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CHAPTER 1

Introduction

Bayesian methods offer many advantages in clinical trials, healthcare evaluation, and drug development, but

their usage still lags that of classical ‘frequentist’ methods in these areas. While some of this lag may be

related to disagreements concerning the foundations of inference and other philosophical issues, there is also a

more practical component: despite advances in recent decades, much less methodological and computational

work has been done to show how Bayesian methods can be applied for real world analyses. The goal of this

dissertation is to demonstrate the use of Bayesian methodology in two application areas, semi-parametric

modeling and population pharmacokinetic (PK) analysis.

We begin by reviewing Bayesian inference and estimation and introducing the two application areas. Chapter 2

details an extension to the classical cumulative probability model (CPM) to perform Bayesian semi-parametric

regression modeling. The aim is to show how CPMs can be reparameterized to handle a large number of

ordinal categories and to characterize the performance of these models with continuous or mixed continuous

and discrete outcome data. Chapter 3 is focused on the application of variational inference (VI), specifically

automatic differentiation variational inference (ADVI), to population PK models. While Markov chain Monte

Carlo (MCMC) remains the gold standard for Bayesian estimation, it can suffer from slow convergence and

require long computation time to obtain results. This creates a bottleneck during iterative model exploration

and development. Therefore, we seek an approximate estimation method that balances accuracy and speed.

ADVI offers one potential solution. Chapter 4 describes a frequentist population PK analysis of the sedative

dexmedetomidine in a pediatric cohort using real-world data collected from electronic health records (EHRs)

and remnant specimens. This analysis confirmed the importance of weight and age for dexmedetomidine PK

but did not find evidence for hypothesized pharmacogenetic effects due to limitations of the observational

EHR data. To address these limitations, Chapter 5 applies the ADVI methodology from Chapter 3 along with

MCMC estimation to a Bayesian reanalysis. The goal is to stabilize estimation by incorporating external

evidence from previous studies with the larger observational dataset. We conclude by summarizing the work

and discussing future research directions.
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1.1 Bayesian Inference

1.1.1 Background

Bayesian inference has a wide range of definitions. To give just a few recent examples, McElreath (2016)

states that “Bayesian inference is no more than counting the numbers of ways things can happen, according to

our assumptions” [1] and Kruschke’s (2015) definition involves two main ideas, the assignment of possibilities

to parameter values in descriptive mathematical models and reallocation of credibility across the possibilities

[2]. Lunn et al. (2013) also state that it involves two key ingredients: using probability to express uncertainty

about an unknown quantity of interest and a focus on learning about the unknown quantity given observed

data [3]. Gelman et al. (2014) define it as “the process of fitting a probability model to a set of data and

summarizing the result by a probability distribution on the parameters of the model and on unobserved

quantities such as predictions for new observations” which involves setting up a full probability model (a

joint probability distribution for all observable and unobservable quantities), conditioning on observed data to

calculate the posterior distribution, and evaluating the fit of the model and the implications of the resulting

posterior [4]. Wasserman (2004) enumerates three postulates of the Bayesian approach versus the ‘classical’

or ‘frequentist’ paradigm: (1) probability describes degree of belief, not limiting frequency; (2) we can make

probability statements about parameters, even though they are fixed constants; and (3) we make inferences

about a parameter θ by producing a probability distribution for θ , from which point and interval estimates are

extracted [5]. While all these definitions differ slightly, they are rooted in the unifying idea of quantifying prior

information about unknown parameters, θ , using probability, p(θ), and then combining the prior information

with observed data, z, based on Bayes’ Theorem:

p(θ |z) = p(z|θ)p(θ)
∫

p(z|θ)p(θ)dθ
(1.1)

The term p(z|θ) in Equation 1.1 is the assumed model for the data (also called the likelihood when viewed as

a function of θ ) and p(θ) is a probability distribution which represents prior knowledge (or ignorance) about

the parameters. The combination of these two components yields the posterior p(θ |z) which represents an

updated probability distribution for the parameters conditional on the observed data. All Bayesian inference is

based on the posterior distribution of the parameters. Moreover, we can make predictions about unknown (but

potentially observable) data, z̃. Assuming past and future observations are conditionally independent:

p(z̃|z) =
∫

p(z̃|θ)p(θ |z)dθ (1.2)
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where the first term in the integral on the right side of the equation is the assumed model for the data (likelihood)

and the second term is the posterior distribution.

Performing inference in a Bayesian framework has several advantages. One strength is the ability to directly

answer inferential questions using posterior probabilities. A Bayesian posterior interval can be interpreted

intuitively as the probability that the parameter is within the bounds of the interval (an interpretation that

is often incorrectly used for frequentist confidence intervals). Another benefit of Bayesian inference is the

ability to combine external evidence, in the form of the prior, with evidence from the observed data likelihood.

By developing appropriate priors Bayesian models can include information from different sources such as

previous studies, pre-clinical models, elicited clinical expertise, and observational data. While this aspect of

Bayesian inference may be seen as injecting a subjective element into an objective inferential procedure an

alternate view is that the choice of prior is an assumption that should be justified in the same way as other

model assumptions. Bayesian models also provide a natural framework for handling missing data (since

missing values are treated in the same way as other unobserved quantities), hierarchical modeling (since

correlation between units can be modeled using shared parameters or hyperparameters), and prediction (as

demonstrated in Equation 1.2) and do not rely on asymptotic approximations.

The main challenge in implementing Bayesian methods is calculation of the posterior since the integral in

Equation 1.1 is high-dimensional and analytically intractable for many problems of interest. However, many

methods have been developed to provide numerical solutions. In this dissertation, we will utilize two such

methods, MCMC and VI.

1.1.2 Markov Chain Monte Carlo Estimation

MCMC is a simulation-based approach used to sequentially draw samples from the posterior distribution. The

goal is to construct a Markov chain, a stochastic process with the property that future states depend only on

the current state, whose stationary distribution is equal to the target posterior distribution, p(θ |z). The chain is

constructed using iterative Monte Carlo sampling from a proposal distribution. Defined rules for accepting or

rejecting each proposed sample ensure that the Markov chain converges to the correct distribution1.

For this dissertation, we use a type of MCMC called Hamiltonian Monte Carlo (HMC). HMC augments

the posterior distribution, p(θ |z), with an independent auxiliary variable, p(ξ ). The joint distribution,

p(θ ,ξ |z) = p(ξ )p(θ |z), can then be used to simulate dynamics in a ‘physical’ system in which the parameters,

θ , represent ‘position’ and the auxiliary variables, ξ , represent ‘momentum.’

1Some types of MCMC such as Gibbs sampling and slice sampling can be viewed as special cases where every draw from the proposal

distribution is accepted.
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In brief, the steps of the HMC algorithm are:

1. Update ξ with a random draw from its prior distribution (e.g., ξ ∼ N(0,M) where M is a prespecified

‘mass’ matrix)

2. Update the joint distribution (θ ,ξ ) with L ‘leapfrog steps’ as follows:

a. Use the gradient of the log-posterior to make a half-step update of ξ

ξ ← ξ +
1

2
ε

d p(θ |z)
dθ

b. Use the momentum vector, ξ , to update the position vector, θ

θ ← θ + εM−1ξ

c. Use the gradient of the log-posterior again to make another half-step update of ξ

ξ ← ξ +
1

2
ε

d p(θ |z)
dθ

The leapfrog steps are a discrete approximation of a continuous Hamiltonian dynamic system and ε is a

scaling factor for these steps.

3. Letting (θ t−1,ξ t−1) be the values of the joint distribution before step 2 and (θ ∗,ξ ∗) be the values at the

end of step 2 compute the acceptance ratio:

r =
p(θ ∗|z)p(ξ ∗)

p(θ t−1|z)p(ξ t−1)

4. Update the position vector:

θ t =







θ ∗ with probability min(r,1)

θ t−1 otherwise.

In practice, HMC converges to the target distribution in fewer iterations than some other types of MCMC

such as the Metropolis-Hastings algorithm, especially for high-dimensional distributions. Once the chain

has converged, all subsequent draws from the chain can be considered samples from the posterior. Finally,

the posterior samples are used to produce summary statistics such as means, quantiles, intervals, etc. for the

parameters or to make predictions. Additional details and references for MCMC and HMC can be found in the
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texts by Brooks (2011) [6], Gelman et al. (2014) [4], and Turkman et al. (2019) [7].

1.1.3 Variational Inference

MCMC methods use samples from a stationary Markov chain to numerically approximate the exact poste-

rior distribution p(θ |z). In contrast, the goal of VI is to find the joint distribution, q(θ ;φ), in a specified

distributional family indexed by variational parameters, φ ∈ Φ, which has the smallest Kullback-Leibler

(KL) divergence to the posterior distribution. KL divergence is a non-symmetric measure of the degree of

difference between a probability distribution, f (θ), and a reference distribution, g(θ), KL( f (θ)||g(θ)) =
∫

f (θ) log
f (θ)
g(θ) dθ = E f

[

log
(

f (θ)
g(θ)

)]

. The best variational approximation, q(θ ;φ ∗), is found by solving the

optimization problem, φ ∗ = argmin
φ∈Φ

{KL(q(θ ;φ)||p(θ |z))}, which involves the unknown posterior distribution

p(θ |z). Using KL as the divergence measure allows the optimization to be solved even though the posterior is

unknown. Decomposing the KL divergence to be minimized we have:

KL(q(θ ;φ)||p(θ |z)) = Eq

[

log
q(θ ;φ)

p(θ |z)

]

= Eq[logq(θ ;φ)− log p(θ |z)]

= Eq

[

logq(θ ;φ)− log

(
p(θ)p(z|θ)

p(z)

)]

= Eq

[

log
q(θ ;φ)

p(θ)

]

−Eq[log p(z|θ)]+Eq[log p(z)]

= KL(q(θ ;φ)||p(θ))−Eq[log p(z|θ)]+ log p(z).

The final equality shows the dependence of the optimization on the marginal likelihood (or evidence), log p(z).

However, because all expectations are with respect to q(θ ;φ) (which log p(z) does not depend on), finding φ ∗

is equivalent to finding φ ∗ = argmax
φ∈Φ

{Eq[log p(z|θ)]−KL(q(θ ;φ)||p(θ))}. Further, since the KL divergence

≥ 0 for all distributions, we have:

KL(q(θ ;φ)||p(θ |z))≥ 0

KL(q(θ ;φ)||p(θ))−Eq[log p(z|θ)]+ log p(z)≥ 0

log p(z)≥ Eq[log p(z|θ)]−KL(q(θ ;φ)||p(θ)).
︸ ︷︷ ︸

ELBO

Because of this relationship, the term that is maximized to find φ ∗ is also called the evidence lower bound

(ELBO).

The optimization problem can be solved using several approaches. One common method uses a ‘mean-

field’ approximation which assumes mutual independence between each of the j marginal distributions in
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the specified variational distributional family, q(θ ;φ) = Π jq j(θ j;φ j). Then, a coordinate ascent algorithm

iteratively optimizes each marginal factor, q j(θ j;φ j), using complete conditional densities given all the other

parameters, θ− j, and the observed data. Early work in VI focused on deriving closed form solutions for the

optimal updates in special cases such as conjugate and exponential family models [8–12]. However, deriving

and coding these updates can be time-consuming in itself, requiring alternative methods for models outside of

the special cases [13] and undercutting the aim of quickly iterating over multiple models without constraints

on model and prior parameterization.

As a solution, Kucukelbir et al. (2017) [14] developed a VI method called automatic differentiation variational

inference. The ADVI methodology combines advances in probabilistic programming and automatic differenti-

ation to make VI more accessible – by avoiding derivation of complete conditionals for each new model – and

more general – since it requires only a differentiable probability model (compared to more stringent conjugacy

or exponential family requirements). Briefly, all unknown parameters are first transformed to a common,

unconstrained real coordinate space. This transformation allows the use of a Gaussian variational family on

the transformed space for all problems. Next a stochastic gradient ascent algorithm is developed to optimize

the variational objective function in the transformed space. A second transformation facilitates calculation

of expectations using Monte Carlo integration while gradients are calculated using automatic differentiation.

Further details and references for VI can be found in the review article by Blei et al. (2017) [15]. We explain

the ADVI algorithm in more depth in Chapter 3.

1.2 Semi-parametric Bayesian Models

In Chapter 2, we explore semi-parametric Bayesian models using the framework of cumulative probability

models. Cumulative probability models for ordinal outcomes – traditionally denoted cumulative link models

[16] – have been discussed extensively in the literature using both frequentist and Bayesian implementations.

Since these models are characterized by adding probabilities, not link functions, we prefer the nomenclature

cumulative probability model (CPM). Under the frequentist paradigm, Walker and Duncan (1967) [17] and

McCullagh (1980) [18] described these models as an extension of dichotomous outcome regression models

such as logistic and probit regression. A Bayesian CPM for ordinal regression was explored by Albert and Chib

(1993; 1997) [19,20] and Johnson and Albert (1999) [21]. Additional Bayesian CPM extensions including

partial proportional odds [22], mixture link models [23], location-scale ordinal regression, and multivariate

ordinal outcomes are described by Congdon (2005) [24]. In all these settings, the number of ordered outcome

categories is implicitly assumed to be much smaller than the sample size. However, continuous data where

each distinct value is its own category are also ordinal and can therefore be fit using CPMs.
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In the continuous outcome setting, Liu et al. (2017) [25] demonstrate the equivalence between CPMs and

semiparametric linear transformation models of the form:

Y = H(β T
X + ε) with ε ∼ Fε (1.3)

where H(·) is an increasing function, β is a vector of regression coefficients, X is a vector of covariates,

and ε are errors distributed according to known Fε . Harrell (2015) [26], Liu et al. (2017) [25], and Tian et

al. (2019) [27] describe non-parametric maximum likelihood estimation [28] for the unspecified transformation

H(·) and β parameters. The models have several favorable characteristics including invariance to monotonic

outcome transformations for the regression coefficient estimates and the ability to handle mixed continuous

and discrete outcomes such as those that arise from a lower or upper limit of detection. In addition CPMs

directly model the full conditional cumulative distribution function (CDF); this allows estimates of conditional

means, quantiles, and other statistics to be calculated from a single model fit. Further, because only the H(·)

part of the model is nonparametric, CPMs are semiparametric regression models which balance the robustness

of fully nonparametric models and the efficiency of fully parametric models.

There is an extensive literature on Bayesian semiparametric regression models. The aim stated by Gelfand

(1999) [29] in his discussion of general approaches for these models is, “to enrich the class of standard

parametric hierarchical models by wandering nonparametrically near (in some sense) the standard class but

retaining the linear structure.” For example, Brunner (1995) [30] describes Bayesian linear regression models

with symmetric unimodal error densities and Kottas and Gelfand (2001) [31] describe Bayesian semiparametric

median regression. DeYoreo and Kottas (2020) [32] explore Bayesian nonparametric density regression for

ordinal responses by modeling the joint density between the outcome and covariates using latent continuous

random variables. Song and Lu (2012) [33] develop a semiparametric transformation nonlinear mixed model

which estimates the transformation, H(·), and incorporates possible nonlinear relationships between X and

β and random effects using Bayesian P-splines. Tang et al. (2018) [34] describe semiparametric Bayesian

analysis for transformation linear mixed models using a similar Bayesian P-spline approach to estimate the

transformation with a focus on nonparametric estimation of random effects. For survival outcomes, Mallick and

Walker (2003) [35] describe a linear transformation model for mean survival time where the transformation,

H(·), and the error distribution, Fε , are estimated nonparametrically using mixtures of incomplete beta

functions and a Pólya tree distribution, respectively. Lin et al. (2012) [36] detail a semiparametric Bayesian

transformation model for median survival. Hanson and colleagues [37,38] and Ibrahim et al. (2010) [39]

describe other Bayesian nonparametric survival models. Additional details on general Bayesian nonparametric

models can be found in the texts by Müller et al. (2015) [40] and Hjort et al. (2010) [41].
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1.3 Pharmacokinetics

Pharmacokinetic (PK) models are often used to characterize the absorption, distribution, metabolism, and

elimination (ADME) of a drug in the body over time. They are simply characterized as “how the body acts on

the drug.” There are several approaches to PK modeling, including and non-compartmental analyses [42] and

physiologically based PK modeling. For this work we focus on population PK analysis with compartmental

models.

1.3.1 Compartmental Models

Compartmental PK models approximate the complex ADME process by grouping body systems into a set of

compartments. Each hypothetical compartment is comprised of tissues, organs, and fluids assumed to have

similar kinetic behavior [43]. The movement of a drug through the compartments is modeled by a system of

differential equations whose solutions provide the amount of drug in each compartment over time. For all but

the simplest models, the solutions are nonlinear in the parameters. For example, assuming a one-compartment

model with linear elimination, the concentration at time t for a single intravenous (IV) infusion dose, d,

administered at time td for duration tin f can be defined as:

f1(D = {d, td , tin f },ψ = {Cl,V}, t) =







d
tin f

1
Cl

(

1− e−
Cl
V (t−td)

)

if t− td ≤ tin f

d
tin f

1
Cl

(

1− e−
Cl
V tin f

)

e−
Cl
V (t−td−tin f ) otherwise,

(1.4)

where the vector D contains the dose history and the vector ψ defines a set of PK parameters, clearance, Cl,

and volume of distribution, V . This model is represented schematically in Figure 1.1 and the corresponding

concentration over time (without error) in the single compartment is shown in Figure 1.2. The goal of

compartmental PK modeling is to determine the parameter values of this system given known dose history and

observed concentrations (which are subject to stochastic error).

Figure 1.1: One-compartment pharmacokinetic model. Dose (D) and drug concentration (C) are observed

quantities. Clearance (Cl) and volume of distribution (V) are parameters to be estimated.
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Figure 1.2: Concentration over time for a one-compartment model with single infusion (dose D = 8, infusion

start time td = 0, infusion duration tin f = 12, clearance Cl = 20, volume of distibution V = 40).

1.3.2 Population Pharmacokinetic Models

The structural model in Equation 1.4 describes the change in concentration over time for a single individual.

Population PK models extend this idea to analyze data from multiple individuals. The PK profiles for all

individuals are assumed to follow the same structural model, but PK parameter values can differ from subject

to subject. Population PK models can estimate both population and individual-specific parameters and quantify

variability within and between individuals. In addition they can incorporate covariates such as weight, age,

and organ function, that may affect each individual’s PK profile, which is of interest in many studies.

The foundational paper by Lewis Sheiner and Stuart Beal (1977) developed the general framework for

population PK modeling [44]. In their paper population parameters were estimated directly using maximum

likelihood and first-order Taylor series approximation (FO). This paper introduced important concepts in

population PK estimation such as partially pooled interindividual variability that is a balance between complete

homogeneity (identical PK parameters for every individual) and complete heterogeneity (distinct, independent

PK parameters for each individual) and led to development of the nonlinear mixed effect model (NONMEM)

software that has become a gold standard for population PK analyses. Additional papers by Sheiner and

Beal [45–47] showed how to perform population PK analysis for different models and further evaluated the

performance of the NONMEM approach. Further literature expanded the scope of these analyses to include

covariates for the individual effects [48–50], compare strategies for covariate building [51], and develop more

accurate frequentist approximations [52].

Bonate (2005) provides a summary of the history and development of population PK modeling [53] with

references to many seminal papers. In addition, many texts, such as those by Gibaldi and Perrier (1982) [42],

Davidian and Giltinan (1998) [54], Bonate (2011) [55], and Rosenbaum (2017) [43], provide more details on

the theory, derivation, and estimation of population PK models.
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1.3.3 Bayesian Population Pharmacokinetic Models

Fully Bayesian population PK models were first described in the mid-1990s by Wakefield (1994) and others

[56–61]. They advocate the Bayesian approach for several reasons including calculation of the full posterior

distribution to better account for uncertainty, principled incorporation of prior information, and inference that

does not rely on asymptotic arguments for estimates and tests. The Bayesian paradigm is also well-suited for

prediction and provides the ability to assess sensitivity to modeling assumptions.

The hierarchical Bayesian population PK model described by Wakefield (1996) [60] and Wakefield, Aarons,

and Racine-Poon (1999) [62] has with three stages or levels: an individual level describing each subject’s PK

profile and intra-individual error, a population level describing how PK parameters vary between individuals

based on fixed and random effects, and a third level with priors describing the distribution of parameters at the

first two stages.

Let yi j be the observed concentration for subject, i = 1, . . . ,N, at the jth time point, ti j, j = 1, . . . ,ni, where ni

is the number of observed concentrations for subject i. yi = (yi1, . . . ,yini
) and y = (y1, . . . ,yN) are observed

concentrations for subject i and the entire study population, respectively. Stage one models data at the

individual level:

yi j = f1(Di,ψi j, ti j)+ εi j (1.5)

εi j ∼ N(0,σ2
i j), σ2

i j = f1(Di,ψi j, ti j)
γ σ2

y , γ ≥ 0. (1.6)

The function f1(·) is the solution to the system of differential equations defining the compartmental PK

model (such as Equation 1.4) where Di is dose history such as dose amounts and time of administration for

subject i, ψ i j is the p-dimensional PK parameter vector for subject i at ti j, and εi j are independent random

variables with mean zero representing intra-individual variability (residual error). For the intra-individual

term in Equation 1.6, setting γ = 0 gives an additive error model and γ = 2 yields a constant coefficient

of variation (CV) or proportional error model. A combined additive and proportional error model can be

constructed by adding two error terms to f1(·), εi j,add and εi j,prop where the corresponding σ2
i j,add = σ2

y,add

and σ2
i j,prop = f1(Di,ψi j, ti j)

2σ2
y,prop. Alternatively, a lognormal or exponential error model for stage 1 is:

logyi j = log f1(Di,ψi j, ti j)+ εi j

εi j ∼ N(0,σ2
y )

The first stage is summarized by the density p1(y|ψ,σ2
y ).
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Stage two models differences between individuals at the population level. A multivariate regression model for

the latent PK parameters of individual i is:

ψi j = f2(µ,Xi j)+ηi, (1.7)

where µ is the population regression coefficients (fixed effects), Xi j is the design matrix comprised of individual-

specific covariates at time ti j, and ηi is individual-specific deviations (random effects) with E[ηi] = 0 and

covariance matrix Ω. The ηi are usually assumed to follow a multivariate normal or multivariate Student-t

distribution. If the function f2 is linear, f2(µ,Xi j) = µXi j. Further the PK parameters ψi j are frequently

transformed since they must be strictly positive and are often right-skewed [55]. For example, if the PK

parameter vector in a one-compartment IV model is redefined as ψi j = {logCli j, logVi j} the stage two model

would typically be multivariate lognormal or multivariate log-Student-t. The second stage is represented by

the density p2(ψ|X ,µ,Ω).

Finally, Stage three specifies priors for the parameters from Stages one and two, p3(µ,Ω,σ2
y ) =

p(µ)p(Ω)p(σ2
y ) where p(µ) is the prior for the fixed effects at Stage two, p(Ω) is the prior for random

effects at Stage two, and p(σ2
y ) is the prior for residual error variance at Stage one. The hyperparameters are

fixed to represent prior knowledge (or lack thereof) about the parameters. Combining all three stages the

posterior is p(θ = {µ,Ω,σ2
y }|z = {y,X ,D}) ∝ p1(y|ψ,σ2

y )p2(ψ|X ,µ,Ω)p3(µ,Ω,σ2
y ) where θ contains all

the parameters to be estimated and z contains all observed data.

Inference for Bayesian population PK models is usually performed using MCMC sampling methods such as

those implemented through the PKBugs interface to WinBUGS or using the HMC sampler with the Torsten

library and Stan probabilistic programming language [63–66]. However MCMC can be slow to converge

and may scale poorly with larger sample sizes, complex models, or high-dimensional parameter spaces. Slow

convergence time, in turn, presents a bottleneck in the iterative model development process of fitting, checking,

adjusting, and refitting models [4,55,67,68]. Therefore, it is of interest to explore alternative strategies for

Bayesian inference which can balance speed and accuracy. In Chapter 3, we investigate ADVI for Bayesian

population PK models as a potential solution to the model development bottleneck.
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CHAPTER 2

Bayesian Cumulative Probability Models for Continuous and Mixed Outcomes

2.1 Introduction

In this paper, we develop Bayesian CPMs for continuous and mixed outcomes. They are distinguished from

other Bayesian semiparametric approaches by their use of a simpler parametric prior specification. Bayesian

CPMs inherit many of the properties of CPMs estimated using non-parametric maximum likelihood estimation

and have additional benefits: interpretation using posterior probabilities, inference for quantities of interest

without using asymptotic approximations, and the ability to incorporate available prior information. A primary

challenge when implementing Bayesian CPMs for continuous outcomes is the specification of priors for the

intercept parameters used to estimate the unspecified transformation H(·) (Equation 1.3) and we describe

several proposed strategies. Through simulations, we explore characteristics of Bayesian CPMs using several

model specifications and prior combinations. A case study of HIV biomarker data with outcomes that are

both right-skewed and censored at a lower limit of detection provides a real-world example. We conclude

with a discussion, including advantages, current limitations, and potential extensions, and provide some

recommendations for using Bayesian CPMs.

2.2 Methods

2.2.1 Cumulative Probability Model Formulation

Let Yi be the outcome for unit i = 1, . . . ,n with p covariates Xi = (Xi1, . . . ,Xip) such that each Yi falls into one

of j = 1, . . . ,J ordered categories. The Yi can be modeled using a Categorical(πi) – or Multinomial(1,πi) –

distribution where πi = (πi1, . . . ,πiJ) are the probabilities of unit i being in category j and ∑
J
j=1 πi j = 1. The

value of πi j is dependent on xi, but we suppress the conditional notation for clarity. The cumulative probability

of falling into category j or a lower category is Pr(Yi ≤ j) = ηi j = ∑
j
k=1 πik. The CPM relates the cumulative

probabilities to the observed covariates through a monotonically increasing link function G−1(ηi j) = γ j− x′iβ .

Common choices for the link function are logit, G−1(p) = log
(

p
1−p

)

; probit, G−1(p) = Φ−1(p) where

Φ−1(p) is the quantile function for a standard normal distribution; and loglog, G−1(p) = − log(− log(p)).

For observed data {yi,xi} the model can be expressed as

Pr(yi ≤ j|xi,β ,γ) = ηi j = G(γ j− x′iβ ), (2.1)
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where the γ j are ordered continuous intercept parameters −∞≡ γ0 < γ1 < · · ·< γJ−1 < γJ ≡ ∞, β is a vector

of p coefficients, and the function G(·) is a CDF defined as the inverse of the link function: standard logistic,

standard normal, and standard Gumbel for the logit, probit, and loglog links, respectively. For identifiability,

the linear predictor x′iβ does not include an intercept. The conditional probabilities of category membership

are

πi j = ηi, j−ηi, j−1 = G(γ j− x′iβ )−G(γ j−1− x′iβ ) (2.2)

The likelihood for an independent and identically distributed sample of outcomes y = (y1, . . . ,yn) with

corresponding covariates x = (x1, . . . ,xn) is

p(y|x,γ,β ) =
J

∏
j=1

∏
i:yi= j

[G(γ j− x′iβ )−G(γ j−1− x′iβ )] (2.3)

For continuous data with no ties J = n; letting r(yi) be the rank of yi, the likelihood reduces to

p(y|x,γ,β ) =
n

∏
i=1

[G(γr(yi)− x′iβ )−G(γr(yi)−1− x′iβ )] (2.4)

To complete the model specification we define priors for the parameters p(β ,γ). We assume a priori in-

dependence between β and γ so p(β ,γ) = p(β )p(γ). To simplify the model formulation we also assume

noninformative priors for the regression coefficients, p(β ) ∝ 1; however weakly informative or informative

priors can also be used.

Specifying priors for γ is more challenging because of the ordering restriction and dimensionality. Several

approaches have been suggested in the traditional CPM setting where J≪ n. McKinley et al. (2015) [69]

and Congdon (2005) [24] describe a sequentially truncated prior distribution: p(γ) = p(γ1)∏
J−1
j=2 p(γ j|γ j−1)

where γ1 ∈ R and the support of γ j for j = 2, . . . ,J−1 is (γ j−1,∞). For example using normal and truncated

normal priors, p(γ1) ∼ N(0,σ2
γ ) and p(γ j|γ j−1) ∼ N(0,σ2

γ )I(γ j−1,∞). A second approach described by

Albert and Chib (1997) [20] defines the prior on a transformation of the intercepts to an unconstrained

space; first normalizing γ0 to 0 so 0 ≡ γ0 < γ1 < · · · < γJ−1 < γJ ≡ ∞ and then letting δ1 = log(γ1) and

δ j = log(γ j−γ j−1), 2≤ j≤ J−1 a multivariate prior can be assigned, e.g. δ ∼NJ−1(µ0,Σ0). Both approaches

provide priors that satisfy the ordering restriction, but may be cumbersome when the number of distinct

categories is high. The first requires specification of the distribution and its hyperparameters, then sampling

from the sequential series of J− 2 truncated distributions; the second requires specification of the J− 1

dimensional µ0 vector and the J−1× J−1 dimensional covariance matrix Σ0.
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We instead adopt a third approach which defines a prior on πi for a prespecified covariate vector and utilizes

the transformation defined by G(·) to induce a prior on γ [70]. Let π. j ≡ Pr(r(y) = j|x = 0) be the probability

of being in category j when all covariates are 0 and π. = (π.1, . . . ,π.J). It may be useful to center the covariates

by using x′ = x− x̄ in place of x. Then π. j is the probability of being in category j when all covariates are at

their mean value. From Equation 2.2 it follows that

π. j = G(γ j−0)−G(γ j−1−0) = G(γ j)−G(γ j−1) (2.5)

These equations define a transformation h(γ) = π. between the intercept parameters and probabilities of

category membership when X = 0. Conversely,

j

∑
k=1

π.k =
j

∑
k=1

[G(γk)−G(γk−1)] = G(γ j) (2.6)

so G−1
(

∑
j
k=1 π.k

)

= γ j defines the inverse transformation h−1(π.) = γ . Because y has a multinomial distri-

bution a conjugate Dirichlet distribution with hyperparameters α is a natural choice of prior for π.. Setting

p(π.|α) ∝ ∏
J
j=1 π

α j−1

. j the posterior distribution is

p(γ,β |x,y) ∝ p(γ)p(β )p(y|x,γ,β ) (2.7)

∝ p(h(γ))|J |p(β )p(y|x,γ,β ) (2.8)

∝ p(π·|α)|J |p(β )p(y|x,γ,β ) (2.9)

where J is the Jacobian of the transformation h(γ) = π.. Letting Ω = ∑
J
j=1 π. j = 1 be the constraint that all

category probabilities sum to 1, the entries in J where Jr,c is the term in row r and column c are

J j,1 =
∂π. j

∂Ω
= 1,

J j+1, j+1 =
∂π. j+1

∂γ j

=
∂

∂γ j

[
G(γ j+1)−G(γ j)

]
=−g(γ j),

J j, j+1 =
∂π. j

∂γ j

=
∂

∂γ j

[
G(γ j)−G(γ j−1)

]
= g(γ j),

where j = 1, . . . ,J−1, g(·) is the density function of the distribution G(·), and Jr,c = 0 for all other entries;

the form of the Jacobian is
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While it is possible to define separate α j parameters for each category, we restrict our attention to symmetric

Dirichlet distributions which use a single α value for all categories (i.e., α1 = α2 = · · · = αJ) so α = α1

where 1 is a J− 1 dimensional vector of 1s. The symmetric Dirichlet prior on π. along with the inverse

transformation h−1(·) defined in Equation 2.6 induces a prior for γ with α controlling the concentration

of the induced prior. For example, Figure 2.1 shows induced γ priors assuming a probit link for several

combinations of concentration parameter and number of categories. The priors are approximately distributed

around the intercepts that result under an assumption of equal probability for all categories when X = 0;

that is, for J = n the values G−1(∑
j
k=1 1/n) = G−1( j/n) = γ̂ j|X=0. The prior choices correspond to several

options for a multinomial-Dirichlet model [4]: a uniform Dirichlet (α = 1), the multivariate Jeffreys prior

(α = 1/2), an overall objective prior recommended by Berger et al. (2015) [71] (α = 1/J), and two additional

‘reciprocal’ priors (α = 1/(2+(J/3)) and α = 1/(0.8+ 0.35J)). The last two priors were found using a

trial-and-error procedure in a simulation study with the aim of minimizing the difference between the posterior

mean and mode intercept estimates and the corresponding maximum likelihood intercept estimates. As the

number of categories increases the uniform and Jeffreys priors more strongly favor intercepts assuming equal

probability for all categories; in contrast, the three reciprocal priors are adjusted to maintain the same degree

of concentration relative to the equal probability intercepts, γ̂ j|X=0.

In multiparameter models, the choice of an objective reference prior depends on the parameter or statistic

of interest (e.g. β , conditional CDF, conditional mean) [71]. Without prior information, we seek a value of

α with minimal impact on inference for a variety of settings and quantities of interest while still producing

posterior estimates that can be sampled well by the MCMC algorithm.

2.2.2 Estimation

The model in (2.9) is implemented using the R interface to Stan [72] which performs MCMC sampling using

no-U-Turn Hamiltonian Monte Carlo [4,73]. The R package bayesCPM which implements the Bayesian

CPM model described in this paper is available at https://github.com/ntjames/bayesCPM/tree/master/pkg.
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Figure 2.1: Induced γ priors under probit link, G−1(·) = Φ−1(·). Each subplot displays the median and

credible intervals of γ j for j = 1, . . . ,J−1
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2.2.3 Posterior Conditional Quantities

Using the S draws from the posterior distribution, (γ̃(s), β̃
(s)

) where s = 1, . . . ,S, it is straightforward to

calculate the distribution of the posterior conditional CDF, mean, quantiles or other functions of the parameters.

For example, the distribution of the posterior conditional CDF at y j with covariates x can be approximated

by the S values F̃(s)(y j|x) = G(γ̃
(s)
r(y j)
− xT β̃

(s)
) and the complete conditional CDF can be obtained by a step

function connecting F̃(s)(y j|x) for j = 1, . . . ,J. The posterior mean distribution conditional on covariate

vector x is approximated by Ẽ(s)[Y |x] = ∑
J
j=1 y j f̃ (s)(y j|x) where f̃ (s)(y j|x) = F̃(s)(y j|x)− F̃(s)(y j−1|x) and

F̃(s)(y0|x) ≡ 0 so f̃ (s)(y1|x) = F̃(s)(y1|x). Note that for mixed continuous/discrete outcomes, such as those

arising from a detection limit, data below or above the limit do not have a known y j value; in this case a

value must be assigned to calculate the conditional mean. To estimate the qth posterior conditional quantile

we first find y
(s)
j = inf{y : F̃(s)(y|x) ≥ q} and the next smallest value y

(s)
j−1, then use linear interpolation to

find quantile y
(s)
q where y

(s)
j−1 < y

(s)
q < y

(s)
j . For each of these functionals, point and interval estimates can be

obtained by summarizing the S values obtained from the posterior parameter draws without using asymptotic

approximations. For example, the mean of the posterior conditional CDF distribution is 1
S ∑

S
s=1 F̃(s)(y j|x) and

the 2.5% and 97.5% percentiles of the y
(s)
q values are the bounds of a 95% credible interval for the qth posterior

conditional quantile.

2.3 Simulations

2.3.1 Set-up

To evaluate the properties of the Bayesian CPM for continuous and mixed outcomes we generate data from

several simulation scenarios:

1. Y = exp(X1β1 +X2β2 + ε) ε ∼ N(0,1)

2. Y = exp(X1β1 +X2β2 + ε) ε ∼ Logistic(0,1/3)

3. Y = X1β1 +X2β2 + ε ε ∼ Gumbel(0,1)

where β1 = 1, β2 =−0.5, X1 ∼ Bernoulli(0.5) and X2 ∼N(0,1). For each scenario a second set of simulations

was used to evaluate a mixed discrete/continuous outcome with a lower limit of detection; for scenario (1)

and (2) values of Y < 1 to were set to 1, for scenario (3) values of Y < 0 were set to 0. The uncensored

and censored outcome data based on (1) and (3) were evaluated using a Bayesian CPM with the properly

specified probit and loglog links, respectively. For scenario (2) a logit link Bayesian CPM (which implies

ε ∼ Logistic(0,1)) was used. In each of the six outcome models, three α concentration hyperparameters

(1/J, 1/(2+(J/3)), and 1/(0.8+0.35J)) were considered for p(π.|α) for 18 model and prior combinations.
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Sample sizes n = 25,50,100,200 and 400 were used under each model/prior combination for a total of 90

simulation models. 1,000 datasets were generated under each simulation model.

