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Chapter 1: Introduction 

1.1 History of cancer 

 Cancer was first described in form as early as 3000 BC in Egypt on what is now 

known as the “Edwin Smith Papyrus”, a copy of a contemporary textbook of that time on 

trauma surgery.  It describes eight types of tumors and ulcers, ending with the 

foreboding mention that, “There is no treatment”.  A few millennia later, Cancer was first 

described as “Cancer” by the Greek physician Hippocrates, using the terms “carcinos” 

and “carcinoma” to describe the “finger-like” projections emanating from the tumors he 

was dissecting.  In Greek, both terms refer to a crab, and when they were subsequently 

translated into Latin by the roman physician Celsus they became “Cancer”, the Latin 

word for crab.  Similarly, another Greek physician studying these tumors, Galen, 

described them as “oncos” meaning “swelling” which is how we gleaned the modern 

term for cancer specialists, oncologists (“Understanding What Cancer Is: Ancient Times 

to Present,” n.d., p. Cancer.org). 

 In modern times we have greatly improved our understanding of this incredibly 

complex and unfortunately common disease.  In fact, over the last 75-100 years the 

mortality rate for some cancers has decreased by over 50% (“History of Cancer 

Screening and Early Detection: 20th Century to Present,” n.d., p. Cancer.org). This is 

primarily due to both the advent of chemotherapeutic treatments, as well as the 

popularization of a variety of early screening and detection methods.  However, not all 

cancers have enjoyed this renaissance of both knowledge and positive patient outlooks. 
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 To rectify the lack of progress being made in a subset of cancer types, in 2014 

the United States Congress and the National Institutes of Health successfully passed a 

bill naming a list of cancers “recalcitrant”, and subsequently provided substantial funding 

for research into both characterizing their methodology as well as improving their clinical 

outcomes.  Specifically, Small Cell Lung Cancer (SCLC) was named as part of this list, 

leading to a resurgence in research interest (“Lung Cancer - Small Cell: Statistics | 

Cancer.Net,” n.d., p. Cancer.net). 

1.2 Small cell lung cancer 

 SCLC was first described as a lung cancer in 1926, and then as its own distinct 

form in 1959 (Figure 1.2.1) (Gazdar, Bunn, & Minna, 2017; Semenova, Nagel, & Berns, 

2015).  Globally, it kills about 250,000 people per year and comprises roughly 15-20% 

of all lung cancer incidences, the rest being Non-Small Cell Lung Cancer (Gazdar et al., 

2017; Sabari, Lok, Laird, Poirier, & Rudin, 2017).  Only 7% of all patients diagnosed 

with SCLC successfully make it to the 5-year mark, perhaps due in part to its aggressive 

metastatic preferences as well as its unusually high propensity to settle in the brain 

(“Lung Cancer Survival Rates | 5-Year Survival Rates for Lung Cancer,” n.d.).  In fact, 

SCLC metastases are so aggressive that ~70% of patients will already have at least 

one metastatic site at the time of diagnosis, and brain metastases are so widespread 

that prophylactic cranial irradiation has become a standard of care (Gazdar et al., 2017; 

Ko, Winslow, & Sage, 2021).  Additionally, SCLC is known to exhibit a characteristic 

“tumor recurrence” in regards to its clinical treatment where there is an initial highly 

effective tumor response to combination chemotherapeutics (Cisplatin/Etoposide), 

followed by an aggressive rebounding of the tumor population that is no longer  
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Figure 1.2.1 Timeline of small cell lung cancer milestones. A timeline of major 
milestones in small cell lung cancer shows that despite being first described in 1926, 
and initial treatments beginning in 1969, from the 1980s through 2019 the standard 
treatment of cisplatin/etoposide remained largely unchanged, even in the face of genetic 
research advancements in the early 2000s.  2018 marked the first change in small cell 
lung cancer treatment in over two decades with the administration of immuno-
oncological therapy involving anti PD-L1 antibodies, in addition to cisplatin/etoposide, 
for extensive-stage small cell lung cancer patients (Horn et al., 2018). 
 

 

 

 

 

1926
First described as 
lung cancer

1959
SCLC becomes 
distinct cancer

2014
Labelled as 
recalcitrant 
by the NIH

1969
Cyclophosphamide 
treatments begin

1979
Combination 
therapy 
begins 1980s

Cisplatin and 
Etoposide begins

1995
PCI established 
As routine

2000s
SCLC Pathways 
discovery reveals new 
therapeutic targets

2018
I/O Therapy 
Introduced



 

 4 

responsive to treatment, culminating in very poor patient outcomes (Asai, Ohkuni, 

Kaneko, Yamaguchi, & Kubo, 2014).  Perhaps the most interesting statistic though is 

the fact that 97% of all SCLC patients are characterized as “heavy smokers”, 

suggesting there is a strong environmental and/or epigenetic component to this disease 

(Gazdar et al., 2017; Haddadin & Perry, 2011; Semenova et al., 2015). 

1.3 Genomic subtyping of SCLC  

One of the most promising trends in current SCLC research is efficient and 

specific characterization of cell lines and tumors by genomic analyses (McFadden et al., 

2014; Polley et al., 2016; Zheng et al., 2017).  This has been pursued by gene 

microarray, RNAseq, and genome sequencing, revealing distinct gene expression 

profiles between the two classical morphological subtypes, Neuroendocrine like (NE) 

and non-Neuroendocrine like (nNE/”Mesenchymal Like” ML).  Additionally, recent data 

from the Quaranta lab using a systems biological approach to cluster gene correlates in 

to phenotypes has identified two further phenotypes within the classical designations, 

Neuroendocrine variant 1 (NEv1), and Neuroendocrine variant 2 (NEv2) (Wooten et al., 

2019).  These two additional phenotypes allow for a much more exact classification of 

individual tumors and cell lines, which has yielded preliminary computational results 

suggesting that the phenotypic gene expression profile for each can be used as a 

predictor of drug response and effectiveness.  Moreover, assuming this phenotypic 

landscape is dynamic, I hypothesized that by transitioning from one phenotype’s gene 

expression profile to another, the drug sensitivity could be similarly transitioned (Figure 

1.3.1). 
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Figure 1.3.1 Diagram illustrating proposed SCLC phenotypic transition. 72 hour 
viability (activity area) drug-response measures of a selection of Aurora-Kinase 
inhibitors in SCLC cell lines grouped together by subtype.  Observed differential drug 
response among SCLC subtypes (Top) and Proposed subtype transitioning (Bottom).   
The goal of the project is to shift the transcription factor network profile of a resistant 
subtype (red) to that of a more sensitive subtype (green) in the hope that the drug 
response profile will similarly transition. 
 

 

 

Non-NE NE          NEv1          NEv2          
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1.4 Phenotypic transitions in SCLC 

Within SCLC, phenotypic transitions have been thoroughly investigated and are 

thought to be a major contributor to the disease’s aggressiveness (Krohn et al., 2014; 

Nieto, Huang, Jackson, & Thiery, 2016).  The ability of SCLC to transition from a 

“neuroendocrine like” progenitor cell, for circulation in bodily fluid, to a more adherent  

 “mesenchymal like” morphology, for colony establishment in tissue types outside the 

lung, is what makes it such a metastatic threat (Ca et al., n.d.; Nieto et al., 2016).  While 

the exact mechanism of this transition has yet to be determined, the prevailing findings 

are that it is both highly complex and nuanced, relying on transcription factors (TF) as 

“super-enhancers” or “master-regulators” for a variety of oncogenic and anti-apoptotic 

pathways.  However, it is the strength of the SCLC TF network that may also be its 

greatest weakness. 

1.5 Epigenetic modulation in SCLC using CRISPR 

Since its inception, CRISPR-Cas9 and its related technologies have changed the 

way modern genetic editing is done (Haurwitz et al., 2010).  One of the newest 

CRISPR-Cas9 tools is the dCas9 genomic targeting method.  Through the use of two 

amino acid mutations in the Cas9 protein, its endonuclease activity is abolished while 

still retaining the ability to bind gRNAs and subsequently traffic to specific genomic loci.  

By fusing this dCas9 protein to transcriptional activators (CRISPRa) or repressors 

(CRISPRi), highly efficient gene expression modulation can be accomplished 

(Konermann et al., 2015; Maeder et al., 2013).  Furthermore, by using this system to 

activate or repress TFs instead of specific genes, global gene expression profile 

changes can be made with minimal amounts of perturbation, very similar in concept to 
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biological cascades.  By redirecting SCLCs already highly influential TF network 

towards a profile more correlated with drug sensitive phenotypes, I planned to engineer 

drug sensitivity in previously insensitive cell lines. 

In order to effectively probe the genetics and epigenetics of the TF network in 

regards to drug response, I developed a cell line library composed of single knockout 

lines, as well as tunable CRISPRa/i incorporated ones, all broadly representing the four 

previously identified phenotypic clusters from RNAseq analysis (NE, NEv1, NEv2, nNE).  

This library then served as an indispensable tool for iterative modulation of the TF 

network, as subsequent experiments characterized the individual contributions of each 

TF to both the stability of the phenotype being probed.  Next, I developed two parallel 

approaches to quantitatively analyze the drug responses from this cell line library. 

1.6 Real-time luminescence in SCLC 

First, I used the components of a commercially available cellular viability assay to 

design a custom, continuous protocol for quantifying the metabolic activity of a cell in 

response to drug (Promega Real-Time Glo MT Cellular Viability Assay).  Then, I 

designed a custom mathematical analysis algorithm via Python to assess the raw 

continuous data using analogous principles to those outlined previously by colleagues in 

the Quaranta lab (Harris et al., 2016b).  These results were then benchmarked against 

direct cell counting measurements taken from within the exact same wells which lead to 

my second parallel approach, linking real-time luminescence measurements to cell 

counts by way of mathematically modelling the dynamics of the biochemical system. 
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1.7 Computational modelling of real-time luminescence in SCLC 

In order to model the relationship between real-time luminescence and cell count, 

PySB (Python for Systems Biology) was used as a framework to create the initial 

components of the system as a whole (Lopez, Muhlich, Bachman, & Sorger, 2013).  

From there, a mix of experimental results and computational parameter space 

optimization techniques were used to define values for each of the individual 

components and rates.  Once the initial parameters were defined, the model as a whole 

was used to compare simulated luminescence data based on cell counts to 

experimental luminescence data, as well as simulated cell counts based on raw 

luminescence data to experimental cell counts in order to assess congruency and 

iteratively refine to best fit the data. 

