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CHAPTER I 

 

INTRODUCTION 

 

The connection between the mind and body in depression  

Depression is a common psychiatric disorder estimated to affect 264 million individuals 

worldwide1. Diagnostic criteria for depression include clinical evaluation of self-reported 

psychiatric symptoms, such as depressed mood, irritability, anhedonia, or suicidal thoughts. 

Depression can also manifest with physical symptoms such as weight change, appetite change, 

sleep disturbances, and psychomotor changes. Additionally, depression diagnosis associates 

with increased risk for cardiovascular disease2–4, autoimmune disease5, and diabetes6–9. The 

physical symptoms and increased risk of peripheral diseases suggest a connection between the 

mind and the body in depression.  

Hippocrates was the first to describe “melancholia”, now termed depression, as “fear or 

sadness that lasts a long time”10. In addition to psychiatric symptoms, Hippocrates mentioned 

several physical manifestations still used in diagnostics today, such as “aversion to food, 

sleeplessness, restlessness”. Ancient Greeks believed in a connection between the mind and 

the body through black bile, one of the four humors thought to control health. Melancholia was 

believed to be caused by an excess of black bile. Treatment aimed at balancing humors through 

air, exercise, or restorative sleep, and was often intertwined with religious or folklore methods 

over time. The humor theory of depression lasted in medicine until the 1850s11.  
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In contrast to the Hippocratic connection between the mind and the body, modern 

mental healthcare tends to be separated from somatic healthcare. The separation of mental 

and physical healthcare finds its origins in Descartes’s theory of dualism. Dualism states two 

worlds exist: the outer, physical world and the inner, spiritual world. Dualism still permeates 

modern psychiatric medicine today through the physical separation and lack of integrated 

mental and physical healthcare, dismissal of somatic concerns among individuals with severe 

mental illness, and the disproven theory of immune privilege of the brain12.  

In contrast to dualism, many associations exist between mental and physical health. For 

example, individuals with severe mental illness, including depression, have a life expectancy 10 

years shorter than the general population13,14. The decreased life expectancy is only partially 

explained by suicide. Somatic disorders such as cardiovascular disease, diabetes, and cancer 

account for the majority of premature death, suggesting a biologic connection between 

psychiatric and somatic conditions14. Additionally, depression has a number of common 

somatic co-morbidities, including cardiovascular disease, diabetes, and autoimmune disorders. 

Interestingly, all of these disorders are linked to an activated immune system, leading to the 

hypothesis that the brain-body connection in these instances are, at least in part, due to 

inflammation, as opposed to previous ideas of common environment15.  

The direction of association between depression and somatic conditions remains 

unclear. Investigators in Denmark used a population-wide health registry to examine whether 

hospitalization for depression or autoimmune disease came first. While one group found 

depression precedes autoimmune disease16, another group found the opposite5, suggesting a 

bidirectional relationship and shared biology. Other methods of dissecting the relationship 
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between depression and somatic conditions used genetics. Large-scale genome-wide studies 

(GWAS) of depression significantly correlate with somatic conditions, including inflammatory 

conditions, such as Crohn’s disease and irritable bowel syndrome, as well as cardiovascular 

disease, and lung cancer17,18. The epidemiologic and genetic link between depression and 

somatic conditions, many of which involve immune or inflammatory biology, suggests a 

possible inflammatory link between the two traits.   

 

The role of inflammation in depression  

 Biomarkers are accurate and reproducible measurements that indicate the medical 

state of an individual19. Increased levels of circulating pro-inflammatory markers can indicate a 

disease state, such as an autoimmune disorder. Slightly elevated but not abnormal levels of 

pro-inflammatory markers can be indicative of chronic inflammation20. In cross-sectional 

studies, depression cases consistently have slightly increased levels of pro-inflammatory 

markers than controls, including white blood cell count (WBC)21,22, C-reactive protein (CRP)23, 

interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Multiple meta-analyses confirmed 

the association between depression and WBC24, CRP25,26, IL-625,27,28, and TNF-α27 across multiple 

studies. Cross-sectional studies helped establish an association between inflammatory markers 

and depression, however, they cannot indicate whether increased inflammation preceded or 

followed depressive symptoms.  

 Longitudinal studies involve following individuals over a period of time and collecting 

repeated observations, such as biomarker measurements. Longitudinal studies of depression 

and inflammatory markers have shown that inflammation precedes and, in some cases, can 
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predict the onset of depression. Several studies indicated increased CRP associated with later 

depression events, such as increased risk of hospitalization due to depression, increased 

reporting of depressive symptoms, and increased risk of depression diagnosis23,26,29. 

Additionally, a study reported increased levels of IL-6 at 9 years of age associated with an 

increased risk of depression at 18 years of age30. A study of WBC count in urban adults showed 

higher baseline levels associated with a faster increase of depressive symptoms over time22. At 

the same time, longitudinal studies have shown clinical depression also associates with 

subsequent increase in pro-inflammatory markers, notably CRP and IL-631,32. Overall, 

longitudinal studies have established increases in pro-inflammatory markers can precede 

depression symptoms and diagnosis, with emerging evidence suggesting the relationship is 

bidirectional.  

 Alternative ways of discerning the direction between depression and inflammation 

include inducing or reducing inflammation and monitoring depression symptoms. Both typhoid 

vaccination and interferon-α treatment activate the immune system and associate with 

increases in depressive symptoms. Typhoid vaccination associates with a transient decrease in 

mood that subsides 24 hours after vaccination33,34. Interferon-α is used for the treatment of  

Hepatitis C, often for lengths of 6 months to 1 year. Several studies have shown interferon-α 

associates with increases in depressive symptoms that return to pre-treatment levels after 

treatment is stopped35–37.  

Other studies report that decreasing inflammation using anti-inflammatory medications 

shows modest antidepressant effects. Three meta-analyses demonstrated anti-cytokine 

therapies associated with decreases in depressive symptoms compared to placebo38–40. Most of 
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these studies were conducted using secondary endpoints for medications developed for 

treatment of inflammatory conditions, raising the hypothesis that depressive symptoms can be 

improved through modulation of the immune system. One meta-analysis found the reduction in 

depressive symptoms remained even after controlling for improvement in physical health40. To 

date, only one double-blind randomized controlled trial has been conducted to investigate if an 

anti-inflammatory medication reduces depressive symptoms in a sample diagnosed with major 

depression. The study did not show improvement in depressive symptoms after treatment with 

an anti-TNF-α therapy, however, the sample size was small (N=60)41.  

 

Development of antidepressants  

 Antidepressants are first-line treatment for depression and are among the most 

commonly prescribed medications in the United States. However, antidepressants were not 

initially developed for depression. In the 1950s, iproniazid was developed as an antibiotic for 

treatment of tuberculosis. In addition to successfully treating tuberculosis, patients exhibited 

boosts in mood and energy, with reporters noting there was “dancing in the halls tho’ there 

were holes in their lungs”42. Dr. Nathan Kline of Rockland State Hospital was eager to use 

iproniazid in treatment in depression, even though others believed the mood elevation seen in 

tuberculosis patients was a result of improved physical condition rather than anti-depressive 

effects of the medication. Improvements in mood remained when Kline tested iproniazid in 

non-tuberculosis patients, leading to its use as a treatment for depression starting in 1957. 

After approval of iproniazid, drugs chemically similar to iproniazid were developed, tested, and 
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approved for depression treatment, creating the first class of antidepressants, monoamine 

oxidase inhibitors (MAOIs). 

 The next class of drugs approved for treatment of depression was also an accidental 

discovery. In 1950s, imipramine was tested in schizophrenic patients with agitation. Patients 

diagnosed with depressive psychosis and treated with imipramine showed improvement in 

their general state and depressive symptoms, spurring imipramine to be tested and 

subsequently approved for treatment of depression, creating the tricyclic class of 

antidepressants (TCAs)42.  

 Despite two classes of antidepressants approved for use, the mechanisms of action 

were unknown. A deeper look at the mechanism of MAOIs and TCAs revealed the drugs 

inhibited the uptake of monoamines and enhanced monoaminergic neurotransmission. This 

discovery led to the catecholamine hypothesis of depression which states depression is the 

result in a deficiency in monoaminergic function43. However, it remains unknown whether the 

increased availability of monoamines from antidepressant treatment leads to an improvement 

in mood, or if an alternative mechanism of action produces antidepressant effects.  

 The first antidepressant intentionally developed for treatment of depression was 

fluoxetine (brand name “Prozac”) in 1974. Following the catecholamine theory of depression, 

fluoxetine was designed to specifically increase the availability of serotonin in synapses43. 

Fluoxetine was approved for depression treatment in 1987 and was the first selective serotonin 

reuptake inhibitor (SSRI) to be used in the United States. With similar efficacy as MAOIs and 

TCAs but with fewer side effect, SSRIs are the most widely prescribed antidepressants to date. 

The final class of antidepressants are selective serotonin and norepinephrine reuptake 
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inhibitors (SNRIs). Similar to SSRIs, SNRIs increase the availability of serotonin and 

norepinephrine. There have not been any major advances in depression treatment since the 

1990s.    

 

Anti-inflammatory action of antidepressants  

 The pro-inflammatory state in depression and the origins of antidepressants from 

antibiotics led to investigations of the anti-inflammatory action of antidepressants. Overall, 

studies show mixed results on whether antidepressants associate with changes in inflammatory 

markers. A meta-analysis of 22 studies found no association between antidepressants and TNF-

alpha or IL-6, and a very weak association with IL-2B44. A separate meta-analysis reported 

antidepressants associated with decreases in IL-6 and CRP45. Both meta-analyses reported high 

heterogeneity between studies, complicating interpretability of the meta-analyses. Only one 

small study (N=15) examined the effect of antidepressants on WBC and reported no 

association46.   

 Associations between decreases in inflammatory markers and antidepressant response 

also show mixed results. The most recent meta-analysis demonstrated IL-6 decreases with 

treatment regardless of treatment response and persistently high levels of TNF-a associated 

with treatment resistance47. No other associations with inflammatory markers emerged.  

 

The role of genetics in depression   

While observational studies have been useful in establishing a link between the immune 

system and depression, another method to investigate the biology of depression is to use 
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genetics. Prior to genome-wide association studies, the genetics of depression was investigated 

using family studies. Twin studies evaluate the contribution of genetics to a trait while 

controlling for a common environment. In twin studies of depression, the estimated heritability 

ranged from 31-42%48,49. Twin studies provide valuable estimates of heritability that include 

both common and rare genetic variation, however, they are unable to pinpoint exact genes or 

mechanisms underlying the trait. Linkage analysis uses families with multiple affected 

individuals to identify regions in the genome inherited from a recent common ancestor and 

more common in affected individuals. Two separate reviews of linkage results in depression 

found 9-14 regions that replicated in at least two studies50,51. However, a recent re-analysis of 

linkage results in depression from 1998-2010 showed no significant overlap with hits from 

genome-wide association scans48. 

Another approach to identify genes involved in complex traits is a candidate gene study 

which requires a selection of a gene to compare allele frequencies in cases versus controls. In 

depression, candidate gene studies focused primarily on monoamine and serotonin transporter 

genes based on the mechanisms of antidepressants51. However, a recent re-analysis of 

candidate genes by Border et al. found no support for any proposed gene and concluded 

previous results were likely false positives52.  

 The introduction of genome-wide association studies (GWAS) in 2006 allowed for large-

scale analysis of polymorphisms associated with depression across the entire genome. No 

genome-wide significant associations were found for depression until 2015 in the CONVERGE 

study53. The latest GWAS conducted by the Psychiatric Genetics Consortium found 102 loci 

associated with depression17. The largest GWAS to date conducted in the Million Veteran 
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Program reported 178 significant loci54. GWAS has not solved the biology of depression, but it 

has significantly advanced the field by yielding loci for downstream analyses to investigate 

associated brain regions, overlap with other traits, and potential druggable targets. For 

example, the Million Veteran Program analysis found significant genetic correlation between 

depression and 669 traits, including neuroticism, cardiovascular diseases, and rheumatological 

diseases. Analysis of predicted tissue expression using the GWAS data implicated altered gene 

expression in several brain regions, such as the hypothalamus and the nucleus acumbens55. 

Changes in gene expression in the brain has been used to investigate new drug targets and 

propose existing drugs for repurposing. Gaspar et al. reported expression changes in 24 genes 

that belong to the druggable genome, including an enrichment of targets for monoamine 

reuptake inhibitors, sex hormones, and antihistamines56. In summary, GWAS analyses are 

foundational to the discovery of biology and new treatments in depression. A limiting factor of 

these downstream analyses55,56 are they can only use the summary level information from the 

GWAS, rather than individual level genetic and phenotypic information.  

 Polygenic scores estimate the genetic risk for depression by aggregating the small 

effects of thousands of loci across the genome into one score for each individual57. Though they 

are not currently recommended for clinical use, PGS do capture a significant proportion of the 

variance in depression diagnosis (1.5-3.2%17), indicating PGS represent a biologically relevant 

contribution to depression. Large-scale GWAS have accelerated the use of polygenic scores in 

depression. A recent systematic review found depression PGS associated with various 

psychiatric traits such as schizophrenia, bipolar, and increased number of depression 

episodes58. Other studies of depression PGS found associations with alcohol dependence59, 
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suicide attempt60, and better response to lithium treatment in bipolar patients61. In addition to 

psychiatric disorders, depression PGS associated with increased risk for cardiovascular disease 

in two recent studies62,63.  

 Genetic analysis has also been useful in dissecting the relationship between depression 

and immune traits. Depression GWAS show significant genetic correlation with autoimmune 

disorders, such as Crohn’s disease and irritable bowel disorder, as well as with a pro-

inflammatory biomarker, C-reactive protein17,18,64. These results suggest that the association 

between depression, increased inflammatory markers, and autoimmune disease are at least 

partially driven by shared genetic factors. An emerging resource for investigating genetic 

factors and shared biology of complex traits are electronic health records.   

 

Utility of electronic health records and biobanks for investigating the biology of depression  

Electronic health records (EHRs) store longitudinal information about the health and 

clinical care of individual patients, including diagnoses, medications, laboratory test results, and 

clinical notes. Traditional cohort collection for psychiatric research involves expensive 

ascertainment of cases and controls through clinical interviews. EHRs provide a low-cost 

resource to identify cases and controls through structured data such as billing codes or 

unstructured data such as mining clinical notes with natural language processing65. Psychiatric 

cohorts collected through EHRs have high phenotypic concordance and genetic correlation with 

interview-based collection65.  

Biobanks that link EHRs to DNA provide an opportunity to analyze clinical information 

along with genetic risk factors. Biobanks are useful in depression genetics research as well. 
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Currently, the largest GWAS of depression was conducted using the Million Veteran Program 

biobank. Additionally, previous studies consistently use depression diagnoses derived from 

EHRs from the UKBiobank and the iPSYCH collection in Denmark for genetic analyses. Biobanks 

are powerful resources for polygenic score analyses by allowing for the calculation of genetic 

liability regardless of diagnostic status and downstream associations with a variety of 

phenotypes stored in the EHR, such as clinical laboratory (“lab”) tests.  

In the clinic, lab test results are essential to routine care. These targeted biochemical 

measurements facilitate disease diagnosis and influence health care delivery. Clinical lab values 

are also monitored as mediators of disease risk, and are targeted by interventions to reduce 

disease incidence (e.g., cholesterol-lowering medication to reduce the risk of heart disease). 

Lab test results in EHRs are a vast and growing resource for novel biomarker discovery, 

especially as EHRs are increasingly linked to patient DNA samples (e.g., the eMERGE consortium 

the All of Us Program, and the Million Veteran’s Program). Despite their potential, however, 

EHR-based labs have been used in only a handful of prior genetic studies66–70, and none have 

systematically interrogated an extended collection of EHR-based lab values.  

Pairing genetics with biomarkers can help elucidate the biology underpinning 

depression and help provide the basis for future development of diagnostic panels. 

Furthermore, screening for associations with all available clinical lab tests can help replicate 

known associations (e.g., immune markers), and also yield novel associations. In this thesis, we 

1) introduce a method for screening for associations with lab values derived from EHRs, 2) test 

for lab-wide associations with depression genetics, 3) validate findings between depression 
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genetics and white blood cell count across three biobanks, and 4) interrogate the effects of 

antidepressants on white blood cell count.  
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CHAPTER II 

 

DEVELOPING METHODS TO ANALYZE LABORATORY VALUES STORED IN ELECTRONIC HEALTH 

RECORDS*1 

 

Introduction 

In this chapter, we describe a method developed to conduct large-scale analysis on 

clinical laboratory values (“labs”) extracted from electronic health records (EHRs). Our method 

Lab-Wide Association Scan (LabWAS) finds associations between any variable of interest 

(genetic or otherwise) and cleaned EHR labs. EHR labs used in LabWAS are cleaned using our 

recently developed QualityLab pipeline that is used to perform quality control on EHR-derived 

labs. Briefly, QualityLab removes non-numeric values, filters for a single unit within a lab, and 

removes outlier values consistent with biologically implausible values or data entry errors 

(Appendix A). When applied to VUMC data, QualityLab produced cleaned data on 939 labs for 

downstream analyses described here.  

We hypothesized that EHR-based lab values could be used to identify known and novel 

relationships between genetic risk factors, biomarkers, and disease. We deployed our 

framework in the Vanderbilt University Medical Center (VUMC) EHR and linked biobank (BioVU) 

and replicated it in an independent biobank, Massachusetts General Brigham Biobank (MGB). 

To validate our method, we focused on genetic analysis of blood values of high-density 

lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and triglycerides (TG), 

 
1 *Adapted with permission from Dennis JK & Sealock JM et al., Genome Medicine, 2021 
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and on coronary artery disease (CAD) as proof-of-principle examples to test the association 

between PGS for CAD and known biomarkers of disease (LDL, HDL, and TG).  

 

Methods 

Study Sample 

Our primary analysis was performed at VUMC which is a tertiary care center providing 

inpatient and outpatient care in Nashville, TN. The VUMC EHR was established in 1994 and 

includes data on billing codes from the International Classification of Diseases, 9th and 10th 

editions (ICD-9 and ICD-10), Current Procedural Terminology (CPT) codes, laboratory values, 

reports, and clinical documentation. The de-identified mirror of the EHR, known as the 

Synthetic Derivative, includes patient records on more than 3 million individuals. In 2007, 

VUMC launched a biobank, BioVU, and the BioVU Consent form is provided to patients in the 

outpatient clinic environments at VUMC. The form states policies on data sharing and privacy, 

and upon consent, makes any blood leftover from clinical care eligible for BioVU banking71. The 

VUMC Institutional Review Board oversees BioVU and approved this project (IRB# 160302). 

 

Genotyping and Quality Control  

We obtained genotype information on 94,474 VUMC individuals of different ancestral 

backgrounds genotyped on the Illumina MEGAEX array. Using PLINK v1.972 genotypes were 

filtered for SNP and individual call rates, sex discrepancies, and excessive heterozygosity. We 

selected individuals of European or African ancestry using principal component analysis 

implemented in Eigenstrat73,74 and confirmed the absence of genotyping batch effects through 
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logistic regression with ‘batch’ as the phenotype. Imputation was completed using the Michigan 

Imputation Server75 and the Haplotype Reference Consortium (HRC) reference panel. SNPs 

were then filtered for SNP imputation quality (R2>0.3) and converted to hard calls. We 

restricted to autosomal SNPs, filtered SNPs with minor allele frequency >0.01, or with allele 

frequencies that differed by more than 10% from the 1000 Genomes Project phase 3 CEU or 

ASW set respectively 76, and Hardy-Weinberg Equilibrium (p>1x10-10). The resulting dataset 

contained 6,303,629 SNPs on 72,824 individuals of European genetic ancestry and 12,798,111 

SNPs on 15,283 individuals of African genetic ancestry. 