We examine the average percent bias of the posterior median for parameters β1 and β2 and five γ j parameters

corresponding to y values spaced across the range of the data: For scenario (1) y = {y1 = e−1,y2 = e−0.33,y3 =

e0.5,y4 = e1.33,y5 = e2}, for scenario (2) y= {y1 = e−0.5,y2 = e0,y3 = e0.5,y4 = e1,y5 = e1.5} and for scenario

(3) y = {y1 = −0.3,y2 = 0,y3 = 0.5,y4 = 1.5,y5 = 2.5}. For the censored outcomes, estimates are only

available for the values of y above the censoring threshold. We also calculate average percent bias of the

conditional CDF for y when X1 = 1 and X2 = 1, and the conditional median, mean and 20th percentile at

(X1 = 1,X2 = 1) and (X1 = 1,X2 = 0).

2.3.2 Results

A Bayesian CPM was fit to each of the 1000 simulation datasets for each scenario/prior/sample size combina-

tion. For each simulation dataset, the median of the posterior distribution of the parameter or conditional CDF,

mean, or quantile was used as a point estimate. These point estimates were compared to the true value from

the generating model and the results averaged over all simulation datasets. Each model was run with 2 MCMC

chains using 2000 warmup and 2000 sampling iterations each. Retaining only the sampling iterations from

each chain for inference resulted in a total of 4000 posterior parameter vector draws per model.

In general, the Bayesian CPM had reasonable performance in estimating parameters and conditional quantities

for the simulation settings explored; especially for larger sample sizes. However, performance was poor for

some quantities and may be sensitive to the conditioning covariate values and censoring threshold. The three

α values produced similar results for most scenarios and no prior choice was best across all parameters and

quantities of interest.

2.3.2.1 Parameters

For scenario (1) using a properly specified probit link CPM, the average percent bias in the posterior median

for β1, β2, and γyk
is shown in Figure 2.2 for the uncensored and censored outcome data. Average percent

bias was largest for the smallest sample sizes, but the direction and magnitude of the bias depended on the

outcome, concentration prior and parameter. Across both outcomes, the estimates of β1 and all γs were larger

using the α = 1/J concentration prior than the α = 1/(0.8+0.35J) or α = 1/(2+(J/3)) concentration priors

while the β2 estimates were smaller with α = 1/J. For the β parameters, the priors α = 1/(0.8+0.35J) and

α = 1/(2+(J/3)) produced less biased estimates than α = 1/J for both outcomes. The situation was more

complex for the γ parameters. With the uncensored outcome, the α = 1/J prior estimate was less biased for
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γy1
and γy2

, but more biased for γy3
, γy4

, and γy5
; with the censored outcome, the α = 1/J prior estimate was

less biased for γy3
, but more biased for γy4

and γy5
.

Figure 2.2: Percent bias in parameters for simulations using probit link

Figure 2.3 shows the average percent bias in the posterior median for β1, β2, and γyk
for scenario (2) using a

logit link CPM. Unlike scenario (1), the assumed scale of the latent variable with logit link (ε ∼ Logistic(0,1))

does not match the scale from the simulation model (ε ∼ Logistic(0,1/3)). In this case it can be shown

that the CPM parameter estimates are proportional to the parameters from the generating simulation model.

Assume latent Y ∗ = β ′X +aε with known ε ∼ Fε and constant scaling factor a > 0, and observed Y = H(Y ∗)

with increasing function H(t). Then Y = H(β ′X +aε) = H ′(ξ ′X + ε) where ξ = a−1β and H ′(t) = H(at)

so Pr(Y ≤ y|X) = Pr(H ′(ξ ′X + ε) ≤ y|X) = Fε(H
′−1(y)− ξ ′X). Using a CPM with link function F−1

ε to

analyze the observed outcome Y results in estimates of ξ = a−1β for the linear predictor coefficients and

H ′−1 = a−1H−1 for the intercept function. To compare the CPM model estimates (e.g. ξ , H ′−1) to the

generating model parameters (β , H−1) it is necessary to rescale by a. Conceptually this is equivalent to

rescaling ε for the latent Y ∗ to match the assumed scale before fitting the CPM. Outside of simulations,

the scale factor is not known but can be assumed to equal 1 without loss of generality because Y ∗ is latent;

therefore rescaling is not necessary in practice. In general, simulation results were similar to those in Figure

2.2; bias was small with moderate sample sizes.

19



For scenario (3) using the correctly specified loglog link with an identity transformation, overall trends

resembled those in scenario (1) (see Figure 2.18).

Figure 2.3: Percent bias in parameters for simulations using logit link

2.3.2.2 Conditional CDF

Figure 2.4 shows the average percent bias in the posterior conditional CDF, F(y|X1 = 1,X2 = 1), for scenario

(1). At the values y1 = e−1,y2 = e−0.33,y3 = e0.5,y4 = e1.33,y5 = e2 the true conditional CDF values were

around 0.07, 0.20, 0.50, 0.8, and 0.93, respectively. For the uncensored outcome, the conditional CDF estimates

had larger percent bias when y < e0.5, especially for the sample sizes n = 25 and n = 50. This is not surprising,

as it is difficult to estimate a conditional CDF at the tail of distribution with a small sample size. In addition,

for conditional CDF estimates at y < e0.5, the concentration prior α = 1/J produced estimates that were lower

than the other reciprocal priors. The direction of the bias did not show a consistent trend across sample sizes.

Similar patterns were seen for the censored outcome, less biased estimates for the CDF at higher y values and

larger sample sizes. The results were much the same for scenarios (2) and (3) under both outcomes: larger

average percent bias for the conditional estimates of F(y|X1 = 1,X2 = 1) for lower values of y and smaller

sample sizes (Figures 2.19 and 2.20).
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Figure 2.4: Percent bias in conditional CDF for simulations using probit link

2.3.2.3 Conditional Mean

The top row of Figure 2.5 presents the average percent bias in the posterior conditional mean for the uncensored

simulation outcomes at (X1 = 1,X2 = 0) and (X1 = 1,X2 = 1) in scenario (1). For this scenario, the average

percent bias was less than 5% for all sample sizes and priors. In contrast, the bottom row of Figure 2.5 shows

the bias in posterior conditional mean estimates for the censored outcomes where a value of y = 1 was used in

the conditional mean calculation for outcomes censored at Y < 1. Using the censoring threshold value for

censored observations results in inflated average percent bias compared to the uncensored case depending on

where the threshold falls in relation to the true conditional distribution. For example, the average percent bias

of E(Y |X1 = 1,X2 = 1) for the censored outcome in scenario (1) was around 40% even for the largest sample

size. Results were similar for scenario (2) (see Figure 2.21).

For scenario (3) the average percent bias for the uncensored outcome ranges from -12.5% to -1.0% with larger

bias for the α = 1/J prior and smaller n (Figure 2.6). As in the first two scenarios, the censored outcome

(which replaced outcomes less than 0 with a value of y = 0) showed a positive shift in average percent bias at

(X1 = 1,X2 = 1) although to a much smaller degree than scenario (1).
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Figure 2.5: Percent bias in conditional mean for simulations using probit link

Figure 2.6: Percent bias in conditional mean for simulations using loglog link
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2.3.2.4 Conditional Median and Quantiles

The simulation results for the conditional posterior median in scenario (1) are shown in Figure 2.7. Across

outcomes, the conditional median estimates had a positive average percent bias for both (X1 = 1,X2 = 0) and

(X1 = 1,X2 = 1) with smaller bias for larger sample sizes where there was more information to estimate the

center of the distribution. There were negligible differences in average percent bias of the median estimates

for the three α concentration parameter priors. The pattern looked similar for scenario (2) (Figure 2.22). For

both outcomes under scenario (3), average percent bias in the conditional median estimate was smaller at

(X1 = 1,X2 = 0) than (X1 = 1,X2 = 1). There were only small differences between the three α concentration

parameters except with the smaller sample sizes (Figure 2.23).

Figure 2.8 presents the results for the posterior conditional 20th percentile in scenario (1). The uncensored

outcome estimates were quite biased (between 25% and 90%) for the smaller sample sizes. The magnitude

of the bias varied based on the values of the conditioning variables, X1 and X2, with larger bias when the

conditional distribution was further from β1 = β2 = 0. The estimates of the conditional 20th percentile for

the censored outcome in scenario (1) were similar to the uncensored outcome. When (X1 = 1,X2 = 1) the

true conditional Q0.2 falls below the censoring threshold and does not have a specific numeric value. In this

case percent bias could not be computed. For scenario (2) the estimates of the posterior conditional 20th

percentile with the uncensored outcome were again positively biased for the smaller sample sizes with more

bias for the α = 1/J concentration prior (Figure 2.24). Under scenario (3) the uncensored outcome estimates

of the conditional 20th percentile had reasonably small average percent bias for all the priors and sample

sizes except at (X1 = 1,X2 = 1) when n = 25. Similar to scenario (1), the censored outcome estimates showed

small average percent bias at (X1 = 1,X2 = 0), but the true conditional 20th percentile fell below the censoring

threshold for (X1 = 1,X2 = 1) precluding calculation of percent bias (Figure 2.25).

2.3.2.5 Computation Time

Simulations were performed using R version 3.6.0 (2019-04-26) and rstan (Version 2.19.2) on a high-

performance computing cluster running under CentOS Linux 7 (Core) with 1.90GHz or 2.40GHz Intel Xeon

CPUs and up to 3 GB of memory per compute node. MCMC sampling time for the three scenarios is shown in

Figure 2.9. Per chain sampling time increased approximately exponentially with sample size and was similar

across scenarios and priors.
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Figure 2.7: Percent bias in conditional median for simulations using probit link

Figure 2.8: Percent bias in conditional 20th percentile for simulations using probit link
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Figure 2.9: Per chain MCMC sampling time for three simulation scenarios. Each boxplot shows the sampling

times required to produce 4000 posterior draws under the specified model/prior/sample size combination for

1000 simulation datasets
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2.4 Case Study

2.4.1 Background and Methods

The data for the case study were collected from 216 HIV-positive adults on antiretroviral therapy in two cohort

studies (Vanderbilt Lipoatrophy and Neuropathy Cohort (LiNC), n=147; Adiposity and Immune Activation

Cohort (AIAC), n=69). Further details on the study design and cohorts are provided in Koethe et al. (2012;

2015) [74,75]. Because people living with HIV have increased risk of diabetes and cardiovascular disease, the

aim of the analysis was to estimate the association between body mass index (BMI) and several inflammation

biomarkers in this population, adjusting for additional covariates: age, sex, race, smoking status, study location

and CD4 cell count.

We examine the biomarkers Interleukin 6 (IL-6) and Interleukin 1 beta (IL-1-β ); both are right-skewed with

3% and 39% of values censored below the lower limit of detection, respectively. Censored values are set to 0.

To account for skewness and censoring we fit Bayesian CPMs using logit, probit, and loglog link functions,

noninformative β priors and a concentration parameter of either α = 1/J or α = 1/(0.8+ 0.35J) for the

Dirichlet prior to estimate the association between BMI and the conditional mean, median, and 90th percentile

of each biomarker.

We evaluate convergence using R̂ scale reduction factor [4] and traceplots of MCMC draws. Model comparison

is performed using the difference in expected log predictive density (ELPD) calculated using leave-one-out

cross-validation [76]. Model fit is assessed with graphical checks of the posterior predictive distribution and

posterior predictive p-values [4,77].

2.4.2 Results

For each of the two biomarker outcomes six model specifications were fit: probit, logit, or loglog link with

α = 1/(0.8+ 0.35J) or α = 1/J. Each model sampled from 2 chains with 2000 warmup and 4000 total

iterations to produce 4000 posterior sample draws for each parameter. For all models, traceplots showed no

issues with mixing or stationarity; further, all R̂ potential scale reduction values were < 1.01 indicating likely

convergence. Table 2.1 shows the difference in ELPD for the IL-6 and IL-1-β biomarker models. Based on

the difference in ELPD, the CPM with loglog link and α = 1/(0.8+0.35J) was used for the both outcomes,

however there is little difference in ELPD along the top several models.

2.4.2.1 IL-6 biomarker

A graphical check of 10 draws from the posterior predictive distribution compared to the observed IL-

6 distribution (Figure 2.10) did not indicate any serious model misfit. In addition, there were no major
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Table 2.1: Difference in Expected Log Pointwise Predictive Density for IL-6 Models and IL-1-β Models

Model ELPD diff. SE diff.

IL-6

loglog link, α = 1/(0.8+0.35J) 0.00 0.00

logit link, α = 1/J -1.94 6.65

probit link, α = 1/(0.8+0.35J) -1.99 6.64

logit link, α = 1/(0.8+0.35J) -4.96 6.68

loglog link, α = 1/J -7.16 5.38

probit link, α = 1/J -7.40 6.87

IL-1-β
loglog link, α = 1/(0.8+0.35J) 0.00 0.00

probit link, α = 1/(0.8+0.35J) -2.82 4.80

logit link, α = 1/(0.8+0.35J) -6.45 5.26

probit link, α = 1/J -7.25 4.85

loglog link, α = 1/J -10.81 4.03

logit link, α = 1/J -11.70 4.61

discrepancies between the model and data based on the posterior predictive p-values for the test quantities

variance, skewness, and proportion of observations censored below the lower limit of detection (Table 2.2) so

the CPM was able to reproduce these aspects of the observed data fairly well.

Table 2.2: Posterior Predictive p-values for IL-6 Model

Test quantity Posterior predictive p-value

variance 0.43

skewness 0.34

proportion censored 0.53

The median posterior estimates of the covariate parameters along with 50% and 95% credible intervals for the

IL-6 model are shown in Figure 2.11a. Age and BMI were positively associated with increased IL-6, while

CD4 count, male gender, and the Lipoatrophy and Neuropathy cohort were negatively associated with IL-6.

The relationship between IL-6 and smoking and nonwhite race was more equivocal. Figure 2.11b shows the

posterior median γ estimates along with the 50% and 95% credible intervals. Plotting the γ estimates against

the observed IL-6 values (Figure 2.12) gives the estimated transformation, Ĥ.

The estimated relationship between BMI and the posterior conditional mean (using 0 for censored values),

median, and 90th percentile of IL-6 (for a white, male, nonsmoker with average age and CD4 count in the

LiNC study) is shown in Figure 2.13 along with 95% credible intervals. Higher BMI was associated with

higher IL-6.
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Figure 2.10: Observed outcome (y) and 10 posterior predictive distribution draws (yrep) for IL-6 model

Figure 2.11: (a) Posterior median β estimates and (b) posterior median γ estimates with 50% and 95% credible

intervals for IL-6 model
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Figure 2.12: Estimated transformation for IL-6 model

Figure 2.13: Difference from mean BMI vs. IL-6 mean, median, and 90th percentile for a white, male,

nonsmoker with average age and CD4 count in the Lipoatrophy and Neuropathy cohort
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2.4.2.2 IL-1-β biomarker

As with the IL-6 biomarker, comparing the observed IL-1-β distribution to draws from the posterior predictive

distribution (Figure 2.14) did not reveal any serious model misfit. The posterior predictive p-values for

variance, skewness, and proportion of observations below the lower limit of detection are shown in Table 2.3.

There was no indication of serious discrepancy between the model and data for variance and proportion of

censored observations although the posterior predictive p-value for skewness was more extreme indicating a

moderate degree of misfit. This seems reasonable given the high level of right-skewness for IL-1-β .

Figure 2.14: Observed outcome (y) and 10 posterior predictive distribution draws (yrep) for IL-1-β model

Table 2.3: Posterior Predictive p-values for IL-1-β Model

Test quantity Posterior predictive p-value

variance 0.38

skewness 0.15

proportion censored 0.63

The median posterior estimates of the covariate parameters along with 50% and 95% credible intervals for

the IL-1-β model are shown in Figure 2.15a. In contrast to IL-6, there was weak association between all

covariates (except study cohort) and IL-1-β level. Figure 2.15b shows the posterior median γ estimates along

with the 50% and 95% credible intervals. Plotting the γ estimates against the observed IL-1-β values gives the

estimated transformation, Ĥ (Figure 2.16).
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Figure 2.15: (a) Posterior median β estimates and (b) posterior median γ estimates with 50% and 95% credible

intervals for IL-1-β model

Figure 2.17 displays the estimated relationship between BMI and the posterior conditional mean (plugging in

0 for censored values), median, and 90th percentile of IL-1-β (for a white, male, nonsmoker with average

age and CD4 count in the Lipoatrophy and Neuropathy cohort) along with 95% credible intervals. The plot

confirms little association between BMI and IL-1-β .

2.5 Discussion

Although Bayesian CPM models have been frequently applied to ordinal data when the number of outcome

categories is much smaller than the sample size, the extension to continuous or mixed outcomes where the

number of categories is close or equal to the sample size can be accomplished with only a few modifications to

the prior specification. These modifications provide a versatile model with several advantages including the

ability to handle both continuous and discrete ordered outcomes and estimation of the full conditional CDF,

along with quantiles and other functionals using a single model fit. Inference is based on posterior probability

statements and does not require asymptotic assumptions. In addition, the CPM does not require specification

of a transformation to meet distributional assumptions since the transformation is estimated nonparametrically.

As a result its parameter estimates are invariant to monotonic transformations of the data.

Our implementation of a Bayesian CPM performed reasonably well for the simple simulation scenarios

considered. However, the model can produce biased estimates for quantiles far from the median and conditional

quantities further from the model where X = 0 and this bias can be exacerbated by censoring. The model seems

best suited for cases when the data are fairly dense and are sufficient to describe the posterior CDF well. In our
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Figure 2.16: Estimated transformation for IL-1-β model

Figure 2.17: Difference from mean BMI vs. IL-1-β mean, median, 90th percentile for a white, male,

nonsmoker with average age and CD4 count in the Lipoatrophy and Neuropathy cohort
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simulations, a sample size of 50 or 100 was required for reasonably unbiased estimates of parameters and other

posterior quantities. The choice of Dirichlet prior concentration with magnitude α ≈ 1
J

has minimal impact on

the bias of posterior estimates, except with small sample sizes. Much larger concentration parameters (e.g.,

α = 1/2) may be too informative. As with all Bayesian models estimated with MCMC, checks of model

convergence, model fit, and the posterior distribution are important. This is especially true when modeling a

mixed continuous/discrete or when interest lies in quantities conditional on covariates far from the observed

mean values.

Finally, there are several of limitations of the current model that present an opportunity for improvement.

First, the number of distinct outcome values is assumed to be known a priori, that is we condition on J

categories. In practice, the number of distinct continuous outcome values is unlikely to be available before

data collection, so the prior cannot be specified without reference to the observed data. Relatedly, because the

number of categories is fixed, the model cannot accommodate new observations for an unobserved category;

once the initial prior is set, there is no way to add categories and all predictions are assumed to fall into one

of the original categories. It may be possible to overcome this limitation by substituting the Dirichlet prior

for a infinite-dimensional Bayesian nonparametric analog, such as a Dirichlet process prior, at the expense

of additional complexity and computation time. Next, the choice of link function, and the implied error

distribution on the scale of the latent untransformed data is also assumed to be known. If primary interest

is not inference for the parameters, specification of the link could be avoided by either estimating the link

nonparametrically, although other assumptions may be required for identifiability [33–35], or using a more

flexible mixture link function [23].
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2.6 Appendix

Figure 2.18: Bias in parameters for simulations using loglog link

Figure 2.19: Percent bias in conditional CDF for simulations using logit link
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Figure 2.20: Percent bias in conditional CDF for simulations using loglog link

Figure 2.21: Percent bias in conditional mean for simulations using logit link
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Figure 2.22: Percent bias in conditional median for simulations using logit link

Figure 2.23: Percent bias in conditional median for simulations using loglog link
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Figure 2.24: Bias in conditional 20th percentile for simulations using logit link

Figure 2.25: Bias in conditional 20th percentile for simulations using loglog link
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CHAPTER 3

Bayesian Population Pharmacokinetic Modeling Using Automatic Differentiation Variational

Inference

3.1 Introduction

Population pharmacokinetic (PK) models are used to study the variability in different individuals’ PK profiles –

the amount of drug in the body over time – and how the PK profile is affected by covariates such as weight,

age, and organ function. Historically, classical ‘frequentist’ methods were used to perform estimation and

inference for these models. However, fully Bayesian population PK models, first described in the mid-1990s

by Wakefield (1994) and others [56–61], have several advantages. These include the ability to incorporate

prior information when it is available; accounting for uncertainty in a principled manner using an explicitly

defined, flexible hierarchical model structure; straightforward computation of predictive distributions and

functionals; and interpretation in terms of posterior probabilities.

Posterior distributions for Bayesian PK model parameters are usually obtained using Markov chain Monte

Carlo (MCMC) sampling methods such as Gibbs sampling, the Metropolis-Hastings algorithm [63], and more

recently Hamiltonian Monte Carlo (HMC) [65,66]. While MCMC remains the gold standard for Bayesian

analyses – providing numerical approximations to the exact posterior distribution – it can be slow to converge

and scale poorly with larger sample sizes, complex models, or high-dimensional parameter spaces.

Slow convergence equates to longer computing time, which creates a bottleneck in the iterative model

development process of fitting, checking, adjusting, and refitting models [4,55,67,68]. Therefore, it is of

interest to explore alternative strategies for Bayesian inference which balance speed and accuracy. In this

paper, we explore Bayesian population PK model estimation using variational inference (VI), which uses

optimization to find the distribution that is closest to the exact posterior within a specified variational family.

As stated in Blei et al. (2017) [15], “Compared to MCMC, variational inference tends to be faster and easier to

scale to large data,” and is useful in “scenarios where we want to quickly explore many models.” Thus, VI

provides a potential solution to the computational bottleneck in Bayesian PK model development.

We first describe the specific type of VI used in this paper – mean-field automatic differentiation variational

inference (ADVI). Using simulation, we compare HMC and ADVI for population and individual parameter

estimation, fit time, posterior prediction, and model selection. We present a real-world PK case study of the

analgesic ketolorac in a pediatric population using sparse data derived from electronic health records (EHRs)

38



and remnant specimens. We conclude by summarizing advantages and limitations of the ADVI approach and

providing recommendations for using ADVI for Bayesian PK modeling.

3.2 Background

3.2.1 Automatic Differentiation Variational Inference

The basic principle behind ADVI is to transform all parameters to an unconstrained real coordinate space, then

use a mean-field (or full-rank) Gaussian variational family in the real coordinate space. A second elliptical

standardization transformation converts to standard Gaussian. Finally, stochastic gradient ascent optimization

is performed on the transformed variational objective function using automatic differentiation to compute

gradients and Monte Carlo integration to calculate expectations. Beginning with the evidence lower bound

(ELBO) we have:

ELBO = Q(φ) = Eq[log p(z|θ)]−KL(q(θ ;φ)||p(θ)) = Eq[log p(z|θ)]−Eq

[

log
q(θ ;φ)

p(θ)

]

= Eq

[

log p(z|θ)− log
q(θ ;φ)

p(θ)

]

= Eq

[

log
p(z|θ)p(θ)

q(θ ;φ)

]

= Eq[log p(z,θ)]−Eq[logq(θ ;φ)]

The transformation T (θ) = ζ converts the parameters θ to an unconstrained real coordinate space and a mean-

field Gaussian variational family is used for all transformed parameters q(ζ ;φ) = N(ζ |φ = {µ,diag(σ2)}) =

∏ j N(ζ j|µ j,σ
2
j ) = ∏ j N(ζ j|µ j,exp(ω j)

2). The ELBO becomes:

Q(φ) = Eq(ζ ;φ)[log p(z,T−1(ζ ))+ log |detJT−1(ζ )|]−Eq(ζ ;φ)[q(ζ ;φ)]

Stochastic optimization requires the gradients of Q(φ) with respect to the variational parameters µ and

ω . Elliptical standardization allows us to push the gradient inside the expectation. For mean-field ADVI,

Sφ (ζ ) = η = diag(exp(ω))−1(ζ −µ) so q(η) = N(η |0, I) = ∏ j N(η j|0,1) and the ELBO is:

Q(φ) = Eq(η)[log p(z,T−1(S−1
φ (η)))+ log |detJT−1(S−1

φ (η))|]−Eq(ζ ;φ)[q(ζ ;φ)]

Applying the chain rule, the required gradients are:

∇µQ(φ) = EN(η)[∇θ log p(z,θ)∇ζ T−1(ζ )+∇ζ log |detJT−1(ζ )|]

∇ωQ(φ) = EN(η)[(∇θ log p(z,θ)∇ζ T−1(ζ )+∇ζ log |detJT−1(ζ )|)η diag(exp(ω))]+1
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The gradients can be calculated using automatic differentiation and the expectations can be approximated

using Monte Carlo integration (Eq(η)[ f (η)] =
∫

f (η)q(η)dη ≈ 1
S ∑

S
s=1 f (ηs) where ηs ∼ q(η)). Finally we

iteratively update the variational parameters until the change in ELBO is below a given tolerance threshold

µ(i+1)← µ(i)+diag(ρ(i))∇µQ(φ)

ω(i+1)← ω(i)+diag(ρ(i))∇ωQ(φ)

where ρ is a step-size sequence tuned to achieve the fastest convergence. Additional details on the ADVI

algorithm and its implementation in Stan can be found in Kucukelbir et al. (2015; 2017) [14,78] and Turkman

et al. (2019) [7].

3.2.2 Model Diagnostics

VI has been shown to provide reasonable results for many problems [14,79–84]. But unlike MCMC, it lacks

theoretical guarantees related to the quality of the approximation. We use several strategies to assess the

accuracy of VI, focusing on the ADVI approximation for population PK models. First, we design a simulation

study to compare ADVI and MCMC estimation for population and individual parameters, computation time,

and predicted concentration. We examine percent bias for posterior median, 90% posterior credible interval

widths, the ratio of MCMC to ADVI fit time, and the ratio of posterior predicted Cmax concentrations. We

also explore two VI diagnostics developed by Yao et al. (2018), the Pareto Smoothed Importance Sampling

(PSIS) k̂ value and variational simulation based calibration (VSBC) [85]. The k̂ diagnostic is a single value that

measures how well the variational approximation matches the full joint posterior; VSBC constructs histograms

for individual parameters which can be used to assess average bias. Vehtari et al. (2021) found that values of

k̂ > 0.7 indicate a discrepancy between the VI approximation and the full posterior distribution [86]. However,

Yao and colleagues note, “while the VI posterior may be a poor approximation to the full posterior, point

estimates that are derived from it may still have good statistical properties.” Unlike the global PSIS k̂ statistic,

the VSBC diagnostic can be used to assess the average calibration of individual parameter point estimates over

all datasets that could be constructed from a given model. Asymmetry in the VSBC histogram for a parameter

indicates bias in the VI approximation to the marginal posterior. The authors caution that the results should be

interpreted conservatively; failure of the diagnostic indicates the VI approximation may perform poorly with

observed data, but passing the diagnostic does not guarantee good performance. The Appendix provides more

details on both diagnostics. Finally, in the ketolorac case study, we compare VI and MCMC using Bayesian

posterior predictive checks for training and validation data and population PK diagnostic plots of observed

vs. predicted values, random effects vs. covariates, and visual predictive check (VPC) plots.
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3.3 Simulation Study

3.3.1 Methods

3.3.1.1 Set-up

We examine two simple PK model scenarios: one-compartment with IV infusion and two-compartment with

IV infusion. For dosing we specify a 12-hour infusion starting at time t = 0 with a rate of 0.7 units/kg/hr

for all subjects. Both scenarios include combined additive and proportional residual error, allometric weight

scaling factors, random effects and correlations between random effects for the main PK parameters and a

binary covariate, X1, with effect βClX1
= 0.4 on the logarithm of total clearance. Under each scenario, we

simulate dense and sparse sampling schemes. For the dense scheme, we sample 1 observation at 0.25 hours, 1

observation every 0.75 hours for 0.75 through 3 hours (4 observations), 1 observation every hour for hours

4 through 8 (5 observations), and 1 observation every 1.5 hours for hours 9 through 24 (11 observations),

yielding a total of 21 observations per subject (Figure 3.1). For the sparse sampling scheme, each subject has a

varying number of observations: 2, 3, 4, or 5 observations with probabilities 0.3, 0.4, 0.2, and 0.1, respectively.

The chosen number of observations are then used to randomly select observations from those simulated using

the dense sampling scheme. For each scenario, we simulate 250 datasets with 100 subjects per dataset using

dense sampling and 250 datasets with 300 subjects each using sparse sampling. Figures 3.39, 3.40, 3.41, and

3.42 show the first nine simulated datasets for the four combinations of scenario (one or two compartments)

and sampling scheme (sparse or dense). Additional details for the simulation scenarios are provided in the

Appendix.
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Figure 3.1: One-compartment model with dense sampling scheme
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3.3.1.2 Modeling

For each simulated dataset, the correctly specified model (referred to as M1) is fit using both mean-field

ADVI and the No-U-Turns (NUTS) HMC sampler. We consider four different priors for each model; the

first three are informative with two concentrating their density around the true values for the main population

PK parameters, but with different amounts of variability, and a third misspecified prior centered at incorrect

values with moderate variability. Plots of the prior densities for the first three priors in scenarios 1 and

2 are shown in Figures 3.2 and 3.3, respectively. The final prior is non-informative. Simulations were

performed using R version 3.6.0 (2019-04-26) and the CmdStanR interface (version 0.4.0) to the CmdStan

probabilistic programming language (version 2.25.0) along with the PK library Torsten (version 0.88)

[65,66,87]. Additional details on the priors and the settings used for the ADVI and NUTS HMC algorithms

are provided in the Appendix.
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prior 2 (weak)

prior 3 (misspecified)

Figure 3.2: Informative priors for one-compartment with IV infusion models (Scenario 1). For Clpop, Vpop,

βClX1
, ωCl , and ωV , the mode of the strong and weak priors are at the true parameter value (indicated with

a vertical black line); for σprop and σadd a Gamma prior with median at the true parameter or Half-Cauchy

priors with mode 0 are used. Misspecified priors are either Gamma or Normal centered at incorrect values.

Horizontal lines indicate the 90% highest density interval for each prior.
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Figure 3.3: Informative priors for two-compartment with IV infusion models (Scenario 2). For Clpop, Qpop,

V 1pop, V 2pop, βClX1
, ωCl , and ωV the mode of the strong and weak priors are at the true parameter value

(indicated with a vertical black line); for σprop and σadd a Gamma prior with median at the true parameter

or Half-Cauchy priors with mode 0 are used. Misspecified priors are either Gamma or Normal centered at

incorrect values. Horizontal lines indicate the 90% highest density interval for each prior.

3.3.1.3 Model Selection

In addition to exploring the performance of ADVI for a single correctly specified model, we also examine how

it performs for misspecified covariate models vis-a-vis model selection. As noted by Wakefield et al. (1999),

choosing which components to include for each parameter in stage 2 is “a very difficult problem”; a multiple

regression where the dependent variable, ψ , is both multivariate and latent [62].

The clearance component (excluding random effects) of the correctly specified model (M1) with βClX1
= 0.4 is

given by: log(Cl) = log(Clpop)+0.75× ln
(

weight
70

)

+βClX1
X1. To explore model selection, two misspecified

models are also fit to each simulated dataset. For the first misspecified model (M2), the covariate X1 in

model M1 is replaced by the covariate X2 ∼ Exponential(λ = 0.2) unrelated to the true data-generating

model. The clearance component for M2 is given by: log(Cl) = log(Clpop)+ 0.75× ln
(

weight
70

)

+βClX2
X2.

The second misspecified model (M3) includes both X1 and X2 and its clearance component is summarized as:

log(Cl) = log(Clpop)+0.75× ln
(

weight
70

)

+βClX1
X1 +βClX2

X2. The same sparse or dense sampling schemes

and priors are used for all three models (M1, M2, and M3).

For model selection, each dataset is fit using the correctly specified model (M1) and the two misspecified
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models (M2, M3). We use the strategies described below to rank the models. Under each strategy, we calculate

how frequently each of the 6 possible rankings – from best (M1,M3,M2) to worst (M2,M3,M1) – are chosen.

Three model selection strategies are considered.

• Strategy 1: For both ADVI and MCMC, calculate deviance information criteria (DIC) [88], widely

applicable information criteria (WAIC) [76,89], and PSIS leave-one-out information criteria (PSIS-

LOOIC) [86]. Models with lower information criteria have better out-of-sample predictive performance.

• Strategy 2: For ADVI, compare the three models using the maximized ELBO. As explained by Blei

et al. (2017) [15], the premise for this strategy is that the ELBO is an approximation to the marginal

likelihood and can provide a basis for model comparison (marginal likelihoods are also used to construct

Bayes factors for model comparison). However, they also note that selection based on a bound is not

justified in theory. Penny et al. (2007) [90] discuss this approach as a surrogate for model evidence in

the context of neuroimaging. Beal and Ghahramini (2003) [8] show ELBO outperforms BIC in finding

the correct model structure for conjugate-exponential models.

• Strategy 3: For ADVI, use k-fold leave-subject-out cross-validation. This strategy leverages the reduced

time to find VI approximations to fit multiple models on the data partitioned into training and validation

datasets [91]. Specifically, we partition the data by defining K groups each containing approximately 1
K

of the subjects (not observations). Each of the groups then contains all observations for subjects assigned

to that group. For k = 1, . . . ,K folds an estimate of out-of-sample predictive fit is the cross-validation

log pointwise predictive density l ppdcv = ∑
K
k=1 ∑i∈k log ppost(−k)(yi) where ppost(−k) is the posterior

distribution for a model fit without the observations in fold k and the inner sum evaluates the log

predictive density over the observations yi in fold k. If ppost(−k) is summarized by S simulation draws

θ−k,s then l ppdcv can be computed as ∑
K
k=1 ∑i∈k log

(
1
S ∑

S
s=1 p(yi|θ−k,s)

)
. Models with higher l ppdcv

have better out-of-sample predictive performance.

The criteria employed in the three strategies have somewhat different motivations and predictive aims. The

information criteria in Strategy 1 are approximations of leave-observation-out cross-validation and ask the

predictive question, “How well can the model predict unobserved concentrations for subjects in the current

data?” The ELBO used in Strategy 2 is a bound on the marginal likelihood which can be used to estimate

relative posterior probabilities for model comparison, but is not meant to directly estimate predictive accuracy

[92]. The leave-subject-out l ppdcv used in Strategy 3 partitions the data at the subject level and asks the

question, “How well can the model predict unobserved concentrations for new unobserved subjects?”
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3.3.2 Results

The Bayesian population PK models for each scenario (one or two compartments) were fit using both estimation

methods (ADVI and MCMC) with the two sampling schemes (dense and sparse) and four priors (strong, weak,

misspecified, and non-informative) described above. We compare posterior median and credible interval width

for population parameters, the ratio of MCMC to ADVI total fit time, posterior median and credible interval

width for individual parameters, VI diagnostics, and individual and population predicted concentrations.

3.3.2.1 Population Parameter Estimation

We first look at population parameters, which are global values for all individuals in the model. These include

the fixed effects (µ) and covariance matrix (Ω) from stage two (Equation 1.7) and the variance (σ2
y ) from stage

one (Equation 1.6). Specifically, for the one-compartment scenario we examine two parameters: Clpop, the

population clearance for a subject with 70kg weight and covariate X1 = 0 and Vpop, the population volume of

distribution for a 70kg subject. For the two-compartment scenario we examine four parameters: Clpop, the

population total clearance for a subject with 70kg weight and covariate X1 = 0; Qpop, the population inter-

compartmental clearance for a 70kg subject; and V 1pop and V 2pop, the first (central) and second (peripheral)

compartment volume of distribution, respectively, for a 70kg subject. We also examine the corresponding

variance and covariance terms (e.g., ω2
Cl , ω2

V , and ωCl,V for the one-compartment scenario) which estimate

the inter-individual variability in PK parameters and the variance terms (σ2
add and σ2

prop) which estimate the

intra-individual variability in concentration.

For the one-compartment model scenario, the posterior medians for the parameters Clpop and Vpop were fairly

accurate for both estimation methods, with larger percent bias for ADVI (Figure 3.4). The posterior medians

for βClX1
also had reasonably small percent bias (half of estimates were within ±12.5%) and were similar

for ADVI and MCMC. The median point estimates for inter-individual parameter variability (Ω) were more

accurate for MCMC than ADVI. Specifically, ADVI underestimates the variance terms (ω2
Cl and ω2

V ), but

overestimates the covariance (ωCl,V ), especially under sparse sampling. For the intra-individual variance, both

estimation methods underestimated the additive error variance (σ2
add) and overestimated the proportional error

variance (σ2
prop).

In the more complex two-compartment model scenario, posterior medians for population parameters were less

consistent (Figure 3.5). For Clpop, most estimates had bias of less than ±5% across priors, sampling schemes

and estimation methods, except for ADVI estimation with dense sampling. Using ADVI, the population

inter-compartmental clearance, Qpop, was underestimated with median percent bias between −12.5% and

−50% while the volume of distribution for the central compartment, V 1pop, was overestimated with median
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Figure 3.4: One-compartment PK model simulations - posterior medians for population and variance parame-

ters for correctly specified model (M1). Extreme outliers greater than 10 times the interquartile range were

removed.

percent bias between 2.5% and 25%. The volume of distribution for the peripheral compartment, V 2pop, was

overestimated for all priors, sampling schemes, and estimation methods, except for ADVI estimation with
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dense sampling. The posterior medians for βClX1
were fairly accurate and similar for all combinations of

prior, sampling scheme, and estimation method. For most settings, the distribution of ADVI estimates was

underestimated compared to MCMC estimates for Qpop and V 2pop, but overestimated for V 1pop.

