_0008192 IMM_0008192.375 Endogenoux IMM 292.03 408.48 407.03 23.3 23.2 25.9 97.40 11.21 1 12.21 12.31 13.31 13.31 13.31 13.31 13.31 13.31 13.31 13.31 1																20
CATM NM.0012462.2 MM.0012462.23 Endogenous RFNA 97.28 23.5 27.77 20 20 27.33 25.82 25.94 27.13 27.13 GCDH NM.0001524.2 NM.0001524.2475 Findogenous RFNA 27.37 27.55 27.08 17.28 27.82 22.82 22.82 22.82 22.82 22.82 22.82 22.82 22.82 12.82																2538.99
GAA NM 001005/22 NM 001052/2. SPA1000 D17/23 D11/28 D11/28 D12/28 D20/28 D20/28 D20/28 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4256.53</td></t<>																4256.53
CCM NM 000152 NM 000152.4 MM 000152.4 See 1 Case 3 Case 3 Case 3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1047.66</td></th<>																1047.66
CICL NM. 001498.25.00 Endogenos mRNA 668.79 664.34 624.75 723.88 727.88 721.88 737.88 708.4 727.87 CIRN NM. 002405.25 RM. 002405.25 RM. 002405.23 RM. 277.81 I593.28 I593.28 I593.28 I583.81 IS08.71 1494.21 I542.21						273.72				274.68				266.08		262.46
CDA NM_001242502_NM_0012432502-385 Endogenous mRNA 110767_27 1920.27 1923.28 11282.07 1924.07 1924.07 1926.07 1																20
GRM NM 002064 NM 002067 NM 013832 013842 01067 040023 914063 140037 140237 142137 14213 142137																656.71
GLS MN_014905.3985 Endogenous mRNA 4033.42 4066.07 4002.9 9391.55 41.075 4200.51 4481.65 4367.20 222.32 210.20 220 220 220 220 220 220 220 220 220 220 220 220.20																20726.99 1212.39
GL52 NM 013267.2 NM 013267.2 NM 022 27.24 200 20 20 20.20 27.23 20.20 20 20.20																4285.09
GLUA NM 00103304.2:2465 Endagenous mRAM 181663.56 18665.55 12758.21 1238.11 2395.43 2386.19 2238.61 2128.38 227.56 20 20																20
CivAr NM<005833 NM<005833.322 Endogenous mRNA 24.46 26.4 20																2590.6
Civit Nr. NR. Obstacl Bin Ma			-													23334.06
CMMP NM 008277.3 NM OMB273.325 Endogenous mRNA 63.96 56.86 48.83 66.42 77.41 61.33 58.36 62.2 56.97 CMMP2 NM 0003875.2.385 Endogenous mRNA 1391.19 1467.98 151.71 1398.19 1490.5 1451.83 1470.33 1464.08 1400.67 151.84 151.51 151.84 1470.33 1464.08 1400.67 151.94 511.18 516.28 52 GN1Y NM 012433.280 Endogenous mRNA 821.17 827.49 972.21 764.56 889.35 942.64 1023.3 850.7 913.13 913.64 194.23 507.71 507.8 100.207.51.8 111.84 1484.34 1845.11 196.09 181.76 197.19 2143.95 1986.34 194.69 190.173 208.89 677.33 178.14 136.24 1684.34 1684.67 168.71 1137.34 158.4 686.3 685.7 1158.57 1158.5 1677.9 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>20</td>				-												20
CMM2 NM_001002001.2 NM_001002001.2:302 Endogenous mRNA 1302.7 1311.9 1316.50 1321.62 1321.62 1321.62 1321.62 1321.62 1321.62 1321.62 1321.62 1321.62 1321.62 1321.62 1490.5 1451.33 1470.33 1460.67 1450.85 1470.33 1240.64 1400.67 150.85 151.7 1398.19 1490.5 1451.33 1470.33 1240.64 151.62 5 GN12 NM_012843.2 NM_012843.245 Endogenous mRNA 422.0 22.49 27.02 25.8 20 27.23 28.8 20 GOT1 NM_002079.2 NM_00200.21.215 Endogenous mRNA 124.3 124.67 137.71 131.9 214.35 196.34 194.64 190.71 155.45 179.59 20 </td <td></td> <td>63.69</td>																63.69
GMB 003875-2.385 Endogenous mRNA 1391.9 147.98 151.7.7 1398.19 1490.5 1451.83 1470.93 1460.67 1560.89 1562.80 GNG12 NM_012841.3 NM_012843.280 Endogenous mRNA 20 25.66 20 22.74 5527.34 5526.34 550.87.8 550.87.8 550.87.8 550.87.8 550.87.8 550.87.8 551.34 658.67 73.83.01 914.23 567.2 507.21 764.55 87.84 655.7.4 658.67 73.85 71.18 569.2 71.85 607.2 800.20 NM_002070.2.215 Endogenous mRNA 174.78 72.76.2 764.75 807.14 568.64 1368.65 73.18.5 71.18 569.2 2169.2 210.07.3 2189.2 280.98 276.73 208.24 2149.2 210.07.3 1311.71 137.14 1362.8 368.27 311.77.7 137.14 136.28.4 364.83 367.14 367.33 3107.74 368.33 2149.2.3 216.20 20											1293.36					1397.98
GNLY NM<012483.2 NM<012483.2 NM<012483.2 Endogenous mRNA 20 25.46 20 22.19 27.02 26.8 20 27.23 28.8 20 GNS NM_002076.3 NM_002076.3:1340 Endogenous mRNA 821.17 87.87.2 907.21 764.56 8893.3 9124.3 688.66 793.58 711.85 697.2 651.34 688.66 793.58 711.85 697.2 651.4 402.93 276.35 871.185 697.2 697.1 NM_000175.2 NM_000175.2 NM_000175.2 Endogenous mRNA 1848.47 1966.71 1854.54 1979.89 2809.88 2767.3 2823.49 274.9.1 218.04 277.25 2 67 NM_00309.2 NM_00309.2 NM_00309.2 NM_00309.2 NM_00309.2 NM_00039.2 NM_00039.2 187.43 187.44 877.47 187.45 187.45 187.45 187.45 187.45 187.45 187.45 187.45 187.45 187.45 187.45 187.45 187.45																1346.37
CNS NM_002076.3 NM_002076.3:1340 Endogenous mRNA 821.17 872.55 972.67 784.56 889.35 942.64 102.33 850.7 933.01 914.23 GOT1 NM_002079.20 NM_002079.2615 Endogenous mRNA 1848.34 1845.01 196.049 181.764 1971.19 214.35 1986.34 1946.49 190.273 208.88 767.33 2823.49 2749.21 2180.88 277.53 2823.49 2749.21 2180.48 277.55 20																5160.33
COT1 NM_002079.2 NM_002079.2 NM_002079.2 NM_002079.2 STASE Fordgenous mRNA 747.8 727.62 746.75 807.84 695.72 661.34 668.66 735.58 711.85 697.2 GOT2 NM_002080.2 NM_002080.22145 Endogenous mRNA 1684.51 1960.49 1817.64 1971.19 2143.95 1986.34 1946.49 1901.73 2088.9 2767.33 2823.49 2749.21 2140.42 277.33 881.57 3 6751 NM_004127.4.605 Endogenous mRNA 1052.56 1035.13 969.96 1076.38 1107.74 1067.31 1137.36 1154.15 1182.97 1154.32 GPX1 NM_0001398.47.1 NM_00103984.71.435 Endogenous mRNA 20																31.85 975.18
GOT2 NM_002080.2 NM_002080.2:2145 Endogenous mRNA 1848.34 1845.01 1960.49 1817.64 1971.19 2143.95 1986.34 1946.49 100.73 2088.9 2 GPI NM_000175.2 NM_000175.2 NM_000175.2 NM_000175.2 1800.450 1793.89 2808.88 2773.3 2823.49 2749.21 2180.48 2775.5 2 GPT NM_003309.2 NM_003309.2431 Endogenous mRNA 720 20 23.64 20 20 20 20.0 20 20.0 20 20.0 <td></td> <td>708.32</td>																708.32
GP51 NM_004127.4 NM_004127.4 NM_004127.4 NM_002309.2 Endogenous mRNA 3723.95 3764.45 3678.23 3781.41 3628.4 3648.8 3627.14 3673.3 3811.57 3 GPT NM_005309.2 NM_005309.2.431 Endogenous mRNA 120 20 20 23.64 20 20 20 20 20 20 20 23.64 20			NM_002080.2:2145													2100.81
CPT NM_005309.2 NM_005309.2-A31 Endogenous mRNA D20 D20 <thd20< th=""> D20 D20 <thd2< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2055.79</td></thd2<></thd20<>																2055.79
CPX1 NM_000S81.2 NM_000S81.2.745 Endogenous mRNA 1052 56 1007.31 1077.43 107.73 1137.36 1154.15 1154.92 1154.32 GPX4 NM_001039847.1 Endogenous mRNA 7968.07 8073.33 7963.39 874.72 8143.51 8689.99 8879.16 8903.92 9163.29 667.82 NM_001291826.1 NM_000323.5 NM_000832.5 120 20																3525.15
GPX4 NM_001039847.1 NM_001039847.1 NM_001291826.1 NM_000823.2 NM_000293.2 NM_000293.2 NM_000293.2 NM_000293.2 NM_000293.2 NM_00293.2 Endogenous mRNA 220 20																21.96
GRAP2 NM_001291826.1 NM_001291826.1348 Endogenous mRNA 20<																962 8085.88
GRIN1 NM_000832.5 NM_00032.5:1290 Endogenous mRNA 20																20
GTSE1 NM_016426.5 NM_016426.5:305 Endogenous mRNA 136677a 1329.03 1313.51 1259.48 1231.55 1221.58 1217.73 1405.76 1221.58 1317.73 1405.76 1221.58 1317.73 1405.76 1221.58 1317.73 1405.76 1221.58 1317.73 1405.76 1221.58 1317.73 1405.76 1221.58 1317.73 1405.76 1221.58 1327.73 3707.71 3760.71 3760.71 3760.71 3760.71 3623.77 3623.77 3707.71 3760.71 3760.71 3623.77 3623.77 3707.71 3760.71 3760.71 3623.77 3623.77 3707.71 3760.71 3760.71 3623.77 3707.71 3760.71 3623.77 3707.71 3760.71 3623.72 3623.77 3707.71 3707.71 3760.71 362.72 320.72 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71 3707.71	RIN1			Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
CUSB NM_000181.3 NM_000181.31899 Endogenous mRNA 3517 95 3490.24 3422.11 3374.52 3543.87 3707.63 3760.71 3546.74 3623.07 3623.02 GYS2 NM_021957.38 NM_021957.38 NM_0021957.38 Endogenous mRNA 20 <																3065.01
GYS2 NM_021957.3 NM_021957.33 NM_021957.3304 Endogenous mRNA Q20																1269.49
CZMA NM. 006144.2 NM. 006144.2:155 Endogenous mRAA O20 20 <td></td> <td>3673.4 20</td>																3673.4 20
GZMB NM_004131.3 NM_00131.3:540 Endogenous mRNA 27.28 22.52 27.77 34.4 23.64 27.96 29.05 32.42 32.25 20 GZMH NM_003423.3 NM_003423.3:705 Endogenous mRNA 25.4 20.57 20.6 22.52 27.07 24.4 23.64 27.96 29.05 32.42 32.25 20.0 GZMH NM_003423.3 NM_004285.3 NM_004285.37250 Endogenous mRNA 181.54 175.3 201.6 20.52 175.62 20.62 20.52 120.6 20.0				-												20
H6PD NM_004285.3 NM_004285.3:7250 Endogenous mRNA 18154 175.3 2016 205.29 175.62 202.64 223.81 201 207.34 198.04 HAAO NM_012205.2 NM_012205.2:43 Endogenous mRNA 200 200 200 200 200 200 200 200 200 200 200 200	ZMB	NM_004131.3	NM_004131.3:540				22.52		34.4	23.64			32.42	32.25	20	36.24
HAAO NM_012205.2 NM_012205.2:A3 Endogenous mRNA 20																20
HACD2 NM_198402.2 NM_198402.2-S10 Endogenous mRNA 19007 1936.83 1931.1 1830.48 187.29 1912.1 1816.81 1753.14 1797.27 1 HADH NM_001184705.2 NM_001184705.2645 Endogenous mRNA 2752.28 2856.68 285.24 2751.34 2938.63 2293.63 279.76 2893.69 2882.22 HCC NM_002112.3.1170 Endogenous mRNA 20 </td <td></td> <td>218.54</td>																218.54
HADH NM_001184705.2 NM_001184705.2:K5 Endogenous mRNA 275.2:8 2856.67 2865.68 2815.24 2751.34 2957.25 2938.63 2729.76 2895.79 2832.22 HOC NM_002112.3 NM_002112.3:1170 Endogenous mRNA 200 20																20 1827.37
HDC NM_002112.3 NM_002112.3:1170 Endogenous mRNA Q2 Q2 <thq2< th=""> <thq2< th=""> Q2</thq2<></thq2<>																2832.2
HERCI NM_00392.3 NM_00392.3:300 Endgenous mRNA 911.47 1015.4 930.87 995.36 996.42 977.03 993.35 847.77 1002.4 HEXA NM_000520.4 NM_000520.4702 Endgenous mRNA 1165.44 1215.86 1217.96 1274.35 1266.64 1265.66 1127.68 1207.22 1 HEXB NM_000521.3790 Endgenous mRNA 2547.22 2514.86 2572.5 2201.2 2704.35 2815.1 2964.45 2769.96 2702.28 2739.99 2																20
HEXB NM_000521.3 NM_000521.3:950 Endogenous mRNA 2547.22 2514.86 2572.5 2501.2 2760.35 2815.1 2964.45 2709.96 2702.28 2739.99 2	IERC1	NM_003922.3	NM_003922.3:300	Endogenous	mRNA	911.47	1015.54	930.87	995.38	990.66	954.29	977.03	993.35	847.77	1002.4	889.52
																1225.57
HIF1A NM_001530.2 NM_001530.2:1985 Endogenous mRNA 6830.85 7048.06 7003.66 6975.41 7106.88 7299.91 7469.77 7149.24 7328.16 7381.69 8																2500.55 8016.69