 

Lab Heritability and GWAS Analyses 

  Prior to calculating SNP-based heritability (h2
SNP), we first calculated pairwise 

relatedness in the VUMC genotyped sample and removed one related individual from pairs with 

pi-hat greater than 0.05. This stringent threshold was chosen based on prior experience and 

previously published best practices in the application of restricted maximum likelihood (REML) 

approaches to the calculation of h2
SNP

77. After filtering, 45,010 individuals of European genetic 

ancestry remained. We then used the Genome-wide Complex Trait Analysis (GCTA) package 

(version 1.92.4)78 to create a pairwise genetic relationship matrix for all individuals, and 

heritabilities were calculated using the restricted maximum likelihood (REML) method, which 

estimates the variance explained by all the SNPs for a trait. We used the median, rank-based 

inverse normal transformed (INT) lab values from the QualityLab pipeline, and of the 939 

analyzed labs, 335 demonstrated non-zero heritability. For GWAS analyses, we used a less 

stringent relatedness filter appropriate to GWAS (pi-hat>0.2)79 resulting in a total available 
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sample of 66,732 European descent individuals. Next, we subset to the heritable labs with at 

least 1,000 individuals (n=181), and performed GWAS of the median, INT-transformed lab 

values using fastGWA80. All h2
SNP and GWAS analyses included covariates for sex, cubic splines 

(knots=4) of median age across the medical record (to control for non-linear effects of age), and 

the top 10 principal components of estimated from the genetic data.  

 

Heritability and GWAS Analyses of Lipids 

We benchmarked our lipid h2
SNP estimates against those from two external datasets, the 

Global Lipids Genetics Consortium (GLGC)81 and the Million Veterans Program (MVP). GLGC and 

MVP estimates of h2
SNP for HDL, LDL, and TG were calculated from GWAS summary statistics 

using LDSC82. We computed h2
SNP in VUMC using Linkage Disequilibrium Score regression (LDSC) 

applied to our fastGWA summary statistics for HDL, LDL, and TG. However, because LDSC can 

underestimate h2
SNP

83, we also calculated h2
SNP using GCTA. In addition to these h2

SNP 

comparisons, we calculated the genetic correlations (rg) between the VUMC lipid GWASs and 

the GLGC and MVP lipid GWASs using LDSC and the pre-computed European LD scores from 

1000 Genomes Phase 3 European data84. We also calculated genetic correlations using a new 

method, High-Definition Likelihood85, which fully accounts for linkage disequilibrium across the 

genome and is more suitable for traits with lower heritability than LDSC. In sensitivity analyses, 

we repeated genetic correlations of LDL after controlling the VUMC GWASs for coronary 

atherosclerosis or diabetes diagnoses, defined as phecodes 411, “Ischemic heart disease” and 

249, “Secondary diabetes mellitus”. 
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To validate EHR-based lipid values, we tested the robustness of HDL, LDL, and TG h2
SNP 

estimates to different lab value and patient filters. First, we excluded lipid measurements that 

occurred after the first mention of lipid-altering mediation in the EHR, and re-calculated each 

patient’s pre-medication median values of HDL, LDL, and TG. Second, we excluded patients with 

a diagnosis of CAD, defined by the phecode 411. 

 

LabWAS Pipeline 

LabWAS uses the median, INT-transformed lab values from the QualityLab pipeline in a 

linear regression to determine the association with an input variable, adjusting for covariates. 

In these analyses, a primary goal of the LabWAS was to test common population genetic 

variation (e.g., PGS) for association with common population variation in lab values. We 

therefore only included the 335 labs with non-zero h2
SNP. Additionally, we imposed a minimum 

sample size requirement of 100 for a lab to be included in the LabWAS analysis, bringing the 

number of labs tested in each scan to 315 in the European ancestry set and 226 in the African 

ancestry set.  

 

Polygenic Scoring 

Prior to polygenic scoring, we randomly removed one related individual from pairs with 

pi-hat greater than 0.2, leaving 66,732 individuals of European genetic ancestry and 12,383 

individuals of African genetic ancestry. We generated lipids PGS for these individuals using PRS-

CS86 with weights derived from the multi-ancestry MVP lipid GWAS summary statistics69. PGS 

for CAD was calculated using SNP weights from CARDIoGRAMplusC4D GWAS summary 
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statistics87 using PRS-CS. Because the majority of the MVP multi-ancestry sample was European, 

linkage disequilibrium was modeled using the pre-calculated European panel. PRS-CS is a 

recently developed Bayesian polygenic prediction method that imposes continuous shrinkage 

priors on SNP effect sizes (Polygenic Risk Score – Continuous Shrinkage)86. These priors can be 

represented as global-local scale mixtures of normals which allows the model to flexibly adapt 

to differing genetic architectures and provides substantial computational advantages. The 

shrinkage parameter was automatically learnt from the data (i.e., using PRS-CS-auto). SNP 

effect estimates were obtained from GWAS summary statistics and the score was calculated 

using a linkage disequilibrium reference panel from 503 European samples in the 1000 

Genomes Project phase 376. Although PRS-CS outperformed other polygenic scoring methods 

across a range of traits in previous experiments, its superiority may not hold across all genetic 

architectures86. We therefore also generated PGS for the European sample using PRSice-288 

using four p-value thresholds (1, 0.05, 5x10-4, 5x10-8), and have automated a pipeline to 

generate scores across both methods. PGS were scaled to have a mean of zero and SD of one 

before testing for association with any outcome variables. We validated each score by testing 

the proportion of trait variability explained by the PGS, controlling for sex, cubic splines of 

median age (4 knots) across the medical record, and the top 10 principal components to adjust 

for genetic ancestry. 
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Figure 1. Predictive abilities of polygenic scores calculated by PRScs and PRSice in VUMC. 

Predictive ability is measured as the proportion of same-trait variability explained (R2) by (A) 

HDL PGS, (B) LDL PGS, (C) TG PGS, and (D) CAD PGS. 
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LabWAS of Polygenic Scores 

PGS for LDL, HDL, and TG, were calculated in VUMC participants using PRS-CS and 

applying SNP weights from the MVP GWAS summary statistics. We then ran LabWAS of LDL, 

HDL, and TG polygenic scores to test whether lipid labs were robustly associated with the 

genetic scores to which they corresponded. Next, a PGS for CAD was calculated using SNP 

weights from CARDIoGRAMplusC4D GWAS summary statistics87 and a LabWAS of CAD PGS to 

test whether the score could identify lab traits associated with genetic risk for CAD, before and 

after controlling for a CAD diagnosis. Each LabWAS was controlled for sex, cubic splines of 

median age across the medical record, and the top 10 principal components of ancestry. 

Results are reported as effect estimates and their 95% confidence intervals per SD increase in 

the PGS. The Bonferroni-corrected threshold for statistical significance across all tested labs 

was 3.97 ×10-5 (0.05/(315 x 4)). 

 

Replication in Massachusetts General Brigham Biobank 

We next sought to replicate the associations between lipids PGS and referent lipids as 

well as the significant associations with CAD PGS in an external biobank. The MGB, previously 

the Partners Biobank, is an ongoing virtual cohort study of patients across the Partners 

HealthCare hospital system (including Brigham and Women’s Hospital, Massachusetts General 

Hospital, and other affiliated hospitals), which provides a large-scale resource of linked 

longitudinal EHR data, genomic data, and self-reported survey data89. All patients provided 

informed consent before enrollment, and all study procedures were approved by the Partners 

HealthCare Institutional Review Board. 
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Lab values were extracted from EHRs and cleaned using QualityLab, resulting in 759 labs 

for analysis. The median value for each lab trait for each individual was selected and inverse 

normalized. Lab heritabilities were calculated using REML in GCTA. Of 759 labs that passed 

QualityLab, 241 demonstrated measurable heritability and included a sample size of at least 

100 individuals.   

Polygenic scores for HDL, LDL, TG, and CAD were calculated on individuals of European 

descent in MGB (n=25,698) using the same criteria as VUMC. Lipids and CAD polygenic scores 

were associated with each of 234 labs using LabWAS. Lastly, the associations between CAD PGS 

and lab traits were controlled for CAD diagnosis, defined by phecode 411 (N cases = 1,094, N 

controls = 20,405). All associations were controlled for sex, top 10 principal components, and 

the first three splines of median age across the medical record.  

 

Results  

Heritability and GWAS Analyses of All Labs 

In VUMC, out of 939 clean lab traits, 335 demonstrated non-zero h2
SNP and the point 

estimates ranged from 2 x 10-6 to 0.98. (Figure 2). As a resource for the community, the GWAS 

summary statistics for the labs with calculable heritability and a minimum sample size of 1,000 

individuals (n=181) are available in the GWAS Catalog (Study Number: GCP000091; accession 

numbers GCST90012603 - GCST90012784).  
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Figure 2. Histogram of heritability estimates of VUMC labs.  
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Heritability and GWAS Analyses of Lipids 

 The h2
SNP estimates in VUMC were robust to removing post-medication observations, 

and to removing CAD cases. The number of participants included in these analyses, however, 

was smaller, and so the standard errors of these h2
SNP estimates were larger (Figure 3a; Table 

1). Both GCTA and LDSC gave similar estimates of h2
SNP in VUMC (Figure 3b, Table 1), and the 

LDSC estimates in VUMC were comparable to those in the GLGC and MVP for all lipids.  

Genetic correlation between VUMC and GLGC summary statistics was strong for HDL 

(LDSC: rg=0.96, SE=0.08, p-value=2.69 x 10-35, High-Definition Likelihood: rg=0.92, SE=0.11, p-

value=3.25 x 10-17) and TG (LDSC: rg=0.94, SE=0.05, p-value=5.86 x 10-97, High-Definition 

Likelihood: rg=0.89, SE=0.11, p-value=7.69 x 10-17). When comparing VUMC and MVP, the 

correlations for HDL (LDSC: rg = 0.99, p-value = 7.51 x 10-61, High-Definition Likelihood: rg=0.89, 

SE=0.08, p-value=2.24 x 10-27), and TG (LDSC: rg=0.94, p-value=2.28x10-99, High-Definition 

Likelihood: rg=0.88, SE=0.10, p-value=4.84 x 10-18) were nearly perfect (Figure 4a, Table 2). The 

LDL and LDL pre-medication genetic correlations between GLGC and VUMC were not calculable 

using LDSC due to low heritability. Using High-Definition Likelihood, GLGC LDL levels were 

significantly correlated when median LDL values across the entire EHR (rg = 0.44, SE=0.10, p-

value = 1.08 x 10-5) and median pre-medication LDL values (rg = 0.50, SE=0.08, p-value = 6.38 x 

10-10). The comparison between VUMC and MVP showed a stronger correlation for LDL (LDSC: 

rg=0.84, SE=0.17, p-value=1.47 x 10-6; High-Definition Likelihood: rg=0.53, SE=0.09, p-

value=1.52 x 10-11). The genetic correlation with MVP increased when we restricted to pre-

medication values of LDL in VUMC (LDSC: rg=0.89, SE=0.22, p-value=2.90 x 10-5; High-Definition 

Likelihood: rg=0.56, SE=0.07, p-value=2.06 x 10-15) (Figure 4a, Table 2), and increased further 
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when we controlled for coronary atherosclerosis and diabetes diagnoses (GLGC, High Definition 

Likelihood: rg=0.57, SE=0.09, p-value=8.88 x 10-9, MVP, LDSC: rg = 1.00, SE=0.34, p-value = 

0.004), MVP, High Definition Likelihood: rg=0.55, SE=0.09, p-value=1.50 x 10-8) (Figure 4b, Table 

2).  
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Figure 3. Heritability comparison of lipids. (A) Estimates of heritability computed by GCTA in 

VUMC patients were robust to excluding individuals with a diagnosis of CAD and to removing 

post-medication observations. (B) Estimates of heritability computed using GWAS summary 

statistics and LDSC were comparable across VUMC and the Global Lipids Genetic Consortium 

(GLGC) and Million Veteran’s Project (MVP) samples. 
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Figure 4. Lipids genetic correlation. (A) Genetic correlations between lipid levels in VUMC and 

the Global Lipids Genetic Consortium (GLGC) or Million Veteran’s Program (MVP) calculated 

using LDSC or high-definition likelihood (HDL). (B) Genetic correlation between GLGC/MVP LDL 

and VUMC LDL controlled for CAD and diabetes diagnosis using LDSC (solid) and High-Definition 

Likelihood (dashed). 
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Table 1. Comparison of heritability estimates for lipids between VUMC, GLGC, and MVP. 

Heritability was calculated using two methods, LDSC and GCTA. 

 
Lipid h2

SNP 
Estimation 
Method 

Population N h2
SNP SE 

HDL LDSC GLGC 188,577 0.09 0.02 

MVP 291,746 0.13 0.01 
VUMC 29,497 0.17 0.03 

GCTA VUMC 25,179 0.21 0.02 

VUMC pre-medication 22,865 0.18 0.03 
VUMC no CAD 22,123 0.17 0.03 

LDL LDSC GLGC 188,577 0.08 0.01 

MVP 297,218 0.08 0.01 

VUMC 28,417 0.07 0.02 
GCTA VUMC 24,320 0.1 0.02 

VUMC pre-medication 21,756 0.08 0.03 

VUMC no CAD 21,440 0.08 0.03 

TG LDSC GLGC 188,577 0.09 0.02 

MVP 291,933 0.12 0.02 

VUMC 30,597 0.21 0.03 
GCTA VUMC 26,151 0.17 0.02 

VUMC pre-medication 23,861 0.2 0.03 

VUMC no CAD 23,134 0.18 0.03 
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Table 2. Genetic correlation of VUMC lipids with GLGC and MVP. Genetic correlation was 

calculated using two methods, LDSC and High-definition likelihood (HDL). 

 
Lipid Comparison Method rg SE p-value 

HDL GLGC LDSC 0.957 0.077 2.69E-35 

HDL 0.920 0.109 3.25E-17 

MVP LDSC 0.991 0.060 7.51E-61 

HDL 0.893 0.082 2.24E-27 

LDL GLGC HDL 0.441 0.100 1.08E-05 

MVP LDSC 0.836 0.174 1.47E-06 

HDL 0.530 0.088 1.52E-11 

LDL pre-medication GLGC HDL 0.503 0.081 6.38E-10 

MVP LDSC 0.893 0.217 3.90E-05 

HDL 0.559 0.070 2.06E-15 

LDL covaried CAD and 
diabetes 

GLGC HDL 0.575 0.099 8.88E-09 

MVP LDSC 1.001 0.343 0.0036 

HDL 0.555 0.098 1.50E-08 

LDL pre-medication 
covaried CAD and diabetes 

GLGC HDL 0.567 0.092 9.08E-13 

MVP LDSC 1.113 0.489 0.0228 

HDL 0.565 0.090 4.01E-10 

TG GLGC LDSC 0.942 0.045 5.86E-97 

HDL 0.893 0.107 7.69E-17 

MVP LDSC 0.941 0.045 2.28E-99 

HDL 0.884 0.102 4.84E-18 
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LabWAS of Polygenic Scores for Lipids in European Ancestry Individuals in VUMC 

A LabWAS of HDL PGS in the European sample was associated with levels of several 

metabolic markers (Figure 5a, Table 3), including increased HDL (p-value<2.23 x 10-308, beta = 

0.31), decreased TG (p-value = 2.06 x 10-171, beta = -0.16), decreased total cholesterol to HDL 

ratio (p-value = 2.54 x 10-44, beta= -0.22), increased total blood cholesterol (p-value = 2.51 x 10-

37, beta = 0.07), and decreased blood glucose (p-value = 4.62 x 10-32, beta = -0.04), decreased 

blood urea nitrogen (p-value = 1.48 x 10-15, beta = -0.03), decreased glycated hemoglobin (p-

value = 1.52 x 10-12, beta = -0.05), decreased bedside glucose (p-value = 1.03 x 10-11, beta = -

0.07), and decreased whole blood glucose (p-value = 2.49 x 10-5, beta = -0.03). HDLPGS was also 

associated with four immune labs, white blood cell count (p-value = 6.14 x 10-13, beta = -0.03), 

absolute neutrophil count (p-value = 5.69 x 10-7, beta = -0.03), immature granulocytes (p-value 

= 7.86 x 10-6, beta = -0.02), and monocyte to leukocyte ratio (p-value = 9.13 x 10-6, beta = 0.02). 

Five blood biomarkers associated with HDLPGS, mean corpuscular volume (p-value = 3.48 x 10-17, 

beta = 0.03), blood carbon dioxide (p-value = 6.69 x 10-11, beta = 0.02), mean corpuscular 

hemoglobin (p-value = 9.53 x 10-10, beta = 0.02), international normalized ratio (p-value = 1.31 x 

10-6, beta = -0.03), and red blood cell distribution width (p-value = 2.21 x 10-5, beta = -0.02). 

Finally, three other labs associated with HDL PGS, urate (p-value = 1.13 x 10-11, beta = -0.07), 

creatinine (p-value = 1.42 x 10-10, beta = -0.02), and urine pH (p-value = 2.22 x 10-8, beta = 0.02).  

The LabWAS of LDL PGS showed associations with four lipid labs (Figure 5b, Table 4). The 

most significant association was increased calculated LDL (p-value < 2.23 x 10-308, beta = 0.24), 

followed by increased total blood cholesterol (p-value = 1.30 x 10-282, beta = 0.20), increased 

directly measured LDL (p-value = 3.79 x 10-44, beta = 0.19), increased non-HDL cholesterol (p-
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value = 1.78 x 10-31, beta = 0.19), increased total cholesterol to HDL ratio (p-value = 5.27 x 10-17, 

beta = 0.13), and increased triglycerides (p-value = 4.47 x 10-6, beta = 0.03). LDLPGS also 

associated with four blood biomarkers, mean corpuscular hemoglobin (p-value = 5.68 x 10-8, 

beta = -0.02), total protein in blood (p-value = 2.18 x 10-6, beta = 0.02), total protein in serum 

(p-value = 3.00 x 10-6, beta = 0.02), and mean corpuscular hemoglobin concentration (p-value = 

1.50 x 10-5, beta = -0.02).  

The LabWAS of TG PGS was associated with several metabolic measurements (Figure 5c, 

Table 5), including increased TG (p-value < 2.23 x 10-308, beta = 0.28), followed by decreased 

HDL (p-value = 4.83 x 10-148, beta = -0.14), increased total cholesterol to HDL ratio (p-value = 

2.95 x 10-28, beta = 0.02), increased blood glucose (p-value = 1.20 x 10-22, beta = 0.04), increased 

lipemic index (p-value = 1.57 x 10-18, beta = 0.01), increased total blood cholesterol (p-value = 

1.25 x 10-14, beta = 0.04), increased glycated hemoglobin (p-value = 5.69 x 10-9, beta = 0.04), 

increased bedside glucose (p-value = 2.99 x 10-7, beta = 0.04), and increased non-HDL 

cholesterol (p-value = 1.18 x 10-6, beta = 0.08). Additionally, TG PGS showed associations with 

seven immune labs, white blood cells (p-value = 3.90 x 10-30, beta = 0.04), immature 

granulocytes (p-value = 1.99 x 10-14, beta = 0.03),  absolute lymphocytes (p-value = 2.01 x 10-11, 

beta = 0.03), monocyte to leukocyte ratio (p-value = 5.21 x 10-10, beta = -0.03), absolute 

neutrophils (p-value = 1.87 x 10-9, beta = 0.03), complement C4 (p-value = 1.03 x 10-8, beta = 

0.09), and monocyte count (p-value = 6.76 x 10-8, beta = -0.03). Several blood associations also 

emerged with TGPGS, including carbon dioxide (p-value = 2.57 x 10-24, beta = -0.04), total protein 

in blood (p-value = 4.25 x 10-16, beta = 0.03), mean corpuscular volume (p-value = 9.16 x 10-13, 

beta = -0.03), mean corpuscular hemoglobin (p-value = 9.75 x 10-8, beta = -0.02), anion gap (p-
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value = 2.03 x 10-17, beta = 0.03), total protein in serum (p-value = 2.61 x 10-16, beta = 0.04), and 

calcitriol (p-value = 1.07 x 10-10, beta = -0.05). Lastly, TG PGS associated with albumin to 

creatinine ratio (p-value = 9.13 x 10-8, beta = 0.10), urate (p-value = 6.58 x 10-9, beta = 0.06), 

urinary pH (7.66 x 10-7, beta = -0.02), and urinary albumin concentration (p-value = 2.99 x 10-5, 

beta = 0.06). 
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Figure 5. Lipid PGS LabWAS in individuals of European ancestry in VUMC. (A) HDL PGS LabWAS, 

(B) LDL PGS LabWAS, (C) Triglycerides PGS LabWAS. The red line indicates the Bonferroni 

threshold for statistical significance and the blue line indicates a p value of 0.05. Upward 

triangles indicate that the PGS is associated with increased levels of the lab, while downward 

triangles indicate an association with reduced levels of the lab. 
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Table 3. Significant associations from the LabWAS of HDL PGS in individuals of European 

ancestry in VUMC. 