1.8 Outline of dissertation 

These completed tasks can be broadly grouped into the three specific aims of my 

dissertation project: 1) Engineer a SCLC cell line library to enable experimental testing 

of SCLC phenotype shift and its relationship to drug response 2) Develop an assay and 

analysis pipeline capable of continuous quantitation of drug response in SCLC across 

broad morphologies 3) Computationally model the relationship between real-time 

luminescence and cell count in order to integrate luminescence derived data into 

existing direct cell counting analyses.  The current progress and results of these aims 

are discussed in the following three chapters. 
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Chapter 2: Engineering a Small Cell Lung Cancer CRISPR Cell Line Library 

2.1 Introduction 

In 2020 the Nobel Prize in Chemistry was awarded jointly to Emmanuelle 

Charpentier and Jennifer Doudna for their discovery of CRISPR/Cas technology in 

bacteria.  Since then, this biological process that originally evolved for protection from, 

and excision of, viral DNA has become the most efficient and powerful genetic editing 

tool the world over.  CRISPR (CRISPR/Cas), which stands for “Clustered Regularly 

Interspaced Short Palindromic Repeats”, works by creating double-stranded breaks in 

DNA by way of a nuclease bound to a “guide” RNA molecule that is complementary to a 

specific genomic site (Jinek et al., 2012).  Once this ribonucleoprotein Cas9/gRNA 

complex binds to its complementary target region of the genomic DNA, the Cas9 

nuclease creates a double stranded DNA break, leading to DNA repair cascades within 

the cell that often result in base insertions or deletions, “indels”.  These indels in turn 

can cause a genetic frame-shift leading to abrogation of meaningful genetic sequences 

following the double-stranded break.  Depending on where in a gene these indels occur, 

this can result in truncated proteins or complete knockouts.  Because of this, CRISPR 

technologies have become an incredibly popular tool within molecular biology for 

specifically and efficiently creating cells that contain one or more gene knockouts.  

Within my first thesis aim of engineering a SCLC cell line library, I used CRISPR 

extensively (Jinek et al., 2012). 
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In initial brainstorming of what I wanted the SCLC cell line library to contain, I 

settled on four components to guide my constructions.  First, I wanted to pick two cell 

lines from each of the subtypes previously identified by David Wooten and Sarah 

Groves, relying on their RNAseq k-means clustering analysis to give guidance on 

“exemplar” candidates that were firmly sorted into their respective subtype with little 

ambiguity (Wooten et al., 2019).  Had I not taken this into consideration, cell lines which 

lie somewhat towards the edge of a cluster, or contain “mixed” phenotypic traits could 

have been included in the library, unnecessarily complicating and potentially 

obfuscating downstream analyses of response difference between the phenotypes.  The 

decision on which cell lines were labelled as exemplar was entirely based on the work 

of, and guidance from, Sarah Groves and could not have been accomplished without.  

Second, I wanted to make sure that the library accurately depicted the common 

morphologies found across SCLC lines (e.g. Adherent, Mixed, Suspension, Aggregate) 

which was made serendipitously facile by nature of the exemplar lines chosen; all 

culture morphologies were well represented.  Third, I wanted each line to be 

fluorescently nuclear labelled to give the option of direct counting as a quantification 

measure downstream.  And fourth, I wanted each individual line to have multiple 

variants of both the fluorescent label, as well as CRISPR machinery, in order to make 

increasing, decreasing, or completely abolishing individual genes possible. 

2.2 Results 

2.2.1 Cloning of CRISPR vectors 

Initial attempts at cloning the necessary vectors for these lines immediately 

proved to be troublesome.  Because of factors such as secondary and quaternary 
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structure of the genetic materials, size of the intended insertion sequences, and relative 

complexity of the vector as a whole, the vast majority of modern cloning techniques 

proved to be ineffective or overly inefficient for my cloning purposes.  Techniques tried 

include but are not limited to: Gibson Assembly, Restriction Enzyme Cloning, Overlap-

Extension PCR, and Ligation Independent Cloning.  However, what did eventually work 

was Golden Gate Assembly. 

Golden Gate Assembly is a relatively new cloning method that relies on both the 

outside recognition site cutting of Type IIS restriction enzymes, as well as the use of a 

modular insert library that contains these Type IIS sequences either outside (insert) or 

inside (destination) of the sequences of interest.  The general principle of this cloning 

method is illustrated in Figure 2.2.1.1.  

In order for Golden Gate Assembly to be effective, it is best used as part of a 

modular cloning library.  For this project, I was fortunate enough to start with a “base 

library” generously shared by the El-Samad lab at UCSF, along with their “Mammalian 

Tool Kit” (MTK) Protocol (Fonseca et al., 2019).  From there, I only had to domesticate 

about 30 additional parts in order to fully assemble the plasmids for the library.  This 

domestication and assembly process is illustrated across Figures 2.2.1.1-2.2.1.4.  In 

brief, genetic material is ordered as oligos and annealed into dsDNA.  From there, 

Gibson Assembly is used to create and “domesticate” individual parts of an MTK 

plasmid to incorporate a specific four base pair overhang.  Each part is grouped 

according to its role (e.g. linker sequence, promoter, coding sequence, label, etc.).  

Once domesticated, multiple parts are combined into a one-pot Golden Gate reaction in 

order to create a  



 

 12 

 

 

 

 

 

 
Figure 2.2.1.1 Illustration of golden gate assembly mechanism. Golden gate 
assembly works by using Type IIS restriction enzymes that cut DNA outside of their 
recognition sequence to create four base-pair overhangs.  Because the nuclease 
activity occurs outside of the recognition site, by engineering destination sequences that 
have cutting occur from the inside out, and insert sequences where cutting occurs from 
the outside in, ordered and scarless ligation products can be efficiently and easily 
assembled from a one-pot thermal cycling reaction. 
 

 

 

 

 

Golden Gate Assembly

From GEN, September 1, 2018 (Vol. 38, No. 15)
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Figure 2.2.1.2 MTK part structure assembly diagram. An assembled plasmid is 
illustrated here, composed of MTK parts 1-8.  Each individual MTK part type is 
specifically designed to include the correct four base-pair overhang so that the 
assembly is ordered.  Parts 1-5 complete the transcriptional unit of the plasmid, while 
parts 6-8 consist of components needed for bacterial maintenance (amplification). 
 

 

 

 

 

 

 

MTK Part Structures

From Lee et. Al.

Specific Complementary Ends for
Each part enables ordered assembly

Parts 6-8 are always the same
(bacterial maintenance components)
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Figure 2.2.1.3 Diagram of a complete transcriptional unit and part designation. A 
complete MTK transcriptional unit is composed of MTK parts 1-5.  Additionally, MTK 
parts 3 and 4 can be split into sub-parts 3a,3b,4a, and 4b.  Parts 1-5 are described in 
the illustration above but can generally be classified as: 1) 5’ Connector 2) 5’ UTR 3) 
Coding Sequence 4) 3’ UTR and 5) 3’ Connector. 
 

 

 

 

 

Complete Transcriptional Units

From Lee et. Al.
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Figure 2.2.1.4 Diagram of overall MTK workflow. The MTK workflow illustrated above 
generally involves the following steps and timelines: Day 0-1: Anneal DNA oligos and 
Gibson assemble into defined domestication vectors. Day 2: Golden gate assemble a 
complete TU from domesticated parts. Day 3: Golden gate assemble TU(s) into a 
destination vector for expression.  Day 4: Amplify, purify, store, and use the fully 
assembled final plasmid. 
 

 

 

 

 

MTK Workflow

From Lee et. Al.
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complete “Transcriptional Unit” (TU) plasmid.  Afterwards, TU plasmids can either be 

combined with additional TUs to create increasingly complex vectors, or directly 

inserted into a destination plasmid by way of a further Golden Gate Assembly reaction. 

The extensive modularity of the MTK system allowed me to quickly and easily 

create multiple versions of similar vectors by exchanging out individual parts in the 

assembly reaction.  For example, when looking to create a vector with either a blue, red, 

or green fluorescent label, all I had to do was swap out the appropriate part (4a) while  

keeping the other remaining seven the same.  These could then be simultaneously 

assembled within a singular PCR protocol.  In total I was able to assemble three 

fluorescent variants of three CRISPR technology types (a/i/ko) of three different 

destination vectors for a grand total of 27 unique plasmids.  An example TU for my 

CRISPRa plasmid is shown in Figure 2.2.1.5. 

2.2.2 Stable integration of CRISPR vectors 

Once the cloning of vectors was complete, I moved on to stable integration via lentiviral 

transduction.  This did not work well.  Likely because of the size of the inserts being 

used, efficiency of both viral packaging as well as transduction was consistently low.  As 

an alternative, and because I already had the vectors on hand from my modular cloning, 

I tried PiggyBac integration by dual transfection of a hyperactive PiggyBac recombinase 

alongside of a PiggyBac destination vector containing my gene of interest.  The general 

principles and procedures of this are outlined in Figures 2.2.2.1 and 2.2.2.2.  PiggyBac 

based integration proved to be significantly more efficient than viral transduction in 

every single case, and from then on was used as the standard.   
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Figure 2.2.1.5 Example transcriptional unit (CRISPRa plasmid). This diagram of an 
example TU from a CRISPRa vector is composed of the following parts: A strong 
constitutive mammalian promoter (Ef1a), a transcriptional activator domain fused dCas9 
(VP64-dCas9-VP64), a strong bipartite NLS (Nucleoplasmin NLS), a 2A peptide for 
multicistronic expression under a single promoter (P2A), a fluorescent reporter 
(mKate2), and a strong monomeric NLS (4x c-Myc).  Together, this encodes for a 
targetable transcriptional activation system that also allows for efficient nuclear labelling 
for downstream cell counting applications. 
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Figure 2.2.2.1 Diagram of PiggyBac integration system. The PiggyBac recombinase 
mediated integration system begins with dual transfection of an insert vector (flanked by 
PiggyBac transposable elements sequences) and either a plasmid containing a 
PiggyBac transposase expression system, or purified PiggyBac transposase.  Once 
transfected, the PiggyBac transposase excises or “cuts” the intended insertion 
sequence from the insert vector and inserts or “pastes” it between genomic TTAA sites. 
 