Figure 3.5: Two-compartment PK model simulations - posterior median population parameter estimates for

correctly specified model (M1). Extreme outliers greater than 10 times the interquartile range were removed.

The posterior medians of the variance components in the two-compartment scenario have larger percent bias

than the population parameters (Figure 3.6). The distributions of these estimates have thicker tails, with the

middle 50% of estimates spanning a much wider range, and also show evidence of skewness or multimodality.

In contrast to the median estimates, the 90% equal-tailed credible interval widths were much smaller for ADVI

than MCMC for all parameters except σ2
add and σ2

prop (Figures 3.7, 3.8, and 3.9).

Overall, posterior medians for population parameters were more accurate for the MCMC estimation method

compared to ADVI, for the simpler one-compartment model compared to the two-compartment model, and

for the fixed effect parameters (µ) compared to the variance parameters (Ω,σ2
y ). The uncertainty of these

estimates, measured by posterior credible interval widths, was underestimated for ADVI compared to MCMC.
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Figure 3.6: Two-compartment PK model simulations - posterior median variance parameter estimates for

correctly specified model (M1). Extreme outliers greater than 10 times the interquartile range were removed.
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Figure 3.7: One-compartment PK model simulations - 90% equal-tailed credible interval widths for population

parameters for correctly specified model (M1) with informative priors. Note: credible interval widths for

non-informative prior are not shown due to a large proportion of extreme outliers.
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Figure 3.8: Two-compartment PK model simulations - 90% equal-tailed credible interval widths for population

parameters for correctly specified model (M1) with informative priors.
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Figure 3.9: Two-compartment PK model simulations - posterior population parameter 90% equal-tailed

credible interval widths for correctly specified model (M1) for informative priors.
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3.3.2.2 Computation Time

Simulations were performed on a high-performance computing cluster running under CentOS Linux 7 (Core)

with 1.90GHz or 2.40GHz Intel Xeon CPUs and up to 4 GB of memory per compute node. The computation

time to fit each model is related to several factors. For ADVI, the step size, number of samples used for

gradient estimation, and relative tolerance threshold all affect the time to convergence. Similarly, the NUTS

HMC sampling time is controlled by the number of warmup and sampling iterations, the adaptation target

acceptance rate, and several parameters related to the underlying Hamiltonian system. In addition, while the

Markov chain is guaranteed to converge asymptotically, there is no criteria that can assure convergence with

a finite number of iterations. Given these factors, it is difficult to make a definitive comparison of fit time

between the two methods. However, examining the fit time ratios (Figures 3.10 and 3.11) reveals total fit times

for MCMC estimation were several times longer than ADVI estimation under both simulation scenarios, with

larger differences for the two-compartment model scenario.

Figure 3.10: One-compartment PK model simulations - relative fit time (MCMC vs. ADVI) for correctly

specified model (M1). The median (IQR) relative fit time for dense sampling was 9.37 (6.89 - 12.4) for the

strong prior, 11.6 (8.95 - 15.0) for the weak prior, 8.76 (6.41 - 12.5) for the misspecified prior, and 9.92 (7.22 -

13.5) for the non-informative prior; for sparse sampling the median (IQR) relative fit time was 9.22 (6.36 -

12.6) for the strong prior, 11.2 (8.78 - 15.8) for the weak prior, 7.37 (5.82 - 10.0) for the misspecified prior,

and 34.7 (11.3 - 148.0) for the non-informative prior.
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Figure 3.11: Two-compartment PK model simulations - relative fit time (MCMC vs. ADVI) for correctly

specified model (M1). The median (IQR) relative fit time for dense sampling was 48.2 (38.7 - 62.7) for the

strong prior, 46.5 (37.1 - 59.6) for the weak prior, 46.0 (38.6 - 56.6) for the misspecified prior, and 46.1 (37.9 -

56.8) for the non-informative prior; for sparse sampling the median (IQR) relative fit time was 18.0 (11.7 -

24.9) for the strong prior, 15.2 (10.4 - 23.3) for the weak prior, 11.1 (7.74 - 17.2) for the misspecified prior,

and 27.5 (18.1 - 42.9) for the non-informative prior.

3.3.2.3 Individual Parameter Estimation

In addition to population parameters shared by all subjects, the model also estimates individual-level PK

parameters (ψi) which combine population level fixed effects and subject specific random effects (Equation

1.7). For the one-compartment model, we estimate an individual clearance, Cli, and an individual central

compartment volume of distribution, Vi, for each of the i = 1, . . . ,N subjects. Estimates of percent bias in the

posterior median individual parameters for the one-compartment model are shown in Figure 3.12. For both

ADVI and MCMC, the posterior medians for Cli and Vi are centered around the true individual parameter

values. For each sampling scheme, the distribution of percent bias for the posterior medians is similar for both

estimation methods and all four priors. For the one-compartment simulation the 90% credible interval widths

for individual parameter estimates (Figure 3.13) are also alike for both estimation methods.

Similar individual estimates are produced for the two-compartment scenario for total and inter-compartmental

clearance and central and peripheral volume of distribution. Posterior medians for individual parameters for the

two-compartment model are shown in Figure 3.14. Percent bias is small and similar for both estimation methods

for most individual clearance estimates Cli. For the individual inter-compartmental clearance parameter, Qi,

bias from ADVI is more negative on average than MCMC, while for volume of distribution for the central
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Figure 3.12: One-compartment PK model simulations - posterior median individual parameter estimates for

correctly specified model (M1). Boxplots for the dense sampling scheme each have 250 × 100 = 25,000

individual parameter estimates while each boxplot for the sparse sampling scheme has 250 × 300 = 75,000

individual parameter estimates. Extreme outliers greater than 15 times interquartile range were removed.

Figure 3.13: One-compartment PK model simulations - posterior individual parameter 90% equal-tailed

credible interval widths for correctly specified model (M1) with informative priors. Note: credible interval

widths for non-informative prior are not shown due to a large proportion of extreme outliers.
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compartment, V 1i, estimates from ADVI are larger than those from MCMC. The 90% credible interval widths

in Figure 3.15 are similar for Cli, but somewhat underestimated for the other parameters with the largest

differences between estimation methods seen for Qi.

Figure 3.14: Two-compartment PK model simulations - posterior median individual parameter estimates for

correctly specified model (M1). Boxplots for the dense sampling scheme each have 250 × 100 = 25,000

individual parameter estimates while each boxplot for the sparse sampling scheme has 250 × 300 = 75,000

individual parameter estimates. Extreme outliers greater than 15 times interquartile range were removed.

Overall the individual parameter estimates are similar between estimation methods, with larger differences

for the two-compartment scenario. Also, unlike the population parameters, both the medians and credible

intervals are similar for ADVI and MCMC.
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Figure 3.15: Two-compartment PK model simulations - posterior individual parameter 90% equal-tailed

credible interval widths for correctly specified model (M1) for informative priors.

3.3.2.4 Diagnostics

We also examine the performance of the VI diagnostics. The failure of ADVI estimation to capture all aspects

of the posterior well is evident when examining the global PSIS k̂ diagnostic (Figures 3.43 and 3.61); all

values are much greater than 0.7, with larger values for the sparse sampling scheme and the two-compartment

simulation scenario.

3.3.2.5 Variational Simulation Based Calibration

Figure 3.16 shows the results of VSBC for the one-compartment model simulations using a dense sampling

scheme with strong informative priors. Asymmetry in the histogram for a parameter indicates bias in the

VI approximation to the marginal posterior. All parameters, with the possible exception of βClX1
show bias.

Similarly, Figure 3.17 shows the VSBC histograms for the two-compartment model simulations using a dense

sampling scheme with strong informative priors. VSBC plots for additional simulation settings are shown

in Figures 3.44 - 3.48 for the one-compartment scenario and Figures 3.62 - 3.66 for the two-compartment

scenario. Using the VSBC diagnostic shows some degree of bias in nearly all the population parameters

confirming the results from the simulation study plots of median parameter estimates.

56



Figure 3.16: One-compartment PK model simulations - variational simulation based calibration for dense

sampling and strong informative priors.

Figure 3.17: Two-compartment PK model simulations - variational simulation based calibration for dense

sampling and strong informative priors.
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3.3.2.6 Predicted Concentrations

We examine two types of posterior predicted concentrations. Individual predictions are made using population

parameters and individual-specific random effects and provide predictions for existing subjects (e.g., “What is

the Cmax for subject 14 in this dataset?”). Population predictions also use the estimated population parameters,

but draw new random effects to provide predictions for unobserved subjects (e.g., “What is the Cmax for

a new subject with the same covariates as subject 14?”). ADVI and MCMC produce similar individual

predicted concentrations. For example, Figure 3.18 shows the observed values and individual predicted

concentrations under dense sampling for 20 subjects from the first simulated dataset in the one-compartment

scenario estimated using the true model (M1) with weak priors. The solid lines represent the medians and

the shaded regions represent the 90% credible intervals. The ADVI predicted median and 90% credible

intervals for the concentration profiles overlap almost completely with the MCMC predictions. Figure 3.19

shows the same example for sparse sampling; a similar pattern emerges with nearly identical predictions.

Individual concentration predictions for 20 subjects from the first simulated dataset in the two-compartment

scenario (estimated with weak priors) for dense and sparse sampling are shown in Figures 3.20 and 3.21,

respectively. The posterior predicted concentration profiles are still similar across estimation methods; however,

some discrepancies are seen especially for the credible intervals in the sparse sampling setting (e.g., subjects

24, 25, 34 and 35 in Figure 3.21). Figures 3.49-3.54 show the individual concentration predictions for the

one-compartment scenario under the other prior settings; the trends between estimation methods are all similar

except for sparse sampling with MCMC which has large credible intervals. The individual concentration

predictions for the two-compartment scenario under the other prior settings are shown in Figures 3.67-3.72.

Population concentration predictions were also close for both estimation methods and simulation scenarios.

Figures 3.22 and 3.23 show population predictions for subjects from one simulated dataset under dense

and sparse sampling with weak priors for the one-compartment simulation and Figures 3.24 and 3.25 show

population predictions under dense and sparse sampling with weak priors for the two-compartment simulation.

As with the individual predictions, the population predictions are similar for both ADVI and MCMC. Figures

3.55-3.60 and 3.73-3.78 show population concentration predictions under the other priors for the one- and

two-compartment scenarios, respectively.
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Figure 3.18: One-compartment PK model simulations - observed concentrations and individual predicted

concentrations for the first simulated dataset with dense sampling and weak priors.
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Figure 3.19: One-compartment PK model simulations - observed concentrations and individual predicted

concentrations for the first simulated dataset with sparse sampling and weak priors.
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Figure 3.20: Two-compartment PK model simulations - observed concentrations and individual predicted

concentrations for the first simulated dataset with dense sampling and weak priors.
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Figure 3.21: Two-compartment PK model simulations - observed concentrations and individual predicted

concentrations for the first simulated dataset with sparse sampling and weak priors.
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Figure 3.22: One-compartment PK model simulations - observed concentrations and population predicted

concentrations for the first simulated dataset with dense sampling and weak priors.
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Figure 3.23: One-compartment PK model simulations - observed concentrations and population predicted

concentrations for the first simulated dataset with sparse sampling and weak priors.
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Figure 3.24: Two-compartment PK model simulations - observed concentrations and population predicted

concentrations for the first simulated dataset with dense sampling and weak priors.
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Figure 3.25: Two-compartment PK model simulations - observed concentrations and population predicted

concentrations for the first simulated dataset with sparse sampling and weak priors.
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The posterior concentration predictions at t = 12 estimate the maximum concentration (Cmax) for each subject.

We compare estimation methods across all simulations by calculating the ratio of posterior median Cmax

estimated by MCMC to posterior median Cmax estimated by ADVI. In addition, we compare the ratio of the

90% credible interval widths for Cmax estimated by MCMC vs. ADVI. Figures 3.26 and 3.27 show the ratios of

median Cmax and Cmax credible intervals estimated by the two methods for the one-compartment scenario and

Figures 3.28 and 3.29 show the same ratios for the two-compartment scenario. Medians and credible intervals

for predicted individual and population concentrations are similar using both MCMC and ADVI.

Figure 3.26: One-compartment PK model simulations - individual and population predicted median Cmax

ratios.
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Figure 3.27: One-compartment PK model simulations - individual and population predicted Cmax 90% equal-

tailed credible interval width ratios.

Figure 3.28: Two-compartment PK model simulations - individual and population predicted median Cmax

ratios.
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Figure 3.29: Two-compartment PK model simulations - individual and population predicted Cmax 90%

equal-tailed credible interval width ratios.

3.3.2.7 Model Selection

For model selection, we compare the three strategies – information criteria (Strategy 1), ELBO (Strategy

2), and 5-fold leave-subject-out cross-validation (Strategy 3) – by ranking each model. We assume the best

ranking is the correctly specified model (M1), followed by the model with both the correct and noise variables

(M3) and the model with only the incorrect noise covariate (M2).

For the one-compartment model scenario, using MCMC estimation with Strategy 1 and sparse sampling, the

best order is selected for between 18 and 44% of simulated model fits depending on the information criteria

and priors used, with the second best order ‘M3,M1,M2’ being selected for between 13 and 53% of fits (Table

3.3). Strategy 1 performs worse for dense sampling in terms of ranking the models. Using Strategy 1 with

ADVI, the best ranking is selected for around 18 - 27% of model fits (Table 3.4). Using model selection

Strategy 2, the best ranking is selected for between 40% and 75% of simulations with better performance under

sparse sampling (Table 3.5). The percentage of fits where the worst model (M2) is ranked as best, is much

lower for this strategy. Finally, Strategy 3, leave-subject-out cross-validation, outperforms both Strategies 1

and 2 in ability to correctly rank models (Table 3.6). For both sparse and dense sampling, the correct order is

chosen for around 60% of simulations with order ‘M3,M1,M2’ selected for nearly all the others.

Under the two-compartment scenario, Strategy 1 using information criteria to rank the models performs poorly
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using both MCMC and ADVI estimation with the best order selected for less than 25% of fits using MCMC and

less than 23% of fits using ADVI (Tables 3.7 and 3.8). As with the one-compartment scenario, performance

is slightly better for sparse sampling. Using information criteria with ADVI and dense sampling incorrectly

ranks the worst model (M2) as best for more than 30% of fits for most combinations of sampling scheme and

prior. Strategy 2 selects the correct model order for between 45% and 85% of fits for sparse sampling, but

performs poorly for dense sampling (Table 3.9). Using Strategy 3, the correct order or the second best order

is selected for more than 96% of fits under sparse sampling and between 42% and 95% of fits with dense

sampling (Table 3.10).

Because the model selection simulations produced some non-intuitive results we also plot the values for WAIC

calculated using MCMC and ADVI from Strategy 1, −2×ELBO from Strategy 2, and −2× l ppdcv from

Strategy 3 for the two-compartment scenario to provide more insight on the model ranking1. While dense

sampling may be expected to perform better than sparse sampling, examining the plot of WAIC calculated

using MCMC (Figure 3.79) provides one explanation for the apparent discrepancy. When there is a large

amount of information, as with dense sampling, all three models can predict well and have similar predictive

accuracy. However, if all the models perform similarly, ranking the models to select the correct order is more

difficult. The number of covariates is the same for M1 and M2, and M3 has only one more covariate so the

penalty for effective number of parameters is not very substantial. The plot of WAIC calculated using ADVI

(Figure 3.80) shows worse estimated predictive accuracy overall using the approximation; WAIC values are

larger and more variable than when using MCMC. The mediocre predictive performance for Strategy 1 may

also be related to fact that the criteria do not account for the hierarchical structure of the data [76].

Figure 3.81 shows the results for Strategy 2 and Figure 3.82 shows the results for Strategy 3. For these

strategies, sparse sampling also performs as well or better than dense sampling, even when the predictive

accuracy under dense sampling is not similar for all models. A potential explanation is related to the design of

the simulation scenarios, specifically the number of subjects in the dense and sparse scenarios and the number

of samples per subject. For dense sampling each dataset contained 100 subjects with 21 samples each and the

sparse sampling datasets contained 300 subjects with between 2 and 5 samples each. While the dense data

contains more observations overall, the sparsely sampled data contains more subjects and may be better able

to estimate covariate effects. Several papers provide evidence to support this explanation. In the context of

optimal design for population PK studies, Duffull et al. (2005) compared scenarios with a fixed total number of

samples, but varying numbers of subjects and samples per subject using both balanced (e.g., 20 subjects with

12 samples each; 30 subjects with 8 samples each; 48 subjects with 5 samples each, etc.) and unbalanced (e.g.,

1The criteria from Strategy 2 and 3 are multiplied by −2 to be on approximately the same scale and have similar interpretation to the

information criteria in Strategy 1; lower values of information criteria, −2×ELBO, and −2× l ppdcv indicate better fit.
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66 subjects with 3 samples each and 21 subjects with 2 samples each) designs. They found higher efficiency

(measured using D-optimality) for designs with more subjects, but fewer samples per subject [93]. Using a

similar approach, Retout et al. (2007) found that nonlinear mixed effects model designs with fewer samples

per subject but a larger number of subjects had higher efficiency and greater power [94].

In order to investigate the model selection results in more detail, two additional sensitivity analyses were

performed by increasing or decreasing size of the true βClX1
effect used simulate the datasets. For the first

sensitivity analysis, we set βClX1
= 0.1, reducing the separation between the true and misspecified models and

making model selection more difficult. The second sensitivity analysis increased βClX1
to 1 to make model

selection easier.

The results of these sensitivity analyses using ADVI estimation are shown in Tables 3.11, 3.12, and 3.13 and

Figures 3.83, 3.84, and 3.85 for βClX1
= 0.1; and Tables 3.14, 3.15, and 3.16 and Figures 3.86, 3.87, and

3.88 for βClX1
= 1. The three strategies all did poorly when the true effect size was reduced to 0.1 in the first

sensitivity analysis with no more than 33% of datasets choosing the correct order using any of the strategies.

For the second sensitivity analysis, the results using the information criteria based on ADVI were still poor

with the best model ranking selected for less than 25% of datasets. Using ELBO, between 60% and 80% of

datasets ranked the models correctly using sparse sampling and between 31% and 40% ranked the models

correctly using dense sampling, exhibiting the same trend seen for the main model selection simulations with

βClX1
= 0.4. With 5-fold cross-validation, the correct ranking was selected between for between 62% and 88%

of datasets, with nearly all the rest of the datasets choosing the second best order.

3.4 Case Study

3.4.1 Background and Methods

Ketorolac is a nonsteroidal anti-inflammatory drug used to treat pain after surgery. Data for ketorolac IV

dosing and patient characteristics were gathered from EHRs and combined with remnant specimens collected

using opportunistic sampling to determine blood plasma concentration. Using real-world data allows us to

collect information for several hundred subjects (compared to less than 20 for many reported pediatric studies).

However, the remnant concentration samples are sparse and not collected with the goal of estimating the PK

profile. Therefore, we leverage the Bayesian framework to combine prior information from several small

designed clinical studies with our larger observational dataset. The primary goals are to find a model that

adequately describes individual PK time-concentration profiles and parameters and to determine whether any

covariates have an effect on PK profile.

Based on previous literature, ketorolac PK can be described well using a two-compartment model. We compare
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a model with only allometric scaling to a model that also includes a maturation factor based on postmenstrual

age (pma). The compartmental PK model for multiple IV bolus doses is given by:

D = {dk, tdk
} ψ = {Cl,Q,V1,V2}

α =

QCl
V2V1

β
β =

1

2




Q

V1
+

Q

V2
+

Cl

V1
−

√
(

Q

V1
+

Q

V2
+

Cl

V1

)2

−4
QCl

V2V1



 A =
1

V1

α− Q
V2

α−β
B =

1

V1

β − Q
V2

β −α

f (D,ψ, t) =
K

∑
k=1

dk(Ae
−α(t−tdk

)+Be
−β (t−tdk

)),

where dk and tdk
are the amounts and administration times, respectively, for the k = 1, . . . ,K doses. Using this

compartmental model, the stage 1 model for observed concentration yi j for individual i at time j including

combined proportional and additive error can be defined as:

yi j = f (Di,ψi, ti j)× (1+ ε
prop
i j )+ εadd

i j

ε
prop
i j ∼ N(0,σ2

prop) εadd
i j ∼ N(0,σ2

add)

The stage 2 model with only allometric scaling is:

log(Cli) = log(Clpop)+0.75× log

(
weighti

15

)

+ηCli , ηCl ∼ N(0,ω2
Cl)

log(Qi) = log(Qpop)+0.75× log

(
weighti

15

)

+ηQi
, ηQ ∼ N(0,ω2

Q)

log(V1i) = log(V1 pop)+1× log

(
weighti

15

)

+ηV1i
, ηV1

∼ N(0,ω2
V1
)

log(V2i) = log(V2 pop)+1× log

(
weighti

15

)

+ηV2i
, ηV2

∼ N(0,ω2
V2
)

{ηCl ,ηQ,ηV1
,ηV2
}= η ∼ N4(0,Ω)

The stage 2 model with allometric scaling and maturation factor is identical except for the clearance model:

log(Cli) = log(Clpop)+0.75× log

(
weighti

15

)

+ log

(
1

1+(T M50/pmai)Hill

)

+ηCli

In the simulation study, models using non-informative priors had worse performance for both estimation

methods, especially with sparse sampling, so we use an informative prior based on previously published

pediatric ketorolac studies and literature on PK scaling for children (Figure 3.30 and Table 3.17). The ketorolac

dataset was split into a training dataset with 320 subjects used to fit the models and a validation dataset with

86 subjects.
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Figure 3.30: Priors for ketorolac PK models. For Clpop, Qpop, V 1pop, and V 2pop open triangles indicate point

estimates from previous studies; the size of the triangle corresponds to the sample size of the previous study.

3.4.2 Results

For the model with only allometric scaling, the mean-field ADVI algorithm took around 6 minutes and 26

seconds to converge while NUTS HMC took 358 minutes (5 hours, 58 minutes) for 4 parallel chains running

concurrently with 4000 warmup iterations and 250 sampling iterations. Adding a sigmoid Hill maturation

factor on clearance, the mean-field ADVI algorithm took 6 minutes and 33 seconds to converge. The NUTS

HMC sampler took 341 minutes (5 hours, 41 minutes) for 4 parallel chains with 4000 warmup iterations and

250 sampling iterations. We use 5-fold leave-subject-out cross-validation with the training data to compare the

two models. The log pointwise predictive density (l ppdcv) computed using 5-fold cross-validation was -359.35

for the model with only allometric scaling and -353.2 for the model with allometric scaling and maturation

factor. We present results from the second model.

Posterior population parameter density estimates are shown in Figure 3.31. The ADVI and MCMC parameter

estimates mirror trends seen in the two-compartment simulation study with some discrepancies in the central

tendency of the distributions, especially for the variance components, and smaller posterior uncertainty for

all population parameters, except σ2
add and σ2

prop, using ADVI compared to MCMC. Posterior individual

clearance (Cli) estimates for 20 individuals are shown in Figure 3.32. In contrast to the population parameters,

individual clearance density estimates for many subjects are similar for both estimation methods.
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Figure 3.31: Posterior parameter estimates from ketorolac PK model with fixed allometric scaling and age

maturation parameters.
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Figure 3.32: Individual posterior clearance (Cli) for 20 individuals from ketorolac PK model with fixed

allometric scaling and age maturation parameters.
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3.4.3 Posterior Checks and Diagnostics

Individual and population posterior predictive plots for 20 subjects from the training data using the model with

allometric scaling and age maturation are shown in Figures 3.33 and 3.34. Individual PK profile estimates

are similar for the majority of subjects using both estimation methods, however misestimation of individual

parameters with ADVI, especially an incorrect mode, translates to misestimation in the individual PK profile.

For example, compare the individual clearance estimates for subjects 14, 17 and 18 in Figure 3.32 to the

individual predictions for these subjects in Figure 3.33. In contrast, population predictions are much more

similar between estimation methods.
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Figure 3.33: Individual posterior predictions for 20 subjects from training dataset using ketorolac PK model

with fixed allometric scaling and age maturation parameters.

In addition to predictions for the individuals in the training data, population predictions for subjects in the

validation data are shown in Figure 3.35. As with the training data population predictions, the ADVI and

MCMC estimates are nearly identical. There are several examples where the ADVI and MCMC estimates are

similar, but both methods are far from the observed concentration values (e.g., the first observed concentrations

for subjects 1 and 8 in the training set and concentrations for subjects 332, 335, and 337 in the validation

dataset). This may be related to errors in the EHR data. In a study of vancomycin in neonates van der Meer et

al. (2012) [95] found that errors in patient records such as incorrect “time of administration, amount of dose

given, registration or recording of dosing information and sampling times, and drug assay, or measurement,

errors” had limited influence on outcomes of population PK modeling but can have detrimental effects on

individual maximum a posteriori Bayesian estimation. The persistent and consistent deviation from predicted
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Figure 3.34: Population posterior predictions for 20 subjects from training dataset using ketorolac PK model

with fixed allometric scaling and age maturation parameters.

values for some subjects (e.g., 335) may also be due to model misspecification, with an unmeasured covariate

influencing the PK profile for these subjects.

We also examine several commonly used graphical PK model checks including observed vs. predicted

concentration plots, random effects vs. covariates, and visual predictive checks (VPCs). Observed vs. predicted

plots are shown in Figure 3.36 with results from MCMC estimates in the top row and ADVI estimates in

the bottom row. The overall trend for population predicted vs. observed concentrations is similar for both

estimation methods. For individual predicted vs. observed concentrations, the relationship is similar for

predicted concentrations between 0.01 and around 1 mcg/mL, however ADVI estimation shows a trend toward

overestimation for larger concentrations.

Plots of the random effects for clearance (ηCli ) vs. weight and postmenstrual age are displayed in Figure 3.37.

Plots using ADVI and MCMC estimates are again much the same; both indicate some unexplained weight and

age effects among the heaviest and oldest children in the cohort.

Finally, we compare the VPCs produced using MCMC and ADVI estimates. Figure 3.38 shows VPCs with

observed values for the 10th, 50th and 90th percentiles (solid lines) and theoretical model-based values (dashed

lines) for the same percentiles along with 90% prediction intervals for the model-based estimates (shaded

regions). For a well-fit model, the observed values should be similar to the theoretical values. In this example,

there is a discrepancy between the observed and theoretical values due to the lower limit of quantification for
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Figure 3.35: Population posterior predictions for 20 subjects from validation dataset using ketorolac PK model

with fixed allometric scaling and age maturation parameters.

observed concentrations (0.01 mcg/mL); the model accounts for values censored below this threshold and is

able to make predictions for values < 0.01 mcg/mL. As with the other graphical PK checks both estimation

methods produce nearly identical plots.
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Figure 3.36: Observed concentration vs. population and individual posterior predictions from ketorolac PK

model with fixed allometric scaling and age maturation parameters.
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Figure 3.37: Random effects for clearance vs. covariates for ketorolac PK model with fixed allometric scaling

and age maturation parameters.
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Figure 3.38: Visual predictive check for ketorolac PK model with fixed allometric scaling and age maturation

parameters. Observed values for 10th, 50th and 90th percentile (solid lines) and theoretical values (dashed

lines) along with 90% prediction interval for theoretical percentiles (shaded regions) are shown. Filled circles

indicate observed values. The lower limit of quantification of 0.01 mcg/mL is represented by a horizontal gray

line. Black tickmarks along the top of the plot indicate bin boundaries.
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3.5 Discussion

ADVI can provide a good balance between speed and accuracy when fitting Bayesian population PK models,

but involves trade-offs. The greatest advantage of ADVI is reduced computation time. In the simulation study,

total MCMC fit times were around 10 times longer than ADVI fit times for one-compartment models and

more than 45 times longer for two-compartment models. For the ketorolac case study, the ADVI models

took around 6.5 minutes to fit compared to nearly 6 hours using MCMC. The reduced time to fit models with

ADVI can be leveraged for model selection using cross-validation. Specifically, the model selection strategy

using 5-fold leave-subject-out cross-validation with ADVI was more accurate than using either deviance

information criteria, the information criteria provided by the Stan package loo (WAIC and PSIS-LOOIC)

or the maximized variational objective function (ELBO). Importantly, we found that l ppdcv calculated using

5-fold cross-validation with ADVI estimation was a competitive strategy across scenarios, sampling schemes,

and sensitivity analyses. In addition, while both ADVI and MCMC estimation can fail to converge, the

decreased ADVI fit time means models with poor parameterization or initialization values can be interrogated

and discarded faster.

For population parameters, posterior median estimates can be fairly accurate, but credible intervals are

underestimated compared to MCMC. This result is similar to those in a recent analysis by Park et al. (2021)

comparing ADVI and MCMC for two simple Bayesian PK models2 [96]. Underestimation of posterior

parameter variability is a well-known issue for mean-field VI methods [15,97–99]. One possible solution is

to expand the variational family by relaxing the mean-field assumption, however more flexible variational

families (e.g., full-rank VI which allows correlation between variational parameters) can result in more difficult

optimization and longer fit times. In addition, some previous work has shown that a more complex variational

family may not necessarily outperform a simpler one [98,99]. Giordano et al. (2018) present a method to

correct the variance estimates of mean-field VI using “linear response methods” from statistical physics [99].

The linear response variational Bayes (LR-ADVI) covariance estimates show good performance in matching

MCMC. While not as computational intensive as MCMC methods, LR-ADVI requires more calculation than

ADVI estimates. LR-ADVI also assumes that the mean-field VI correctly approximates the true posterior

means; as seen in the simulation study this assumption may be incorrect for nonlinear population PK models.

Compared to population parameters, individual-specific posterior median and credible interval estimates are

generally more similar between estimation methods. Again, this result mirrors those in the Park et al. (2021)

population PK model, with individual-specific posterior distributions for total clearance closely matching

using both ADVI and MCMC [96]. However there are more discrepancies between ADVI and MCMC

2Park et al. consider a one-compartment oral administration model for a single subject and a hierarchical one-compartment oral

administration model using 12 subjects with dense sampling and no covariates
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individual-level estimates for two-compartment models than one-compartment models. Beyond parameter

estimates, posterior predicted concentrations produced using ADVI appear similar to those produced with

MCMC, especially for new subjects. The trend of somewhat better estimation for population predictions was

also seen in model selection. This is likely because the criteria used in Strategy 1 are focused on predictions for

subjects in the current dataset (individual predictions) while the criteria for Strategy 3 is focused on predictions

for new, unobserved subjects (population predictions). Concentration predictions are useful for personalized

dosing (e.g., maintaining concentration in a known therapeutic range) or as the input to a pharmacodynamic

model (e.g., modeling the relationship between predicted concentration and a physiological outcome such

as pain response or sedation). Individual and population predictions and individual random effects are also

used in common PK graphical model checks. In the case study, these graphical checks were similar for both

estimation methods.

The conclusions regarding predicted concentrations are based on visualization of a small number of simulated

subjects’ PK profiles (Figures 3.20 - 3.25) along with comparisons of the maximum concentration (Cmax) for

all subjects (Figures 3.26 - 3.29). The individual plots show where the two estimated PK profiles for a subject

are similar or different, especially in relationship to dosing and observed concentration data, but there are too

many simulated subjects and datasets (e.g., 250 × 100 = 25,000 plots for each prior and sampling scheme) to

examine all the individual plots. The plots showing ratios of Cmax medians and credible interval widths allow

comparisons that include all the simulation data, but are focused on a single feature of the PK profile which

may not be relevant for all drugs. More research is needed to define and assess criteria which quantify the

differences between methods in relation to predicted concentrations.

Results were generally similar across the four priors, with more biased parameter estimates using non-

informative and misspecified priors for some settings. The non-informative priors also had more extreme

outliers, indicating computational problems, especially when used with sparse sampling. Relative fit time for

MCMC vs. ADVI was also larger for sparse sampling with non-informative priors. Improper non-informative

priors can result in improper posteriors [62] or more difficult estimation. In our simulations, this may be related

to the use of (improper) non-informative priors for all parameters simultaneously. An alternate approach

would define non-informative priors for only some of the parameters while using informative priors for other

parameters. While there may be a desire to “let the data speak” without external evidence, for population PK

models some level of prior information is available in nearly all cases. For example, a non-informative prior

for CLpop implies that all positive values are equally plausible (in a given parameterization), but a value of

100,000 L/h or 100,000,000 L/h is not reasonable. Our recommendation is to begin with weakly informative,

but proper, priors which give extremely low probability to implausible values. If the resulting posterior does
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not produce reasonable results (scientific or computational), then the model or prior should be adjusted. A

potential concern is that the analysis may be overly influenced by a subjective prior choice, however this

disregards the important role of model checking and iterative model development in Bayesian analysis. As

stated by Box and Tiao (1992), “inferences that are unacceptable must come from inappropriate assumption

and not from inadequacies of the inferential system. Thus all parts of the model, including the prior distribution,

are exposed to appropriate criticism” [67]. An analogous situation involving non-robustness or subjective

influence can occur under any statistical paradigm if two investigators with different assumptions arrive at

different results. The prior need not be considered any more subjective than other modeling assumptions.

There are several caveats for this study. First, the Torsten library (version 0.88) used for the PK models

and the ADVI algorithm implemented using the CmdStanR interface (version 0.4.0) to CmdStan (version

2.25.0) are both in relatively early stages of development. The authors of Torsten include the warning,

“The current version of Torsten is a prototype. It is being released for review and comment, and to support

limited research applications. It has not been rigorously tested and should not be used for critical applications

without further testing or cross-checking by comparison with other methods.” Similarly, the ADVI algorithm

includes the message, “This procedure has not been thoroughly tested and may be unstable or buggy.” In

addition, the results of the simulation study are dependent on the specific parameterization used for the PK

models. For example, the structural two-compartment model can be parameterize in terms of clearances and

apparent volumes of distribution (Cl, Q, V1, V2; used for this study), micro-rate constants (V =V1, k =Cl/V1,

k12 = Q/V1, k21 = k12V1/V 2) and macro-rate constants (α ,β ,A,B in section 3.6.2.2) [100,101]; the random

effects variance-covariance matrix was decomposed using standard deviations and a correlation matrix and a

non-centered parameterization [102]; and there are several ways to include proportional and additive residual

error components [103]. Reparameterization changes the geometry of the posterior parameter space and could

affect estimation as a result. We recommend using a more thoroughly understood estimation technique, such

as MCMC, to confirm final model results and obtain parameter estimates.

In addition to VI, many other approximations could be considered to reduce computation time for Bayesian

population PK analysis. Although formal evaluation of other approaches is beyond the scope of this work,

we briefly comment on a few. Maximum a posteriori (MAP) estimation [104] provides posterior estimates

quickly, but has several issues compared to ADVI. First, MAP provides only a point estimate of the posterior

distribution mode without quantifying or propagating estimate uncertainty. In addition, Maier et al. (2020)

demonstrate that in a nonlinear model, MAP parameter estimates do not translate to the most probable value on

the scale of observed data [105]. Giordano, Broderick, and Jordan (2018) [99] also show that MAP estimates

can perform poorly for certain components in hierarchical models. Another potential solution is the Laplace
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approximation. Both VI and the Laplace approximation require optimization and use the inverse Hessian of

the optimization objective function, however VI uses a more expressive approximating distributional family

[99]. Opper and Archambeau (2009) show that Gaussian VI is not equivalent to the Laplace approximation

[106].

For this chapter, only two relatively simple population PK scenarios were explored using mean-field ADVI.

Further work is required to assess extensions such as full-rank ADVI or LR-ADVI and more complex situations

which may benefit from ADVI, such as combined pharmacokinetic-pharmacodynamic models or PK models

without analytic solutions, such as physiologically based PK (PBPK) models [107]. For example, PBPK

analysis attempts to model drug kinetics mechanistically by using a large number of compartments with

underlying physiological meanings (e.g., fat, liver, kidneys, stomach, muscle, etc.). While PBPK models

provide much more detailed information about the PK processes in the body, they are also more complicated

and time-consuming to estimate especially under the Bayesian paradigm [108]. Thus a faster estimation

method such as ADVI could be of benefit, but poor performance of the approximate estimates could result due

to the increased complexity of the PBPK model.