  
Short 
Name 

Full Name Group N p-value beta SE 

HDL.C Cholesterol in HDL [Mass/volume] 
in Serum or Plasma 

metabolic 29,497 2.23E-
308 

0.310 0.005 

Trigs Triglyceride [Mass/volume] in 
Serum or Plasma 

metabolic 30,597 2.06E-
171 

-0.157 0.006 

TC.HDL Cholesterol.total/Cholesterol in HDL 
[Molar ratio] in Serum or Plasma 

metabolic 3,676 2.54E-44 -0.215 0.015 

Chol Cholesterol [Mass/volume] in 
Serum or Plasma 

metabolic 30,388 2.51E-37 0.071 0.006 

Gluc Glucose lab metabolic 62,341 4.62E-32 -0.043 0.004 

MCV MCV [Entitic volume] by Automated 
count 

blood 64,844 3.48E-17 0.030 0.004 

BUN Urea nitrogen serum/plasma metabolic 62,403 1.48E-15 -0.032 0.004 

WBC Leukocytes [#/volume] in Blood by 
Automated count 

immune 64,836 6.14E-13 -0.025 0.003 

HgbA1C Hemoglobin A1c (Glycated)  metabolic 21,558 1.52E-12 -0.047 0.007 

GluBed Glucose [Mass/volume] in Blood by 
Automated test strip 

metabolic 25,193 1.03E-11 -0.041 0.006 

UricA Urate [Mass/volume] in Serum or 
Plasma 

urinary 9,825 1.13E-11 -0.068 0.010 

CO2 Carbon dioxide serum/plasma blood 62,304 6.69E-11 0.023 0.003 

Creat Creatinine [Mass/volume] in Blood kidney 62,909 1.42E-10 -0.025 0.004 

MCH MCH [Entitic mass] by Automated 
count 

blood 64,869 9.53E-10 0.022 0.004 

UpH pH of Urine by Test strip urinary 40,674 2.22E-08 0.025 0.004 

NtAbs NtAbs immune 25,118 5.69E-07 -0.026 0.005 

PT.inr International normalized ratio blood 34,919 1.31E-06 -0.027 0.006 

IGRE Immature granulocytes/100 
leukocytes in Blood 

immune 44,827 7.86E-06 -0.020 0.005 

MONORE Monocytes/100 leukocytes in Blood 
by Automated count 

immune 46,569 9.13E-06 0.019 0.004 

RDW Erythrocyte distribution width 
[Ratio] by Automated count  

blood 64,874 2.21E-05 -0.016 0.004 

GluWB Glucose [Mass/volume] in Blood blood 13,848 2.49E-05 -0.034 0.008 
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Table 4. Significant associations from the LabWAS of LDL PGS in individuals of European 

ancestry in VUMC. 

Short 
Name 

Full Name Group N p-value beta SE 

LDL.C Cholesterol in LDL [Mass/volume] in 
Serum or Plasma by calculation 

metabolic 28,417 2.23E-308 0.236 0.006 

Chol Cholesterol [Mass/volume] in 
Serum or Plasma 

metabolic 30,388 1.30E-282 0.197 0.005 

DirLDL Cholesterol in LDL [Mass/volume] in 
Serum or Plasma by Direct assay 

metabolic 4,859 3.79E-44 0.185 0.013 

NonHDL Cholesterol non HDL [Mass/volume] 
in Serum or Plasma 

metabolic 3,252 1.78E-31 0.192 0.016 

TC.HDL Cholesterol.total/Cholesterol in HDL 
[Molar ratio] in Serum or Plasma 

metabolic 3,676 5.27E-17 0.130 0.015 

MCH MCH [Entitic mass] by Automated 
count 

blood 64,869 5.68E-08 -0.019 0.004 

TProt Tau protein [Presence] in Body fluid blood 44,329 2.18E-06 0.020 0.004 

TProSe Protein serum/plasma metabolic 32,127 3.00E-06 0.024 0.005 

Trigs Triglyceride [Mass/volume] in 
Serum or Plasma 

metabolic 30,597 4.47E-06 0.026 0.006 

MCHC MCHC [Mass/volume] by 
Automated count 

blood 54,231 1.50E-05 -0.017 0.004 
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Table 5. Significant associations from the LabWAS of TG PGS in individuals of European ancestry 

in VUMC. 

Short 
Name 

Full Name Group N p-value beta SE 

Trigs Triglyceride [Mass/volume] in Serum or Plasma metabolic 30,597 2.23E-308 0.287 0.005 

HDL.C Cholesterol in HDL [Mass/volume] in Serum or 
Plasma 

metabolic 29,497 4.83E-148 -0.139 0.005 

WBC Leukocytes [#/volume] in Blood by Automated 
count 

immune 64,836 3.90E-30 0.040 0.003 

TC.HDL Cholesterol.total/Cholesterol in HDL [Molar 
ratio] in Serum or Plasma 

metabolic 3,676 2.95E-28 0.166 0.015 

CO2 Carbon dioxide serum/plasma blood 62,304 2.57E-24 -0.035 0.003 

Gluc Glucose lab metabolic 62,341 1.20E-22 0.036 0.004 

LipIdx Lipemic index of Serum or Plasma metabolic 4,500 1.57E-18 0.122 0.014 

AN.GAP Anion gap serum/plasma metabolic 62,164 2.03E-17 0.030 0.004 

TProSe Protein serum/plasma metabolic 32,127 2.61E-16 0.041 0.005 

TProt Tau protein [Presence] in Body fluid blood 44,329 4.25E-16 0.034 0.004 

Chol Cholesterol [Mass/volume] in Serum or Plasma metabolic 30,388 1.25E-14 0.042 0.006 

IGRE Immature granulocytes/100 leukocytes in Blood immune 44,827 1.99E-14 0.035 0.005 

MCV MCV [Entitic volume] by Automated count blood 64,844 9.16E-13 -0.025 0.004 

LymAbs Lymphocytes [#/volume] in Blood by 
Automated count 

immune 25,135 2.01E-11 0.034 0.005 

D25OHT Calcitriol [Mass/volume] in Serum or Plasma metabolic 18,315 1.07E-10 -0.045 0.007 

MONORE Monocytes/100 leukocytes in Blood by 
Automated count 

immune 46,569 5.21E-10 -0.026 0.004 

NtAbs NtAbs immune 25,118 1.87E-09 0.032 0.005 

HgbA1C Hemoglobin A1c (Glycated) Hemoglobin A1c 
(Glycated) 

metabolic 21,558 5.69E-09 0.038 0.007 

UricA Urate [Mass/volume] in Serum or Plasma urinary 9,825 6.58E-09 0.058 0.010 

C4Quan Complement C4 [Mass/volume] in Serum or 
Plasma 

immune 3,667 1.03E-08 0.092 0.016 

Monocy Monocytes [#/volume] in Blood by Manual 
count 

immune 26,166 6.76E-08 -0.029 0.005 

AlbCre Microalbumin/Creatinine [Mass Ratio] in 24 
hour Urine 

liver 2,935 9.13E-08 0.098 0.018 

MCH MCH [Entitic mass] by Automated count blood 64,869 9.75E-08 -0.019 0.004 

GluBed Glucose [Mass/volume] in Blood by Automated 
test strip 

metabolic 25,193 2.99E-07 0.031 0.006 

UpH pH of Urine by Test strip urinary 40,674 7.66E-07 -0.022 0.004 

NonHDL Cholesterol non HDL [Mass/volume] in Serum or 
Plasma 

metabolic 3,252 1.18E-06 0.079 0.016 

AlbCnc Albumin [Presence] in Urine urinary 5,255 2.99E-05 0.057 0.014 
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LabWAS of Lipid Polygenic Scores in African Ancestry Individuals in VUMC 

In the African ancestry group, HDL PGS significantly associated with increased HDL (p-

value = 1.38 x 10-74, beta = 0.23), decreased triglycerides (p-value = 6.72 x 10-10, beta = -0.08), 

and increased total cholesterol (p-value = 4.81 x 10-9, beta = 0.08) (Figure 6a, Table 8). LDL PGS 

associated with LDL cholesterol (p-value = 5.71 x 10-63, beta = 0.24) and increased total 

cholesterol (p-value = 1.63 x 10-53, beta=0.21) (Figure 6b, Table 8). TG PGS showed significant 

associations with increased triglycerides (p-value = 1.66 x 10-53, beta = 0.19), decreased HDL 

cholesterol (p-value = 6.08 x 10-11, beta = -0.08), and increased glucose (p-value = 2.33 x 10-5, 

beta = 0.04) (Figure 6c, Table 6). 
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Figure 6. Lipid PGS LabWAS in individuals of African ancestry in VUMC. (A) HDL PGS LabWAS, (B) 

LDL PGS LabWAS, (C) Triglycerides PGS LabWAS. The red line indicates the Bonferroni threshold 

for statistical significance and the blue line indicates a p value of 0.05. Upward triangles indicate 

that the PGS is associated with increased levels of the lab, while downward triangles indicate an 

association with reduced levels of the lab. 
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Table 6. Significant associations from the LabWAS of lipid and CAD PGS in individuals of African 

ancestry in VUMC. 

 
PGS Short 

Name 
Full Name Group N p-value beta SE 

HDL 
  
  

HDL.C Cholesterol in HDL 
[Mass/volume] in Serum or 
Plasma 

metabolic 5,607 1.38E-74 0.232 0.012 

Trigs Triglyceride [Mass/volume] in 
Serum or Plasma 

metabolic 5,728 6.72E-10 -0.08 0.013 

Chol Cholesterol [Mass/volume] in 
Serum or Plasma 

metabolic 5,746 4.81E-09 0.077 0.013 

LDL 
  

LDL.C Cholesterol in LDL 
[Mass/volume] in Serum or 
Plasma by calculation 

metabolic 5,503 5.71E-63 0.243 0.014 

Chol Cholesterol [Mass/volume] in 
Serum or Plasma 

metabolic 5,746 1.63E-53 0.212 0.014 

TG 
  
  

Trigs Triglyceride [Mass/volume] in 
Serum or Plasma 

metabolic 5,728 1.66E-53 0.19 0.012 

HDL.C Cholesterol in HDL 
[Mass/volume] in Serum or 
Plasma 

metabolic 5,607 6.08E-11 -0.08 0.012 

Gluc Glucose lab metabolic 11,174 2.33E-05 0.038 0.009 

CAD 
covaried for 
CAD 
diagnosis 

LDL_pre
med 

LDL pre-medication metabolic 4,977 3.92E-05 0.061 0.004 
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LabWAS of a Polygenic Score for Coronary Artery Disease in VUMC 

We next sought to recapitulate the risk biomarker profile for CAD through a LabWAS of 

a CAD PGS. The CAD PGS reproduced associations, in the direction of risk, with canonical risk 

factors for CAD (Figure 7a, Table 7) in the European ancestry population, including decreased 

HDL (p-value = 6.20 x 10-39, beta = -0.07), increased TG (p-value = 3.98 x 10-25, beta = 0.06), 

increased blood glucose (p-value = 1.18 x 10-21, beta = 0.04) and glycated hemoglobin (p-value = 

2.36 x 10-12, beta = 0.05), and bedside glucose (p-value = 1.10 x 10-6, beta = 0.03). The CAD PGS 

also associated with other known biomarkers of cardiovascular health such as increased 

troponin-I (p-value = 7.20 x 10-9, beta = 0.04) and brain natriuretic peptide (p-value = 2.12 x 10-

7, beta = 0.05). CAD PGS associated with six blood composition markers, red blood cell 

distribution width (p-value = 1.60 x 10-11, beta = 0.03), mean corpuscular hemoglobin (p-value = 

6.73 x 10-10, beta = -0.02), mean corpuscular volume (p-value = 1.17 x 10-9, beta = -0.02), carbon 

dioxide (p-value = 3.36 x 10-9, beta = -0.02), red blood cell sedimentation rate (p-value = 2.10 x 

10-7, beta = 0.05), and international normalized rate (p-value = 1.96 x 10-5, beta = 0.03). Finally, 

CAD PGS associated with white blood cell count (p-value = 8.75 x 10-11, beta = 0.02), creatinine 

(p-value = 2.13 x 10-6, beta = 0.02), and blood urea nitrogen (p-value = 1.09 x 10-5, beta = 0.02).  

Notably, the CAD PGS was not initially associated with LDL values (p-value = 0.13, beta = 

0.008). The lack of association, however, was attributable to lipid altering medication use and a 

significant association between the CAD PGS and LDL levels was detected when we restricted to 

pre-medication values (p = 6.19 x 10-9, beta = 0.04).  

To determine which biomarkers were explained by the clinical presence of CAD as 

opposed to the genetic risk for CAD, we adjusted the LabWAS of CAD PGS for the coronary 
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atherosclerosis phecode (411) (Figure 7b, Table 8). Four canonical biomarkers of CAD risk 

remained associated with CAD PGS including TG (p-value = 2.88 x 10-14, beta = 0.05), pre-

medication LDL (p-value = 2.40 x 10-13 beta = 0.05), HDL (p-value = 2.55 x 10-13, beta = -0.04), 

LDL-C (p-value = 8.48 x 10-11, beta = 0.04), blood glucose (p-value = 2.55 x 10-9, beta = 0.02), 

total cholesterol (p-value = 4.16 x 10-9, beta = 0.03), and glycated hemoglobin (p-value = 3.16 x 

10-6, beta = 0.03). The CAD PGS also remained associated with one immune marker, white blood 

cell count (p-value = 6.44 x 10-6, beta = 0.02), and two other blood biomarkers, mean 

corpuscular volume (p-value = 3.23 x 10-7, beta = -0.02) and mean corpuscular hemoglobin (p-

value = 4.18 x 10-6, beta = -0.02). 

None of the associations in the initial LabWAS of CAD PGS among African ancestry 

individuals reached phenome-wide significance, however, three of the top four associations 

were canonical CAD risk factors including increased glycated hemoglobin A1c (p-value=9.56 x 

10-4, beta=0.04), increased glucose (p-value=0.002, beta=0.03), and increased LDL cholesterol 

(p-value=0.003, beta=0.04) (Figure 7c). When the LDL levels were restricted to pre-medication 

values, the top association with CAD PGS was pre-medication LDL (p-value = 8.50 x 10-5, 

beta=0.06), however this association did not pass multiple testing correction. After controlling 

the analysis for CAD diagnosis, the association between CAD PGS and pre-medication LDL 

surpassed the Bonferroni correction for phenome-wide significance (p-value=3.92 x 10-5, 

beta=0.06) (Figure 7d, Table 6).  

 Lastly, we ran a LabWAS of CAD diagnosis (i.e., using CAD cases/control status as the 

predictor variable) after adjusting for sex and median age across the EHR, which revealed the 

medical comorbidity pattern of CAD. CAD diagnosis was significantly associated with 136 out of 
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734 labs in our sample (Figure 8), including 34 immune, 32 blood, 24 metabolic, 17 

cardiovascular, 8 urinary, 5 toxicology/pharmacology, 4 endocrine, 3 kidney, 3 liver, 1 cancer, 

and 5 other markers. 
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Figure 7. LabWAS of CAD PGS in VUMC. (A) European ancestry, (B) European ancestry 

controlling for CAD diagnosis, (C) African ancestry and (D) African ancestry controlling for CAD 

diagnosis. The red lines indicate the Bonferroni threshold for statistical significance and the 

blue line indicates a p value of 0.05. Upward triangles indicate that the PGS is associated with 

increased levels of the lab, while downward triangles indicate an association with reduced 

levels of the lab. 
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Figure 8. LabWAS of CAD diagnosis.  
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Table 7. Significant associations from the LabWAS of CAD PGS in individuals of European 

ancestry in VUMC. 

 
Short Name Full Name Group N pvalue beta SE 

HDL.C Cholesterol in HDL 
[Mass/volume] in Serum or 
Plasma 

metabolic 29,497 6.20E-39 -0.071 0.005 

Trigs Triglyceride [Mass/volume] in 
Serum or Plasma 

metabolic 30,597 3.98E-25 0.059 0.006 

Gluc Glucose lab metabolic 62,341 1.18E-21 0.036 0.004 

HgbA1C Hemoglobin A1c (Glycated)  metabolic 21,558 2.36E-12 0.046 0.007 

RDW Erythrocyte distribution width 
[Ratio] by Automated count  

blood 64,874 1.60E-11 0.026 0.004 

WBC Leukocytes [#/volume] in 
Blood by Automated count 

immune 64,836 8.75E-11 0.023 0.004 

MCH MCH [Entitic mass] by 
Automated count 

blood 64,869 6.73E-10 -0.022 0.004 

MCV MCV [Entitic volume] by 
Automated count 

blood 64,844 1.17E-09 -0.022 0.004 

CO2 Carbon dioxide serum/plasma blood 62,304 3.36E-09 -0.021 0.003 

LDL_premed LDL pre-medication metabolic 21,756 6.19E-09 0.039 0.007 

TRPI Troponin I.cardiac 
[Mass/volume] in Serum or 
Plasma 

cardiovascular 10,443 7.20E-09 0.045 0.008 

SedRat Erythrocyte sedimentation 
rate by Westergren method 

blood 10,541 2.10E-07 0.052 0.010 

BNP Natriuretic peptide B 
[Mass/volume] in Serum or 
Plasma 

cardiovascular 11,374 2.12E-07 0.046 0.009 

GluBed Glucose [Mass/volume] in 
Blood by Automated test strip 

metabolic 25,193 1.10E-06 0.030 0.006 

Creat Creatinine [Mass/volume] in 
Blood  

kidney 62,909 2.13E-06 0.018 0.004 

BUN Urea nitrogen serum/plasma metabolic 62,403 1.09E-05 0.018 0.004 

PT.inr International normalized ratio blood 34,919 1.96E-05 0.024 0.006 
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Table 8. Significant associations from the LabWAS of CAD PGS covaried for CAD diagnosis in 

individuals of European ancestry in VUMC. 

Short Name Long Name Group N pvalue beta SE 

Trigs Triglyceride [Mass/volume] 
in Serum or Plasma 

metabolic 30,523 2.88E-14 0.047 0.006 

LDL_premed LDL pre-medication metabolic 21,689 2.40E-13 0.051 0.007 

HDL.C Cholesterol in HDL 
[Mass/volume] in Serum or 
Plasma 

metabolic 29,430 2.55E-13 -0.042 0.006 

LDL.C Cholesterol in LDL 
[Mass/volume] in Serum or 
Plasma by calculation 

metabolic 28,350 8.48E-11 0.040 0.006 

Gluc Glucose lab metabolic 62,217 2.55E-09 0.023 0.004 

Chol Cholesterol [Mass/volume] 
in Serum or Plasma 

metabolic 30,314 4.16E-09 0.034 0.006 

MCV MCV [Entitic volume] by 
Automated count 

blood 64,687 3.23E-07 -0.019 0.004 

HgbA1C Hemoglobin A1c (Glycated)  metabolic 21,513 3.16E-06 0.034 0.007 

MCH MCH [Entitic mass] by 
Automated count 

blood 64,712 4.18E-06 -0.017 0.004 

WBC Leukocytes [#/volume] in 
Blood by Automated count 

immune 64,679 6.44E-06 0.017 0.004 
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Replication in Mass General Brigham Biobank 

 In the MGB, there were 21,499 individuals of European descent with genetic data 

available with recorded lab data. Slightly more than half of the sample was female (51.5%) and 

the average age was 56.1 years. The MGB patients contained 1,094 CAD cases and 20,405 CAD 

controls. 

 In MGB, the HDL PGS most strongly associated with HDL cholesterol (p-value < 2.23 x 10-

308, beta = 0.33), followed by decreased triglycerides (p-value = 2.77 x 10-109, beta = -0.17), 

increased total cholesterol (p-value = 4.96 x 10-31, beta = 0.09), and decreased very low density 

lipoprotein (p-value = 2.62 x 10-29, beta = -0.14). HDLPGS also associated with decreased values 

of glucose (p-value = 3.33 x 10-27, beta = -0.07), hemoglobin A1c (p-value = 3.64 x 10-18, beta = -

0.07), and mean glucose value (p-value = 4.10 x 10-17, beta = -0.07). Additional associations with 

HDLPGS included cardiac relative risk (p-value = 5.72 x 10-17, beta = -0.20), alanine 

aminotransferase (p-value = 2.45 x 10-10, beta = -0.04), white blood cell count (p-value = 1.03 x 

10-9, beta = -0.04), mean corpuscular volume (p-value = 6.51 x 10-8, beta = 0.03), non-HDL 

cholesterol (p-value = 1.41 x 10-7, beta = -0.06), red blood cell distribution width (p-value = 2.60 

x 10-7, beta = -0.03), neutrophils (p-value = 2.95 x 10-7, beta = -0.03), urate (p-value = 1.79 x 10-6, 

beta = -0.05), and alkaline phosphatase (p-value = 2.01 x 10-6
, beta = -0.03) (Fig. 9a). 