 
 
 
 
 
 
 
 
 
 
 

PiggyBac System
PiggyBac Transposon

(Insert Vector) PiggyBac Transposase

“Cut”

“Paste” Chromosomal DNA
At TTAA sites
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Figure 2.2.2.2 PiggyBac integration protocol 

PiggyBac Integration Protocol (6-well) 
By Clayton Wandishin 
 
Materials: 
 
pCMV_hyPBase plasmid (Amp Resistant) 
XXXXXX_PB plasmid (Kan Resistant) (from Golden Gate Assembly) 
Lipofectamine 3000 reagent 
P3000 reagent 
Opti-MEM medium (COLD) 
6-well culture plate 
 
Method: (all amounts are based on a single well) 

1. Seed cells at 70-90% confluency at transfection (90% is better) with 1-3 mL of 
appropriate medium (2 mL is usually fine) in a 6-well culture plate (roughly 1E6 
cells per well if adherent) 

2. Aliquot 2 x 125uL Opti-MEM medium (COLD) in to 1.5 mL Eppendorf tubes 
3. Add 6 uL Lipofectamine 3000 to one tube of 125 uL Opti-MEM and vortex 2-3 

seconds (Tube A) 
4. Add 2500 ng of TOTAL DNA in appropriate ratio (1:2.5 or 1:5 

[Transposase{pCMV…}:Transposon{XXXX_PB}]) to 125 ul of Opti-MEM (Tube 
B) 

a. 1:5 is 416 ng pCMV_hyPBase and 2,084 ng XXXX_PB 
b. 1:2.5 is 714 ng pCMV_hyPBase and 1,786 ng XXXX_PB 

5. Add 5uL P3000 reagent to Tube B (Mix Well and DO NOT VORTEX) 
6. Add Tube A to Tube B and gently swirl (DO NOT VORTEX and solution may 

start to occlude as lipid vesicles form [this is good!]) 
7. Incubate mixture for 30 minutes at room temperature 
8. Add lipid mixture to cells drop-wise and incubate at 37 degrees for 2-4 days 

before analysis 
 
Notes: 
 
All PB vectors are hygromycin resistant since it is built in to the PiggyBac integration 
cassette.  Most vectors are additionally Blasticidin or Puromycin resistant, as well as 
fluorescently marked by either mTagBFP, mAzamiGreen, or mKate2.  To fully select 
by an antibiotic requires a minimum of 10 days of selection pressure until a stably 
expressing population exists, which can be further assessed by imaging (making 
sure all cells glow).  Relative integration copy number can further be quantified 
downstream by qPCR (not always necessary). 
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However, although integration was now efficient and successful, promoter and nuclear 

localization signal issues began to become apparent. 

2.2.3 Promoter and nuclear localization signal issues in CRISPR vectors 

The promoter issue with the SCLC lines was observed when compared to the 

control line (HEK293FT) in regards to both brightness of the fluorescent signal, as well 

as the ability to undergo antibiotic selection.  In each case, SCLC lines were severely 

underperforming when a CMV promoter was used.  In order to solve this, alternative 

promoters such as Ef1a, Ef1a core, CAG, PGK, and hUbc were tested using a cytosolic 

mAzamiGreen (GFP) expression plasmid.  It was found that Ef1a and CAG performed 

the best, followed by PGK, Ef1a core, and hUbc.  However, all of them greatly 

outperformed CMV.  Based on these results, all of the cloning plasmids were adjusted 

to use an Ef1a promoter for CRISPR machinery, and a PGK promoter for antibiotic 

selection.  Once the promoter issues were solved, it became noticeable that certain 

fluorescent reporters were leaky in regards to nuclear localization.  To address this,  

each of the vectors was edited to use a Nucleoplasmin (bipartite) NLS for the Cas9 

machinery, and a custom 4x c-Myc NLS combined with an H2A fusion protein for the 

fluorescent nuclear labels.  This resolved all observed issues with leaky expression 

outside of the nucleus (Cardarelli, Bizzarri, Serresi, Albertazzi, & Beltram, 2009; Hodel 

et al., 2006; Hu, Zhao, Zhang, Li, & Zu, 2018; Lu et al., 2021; Ray, Tang, Jiang, & 

Rotello, 2015). 

2.2.4 Fluorescent assisted cell sorting (FACS) of SCLC 

Once all cloning, expression, selection, and localization issues were resolved, the next 

step was to enrich the stable expressing population by FACS.  This went poorly.  For 
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unknown reasons, SCLC lines have a strong propensity to die before, during, and after 

the flow-sorting process.  To increase viability from FACS, I designed a custom protocol 

wherein each cell line was pelleted, digested in TrypLE, re-pelleted, resuspended in 

culture media (-Phenol Red) containing 30% FBS, and strained through a filter before 

being placed in a flow cytometry tube.  This entire process was done over the course of 

10 minutes at room temperature, where immediately following preparation the sample 

was run for 60 minutes (collected in a tube NOT a plate) and promptly returned to 

warmed media supplemented with 30% FBS.  This custom protocol worked much better 

and led to consistent recovery of cells post sorting. 

2.2.5 Issues with SCLC culture conditions 

After addressing hurdles during cloning, integration, and sorting there was still 

one more challenge in the SCLC cell line library, culture conditions.  For reasons 

unknown to myself, SCLC cell lines are particularly sensitive to culture conditions.  This 

includes factors such as cell density, aggregate size, time in culture, FBS percentage, 

and whether or not the media was fully exchanged during splitting.  Each of these 

factors had at least a partial contribution to the overall health of the cells.  In general, 

guidelines for optimal culture conditions were sparse, and the ones that were available 

often seemed incorrect or a “bare minimum” of nutrient mix for cells to survive 

temporarily.  This was further exacerbated by the fact that, because many of the lines 

were originally established at different institutions, there was a variety of media 

indicated for culturing.  To address this, and before optimizing any other factors, I set 

about unifying all of the cellular media to RPMI-1640 w/v 10% FBS and 1% PEN-

STREP by way of stepwise replacement (e.g. 80/20, 60/40, 40/60, 20/80, 0/100) over 
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the course of five splits.  Following this, I spent months with individual lines slowly 

changing conditions to figure out what worked best.  What I learned for each line is 

briefly described below: 

2.2.6 Optimized culture conditions of SCLC lines 

2.2.6.1 CORL279 

Suspension line, prefers to be monodisperse, kept at 70% for 2-3 days then split, 

sensitive to pH changes (dies), if cultured long enough will start to adhere to the plate 

(likely EMT transition). 

2.2.6.2 DMS53 

Adherent line, very slow growing (weeks) if not cultured in greater than 70% confluency, 

when cultured at >70% confluent they can be split every 3 or 4 days, if cultured too low 

DMS53 forms small “islands” of 8-10 cells then enters into some sort of idling state 

where total confluency of the culture vessel will not be reached unless the cells are 

trypsinized and redistributed.  Culture conditions are improved if no more than 50% of 

the original culture media is removed during a split, similar to primary cell culture.  

Highly resistant to trypsinization and if split below 25% will die off. 

2.2.6.3 DMS114 

Adherent line, average rate of growth, prefers to not be split to <35% but will slowly 

recover if done so, >50% confluency for optimal growth, can be split very 2-3 days, do 

not split lower than 25%. 

2.2.6.4 DMS454 

Adherent line, very slow growing (weeks) if not cultured in greater than 70% confluency, 

when cultured at >70% confluent they can be split every 4 or 5 days, if cultured too low 
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DMS454 forms small “islands” of 10-15 cells then enters into some sort of idling state 

where total confluency of the culture vessel will not be reached unless the cells are 

trypsinized and redistributed.  Culture conditions are improved if no more than 50% of 

the original culture media is removed during a split, similar to primary cell culture.  

Highly resistant to trypsinization and if split below 30% will die off. 

2.2.6.5 NCIH69 

Suspension line with a commercially available adherent variant (H69v), average rate of 

growth, can be split every 2-3 days, prefers 60-80% confluency, prefers monodisperse 

culture and if clumps greater than 5-7 cells begin to form they should be gently broken 

up mechanically by pipetting.  When clumps do form they tend to have the appearance 

of “torn fragments of fabric”. 

2.2.6.6 NCIH82 

Suspension line that clumps into spheroids during culture, average rate of growth, can 

be split every 2-3 days, prefers 50-70% confluency, prefers “mildly clumped” culture of 

15-20 cells per clump, larger clumps should be gently broken up not to the point of 

monodispersion.  If cultured long enough, a portion of the cell population will adhere 

(likely EMT transition). 

2.2.6.7 NCIH146 

Suspension line that prefers monodisperse culture with occasional clumps of 3-5 cells, 

average rate of growth, can be split every 2-3 days, prefers >70% confluency, best to 

split by dilution of existing culture instead of pelleting and resuspension. 
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2.2.6.8 NCIH196 

Highly adherent line, grows in an islet shape and is extremely clear, difficult to tell 

confluency, prefers the 60-70% confluency range, average rate of growth, can be split 

every 3-4 days, sensitive to pH (dies).  Culture conditions are improved if no more than 

50% of the original culture media is removed during a split, similar to primary cell 

culture. 

2.2.6.9 NCIH446 

Mixed suspension and adherent line that will repopulate the dynamic mixture even if 

only the suspension or adherent portion is moved to subsequent culture.  Difficult to 

work with and judge confluency but prefers the 60-80% confluency range.  Average rate 

of growth, can be split every 3-4 days. 

2.2.6.10 NCIH524 

Suspension line that prefers spheroid/clumped culture of 20-25 cells, average rate of 

growth, can be split every 3-4 days, prefers >70% confluency, best to split by dilution of 

existing culture instead of pelleting and resuspension.  Clumps will need to be broken 

up if they become too large, there is a hypothesis within the field that these clumps 

contain a “necrotic core” and only the outer surface are still dividing.  Because of this, 

viability is traditionally low. 

2.2.6.11 NCIH526 

Suspension line that prefers spheroid/clumped culture of 25-30 cells, average rate of 

growth, can be split every 3-4 days, prefers >70% confluency, best to split by dilution of 

existing culture instead of pelleting and resuspension.  Clumps will need to be broken 

up if they become too large, there is a hypothesis within the field that these clumps 
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contain a “necrotic core” and only the outer surface are still dividing.  Because of this, 

viability is traditionally low. 

2.2.6.12 NCIH841 

Adherent line that prefers ~60% confluency, average rate of growth, can be split every 

2-3 days, very easy to work with, can be split as low as 10%. 

2.2.6.13 NCIH1048 

Adherent line that prefers ~60% confluency, average rate of growth, can be split every 

2-3 days, very easy to work with, can be split as low as 10%. 

2.2.6.14 NCIH1930 

Suspension line that prefers monodisperse culture, slow rate of growth, can be split 

every 5-6 days, prefers >80% confluency, best to split by dilution of existing culture 

instead of pelleting and resuspension, sensitive to pH changes. 

2.2.6.15 SW1271 

Adherent line, extremely “Mesenchymal Like”, commercially available in “L-15 media” 

which requires a 0% CO2 environment but can be transitioned to RPMI.  Very sensitive 

to confluency and highly prefers growth in the 65-90% confluency range.  Average 

growth rate, can be split every 2-3 days, should not be split <50%.  Culture conditions 

are improved if no more than 50% of the original culture media is removed during a 

split, similar to primary cell culture. 

2.3 Methods 

2.3.1 Cloning Methods 
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2.3.1.1 Gibson Assembly 

Gibson assembly was accomplished by use of the NEB Gibson Assembly Master 

Mix (NEB #E5510S).  In brief, oligos were designed using the NEBuilder online 

assembly tool to ensure correct overlap of homology arms.  These oligos were then 

used to PCR out an insert and destination vector from various sources, before being 

ligated and assembled together in a 1 hour long 60°C thermal cycling reaction as 

prescribed by the kit instructions.  For the specific purposes of this cell line library this 

was primarily utilized as a way to domesticate new genetic sequences into the MTK part 

system. 