	NNA 452706.2	NA 452706 2 720	e de company		20	24.40	20.57	20	22.77	22.2	20	20	20	20	20
HIF3A	NM_152796.2	NM_152796.2:720	Endogenous	mRNA	20	24.48	20.57	20	33.77	23.3	20	20	20	20	20
HJURP	NM_018410.3	NM_018410.3:1325	Endogenous	mRNA	2086.31	1890.06	1910.09	2059.55	1930.67	1871.29	1900.26	1810.33	1978.9	1913.92	2025.04
HK1	NM_000188.2	NM_000188.2:3355	Endogenous	mRNA	822.11	830.45	898.99	836.69	1125.75	1207.14	1157.8	1148.96	1034.37	1147.54	980.67
HK2	NM_000189.4	NM_000189.4:6880	Endogenous	mRNA	3263.04	3236.6	3321.31	3195.86	6601.42	7798.62	7442.87	6083.27	5442.56	6387.42	5218.54
HK3	NM_002115.1	NM_002115.1:495	Endogenous	mRNA	25.4	28.4	36	23.3	31.52	30.29	39.81	36.31	31.1	33.91	27.45
HLA-A	NM_002116.5	NM_002116.5:1000	Endogenous	mRNA	2262.21	2309.2	2197.06	2288.15	2768.23	2665.95	2620.12	2596.19	2604.37	2668.1	2400.61
HLA-C	NM_002117.4	NM_002117.4:895	Endogenous	mRNA	600.12	690.41	673.73	701.31	699.09	749.22	678.97	797.53	695.73	794.87	856.58
HLA-DQA1	NM_002122.3	NM_002122.3:258	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
HLA-DRB1	NM_002124.3	NM_002124.3:1016	Endogenous	mRNA	20	20	20	20	20	23.3	20	20	20	20	20
HLA-E	NM_005516.5	NM_005516.5:1287	Endogenous	mRNA	1460.8	1381.8	1330.99	1405.96	1785.45	1684.86	1644.17	1798.66	1777.33	1768.78	1696.68
HMOX1	NM_002133.2	NM_002133.2:781	Endogenous	mRNA	155.2	174.32	171.77	177.55	228.53	209.73	193.68	252.88	193.51	236.02	186.69
HNF4A	NM_178850.1	NM_178850.1:1116	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
HPD	NM_002150.2	NM_002150.2:288	Endogenous	mRNA	29.16	20	20.57	20	20	20	20	20	23.04	20	26.36
HPRT1	NM_000194.1	NM_000194.1:240	Endogenous	mRNA	3200.96	3255.21	3348.05	3295.73	3878.22	3754.24	3885.53	3842.41	3546.59	3840.05	3685.48
HRAS	NM_005343.2	NM_005343.2:396	Endogenous	mRNA	1549.22	1643.27	1682.77	1643.43	1818.09	1849.16	1803.42	1884.24	1694.39	1859.66	1668.13
HSD11B1	NM_181755.1	NM_181755.1:155	Endogenous	mRNA	20	34.28	22.63	23.3	22.52	24.47	21.52	20	20	33.91	20
HSD17B8	NM_014234.3	NM_014234.3:875	Endogenous	mRNA	110.99	119.48	113.14	112.08	110.32	132.83	132.35	121.9	124.4	119.37	101.03
HSF1	XM_011517006.1	XM_011517006.1:63	Endogenous	mRNA	1443.87	1608.02	1564.48	1513.59	1597.44	1659.23	1600.05	1585.98	1400.67	1585.67	1537.45
HSF2	NM_001135564.1	NM_001135564.1:615	Endogenous	mRNA	504.18	572.89	530.75	483.82	472.82	525.5	536.94	490.19	496.45	463.9	478.81
HSPA2	NM_021979.3	NM_021979.3:2095	Endogenous	mRNA	65.84	55.82	61.72	63.25	41.65	33.79	47.35	62.25	58.75	70.53	71.38
HSPA4	NM_002154.3	NM_002154.3:1225	Endogenous	mRNA	3667.51	3542.15	3508.51	3745.15	3582.15	3508.39	3908.13	3751.63	3795.39	3924.15	3727.21
HSPE1	NM_002157.2	NM_002157.2:607	Endogenous	mRNA	21460.45	20453.77	21014.05	21112.64	21139.4	20936.13	22171.52	21976.8	21403.95	21841.22	23180.32
ICOS	NM_012092.2	NM_012092.2:640	Endogenous	mRNA	20	20	20	22.19	20	20	20	20	20	20	20
IDH1	NM_005896.3	NM_005896.3:418	Endogenous	mRNA	2127.7	2083.96	2040.72	2032.92	1800.08	1774.58	1851.84	1786.98	1900.58	1856.95	1921.81
IDH2	NM_002168.2	NM_002168.2:944	Endogenous	mRNA	6196.86	6450.68	6492.45	6438.32	6781.54	7144.94	6762.82	6738.15	6600.19	6863.53	6491.32
IDH3A	NM_005530.2	NM_005530.2:1521	Endogenous	mRNA	2500.19	2349.35	2468.61	2464.58	2234.62	2260.47	2475.94	2260.32	2352.11	2293.72	2444.54
IDH3B	NM_001258384.1	NM_001258384.1:556	Endogenous	mRNA	3978.86	4209.05	4229.55	4110.23	4298.13	4050.2	4176.06	4371.5	4208.91	4485.71	4011.64
IDH3G	NM_004135.2	NM_004135.2:390		mRNA	1359.21	1438.6	1410.19	1380.43	1466.86	1531.06	1373.01	1429.07	1374.17	1437.81	1295.85
IDNK			Endogenous		93.12	89.12	85.37	94.32	75.43	85.06	76.4	63.54	78.33	70.53	94.44
IDNK IDO1	NM_001001551.3	NM_001001551.3:272	Endogenous	mRNA				94.32 78.79	90.06		104.37			69.18	
	NM_002164.5	NM_002164.5:52	Endogenous Endogenous	mRNA	61.14	51.9	76.12			80.4		94.67	67.96		82.36
IDO2 IFNG	NM_194294.2	NM_194294.2:1575		mRNA	20	20	20	20	20	20	20	20	20	20	23.06
	NM_000619.2	NM_000619.2:970	Endogenous	mRNA	27.28	28.4	26.74	23.3	20	50.1	35.51	46.68	41.47	20	36.24
IL10	NM_000572.2	NM_000572.2:230	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
IL2	NM_000586.2	NM_000586.2:300	Endogenous	mRNA	20	20.57	20	20	22.52	24.47	20	20	28.8	20	27.45
IL21R	NM_021798.2	NM_021798.2:2080	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
IL2RA	NM_000417.1	NM_000417.1:1000	Endogenous	mRNA	20	20	20	20	23.64	24.47	20	20	20	29.84	20
IL4	NM_000589.2	NM_000589.2:625	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
IL4I1	NM_152899.1	NM_152899.1:1452	Endogenous	mRNA	38.57	38.19	30.86	31.07	66.42	66.42	79.63	106.34	57.59	61.04	65.89
IL6	NM_000600.3	NM_000600.3:364	Endogenous	mRNA	299.12	283.02	303.43	297.39	717.1	582.59	612.26	737.88	837.41	798.94	923.57
IL7	NM_000880.3	NM_000880.3:516	Endogenous	mRNA	20	28.4	20	20	28.14	20	20	31.12	24.19	32.55	20
IMPDH1	NM_000883.3	NM_000883.3:862	Endogenous	mRNA	1110.88	1091.93	1184.93	1046.42	1164.03	1189.66	1228.82	1168.41	1109.25	1157.03	1069.62
IMPDH2	NM_000884.2	NM_000884.2:545	Endogenous	mRNA	2688.32	2699.94	2647.59	2656.56	2710.81	2730.04	2877.29	2749.21	2615.89	2891.91	2632.33
INMT	NM_006774.4	NM_006774.4:1025	Endogenous	mRNA	20	24.48	20	20	22.52	24.47	20	20	20	20	20
INSR	NM_000208.2	NM 000208.2:525	Endogenous	mRNA	352.74	337.86	325.03	329.57	338.85	408.98	384.14	316.42	285.66	373.02	379.97
IRF1	NM_002198.2	NM_002198.2:15	Endogenous	mRNA	201.29	239.93	236.58	236.36	383.88	435.78	379.84	395.52	374.36	406.93	333.85
IRF4	NM_002460.1	NM_002460.1:325	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
ІТСН	NM_001257138.1	NM_001257138.1:438	Endogenous	mRNA	8301.99	7982.32	7753.5	7712.23	8508.45	8727.27	9016.02	8080.34	8498.46	8450.55	8994.07
ITGA1	NM_181501.1	NM_181501.1:1875		mRNA	1088.31	1113.47	1073.85	1116.33	1356.53	1418.04	1425.73	1353.86	1268.2	1346.93	1311.22
			Endogenous												
ITGA11	NM_012211.3	NM_012211.3:650	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20 20	20
ITGAM	NM_000632.3	NM_000632.3:515	Endogenous	mRNA	20	20	20	20	20	20	20	20	20		20
ITGB1	NM_002211.3	NM_002211.3:355	Endogenous	mRNA	14973.87	15686.51	15012.24	15508.79	16289.65	16560.84	17276.67	17043.79	15860.03	17077.44	16816.38
ITGB2	NM_000211.2	NM_000211.2:520	Endogenous	mRNA	117.58	112.62	120.34	118.74	150.85	104.87	156.02	142.65	125.55	176.34	149.35
ITGB5	NM_002213.3	NM_002213.3:2560	Endogenous	mRNA	1604.71	1752.96	1694.08	1668.95	1854.12	1937.71	1913.17	1809.03	1787.69	1707.74	1748.3
ІТК	NM_005546.3	NM_005546.3:3430	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
JAK2	NM_004972.3	NM_004972.3:1464	Endogenous	mRNA	583.19	596.4	545.15	544.85	551.62	583.76	601.5	560.22	634.68	571.06	579.84
KANSL1	NM_001193465.1	NM_001193465.1:1838	Endogenous	mRNA	1659.27	1681.47	1580.94	1536.9	1892.39	1859.64	2005.71	1849.23	1870.63	1816.26	1746.1
KAT6A	NM_001099412.1	NM_001099412.1:550	Endogenous	mRNA	2307.36	2298.43	2260.84	2167.19	2285.28	2274.45	2410.3	2213.63	2293.36	2413.09	2386.34
KDM3B	NM_016604.3	NM_016604.3:4178	Endogenous	mRNA	1166.38	1160.48	1116.02	1116.33	1241.71	1237.43	1218.06	1234.55	1235.95	1341.51	1199.21
KEAP1	NM_012289.3	NM_012289.3:561	Endogenous	mRNA	589.77	582.69	579.1	583.69	575.26	580.26	578.9	595.23	517.19	553.42	524.93
KIF2C	NM_006845.3	NM_006845.3:1940	Endogenous	mRNA	1544.51	1493.44	1477.05	1492.51	1356.53	1387.74	1480.61	1465.38	1468.63	1466.3	1290.36
KIR3DL1/2	NM_001322168.1	NM_001322168.1:466	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
KIR3DL3	NM_153443.3	NM_153443.3:539	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
KLRB1	NM_002258.2	NM_002258.2:85	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
KLRD1	NM_007334.2	NM_007334.2:1252	Endogenous	mRNA	39.51	42.11	47.32	43.28	67.55	48.94	52.73	79.1	34.56	82.74	38.44
KLRK1	NM_007360.1	NM_007360.1:760	Endogenous	mRNA	20	27.42	20.57	26.63	23.64	20	20	27.23	20	46.12	20
KMO	NM_003679.3	NM 003679.3:595	Endogenous	mRNA	27.28	38.19	34.97	35.51	48.41	55.93	63.49	70.03	55.29	61.04	52.71
KMT2A	NM_005933.2	NM_005933.2:14000	Endogenous	mRNA	979.19	899.98	964.82	845.57	1030.06	1075.47	1023.3	998.53	1103.49	994.26	1083.9
KMT2D	NM_003482.3	NM_003482.3:6070	Endogenous	mRNA	803.3	799.11	920.59	752.36	788.03	809.81	828.54	844.21	791.33	899.31	858.77
KMT2E	NM 018682.3	NM 018682.3:1541	Endogenous	mRNA	1082.66	1033.17	1098.53	1107.45	1367.79	1492.61	1544.1	1355.15	1301.61	1418.82	1316.71
KPNA2	NM_002266.2	NM_002266.2:917	Endogenous	mRNA	12834.88	12515.52	12620.78	12621.42	11633.54	11711.32	12208.59	12044.64	11973.64	12119.69	12611.46
KRAS	NM_033360.2	NM_033360.2:267	Endogenous	mRNA	1027.17	1022.39	989.5	1004.25	1304.75	1233.94	1389.15	1322.73	1250.93	1363.21	12011.40
KRA3	NM_006121.2	NM_006121.2:690	Endogenous	mRNA	20	21.54	20	20	20	20	20	25.94	20	20	
KYAT1	NM_004059.4	NM_004059.4:1557	Endogenous	mRNA	140.15	173.34	151.2	155.35	159.86	152.64	137.73	159.51	120.95	132.93	130.68
KYAT3	NM_001008661.2			mRNA	1614.12	1/5.54	151.2	1609.03	159.80	1485.62	1546.25	159.51	1740.47	152.95	1698.88
KYATS	NM_001008661.2 NM_003937.2	NM_003937.2:738	Endogenous		2138.05	2079.06	2119.92	2113.93	4009.93	4143.42	4292.27	4052.49	3813.82	3802.07	3722.82
L2HGDH			Endogenous	mRNA mRNA	2138.05	2079.06	2119.92	2113.93				250.28		253.65	260.27
	NM_024884.2	NM_024884.2:1296	Endogenous						269.06	236.53	246.41		254.56		
LAG3	NM_002286.5	NM_002286.5:1736	Endogenous	mRNA	20	26.44	20	20	32.65	23.3	23.67	20	20	37.98	20
LAMA4	NM_001105209.1	NM_001105209.1:287	Endogenous	mRNA	723.34	796.18	842.41	844.46	773.39	727.08	803.79	884.41	686.51	813.86	748.96
1.4.4.40.0		NM_002291.2:3120	Endogenous	mRNA	4068.22	4196.32	4205.9	3815.06	4079.73	4414.9	4527.92	3970.79	4028.07	4207.64	3971.01
LAMB1	NM_002291.2	NIN 4 0000000 0		mRNA	4541.36	4570.42	4549.44	4561.87	5038.87	5129.17	5318.8	5043.24	4933.44	5154.43	5159.24
LAMC1	NM_002293.3	NM_002293.3:4915	Endogenous												
LAMC1 LAMTOR2	NM_002293.3 NM_001145264.1	NM_001145264.1:272	Endogenous	mRNA	1473.97	1582.56	1575.8	1571.3	1616.58	1510.09	1547.33	1697.51	1525.07	1732.16	
LAMC1 LAMTOR2 LAMTOR4	NM_002293.3 NM_001145264.1 NM_001008395.2	NM_001145264.1:272 NM_001008395.2:494	Endogenous Endogenous	mRNA	3078.68	3114.19	3077.54	3051.6	3244.42	3185.63	3329.22	3226.43	3151.5	3290.7	2848.67
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5	NM_002293.3 NM_001145264.1 NM_001008395.2 NM_006402.2	NM_001145264.1:272 NM_001008395.2:494 NM_006402.2:504	Endogenous Endogenous Endogenous	mRNA mRNA	3078.68 5431.19	3114.19 5178.56	3077.54 5355.86	3051.6 5446.28	3244.42 5655.79	3185.63 5694.28	3329.22 5729.84	3226.43 5593.08	3151.5 5318.16	3290.7 5669.87	2848.67 5788.49
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT	NM_002293.3 NM_001145264.1 NM_001008395.2 NM_006402.2 NM_001014987.1	NM_001145264.1:272 NM_001008395.2:494 NM_006402.2:504 NM_001014987.1:1290	Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA	3078.68 5431.19 266.2	3114.19 5178.56 239.93	3077.54 5355.86 242.75	3051.6 5446.28 316.26	3244.42 5655.79 251.04	3185.63 5694.28 267.99	3329.22 5729.84 267.93	3226.43 5593.08 263.25	3151.5 5318.16 251.11	3290.7 5669.87 297.06	2848.67 5788.49 262.46
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK	NM_002293.3 NM_001145264.1 NM_001008395.2 NM_006402.2 NM_001014987.1 NM_005356.2	NM_001145264.1:272 NM_001008395.2:494 NM_006402.2:504 NM_001014987.1:1290 NM_005356.2:1260	Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84	3114.19 5178.56 239.93 76.39	3077.54 5355.86 242.75 52.46	3051.6 5446.28 316.26 73.24	3244.42 5655.79 251.04 68.67	3185.63 5694.28 267.99 50.1	3329.22 5729.84 267.93 49.5	3226.43 5593.08 263.25 71.32	3151.5 5318.16 251.11 65.66	3290.7 5669.87 297.06 84.1	2848.67 5788.49 262.46 70.28
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK LDHA	NM_002293.3 NM_001145264.1 NM_001008395.2 NM_006402.2 NM_001014987.1 NM_005356.2 NM_001165414.1	NM_001145264.1:272 NM_001008395.2:494 NM_006402.2:504 NM_001014987.1:1290 NM_005356.2:1260 NM_001165414.1:1690	Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA	3078.68 5431.19 266.2	3114.19 5178.56 239.93 76.39 38610.08	3077.54 5355.86 242.75 52.46 37841.75	3051.6 5446.28 316.26 73.24 36425.02	3244.42 5655.79 251.04	3185.63 5694.28 267.99	3329.22 5729.84 267.93 49.5 79270.84	3226.43 5593.08 263.25 71.32 68302.26	3151.5 5318.16 251.11	3290.7 5669.87 297.06 84.1 69777.43	2848.67 5788.49 262.46 70.28 55468.92
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK	NM_002293.3 NM_001145264.1 NM_001008395.2 NM_006402.2 NM_001014987.1 NM_005356.2 NM_001165414.1	NM_001145264.1:272 NM_001008395.2:494 NM_006402.2:504 NM_001014987.1:1290 NM_005356.2:1260 NM_001165414.1:1690 NM_001174097.1:586	Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84	3114.19 5178.56 239.93 76.39	3077.54 5355.86 242.75 52.46	3051.6 5446.28 316.26 73.24	3244.42 5655.79 251.04 68.67	3185.63 5694.28 267.99 50.1	3329.22 5729.84 267.93 49.5	3226.43 5593.08 263.25 71.32	3151.5 5318.16 251.11 65.66	3290.7 5669.87 297.06 84.1	2848.67 5788.49 262.46 70.28 55468.92
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK LDHA	NM_002293.3 NM_001145264.1 NM_001008395.2 NM_006402.2 NM_001014987.1 NM_005356.2 NM_001165414.1	NM_001145264.1:272 NM_001008395.2:494 NM_006402.2:504 NM_001014987.1:1290 NM_005356.2:1260 NM_001165414.1:1690	Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14	3114.19 5178.56 239.93 76.39 38610.08	3077.54 5355.86 242.75 52.46 37841.75	3051.6 5446.28 316.26 73.24 36425.02	3244.42 5655.79 251.04 68.67 68967.04	3185.63 5694.28 267.99 50.1 77132.07	3329.22 5729.84 267.93 49.5 79270.84	3226.43 5593.08 263.25 71.32 68302.26	3151.5 5318.16 251.11 65.66 60180.33	3290.7 5669.87 297.06 84.1 69777.43	2848.67 5788.49 262.46 70.28 55468.92
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHB	NM_002293.3 NM_001145264.1 NM_001008395.2 NM_006402.2 NM_001014987.1 NM_001165414.1 NM_001174097.1 NM_002301.2	NM_001145264.1:272 NM_001008395.2:494 NM_006402.2:504 NM_001014987.11290 NM_0015545.2:2660 NM_001165414.1:1690 NM_001174097.1:586 NM_002301.2:725	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20	3077.54 5355.86 242.75 52.46 37841.75 29476.25 20	3051.6 5446.28 316.26 73.24 36425.02 29978.93 20	3244.42 5655.79 251.04 68.67 68967.04 30555.2 25.89	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75	3226.43 5593.08 263.25 71.32 68302.26 31541.97 20	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHB LDHC	NM_002293.3 NM_001145264.1 NM_001008395.2 NM_006402.2 NM_00114987.1 NM_005356.2 NM_001165414.1 NM_001174097.1	NM_001145264.1:272 NM_001008395.2:494 NM_006402.2:504 NM_001014987.11290 NM_0015545.2:2600 NM_001165414.1:1690 NM_001174097.1:586 NM_002301.2:725	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18	3114.19 5178.56 239.93 76.39 38610.08 29368.38	3077.54 5355.86 242.75 52.46 37841.75 29476.25	3051.6 5446.28 316.26 73.24 36425.02 29978.93	3244.42 5655.79 251.04 68.67 68967.04 30555.2	3185.63 5694.28 267.99 50.1 77132.07 31451.97	3329.22 5729.84 267.93 49.5 79270.84 31836.38	3226.43 5593.08 263.25 71.32 68302.26 31541.97	3151.5 5318.16 251.11 65.66 60180.33 30262.95	3290.7 5669.87 297.06 84.1 69777.43 31237.21	2848.67 5788.49 262.46 70.28 55468.92 32421.48
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHB LDHC LEPR LTA	NM_002293.3 NM_001145264.1 NM_00108395.2 NM_006002.2 NM_001014987.1 NM_001165414.1 NM_001165414.1 NM_001201.2 NM_001003679.1 NM_000595.2	NM 001145264.1:272 NM 001008395.2:494 NM 00602.2:504 NM 001014987.1:1290 NM 001015414.1:1690 NM 001174097.1:586 NM 00103679.1:2000 NM 001003679.1:2000 NM 00100355.2:885	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20 114.58 20	3077.54 5355.86 242.75 52.46 37841.75 29476.25 20 123.43 20	3051.6 5446.28 316.26 73.24 36425.02 29978.93 20 109.86 20	3244.42 5655.79 251.04 68967.04 30555.2 25.89 127.21 20	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20 151.47 20	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75 144.19 20	3226.43 5593.08 263.25 71.32 68302.26 31541.97 20 127.09 20	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1 130.16 20	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 130.22 20	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85 143.86 20
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHB LDHC LEPR LTA LTA4H	NM_002293.3 NM_001145264.1 NM_00104395.2 NM_006402.2 NM_00114987.1 NM_00114987.1 NM_00114987.1 NM_00114987.1 NM_00114987.1 NM_00114987.1 NM_001014987.1 NM_001014987.1 NM_0010174097.1 NM_000301.2 NM_00003679.1 NM_0001256643.1	NM_001145264.1:272 NM_001003355.2:494 NM_001003355.2:494 NM_001014987.1:1290 NM_003556.2:1260 NM_001165414.1:690 NM_001103679.1:200 NM_002301.2:725 NM_010103679.1:200 NM_00256643.1:1140	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20 3850.93	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20 114.58 20 3903.51	3077.54 5355.86 242.75 52.46 37841.75 29476.25 20 123.43 20 3868.52	3051.6 5446.28 316.26 73.24 36425.02 29978.93 20 109.86 20 3965.97	3244.42 5655.79 251.04 68967.04 30555.2 25.89 127.21 20 4178.8	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20 151.47 20 4180.7	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75 144.19 20 4284.74	3226.43 5593.08 263.25 71.32 68302.26 31541.97 20 127.09 20 4267.76	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1 130.16 20 3969.33	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 130.22 20 4408.39	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85 143.86 20 4030.31
LAMC1 LAMTOR2 LAMTOR4 LAT LCK LDHA LDHB LDHC LEPR LTA LTAH LTB	NM_002293.3 NM_00108395.2 NM_001008395.2 NM_00104987.1 NM_005602.2 NM_00114987.1 NM_00155414.1 NM_001165414.1 NM_00103679.1 NM_000355.2 NM_0003564.1 NM_00155643.1 NM_002341.1	NM_001145264.1:772 NM_00140825.2:494 NM_001014987.1:1290 NM_0015414.1:1690 NM_00115414.1:1690 NM_00127017.1:586 NM_002301.2:725 NM_00103679.1:2000 NM_000595.2:885 NM_001256643.1:1140 NM_00234.1:330	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20 3850.93 20	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20 114.58 20 3903.51 20	3077.54 5355.86 242.75 52.46 37841.75 29476.25 20 123.43 20 3868.52 20	3051.6 5446.28 316.26 73.24 36425.02 29978.93 20 109.86 20 3965.97 20	3244.42 5655.79 251.04 68967.04 30555.2 25.89 127.21 20 4178.8 20	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20 151.47 20 4180.7 20	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75 144.19 20 4284.74 20	3226.43 5593.08 263.25 71.32 68302.26 31541.97 20 127.09 20 4267.76 27.23	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1 130.16 20 3969.33 20	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 130.22 20 4408.39 31.2	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85 143.86 20 4030.31 20
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHB LDHC LEPR LTA LTAH LTAH LTAH LTAS	NM_002293.3 NM_01145264.1 NM_01008395.2 NM_001014987.1 NM_001014987.1 NM_00115414.1 NM_001174097.1 NM_002301.2 NM_00103679.1 NM_0003679.1 NM_01256643.1 NM_0125667.1	NM_001145264.1:272 NM_001008355.2:494 NM_005402.2:504 NM_003556.2:1260 NM_0015356.2:1260 NM_00115414.1:1690 NM_001174097.1:586 NM_002301.2:725 NM_001256643.1:1140 NM_002552.2885 NM_001256643.1:1140	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20 3850.93 20 20	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20 114.58 20 3903.51 20 20 20	3077.54 5355.86 242.75 52.46 37841.75 29476.25 20 123.43 20 3868.52 20 27.77	3051.6 5446.28 316.26 73.24 36425.02 29978.93 20 109.86 20 3965.97 20 20 20	3244.42 5655.79 251.04 68967.04 30555.2 25.89 127.21 20 4178.8 20 30.4	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20 151.47 20 4180.7 20 26.8	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75 144.19 20 4284.74 20 20 20	3226.43 5593.08 263.25 71.32 68302.26 31541.97 20 127.09 20 4267.76 27.23 28.53	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1 130.16 20 3969.33 20 27.64	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 130.22 20 4408.39 31.2 31.2	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85 143.86 20 4030.31 20 24.16
LAMC1 LAMTOR2 LAMTOR4 LAT LCK LDHA LDHB LDHC LEPR LTA LTAH LTAH LTC4S LY86	NM 002293.3 NM 01145264.1 NM 001008395.2 NM 006402.2 NM 00104987.1 NM 00155642 NM 001165414.1 NM 00103679.1 NM 001003679.1 NM 001003679.1 NM 00125643.1 NM 002341.1 NM 0125643.1	NM.001145264.1272 NM_00140325.2494 NM_006402.2504 NM_001014987.11290 NM_0015414.1.1690 NM_001174097.1586 NM_001174097.1586 NM_00125643.11200 NM_000555.2885 NM_00125643.11140 NM_002241.1330 NM_145867.131 NM_04271.3255	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20 3850.93 20 20 20	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20 114.58 20 3903.51 20 20 20 20	3077.54 5355.86 242.75 52.46 37841.75 29476.25 20 123.43 20 3868.52 20 27.77 20	3051.6 5446.28 316.26 73.24 36425.02 29978.93 20 109.86 20 3965.97 20 20 20	3244.42 5655.79 251.04 68967.04 30555.2 25.89 127.21 20 4178.8 20 30.4 30.4 20	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20 151.47 20 4180.7 20 26.8 20	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75 144.19 20 4284.74 20 20 20	3226.43 5593.08 263.25 71.32 68302.26 31541.97 20 127.09 20 4267.76 27.23 28.53 20	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1 130.16 20 3969.33 20 27.64 20	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 130.22 20 4408.39 31.2 31.2 31.2 20	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85 143.86 20 4030.31 20 20 24.16 20
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHA LDHC LEPR LTA4 LTA4H LTA4H LTA4H LTC45 LY86 LY96	NM_002293.3 NM_01145264.1 NM_0100395.2 NM_0014587.1 NM_005402.2 NM_01165414.1 NM_001155414.1 NM_002302 NM_0020552.2 NM_000555.2 NM_0025543.1 NM_002341.1 NM_0125643.1 NM_015364.2	NM_001145264.1:72 NM_00140325.2:494 NM_001014987.1:1200 NM_0015414.1:1690 NM_00115414.1:1690 NM_001174097.1:586 NM_002301.2:725 NM_00103679.1:2000 NM_000395.2:885 NM_001256643.1:1140 NM_002341.1:330 NM_104567.1:31 NM_002341.2:55	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20 3850.93 20 20 20 20 20.69	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20 114.58 20 3903.51 20 20 20 20 20	3077.54 5355.86 242.75 52.46 37841.75 29476.25 20 123.43 20 3868.52 20 27.77 20 20	3051.6 5446.28 316.26 73.24 36425.02 29978.93 20 109.86 20 3965.97 20 20 20 20 20	3244.42 5655.79 251.04 68967.04 30555.2 25.89 127.21 20 4178.8 20 30.4 20 30.4	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20 151.47 20 4180.7 20 26.8 20 20	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75 144.19 20 4284.74 20 20 20 20 20	3226.43 5593.08 263.25 71.32 68302.26 31541.97 20 127.09 20 4267.76 27.23 28.53 28.53 20 20	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1 130.16 20 3969.33 20 27.64 20 20	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 130.22 20 4408.39 31.2 31.2 31.2 20 20	2848.67 5788.49 262.46 70.28 32421.48 31.85 143.86 20 4030.31 20 24.16 20 24.16 20
LAMC1 LAMTOR2 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHA LDHC LEPR LTAL LTAL LTAL LTAL LTAS LTAS LY86 LV96 MAP1LC3B	NM 002293.3 NM 001145264.1 NM 001008395.2 NM 006402.2 NM 00104987.1 NM 0013654.2 NM 001165414.1 NM 0012301.2 NM 00103679.1 NM 001256643.1 NM 002341.1 NM 04271.3 NM 04271.3 NM 0567.1	NM_001145264.1272 NM_00103395.2:494 NM_001014987.1:1290 NM_00114987.1:1290 NM_0011456114.1:1690 NM_001174097.1:586 NM_001174097.1:586 NM_001256643.1:1140 NM_002541.1:310 NM_002541.1:310 NM_01256643.1:1140 NM_01256643.1:311 NM_04271.3:255 NM_015364.2:360 NM_022814.4:1685	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20 3850.93 20 20 20 20 20 20 20 20 20.69	3114.19 5178.56 239.93 38610.08 29368.38 20 114.58 20 3903.51 20 20 20 20 20 20 20	3077.54 5355.86 242.75 52.46 37841.75 29476.25 20 123.43 20 3868.52 20 27.77 20 20 29.20 20 898.99	3051.6 5446.28 316.26 73.24 36425.02 29978.93 200 3965.97 200 200 200 200 200 200	3244.42 5655.79 251.04 68967.04 30555.2 25.89 127.21 20 4178.8 20 30.4 20 30.4 20 20 20	3185.63 5694.28 267.99 50.1 77132.07 20 151.47 20 4180.7 20 26.8 20 20 1134.89	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75 144.19 20 4284.74 20 20 20 20 20 20 20 20 20	3226.43 5593.08 263.25 31541.97 20 127.09 20 4267.76 27.23 28.53 20 20 20 20	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1 130.16 20 3969.33 20 27.64 20 27.64 20 20 20 1057.41	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 130.22 20 4408.39 31.2 31.2 200 200 200	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85 143.86 20 4030.31 20 24.16 20 24.16 20 20 1131.12
LAMC1 LAMTOR4 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHB LDHC LDHB LDHC LEPR LTA LTA LTA LTA LTA LTAS LY86 LY96 LY96 MAP1LC3B MAP2K1	NM 002293.3 NM 001145264.1 NM 001008395.2 NM 006402.2 NM 00114587.1 NM 0013656.2 NM 001165414.1 NM 001165643.1 NM 001003679.1 NM 00125643.1 NM 002341.1 NM 0125643.1 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012365.2	NM. 001145264.1:772 NM_00140325.2:494 NM_001014987.1:1290 NM_001542.2:504 NM_001154947.1:1590 NM_001174097.1:586 NM_0012765.2:725 NM_002595.2:885 NM_00125663.1:1140 NM_002241.1:330 NM_145867.1:31 NM_002241.1:325 NM_002241.2:55 NM_002341.2:55 NM_002251.2:52.970	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20 3850.93 20 20 20 20 20 20 20.69 920.88 2156.86	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20 114.58 20 3903.51 20 20 20 20 20 20 20 20 20 20 20 20 20	3077.54 5355.86 242.75 52.46 37841.75 20476.25 200 123.43 200 38668.52 200 27.77 200 200 898.99 2175.46	3051.6 5446.28 316.26 73.34 36425.02 29978.93 200 3965.97 200 200 200 200 977.62 2187.17	3244.42 5655.79 251.04 68967.04 30555.2 25.89 127.21 20 4178.8 20 30.4 20 20 20 1072.84 3214.03	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20 4180.7 20 26.8 20 20 1134.89 3438.48	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75 144.19 20 20 20 20 20 20 20 1136.28 3504.62	3226.43 5593.08 263.25 71.32 663302.26 31541.97 20 127.09 20 4267.76 27.23 28.53 20 20 20 1095.79 3095.45	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1 130.16 20 3969.33 20 27.64 20 20 27.64 20 20 00 1057.41	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 4408.39 31.2 31.2 20 20 20 1132.62 3420.91	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85 143.86 20 4030.31 20 20 24.16 20 20 1131.12 2744.34
LAMC1 LAMTOR4 LAMTOR4 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHA LDHC LEPR LTA LTAH LTAH LTAH LTA4H LTA4H LT45 MAP1C3B MAP1C3B MAP2K1 MAP2K1	NM 002293.3 NM 001145264.1 NM 001008395.2 NM 006402.2 NM 00114987.1 NM 00115471.1 NM 00115471.1 NM 00115471.1 NM 002301.2 NM 00115417.1 NM 002301.2 NM 0015647.1 NM 00255.2 NM 00125642.1 NM 012564.2 NM 022818.4 NM 022818.4 NM 02262.3	NM 001145264.1:72 NM 001145264.1:72 NM 006402.2:504 NM 001014987.1:1290 NM 0013654.1:1290 NM 001174097.1:586 NM 001274097.1:586 NM 00103679.1:200 NM 000395.2:885 NM 00125643.1:140 NM 0025643.1:140 NM 0025643.1:140 NM 0025643.1:140 NM 0025643.1:140 NM 00255.2:97 NM 00255.2:97 NM 002562.3:375	Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20 3850.93 20 20 20 20 20 20 20 20 20 20 20 20 20	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20 3933.51 20 20 20 20 20 20 20 20 20 20 20 20 20	3077.54 5355.86 242.75 52.46 37841.75 29476.25 20 3868.52 20 3868.52 20 20 20 20 20 20 20 20 20 20 20 20 20	3051.6 5446.28 316.26 73.24 36425.02 29978.93 20 199.86 20 3965.97 20 20 20 20 20 20 20 20 20 20 20 20 20	3244.42 5655.79 251.04 68.67 68967.04 30555.2 25.89 127.21 20 4178.8 20 30.4 20 20 1072.84 3214.03 1197.8	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20 4180.7 20 4180.7 20 26.8 20 20 1134.89 3438.48 1119.75	3329.22 5729.84 267.93 49.55 79270.84 31836.38 24.75 144.19 20 4284.74 20 20 20 20 20 20 20 20 20 20 20 20 20	322643 5593.08 263.25 71.32 68302.26 31541.97 20 4267.76 27.23 20 20 20 1095.79 3095.45 1327.92	3151.5 5318.16 251.11 55.66 60180.33 30262.95 31.1 130.16 20 3969.33 20 27.64 20 20 20 1057.41 2926.89 1109.25	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 4408.39 31.2 20 20 20 1132.62 312 20 20 1132.62 3420.91 11225.04	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85 143.86 20 4030.31 20 4030.31 20 20 4030.31 20 20 1131.12 20 20 1131.12
LAMC1 LAMTOR4 LAMTOR4 LAMTOR5 LAT LCK LDHA LDHB LDHC LDHB LDHC LEPR LTA LTA LTA LTA LTA LTAS LY86 LY96 LY96 MAP1LC3B MAP2K1	NM 002293.3 NM 001145264.1 NM 001008395.2 NM 006402.2 NM 00114587.1 NM 0013656.2 NM 001165414.1 NM 001165643.1 NM 001003679.1 NM 00125643.1 NM 002341.1 NM 0125643.1 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 0123643.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012364.2 NM 012365.2	NM. 001145264.1:772 NM_00140325.2:494 NM_001014987.1:1290 NM_001542.2:504 NM_001154947.1:1590 NM_001174097.1:586 NM_0012765.2:725 NM_002595.2:885 NM_00125663.1:1140 NM_002241.1:330 NM_145867.1:31 NM_002241.1:325 NM_002241.2:55 NM_002341.2:55 NM_002251.2:52.970	Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA	3078.68 5431.19 266.2 65.84 37752.14 29798.18 21.63 104.41 20 3850.93 20 20 20 20 20 20 20.69 920.88 2156.86	3114.19 5178.56 239.93 76.39 38610.08 29368.38 20 114.58 20 3903.51 20 20 20 20 20 20 20 20 20 20 20 20 20	3077.54 5355.86 242.75 52.46 37841.75 20476.25 200 123.43 200 38668.52 200 27.77 200 200 898.99 2175.46	3051.6 5446.28 316.26 73.34 36425.02 29978.93 200 3965.97 200 200 200 200 977.62 2187.17	3244.42 5655.79 251.04 68967.04 30555.2 25.89 127.21 20 4178.8 20 30.4 20 20 20 1072.84 3214.03	3185.63 5694.28 267.99 50.1 77132.07 31451.97 20 4180.7 20 26.8 20 20 1134.89 3438.48	3329.22 5729.84 267.93 49.5 79270.84 31836.38 24.75 144.19 20 20 20 20 20 20 20 1136.28 3504.62	3226.43 5593.08 263.25 71.32 66302.26 31541.97 20 127.09 20 4267.76 27.23 28.53 20 20 20 1095.79 3095.45	3151.5 5318.16 251.11 65.66 60180.33 30262.95 31.1 130.16 20 3969.33 20 27.64 20 20 27.64 20 20 00 1057.41	3290.7 5669.87 297.06 84.1 69777.43 31237.21 20 4408.39 31.2 31.2 20 20 20 1132.62 3420.91	2848.67 5788.49 262.46 70.28 55468.92 32421.48 31.85 143.86 20 4030.31 20 20 24.16 20 20 1131.12 2744.34