ADVI is a valuable estimation technique for Bayesian population PK modeling. It is best used when fitting

many models, such as during model development and refinement or for model selection using cross-validation,

or when the goal is to evaluate models quickly and approximate results are acceptable.
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3.6 Appendix

3.6.1 Diagnostics for Variational Inference

3.6.1.1 Pareto Smoothed Importance Sampling k̂

The PSIS k̂ is based on the idea that the VI approximation (or a Bayesian MCMC estimate) can be improved

by using importance sampling [86]. Using s = 1, . . . ,S samples from the optimal VI density q∗(θ s) as

proposal samples along with the joint density p(θ s,y), the importance sampling estimate of an integrable

function Ep[h(θ)] ≈ ∑
S
s=1 h(θ s)rs

∑
S
s=1 rs

where the importance ratios are defined as rs = p(θ s,y)
q∗(θ s) . PSIS stabilizes the

importance sampling by fitting a generalized Pareto distribution to the largest ri, which are then replaced by

their expectation under the fitted distribution. The estimated shape parameter k̂ provides a diagnostic measure

between the posterior p(θ |y) and q∗(θ).

3.6.1.2 Variational Simulation Based Calibration

VSBC is a method to assess the calibration of a VI point estimate. It works by simulating data from the

prior predictive distribution, fitting a VI approximation to the simulated data and comparing the posterior

parameter estimates to the priors. First, samples drawn from the prior distribution θ
(0)
m ∼ p(θ) are used

to generate m = 1, . . . ,M datasets under the specified model likelihood ym ∼ p(y|θ (0)
m ). Recall that θ (and

θ
(0)
m ) are j-dimensional vectors; p(θ j) is the jth marginal parameter prior and θ

(0)
jm is the mth draw from

p(θ j). For each simulated dataset, the VI approximation to the posterior, p(θ |ym), is found and marginal

calibration probabilities are calculated for each parameter: p jm = Prθ |ym
(θ j ≤ θ

(0)
jm ). Using s = 1, . . . ,S

samples from the posterior VI approximation p jm ≈ 1
S ∑

S
s=1 I[θ s

j ≤ θ
(0)
jm ]. Asymmetry in the distribution of p j:

indicates bias in the VI approximation to the marginal posterior θ j|y. and can be assessed visually or using a

Kolmogorov-Smirnov test for equality between the distribution p j: and 1− p j:.
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3.6.2 Simulation Study

3.6.2.1 Scenario 1: One-compartment Intravenous Infusion Model

Stage 1:

f1(D = {d, td , tin f },ψ = {Cl,V}, t) =







d
tin f

1
Cl

(

1− e−
Cl
V (t−td)

)

if t− td ≤ tin f

d
tin f

1
Cl

(

1− e−
Cl
V tin f

)

e−
Cl
V (t−td−tin f ) otherwise

yi j = f1(Di,ψi, ti j)× (1+ ε
prop
i j )+ εadd

i j

ε
prop
i j ∼ N(0,σ2

prop) εadd
i j ∼ N(0,σ2

add)

Stage 2:

log(Cli) = log(Clpop)+0.75× log

(
weighti

70

)

+βClX1
X1i +ηCli , ηCl ∼ N(0,ω2

Cl)

log(Vi) = log(Vpop)+1× log

(
weighti

70

)

+ηVi
, ηV ∼ N(0,ω2

V )

Stage 3:

Clpop = 40 Vpop = 120 βClX1
= 0.4 σ2

add = 0.001 σ2
prop = 0.025

Ω =






ω2
Cl = 0.1 ωCl,V = 0.05

ω2
V = 0.2






Covariates:

weight ∼Uni f (3,80)

X1 ∼ Bernoulli(θ = 0.4)
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Table 3.1: Scenario 1 Priors

Parameter Strong Weak Misspecified Non-Informative

Clpop logNormal(µ = log(40)+0.32,σ = 0.3) logNormal(µ = log(40)+12,σ = 1) Gamma(α = 10,β = 0.1) Uni f orm(0,∞)

Vpop logNormal(µ = log(120)+0.32,σ = 0.3) logNormal(µ = log(120)+1.12,σ = 1.1) Gamma(α = 15,β = 0.055) Uni f orm(0,∞)
βClX1

Normal(µ = 0.4,σ = 1) Normal(µ = 0,σ = 10) Normal(µ =−3.25,σ = 2) Uni f orm(−∞,∞)

ωCl logNormal(µ = log(
√

0.1)+0.22,σ = 0.2) logNormal(µ = log(
√

0.1)+1.12,σ = 1.1) Gamma(α = 8,β = 10) Uni f orm(0,∞)

ωV logNormal(µ = log(
√

0.2)+0.22,σ = 0.2) logNormal(µ = log(
√

0.2)+1.12,σ = 1.1) Gamma(α = 9,β = 8) Uni f orm(0,∞)
ρ LKJ(η = 0.8) LKJ(η = 1) LKJ(η = 1) LKJ(η = 1)

σprop Gamma(α = 1+4
√

0.025,β = 4) Hal f −Cauchy(µ = 0,σ = 1) Gamma(α = 5,β = 4) Uni f orm(0,∞)

σadd Gamma(α = 1+7
√

0.001,β = 7) Hal f −Cauchy(µ = 0,σ = 0.5) Gamma(α = 4,β = 5) Uni f orm(0,∞)
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Figure 3.39: Nine simulation datasets with dense sampling for one-compartment model
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Figure 3.40: Nine simulation datasets with sparse sampling for one-compartment model
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3.6.2.2 Scenario 2: Two-compartment Intravenous Infusion Model

Stage 1:

D = {d, td , tin f } ψ = {Cl,Q,V1,V2}

α =

QCl
V2V1

β
β =

1

2




Q

V1
+

Q

V2
+

Cl

V1
−

√
(

Q

V1
+

Q

V2
+

Cl

V1

)2

−4
QCl

V2V1



 A =
1

V1

α− Q
V2

α−β
B =

1

V1

β − Q
V2

β −α

f2(D,ψ, t) =







d
tin f

[
A
α (1− e−α(t−td))+ B

β (1− e−β (t−td))
]

if t− td ≤ tin f

d
tin f

[
A
α (1− e−αtin f )e−α(t−td−tin f )+ B

β (1− e−β tin f )e−β (t−td−tin f )
]

otherwise

yi j = f2(Di,ψi, ti j)× (1+ ε
prop
i j )+ εadd

i j

ε
prop
i j ∼ N(0,σ2

prop) εadd
i j ∼ N(0,σ2

add)

Stage 2:

log(Cli) = log(Clpop)+0.75× log

(
weighti

70

)

+βClX1
X1i +ηCli , ηCl ∼ N(0,ω2

Cl)

log(Qi) = log(Qpop)+0.75× log

(
weighti

70

)

+ηQi
, ηQ ∼ N(0,ω2

Q)

log(V1i) = log(V1 pop)+1× log

(
weighti

70

)

+ηV1i
, ηV1

∼ N(0,ω2
V1
)

log(V2i) = log(V2 pop)+1× log

(
weighti

70

)

+ηV2i
, ηV2

∼ N(0,ω2
V2
)

Stage 3:

Clpop = 35 Qpop = 60 V1 pop = 50 V2 pop = 70 βClX1
= 0.4 σ2

add = 0.001 σ2
prop = 0.025

Ω =












ω2
Cl = 0.2 ωCl,Q =−0.02 ωCl,V1

=−0.01 ωCl,V2
=−0.05

ω2
Q = 0.4 ωQ,V1

= 0.3 ωQ,V2
= 0.1

ω2
V1

= 1.1 ωV1,V2
= 0.2

ω2
V2

= 0.3












Covariates:

weight ∼Uni f (3,80)

X1 ∼ Bernoulli(θ = 0.4)
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Table 3.2: Scenario 2 Priors

Parameter Strong Weak Misspecified Non-Informative

Clpop logNormal(µ = log(35)+0.32,σ = 0.3) logNormal(µ = log(35)+0.92,σ = 0.9) Gamma(α = 8,β = 0.08) Uni f orm(0,∞)

Qpop logNormal(µ = log(60)+0.32,σ = 0.3) logNormal(µ = log(60)+0.92,σ = 0.9) Gamma(α = 10,β = 0.06) Uni f orm(0,∞)
V 1pop logNormal(µ = log(50)+0.32,σ = 0.3) logNormal(µ = log(50)+0.92,σ = 0.9) Gamma(α = 9,β = 0.057) Uni f orm(0,∞)

V 2pop logNormal(µ = log(70)+0.32,σ = 0.3) logNormal(µ = log(70)+0.92,σ = 0.9) Gamma(α = 11,β = 0.063) Uni f orm(0,∞)
βClX1

Normal(µ = 0.4,σ = 1) Normal(µ = 0,σ = 10) Normal(µ =−3.25,σ = 2) Uni f orm(−∞,∞)

ωCl logNormal(µ = log(
√

0.2)+0.22,σ = 0.2) logNormal(µ = log(
√

0.2)+0.82,σ = 0.8) Gamma(α = 8,β = 10) Uni f orm(0,∞)

ωQ logNormal(µ = log(
√

0.4)+0.32,σ = 0.3) logNormal(µ = log(
√

0.4)+0.92,σ = 0.9) Gamma(α = 11,β = 8) Uni f orm(0,∞)

ωV 1 logNormal(µ = log(
√

1.1)+0.32,σ = 0.3) logNormal(µ = log(
√

1.1)+0.92,σ = 0.9) Gamma(α = 12,β = 5) Uni f orm(0,∞)

ωV 2 logNormal(µ = log(
√

0.3)+0.22,σ = 0.2) logNormal(µ = log(
√

0.3)+0.82,σ = 0.8) Gamma(α = 8,β = 6) Uni f orm(0,∞)
ρ LKJ(η = 0.8) LKJ(η = 1) LKJ(η = 1) LKJ(η = 1)

σprop Gamma(α = 1+4
√

0.025,β = 4) Hal f −Cauchy(µ = 0,σ = 1) Gamma(α = 5,β = 4) Uni f orm(0,∞)

σadd Gamma(α = 1+7
√

0.001,β = 7) Hal f −Cauchy(µ = 0,σ = 0.5) Gamma(α = 4,β = 5) Uni f orm(0,∞)
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Figure 3.41: Nine simulation datasets with dense sampling for two-compartment model

7 8 9

4 5 6

1 2 3

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0

1

2

3

0

1

2

3

0

1

2

3

Time

C
o

n
c
e

n
tr

a
ti
o

n

X1

0

1

Figure 3.42: Nine simulation datasets with sparse sampling for two-compartment model
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3.6.2.3 Estimation Procedure Settings

3.6.2.4 Model Parameterization

The variance-covariance matrix for the parameter random effects, Ω, is parameterized using a decompo-

sition into standard deviations and a correlation matrix [109]; Ω =






ωCl 0

0 ωV




×ρ ×






ωCl 0

0 ωV




. This

decomposition allows prior information about the variability of population PK parameters to be specified

on the same scale as the parameter. In addition, a non-centered parameterization is used for efficiency and

numerical stability [102]. In the Stan model implementation, a prior is specified on the Cholesky factor of

the correlation matrix Lρ where ρ = Lρ ×L′ρ instead of directly on ρ . Note that for the LKJ prior η < 1 favors

matrices with more correlation, while η = 1 is a uniform distribution over correlation matrices.

3.6.2.5 Automatic Differentiation Variational Inference Settings

The cmdstanr $variational() function was used for ADVI estimation. The main function was

wrapped in a helper function to automatically retry the fit if the following occurred:

1. a non-zero return code indicating an error in the run

2. a message indicating “The maximum number of iterations is reached!”

3. a message indicating “The ELBO at a previous iteration is larger than the ELBO upon convergence!”

For each retry, the seed for the initialization function was changed. If a successful run did not result after

more than 1/2 of the tries, the seed for the $variational() function was also changed for each remaining

retry. ELBO values were extracted by diverting output from cmdstanr $variational() method to an

external text file and then parsing the text file to find the ELBO at convergence (or after the maximum number

of iterations and maximum number of tries to refit).

For the one-compartment simulations (scenario 1) the following settings were used:

• algorithm: “meanfield”

• init: an initialization function based on the true population parameters

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(40), 0.1)),

V_pop = exp(rnorm(1, log(120), 0.1)))

}

• maximum warmup adaptation iterations (adapt_iter): 50 (Default)

• convergence tolerance on the relative norm of the objective (tol_rel_obj): 0.01 (Default)

• maximum number of iterations (iter): 17500
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• number of samples for Monte Carlo estimate of gradients (grad_samples): 3

• number of samples for Monte Carlo estimate of ELBO (elbo_samples): 100 (Default)

• evaluate ELBO every Nth iteration (eval_elbo): 100 (Default)

• the number of iterations between printed screen updates (refresh): 500

• maximum tries to refit: 5

• all other parameters used $variational() defaults

For the two-compartment simulations (scenario 2) the following settings were used:

• algorithm: “meanfield”

• init: an initialization function based on the true population parameters

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(35), 0.1)),

Q_pop = exp(rnorm(1, log(60), 0.1)),

V1_pop = exp(rnorm(1, log(50), 0.1)),

V2_pop = exp(rnorm(1, log(70), 0.1)))

}

• maximum warmup adaptation iterations (adapt_iter): 50 (Default)

• convergence tolerance on the relative norm of the objective (tol_rel_obj): 0.01 (Default)

• maximum number of iterations (iter): 20000

• number of samples for Monte Carlo estimate of gradients (grad_samples): 3

• number of samples for Monte Carlo estimate of ELBO (elbo_samples): 100 (Default)

• evaluate ELBO every Nth iteration (eval_elbo): 100 (Default)

• the number of iterations between printed screen updates (refresh): 500

• maximum tries to refit: 5 (10 for cross-validation models)

• all other parameters used $variational() defaults

For the case study the following settings were used:

• algorithm: “meanfield”

• init: an initialization function

# model 1

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(11), 0.1)),

Q_pop = exp(rnorm(1, log(1.5), 0.1)),
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V1_pop = exp(rnorm(1, log(3500), 0.1)),

V2_pop = exp(rnorm(1, log(1500), 0.1)))

}

# model 2

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(11), 0.4)),

Q_pop = exp(rnorm(1, log(1.5), 0.4)),

V1_pop = exp(rnorm(1, log(3500), 0.4)),

V2_pop = exp(rnorm(1, log(1500), 0.4)),

tm50 = rnorm(1, 40, 2),

hill = exp(rnorm(1, log(3), 0.2)))

}

• maximum warmup adaptation iterations (adapt_iter): 50 (Default)

• convergence tolerance on the relative norm of the objective (tol_rel_obj): 0.005 (0.01 for cross-validation

models)

• maximum number of iterations (iter): 10000

• number of samples for Monte Carlo estimate of gradients (grad_samples): 5

• number of samples for Monte Carlo estimate of ELBO (elbo_samples): 150

• evaluate ELBO every Nth iteration (eval_elbo): 100 (Default)

• the number of iterations between printed screen updates (refresh): 500

• maximum tries to refit: 5

• all other parameters used $variational() defaults

3.6.2.6 No U Turns Hamiltonian Monte Carlo Settings

The cmdstanr $sample() function was used for HMC estimation. The main function was wrapped in a

helper function to automatically retry the fit if a non-zero return code resulted indicating an error in the run.

For each retry, the seed for the initialization function was changed. If a successful run did not result after more

than 1/2 of the tries, the seed for the $sample() function was also changed for each remaining retry.

For the one-compartment simulations (scenario 1) the following settings were used:

• algorithm: “hmc” (Default)

• engine: “nuts” (Default)

• init: an initialization function based on the true population parameters
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init0 <- function(){

list(CL_pop = exp(rnorm(1, log(40), 0.1)),

V_pop = exp(rnorm(1, log(120), 0.1)))

}

• number of warmup iterations to run per chain (iter_warmup): 1500

• number of post-warmup iterations to run per chain (iter_sampling): 250

• number of Markov chains to run (chains): 4

• maximum number of MCMC chains to run in parallel (parallel_chains): 4

• The number of iterations between printed screen updates (refresh): 500

• maximum tries to refit: 3

• all other parameters used $sample() defaults

For the two-compartment simulations (scenario 2) the following settings were used:

• algorithm: “hmc” (Default)

• engine: “nuts” (Default)

• init: an initialization function based on the true population parameters

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(35), 0.1)),

Q_pop = exp(rnorm(1, log(60), 0.1)),

V1_pop = exp(rnorm(1, log(50), 0.1)),

V2_pop = exp(rnorm(1, log(70), 0.1)))

}

• number of warmup iterations to run per chain (iter_warmup): 1750

• number of post-warmup iterations to run per chain (iter_sampling): 250

• number of Markov chains to run (chains): 4

• maximum number of MCMC chains to run in parallel (parallel_chains): 4

• The number of iterations between printed screen updates (refresh): 500

• maximum tries to refit: 3

• all other parameters used $sample() defaults

For the case study the following settings were used:

• algorithm: “meanfield”
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• init: an initialization function

# model 1

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(11), 0.1)),

Q_pop = exp(rnorm(1, log(1.5), 0.1)),

V1_pop = exp(rnorm(1, log(3500), 0.1)),

V2_pop = exp(rnorm(1, log(1500), 0.1)))

}

# model 2

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(11), 0.4)),

Q_pop = exp(rnorm(1, log(1.5), 0.4)),

V1_pop = exp(rnorm(1, log(3500), 0.4)),

V2_pop = exp(rnorm(1, log(1500), 0.4)),

tm50 = rnorm(1, 40, 2),

hill = exp(rnorm(1, log(3), 0.2)))

}

• number of warmup iterations to run per chain (iter_warmup): 4000

• number of post-warmup iterations to run per chain (iter_sampling): 250

• number of Markov chains to run (chains): 4

• maximum number of MCMC chains to run in parallel (parallel_chains): 4

• The adaptation target acceptance statistic (adapt_delta): 0.9

• The number of iterations between printed screen updates (refresh): 500

• all other parameters used $sample() defaults

3.6.2.7 Variational Simulation Based Calibration

For VSBC M = 1000 datasets were simulated using the sparse or dense sampling scheme with strong, weak,

or misspecified informative priors for the correctly specified model (M1) using the following procedure:

1. Make one draw from the defined prior distribution for each parameter and create a simulated data using

$sample() and fixed_param=TRUE. Covariates and dosing history (but not concentration values)

from a randomly selected simulation dataset are used for each VSBC dataset.

2. Find parameter estimates using the simulated data with ADVI estimation and draw approximate posterior

samples.
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3. Transform prior draw and approximate posterior samples for constrained parameters (e.g. CLpop, Vpop,

σadd , etc.) using a log transformation.

4. Calculate the calibration probability as the proportion of the posterior samples that are less than or equal

to the prior draw used to simulate the data.

5. Plot the histogram of M = 1000 calibration probabilities

3.6.2.8 Simulation Results

3.6.2.8.1 Scenario 1 Pareto Smoothed Importance Sampling k̂

Figure 3.43: One-compartment PK model simulations - variational inference PSIS k̂ values. Values above

dashed line (k̂ > 0.7) indicate discrepancy between VI approximation and posterior distribution
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3.6.2.8.2 Scenario 1 Variational Simulation Based Calibration

Figure 3.44: One-compartment PK model simulations - variational simulation based calibration for dense

sampling and weak informative priors

Figure 3.45: One-compartment PK model simulations - variational simulation based calibration for dense

sampling and misspecified informative priors
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Figure 3.46: One-compartment PK model simulations - variational simulation based calibration for sparse

sampling and strong informative priors

Figure 3.47: One-compartment PK model simulations - variational simulation based calibration for sparse

sampling and weak informative priors
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Figure 3.48: One-compartment PK model simulations - variational simulation based calibration for sparse

sampling and misspecified informative priors

3.6.2.8.3 Scenario 1 Individual Concentration Predictions
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Figure 3.49: One-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with dense sampling and strong priors
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Figure 3.50: One-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with sparse sampling and strong priors
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Figure 3.51: One-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with dense sampling and misspecified priors
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Figure 3.52: One-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with sparse sampling and misspecified priors

98



●●
●● ●●

●●
●●

●●
●●

●●

●●

●● ●●

●●
●●●●

●● ●● ●● ●● ●● ●●●●

●●

●●
●●

●● ●●

●● ●●
●●

●●

●●
●● ●●

●●

●●

●●

●● ●●

●● ●●

●●
●●

●●●●

●●
●●

●●
●●

●● ●● ●●

●●

●● ●● ●●

●●

●●

●● ●●
●● ●● ●● ●● ●● ●●●●

●●
●●

●●
●●

●●
●●

●●
●●

●● ●●
●● ●● ●●

●●
●● ●●

●● ●● ●● ●● ●●●●

●●
●● ●●

●●

●● ●●
●● ●● ●● ●● ●● ●●●●●●

●●
●●

●● ●● ●●

●● ●●
●●

●●
●● ●●

●● ●●
●●

●●
●● ●● ●●

●● ●● ●●

●●
●●

●● ●● ●● ●● ●● ●●●●

●●

●●
●● ●●

●● ●●
●● ●● ●●

●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●●●●

●●

●●
●●

●●

●●

●● ●●
●●

●●
●●

●●

●●
●●

●●

●●

●●
●●

●● ●●
●● ●●●●

●●
●●

●●
●● ●● ●● ●● ●●

●●

●●
●● ●●

●●

●●
●● ●● ●● ●● ●● ●● ●●●●

●●
●● ●●

●● ●●

●●
●● ●●

●● ●●
●●

●●

●●
●●

●●

●● ●●

●● ●● ●●
●●●●

●●

●●

●●
●●

●●

●● ●●

●●
●●

●●

●● ●●
●●

●●

●● ●●
●●

●● ●● ●● ●●●●

●●

●●

●●

●●

●●

●● ●●
●●

●●
●●

●●

●●

●●

●●

●●
●● ●● ●● ●● ●● ●●●●

●●
●●

●●

●●
●● ●●

●●
●●

●●
●●

●●
●●

●●

●●

●●
●●

●● ●● ●● ●● ●●●●

●●●●
●● ●● ●●

●● ●● ●●

●●

●●

●●
●● ●●

●● ●●

●● ●●
●●

●● ●● ●●●●

●● ●●●●●●
●●

●●
●● ●●

●●
●●

●● ●●
●●

●●
●●

●●

●●

●● ●●
●● ●● ●●

●●
●● ●●

●● ●● ●●
●● ●● ●● ●● ●●

●●
●●

●●
●● ●● ●● ●● ●● ●● ●●●●

●●
●●

●● ●●
●●

●●

●● ●● ●●
●●

●●
●● ●● ●● ●●

●●
●● ●● ●● ●● ●●●●

●●
●●

●●

●● ●●

●●

●●

●●
●●

●●

●●
●● ●●

●●

●●

●●
●●

●● ●●
●● ●●●●

●●
●●

●●
●●

●● ●● ●● ●●

●●

●●
●●

●●
●●

●●
●●

●● ●● ●● ●● ●● ●●●●

●●

●●
●●

●● ●●
●● ●● ●●

●●

●●

●● ●●
●●

●●
●● ●● ●● ●● ●● ●● ●●●●

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n

Estimation Method ADVI MCMC

Figure 3.53: One-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with dense sampling and non-informative priors
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Figure 3.54: One-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with sparse sampling and non-informative priors
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3.6.2.8.4 Scenario 1 Population Concentration Predictions
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Figure 3.55: One-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with dense sampling and strong priors
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Figure 3.56: One-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with sparse sampling and strong priors
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Figure 3.57: One-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with dense sampling and misspecified priors
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Figure 3.58: One-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with sparse sampling and misspecified priors
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Figure 3.59: One-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with dense sampling and non-informative priors
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Figure 3.60: One-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with sparse sampling and non-informative priors

3.6.2.8.5 Scenario 1 Model Selection Tables
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Table 3.3: One-Compartment Scenario, Model Selection Strategy 1 (information criteria) - MCMC

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

DIC

M1,M3,M2 91 36.4 85 34.0 95 38.0 34 24.3

M1,M2,M3 12 4.8 16 6.4 9 3.6 19 13.6

M3,M1,M2 110 44.0 83 33.2 106 42.4 19 13.6

M3,M2,M1 16 6.4 14 5.6 17 6.8 2 1.4

M2,M1,M3 9 3.6 33 13.2 10 4.0 40 28.6

M2,M3,M1 12 4.8 19 7.6 13 5.2 26 18.6

PSIS-LOOIC

M1,M3,M2 89 35.6 109 43.6 98 39.2 51 20.4

M1,M2,M3 23 9.2 15 6.0 21 8.4 3 1.2

M3,M1,M2 108 43.2 102 40.8 98 39.2 133 53.2

M3,M2,M1 18 7.2 13 5.2 22 8.8 51 20.4

M2,M1,M3 4 1.6 7 2.8 2 0.8 1 0.4

M2,M3,M1 8 3.2 4 1.6 9 3.6 11 4.4

WAIC

M1,M3,M2 81 32.4 88 35.2 85 34.0 44 17.6

M1,M2,M3 15 6.0 24 9.6 12 4.8 2 0.8

M3,M1,M2 103 41.2 97 38.8 96 38.4 133 53.2

M3,M2,M1 20 8.0 18 7.2 25 10.0 54 21.6

M2,M1,M3 16 6.4 6 2.4 14 5.6 4 1.6

M2,M3,M1 15 6.0 17 6.8 18 7.2 13 5.2

Dense sampling

DIC

M1,M3,M2 35 14.0 47 18.8 45 18.0 54 21.6

M1,M2,M3 33 13.2 33 13.2 35 14.0 31 12.4

M3,M1,M2 62 24.8 55 22.0 73 29.2 46 18.4

M3,M2,M1 59 23.6 43 17.2 38 15.2 43 17.2

M2,M1,M3 31 12.4 31 12.4 26 10.4 37 14.8

M2,M3,M1 30 12.0 41 16.4 33 13.2 39 15.6

PSIS-LOOIC

M1,M3,M2 41 16.4 49 19.6 48 19.2 44 17.6

M1,M2,M3 35 14.0 30 12.0 32 12.8 42 16.8

M3,M1,M2 55 22.0 51 20.4 65 26.0 42 16.8

M3,M2,M1 58 23.2 39 15.6 45 18.0 42 16.8

M2,M1,M3 26 10.4 39 15.6 35 14.0 40 16.0

M2,M3,M1 35 14.0 42 16.8 25 10.0 40 16.0

WAIC

M1,M3,M2 40 16.0 49 19.6 49 19.6 46 18.4

M1,M2,M3 32 12.8 35 14.0 33 13.2 35 14.0

M3,M1,M2 59 23.6 52 20.8 66 26.4 46 18.4

M3,M2,M1 59 23.6 37 14.8 43 17.2 44 17.6

M2,M1,M3 27 10.8 33 13.2 32 12.8 40 16.0

M2,M3,M1 33 13.2 44 17.6 27 10.8 39 15.6
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Table 3.4: One-Compartment Scenario, Model Selection Strategy 1 (information criteria) - ADVI

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

DIC

M1,M3,M2 61 24.4 59 23.6 54 21.6 30 21.4

M1,M2,M3 56 22.4 60 24.0 53 21.2 33 23.6

M3,M1,M2 58 23.2 54 21.6 82 32.8 27 19.3

M3,M2,M1 32 12.8 31 12.4 35 14.0 21 15.0

M2,M1,M3 24 9.6 31 12.4 15 6.0 21 15.0

M2,M3,M1 19 7.6 15 6.0 11 4.4 8 5.7

PSIS-LOOIC

M1,M3,M2 56 22.4 59 23.6 64 25.6 68 27.2

M1,M2,M3 41 16.4 48 19.2 40 16.0 49 19.6

M3,M1,M2 72 28.8 52 20.8 72 28.8 58 23.2

M3,M2,M1 34 13.6 43 17.2 35 14.0 34 13.6

M2,M1,M3 26 10.4 29 11.6 25 10.0 22 8.8

M2,M3,M1 21 8.4 19 7.6 14 5.6 19 7.6

WAIC

M1,M3,M2 45 18.0 48 19.2 55 22.0 52 20.8

M1,M2,M3 58 23.2 58 23.2 57 22.8 59 23.6

M3,M1,M2 59 23.6 49 19.6 62 24.8 54 21.6

M3,M2,M1 40 16.0 41 16.4 40 16.0 33 13.2

M2,M1,M3 30 12.0 39 15.6 24 9.6 30 12.0

M2,M3,M1 18 7.2 15 6.0 12 4.8 22 8.8

Dense sampling

DIC

M1,M3,M2 56 22.4 51 20.4 60 24.0 54 21.6

M1,M2,M3 61 24.4 42 16.8 58 23.2 43 17.2

M3,M1,M2 19 7.6 47 18.8 23 9.2 38 15.2

M3,M2,M1 28 11.2 38 15.2 33 13.2 39 15.6

M2,M1,M3 51 20.4 40 16.0 46 18.4 35 14.0

M2,M3,M1 35 14.0 32 12.8 30 12.0 41 16.4

PSIS-LOOIC

M1,M3,M2 53 21.2 52 20.8 44 17.6 52 20.8

M1,M2,M3 59 23.6 42 16.8 66 26.4 41 16.4

M3,M1,M2 30 12.0 53 21.2 35 14.0 53 21.2

M3,M2,M1 35 14.0 41 16.4 26 10.4 38 15.2

M2,M1,M3 44 17.6 26 10.4 45 18.0 29 11.6

M2,M3,M1 29 11.6 36 14.4 34 13.6 37 14.8

WAIC

M1,M3,M2 55 22.0 53 21.2 46 18.4 54 21.6

M1,M2,M3 58 23.2 38 15.2 64 25.6 43 17.2

M3,M1,M2 29 11.6 50 20.0 33 13.2 49 19.6

M3,M2,M1 36 14.4 40 16.0 29 11.6 40 16.0

M2,M1,M3 43 17.2 30 12.0 45 18.0 28 11.2

M2,M3,M1 29 11.6 39 15.6 33 13.2 36 14.4
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Table 3.5: One-Compartment Scenario, Model Selection Strategy 2 (ELBO) - ADVI only

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

M1,M3,M2 158 63.2 188 75.2 179 71.6 155 62.0

M1,M2,M3 39 15.6 45 18.0 39 15.6 33 13.2

M3,M1,M2 43 17.2 16 6.4 31 12.4 59 23.6

M3,M2,M1 5 2.0 1 0.4 1 0.4 3 1.2

M2,M1,M3 5 2.0 0 0.0 0 0.0 0 0.0

M2,M3,M1 0 0.0 0 0.0 0 0.0 0 0.0

Dense sampling

M1,M3,M2 107 42.8 99 39.6 107 42.8 101 40.4

M1,M2,M3 34 13.6 45 18.0 35 14.0 32 12.8

M3,M1,M2 61 24.4 51 20.4 55 22.0 64 25.6

M3,M2,M1 39 15.6 39 15.6 36 14.4 40 16.0

M2,M1,M3 4 1.6 7 2.8 5 2.0 5 2.0

M2,M3,M1 5 2.0 9 3.6 12 4.8 8 3.2

Table 3.6: One-Compartment Scenario, Model Selection Strategy 3 (5-fold leave-subject-out cross-validation)

- ADVI only

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

M1,M3,M2 160 64.0 172 68.8 155 62.0 213 85.2

M1,M2,M3 0 0.0 1 0.4 0 0.0 3 1.2

M3,M1,M2 90 36.0 76 30.4 95 38.0 34 13.6

M3,M2,M1 0 0.0 1 0.4 0 0.0 0 0.0

M2,M1,M3 0 0.0 0 0.0 0 0.0 0 0.0

M2,M3,M1 0 0.0 0 0.0 0 0.0 0 0.0

Dense sampling

M1,M3,M2 154 61.6 147 58.8 167 66.8 142 56.8

M1,M2,M3 1 0.4 1 0.4 1 0.4 1 0.4

M3,M1,M2 95 38.0 102 40.8 82 32.8 106 42.4

M3,M2,M1 0 0.0 0 0.0 0 0.0 1 0.4

M2,M1,M3 0 0.0 0 0.0 0 0.0 0 0.0

M2,M3,M1 0 0.0 0 0.0 0 0.0 0 0.0
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3.6.2.8.6 Scenario 2 Pareto Smoothed Importance Sampling k̂

Figure 3.61: Two-compartment PK model simulations - variational inference PSIS k̂ values. Values above

dashed line (k̂ > 0.7) indicate discrepancy between VI approximation and posterior distribution

3.6.2.8.7 Scenario 2 Variational Simulation Based Calibration
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Figure 3.62: Two-compartment PK model simulations - variational simulation based calibration for dense

sampling and weak informative priors

Figure 3.63: Two-compartment PK model simulations - variational simulation based calibration for dense

sampling and misspecified informative priors
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Figure 3.64: Two-compartment PK model simulations - variational simulation based calibration for sparse

sampling and strong informative priors

Figure 3.65: Two-compartment PK model simulations - variational simulation based calibration for sparse

sampling and weak informative priors
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Figure 3.66: Two-compartment PK model simulations - variational simulation based calibration for sparse

sampling and misspecified informative priors

3.6.2.8.8 Scenario 2 Individual Concentration Predictions
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Figure 3.67: Two-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with dense sampling and strong priors
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Figure 3.68: Two-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with sparse sampling and strong priors
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Figure 3.69: Two-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with dense sampling and misspecified priors
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Figure 3.70: Two-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with sparse sampling and misspecified priors
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Figure 3.71: Two-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with dense sampling and non-informative priors
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Figure 3.72: Two-compartment PK model simulations - observed concentrations and individual concentration

predictions for first simulated dataset with sparse sampling and non-informative priors
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3.6.2.8.9 Scenario 2 Population Concentration Predictions
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Figure 3.73: Two-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with dense sampling and strong priors
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Figure 3.74: Two-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with sparse sampling and strong priors
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Figure 3.75: Two-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with dense sampling and misspecified priors
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Figure 3.76: Two-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with sparse sampling and misspecified priors
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Figure 3.77: Two-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with dense sampling and non-informative priors
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Figure 3.78: Two-compartment PK model simulations - observed concentrations and population concentration

predictions for first simulated dataset with sparse sampling and non-informative priors

3.6.2.8.10 Scenario 2 Model Selection Tables and Plots
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Table 3.7: Two-Compartment Scenario, Model Selection Strategy 1 (information criteria) - MCMC

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

DIC

M1,M3,M2 50 20.0 44 17.6 49 19.7 44 17.7

M1,M2,M3 43 17.2 45 18.0 30 12.0 48 19.4

M3,M1,M2 48 19.2 40 16.0 42 16.9 28 11.3

M3,M2,M1 33 13.2 30 12.0 41 16.5 23 9.3

M2,M1,M3 39 15.6 43 17.2 40 16.1 41 16.5

M2,M3,M1 37 14.8 48 19.2 47 18.9 64 25.8

PSIS-LOOIC

M1,M3,M2 61 24.4 60 24.0 58 23.3 43 17.3

M1,M2,M3 31 12.4 27 10.8 23 9.2 29 11.7

M3,M1,M2 61 24.4 58 23.2 78 31.3 71 28.6

M3,M2,M1 48 19.2 50 20.0 31 12.4 47 19.0

M2,M1,M3 24 9.6 16 6.4 25 10.0 17 6.9

M2,M3,M1 25 10.0 39 15.6 34 13.7 41 16.5

WAIC

M1,M3,M2 53 21.2 54 21.6 43 17.3 46 18.5

M1,M2,M3 30 12.0 30 12.0 24 9.6 26 10.5

M3,M1,M2 53 21.2 51 20.4 69 27.7 68 27.4

M3,M2,M1 44 17.6 44 17.6 38 15.3 42 16.9

M2,M1,M3 29 11.6 31 12.4 40 16.1 25 10.1

M2,M3,M1 41 16.4 40 16.0 35 14.1 41 16.5

Dense sampling

DIC

M1,M3,M2 53 21.2 33 13.2 40 16.0 36 14.4

M1,M2,M3 32 12.8 34 13.6 37 14.8 42 16.8

M3,M1,M2 44 17.6 49 19.6 47 18.8 38 15.2

M3,M2,M1 29 11.6 47 18.8 33 13.2 46 18.4

M2,M1,M3 36 14.4 43 17.2 47 18.8 40 16.0

M2,M3,M1 56 22.4 44 17.6 46 18.4 48 19.2

PSIS-LOOIC

M1,M3,M2 43 17.2 42 16.8 45 18.0 53 21.2

M1,M2,M3 37 14.8 37 14.8 38 15.2 28 11.2

M3,M1,M2 57 22.8 45 18.0 51 20.4 50 20.0

M3,M2,M1 37 14.8 47 18.8 45 18.0 43 17.2

M2,M1,M3 43 17.2 42 16.8 37 14.8 30 12.0

M2,M3,M1 33 13.2 37 14.8 34 13.6 46 18.4

WAIC

M1,M3,M2 51 20.4 45 18.0 42 16.8 47 18.8

M1,M2,M3 29 11.6 35 14.0 39 15.6 27 10.8

M3,M1,M2 52 20.8 48 19.2 45 18.0 58 23.2

M3,M2,M1 31 12.4 44 17.6 56 22.4 42 16.8

M2,M1,M3 44 17.6 43 17.2 37 14.8 31 12.4

M2,M3,M1 43 17.2 35 14.0 31 12.4 45 18.0
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Table 3.8: Two-Compartment Scenario, Model Selection Strategy 1 (information criteria) - ADVI