2.3.1.2 Oligonucleotide annealing 

Individual oligos were often ordered as a cost-saving measure for acquiring novel 

genetic sequences for the MTK library.  In brief, a gene fragment was broken up into 60-

80bp oligonucleotide fragments and ordered piece-meal from Integrated DNA 

Technologies in both the forward and reverse directions, taking care to make sure their 

annealing profiles were staggered to create four base-pair sticky-end overhangs.  Pairs 

of oligonucleotides (equimolar mixture) were annealed by dissolving them in nuclease 

free water and heating them in an Eppendorf tube to a temperature of 95°C for 5 

minutes, before unplugging the machine and leaving it to slowly cool to room 

temperature over 2-3 hours.    

2.3.1.3 Golden gate assembly 

Golden gate assembly was accomplished primarily as part of the MTK workflow, 

by combining the appropriate parts in a 20 uL PCR tube and placing in a thermal cycler 

at (37°C for 5 min then 16°C for 5 min) cycled 34 times finishing with a final 5 min 
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ligation step at 60°C.  Appropriate parts for assembly of a TU include 3uL T4 ligase, 1uL 

BsaI-HFv2, 2uL T4 ligase buffer (10x), 1uL each of MTK parts plasmids 1-8, fill to 20uL 

with nuclease free water.  Appropriate parts for assembly of final vector include 3uL T4 

ligase, 3uL Esp3I, 2 uL T4 ligase buffer (10X), 1uL of TU plasmid, 1 uL of vector 

plasmid, 10uL nuclease free water. 

2.3.2 PiggyBac integration 

The process of PiggyBac integration is best described in figures 2.2.2.1 and 

2.2.2.2.  In brief, PiggyBac integration is accomplished through co-transfection of an 

insert plasmid with TTAA recombinase sites flanking the gene of interest to be 

integrated, alongside an expression plasmid coding for a hyperactive version of 

PiggyBac recombinase.  Once transfected, the recombinase is expressed and excises 

the gene of interest from the insert plasmid, and pastes it randomly into the genome at 

available TTAA site locations.  Downstream screening either by FACS or antibiotic 

selection is then used to select for cells where the integration was stable and 

successful. 

2.3.3 FACS preparation 

In preparation for flow sorting, each cell line was pelleted, digested in TrypLE, re-

pelleted, resuspended in culture media (-Phenol Red) containing 30% FBS, and 

strained through a filter before being placed in a flow cytometry tube.  This entire 

process was done over the course of 10 minutes at room temperature, where 

immediately following preparation the sample was run for 60 minutes (collected in a 

tube NOT a plate) and promptly returned to warmed media supplemented with 30% 

FBS.   
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2.3.4 Cell culture 

See section 2.2.6 for cell line specific culture details. 

2.4 Discussion 

 Once the growth mechanics of each individual lines was taken in to 

consideration, all of the necessary integrations were performed and stable expressing 

lines were sorted and stored.  In total, eleven parental lines were generated, each 

containing 1-3 fluorescent variants (mAzamiGreen, mRuby2, mKate2) of three separate 

CRISPR technologies (CRISPRa/i/koi).  This library and vectors is available upon 

request from the Quaranta lab. 

 Two main factors contributed to the difficulty of the library construction.  First, the 

plastic nature of SCLC in regards to its ability to evade the immune system as well as 

standard chemotherapies is likely the main driver in its resistance to genetic 

perturbation.  It is interesting to note as well, that while in the literature PiggyBac 

integration is usually 10-15% efficient, the efficiency in SCLC was often orders of 

magnitude higher.  This could perhaps be due to the molecular mechanism of the 

recombinase integration that is preferential to regions of the genome that are being the 

most highly transcribed.  One could imagine that the strong plasticity characteristics of 

SCLC require near constant transcription of certain genes in order to be maintained, 

and by integrating in to these regions, stable integration is grossly preferred.  The other 

main driver of difficulty was the complexity of the constructs themselves.  Each were 

large and highly complex, and if this library were to be recapitulated in another cell type, 

it could be highly beneficial to pursue one-time knockouts instead of stably generated 

lines, for ease of implementation and cloning. 
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Chapter 3: Using real-time luminescence to quantify drug-response in 

small cell lung cancer 

3.1 Introduction 

Assessing cellular drug response across multiple cell lines and types is an 

integral component of modern cancer research.  This is primarily done by taking a 

single cellular viability measurement before and after the addition of a drug across a 

range of concentrations in what is known as a “fixed-endpoint assay”.  These 

measurements are then used to produce a dose-response curve to assess efficacy and 

potency.  However, fixed-endpoint assays contain a multitude of inherent biases such 

as the time delay effect (slow-acting drug bias), seeding density variability (T0), 

exponential growth vs. percent viability (ratio changes based on how far out the 

endpoint is taken), cellular growth rate dependence, and the lack of ability to produce 

negative values (minimum efficacy of zero) that can result in inaccurate determinations 

of both efficacy and potency in a variety of scenarios, potentially mischaracterizing both 

effective and ineffective treatments (Harris et al., 2016a).  A more robust alternative is to 

assess viability via a continuous metric. Continuous viability assays have gained 

substantial interest in the scientific community as they overcome the biases associated 

with a fixed endpoint and provide a more detailed representation of cellular drug 

response over time. Continuous viability assays are conducted by taking intermediate 

measurements across a given time interval, with short measurement intervals and 

extended time courses giving the most detailed information. While fixed-endpoint data 

yields a single number that can easily be used in dose-response curve generation, 

continuous assays generate multiple values, and thus require derivation to distill 
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responses across a time period down to a single value.  Assays such as EZ-MTT 

address this most simply by taking the slope of the dataset for dose-response curve 

generation, while alternative approaches such as the GR metrics and DIP rate address 

it by expressing each individual data series as a ratio of the basal response (Fallahi-

Sichani, Honarnejad, Heiser, Gray, & Sorger, 2013; Hafner, Niepel, Chung, & Sorger, 

2016; Harris et al., 2016a). Continuous assays also have their own experimental 

hurdles that have prevented widespread adoption of the platform, such as requiring a 

live cell fluorescent label (direct cell counting), inefficient cell segmentation algorithms, 

and an inability to work well with suspension cell lines (limited by imaging ability).  

Recently, a new continuous luminescence-based viability assay has been 

developed that indirectly measures the cellular reductive capacity through metabolic 

conversion of a pro-substrate to substrate (Figure 3.1.1).  The novel low-toxicity and 

membrane permeable NanoLuc luciferase pro-substrate rapidly diffuses into cells and is 

converted to active substrate (Furimazine) primarily by NAD(P)H oxidoreductase, a 

ubiquitous and established enzyme in the cellular metabolic process (Altman, 1976; 

Bernas & Dobrucki, 2002; Berridge, Herst, & Tan, 2005; Berridge & Tan, 1993; Cory, 

Owen, Barltrop, & Cory, 1991; Duellman et al., 2015; England, Ehlerding, & Cai, 2016; 

Hall et al., 2012; Riss et al., 2004).  Once the substrate is generated, binding to the 

luciferase and subsequent enzymatic cleavage produces luminescence.  These 

luminescence values correlate well with cell counts in static measurements (Figure 

3.1.2) suggesting that this system could also be used for continuous luminescence 

measurements as an alternative to obtaining proliferation rates by direct cell counting.  

This is especially promising for suspension cell cultures, where direct cell counting is  
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Figure 3.1.1. Diagram of real-time luminescence dynamics. Pro-substrate added to 
the culture media is rapidly metabolized by live cells via intracellular reduction into 
active substrate.  The active substrate then reacts with NanoLuc luciferase to produce 
light.  Dead cells are not able to metabolize the pro-substrate and therefore do not 
contribute to the amount of active substrate produced and subsequent light generation 
within the assay. 
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Figure 3.1.2 Static luminescent signal is correlated well to cell count. A range of 
cell lines were serially diluted by a factor of 2 from either 10,000 cells (suspension lines) 
or 2,000 cells (adherent lines).  Assay reagents were then added to the wells and the 
plate was allowed to equilibrate for 1 hour.  The luminescence measurements were then 
obtained, with the above graph showing the regression values among the static 
measurements of luminescence compared to varying cell seeding densities. 
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often not a feasible option.  Here, we show that by modifying and optimizing the 

commercial assay protocol for single reagent-addition, the continuous luminescence 

data can be used as an alternative for direct cell counting measurements. Briefly, by 

focusing on the rate of luminescence change in drugged cell conditions and normalizing 

to the basal rate of change in an undrugged population, the continuous luminescence 

data can be reduced to a single value, reflecting the expansion and contraction of the 

cell population in response to drug.   

This streamlines the quantification of the response to the level of a fixed-endpoint 

assay, while remaining continuous in origin (Harris et al., 2016a; Hsieh et al., 2017; 

Isherwood et al., 2011; Riss et al., 2004).  Furthermore, we addressed challenges in the 

data interpretation by developing a freely available open-source analytical process 

(coding algorithm).  Overall, using continuous luminescence to measure cellular drug  

response allows quantification regardless of cells being in suspension or adherent 

culture. 

3.2 Results 

3.2.1 Optimizing the commercial assay for single reagent-addition continuous 

experiments 

In order to utilize the commercial NanoLuc luciferase assay for continuous experiments, 

we adjusted the supplied protocol.  After testing of a variety of conditions addressing 

NanoLuc enzyme concentration, MT substrate concentration, Solubilization temperature 

and duration, cell seeding density, and confluency of culture prior to experimentation 

(data not shown), the following tenets were obtained. First and foremost, the optimal 

reagent preparation was found to be 20 uL of both the NanoLuc enzyme (1000X supplied) 
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and the MT substrate (1000X supplied) dissolved in to 25mL of culture medium 

supplemented with 10% FBS.  We found the solubility of the MT substrate specifically, to 

be highly dependent on temperature. 

During optimization, it was observed that the assay was more sensitive to 

temperature fluctuations during reads than previously anticipated.  In order to address 

this, travel time between the plate incubator and reader was reduced to a minimum, and 

an additional incubation delay within a pre-warmed reader was added.  The resulting 

optimized protocol based on these findings is available at https://github.com/QuLab-

VU/RT-Glow/tree/master/RT-Glo%20Paper and Figure 3.2.1.1. 

3.2.2 Comparing luminescence to direct cell counts in proliferating cell populations 

We first confirmed the relationship between luminescence signal and cell number 

by comparing luminescence readings and direct cell counts in cultured wells with 

predefined numbers of cells (Figure 3.1.2, and section 3.4.3). To this end, we took 

luminescence reads across serially diluted cell concentrations after addition of assay 

reagents followed by one hour of equilibration. These static, single time-point 

measurements revealed a strong linear correlation between luminescence signal intensity 

and cell number in five adherent and three suspension cell lines (Figure 3.1.2).  These 

results suggested that it is possible to monitor cell proliferation via luminescence in 

continuous culture over time, as a substitute for the more laborious direct cell count 

sampling.  