MAPK1 MAPK8	NM_138957.2 NM 002750.2	NM_138957.2:430 NM 002750.2:945	Endogenous Endogenous	mRNA mRNA	4643.88 889.83	4698.71 823.6	4544.3 847.56	4727.21 845.57	4876.76 856.7	5112.85 844.76	5032.57 943.67	4925.23 881.82	4949.56 881.18	5052.7 908.81	5128.49 931.25
MAPK8IP1	NM_005456.2	NM_005456.2:259	Endogenous	mRNA	20	20.57	20	845.57	20	20	943.67	28.53	20	28.49	21.96
MAPKAP1	NM_001006617.1	NM_001006617.1:1188	Endogenous	mRNA	3080.56	2974.15	3084.74	3039.39	3083.44	3225.25	3229.15	3136.95	3090.45	3088.59	3268.17
MAPT	NM_016834.3	NM_016834.3:1205	Endogenous	mRNA	54.56	63.65	54.52	63.25	56.29	72.24	55.95	72.62	61.05	71.89	50.52
MAT1A MAT2A	NM_000429.2 NM_005911.4	NM_000429.2:2275 NM_005911.4:805	Endogenous Endogenous	mRNA mRNA	31.98 12843.35	43.09 13351.85	30.86 13125.81	36.62 13447.02	31.52 11677.44	39.62 10419.13	36.58 11236.94	45.39 12113.37	32.25 11810.07	36.62 12670.4	28.55 11792.22
MCAT	NM_014507.3	NM_014507.3:378	Endogenous	mRNA	12843.33	187.05	15125.81	168.67	172.24	149.14	133.43	133.57	126.71	12070.4	126.29
ME2	NM_002396.3	NM_002396.3:610	Endogenous	mRNA	521.11	535.68	488.58	517.11	518.97	534.82	556.31	530.39	552.9	548	519.44
MGST3	NM_004528.2	NM_004528.2:195	Endogenous	mRNA	4983.45	4657.57	4819.96	4984.65	5117.68	5402.99	5337.09	5004.34	5296.27	5116.45	5327.26
MKI67 MLST8	NM_002417.2 NM_001199173.1	NM_002417.2:4020 NM_001199173.1:810	Endogenous Endogenous	mRNA mRNA	1196.48 374.37	1289.74 330.03	1359.79 367.21	1275.01 351.77	1283.36 314.09	1250.25 342.57	1355.79 323.88	1335.7 341.06	1206 340.95	1329.3 310.62	1166.26 328.35
MLYCD	NM_012213.2	NM_012213.2:1530	Endogenous	mRNA	250.21	264.41	267.43	280.75	231.91	217.89	257.17	221.75	260.32	241.44	241.6
MPC1	NM_016098.2	NM_016098.2:210	Endogenous	mRNA	786.37	802.05	788.93	788.98	719.36	667.65	681.12	692.49	753.32	727.05	729.19
MPC2		NM_001143674.1:285	Endogenous	mRNA	1094.89	1007.7	1073.85	1039.76	991.79	1030.03	1092.17	976.49	1085.06	1032.24	1053.15
MPO MRAS	NM_000250.1 NM_001085049.2	NM_000250.1:545 NM_001085049.2:1700	Endogenous Endogenous	mRNA mRNA	20 51.73	20 43.09	20 42.17	20 56.59	20 34.9	20 38.45	20	20 54.47	20 36.86	27.13 33.91	20 42.83
MS4A1	NM_152866.2	NM_152866.2:620	Endogenous	mRNA	20.69	20	20	23.3	20	20		20	20	33.91	20
MS4A2	NM_000139.3	NM_000139.3:126	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
MS4A4A	NM_024021.2	NM_024021.2:800	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
MSH2 MSRB2	NM_000251.1 NM_012228.3	NM_000251.1:2105 NM_012228.3:385	Endogenous Endogenous	mRNA mRNA	2271.62 484.42	2354.25 447.54	2364.72 481.38	2330.31 479.38	2388.85 526.85	2517.98 410.15	2697.6 487.44	2441.87 486.3	2339.44 444.62	2585.35 496.45	2502.75 444.76
MTF1	NM_005955.2	NM_005955.2:210	Endogenous	mRNA	895.48	925.44	857.84	895.51	843.19	897.2	855.44	833.84	881.18	883.04	897.21
MTOR	NM_004958.3	NM_004958.3:1865	Endogenous	mRNA	1186.13	1194.75	1131.45	1185.13	1165.15	1103.43	1088.94	1104.87	1129.98	1040.38	1193.72
MYB MYBL1		NM_001130173.1:183	Endogenous	mRNA	208.82	243.85	231.43	234.14	248.79	217.89	290.53	197.11	226.92	264.5	209.75
MYBL1 MYBL2	NM_001080416.3 NM_002466.2	NM_001080416.3:1030 NM_002466.2:445	Endogenous Endogenous	mRNA mRNA	105.35 4798.15	121.43 4854.42	117.26 4754.13	113.19 4616.24	118.2 5045.63	92.05 5026.63	128.05 5098.21	124.49 5069.18	119.79 5153.44	112.58 5149	119.7 4858.34
MYC	NM_002467.3	NM_002467.3:1610	Endogenous	mRNA	7145.02	7261.55	7302.98	7484.75	7466	7602.86	7406.29	7975.3	7148.47	7990.72	7875.03
MYCL	NM_001033081.2	NM_001033081.2:568	Endogenous	mRNA	136.39	129.27	133.72	134.27	118.2	116.52	135.58	125.79	125.55	124.79	124.09
MYCN	NM_005378.4	NM_005378.4:1545	Endogenous	mRNA	51.73	42.11	38.06	39.95	31.52	41.95	30.13	37.61	34.56	31.2	29.65 1598.95
MYD88 NAALAD2	NM_002468.3 NM_005467.3	NM_002468.3:2145 NM_005467.3:830	Endogenous Endogenous	mRNA mRNA	1496.54 96.88	1525.76 94.01	1505.85 79.2	1599.04 88.77	1455.6 79.93	1526.4 95.55	1529.03 94.69	1521.14 77.81	1584.97 85.24	1562.61 94.95	96.64
NADK	NM_001198993.1	-	Endogenous	mRNA	693.24	707.06	792.01	750.14	765.51	734.07	689.73	673.04	645.04	693.14	717.11
NADK2	NM_153013.3	NM_153013.3:315	Endogenous	mRNA	608.59	641.44	673.73	653.6	583.14	565.12	576.75	578.37	587.45	590.05	611.68
NAGLU NAT8L	NM_000263.3 NM_178557.3	NM_000263.3:696 NM_178557.3:3021	Endogenous	mRNA mRNA	166.49 20	210.55 20	237.6 20	223.04 20	189.13 20	160.8 20	149.57 20	182.85 20	178.54 20	155.99 20	168.02 20
NATEL	NM_178557.3 NM_015341.3	NM_178557.3:3021 NM_015341.3:1550	Endogenous Endogenous	mRNA	1368.61	1248.61	1324.82	1290.55	1283.36	1332.98	1371.93	1185.27	1326.95	1170.6	1414.45
NCOA2	NM_006540.2	NM_006540.2:1045	Endogenous	mRNA	517.35	535.68	496.81	504.9	586.52	568.61	576.75	575.78	612.79	625.31	550.19
NCOR1	NM_006311.3	NM_006311.3:1390	Endogenous	mRNA	1340.4	1472.87	1440.02	1367.12	1482.62	1476.3	1581.76	1535.41	1408.73	1563.96	1463.87
NCR1 NDC1	NM_004829.5 NM_001168551.1	NM_004829.5:602 NM_001168551.1:1845	Endogenous Endogenous	mRNA mRNA	33.86 255.85	35.25 266.37	32.91 271.55	33.29 253.01	30.4 284.82	32.63 313.44	35.51 288.37	29.83 293.08	28.8 294.88	35.27 305.2	39.53 321.77
NDUFA1	NM_004541.3	NM_004541.3:240	Endogenous	mRNA	10457.91	10039.84	10211.82	10540.79	11107.81	11071.63	11278.9	11086.31	10719.25	11236.66	11392.49
NDUFA11	NM_175614.4	NM_175614.4:115	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
NDUFA12	NM_018838.3	NM_018838.3:315	Endogenous	mRNA	9124.1	9078.16	9193.52	9368.97	9214.29	9020.9	9586.32	9632.6	9171.15	9608.94	9773.78
NDUFA13 NDUFA2	NM_015965.6 NM_001185012.1	NM_015965.6:167 NM_001185012.1:116	Endogenous Endogenous	mRNA mRNA	6989.81 425.16	7464.26 448.52	7316.35 441.26	7626.78 469.39	7730.55 472.82	7128.63 523.17	7310.52	7680.92 474.63	7176.12 449.23	8091.1 496.45	6730.73 481
NDUFA3	NM_004542.3	NM_004542.3:75	Endogenous	mRNA	2875.5	2879.16	2915.02	2920.66	2903.32	3104.07	2863.31	2950.21	2948.77	2929.89	2966.18
NDUFA4	NM_002489.2	NM_002489.2:35	Endogenous	mRNA	7968.07	7636.62	7960.24	8470.14	8557.98	8423.16	7894.8	8302.09	7795.82	8420.71	8895.23
NDUFA6	NM_002490.3	NM_002490.3:430	Endogenous	mRNA	6460.24	6169.62	6417.36	6340.67	6565.39	6530.89	6840.3	6638.3	6666.99	6658.71	6643.97
NDUFA7 NDUFB1	NM_005001.2 NM_004545.3	NM_005001.2:373 NM_004545.3:270	Endogenous Endogenous	mRNA mRNA	2162.51 6365.23	2163.28 5989.43	2132.26 6136.56	2333.64 6393.94	2217.73 6506.86	2194.05 6643.91	2242.44 6619.71	2268.1 6613.66	2215.04 6457.35	2197.42 6542.06	2160.11 6737.32
NDUFB10	NM_004548.2	NM_004548.2:155	Endogenous	mRNA	1784.37	2098.65	1966.66	2081.75	2068.01	1970.34	1970.2	2177.32	1864.87	2205.55	1752.69
NDUFB11	NM_001135998.1	NM_001135998.1:255	Endogenous	mRNA	1979.08	1990.93	1983.12	2145	2248.13	2041.41	2124.08	2095.62	2121.74	2086.19	2041.51
NDUFB2	NM_004546.2	NM_004546.2:230	Endogenous	mRNA	4375.81	4366.72	4271.73	4298.87	4613.34	4599	4477.34	4427.26	4560.23	4415.18	4595.87
NDUFB4 NDUFB7	NM_004547.4 NM_004146.5	NM_004547.4:254 NM_004146.5:239	Endogenous Endogenous	mRNA mRNA	11910.24 3385.32	11541.11 3659.66	11480.07 3682.35	11864.62 3838.36	11970.14 3919.87	11754.44 3679.67	12346.32 3685.39	11922.74 3799.61	12020.86 3668.69	12011.18 4142.53	11792.22 3444.98
NDUFB8	NM_001284367.1	NM_001284367.1:204	Endogenous	mRNA	2360.04	2441.41	2368.84	2495.66	2531.82	2473.7	2515.75	2523.57	2421.22	2596.21	2344.61
NDUFS7	NM_024407.4	NM_024407.4:376	Endogenous	mRNA	1032.81	1038.06	1059.45	1118.55	1085.23	1090.62	1012.54	1085.42	1018.25	1066.15	999.34
NDUFS8	NM_002496.3	NM_002496.3:190	Endogenous	mRNA	4910.08	5105.12	4884.76 4433.21	5042.35 4604.03	5068.14 4632.48	4908.94 4746.98	5124.04 4646.28	5052.32 4645.12	5175.33	5319.92	5047.22
NEDD8 NEU1	NM_006156.2 NM_000434.3	NM_006156.2:330 NM_000434.3:1508	Endogenous Endogenous	mRNA mRNA	4373.92 609.53	4428.42 730.56	687.1	721.29	745.25	718.92	766.13	697.68	4324.1 700.33	4626.78 744.68	4520.1 703.93
NFAT5	NM_173214.1	NM_173214.1:3290	Endogenous	mRNA	226.69	245.81	244.8	201.96	319.71	283.14	310.97	317.72	358.23	310.62	285.53
NFE2L2	NM_006164.3	NM_006164.3:995	Endogenous	mRNA	3285.62	3203.31	3158.79	3120.4	3354.75	3246.22	3450.82	3409.28	3616.86	3467.03	3626.18
NFKB1 NFKB2	NM_003998.2 NM_002502.2	NM_003998.2:1675 NM_002502.2:825	Endogenous	mRNA mRNA	847.51 447.74	892.15 440.69	843.44 419.66	853.34 430.55	1935.17 1158.4	1912.08 1068.48	1976.66 1084.63	1936.12 1161.93	1845.29 1119.61	1835.25 1119.05	1771.36 1106.96
NFS1	NM_021100.3	NM_021100.3:1775	Endogenous Endogenous	mRNA	934.99	1046.88	1080.02	960.98	960.27	989.25	1084.03	986.86	954.9	1002.4	943.33
NGFR	NM_002507.3	NM_002507.3:2730	Endogenous	mRNA	24.46	22.52	20	22.19	20	20	20	29.83	20	27.13	20
NKG7	NM_005601.3	NM_005601.3:633	Endogenous	mRNA	20	20	20	20	20	30.29	20	20	20	20	21.96
NME1 NME2	NM_000269.2	NM_000269.2:500 NM_001018137.2:669	Endogenous Endogenous	mRNA	13496.14 56641.84	14048.13 55932.03	13937.37 55328.78	14090.63 57191.45		13979.95 59365.26	14013.09 60238.09	14457.98 58488.1	13295.98 59393.61	14542.28 60020.63	13899.63 59342.19
NOD2		NM_001293557.1:652	Endogenous	mRNA	20	20	20	20	20	20		20	20	29.84	25.26
NOS1	NM_000620.4	NM_000620.4:2212	Endogenous	mRNA	27.28	20	34.97	26.63	34.9	27.96	32.28	20	28.8	28.49	35.14
NOS2	NM_000625.4	NM_000625.4:605	Endogenous	mRNA	29.16	24.48	20	33.29	52.91	41.95	36.58	54.47	36.86	47.48	32.95
NOS3 NOX1	NM_000603.4 NM_007052.4	NM_000603.4:1456 NM_007052.4:455	Endogenous Endogenous	mRNA mRNA	20	20 20	20 20	20 20	20 20	20 20		20 20	20 20	20 20	20
NOX3	NM_015718.2	NM_015718.2:398	Endogenous	mRNA	20.69	28.4	20	20	20	24.47	20	20	20	20	20
NOX4	NM_001143836.2	NM_001143836.2:1795	Endogenous	mRNA	181.54	174.32	147.09	176.44	163.23	146.81	171.09	154.32	156.65	164.13	142.76
NPM1 NPR1	NM_002520.6	NM_002520.6:910	Endogenous	mRNA	110161.73	107500.27 20	109161.99 20			111971.25 20	116330.25 20	111545.21 20	109828.02 20	111894.55	
NPR1 NPR2	NM_000906.3 NM_003995.3	NM_000906.3:1120 NM_003995.3:1085	Endogenous Endogenous	mRNA mRNA	20 49.85	52.88	47.32	20 35.51	20 56.29	48.94	50.57	41.5	56.44	20 37.98	20 60.4
NQO1	NM_000903.2	NM_000903.2:790	Endogenous	mRNA	3323.24	3126.92	3156.74	3353.43	3359.25	3273.02		3344.44	3489	3502.3	3449.37
NR2F1	NM_005654.4	NM_005654.4:2885	Endogenous	mRNA	104.41	107.72	96.69	107.64	94.56	104.87	118.36	85.59	85.24	103.09	91.15
NRAS NRF1	NM_002524.3 NM_001040110.1	NM_002524.3:877 NM_001040110.1:2910	Endogenous Endogenous	mRNA mRNA	1101.48 224.81	999.87 216.43	1031.67 217.03	1006.47 256.33	1220.32 221.77	1238.6 238.86		1242.33 229.53	1179.51 220.01	1155.68 187.19	1330.99 197.67
NSD1	NM_022455.4	NM_022455.4:3140	Endogenous	mRNA	1265.15	1412.16	1298.08	1266.14	1428.58	1293.36		1329.22	1314.28	1364.57	1341.97
NT5E	NM_002526.2	NM_002526.2:1214	Endogenous	mRNA	1617.88	1583.54	1529.51	1474.76	1678.5	1697.68	1892.73	1832.37	1624.13	1782.35	1689
NUP205	NM_015135.1	NM_015135.1:5075	Endogenous	mRNA	3581.91	3503.95	3420.06	3465.51	3578.77	3750.75	3762.86	3555.81	3705.55	3613.53	3600.92
NUP62 OAT	NM_016553.3 NM_000274.3	NM_016553.3:457 NM_000274.3:775	Endogenous Endogenous	mRNA mRNA	1622.58 1066.67	1616.83 1078.21	1647.8 1139.68	1714.45 1207.32	1757.3 1195.55	1662.73 1140.72	1704.43 1198.69	1882.95 1251.41	1708.22 1118.46	1843.39 1325.23	1658.25 1210.19
ODC1	NM_002539.1	NM_002539.1:950	Endogenous	mRNA	4661.76	4447.02	4561.79	4817.09	4184.43	3725.11		4228.85	4623.59	4240.2	4789.15
OGDH	NM_001003941.2	NM_001003941.2:196	Endogenous	mRNA	3005.31	2969.25	3018.91	3103.76	3110.46	2954.92	3082.81	2943.73	3406.06	3175.4	3189.11
OGDHL	NM_018245.2	NM_018245.2:3615	Endogenous	mRNA	24.46	25.46	24.69	20	27.02	20		20	31.1	27.13	26.36
OTC PAH	NM_000531.5 NM_000277.1	NM_000531.5:544 NM_000277.1:845	Endogenous Endogenous	mRNA mRNA	20	20 20	20 20	20 20	22.52 20	27.96 20		28.53 20	20 20	20	20
PCK1	NM_002591.2	NM_002591.2:1870	Endogenous	mRNA	20	20	20	27.74	20	20		20	20	20	21.96
РСК2	NM_004563.2	NM_004563.2:795	Endogenous	mRNA	242.68	219.36	176.92	211.95	183.5	213.23	209.83	194.52	237.28	214.32	215.24
PCLAF	NM_014736.5 NM_005018.2	NM_014736.5:1025 NM_005018.2:310	Endogenous	mRNA	262.44	236.01	237.6	277.42	228.53	227.21	258.25	252.88	278.75	252.3	252.58
	11110_003010.2		Endogenous	mRNA	20	20	20	20	20	20		20	20	20	20 340.43
PDCD1 PDCD1LG2	NM_025239.3	NM_025239.3:235	Endogenous	mRNA	284.07	264.41	248.92	267.43	316.34	297.12	276.54	298.26	322.52	291.63	540.45

PDGFRB	NM_002609.3	NM_002609.3:265	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
PDHA1	NM_000284.3	NM_000284.3:1080	Endogenous	mRNA	1298.07	1396.49	1293.96	1360.46	1407.19	1420.37	1473.08	1470.57	1320.04	1530.05	
PDK1	NM_002610.3	NM_002610.3:1170	Endogenous	mRNA	543.68	569.96	529.72	509.34	1570.43	1914.41	1826.02	1431.66	1253.23	1557.18	
PDK2	NM_002611.3	NM_002611.3:435	Endogenous	mRNA	509.82	536.66	571.89	540.41	560.63	538.32	515.42	508.34	501.06	519.51	
PDK3	NM_005391.1	NM_005391.1:585	Endogenous	mRNA	391.3	381.93	433.04	341.78	443.55	454.42	489.59	418.87	408.91	453.05	
PDK4 PDP1	NM_002612.3	NM_002612.3:1675	Endogenous	mRNA	24.46	34.28	33.94	23.3	29.27	30.29	27.98	31.12	26.49	32.55	20
PDP1 PDPK1	NM_001161778.1 NM_002613.3	NM_001161778.1:950 NM_002613.3:5935	Endogenous Endogenous	mRNA mRNA	2202.95 732.75	2072.21 710	2096.26 736.47	2093.95 712.41	2572.35 715.98	2470.2 708.44	2608.29 777.97	2562.47 753.44	2603.21 790.18	2624.69 789.44	
PEBP1	NM_002567.2	NM_002567.2:1335	Endogenous	mRNA	4394.62	4560.62	4649.22	4476.42	4500.76	4752.81	4789.39	4751.46	4380.54	4723.09	
PEMT	NM_148173.1	NM_148173.1:385	Endogenous	mRNA	612.35	670.82	680.93	668.02	679.96	703.77	653.15	683.41	656.56	709.41	641.34
PFKFB1	NM_002625.2	NM_002625.2:564	Endogenous	mRNA	21.63	20.57	27.77	20	27.02	24.47	20	20	32.25	20	
PFKL	NM_001002021.1		Endogenous	mRNA	1474.91	1635.44	1638.54	1525.8	1983.58	1999.47	2037.99	1994.47	1757.75	2064.49	1678.01
PFKM	NM_000289.5	NM_000289.5:2195	Endogenous	mRNA	1413.77	1401.39	1398.88	1432.59	1395.93	1305.01	1373.01	1333.11	1454.81	1416.11	1435.32
PGAM2	NM_000290.3	NM_000290.3:58	Endogenous	mRNA	42.33	52.88	49.37	57.7	64.17	58.26	49.5	57.06	34.56	54.26	43.93
PGD	NM_002631.2	NM_002631.2:1472	Endogenous	mRNA	2990.26	3080.89	3136.16	3171.45	3110.46	3141.35	3092.5	3051.36	3203.34	3062.82	
PGK1	NM_000291.2	NM_000291.2:1030	Endogenous	mRNA	15576.81	15912.73	15661.28	15558.73	27108.14	30178.42	30004.98	27092.66	22926.72	27520.59	
PGM2	NM_018290.3	NM_018290.3:295	Endogenous	mRNA	1375.2	1445.45	1485.28	1364.9	1773.06	1917.9	2021.85	1772.72	1745.08	1904.43	
PHGDH	NM_006623.3	NM_006623.3:1900	Endogenous	mRNA	9447.68	9464.98	8962.09	9241.36	8954.24	9398.42	9436.75	9021.81	9692.94	9166.75	
PIK3C2A PIK3CA	NM_002645.1 NM_006218.2	NM_002645.1:3505 NM_006218.2:2445	Endogenous Endogenous	mRNA mRNA	2669.5 563.44	2745.97 623.82	2741.19 609.95	2699.83 589.24	2875.17 692.34	2848.89 709.6	3145.22 728.47	2945.02 661.37	2757.56 655.41	2939.38 694.49	
PIK3CB	NM_006219.1	NM_006219.1:2945	Endogenous	mRNA	226.69	228.18	237.6	214.17	263.43	243.52	243.18	239.91	253.41	215.67	249.29
PIK3CD	NM_005026.3	NM_005026.3:2978	Endogenous	mRNA	126.98	129.27	154.29	152.03	198.13	216.73	187.23	230.83	194.67	181.76	
PIK3R1	NM_181504.2	NM_181504.2:1105	Endogenous	mRNA	236.1	232.1	242.75	254.12	254.42	227.21	269.01	263.25	239.59	236.02	238.3
PIK3R2	NM_005027.2	NM_005027.2:3100	Endogenous	mRNA	334.86	345.69	360.01	355.1	361.37	318.1	331.42	385.15	298.33	332.33	311.88
PIK3R3	NM_003629.3	NM_003629.3:5016	Endogenous	mRNA	245.5	238.95	271.55	244.13	221.77	252.85	259.32	268.44	225.77	234.66	236.11
PIK3R4	NM_014602.1	NM_014602.1:3620	Endogenous	mRNA	1035.63	1008.68	1022.42	942.11	938.88	1078.97	1113.69	1043.92	994.06	1013.25	1099.28
PKLR	NM_181871.3	NM_181871.3:206	Endogenous	mRNA	21.63	26.44	26.74	28.85	20	23.3	25.82	32.42	27.64	35.27	21.96
РКМ	NM_182471.1	NM_182471.1:2105	Endogenous	mRNA	16484.52	16406.3	16326.78	16821.54	19134.43	18495.06	18474.29	18579.2	18920.53	19185.33	
PLA2G15	NM_012320.3	NM_012320.3:900	Endogenous	mRNA	182.48	191.94	193.37	194.19	201.51	184.1	211.98	213.97	171.63	253.65	
PLCG1	NM_002660.2	NM_002660.2:2290	Endogenous	mRNA	1996.01	2200.5	2139.46	1964.12	2208.73	2208.03	2154.2	2054.12	1895.97	2103.82	
PLK1 PNOC	NM_005030.3	NM_005030.3:535	Endogenous	mRNA mRNA	2451.28	2422.8 20	2329.75 20	2394.67 20	2341.57 20	2253.48 20	2308.08 20	2374.43 20	2192	2337.13 20	2227.1
PNOC	NM_001284244.1 NM 000270.2	NM_001284244.1:416 NM_000270.2:1150	Endogenous	mRNA	2535.94	2355.23	20 2408.95	20	20 2441.76	20 2300.08	20 2300.54	20 2616.93	20 2625.1	20 2683.02	
POLE	NM_006231.3	NM_006231.3:3264	Endogenous Endogenous	mRNA	1066.67	1028.27	2408.95	2557.8 907.71	1055.96	1069.64	2300.54 991.02	977.78	1034.37	2683.02	1108.06
PPARG	NM_005037.5	NM_005037.5:345	Endogenous	mRNA	1669.62	1571.78	1544.94	1522.47	1615.46	1568.35	1653.85	1502.99	1665.6	1642.64	1674.72
PPARGC1A	NM_013261.3	NM_013261.3:1505	Endogenous	mRNA	20	23.5	20	23.3	20	20	20	25.94	23.04	20	
PPAT	NM_002703.3	NM_002703.3:1210	Endogenous	mRNA	1621.64	1596.27	1661.17	1573.52	1469.11	1526.4	1510.74	1392.76	1459.41	1440.53	
PPM1A	NM_021003.4	NM_021003.4:550	Endogenous	mRNA	1322.52	1372.99	1406.08	1338.27	1449.97	1536.89	1563.47	1508.17	1420.25	1539.55	1417.75
PRDX1	NM_002574.2	NM_002574.2:632	Endogenous	mRNA	26432.61	25084.9	25034.8	25778.82	25829.29	25874.21	26465.94	26511.7	26499.8	25825.05	
PRDX5	NM_012094.4	NM_012094.4:600	Endogenous	mRNA	11520.82	11440.24	11373.1	11790.28	11859.81	12234.49	12265.62	11767.13	12592.19	12236.35	
PRF1	NM_005041.3	NM_005041.3:2120	Endogenous	mRNA	20.69	20	20	20	20	26.8	21.52	32.42	27.64	20	
PRIM1	NM_000946.2	NM_000946.2:480	Endogenous	mRNA	1418.47	1444.48	1347.45	1342.7	1212.44	1229.28	1285.85	1171.01	1200.24	1327.94	
PRIM2	NM_001282488.1	NM_001282488.1:124	Endogenous	mRNA	1277.37	1267.22	1221.96	1270.58	1243.96	1155.87	1218.06	1159.34	1174.9	1277.76	
PRKAA1 PRKAA2	NM_006251.5 NM_006252.2	NM_006251.5:366 NM_006252.2:975	Endogenous Endogenous	mRNA mRNA	3969.45 53.62	3988.71 66.59	3836.63 68.92	3941.56 71.02	3802.8 91.19	3645.88 83.89	3757.48 78.55	3658.26 55.76	4022.31 58.75	3793.93 75.96	
PRKAB1	NM_006253.4	NM_006253.4:1550	Endogenous	mRNA	1080.78	1088.01	1091.33	1130.76	1129.13	1119.75	1201.92	1099.68	1100.03	1205.87	1100.37
PRKAB2	NM_005399.3	NM_005399.3:1600	Endogenous	mRNA	514.52	520.01	499.89	481.6	490.83	501.03	503.58	487.6	503.36	489.67	487.59
PRKAG1	NM_002733.3	NM_002733.3:825	Endogenous	mRNA	1004.59	912.71	918.53	924.36	884.84	849.42	879.11	879.23	839.71	864.05	885.13
PRKAG2	NM_016203.3	NM_016203.3:1895	Endogenous	mRNA	1439.16	1480.71	1448.25	1494.73	1499.5	1522.9	1499.98	1343.48	1472.08	1508.35	
PRKCG	NM_002739.3	NM_002739.3:445	Endogenous	mRNA	60.2	56.8	85.37	66.58	69.8	53.6	58.11	58.36	66.81	92.24	54.91
PRKN	NM_004562.2	NM_004562.2:3386	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
PRODH2	NM_021232.1	NM_021232.1:428	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	
PRPS1	NM_002764.3	NM_002764.3:1081	Endogenous	mRNA	730.87	708.04	676.81	680.23	607.91	645.52	677.9	691.19	662.32	625.31	
PRR5	NM_015366.3	NM_015366.3:1635	Endogenous	mRNA	59.26	52.88	59.66	51.04	56.29	60.59	52.73	68.73	50.68	73.25	
PSAT1	NM_021154.3	NM_021154.3:1445	Endogenous	mRNA	386.6	411.31 5857.22	409.38 6057.35	417.24 5990.02	360.24	376.36	369.08	370.88	359.38	381.16 5968.29	
PSMA3 PSMA7	NM_152132.1 NM_002792.2	NM_152132.1:465 NM_002792.2:639	Endogenous Endogenous	mRNA mRNA	6165.82 18506.87	18023.13	18534.13	18764.57	5977.75 19105.16	6183.66 19320.01	6569.14 19518.04	6267.42 19073.28	6183.21 19617.41	19577.34	
PSMB1	NM_002793.2	NM_002793.2:0	Endogenous	mRNA	4191.44	4294.25	4160.64	4145.74	4479.37	4599	4503.17	4349.45	4521.07	4402.97	4198.33
PSMB10	NM_002801.3	NM_002801.3:249	Endogenous	mRNA	305.7	344.72	315.78	348.44	371.5	362.37	329.26	346.24	324.83	416.42	
PSMB3	NM_002795.3	NM_002795.3:22	Endogenous	mRNA	6607.92	6486.92	6481.13	6537.08	6996.56	7037.75	7205.07	6956.01	6976.85	7054.79	
PSMC1	NM 002802.2	NM_002802.2:58	Endogenous	mRNA	2851.05	3022.14	3095.02	3098.21	3126.22	2996.87	3143.07	3324.99	2984.48	3346.31	
PSMD13	NM_175932.2	NM_175932.2:668	Endogenous	mRNA	3379.68	3387.42	3362.45	3342.34	3426.79	3479.26	3914.58	3698.46	3524.71	3525.36	
PSME2	NM_002818.2	NM_002818.2:315	Endogenous	mRNA	4808.49	5072.8	5121.34	5020.16	5477.92	5801.48	5794.4	5721.46	5389.58	5751.26	5532.62
PSPH	NM_004577.3	NM_004577.3:225	Endogenous	mRNA	215.4	203.7	240.69	218.61	195.88	235.37	222.74	217.86	228.07	242.8	219.64
PTEN	NM_000314.3	NM_000314.3:1675	Endogenous	mRNA	1774.03	1728.47	1713.63	1718.88	1752.8	1808.37	2032.61	1783.09	1760.05	1936.98	
PTGER4	NM_000958.2	NM_000958.2:976	Endogenous	mRNA	59.26	66.59	58.63	66.58	46.16	69.91	44.12	71.32	59.9	80.03	60.4
PTGES	NM_004878.4	NM_004878.4:303	Endogenous	mRNA	2734.41	2902.66	2849.19	2806.36	2948.35	2876.85	2842.86	3181.04	2752.96	3172.69	2843.18
PTGS1	NM_000962.2	NM_000962.2:700	Endogenous	mRNA	21.63	38.19 8924.41	24.69	34.4 9355.66	47.28	51.27	45.19	42.79	34.56	40.69	
PTGS2	NM_000963.1	NM_000963.1:495	Endogenous	mRNA	10271.67	0524141	0570.52	3333.00	11177110	11110.24	10551.01	11-110.51	10002.12	11172.00	13954.54
РТК2 РТК6	NM_005607.4 NM_001256358.1	NM_005607.4:3466 NM_001256358.1:291	Endogenous Endogenous	mRNA mRNA	1885.02 151.44	1962.53 167.46	2024.26 122.4	2014.06 184.21	2289.78 165.49	2248.82 122.34	2270.41 158.18	2161.76 171.18	2081.42 158.96	2258.45 188.54	
PTR0 PTPN5		NM_001039970.1:2354	Endogenous	mRNA	20	20	20	20	20	20	20	25.94	20	20	
PTPRC	NM_080923.2	NM_080923.2:154	Endogenous	mRNA	20	20	20	20	20	20	20	20.54	20	20	
PUDP		NM_001178135.1:425	Endogenous	mRNA	190.95	188.03	188.23	203.07	164.36	163.13	191.53	189.33	187.75	172.27	
PYCR1	NM_006907.2	NM_006907.2:513	Endogenous	mRNA	181.54	215.45	186.17	170.89	202.64	200.41	170.01	225.64	178.54	214.32	
PYCR2	NM_013328.2	NM_013328.2:1250	Endogenous	mRNA	1917	1768.62	1913.17	1945.26	1683	1568.35	1767.91	1666.38	1667.9	1734.87	1827.37
PYCR3	NM_023078.2	NM_023078.2:1145	Endogenous	mRNA	392.24	362.34	373.38	337.34	300.58	346.06	309.9	311.23	367.44	301.13	
RAD51	NM_133487.2	NM_133487.2:566	Endogenous	mRNA	342.39	308.48	299.32	329.57	378.25	336.74	322.81	347.54	365.14	341.82	
RAD51AP1		NM_001130862.1:1125		mRNA	945.33	985.18	968.93	909.93	889.35	906.52	955.51	875.34	830.49	877.61	
RANBP2	NM_006267.4	NM_006267.4:5384	Endogenous	mRNA	3657.16	3674.35	3772.86	3680.79	3764.52	3664.52	3853.25	3743.85	3925.56	3844.12	
RB1CC1			Endogenous	mRNA	1036.57	1015.54	987.44	1006.47	1120.12	1285.2	1277.24	1073.75	1126.52	1193.66	
RBBP5	NM_005057.2 NM_022128.2	NM_005057.2:325 NM_022128.2:914	Endogenous	mRNA mRNA	1050.68 102.53	1016.52 94.01	987.44 97.72	917.7 110.97	1008.68 128.34	920.5 90.88	984.56 103.3	916.83 106.34	1068.93 87.54	977.99	
RBKS RBP4	NM_022128.2 NM_006744.3	NM_022128.2:914 NM_006744.3:793	Endogenous Endogenous	mRNA	102.53	94.01	97.72	110.97	128.34	90.88	103.3	106.34	87.54	126.15 124.79	
RELA	NM_021975.3	NM_021975.3:1990	Endogenous	mRNA	1258.56	121.45	1185.96	1196.23	1492.75	1491.44	1388.07	1470.57	140.55	1481.22	
REST			Endogenous	mRNA	1568.97	1487.56	1528.48	1599.04	1648.1	1691.86	1800.19	1706.58	1430.38	1741.65	
RGN	NM_152869.3	NM_152869.3:1190	Endogenous	mRNA	20	22.52	20	20	24.77	20	20	20	20	33.91	
RICTOR	NM_152756.3	NM_152756.3:3097	Endogenous	mRNA	1194.6	1184.96	1137.62	1228.41	1257.47	1373.76	1498.9	1331.81	1262.44	1380.84	
RIMKLA	NM_173642.3	NM_173642.3:2324	Endogenous	mRNA	20	22.52	20	20	20	23.3	22.6	28.53	20	20	
RIMKLB	NM_020734.2	NM_020734.2:1840	Endogenous	mRNA	1472.08	1281.91	1291.91	1491.4	1251.84	1181.5	1257.87	1260.49	1335.01	1258.77	1373.82
	NM_144563.2	NM_144563.2:1588	Endogenous	mRNA	2554.75	2567.74	2569.41	2637.69	2431.63	2562.25	2700.83	2537.83	2547.93	2525.67	
RPIA		NM_000978.3:71	Endogenous	mRNA	60874.67	61290.79	59786.68	61258.4	66253.98	68811.45	69159.41	67468.41	65404.04	68265.01	
RPIA RPL23	NM_000978.3				83656.7	83805.02	83774.38	84637	89393.84	93729.04	93438.88	91403.38	88728.15	02576.20	85524.93
RPIA RPL23 RPLP0	NM_001002.3	NM_001002.3:250	Endogenous	mRNA										92576.29	
RPIA RPL23 RPLP0 RPS6KA1	NM_001002.3 NM_002953.3	NM_001002.3:250 NM_002953.3:2000	Endogenous	mRNA	1136.28	1188.88	1172.59	1061.96	1295.74	1376.09	1421.43	1343.48	1293.54	1329.3	1282.67
RPIA RPL23 RPLPO RPS6KA1 RPS6KB1	NM_001002.3 NM_002953.3 NM_003161.2	NM_001002.3:250 NM_002953.3:2000 NM_003161.2:310	Endogenous Endogenous	mRNA mRNA	1136.28 2741.93	1188.88 2729.32	1172.59 2718.56	1061.96 2675.42	2600.49	1376.09 2844.23	1421.43 2863.31	1343.48 2646.76	1293.54 2666.57	1329.3 2521.6	1282.67 2865.14
RPIA RPL23 RPLPO RPS6KA1 RPS6KB1 RPS6KB2	NM_001002.3 NM_002953.3 NM_003161.2 NM_003952.2	NM_001002.3:250 NM_002953.3:2000 NM_003161.2:310 NM_003952.2:980	Endogenous Endogenous Endogenous	mRNA mRNA mRNA	1136.28 2741.93 559.67	1188.88 2729.32 558.2	1172.59 2718.56 554.41	1061.96 2675.42 531.53	2600.49 585.39	1376.09 2844.23 426.46	1421.43 2863.31 579.98	1343.48 2646.76 566.7	1293.54 2666.57 569.02	1329.3 2521.6 573.77	1282.67 2865.14 478.81
RPIA RPL23 RPLPO RPS6KA1 RPS6KB1 RPS6KB2 RPTOR	NM_001002.3 NM_002953.3 NM_003161.2 NM_003952.2 NM_020761.2	NM_001002.3:250 NM_002953.3:2000 NM_003161.2:310 NM_003952.2:980 NM_020761.2:6665	Endogenous Endogenous Endogenous Endogenous	mRNA mRNA mRNA mRNA	1136.28 2741.93 559.67 406.35	1188.88 2729.32 558.2 448.52	1172.59 2718.56 554.41 433.04	1061.96 2675.42 531.53 429.44	2600.49 585.39 484.07	1376.09 2844.23 426.46 392.67	1421.43 2863.31 579.98 411.04	1343.48 2646.76 566.7 451.29	1293.54 2666.57 569.02 433.1	1329.3 2521.6 573.77 485.6	1282.67 2865.14 478.81 445.86
RPIA RPL23 RPLPO RPS6KA1 RPS6KB1 RPS6KB2	NM_001002.3 NM_002953.3 NM_003161.2 NM_003952.2	NM_001002.3:250 NM_002953.3:2000 NM_003161.2:310 NM_003952.2:980	Endogenous Endogenous Endogenous	mRNA mRNA mRNA	1136.28 2741.93 559.67	1188.88 2729.32 558.2	1172.59 2718.56 554.41	1061.96 2675.42 531.53	2600.49 585.39	1376.09 2844.23 426.46	1421.43 2863.31 579.98	1343.48 2646.76 566.7	1293.54 2666.57 569.02	1329.3 2521.6 573.77	1282.67 2865.14 478.81 445.86 649.02