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

DIC

M1,M3,M2 50 20.0 50 20.0 49 19.7 54 21.8

M1,M2,M3 48 19.2 48 19.2 49 19.7 46 18.5

M3,M1,M2 36 14.4 40 16.0 49 19.7 49 19.8

M3,M2,M1 46 18.4 27 10.8 32 12.9 29 11.7

M2,M1,M3 37 14.8 48 19.2 44 17.7 43 17.3

M2,M3,M1 33 13.2 37 14.8 26 10.4 27 10.9

PSIS-LOOIC

M1,M3,M2 46 18.4 50 20.0 45 18.1 57 23.0

M1,M2,M3 42 16.8 43 17.2 34 13.7 42 16.9

M3,M1,M2 44 17.6 46 18.4 59 23.7 58 23.4

M3,M2,M1 42 16.8 38 15.2 35 14.1 24 9.7

M2,M1,M3 35 14.0 28 11.2 45 18.1 37 14.9

M2,M3,M1 41 16.4 45 18.0 31 12.4 30 12.1

WAIC

M1,M3,M2 35 14.0 51 20.4 42 16.9 51 20.6

M1,M2,M3 47 18.8 43 17.2 43 17.3 45 18.1

M3,M1,M2 51 20.4 41 16.4 54 21.7 53 21.4

M3,M2,M1 40 16.0 35 14.0 38 15.3 32 12.9

M2,M1,M3 45 18.0 38 15.2 38 15.3 42 16.9

M2,M3,M1 32 12.8 42 16.8 34 13.7 25 10.1

Dense sampling

DIC

M1,M3,M2 26 10.4 48 19.2 30 12.0 38 15.2

M1,M2,M3 88 35.2 87 34.8 69 27.6 89 35.6

M3,M1,M2 16 6.4 17 6.8 21 8.4 10 4.0

M3,M2,M1 15 6.0 17 6.8 24 9.6 12 4.8

M2,M1,M3 84 33.6 60 24.0 83 33.2 83 33.2

M2,M3,M1 21 8.4 21 8.4 23 9.2 18 7.2

PSIS-LOOIC

M1,M3,M2 28 11.2 48 19.2 30 12.0 38 15.2

M1,M2,M3 90 36.0 90 36.0 73 29.2 86 34.4

M3,M1,M2 18 7.2 19 7.6 20 8.0 8 3.2

M3,M2,M1 15 6.0 13 5.2 24 9.6 13 5.2

M2,M1,M3 80 32.0 60 24.0 81 32.4 86 34.4

M2,M3,M1 19 7.6 20 8.0 22 8.8 19 7.6

WAIC

M1,M3,M2 28 11.2 48 19.2 30 12.0 36 14.4

M1,M2,M3 95 38.0 89 35.6 69 27.6 89 35.6

M3,M1,M2 15 6.0 17 6.8 19 7.6 8 3.2

M3,M2,M1 12 4.8 16 6.4 25 10.0 13 5.2

M2,M1,M3 79 31.6 61 24.4 86 34.4 84 33.6

M2,M3,M1 21 8.4 19 7.6 21 8.4 20 8.0
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Table 3.9: Two-Compartment Scenario, Model Selection Strategy 2 (ELBO) - ADVI only

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

M1,M3,M2 197 78.8 183 73.2 212 85.1 114 45.6

M1,M2,M3 4 1.6 38 15.2 10 4.0 44 17.6

M3,M1,M2 47 18.8 16 6.4 24 9.6 55 22.0

M3,M2,M1 2 0.8 9 3.6 3 1.2 22 8.8

M2,M1,M3 0 0.0 3 1.2 0 0.0 8 3.2

M2,M3,M1 0 0.0 1 0.4 0 0.0 7 2.8

Dense sampling

M1,M3,M2 42 16.8 52 20.8 35 14.0 43 17.2

M1,M2,M3 93 37.2 102 40.8 87 34.8 106 42.4

M3,M1,M2 21 8.4 18 7.2 34 13.6 15 6.0

M3,M2,M1 16 6.4 19 7.6 18 7.2 13 5.2

M2,M1,M3 61 24.4 41 16.4 49 19.6 58 23.2

M2,M3,M1 17 6.8 18 7.2 27 10.8 15 6.0

Table 3.10: Two-Compartment Scenario, Model Selection Strategy 3 (5-fold leave-subject-out cross-validation)

- ADVI only

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

M1,M3,M2 163 65.2 137 57.6 144 66.7 139 57.9

M1,M2,M3 2 0.8 1 0.4 4 1.9 4 1.7

M3,M1,M2 85 34.0 97 40.8 67 31.0 93 38.8

M3,M2,M1 0 0.0 3 1.3 1 0.5 3 1.2

M2,M1,M3 0 0.0 0 0.0 0 0.0 1 0.4

M2,M3,M1 0 0.0 0 0.0 0 0.0 0 0.0

Dense sampling

M1,M3,M2 129 51.6 26 10.4 201 80.4 39 15.6

M1,M2,M3 69 27.6 6 2.4 9 3.6 2 0.8

M3,M1,M2 37 14.8 81 32.4 38 15.2 193 77.2

M3,M2,M1 4 1.6 87 34.8 1 0.4 13 5.2

M2,M1,M3 4 1.6 13 5.2 1 0.4 0 0.0

M2,M3,M1 7 2.8 37 14.8 0 0.0 3 1.2
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Figure 3.79: Two-Compartment Scenario, Model Selection Strategy 1 (information criteria) - MCMC WAIC

values

Figure 3.80: Two-Compartment Scenario, Model Selection Strategy 1 (information criteria) - ADVI WAIC

values
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Figure 3.81: Two-Compartment Scenario, Model Selection Strategy 2 (ELBO) - ADVI −2ELBO values

Figure 3.82: Two-Compartment Scenario, Model Selection Strategy 3 (5-fold leave-subject-out cross-

validation) - ADVI −2l ppdcv values
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3.6.2.9 Model Selection Sensitivity Analysis Tables and Plots

Table 3.11: Two-Compartment Scenario, Model Selection Strategy 1 (information criteria) - ADVI [sensitivity

analysis with βClX1
= 0.1]

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

DIC

M1,M3,M2 42 16.8 31 12.4 36 14.4 39 16.2

M1,M2,M3 47 18.8 40 16.0 39 15.6 53 22.1

M3,M1,M2 25 10.0 55 22.0 40 16.0 42 17.5

M3,M2,M1 38 15.2 30 12.0 49 19.6 20 8.3

M2,M1,M3 54 21.6 50 20.0 44 17.6 46 19.2

M2,M3,M1 44 17.6 44 17.6 42 16.8 40 16.7

PSIS-LOOIC

M1,M3,M2 41 16.4 45 18.0 39 15.6 40 16.7

M1,M2,M3 32 12.8 36 14.4 31 12.4 39 16.2

M3,M1,M2 38 15.2 44 17.6 54 21.6 41 17.1

M3,M2,M1 54 21.6 48 19.2 61 24.4 39 16.2

M2,M1,M3 44 17.6 39 15.6 34 13.6 40 16.7

M2,M3,M1 41 16.4 38 15.2 31 12.4 41 17.1

WAIC

M1,M3,M2 42 16.8 37 14.8 39 15.6 44 18.3

M1,M2,M3 37 14.8 42 16.8 36 14.4 43 17.9

M3,M1,M2 36 14.4 44 17.6 43 17.2 35 14.6

M3,M2,M1 44 17.6 45 18.0 60 24.0 37 15.4

M2,M1,M3 49 19.6 44 17.6 41 16.4 43 17.9

M2,M3,M1 42 16.8 38 15.2 31 12.4 38 15.8

Dense sampling

DIC

M1,M3,M2 63 25.2 47 18.8 48 19.2 31 12.4

M1,M2,M3 21 8.4 27 10.8 39 15.6 43 17.2

M3,M1,M2 53 21.2 56 22.4 42 16.8 38 15.2

M3,M2,M1 47 18.8 56 22.4 51 20.4 72 28.8

M2,M1,M3 30 12.0 30 12.0 42 16.8 26 10.4

M2,M3,M1 36 14.4 34 13.6 28 11.2 40 16.0

PSIS-LOOIC

M1,M3,M2 53 21.2 46 18.4 43 17.2 33 13.2

M1,M2,M3 28 11.2 32 12.8 42 16.8 39 15.6

M3,M1,M2 55 22.0 56 22.4 44 17.6 38 15.2

M3,M2,M1 41 16.4 56 22.4 44 17.6 64 25.6

M2,M1,M3 31 12.4 26 10.4 45 18.0 30 12.0

M2,M3,M1 42 16.8 34 13.6 32 12.8 46 18.4

WAIC

M1,M3,M2 54 21.6 45 18.0 48 19.2 32 12.8

M1,M2,M3 25 10.0 27 10.8 40 16.0 40 16.0

M3,M1,M2 56 22.4 59 23.6 41 16.4 37 14.8

M3,M2,M1 44 17.6 53 21.2 44 17.6 67 26.8

M2,M1,M3 30 12.0 29 11.6 47 18.8 29 11.6

M2,M3,M1 41 16.4 37 14.8 30 12.0 45 18.0

123



Table 3.12: Two-Compartment Scenario, Model Selection Strategy 2 (ELBO) - ADVI only [sensitivity analysis

with βClX1
= 0.1]

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

M1,M3,M2 56 22.4 47 18.8 46 18.4 53 22.1

M1,M2,M3 84 33.6 99 39.6 88 35.2 56 23.3

M3,M1,M2 16 6.4 9 3.6 16 6.4 23 9.6

M3,M2,M1 7 2.8 3 1.2 5 2.0 29 12.1

M2,M1,M3 59 23.6 62 24.8 60 24.0 40 16.7

M2,M3,M1 28 11.2 30 12.0 35 14.0 39 16.2

Dense sampling

M1,M3,M2 67 26.8 55 22.0 51 20.4 26 10.4

M1,M2,M3 25 10.0 26 10.4 40 16.0 44 17.6

M3,M1,M2 48 19.2 50 20.0 35 14.0 40 16.0

M3,M2,M1 37 14.8 50 20.0 50 20.0 70 28.0

M2,M1,M3 29 11.6 31 12.4 37 14.8 25 10.0

M2,M3,M1 44 17.6 38 15.2 37 14.8 45 18.0

Table 3.13: Two-Compartment Scenario, Model Selection Strategy 3 (5-fold leave-subject-out cross-validation)

- ADVI only [sensitivity analysis with βClX1
= 0.1]

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

M1,M3,M2 46 21.8 47 33.1 26 28.3 48 22.5

M1,M2,M3 44 20.9 22 15.5 15 16.3 52 24.4

M3,M1,M2 41 19.4 21 14.8 16 17.4 26 12.2

M3,M2,M1 23 10.9 16 11.3 7 7.6 36 16.9

M2,M1,M3 36 17.1 22 15.5 17 18.5 31 14.6

M2,M3,M1 21 10.0 14 9.9 11 12.0 20 9.4

Dense sampling

M1,M3,M2 38 15.2 49 19.6 18 7.2 51 20.4

M1,M2,M3 109 43.6 90 36.0 114 45.6 72 28.8

M3,M1,M2 7 2.8 8 3.2 8 3.2 22 8.8

M3,M2,M1 8 3.2 12 4.8 9 3.6 17 6.8

M2,M1,M3 67 26.8 62 24.8 78 31.2 63 25.2

M2,M3,M1 21 8.4 29 11.6 23 9.2 25 10.0
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Figure 3.83: Two-Compartment Scenario, Model Selection Strategy 1 (information criteria) - ADVI WAIC

values [sensitivity analysis with βClX1
= 0.1]

Figure 3.84: Two-Compartment Scenario, Model Selection Strategy 2 (ELBO) - ADVI −2ELBO values

[sensitivity analysis with βClX1
= 0.1]
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Figure 3.85: Two-Compartment Scenario, Model Selection Strategy 3 (5-fold leave-subject-out cross-

validation) - ADVI −2l ppdcv values [sensitivity analysis with βClX1
= 0.1]

Figure 3.86: Two-Compartment Scenario, Model Selection Strategy 1 (information criteria) - ADVI WAIC

values [sensitivity analysis with βClX1
= 1]
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Table 3.14: Two-Compartment Scenario, Model Selection Strategy 1 (information criteria) - ADVI [sensitivity

analysis with βClX1
= 1]

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

DIC

M1,M3,M2 52 20.8 55 22.0 54 21.6 47 18.8

M1,M2,M3 49 19.6 66 26.4 58 23.2 62 24.8

M3,M1,M2 64 25.6 34 13.6 52 20.8 36 14.4

M3,M2,M1 32 12.8 29 11.6 21 8.4 30 12.0

M2,M1,M3 27 10.8 45 18.0 42 16.8 56 22.4

M2,M3,M1 26 10.4 21 8.4 23 9.2 19 7.6

PSIS-LOOIC

M1,M3,M2 52 20.8 54 21.6 36 14.4 40 16.0

M1,M2,M3 45 18.0 52 20.8 62 24.8 54 21.6

M3,M1,M2 52 20.8 43 17.2 39 15.6 48 19.2

M3,M2,M1 38 15.2 30 12.0 38 15.2 34 13.6

M2,M1,M3 33 13.2 41 16.4 40 16.0 44 17.6

M2,M3,M1 30 12.0 30 12.0 35 14.0 30 12.0

WAIC

M1,M3,M2 45 18.0 51 20.4 37 14.8 37 14.8

M1,M2,M3 51 20.4 53 21.2 58 23.2 61 24.4

M3,M1,M2 44 17.6 28 11.2 40 16.0 32 12.8

M3,M2,M1 49 19.6 33 13.2 35 14.0 29 11.6

M2,M1,M3 31 12.4 54 21.6 49 19.6 53 21.2

M2,M3,M1 30 12.0 31 12.4 31 12.4 38 15.2

Dense sampling

DIC

M1,M3,M2 51 20.4 60 24.0 45 18.0 59 23.6

M1,M2,M3 51 20.4 28 11.2 39 15.6 47 18.8

M3,M1,M2 39 15.6 80 32.0 48 19.2 52 20.8

M3,M2,M1 48 19.2 45 18.0 41 16.4 36 14.4

M2,M1,M3 26 10.4 14 5.6 36 14.4 36 14.4

M2,M3,M1 35 14.0 23 9.2 41 16.4 20 8.0

PSIS-LOOIC

M1,M3,M2 44 17.6 56 22.4 46 18.4 60 24.0

M1,M2,M3 45 18.0 26 10.4 40 16.0 55 22.0

M3,M1,M2 51 20.4 84 33.6 52 20.8 49 19.6

M3,M2,M1 49 19.6 45 18.0 37 14.8 37 14.8

M2,M1,M3 25 10.0 18 7.2 38 15.2 33 13.2

M2,M3,M1 36 14.4 21 8.4 37 14.8 16 6.4

WAIC

M1,M3,M2 47 18.8 57 22.8 44 17.6 63 25.2

M1,M2,M3 47 18.8 25 10.0 37 14.8 49 19.6

M3,M1,M2 45 18.0 82 32.8 53 21.2 50 20.0

M3,M2,M1 47 18.8 45 18.0 43 17.2 35 14.0

M2,M1,M3 27 10.8 19 7.6 35 14.0 36 14.4

M2,M3,M1 37 14.8 22 8.8 38 15.2 17 6.8
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Table 3.15: Two-Compartment Scenario, Model Selection Strategy 2 (ELBO) - ADVI only [sensitivity analysis

with βClX1
= 1]

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

M1,M3,M2 150 60.0 201 80.4 202 80.8 154 61.6

M1,M2,M3 3 1.2 7 2.8 7 2.8 6 2.4

M3,M1,M2 96 38.4 42 16.8 38 15.2 88 35.2

M3,M2,M1 1 0.4 0 0.0 3 1.2 2 0.8

M2,M1,M3 0 0.0 0 0.0 0 0.0 0 0.0

M2,M3,M1 0 0.0 0 0.0 0 0.0 0 0.0

Dense sampling

M1,M3,M2 102 40.8 79 31.6 79 31.6 81 32.4

M1,M2,M3 28 11.2 27 10.8 36 14.4 50 20.0

M3,M1,M2 74 29.6 100 40.0 72 28.8 73 29.2

M3,M2,M1 41 16.4 38 15.2 41 16.4 27 10.8

M2,M1,M3 1 0.4 2 0.8 9 3.6 10 4.0

M2,M3,M1 4 1.6 4 1.6 13 5.2 9 3.6

Table 3.16: Two-Compartment Scenario, Model Selection Strategy 3 (5-fold leave-subject-out cross-validation)

- ADVI only [sensitivity analysis with βClX1
= 1]

Strong Priors Weak Priors Misspecified Priors Non-informative Priors

Model Order n % n % n % n %

Sparse sampling

M1,M3,M2 155 62.0 170 68.0 159 64.1 195 78.0

M1,M2,M3 0 0.0 0 0.0 0 0.0 0 0.0

M3,M1,M2 95 38.0 80 32.0 89 35.9 55 22.0

M3,M2,M1 0 0.0 0 0.0 0 0.0 0 0.0

M2,M1,M3 0 0.0 0 0.0 0 0.0 0 0.0

M2,M3,M1 0 0.0 0 0.0 0 0.0 0 0.0

Dense sampling

M1,M3,M2 219 87.6 202 80.8 216 86.4 164 65.6

M1,M2,M3 1 0.4 0 0.0 2 0.8 0 0.0

M3,M1,M2 30 12.0 48 19.2 32 12.8 86 34.4

M3,M2,M1 0 0.0 0 0.0 0 0.0 0 0.0

M2,M1,M3 0 0.0 0 0.0 0 0.0 0 0.0

M2,M3,M1 0 0.0 0 0.0 0 0.0 0 0.0
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Figure 3.87: Two-Compartment Scenario, Model Selection Strategy 2 (ELBO) - ADVI −2ELBO values

[sensitivity analysis with βClX1
= 1]

Figure 3.88: Two-Compartment Scenario, Model Selection Strategy 3 (5-fold leave-subject-out cross-

validation) - ADVI −2l ppdcv values [sensitivity analysis with βClX1
= 1]
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3.6.3 Case Study

Table 3.17: Ketorolac Case Study Priors

Parameter Prior Distribution

Clpop logNormal(µ = log(1.17)+0.62,σ = 0.6)
Qpop logNormal(µ = log(3.21)+0.72,σ = 0.7)

V 1pop logNormal(µ = log(168.27)+0.72,σ = 0.7)
V 2pop logNormal(µ = log(119.95)+0.72,σ = 0.7)
T M50 trunc−Normal(min = 0,µ = 50,σ = 14) (for the second model)

Hill logNormal(µ = log(3)+0.52,σ = 0.5) (for the second model)

ωCl logNormal(µ = log(
√

0.5)+0.62,σ = 0.6)

ωQ logNormal(µ = log(
√

0.5)+0.62,σ = 0.6)

ωV 1 logNormal(µ = log(
√

0.5)+0.62,σ = 0.6)

ωV 2 logNormal(µ = log(
√

0.5)+0.62,σ = 0.6)
ρ LKJ(η = 1)
σprop Hal f −Cauchy(µ = 0,σ = 0.2)
σadd Hal f −Cauchy(µ = 0,σ = 0.2)

ωV1, V2 ωV2
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Figure 3.89: MCMC trace plots for ketorolac model with fixed allometric scaling only
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Figure 3.90: MCMC trace plots for ketorolac model with fixed allometric scaling and maturation factor
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CHAPTER 4

Population Pharmacokinetic Analysis of Dexmedetomidine in Children using Real World Data1

4.1 Introduction

Dexmedetomidine is an α2-agonist with anxiolytic, sedative, and analgesic properties with minimal effects on

respiratory depression [111,112]. It is routinely used as part of intraoperative anesthetic management during

surgical repairs of congenital heart disease (CHD) and in the postoperative period in the intensive care unit

(ICU) [113,114] and is commonly dosed as a continuous intravenous (IV) infusion using a fixed weight-based

rate (e.g., starting at 0.3 mcg/kg/h). This dosing regimen will be adequate for some, but necessarily results

in inappropriately low or high dosing for others. The proper dose for these latter individuals is not achieved

until the initial sedation effect is observed, recognized as inadequate or excessive by the clinical team, and the

dose adjusted accordingly. These patients are at risk for dose-related dexmedetomidine side effects, including

bradycardia and hypotension, or use of additional sedative agents, including opioid analgesics. Accurate

prediction of an individual’s dexmedetomidine requirement (precision dosing) could help minimize titration

time to achieve sedation and analgesia goals without toxicity.

Many population pharmacokinetic (PK) studies of dexmedetomidine in pediatric populations have been

reported [115–127]. For example, Potts et al. (2009) [120] report on dexmedetomidine use in 95 pediatric

ICU patients using data pooled from several previous studies, Su et al. (2016) [123] studied 59 children

on mechanical ventilation after open heart surgery, Pérez-Guillé et al. (2018) [119] assessed 30 children

undergoing ambulatory surgery, and Zuppa et al. (2019) [127] examined dexmedetomidine PK among 119

children undergoing cardiac surgery. Most have a small number of individuals and frequent specimen collection.

For pediatric ICU populations, the median sample size is 29.5 (range 18-119), and the median number of total

drug levels collected is 236.5 (range 89 – 1967) with a median of 9 per subject (range 2 – 16) [116,117,119,122–

124,126,127]. Some studies have addressed small sample size with methods that combine information from

multiple populations including pooled pediatric analyses [120], creating “universal” models for children and

adults [115,118], and Bayesian analyses with informative priors [125]; however, even these models only

include information from at most around 130 children.

Previously, studies have identified weight [115–120,122–127] and age [115,117,118,120,123–127], along

1This chapter is adapted from “Population Pharmacokinetic Analysis of Dexmedetomidine in Children using Real World Data from

Electronic Health Records and Remnant Specimens” published in the British Journal of Clinical Pharmacology [110] and has been

reproduced with the permission of the publisher and my co-authors Joseph H. Breeyear, Richard Caprioli, Todd Edwards, Brian Hachey,

Prince J. Kannankeril, Jacob M. Keaton, Matthew D. Marshall, Sara L. Van Driest, and Leena Choi
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with cardiac bypass [123,126,127], as important factors to explain inter-individual variability. However,

lower sample size may limit identification of additional covariates impacting inter-individual variability. For

example, although it is known that dexmedetomidine is rapidly distributed and metabolized in the liver by

two pathways – direct glucuronidation by uridine 5’-diphosphate- glucuronosyltransferase (UGT) 1A4 and

2B10 and cytochrome P450 (CYP) 2A6 mediated aliphatic hydroxylation [112,128] – small studies of the

impact of genetic variation or expression levels of these enzymes have failed to demonstrate pharmacogenetic

associations [129,130]. A study including 260 children demonstrated that carriers of the T allele of CY P2A6

rs835309 had significantly lower concentrations of dexmedetomidine (TT+TG vs. GG, p-value = .025) [131].

A newly developed weighted genetic risk score to predict CY P2A6 activity raises the possibility of better

capturing the impact of variants across this gene for pharmacogenetic analysis [132]. Study of a larger cohort

may allow the identification of genetic biomarkers affecting dexmedetomidine PK, facilitating precision dosing

based on genotype.

We combined data from electronic health records (EHRs) and remnant specimens collected during usual

clinical care to perform a population PK analysis, similar to two previous pediatric fentanyl studies, and

employing a system for constructing PK analysis datasets in R [133–136]. The major goals of this study

were to develop a dexmedetomidine population PK model for children with data obtained from EHRs and

remnant specimens and quantify genetic effects that were selected a priori based on previous studies and

known metabolic pathways.

4.2 Methods

4.2.1 Study Design

This study was approved by the Vanderbilt University Medical Center (VUMC) Institutional Review Board

and has been previously described [136]. In brief, pediatric patients undergoing surgery for CHD are offered

enrollment in this observational study. Parents provide written consent for their child’s participation, and

informed assent is obtained when appropriate. Drug selection and dosing are determined by the primary

clinical team; over the course of study enrollment, clinical leadership provided recommended protocols to

guide clinicians in drug and dose selection for analgesia and sedation (included in the Appendix); however,

final regimens were always at the discretion of the treating clinicians. Remnant specimens from clinical

testing are obtained for drug concentration measurements, which are not disclosed to the clinical teams.

Specimens were not collected in connection with dose administration or to monitor PK characteristics such

as trough concentration or Cmax. Enrollment with remnant specimen collection began in July 2012 and is

ongoing. Data analyzed for this study were collected prior to October 2017. All study participants were
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admitted to the pediatric cardiac ICU after surgery. Enrolled participants were excluded from the analysis

if their surgery was cancelled, if there was missing genotype data, if extracorporeal membrane oxygenation

(ECMO) treatment was required, or if they did not survive to hospital discharge. For those with multiple

surgeries, data from the procedure with the highest number of measured serum drug concentrations were used,

excluding all others. Drug concentrations were excluded if inadequate internal standard concentrations were

detected and insufficient volume remained to repeat analysis, or if they were obtained before any documented

dexmedetomidine dosing.

4.2.2 Data Collection

Demographic data (including parent-reported race) and medical history were documented at the time of study

enrollment. Surgical and clinical data were extracted from the EHR prospectively. Dexmedetomidine dosing,

including scheduled boluses, as-needed intermittent boluses, and continuous infusions after the postoperative

admission to the ICU were determined from the EHR and the Vanderbilt Enterprise Data Warehouse. The

Enterprise Data Warehouse contains nurse administration, nurse flowsheets, and pharmacy dispense data,

enabling the computation of administered drug amounts over specific time periods. Study data were collected

and managed using REDCap electronic data capture tools, a secure, web-based application hosted at Vanderbilt

University [137].

4.2.3 Drug Concentration Measurement

For the purposes of drug concentration analysis, all remnant plasma specimens ≥ 100 µL from blood obtained

for clinical testing of electrolyte or basic metabolic panels in study subjects were obtained from the Vanderbilt

Clinical Chemistry Laboratory and stored at -20ºC until processing for drug concentration analysis in the

Vanderbilt Mass Spectrometry Research Core. Specimen processing and mass spectrometry analysis have

been previously described in detail [136]. Briefly, acetonitrile precipitation was followed by tandem mass

spectrometry using a 16-drug assay. Dexmedetomidine assay accuracy is 89 – 112%, and the lower and upper

limits of quantification (LLOQ and ULOQ) are 0.005 and 5 ng/mL.

4.2.4 Genotyping and CYP2A6 Activity Score Prediction

Study participants provided a peripheral blood sample for genetic analysis. Genomic DNA was extracted

through the Vanderbilt Technologies for Advanced Genomics (VANTAGE) Core laboratory and study partici-

pants were genotyped using either the Axiom™ Precision Medicine Research Array or the Precision Medicine

Diversity Array according to manufacturer protocols at the Children’s Hospital of Philadelphia DNA core. As

part of genotype data quality control, variants were removed if genotype call rate was <98%, if minor allele
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frequency was >20% different from 1000 Genomes phase 3 European reference populations, or for deviation

from Hardy-Weinberg Equilibrium (p–value < 1×10−10, results shown in Table 4.7). Individuals were re-

moved if their genotype call rate was <98%, the genetically estimated sex differed from parental-reported sex,

or for relatedness (2nd degree or closer). Genotype data were imputed to the 1000 Genomes phase 3 reference

panel. All non-synonymous, stop gain, and splice site variants in UGT 2B10 and UGT 1A4 with minor allele

frequency >0.005 were included in the analysis (UGT 2B10 variants: rs2942857, rs112561475, rs61750900;

UGT 1A4 variants rs2011425, rs3892221, rs6755571). For CY P2A6, enzyme activity was predicted using a

polygenic score based on rs56113850, rs2316204, rs113288603, rs28399442, rs1801272, and rs28399433,

using a previously published method [132].

4.2.5 Data Processing

Data was processed using the modularized EHRtoPKPD system for postmarketing population PK studies with

real-world data from EHRs [133]. This system has been implemented in the R software [138] package EHR

[135] which includes interactive checks for data quality to reconcile missing, duplicate, and other erroneous

concentration or dosing information. Output from the EHR package was further cleaned by removing: (i)

concentration measurements more than 150 hrs (approximately 50 times dexmedetomidine half-life) after

the end of the final bolus or infusion dose, (ii) concentration measurements below the LLOQ if they are

after the final bolus or infusion dose, except for the first such measurement, (iii) concentration measurements

above the ULOQ, (iv) subjects whose only concentration measurements are below the LLOQ after applying

criteria (i)-(iii), and (v) subjects with missing dose information indicated by increases in concentration without

an accompanying dose and confirmed by manual chart review. Serum creatinine concentration was a time-

varying covariate typically measured concurrently with dexmedetomidine concentration. If serum creatinine

was not available when dexmedetomidine concentration was measured, we selected the serum creatinine

concentration measured closest to the dexmedetomidine concentration data within 7 days. For each subject,

weight varied little within the timeframe of available concentration data, so most weight data were the same

as the baseline demographic measurements. When additional weight measurements were available, usually

during infusion, weight measurements obtained at the same time as the dosing event were used. Measures of

albumin concentration were available within a 7-day window for only 48 subjects, precluding use of albumin

concentration as a covariate.

4.2.6 Population Pharmacokinetic Analysis

We performed population PK analysis of dexmedetomidine using nonlinear mixed-effects models imple-

mented by Monolix (version 2020R1) [139] and estimated the parameters with the stochastic approximation
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expectation-maximization (SAEM) algorithm. Observed concentrations below the LLOQ were considered

to be censored between 0 and 0.005 ng/mL and were handled in the modeling using the likelihood (M3)

method for interval censoring [140,141]. After the model parameters were estimated with SAEM, the objective

function value (OFV) was calculated using Monte Carlo importance sampling with 10,000 samples from a

Student-t proposal distribution and degrees of freedom chosen by testing a sequence of values (ν=1, 2, 5, 10,

15). Because the SAEM estimation method includes stochastic variability and can sometimes fail to converge

in a setting with sparse sampling [142], we performed 5 runs with different random seeds for each model and

selected the run with median OFV for model comparison. Additional details on the SAEM algorithm settings

are included in the Appendix.

For model selection we used a likelihood ratio test to compare differences in estimated OFV for nested models

and corrected Bayesian Information Criteria (BICc) to compare non-nested models [143]; relative standard

errors, parameter estimate values, magnitude of random effects and change in CV% were also considered.

In addition, we used several graphical methods for model evaluation including observed vs. population

and individual predictions, individual weighted residuals vs. predicted concentration and time, correlations

between samples from the conditional random effects distributions, samples from the conditional random

effects distributions vs. covariates, and prediction corrected visual predictive checks [144,145].

All covariates were chosen a priori based on previous research and biological plausibility, including UGT 1A4,

UGT 2B10, and CY P2A6 variants, age, sex, Society of Thoracic Surgery–European Association for Cardio-

Thoracic Surgery (STAT) Congenital Heart Surgery Mortality score [146], cardiac bypass time, length of ICU

stay, and serum creatinine. We explored the effects of covariates on total clearance and volume of distribution

parameters, and graphical checks were examined for possible relationships between covariates and all main

population PK parameters.

Model building proceeded in two stages; we first considered all covariates except UGT 1A4, UGT 2B10, and

CY P2A6 to build an adequate model for dexmedetomidine PK and then examined the hypothesized association

between the genotype variables and total clearance by adding these effects individually to the stage one

model. For stage one we explored models with various structural, residual error, and inter-individual variance

components and adjusted for non-genotype covariates. Following a strategy outlined by Bonate (2011), we

began with richly parameterized inter-individual variability and residual error models including all random

effects, all correlations between random effects, and combined additive and proportional residual error, and

then simplified this structure [55]. We examined the structural model by comparing one- and two-compartment

models without covariates. Following this we considered size and age maturation; these two covariates

have been shown to be important factors in pediatric PK models with a large age range and in previous
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dexmedetomidine studies [115,118,120,125,147–149]. For size, we employed an allometric weight model with

fixed or estimated scaling parameters. For maturation, we considered an exponential age model, a sigmoid Hill

maturation model, a body-weight dependent exponent model, and an age-dependent exponent model [150].

Next, we investigated whether other non-genotype covariates improved the model with size and maturation

factors and refined the residual and inter-individual variance structure. Each covariate was considered as an

exponentially linear or categorical term.

In the second stage we tested for the association between genotype and total clearance by including these effects

in the model found in stage one. For UGT 1A4 and UGT 2B10, dichotomous models (coding individuals as

having a loss-of-function variant or not) and additive models (counting the number of variants) were considered.

For CY P2A6, the predicted enzyme activity was included as an exponential term [132]. Details of all models

explored along with specific mathematical relationships, estimated OFV, and BICc are shown in Tables 4.10 –

4.17. Graphical checks for the model selection process are shown in Figures 4.11 – 4.35.

4.3 Results

4.3.1 Study Population and Specimens

We collected 4,369 residual plasma specimens from 620 subjects. After removing 89 subjects with unknown

sample collection time, 108 subjects with no dosing information within 7 days of the first concentration

measurement, and 12 subjects due to in hospital mortality or ECMO, the output of the EHR package pipeline

contained 411 subjects with 2,172 dexmedetomidine concentration measurements. The further cleaning steps

described above removed 14 subjects and 43 more subjects without genotype information were also removed.

The study cohort flow diagram of data processing is shown in Figure 4.1, and the final study population of 354

subjects with 1,400 specimens is described in Tables 4.1 and 4.2. The median postnatal age was 16 months

(interquartile range [IQR] 5 – 62), median postmenstrual age was 105 weeks (IQR 62 - 304) and median

weight was 9.4 kg (IQR 6.0 – 18.2). The age and weight distributions are shown in Figures 4.9 and 4.10 and

Table 4.8 shows postnatal age categories. There were 262 subjects (74%) with no variants of UGT 1A4, 87

(25%) with 1 variant and 5 (1%) with 2 variants. For UGT 2B10, 186 subjects (53%) had no variants, 117

(33%) had 1 variant and 51 (14%) had 2 or 3 variants. The CY P2A6 predicted activity score was available

for 350 of the 354 subjects (median 2.04, IQR 2.00 – 2.21). There were 2,386 dexmedetomidine dosing

events including 2,351 IV infusions and 35 bolus administrations. The median infusion rate was 0.6 mcg/kg/hr

(IQR 0.5 – 1.0) and the median infusion duration was 2 hours (IQR 1 - 5); the median bolus dose was 1.0

mcg/kg (IQR 0.96 – 1.01). The top ten concomitant medications were acetaminophen (92.5%), cefazolin

(92%), famotidine (89.1%), morphine (88.5%), furosemide (80.5%), fentanyl (77.9%), rocuronium (69.5%),
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oxycodone (59.8%), heparin (58.3%), and lorazepam (51.4%). Table 4.9 includes all concomitant medications

administered to at least 5% of subjects. The number of dexmedetomidine concentration measurements per

subject varied from a minimum of 1 to a maximum of 18 with a median of 3 specimens (IQR 2 – 5). The

median time of first dexmedetomidine measurement after dose start was 5 hours (IQR 4 – 11) and the median

time of final dexmedetomidine measurement after dose start was 68 hours (IQR 39 – 131).