 The LDL PGS associated with four metabolic labs including LDL-C (p-value = 1.78 x 10-158, 

beta = 0.24), total cholesterol (p-value = 2.37 x 10-158, beta = 0.20), calculated LDL cholesterol 

(p-value = 1.28 x 10-81, beta = 0.23), and non-HDL cholesterol (p-value = 2.90 x 10-68, beta = 

0.19). The LDL PGS also associated with complement C4 (p-value = 1.85 x 10-5, beta = 0.09), red 



 47 

blood cell sedimentation rate (p-value = 2.60 x 10-5, beta = 0.04), and increased cardiac relative 

risk (p-value = 3.80 x 10-5, beta = 0.10) (Fig. 9b). 

  The TG PGS associated with twelve metabolic labs, including increased measured 

triglycerides (p-value < 2.23 x 10-308, beta = 0.32), followed by increased very low density 

lipoprotein (p-value = 8.90 x 10-129, beta = 0.30), decreased HDL (p-value = 1.33 x 10-123, beta = -

0.17), increased non-HDL cholesterol (p-value = 8.70 x 10-28, beta = 0.12), increased glucose (p-

value = 4.56 x 10-14, beta = 0.05), average glucose (p-value = 4.16 x 10-10, beta = 0.05), total 

cholesterol (p-value = 1.58 x 10-9, beta = 0.05), anion gap (p-value = 1.52 x 10-7, beta = 0.03), 

total protein (p-value = 4.63 x 10-7, beta = 0.03), globulin in serum (p-value = 8.80 x 10-6, beta = 

0.03), aspartate aminotransferase (p-value = 1.26 x 10-5, beta = 0.03), and sodium (p-value = 

1.27 x 10-5, beta = -0.03). TGPGS also associated with seven immune labs, white blood cell count 

(p-value = 3.89 x 10-17, beta = 0.05), lymphocytes (p-value = 7.86 x 10-11, beta = 0.04), 

complement C4 (p-value = 1.58 x 10-9, beta = 0.13), automated lymphocyte count (p-value = 

2.14 x 10-9, beta = 0.09), neutrophils (p-value = 3.09 x 10-7, beta = 0.05), automated neutrophil 

count (p-value = 5.13 x 10-7, beta = 0.03), and monocytes (p-value = 3.38 x 10-6, beta = 0.05). 

Ten additional labs significantly associated with TG PGS, including increased cardiac relative risk 

(p-value = 5.49 x 10-15, beta = 0.19), mean corpuscular volume (p-value = 3.02 x 10-14, beta = -

0.05), glycated hemoglobin A1c (p-value = 5.00 x 10-11, beta = 0.05), urinary pH (p-value = 9.58 x 

10-10, beta = -0.04), red blood cell sedimentation rate (p-value = 2.22 x 10-8, beta = 0.05), 

alanine aminotransferase (p-value = 3.88 x 10-8, beta = 0.04), alkaline phosphatase (p-value = 

3.17 x 10-7, beta = 0.03), blood carbon dioxide (p-value = 5.63 x 10-7, beta = -0.03), mean 
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corpuscular hemoglobin (p-value = 1.49 x 10-6, beta = -0.03), and urate (p-value = 1.62 x 10-6, 

beta = 0.05) (Fig. 9c). 

 Finally, the CAD PGS associated with several known CAD risk factors, including decreased 

HDL-C (p-value = 1.56 x 10-21, beta = -0.07), increased glucose (p-value = 9.91 x 10-15, beta = 

0.05), increased glycated hemoglobin A1c (p-value = 4.44 x 10-14, beta = 0.06), mean glucose (p-

value = 1.75 x 10-12, beta = 0.06), and increased triglycerides (p-value = 2.09 x 10-12, beta = 

0.05). The CAD PGS also associated with increased red blood cell distribution width (p-value = 

2.42 x 10-14, beta = 0.05), increased red blood cell sedimentation rate (p-value = 4.11 x 10-9, 

beta = 0.05), increased alanine aminotransferase (p-value = 2.59 x 10-8, beta = 0.04), decreased 

hemoglobin (p-value = 1.45 x 10-6, beta = -0.03), increased alkaline phosphatase (p-value = 2.26 

x 10-6, beta = 0.03), increased white blood cell count (p-value = 6.77 x 10-6, beta = 0.03), 

decreased albumin (p-value = 1.06 x 10-5, beta = -0.03), increased globulin (p-value = 1.29 x 10-5, 

beta = 0.03), decreased iron (p-value = 3.36 x 10-5, beta = -0.04), and decreased hematocrit (p-

value = 3.77 x 10-5, beta = -0.03) (Fig. 10a). 

 After adjusting for CAD diagnosis, CAD PGS remained associated with several heart 

disease risk factors including decreased HDL-C (p-value = 8.23 x 10-16, beta = -0.06), increased 

glucose (p-value = 6.80 x 10-11, beta = 0.04), increased hemoglobin A1c (p-value = 2.08 x 10-10, 

beta = 0.05), increased mean glucose (p-value = 2.29 x 10-9, beta = 0.05), and increased 

triglycerides (p-value = 3.48 x 10-9, beta = 0.05). Additionally, associations with red blood cell 

distribution width (p-value = 1.40 x 10-12, beta = 0.04), alanine aminotransferase (p-value = 4.01 

x 10-8, beta = 0.04), red blood cell sedimentation rate (p-value = 5.50 x 10-8, beta = 0.05), 
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alkaline phosphatase (p-value = 5.44 x 10-6, beta = 0.03), serum globulin (p-value = 4.51 x 10-5, 

beta = 0.03), and white blood cell count (p-value = 4.67 x 10-5, beta = 0.03) remained 

 (Fig. 10b). In MGB, the CAD PGS was not associated with levels of LDL-C (p-value = 0.06, beta = -

0.03) and we were unable to investigate the effects of cholesterol lowering medications on the 

association.   
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Figure 9. Replication of Lipid PGS LabWAS in MGB. (A) HDL PGS, (B) LDL PGS, and (C) TG PGS. 

The red lines indicate the Bonferroni threshold for statistical significance and the blue line 

indicates a p value of 0.05. Upward triangles indicate that the PGS is associated with increased 

levels of the lab, while downward triangles indicate an association with reduced levels of the 

lab. 
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Figure 10. Replication of CAD PGS LabWAS in MGB. (A) CAD PGS (B) CAD PGS covaried for CAD 

diagnosis. The red lines indicate the Bonferroni threshold for statistical significance and the 

blue line indicates a p value of 0.05. Upward triangles indicate that the PGS is associated with 

increased levels of the lab, while downward triangles indicate an association with reduced 

levels of the lab. 
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Discussion 

We show that EHR-derived lipids values are genetically similar to those in population-

based studies, and that PGS for lipids robustly associate with their respective lab in a LabWAS. 

Additionally, LabWAS revealed that PGS for CAD associated with known lipid biomarkers, even 

in individuals without a history of CAD, and with potentially novel immune biomarkers. The 

results of our study add to a growing body of evidence indicating that lab values from EHRs with 

linked genetic data can be mined at scale to identify biomarkers for complex disease66–70. Our 

proof-of-principle analyses focused on lipids and CAD in 94,747 genotyped VUMC patients and 

revealed that EHR lipid values were genetically comparable to those measured in samples 

ascertained for research. We describe two proof-of-concept studies that demonstrate the 

power of our proposed discovery paradigm. First, we show that PGS for lipids (HDL, LDL, and 

triglycerides) associate robustly to their referent lipid across ancestries. Moreover, the CAD PGS 

recapitulated associations with known biomarkers in two biobanks. Importantly, the association 

between CAD PGS and canonical risk factors was significant even among those who did not 

have a CAD diagnosis. In analyses in MGB, several of the associations with CAD PGS replicated, 

helping to validate our approach to analyzing EHR laboratory data.  

Furthermore, we show that treatments (in this example, lipid-altering medications) can 

influence the detection of risk biomarkers at the genetic level. For example, we found that the 

genetic correlation between LDL measurements in VUMC and MVP increased considerably 

when we restricted to pre-medication LDL measurements and controlled for CAD or diabetes 

diagnosis. Additionally, the CAD PGS was strongly associated with pre-medication median LDL 

values, but was not associated with combined pre- and post-medication median LDL values.  



 53 

Though the results and approach presented provide an exciting path forward for genetic 

analysis of EHR-lab data, important limitations should be acknowledged. First, our analyses 

yielded more associations in patients of European ancestry compared to patients of African 

ancestry. This is likely to due to decreased power from both the discovery GWASs and the 

target sample. VUMC has considerably fewer patients of African ancestry than European 

ancestry, impacting our statistical power to find associations. The polygenic scores of lipids, 

which were trained on trans-ancestry GWAS summary statistics including individuals of African 

descent, strongly associated with the referent lipid in the African ancestry sample with effect 

estimates similar to those found in the European sample. However, the CAD polygenic score, 

which was trained on a trans-ancestry GWAS that did not include African ancestry samples 

yielded far fewer significant associations. These results highlight the critical importance of 

diversity in GWAS as the downstream applications of such studies are dramatically impacted by 

representation.   

Second, high-throughput analysis of 939 lab traits in our LabWAS required us to 

prioritize statistical model performance over coefficient interpretability. In our primary analysis, 

we transformed lab values to fit the normal distribution to improve the performance of the 

linear regression models90. We applied the rank-based inverse normal quantile transformation 

to all labs, which ensured trait normality by replacing the value of each observation with its 

quantile from the standard normal distribution. The inverse normal quantile transformation 

thus preserved the rank ordering of observations, but not the values themselves, and model 

coefficients therefore are uninterpretable on the original scale. For example, based on our 

LabWAS results, we are unable to report the change in LDL levels in mg/dL per SD increase in 
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the CADPGS. Multiple testing correction was another statistical challenge inherent to the high-

throughput analysis of lab traits. We used the Bonferroni threshold for statistical significance, 

but this threshold is likely to be overly strict because it ignores the correlation between lab 

tests.  

In conclusion, we propose that PGS for complex disease can be used to discover 

genetically related biomarkers of disease by mining quantitative physiological measurements 

collected during routine clinical testing, but caution that mindful interpretation of correlational 

results is paramount to progress. We demonstrate the robustness of this discovery paradigm in 

a proof of principal analysis focused on CAD. As EHR resources grow in size, standardized 

analysis pipelines will be necessary to compare results across samples. LabWAS provides a 

starting point for consistent analysis of lab results stored in various EHR systems. Furthermore, 

we demonstrated that EHR-derived lipids are similar to measurements ascertained in 

traditional cohort studies, providing additional rationale for analyses of EHR labs91. QualityLab 

and LabWAS are scalable programs that can be used to confirm clinical paradigms and discover 

new genetic and environmental relationships between biomarkers and complex traits. We 

propose that future studies will leverage this discovery paradigm for analysis of rare or 

understudied complex traits with no known biomarker associations (e.g., psychiatric disorders). 
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CHAPTER III 

 

INVESTIGATING THE ASSOCIATION BETWEEN DEPRESSION GENETICS AND WHITE BLOOD CELL 

COUNT ACROSS THE PSYCHEMERGE NETWORK*2 

 

 

Introduction 

After validating the LabWAS approach, we next applied the method to depression 

polygenic scores (PGS). While independent biobanks can be used to discover associations, 

combining multiple health record systems through consortia can validate those discoveries in 

broader populations. The PsycheMERGE Network consists of investigators from institutions 

across the United States with the common goal of using EHRs and biobanks to advance the 

identification, biology, and treatment of psychiatric disorders92. Here, we investigate the effect 

of polygenic risk for depression on clinically measured lab values leveraging data from 

healthcare systems participating in the PsycheMERGE Network. Four biobanks from the 

PsycheMERGE Network were included, Vanderbilt University Medical Center (VUMC), Mass 

General Brigham (MGB), Mount Sinai Icahn School of Medicine (MSSM), and the Million 

Veterans Program (MVP), resulting in a total sample size of 382,452 individuals. 

 

Methods 

Sample Description  

 
2 *Adapted with permission from Sealock JM et al., JAMA Psych 2021 
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Electronic health record and genotype information were extracted for individuals of 

European descent across four biobanks in the PsycheMERGE Network: Vanderbilt University 

Medical Center (VUMC), Massachusetts General Brigham (MGB), Million Veteran Program 

(MVP), and Mount Sinai Icahn School of Medicine (MSSM).  

Vanderbilt University Medical Center (VUMC) EHR system and biobank are described in 

Chapter 2. The VUMC Institutional Review Board oversees BioVU and approved this project 

(IRB#172020). In VUMC, primary analyses were conducted in individuals of European and 

African ancestry. Lab results were extracted from the EHRs of 70,704 individuals of primarily 

European ancestry and 12,384 individuals of primarily African ancestry and cleaned using 

QualityLab.  

The Million Veteran Program is an observational cohort study and mega-biobank in the 

Department of Veterans Affairs (VA)93. Participants are active users of the Veterans Health 

Administration and provide a blood sample, responses to questionnaires and consent to allow 

access to clinical data from the VA electronic health records93. The MVP v3.0 data release used 

in this study includes genotyping data from 455,789 individuals; DNA was extracted from whole 

blood (which was collected during enrollment to the MVP) and genotyping was performed with 

the MVP 1.0 Genotyping array93. For this study, we only considered samples with a European 

Ancestry (EUR) as determined by HARE (Harmonized ancestry and race/ethnicity) analysis94 

(N=289,880).All relevant ethical regulations for work with human subjects were followed in the 

conduct of the study and written informed consent was obtained from all participants.  

The BioMe Biobank (N=9,255), at the Icahn School of Medicine at Mount Sinai (MSSM), 

is an EHR-linked biobank of participants from the Mount Sinai Health System in New York, NY. 
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Participant recruitment into BioMe has been ongoing since 2007, predominantly recruited from 

general medicine and primary care clinics, and the rest from specialty practices and recruitment 

events. BioMe participants consent to provide DNA and plasma samples linked to their de-

identified EHRs, and then provide additional information on self-reported ancestry, health 

behaviors, and medical history through questionnaires administered upon enrollment. All 

participants in the study provided informed consent and study procedures followed guidelines 

for human subjects research.  

The Massachusetts General Brigham Biobank (MGBB) (N=25,331), formerly known as 

the Partners Healthcare Biobank, is an ongoing virtual cohort study of patients across the MGB 

General Brigham hospital system (including Brigham and Women’s Hospital, Massachusetts 

General Hospital, and other affiliated hospitals), which provides a large-scale resource of linked 

longitudinal electronic health records (EHR) data, genomic data, and self-reported survey 

data89. All patients provided informed consent before enrollment, and all study procedures 

were approved by the Massachusetts General Brigham Institutional Review Board. 

 

Depression Polygenic Scoring 

Depression polygenic scores were generated using PRS-CS86 using SNP weights from the 

largest available depression meta-analysis17. The LD reference panel was constructed from 503 

European samples in the 1000 Genomes Project phase 376. PGS were scaled to have a mean of 

zero and a unit standard deviation (SD) so that effect estimates in subsequent analyses are 

interpreted per 1 SD increase in depression PGS. In VUMC data, the depression PGS explained 

0.8% of the variance in MDD diagnosis (p-value=3.85x10-55). 
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LabWAS of Depression PGS in VUMC 

Associations between the depression PGS and labs were estimated with a lab-wide 

association scan (LabWAS) approach95 controlled for sex and top 10 genetic principal 

components. In conditional analyses, the LabWAS of depression PGS was covaried for potential 

confounders, including BMI (median across each individual’s EHR), and for depression, anxiety, 

adjustment reaction, and tobacco use disorder (as a proxy for smoking status) diagnoses, 

defined by phecodes 296.2, 300.1, 304, and 318, respectively. We controlled for BMI because of 

the reported relationship between obesity with inflammation96, changes in metabolic 

markers97, and risk of depression98. In sensitivity analyses focused on smoking, we mined 

smoking data from the social history forms within the EHR and extracted an ever/never 

smoking variable which indicates whether an individual has ever smoked. We tested the 

ever/never smoking variable as a covariate in the LabWAS of depression PGS. Primary analyses 

were restricted to individuals of European descent and repeated in individuals of African 

ancestry (n=12,384). 

 

Sensitivity Analyses in VUMC 

 A series of conditional and sensitivity analyses were performed to ensure the 

association between depression PGS and WBC was not due to a common comorbid confounder 

phenotype present in individuals with both increased depression PGS and WBC. To find 

phenotypes associated with both depression PGS and WBC, separate phenome-wide 

association scans (PheWAS) were conducted of depression PGS and of the median, age-
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adjusted, INT normalized WBC measurement. Next, phenotypes that were significantly 

associated with both depression PGS and WBC at Bonferroni significance (pWBC <3.64x10-5, 

pdepression PGS <3.72x10-5) were selected and binned into seven categories based on phenotypic 

similarity. Group-based case-control variables were constructed, in which an individual was 

considered a case if they were a case for any of the group’s phecodes. Controls were required 

to be a control for all phecodes. To assess the effect of the comorbid phenotypes on the 

association between depression PGS and WBC, a series of linear regression analyses were 

conducted controlling for each of the groups separately and all common phenotype groups 

together. All analyses were controlled for sex, top 10 genetic principal components, and median 

age across the medical record.  

 

Replication in the PsycheMERGE Network 

 Targeted replication analyses focused on depression PGS and WBC counts were 

conducted in three external biobanks. Depression PGS were constructed and WBC count quality 

controlled as in VUMC. The depression PGS and age-adjusted WBC counts were fitted in a linear 

regression model controlling for sex and top 10 genetic principal components. The associations 

controlling for depression and anxiety diagnoses were also replicated using the same 

phenotype definition as described in the discovery LabWAS at VUMC. The effect estimates from 

each analysis were meta-analyzed across all four sites using a fixed-effect inverse variance 

weighted model in the meta99 R package. 

 

Depression PGS and WBC Mediation Analysis 



 60 

 Two mediation models were investigated using the mediation100 R package. First, WBC 

count was modeled as the mediator between depression PGS (exposure) and depression 

diagnosis (outcome). Second, depression diagnosis was modeled as the mediator between 

depression PGS (exposure) and WBC (outcome).  

While mediation analysis can be easily performed with continuous exposures (in this 

case the MDD-PGS), the calculation of the “proportion of variance mediated” cannot be 

interpreted on a continuous scale. Instead, we have to specify two discrete levels of the 

exposure in order to make the contrast (i.e., average MDD-PGS and high MDD-PGS). Therefore, 

the reference level (average MDD-PGS) and the comparison level (high MDD-PGS) must be 

defined by two distinct levels of the exposure variable. We selected individuals in the 50th 

percentile to represent the average MDD-PGS and tested three different comparison levels 

including individuals at the 85th, 90th, and 95th percentiles. There was no meaningful difference 

in the proportion mediated between the three comparison levels, thus we chose the 90th 

percentile as representative of the “high MDD-PGS” in the main text and have provided all 

results in Tables 15-16. 

The proportion mediated estimates from all four sites were meta-analyzed using a fixed-

effect inverse variance weighted model in the meta99 R package. Due to the uniqueness of MVP 

(i.e., combat exposed, primarily male, etc.) compared to the other sites, we also conducted 

meta-analyses excluding MVP (Tables 15-16). 

 

Depression PGS and WBC-differential Mediation Analysis 
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 To determine which WBC cell types contributed to the association between depression 

PGS and depression diagnosis, a series of multiple mediator analyses were conducted using the 

mediation100 R package. Each WBC subtype count was analyzed as the main mediator between 

depression PGS (exposure) and depression diagnosis (outcome) with the remaining subtypes as 

the alternative mediators. In a multiple mediator analysis, a single main mediator and 

additional alternative mediators are specified. A structural equation modeling approach is used 

to assess the effect of the main mediator between the exposure and outcome after controlling 

for the correlation structure between the alternative mediators and the outcome100. All 

measurements were required to be recorded on the same date for each individual to ensure 

they were from the same WBC-differential (N=24,383). For individuals with multiple WBC-

differentials recorded in their EHR, median WBC count values and the corresponding subtype 

absolute values were selected. All measurements were adjusted for cubic splines of age at 

observation and normalized using a rank-based inverse normal transformation90,101. 