RUNX1	NM_001754.4	NM_001754.4:635	Endogenous	mRNA	2118.3	2261.22	2270.09	2040.69	2046.62	2090.35	2084.26	1976.32	1982.36	1996.66	1917.42
RUNX2	NM_001024630.3	NM_001024630.3:34	Endogenous	mRNA	20	21.54	20	20	20	20	20	20	26.49	20	20
S100A1 S100A12	NM_006271.1 NM_005621.1	NM_006271.1:221 NM_005621.1:260	Endogenous Endogenous	mRNA mRNA	20 24.46	20 39.17	20 37.03	20 44.39	20 60.79	20 37.29	20 37.66	20 54.47	20 50.68	20 52.9	20 38.44
SCD	NM_005063.4	NM_005063.4:2025	Endogenous	mRNA	4762.4	4829.93	4889.91	4835.96	4822.73	4957.88	5103.59	4929.12	4818.25	4815.32	4656.27
SDHB	NM_003000.2	NM_003000.2:245	Endogenous	mRNA	3832.12	3899.59	4046.47	4137.97	4246.34	4099.14	3973.76	4228.85	3881.78	4374.48	4059.96
SDHC	NM_001035511.1	NM_001035511.1:615	Endogenous	mRNA	1937.7	1894.96	1933.75	1926.39	2090.52	1991.31	1989.57	2046.34	2003.09	2111.96	1715.35
SDS SDSL	NM_006843.2 NM_138432.2	NM_006843.2:1165 NM_138432.2:303	Endogenous Endogenous	mRNA mRNA	20 103.47	20 91.08	20 110.06	20 114.3	20 93.44	20 90.88	20 114.06	20 111.52	20 119.79	20 90.88	20 105.43
SEC13			Endogenous	mRNA	17638.67	17549.15	17384.17	17346.41	17364.75	17466.2	17181.98	17137.16	17516.41	17523.71	16858.12
SELENOK	NM_021237.3	NM_021237.3:42	Endogenous	mRNA	86.54	100.87	100.8	88.77	108.07	95.55	100.07	84.29	95.6	103.09	87.85
SEM1	NM_001201451.1		Endogenous	mRNA	20	20	20	20	20	20	24.75	20	20	20	20
SERINC1	NM_020755.2	NM_020755.2:95	Endogenous	mRNA	3970.39	3777.18	3803.72	3692.99	4193.43	4080.49	4283.66	4088.8	4286.09	3936.36	4145.62
SERINC2 SERINC3	NM_018565.3 NM 006811.2	NM_018565.3:795 NM_006811.2:185	Endogenous Endogenous	mRNA mRNA	6506.33 4218.72	6548.61 4408.83	6756.79 4383.84	6351.77 4450.9	6897.49 4725.91	7055.22 4786.6	6851.06 4792.62	6664.24 4721.63	6548.35 4463.48	6820.13 4757	6769.16 4710.08
SERINC5			Endogenous	mRNA	2090.08	2130.97	2049.98	2151.66	2224.49	2265.13	2251.05	2240.86	2354.41	2229.97	2256.75
SH2D1A	NM_002351.4	NM_002351.4:495	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
SHMT1	NM_148918.1	NM_148918.1:1800	Endogenous	mRNA	409.17	377.03	387.78	378.4	345.61	372.86	418.57	373.48	421.58	383.87	417.31
SHMT2 SIGLEC5	NM_001166356.1 NM_003830.3	NM_001166356.1:1460 NM_003830.3:1405	Endogenous Endogenous	mRNA mRNA	1536.05	1586.47 20	1609.74 20	1665.62 20	1685.25 20	1534.55 24.47	1508.59 20	1627.48 20	1566.54 31.1	1654.84 20	1514.39 23.06
SLC16A1	NM_003051.3	NM_003051.3:635	Endogenous	mRNA	4052.23	3961.29	3949.78	3836.14	4236.21	4492.97	4621.53	4154.93	4519.92	4336.5	4291.68
SLC16A11	NM_153357.1	NM_153357.1:1039	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
SLC16A13	NM_201566.2	NM_201566.2:355	Endogenous	mRNA	35.74	38.19	55.54	37.73	52.91	45.44	47.35	62.25	61.05	58.33	56.01
SLC16A2 SLC16A3	NM_006517.3 NM_004207.2	NM_006517.3:2465 NM_004207.2:370	Endogenous Endogenous	mRNA mRNA	490.07 2339.34	469.09 2464.91	443.32 2483.01	439.43 2489	496.46 4367.92	455.59 4671.25	435.79 4153.46	413.68 4186.06	453.83 3505.12	434.06 4215.78	408.52 3423.02
SLC16A6	NM_001174166.1		Endogenous	mRNA	27.28	35.25	25.71	37.73	48.41	34.96	27.98	55.76	51.83	61.04	47.22
SLC16A7	NM_001270623.1	NM_001270623.1:5460	Endogenous	mRNA	423.28	396.62	392.92	377.29	379.38	372.86	386.29	320.31	359.38	381.16	421.7
SLC16A8	NM_013356.2	NM_013356.2:1613	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
SLC1A5			Endogenous Endogenous	mRNA	530.51	543.51 1100.74	510.18	519.33 1096.36	521.22 1121.25	485.88 1120.91	494.97 1149.2	535.58 1077.64	577.08	625.31 1190.94	518.34 1138.81
SLC25A1 SLC27A1	NM_005984.2 NM_198580.1	NM_005984.2:964 NM_198580.1:1927	Endogenous	mRNA mRNA	1115.59 22.58	34.28	1164.36 36	26.63	30.4	20	24.75	31.12	1121.92 23.04	33.91	20
SLC2A1	NM_006516.2	NM_006516.2:2500	Endogenous	mRNA	1434.46	1521.84	1514.08	1472.54	2448.51	2728.87	2598.6	2253.83	2068.75	2373.75	1846.04
SLC2A14	NM_001286234.1	NM_001286234.1:606	Endogenous	mRNA	36.68	46.03	46.29	42.17	114.83	171.28	168.94	101.15	79.48	158.7	62.6
SLC2A3	NM_006931.2	NM_006931.2:35	Endogenous	mRNA	20	20	20	20	20	20	20	20 31.12	20	20	20
SLC2A5 SLC2A6	NM_003039.2 NM_001145099.1	NM_003039.2:711 NM_001145099.1:174	Endogenous Endogenous	mRNA mRNA	22.58 177.78	27.42 182.15	25.71 195.43	28.85 163.12	31.52 468.31	20 488.21	22.6 442.25	31.12 429.24	24.19 444.62	20 459.83	20 398.64
SLC2A8	NM_014580.3	NM_014580.3:1777	Endogenous	mRNA	375.31	402.49	401.15	378.4	335.47	321.59	335.72	307.34	376.66	337.75	350.32
SLC3A1	NM_000341.3	NM_000341.3:1010	Endogenous	mRNA	20	24.48	20	20	20	20	20	20	20	20	20
SLC3A2	NM_001012662.2			mRNA	5947.6	5706.41	5870.15	5913.45	5519.57	5138.49	5398.42	5301.3	5761.63	5576.28	5723.7
SLC6A12	NM_003044.3	NM_003044.3:969	Endogenous	mRNA mRNA	20 20.69	20 20.57	20 21.6	20 25.52	20 25.89	20 20	20 25.82	20 33.72	20	20 32.55	20 24.16
SLC6A18 SLC6A19	NM_182632.2 NM_001003841.2	NM_182632.2:1502 NM_001003841.2:1515	Endogenous Endogenous	mRNA	39.51	44.07	39.09	34.4	55.16	48.94	36.58	45.39	34.56	32.55	40.63
SLC7A11	NM_014331.3	NM_014331.3:636	Endogenous	mRNA	750.62	694.33	646.98	720.18	389.51	401.99	441.17	403.3	468.81	439.48	512.85
SLC7A5	NM_003486.5	NM_003486.5:785	Endogenous	mRNA	15647.36	16063.54	16063.46	15725.18	13979.61	13399.68	13958.21	14183.06		14615.52	15723.7
SLC7A9	NM_014270.4	NM_014270.4:530	Endogenous	mRNA	20 3227.3	20	20	20	25.89	23.3	20	20	20	20	20
SMAD2 SMAD3	NM_005901.5 NM_005902.3	NM_005901.5:1678 NM_005902.3:4220	Endogenous Endogenous	mRNA mRNA	3129.47	3202.33 3112.23	3120.74 3023.02	3111.52 2999.45	3409.91 5627.64	3360.41 5619.71	3626.21 5659.9	3247.18 5466	3457.9 5455.23	3327.32 5607.48	3374.7 5523.83
SMAD4	NM_005359.3	NM_005359.3:1370	Endogenous	mRNA	1155.09	1307.37	1222.99	1171.81	1308.13	1233.94	1485.99	1453.71	1245.17	1467.66	1318.91
SNF8	NM_001317192.1	NM_001317192.1:234	Endogenous	mRNA	5970.17	6023.71	5902.04	5782.51	5850.54	5667.48	6058.03	6076.79	5838.8	6406.41	5792.88
SOD1	NM_000454.4	NM_000454.4:245	Endogenous	mRNA	4425.66	4447.02	4340.64	4462	4620.09	4462.68	4695.78	4687.92	4656.99	5002.51	4326.82
SOD2 SOD3	NM_000636.2 NM_003102.2	NM_000636.2:201 NM_003102.2:139	Endogenous Endogenous	mRNA mRNA	1885.96 25.4	2004.64 20	2080.83 20	2079.53 20	7760.94 20	7950.09 20	7787.2 25.82	8735.22 27.23	6491.91 20	7671.96 20	5934.55 27.45
SOS1	NM_005633.2	NM_005633.2:1635	Endogenous	mRNA	745.92	831.43	743.67	762.35	851.07	924	1029.76	929.8	898.45	915.59	901.6
SOS2	NM_006939.2	NM_006939.2:3845	Endogenous	mRNA	290.65	368.22	348.69	317.37	378.25	406.65	393.83	370.88	363.99	355.38	408.52
SOX2	NM_003106.2	NM_003106.2:151	Endogenous	mRNA	98.77	169.42	172.8	159.79	59.66	64.09	61.33	68.73	79.48	65.11	82.36
SPIB SQSTM1	NM_003121.3 NM_003900.3	NM_003121.3:1029 NM_003900.3:1445	Endogenous Endogenous	mRNA mRNA	20 2159.68	20 2078.09	20 2192.95	20 2188.28	20 3713.86	20 3623.74	20 3546.58	20 3420.95	20 3368.05	20 3423.63	20 3172.63
SREBF1	NM_001005291.1	NM_001005291.1:1392	Endogenous	mRNA	1585.9	1585.49	1647.8	1521.36	1640.22	1548.54	1527.96	1617.1	1556.17	1614.15	1540.74
SREBF2	NM_004599.2	NM_004599.2:665	Endogenous	mRNA	3183.09	3118.11	3191.71	3311.26	3355.87	3326.62	3316.31	3358.7	3446.38	3362.59	3391.17
SRM	NM_003132.2	NM_003132.2:254	Endogenous	mRNA	3786.03	4105.25	4175.04	3942.67	3896.23	3677.34	3682.16	3623.25	3687.12	3876.67	3555.9
SRR STAM2	NM_021947.1 NM_005843.4	NM_021947.1:560 NM_005843.4:1455	Endogenous Endogenous	mRNA mRNA	143.92 973.55	155.71 912.71	145.03 902.07	159.79 933.24	163.23 891.6	139.82 856.41	140.96 840.38	145.24 909.05	137.07 930.71	138.36 869.47	146.06 969.69
STAT1	NM_007315.3	NM_007315.3:239	Endogenous	mRNA	1677.14	1573.74	1528.48	1614.57	1581.68	1595.14	1647.4	1458.9	1733.56	1565.32	1712.06
STAT3	NM_003150.3	NM_003150.3:2060	Endogenous	mRNA	3596.96	3522.56	3619.6	3553.17	3955.9	4102.63	4112.57	4136.78	4098.33	3997.4	4106.08
STAT5A	NM_003152.2	NM_003152.2:3460	Endogenous	mRNA	135.45	149.83	162.52	155.35	330.97	301.78	300.21	309.93	337.5	322.83	315.18
STAT6	NM_003153.3	NM_003153.3:2030 NM_000455.4:2060	Endogenous	mRNA	1754.27	1766.67	1714.66	1825.41	2232.37	2198.71	2062.74	2151.38	2087.18	2201.48	2082.14
STK11 STK3	NM_000455.4 NM_006281.3	NM_000455.4:2060 NM_006281.3:1295	Endogenous Endogenous	mRNA mRNA	584.13 1610.36	692.37 1558.07	689.15 1583	686.89 1661.18	724.99 1703.27	741.06 1632.43	655.3 1730.25	721.02 1570.42	724.52 1610.31	686.35 1654.84	697.34 1616.52
TALDO1	NM_006755.1	NM_006755.1:262	Endogenous	mRNA	6445.19	6754.27	6537.71	6755.69	6855.84	6924.72	7089.94	6762.79	6927.32	7115.83	6400.18
ТВК1	NM_013254.2	NM_013254.2:1610	Endogenous	mRNA	1086.43	983.22	975.1	1053.08	1124.63	1219.95	1167.49	1194.35	1273.96	1231.64	1273.89
TBX21	NM_013351.1 NM 001130966.2	NM_013351.1:890 NM_001130966.2:1030	Endogenous	mRNA	20	20 20	20 20	20	20 20	20 20	20 20	20		20 20	20
TBXAS1 TCL1A	NM_001130966.2 NR_049726.1	NM_001130966.2:1030 NR_049726.1:543	Endogenous	mRNA mRNA	20	20	20	20 25.52	20	20	20	20 20		20	20
TDO2	NM_005651.2	NM_005651.2:495	Endogenous	mRNA	20	20	20.57	20	20	20	22.6	20		20	20
TECR	NR_038104.1	NR_038104.1:574	Endogenous	mRNA	4126.54	4127.77	4096.87	4079.16	4159.66	4251.78	4039.4	4140.67	4237.71	4082.85	4254.34
TELO2	NM_016111.3	NM_016111.3:294	Endogenous	mRNA	182.48	176.27	203.66	164.23	173.37	163.13	150.64	185.44	171.63	174.98	180.1
TET2 TF	NM_001127208.2 NM_001063.2	NM_001127208.2:2882 NM_001063.2:640	Endogenous Endogenous	mRNA	1270.79 20	1297.58 20	1283.68 20	1302.76 20	1361.04 20	1363.27 20	1493.52 20	1304.58 20	1407.58 20	1283.18 20	1406.76 20
TFAM	NM_003201.1	NM_003201.1:85	Endogenous	mRNA	1023.4	965.59	979.22	967.64	924.24	930.99	925.38	915.54	933.01	911.52	906
TFRC	NM_003234.1	NM_003234.1:1220	Endogenous	mRNA	6717.03	6931.52	6865.83	6812.28	7365.81	7499.16	7914.17	7684.81	7720.95	7883.57	8060.62
тн	NM_000360.3	NM_000360.3:1306	Endogenous	mRNA	240.8	230.14	197.49	246.35	207.14	198.08	173.24	186.74	236.13	184.47	227.32
THBS1	NM_003246.2	NM_003246.2:3465 NM 003247.2:4460	Endogenous	mRNA	39154.61	43625.11	43236.7	43378.23	26589.17	24757.96	24398.89	26554.49		27470.4	
THBS2 TIGAR	NM_003247.2 NM_020375.2	NM_003247.2:4460 NM_020375.2:5245	Endogenous Endogenous	mRNA mRNA	202.24 106.29	167.46 133.19	194.4 136.8	179.77 117.63	227.4 133.96	234.2 127.01	259.32 154.95	233.42 119.31	222.31 127.86	279.42	264.66 96.64
TIGIT	NM_173799.2	NM_173799.2:1968	Endogenous	mRNA	20	23.5	21.6	20	20	20	20	20		20	20
TIMELESS	NM_003920.2	NM_003920.2:1185	Endogenous	mRNA	1410.94	1463.08	1453.39	1412.61	1350.9	1369.1	1311.68	1237.14	1388	1364.57	1373.82
TK1	NM_003258.1	NM_003258.1:1215	Endogenous	mRNA	900.18	964.62	984.36	976.51	1030.06	1000.9	922.15	1071.15	983.69	1097.35	902.7
TK2 TKT	NM_004614.3 NM_001064.2	NM_004614.3:2165 NM_001064.2:1235	Endogenous Endogenous	mRNA mRNA	52.68 2453.16	44.07 2541.3	39.09 2613.64	58.81 2625.49	38.28 2747.96	24.47 2695.08	47.35 2425.36	41.5 2719.38	35.71 2394.73	52.9 2681.66	37.34 2407.2
TLR10	NM_030956.2	NM_030956.2:2246	Endogenous	mRNA	2455.16	2541.5	2013.04	2625.49	2747.98	2095.08	2425.36	33.72	2394.73	2081.00	2407.2
TLR2	NM_003264.3	NM_003264.3:2402	Endogenous	mRNA	182.48	209.57	176.92	193.08	749.75	786.5	720.94	775.48	625.46	716.19	555.68
TLR4	NM_138554.2	NM_138554.2:2570	Endogenous	mRNA	260.55	241.89	261.26	266.32	211.64	226.05	217.36	219.16		217.03	264.66
	NM_016562.3	NM_016562.3:4120	Endogenous	mRNA	20	20	20	20	20	20	20	20		20	20
TLR7		NM_000594.2:1010	Endogenous	mRNA	20	20	20	22.19	77.68 20	81.56	76.4 20	57.06 20		67.82 20	85.66 20
TNF	NM_000594.2 NM_001192.2			mRNA	20	20	201								
	NM_000594.2 NM_001192.2 NM_003327.3	NM_001192.2:635 NM_003327.3:981	Endogenous	mRNA mRNA	20	20 20	20 20	23.3 24.41	20	20 20	20	20		20	20
TNF TNFRSF17 TNFRSF4 TP53	NM_001192.2 NM_003327.3 NM_000546.2	NM_001192.2:635 NM_003327.3:981 NM_000546.2:1330	Endogenous Endogenous Endogenous	mRNA mRNA	20 3087.14	20 3106.36	20 3119.71	24.41 3135.94	20 3674.46	20 3753.08	20 3540.13	20 3676.42	20 3548.9	20 3602.68	20 3405.45
TNF TNFRSF17 TNFRSF4	NM_001192.2 NM_003327.3	NM_001192.2:635 NM_003327.3:981	Endogenous Endogenous	mRNA	20	20	20	24.41	20	20	20	20	20	20	20

TPSAB1/B2	NM_003294.3	NM_003294.3:579	Endogenous	mRNA	20	20	20	22.19	20	20	29.05	20	20	20	20
TPX2	NM_012112.4		Endogenous	mRNA	2486.08	2698.96	2716.5	2602.18	2682.67	2631	2784.76	2623.42	2492.64	2689.8	2585.11
TRAF1	NM_005658.3 NM 145803.2	NM_005658.3:3735	Endogenous	mRNA	100.65	84.22	91.54 938.07	97.65	431.16	446.27 993.91	420.73	391.63	443.47	402.86	424.99 978.48
TRAF6 TRAT1	NM_016388.2	NM_145803.2:745 NM 016388.2:770	Endogenous Endogenous	mRNA mRNA	950.04 101.59	956.78 100.87	105.94	960.98 106.53	954.64 136.22	142.15	991.02 164.63	972.6 141.35	996.36 119.79	961.71 139.71	121.9
ТТРА		-	Endogenous	mRNA	24.46	20	20	20	20	20	23.67	20	20	20	20
TTR	NM_000371.3	NM_000371.3:199	Endogenous	mRNA	22.58	20	21.6	32.18	20	27.96	30.13	20	32.25	20	24.16
TXN	NM_003329.2	NM_003329.2:55	Endogenous	mRNA	28743.73	28479.17	28797.38	30315.16		30070.05	30724.85	30942.85	29263.13	31397.26	30722.6
TXN2			Endogenous	mRNA	1946.16	2016.39	1989.29	1974.11	1985.83	1875.96	1952.99	2002.25	1878.69	1987.17	1940.48
TXNRD1	NM_001093771.1	NM_001093771.1:1009	Endogenous	mRNA	3867.87	3844.75	3696.75	3983.73	4884.64	4656.1	4733.44	4927.83	4784.85	4917.06	5002.2
TYMP	NM_001953.3	NM_001953.3:719	Endogenous	mRNA	22.58	22.52	20	23.3	28.14	20	27.98	32.42	20	31.2	20
TYMS	NM_001071.2	NM_001071.2:1110	Endogenous	mRNA	3629.89	3339.43	3279.14	3325.69	3373.88	3157.66	3589.62	3537.66	3434.86	3593.18	3335.16
UBE2C	NM_007019.2	NM_007019.2:561	Endogenous	mRNA	5418.02	5083.57	5379.52	5543.93	5667.04	5705.93	5536.15	5375.22	5615.34	5649.53	6134.42
UBE2T	NM_014176.3	NM_014176.3:595	Endogenous	mRNA	1648.92	1647.19	1689.97	1764.38	1639.1	1604.47	1535.49	1613.21	1569.99	1707.74	1712.06
UCK1			Endogenous	mRNA	998.95	998.89	984.36	925.47	896.1	883.21	1025.45	1028.36	972.17	1013.25	953.22
UCK2	NM_012474.3	NM_012474.3:730	Endogenous	mRNA	2460.68	2631.39	2640.39	2466.8	2441.76	2537.78	2611.52	2414.63	2423.52	2601.63	2510.43
UCKL1 UMPS	-	NM_001193379.1:825	Endogenous	mRNA	2583.91	2593.2	2580.73	2571.11	2580.23 710.35	2513.31	2636.26	2527.46	2597.46	2662.67 706.7	2633.43
UPP1	NM_000373.2 NM_003364.2	NM_000373.2:2445 NM_003364.2:925	Endogenous Endogenous	mRNA	725.22 2340.28	666.91 2369.92	651.1 2362.67	665.8 2426.86	2575.72	623.38 2484.18	661.76 2424.29	583.56 2729.76	624.31 2398.18	2668.1	673.18 2331.43
UPP2			Endogenous	mRNA	2040.20	2005.52	202.07	2420.00	20/3.72	2404.10	2424.25	2725.70	2000.10	2000.1	20
UQCR10	-	NM_001003684.1:40	Endogenous	mRNA	1793.78	1686.36	1709.51	1713.34	1756.18	1730.31	1737.78	1783.09	1780.78	1696.89	1797.72
UQCR11	NM_006830.2	NM 006830.2:360	Endogenous	mRNA	140.15	162.56	174.86	168.67	140.72	168.95	156.02	143.94	149.74	157.35	169.12
UQCRQ	NM_014402.4	NM_014402.4:172	Endogenous	mRNA	11001.59	10855.6	10980.18	11664.88		11537.71	11924.52	11952.57	11047.54	12107.49	11819.68
USP8		NM_001128610.1:1160		mRNA	1437.28	1511.07	1494.54	1461.44	1518.64	1562.52	1578.53	1525.03	1488.21	1633.14	1564.9
VEGFA			Endogenous	mRNA	1291.48	1228.05	1203.45	1165.16	3143.1	3239.23	2969.83	2871.11	3039.77	3099.44	2676.26
VHL	NM_000551.2	NM_000551.2:1280	Endogenous	mRNA	11101.3	10853.64	10833.09	11029.04	14649.43	14425.05	14694.21	14168.79	14867.12	15069.93	14128.05
VPS28	NM_016208.3	NM_016208.3:416	Endogenous	mRNA	1519.12	1490.5	1527.45	1577.96	1447.72	1369.1	1419.28	1353.86	1511.25	1387.63	1348.56
WASHC4	NM_015275.1	NM_015275.1:1485	Endogenous	mRNA	1330.05	1398.45	1435.91	1347.14	1574.93	1568.35	1620.5	1502.99	1461.72	1523.27	1502.31
WDR45	NM_007075.3	NM_007075.3:1390	Endogenous	mRNA	442.1	399.56	504.01	466.06	514.47	485.88	484.21	490.19	495.3	411	490.89
WNT1	NM_005430.2	NM_005430.2:350	Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
WNT2			Endogenous	mRNA	20	20	20	20	20	20	20	20	20	20	20
WRN	NM_000553.4	NM_000553.4:2944	Endogenous	mRNA	713	662.01	703.55	743.48	618.04	665.32	701.57	644.51	670.39	633.45	722.6
XCL1/2 XDH	NM_003175.3 NM_000379.3		Endogenous	mRNA mRNA	73.37 1267.97	81.28 1196.71	76.12 1204.48	77.68	78.8	89.72 1044.01	74.25 1003.93	71.32 1137.29	78.33 1067.78	89.52 1119.05	82.36 1195.91
XRCC2	NM 005431.1	NM_005431.1:600	Endogenous Endogenous	mRNA	1267.97	1043.94	1204.48	1003.14	1024.44	1044.01	1003.93	982.97	992.91	1020.03	1018.01
YWHAZ	NM 003406.2	NM_003406.2:2345	Endogenous	mRNA	19996.83	20048.33	20303.3	21042.73	22490.3	22062.87	22288.8	22798.97	22537.39	23238.34	25032.95
ZAP70		NM_001079.3:1175	Endogenous	mRNA	20	20010.55	20000.0	20	20	20	20	20	20	20200.01	20052.55
ZNF100	NM_173531.3	NM_173531.3:36	Endogenous	mRNA	155.2	136.12	148.12	146.48	169.99	137.49	145.26	127.09	153.2	123.44	136.17
ZNF136	NM_003437.2	NM 003437.2:385	Endogenous	mRNA	561.56	535.68	525.61	543.74	525.73	503.36	538.01	527.8	580.54	543.93	602.9
ZNF253		NM_021047.2:1327	Endogenous	mRNA	1014.94	966.57	1006.99	1002.03	917.49	838.94	858.67	864.96	890.39	919.66	923.57
ZNF254	NM_203282.3	NM_203282.3:1986	Endogenous	mRNA	1315.94	1286.81	1290.88	1304.98	1194.42	1145.38	1178.25	1289.02	1239.41	1247.91	1227.76
ZNF43	NM_003423.2	NM_003423.2:3835	Endogenous	mRNA	1992.25	2849.78	2680.5	2760.87	3026.03	2169.58	2370.49	4164.01	2106.76	4227.99	1600.04
ZNF610	NM_001161427.1	NM_001161427.1:454	Endogenous	mRNA	20	21.54	26.74	35.51	24.77	20	20	20	20	28.49	20
ZNF675	NM_138330.2	NM_138330.2:851	Endogenous	mRNA	701.71	717.83	690.18	734.6	647.31	601.24	609.03	609.49	601.27	638.88	661.1
ZNF682			Endogenous	mRNA	418.58	419.14	415.55	392.82	353.49	351.89	354.01	338.46	362.84	325.54	386.56
ZNF708	NM_021269.2	NM_021269.2:488	Endogenous	mRNA	574.72	541.56	547.21	560.38	529.1	541.81	554.15	526.5	507.97	584.62	520.54
ZNF85		NM_001256171.1:275	Endogenous	mRNA	367.79	376.05	368.23	369.52	334.35	307.61	341.1	334.57	345.56	317.4	337.14
ZNF91 ZNF93	NM_003430.2 NM_031218.3	NM_003430.2:4472 NM_031218.3:2314	Endogenous	mRNA mRNA	1259.5 228.57	1254.49 202.72	1197.28 212.92	1247.27 249.68	1224.82 240.91	1215.29 216.73	1367.63 191.53	1185.27 167.29	1201.4 231.52	1273.69 203.46	1226.66 254.78
ABCF1	NM_001090.2	NM_001090.2:857	Endogenous Housekeeping		1806.01	1813.67	1927.57	1807.66	1812.46	2021.6	1878.74	1807.73	1804.97	2003.45	1822.97
AGK	NM_018238.3	NM_018238.3:816	Housekeeping		1774.97	1765.69	1927.57	1712.23	1812.46	1704.67	1692.59	1676.76	1804.97	1707.74	1822.97
COG7	NM_153603.3	NM_153603.3:1492	Housekeeping		538.98	526.87	557.49	501.57	551.62	629.2	574.6	574.48	531.01	590.05	566.66
DHX16			Housekeeping		422.34	428.94	479.32	443.87	454.8	454.42	421.8	409.79	501.06	434.06	437.07
DNAJC14	NM_032364.5	NM_032364.5:1166	Housekeeping		312.29	324.15	284.92	331.79	296.07	292.46	312.05	306.04	300.64	268.57	296.51
EDC3			Housekeeping		1826.7	1861.66	1825.74	1702.24	1741.54	1640.59	1738.86	1628.78	1745.08	1702.32	1798.81
FCF1	NM_015962.4	NM_015962.4:1022	Housekeeping		3581.91	3424.63	3344.97	3211.39	3504.47	3358.08	3555.19	3201.79	3393.39	3461.61	3320.89
G6PD	NM_000402.4	NM_000402.4:923	Housekeeping	mRNA	1113.7	1237.84	1170.53	1186.24	1167.41	1169.85	1083.56	1295.5	1143.8	1250.63	1111.36
MRPS5		NM_031902.3:390	Housekeeping	mRNA	2623.41	2583.41	2566.33	2647.68	2513.81	2509.82	2594.3	2397.78	2592.85	2440.22	2691.63
NRDE2		NM_017970.3:3233	Housekeeping		493.83	454.4	450.52	525.99	431.16	389.17	416.42	474.63	465.35	431.34	478.81
OAZ1		NM_004152.2:313	Housekeeping		17411.98	17476.68	17209.31	17481.79		19090.47	18909	18657.01	18434.45	19049.69	17967.28
POLR2A	NM_000937.2	NM_000937.2:3775	Housekeeping		1848.34	1858.72	1837.06	1838.73	1928.42	1916.74	1743.16	1933.52	1931.68	1936.98	2065.67
SAP130	NM_024545.3	NM_024545.3:3090	Housekeeping		1459.86	1496.38	1467.8	1438.14	1367.79	1447.17	1495.68	1444.63	1444.44	1374.06	1399.08
SDHA	NM_004168.3	NM_004168.3:342	Housekeeping		1619.76	1746.1	1793.86	1836.51	1805.71	1893.43	1798.04	1793.47	1694.39	1886.79	1760.38
STK11IP TBC1D10B	NM_052902.2	NM_052902.2:565 NM 015527.3:2915	Housekeeping		135.45	126.33 297.71	136.8 293.15	125.39 310.71	136.22 310.71	82.73 389.17	126.97 308.82	141.35 315.12	110.58 297.18	116.65 311.98	97.74 341.53
TBP	NM_015527.3 NM_001172085.1	NM_015527.3:2915 NM_001172085.1:587	Housekeeping	mRNA	295.36 1552.04	1534.57	1425.62	1431.48	1470.23	389.17 1454.16	308.82	1427.77	297.18 1584.97	1398.48	341.53
TLK2		XM_011524223.1:383	Housekeeping		1552.04	1554.57	1425.62	1967.45	2017.35	2176.57	2115.47	2002.25	1584.97	2170.29	2062.38
UBB	NM_011324223.1	NM_018955.3:1052	Housekeeping		21665.5	21703.36	21546.86	22183.48		21399.88	20962.06	21018.47	21990.25	22017.56	21542.94
USP39			Housekeeping	mRNA	2286.67	2226.94	2245.41	2223.79	2245.88	2392.13	2323.14	2259.02	2273.78	2234.04	21342.34
NEG_A		ERCC_00096.1:230	Negative	SYSTEM	8	15	10	12		15	8	14	5	11	8
NEG_B			Negative	SYSTEM	12	12	14	13		16	18	17	10	22	12
NEG_C		ERCC_00019.1:140	Negative	SYSTEM	18	12	14	11		15	13	16	13	20	17
NEG_D	ERCC_00076.1	ERCC_00076.1:355	Negative	SYSTEM	12	23	15	13		20	13	10	17	13	11
NEG_E		ERCC_00098.1:785	Negative	SYSTEM	11	22	20	16		14	22	14	14	20	10
NEG_F		ERCC_00126.1:220	Negative	SYSTEM	16	26	18	20	23	13	23	26	17	17	12
NEG_G		ERCC_00144.1:15	Negative	SYSTEM	6	8	5	11	12	7	8	5	6	10	6
NEG_H			Negative	SYSTEM	17	8	8	19	3	9	15	17	10	9	5
POS_A			Positive	SYSTEM	24552	39441	34608	34760	37763	22178	24104	45351	19508	45363	18199
POS_B		ERCC_00112.1:695	Positive	SYSTEM	7418	11957	10698	10917	11406	6738	7497	13869	5880	14248	5488
POS_C	ERCC_00002.1	ERCC_00002.1:850	Positive	SYSTEM	2170	3494	3089	3083	3326	2026	2417	4112	1684	3880	1684
	ED.CC. 000000 -														
POS_D		ERCC_00092.1:540	Positive	SYSTEM	518	856	737	705	794	460	511	914	429	955	405
	ERCC_00035.1	ERCC_00035.1:485	Positive Positive Positive	SYSTEM SYSTEM SYSTEM	518 111 37	856 178 55	737 148 54	705 166 67	145	460 110 32	511 92 50	914 183 83	429 85 31	955 181 84	405 86 34