Figure 4.1: Study Cohort Flow Diagram in Data Processing with Exclusion Criteria. ECMO, extracorporeal

membrane oxygenation; LLOQ, lower limit of quantification; ULOQ, upper limit of quantification.
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Table 4.1: Dexmedetomidine Study Cohort Characteristics

Cohort

n 354

Postnatal Age (months) 15.7 (5.34-61.77) [0.03-270.9]

Postmenstrual Age (weeks) 104.64 (61.75-303.75) [39.14-1200]

Median weight (kg) 9.41 (6-18.15) [2-138]

Gender

Male 183 (52%)

Female 171 (48%)

Race

White 292 (83%)

Black 40 (11%)

American Indian or Alaska Native 2 (1%)

Asian 6 (2%)

Other 5 (1%)

Unknown 8 (2%)

Median serum creatinine (mg/dL) 0.49 (0.44-0.56) [0.24-1.12]

STAT score

1 154 (44%)

2 108 (31%)

3 41 (12%)

4 46 (13%)

5 5 (1%)

UGT1A4 variants

0 262 (74%)

1 87 (25%)

2 5 (1%)

UGT2B10 variants

0 186 (53%)

1 117 (33%)

2 or 3 51 (14%)

CYP2A6 score* 2.04 (2-2.21) [1.58-2.43]

Cardiac bypass time (mins) 100 (71-143.75) [0-426]

Length of ICU hospitalization (days) 4 (2-6) [1-120]

Continuous variable summary statistics: median (interquartile range) [mini-

mum, maximum]; Categorical variable summary statistics: n (%); ICU, Inten-

sive Care Unit; STAT, Society of Thoracic Surgery–European Association for

Cardio-Thoracic Surgery Congenital Heart Surgery Mortality score
* Among n = 350 subjects with available score.
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Table 4.2: Dexmedetomidine Dosing and Specimen Sampling

Cohort

Total dosing events* 2386

IV infusion doses 2351

Infusion duration (mins) 120 (60-306) [1-7536]

Infusion rate (mcg/kg/hr) 0.6 (0.5-1) [0.03-2]

Bolus doses 35

Bolus dose amount (mcg/kg) 1 (0.96-1.01) [0.06-4.21]

Dosing events per subject 5 (3-8) [1-37]

Total dexmedetomidine concentration

measurements

1400

Concentration measurements below

lower limit of quantification

120

Concentration measurements per

subject

3 (2-5) [1-18]

First concentration measurement time

after dose start (hr)

5.29 (3.73-11.27) [0-178.5]

Final concentration measurement time

after dose start (hr)

67.62 (39.31-130.54) [2-659.87]

Continuous variable summary statistics: median (interquartile range) [mini-

mum, maximum]
* A dosing event is defined as a bolus administration or an infusion interval with

constant administration rate for a specific duration.
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4.3.2 Population Pharmacokinetic Model

In the first stage of modeling, a two-compartment model with additive and proportional residual error was

chosen as the base model based on BICc and graphical checks. The main PK parameters are total clearance

(CL, L/h), volume of distribution for the central compartment (V 1, L), inter-compartmental clearance (Q, L/h)

and volume of distribution for the peripheral compartment (V 2, L). The results for the base and covariate

models without genotype are presented in Table 4.18. The coefficients of variation (CV) for CL, V 1, Q, and

V 2 in the base model were 201%, 161%, 146%, and 672%, respectively. Including weight as covariate for

all PK parameters with fixed allometric scaling parameters substantially improved the model fit (both OFV

and BICc decreased by 406 from the base model, Table 4.18) and plots of individual predicted vs. observed

concentration, individual weighted residuals vs. predicted concentration and random effects vs. covariates

also improved (Figures 4.16 – 4.20). The CV for CL, V 1, Q, and V 2 were 123%, 168%, 91%, and 857%,

respectively. Using estimated allometric parameters did not improve the model fit. Among the four models

adjusting for both weight and age maturation, the model with sigmoid postmenstrual age maturation had

the largest improvement in BICc compared to the model with only weight (difference of 8.2, Table 4.12).

This model was further simplified by estimating models with fixed effects for V 2 or V 2 and Q, no additive

residual error component, and several correlation structures for the covariance between random effects (Table

4.13). While the estimated CV% was large for some parameters, especially for V 2, the models with fixed

effects for V 2 or V 2 and Q had significantly worse model fit (both OFV and BICc increased by greater than

400). The final model without genetic effects includes proportional residual error, fixed allometric scaling for

all parameters and sigmoid (Hill) maturation for total clearance, random effects for all PK parameters and

correlation only between the random effects of CL and V1 (Table 4.3). The condition number for this simplified

model (calculated as the ratio of the maximum to the minimum eigenvalues) was 26.03, suggesting our final

model was not ill-conditioned [55]. No further improvement was seen by adding other covariates including

either form of UGT 1A4 or UGT 2B10 or predicted CY P2A6 activity score (Tables 4.4, 4.5, and 4.6) to the

clearance submodel. No strong covariate effects were seen for V1, Q, or V 2 based on graphical goodness-of-fit

plots and adding covariates to the V1 or V 2 submodels did not meaningfully improve the model. The final
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covariate model is described as follows:

CLi = θ1×
(

WTi

70

)0.75

× 1

1+
(

T M50
PMAi

)Hill
× exp(ηCL

i )

V 1i = θ2×
(

WTi

70

)

× exp(ηV 1
i )

Qi = θ3×
(

WTi

70

)0.75

× exp(ηQ
i )

V 2i = θ4×
(

WTi

70

)

× exp(ηV 2
i )

where CLi, V 1i, Qi, and V 2i are the individual-specific PK parameters corresponding to CL, V 1, Q, and

V 2, WTi is subject weight in kilograms (kg); and PMAi is subject postmenstrual age in weeks. The ηCL
i ,

ηV 1
i , ηQ

i , and ηV 2
i are random effects explaining inter-individual variability for the PK parameters which

follow a normal distribution with mean zero and variance of ω2
CL, ω2

V 1, ω2
Q, and ω2

V 2, respectively. The

θs are estimated model parameters. Diagnostic plots for the final model are shown in Figures 4.2 - 4.7.

The plot of observed dexmedetomidine concentrations vs. population predictions reflects the relatively large

inter-individual variability and potential misspecification for small concentration values, however no major

deficiencies in the structural or error models are seen when comparing observed and individual predicted

concentrations. No trends were detected in plots of individual weighted residuals vs. predicted concentration

or time. The prediction-corrected visual predictive check showed good agreement between the observed and

theoretical median and 90th percentiles; model misspecification is seen for the 10th percentile where many

values are below the LLOQ and were simulated from the estimated model and where data are sparse (e.g.,

times greater than 5 days after first dose).

The estimates of CL, V 1, Q and V 2 in terms of a standard weight of 70 kg are shown in Table 4.3: CL (θ1) =

27.3 L/h, V 1 (θ2) = 161 L, Q (θ3) = 26.0 L/h, and V 2 (θ4) = 7903 L. We estimate CL, V 1, Q and V 2 as 6.04

L/h, 21.6 L, 5.7 L/h, and 1061.26 L for a child at the median weight of 9.4 kg and median postmenstrual age

of 104.6 weeks; After including covariates, the CV for CL was substantially reduced from 201% estimated in

the base model to 123% in the weight only model to 103% in the final model. CV remains large for some

parameters, especially V 2 (624%) and V 1 (138%), likely due to lack of data to accurately estimate them.

Despite this, allowing random effects for all the main PK parameters results in a significantly better model fit

than assuming no variability for these parameters.
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Table 4.3: Estimates from Final Model without Genetic Covariates

Weight and Maturation with simplified variance structure

(Obj = -1915.1, BICc = -1835.0)

Parameters Estimates (SE) [95% CI]a Relative SE (%)

Cl = θ1(WT/70)0.75

(

1

1+
(

T M50
PMA

)Hill

)

θ1 27.3(1.82) [24.0,31.1] 6.64

T M50 41.9(0.28) [41.4,42.5] 0.65

Hill 7.04(0.022) [6.99,7.08] 0.30

V1 = θ2(WT/70)

θ2 161(12.1) [139,187] 7.47

Q = θ3(WT/70)0.75

θ3 26.0(1.90) [22.5,30.0] 7.29

V2 = θ4(WT/70)

θ4 7903(1408) [5617,11119] 17.8

ωCl (%CV ) 103(8) [88,120] 7.77

ωV 1 (%CV ) 138(13) [114,166] 9.48

ωQ (%CV ) 82(9) [65,102] 11.6

ωV 2 (%CV ) 624(157) [391,1048] 25.1

ρCl,V 1 0.923(0.027) [0.871,0.975] 2.92

other ρ terms 0 (fixed) -

σadd (ng/mL) 0 (fixed) -

σprop (%CV ) 50.5(1.6) [47.5,53.5] 3.16
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Table 4.4: Estimates from Categorical Gene Models for UGT 1A4 or UGT 2B10

UGT 1A4 categorical gene model UGT 2B10 categorical gene model

(Obj = -1918.3, BICc = -1832.4) (Obj = -1913.8, BICc = -1827.9)

Parameters Estimates (SE)

[95% CI]a

Relative

SE (%)

Parameters Estimates (SE)

[95% CI]

Relative

SE (%)

Cl = θ1(WT/70)0.75

×






1

1+
(

T M50
PMA

)Hill






× exp(θ5I[UGT 1A4 > 0])

Cl = θ1(WT/70)0.75

×






1

1+
(

T M50
PMA

)Hill






× exp(θ5I[UGT 2B10 > 0])

θ1

24.0(2.19)

[20.1,28.7]

9.14 θ1

20.4(2.07)

[16.8,24.9]

10.1

T M50

42.2(0.041)

[42.1,42.3]

0.096 T M50

45.7(0.078)

[45.6,45.9]

0.16

Hill
4.17(0.0016)

[4.16,4.17]

0.037 Hill
4.96(0.0073)

[4.95,4.97]

0.14

θ5

−0.221(0.16)

[−0.54,0.09]

-72.5 θ5

−0.104(0.11)

[−0.32,0.11]

-106.4

V1 = θ2(WT/70) V1 = θ2(WT/70)

θ2

169(20.4)

[133,213]

12.0 θ2

178(12.6)

[155,204]

7.11

Q = θ3(WT/70)0.75 Q = θ3(WT/70)0.75

θ3

31.2(2.74)

[26.3,37.1]

8.78 θ3

33.2(1.84)

[29.8,37.0]

5.52

V2 = θ4(WT/70) V2 = θ4(WT/70)

θ4

14346(2782)

[9908,20770]

19.3 θ4

19655(2804)

[14921,25889]

14.3

ωCl (%CV ) 113(13) [90,140] 11.1 ωCl (%CV ) 131(13) [108,158] 9.79

ωV 1 (%CV ) 139(31) [88,216] 22.5 ωV 1 (%CV ) 126(12) [104,152] 9.53

ωQ (%CV ) 67(7) [54,81] 10.4 ωQ (%CV ) 67(6) [56,79] 8.63

ωV 2 (%CV ) 640(158) [404,1067] 24.7 ωV 2 (%CV ) 544(114) [367,837] 21.0

144



Table 4.4: Estimates from Categorical Gene Models for UGT 1A4 or UGT 2B10 (continued)

Parameters Estimates (SE)

[95% CI]a

Relative

SE (%)

Parameters Estimates (SE)

[95% CI]

Relative

SE (%)

ρCl,V 1

0.953(0.043)

[0.869,1.0]

4.51 ρCl,V 1

0.939(0.018)

[0.904,0.974]

1.91

other ρ terms 0 (fixed) - other ρ terms 0 (fixed) -

σadd (ng/mL) 0 (fixed) - σadd (ng/mL) 0 (fixed) -

σprop (%CV )
50.6(1.6)

[47.5,53.8]

3.16 σprop (%CV )
50.7(1.6)

[47.6,53.8]

3.15

Table 4.5: Estimates from Additive Gene Models for UGT 1A4 or UGT 2B10

UGT 1A4 additive gene model UGT 2B10 additive gene model

(Obj = -1917.6, BICc = -1831.7) (Obj = -1917.3, BICc = -1831.4)

Parameters Estimates (SE)

[95% CI]a

Relative

SE (%)

Parameters Estimates (SE)

[95% CI]

Relative

SE (%)

Cl = θ1(WT/70)0.75

×






1

1+
(

T M50
PMA

)Hill






× exp(θ5UGT 1A4)

Cl = θ1(WT/70)0.75

×






1

1+
(

T M50
PMA

)Hill






× exp(θ5UGT 2B10)

θ1

23.8(2.47)

[19.5,29.1]

10.3 θ1

23.5(2.43)

[19.2,28.7]

10.3

T M50

47.6(0.136)

[47.3,47.9]

0.28 T M50

41.6(0.206)

[41.2,42.0]

0.49

Hill
5.55(0.013)

[5.53,5.58]

0.23 Hill
17.6(0.052)

[17.5,17.7]

0.29

θ5

−0.166(0.12)

[−0.406,0.073]

-73.4 θ5

−0.108(0.068)

[−0.241,0.025]

-63.1

V1 = θ2(WT/70) V1 = θ2(WT/70)

θ2

171(16.2)

[142,206]

9.48 θ2

161(14.2)

[136,191]

8.78

Q = θ3(WT/70)0.75 Q = θ3(WT/70)0.75
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Table 4.5: Estimates from Additive Gene Models for UGT 1A4 or UGT 2B10 (continued)

Parameters Estimates (SE)

[95% CI]a

Relative

SE (%)

Parameters Estimates (SE)

[95% CI]

Relative

SE (%)

θ3

31.6(2.1)

[27.7,36.0]

6.67 θ3

31.5(2.2)

[27.5,36.0]

6.95

V2 = θ4(WT/70) V2 = θ4(WT/70)

θ4

16576(3229)

[11431,24038]

19.4 θ4

12588(2603)

[8495,18654]

20.6

ωCl (%CV ) 110(10) [91,131] 9.28 ωCl (%CV ) 109(12) [88,135] 10.8

ωV 1 (%CV ) 136(18) [104,177] 13.2 ωV 1 (%CV ) 139(14) [113,170] 10.4

ωQ (%CV ) 69(7) [56,84] 10.1 ωQ (%CV ) 64(7) [52,78] 10.2

ωV 2 (%CV ) 548(120) [364,858] 21.8 ωV 2 (%CV ) 792(212) [482,1377] 26.7

ρCl,V 1

0.933(0.03)

[0.88,0.99]

3.10 ρCl,V 1

0.943(0.04)

[0.87,1.0]

3.92

other ρ terms 0 (fixed) - other ρ terms 0 (fixed) -

σadd (ng/mL) 0 (fixed) - σadd (ng/mL) 0 (fixed) -

σprop (%CV )
50.4(1.6)

[47.4,53.5]

3.17 σprop (%CV )
50.6(1.6)

[47.5,53.7]

3.16
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Table 4.6: Estimates from Models using Weight and Maturation with Simplified Variance Structure in CY P2A6

Subset

Without CY P2A6 score With CY P2A6 score

(Obj = -1889.2, BICc = -1809.3) (Obj = -1889.9, BICc = -1804.2)

Parameters Estimates (SE)

[95% CI]a

Relative

SE (%)

Parameters Estimates (SE)

[95% CI]

Relative

SE (%)

Cl = θ1(WT/70)0.75

×






1

1+
(

T M50
PMA

)Hill






Cl = θ1(WT/70)0.75

×






1

1+
(

T M50
PMA

)Hill






× exp(θ5(CY P2A6score))

θ1

30.5(2.16)

[26.5,35.0]

7.09 θ1

24.8(14.7)

[9.42,65.2]

59.3

T M50

41.5(0.046)

[41.4,41.6]

0.11 T M50

42.6(0.098)

[42.4,42.8]

0.23

Hill
4.52(0.011)

[4.50,4.54]

0.24 Hill
7.45(0.015)

[7.42,7.48]

0.19

θ5

0.0885(0.28)

[−0.46,0.64]

319.2

V1 = θ2(WT/70) V1 = θ2(WT/70)

θ2

157(16.1)

[128,191]

10.2 θ2

152(12.1)

[130,178]

7.97

Q = θ3(WT/70)0.75 Q = θ3(WT/70)0.75

θ3

24.8(1.99)

[21.2,29.0]

8.00 θ3

24.5(1.78)

[21.2,28.2]

7.25

V2 = θ4(WT/70) V2 = θ4(WT/70)

θ4

5720(1129)

[3925,8335]

19.7 θ4

5756(1017)

[4102,8077]

17.6

ωCl (%CV ) 103(10) [86,124] 9.38 ωCl (%CV ) 100(8) [86,116] 7.70

ωV 1 (%CV ) 129(20) [95,173] 15.0 ωV 1 (%CV ) 138(15) [111,171] 10.9

ωQ (%CV ) 87(10) [69,109] 11.5 ωQ (%CV ) 86(9) [69,106] 10.8

ωV 2 (%CV ) 514(118) [334,825] 23.0 ωV 2 (%CV ) 549(133) [349,906] 24.2
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Table 4.6: Estimates from Models using Weight and Maturation with Simplified Variance Structure in CY P2A6

Subset (continued)

Parameters Estimates (SE)

[95% CI]a

Relative

SE (%)

Parameters Estimates (SE)

[95% CI]

Relative

SE (%)

ρCl,V 1

0.945(0.03)

[0.88,1.0]

3.28 ρCl,V 1

0.942(0.02)

[0.91,0.98]

1.80

other ρ terms 0 (fixed) - other ρ terms 0 (fixed) -

σadd (ng/mL) 0 (fixed) - σadd (ng/mL) 0 (fixed) -

σprop (%CV )
50.8(1.6)

[47.6,54.0]

3.14 σprop (%CV )
50.7(1.6)

[47.7,53.8]

3.15

Notes for Tables 4.3 - 4.6:

SE, standard error; Obj, objective function value; BICc, corrected Bayesian information criteria; CL, total clearance (L/hr); Q, intercompartmental

clearance (L/hr); V1, volume of distribution for the central compartment (L); V2, volume of distribution for the peripheral compartment (L); T M50

postmenstrual age at which clearance is 50% of adult value; Hill, maturation factor slope coefficient; CV, coefficient of variation; WT , body

weight in kg; PMA, postmenstrual age in weeks; ωCL, ωV 1, ωQ, ωV 2, the standard deviation for ηCL
i , ηV 1

i , ηQ
i , ηV 2

i , respectively; For the standard

deviation of random effects, ω , coefficient of variation was calculated as CV% = 100×
√

exp(ω2)−1; ρ are correlation terms between random

effects; σprop and σadd are proportional and additive residual error terms.

a 95% asymptotic confidence intervals (CIs)

Figure 4.2: Diagnostic plots for the final population pharmacokinetic model. (A) Observed dexmedetomidine

concentrations vs. population predicted and (B) individual predicted concentrations. Filled circles indicate

observed values, x indicates simulated values based on the estimated model for observations below the lower

limit of quantification (0.005 ng/mL), blue lines are loess smoothers and the solid black lines represent the line

of identity.
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Figure 4.3: Diagnostic plots for the final population pharmacokinetic model. (A) Individual weighted residuals

vs. predicted concentrations and (B) time. Blue lines are loess smoothers and the black horizontal lines at zero

represent no trend.

Figure 4.4: Diagnostic plots for the final population pharmacokinetic model. Correlation between random

effects. Blue lines are least-squares fits.
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Figure 4.5: Diagnostic plots for the final population pharmacokinetic model. Random effects vs. continuous

covariates. Blue lines are loess smoothers.

Figure 4.6: Diagnostic plots for the final population pharmacokinetic model. Random effects vs. categorical

covariates.
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Figure 4.7: Diagnostic plots for the final population pharmacokinetic model. Prediction-corrected visual

predictive check with 10th, 50th and 90th percentile of observed values (solid lines) and theoretical values

(dashed lines) along with 90% prediction interval for theoretical percentiles (shaded region). Filled circles

indicate observed values, x indicates simulated values based on the estimated model for observations below

the lower limit of quantification of 0.005 ng/mL (represented by a horizontal grey line); time was binned using

the least-squares criteria.
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Figure 4.8: Predicted clearance by weight for selected ages from the final weight and age maturation model.

Plausible weight ranges for each age group are: 41 weeks (2.7–5.1 kg), 45 weeks (3.3–6.1 kg), 53 weeks

(4.5–8.0 kg), 69 weeks (6.3–10.8 kg), 93 weeks (8.1–13.4 kg), 117 weeks (9.3–14.9 kg), 183 weeks (11.2–18.1

kg). Overlapping lines between different age categories represent weights that are plausible for multiple age

groups.
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Model estimated clearance from the final model for seven age groups across a range of plausible weights

is shown in Figure 4.8 (overlap between lines indicates weights that are plausible for multiple age groups).

Weight impacts mean estimated CL for all ages while postmenstrual age has a large impact only for the

youngest age groups. For those over 93 weeks postmenstrual age, maturation is near adult level and mean

estimated CL is primarily determined by weight.

4.3.3 Genetic Effects on Clearance and Concentration

UGT 1A4, UGT 2B10, and CY P2A6 were not significant at the α = 0.05 level. For the UGT 1A4 categorical

gene model the estimated effect of any variants vs. no variants was -0.221 (95% CI: -0.54 to 0.09) for a 20%

decrease [exp(-0.221) ≈ 0.80] in CL on average for those with any UGT 1A4 variants holding age and weight

constant. In the UGT 1A4 additive gene model, the estimated effect of each additional variant was -0.166 (95%

CI: -0.406 to 0.073). For the UGT 2B10 categorical model, the estimated genotype effect was -0.104 (95% CI:

-0.32 to 0.11), indicating a 10% decrease on average. The UGT 2B10 additive model estimated the effect of

additional variants as -0.108 (95% CI: -0.241 to 0.025). For the CY P2A6 model, the estimated effect of a unit

increase in risk score was 0.0885 (95% CI: -0.46 to 0.64).

Although these effects are not statistically significant using the α = 0.05 threshold, we perform simulations to

assess the hypothetical impact on total clearance and clinical dosing if the categorical UGT 1A4 or UGT 2B10

model estimates were utilized. Results are included in Figures 4.37 – 4.42. Including these effects in the PK

model has a negligible impact on dosing.

4.4 Discussion

Using remnant specimens along with dosing, clinical, and demographic information from an EHR system we

were able to develop a dexmedetomidine population PK model for a large pediatric cohort of 354 patients.

We identified patient characteristics that alter the PK profile. This study is one of the largest pediatric

dexmedetomidine population PK studies reported.

We confirmed a structural model and covariate relationships which are in line with those previously reported

for dexmedetomidine PK. Specifically, our model included both weight and age maturation effects on CL. We

estimated a weight-standardized CL of 27.3 L/h (CV 103%). Our estimated CL is somewhat smaller (with

larger CV) than those reported in other pediatric PK studies. For a standard weight of 70 kg, Potts et al. (2009)

[120] found a population CL estimate of 42.1 L/h (CV 30.9%); including a scaling factor of 0.73 for children

given infusion (vs. bolus) reduced the CL estimate to 30.7 L/h. Zuppa et al. (2019) [127] estimated CL of

37.3 L/h (CV 48%) for neonates and infants age 0 – 6 months after cardiac bypass and Su et al. (2016) [123]
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estimated CL as 39.4 L/h (CV 28%) for children age 1 – 24 months after open heart surgery. The discrepancy

between studies could be related to several factors including study design and study population. For example,

our study used sparse and opportunistic sampling and included a more heterogenous population which included

older children and teenagers while the other studies used densely measured drug levels and were performed in

a well-controlled clinical setting with a younger and more homogeneous population.

After controlling for weight and age maturation, we found little evidence to support the importance of variants

in UGT 1A4, UGT 2B10, or predicted CY P2A6 activity in explaining variability of CL between subjects. There

were no significant improvements to the model when genetic data were included. The largest potential effect

was a 20% decrease in CL due to variants in UGT 1A4. While this may appear to be a substantial change,

modeling of the effects of this difference in clearance demonstrated this does not translate to a clinically

relevant difference in dosing of dexmedetomidine. Using population PK models derived from EHR data and

remnant specimens offers the possibility of more accurate prediction of individual dosing requirements in a

real-life setting, especially in populations where large, intensive-sampling PK clinical trials are difficult to

perform due to ethical or logistical considerations. The results from such model-informed precision dosing

could also be integrated into EHR-embedded decision support tools; the development and implementation of

several of these tools has been recently described by Mizuno et al. (2020) [151] and Vinks et al. (2020) [152].

There are several limitations related to the use of EHR and remnant specimens for our study. Although our

data were generated using a standardized system to construct the PK data [133], there may be some errors due

to inherent limitations of EHR data, which is not primarily collected for research use. First, data collected for

clinical purposes may be subject to errors related to data entry or missingness. Further, real-world dosing data

are not standardized with large heterogeneity in the frequency, duration, and timing of administered infusion

and bolus doses. In addition, the specimens are very sparse for some subjects and their collection is not timed

to facilitate optimal PK estimation. These limitations may be related to the imprecision in estimates for some

PK parameters, notably V 2. Future studies could address some of these limitations by incorporating prior

information from previous or smaller pilot studies with more densely sampled data.

Despite these limitations, our study provides further evidence for the feasibility of using EHR data and remnant

specimens for population PK analysis. Our study findings, such as weight effects on CL, could be helpful

to develop a model-based dosing that may be superior to the current fixed weight-based dosing scheme.

However, this should be tested in a future study for its clinical utility in the pediatric population. Because

dexmedetomidine is used to achieve specific sedation goals, it would also be of interest to incorporate the

current study results into a joint pharmacokinetic-pharmacodynamic model using sedation outcomes also

derived from the EHR. These models are an important step toward the ultimate goal of precision dosing.
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4.5 Appendix

4.5.1 SAEM Algorithm Settings

The SAEM algorithm was used with the following settings:

Burn-in phase (prior SAEM): 5

Exploratory phase with auto-stop (max iterations: 2000, min iterations 200, stepsize exponent: 0) and simulated

annealing (decreasing rate for variance of residual errors: 0.95, decreasing rate for variance of individual

parameters: 0.95)

Smoothing phase with auto-stop (max iterations: 400, min iterations 200, stepsize exponent: 0.7)

All other settings used Monolix defaults.

4.5.2 Supplemental Tables

Table 4.7: Tests of Deviation from Hardy Weinberg Equilibrium

rs ID p-value

rs2942857 0.518922

rs112561475 0.762602

rs61750900 0.825786

rs2011425 0.586849

rs3892221 0.500481

rs6755571 0.534690

rs56113850 0.466614

rs2316204 0.762141

rs113288603 0.656682

rs28399442 0.122089

rs1801272 0.312122

rs28399433 0.615292

Table 4.8: Postnatal Age Categories

Entire Cohort

n 354

Postnatal Age

<6 mo 111 (31%)

6-24 mo 75 (21%)

2-13 yr 134 (38%)

14-18 yr 25 (7%)

>18 yr 9 (3%)
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Table 4.9: Concomitant Medications Administered to at least 5% of Participants

Medication Name Count Percent

acetaminophen 322 92.5

cefazolin 320 92.0

famotidine 310 89.1

morphine 308 88.5

furosemide 280 80.5

fentanyl 271 77.9

rocuronium 242 69.5

oxycodone 208 59.8

heparin 203 58.3

lorazepam 179 51.4

ketorolac 162 46.6

midazolam 160 46.0

nicardipine 155 44.5

chlorothiazide 151 43.4

milrinone 129 37.1

epinephrine 119 34.2

ondansetron 116 33.3

hydromorphone 114 32.8

docusate 93 26.7

aminocaprioc 92 26.4

aspirin 85 24.4

dexamethasone 83 23.9

phenylephrine 77 22.1

vecuronium 74 21.3

vancomycin 59 17.0

aminocaproic 53 15.2

hydrocortisone 52 14.9

nitroprusside 52 14.9

spironolactone 47 13.5

enalapril 43 12.4

ketamine 43 12.4

omeprazole 43 12.4

diphenhydramine 39 11.2

cefepime 35 10.1

ephedrine 35 10.1

albuterol 33 9.5

propofol 32 9.2

dopamine 30 8.6

glycopyrrolate 30 8.6

vasopressin 27 7.8

ibuprofen 22 6.3

neostigmine 22 6.3

lidocaine 21 6.0

lisinopril 19 5.5

captopril 18 5.2

Note:

Concomitant medications unavailable

for 6 participants in final study cohort.

156



4.5.2.1 Stage 1 Models

The goal of the first stage of modeling was to find an adequate non-genotype covariate PK model

Table 4.10 Base Models Description

1. One-compartment model with combined additive and proportional error

2. Two-compartment model with combined additive and proportional error

3. Two-compartment model with additive error

4. Two-compartment model with proportional error

Table 4.10: Base Models

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

1 One-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ 2
prop)

ε2 ∼ N(0,σ 2
add)

ψi = {Cli,Vi}
Cli = θ1 exp(ηCli

)

Vi = θ2 exp(ηVi
)

ηCli
∼ N(0,ω2

Cl); ηVi
∼ N(0,ω2

V )

Ω =

[
ω2

Cl ωCl,V

ω2
V

]

-961.3 -914.7

2 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ 2
prop)

ε2 ∼ N(0,σ 2
add)

ψi = {Cli,V1i,Qi,V2i}
Cli = θ1 exp(ηCli

)

V1i = θ2 exp(ηV1i
)

Qi = θ3 exp(ηQi
)

V2i = θ4 exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =







ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2







-1517.3 -1415.1

3 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)+ ε

ε ∼ N(0,σ 2
add)

ψi = {Cli,V1i,Qi,V2i}
Cli = θ1 exp(ηCli

)

V1i = θ2 exp(ηV1i
)

Qi = θ3 exp(ηQi
)

V2i = θ4 exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =







ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2







1018.7 1113.6

4 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ 2
prop)

ψi = {Cli,V1i,Qi,V2i}
Cli = θ1 exp(ηCli

)

V1i = θ2 exp(ηV1i
)

Qi = θ3 exp(ηQi
)

V2i = θ4 exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =







ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2







-1352.5 -1257.6
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Table 4.11 Allometric Scaling Models Description

5. Two-compartment model with combined error and fixed theory-based allometric scaling parameters

6. Two-compartment model with combined error and estimated allometric scaling parameters

Table 4.11: Allometric Scaling Models

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

5 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ 2
prop)

ε2 ∼ N(0,σ 2
add)

ψi = {Cli,V1i,Qi,V2i}
Cli = θ1(WT/70)0.75 exp(ηCli

)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =







ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2







-1923.3 -1821.1

6 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ 2
prop)

ε2 ∼ N(0,σ 2
add)

ψi = {Cli,V1i,Qi,V2i}
Cli = θ1(WT/70)β1 exp(ηCli

)

V1i = θ2(WT/70)β2 exp(ηV1i
)

Qi = θ3(WT/70)β3 exp(ηQi
)

V2i = θ4(WT/70)β4 exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =







ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2







-1735.5 -1604.3
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Table 4.12 Allometric scaling and Maturation Models Description

7. Two-compartment model with combined error and fixed theory-based allometric scaling parameters and

exponential age

8. Two-compartment model with combined error and fixed theory-based allometric scaling parameters and

sigmoid (Hill) maturation

9. Two-compartment model with combined error and bodyweight-dependent allometric scaling parameter

for total clearance

10. Two-compartment model with combined error and age-dependent allometric scaling parameter for total

clearance

Table 4.12: Allometric Scaling and Maturation Models

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

7 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ2
prop)

ε2 ∼ N(0,σ2
add )

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75 exp(θ5AGE +ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =








ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2








-1932.3 -1824.3

8 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ2
prop)

ε2 ∼ N(0,σ2
add )

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(ηCli

)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =








ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2








-1945.9 -1829.3

9 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ2
prop)

ε2 ∼ N(0,σ2
add )

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)k1 exp(ηCli
)

k1 = k0−
kmaxWT Hill

kHill
50

+WT Hill

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =








ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2








-1946.9 -1815.8

10 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ2
prop)

ε2 ∼ N(0,σ2
add )

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)k1 exp(ηCli
)

k1 = k0−
kmaxAGEHill

kHill
50

+AGEHill

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =








ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2








-1939.1 -1808.0
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Table 4.13 Simplified Variance Component Models Description

11. Two-compartment model with combined error and fixed theory-based allometric scaling parameters and

sigmoid (Hill) maturation, no V 2 random effects

12. Two-compartment model with combined error and fixed theory-based allometric scaling parameters and

sigmoid (Hill) maturation, no V 2 or Q random effects

13. Two-compartment model with proportional error and fixed theory-based allometric scaling parameters

and sigmoid (Hill) maturation, all random effects

14. Two-compartment model with proportional error and fixed theory-based allometric scaling parameters

and sigmoid (Hill) maturation, no V 2 random effects

15. Two-compartment model with proportional error and fixed theory-based allometric scaling parameters

and sigmoid (Hill) maturation, block correlation 1

16. Two-compartment model with proportional error and fixed theory-based allometric scaling parameters

and sigmoid (Hill) maturation, block correlation 2

Table 4.13: Simplified Variance Component Models

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

11 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ2
prop)

ε2 ∼ N(0,σ2
add )

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(ηCli

)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q)

Ω =










ω2
Cl ωCl,V 1 ωCl,Q

ω2
V 1 ωV 1,Q

ω2
Q










-1504.7 -1411.6

12 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε1)+ ε2

ε1 ∼ N(0,σ2
prop)

ε2 ∼ N(0,σ2
add )

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(ηCli

)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75

V2i = θ4(WT/70)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

Ω =






ω2
Cl ωCl,V 1

ω2
V 1




 -1408.4 -1332.9
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Table 4.13: Simplified Variance Component Models (continued)

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

13 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(ηCli

)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =













ω2
Cl ωCl,V 1 ωCl,Q ωCl,V 2

ω2
V 1 ωV 1,Q ωV 1,V 2

ω2
Q ωQ,V 2

ω2
V 2













-1932.9 -1823.5

14 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(ηCli

)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q)

Ω =










ω2
Cl ωCl,V 1 ωCl,Q

ω2
V 1 ωV 1,Q

ω2
Q










-1479.6 -1393.6

15 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(ηCli

)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =













ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q ωQ,V 2

ω2
V 2













-1915.2 -1829.3

16 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(ηCli

)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =













ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2













-1915.1 -1835.0
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Table 4.14 Additional Simplified Variance Components Models Description

17. Two-compartment model with proportional error and estimated allometric scaling parameters, block

correlation 2

18. Two-compartment model with proportional error and estimated allometric scaling parameters and

exponential age, block correlation 2

19. Two-compartment model with proportional error and fixed theory-based allometric scaling parameters

and exponential age, block correlation 2

20. Two-compartment model with proportional error and estimate allometric scaling parameters and sigmoid

(Hill) maturation, block correlation 2
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Table 4.14: Additional Simplified Variance Components Models

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

17 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)β1 exp(ηCli
)

V1i = θ2(WT/70)β2 exp(ηV1i
)

Qi = θ3(WT/70)β3 exp(ηQi
)

V2i = θ4(WT/70)β4 exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =













ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2













-1910.1 -1815.5

18 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)β1 exp(θ5AGE +ηCli
)

V1i = θ2(WT/70)β2 exp(ηV1i
)

Qi = θ3(WT/70)β3 exp(ηQi
)

V2i = θ4(WT/70)β4 exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =













ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2













-1904.0 -1803.6

19 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75 exp(θ5AGE +ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =













ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2













-1899.1 -1827.6

20 Two-compartment

multidose IV

infusion/bolus with

linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)β1






1

1+
(

T M50
PMA

)Hill




exp(ηCli

)

V1i = θ2(WT/70)β2 exp(ηV1i
)

Qi = θ3(WT/70)β3 exp(ηQi
)

V2i = θ4(WT/70)β4 exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =













ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2













-1927.4 -1818.4
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Table 4.15 Additional Non-genotype Covariate Models Description

21. Add exponential gender effect on CL to Model 16

22. Add exponential serum creatinine effect on CL to Model 16

23. Add exponential cardiac bypass time effect on CL to Model 16

24. Add exponential STAT score effect on CL to Model 16

25. Add exponential ICU hospitalization length effect on CL to Model 16

26. Add exponential gender effect on V 1 to Model 16

27. Add exponential serum creatinine effect on V 1 to Model 16

28. Add exponential cardiac bypass time effect on V 1 to Model 16

29. Add exponential STAT score effect on V 1 to Model 16

30. Add exponential ICU hospitalization length effect on V 1 to Model 16

31. Add exponential gender effect on V 2 to Model 16

32. Add exponential serum creatinine effect on V 2 to Model 16

33. Add exponential cardiac bypass time effect on V 2 to Model 16

34. Add exponential STAT score effect on V 2 to Model 16

35. Add exponential ICU hospitalization length effect on V 2 to Model 16

Table 4.15: Additional non-Genotype Covariate Models

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

21 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(θCl,gender I[ f emale]+ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1914.1 -1828.2

22 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(θCl,creat creat +ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1913.1 -1827.2
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Table 4.15: Additional non-Genotype Covariate Models (continued)

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

23 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(θCl,cpb(bypasstime)+ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1913.4 -1827.5

24 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(θCl,STAT (STAT score)+ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1914.9 -1829.0

25 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(θCl,loi(ICUtime)+ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1913.9 -1827.9

26 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(θV 1,gender I[ f emale]+ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1914.8 -1828.8

27 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(θV 1,creat creat +ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1921.7 -1835.8
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Table 4.15: Additional non-Genotype Covariate Models (continued)

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

28 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(θV 1,cpb(bypasstime)+ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1901.9 -1816.0

29 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(θV 1,STAT (STAT score)+ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1919.4 -1833.5

30 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(θV 1,loi(ICUtime)+ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1915.3 -1829.4

31 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(θV 2,gender I[ f emale]+ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1914.8 -1828.8

32 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(θV 2,creat creat +ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1915.4 -1829.5
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Table 4.15: Additional non-Genotype Covariate Models (continued)

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

33 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(θV 2,cpb(bypasstime)+ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1920.7 -1834.7

34 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(θV 2,STAT (STAT score)+ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1915.5 -1829.6

35 Two-compartment

multidose IV infusion/bolus

with linear elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75








1

1+

(
T M50
PMA

)Hill








exp(ηCli
)

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(θV 2,loi(ICUtime)+ηV2i
)

ηCli
∼ N(0,ω2

Cl ); ηV 1i
∼ N(0,ω2

V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl

ωCl,V 1 0 0

ω2
V 1

0 0

ω2
Q

0

ω2
V 2














-1920.2 -1834.3
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4.5.2.2 Stage 2 Models