To test the feasibility of continuous luminescence as an alternative for direct cell 

counting, we cultured multiple adherent cell lines (see 3.4 Methods) and took both 

luminescence and direct cell counts every 4 hours for 100 hours (Figure 3.2.2.1).  
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Figure 3.2.1.1 Optimized real-time glo protocol 

Reagents required: 
 RealTime-Glo MT Cell Viability Assay (Promega G9711) 

NOTE: If obtaining the commercially available assay, and not a custom 
formulation (20uL aliquots), 2 complete RealTime-Glo kits will be used 
during this protocol. 

 Cells in log-phase culture 
 Culture Medium 
 Sytox or CellTox Green (ThermoFisher S7020 or Promega G8741) *optional*  
 
Reagent Preparation: 
 
1. Prepare MT Viability Substrate and NanoLuc Luciferase from kit by moving from  

-80˚C or -20˚C to room temperature under cover (light sensitive) for at least 70 
minutes before moving to 37˚C to equilibrate for 10-30 min 

2. Simultaneuously, prepare culture medium by warming to 37˚C 
 a. IT IS EXTREMELY IMPORTANT THAT THE MT SUBSTRATE, 

NANOLUC LUCIFERASE, AND CULTURE MEDIUM ARE ALL AT 37˚C 
DURING SOLUBILIZATION TO AVOID CRYSTALLIZATION OF MT 
SUBSTRATE, ADDITIONALLY DURING THE 37˚C INCUBATION STEP, 
CAREFUL ATTENTION SHOULD BE PLACED NOT TO LET THE SOLVENT 
OF THE MT SUBSTRATE EVAPORATE DUE TO EXTENDED INCUBATION.  
IF THE MT SUBSTRATE APPEARS HIGHLY VISCOUS EXCESS SOLVENT 
HAS LIKELY EVAPORATED AND THE SOLUBILIrATION PROCESS WILL 
SUFFER GREATLY.  DEPENDING ON WHETHER OR NOT A WATER OR 
DRY BATH IS BEING USED FOR INCUBATION THE 10-30 MIN INCUBATION 
TIME MAY NEED TO BE SHORTENED IN ORDER TO PREVENT THIS. 

NOTE: The following volumes are to create a 1X RT-Glo medium.  Up to a 5X 
concentration can be prepared if desired and the prepared medium is stable for up to 
two weeks from preparation at 4˚C (including assay length) but will require re-warming 
and vortexing to completely re-dissolve components. 
3. Pipette 25mL culture medium in to a 50 mL Falcon tube 
 a. Optional: Supplement with 20uL 1000X Sytox Green or CellTox Green 
4. Pipette 950uL culture medium from the 50 mL falcon tube and slowly use it to 

resuspend the MT Substrate (10uL) [1000x] by gentle pipetting up and down 
within the MT substrate tube before adding back in to the 50 mL Falcon Tube 

5. Invert Falcon Tube 3-5 Times and repeat step 4 (20uL total of MT substrate will 
be added to 25mL of culture media) 

6. Vortex the 50mL Falcon tube for AT LEAST 45 seconds 
7. Place in Dry Bath at 37˚C until ready to use [4 hours max] or store at 4˚C for up 

to two weeks (including assay length)  
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Figure 3.2.1.1 optimized real-time glo protocol (continued) 
 
Protocol: 
 
1. Add cells at desired culture density appropriate for the assay length so that 

confluency is not reached to pre-warmed RT-Glo medium (supplemented with 
Sytox or CellTox green if desired) 

  a. Alternatively, if cells have already been plated, aspirate medium and add 1X 
RT-Glo medium [Or aspirate a fractional portion of medium and add 1.5-5X RT-
Glo medium] 

2. Plate cells 
3. Let plate incubate for 30 minutes at 37˚C before beginning to measure 

luminescence (and fluorescence if supplemented with Sytox or CellTox green) 
4. Measure plate at desired intervals across the length of the assay, making sure 

that the measurements are done in a plate reader with the ability to incubate at 
37˚C, this is Imperative for clean and accurate luminescence data 

a. Recommended: Add a minimum of 5 minutes delay within a pre-incubated 
plate reader so the plate has a chance to equilibrate before being read 
b. Assays requiring media change:  If an assay length is such that it requires 
changing of culture medium, it is recommended that only a fractional medium 
changed is performed to reduce noise across the duration of the experiment. 
c. APPLICATION NOTE:  For workflows utilizing "lid off" reading it is imperative 
that attention is paid to total evaporative loss for the duration of the assay.  The 
addition of RT-Glo reagents can greatly speed up the evaporative process, 
leading to excess media loss, especially during extended periods of incubation 
with the plate lid off as can be common in the case of multi-read format 
experiments that include imaging as an aspect.  e.g. If the plate workflow 
requires an imaging step, fluorescent read, and luminescence read, and the 
total time of all three is >5 min, replacing the lid for some or all of the reads can 
greatly decrease the total evaporative loss for the duration of the experiment. 

i. If medium must be exchanged do not exchange at an interval >72 
hours if at all possible 

5. Results may vary but if this is not possible, further optimization may need to be 
performed to ensure that MT substrate in culture is not depleted between 
medium changes (you might have to add more MT substrate initially) 

6. When the assay is complete, determine the basal luminescence rate of the 
undrugged controls by taking the slope of the luminescence from the assay onset 
until either the end of the assay, or the maximum luminescent signal; whichever 
is first. 

7. To determine the luminescent rates of drugged conditions, first constrain all 
drugged luminescent timepoints to the final timepoint used in determining the 
basal rate.  Next, if the final timepoint is the maximum luminescent measurement 
for that condition, determine the rate by taking the slope.  If the final timepoint is 
not the maximum, constrain the slope determination to the region between the 
maximum luminescence measurement and the endpoint of the basal 
luminescence rate.  This can be done algorithmically by sampling every possible  
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Figure 3.2.1.1 Optimized real-time glo protocol (continued) 
 

 slice size of length N >= 4 from the determined final timepoint, and picking the 
slice with the greatest R^2 value.  This ensures that the slope being used in the 
rate determination is indeed a stable drug-response for that condition. 

 a. If Sytox or CellTox green were added, additional information on the 
cytotoxicity over time can be also analyzed.  Namely, a cytostatic vs. cytotoxic 
drug-response can be inferred by a decreasing luminescence signal paired with 
a stable or increasing fluorescent signal respectively. 
NOTE: More nuanced cytotoxicity information can be obtained using the Sytox 
or CellTox as part of an imaging nuclear label akin to the process described in 
Harris et al. 
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Proliferation rates were then generated by taking the slope of both the raw 

luminescence and log transformed direct cell counting values and compared (Figure 

3.2.2.1).  The coefficient of determination (R2) between the two proliferation rates was 

found to be greater than 0.92 in each. 

Next, we took continuous luminescence measurements on suspension cell lines, 

where direct cell counting is not available, to assess if their luminescence remained linear 

for the duration of the experiment.  Since linearity of luminescence signal is a requirement 

for straightforward analysis of continuous luminescence measurements (taking the slope) 

it was necessary to confirm this prior to using it as a metric for cell proliferation (See 3.4.4 

Determining linear assay range).  All three of the suspension lines tested (CORL279, 

H526, H1930) satisfied this requirement (Figure 3.2.2.2). Taken together, these results 

from both adherent and suspension cell cultures indicate that continuous luminescent 

measurements are a viable alternative to direct cell counting to assess cell proliferation 

over time. 

3.2.3 Quantifying drug-response using continuous luminescence measurements 

To explore the usefulness of the assay for continuous measurements of cell 

proliferation in response to drugs, we treated eight cell lines with several known 

anticancer agents and cultured them with the assay reagents for five days while taking 

luminescence measurements.  Luminescence offers several advantages over 

conventional cell count assays (see Introduction and Discussion for more details), 

including speed and ease of execution and analysis for both adherent and suspension 

cell lines.  By combining luminescence with drug-response data, continuous           dose-

response curves can be rapidly and efficiently generated by quantifying the rate of change  
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Figure 3.2.2.1 Continuous luminescence is correlated well to cell counts over 
time. (A) Comparison of the log2 transformed cell counts over time in four adherent cell 
lines.  Cell counts were log2 transformed in order to linearize the data for subsequent 
comparisons. (B) Comparison of the continuous luminescent signal over time for the 
same four adherent lines from panel A. (C) Comparison of the correlation between 
continuous luminescent signal and log2 transformed cell count over time using a best-fit 
linear regression model.  All conditions show R2 correlation coefficients >0.92 . 
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Figure 3.2.2.2 Continuous luminescence of suspension cell lines remains linear 
over time. A best-fit linear regression model of continuous luminescence in all 
suspension cell lines tested shows that minimum luminescent linearity requirements (R2 

>0.90) are met.  Real-time luminescent signal maintains a sufficient linearity for the 
duration of the assay. 
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in luminescence (slope).  Moreover, because luminescence measurements are an 

indirect quantification of every single cell within a well, the data gleaned from them is 

anticancer agents and cultured them with the assay reagents for five days while taking 

luminescence measurements.  Luminescence offers several advantages over 

conventional cell count assays (see Introduction and Discussion for more details), 

including speed and ease of execution and analysis for both adherent and suspension 

cell lines.  By combining luminescence with drug-response data, continuous           

dose-response curves can be rapidly and efficiently generated by quantifying the rate of 

change in luminescence (slope).  Moreover, because luminescence measurements are 

an indirect quantification of every single cell within a well, the data gleaned from them is 

much more sensitive and less variable than taking direct cell imaging counts.  This is 

most exemplified when comparing luminescence measurements to direct cell counts 

produced from imaging only a fraction of a given well (standard practice). 