Appendix A: Normalized transcript counts of intracellularly infected urothelial cells. Normalized read counts of all transcripts in the NanoString nCounter Human Metabolic Pathways Panel. Urothelial cells were intracellularly infected with wild-type UPEC, $\Delta cydAB$, or mock infected. See also Chapter 3, Materials and Methods.

Gene Name			Linear fold change		
TNF	NM_000594.2:1010	4.21	18.5	0.488	0.00013
BIRC3 CCL5	NM_182962.1:3 NM_002985.2:277	4.15	17.8	0.297	8.33E-0
TRAF1					
SLC2A14	NM_005658.3:3735	2.36	5.12	0.0889	1.91E-0 0.00018
TIR2	NM_001286234.1:606	2.1	4.28	0.258	3.82E-0
SOD2	NM_003264.3:2402			0.0597	3.82E-0 2.01E-0
BCL2A1	NM_000636.2:201 NM_004049.2:80	2.01	4.02	0.052	2.01E-0 1.98E-0
CA9	NM_001216.2:960	1.85	3.45	0.104	0.00012
PDK1	NM_002610.3:1170	1.66	3.16	0.105	4.00E-0
IL4I1	NM_152899.1:1452	1.6	3.04	0.257	0.00078
SLC2A6	NM_001145099.1:174	1.41	2.66	0.0776	1.78E-0
NFKB2	NM_002502.2:825	1.39	2.62	0.0382	2.88E-0
VEGFA	NM_001025366.1:1325	1.33	2.51	0.0513	2.17E-0
ADORA2A	NM_000675.3:1095	1.31	2.48	0.287	0.0038
FLT1	NM_002019.4:530	1.28	2.43	0.0721	2.02E-0
NOS2	NM_000625.4:605	1.25	2.38	0.313	0.0071
NFKB1	NM_003998.2:1675	1.19	2.28	0.0207	1.90E-0
	NM_000600.3:364	1.19		0.0883	1.04E-0
STAT5A	NM_003152.2:3460	1.1	2.15		2.64E-0
HK2	NM_000189.4:6880	1.1	2.14	0.0828	1.14E-0
KMO	NM_003679.3:595	1.08	2.11	0.2	0.0016
PDGFB	NM_033016.2:1480	1.05	2.08	0.217	0.0028
PTGS1	NM_000962.2:700	0.98	1.97	0.31	0.019
KYNU	NM_003937.2:738	0.968	1.96	0.0238	1.46E-0
LDHA	NM_001165414.1:1690	0.961	1.95	0.0577	3.00E-0
MAP2K3	NM_145109.1:370	0.884	1.85	0.0724	1.83E-0
SMAD3	NM_005902.3:4220	0.87	1.83	0.0193	7.92E-0
PGK1	NM_000291.2:1030	0.866	1.82	0.0443	1.17E-0
SLC16A3	NM_004207.2:370	0.831	1.78	0.0443	1.47E-0
IRF1	NM_002198.2:15	0.832	1.78	0.0755	3.32E-0
IFNG	NM_000619.2:970	0.794	1.73	0.549	0.19
SLC2A1	NM_006516.2:2500	0.755	1.69	0.0634	2.11E-0
AMPD3	NM 000480.2:3033	0.735	1.67	0.0636	2.50E-0
SQSTM1	NM_003900.3:1445		1.66	0.0838	4.00E-0
ALDOA		0.733	1.66	0.0313	4.00E-0 5.79E-0
ALDOA CD244	NM_184041.2:1455 NM_001166663.1:22	0.692	1.62	0.0465	5.79E-0 0.014
CTSS	NM_004079.3:685	0.646	1.56	0.0381	2.71E-0
GPI	NM_000175.2:1695	0.626	1.54	0.0392	3.87E-0
KLRD1	NM_007334.2:1252	0.625	1.54	0.21	0.024
MAP2K1	NM_002755.2:970	0.595	1.51	0.0446	1.10E-0
PIK3CD	NM_005026.3:2978	0.595	1.51	0.106	0.0013
CA12	NM_001218.3:2445	0.544	1.46	0.0933	0.0011
IDO1	NM_002164.5:52	0.531	1.44	0.208	0.043
SLC16A6	NM_001174166.1:855	0.531	1.44	0.346	0.17
TRAT1	NM_016388.2:770	0.518	1.43	0.0765	0.00050
GSK3B	NM_002093.2:925	0.488	1.4	0.0327	5.69E-0
HK1	NM_000188.2:3355	0.456	1.37	0.0372	1.80E-0
AMDHD1	NM_152435.2:1936	0.453	1.37	0.205	0.069
\$100A12	NM_005621.1:260	0.45	1.37	0.294	0.17
ERN1	NM_001433.2:435	0.446	1.36	0.0447	5.88E-0
NFAT5	NM_173214.1:3290	0.434	1.35	0.0841	0.002
COL6A1	NM_001848.2:3665	0.415	1.33	0.0305	9.88E-0
KMT2E	NM_018682.3:1541	0.414	1.33	0.053	0.00023
VHL	NM_000551.2:1280	0.403	1.32	0.0149	1.71E-0
PGM2	NM_018290.3:295	0.403	1.32	0.0558	0.00037
ASS1	NM_000050.4:1275	0.385	1.32	0.0358	4.16E-0
HMOX1	NM_002133.2:781	0.384	1.31	0.0929	0.0061
KRAS	NM_033360.2:267	0.377	1.3	0.0378	5.85E-0
THBS2	NM_003247.2:4460	0.368	1.29	0.087	0.0055
APOM	NM_019101.2:496	0.363	1.29	0.168	0.07
ACOX1	NM_004035.5:2950	0.354	1.28	0.0244	6.75E-0
PFKL	NM_001002021.1:2410	0.355	1.28	0.0387	9.47E-0
CD274	NM_014143.3:1243	0.354	1.28	0.133	0.03
ACACB	NM_001093.3:3365	0.347	1.27	0.222	0.16
ITGA1	NM_181501.1:1875	0.339	1.26	0.0246	9.03E-0
GLUL	NM_001033044.2:2645	0.329	1.26	0.0353	8.76E-0
GAPDH	NM_001256799.1:386	0.318	1.25	0.0207	4.84E-0
TXNRD1	NM_001093771.1:1009	0.319	1.25	0.0292	3.45E-0
CD68	NM_001251.2:1140	0.32	1.25	0.0814	0.0077
SLC16A13	NM_201566.2:355	0.328	1.25		
HLA-E	NM_005516.5:1287	0.309	1.24		0.00033
STAT6	NM_003153.3:2030	0.292	1.22		
BAD	NM_004322.3:652	0.287	1.22	0.034	
ENO1	NM_001428.2:1689	0.29	1.22	0.0372	
GLRX	NM_002064.2:360	0.288	1.22		0.00091
NRAS	NM_002524.3:877	0.29	1.22		
PDP1	NM_001161778.1:950	0.271	1.21		5.07E-0
EGFR	NM_201282.1:1354	0.271	1.21	0.0304	0.0001
GNG12	NM_018841.3:245	0.274	1.21		0.00011
SOS1	NM_005633.2:1635	0.274	1.21	0.0688	0.0072
LEPR	NM_001003679.1:2000	0.274	1.21	0.0996	0.0072
НКЗ	NM_002115.1:495	0.277	1.21	0.309	0.032
RELA	NM_021975.3:1990	0.272	1.21		0.00015
PTGS2				0.0318	0.00015
	NM_000963.1:495 NM_005188.2:7485	0.264	1.2		
	NM_005188.2:7485 NM_002953.3:2000	0.254	1.19	0.0288	
CBL		0.254	1.19	0.0472	0.001
CBL RPS6KA1			1.18		1.35E-0
CBL RPS6KA1 TP53	NM_000546.2:1330		1.18	0.0258	0.00010
CBL RPS6KA1 TP53 HLA-A	NM_000546.2:1330 NM_002116.5:1000	0.233			
CBL RPS6KA1 TP53 HLA-A CD276	NM_000546.2:1330 NM_002116.5:1000 NM_001024736.1:2119	0.233 0.243	1.18	0.0314	
CBL RPS6KA1 TP53 HLA-A CD276	NM_000546.2:1330 NM_002116.5:1000	0.233		0.0314	0.00024
CBL RPS6KA1 TP53 HLA-A CD276 MAP1LC3B	NM_000546.2:1330 NM_002116.5:1000 NM_001024736.1:2119	0.233 0.243	1.18	0.0314	
CBL RPS6KA1 TP53 HLA-A CD276 MAP1LC3B FAH	NM_000546.2:1330 NM_002116.5:1000 NM_001024736.1:2119 NM_022818.4:1685	0.233 0.243 0.243	1.18 1.18	0.0314 0.0335 0.0367	0.0003
CBL RPS6KA1 TP53 HLA-A CD276 MAP1LC3B FAH KANSL1	NM_000546.2:1330 NM_002116.5:1000 NM_001024736.1:2119 NM_022818.4:1685 NM_000137.1:920 NM_001193465.1:1838	0.233 0.243 0.243 0.233	1.18 1.18 1.18	0.0314 0.0335 0.0367	0.0003
CBL RPS6KA1 TP53 HLA-A CD276 MAP1LC3B FAH KANSL1 PRKAA2	NM_000546.2:1330 NM_002116.5:1000 NM_001024736.1:2119 NM_022818.4:1685 NM_000137.1:920 NM_001193465.1:1838 NM_006252.2:975	0.233 0.243 0.243 0.233 0.236 0.24	1.18 1.18 1.18 1.18 1.18 1.18	0.0314 0.0335 0.0367 0.0412 0.205	0.0003 0.00071 0.0012 0.28
CBL RPS6KA1 TP53 HLA-A CD276 MAP1LC3B FAH KANSL1 PRKAA2 HPRT1	NM_000546.2:1330 NM_002116.5:1000 NM_001024736.1:2119 NM_022818.4:1685 NM_000137.1:920 NM_001133465.1:1838 NM_006252.2:975 NM_000194.1:240	0.233 0.243 0.243 0.233 0.236 0.246 0.249 0.229	1.18 1.18 1.18 1.18 1.18 1.18 1.17	0.0314 0.0335 0.0367 0.0412 0.205 0.0177	0.0003 0.00071 0.0012 0.28 1.31E-0
CBL RPS6KA1 TP53 HLA-A CD276 MAP1LC3B FAH KANSL1 PRKAA2 HPRT1 PIK3CA	NM_000546.2:1330 NM_002116.5:1000 NM_002104736.1:2119 NM_002218.4:1685 NM_000137.1:920 NM_001193465.1:1838 NM_000252.2:975 NM_000219.4:240 NM_006218.2:2445	0.233 0.243 0.243 0.233 0.236 0.24 0.229 0.229	1.18 1.18 1.18 1.18 1.18 1.18 1.17 1.17	0.0314 0.0335 0.0367 0.0412 0.205 0.0177 0.0449	0.0003 0.00071 0.0012 0.28 1.31E-0 0.0024
CBL RPS6KA1 TP53 HLA-A CD276 MAP1LC3B FAH KANSL1 PRKAA2 HPRT1	NM_000546.2:1330 NM_002116.5:1000 NM_001024736.1:2119 NM_022818.4:1685 NM_000137.1:920 NM_001133465.1:1838 NM_006252.2:975 NM_000194.1:240	0.233 0.243 0.243 0.233 0.236 0.246 0.249 0.229	1.18 1.18 1.18 1.18 1.18 1.18 1.17	0.0314 0.0335 0.0367 0.0412 0.205 0.0177	0.0003 0.00071 0.0012 0.28 1.31E-0

ITGB2	NM_000211.2:520	0.213	1.16	0.151	0.20
TBK1	NM_013254.2:1610	0.199	1.15	0.0467	0.0052
RICTOR	NM_152756.3:3097	0.199	1.15	0.0586	0.014
SLC6A19	NM_001003841.2:1515	0.2	1.15	0.244	0.44
STAT3	NM_003150.3:2060	0.19	1.14	0.0173	3.40E-0
PSME2	NM_002818.2:315	0.187	1.14	0.0279	0.00054
PTK2	NM_005607.4:3466	0.185	1.14	0.0299	0.00081
WASHC4 NT5F	NM_015275.1:1485	0.184	1.14	0.0345	0.0017
	NM_002526.2:1214	0.193			0.010
ARID2 CPT1A	NM_152641.2:3355 NM 001876.3:1355	0.184	1.14	0.0603	0.022
ZNF43	NM_003423.2:3835	0.193	1.14	0.114	0.14
FOLR3	NM_000804.2:469	0.189	1.14	0.211	0.40
PKM	NM_182471.1:2105	0.187	1.14	0.200	2.43E-0
LAMC1	NM 002293.3:4915	0.171	1.13	0.0132	9.10E-0
HRAS	NM_005343.2:396	0.173	1.13	0.0185	0.00091
SMAD4	NM 005359.3:1370	0.175	1.13	0.0754	0.00051
RPL23	NM 000978.3:71	0.16	1.12	0.0165	6.94E-0
AKT3	NM_005465.4:287	0.169	1.12	0.0203	0.00016
GCLC	NM_001498.2:520	0.169	1.12	0.0255	0.00058
NCOA2	NM_006540.2:1045	0.164	1.12	0.0257	0.00069
RRM2	NM_001034.1:1615	0.161	1.12	0.0279	0.0011
ITGB5	NM 002213.3:2560	0.16	1.12	0.0349	0.0037
COL4A1	NM 001845.4:780	0.158	1.12	0.0349	0.0039
NDC1	NM_001168551.1:1845	0.165	1.12	0.0434	0.0090
CAB39	NM 001130849.1:1238	0.163	1.12	0.0471	0.013
KMT2A	NM 005933.2:14000	0.162	1.12	0.0563	0.013
APOC2	NM_000483.3:556	0.161	1.12	0.279	0.58
CD63	NM_001780.4:350	0.155	1.12	0.0223	0.00044
TFRC	NM 003234.1:1220	0.155	1.11	0.0223	0.00044
HEXB	NM 000521.3:950	0.156	1.11	0.0244	0.00069
CS	NM_004077.2:740	0.157	1.11	0.026	0.00094
CARD11	NM 032415.2:1075	0.155	1.11	0.0286	0.0017
PPM1A	NM_032415.2:1075 NM_021003.4:550	0.155	1.11	0.0297	0.0019
AKT1	NM_001014431.1:758	0.134	1.11	0.0311	0.002
REST	NM_001193508.1:1140	0.148	1.11	0.0305	0.0027
SLC16A1	NM_003051.3:635	0.145	1.11	0.0356	0.0065
PDCD1LG2	NM_025239.3:235	0.140	1.11	0.0593	0.010
RRAGC	NM_022157.2:1199	0.149	1.11	0.0353	0.044
RPLPO	NM 001002.3:250	0.149	1.11	0.0164	0.00019
		0.131		0.0104	0.00019
YWHAZ ATF4	NM_003406.2:2345	0.135	1.1	0.0196	0.00039
ITGB1	NM_001675.2:1151 NM_002211.3:355	0.133	1.1	0.0255	0.0018
MAP2K2	NM_030662.3:375	0.134	1.1	0.0256	0.001
ALOX5		0.138	1.1	0.0608	0.064
COX5A	NM_000698.2:735 NM 004255.3:315	0.138	1.1	0.0658	8.49E-0
SERINC3		0.127	1.09		0.00044
	NM_006811.2:185			0.0178	
SERINC1	NM_020755.2:95	0.126	1.09	0.0279	0.0039
BRCC3 PIK3C2A	NM_024332.3:458 NM_002645.1:3505	0.121	1.09	0.0299	0.0067
		0.12		0.0338	0.012
CCL13 NDUFA2	NM_005408.2:320 NM 001185012.1:116	0.119	1.09	0.0374	0.019
AFMID		0.12	1.09	0.0466	0.041
AFINID ATXN7	NM_001010982.4:850				
HLA-C	NM_001128149.2:3600 NM_002117.4:895	0.122	1.09	0.0504	0.051
WDR45		0.124	1.09	0.0723	0.12
GNS	NM_007075.3:1390				
PGAM2	NM_002076.3:1340	0.13	1.09	0.0831	0.1
MAP3K12	NM_000290.3:58 NM_006301.2:800	0.119	1.09	0.14	0.58
					0.00011
LTA4H	NM_001256643.1:1140	0.117	1.08	0.0132	0.00011
PSMB3 COX6B1	NM_002795.3:22	0.11	1.08	0.0131	0.00015
	NM_001863.4:264	0.11	1.08	0.0144	
NDUFA1	NM_004541.3:240	0.111	1.08	0.0173	0.00068
KDM3B	NM_016604.3:4178	0.111	1.08	0.019	0.0011
CTSZ	NM_001336.3:827	0.107	1.08	0.0256	0.0057
FAHD1	NM_031208.3:542	0.115	1.08	0.0321	0.011
PDHA1	NM_000284.3:1080	0.108	1.08	0.0312	0.013
SMAD2	NM_005901.5:1678	0.106	1.08	0.0363	0.026
GDA	NM_001242506.2:861	0.100	1.00	0.0500	0.020
NCOR1	NM_006311.3:1390	0.111	1.08	0.0395	0.030
GPX1	NM_000581.2:745	0.109	1.08	0.0405	0.035
ITCH	NM_001257138.1:438	0.112	1.08	0.0416	0.03
GOT2	NM_002080.2:2145	0.105	1.08	0.0405	0.040
MSH2	NM_000251.1:2105	0.105	1.08	0.0408	0.041
PSMD13	NM_175932.2:668	0.105	1.08	0.0444	0.055
PIK3CB	NM_006219.1:2945	0.115	1.08	0.0502	0.061
BRAF	NM_004333.3:565	0.117	1.08	0.0667	0.13
RAD51	NM_133487.2:566	0.105	1.08	0.0686	0.17
COX4I1	NM_001318797.1:50	0.103	1.07	0.0145	0.0003
SERINC5	NM_001174071.2:526	0.0914	1.07	0.0162	0.0013
MAPK1	NM_138957.2:430	0.0991	1.07	0.0199	0.0025
PSMB1	NM_002793.2:0	0.0938	1.07	0.0204	0.0037
IDH2	NM_002168.2:944	0.1	1.07	0.0252	0.0073
GABARAP	NM_007278.1:233	0.102	1.07	0.03	0.014
GPX4	NM_001039847.1:435	0.0971	1.07	0.0288	0.01
RRM1	NM_001033.3:2444	0.0956	1.07	0.0285	0.015
MGST3	NM_004528.2:195	0.101	1.07	0.0352	0.028
UPP1	NM_003364.2:925	0.102	1.07	0.0385	0.038
GART	NM_000819.3:370	0.0997	1.07	0.0434	0.061
IMPDH1	NM_000883.3:862	0.098	1.07	0.0429	0.062
	NM_001127208.2:2882	0.0952	1.07	0.0428	0.06
	NM_002801.3:249	0.0914	1.07	0.0598	0.17
PSMB10	NM_080668.3:308	0.1	1.07	0.0696	0.19
PSMB10 CDCA5		0.0971	1.07	0.0714	0.22
PSMB10 CDCA5 STK11	NM_000455.4:2060				
TET2 PSMB10 CDCA5 STK11 HSD17B8	NM_014234.3:875	0.0951	1.07	0.0832	
PSMB10 CDCA5 STK11 HSD17B8 GMPR	NM_014234.3:875 NM_006877.3:325	0.0951 0.094	1.07	0.203	0.65
PSMB10 CDCA5 STK11 HSD17B8 GMPR ARPC4	NM_014234.3:875 NM_006877.3:325 NM_005718.4:970	0.0951 0.094 0.0907	1.07 1.06	0.203 0.0159	0.65 0.0012
PSMB10 CDCA5 STK11 HSD17B8 GMPR	NM_014234.3:875 NM_006877.3:325	0.0951 0.094	1.07	0.203	0.29 0.65 0.0012 0.0015 0.0015