The goal of the second stage of modeling was to test for improvement in the best covariate model by adding

genotype effects

Table 4.16 Best Covariate Model and UGT* Genotype Effects Models Description

36. Add exponential UGT 2B10 categorical effect (no variants vs. any variants) to Model 16

37. Add exponential UGT 2B10 additive effect to Model 16

38. Add exponential UGT 1A4 categorical effect (no variants vs. any variants) to Model 16

39. Add exponential UGT 1A4 additive effect to Model 16

Table 4.16: Best Covariate Model and UGT* Genotype Effects

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

36 Two-compartment multidose

IV infusion/bolus with linear

elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(θCl,UGT 2B10 I[UGT 2B10 > 0]+ηCli )

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli ∼ N(0,ω2
Cl ); ηV 1i

∼ N(0,ω2
V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2














-1913.8 -1827.9

37 Two-compartment multidose

IV infusion/bolus with linear

elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(θCl,UGT 2B10UGT 2B10+ηCli )

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli ∼ N(0,ω2
Cl ); ηV 1i

∼ N(0,ω2
V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2














-1917.3 -1831.4

38 Two-compartment multidose

IV infusion/bolus with linear

elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(θCl,UGT 1A4 I[UGT 1A4 > 0]+ηCli )

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli ∼ N(0,ω2
Cl ); ηV 1i

∼ N(0,ω2
V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2














-1918.3 -1832.4

39 Two-compartment multidose

IV infusion/bolus with linear

elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(θCl,UGT 1A4UGT 1A4+ηCli )

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli ∼ N(0,ω2
Cl ); ηV 1i

∼ N(0,ω2
V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2














-1917.6 -1831.7
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Table 4.17 Best Covariate Model and CY P2A6 PRS Score in Subset with Complete PRS Data Models

Description

40. Two-compartment model with proportional error and fixed theory-based allometric scaling parameters

and sigmoid (Hill) maturation, block correlation 2

41. Add exponential CY P2A6 additive effect to Model 30

Table 4.17: Best Covariate Model and CY P2A6 PRS Score in subset with Complete PRS data (n=350)

Model Structural Model Residual variability Submodels Between subject variability OFV BICc

40 Two-compartment multidose

IV infusion/bolus with linear

elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(ηCli )

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli ∼ N(0,ω2
Cl ); ηV 1i

∼ N(0,ω2
V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2














-1889.2 -1809.3

41 Two-compartment multidose

IV infusion/bolus with linear

elimination

y =C(ψ;x)(1+ ε)

ε ∼ N(0,σ2
prop)

ψi = {Cli ,V1i ,Qi ,V2i}

Cli = θ1(WT/70)0.75






1

1+
(

T M50
PMA

)Hill




exp(θCl,CY P2A6(CY P2A6score)+ηCli )

V1i = θ2(WT/70)exp(ηV1i
)

Qi = θ3(WT/70)0.75 exp(ηQi
)

V2i = θ4(WT/70)exp(ηV2i
)

ηCli ∼ N(0,ω2
Cl ); ηV 1i

∼ N(0,ω2
V 1)

ηQi
∼ N(0,ω2

Q); ηV 2i
∼ N(0,ω2

V 2)

Ω =














ω2
Cl ωCl,V 1 0 0

ω2
V 1 0 0

ω2
Q 0

ω2
V 2














-1889.9 -1804.2

Abbreviations for Tables 4.10 – 4.17: IV, intravenous; C, concentration; σprop and σadd are proportional and

additive residual error terms; OFV, objective function value; BICc, corrected Bayesian information criteria;

CL, total clearance (L/hr); V, volume of distribution for the central compartment (L) in one-compartment

model; Q, intercompartmental clearance (L/hr); V 1 , volume of distribution for the central compartment (L) in

two-compartment model; V 2 , volume of distribution for the peripheral compartment (L); ωCl , ωV 1, ωQ, ωV 2,

the standard deviation for ηCl
i , ηV 1

i , ηQ
i , ηV 2

i , respectively; Ω is intra-individual variance-covariance matrix;

T M50 postmenstrual age at which clearance is 50% of adult value; Hill, maturation factor slope coefficient;

CV, coefficient of variation; WT, body weight in kg; PMA, postmenstrual age in weeks
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Table 4.18: Estimates of Parameters for Population Pharmacokinetic Models

Base Model Weight Only Model Weight and Maturation with simplified variance structure

(Obj = -1517.3, BICc = -1415.1) (Obj = -1923.3, BICc = -1821.1) (Obj = -1915.1, BICc = -1835.0)

Parameters Estimates (SE)

[95% CI]a

Parameters Estimates (SE)

[95% CI]

Parameters Estimates (SE)

[95% CI]

Cl Cl = θ1(WT/70)0.75 Cl = θ1(WT/70)0.75

(

1

1+
(

T M50
PMA

)Hill

)

6.27(0.52)

[5.33,7.37]

θ1

22.3(1.85)

[19.0,26.2]

θ1

27.3(1.82)

[24.0,31.1]

T M50

41.9(0.28)

[41.4,42.5]

Hill
7.04(0.022)

[6.99,7.08]

V1 V1 = θ2(WT/70) V1 = θ2(WT/70)

19.5(1.37)

[17.0,22.4]

θ2

123(11.5)

[102,148]

θ2

161(12.1)

[139,187]

Q Q = θ3(WT/70)0.75 Q = θ3(WT/70)0.75

5.26(0.44)

[4.47,6.20]

θ3

26.6(2.23)

[22.6,31.3]

θ3

26.0(1.90)

[22.5,30.0]

V2 V2 = θ4(WT/70) V2 = θ4(WT/70)

763(126)

[555,1048]

θ4

6674(1499)

[4363,10211]

θ4

7903(1408)

[5617,11119]

ωCl (%CV ) 201(12) [178,226] ωCl (%CV ) 123(13) [100,150] ωCl (%CV ) 103(8) [88,120]

ωV 1 (%CV ) 161(9) [145,179] ωV 1 (%CV ) 168(22) [130,217] ωV 1 (%CV ) 138(13) [114,166]

ωQ (%CV ) 146(8) [132,162] ωQ (%CV ) 91(11) [71,115] ωQ (%CV ) 82(9) [65,102]

ωV 2 (%CV ) 672(81) [534,855] ωV 2 (%CV ) 857(256) [494,1595] ωV 2 (%CV ) 624(157) [391,1048]

ρCl,V 1

0.964(0.003)

[0.959,0.97]

ρCl,V 1

0.849(0.055)

[0.741,0.956]

ρCl,V 1

0.923(0.027)

[0.871,0.975]

ρCl,V 2

−0.032(0.043)

[−0.116,0.053]

ρCl,V 2

−0.174(0.101)

[−0.372,0.023]

ρCl,V 2 0 (fixed)
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Table 4.18: Estimates of Parameters for Population Pharmacokinetic Models (continued)

Parameters Estimates (SE)

[95% CI]a

Parameters Estimates (SE)

[95% CI]

Parameters Estimates (SE)

[95% CI]

ρCl,Q

0.043(0.076)

[−0.106,0.192]

ρCl,Q

−0.509(0.110)

[−0.726,−0.293]

ρCl,Q 0 (fixed)

ρV 1,V 2

0.195(0.044)

[0.109,0.28]

ρV 1,V 2

0.277(0.107)

[0.068,0.486]

ρV 1,V 2 0 (fixed)

ρV 1,Q

−0.076(0.073)

[−0.22,0.067]

ρV 1,Q

−0.410(0.125)

[−0.656,−0.165]

ρV 1,Q 0 (fixed)

ρV 2,Q

0.089(0.083)

[−0.074,0.252]

ρV 2,Q

0.21(0.121)

[−0.028,0.448]

ρV 2,Q 0 (fixed)

σadd (ng/mL)
2.22e−16(5.65e−13)

[0,1.11e−12]

σadd (ng/mL)
1.9e−08(3.73e−07)

[0,7.51e−07]

σadd (ng/mL) 0 (fixed)

σprop (%CV )
50.3(1.4)

[47.6,53.0]

σprop (%CV )
50.3(1.6)

[47.2,53.4]

σprop (%CV )
50.5(1.6)

[47.5,53.5]

Abbreviations for Table 4.18: a 95% Asymptotic confidence intervals (CIs); SE, standard error; Obj, objective

function value; BICc, corrected Bayesian information criteria; CL, total clearance (L/hr); Q, intercompartmen-

tal clearance (L/hr); V1, volume of distribution for the central compartment (L); V2, volume of distribution

for the peripheral compartment (L); T M50 postmenstrual age at which clearance is 50% of adult value; Hill,

maturation factor slope coefficient; CV, coefficient of variation; WT , body weight in kg; PMA, postmenstrual

age in weeks; ωCL, ωV 1, ωQ, ωV 2, the standard deviation for ηCL
i , ηV 1

i , ηQ
i , ηV 2

i , respectively; For the standard

deviation of random effects, ω , coefficient of variation was calculated as CV% = 100×
√

exp(ω2)−1; ρ are

correlation terms between random effects; σprop and σadd are proportional and additive residual error terms.

4.5.3 Supplemental Figures
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Figure 4.9: Distribution of (A) postnatal age and (B) postmenstrual age in final study population.
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Figure 4.10: Distribution of weight in final study population.

4.5.3.1 Model 2 Goodness-of-fit Plots
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Figure 4.11: (A) Observed vs. population predicted concentrations and (B) observed vs. individual predicted

concentrations.

Figure 4.12: (A) Individual weighted residuals vs. predicted concentration and (B) individual weighted

residuals vs. time.
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Figure 4.13: (A) Random effects correlations and (B) decorrelated random effects correlations.
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Figure 4.14: (A) Random effects vs. continuous covariates and (B) random effects vs. categorical covariates.
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Figure 4.15: Prediction corrected visual predictive check.

4.5.3.2 Model 5 Goodness-of-fit Plots

177



Figure 4.16: (A) Observed vs. population predicted concentrations and (B) observed vs. individual predicted

concentrations.

Figure 4.17: (A) Individual weighted residuals vs. predicted concentration and (B) individual weighted

residuals vs. time.

178



Figure 4.18: (A) Random effects correlations and (B) decorrelated random effects correlations.
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Figure 4.19: (A) Random effects vs. continuous covariates and (B) random effects vs. categorical covariates.
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Figure 4.20: Prediction corrected visual predictive check.

4.5.3.3 Model 8 Goodness-of-fit Plots
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Figure 4.21: (A) Observed vs. population predicted concentrations and (B) observed vs. individual predicted

concentrations.

Figure 4.22: (A) Individual weighted residuals vs. predicted concentration and (B) individual weighted

residuals vs. time.
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Figure 4.23: (A) Random effects correlations and (B) decorrelated random effects correlations.
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Figure 4.24: (A) Random effects vs. continuous covariates and (B) random effects vs. categorical covariates.
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Figure 4.25: Prediction corrected visual predictive check.

4.5.3.4 Model 13 Goodness-of-fit Plots
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Figure 4.26: (A) Observed vs. population predicted concentrations and (B) observed vs. individual predicted

concentrations.

Figure 4.27: (A) Individual weighted residuals vs. predicted concentration and (B) individual weighted

residuals vs. time.
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Figure 4.28: (A) Random effects correlations and (B) decorrelated random effects correlations.
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Figure 4.29: (A) Random effects vs. continuous covariates and (B) random effects vs. categorical covariates.
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Figure 4.30: Prediction corrected visual predictive check.

4.5.3.5 Model 15 Goodness-of-fit Plots
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Figure 4.31: (A) Observed vs. population predicted concentrations and (B) observed vs. individual predicted

concentrations.

Figure 4.32: (A) Individual weighted residuals vs. predicted concentration and (B) individual weighted

residuals vs. time.
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Figure 4.33: (A) Random effects correlations and (B) decorrelated random effects correlations.
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Figure 4.34: (A) Random effects vs. continuous covariates and (B) random effects vs. categorical covariates.
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Figure 4.35: Prediction corrected visual predictive check.

Figure 4.36: Prediction corrected visual predictive check for final model (Model 16) stratified by postnatal age

group.
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4.5.3.6 Genetic Effects on Clearance and Concentration

Figure 4.37: Model estimated clearance by UGT 1A4 genotype.

Figure 4.38: Model estimated clearance by UGT 2B10 genotype.

4.5.3.6.1 Simulations of Concentration

To demonstrate the hypothetical effect of genotype covariates on predicted dexmedetomidine concentration,

we estimated predicted concentration-time profiles using PK parameter estimates from the UGT 1A4 and

UGT 2B10 categorical models. 90% confidence bounds were produced using quantiles from 200 simulated

subjects with residual error (proportional component standard deviation = 0.478 ng/mL) for the following

combination of covariates and dosing groups: (1) the 5th, median, or 95th percentile of weight and postmen-
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strual age; (2) with or without UGT 1A4 or UGT 2B10 genotype variants; (3) fixed infusion rates of 0.4 or 0.6

mcg/kg/h for a 12-hour infusion. Because we are primarily interested in differences in concentration for the

‘same subject’ with and without variants, inter-individual variability was not included.

Results are shown in Figures 4.39 and 4.40. As expected, subjects with UGT 1A4 variants have higher predicted

concentration than those without variants, however the difference between genotypes is much smaller than

the residual variability within subjects represented by the colored regions. For the 0.4 mcg/kg/h dosing rate,

the predicted concentration levels are below the target range of 0.4 to 0.8 ng/mL for subjects at the 5th and

median of weight and age both with and without variants. In contrast, the 0.6 mcg/kg/h rate yields predicted

concentration levels within the target range for both genotype groups. Similar patterns are also seen for

simulated concentrations from the UGT 2B10 model.

Figure 4.39: Predicted concentration simulations from UGT 1A4 categorical model.

We also performed simulations to find the infusion rates that would yield similar concentrations for subjects of

the same age and weight with and without genetic variants after a 12-hour infusion. First, concentration-time

profiles were generated using identical dosing rate (0.6 mcg/kg/h), weight (50kg), and postmenstrual age

(520 weeks) for a simulated subject with and without UGT 1A4 or UGT 2B10 variants, respectively. Then

the infusion rate for the simulated subject with variants was adjusted in increments of 0.01 mcg/kg/h until

the concentration achieved at the end of the 12-hour infusion most closely matched the concentration of
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Figure 4.40: Predicted concentration simulations from UGT 2B10 categorical model.

the simulated subject without variants. The R package mrgsolve [153] was used for all simulations. The

simulated patient with UGT 1A4 variants required a rate of 0.56 mcg/kg/h to approximate the concentration

of those without UGT 1A4 variants at a rate of 0.6 mcg/kg/h. The simulated patient with UGT 2B10 variants

required a rate of 0.58 mcg/kg/h to approximate the concentration of those without UGT 1A4 variants at a

rate of 0.6 mcg/kg/h. These changes in dose are not large enough to impact clinical dosing as increments for

dexmedetomidine titration are typically 0.1 mcg/kg/h.
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Figure 4.41: Simulated Dose needed to achieve same concentration for patients of same postmenstrual age

(520 weeks) and weight (50 kg) with and without variants from UGT 1A4 model.

Figure 4.42: Simulated Dose needed to achieve same concentration for patients of same postmenstrual age

(520 weeks) and weight (50 kg) with and without variants from UGT 2B10 model.

197



 

 

        

 

 

  

Expected duration of mechanical ventilation <48 hours 
Biventricular/Univentricular Pathway - Closed Sternum 

**See appendix for dosing recommendation** 

• Continue dexmedetomidine infusion 

• Acetaminophen (Tylenol)-scheduled for 72 hours 

• Fentanyl 1 mcg/kg q15 min until pain well controlled for the first 4 hours then-> 

• Fentanyl 0.5-1 mcg/kg q1 hr PRN (pain score 7-10) 

• Ketorolac (Toradol)-once chest tube output <2ml/kg or not sanguineous, scheduled 

for 24 hours max (if age criteria met) and then PRN 

• Dex infusion to off (can continue through extubation in agitated patients) 

• Continue Tylenol and Toradol  

• Transition to Morphine initial dosing of 0.05 - 0.1 mg/kg Q2hrs PRN (pain score 7-

10) 

• CONSIDER Ibuprofen when tolerating enteral- q6hrs scheduled or PRN 

• CONSIDER Hydromorphone (Dilaudid) for opioid induced side effects (itching, 

urinary retention, nausea) or if morphine does not adequately treat pain x 2 doses.  

• CONSIDER Oxycodone if tolerating enteral 

• In older children >10kg - CONSIDER PCA for resistant pain 

• CONSIDER anti-nausea regimen 

Extubation-RASS goal 0 

Initial stabilization-RASS goal -2 

Handoff from OR 

DURING handover – If needed ask anesthesia to give PRN - If not adequately sedated 

(benzo) or post-operative pain not well controlled (opioid). 

 

Sensory Pyramid for infants and young children/ Child Life/ daily schedule for school age and up 

• CONSIDER (if agitation present despite adequate pain control) restarting or continuing 

dexmedetomidine post-extubation  

• CONSIDER melatonin 

• CONSIDER delirium 

• CONSIDER Ativan or chloryl hydrate if unsafe-but goal is to avoid and/or minimize if 

possible 

 

 

Ongoing agitation despite extubation 

Special considerations: 

Anti-nausea adjuvants (particularly for older children) 

• Ondansetron (Zofran) 0.15mg/kg/dose IV q8hrs PRN 
nausea (MAX 4mg) 

• Dexamethasone (Decadron) 0.1-0.5 mg/kg/dose IV x 1 
(MAX 4mg) 

• Ativan (Lorazepam) 0.025-0.1mg/kg/dose q4hrs PRN 
nausea not responsive to ondansetron (MAX 2mg) 

• Scopolamine patch x 1 for older children or those with 
refractory nausea/vomiting x 1-3 days 

 

4.5.4 Recommended Protocols for Analgesia and Sedation Drug and Dose Selection
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Expected duration of mechanical ventilation >48 hours 
Biventricular/Univentricular Pathway - Open Sternum/ECMO	

• Continue Tylenol for 72 hours then PRN 

• Continue Toradol for 24 hours then PRN 

• CONSIDER Fentanyl infusion if PRNs exceed 2/hr for 

2 hours (after initial 4 hours) 

• Start at 1 mcg/kg/hr, PRN should be 50-100% of 

hourly infusion dose 

Maintenance phase-RASS goal -1 to -2 

Initial stabilization - RASS goal -2 

Handoff from OR 

Sensory Pyramid for infants and young children/Child Life/daily schedule for school age and up 

CONSIDER  

-Benadryl/Atarax-anxiety, itching	
-Melatonin for sleep hygiene scheduled QHS - dosing above	
-Chloral intermittently-recommend only when non-pharm sleep hygiene and melatonin fail.	
-Anti-nausea medication 
-Cycling Dexmedetomidine infusion at night for sleep hygiene 

	

Adjunct therapy 

Analgesia 

• CONSIDER Dexmedetomidine infusion	

• CONSIDER Ativan PRN but goal is to avoid 
and/or minimize if possible (to be utilized 
before versed infusion started)	

• CONSIDER Versed infusion if agitation 
persists despite adjunct therapy-goal to avoid 
if possible	

 

Sedation--If RASS goal not met 

after adequate analgesia achieved. 

DURING handover – If needed ask anesthesia to give PRN - If not adequately sedated 

(benzo) or post-operative pain not well controlled (opioid). 

 

• Initiate wean of sedative infusion until 

RASS goal of -1 to -2 met: 

 Wean versed by 20% q12 

 Wean dex by 20% q12  

 Wean fentanyl by 20%  q12 

RASS goal met or exceeded? 

• Discontinue dexmedetomidine infusion within the first two hours post-op unless open chest/ECMO 

• Acetaminophen (Tylenol)-scheduled for 72 hours 

• Fentanyl 1 mcg/kg q15 min until pain well controlled for the first 4 hours then Fentanyl 0.5-1 mcg/kg q1 hr PRN 

(pain score 7-10) 

• CONSIDER dilaudid or morphine instead of fentanyl if ECMO patient 

• Ketorolac (Toradol)-once chest tube output <2ml/kg or not sanguineous, scheduled for 24 hours max 

Adequate analgesia NOT achieved? 

• Fentanyl infusion 

• Increase by 1mcg/kg/hr every 2 hours to achieve pain 

control, administer bolus equal to new hourly rate 

with each increase. 

• PRN should be 50-100% of hourly infusion dose.  

• If infusion and PRN’s fail to treat pain adequately and 

exceed 5 mcg/kg/hr x 4hrs consider rotation to Dilaudid 

or Morphine 

• In patients >10kg - CONSIDER PCA for resistant pain 
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• Investigate for underlying causes-delirium, ventilator, environmental 

• Consider Risperidone x 24 hours if high risk delirium. If need for continuation, consult psychiatry. 

• Consider Gabapentin, esp. in children with brain injury/risk for neuropathic pain. 

• Consider Ketamine PRN in children at low risk for delirium, can use low dose infusion for pain. 

• Consider Pentobarbital PRN for severely refractory agitation/unsafe. 

• Consider PRN paralytic or infusion if patient acutely unsafe or unstable/unable to ventilate 

• Consider low dose methadone for pain 

• Consider sedation washout with anesthesia consult 

ç 

Refractory Agitation 
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CHAPTER 5

Bayesian Population Pharmacokinetic Analysis of Dexmedetomidine in Children using Real World

Data and Informative Priors

5.1 Introduction

An analysis by James et al. (2022) [110], included as Chapter 4, explored the impact of patient characteristics

and pharmacogenetics on dexmedetomidine pharmacokinetics (PK) using electronic health record (EHR)

data and remnant samples under the classical ‘frequentist’ statistical paradigm. The analysis confirmed the

importance of weight and age as predictors of total clearance in the pediatric population, but did not find

evidence for pharmacogenetic effects of UGT 1A4 or UGT 2B10 genotype or CY P2A6 risk score. However, that

analysis exhibited several limitations. First, the observed drug concentration outcome data were quite sparse

with a median of only 1.2 concentration samples per subject per day1. Relatedly, because the outcome data

were not collected with the goal of estimating or monitoring PK characteristics such as trough concentration or

Cmax, as in an optimally designed experiment, they contain less information to estimate some parameters, even

using a population PK analysis which borrows information across subjects. In addition, real-world dosing

data are much more complex than the simple dosing scenarios (often just a single dose) used for designed

experiments with large variations in the amount, frequency, and timing of doses from subject to subject. Finally,

observational data sourced from EHRs are more prone to missingness and data entry errors than those from

designed PK studies. The stochastic approximation expectation-maximization (SAEM) algorithm used in

frequentist analysis encountered occasional convergence problems and included simplifications such as fixing

most random effects correlations at zero to improve estimation and model fit. The analysis also produced

population PK estimates which substantially differed from previous studies for some parameters. For instance,

the peripheral compartment volume of distribution for the two-compartment model was 100 times larger than

estimates reported in other pediatric dexmedetomidine PK studies while estimated total clearance was 10 to 15

L/h smaller (with larger coefficient of variation).

To address these limitations, we reanalyze the real-world EHR and remnant specimen data using Bayesian

methodology to incorporate prior information derived from several recent pediatric dexmedetomidine PK

studies. The Bayesian analysis provides a coherent framework for combining prior knowledge (or external

1For comparison, Ber et al. (2020) collected 1 to 3 samples per subject per day during infusion and 8 samples within 6 hours after end

of infusion [115]; Zuppa et al. (2019) collected at least 4 samples per subject over 12 hours during infusion and at least 8 samples within

24 hours after end of infusion [127]; Zimmerman et al. (2019) collected at least 5 samples per subject during cardiac bypass procedures

averaging 180 minutes [126]; Song et. al (2019) collected 3 samples per subject within 60 minutes of start of infusion and 6 samples

within 8 hours after end of infusion [122].
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evidence) and current data and helps stabilize estimation by borrowing information about parameters from

smaller, more densely sampled previous studies. The Bayesian population PK method also has advantages

beyond incorporating prior information. First, it produces parameter estimates and intervals that are easier

to interpret than frequentist estimates. For example, a 90% posterior credible interval of 35 to 45 L/h for

population total clearance has the intuitive interpretation that given the prior information and current data,

there is a 90% probability that clearance is between 35 and 45 L/h. In contrast, a frequentist 90% confidence

interval is a statement about how the interval is built; it is calculated using a procedure such that 90% of all

constructed intervals will contain the true value of clearance. In addition, inference for Bayesian population

PK analysis uses samples from the posterior distribution (or an approximation to the posterior) which has

several benefits. For instance, parameter uncertainty is quantified without using asymptotic arguments which

may be difficult to assess or post hoc procedures such as bootstrapping (although the accuracy of the Bayesian

approximation must also be considered) [61,62]. It is also straightforward to derive point and interval estimates

for functions of parameters (such as maximum concentration).

Despite these advantages, fitting Bayesian models is more time-consuming in two ways. First, more time

must be devoted to specifying the complete model, namely the prior distribution, which is absent from

the frequentist paradigm. Second, fitting Bayesian population PK models using Markov chain Monte Carlo

(MCMC) takes more computing time than frequentist estimation [154,155]. Therefore, we also demonstrate the

use of automatic differentiation variational inference (ADVI) to more quickly provide approximate solutions

during Bayesian model development and selection, as described in Chapter 3. After using ADVI for model

development, the final models are refit using more accurate MCMC methods, specifically Hamiltonian Monte

Carlo (HMC).

The major goals of the reanalysis are to provide estimates which are informed by both current and previous

data to summarize our knowledge and uncertainty about dexmedetomidine PK and to quantify genetic effects

that were selected based on previous studies and known metabolic pathways. Ultimately, better understanding

the factors affecting dexmedetomidine PK can facilitate more precise, personalized dosing.

5.2 Methods

The data for this reanalysis are identical to those in the original work by James et al. (2022). The study design,

data collection, drug concentration measurement and laboratory analysis, genotyping and CY P2A6 activity

score prediction, and data processing are described in detail in that paper and Van Driest et al. (2016) [110,136].

In short, observational data, including remnant clinical testing specimens for drug concentration measurements,

peripheral blood for genetic analysis, dexmedetomidine dosing from the EHR, and other demographic, surgical,
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and clinical information were collected for pediatric patients undergoing surgery for congenital heart disease.

Specimens were not collected in connection with dose administration or to monitor PK characteristics. Data

from all sources were combined and processed using the R software [138] package EHR [135].

5.2.1 Bayesian Population Pharmacokinetic Analysis

We performed population PK analysis using the three stage hierarchical Bayesian nonlinear modeling frame-

work of Wakefield, Aarons, and Racine-Poon (1999) described in detail in Chapter 1 (section 1.3.3) [62].

Concentrations below the LLOQ were considered to be censored between 0 and 0.005 ng/mL and were handled

in the modeling by integrating the first-stage conditional distribution between these bounds2 [63]. For model

development and exploration, models were compared numerically using out-of-sample predictive accuracy

estimated by 10-fold leave-subject-out cross-validation log pointwise predictive density (l ppdcv) with ADVI

estimation. In simulations of Bayesian population PK models estimated with ADVI (described in Chapter

3), l ppdcv had better performance for model selection than information criteria such as DIC or WAIC which

are based on observation-level partitioning of data. Specifically, we create K = 10 groups each containing

approximately 1
10

of the subjects. Each group contains all observations for subjects assigned to that group.

The cross-validation log pointwise predictive density is l ppdcv = ∑
K
k=1 ∑i∈k log ppost(−k)(yi) where ppost(−k) is

the posterior distribution for a model fit without the observations in fold k and the inner sum evaluates the

log predictive density over the observations yi in fold k. Summarizing ppost(−k) by S simulation draws θ−k,s,

the l ppdcv can be computed as ∑
K
k=1 ∑i∈k log

(
1
S ∑

S
s=1 p(yi|θ−k,s)

)
. Models with higher l ppdcv have better

out-of-sample predictive performance.

Models selected at each stage of development were refit using HMC to obtain final parameter estimates and

perform posterior model checks. We used several graphical methods for model evaluation including plots

of observed vs. population and individual concentration predictions, plots of samples from the conditional

total clearance random effects distributions vs. covariates, and visual predictive checks [144,145]. Settings for

both estimation methods are included in the Appendix. The models were implemented using the CmdStanR

interface (version 0.4.0) to the CmdStan probabilistic programming language (version 2.25.0) along with the

PK library Torsten (version 0.88) [65,66,87].

5.2.1.1 Model Development

Based on previous dexmedetomidine studies, we began with a two-compartment model with additive and

proportional residual error and fixed allometric weight scaling. The main PK parameters for this model are

2E.g., the contribution to the likelihood for a censored observation is
∫ 0.005

0 pyi j |ψi
(u|ψi)du compared to p(yi j|ψi) for an uncensored

observation where the distribution p(·) is determined by the residual error model.
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total clearance (CL, L/h), volume of distribution for the central compartment (V 1, L), inter-compartmental

clearance (Q, L/h) and volume of distribution for the peripheral compartment (V 2, L). For inter-individual

variability (IIV), we assumed a full (4×4) covariance matrix allowing correlations for all main PK parameters.

Weight varied little within each subject during the time frame when concentration data were available, so

baseline demographic weight was used for scaling.

Models including additional covariates were developed in several stages. First, we considered adding age

maturation effects to the initial model since both size and maturation have been shown to be important factors

in pediatric PK models with a large age range [115,118,120,125,147–149]. For maturation, we explored a

sigmoid Hill model and an exponential model using postmenstrual age. Next, we considered adding non-

genotype covariate effects on total clearance with the goal of building a model that adequately describes

dexmedetomidine PK while accounting for IIV. Based on previous research and biological plausibility, we used

the covariates sex, Society of Thoracic Surgery–European Association for Cardio-Thoracic Surgery (STAT)

Congenital Heart Surgery Mortality score [146], cardiac bypass time, length of ICU stay, and serum creatinine.

STAT score was included in the model as a continuous exponential term. Cardiac bypass time, length of

ICU stay and serum creatinine were first standardized by subtracting the sample mean and dividing by the

sample standard deviation, then included using an exponential term. Finally, we examined the hypothesized

association between the genotype variables (UGT 1A4 and UGT 2B10 variants and CY P2A6 score) and total

clearance. For UGT 1A4 and UGT 2B10, dichotomous models (coding individuals as having a loss-of-function

variant or not) and additive models (counting the number of variants) were considered. For CY P2A6, the

predicted enzyme activity score was standardized and included as an exponential term [132].

5.2.1.2 Prior Specification

We developed an informative prior using estimates from eight recently published pediatric dexmedetomidine

PK studies (Table 5.8). The goal of the informative prior was to provide plausible parameter values based on

previous literature in similar populations to supplement the current data and allow more precise estimation.

We compared our prior to one developed by Wiczling et al. (2016) for an informative Bayesian analysis

of dexmedetomidine PK in 38 critically ill pediatric patients using intensive sampling3 [125]. To begin,

we formed a weighted average of estimates from the previous studies for each of the main PK population

parameters, total clearance (CLpop), inter-compartmental clearance (Qpop), central compartment volume of

distribution (V 1pop) and peripheral compartment volume of distribution (V 2pop). The priors were specified

using the same log-Normal distributional family as Wiczling et al., but with the most probable value (mode)

equal to the weighted average; the variance was adjusted so the 90% highest density interval (HDI) included

3Eight samples over 24 hours during infusion and eight samples over six hours at the cessation of infusion.
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all the previous study estimates. More informative (lower variance) priors were given to parameters that have

been historically difficult to estimate with sparse data such as V 2pop. For IIV standard deviation parameters

(ωCL, ωQ, ωV 1, and ωV 2) we used the same distributional form as Wiczling et al., but with 90% HDI widths

between 5 to 10 times larger to account for additional uncertainty. For the residual (intra-individual) standard

deviation parameters, we used half-Cauchy priors with mode at 0. Model parameters for non-genotype and

genotype covariate effects on total clearance were given generic weakly informative skeptical standard normal

priors, with continuous covariates standardized so a one-unit change in the standardized variable is equal to a

standard deviation change on the original scale.
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Current study prior Wiczling et al. (2016) prior Previous study estimates

Figure 5.1: Prior distributions for two-compartment pharmacokinetic model. Red curves are current study

prior densities, teal curves are Wiczling et al. prior densities, and vertical black lines indicate the values

of previous dexmedotomidine study estimates with the line height scaled to the sample size for each study.

Horizontal lines indicate the 90% highest density interval for each prior.

Figure 5.1 shows the current study priors compared to those used in the informative Bayesian analysis of

Wiczling et al. (see Table 5.9 for specific mathematical forms). The priors used in the current study are much

less informative than in the previous Bayesian analysis which had a smaller sample size but more regular,

intensive sampling. It is convenient to specify the joint prior using marginal components as displayed in Figure

5.1; however, it is easier to compare the overall joint priors using prior predictive concentrations. Figure 5.2

shows the median and 80% credible intervals for prior predictive distributions of concentration over time using

the two-compartment allometric weight scaling model with no other covariates. The plots use a hypothetical
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reference subject with the median weight of 9.4 kg and a loading dose of 0.4 mcg/kg delivered over 5 minutes

followed by a 6 hour infusion at 0.6 mcg/kg/h and a 2 hour infusion at 0.5 mcg/kg/h. Because they are based

solely on the specified PK model structure and prior information, these plots represent the assumed state of

knowledge before incorporating any observed data. The parameters for the current study prior contain more

uncertainty (larger variance), so the range of feasible concentration profiles is much wider.
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Figure 5.2: Prior predictive distributions for two-compartment allometric scaling model for reference subject

with median weight of 9.4 kg. Median (solid black line) and 80% credible intervals (shaded region) are shown.

In addition to the informative prior, we also consider sensitivity analyses using an improper non-informative

prior and a more weakly informative prior. The simulation study in Chapter 3 showed poor performance

can result when using non-informative priors and inclusion of prior information is the primary motivation

for performing the Bayesian reanalysis, however it may be of interest to compare a Bayesian model without

informative priors to the frequentist analysis; to “let the data speak” without any external information. However,

as noted by Wakefield et al. (1999) [62], “for those elements . . . that correspond to nonlinear parameters at

the first stage, proper priors are required in order to guarantee propriety of the posterior distribution.” Given

the above and the limitations of the observational data in this study, a non-informative prior may not produce

reasonable results. Therefore, we also include a sensitivity analysis using less informative proper priors which

are in the same distributional families as the main analysis prior, but with the log-scale standard deviation or

scale increased by 50%4 (see Table 5.10 for specific mathematical forms).

4e.g., for the CLpop parameter the main analysis prior is lognormal; the logarithm of the prior distribution has a mode of 40.6 and

standard deviation of 0.5 and the 90% highest density interval (HDI) is 16.2 - 101.9. The more weakly informative prior has the same

mode of 40.6, but standard deviation (on the log-scale) of 0.75 = 0.5×1.5 and the 90% HDI is 9.4 - 189.6. For comparison, the minimum

and maximum estimates of CLpop among the recent studies contributing to the main analysis prior were 20.8 and 81, respectively, so the

more weakly informative prior includes plausible values far beyond the range of the observed estimates.
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5.3 Results

5.3.1 Study Population and Specimens

As detailed in Chapter 4, the final cohort contained 354 subjects with 2,386 dexmedetomidine dosing events

(2,351 intravenous infusions and 35 bolus administrations) and 1,400 specimens with dexmedetomidine

concentration measurements. The CY P2A6 predicted activity score was available for 350 of the 354 subjects

and all models including CY P2A6 score were estimated using this subset of subjects.

5.3.2 Bayesian Population Pharmacokinetic Model

Table 5.1 shows the estimated out-of-sample predictive accuracy of the initial allometric scaling, age maturation,

and non-genotype covariate models. Both the Hill maturation model and exponential age model had higher

l ppdcv than the model with only allometric scaling confirming the importance of including both weight and

age covariates for this population. In addition, the l ppdcv for the model including a Hill maturation factor for

total clearance indicated better predictive performance than the exponential age model. Moving to the next

stage, there were no improvements in predictive accuracy for models which added non-genotype covariate

effects on total clearance to the model with allometric scaling and Hill maturation. Further, in plots of the total

clearance random effects versus covariates no strong trends were seen for the non-genotype covariates (Figure

5.9), indicating little association between these variables and total clearance after adjusting for weight and age.

Additional diagnostic plots are shown in Figures 5.10, 5.11, and 5.14.