To generate rates from the continuous luminescence data, we took the slopes of 

the best fit linear regression lines of the raw luminescence data. An algorithm was 

developed to compare increasing slices of data points from the end of the assay (defined 

as peak luminescence in the control condition) by calculating an R2 value for each slice, 

and using the highest R2 value’s linear regression slope as the basal rate for which 

subsequent drug dilution luminescence rates were normalized to.  For drugged 

conditions, a similar process was used, but constrained to the region between the peak 

luminescence of the drugged condition, and the final timepoint of the assay determined 

by the peak luminescence of the control (Figure 3.2.3.1).  Once the slopes of the  
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Figure 3.2.3.1 Slicing of luminescence data enables quantification of a steady 
maximum luminescence rate for dose-response curve generation. (A) 
Luminescence rates for each individual drug concentration were calculated by fitting the 
raw luminescence data to a linear regression model.  For each concentration, the 
number of timepoints used in the regression (slice) was determined by calculating the 
R2 for every possible slicing vector containing more than four points, originating from the 
end of the assay.  The slice producing the maximum R2 value is denoted in orange as a 
triangle.  (B) To generate dose-response curves, each of the calculated luminescence 
rates was normalized to the luminescence rate in the absence of drug and plotted as a 
normalized rate in respect to the log of the drug concentration.  These data were then 
fitted to a four parameter log logistic function. 
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Table 3.2.3.1. Extracted parameters from best-fit dose-response models 

 

Cell Line Drug Data Type Hill Coef Max Resp EC50 residuals 

DMS114 barasertib Lum 8.754 -0.079 7.86E-09 9.812 

DMS114 AMG-900 Lum 0.544 -0.234 1.69E-09 9.254 

DMS114 TAK-901 Lum 4.181 -0.074 1.6E-08 4.990 

DMS114 YM-155 Lum 9.527 -0.034 6.91E-08 13.579 

DMS114 SCH-1473759 Lum 0.485 -0.131 5.74E-09 7.134 

DMS114 etoposide Lum 14.618 -0.049 4.83E-07 16.446 

DMS114 SNS-314 Lum 0.143 -0.564 2.88E-09 11.205 

DMS454 barasertib Lum 0.192 -5.000 733 17.492 

DMS454 AMG-900 Lum 2.816 -1.841 1.17 23.981 

DMS454 TAK-901 Lum 0.187 -4.834 6.25E-04 61.902 

DMS454 YM-155 Lum 14.273 -0.480 7.6E-08 19.917 

DMS454 SCH-1473759 Lum 0.490 -5.000 3.81E-05 30.889 

DMS454 etoposide Lum 10.439 -1.163 2.99E-06 305.999 

DMS454 SNS-314 Lum 0.535 -0.511 1.44E-08 70.104 

CORL279 barasertib Lum 0.482 0.143 5.13E-09 2.275 

CORL279 AMG-900 Lum 0.047 -0.414 5.44E-09 4.109 

CORL279 TAK-901 Lum 1.027 -0.114 4.42E-08 1.755 

CORL279 YM-155 Lum 0.572 -0.172 2.83E-09 8.129 

CORL279 SCH-1473759 Lum 0.313 -0.391 1.55E-09 4.560 

CORL279 etoposide Lum 0.088 -0.967 5.5E-09 19.581 

CORL279 SNS-314 Lum 0.000 -1.608 65.5 5.726 

H1930 barasertib Lum 0.396 0.134 2.57E-08 4.891 

H1930 AMG-900 Lum 0.950 0.500 7E-10 6.743 

H1930 TAK-901 Lum 1.350 0.080 9.01E-08 6.072 

H1930 YM-155 Lum 1.528 -0.253 2E-09 48.869 

H1930 SCH-1473759 Lum 0.318 -0.550 5.59E-07 3.666 

H1930 etoposide Lum 0.126 -1.089 3.37E-09 7.514 

H526 barasertib Lum 2.818 -1.859 1.15 93.562 

H526 AMG-900 Lum 2.821 -1.887 1.11 144.650 

H526 TAK-901 Lum 14.720 0.402 2.39E-06 23.102 

H526 YM-155 Lum 0.299 0.084 5.12E-08 9.928 

H526 SCH-1473759 Lum 13.750 0.101 2.47E-06 24.866 

H526 SNS-314 Lum 0.000 -0.103 2.18E-09 101.411 

H1048 barasertib Lum 3.431 -0.209 1.44E-08 10.332 

H1048 hygromycin_b Lum 0.577 0.635 1.1E-04 13.097 

H1048 trametinib Lum 1.054 0.238 1.37E-07 12.033 

H1048 SCH-1473759 Lum 1.333 -0.219 2.86E-09 17.029 

H1048 YM-155 Lum 0.995 -0.186 2.74E-09 4.925 

H1048 TAK-901 Lum 2.508 -0.209 1.45E-08 17.176 

H1048 SNS-314 Lum 2.507 -0.069 4.95E-09 14.051 

H841 barasertib Lum 0.520 -0.427 3.96E-09 44.403 
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H841 hygromycin_b Lum 2.817 -1.851 1.16 17.366 

H841 trametinib Lum 0.799 -0.281 2.1E-08 17.401 

H841 SCH-1473759 Lum 3.777 -0.363 4.17E-09 59.188 

H841 YM-155 Lum 0.999 -0.794 9.79E-09 86.686 

H841 TAK-901 Lum 2.342 -0.380 1.45E-08 13.628 

H841 SNS-314 Lum 2.465 -0.377 8.42E-09 14.323 

DMS53 barasertib Lum 2.817 -1.855 1.15 1395.696 

DMS53 hygromycin_b Lum 2.717 0.857 5.28E-08 117.582 

DMS53 trametinib Lum 1.032 -0.659 1.38E-08 85.699 

DMS53 SCH-1473759 Lum 0.201 -4.430 2.17E-03 47.346 

DMS53 YM-155 Lum 0.483 -0.696 2.89E-09 46.906 

DMS53 TAK-901 Lum 0.203 -5.000 4.42E-03 45.003 

DMS53 SNS-314 Lum 0.781 -5.000 1.54E-04 138.641 

DMS53 vemurafenib Lum 0.230 -5.000 5.49E-03 43.273 

H1048 SNS-314 Direct 0.339 -1.673 1.31E-08 3.812 

H1048 trametinib Direct 1.009 0.137 2.29E-08 9.877 

H1048 SCH-1473759 Direct 0.601 -1.588 3.32E-09 2.783 

H1048 YM-155 Direct 0.730 -1.703 3.01E-10 22.686 

H1048 TAK-901 Direct 1.692 -1.294 2.11E-08 1.317 

H1048 barasertib Direct 0.322 -2.742 6.29E-07 6.424 

H841 SNS-314 Direct 0.550 -0.351 1.12E-09 1.208 

H841 trametinib Direct 2.111 0.588 5.46E-07 0.124 

H841 SCH-1473759 Direct 1.312 -0.072 5.33E-09 3.166 

H841 YM-155 Direct 1.216 -0.818 2.61E-10 4.012 

H841 TAK-901 Direct 2.328 -0.633 6.33E-08 0.634 

H841 barasertib Direct 0.442 -5.000 1.55E-05 0.544 
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continuous luminescent signals were obtained, they were normalized and plotted against 

the drug concentration series to obtain dose-response curves (Table 3.2.3.1).  In 

comparing dose-response curves generated from luminescent or direct cell counting data; 

overall fitting, data variation, and EC50 values were broadly found to be in agreement 

(Figure 3.2.3.2 and Table 3.2.3.2).  Across both suspension and adherent cell lines, dose-

response curves from luminescence-based rates were generated successfully.  The code 

and associated data are freely accessible in this github repository, 

https://github.com/QuLab-VU/RT-Glow/tree/master/RT-Glo%20Paper and Appendix 1.1. 

3.2.4 Mathematical comparison of direct counted and luminescence based          

dose- response curves 

 Mathematical comparison of dose-response curve fits is a common task within the 

biological community, however the most correct way to do so is often discussed 

(Carpenter, 1986; Meddings, Scott, & Fick, 1989).  Because dose-response curves are 

traditionally generated using either a three or four parameter log-logistical model, the 

variation among each individual parameter as well as the errors for some parameters 

being normally distributed in linear space, while others are normally distributed in 

logarithmic space, often contributes to nearly qualitatively identical curves being found to 

be statistically significantly different.  Moreover, when comparing dose-response metrics 

garnered from entirely different methods, differences in scaling of the raw data can further 

exacerbate this issue.  Because of this, often the most useful comparison between curves 

is through their respective Emax, Emin, and EC/IC50 values. 

 When comparing dose-response curves derived from luminescence 

measurements and those derived from cell counting measurements, an Emax comparison 
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is nonsensical.  This is because all dose-response curves in our analysis are fitted using 

a three parameter log-logistical function that defines the Emax value as 1, so it is identical 

in every case.  For Emin comparison, which is the comparison of maximal drug effect as 

the raw data for drugged conditions is represented as a normalized percentage of the 

undrugged metric, it is not appropriate to analyze the differences statistically as the scales 

and magnitudes of the raw data are vastly different.  While initially it would seem as 

though both cell count and luminescence are measured in continuous integers, this is not 

the case.  The individual cell counts are derived from counting the total number of 

fluorescently labelled nuclei (red) within an image, and subtracting the number of dead 

cells labelled by a fluorescent nuclear label in another channel (green) from that total.  

This then gives the total number of live cells, which is plotted over time to obtain a rate 

for the dose-response curve.  The biological method of staining these dead cells uses a 

fluorescent dye which only permeates the nucleus when membrane integrity is 

compromised.  This membrane integrity can be thought of as a boolean trait where each 

cell is either alive with an intact membrane (+1 to cell count) or dead without membrane 

integrity (+0 to cell count).  Luminescence data differs from this greatly, as it measures 

overall production of light across the entire population within a well related to the 

metabolic activity of the cells.  In theory, this helps to capture the partial luminescent 

production of cells as they are actively dying, but have not yet lost membrane integrity to 

be considered dead by cell counting.  As an analogy, cell death measured by counting 

assumes mechanics like that of an on/off light switch, while cell death measured by 

luminescence allows for both boolean and continuous death mechanics, more akin to a 

dimmer switch.  Since the two methods are not of equal scaling, neither are their 
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variances, making direct statistical comparison ill-advised.  Moreover, because the 

magnitudes of each method are so different between single time steps, likelihood of a 

direct statistically significant difference is also increased.  Because of this, the decision 

was made to base the comparisons of the dose-response curves primarily on their EC50 

value, followed by whether or not the Emin values were in agreement on drug effect 

(Antiproliferative, Cytostatic, Cytotoxic, or Null). 

 For the statistical analysis of EC50 values, the decision was made to perform the 

most conservative paired sample analysis with the least assumptions, the Wilcoxon 

signed-rank test.  The results of this showed that among 12 paired EC50 samples (six 

drugs across two cell lines), a Wilcoxon value of 31 was obtained with a p-value of 

0.5693359 (Figure 3.2.3.2, Panel A).  For the EC50 sample size (N=12) a Wilcoxon value 

of 31 exceeds the two-tailed critical value threshold of 13 (𝛼 = .05) and we fail to reject 

the null hypothesis that the EC50 value pairs are not significantly different.  Therefore, 

whether the EC50 was obtained through direct counting measurements or luminescence 

did not make a significant difference in its value across the cases tested here.   

To further assess the congruency of dose-response curve generation between 

luminescence derived datasets and those from direct counting, the Emin values for each 

cell line and drug pairing were compared based on whether or not the Emin values were 

positive (anti-proliferative/cytostatic), negative (cytotoxic), or equal to 1 (no drug effect).  

This is an important observation to make if this type of assay were to be utilized as a first 

pass drug screening application in order to correctly discern cytotoxic lead compounds 

from those that are anti-proliferative/cytostatic, or have no effect at all.  From 14 paired 

samples, 13 pairs were found to be in agreement on drug effect mechanism while only  
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Figure 3.2.3.2 Comparison of EC50 values and dose-response curve fits between 
luminescent and direct cell counting measurements shows congruency among 
the two methods. (A) Scatter plot comparison of calculated logeEC50 values for both 
luminescence based and direct cell counting measurements.  Across all paired values 
tested, there was no significant difference between luminescence based logeEC50 
values and those obtained from direct cell counting (Wilcoxon Signed Rank Test, p-
value=0.569, W=31, N=12). (B) Comparisons of dose-response curves generated by 
either luminescence (orange) or direct cell counting (blue) for two cell lines across a 
panel of six drugs. 
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Table 3.2.3.2 Emin drug effect mechanism shows congruency between 

luminescence and direct counting dose-response curves 

 

 

 

 

 

 

 

 

An analysis of 14 pairs of Emin parameters across two cell lines and seven drugs shows 
congruency of drug effect mechanism in 13 out of 14 cases. 