 

Mendelian Randomization  

 We conducted bidirectional Mendelian Randomization (MR) between depression and 

WBC count using generalized summary-based MR (GSMR)102 in the GCTA package. Index SNPs 

were selected using the default settings in GCTA: p-value threshold of 5x10-8, linkage 

disequilibrium r2 clumping threshold of 0.05, and a HEIDI-outlier threshold of 0.01 to remove 

SNPs that have pleiotropic effects on both risk factor and disease. From the depression17 and 

WBC count103 summary statistics, 47 and 203 SNPs were selected as index SNPs, respectively.  
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LabWAS, PheWAS, conditional, replication, and mediation analyses were conducted using R, 

version 3.4.3. Mendelian Randomization was conducted using GCTA version 1.92.4. Code for 

each analysis can be found here: https://bitbucket.org/davislabteam/mdd-pgs-labwas  

 

Results 

LabWAS of Depression PGS 

 Depression PGS were screened for associations with 315 clinical lab measurements 

using a lab-wide association scan (LabWAS)95 in VUMC’s biobank (N=70,704). After multiple 

testing correction, the LabWAS of depression PGS revealed significant associations with four 

elevated immune markers, white blood cell (WBC) count (p-value=1.07x10-17, beta=0.03, 

SE=0.004), urinary WBC (p-value=1.45x10-5, beta=0.03, SE=0.007), absolute monocyte count (p-

value=2.54x10-5, beta=0.02, SE=0.005), and absolute neutrophil count (p-value=5.91x10-5, 

beta=0.02, SE=0.005). Significant associations also included several metabolic markers including 

increased triglycerides (p-value=3.14x10-18, beta=0.05, SE=0.006), decreased HDL-C (p-

value=1.23x10-11, beta=-0.04, SE=0.005), decreased calcitriol (p-value=2.83x10-8, beta=-0.04, 

SE=0.007), increased glucose (p-value=2.84x10-7, beta=0.02, SE=0.004), decreased blood urea 

nitrogen (BUN) (p-value=5.19x10-7, beta=-0.02, SE=0.004), decreased calcium (p-value=9.74x10-

7, beta=-0.02, SE=0.004), and decreased calcidiol (p-value=7.03x10-5, beta=-0.04, SE=0.01). 

Depression PGS also associated with decreased troponin-I (p-value=1.09x10-6, beta=-0.05, 

SE=0.009), decreased urinary red blood cells (p-value=1.37x10-5, beta=-0.03, SE=0.006), 

decreased thyroxine (p-value=1.72x10-5, beta=-0.03, SE=0.006), and decreased blood carbon 

dioxide (p-value=4.06x10-6, beta=-0.02, SE=0.003) (Figure 11a, Table 9).  

https://bitbucket.org/davislabteam/mdd-pgs-labwas
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In a conditional analysis, we sequentially controlled for diagnoses for depression, 

anxiety, adjustment reaction, and tobacco use disorder, and median BMI across the EHR (Figure 

12, Table 10). In the analysis with all covariates, the most significant association remained WBC 

count (p-value=1.11x10-10, beta=0.03, SE=0.005), followed by triglycerides (p-value=1.91x10-5, 

beta=0.04, SE=0.008) (Figure 11b).  

While depression PGS remained robustly associated with WBC count across all analyses, 

the magnitude of the effect was modest (beta=0.03). Stratification of individuals in the 

discovery cohort (VUMC) showed even at the highest decile of depression PGS, WBC count 

measurements are elevated but remain within the clinical reference range (4-11 thousand 

cells/uL) (Figure 13). Individuals in the first decile of depression PGS had a mean WBC count 

measurement of 7.94 compared to a mean WBC count of 8.34 for individuals in the top decile 

of depression PGS, equating to a 5% increase in WBC count from the first to tenth decile.  

No labs were significantly associated in the LabWAS of depression PGS in individuals of 

African descent, likely due to the smaller sample size of the African ancestry sample (n=12,383), 

and the low generalizability of polygenic scores built using European summary statistics in 

African decent populations104. However, the association with WBC count was in the same 

direction, with a similar magnitude, as in the European sample (p-value=0.058, beta=0.02, 

SE=0.01) (Figure 14).  
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Figure 11. Lab-wide association scan of depression polygenic score in individuals of European 

ancestry. In analysis A) associations were controlled for sex and top 10 principal components of 

ancestry. In analysis B) associations were controlled for sex, top 10 principal components of 

ancestry, diagnoses for depression, anxiety, adjustment disorder, tobacco use disorder, and 

median BMI across EHR.  
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Figure 12. LabWAS of depression PGS in VUMC controlled for a) sex and top 10 principal 

components of ancestry, b) depression diagnosis, c) depression and anxiety diagnoses, d) 

depression, anxiety, and adjustment reaction, e) diagnoses for depression, anxiety, adjustment 

reaction, and median BMI, f) diagnoses for depression, anxiety, adjustment reaction, tobacco 

use disorder and median BMI, and g) diagnoses for depression, anxiety, adjustment reaction, 

median BMI, and smoking ever documented in the EHR.  
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Figure 13. Median WBC measurements stratified by depression PGS decile in VUMC. Individuals 

were divided into deciles based on their depression PGS. Each individual’s median 

untransformed WBC measurement is plotted based on depression PGS decile. Blue lines 

indicate the normal clinical range for WBC (4-11thou cells/uL). The dotted line in between 

boxes connects median WBC values between deciles. 
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Figure 14. Lab-wide association scan of depression PGS in individuals of African ancestry in 

VUMC. Associations were controlled for sex and top 1o principal components of ancestry. The 

blue line represents p-value = 0.05, and the red line represents Bonferroni significance (p-

value=2.21 x 10-4). 

 
 
 
 
 

AN.GAP

Gluc

TRPI
TProSeCNeut

CMonMc
CBil

Trigs

SerFol
FBaso

GluWB SMAb
SU.UreWBC

0

1

2

3

bl
oo

d

ca
nc

er

ca
rd

io
va

sc
ul
ar

en
do

cr
in
e

im
m

un
e

ki
dn

ey
liv

er

m
et

ab
ol
ic

ot
he

r

to
xi
co

lo
gy

/p
ha

rm
ac

ol
og

y

ur
in
ar

y

group

−
lo

g
1
0
(p

v
a
lu

e
)



 68 

Table 9. Significant associations from the LabWAS of depression polygenic scores in VUMC. 

Associations were controlled for sex and top 10 principal components of ancestry.  

 
Lab Full Name Group N p-value Beta SE 

Trigs Triglyceride [Mass/volume] in Serum or 
Plasma 

metabolic 30,703 3.14E-18 0.049 0.006 

WBC Leukocytes [#/volume] in Blood by 
Automated count 

immune 65,120 1.07E-17 0.030 0.004 

HDL.C Cholesterol in HDL [Mass/volume] in 
Serum or Plasma 

metabolic 29,598 1.23E-11 -0.037 0.005 

D25OHT Calcitriol [Mass/volume] in Serum or 
Plasma 

metabolic 18,325 2.83E-08 -0.039 0.007 

Gluc Glucose lab metabolic 62,555 2.84E-07 0.019 0.004 

BUN Urea nitrogen serum/plasma metabolic 62,617 5.19E-07 -0.020 0.004 

Ca Calcium serum/plasma serum/plasma metabolic 62,357 9.74E-07 -0.017 0.004 

TRPI Troponin I.cardiac [Mass/volume] in 
Serum or Plasma 

cardiovascular 10,443 1.09E-06 -0.045 0.009 

CO2 Carbon dioxide serum/plasma blood 62,518 4.06E-06 -0.016 0.003 

URBC Erythrocytes [#/area] in Urine sediment 
by Microscopy high power field 

urinary 23,022 1.37E-05 -0.025 0.006 

UWBC Leukocytes [#/area] in Urine sediment by 
Microscopy high power field 

urinary 24,388 1.45E-05 0.029 0.007 

FT4 Thyroxine (T4) free [Mass/volume] in 
Serum or Plasma 

endocrine 26,261 1.72E-05 -0.026 0.006 

MonAbs MonAbs immune 25,188 2.54E-05 0.022 0.005 

NtAbs NtAbs immune 25,176 5.91E-05 0.021 0.005 

X25HyD3 Calcidiol [Mass/volume] in Serum or 
Plasma 

metabolic 9,525 7.03E-05 -0.040 0.010 
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Table 10. Association between WBC and depression PGS from conditional LabWAS analyses. All 

analyses were controlled for sex and top 10 principal components of ancestry.  

 
Covariates N pvalue Beta SE 

Original 65,120 1.07E-17 0.030 0.004 

Depression Diagnosis 64,679 2.54E-14 0.031 0.004 

Depression + Anxiety Diagnosis 64,679 1.88E-15 0.035 0.004 

Depression + Anxiety + Adjustment Reaction Diagnosis 64,679 5.29E-15 0.036 0.005 

Depression + Anxiety + Adjustment Reaction Diagnosis + 
BMI 

61,793 1.99E-13 0.034 0.005 

Depression + Anxiety + Adjustment Reaction Diagnosis + 
Tobacco Use Disorder + BMI 

61,793 1.11E-10 0.031 0.005 

Depression + Anxiety + Adjustment Reaction Diagnosis + 
BMI + Ever/Never Smoking 

61,793 6.84E-08 0.028 0.005 
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Conditional Analyses of WBC  

In separate PheWAS analyses, depression PGS and median WBC count were significantly 

associated with 66 and 469 phecodes, respectively. Of these significantly associated phecodes, 

32 were common to both depression PGS and median WBC count and were binned into seven 

categories based on phenotypic similarity: cardiovascular, psychiatric, obesity, respiratory, 

hepatic, pain, and autoimmune conditions (Figure 15a, Table 11).  

The association between depression PGS and WBC count remained significant after 

controlling for each group separately and controlling for all phenotype groups together (p-

value=4.19x10-3, beta=0.02) with effect estimates similar to the original association despite the 

reduced sample size (N = 13,269) (Figure 15b, Table 12).  
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Figure 15. Controlling for common phenotypes between depression PGS and WBC. a) 

Phenotypes associated with both depression PGS and WBC divided into groups based on 

phenotypic similarity in VUMC. b) The association between depression PGS and WBC 

controlling for each “confounder” phenotype group in VUMC. Group-based cases were any 

individual who was a case for a any of a group’s phecodes and controls were individuals who 

were controls for all of a group’s phecodes. Associations were found using linear regressions 

controlled for each group. In the ”all” analysis, all groups were controlled for in one regression. 

A.       B.  
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Table 11. Phenotypes associated with depression PGS and median WBC measurements using 

PheWAS in VUMC binned into categories based on similarity. 

Group Phecode Phenotype WBC p-
value 

WBC 
beta 

Depression 
PGS p-value 

Depression 
PGS beta 

Cardiovascular 411.3 Angina pectoris 5.14E-20 0.0265 1.54E-06 0.0244 
433 Cerebrovascular disease 1.09E-29 0.0176 6.37E-06 0.0157 

428.1 Congestive heart failure 
(CHF) NOS 

3.90E-69 0.017 2.38E-05 0.0152 

411.4 Coronary atherosclerosis 2.34E-98 0.0151 1.12E-08 0.0131 

401.1 Essential hypertension 3.26E-143 0.0115 4.90E-06 0.0099 

401 Hypertension 6.38E-142 0.0114 9.73E-07 0.0098 
411 Ischemic Heart Disease 5.21E-104 0.0144 7.38E-09 0.0125 

411.2 Myocardial infarction 1.17E-78 0.0213 1.22E-05 0.0192 

418 Nonspecific chest pain 5.14E-18 0.0116 1.97E-14 0.0105 

411.1 Unstable angina 
(intermediate coronary 
syndrome) 

9.82E-21 0.0274 1.95E-08 0.0252 

Psychiatric 292.4 Altered mental status 1.29E-14 0.0194 1.91E-05 0.0176 

313.1 Attention deficit 
hyperactivity disorder 

1.22E-12 0.0316 2.27E-07 0.0324 

296.1 Bipolar 9.90E-06 0.0263 3.91E-23 0.0261 

313 Pervasive developmental 
disorders 

2.63E-15 0.0265 2.40E-08 0.0274 

300.9 Posttraumatic stress 
disorder 

1.96E-06 0.0324 2.76E-25 0.0327 

318 Tobacco use disorder 4.77E-175 0.0152 1.89E-25 0.0137 

Obesity 250 Diabetes mellitus 3.02E-100 0.013 1.62E-06 0.0116 

278.11 Morbid obesity 5.06E-90 0.021 5.71E-09 0.0197 

278.1 Obesity 4.41E-94 0.0151 9.65E-09 0.0139 

278 Overweight, obesity and 
other hyperalimentation 

1.11E-81 0.0141 9.54E-08 0.0130 

250.2 Type 2 diabetes 7.15E-110 0.0134 7.60E-08 0.0119 
Respiratory 327.3 Sleep apnea 1.36E-14 0.0161 9.64E-06 0.0149 

495 Asthma 9.18E-25 0.0181 3.86E-06 0.0171 

496 Chronic airway obstruction 5.69E-144 0.018 1.68E-08 0.0160 

496.2 Chronic bronchitis 6.60E-55 0.0325 1.02E-05 0.0300 
512.7 Shortness of breath 1.59E-91 0.0132 6.99E-07 0.0117 

Hepatic 70 Viral hepatitis 7.14E-53 0.0301 4.40E-07 0.0279 

70.3 Viral hepatitis C 6.85E-52 0.0319 1.35E-06 0.0296 
Pain 338.1 Acute pain 8.70E-23 0.0151 2.38E-06 0.0138 

338 Pain 1.20E-20 0.0133 4.09E-09 0.0121 

798 Malaise and fatigue 1.45E-63 0.0108 3.49E-07 0.0098 

Autoimmune 557.1 Celiac disease 1.52E-15 0.0568 1.78E-09 0.0545 
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Table 12. Association between depression PGS and WBC levels controlled for common 

phenotype groups in VUMC. The association was controlled for each phenotype group 

separately and all groups in one analysis in the “All” phenotype. Associations were found using 

a linear regression controlling for sex and top 10 principal components of ancestry. 

 

Phenotype N Depression 
PGS P-value 

Depression 
PGS beta 

SE Lower 
95% CI 

Upper 
95% CI 

Original 65,120 1.07E-17 0.030 0.003 0.023 0.037 

Cardiovascular 55,184 8.1E-17 0.031 0.004 0.024 0.039 

Psychiatric 41,213 2.1E-13 0.033 0.004 0.024 0.041 

Obesity 54,28 8.4E-16 0.031 0.004 0.023 0.038 

Respiratory 44,274 9.7E-11 0.027 0.004 0.019 0.036 

Hepatic 54,016 1.2E-18 0.034 0.004 0.027 0.042 

Pain 52,649 1.9E-17 0.033 0.004 0.026 0.041 

Autoimmune 44,504 5.5E-12 0.029 0.004 0.021 0.037 

All 13,269 0.0082 0.021 0.008 0.005 0.037 
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Replication in the PsycheMERGE Network 

Given the robustness of the association with WBC and the history of associations 

between depression status and pro-inflammatory markers, we focused on WBC count for 

replication and further investigation. Findings were replicated in three external biobanks, the 

Million Veteran Program (MVP), Mount Sinai Icahn School of Medicine (MSSM), and 

Massachusetts General Brigham Biobank (MGBB) (Table 13). In both MVP (N=289,880) and 

MGBB (N=20,828), the association between depression PGS and WBC count remained 

significant with effect estimates replicating those observed at VUMC (Figure 16). In MSSM, the 

effect size point estimate was similar to those observed in the three other sites, but did not 

reach statistical significance, likely due to the smaller sample size (n=823). The meta-analyzed 

effect estimate from the four sites was robust and highly significant (p-value=1.03x10-136, 

beta=0.03, SE=0.002), even after controlling for depression diagnosis (p-value=9.52x10-102, 

beta=0.03, SE=0.002), and after controlling for depression and anxiety diagnoses (p-

value=8.23x10-100, beta=0.03, SE=0.002) (Figure 16, Table 14). 
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Figure 16. Replication within the PsycheMERGE Network. The association between depression 

PGS and median WBC levels was replicated across the PsycheMERGE Network with sensitivity 

analyses controlling for depression and anxiety diagnoses. 
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Table 13. Characteristics of PsycheMERGE Network samples. 

Site Group N 
genotyped 
(European) 

N WBC 
measurement 

N genotyped 
& WBC 

measurement 

% 
Female 

Average age 
in  years, 

(SD) 

Average 
Length of 
record in  

years, 
(SD) 

MSSM All 9,255 3,668 823 52.10% 59.7 (16.0) 11.2 (4.4) 

Depression 
or Anxiety 
Controls 

6,722 2,499 578 51.4% 59.3 (16.4) 10.7 (4.4) 

Depression 
or Anxiety 
Cases 

1,622 1,169 245 53.9% 60.5 (15.0) 12.5 (3.9) 

VUMC All 72,828 948,590 70,921 55.9% 48.1 (22.3) 8.7 (6.3) 

Depression 
or Anxiety 
Controls 

59,520 301,982 57,161 52.6% 46.8 (23.7) 7.6 (6.1) 

Depression 
or Anxiety 
Cases 

15,985 71,692 15,951 64.4% 50.9 (18.8) 11.3 (6.1) 

MVP All 289,880 289,880 289,880 7.2% 64.3 (12.0) 12.0 

Depression 
or Anxiety 
Controls 

150,328 150,328 150,328 4.1% 67.7 (11.2) 11.2 

Depression 
or Anxiety 
Cases 

129,552 129,552 129,552 10.9% 61.6 (11.9) 12.9 

MGB 
  

All 25,331 72,329 20,828 51.5% 56.1 13.8 (8.3) 

Depression 
or Anxiety 
Controls 

17,879 51,612 17,098 52.0% 59.8 (16.7) 11.3 (7.1) 

Depression 
or Anxiety 
Cases 

7,452  20,717  3,730  64.2%  56.7 (16.9)  14.0 (6.7) 
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Table 14. Results of PsycheMERGE replication between depression PGS and WBC levels. 

Associations were controlled for sex and top 10 principal components. Beta estimates were 

combined for meta-analysis using a fixed-effects inverse weighted method. 

 
Analysis Cohort P-value Beta SE Lower 

95% CI 
Upper 
95% CI 

Depression PGS MSSM 0.519 0.027 0.042 -0.055 0.11 

MVP 3.84E-114 0.041 0.002 0.037 0.044 

MGB 9.11E-10 0.043 0.007 0.029 0.056 

VUMC 1.07E-17 0.03 0.004 0.023 0.037 

Meta-analysis 1.03E-136 0.034 0.002 0.031 0.038 

Depression PGS + 
Depression Diagnosis 

MSSM 0.384 0.038 0.043 -0.047 0.122 

MVP 2.12E-81 0.035 0.002 0.031 0.038 

MGB 1.92E-9 0.042 0.007 0.028 0.056 

VUMC 2.54E-14 0.031 0.004 0.023 0.039 

Meta-analysis 9.52E-102 0.034 0.002 0.031 0.038 

Depression PGS + 
Depression Diagnosis + 
Anxiety Diagnosis 
  

MSSM 0.658 0.02 0.045 -0.069 0.109 

MVP 1.71E-78 0.034 0.002 0.03 0.037 

MGB 2.55E-9 0.042 0.007 0.028 0.055 

VUMC 1.88E-15 0.035 0.004 0.026 0.044 

Meta-analysis 8.23E-100 0.034 0.002 0.031 0.038 
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Mediation Analysis 

 Two potential pathways between depression PGS, WBC count, and depression diagnosis 

were assessed using mediation analyses. In the first analysis, median WBC was modeled as a 

mediator of the relationship between depression PGS (exposure) and depression diagnosis 

(outcome). Meta-analysis across all sites revealed WBC mediated 2.5% of the association 

between depression PGS and depression diagnosis (95% CI=2.2-20.8%, p-value=2.84x10-70) 

(Table 15). When excluding MVP from the meta-analysis, WBC count mediated 0.5% of the 

association, although this association was not statistically significant (95% CI=-0.03-0.9%, p-

value=0.06) (Table 15). 