Table 5.1: Log Pointwise Predictive Density for Allometric Scaling, Age Maturation, and non-Genotype

Covariate Models

Model l ppdcv

Two-compartment allometric scaling 706.1

+ Hill maturation 856.6

+ exponential postmenstrual age 813.3

Two-compartment allometric scaling + Hill maturation 856.6

+ serum creatinine 735.3

+ sex 805.2

+ STAT score 719.3

+ cardiac bypass time 834.8

+ length of ICU stay 775.3
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The final covariate model before including genotype effects was:

CLi = CLpop×
(

WTi

70

)0.75

× 1

1+
(

T M50
PMAi

)Hill
× exp(ηCL,i)

V 1i = V 1pop×
(

WTi

70

)

× exp(ηV 1,i)

Qi = Qpop×
(

WTi

70

)0.75

× exp(ηQ,i)

V 2i = V 2pop×
(

WTi

70

)

× exp(ηV 2,i)

where CLi, V 1i, Qi, and V 2i are the individual-specific PK parameters corresponding to CL, V 1, Q, and V 2;

CLpop, V 1pop, Qpop, and V 2pop are population parameters; WTi is subject weight in kilograms (kg); and

PMAi is subject postmenstrual age in weeks. T M50 is a parameter estimating the postmenstrual age when

50% of adult clearance is achieved and the Hill parameter controls the shape of the sigmoid function. The

ηCL,i, ηV 1,i, ηQ,i, and ηV 2,i are random effects explaining IIV for the PK parameters which follow a normal

distribution with mean zero and variance of ω2
CL, ω2

V 1, ω2
Q, and ω2

V 2, respectively. Table 5.2 summarizes the

HMC-estimated posterior parameters for the model with allometric scaling and Hill maturation with estimates

given in terms of a standard subject weight of 70kg: CLpop = 39.9 L/h, V 1pop = 141 L, Qpop = 14.4 L/h, and

V 2pop = 1,270 L. The posterior predictive distribution from this model for a reference subject with median

weight of 9.4 kg, postmenstrual age of 104.6 weeks, and the same dosing used for the prior predictive plots is

shown in Figure 5.3. Updating the prior information with the observed data and including postmenstrual age

in the structural model resulted in a substantial reduction in the 80% credible interval width.
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Figure 5.3: Posterior predictive distribution for model with allometric scaling and Hill maturation for reference

subject with median weight of 9.4 kg and postmenstrual age of 104.6 weeks. Median (solid black line) and

80% credible intervals (shaded region) are shown.
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Table 5.2: Summary of Posterior Distribution Estimated by HMC for Parameters in Allometric Scaling and

Hill Maturation Model

90% Highest Density Interval

Mean Median Lower Bound Upper Bound

CLpop 39.9 39.8 35 44.9

Qpop 14.4 14.2 10.3 18.8

V 1pop 141 140 121 161

V 2pop 1270 1214 690 1786

T M50 40.5 40.9 35.3 46.8

Hill 4.27 4.11 2.28 6.36

ω2
CL 0.665 0.658 0.537 0.824

ω2
Q 1.02 1.01 0.573 1.48

ω2
V 1 0.788 0.775 0.511 1.08

ω2
V 2 4.07 3.9 2.4 5.89

σ2
add 0.00021 0.000206 0.000153 0.000269

σ2
prop 0.185 0.184 0.161 0.209

5.3.3 Genetic Effects on Clearance and Concentration

Starting with the model including allometric scaling and Hill maturation, we added genotype effects individu-

ally to the total clearance model. The estimated predictive accuracy measured by l ppdcv for the UGT 1A4 and

UGT 2B10 models is shown in Table 5.3. Adding the UGT variants with an additive or dichotomous functional

form to the model did not improve estimated predictive accuracy.
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Table 5.3: Log Pointwise Predictive Density for UGT 1A4 and UGT 2B10 Models

Model l ppdcv

Two-compartment allometric scaling + Hill maturation 856.6

+ UGT 1A4 additive 772.9

+ UGT 2B10 additive 783.8

+ UGT 1A4 dichotomous 746.3

+ UGT 2B10 dichotomous 809.8

Table 5.4 compares the predictive accuracy of the allometric scaling and Hill maturation model to the model

that also includes CY P2A6 risk score among the 350 subjects with an available score. In contrast to the UGT

models, adding a CY P2A6 score effect for the total clearance parameter improved the model with l ppdcv

increasing from 780.3 to 803.3. The plots of observed vs. population predicted concentration and observed

vs. individual predicted concentration in Figure 5.4 show a reasonably good fit. Additional diagnostic plots are

shown in Figures 5.12, 5.13, and 5.15.

Table 5.4: Log Pointwise Predictive Density for CY P2A6 score Model*

Model l ppdcv

Two-compartment allometric scaling + Hill maturation 780.3

+ CY P2A6 score 803.3

* Among n = 350 subjects with available score

For the model with CY P2A6 score, total clearance is given by:

CLi = CLpop×
(

WTi

70

)0.75

× 1

1+
(

T M50
PMAi

)Hill
× exp(βCL,CY P2A6 · standardized CY P2A6 score)× exp(ηCL,i)

The posterior distribution of parameters for this model are summarized in Table 5.5. The mean effect of the

standardized CY P2A6 score was 0.0627 with 90% probability that the effect is between −3.51×10−4 and

0.123 and only 4.8% probability that βCL,CY P2A6 ≤ 0. A one standard deviation increase in CY P2A6 score was

associated with approximately exp(0.0627)≈ 1.06 times higher total clearance on average. Because weight is
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Figure 5.4: Observed vs. predicted posterior median concentration for model with allometric scaling, Hill

maturation, and CY P2A6 score. Blue lines are loess smoothers.

the most important factor in determining total clearance for a pediatric population, we can also explain the

CY P2A6 effect in terms of the weight change needed to achieve an equivalent increase in clearance. Increasing

CY P2A6 score by one standard deviation (0.14) increases clearance by the same amount as a weight increase

of about 9% [exp
(

0.0627
0.75

)
≈ 1.09] for a subject without the standard deviation increase in CY P2A6 score. A

detailed calculation is provided in the Appendix.

The model including CY P2A6 score implies that a subject with a high CY P2A6 score will require a larger dose

to achieve the same concentration as a subject with lower CY P2A6 score, holding other covariates constant.

Figure 5.5 illustrates this for hypothetical subjects with median weight (9.4kg), median postmenstrual age

(104.6 weeks) and CY P2A6 scores of 2.0 and 2.43, around the median and maximum, respectively. In Figure

5.5(a) dosing was the same for both subjects (loading dose of 0.4 mcg/kg delivered over 5 minutes followed

by a 6 hour infusion at 0.6 mcg/kg/h and a 2 hour infusion at 0.5 mcg/kg/h) and the peak concentration for the

subject with CY P2A6 score of 2.43 is around 0.1 ng/mL lower than the equivalent subject with CY P2A6 score

of 2.0. In Figure 5.5(b), the subject with CY P2A6 score of 2.43 was given a 0.1 mcg/kg higher dose (loading

dose of 0.5 mcg/kg over 5 minutes followed by a 6 hour infusion at 0.7 mcg/kg/h and then a 2 hour infusion at

0.6 mcg/kg/h). The higher dose results in a concentration profile nearly identical to the subject with CY P2A6

score of 2.0.
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Figure 5.5: Posterior predictive distribution for model with allometric scaling, Hill maturation and CY P2A6

score for (a) reference subjects with median weight of 9.4 kg, postmenstrual age of 104.6 weeks, loading dose

of 0.4 mcg/kg delivered over 5 minutes followed by a 6 hour infusion at 0.6 mcg/kg/h and a 2 hour infusion at

0.5 mcg/kg/h, and CY P2A6 score of 2.0 and 2.43 and (b) same covariates as (a) but with dose for subject with

CY P2A6 score of 2.43 increased by 0.1 mcg/kg (loading dose of 0.5 mcg/kg over 5 minutes followed by a 6

hour infusion at 0.7 mcg/kg/h and then a 2 hour infusion at 0.6 mcg/kg/h). Medians (solid lines) and 80%

credible intervals (shaded regions) are shown.

Table 5.5: Summary of Posterior Distribution Estimated by HMC for Parameters in Allometric Scaling, Hill

Maturation, and CY P2A6 Score Model

90% Highest Density Interval

Mean Median Lower Bound Upper Bound

CLpop 40.9 40.8 36.1 45.6

βCL,CY P2A6 0.0627 0.0634 -0.000351 0.123

Qpop 13.7 13.5 9.79 17.6

V 1pop 142 142 122 164

V 2pop 1170 1136 636 1661

T M50 41 41.3 35.7 46.2

Hill 4.34 4.31 2.65 6.06

ω2
CL 0.628 0.62 0.494 0.761

ω2
Q 1.03 1.01 0.647 1.41

ω2
V 1 0.842 0.827 0.52 1.11

ω2
V 2 3.86 3.75 2.06 5.58

σ2
add 0.000215 0.00021 0.000153 0.000267

σ2
prop 0.188 0.187 0.163 0.208
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5.3.4 Prior Sensitivity Analysis

For the sensitivity analysis, the model including allometric scaling and Hill maturation and the model with

those effects plus CY P2A6 score on total clearance were both fit using a non-informative prior and the more

weakly informative prior described above. The HMC sampler settings were modified to include 500 additional

warm-up samples since models with less prior information may be slower to converge.

The results for the non-informative prior were very poor with both models failing to reach convergence after

3000 warm-up samples. Examining the trace plots for these models in Figures 5.16 and 5.17 reveals serious

problems with the sampler with multiple chains ‘stuck’ around the same value and unrealistically large values

for several parameters, such as CLpop and T M50, despite the chains being initialized to values around the

modes of the main analysis informative prior.

The more weakly informative prior produced better results than the non-informative prior. The trace plots in

Figures 5.18 and 5.19 show much better mixing and convergence of the chains. Table 5.6 shows the results from

the model with only allometric scaling and Hill maturation using the weakly informative prior. There are some

differences compared to the main analysis prior, but the posterior distributions are close for most parameters.

The mean estimates using the more weakly informative prior are: CLpop = 34.8, V 1pop = 149, Qpop = 18.8,

V 2pop = 3328, T M50 = 41.5, and Hill = 5.04 compared to CLpop = 39.9, V 1pop = 141, Qpop = 14.4, and

V 2pop = 1270, T M50 = 40.5, and Hill = 4.27 for the main analysis prior. The largest difference is for the

V 2pop parameter; the observed data does not contain much information to estimate this parameter precisely, as

evidenced by the frequentist analysis, and the prior has a larger influence on the posterior.

Results for the model including allometric scaling, Hill maturation, and CY P2A6 score estimated with the

more weakly informative prior are shown in Table 5.7. The mean estimates for the sensitivity analysis are:

CLpop = 35.8, βCL,CY P2A6 = 0.0843, V 1pop = 146, Qpop = 17.9, V 2pop = 2841, T M50 = 41, and Hill = 5.23

vs. CLpop = 40.9, βCL,CY P2A6 = 0.0627, V 1pop = 142, Qpop = 13.7, V 2pop = 1170, T M50 = 41, and Hill =

4.34 for the main analysis prior. Again, the largest differences are seen for parameters Qpop and V 2pop. Figure

5.6 shows the posterior predictive distributions used to illustrate the effects of dose change using the more

weakly informative prior. Comparing to the same plots from the main analysis (Figure 5.5) shows that using

the weaker prior has little impact on predicted concentrations and inference, which are nearly identical.

5.3.5 Frequentist Analysis Comparison

Figures 5.7 and 5.8 show the prior and posterior for the Bayesian reanalysis along with the frequentist

mean estimate and 95% confidence intervals for the model including allometric scaling and Hill maturation

and the model including allometric scaling, Hill maturation and CY P2A6 score. Note that the frequentist
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Table 5.6: Summary of Posterior Distribution Estimated by HMC for Parameters in Allometric Scaling and

Hill Maturation Model for Sensitivity Analysis

90% Highest Density Interval

Mean Median Lower Bound Upper Bound

CLpop 34.8 35 27.9 40

Qpop 18.8 18.2 12.4 25.2

V 1pop 149 149 128 168

V 2pop 3328 3067 1418 5480

T M50 41.5 41.9 34.5 48.6

Hill 5.04 4.71 1.85 7.7

ω2
CL 0.708 0.69 0.517 0.872

ω2
Q 0.764 0.753 0.291 1.22

ω2
V 1 0.72 0.703 0.459 0.951

ω2
V 2 4.86 4.61 2.66 7.1

σ2
add 0.000191 0.000189 0.000141 0.000246

σ2
prop 0.188 0.188 0.163 0.212

Table 5.7: Summary of Posterior Distribution Estimated by HMC for Parameters in Allometric Scaling, Hill

Maturation, and CY P2A6 Score Model for Sensitivity Analysis

90% Highest Density Interval

Mean Median Lower Bound Upper Bound

CLpop 35.8 35.9 29.3 42.6

βCL,CY P2A6 0.0843 0.083 0.0125 0.158

Qpop 17.9 17 12.1 25.3

V 1pop 146 146 126 167

V 2pop 2841 2582 1280 4490

T M50 41 41.6 35.7 47.1

Hill 5.23 4.91 2.32 7.86

ω2
CL 0.674 0.66 0.528 0.853

ω2
Q 0.827 0.818 0.319 1.32

ω2
V 1 0.73 0.709 0.438 0.989

ω2
V 2 4.84 4.56 2.42 7.44

σ2
add 0.000197 0.000194 0.000145 0.000253

σ2
prop 0.188 0.188 0.164 0.211
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Figure 5.6: Posterior predictive distribution for model with allometric scaling, Hill maturation and CY P2A6

score for sensitivity analysis using more weakly informative priors for (a) reference subjects with median

weight of 9.4 kg, postmenstrual age of 104.6 weeks, loading dose of 0.4 mcg/kg delivered over 5 minutes

followed by a 6 hour infusion at 0.6 mcg/kg/h and a 2 hour infusion at 0.5 mcg/kg/h, and CY P2A6 score of 2.0

and 2.43 and (b) same covariates as (a) but with dose for subject with CY P2A6 score of 2.43 increased by 0.1

mcg/kg (loading dose of 0.5 mcg/kg over 5 minutes followed by a 6 hour infusion at 0.7 mcg/kg/h and then a 2

hour infusion at 0.6 mcg/kg/h). Medians (solid lines) and 80% credible intervals (shaded regions) are shown.

and Bayesian specifications for the subject level (Stage one) and population level (Stage two) models are

not identical; the frequentist models used a time-varying weight covariate and non-standardized CY P2A6

score, and had a simplified variance structure with most of the correlations between random effects (ρ) and

the additive component of the residual variance (σadd) fixed at zero; the Bayesian models used baseline

weight, standardized CY P2A6, and include both additive and proportional residual error and all random effect

correlations.

In the final Bayesian model with weight, age maturation, and CY P2A6 score we estimated a weight-

standardized mean CLpop of 40.9 L/h (CV 93.5%) while the frequentist estimate for the most similar model

was 24.8 L/h (CV 100%); the Bayesian mean Qpop estimate was 13.7 L/h (CV 134.2%) vs. 24.5 L/h (CV 86%)

for the frequentist model; V 1pop was estimated as 142 L (CV 114.9%) vs. 152 L (CV 138%) for the Bayesian

and frequentist models, respectively; similarly, the Bayesian vs. frequentist estimates for T M50 are 41 vs. 42.6

weeks; for the Hill coefficient 4.34 vs. 7.45 and for βCL,CY P2A6 0.0627 vs. 0.0885. The largest difference

was seen for V 2pop with a mean of 1170 L (CV 681.7%) for the Bayesian model and 5756 L (CV 549%) for

the frequentist model. For most parameters, the confidence intervals from the frequentist analysis are much

narrower than the corresponding Bayesian credible intervals. Further, the final model from the frequentist

analysis included only allometric scaling and age maturation and pharmacogenetic effects were not statistically

or clinically significant.

There are several potential explanations for the different conclusions reached using the two statistical paradigms.

First, the Bayesian models include both current study data and external evidence (encoded in the prior
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distribution). Conceptually this is equivalent including data from additional subjects in the analysis which

stabilizes the estimation. In addition, the frequentist and Bayesian analyses used different information criteria.

The frequentist model comparison used the somewhat misleadingly named ‘corrected Bayesian information

criteria’ (BICc) [143] while the Bayesian model comparison used cross-validation log pointwise predictive

density (l ppdcv). While the goal of l ppdcv is to estimate out-of-sample predictive fit, BICc attempts to

approximate the marginal probability density (or evidence). In practice, BICc favors more parsimonious

models compared to other common criteria such as AIC and WAIC. Further, as stated by Gelman et al. (2014)

[4], “it is completely possible for a complicated model to predict well and have a low AIC, DIC, and WAIC,

but, because of the penalty function, to have a relatively high (that is, poor) BIC.” For these two analyses the

tradeoff between parsimony (lower variance) and predictive accuracy (lower bias) excludes the CY P2A6 effect

when selecting for parsimony (using BICc) in the frequentist model with less information, but includes the

effect when selecting for predictive accuracy (using l ppdcv) in the Bayesian model adding prior information

from more ‘subjects.’
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Figure 5.7: Prior and posterior distributions vs. frequentist estimates from James et al. (2022) for model

with allometric scaling and Hill maturation. Frequentist maximum likelihood estimates and 95% confidence

intervals (blue circle and interval) and Bayesian prior (red curve) and posterior (green curve) distributions are

shown. Horizontal lines indicate the 90% highest density intervals for the Bayesian distributions.
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Figure 5.8: Prior and posterior distributions vs. frequentist estimates from James et al. (2022) for model

with allometric scaling, Hill maturation and CY P2A6 score. Frequentist maximum likelihood estimates

and 95% confidence intervals (blue circle and interval) and Bayesian prior (red curve) and posterior (green

curve) distributions are shown. Horizontal lines indicate the 90% highest density intervals for the Bayesian

distributions.
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5.4 Discussion

Using remnant specimens along with dosing, clinical, and demographic information from an EHR system we

developed a dexmedetomidine population PK model for a large pediatric cohort of 354 patients. Incorporating

prior information using the Bayesian paradigm stabilized the estimation and produced results much closer to

the previous literature for most parameters compared to the frequentist analysis in James et al. (2022) [110].

In addition, we found that including predicted CY P2A6 enzyme activity using a novel polygenic risk score

improved out-of-sample predictive accuracy and can potentially make a clinically meaningful difference in

dosing.

Using Bayesian analysis for population PK models involves several tradeoffs. Bayesian estimation has a

higher computational burden than frequentist estimation. For this analysis, the ADVI approximation was used

to reduce computing time during model development, but fitting the models still took substantially longer

(e.g., the final model took around 57 minutes to fit using frequentist SAEM estimation, 6 minutes to fit using

ADVI and 595 minutes, or nearly 10 hours, to fit using HMC). Also, there may be disagreement about the

appropriateness or subjectivity of the prior. Although Bayesian estimation failed with non-informative priors,

comparing two different informative priors with plausible parameter values produced roughly similar Bayesian

posterior distributions for most parameters and did not have a major impact on predicted concentrations.

Moreover, the informative priors used for this analysis were derived from previous literature and encoded

much greater uncertainty than those used for the previous informative Bayesian analysis of Wiczling et al. An

alternative approach such as formal expert elicitation could be used to arrive at a consensus prior.

Using population PK models with EHR data and remnant specimens allows collection of much larger sample

sizes while supplementing this observational data with prior information from previous studies helps address

limitations related to irregular, sparse sampling. By utilizing both the current data and external evidence, we

can better understand what factors affect dexmedetomidine PK to enable improved individualized dosing

decisions.
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5.5 Appendix

5.5.1 Model Parameterization

The variance-covariance matrix for the parameter random effects, Ω, is parameterized using a decompo-

sition into standard deviations and a correlation matrix [109]; Ω =






ωCl 0

0 ωV




×ρ ×






ωCl 0

0 ωV




. This

decomposition allows prior information about the variability of population PK parameters to be specified

on the same scale as the parameter. In addition, a non-centered parameterization is used for efficiency and

numerical stability [102]. In the Stan model implementation, a prior is specified on the Cholesky factor of

the correlation matrix Lρ where ρ = Lρ ×L′ρ instead of directly on ρ . Note that for the LKJ prior η = 1 is a

uniform distribution over correlation matrices.
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Table 5.8: Prior Pediatric Dexmedetomidine Studies

Title Authors Year N CLpop Qpop V 1pop V 2pop T M50 Hill

Pharmacokinetics of

Dexmedetomidine in Infants

and Children After

Orthotopic Liver

Transplantation

Damian, M. et al. 2020 20 52 246 186 203 - -

Population Pharmacokinetic

Model of Dexmedetomidine

in a Heterogeneous Group of

Patients

Ber, J. et al. 2020 70 34.7 40.8 22.5 86.1 - -

Results of a phase I

multicentre investigation of

dexmedetomidine bolus and

infusion in corrective infant

cardiac surgery

Zuppa, A. et al. 2019 119 37.4 138 155 105 - -

Dexmedetomidine

Pharmacokinetics and a New

Dosing Paradigm in Infants

Supported With

Cardiopulmonary Bypass

Zimmerman, K. O. et al. 2019 18 42.1 78.3 56.3 69 44.5 2.56

A Population

Pharmacokinetic Model of

Intravenous

Dexmedetomidine for

Mechanically Ventilated

Children after Neurosurgery

Song, I. et al. 2019 29 81 116.4 64.2 167 - -

Population Pharmacokinetics

and Pharmacodynamics of

Dexmedetomidine in

Children Undergoing

Ambulatory Surgery

Pérez-Guillé, M.-G. et al. 2018 30 20.8 75.8 21.9 81.2 - -

Dexmedetomidine

Pharmacology in Neonates

and Infants After Open Heart

Surgery

Su, F. et al. 2016 59 39.4 406.8 88 112 - -

The pharmacokinetics of

dexmedetomidine during

long-term infusion in

critically ill pediatric patients.

A Bayesian approach with

informative priors

Wiczling, P. et al. 2016 38 41.6 56.8 52 70.4 42.5 2.45
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Table 5.9: Dexmedetomidine Informative Priors

Parameter Derived from Wiczling et al. (2016) Current study informative prior

CLpop logNormal(µ = log(42.1),σ =
√

0.00185) logNormal(µ = log(40.6)+0.52,σ = 0.5)

Qpop logNormal(µ = log(78.3),σ =
√

0.02862) logNormal(µ = log(149.9)+0.652,σ = 0.65)

V 1pop logNormal(µ = log(56.3),σ =
√

0.01122) logNormal(µ = log(89.9)+0.62,σ = 0.6)

V 2pop logNormal(µ = log(69),σ =
√

0.00726) logNormal(µ = log(105.5)+0.42,σ = 0.4)

T M50 logNormal(µ = log(44.5),σ =
√

0.00636) Normal(µ = 43.1,σ = 10)

Hill logNormal(µ = log(2.56),σ =
√

0.04472) logNormal(µ = log(2.48)+0.42,σ = 0.4)

ωCl logNormal(µ = log(
√

0.091),σ = 0.2) logNormal(µ = log(
√

0.5)+0.62,σ = 0.6)

ωQ logNormal(µ = log(
√

0.13),σ = 0.2) logNormal(µ = log(
√

0.5)+0.62,σ = 0.6)

ωV 1 logNormal(µ = log(
√

0.32),σ = 0.2) logNormal(µ = log(
√

0.5)+0.62,σ = 0.6)

ωV 2 logNormal(µ = log(
√

0.20),σ = 0.2) logNormal(µ = log(
√

0.5)+0.62,σ = 0.6)
ρ LKJ(η = 1) LKJ(η = 1)
σprop Hal f −Cauchy(µ = 0,σ = 0.2) Hal f −Cauchy(µ = 0,σ = 0.3)
σadd Hal f −Cauchy(µ = 0,σ = 0.2) Hal f −Cauchy(µ = 0,σ = 0.5)

Table 5.10: Dexmedetomidine Sensitivity Analysis Priors

Parameter More weakly informative prior Non-informative prior

CLpop logNormal(µ = log(40.6)+0.752,σ = 0.75) Uni f orm(0,∞)
Qpop logNormal(µ = log(149.9)+0.9752,σ = 0.975) Uni f orm(0,∞)
V 1pop logNormal(µ = log(89.9)+0.92,σ = 0.9) Uni f orm(0,∞)

V 2pop logNormal(µ = log(105.5)+0.62,σ = 0.6) Uni f orm(0,∞)
T M50 trunc−Normal(min = 0,µ = 43.1,σ = 15) Uni f orm(0,∞)
Hill logNormal(µ = log(2.48)+0.62,σ = 0.6) Uni f orm(0,∞)

ωCl logNormal(µ = log(
√

0.5)+0.92,σ = 0.9) Uni f orm(0,∞)

ωQ logNormal(µ = log(
√

0.5)+0.92,σ = 0.9) Uni f orm(0,∞)

ωV 1 logNormal(µ = log(
√

0.5)+0.92,σ = 0.9) Uni f orm(0,∞)

ωV 2 logNormal(µ = log(
√

0.5)+0.92,σ = 0.9) Uni f orm(0,∞)
ρ LKJ(η = 1) LKJ(η = 1)
σprop Hal f −Cauchy(µ = 0,σ = 0.45) Uni f orm(0,∞)
σadd Hal f −Cauchy(µ = 0,σ = 0.75) Uni f orm(0,∞)

5.5.2 Estimation Algorithm Settings

5.5.2.1 Automatic Differentiation Variational Inference Settings

The cmdstanr $variational() function was used for ADVI estimation. The following settings were

used:

• algorithm: “meanfield”

• init: an initialization function based on the prior distribution

# Wiczling prior

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(40), 0.1)),

Q_pop = exp(rnorm(1, log(80), 0.1)),

V1_pop = exp(rnorm(1, log(55), 0.1)),

V2_pop = exp(rnorm(1, log(70), 0.1)))
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}

# informative prior

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(40), 0.1)),

Q_pop = exp(rnorm(1, log(150), 0.1)),

V1_pop = exp(rnorm(1, log(90), 0.1)),

V2_pop = exp(rnorm(1, log(105), 0.1)))

}

• convergence tolerance on the relative norm of the objective (tol_rel_obj): 0.003 (for allometric scaling

and allometric scaling + maturation models); 0.005 (for allometric scaling + Hill maturation + additional

covariate models); 0.01 (for cross-validation models)

• maximum number of iterations (iter): 15000 (17500 for cross-validation models)

• number of samples for Monte Carlo estimate of gradients (grad_samples): 4

• number of samples for Monte Carlo estimate of ELBO (elbo_samples): 150 (50 for cross-validation

models)

• evaluate ELBO every Nth iteration (eval_elbo): 100 (Default)

• maximum tries to refit: 6 for cross-validation models

• all other parameters used $variational() defaults

5.5.2.2 No U Turns Hamiltonian Monte Carlo Simulation Settings

The cmdstanr $sample() function was used for HMC estimation. The following settings were used:

• algorithm: “hmc” (Default)

• engine: “nuts” (Default)

• init: an initialization function based on the true population parameters

• init: an initialization function based on the prior distribution

# Wiczling prior

init0 <- function(){

list(CL_pop = exp(rnorm(1, log(40), 0.1)),

Q_pop = exp(rnorm(1, log(80), 0.1)),

V1_pop = exp(rnorm(1, log(55), 0.1)),

V2_pop = exp(rnorm(1, log(70), 0.1)))

}

# informative and more weakly informative prior
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init0 <- function(){

list(CL_pop = exp(rnorm(1, log(40), 0.1)),

Q_pop = exp(rnorm(1, log(150), 0.1)),

V1_pop = exp(rnorm(1, log(90), 0.1)),

V2_pop = exp(rnorm(1, log(105), 0.1)))

}

• number of warmup iterations to run per chain (iter_warmup): 2500 (3000 for sensitivity analysis with

more weakly informative prior)

• number of post-warmup iterations to run per chain (iter_sampling): 250

• number of Markov chains to run (chains): 4

• maximum number of MCMC chains to run in parallel (parallel_chains): 4

• The adaptation target acceptance statistic (adapt_delta): 0.85

• The number of iterations between printed screen updates (refresh): 500

• all other parameters used $sample() defaults
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5.5.3 Diagnostic Plots
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Figure 5.9: Total clearance random effects versus non-genotype covariates for allometric scaling and Hill

maturation model. Blue lines are loess smoothers.
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Figure 5.10: Observed vs. predicted concentration for allometric scaling and Hill maturation model. Blue

lines are loess smoothers.
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Figure 5.11: Visual predictive check for allometric scaling and Hill maturation model with 10th, 50th and 90th

percentile of observed values (solid lines) and theoretical values (dashed lines) along with 90% prediction

interval for theoretical percentiles (shaded regions). Filled circles indicate observed values and the lower limit

of quantification of 0.005 ng/mL is represented by a horizontal grey line; time was binned using the Jenks

natural breaks classification method.
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Figure 5.12: Total clearance random effects versus non-genotype covariates for allometric scaling, Hill

maturation, and CY P2A6 score model. Blue lines are loess smoothers.
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Figure 5.13: Visual predictive check for allometric scaling, Hill maturation, and CY P2A6 score model with

10th, 50th and 90th percentile of observed values (solid lines) and theoretical values (dashed lines) along with

90% prediction interval for theoretical percentiles (shaded regions). Filled circles indicate observed values

and the lower limit of quantification of 0.005 ng/mL is represented by a horizontal grey line; time was binned

using the Jenks natural breaks classification method.
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Figure 5.14: HMC trace plots for model with allometric scaling and Hill maturation using main analysis

informative prior
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Figure 5.15: HMC trace plots for model with allometric scaling, Hill maturation, and CY P2A6 score using

main analysis informative prior
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Figure 5.16: HMC trace plots for model with allometric scaling and Hill maturation using sensitivity analysis

non-informative prior
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Figure 5.17: HMC trace plots for model with allometric scaling, Hill maturation, and CY P2A6 score using

sensitivity analysis non-informative prior

ωV2
2 σadd

2 σprop
2

ωQ
2 ωQ, V1 ωQ, V2 ωV1

2 ωV1, V2

Hill ωCl
2 ωCL, Q ωCL, V1 ωCL, V2

CLpop Qpop V1pop V2pop TM50

0 50 100150200250 0 50 100150200250 0 50 100150200250

0 50 100150200250 0 50 100150200250 0 50 100150200250 0 50 100150200250 0 50 100150200250

0 50 100150200250 0 50 100150200250 0 50 100150200250 0 50 100150200250 0 50 100150200250

0 50 100150200250 0 50 100150200250 0 50 100150200250 0 50 100150200250 0 50 100150200250
20

30

40

50

−1.0

−0.5

0.0

0.5

0.0
0.5
1.0
1.5
2.0

3000

6000

9000

0.25

0.50

0.75

0.6

0.9

1.2

110

130

150

170

190

−0.8
−0.6
−0.4
−0.2

0.0

0.0
0.5
1.0
1.5

0.14
0.16
0.18
0.20
0.22
0.24

10
15
20
25
30

0.4
0.6
0.8
1.0
1.2

−0.6

−0.3

0.0

0.00015
0.00020
0.00025
0.00030

20

30

40

5

10

15

20

0.5

1.0

1.5

2
4
6
8

10

Chain

1

2

3

4

Figure 5.18: HMC trace plots for model with allometric scaling and Hill maturation using sensitivity analysis

more weakly informative prior
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Figure 5.19: HMC trace plots for model with allometric scaling, Hill maturation, and CY P2A6 score using

sensitivity analysis more weakly informative prior

5.5.4 Calculation of CY P2A6 Effect in terms of Equivalent Change in Weight

From the CY P2A6 model average CL=CLpop×
(

WTi
70

)0.75

× 1

1+
(

T M50
PMAi

)Hill ×exp(βCL,CY P2A6) for a subject with

standardized CY P2A6 score of 1 (around 2.22 on original scale). A subject with the equivalent postmenstrual

age, standardized CY P2A6 score of 0 (around 2.08 on original scale), and weight changed by a factor ∆ will

have average CL =CLpop×
(

WTi×∆
70

)0.75

× 1

1+
(

T M50
PMAi

)Hill . Setting these equations equal and solving for ∆ will

give the proportional weight change that has the same impact on CL as a one-unit increase in standardized

CY P2A6 score.

CLpop×
(

WTi

70

)0.75

× 1

1+
(

T M50
PMAi

)Hill
× exp(βCL,CY P2A6) = CLpop×

(
WTi×∆

70

)0.75

× 1

1+
(

T M50
PMAi

)Hill

(
WTi

70

)0.75

× exp(βCL,CY P2A6) =

(
WTi

70

)0.75

×∆0.75

βCL,CY P2A6 = 0.75log(∆)

exp

(
βCL,CY P2A6

0.75

)

= ∆

For the CY P2A6 model, βCL,CY P2A6 = 0.0627 so the equivalent proportional weight change is

∆ = exp
(

0.0627
0.75

)
≈ 1.09
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CHAPTER 6

Conclusion

The best approach to encourage adoption of Bayesian methods is by showing how these methods can provide

practical advantages to solve real problems. In this dissertation, we have demonstrated this methodology in

two application areas, semi-parametric regression modeling with CPMs and population PK analysis.

In Chapter 2, we described how the CPM model can be reparameterized to handle a large number of ordinal

categories. Using a Dirichlet prior anchored to the conditional probabilities of category membership for a

specific covariate vector along with the inverse of the assumed link function we induce a prior for the ordered

intercept parameters. The Bayesian CPM is a flexible model which can handle both continuous and discrete

ordered outcomes and estimation of the full conditional CDF, along with quantiles and other functionals using

a single model fit. The model performed reasonably well for the simulations studied, although it is best suited

for cases with fairly dense data that are sufficient to describe the posterior CDF.

In Chapter 3, the ADVI approximation was compared to MCMC using extensive simulations encompassing

two PK models (one and two compartment IV infusion), two data sampling schemes (dense and sparse), and

four prior specifications (strong, weak, and misspecified informative priors, and a non-informative prior). The

estimation approaches were compared for population and individual parameter estimation, population and

individual posterior concentration prediction, fit time, and model selection using a correctly specified and two

incorrectly specified models. ADVI is best used when fitting many models, such as during model development

and refinement or for model selection using cross-validation, or when the goal is to evaluate models quickly

and approximate results are acceptable. A more accurate method such as MCMC should be used for final

estimates.

Chapter 4 detailed a frequentist population PK analysis of dexmedetomidine using real-world EHR data.

While this analysis demonstrated the benefit of using real-world data for population PK analysis by confirming

the importance of weight and age for dexmedetomidine PK it did not find evidence for pharmacogenetic

effects of UGT 1A4 or UGT 2B10 variants or CY P2A6 risk score. Reanalyzing the dexmedetomdine PK data

using a Bayesian approach in Chapter 5 addressed a limitation of the frequentist analysis by stabilizing

estimation using prior information from previously published studies. In addition, this analysis demonstrated

the combined estimation approach advocated in Chapter 3 by using ADVI for model development and selection

and MCMC for final model estimates and posterior predictive checks.
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Throughout, we have described the advantages of the Bayesian approach. All parameter estimates and intervals

can be interpreted intuitively. For example, in the HIV inflammatory biomarker case study model from Chapter

2 there is a 95% probability that a white, male, nonsmoker with average age and CD4 count in the LiNC study

and BMI of 30.3 has a median IL-6 between 2.02 and 2.68; for the same subject there is a 75% probability

that the 90th percentile of IL-6 is greater than 5.75. From the Bayesian dexmedetomdine PK reanalysis, the

probability that total clearance is between 36.1 and 45.6 L/h for a subject with standardized 70kg weight, full

adult maturity, and mean CY P2A6 score is 90%. The dexmedetomdine reanalysis also showed the benefit

of informative priors to stabilize estimates. The mean V 2pop for the model with allometric scaling, Hill

maturation, and CY P2A6 score was estimated as 5756 L in the frequentist analysis, far larger than any value

previously reported in the literature. The Bayesian estimate of 1170 L, while still large, is much more plausible.

We have also attempted to address what we view as the main drawbacks of Bayesian modeling, the additional

time required to both define and fit models. While attention to the prior will remain a prerequisite for

all Bayesian analysis, the reparameterization and prior choices explored for the Bayesian CPM represent

an example of a reasonable starting point that requires the analyst to specify fewer hyperparameters than

alternatives that parameterize the intercepts directly. The ADVI approximation addresses the computational

burden of fitting many Bayesian population PK analysis.

There are several avenues for additional research related to the Bayesian CPM model. First, a direct comparison

to other Bayesian semiparametric modeling approaches would help clarify the connections between approaches

and highlight benefits and drawbacks. Second, additional flexibility can potentially be gained by substituting

the Dirichlet prior for a infinite-dimensional Bayesian nonparametric prior, such as a Dirichlet process prior,

which does not require the number of categories to be known a priori and could better accommodate Bayesian

updating of the posterior with data containing new distinct continuous values or categories. Third, if inference

for the parameters is not of primary interest, specification of the link function could be avoided by either

estimating it nonparametrically or using a more flexible mixture link function.

For Bayesian PK modeling, the results from ADVI are not identical to those using the MCMC gold standard,

but the decrease in fit time can justify the increase in bias and misestimated precision depending on the goals

of the modeling procedure. Two directions for future work in this area are evaluation of extensions to address

the inaccuracies of mean-field ADVI such as full-rank ADVI or LR-ADVI and application to more complex

pharmacometric models, such as pharmacokinetic-pharmacodynamic or physiologically based pharmacokinetic

models, which could potentially benefit from the hybrid approach of combining large observational datasets

with prior information from small, well-designed studies.
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