 

 

 

 

Cell Line Drug Lum Emin Direct Emin
H841 Barasertib -0.335 -0.171
H841 SCH-1473759 -0.364 -0.069
H841 SNS-314 -0.373 -0.182
H841 TAK-901 -0.374 -0.634
H841 Trametinib -0.271 0.586
H841 Vemurafenib null null
H841 YM-155 -0.804 -0.727
H1048 Barasertib -0.21 -0.772
H1048 SCH-1473759 -0.209 -1.299
H1048 SNS-314 -0.079 -1.668
H1048 TAK-901 -0.191 -1.26
H1048 Trametinib 0.221 0.136
H1048 Vemurafenib null null
H1048 YM-155 -0.167 -1.47
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one pair (H841/trametinib) was found to lack congruency (Figure 3.2.3.2 Panel B, and 

Table 3.2.3.1). 

3.3 Discussion 

Here we have outlined the development and application of a non-lytic 

luminescence-based assay to extract rate-based metrics of drug response.  

Implementation of our analysis and workflow has the potential to greatly expedite and 

modernize large-scale screening and characterization of drug response in a variety of 

disease models and culture methods.  This work has traditionally been accomplished 

using fixed-endpoint viability metrics, which contain a significant degree of inherent 

biases, ultimately leading to a large potential for mischaracterization of drug effect in a 

variety of indices, both positive and negative.  We and others have shown the value in 

taking continuous measurements across the duration of an experiment at multiple 

timepoints (Fallahi-Sichani et al., 2013; Frick, Paudel, Tyson, & Quaranta, 2015; Hafner 

et al., 2016; Harris et al., 2016a; Riss et al., 2004; Uzunoglu et al., 2010).  However, 

despite the clear advantages in data quality, adoption of continuous viability assays has 

been relatively slow, likely due primarily to the difficulties in integrating a continuous 

assay into an existing setup designed for fixed-endpoint measurements.  Previously, we 

have described the DIP rate as an unbiased metric for drug proliferation when using 

direct cell counting.  Our analysis of continuous luminescence utilizes the same  

mathematical ideology, while going one step further, with a protocol that is easily 

adaptable to existing fixed-endpoint workflows.  What this means is, by changing only 

the reagent preparation method and data analysis pipeline, laboratories currently setup 

for drug screening using a fixed-endpoint protocol could rapidly pivot to a much more 



 

 51 

quantitatively robust method with little to no adjustment of established automation. Our 

hope is that this additional analytical rigor at the basic science level could lead to fewer 

cases of therapeutic candidates failing to translate to higher order biological models. 

Like any assay, NanoLuc luciferase based continuous luminescence does have 

its limitations, and suffers many of the same issues surrounding MTT/MTS based 

measurements such as potential overestimation of viability from active mitochondrion, 

and inability of use for drugs targeting redox pathways (Riss et al., 2004; Wang, 

Henning, & Heber, 2010).  These features are hardly unique to this assay, and have 

been generally accepted in the field for quite some time (Butcher, 2005; Cory et al., 

1991; Garnett et al., 2012; Mosmann, 1983; Riss et al., 2004). By structuring 

experiments to avoid these known factors, complex drug-response analysis can easily 

be simultaneously achieved across cell lines, independent of their morphology (Wang et 

al., 2010). 

For cell lines that are able to maintain a linear trend in luminescence for the 

duration of an experiment (without drug), continuous luminescence measurements offer 

a simple and scalable option for generating dose-response curves.  This is of particular 

interest for cell lines that are cultured in suspension, as direct counting of suspension 

line cultures is not currently feasible in most situations. Based on the results of our 

experimentation, we intend to further explore the utility of NanoLuc luciferase based 

luminescence by computationally modelling the dynamics of the system, potentially 

using luminescence rates to predict DIP rates, as well as testing its usefulness in 

quantifying drug-response in three dimensional cultures (organoids).  Lastly, our most 
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immediate goal for this work is to showcase its utility with the successful integration into 

a high-throughput in vitro drug screening platform. 

3.4 Methods 

3.4.1 Cell culture 

All cell lines were cultured for a minimum of two weeks prior to experimentation in 

T75 (Corning 430641U) flasks containing appropriate media (see below) at 37 °C and 5% 

CO2.  Additionally, prior to any experimentation, absence of mycoplasma was confirmed 

using a MycoAlert Mycoplasma Detection Kit (Lonza LT07-118).  

3.4.2 Appropriate media 

CORL-279, DMS53, DMS114, DMS454, H524, H526, H1048, H1930  

RPMI 1640 medium (Corning 10-040-CV) supplemented with 10% FBS (Gibco 

26140079) and 1% Pen-Strep (Gibco 15140122) 

WM1799 

DMEM/F12 medium (Gibco 11320033) supplemented with 10% FBS (Gibco 26140079), 

and 15mM HEPES (Gibco 15630080) 

HEK293FT 

DMEM medium containing 4.5 g/L glucose (Gibco 11965092) supplemented with 10% 

FBS (Gibco 26140079), and 1% Pen-Strep (Gibco 15140122)  

3.4.3 Static luminescence measurements 

Cells were cultured for two weeks, spun down, and resuspended at a density of 

2.86E4 cells/mL in appropriate media, NanoLuc Enzyme (Promega E499A), and MT pro-

substrate (Promega G971A). Each cell line was plated on to a 384 well GreinerOne 

Imaging plate (Greiner 781096) at a density of 2000 cells per well serially diluted across 
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10 wells (2000-4) with a total well volume of 70 uL in each. Additionally, each cell line was 

plated in triplicate. The plate was then incubated in a BioTek Synergy H1 at 37 °C and 

5% CO2 for 5 minutes before luminescence measurements were taken (lid on). 

3.4.4 Determining linear assay range 

Initial cell concentrations for the linearity range of the assay were determined by 

following the guidelines in the “Promega RealTime-Glo MT Cell Viability Assay Protocol 

Handbook” under subsection four, “Determining Assay Linearity for the Endpoint or 

Continuous-Read Format”.  Briefly, cells were serially diluted and plated with RT-Glo 

reagents, incubated for the proposed length of experiment (120 hours), while 

luminescence measurements were taken every four hours.  Upon completion, the 

luminescence trend lines were analyzed by linear regression to find a suitable cell 

concentration that would maintain a linear regression coefficient of >.90 for the duration 

of the assay (Data Not Shown). 

3.4.5 Continuous luminescence measurements 

Cells were cultured for two weeks, spun down, and resuspended at a density of 

4.39E3 cells/mL in appropriate media, 10 nM Sytox Green (Invitrogen S7020), NanoLuc 

Enzyme (Promega E499A), and MT pro-substrate (Promega G971A).  Each cell line was 

plated on to a 384 well GreinerOne imaging plate (Greiner 781096) at a density of 300 

cells per well across 10 wells with a total well volume of 70 uL in each.  Additionally, each 

cell line was plated in triplicate.  The plate was then incubated in a BioTek Synergy H1 at 

37° C and 5% CO2 for 5 minutes before initial luminescence and fluorescence 

measurements were taken (lid on).  The plate was then stored at 37° Celsius and 5% CO2 

in an incubator.  Every 12 hours, the plate was removed, left to equilibrate for 5 minutes 
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in the BioTek Synergy H1, and luminescence measurements were recorded.  This 

continued for a total of 100 hours, at which time the plates were discarded. 

3.4.6 Direct cell counting 

To facilitate automated image processing, cells were engineered to express the 

monomeric red fluorescent protein mRuby2, integrated by dual transfection of a 

modified PiggyBac recombinase expressing plasmid and a custom mRuby2 containing 

transposon plasmid (Li et al., 2013; Yusa, Zhou, Li, Bradley, & Craig, 2011).  Cells were 

seeded at 300 cells per well in 384 well GreinerOne imaging plates (Greiner 781096).  

DMSO (Sigma D8418) and phosphate-buffered saline (Corning 21-040-CV) were used 

as vehicle controls, as appropriate.  Images were acquired through a 10x or 20x 

objective with a Cellavista HighEnd Bioimager (SynenTec Bio Services, Meunster, 

Germany) every 12 h as 3 x 3 or 5 x 5 montages for 120 hours. Image processing to 

obtain counts of cell nuclei at each time point was performed as previously described 

(Frick et al., 2015). 
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Chapter 4: Computationally modelling the relationship between real-time 

luminescence and cell count 

4.1 Introduction 

 From the onset of using real-time luminescence to quantify drug-response in 

SCLC, the same critique was echoed time and time again by scientists firmly rooted in 

the exponential growth of cellular division, “If luminescence is related to cell count, and 

cells grow exponentially, why is the luminescence linear?”  Personally, having done 

extensive work with luminescence-based assays, linear luminescence trends were 

something I expected.  Additionally, cellular division in an exponential sense is more 

akin to a conceptual convenience (ala “particle in a box”) than an infallible principle, as 

evidenced in experimental observations over the years (Anderson, Bell, Petersen, & 

Tobey, 1969; Cermak et al., 2016; Sinclair & Ross, 1969).  I was eventually able to 

show that the strongest correlation between luminescence and cell count was between 

the linear luminescence and the log2 transformed counts, making it the most 

mathematically correct way to benchmark the relationship.  Additionally, while a 

relationship between luminescence and cell count does exist, I did not believe it to be 

necessary to define that relationship in an exact sense in order to quantify drug-

response (see Chapter 3).  However, the conversations surrounding this phenomenon 

persisted long enough that the general consensus of the research group was that it 

should be explored and characterized, leading to the initial construction of the first 

systems biological model of real-time luminescence and cell count. 
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4.2 Results and Discussion 

4.2.1 Initial modelling of real-time luminescence and cell count 

 The initial model for real-time luminescence and cell count was created using the 

PySB framework and coded in Python.  It took into consideration the initial number of 

cells, those cells’ rate of division, those cells’ rate of death, an initial concentration of 

pro-substrate, an initial concentration of NanoLuc luciferase, the rate at which pro-

substrate was converted to substrate by intracellular reduction, and the rate at which 

NanoLuc luciferase consumed substrate to generate luminescence.  This is represented 

as an equation and with simulated data in Figures 4.2.1-4.2.2.  Once a model was 

established, nC0 (minimum/initial luminescence) and m (slope of luminescence over 

time) were estimated from control wells, while Kdiv-Kdeath, Kdiv*-Kdeath*, and 

Koff/Kon were estimated using particle swarm optimization with a cost function based 

around the raw luminescence data.  These parameter sets were then used to compare 

predicted cell counts to direct cell counting data, and iteratively refined.  As a first pass, 

the models used were all able to produce results, however to varying degrees of 

success depending on both the cell line in question as well as the drug being used.  