LAMTOR5	NM_001862.2:240 NM_006402.2:504	0.0876	1.06	0.0186	0.00332
ATP5ME	NM_007100.3:184	0.0799	1.06	0.0184	0.00489
HEXA	NM_000520.4:702	0.0788	1.06	0.0213	0.010
NDUFB1	NM_004545.3:270	0.0843	1.06	0.0235	0.011
CHMP2A	NM_014453.3:241	0.0855	1.06	0.0274	0.020
GLS	NM_014905.3:985	0.0901	1.06	0.0295	0.022
UQCRQ	NM_014402.4:172	0.0776	1.06	0.0272	0.029
COX7C	NM_001867.2:57	0.0901	1.06	0.0333	0.035
COX8A AK3	NM_004074.2:0	0.0859	1.06	0.0364	0.055
GAPVD1	NM_016282.2:450 NM_001282679.1:380	0.0864	1.06	0.0441	0.097
NUP62	NM_016553.3:457	0.0829	1.00	0.0442	0.10
OAT	NM_000274.3:775	0.0898	1.06	0.0489	0.11
PTEN	NM_000314.3:1675	0.0849	1.06	0.0507	0.14
ECHS1	NM_004092.3:125	0.0793	1.06	0.0488	0.15
ASH1L	NM_018489.2:5005	0.0846	1.06	0.0598	0.20
NEU1	NM_000434.3:1508	0.0892	1.06	0.0666	0.22
FNIP1	NM_001008738.2:1264	0.0797	1.06	0.0626	0.2
INSR	NM_000208.2:525	0.09	1.06	0.0965	0.38
TIGAR	NM_020375.2:5245	0.0892	1.06	0.134	0.5
ALOX15	NM_001140.3:1910	0.0837	1.06	0.303	0.79
LAMTOR4 NME2	NM_001008395.2:494	0.0744	1.05	0.0148	0.0023
SDHC	NM_001018137.2:669 NM_001035511.1:615	0.0698	1.05	0.0154 0.0187	0.0059
COX6A1	NM 004373.2:260	0.0725	1.05	0.0187	0.00077
NDUFB2	NM_004546.2:230	0.0645	1.05	0.0184	0.0092
NEDD8	NM_006156.2:330	0.0651	1.05	0.0179	0.0002
TXN	NM_003329.2:55	0.0726	1.05	0.0222	0.016
NDUFA6	NM_002490.3:430	0.0654	1.05	0.0211	0.021
USP8	NM_001128610.1:1160	0.0646	1.05	0.0211	0.023
NFE2L2	NM_006164.3:995	0.0751	1.05	0.0252	0.024
GUSB	NM_000181.3:1899	0.0754	1.05	0.0264	0.028
SERINC2	NM_018565.3:795	0.0697	1.05	0.0252	0.032
NUP205	NM_015135.1:5075	0.067	1.05	0.0263	0.043
TPR	NM_003292.2:6825	0.0767	1.05	0.0329	0.058
HSF1	XM_011517006.1:63	0.0704	1.05	0.0365	0.10
NDUFB11	NM_001135998.1:255	0.0696	1.05	0.0406	0.13
PTGES	NM_004878.4:303	0.0671	1.05	0.0405	0.14
PLA2G15	NM_012320.3:900	0.0709	1.05	0.0534	0.23
TK1	NM_003258.1:1215	0.0681	1.05	0.054	0.25
ENO3	NM_001976.4:1368	0.07	1.05	0.186	0.7
COPS6 PSMA7	NM_006833.4:860 NM_002792.2:639	0.061	1.04	0.00946	0.00065
SREBF2	NM 004599.2:665	0.0602	1.04	0.0145	0.0037
SOD1	NM_000454.4:245	0.0621	1.04	0.0185	0.017
PRDX5	NM_012094.4:600	0.0609	1.04	0.0191	0.019
HIF1A	NM 001530.2:1985	0.0585	1.04	0.0191	0.021
NDUFB8	NM_001284367.1:204	0.0542	1.04	0.02	0.03
MAPKAP1	NM_001006617.1:1188	0.0563	1.04	0.0208	0.035
TALDO1	NM_006755.1:262	0.0603	1.04	0.0223	0.035
MYC	NM_002467.3:1610	0.0599	1.04	0.0275	0.072
PEBP1	NM_002567.2:1335	0.0549	1.04	0.0272	0.089
UBE2C	NM_007019.2:561	0.0564	1.04	0.0332	0.1
ARID1A	NM_006015.4:5495	0.0538	1.04	0.0323	0.14
SDHB	NM_003000.2:245	0.0554	1.04	0.0334	0.14
PSMA3	NM_152132.1:465	0.0534	1.04	0.0324	0.15
PSMC1 IDH3G	NM_002802.2:58	0.06	1.04	0.0414	0.19
NDUFA4	NM_004135.2:390 NM_002489.2:35	0.0501	1.04	0.0378	0.23
ATG2B	NM 018036.5:1722	0.0561	1.04	0.0398	0.25
NDUFB7	NM_004146.5:239	0.0504	1.04	0.0433	0.27
PLCG1	NM 002660.2:2290	0.0546	1.04	0.0455	0.28
EFNA4	NM 005227.2:380	0.0606	1.04	0.0527	0.20
LAMB1	NM_002291.2:3120	0.0595	1.04	0.0563	0.33
PIK3R1	NM_181504.2:1105	0.0537	1.04	0.0628	0.42
PIK3R4	NM_014602.1:3620	0.053	1.04	0.0636	0.43
H6PD	NM_004285.3:7250	0.0569	1.04	0.101	0.59
PYCR1	NM_006907.2:513	0.0627	1.04	0.116	0.60
CTSA	NM_001127695.1:1540	0.0438	1.03	0.01	0.0046
IMPDH2	NM_000884.2:545	0.0479	1.03	0.0208	0.06
NPM1	NM_002520.6:910	0.0432	1.03	0.0214	0.089
NDUFB4	NM_004547.4:254	0.0361	1.03	0.0202	0.12
ARF5	NM_001662.2:36	0.0491	1.03	0.0287	0.13
	NM_006111.2:450	0.037	1.03	0.0225	0.15
	NM_020732.3:6335	0.0486	1.03	0.0308	0.16
ARID1B	NM 006253 4-1550				0.19
ARID1B PRKAB1	NM_006253.4:1550 NM_002157.2:607				0.19
ARID1B PRKAB1 HSPE1	NM_006253.4:1550 NM_002157.2:607 NM_001113378.1:541	0.0366	1.03	0.025	0.20
ARID1B PRKAB1 HSPE1 FANCI	NM_002157.2:607 NM_001113378.1:541			0.025	
ARID1B PRKAB1 HSPE1 FANCI AP2S1	NM_002157.2:607	0.0366 0.0462	1.03 1.03	0.0321	0.21
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQO1	NM_002157.2:607 NM_001113378.1:541 NM_021575.2:665	0.0366 0.0462 0.0408	1.03 1.03 1.03	0.0321 0.0293	0.21
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQO1 CDA ME2	NM_002157.2:607 NM_001113378.1:541 NM_021575.2:665 NM_000903.2:790 NM_001785.2:322 NM_002396.3:610	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464	1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361	0.21 0.23 0.24 0.24
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQO1 CDA ME2 STK3	NM_002157.2:607 NM_001113378.1:541 NM_021575.2:665 NM_000903.2:790 NM_001785.2:322 NM_002396.3:610 NM_006281.3:1295	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038	0.21 0.23 0.24 0.24 0.24
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQO1 CDA ME2 STK3 ATP6V1F	NM_002157.2:607 NM_001113378.1:541 NM_021575.2:665 NM_00093.2:790 NM_000396.3:610 NM_002396.3:610 NM_002396.3:1295 NM_001198909.1:673	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0464	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038 0.0343	0.21 0.23 0.24 0.24 0.26 0.32
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQO1 CDA ME2 STK3 ATP6V1F PEMT	NM_002157.2:607 NM_001113378.1:541 NM_021575.2:665 NM_00093.2:790 NM_001785.2:322 NM_002396.3:610 NM_002681.3:1295 NM_01198909.1:673 NM_148173.1:385	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0364 0.0364	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038 0.0343 0.0407	0.21 0.23 0.24 0.24 0.26 0.32 0.33
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQO1 CDA ME2 STK3 ATP6V1F PEMT MAPK8	NM_002157.2:607 NM_00111378.1:541 NM_00175.2:665 NM_000903.2:790 NM_001785.2:322 NM_00263.6:10 NM_00280.3:610 NM_0019809.1:673 NM_148173.1:385 NM_002750.2:945	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0364 0.0364 0.0422 0.0449	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038 0.0343 0.0407 0.0441	0.21 0.23 0.24 0.24 0.26 0.32 0.33
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQO1 CDA ME2 STK3 ATP6V1F PEMT MAPK8 TKT	NM_002157.2:607 NM_001113378.1:541 NM_001375.2:665 NM_000903.2:790 NM_000236.3:610 NM_00238.3:1295 NM_001198909.1:673 NM_001198309.1:673 NM_00202.2:345 NM_001044.2:1235	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0364 0.0364 0.0452 0.0449 0.0449	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038 0.0343 0.0407 0.0441 0.0475	0.21 0.23 0.24 0.26 0.32 0.33 0.34 0.36
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQO1 CDA ME2 STK3 ATP6V1F PEMT MAPK8 TKT NSD1	NM_002157.2:607 NM_0021575.2:665 NM_000903.2:790 NM_001785.2:322 NM_002396.3:610 NM_002396.3:610 NM_002396.3:617 NM_001198909.1:673 NM_148173.1:385 NM_002750.2:945 NM_0022455.4:3140	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0464 0.0464 0.0422 0.0449 0.0463 0.0452	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038 0.0343 0.0407 0.0441 0.0475 0.0486	0.21 0.23 0.24 0.24 0.26 0.32 0.33 0.34 0.34 0.36 0.38
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQO1 CDA ME2 STK3 ATP6V1F PEMT MAPK8 TKT NSD1 NDUFB10	NM_002157.2:607 NM_001113378.1:541 NM_01175.2:665 NM_000903.2:790 NM_001785.2:322 NM_001785.2:322 NM_002905.3:610 NM_002905.3:610 NM_002905.3:610 NM_002905.3:613 NM_002905.3:610 NM_002905.3:613 NM_00295.3:613 NM_002750.2:945 NM_00265.4:3140 NM_02255.4:3140 NM_02454.5:155	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0464 0.0462 0.0422 0.0449 0.0463 0.0462 0.0452	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.0343 0.0407 0.0441 0.0475 0.04486 0.0635	0.21 0.23 0.24 0.26 0.32 0.33 0.34 0.36 0.38 0.50
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQ01 CDA ME2 STK3 ATP6V1F PEMT MAPK8 TKT NSD1 NDUFB10 MAPT	NM. 002157.2:607 NM_0021575.2:665 NM_00303.2:790 NM_002396.3:610 NM_002396.3:610 NM_00129809.1:673 NM_01189809.1:673 NM_002750.2:945 NM_002454.2:1235 NM_004548.2:155 NM_00543.3:1205	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0364 0.0464 0.0364 0.0442 0.0443 0.0463 0.0452 0.0453 0.0454	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038 0.0343 0.0407 0.0445 0.0445 0.0445 0.04635 0.0535	0.21 0.23 0.24 0.26 0.32 0.33 0.34 0.36 0.38 0.50 0.75
ARID1B PRKAB1 HSPE1 FANCI AP2S1 NQ01 CDA ME2 STK3 ATP6V1F PEMT MAPK8 TKT NSD1 NDUFB10 MAPT TRAF6	NM_002157.2:607 NM_0021575.2:665 NM_000903.2:790 NM_001785.2:322 NM_002396.3:610 NM_002396.3:610 NM_002396.3:6173 NM_002396.3:618 NM_002396.3:619 NM_002396.3:619 NM_002196.3:619 NM_002454.3:1285 NM_002750.2:945 NM_002455.4:3140 NM_002455.4:3140 NM_004548.2:1555 NM_016638.3:1205 NM_145803.2:745	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0464 0.0464 0.0442 0.0442 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038 0.0343 0.0447 0.0441 0.0475 0.0486 0.0635 0.15 0.016	0.21 0.23 0.24 0.24 0.26 0.32 0.33 0.34 0.36 0.38 0.50 0.75 0.069
ARID1B PRKAB1 HSPE1 FANCI AP251 NQ01 CDA ME2 STK3 ATP6V1F PEMT MAPK8 TKT NSD1 NDUFB10 MAPT TRAF6 BCL2L1	NM_002157.2:607 NM_001113378.1:541 NM_001175.2:665 NM_000903.2:790 NM_001785.2:322 NM_001785.2:322 NM_001785.2:322 NM_002905.3:610 NM_002905.3:610 NM_002905.4:610 NM_002750.2:945 NM_002750.2:945 NM_00265.4:3140 NM_02265.4:3140 NM_004548.2:155 NM_16834.3:1205 NM_148578.1:1560	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0464 0.0462 0.0422 0.0449 0.0463 0.0452 0.0452 0.0452 0.0453 0.0452 0.0353	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.0343 0.0407 0.0441 0.0475 0.0486 0.0635 0.15 0.016 0.0149	0.21 0.23 0.24 0.24 0.26 0.32 0.33 0.34 0.36 0.38 0.50 0.75 0.069 0.095
ARID1B PRKAB1 HSPE1 FANCI AP2S1 AP2S1 COA ME2 STK3 ATP6V1F PEMT MAPK8 TKT NSD1 NDUFB10 MAPT TRAF6 BCL2L1 SCD	NM. 002157.2:607 NM_002157.2:607 NM_001755.2:665 NM_000903.2:790 NM_001785.2:322 NM_00236.3:610 NM_00236.3:610 NM_00236.3:6120 NM_001396.3:613 NM_001396.3:613 NM_001396.3:613 NM_0010424.3:1235 NM_002750.2:945 NM_001064.2:1235 NM_002453.4:3140 NM_004548.2:155 NM_145803.2:745 NM_145803.2:745 NM_138578.1:1560 NM_138578.1:1560	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0464 0.0464 0.0463 0.0449 0.0463 0.0443 0.0452 0.0453 0.0454 0.0353	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.027 0.0316 0.0361 0.038 0.0407 0.0441 0.0475 0.0486 0.0635 0.15 0.016 0.0169 0.0161	0.21- 0.23: 0.24: 0.32: 0.33: 0.34: 0.36: 0.36: 0.36: 0.36: 0.50: 0.75: 0.069: 0.095: 0.10:
ARID1B PRKAB1 HSPE1 FANCI AP2S1 CDA ME2 STK3 ATP6V1F PEMT MAPK8 TKT NSD1 NDUFB10 MAPT TRAF6 BCL2L1 SCD NME1	NM 002157.2:607 NM 002113378.1:541 NM 021572.665 NM 000903.2:790 NM 001785.2:322 NM 001785.2:322 NM 000903.2:790 NM 001785.2:322 NM 001785.2:322 NM 001785.2:322 NM 001785.0:3610 NM 00198909.1:673 NM 14875.1:385 NM 002750.2:945 NM 00164.2:1235 NM 002455.4:3140 NM 004548.2:1555 NM 16834.3:1205 NM 14630.2:745 NM 148578.1:1560 NM<000563.4:2025	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0464 0.0462 0.0449 0.0442 0.0445 0.0445 0.0445 0.0445 0.0445 0.0453 0.0454 0.0353	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038 0.0407 0.0441 0.0475 0.0486 0.0635 0.15 0.016 0.0149 0.0185	0.21- 0.23: 0.24: 0.26: 0.32: 0.33: 0.34: 0.36: 0.36: 0.36: 0.50: 0.75: 0.069: 0.095: 0.100 0.14:
ACAA2 ARID18 PRKAB1 HSPE1 FANCI AP2S1 NQO1 CDA ME2 STK3 ATP6V1F PEMT MAPK8 TKT NSD1 NDUFB10 MAPT TRAF6 BCL2L1 SCD NME1 PRDX1 RAMBP2	NM. 002157.2:607 NM_0021572.2:657 NM_021575.2:655 NM_000903.2:790 NM_002396.3:610 NM_002396.3:610 NM_0019809.1:673 NM_0019809.1:673 NM_002750.2:945 NM_00164.2:1235 NM_0164.2:1235 NM_0164.3:1205 NM_01643.3:1205 NM_104583.1:1560 NM_138578.1:1560 NM_00563.4:2025 NM_000269.2:500 NM_002574.2:632	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0364 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.0463 0.024 0.0355 0.0328	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.0361 0.0343 0.0407 0.0441 0.0475 0.0486 0.0635 0.15 0.016 0.0119 0.0187 0.0187 0.0185	0.203 0.214 0.233 0.244 0.265 0.325 0.335 0.344 0.365 0.365 0.365 0.365 0.0695 0.0695 0.0095 0.0095 0.0095 0.100 0.144 0.177 0.266
ARID1B PRKAB1 HSPE1 FANCI AP2S1 CDA ME2 STK3 ATP6V1F PEMT MAPK8 TKT NSD1 NDUFB10 MAPT TRAF6 BCL2L1 SCD NME1	NM 002157.2:607 NM 002113378.1:541 NM 021572.6:65 NM 000903.2:790 NM 001785.2:322 NM 001785.2:322 NM 000903.2:790 NM 001785.2:322 NM 001785.2:322 NM 001785.2:322 NM 001785.0:3140 NM 002750.2:945 NM 00164.2:1235 NM 002455.4:3140 NM 004548.2:155 NM 16834.3:1205 NM 148578.1:1560 NM 005063.4:2025 NM 005063.2:745	0.0366 0.0462 0.0408 0.0359 0.0411 0.0464 0.0464 0.0464 0.0462 0.0449 0.0442 0.0445 0.0445 0.0445 0.0445 0.0445 0.0453 0.0454 0.0353	1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	0.0321 0.0293 0.027 0.0316 0.0361 0.038 0.0407 0.0441 0.0475 0.0486 0.0635 0.15 0.016 0.0149 0.0185	0.21- 0.23: 0.24: 0.26: 0.32: 0.33: 0.34: 0.36: 0.36: 0.36: 0.50: 0.75: 0.069: 0.095: 0.100 0.14:

IDH3B	NM_001258384.1:556	0.0306	1.02	0.0313	0.366
TPX2	NM_012112.4:2975	0.0285	1.02	0.0355	0.453
LAMTOR2 ADK	NM_001145264.1:272 NM_001123.2:355	0.0351 0.029	1.02	0.0438	0.454
GMPS	NM_003875.2:385	0.0234	1.02	0.0311	0.48
DERA	NM_015954.2:960	0.0285	1.02	0.0396	0.49
PDPK1	NM_002613.3:5935	0.0251	1.02	0.0358	0.5
HSPA4	NM_002154.3:1225	0.0264	1.02	0.0413	0.54
KAT6A	NM_001099412.1:550	0.0216	1.02	0.0338	0.54
MKI67	NM_002417.2:4020	0.0265	1.02	0.0464	0.58
ATG101	NM_021934.4:939	0.0238	1.02	0.0476	0.63
RBKS	NM_022128.2:914	0.0335	1.02	0.131	0.80
PRR5	NM_015366.3:1635	0.0266	1.02	0.147	0.86
MYB	NM_001130173.1:183	0.0216	1.02	0.142	0.88
UQCR10	NM_001003684.1:40	0.0195	1.01	0.0222	0.41
TECR	NR_038104.1:574	0.0128	1.01	0.0159	0.45
CCNA2	NM_001237.2:1210	0.0185	1.01	0.0251	0.4
NDUFS8	NM_002496.3:190	0.0144	1.01	0.02	0.5
NDUFA7	NM_005001.2:373	0.0201	1.01	0.031	0.5
NDUFA13 DCK	NM_015965.6:167 NM_000788.2:310	0.0214	1.01	0.0388	0.60
ACACA		0.0184	1.01	0.035	
HERC1	NM_198834.1:3681 NM_003922.3:300	0.0105	1.01	0.0324	0.62
BUB1	NM_004336.3:1978	0.0138	1.01	0.0426	0.68
COX14	NM_001257133.1:672	0.0107	1.01	0.0420	0.68
GBA	NM_001005742.2:1695	0.0123	1.01	0.0302	0.69
ATP5F1D	NM_001687.4:184	0.0136	1.01	0.0389	0.73
HADH	NM 001184705.2:645	0.0088	1.01	0.0337	0.80
RPS6KB1	NM_003161.2:310	0.00892	1.01	0.0369	0.81
GMPR2	NM_001002001.2:392	0.0105	1.01	0.0464	0.82
JAK2	NM_004972.3:1464	0.00982	1.01	0.0466	0.8
EEA1	NM_003566.3:2035	0.00726	1.01	0.038	0.85
POLE	NM_006231.3:3264	0.0119	1.01	0.0646	0.8
CAT	NM_001752.2:1130	0.00761	1.01	0.0434	0.86
ASNS	NM_183356.2:1644	0.00912	1.01	0.0736	0.90
ABL1	NM_005157.3:3200	0.00716	1	0.0401	0.86
TYMS	NM_001071.2:1110	0.00705	1	0.0536	0.
NDUFS7	NM_024407.4:376	0.00418	1	0.0364	0.91
PPARG	NM_005037.5:345	0.00436	1	0.043	0.92
ZNF91	NM_003430.2:4472	0.00431	1	0.05	0.93
RPTOR	NM_020761.2:6665	0.0036	1	0.074	0.96
ADH1C	NM_000669.3:976	0.00627	1	0.134	0.96
PGD	NM_002631.2:1472	0.000733	1	0.0204	0.97
XRCC2	NM_005431.1:600	0.000392	1	0.0418	0.99
CHMP6 FANCD2	NM_024591.4:346	6.46E-06 -0.00149	0.999	0.0307	0.93
AKT1S1	NM_033084.3:260 NM_032375.3:1850	-0.00149	0.999	0.0169	0.93
MSRB2	NM_012228.3:385	-0.00122	0.999	0.0833	0.98
SNF8	NM_001317192.1:234	-0.00122	0.998	0.0269	0.92
OGDH	NM_001003941.2:196	-0.00244	0.998	0.0205	0.92
CTSL	NM_001912.4:1072	-0.00244	0.998	0.0336	0.94
ACAT1	NM 000019.3:282	-0.00266	0.998	0.0622	0.96
SREBF1	NM 001005291.1:1392	-0.0045	0.997	0.0343	0.9
CCNB2	NM_004701.2:980	-0.004	0.997	0.0386	0.92
PRKAG2	NM_016203.3:1895	-0.00419	0.997	0.0448	0.92
KMT2D	NM_003482.3:6070	-0.00413	0.997	0.0669	0.95
ATOX1	NM_004045.3:143	-0.00744	0.995	0.0304	0.81
SLC25A1	NM_005984.2:964	-0.00682	0.995	0.0292	0.82
EHHADH	NM_001166415.1:2022	-0.0102	0.993	0.122	0.93
APOE	NM_000041.2:96	-0.0107	0.993	0.158	0.94
KEAP1	NM_012289.3:561	-0.0118	0.992	0.012	0.36
UCKL1	NM_001193379.1:825	-0.0122	0.992	0.0162	0.4
NPR2	NM_003995.3:1085	-0.0122	0.992	0.228	0.95
PHGDH	NM_006623.3:1900	-0.0125	0.991	0.027	0.6
SHMT2	NM_001166356.1:1460	-0.0134	0.991	0.044	0.77
CLOCK	NM_004898.2:2350	-0.0152	0.99	0.0507	0.77
LAMA4	NM_001105209.1:287	-0.015	0.99	0.0788	0.85
SELENOK	NM_021237.3:42	-0.014	0.99	0.123	0.91
SEC13	NM_001136026.2:400	-0.0162	0.989	0.00866	0.1
RPIA	NM_144563.2:1588	-0.0164	0.989	0.0331	0.63
PIK3R2	NM_005027.2:3100	-0.017	0.988	0.0657	0.80
PIK3R3	NM_003629.3:5016 NM_001008661.2:1445	-0.0182	0.987	0.079	0.82
KYAT3 NCAPH	NM_001008661.2:1445 NM_015341.3:1550	-0.0213 -0.0216	0.985	0.0349	0.56
BUB1B	NM_015341.3:1550 NM_001211.4:835	-0.0216	0.985	0.0557	0.71
TXN2	NM_001211.4:835 NM_012473.3:192	-0.0211	0.985	0.0667	0.76
AKT2	NM 001626.4:699	-0.0228	0.984	0.023	0.43
D2HGDH	NM 001287249.1:550	-0.0247	0.983	0.141	0.86
MYD88	NM_002468.3:2145	-0.0257	0.982	0.0273	0.38
GPS1	NM_004127.4:605	-0.0274	0.981	0.017	0.15
	NM_000143.2:203	-0.0283	0.981	0.0298	0.37
FH			0.981	0.0661	0.69
	NM_001040110.1:2910	-0.0275		0.024	0.26
NRF1	NM_001040110.1:2910 NM_080916.2:902	-0.0275	0.98	0.024	
NRF1 DGUOK			0.98 0.98	0.0388	0.47
NRF1 DGUOK UCK2	NM_080916.2:902	-0.0293			
NRF1 DGUOK UCK2 STAT1	NM_080916.2:902 NM_012474.3:730	-0.0293 -0.0296	0.98	0.0388	0.56
FH NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2	NM_080916.2:902 NM_012474.3:730 NM_007315.3:239	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312	0.98 0.98	0.0388 0.0481 0.052 0.0871	0.56 0.57 0.73
NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2 LAT	NM_080916.2:902 NM_012474.3:730 NM_007315.3:239 NM_021100.3:1775 NM_020840.1:1732 NM_010104987.1:1290	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0312	0.98 0.98 0.979 0.979 0.979	0.0388 0.0481 0.052 0.0871 0.0991	0.56 0.57 0.73 0.76
NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2	NM_080916.2:902 NM_012474.3:730 NM_007315.3:239 NM_021100.3:1775 NM_020840.1:1732	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312	0.98 0.98 0.979 0.979	0.0388 0.0481 0.052 0.0871	0.56 0.57 0.73 0.76
NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2 LAT ACAP2 PNP	NM_080916.2:902 NM_012474.3:730 NM_007315.3:239 NM_021100.3:1775 NM_020840.1:1732 NM_001014987.1:1290 NM_01287.5:852 NM_000270.2:1150	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0312 -0.0319 -0.0326	0.98 0.979 0.979 0.979 0.978 0.978	0.0388 0.0481 0.052 0.0871 0.0991 0.0448 0.0528	0.56 0.57 0.73 0.76 0.50 0.55
NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2 LAT ACAP2 PNP HACD2	NM_080916.2:902 NM_012474.3:730 NM_07315.3:239 NM_02100.3:1775 NM_020840.1:1732 NM_01014987.1:1290 NM_012287.5:852 NM_0270.2:1150 NM_198402.2:510	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0319 -0.0319 -0.0326 -0.0334	0.98 0.979 0.979 0.979 0.979 0.978 0.978 0.977	0.0388 0.0481 0.052 0.0871 0.0991 0.0448 0.0528 0.0214	0.56 0.57 0.73 0.76 0.50 0.55 0.16
NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2 LAT ACAP2 PNP HACD2 PRKAB2	NM_080916.2:902 NM_012474.3:730 NM_021475.3:239 NM_021100.3:1775 NM_020840.1:1732 NM_0104987.1:1290 NM_012287.5:852 NM_00270.2:1150 NM_09339.3:1600	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0319 -0.0326 -0.0334 -0.0336	0.98 0.979 0.979 0.979 0.978 0.978 0.978 0.977 0.977	0.0388 0.0481 0.052 0.0871 0.0991 0.0448 0.0528 0.0214 0.0304	0.56 0.57 0.73 0.76 0.50 0.55 0.16 0.31
NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2 LAT ACAP2 PNP HACD2 PRKAB2 PDK2	NM_080916.2:902 NM_012474.3:730 NM_027315.3:239 NM_021100.3:1775 NM_020840.1:732 NM_01014987.1:1290 NM_012287.5:852 NM_000270.2:1150 NM_000270.2:1150 NM_0005399.3:1600 NM_005399.3:1600	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0319 -0.0326 -0.0334 -0.0336 -0.034	0.98 0.979 0.979 0.979 0.979 0.978 0.978 0.977 0.977 0.977	0.0388 0.0481 0.052 0.0871 0.0991 0.0448 0.0528 0.0214 0.0304 0.048	0.56 0.57 0.73 0.76 0.50 0.55 0.16 0.31
NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2 LAT ACAP2 PNP HACD2 PRKAB2 PDK2 PSPH	NM_080916.2:902 NM_012474.3:730 NM_007315.3:239 NM_02100.3:1775 NM_020840.1:1732 NM_01014987.1:1290 NM_000270.2:1150 NM_005399.3:1600 NM_002611.3:435 NM_002677.3:225	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0319 -0.0326 -0.0334 -0.0336 -0.0334 -0.0336	0.98 0.979 0.979 0.979 0.978 0.978 0.977 0.977 0.977 0.977	0.0388 0.0481 0.052 0.0871 0.0991 0.0448 0.0528 0.0214 0.0304 0.048 0.048	0.56 0.57 0.73 0.76 0.50 0.55 0.16 0.31 0.50 0.69
NRF1 DGUOK STAT1 NF51 FNIP2 LAT ACAP2 PNP HACD2 PRKAB2 PDK2 PSPH CCND1	NM_080916.2:902 NM_012474.3:730 NM_021474.3:730 NM_021275.3:239 NM_020840.1:1732 NM_0104987.1:1290 NM_0104987.1:1290 NM_012287.5:852 NM_00270.2:1150 NM_939.3:1600 NM_005399.3:1600 NM_002611.3:435 NM_005305.6.2:690	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0312 -0.0326 -0.0334 -0.0334 -0.0334 -0.034 -0.034 -0.0352 -0.0366	0.98 0.979 0.979 0.979 0.978 0.978 0.978 0.977 0.977 0.977 0.976 0.975	0.0388 0.0481 0.052 0.0871 0.0991 0.0448 0.0528 0.0214 0.0304 0.048 0.0842 0.0329	0.474 0.566 0.577 0.733 0.766 0.500 0.555 0.165 0.311 0.500 0.699 0.300
NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2 LAT ACAP2 PNP HACD2 PRKAB2 PDK2 PSPH CCND1 UCK1	NM_080916.2:902 NM_012474.3:730 NM_027315.3:239 NM_021100.3:1775 NM_020840.1:1732 NM_01014987.1:1290 NM_012287.5:852 NM_00202.1:150 NM_03599.3:1600 NM_005399.3:1600 NM_004577.3:225 NM_053056.2:690 NM_031432.3:232	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0319 -0.0326 -0.0334 -0.0336 -0.034 -0.0352 -0.0361	0.98 0.979 0.979 0.979 0.978 0.978 0.977 0.977 0.977 0.977 0.976 0.975	0.0388 0.0481 0.052 0.0871 0.0991 0.0448 0.0528 0.0214 0.0304 0.048 0.0842 0.0329 0.0665	0.56i 0.57i 0.73i 0.76i 0.50i 0.55i 0.16i 0.31i 0.50i 0.69i 0.30i 0.60i
NRF1 DGUOK UCK2 STAT1 NF51 FNIP2 LAT ACAP2 PNP HACD2 PRKAB2 PDK2 PSPH CCND1 UCK1 CTSD	NM_080916.2:902 NM_012474.3:730 NM_007315.3:239 NM_021100.3:1775 NM_0200840.1:1732 NM_01014987.1:1290 NM_000270.2:1150 NM_005399.3:1600 NM_002611.3:435 NM_003657.3:225 NM_003657.3:225 NM_031432.3:232 NM_031432.3:232	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0319 -0.0326 -0.0334 -0.0336 -0.0334 -0.0352 -0.0361 -0.0361 -0.0381	0.98 0.979 0.979 0.979 0.978 0.978 0.977 0.977 0.977 0.977 0.977 0.975 0.975 0.974	0.0388 0.0481 0.0522 0.0871 0.0991 0.0448 0.0214 0.0304 0.04842 0.0329 0.0665 0.0941	0.56i 0.57: 0.73: 0.76i 0.50: 0.55: 0.16i 0.31: 0.50i 0.69: 0.30i 0.60i 0.60i
NRF1 DGUOK UCK2 STAT1 NFS1 FNIP2 LAT ACAP2 PNP HACD2 PRKAB2 PDK2 PSPH	NM_080916.2:902 NM_012474.3:730 NM_027315.3:239 NM_021100.3:1775 NM_020840.1:1732 NM_01014987.1:1290 NM_012287.5:852 NM_00202.1:150 NM_03599.3:1600 NM_005399.3:1600 NM_004577.3:225 NM_053056.2:690 NM_031432.3:232	-0.0293 -0.0296 -0.0291 -0.0312 -0.0312 -0.0319 -0.0326 -0.0334 -0.0336 -0.034 -0.0352 -0.0361	0.98 0.979 0.979 0.979 0.978 0.978 0.977 0.977 0.977 0.977 0.976 0.975	0.0388 0.0481 0.052 0.0871 0.0991 0.0448 0.0528 0.0214 0.0304 0.048 0.0842 0.0329 0.0665	0.56 0.57 0.73 0.76 0.50 0.55 0.16 0.31 0.50 0.69