In the second analysis, depression diagnosis was modeled as a mediator of the 

association between the depression PGS (exposure) and median WBC (outcome). Meta-analysis 

across all sites indicated depression diagnosis mediated 9.8% of the association between 

depression PGS and WBC count (95% CI=8.4-11.1%, p-value=1.78x10-44) (Table 17). MDD 

diagnosis mediated 1.4% of the association when excluding MVP from the meta-analysis (95% 

CI=-0.6-3.4%, p-value=0.17) (Table 16). 

 

Depression PGS and WBC-differential Mediation Analysis 

 WBC counts are calculated from the sum of five different cell subtypes: neutrophils, 

lymphocytes, monocytes, basophils, and eosinophils. These cell subtypes can be measured 

along with the total WBC using a complete blood count differential (CBC-differential) lab. To 

determine whether specific WBC components accounted for the relationships between 

depression PGS and depression diagnosis, we performed a series of multiple mediator analyses.  
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 When depression PGS was modeled as the exposure and depression diagnosis as the 

outcome, neutrophils were the only cell type that explained a significant proportion (1.9%; 95% 

CI=0.2–3.1%) of the association between depression PGS and depression diagnosis (Table 17).  
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Table 15. Mediation results with WBC as the mediator across PsycheMERGE sites. Proportion 

mediated estimates were estimated using three different treatment percentiles of depression 

PGS (85%, 90%, and 95%) compared to the 50% percentile of PGS for controls. 

 
Cohort MDD PGS 

Percentile 
Control 

Percentile 
Value 

Treatment 
Percentile 

Value 

Proportion 
Mediated 

pvalue 

Proportion 
Mediated (SE) 

Lower 95% CI 

VUMC 0.85 0.011 1.033 0.138 0.003 (0.003) -0.001 – 0.008 

0.90 1.279 0.138 0.003 (0.003) -0.001 – 0.008 

0.95 1.634 0.138 0.003 (0.003) -0.001 – 0.008 

MVP 0.85 0.024 1.026 <2.23e-308 0.035 (0.002) 0.031 – 0.038 

0.90 1.258 <2.23e-308 0.035 (0.002) 0.031 – 0.038 

0.95 1.6 <2.23e-308 0.035 (0.002) 0.031 – 0.038 

MGB 0.85 0.002 1.038 0.014 0.012 (0.006) 0.003 – 0.024 

0.90 1.264 0.014 0.012 (0.006) 0.003 – 0.024 

0.95 1.62 0.014 0.012 (0.006) 0.003 – 0.024 

MSSM 0.85 -0.009 1.049 0.86 -0.016 (0.06) -0.240 – 0.100 

0.90 1.331 0.868 -0.016 (0.069) -0.242 – 0.118 

0.95 1.738 0.862 -0.016 (0.062) -0.240 – 0.105 

Meta-analysis 0.85 - - 3.20E-70 0.025 (0.001) 0.022 – 0.208 

0.90 - - 2.84E-70 0.025 (0.001) 0.022 – 0.208 

0.95 - - 2.57E-70 0.025 (0.001) 0.022 – 0.208 

Meta-analysis 
excluding MVP 

0.85 - - 0.066 0.005 (0.002) -0.0003 – 0.009 

0.90 - - 0.066 0.005 (0.002) -0.0003– 0.009 

0.95 - - 0.066 0.005 (0.002) -0.0003– 0.009 
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Table 16. Mediation results with MDD diagnosis as the mediator across PsycheMERGE sites. 

Proportion mediated estimates were estimated using three different treatment percentiles of 

depression PGS (85%, 90%, and 95%) compared to the 50% percentile of PGS for controls. 

Cohort MDD PGS 
Percentile 

Control 
Percentile 

Value 

Treatment 
Percentile 

Value 

Proportion 
Mediated p-

value 

Proportion 
Mediated (SE) 

Lower 95% CI 

VUMC 0.85 0.011 1.033 0.152 0.01 (0.011) -0.004 – 0.032 

0.90 1.279 0.152 0.01 (0.011) -0.004 – 0.032 

0.95 1.634 0.152 0.011 (0.011) -0.004 – 0.032 

MVP 0.85 0.024 1.026 <2.23e-308 0.162 (0.01) 0.143 – 0.181 

0.90 1.258 <2.23e-308 0.162 (0.009) 0.144 – 0.180 

0.95 1.6 <2.23e-308 0.162 (0.009) 0.145 – 0.180 

MGB 0.85 0.002 1.038 0.012 0.044 (0.033) 0.011 – 0.108 

0.90 1.264 0.012 0.044 (0.033) 0.011 – 0.108 

0.95 1.62 0.012 0.045 (0.033) 0.011 – 0.109 

MSSM 0.85 -0.009 1.049 0.784 -0.113 (0.57) -1.409 – 1.003 

0.90 1.331 0.732 -0.104 (0.517) -1.511 – 0.910 

0.95 1.738 0.73 -0.084 (0.56) -1.042 – 1.014 

Meta-analysis 0.85 - - 5.91E-40 0.095 (0.007) 0.081 – 0.109 

0.90 - - 1.78E-44 0.098 (0.007) 0.084 – 0.111 

0.95 - - 9.73E-45 0.097 (0.007) 0.083 - 0.110 

Meta-analysis 
excluding MVP 

0.85 - - 0.203 0.014 (0.011) -0.007 – 0.035 

0.90 - - 0.197 0.014 (0.011) -0.007 – 0.034 

0.95 - - 0.170 0.014 (0.010) -0.006 – 0.034 
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Table 17. Immune subpopulation and depression diagnosis mediation analysis. Using a multiple 

mediator analysis, each subpopulation was modeled as the main mediator between the 

exposure and the outcome with the remaining subpopulations as alternative mediators. 

 

Outcome Cell Type Proportion 
Mediated 

Lower 95% CI Upper 95% CI 

MDD diagnosis Basophils 0.005 -0.009 0.015 
 

Eosinophils 0.002 -0.015 0.014 

Lymphocytes 0.008 -0.007 0.018 

Monocytes -0.001 -0.018 0.011 

Neutrophils 0.019 0.002 0.031 
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Mendelian Randomization  

 When modeling WBC count as the exposure and depression as the outcome, MR 

analysis provided additional evidence for an increase in depression risk with an increase in WBC 

count (p-value=0.014, bxy=0.27) (Figure 17, Table 18). However, depression modeled as the 

exposure showed no evidence of causal influence on the WBC count outcome (p-value=0.302, 

bxy=0.022). 
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Figure 17. Results of bidirectional Mendelian Randomization with A) MDD as the exposure and 

WBC as the outcome, and B) WBC as the exposure and MDD as the outcome. 
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Table 18. Results of bidirectional Mendelian Randomization between depression and WBC. 

  

Exposure Outcome bxy SE P-value N SNPs Multi SNP based HEIDI 
Outlier 

MDD WBC 0.0223 0.0216 0.302 47 0.639 

WBC MDD 0.0272 0.0110 0.014 203 0.021 
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Discussion 

 Depression is consistently associated with increased pro-inflammatory biomarkers, 

however, the mechanisms underlying these associations remain unclear. In this study, analysis 

of EHR-linked biobanks within the PsycheMERGE Network were utilized to examine the effect 

of depression polygenic scores on a variety of clinical lab traits, revealing a robustly replicated 

association with increased white blood cell count. Notably, several other lab traits associated 

with depression polygenic scores, including lipids, blood glucose, and blood urea nitrogen. The 

variety of associations with depression PGS indicate multiple areas of biology are affected by 

depression genetics, including metabolism105,106 and inflammation106–108. We chose to further 

investigate the relationship with WBC count given the existing literature and the robustness of 

the observed association to clinical confounders. 

In a lab-wide screen, increased polygenic depression risk was associated with increased 

inflammatory markers including WBC count, even after controlling for depression, anxiety, 

multiple comorbid phenotypes, BMI, and smoking, thus highlighting depression PGS as an 

important risk factor for the pro-inflammatory state observed in depression. These results 

indicated that genetic risk for depression, independent of depressive symptoms, is linked to a 

pro-inflammatory biomarker. The effect of the depression PGS on WBC count was modest 

across all biobanks, suggesting that individuals with high depression genetic liability may have 

an activated, but not abnormal immune system. Nonetheless, sustained activation of the 

immune system could have important implications for the risk of developing depression.  

The results of our mediation analyses did not distinguish a singular causal pathway. 

Instead, depression diagnosis mediated 2.5% of the association between depression PGS and 
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WBC count, while WBC count mediated 9.8% of the association between depression PGS and 

depression diagnosis. However, mendelian randomization results do provide further evidence 

for a causal path from increased WBC count levels to increased depression risk, but do not 

support a model of depression leading to increased WBC levels. It is important to note that only 

47 SNPs met criteria to be included as MDD instrument variables, limiting the statistical power 

of the analysis.  

The notable difference in the proportions mediated between MVP and the other sites 

could be due to phenotypic uniqueness of the MVP sample. For example, MVP is 

overwhelmingly male (92.8%), which could contribute to residual confounding by sex that is not 

fully accounted for in the model. Additionally, the mediated pathways could be particularly 

strong in MVP due to the high prevalence of depression in the sample (MVP=44.7%, 

others=23.3%). A sensitivity analysis excluding MVP yielded marginally significant results, and 

indicate that additional analysis in larger sample size is warranted.  

In the clinic, WBC measurements can be broken down into measurements of each WBC 

subtype. Abnormal levels of different WBC subtypes can index different immune processes. 

Understanding which cell types underlie the relationship between depression polygenic score 

and depression diagnosis through WBC can help narrow a specific immune process involved in 

depression. Neutrophil counts explained 1.9% of the association between depression polygenic 

score and depression diagnosis, and no other subtypes contributed significantly to the 

association. Neutrophils are well known as responders to acute bacterial infection109 and are 

the most abundant WBC subtype in circulation (40-60%)109. Although neutrophils are typically 



 88 

restricted from crossing the blood-brain barrier, neutrophils are known to infiltrate the central 

nervous system during infection, trauma, or neurodegeneration110. 

Our study should be interpreted in light of its limitations. First, the WBC measurements 

used in the study were clinically derived, with measurements reflecting a range of health states. 

To address this, we limited to observations within 4 standard deviations (described in 

supplement) and noted that WBC was measured on nearly everyone in our primary and 

replication sample populations. However, it remains possible that individuals with clinical 

orders for WBC differential panels may represent a clinically different sample than those with 

only the total WBC measurement. Additionally, EHRs often contain multiple WBC 

measurements for the same individual. In this study, only the median values per individual were 

utilized, leaving unanswered questions about the effect of depression PGS on WBC over time 

and in response to antidepressant treatment. Finally, even though the relationship between 

depression PGS and WBC was robust, the effect sizes are small, making WBC an unlikely 

candidate for use as a diagnostic biomarker of depression.  

Polygenic scores for depression are associated with increased inflammatory markers, 

specifically WBC count, even in the absence of depressive symptoms. Inflammatory markers 

may play a causal role in the etiology of depression and subsequent inflammation. The 

associations described in this study highlight the importance of WBC biology in depression and 

demonstrate the use of EHR-based genomics as a tool for discovery of physiological markers in 

psychiatric traits. 
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CHAPTER IV 

 

EVALUATING THE LONGITUDINAL EFFECT OF ANTIDEPRESSANT USE ON WHITE BLOOD CELL 

COUNT 

 

Introduction 

In the United States, antidepressants are routinely prescribed in clinical care, with eight 

antidepressants ranked in the top 50 most prescribed drugs in 2018111,112. In addition to anti-

depressive effects, antidepressants show anti-inflammatory effects on circulating biomarkers 

such as IL-6, CRP, and IL-2B44,45. Previous studies of immune markers and antidepressants were 

largely limited to examining common SSRIs, while the effects of other antidepressant classes on 

immune markers remain less explored. Additionally, only short follow-up times were used, 

leaving unknown whether anti-inflammatory effects persist throughout a longer period of time 

in an antidepressant trial.  

In this chapter, we utilize electronic health records (EHRs) to examine the longitudinal 

effects of several antidepressant classes on WBC count. Patient records typically include 

multiple time points for laboratory values, providing a valuable resource to examine the effects 

of medication over time on a large sample size. In order to increase generalizability of our 

findings across all antidepressant users, we conducted primary analyses on all patients with 

antidepressant records with sensitivity analyses stratified by antidepressant indication. In order 

to maximize sample sizes and improve generalizability we assessed the effects of 

antidepressant classes, rather than individual drugs, on WBC count.    



 90 

 

Methods 

Study Sample 

Vanderbilt University Medical Center (VUMC) is a tertiary care center that provides 

inpatient and outpatient care in Nashville, TN. The VUMC EHR was established in 1990 and 

includes data on billing codes from the International Classification of Diseases, 9th and 10th 

editions (ICD-9 and ICD-10), Current Procedural Terminology (CPT) codes, medications, 

laboratory values, reports, and clinical documentation. The de-identified mirror of the EHR, 

numbers more than 3.2 million patient records. For this study, we only included data recorded 

before January 1, 2017. This protocol was approved by the Vanderbilt University Medical 

Center institutional review board (#172020), and was deemed non-human subjects research 

because all information is de-identified. 

 

Extracting and Cleaning Medication Names from EHRs 

Antidepressant medications and dates associated with medication mentions were 

extracted from the “Problem list” document type within the EHR and mapped to generic names 

and classes (Table 19). Due to small sample size monoamine oxidase inhibitors (MAOIs) were 

excluded (N individuals = 1,127). 

To validate our longitudinal modeling approach, we extracted two known anti-

inflammatory medications, biologic immunosuppressants and chemotherapies. Biologic 

immunosuppressant names were extracted from the EHR “Problem list”. To extract 

chemotherapy medications, medications were mapped to The United States Pharmacopeial 
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Convention (USP) terms and we extracted medications from the “Problem list” that mapped to 

the anti-neoplastic category. 

As a negative control, we also evaluated the effect of contraceptives on WBC which has 

no known anti-inflammatory properties. All medications with “ethinyl estradiol” were extracted 

from the EHR documents “Problem list”, “Medications Known to be Prescribed For or Used by 

the Patient”, “Outpatient Rx Order Summary”, “Outpatient Visit – Obstetrics/Gynecology”, and 

“Gynecology Clinic Visit”. 
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Table 19. List of generic antidepressant medications by class extracted from electronic health 

records.  

Drug Class Generic Name 

SSRI citalopram 
 

escitalopram 
 

fluoxetine 
 

fluvoxamine 
 

paroxetine 
 

sertraline 

SNRI desvenlafaxine 
 

venlafaxine 
 

milnacipran 
 

levomilnacipran 
 

duloxetine 

TCA amitriptyline 
 

desipramine 
 

imipramine 
 

nortriptyline 
 

amoxapine 
 

trimipramine 
 

doxepin 
 

clomipramine 
 

maprotiline 
 

protriptyline 
 

mirtazapine 

Atypical bupropion 
 

nefazodone 
 

vilazodone 
 

vortioxetine 
 

trazodone 

MAOI selegiline 
 

tranylcypromine 
 

phenelzine 
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Extracting WBC Measurements  

Laboratory values were extracted from the EHR and cleaned as previously described113. 

For analysis, lab values were required to occur on out-patient visit dates to ensure values were 

not associated with acute illness during emergency visits or in-patient hospitalizations. For 

statistical modeling, laboratory values were normalized using a rank-based inverse normal 

transformation90.  

 

Longitudinal Cohort Construction 

 In order to examine the acute and long-term effects of medications on WBC count, we 

constructed three versions of the longitudinal model. We examined acute effects using WBC 

measurements recorded 30 days before and after medication initiation. Long-term effects were 

examined using WBC measurements recorded 6 months and 1 year before and after 

medication initiation.  

To construct each time cohort, we determined the time period an individual was on an 

medication by extracting medication initiation and end for each individual defined as the first 

and last medication date, respectively.  Individuals were required to have WBC measurements 

at least 30, 180, or 365 days before and after medication initiation to be included in the 1-

month, 6-month, or 1-year cohorts, respectively (Figure 18). Longitudinal cohorts were 

constructed separately for each antidepressant class, biologic immunosuppressants, 

chemotherapy, and contraceptives.  
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Figure 18. Creation of longitudinal cohorts and medication time-varying covariates.  
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Diagnostic Co-Occurrence with WBC Measurements  

 WBC count is not measured uniformly on all patients and could be confounded by 

diagnosis. In order to identify potential confounders, we used the date of the WBC count test to 

identify the corresponding ICD code associated with the test order. We evaluated all co-

occurrences within the 1-year cohort (inclusive of the 1-month and 6-month cohorts). We then 

calculated the proportion of WBC count laboratory tests that co-occurred with each observed 

ICD code and the proportion of individuals for which the WBC count laboratory test and ICD 

code co-occurred (Figure 19).  

 The co-occurrences proportions revealed an enrichment of hypertension, cancer, and 

chemotherapy related codes, indicating that hypertension, cancer, and chemotherapy were 

clear reasons for multiple WBC count measurements. To control for the effects of cancer and 

chemotherapy treatment on the WBC value and subsequent associations with antidepressants, 

we excluded individuals with any cancer or chemotherapy code in their EHR (CPT codes: 96360 

– 96361; 96365 – 96379; 96401 – 96549; ICD9 codes: 140 – 239.9; ICD10 codes: C00 – D49.9).  

 The effect of a hypertension diagnosis on the association between antidepressants and 

WBC count was assessed in a separate analysis described below. 
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Figure 19. Co-occurrences between out-patient WBC measurements and ICD codes for A) SSRI, 

B) SNRI, C) TCA, and D) Atypical 1-year longitudinal cohorts. The x-axis represents the 

proportion of individuals in the cohort with a particular ICD codes and the y-axis represents the 

proportion of WBC measurements in the cohort with the ICD code.  
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Longitudinal Effects of Medications on WBC Count 

A time-varying covariate (TVC) for medication use was constructed depending on 

whether the WBC count was measured before medication initiation (TVC=0), between the first 

and last medication dates (TVC=1), or after the last medication mention date (TVC=0) (Figure 

18).  

We evaluated the effect of the medication TVC on WBC count for each time cohort 

using a linear mixed model controlled for the main effects of sex, race, and age at 

measurement, and the random effect of age at measurement99. Models were assessed 

separately for each antidepressant class, biologic immunosuppressants, chemotherapy, and 

contraceptives. Because the contraceptive cohorts only contained females, sex was not 

included in the model.  

To assess the effect of hypertension on the association between antidepressants and 

WBC count, we repeated the longitudinal models for antidepressants and added a time-varying 

covariate for first hypertension diagnosis. Hypertension diagnosis was defined by the presence 

of at least two hypertension ICD codes (401, 401.1, 401.9, 416.0, 459.3, 459.30, 459.31, 459.32, 

459.39, 572.3, 997.91, I10, I27.0, K76.6, 010, R03.0). The time-varying covariate was based on 

the date of the first hypertension code. 

For longitudinal models, statistical significance was determined using Bonferroni 

correction for multiple testing of p=9.09 x 10-4 (0.05/(55).We corrected for each lab and 

medication pair, but not for each cohort because the 6-month and 1-month cohorts were 

nested within the 1-year cohort, making them non-independent tests.  
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Longitudinal Effects of Antidepressants on the Complete Blood Count Panel 

 In the clinic, WBC count is measured as part of a complete blood count panel (CBC). To 

test the hypothesis that antidepressant longitudinal effects on WBC count are specific to this 

lab, we extracted CBC laboratory values including red blood cell distribution width (RDW), 

packed cell volume (PCV), mean platelet volume (MPV), mean corpuscular volume (MCV), mean 

corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH). To 

assess whether antidepressants associated with labs outside of the CBC, we also extracted a 

non-CBC lab, creatinine. We created longitudinal cohorts for each lab as described for WBC 

count and repeated the longitudinal analyses using the CBC labs and creatinine.  

 

Effect of Antidepressants on WBC Count Stratified by Indication 

 Antidepressants can be prescribed for a variety of indications including depression, 

anxiety, chronic pain, and insomnia114. We evaluated the effect of antidepressants on WBC 

count across three indications: depression, anxiety, and chronic pain. Insomnia was not 

assessed due to small sample size. To determine if the effects of antidepressants on WBC count  

persisted across all indications or were specific to a subset of patients, we repeated the 

longitudinal analyses between antidepressants in WBC count stratified by indication.   

 Depression cases were defined by the presence of a phecode for depression, major 

depressive disorder, adjustment reaction, or dysthymic disorder (296.2, 296.22, 304, and 300.4, 

respectively). Anxiety cases were defined the by presence of phecode for anxiety, 300. Chronic 

pain cases were defined as the presence of a phecode for migraine, chronic pain, myalgia, 
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osteoarthritis, rheumatoid arthritis, or pain in joint (340, 338.2, 770, 740, 714, and 745, 

respectively).  

 

Effect of Antidepressants on WBC subtypes 

 WBC count is a measurement of five cellular subtypes, neutrophils, lymphocytes, 

monocytes, basophils, and eosinophils. The subtypes can be clinically measured using a WBC-

differential test. To determine if a particular WBC subtype was driving the association between 

antidepressants and WBC, we repeated the longitudinal analyses on each WBC subtype. In 

order to more accurately reflect a WBC-differential clinical measurement, we required all 

differential measurements to occur on the same date. We extracted the absolute count values 

for each subtype, created longitudinal cohorts for each cell type and antidepressant, and 

evaluated the effect of antidepressant use on each cell type as described for the total WBC 

count.  

   

Results 

Study Sample 

 Across the entire VUMC EHR system, 377,611 (16.9%) individuals had documentation of 

any antidepressant. The most common class was SSRIs (N=177,101), followed by Atypicals 

(N=76,937), SNRIs (N=61,234), TCAs (N=47,918), and MAOIs (N=1,127). Due to the small sample 

size, MAOIs were not analyzed in this study. The majority of individuals on an antidepressant 

were female (67.1%) and EHR-reported white (85.0%). Among individuals with an 

antidepressant documented, 16% had a diagnosis of either major depressive disorder, 
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depression, or adjustment reaction, 14% had a diagnosis of anxiety, 4.7% had a diagnosis of 

chronic pain, and 4.2% had a diagnosis of migraine. Among individuals with an antidepressant 

recorded in their record, 59.6% also had at least one WBC measurement. Descriptions of the 

longitudinal samples stratified by antidepressant class and time cohorts can be found in Tables 

20 & 21. 
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Table 20. Sample characteristics of antidepressant users in the VUMC EHR stratified by time 

cohort for out-patient WBC measurements.  

 
Class Time 

Cohort 
N N Female 

(%) 
N White 
(%) 

Length of 
record, years 
(IQR) 

Number of 
ICD codes 
(IQR) 

Age at first 
antidepressant, 
years (IQR) 

Length of 
antidepressant 
trial, years 
(IQR) 

SSRI All 177,101 120,266 
(67.9) 

151,716 
(85.7) 

8.49 (2.7 - 
13.39) 

179.56 (25 - 
196) 

47.73 (33.78 - 
61.63) 

2.89 (0.34 - 
4.18) 

1 year 4,390 2,843 
(64.8) 

3,680 
(83.8) 

7.75 (2.64 - 
11.66) 

165.7 (45.75 - 
209.25) 

46.39 (31.67 - 
59.73) 

2.18 (0.39 - 
2.86) 

6 months 2,763 1,732 
(62.7) 

2,302 
(83.3) 

7.17 (2.16 - 
10.72) 

178.59 (46 - 
221) 

47.49 (33.16 - 
60.89) 

1.98 (0.31 - 
2.57) 

1 month 521 310 (59.5) 436 (83.7) 6.46 (1.47 - 
10.43) 

229.7 (63 - 
278) 

49.32 (36.11 - 
62.77) 

1.68 (0.17 - 
2.23) 

SNRI All 61,234 45,434 
(74.2) 

53,677 
(87.7) 

8.91 (3.2 - 
13.82) 

214.26 (29 - 
240) 

51.14 (41.12 - 
61.53) 

2.47 (0.31 - 
3.51) 

1 year 1,483 1042 
(70.3) 

1,309 
(88.3) 

8.61 (3.5 - 
12.99) 

179.7 (61.25 - 
223.5) 

49.91 (39 - 
61.16) 

2.06 (0.37 - 
2.67) 

6 months 840 564 (67.1) 733 (87.3) 7.88 (3.06 - 
11.84) 

187.91 (60 - 
229.5) 

50.14 (39.73 - 
61.17) 

1.95 (0.33 - 
2.47) 

1 month 114 65 (57) 102 (89.5) 6.02 (1.43 - 
9.5) 

216.11 (68.25 
- 266.75) 

50.06 (39.7 - 
62.86) 

1.28 (0.13 - 
1.62) 

TCA All 47,918 32,869 
(68.6) 

39,953 
(83.4) 

9.41 (3.58 - 
14.48) 

241.43 (31 - 
274) 

48.2 (35.37 - 
62.3) 

2.31 (0.25 - 
3.05) 

1 year 1,252 852 (68.1) 1,028 
(82.1) 

8.43 (3.44 - 
12.47) 

176.5 (52 - 
217.25) 

47.62 (34.84 - 
60.32) 

1.84 (0.3 - 2.3) 

6 months 750 507 (67.6) 613 (81.7) 8.03 (2.95 - 
11.89) 

185.04 (54 - 
225) 

48.17 (36.97 - 
60.23) 

1.74 (0.26 - 
2.05) 

1 month 120 71 (59.2) 100 (83.3) 7.04 (1.72 - 
11.66) 

219.22 (58.25 
- 231.75) 

48.7 (35.3 - 
62.44) 

1.38 (0.14 - 
1.31) 

Atypical All 76,937 49,636 
(64.5) 

66,245 
(86.1) 

9.14 (3.39 - 
14.12) 

240.44 (35 - 
277) 

50.56 (38.58 - 
62.86) 

2.32 (0.27 - 
3.13) 

1 year 2,213 1,336 
(60.4) 

1,850 
(83.6) 

8.08 (3.21 - 
12.11) 

211.27 (63 - 
261.75) 

49.86 (36.37 - 
62.01) 

1.72 (0.29 - 
2.26) 

6 months 1,375 797 (58) 1,131 
(82.3) 

7.34 (2.57 - 
10.99) 

230.11 (65 - 
292) 

50.18 (36.49 - 
62.03) 

1.54 (0.25 - 
1.79) 

1 month 237 110 (46.4) 202 (85.2) 6.15 (1.64 - 
9.35) 

335.44 (99 - 
437) 

51.94 (39.65 - 
64.86) 

1.35 (0.12 - 
1.51) 
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Table 21. Description of indications for antidepressant users in VUMC EHR stratified by time 

cohort for out-patient WBC measurements. 

 
Class Time N 

Depression 
Cases (%) 

N 
Anxiety 
Cases 
(%) 

N Chronic 
Pain 
Cases (%) 

N 
Insomnia 
Cases 
(%) 

N PTSD 
Cases 
(%) 

N 
Tobacco 
Use 
Disorder 
Cases 
(%) 

N Any 
Indication 
(%) 

SSRI All 39,124 
(22.1) 

34,184 
(19.3) 

47,956 
(27.1) 

10,137 
(5.7) 

3,843 
(2.2) 

14,190 
(8) 

77,718 
(43.9) 

1 year 1,023 
(23.3) 

799 
(18.2) 

1,128 
(25.7) 

162 (3.7) 114 (2.6) 324 (7.4) 2,037 (46.4) 

6 
months 

605 (21.9) 433 
(15.7) 

670 (24.2) 83 (3) 69 (2.5) 214 (7.7) 1,181 (42.7) 

1 month 114 (21.9) 82 (15.7) 93 (17.9) 10 (1.9) 12 (2.3) 38 (7.3) 191 (36.7) 

SNRI All 15,525 
(25.4) 

11,980 
(19.6) 

23,270 
(38) 

4,960 
(8.1) 

1,604 
(2.6) 

5,855 
(9.6) 

3,1275 
(51.1) 

1 year 374 (25.2) 280 
(18.9) 

645 (43.5) 99 (6.7) 34 (2.3) 129 (8.7) 876 (59.1) 

6 
months 

212 (25.2) 147 
(17.5) 

343 (40.8) 49 (5.8) 18 (2.1) 74 (8.8) 476 (56.7) 

1 month 21 (18.4) 19 (16.7) 30 (26.3) 8 (7) 0 (0) 12 (10.5) 46 (40.4) 

TCA All 9,218 
(19.2) 

7,948 
(16.6) 

19,803 
(41.3) 

4,260 
(8.9) 

1026 
(2.1) 

4,434 
(9.3) 

24,422 (51) 

1 year 226 (18.1) 184 
(14.7) 

524 (41.9) 83 (6.6) 24 (1.9) 96 (7.7) 659 (52.6) 

6 
months 

132 (17.6) 113 
(15.1) 

291 (38.8) 44 (5.9) 16 (2.1) 59 (7.9) 373 (49.7) 

1 month 22 (18.3) 15 (12.5) 30 (25) 5 (4.2) 4 (3.3) 7 (5.8) 43 (35.8) 

Atypical All 21,419 
(27.8) 

16,780 
(21,.8) 

26,325 
(34.2) 

7,959 
(10.3) 

2472 
(3.2) 

9,801 
(12.7) 

40,318 
(52.4) 

1 year 629 (28.4) 474 
(21.4) 

738 (33.3) 171 (7.7) 64 (2.9) 271 
(12.2) 

1,212 (54.8) 

6 
months 

379 (27.6) 278 
(20.2) 

423 (30.8) 89 (6.5) 45 (3.3) 183 
(13.3) 

716 (52.1) 

1 month 57 (24.1) 43 (18.1) 67 (28.3) 12 (5.1) 10 (4.2) 40 (16.9) 108 (45.6) 
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Longitudinal Effects of Positive and Negative Control Medications on WBC 

 Biologic immunosuppressants and chemotherapy associated with decreases in WBC 

count in all longitudinal cohorts (Biologics: 1-month: p-value = 1.64 x 10-3, beta = -0.27, SE = 

0.09; 6-months: p-value = 4.01 x 10-22, beta = -0.18, SE = 0.02; 1-year: p-value = 2.71 x 10-37, 

beta = -0.19, SE = 0.01; Chemotherapy: 1-month: p-value = 3.60 x 10-5, beta = -0.18, SE = 0.04; 

6-months: p-value = 6.12 x 10-34, beta = -0.24, SE = 0.02; 1-year: p-value = 3.31 x 10-47, beta = -

0.22, SE = 0.02). Contraceptive use did not associate with WBC count in any longitudinal cohort 

(Figure 20, Table 22).  
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Figure 20. Longitudinal associations between WBC and A) biologic immunosuppressants, B) 

chemotherapy, and C) oral contraceptives. Asterisks (*) indicate associations passing multiple 

testing correction (<9.09 x 10-4). 
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Table 22. Longitudinal effects of biologic immunosuppressants, chemotherapy, and 

contraceptives on white blood cell count.  

 
Medication Time p-value Beta SE N 

Individuals 
N 

Observations 

Biologic 
Immunosuppressants 

1 month 1.65E-03 -0.273 0.086 77 285 

6 months 4.01E-22 -0.179 0.018 1,032 4,917 

1 year 2.71E-37 -0.186 0.014 1,269 8,449 

Chemotherapy 1 month 3.60E-05 -0.178 0.043 211 895 

6 months 6.12E-34 -0.243 0.020 957 5,427 

1 year 3.31E-47 -0.221 0.015 1,328 9,343 

Contraceptives 1 month 0.365 0.109 0.116 38 150 

6 months 0.609 0.020 0.039 311 1,382 

1 year 0.151 -0.036 0.025 713 3,365 
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Longitudinal Effects of Antidepressants on WBC  

 In the out-patient antidepressant exposed sample, only SSRI use and Atypical use 

associated with decreases in WBC levels in the 1-month cohorts (SSRI: p-value = 5.28 x 10-5, 

beta = -0.11, SE = 0.03; Atypical: p-value = 7.77 x 10-8, beta = -0.21, SE = 0.04). In the 6-month 

cohorts, all antidepressant classes associated with decreases in WBC count (SSRI: p-value = 4.43 

x 10-19, beta = -0.10, SE = 0.01; SNRI: p-value = 4.61 x 10-5, beta = -0.09, SE = 0.02; TCA: p-value = 

3.39 x 10-5, beta = -0.09, SE = 0.02; Atypical: p-value = 4.13 x 10-12, beta = -0.11, SE = 0.02). All 

antidepressants also associated with decreases in WBC count in the 1-year cohorts (SSRI: p-

value = 2.19 x 10-36, beta = -0.11, SE = 0.01; SNRI: p-value = 6.88 x 10-7, beta = -0.08, SE = 0.02; 

TCA: p-value = 7.75 x 10-6, beta = -0.08, SE = 0.02; Atypical: p-value = 1.12 x 10-17, beta = -0.10, 

SE = 0.01) (Figure 21A, Table 23).  

 After controlling for hypertension diagnosis in the longitudinal models the pattern of 

significant results remained largely unchanged with the exception of an association between 

SNRI use and WBC count in the 6-month cohort that fell just shy of the multiple testing 

threshold (Figure 21). In the 1-month cohorts, SSRI and Atypical use associated with decreased 

WBC count (SSRI: p-value: 1.99 x 10-4, beta = -0.11, SE = 0.03; Atypical: p-value: 1.92 x 10-7, beta 

= -0.20, SE = 0.04). SSRI, TCA, and Atypical use associated with decreased WBC count in the 6-

month cohorts (SSRI: p-value: 3.73 x 10-17, beta = -0.10, SE = 0.01; TCA: p-value: 5.29 x 10-6, beta 

= -0.10, SE = 0.02; Atypical: p-value: 1.12 x 10-11, beta = -0.11, SE = 0.02). All antidepressant 

classes associated with decreased WBC count in the 1-year cohort (SSRI: p-value: 3.00 x 10-32, 

beta = -0.11, SE = 0.01; SNRI: p-value: 4.99 x 10-6, beta = 0.07, SE = 0.02; TCA: p-value: 4.89 x 10-

6, beta = -0.08, SE = 0.02; Atypical: p-value: 1.34 x 10-17, beta = -0.10, SE = 0.01) (Figure 21B). 
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Figure 21. Longitudinal associations between antidepressant use and WBC values. A) 

Associations were controlled for fixed effects of sex, race, age,  and the random effect of age. B) 

Associations were additionally controlled for a time-varying covariate for hypertension 

diagnosis. Asterisks (*) indicate associations passing multiple testing correction (<9.09 x 10-4). 
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Table 23. Longitudinal effect of antidepressants on WBC count stratified by antidepressant 

class. 

 
Class Time 

Cohort 
p-value Beta SE N 

Observations 
N 

Individuals 

SSRI 1 month 5.28E-05 -0.113 0.028 2,080 521 

6 months 4.43E-19 -0.099 0.011 14,503 2,763 

1 year 2.19E-36 -0.109 0.009 26,040 4,390 

SNRI 1 month 0.052 -0.129 0.066 443 114 

6 months 4.61E-05 -0.088 0.022 4,027 840 

1 year 6.88E-07 -0.077 0.016 8,404 1,483 

TCA 1 month 0.683 -0.024 0.058 456 120 

6 months 3.39E-05 -0.092 0.022 3,669 750 

1 year 7.75E-06 -0.075 0.017 7,162 1,252 

Atypical 1 month 7.77E-08 -0.206 0.038 1,249 237 

6 months 4.13E-12 -0.109 0.016 8,333 1,375 

1 year 1.12E-17 -0.102 0.012 14,892 2,213 
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Longitudinal Effects of Antidepressants on Complete Blood Count Panel Labs 

 In the 1-month cohort SSRIs associated with increased RDW (p-value = 2.35 x 10-7, beta 

= 0.09, SE = 0.02). In the 6-month cohort, SSRIs associated with decreased MCHC (p-value = 

5.56 x 10-9, beta = -0.08, SE = 0.01), and increased RDW (p-value = 2.34 x 10-10, beta = 0.06, SE = 

0.01). In the 1-year cohort, SSRIs associated with decreased MCHC (p-value = 1.10-11, beta = -

0.07, SE = 0.01) and increased MCV (p-value = 2.91 x 10-6, beta = 0.03, SE = 0.01) (Figure 22A).  

 SNRI use associated with decreased MCHC in the 1-month, 6-months, and 1-year 

cohorts (1-month: p-value = 2.40 x 10-5, beta = -0.28, SE  = 0.06; 6-months: p-value = 4.63 x 10-

11, beta = -0.16, SE = 0.02; 1-year: p-value = 1.02 x 10-11, beta = 0.13, SE = 0.02). Additionally, 

SNRI use associated with increased RDW in the 6-month cohort (p-value = 5.88 x 10-6, beta = 

0.08, SE = 0.02) (Figure 22B). 

 TCA use associated with increased in RDW in the 6-month cohort (p-value = 5.73 x 10-5, 

beta = 0.07, SE = 0.02) and decreased MCV (p-value = 7.83 x 10-5, beta = -0.06, SE = 0.02). In the 

1-year cohort, TCA use associated with decreased MCV (p-value = 6.09 x 10-5, beta = -0.05, SE = 

0.01) (Figure 22C). 

 Atypical use associated with decreased MCHC in the 6-month cohort (p-value = 6.66 x 

10-4, beta = -0.07, SE = 0.02) and 1-year cohort (p-value = 1.99 x 10-4, beta = -0.06, SE = 0.01) 

(Figure 22D).   
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Figure 22. Longitudinal associations between A) SSRI, B) SNRI, C) TCA and A) Atypical use and 

complete blood count and creatinine lab values. Asterisks (*) indicate associations passing 

multiple testing correction (<9.09 x 10-4). 
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Effect of Antidepressants on WBC Count Stratified by Indication 

 In depression cases, SSRI and SNRI use associated with decreases in WBC count in the 1-

year cohorts (SSRI: p-value = 1.88 x 10-6, beta = -0.08, SE = 0.02; SNRI: p-value = 3.42 x 10-4, beta 

= -0.10, SE = 0.03) (Figure 23A, Table 24).  

 In anxiety cases, SNRI use associated with decreases in WBC count in the 1-year cohort 

(p-value = 6.10 x 10-4, beta = -0.11, SE = 0.03) and 6-month cohort (p-value = 2.94 x 10-4, beta = -

0.19, SE = 0.05). TCA use in the 1-month cohort associated with decreases in WBC count in 

anxiety cases (p-value = 4.09 x 10-4, beta = -0.56, SE = 0.15) (Figure 23B, Table 24).  

 Among chronic pain cases, SSRI use associated with decreases in WBC count in the 1-

year cohort (p-value = 8.42 x 10-5, beta = -0.07, SE = 0.02). TCA use associated with decreases in 

WBC count in the 1-month and 6-month cohorts of chronic pain cases (1-month: p-value = 2.08 

x 10-5, beta = -0.49, SE = 0.11; 6-months: p-value = 1.25 x 10-5, beta = -0.14, SE = 0.03). 

Additionally, Atypical use associated with decreases in WBC count in all time cohorts within 

chronic pain cases (1-month: p-value = 6.24 x 10-4, beta = -0.27, SE = 0.08; 6-months: p-value = 

6.30 x 10-11, beta = -0.19, SE = 0.03; 1-year: p-value = 3.64 x 10-12, beta = -0.14, SE = 0.02) (Figure 

23C, Table 24). 

 TCA use in the 1-month cohort showed significant associations with decreased WBC 

count among anxiety and chronic pain cases and a nominally significant association among 

depression cases (p-value = 0.04) that was not present in the overall sample. To determine if 

there was a specific effect of TCAs in the 1-month cohort among individuals with documented 

psychiatric indications, we re-ran the overall analysis excluding individuals with an indication. In 
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this sample, TCA use was nominally associated with increased WBC count (p-value = 0.04, beta 

= 0.14, SE = 0.07), however, this association did not survive multiple testing correction.  
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Figure 23. Longitudinal associations between antidepressant use and WBC values stratified by 

antidepressant indications A) depression, B) anxiety, and C) chronic pain. Asterisks (*) indicate 

associations passing multiple testing correction (<9.09 x 10-4). 
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Table 24. Longitudinal associations between antidepressants and WBC count stratified by 

indication.  