SLC16A2	NM_006517.3:2465	-0.0456	0.969	0.0715	0.54
NADK	NM_001198993.1:1558	-0.0472	0.968	0.0622	0.47
FOXM1	NM_202002.1:1000	-0.049	0.967	0.0382	0.24
MPC2	NM_001143674.1:285	-0.0495	0.966	0.0467	0.3
PLK1	NM_005030.3:535	-0.0514	0.965	0.0224	0.061
RPS6KB2	NM_003952.2:980	-0.0516	0.965	0.114	0.66
MAT1A	NM_000429.2:2275	-0.0508	0.965	0.24	0.83
XCL1/2	NM_003175.3:377	-0.0523	0.964	0.108	0.64
FASN	NM_004104.4:5387	-0.0555	0.962	0.0266	0.082
CTCF	NM_001191022.1:490	-0.0552		0.0433	0.24
ATF7 SHMT1	NM_001130060.1:203 NM_148918.1:1800	-0.0559 -0.0566	0.962	0.048	0.28
HSF2	NM_001135564.1:615	-0.0568	0.962	0.0687	0.44
PTK6	NM_001256358.1:291	-0.056	0.962	0.148	0.7
ZNF708	NM_021269.2:488	-0.0577	0.961	0.0288	0.091
SLC1A5	NM 001145144.1:180	-0.0572	0.961	0.0373	0.17
RBBP5	NM 005057.2:325	-0.0575	0.961	0.0561	0.34
ZNF136	NM_003437.2:385	-0.0589	0.96	0.03	0.096
KYAT1	NM_004059.4:1557	-0.059	0.96	0.0806	0.4
ZNF100	NM_173531.3:36	-0.061	0.959	0.117	0.0
GLUD1	NM_005271.2:2680	-0.0639	0.957	0.0271	0.056
CENPA	NM_001042426.1:979	-0.0627	0.957	0.0345	0.11
PFKM	NM_000289.5:2195	-0.0671	0.955	0.0232	0.027
MTF1	NM_005955.2:210	-0.0662	0.955	0.0333	0.094
FANCA	NM_000135.2:798	-0.0693	0.953	0.034	0.087
RAD51AP1	NM_001130862.1:1125	-0.0774	0.948	0.0388	0.092
SRR	NM_021947.1:560	-0.0779	0.947	0.0644	0.27
CLSPN	NM_022111.2:442	-0.0799	0.946	0.0117	0.0004
MTOR	NM_004958.3:1865	-0.0794	0.946	0.0281	0.030
UBE2T	NM_014176.3:595	-0.0821	0.945	0.0304	0.035
PRIM2 PRKAA1	NM_001282488.1:124	-0.0818	0.945	0.0307	0.037
	NM_006251.5:366	-0.0839	0.944	0.0195	0.0050
KIF2C HJURP	NM_006845.3:1940 NM_018410.3:1325	-0.0831 -0.083	0.944	0.034 0.0423	0.050
ASL	NM_000048.3:130	-0.0834	0.944	0.0423	0.09
UMPS	NM_000373.2:2445	-0.0834	0.944	0.0509	0.1
AMPD2	NM_004037.6:3095	-0.083	0.944	0.0955	0.41
CDC20	NM_001255.2:430	-0.0841	0.943	0.0176	0.0030
RUNX1	NM_001754.4:635	-0.086	0.942	0.0425	0.089
EZH2	NM_001203247.1:1121	-0.0883	0.941	0.0252	0.012
IDH3A	NM_005530.2:1521	-0.0871	0.941	0.0404	0.074
DGLUCY	NM 001102369.2:442	-0.0879	0.941	0.0885	0.35
KPNA2	NM_002266.2:917	-0.0887	0.94	0.0182	0.002
BCL2	NM_000657.2:5	-0.0889	0.94	0.097	0.39
PCLAF	NM_014736.5:1025	-0.0914	0.939	0.0785	0.28
SDSL	NM_138432.2:303	-0.0916	0.938	0.13	0.50
TFAM	NM_003201.1:85	-0.0967	0.935	0.0221	0.0046
STAM2	NM_005843.4:1455	-0.0964	0.935	0.0358	0.036
PRPS1	NM_002764.3:1081	-0.103	0.931	0.0504	0.087
BRCA1	NM_007294.3:787	-0.105	0.93	0.0565	0.11
ADA	NM_000022.2:1300	-0.104	0.93	0.0575	0.12
SRM	NM_003132.2:254	-0.107	0.929	0.0392	0.034
L2HGDH	NM_024884.2:1296	-0.108	0.928	0.0546	0.095
EXO1	NM_003686.3:2715	-0.109	0.927	0.0438	0.047
PCK2	NM_004563.2:795	-0.111	0.926	0.119	0.38
PRKAG1	NM_002733.3:825	-0.113	0.925	0.0366	0.021
WRN CDCA8	NM_000553.4:2944 NM_018101.2:1665	-0.112 -0.115	0.925	0.054	0.083
ZNF254	NM_203282.3:1986	-0.113	0.924	0.0369	0.01
FABP5	NM_001444.1:100	-0.121	0.921	0.0259	0.0034
EOMES	NM_001444.1.100	-0.121	0.919	0.193	0.003
ACY1	NM 000666.2:109	-0.123	0.918	0.104	0.5
MLST8	NM 001199173.1:810	-0.125	0.917	0.0553	0.06
NAALAD2	NM_005467.3:830	-0.123	0.917	0.139	0.40
NR2F1	NM_005654.4:2885	-0.125	0.917	0.135	0.40
CBR4	NM_032783.4:520	-0.123	0.917	0.14	0.012
UQCR11	NM 006830.2:360	-0.127	0.916	0.102	0.012
ACAT2	NM_005891.2:910	-0.128	0.915	0.0251	0.0022
TIMELESS	NM_003920.2:1185	-0.129	0.914	0.0363	0.0021
VPS28	NM_016208.3:416	-0.134	0.911	0.0287	0.0033
PPAT	NM_002703.3:1210	-0.134	0.911	0.0354	0.0090
SLC3A2	NM_001012662.2:1505	-0.136	0.91	0.0256	0.0018
NOX4	NM_001143836.2:1795	-0.135	0.91	0.0927	0.19
GOT1	NM_002079.2:615	-0.138	0.909	0.0483	0.02
SLC16A7	NM_001270623.1:5460	-0.146	0.904	0.0788	0.11
MCAT	NM_014507.3:378	-0.146	0.904	0.14	0.33
TELO2	NM_016111.3:294	-0.15	0.901	0.0995	0.18
PSAT1	NM_021154.3:1445	-0.156	0.898	0.0263	0.0010
GAD1	NM_000817.2:575	-0.156	0.898	0.151	0.34
CAD	NM_004341.3:2380	-0.157	0.897	0.0602	0.040
FDX1	NM_004109.4:618	-0.162	0.894	0.0438	0.010
RIMKLB	NM_020734.2:1840	-0.164	0.893	0.0636	0.042
MYCL PUDP	NM_001033081.2:568	-0.164	0.893	0.0643	
CTPS1	NM_001178135.1:425 NM_001301237.1:580	-0.164 -0.169	0.893	0.0721	0.063
BRIP1	NM_001301237.1:380 NM_032043.1:1130	-0.169	0.889	0.0335	0.002
NADK2	NM_032043.1.1130 NM_153013.3:315	-0.171	0.887	0.0317	0.001
ZNF93	NM_155015.5:515 NM_031218.3:2314	-0.173	0.885	0.0316	0.001
PYCR2	NM_031218.3:2314 NM_013328.2:1250	-0.178	0.883	0.146	0.0095
GCDH	NM_000159.2:464	-0.175	0.883	0.0477	0.003
PRIM1	NM_000159.2:464 NM_000946.2:480	-0.184	0.88	0.0659	0.003
FDXR	NM_004110.3:1123	-0.187	0.875	0.109	0.003
ZNF85	NM_001256171.1:275	-0.192	0.875	0.0343	0.0013
SLC7A5	NM_001256171.1:275	-0.192	0.875	0.0343	7.22E-0
IDH1	NM_005896.3:418	-0.204	0.868	0.0202	6.80E-0
ZNF253	NM_021047.2:1327	-0.204	0.867	0.0323	
XDH	NM_000379.3:1325	-0.205	0.867	0.0323	0.00004
RBP4	NM_006744.3:793	-0.203	0.866	0.0483	0.003
MPC1	NM_016098.2:210	-0.209	0.865	0.0233	0.00010

ERCC6	NM_001277058.1:200	-0.213	0.863	0.0896	0.0552
ADAL	NM_001012969.2:890	-0.215	0.862	0.103	0.0811
ZNF675	NM_138330.2:851	-0.218	0.86	0.0304	0.000377
MAT2A	NM_005911.4:805	-0.218	0.86	0.0487	0.00421
AADAT	NM_016228.3:1510	-0.223	0.857	0.0316	0.000408
EME1	XM_011524392.1:416	-0.226	0.855	0.0929	0.0513
MLYCD	NM_012213.2:1530	-0.23	0.852	0.0676	0.0143
PYCR3	NM_023078.2:1145	-0.233	0.851	0.0707	0.016
ATF7IP	NM_018179.3:2505	-0.242	0.846	0.0512	0.0032
TP63	NM_003722.4:1295	-0.241	0.846	0.0556	0.0048
ZNF682	NM_001077349.1:1465	-0.259	0.836	0.0322	2.00E-04
PTGER4	NM_000958.2:976	-0.263	0.833	0.215	0.268
TLR4	NM_138554.2:2570	-0.274	0.827	0.0416	0.000593
AOX1	NM_001159.3:1415	-0.276	0.826	0.197	0.212
EPC1	NM_025209.2:1615	-0.277	0.825	0.0449	0.000829
GLYCTK	NR_026700.1:1336	-0.282	0.822	0.175	0.15
SLC2A8	NM_014580.3:1777	-0.287	0.82	0.0442	0.000639
PRKCG	NM_002739.3:445	-0.297	0.814	0.199	0.18
TH	NM_000360.3:1306	-0.301	0.812	0.0969	0.021
LCK	NM_005356.2:1260	-0.313	0.805	0.188	0.14
BRCA2	NM_000059.3:115	-0.338	0.791	0.0925	0.010
NAGLU	NM_000263.3:696	-0.343	0.788	0.141	0.0513
FOLR1	NM_000802.2:815	-0.359	0.78	0.198	0.11
DTL	NM_016448.2:715	-0.362	0.778	0.0807	0.0041
FBP1	NM_000507.3:590	-0.373	0.772	0.259	0.
CD14	NM_000591.2:885	-0.379	0.769	0.223	0.1
TPH1	NM_004179.1:335	-0.415	0.75	0.284	0.19
IDNK	NM_001001551.3:272	-0.418	0.748	0.142	0.025
ACSF3	NR_045667.2:2282	-0.432	0.741	0.247	0.13
NCR1	NM_004829.5:602	-0.444	0.735	0.21	0.0794
CD6	NM_001254751.1:1722	-0.485	0.715	0.148	0.016
MYCN	NM_005378.4:1545	-0.675	0.626	0.25	0.0356
MRAS	NM_001085049.2:1700	-0.685	0.622	0.295	0.05
CYP1A1	NM_000499.3:695	-0.719	0.607	0.242	0.024
THBS1	NM_003246.2:3465	-0.728	0.604	0.0497	6.33E-0
HSPA2	NM_021979.3:2095	-0.732	0.602	0.216	0.014
TK2	NM_004614.3:2165	-0.752	0.594	0.32	0.056
SLC7A11	NM_014331.3:636	-0.814	0.569	0.0625	1.27E-0
CYP1B1	NM_000104.3:1715	-1.12	0.462	0.112	6.06E-0
SOX2	NM 003106.2:151	-1.56	0.339	0.203	0.00025

Appendix B: Differential gene expression during intracellular infection of urothelial cells. Differential expression of all genes in the NanoString nCounter Human Metabolic Pathways Panel. Urothelial cells were intracellularly infected with wild-type UPEC or mock infected and transcript abundance was compared to determine differential expression. Genes are ordered according to linear fold change. See also Chapter 3, Materials and Methods.

UniProt ID	Protein Name	Gene Name	Subcellular Location	Fold Change UTI89 vs ∆cydAB	Log2 (Fold Change)	P Value	Log10 (P Value)
tr Q1R227 Q1R227 ECOUT	Putative exported protein	UTI89 P011	extracellular space	0.125525147	-2.993951676	0.003376482	2.471535568
tr Q1R8P4 Q1R8P4_ECOUT	Beta-barrel assembly-enhancing protease	yfgC	periplasm, membrane	0.148786374	-2.748685687	2.28517E-05	4.641081337
tr Q1RD49 Q1RD49 ECOUT	Penicillin-binding protein activator	lpoB	outer membrane	0.163411049	-2.613422558	0.001571569	2.803666525
tr Q1R968 Q1R968 ECOUT	Bifunctional long-chain fatty acids transporter	fadL	outer membrane	0.239537481	-2.061676679	9.7553E-06	5.010759345
tr Q1RE62 Q1RE62 ECOUT	Arginine-binding periplasmic protein 1	artl	periplasm, membrane	0.266055743		1.48274E-05	4.828935705
trIQ1R6J1IQ1R6J1 ECOUT	Putative periplasmic protein	vraP	periplasm, outer membrane	0.278227955	-1.845660714	1.36264E-05	4.865617625
trIQ1RCH8IQ1RCH8 ECOUT	Outer membrane protein W	ompW	outer membrane	0.295345369	-1.759525104	0.005280296	2.277341724
tr Q1R3A8 Q1R3A8 ECOUT	outer membrane lipoprotein Blc	blc	outer membrane, cytosol	0.312269546		0.000183133	3.737233729
tr Q1R8T9 Q1R8T9 ECOUT	uncharacterized lipoprotein	yfeY	outer membrane	0.328622813	-1.605495458	1.97706E-05	4.703980148
tr Q1R208 Q1R208 ECOUT	enterotoxin TieB	senB	extracellular space	0.362473728		0.000731952	3.135517179
tr Q1R5B1 Q1R5B1 ECOUT	Starvation induced outer membrane protein	slp	outer membrane	0.379379633			2.896465692
tr Q1RFZ2 Q1RFZ2 ECOUT	Outer membrane lipoprotein	rcsF	outer membrane	0.380701995		0.002558941	2.591939804
triQ1R1Q3IQ1R1Q3 ECOUT	TraT complement resistance protein	traT	outer membrane	0.424135876		0.002933558	2.532605306
tr Q1RD74 Q1RD74 ECOUT	Flagellar hook-associated protein 3	flgL	outer membrane	0.432483284		0.005806429	2.236090876
tr Q1R8M1 Q1R8M1 ECOUT	Outer membrane protein assembly factor BamB	yfgL	outer membrane	0.436351795		0.008763172	2.057338657
tr Q1REY0 Q1REY0 ECOUT	Ferrienterobactin receptor	fepA	outer membrane	0.445534911		0.057785816	1.238178746
splQ1RGE3 LPTD_ECOUT	LPS-assembly protein	lptD	outer membrane	0.476631728		0.03527219	1.452567577
tr Q1R572 Q1R572 ECOUT	Glucanase	yhjM	extracellular space	0.486676187		0.011089604	1.955083959
tr Q1RBF4 Q1RBF4 ECOUT	Outer membrane lipoprotein	slyB	outer membrane	0.492971306		0.009578436	2.018705394
triQ1RCP9IQ1RCP9 ECOUT	Putative outer membrane receptor	prrA	outer membrane	0.498638965		0.003197881	2.495137683
tr Q1RDS8 Q1RDS8 ECOUT	Outer membrane protein F	ompF	outer membrane	0.514037016		0.00429467	2.367070229
tr Q1R7V0 Q1R7V0 ECOUT	Lipoprotein	nlpD	outer membrane	0.516877617		0.025155953	1.599359224
tr Q1REB0 Q1REB0 ECOUT	Outer membrane protein X	ompX	outer membrane	0.533727755			1.900550698
spiQ1R3U1 BTUB_ECOUT	Vitamin B12 transporter	btuB	outer membrane	0.579775036		0.013235181	1.878270114
tr/Q1RES9/Q1RES9 ECOUT	Endolytic peptidoglycan transglycosylase	rlpA	outer membrane	0.581569816		0.041737973	1.379468645
tr Q1RCY1 Q1RCY1 ECOUT;tr Q1RAK8 Q1RAK8 ECOUT		nmpC	outer membrane	0.623544333		0.025400875	1.595151319
tr/Q1R573/Q1R573 ECOUT	Cellulose synthase operon protein C	bcsC	outer membrane	0.627095163		0.13242154	0.878041367
tr Q1REF8 Q1REF8 ECOUT	Pectinesterase	ybhC	outer membrane	0.637639149		0.016912693	1.771787222
tr Q1R9K0 Q1R9K0 ECOUT;tr Q1RC18 Q1RC18 ECOUT	Outer membrane protein 1b	ompC	outer membrane	0.638605134		0.037681089	1.423876549
tr[Q1R6U8]Q1R6U8_ECOUT	Outer membrane protein	toIC	outer membrane	0.643739109		0.026690802	1.57363837
tr Q1RAF5 Q1RAF5 ECOUT	Putative pesticin receptor		outer membrane	0.670084888		0.020090802	0.946311633
tr Q1RAL6 Q1RAL6 ECOUT		fyuA fliD		0.675164748		0.040526139	
triq1REI3IQ1REI3 ECOUT	Flagellar hook-associated protein 2 Peptidoglycan-associated protein	pal	outer membrane outer membrane	0.696262048		0.040526139	1.32661659
tr/Q1RD80/Q1RD80 ECOUT	Flagellar basal body protein	flgF	outer membrane	0.700667349		0.04713933	1.386662971
tr Q1RD75 Q1RD75 ECOUT	Flagellar hook-associated protein 1	flgK	outer membrane	0.704544719		0.041032230	1.482527244
tr Q1R8Q0 Q1R8Q0 ECOUT	Outer membrane protein assembly factor BamC	nlpB	outer membrane	0.708268662		0.03292098	1.362322534
tr Q1R2T5 Q1R2T5 ECOUT				0.723240021			0.830787033
	Hemolysin A	hlyA	extracellular space				
tr/Q1R8N7/Q1R8N7_ECOUT	Polyphosphate kinase	ppk	outer membrane, inner membrane	0.73509184		0.18628135	0.729830624
tr Q1RDQ7 Q1RDQ7_ECOUT	Outer membrane protein A	ompA	outer membrane outer membrane, inner membrane	0.801838419 0.864984147		0.351423101 0.799347027	0.454169693 0.097264636
tr Q1R3B0 Q1R3B0_ECOUT	Putative toxin of osmotically regulated toxin-antitoxin system	ecnB					
tr Q1RBB9 Q1RBB9_ECOUT	Murein lipoprotein	lpp	outer membrane, inner membrane, periplasm	0.875936704	-0.191101472	0.635111624	0.197149939
tr Q1RDC4 Q1RDC4_ECOUT	Curli production assembly/transport component	csgG		0.891002758			0.178323803
splQ1RG12 BAMA_ECOUT	Outer membrane protein assembly factor	bamA	outer membrane	0.891893486		0.422418782	0.37425678
tr Q1RBD1 Q1RBD1_ECOUT	Pertactin domain-containing protein	ydhQ	outer membrane	0.912285994		0.69261387	0.159508816
tr/Q1R5W6/Q1R5W6_ECOUT	DNA-binding protein HU-alpha	hupA	extracellular space, cytosol	0.966763547		0.924455781	0.034113857
tr Q1R386 Q1R386_ECOUT	Protein HflK	hflK	periplasm, inner membrane, cytosol	0.977974497		0.910348205	
sp Q1R7R4 ENO_ECOUT	enolase	eno	extracellular space, cytosol	1.010975792		0.942214231	0.025850341
tr Q1REI6 Q1REI6_ECOUT	Membrane spanning protein	tolA	outer membrane, inner membrane	1.107158163		0.653096549	0.185022611
sp Q1R6U6 YGIB_ECOUT	UPF0441 protein	ygiB	outer membrane	1.148782818		0.403807232	0.393825907
tr Q1R2K0 Q1R2K0_ECOUT	Type 1 fimbriae major subunit FimA	fimA	outer membrane	1.217698428		0.507506973	0.294557987
tr Q1R8L2 Q1R8L2_ECOUT	Alpha-2-macroglobulin	yfhM	extracellular space	1.245572315			0.494171967
tr Q1RD79 Q1RD79_ECOUT	Flagellar basal-body rod protein	flgG	outer membrane	1.304408614			0.488441298
sp Q1R3Q0 LAMB_ECOUT	Maltoporin	lamB	outer membrane	1.366544176		0.125376938	0.901782342
tr Q1RD81 Q1RD81_ECOUT	Flagellar hook protein	flgE	outer membrane	1.510549001		0.130688641	0.883762158
tr Q1RF95 Q1RF95_ECOUT	DNA-binding protein HU-beta, NS1 (HU-1)	hupB	extracellular space, cytosol	1.587862307			0.996378469
tr Q1R2V4 Q1R2V4_ECOUT	Putative F17-like fimbrial subunit	UTI89_C4907	outer membrane	1.73218426			1.011614237
tr Q1RAL7 Q1RAL7_ECOUT	Flagellin	fliC	outer membrane	1.970314662		0.03304911	1.480840229
tr Q1RDB7 Q1RDB7_ECOUT	Curlin major subunit	csgA	outer membrane	6.964677933			1.169933348
tr Q1RDB8 Q1RDB8 ECOUT	Minor curlin subunit	csgB	outer membrane	9.63756597	3.26866883	0.024631056	1.608516969

Appendix C: Biofilm mass spectrometry data. Table lists all detected outer membrane or secreted proteins detected by mass spectrometry, fold change in UTI89 relative to $\Delta cydAB$, and p value. Data are representative of three biological replicates. See also Chapter 4, Materials and Methods.

REFERENCES

- 1. Drew GC, Stevens EJ, King KC. 2021. Microbial evolution and transitions along the parasitemutualist continuum. Nat Rev Microbiol 19:623-638.
- Armstrong GL, Conn LA, Pinner RW. 1999. Trends in infectious disease mortality in the United States during the 20th century. JAMA 281:61-6.
- Fredricks DN, Relman DA. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin Microbiol Rev 9:18-33.
- 4. Falkow S. 2004. Molecular Koch's postulates applied to bacterial pathogenicity--a personal recollection 15 years later. Nat Rev Microbiol 2:67-72.
- Falkow S. 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis 10 Suppl 2:S274-6.
- Byndloss MX, Baumler AJ. 2018. The germ-organ theory of non-communicable diseases. Nat Rev Microbiol 16:103-110.
- 7. Banerjee S, Schlaeppi K, van der Heijden MGA. 2018. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567-576.
- Coyte KZ, Schluter J, Foster KR. 2015. The ecology of the microbiome: Networks, competition, and stability. Science 350:663-6.
- Gilbert JA, Lynch SV. 2019. Community ecology as a framework for human microbiome research. Nat Med 25:884-889.
- 10. Foxman B. 2010. The epidemiology of urinary tract infection. Nat Rev Urol 7:653-60.
- 11. Klein RD, Hultgren SJ. 2020. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol 18:211-226.
- 12. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269-84.

- Sahl JW, Morris CR, Rasko DA. 2013. Chapter 2 Comparative genomics of pathogenic Escherichia coli, p 21-43. *In* Donnenberg MS (ed), Escherichia coli (Second Edition) doi:<u>https://doi.org/10.1016/B978-0-12-397048-0.00002-4</u>. Academic Press, Boston.
- Spurbeck RR, Mobley HLT. 2013. Chapter 9 Uropathogenic Escherichia coli, p 275-304. *In* Donnenberg MS (ed), Escherichia coli (Second Edition) doi:<u>https://doi.org/10.1016/B978-0-12-</u> 397048-0.00009-7. Academic Press, Boston.
- 15. Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HL. 2010. Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6:e1001187.
- Schreiber HL, Conover MS, Chou WC, Hibbing ME, Manson AL, Dodson KW, Hannan TJ, Roberts PL, Stapleton AE, Hooton TM, Livny J, Earl AM, Hultgren SJ. 2017. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci Transl Med 9.
- 17. Eberly AR, Beebout CJ, Carmen Tong CM, Van Horn GT, Green HD, Fitzgerald MJ, De S, Apple EK, Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Clayton DB, Stratton CW, Schmitz JE, Hadjifrangiskou M. 2020. Defining a Molecular Signature for Uropathogenic versus Urocolonizing Escherichia coli: The Status of the Field and New Clinical Opportunities. J Mol Biol 432:786-804.
- Hooton TM. 2012. Clinical practice. Uncomplicated urinary tract infection. N Engl J Med 366:1028-37.
- 19. Foxman B. 2014. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 28:1-13.
- 20. Gupta K, Trautner BW. 2018. Urinary Tract Infections, Pyelonephritis, and Prostatitis. *In* Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J (ed), Harrison's Principles of Internal Medicine, 20e. McGraw-Hill Education, New York, NY.
- 21. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE, America IDSo, Diseases ESfM, Infectious. 2011. International clinical

practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52:e103-20.

- 22. Nicolle LE, Gupta K, Bradley SF, Colgan R, DeMuri GP, Drekonja D, Eckert LO, Geerlings SE, Köves B, Hooton TM, Juthani-Mehta M, Knight SL, Saint S, Schaeffer AJ, Trautner B, Wullt B, Siemieniuk R. 2019. Clinical Practice Guideline for the Management of Asymptomatic Bacteriuria: 2019 Update by the Infectious Diseases Society of Americaa. Clin Infect Dis 68:1611-1615.
- 23. Hooton TM, Roberts PL, Stapleton AE. 2021. Asymptomatic Bacteriuria and Pyuria in Premenopausal Women. Clin Infect Dis 72:1332-1338.
- 24. Johnson JR, Russo TA. 2018. Acute Pyelonephritis in Adults. N Engl J Med 378:48-59.
- 25. Lane MC, Alteri CJ, Smith SN, Mobley HL. 2007. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 104:16669-74.
- 26. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:801-10.
- 27. Wagenlehner FME, Pilatz A, Weidner W, Naber KG. 2015. Urosepsis: Overview of the Diagnostic and Treatment Challenges. Microbiol Spectr 3.
- 28. Nicolle LE. 2013. Urinary tract infection. Crit Care Clin 29:699-715.
- 29. Hooton TM, Roberts PL, Cox ME, Stapleton AE. 2013. Voided midstream urine culture and acute cystitis in premenopausal women. N Engl J Med 369:1883-91.
- 30. Kolter R. 2021. The History of Microbiology-A Personal Interpretation. Annu Rev Microbiol 75:117.
- 31. Ullmann A. 2011. Escherichia coli and the Emergence of Molecular Biology. EcoSal Plus 4.

- 32. Ullmann A. 2010. Escherichia coli and the French School of Molecular Biology. EcoSal Plus 4.
- 33. Gordon DM. 2013. Chapter 1 The ecology of Escherichia coli, p 3-20. *In* Donnenberg MS (ed),
 Escherichia coli (Second Edition) doi:<u>https://doi.org/10.1016/B978-0-12-397048-0.00001-2</u>.
 Academic Press, Boston.
- Chattopadhyay S, Sokurenko EV. 2013. Chapter 3 Evolution of pathogenic Escherichia coli, p
 45-71. *In* Donnenberg MS (ed), Escherichia coli (Second Edition)
 doi:<u>https://doi.org/10.1016/B978-0-12-397048-0.00003-6</u>. Academic Press, Boston.
- Denamur E, Clermont O, Bonacorsi S, Gordon D. 2021. The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol 19:37-54.
- 36. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguenec C, Lescat M, Mangenot S, Martinez-Jehanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Medigue C, Rocha EP, Denamur E. 2009. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344.
- 37. Walk ST, Alm EW, Gordon DM, Ram JL, Toranzos GA, Tiedje JM, Whittam TS. 2009. Cryptic lineages of the genus Escherichia. Appl Environ Microbiol 75:6534-44.
- Mikkelsen H, McMullan R, Filloux A. 2011. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in IadS. PLoS One 6:e29113.
- Thurlow LR, Joshi GS, Richardson AR. 2012. Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA).
 FEMS Immunol Med Microbiol 65:5-22.
- Sarkar S, Hutton ML, Vagenas D, Ruter R, Schuller S, Lyras D, Schembri MA, Totsika M. 2018.
 Intestinal Colonization Traits of Pandemic Multidrug-Resistant Escherichia coli ST131. J Infect
 Dis 218:979-990.

- 41. Alteri CJ, Mobley HL. 2012. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 15:3-9.
- 42. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, Ozersky P, Armstrong JR, Fulton RS, Latreille JP, Spieth J, Hooton TM, Mardis ER, Hultgren SJ, Gordon JI. 2006. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A 103:5977-82.
- 43. Mysorekar IU, Hultgren SJ. 2006. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci U S A 103:14170-5.
- 44. Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572-9.
- 45. Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP. 2001. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095-103.
- 46. Eto DS, Jones TA, Sundsbak JL, Mulvey MA. 2007. Integrin-mediated host cell invasion by type
 1-piliated uropathogenic Escherichia coli. PLoS Pathog 3:e100.
- 47. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. 2000. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. Embo J 19:2803-12.
- Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ. 1998.
 Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli.
 Science 282:1494-7.
- 49. Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93:9827-32.
- 50. Hultgren SJ, Schwan WR, Schaeffer AJ, Duncan JL. 1986. Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun 54:613-20.

- 51. Waksman G, Hultgren SJ. 2009. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7:765-74.
- 52. Hung CS, Bouckaert J, Hung D, Pinkner J, Widberg C, DeFusco A, Auguste CG, Strouse R, Langermann S, Waksman G, Hultgren SJ. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44:903-15.
- 53. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306.
- 54. Floyd KA, Moore JL, Eberly AR, Good JA, Shaffer CL, Zaver H, Almqvist F, Skaar EP, Caprioli RM, Hadjifrangiskou M. 2015. Adhesive fiber stratification in uropathogenic Escherichia coli biofilms unveils oxygen-mediated control of type 1 pili. PLoS Pathog 11:e1004697.
- 55. Hung C, Zhou Y, Pinkner JS, Dodson KW, Crowley JR, Heuser J, Chapman MR, Hadjifrangiskou M, Henderson JP, Hultgren SJ. 2013. Escherichia coli Biofilms Have an Organized and Complex Extracellular Matrix Structure. MBio 4.
- 56. Hadjifrangiskou M, Hultgren SJ. 2012. What does it take to stick around? Molecular insights into biofilm formation by uropathogenic Escherichia coli. Virulence 3:231-3.
- 57. O'Toole G, Kaplan HB, Kolter R. 2000. Biofilm formation as microbial development. Annu Rev Microbiol 54:49-79.
- 58. Costerton JW. 1999. Introduction to biofilm. Int J Antimicrob Agents 11:217-21; discussion 237-9.
- 59. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318-22.
- Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199-210.
- 61. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563-75.

154

- 62. Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 8:623-33.
- Nadell CD, Drescher K, Foster KR. 2016. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14:589-600.
- 64. Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP. 2020. Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems. Trends Microbiol 28:732-743.
- 65. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105-7.
- 66. Schilling JD, Mulvey MA, Vincent CD, Lorenz RG, Hultgren SJ. 2001. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J Immunol 166:1148-55.
- 67. Dhakal BK, Kulesus RR, Mulvey MA. 2008. Mechanisms and consequences of bladder cell invasion by uropathogenic Escherichia coli. Eur J Clin Invest 38 Suppl 2:2-11.
- 68. Eto DS, Sundsbak JL, Mulvey MA. 2006. Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell Microbiol 8:704-17.
- 69. Mulvey MA. 2002. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4:257-71.
- Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ. 2009. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5:e1000415.
- 71. Abraham SN, Miao Y. 2015. The nature of immune responses to urinary tract infections. Nat Rev Immunol 15:655-63.
- 72. Song J, Bishop BL, Li G, Grady R, Stapleton A, Abraham SN. 2009. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc Natl Acad Sci U S A 106:14966-71.
- 73. Bishop BL, Duncan MJ, Song J, Li G, Zaas D, Abraham SN. 2007. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med 13:625-30.