Indication Class Time Cohort p-value Beta SE N 
Observations 

N 
Individuals 

Depression SSRI 1 month 4.12E-03 -0.188 0.065 488 114 

6 months 1.60E-03 -0.073 0.023 3,531 605 

1 year 1.88E-06 -0.082 0.017 6,616 1,023 

SNRI 1 month 0.209 -0.192 0.151 87 21 

6 months 3.38E-03 -0.117 0.040 1,287 212 

1 year 3.42E-04 -0.102 0.028 2,675 374 

TCA 1 month 0.045 -0.295 0.146 100 22 

6 months 9.87E-04 -0.157 0.048 854 132 

1 year 0.149 -0.057 0.039 1,615 226 

Atypical 1 month 0.037 -0.150 0.071 289 57 

6 months 1.25E-03 -0.093 0.029 2,473 379 

1 year 0.036 -0.045 0.021 4,704 629 

Anxiety SSRI 1 month 0.042 -0.150 0.073 369 82 

6 months 0.095 -0.045 0.027 2,501 433 

1 year 2.55E-03 -0.059 0.020 5,023 799 

SNRI 1 month 0.252 -0.206 0.179 70 19 

6 months 2.94E-04 -0.185 0.051 834 147 

1 year 6.10E-04 -0.114 0.033 1,836 280 

TCA 1 month 4.09E-04 -0.558 0.148 77 15 

6 months 0.018 -0.126 0.053 708 113 

1 year 0.885 -0.006 0.043 1,266 184 

Atypical 1 month 0.154 -0.136 0.095 193 43 

6 months 0.057 -0.060 0.031 1,750 278 

1 year 0.173 -0.032 0.024 3,351 474 

Chronic Pain SSRI 1 month 0.138 -0.095 0.064 350 93 

6 months 0.013 -0.056 0.023 3,383 670 

1 year 8.42E-05 -0.066 0.017 6,804 1,128 

SNRI 1 month 0.043 -0.299 0.141 102 30 

6 months 0.071 -0.061 0.034 1,509 343 

1 year 0.035 -0.049 0.023 3,467 645 

TCA 1 month 2.08E-05 -0.486 0.107 111 30 

6 months 1.25E-05 -0.139 0.032 1,458 291 

1 year 2.52E-03 -0.074 0.024 3,084 524 

Atypical 1 month 6.24E-04 -0.272 0.078 299 67 

6 months 6.30E-11 -0.192 0.029 2,360 423 

1 year 3.64E-12 -0.143 0.021 4,692 738 
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Effect of Antidepressants on WBC subtypes 

 SSRI use associated with decreases in neutrophil count in the 1-year cohort (p-value = 

8.61 x 10-7, beta = -0.10, SE = 0.02), increased eosinophil count in the 1-year cohort (p-value = 

2.51 x 10-4, beta = 0.08, SE = 0.02), and decreased lymphocyte count in the 6-month cohort (p-

value = 7.78 x 10-4, beta = -0.09, SE = 0.03). No other associations passed multiple testing 

correction (Figure 24).   
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Figure 24. Longitudinal associations between A) SSRI, B) SNRI, C) TCA, and D) Atypical use and 

absolute counts of WBC subtype values. Asterisks (*) indicate associations passing multiple 

testing correction (<9.09 x 10-4).  
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Discussion 

In this study, we utilized EHR data to conduct a large-scale investigation of the short-

term and long-term effects of antidepressants on a clinical immune marker, WBC count. To 

validate our longitudinal modeling approach, we first assessed the effects of known anti-

inflammatory medications, biologic immunosuppressants and chemotherapy, on WBC count. 

Additionally, we examined the effect of contraceptive use on WBC count, which has no known 

immunomodulatory effects. As expected, biologic immunosuppressants and chemotherapy 

associated with decreases in WBC count over time and contraceptives did not associate with a 

change in WBC count over time. These results confirm that our longitudinal modeling approach 

can detect known anti-inflammatory effects and does not result in  associations with any tested 

medication. 

All antidepressant classes exhibited anti-inflammatory effects on WBC count, consistent 

with previous studies of antidepressants and other immune markers44. The effect sizes of 

biologic immunosuppressants and chemotherapy on WBC count were roughly double the effect 

sizes of antidepressants on WBC count, suggesting antidepressants are not strong anti-

inflammatories. Most previous studies on antidepressants and immune markers were limited to 

depression cases. However, because antidepressants are used to treat a variety of conditions, 

we included all individuals with evidence of antidepressants in our initial analyses. Our results 

indicate the anti-inflammatory effect of antidepressants extend to all users and is not specific 

to depression cases.  

We also conducted indication stratified analyses in depression cases, anxiety cases, and 

chronic pain cases separately. The pattern of associations in the indication stratified cohorts 
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were largely similar to the entire sample, further suggesting an anti-inflammatory effect of 

antidepressants independent of diagnostic status. However, TCA use associated with a decrease 

in WBC count in the 1-month cohorts of the indication stratified samples and was not 

associated in the entire sample. After excluding individuals with documented psychiatric 

indications, TCA use in the 1-month cohort was nominally associated with increased WBC 

count, but did not pass multiple testing correction. Future analysis with larger sample sizes are 

required to determine if there is an indication-specific acute effect of TCAs on WBC count.  

The associations between antidepressants and WBC count could be due to a specific 

effect on immune cells, or they could be a part of a larger array of effects of antidepressants on 

biomarkers. To distinguish these possibilities, we evaluated the effects of antidepressants on 

other biomarkers commonly measured alongside WBC count. Antidepressants showed a few 

associations with other labs, including increased RDW and decreased MCHC. Interestingly, RDW 

is closely correlated with other inflammatory markers, such as CRP115 and can discriminate 

between inflammatory and non-inflammatory joint diseases116. RDW is also reported to 

increase with depression symptoms117,118. However, rather than balancing increased RDW 

levels, our results indicate that some antidepressant classes (SSRIs, SNRIs, and TCAs) associate 

with increased RDW levels. Additionally, MCHC was previously reported to be decreased with 

increased inflammation (“anemia of inflammation”) and depression119. Even though little data 

is available for the association between antidepressants and MCHC, antidepressant use 

associates with decreased hemoglobin levels120, consistent with our findings that 

antidepressant use associates with decreased MCHC. Our results raise the hypothesis that, 
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antidepressants may counteract the effects of inflammation through WBC count but have less 

of an impact on other inflammatory markers like RDW and MCHC.  

WBC measurements are calculated from a sum of five cell subtypes. In the clinic, WBC 

subtypes can be measured using a WBC-differential. In order to determine if a particular 

subtype was driving the association between antidepressants and WBC count, we conducted 

longitudinal analyses between antidepressants and each WBC subtype. The only associations 

that emerged were between SSRIs and neutrophils in the 1-month and 1-year cohorts. 

However, WBC differentials are not measured as frequently as overall WBC count, limiting our 

power in the analyses.  

 Although EHRs provide a large-scale resource for investigating longitudinal effects, there 

are several notable limitations. First, medications were extracted from clinical records using a 

natural language processing system, MedEx121. Extracting medications from clinical notes rather 

than pharmacy records or patient-report introduces a degree of uncertainty on medication 

start and stop dates. Second, our cohort construction does not take into consideration 

medication adherence. However, both of these limitations would decrease our statistical power 

to see an association, making it possible the effect estimates are underestimated in our study. 

Third, antidepressants are often used as combinations between drug classes, which we did not 

take into consideration. Fourth, it is possible that the decrease in WBC count with 

antidepressant use is dose-dependent, however, we did not evaluate antidepressant dose in 

our study. Finally, lab tests used in this study were clinically derived and represent a range of 

health states. To account for this, we removed values greater than four standard deviations 

from the sample mean to remove implausible values and restricted to values measured in the 
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out-patient setting to remove values due to severe illness or hospitalization. We also conducted 

phenotypic filtering to remove patients with cancer or chemotherapy, which commonly co-

occurred with antidepressant use and frequent WBC measurements in our sample.   

Overall, this work contributes to the immunomodulatory knowledge of antidepressants 

and lays the foundation for understanding alternative therapeutic routes for antidepressants 

and biomarkers of antidepressant response. 
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  CHAPTER V 

 

CONCLUSIONS 

 

 Depression is a common psychiatric disorder that is consistently linked to an increased 

levels of circulating pro-inflammatory biomarkers. However, the biology underlying an activated 

immune system in depression remains unknown. Electronic health records linked to genetic 

information provide a powerful resource to investigate the genetic effects of complex disease 

on other traits. In this thesis, we develop a method to scan for associations across lab values, 

validate our findings using polygenic scores (PGS) of lipids and coronary artery disease, apply 

our method to depression PGS, and investigate the effects of antidepressant treatment on an 

associated immune marker. 

 Our method, lab-wide association scan (LabWAS), is a hypothesis-generating approach 

to find associations between a trait of interest and the full breadth of clinical lab values. In 

proof-of-principle analyses, lipid PGS strongly associated with their referent lipid and CAD PGS 

associated with known risk factors, including lipids and blood glucose. Interestingly, CAD PGS 

also associated with white blood cell count, an inflammatory marker not currently used to 

diagnose or monitor heart disease. This association remained after controlling for CAD 

diagnosis, indicating that CAD genetics could play a role in increasing inflammation. These 

results highlight the usefulness of analyzing polygenic scores which takes advantage of the 

entire patient population regardless of disease status. This approach offers a potential path 
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forward for the detection of novel biomarkers and for improved understanding of biomarker 

activity during the prodromal phase of disease.  

We also show lipid-altering medications can influence the detection of risk biomarkers 

at the genetic level. This finding has important and complex implications for the clinical use of 

PGS recently discussed in the literature122,123. For example, as preventative treatments for 

complex diseases are adopted, the risk factors targeted by those treatments are less likely to 

play a role in the development of disease in current and future treated populations. Thus, 

today’s PGS will no longer identify at-risk individuals in future generations who are routinely 

treated for risk factors which are only now being discovered. PGS, while incredibly valuable, 

provide only a snapshot of the human genetic profile of complex disease and thus are highly 

susceptible to these types of cohort effects in addition to other known sources of technical and 

experimental artifacts124,125. 

 Unlike CAD, many complex diseases do not yet have bona fide biomarkers, but do have 

well-powered GWAS that can be used to mine large biobanks and identify quantitative labs 

which may be correlated, even weakly, with genetic risk for disease. In Chapter 3, we 

conducted a LabWAS of depression PGS to identify lab values associated with increased genetic 

liability for depression. We identified an association between depression PGS and WBC count 

that survived controlling for various comorbid phenotypes and replicated in a meta-analysis 

across three other independent biobanks in the PsycheMERGE Network. Our results suggest the 

pro-inflammatory state previously reported in depression is at least partially due to genetic 

factors, however, the pathway remains unclear.  
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There are two main models that connect depression to a pro-inflammatory state, the 

neuroinflammation model and the stress response model. The neuroinflammation model 

hypothesizes that an activated immune system contributes to risk of developing 

depression126,127. The stress response model proposes the stress of depression symptoms leads 

to a pro-inflammatory state128,129. Importantly, these two models are not mutually exclusive 

and some have suggested they form a feedback loop130,131. In support of this hypothesis, our 

mediation results do not distinguish either the neuroinflammation model or the stress response 

model as the exclusive pathway between depression and WBC.  

While PGS are powerful tools for identifying associations with genetic liability, they are 

based on GWAS summary statistics that are typically unadjusted for phenotypic comorbidities.  

This approach is optimal in GWAS for many reasons, however, it introduces the possibility of 

“phenotypic hitchhiking” in which a comorbid trait is unintentionally selected during the 

ascertainment of the index trait. Thus, two heritable phenotypes that might share common 

environmental risk factors but no genetic risk factors can subsequently appear genetically 

correlated in PGS analysis, even in independent samples. We therefore emphasize that the 

genetic approach presented in this thesis is still fundamentally correlational.  

Antidepressant treatment has previously been associated with decreasing circulating 

immune markers, suggesting antidepressant therapy balances the pro-inflammatory state seen 

in depression. Our results indicate antidepressant therapy associates with decreases in WBC 

count up to a year after antidepressant initiation, which is a notable increase compared to the 

6-8 weeks previously described with other immune markers. The association between 

antidepressant use and decreased WBC persisted across all antidepressant users as well as 



 124 

when stratified to individuals with known indications, suggesting a common anti-inflammatory 

mechanism of antidepressants rather than a specific action among depression cases.  

Therapeutic response to antidepressants is thought to be due to an increase in 

neurotransmitter signaling in the brain. The decrease in pro-inflammatory markers with 

antidepressant treatment suggests anti-inflammatory action may offer an alternative 

therapeutic pathway of antidepressants, however, the previous studies on antidepressant 

response and inflammatory markers are mixed. Interestingly, our results show decreases in 

WBC count begin shortly after antidepressant initiation (within 1 month), indicating anti-

inflammatory action may precede mood changes from antidepressants which typically occur 4-

6 weeks after initiation. Although not examined here, EHRs provide extensive information on 

treatment response through clinical questionnaires such as the patient health questionnaire 

(PHQ). Future studies aimed at extracting the PHQ from EHRs would provide substantially larger 

sample sizes and longer time frames to assess the association between inflammatory markers 

and antidepressant response.   

  EHR-linked biobanks have several strengths for genetic research, including large sample 

sizes, long timeframes, and recruitment of participants across diagnostic status. However, there 

are notable limitations. First, lab values are not uniformly measured on all patients which can 

create confounding by indication with lab measurements. However, the lab of interest in this 

thesis, WBC count, is commonly measured on a wide variety of patients, decreasing the impact 

of indication bias. Additionally, medications were extracted from clinical records using a natural 

language processing system, MedEx121. Extracting medications from clinical notes rather than 

pharmacy records or patient-report introduces a degree of uncertainty on medication start and 
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stop dates. Additionally, our cohort construction does not take into consideration medication 

adherence. However, both of these limitations would decrease our statistical power to observe 

an association, resulting in underestimation of true effect sizes in our study. 

In summary, our results provide a basis for future investigation of genes contributing to 

the pro-inflammatory state in depression, identification of a pro-inflammatory subtype of 

depression, and clinical panels for to inform antidepressant response.  
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APPENDIX A 
 
 

QUALITYLAB PIPELINE METHOD 
   
 
Methods 
 

We extracted data on all lab tests collected in the routine clinical care of 1,521,125 

VUMC patients, amounting to 275,991,157 observations across 11,061 lab tests (Figure 1). Of 

these lab tests, 5,028 were reported in non-numeric values and 1,618 had only been 

administered to one patient, leaving 4,415 quantitative lab tests for further cleaning. Some lab 

tests had observations recorded in different units (e.g., Selenium reported in both mcg/L and 

ug/L), thus we restricted to lab tests for which at least 70% of the observations were measured 

in the same unit and required that each lab have at least 100 patients and at least 1,000 

numeric observations, for a total of 939 labs retained for further analysis.  

For each of these 939 labs, we applied lab-specific quality control filters (Figure 2). First, 

we filtered infinite and non-numeric values, as well as observations outside of 4 standard 

deviations from the overall sample mean, indicative of biologically implausible values due to 

technical or recording errors, monogenic disorders, or extreme environmental influence. We 

calculated the median lab value for each patient and extracted the patient’s age at median lab 

value. For patients in whom we had to calculate the median lab value (e.g., those with an even 

number of observations), we defined the age at median lab value as the mid-point of the 

patient’s ages at the two lab values used to calculate the median lab value.  

We applied QualityLab to a dataset constructed from pediatric and adult observations, 

in both sexes, and in patients of all races (Figure 2).  
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The QualityLab pipeline also provides user with the option to stratify data (Figure 1b), by 

age at observation, sex, and EHR-recorded race, for a total of 72 different data subsets. The 

QualityLab pipeline generates summary statistics and plots for each strata (e.g., mean, 

maximum, and minimum of the median lab value; Table 1, Figure 3), and returns two versions 

of the data for downstream analyses. The first is a table of median lab values and age at median 

lab value for each individual. The second is an inverse normal quantile transformation (INT) of 

the median lab value data, to account for skewness and non-normality90,132. Importantly, the 

choice of quality control thresholds is completely in the control of the user. The choices made 

here reflect the goals of this study which focus on the central tendencies of large populations. 

However, the outlier thresholds and normalization methods employed here would not be 

appropriate in a study of rare, potentially pathogenic, variation where large genetic effects and 

extreme phenotypes may be expected. 

 

Results 

A total of 94,474 BioVU patients with clean lab data, of whom 66,732 were also of 

European genetic ancestry were included in the PGS LabWAS analyses (Figure 1). These 66,732 

patients had data on 939 labs, containing 30,421,498 observations. The median number of 

unique lab tests per patient was 44, and the median number of lab observations per patient 

was 201. Slightly more than half of the BioVU patients in the sample were female (55.6%), and 

the average median age across the EHR was 52.0 years. In the African ancestry sample, 12,383 

patients had data on 925 labs, containing 5,367,062 observations. More than half the patients 

were female (61.6%) and the average median age was 38.5 years. The median number of 
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unique lab tests per patient was 41, and the median number of lab observations per patient 

was 150 (Table 2).  
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Figure 1. Selection of VUMC patients and datasets for different analyses. VUMC patients were 
selected in parallel for lab test cleaning and for genotyping. 
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Figure 2. Lab-specific quality control filters and subsetting were applied to the 939 lab tests in 
the 94,474 patients with clean lab data. Parallelograms denote input and output datasets. 
Options highlighted in green were selected for the proof-of-principle analyses of lipids. 
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Figure 3. Data visualizations are generated by default by the QualityLab pipeline. Pictured are 
the visualizations for HDL, measured in mg/dL, in 70,639 patients with clean HDL lab values 
identified by the QualityLab pipeline.  
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Table 1. Example from lipids of summary statistics calculated by QualityLab.  
 

Statistic HDL LDL TG 

N pre-filter 1,092,730 975,828 1,180,987 

N post-filter 1,092,724 975,823 1,180,971 

sample count all 309,856 288,545 321,942 

sample count adult 279,896 259,821 285,763 

sample count ped 32,835 31,385 39,117 

sample count male 145,649 134,813 152,621 

sample count female 164,195 153,725 169,310 

sample count adult male 131,073 120,902 134,636 

sample count adult female 148,811 138,912 151,116 

sample count ped male 15,797 15,033 19,251 

sample count ped female 17,038 16,352 19,866 

min median age 0.003 0.003 0.003 

max median age 90 89.99 90 

mean n obs per indiv 3.52 3.37 3.65 

sd n obs per indiv 5.02 4.45 5.55 

max n obs per indiv 496 340 494 

mean n multi obs per indiv 5.94 5.67 6.15 

sd n multi obs per indiv 6.13 5.32 6.85 

mean date range (years) 5.66 5.63 5.41 

sd date range (years) 4.49 4.37 4.48 

max date range (years) 17.48 17.48 17.48 

mean value range 15.04 43.57 107.41 

sd value range 11.5 33.61 110.47 

min value range 0 0 0 

max value range 108 247 806 

mean mad 5.71 16.18 38.27 

sd mad 4.65 13.22 40.93 

min mad 0 0 0 

max mad 74.87 154.19 524.1 

mean of medians 50.95 102.77 134.14 

median of medians 48.5 101 111 

sd of medians 16.42 32.83 87.18 

min of medians -8 -25 0 

max of medians 121 253 826 

mean of means 51.03 103.1 136.56 

median of mean 48.71 101 113 

sd of mean 16.38 32.43 87.98 

median quantile 1 21 35 34.5 

median quantile 5 29 53 48 

median quantile 95 82 159.5 300 

median quantile 99 99 190.668 471 
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Table 2. Characteristics of VUMC individuals used in validation analyses of QualityLab. 
 

Characteristic European Ancestry  African Ancestry  

Women, N(%) 36,940 (55.6%) 7,550 (61.1%) 
Median age in years across the EHR, mean (sd) 52 (22.3) 39 (21) 

<18 years of age at last visit, N (%) 7,395 (11.1%) 1,777 (14.4%) 

CAD cases, N(%) 10,015 (15.1%) 744 (6.0%) 
CAD controls, N(%) 49,702 (74.9%) 10,635 (8.6%) 

Length of EHR in years, median (min-max) 7.9 (0-28.3) 6.8 (0-28.3) 

Total number of unique laboratory tests 939 925 

Total number of laboratory observations 30,421,498 5,367,062 
Number of unique laboratory tests per 
patient, median (min-max) 

44 (1-250) 41 (1-240) 

Number of laboratory observations per 
patient, median (min-max) 

201 (1-14,163) 150 (1-15,471) 

 
 