- 74. Lacerda Mariano L, Ingersoll MA. 2020. The immune response to infection in the bladder. Nat Rev Urol 17:439-458.
- 75. Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ. 2010. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 6:e1001042.
- 76. Anderson GG, Dodson KW, Hooton TM, Hultgren SJ. 2004. Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol 12:424-30.
- 77. Schwartz DJ, Chen SL, Hultgren SJ, Seed PC. 2011. Population Dynamics and Niche Distribution of Uropathogenic E. coli during Acute and Chronic Urinary Tract Infection. Infect Immun doi:IAI.05339-11 [pii] 10.1128/IAI.05339-11.
- 78. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ. 2012. Hostpathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36:616-48.
- 79. Wright KJ, Seed PC, Hultgren SJ. 2007. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9:2230-41.
- 80. Justice SS, Hunstad DA, Seed PC, Hultgren SJ. 2006. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc Natl Acad Sci U S A 103:19884-9.
- Reigstad CS, Hultgren SJ, Gordon JI. 2007. Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J Biol Chem 282:21259-67.
- Conover MS, Hadjifrangiskou M, Palermo JJ, Hibbing ME, Dodson KW, Hultgren SJ. 2016. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis. mBio 7:e00104-16.
- Hadjifrangiskou M, Gu AP, Pinkner JS, Kostakioti M, Zhang EW, Greene SE, Hultgren SJ. 2012.
 Transposon mutagenesis identifies uropathogenic Escherichia coli biofilm factors. J Bacteriol 194:6195-205.

- 84. Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP, Lins JJ, Allen RL, Laux DC, Cohen PS, Conway T. 2008. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143-52.
- 85. Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, Anderson AB, Grissom JE, Laux DC, Cohen PS, Conway T. 2004. Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101:7427-32.
- 86. Wang ZJ, Joe BN, Coakley FV, Zaharchuk G, Busse R, Yeh BM. 2008. Urinary oxygen tension measurement in humans using magnetic resonance imaging. Acad Radiol 15:1467-73.
- 87. Alteri CJ, Smith SN, Mobley HL. 2009. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5:e1000448.
- Hadjifrangiskou M, Kostakioti M, Chen SL, Henderson JP, Greene SE, Hultgren SJ. 2011. A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol Microbiol 80:1516-29.
- Floyd KA, Mitchell CA, Eberly AR, Colling SJ, Zhang EW, DePas W, Chapman MR, Conover M, Rogers BR, Hultgren SJ, Hadjifrangiskou M. 2016. The Ubil (VisC) Aerobic Ubiquinone Synthase Is Required for Expression of Type 1 Pili, Biofilm Formation, and Pathogenesis in Uropathogenic Escherichia coli. J Bacteriol 198:2662-72.
- 90. Eberly AR, Floyd KA, Beebout CJ, Colling SJ, Fitzgerald MJ, Stratton CW, Schmitz JE, Hadjifrangiskou M. 2017. Biofilm Formation by Uropathogenic Escherichia coli Is Favored under Oxygen Conditions That Mimic the Bladder Environment. Int J Mol Sci 18.
- 91. Borisov VB, Verkhovsky MI. 2015. Oxygen as Acceptor. EcoSal Plus 6.
- 92. Kaila VRI, Wikstrom M. 2021. Architecture of bacterial respiratory chains. Nat Rev Microbiol 19:319-330.

- 93. Unden G, Bongaerts J. 1997. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217-34.
- 94. Mitchell P, Moyle J. 1967. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213:137-9.
- Beebout CJ, Eberly AR, Werby SH, Reasoner SA, Brannon JR, De S, Fitzgerald MJ, Huggins MM, Clayton DB, Cegelski L, Hadjifrangiskou M. 2019. Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in Uropathogenic Escherichia coli. MBio 10.
- 96. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. 2011. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta 1807:1398-413.
- 97. Morris RL, Schmidt TM. 2013. Shallow breathing: bacterial life at low O(2). Nat Rev Microbiol 11:205-12.
- Forte E, Borisov VB, Vicente JB, Giuffre A. 2017. Cytochrome bd and Gaseous Ligands in Bacterial Physiology. Adv Microb Physiol 71:171-234.
- 99. Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E. 2014. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta 1837:1178-87.
- 100. Borisov VB, Forte E, Davletshin A, Mastronicola D, Sarti P, Giuffrè A. 2013. Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress. FEBS Lett 587:2214-8.
- 101. Giuffre A, Borisov VB, Mastronicola D, Sarti P, Forte E. 2012. Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology. FEBS Lett 586:622-9.
- 102. Shepherd M, Achard ME, Idris A, Totsika M, Phan MD, Peters KM, Sarkar S, Ribeiro CA, Holyoake LV, Ladakis D, Ulett GC, Sweet MJ, Poole RK, McEwan AG, Schembri MA. 2016. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection. Sci Rep 6:35285.

- 103. Mason MG, Shepherd M, Nicholls P, Dobbin PS, Dodsworth KS, Poole RK, Cooper CE. 2009.Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat Chem Biol 5:94-6.
- 104. Grund TN, Radloff M, Wu D, Goojani HG, Witte LF, Josting W, Buschmann S, Muller H, Elamri
 I, Welsch S, Schwalbe H, Michel H, Bald D, Safarian S. 2021. Mechanistic and structural
 diversity between cytochrome bd isoforms of Escherichia coli. Proc Natl Acad Sci U S A 118.
- 105. Shepherd M, Sanguinetti G, Cook GM, Poole RK. 2010. Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism. J Biol Chem 285:18464-72.
- 106. Borisov VB, Murali R, Verkhovskaya ML, Bloch DA, Han H, Gennis RB, Verkhovsky MI. 2011. Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc Natl Acad Sci U S A 108:17320-4.
- 107. Radloff M, Elamri I, Grund TN, Witte LF, Hohmann KF, Nakagaki S, Goojani HG, Nasiri H, Hideto M, Bald D, Xie H, Sakamoto J, Schwalbe H, Safarian S. 2021. Short-chain aurachin D derivatives are selective inhibitors of E. coli cytochrome bd-I and bd-II oxidases. Sci Rep 11:23852.
- 108. Chanin RB, Winter MG, Spiga L, Hughes ER, Zhu W, Taylor SJ, Arenales A, Gillis CC, Buttner L, Jimenez AG, Smoot MP, Santos RL, Winter SE. 2020. Epithelial-Derived Reactive Oxygen Species Enable AppBCX-Mediated Aerobic Respiration of Escherichia coli during Intestinal Inflammation. Cell Host Microbe 28:780-788 e5.
- 109. Chandel NS. 2021. Metabolism of Proliferating Cells. Cold Spring Harb Perspect Biol 13.
- 110. Steinert EM, Vasan K, Chandel NS. 2021. Mitochondrial Metabolism Regulation of T Cell-Mediated Immunity. Annu Rev Immunol 39:395-416.
- 111. Singer BD, Chandel NS. 2019. Immunometabolism of pro-repair cells. J Clin Invest 129:2597-2607.
- Mehta MM, Weinberg SE, Chandel NS. 2017. Mitochondrial control of immunity: beyond ATP.Nat Rev Immunol 17:608-620.

- 113. Makowski L, Chaib M, Rathmell JC. 2020. Immunometabolism: From basic mechanisms to translation. Immunol Rev 295:5-14.
- 114. Siska PJ, Rathmell JC. 2015. T cell metabolic fitness in antitumor immunity. Trends Immunol 36:257-64.
- 115. MacIver NJ, Michalek RD, Rathmell JC. 2013. Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259-83.
- 116. Reinfeld BI, Rathmell WK, Kim TK, Rathmell JC. 2022. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cell Mol Immunol 19:46-58.
- 117. Bader JE, Voss K, Rathmell JC. 2020. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell 78:1019-1033.
- 118. Vlamakis H, Aguilar C, Losick R, Kolter R. 2008. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945-53.
- 119. van Gestel J, Vlamakis H, Kolter R. 2015. Division of Labor in Biofilms: the Ecology of Cell Differentiation. Microbiol Spectr 3:MB-0002-2014.
- 120. Dragoš A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, Eriksen C, Brix S, Drescher K, Stanley-Wall N, Kümmerli R, Kovács Á. 2018. Division of Labor during Biofilm Matrix Production. Curr Biol 28:1903-1913.e5.
- 121. Dietrich LE, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK. 2013. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 195:1371-80.
- 122. DePas WH, Hufnagel DA, Lee JS, Blanco LP, Bernstein HC, Fisher ST, James GA, Stewart PS, Chapman MR. 2013. Iron induces bimodal population development by Escherichia coli. Proc Natl Acad Sci U S A 110:2629-34.
- 123. Jo J, Cortez KL, Cornell WC, Price-Whelan A, Dietrich LE. 2017. An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence. Elife 6.

- 124. Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ. 2009. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5:913-9.
- 125. Rapsinski GJ, Wynosky-Dolfi MA, Oppong GO, Tursi SA, Wilson RP, Brodsky IE, Tükel Ç. 2015. Toll-like receptor 2 and NLRP3 cooperate to recognize a functional bacterial amyloid, curli. Infect Immun 83:693-701.
- 126. Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. 2017. Nontypeable. Proc Natl Acad Sci U S A 114:E6632-E6641.
- 127. Klauck G, Serra DO, Possling A, Hengge R. 2018. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol 8.
- 128. Serra DO, Klauck G, Hengge R. 2015. Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of Escherichia coli. Environ Microbiol 17:5073-88.
- 129. Serra DO, Richter AM, Hengge R. 2013. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol 195:5540-54.
- 130. Lin YC, Sekedat MD, Cornell WC, Silva GM, Okegbe C, Price-Whelan A, Vogel C, Dietrich LEP.
 2018. Phenazines regulate Nap-dependent denitrification in. J Bacteriol doi:10.1128/JB.0003118.
- 131. McCrate OA, Zhou X, Reichhardt C, Cegelski L. 2013. Sum of the parts: composition and architecture of the bacterial extracellular matrix. J Mol Biol 425:4286-94.
- 132. Thongsomboon W, Serra DO, Possling A, Hadjineophytou C, Hengge R, Cegelski L. 2018. Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose. Science 359:334-338.
- Hufnagel DA, Depas WH, Chapman MR. 2015. The Biology of the Escherichia coli Extracellular Matrix. Microbiol Spectr 3.

- 134. Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, MacPhee CE, van Aalten DM, Stanley-Wall NR. 2013. BsIA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci U S A 110:13600-5.
- 135. Asally M, Kittisopikul M, Rué P, Du Y, Hu Z, Çağatay T, Robinson AB, Lu H, Garcia-Ojalvo J, Süel GM. 2012. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc Natl Acad Sci U S A 109:18891-6.
- Cutruzzolà F, Frankenberg-Dinkel N. 2016. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms. J Bacteriol 198:55-65.
- 137. Lindqvist A, Membrillo-Hernańdez J, Poole RK, Cook GM. 2000. Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress. Antonie Van Leeuwenhoek 78:23-31.
- Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS. 2010. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533 8.
- 139. Silander OK, Nikolic N, Zaslaver A, Bren A, Kikoin I, Alon U, Ackermann M. 2012. A genomewide analysis of promoter-mediated phenotypic noise in Escherichia coli. PLoS Genet 8:e1002443.
- 140. Huh D, Paulsson J. 2011. Non-genetic heterogeneity from stochastic partitioning at cell division.Nat Genet 43:95-100.
- 141. Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S. 2009. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191:7333-42.
- 142. Hengge R. 2009. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263-73.
- 143. Murphy KC, Campellone KG. 2003. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol 4:11.

- 144. Shaffer CL, Zhang EW, Dudley AG, Dixon BR, Guckes KR, Breland EJ, Floyd KA, Casella DP, Algood HM, Clayton DB, Hadjifrangiskou M. 2017. Purine Biosynthesis Metabolically Constrains Intracellular Survival of Uropathogenic Escherichia coli. Infect Immun 85.
- 145. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR.Nucleic Acids Res 29:e45.
- 146. Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ. 2011. Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6:e14786.
- 147. Okegbe C, Fields BL, Cole SJ, Beierschmitt C, Morgan CJ, Price-Whelan A, Stewart RC, Lee VT, Dietrich LEP. 2017. Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP. Proc Natl Acad Sci U S A 114:E5236-E5245.
- 148. Hung CS, Dodson KW, Hultgren SJ. 2009. A murine model of urinary tract infection. Nat Protoc 4:1230-43.
- 149. Beebout CJ, Sominsky LA, Eberly AR, Van Horn GT, Hadjifrangiskou M. 2021. Cytochrome bd promotes Escherichia coli biofilm antibiotic tolerance by regulating accumulation of noxious chemicals. NPJ Biofilms Microbiomes 7:35.
- 150. Haugan MS, Charbon G, Frimodt-Møller N, Løbner-Olesen A. 2018. Chromosome replication as a measure of bacterial growth rate during Escherichia coli infection in the mouse peritonitis model. Sci Rep 8:14961.
- 151. Mogi T, Akimoto S, Endou S, Watanabe-Nakayama T, Mizuochi-Asai E, Miyoshi H. 2006. Probing the ubiquinol-binding site in cytochrome bd by site-directed mutagenesis. Biochemistry 45:7924-30.
- 152. Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. 2019. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science 366:100-104.

- 153. Friedrich T, van Heek P, Leif H, Ohnishi T, Forche E, Kunze B, Jansen R, Trowitzsch-Kienast W, Höfle G, Reichenbach H. 1994. Two binding sites of inhibitors in NADH: ubiquinone oxidoreductase (complex I). Relationship of one site with the ubiquinone-binding site of bacterial glucose:ubiquinone oxidoreductase. Eur J Biochem 219:691-8.
- 154. Degli Esposti M. 1998. Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222-35.
- 155. Yao CH, Wang R, Wang Y, Kung CP, Weber JD, Patti GJ. 2019. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. Elife 8.
- Tiku V, Tan MW, Dikic I. 2020. Mitochondrial Functions in Infection and Immunity. Trends Cell Biol 30:263-275.
- 157. Marchi S, Morroni G, Pinton P, Galluzzi L. 2021. Control of host mitochondria by bacterial pathogens. Trends Microbiol doi:10.1016/j.tim.2021.09.010.
- 158. Krab K, Kempe H, Wikström M. 2011. Explaining the enigmatic K(M) for oxygen in cytochrome c oxidase: a kinetic model. Biochim Biophys Acta 1807:348-58.
- 159. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB. 2001. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 21:5899-912.
- 160. Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB. 2003. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23:7315-28.
- 161. Hoxhaj G, Manning BD. 2020. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 20:74-88.
- 162. Lin AE, Beasley FC, Olson J, Keller N, Shalwitz RA, Hannan TJ, Hultgren SJ, Nizet V. 2015. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection. PLoS Pathog 11:e1004818.

- 163. Lopatkin AJ, Bening SC, Manson AL, Stokes JM, Kohanski MA, Badran AH, Earl AM, Cheney NJ, Yang JH, Collins JJ. 2021. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science 371.
- 164. Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ. 2019. Bacterial Metabolism and Antibiotic Efficacy. Cell Metab 30:251-259.
- Kohanski MA, Dwyer DJ, Collins JJ. 2010. How antibiotics kill bacteria: from targets to networks.
 Nat Rev Microbiol 8:423-35.
- 166. Cook GM, Greening C, Hards K, Berney M. 2014. Energetics of pathogenic bacteria and opportunities for drug development. Adv Microb Physiol 65:1-62.
- 167. Mogi T, Ui H, Shiomi K, Omura S, Miyoshi H, Kita K. 2009. Antibiotics LL-Z1272 identified as novel inhibitors discriminating bacterial and mitochondrial quinol oxidases. Biochim Biophys Acta 1787:129-33.
- 168. Lee BS, Hards K, Engelhart CA, Hasenoehrl EJ, Kalia NP, Mackenzie JS, Sviriaeva E, Chong SMS, Manimekalai MSS, Koh VH, Chan J, Xu J, Alonso S, Miller MJ, Steyn AJC, Grüber G, Schnappinger D, Berney M, Cook GM, Moraski GC, Pethe K. 2020. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO Mol Med doi:10.15252/emmm.202013207:e13207.
- 169. Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. 2020. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? Front Cell Infect Microbiol 10:589318.
- 170. Lenherr SM, Clemens JQ, Braffett BH, Cleary PA, Dunn RL, Hotaling JM, Jacobson AM, Kim C, Herman W, Brown JS, Wessells H, Sarma AV, Group DER. 2016. Glycemic Control and Urinary Tract Infections in Women with Type 1 Diabetes: Results from the DCCT/EDIC. J Urol 196:1129-35.

- 171. Geerlings S, Fonseca V, Castro-Diaz D, List J, Parikh S. 2014. Genital and urinary tract infections in diabetes: impact of pharmacologically-induced glucosuria. Diabetes Res Clin Pract 103:373-81.
- 172. Puckrin R, Saltiel MP, Reynier P, Azoulay L, Yu OHY, Filion KB. 2018. SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 55:503-514.
- 173. Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. 2016. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab 18:783-94.
- 174. Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S, Bayer M, Rode DKH, Vidakovic L, Díaz-Pascual F, Fong JCN, Dragoš A, Lamprecht O, Thöming JG, Netter N, Häussler S, Nadell CD, Sourjik V, Kovács Á, Yildiz FH, Drescher K. 2021. Quantitative image analysis of microbial communities with BiofilmQ. Nat Microbiol 6:151-156.
- Brannon JR, Dunigan TL, Beebout CJ, Ross T, Wiebe MA, Reynolds WS, Hadjifrangiskou M.
 2020. Invasion of vaginal epithelial cells by uropathogenic Escherichia coli. Nat Commun 11:2803.
- 176. Pinkner JS, Remaut H, Buelens F, Miller E, Aberg V, Pemberton N, Hedenstrom M, Larsson A, Seed P, Waksman G, Hultgren SJ, Almqvist F. 2006. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci U S A 103:17897-902.
- 177. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YE, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P. 2011. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545-74.

- 178. Song Y, DiMaio F, Wang RY, Kim D, Miles C, Brunette T, Thompson J, Baker D. 2013. Highresolution comparative modeling with RosettaCM. Structure 21:1735-42.
- 179. Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. 2019. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun 10:5138.
- Alford RF, Koehler Leman J, Weitzner BD, Duran AM, Tilley DC, Elazar A, Gray JJ. 2015. An Integrated Framework Advancing Membrane Protein Modeling and Design. PLoS Comput Biol 11:e1004398.
- 181. Koehler Leman J, Mueller BK, Gray JJ. 2017. Expanding the toolkit for membrane protein modeling in Rosetta. Bioinformatics 33:754-756.
- 182. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344-50.
- 183. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N. 2005. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299-302.
- 184. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N. 2003. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163-4.
- 185. Park H, Bradley P, Greisen P, Jr., Liu Y, Mulligan VK, Kim DE, Baker D, DiMaio F. 2016. Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules. J Chem Theory Comput 12:6201-6212.
- 186. Frenz B, Lewis SM, King I, DiMaio F, Park H, Song Y. 2020. Prediction of Protein Mutational Free Energy: Benchmark and Sampling Improvements Increase Classification Accuracy. Front Bioeng Biotechnol 8:558247.

- 187. Conway P, Tyka MD, DiMaio F, Konerding DE, Baker D. 2014. Relaxation of backbone bond geometry improves protein energy landscape modeling. Protein Sci 23:47-55.
- 188. Khatib F, Cooper S, Tyka MD, Xu K, Makedon I, Popovic Z, Baker D, Players F. 2011. Algorithm discovery by protein folding game players. Proc Natl Acad Sci U S A 108:18949-53.
- Nivon LG, Moretti R, Baker D. 2013. A Pareto-optimal refinement method for protein design scaffolds. PLoS One 8:e59004.
- Tyka MD, Keedy DA, Andre I, Dimaio F, Song Y, Richardson DC, Richardson JS, Baker D. 2011.
 Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol 405:607-18.
- 191. Voss K, Hong HS, Bader JE, Sugiura A, Lyssiotis CA, Rathmell JC. 2021. A guide to interrogating immunometabolism. Nat Rev Immunol doi:10.1038/s41577-021-00529-8.
- 192. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, Chan CT, Lobritz MA, Braff D, Schwarz EG, Ye JD, Pati M, Vercruysse M, Ralifo PS, Allison KR, Khalil AS, Ting AY, Walker GC, Collins JJ. 2014. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A 111:E2100-9.
- 193. Rasmussen ML, Taneja N, Neininger AC, Wang L, Robertson GL, Riffle SN, Shi L, Knollmann BC, Burnette DT, Gama V. 2020. MCL-1 Inhibition by Selective BH3 Mimetics Disrupts Mitochondrial Dynamics Causing Loss of Viability and Functionality of Human Cardiomyocytes. iScience 23:101015.
- 194. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545-50.
- 195. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95-108.

- 196. Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167-93.
- 197. Vidakovic L, Singh PK, Hartmann R, Nadell CD, Drescher K. 2018. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat Microbiol 3:26-31.
- 198. Flemming HC, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms.Nat Rev Microbiol 17:247-260.
- 199. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O'Grady NP, Raad II, Rijnders BJ, Sherertz RJ, Warren DK. 2009. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis 49:1-45.
- 200. Cotter PA, Melville SB, Albrecht JA, Gunsalus RP. 1997. Aerobic regulation of cytochrome d oxidase (cydAB) operon expression in Escherichia coli: roles of Fnr and ArcA in repression and activation. Mol Microbiol 25:605-15.
- 201. Cotter PA, Gunsalus RP. 1992. Contribution of the fnr and arcA gene products in coordinate regulation of cytochrome o and d oxidase (cyoABCDE and cydAB) genes in Escherichia coli. FEMS Microbiol Lett 70:31-6.
- 202. Cotter PA, Chepuri V, Gennis RB, Gunsalus RP. 1990. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product. J Bacteriol 172:6333-8.
- 203. Stewart PS, Parker AE. 2019. Measuring Antimicrobial Efficacy against Biofilms: a Metaanalysis. Antimicrob Agents Chemother 63.
- 204. O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. 1999. Genetic approaches to study of biofilms. Methods Enzymol 310:91-109.
- 205. Kragh KN, Alhede M, Kvich L, Bjarnsholt T. 2019. Into the well—A close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm 1.

- 206. Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B, Price-Whelan A, Min W, Dietrich LEP. 2019. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun 10:762.
- 207. Goneau LW, Yeoh NS, MacDonald KW, Cadieux PA, Burton JP, Razvi H, Reid G. 2014. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob Agents Chemother 58:2089-97.
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
- 209. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE, America IDSo, Diseases ESfMal. 2011. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52:e103-20.
- 210. Mironov A, Seregina T, Shatalin K, Nagornykh M, Shakulov R, Nudler E. 2020. CydDC functions as a cytoplasmic cystine reductase to sensitize. Proc Natl Acad Sci U S A doi:10.1073/pnas.2007817117.
- 211. Vadyvaloo V, Arous S, Gravesen A, Héchard Y, Chauhan-Haubrock R, Hastings JW, Rautenbach M. 2004. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology (Reading) 150:3025-3033.
- 212. Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593-656.
- 213. Delcour AH. 2009. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808-16.
- 214. Nikaido H, Pagès JM. 2012. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36:340-63.

- 215. Schembri MA, Kjaergaard K, Klemm P. 2003. Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253-67.
- 216. Bhattacharyya S, Walker DM, Harshey RM. 2020. Dead cells release a 'necrosignal' that activates antibiotic survival pathways in bacterial swarms. Nat Commun 11:4157.
- 217. Paixão L, Rodrigues L, Couto I, Martins M, Fernandes P, de Carvalho CC, Monteiro GA, Sansonetty F, Amaral L, Viveiros M. 2009. Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J Biol Eng 3:18.
- 218. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, Luisi BF. 2018.Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 16:523-539.
- 219. Sielaff H, Duncan TM, Börsch M. 2018. The regulatory subunit ε in Escherichia coli F. Biochim
 Biophys Acta Bioenerg 1859:775-788.
- 220. Pagès JM, James CE, Winterhalter M. 2008. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6:893-903.
- 221. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G. 2006. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295-305.
- 222. Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, Mendel CM, Egizi E, Moreira J, Timm J, McHugh TD, Wills GH, Bateson A, Hunt R, Van Niekerk C, Li M, Olugbosi M, Spigelman M, Team N-TT. 2020. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med 382:893-902.
- 223. de Jager VR, Dawson R, van Niekerk C, Hutchings J, Kim J, Vanker N, van der Merwe L, Choi J, Nam K, Diacon AH. 2020. Telacebec (Q203), a New Antituberculosis Agent. N Engl J Med 382:1280-1281.
- 224. Wiegand I, Hilpert K, Hancock RE. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163-75.

- 225. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide labelfree quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513-26.
- 226. Wieczorek S, Combes F, Lazar C, Giai Gianetto Q, Gatto L, Dorffer A, Hesse AM, Couté Y, Ferro M, Bruley C, Burger T. 2017. DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics. Bioinformatics 33:135-136.
- 227. Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD. 2017. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 45:D543-D550.
- 228. Consortium U. 2019. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506-D515.
- 229. Semenza GL. 2003. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721-32.
- 230. Semenza GL. 2007. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007:cm8.
- 231. Semenza GL. 2001. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13:167-71.
- 232. Semenza GL. 1999. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1.Annu Rev Cell Dev Biol 15:551-78.
- 233. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43-54.
- 234. Weidemann A, Johnson RS. 2008. Biology of HIF-1alpha. Cell Death Differ 15:621-7.

- 235. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807-11.
- 236. Hayes BW, Abraham SN. 2016. Innate Immune Responses to Bladder Infection. Microbiol Spectr 4.
- 237. D'Ignazio L, Bandarra D, Rocha S. 2016. NF-kappaB and HIF crosstalk in immune responses.FEBS J 283:413-24.
- 238. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung
 V. 2013. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates
 STING. Nature 498:380-4.
- 239. Hopfner KP, Hornung V. 2020. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 21:501-521.
- 240. Eaglesham JB, Kranzusch PJ. 2020. Conserved strategies for pathogen evasion of cGAS-STING immunity. Curr Opin Immunol 66:27-34.
- 241. Gomes MTR, Guimaraes ES, Marinho FV, Macedo I, Aguiar E, Barber GN, Moraes-Vieira PMM, Alves-Filho JC, Oliveira SC. 2021. STING regulates metabolic reprogramming in macrophages via HIF-1alpha during Brucella infection. PLoS Pathog 17:e1009597.
- 242. Serra DO, Richter AM, Klauck G, Mika F, Hengge R. 2013. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4:e00103-13.
- 243. Hung C, Zhou Y, Pinkner JS, Dodson KW, Crowley JR, Heuser J, Chapman MR, Hadjifrangiskou M, Henderson JP, Hultgren SJ. 2013. Escherichia coli biofilms have an organized and complex extracellular matrix structure. MBio 4:e00645-13.
- 244. Arnaouteli S, Ferreira AS, Schor M, Morris RJ, Bromley KM, Jo J, Cortez KL, Sukhodub T, Prescott AR, Dietrich LEP, MacPhee CE, Stanley-Wall NR. 2017. Bifunctionality of a biofilm matrix protein controlled by redox state. Proc Natl Acad Sci U S A 114:E6184-E6191.

- 245. Mashruwala AA, Guchte AV, Boyd JM. 2017. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in. Elife 6.
- 246. Serra DO, Hengge R. 2019. A c-di-GMP-Based Switch Controls Local Heterogeneity of Extracellular Matrix Synthesis which Is Crucial for Integrity and Morphogenesis of Escherichia coli Macrocolony Biofilms. J Mol Biol doi:10.1016/j.jmb.2019.04.001.
- 247. Georgellis D, Kwon O, Lin EC. 2001. Quinones as the redox signal for the arc two-component system of bacteria. Science 292:2314-6.
- 248. Peña-Sandoval GR, Georgellis D. 2010. The ArcB sensor kinase of Escherichia coli autophosphorylates by an intramolecular reaction. J Bacteriol 192:1735-9.
- 249. Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D. 2004. Identification of a quinonesensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci U S A 101:13318-23.
- 250. Mika F, Hengge R. 2005. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev 19:2770-81.
- 251. Dorich V, Brugger C, Tripathi A, Hoskins JR, Tong S, Suhanovsky MM, Sastry A, Wickner S, Gottesman S, Deaconescu AM. 2019. Structural basis for inhibition of a response regulator of σ
 S stability by a ClpXP antiadaptor. Genes Dev 33:718-732.
- 252. Battesti A, Hoskins JR, Tong S, Milanesio P, Mann JM, Kravats A, Tsegaye YM, Bougdour A, Wickner S, Gottesman S. 2013. Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein. Genes Dev 27:2722-35.
- 253. Battesti A, Majdalani N, Gottesman S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189-213.
- 254. Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A, Hengge R. 2008. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22:2434-46.

- 255. Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R. 2006. Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62:1014-34.
- 256. Lahiri T, Luan B, Raleigh DP, Boon EM. 2014. A structural basis for the regulation of an H-NOXassociated cyclic-di-GMP synthase/phosphodiesterase enzyme by nitric oxide-bound H-NOX. Biochemistry 53:2126-35.
- 257. Hagan EC, Mobley HL. 2007. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect Immun 75:3941-9.
- 258. Lenn T, Leake MC. 2016. Single-molecule studies of the dynamics and interactions of bacterial OXPHOS complexes. Biochim Biophys Acta 1857:224-31.
- 259. Llorente-Garcia I, Lenn T, Erhardt H, Harriman OL, Liu LN, Robson A, Chiu SW, Matthews S, Willis NJ, Bray CD, Lee SH, Shin JY, Bustamante C, Liphardt J, Friedrich T, Mullineaux CW, Leake MC. 2014. Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochim Biophys Acta 1837:811-24.
- 260. Lenn T, Leake MC, Mullineaux CW. 2008. Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. Mol Microbiol 70:1397-407.
- 261. Sarenko O, Klauck G, Wilke FM, Pfiffer V, Richter AM, Herbst S, Kaever V, Hengge R. 2017. More than Enzymes That Make or Break Cyclic Di-GMP-Local Signaling in the Interactome of GGDEF/EAL Domain Proteins of. MBio 8.
- 262. Hengge R, Gründling A, Jenal U, Ryan R, Yildiz F. 2016. Bacterial Signal Transduction by CyclicDi-GMP and Other Nucleotide Second Messengers. J Bacteriol 198:15-26.