This is illustrated across figures 4.2.3-4.2.14 when comparing between experimental 

and predicted values of luminescence and cell count.  This cell line and drug specific 

modelling success and or failure is likely due to the different population dynamics of 

each of the lines, as well as varying degrees of labelling efficiency for the cell lines from 

which direct counting measurements were gleaned.  A large variance in labelling 

efficiency leads to a large difference in image segmentation efficiency, subsequently 

resulting in significant variance in the cell count data over time.  This variance in the cell  



 

 57 

 

 

 

 
Figure 4.2.1 Equations for cell population dynamics. These equations are all 
derived from the mathematical model for cellular division and drug response as 
proposed by Harris et al..  In brief (from left to right and top to bottom) One cell 
becomes two cells at a rate of kdiv, A cell and drug becomes a drugged cell and drug at 
a rate of kon, a drugged cell becomes two drugged cells at a rate of kdiv*, a cell becomes 
no cell (death) at a rate of kdeath, a drugged cell becomes an undrugged cell at a rate of 
koff, and a drugged cell becomes no cell (death) at a rate of kdeath*.  This is all 
summarized as a single equation in linear space as a function of time in the final 
equation above. 

 

 

 

 

 

 

Harris et al., Nature Methods (2016)
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Figure 4.2.2 Simulated data comparing real-time luminescence and cell count 
dynamics suggests a correction factor can be applied to link the two. This diagram 
outlines predicted luminescence values if luminescence was directly correlated with cell 
count (orange) and compares that to what is observed experimentally (blue).  The 
relationship between l’ (idealized luminescence) and l (observed luminescence) can be 
modelled using a correction factor (∆) in respect to time and is described mathematically 
above. (nC = # of cells, m = rate of change of luminescence over time, t = time) 
 
 
 
 
 
 
 
 
 
   

 

 

 

 

*Assume ∆(t) is 
independent of drug 
concentration

Courtesy of Michael Quan
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Figure 4.2.3 Real-time luminescence of H841 over time (EXPERIMENTAL). 
Experimental luminescence data for eight drugs over the course of eight days were 
generated for the H841 cell line (see 4.2.4 for modelling comparison). 

 

 

Courtesy of L. Harris 
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Figure 4.2.4 Modelled luminescence of H841 over time (SIMULATED). Simulated 
luminescence data for eight drugs over the course of eight days were modelled for the 
H841 cell line in PySB (see 4.2.3 for experimental comparison). 

 
 

 

Courtesy of L. Harris 
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Figure 4.2.5 Direct cell counting of H841 over time (EXPERIMENTAL). Experimental 
cell count data for eight drugs over the course of eight days were generated for the 
H841 cell line (see 4.2.6 for modelling comparison). 

 

 

 

Courtesy of L. Harris 
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Figure 4.2.6 Predicted cell counts of H841 over time (SIMULATED). Simulated cell 
count data for eight drugs over the course of eight days were modelled for the H841 cell 
line in PySB (see 4.2.5 for experimental comparison). 

 
 

Courtesy of L. Harris 
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Figure 4.2.7 Real-time luminescence of H1048 over time (EXPERIMENTAL). 
Experimental luminescence data for eight drugs over the course five days were 
generated for the H1048 cell line (see 4.2.8 for modelling comparison). 

 

 

 

Courtesy of L. Harris 
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Figure 4.2.8 Modelled luminescence of H1048 over time (SIMULATED). Simulated 
luminescence data for eight drugs over the course of five days were modelled for the 
H1048 cell line in PySB (see 4.2.7 for experimental comparison). 

 

 

 

Courtesy of L. Harris 
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Figure 4.2.9 Direct cell counting of H1048 over time (EXPERIMENTAL). 
Experimental cell count data for eight drugs over the course of eight days were 
generated for the H1048 cell line (see 4.2.10 for modelling comparison). 

 

 

 

Courtesy of L. Harris 
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Figure 4.2.10 Predicted cell counts of H1048 over time (SIMULATED). Simulated 
cell count data for eight drugs over the course of eight days were modelled for the 
H1048 cell line in PySB (see 4.2.9 for experimental comparison). 

 

 

 

Courtesy of L. Harris 
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Figure 4.2.11 Real-time luminescence of DMS53 over time (EXPERIMENTAL). 
Experimental luminescence data for eight drugs over the course of two days were 
generated for the DMS53 cell line (see 4.2.12 for modelling comparison). 

 

 

Courtesy of L. Harris 
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Figure 4.2.12 Modelled luminescence of DMS53 over time (SIMULATED). 
Simulated luminescence data for eight drugs over the course of two days were 
modelled for the DMS53 cell line in PySB (see 4.2.11 for experimental comparison). 
 
 

Courtesy of L. Harris 
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Figure 4.2.13 Direct cell counting of DMS53 over time (EXPERIMENTAL). 
Experimental cell count data for eight drugs over the course of two days were generated 
for the DMS53 cell line (see 4.2.14 for modelling comparison). 

 

 

 

Courtesy of L. Harris 
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Figure 4.2.14 Predicted cell counts of DMS53 over time (SIMULATED). 
Simulated cell count data for eight drugs over the course of two days were modelled for 
the DMS53 cell line in PySB (see 4.2.13 for experimental comparison). 

 

 

 

Courtesy of L. Harris 
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Figure 4.2.15 Direct cell counting of DMS53 over time (>50 hours 
EXPERIMENTAL). Experimental cell count data for eight drugs over the course of eight 
days were generated for the DMS53 cell line.  Of key interest is the Hygromycin B 
response which continues to grow exponentially, but becomes decoupled from 
luminescence results at around 2 days (see Figure 4.2.16). 
 

 

Courtesy of L. Harris 
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Figure 4.2.16 Real-time luminescence of DMS53 over time (>50 hours 
EXPERIMENTAL). Experimental luminescence data for eight drugs over the course of 
eight days were generated for the DMS53 cell line.  Of key interest is the Hygromycin B 
response which becomes decoupled from cell counting results at around 2 days even 
though cell counting data suggests continued exponential growth (see Figure 4.2.15). 

 

 

Courtesy of L. Harris 
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count then effects the model’s overall fit as there is a wide range of parameters that can 

satisfy the observed data.  Further experimentation needs to be done to lower the 

variance in the experimental data so that the current models can be more rigorously 

evaluated.  Upon collection of higher quality data, other phenomenon can be explored 

such as the apparent uncoupling of luminescence and cell count for some lines (DMS53 

post 50 hours, Figures 4.2.15-4.2.16), as well as the tendency of the model to 

overestimate drug effects in cases where a minimum luminescence level is reached (all 

cells die) [FIGURE 22 – H1048+TAK-901].  The latter, is likely a mathematical artifact of 

multiple “zero” values after all cells have died, which are incorrectly included as part of 

the data involved in the cost function, biasing the parameter space towards the 

“maximum effect” condition.  This can be addressed rather simply by not including 

timepoint values once a “minimum luminescence threshold” has been met for a 

condition in the particle swarm optimization.  Overall, as a first approximation, the real-

time luminescence model performs well, but a significant amount of work is still needed 

to accurately characterize the relationship between luminescence and cell count. 

4.3 Methods 

 In order to effectively model the real-time luminescence system, an iterative 

process between experiments and model attenuation was necessary.  Our very first 

attempt at predicting cell counts from luminescence involved the most basic idea of a 

mathematical model, a standard curve.  We tested if this model would work by taking 

luminescence measurements at different seeding densities and corresponding specific 

luminescent values to cell numbers.  However, it was immediately apparent that while 

this works for the initial timepoint, using a simplified standard curve model for relating 
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continuous luminescence measurements to cell counts does not work at all, and the 

accuracy of the model quickly falls apart.  This failure taught us that more information 

from the real-time luminescence system was needed to accurately simulate the 

dynamics of the luminescence and cell count relationship.  Out of this, an initial PySB 

model comprised of Cells, NanoLuc luciferase, pro-substrate, and substrate was 

constructed to begin the modelling process.  While this worked initially in roughly 

approximating cell growth over time in an undrugged sense, it no longer produced 

sensicle data when drug effects were introduced.  This failure then brought us to the 

third iteration of the model which added a new component (cells under the effect of 

drugs) in addition to analogous rates for the drugged cells as the undrugged ones, as 

well as a rate of conversion for cells to go from their initial state to a drugged state.  This 

addition allowed for the luminescence rates to decrease for the first time and marked 

the closest we have come currently to effective modelling of the system.  Additionally, 

during this time, repeated experiments were conducted to get higher quality data after it 

was discovered during the first modelling attempt that the fitting statistics were 

extremely sensitive to the accuracy of the cell count, and whether or not that count 

came from the exact same well as the luminescence reads or an equivalent replicate.  

This back and forth iterative process of experimentation and model refinement is a 

hallmark of the computational modelling process.   
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Chapter 5: Conclusion and Further Research 

5.1 Discussion 

5.1.1 Initial intention of thesis 

If I had to summarize the entirety of my dissertation work in a single sentence it 

would be, “Science is hard, and nothing ever works.”  However, I feel that the 

expectation is that I should be a tad more verbose.  When I was initially brought on to 

this project, my assumption was that this would not be something that would take very 

long at all.  In fact, the vast majority of the work I’ve described up to this point was first 

intended only as part one of my thesis, followed by a large screen comparing drug 

response in SCLC between genetically modified and unmodified cell lines.  As it turns 

out, the genetic and epigenetic factors that make SCLC so resistant to treatment and 

interesting to study, also greatly increase the difficulty with which one can conduct and 

quantify experiments. 

5.1.2 Summary of SCLC CRISPR cell line difficulties and findings 

The creation of the SCLC cell line library was an incredibly difficult and iterative 

process straight from the start.  However, I gained an absolutely invaluable wealth of 

knowledge on how to independently problem solve molecular biological and cellular 

culture issues.  From the molecular biology perspective, it allowed me to gain 

experience in almost every modern cloning technique, as well as cultivate a deep 

understanding of the nuances of cell culture in difficult to culture lines.  The most useful 

findings of the SCLC cell line library are unfortunately what “doesn’t work”.  SCLC lines 

have a clear aversion to the use of certain promoters and other genetic elements, but 

our current understanding of them is not sufficient enough to do anything beyond 
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speculate as to why.  Specifically, for the promoter and NLS signal optimization, the fact 

that Ef1a and a c-Myc NLS performed the best is not surprising as this is in line with 

previously published results comparing promoters and NLS’ across cell lines (Ray et al., 

2015).  However, what was surprising was the absolute deft of commercially available 

plasmids containing promoters other than CMV, and NLS’ other than SV40.  This gives 

the general impression, that the majority of plasmids used in research are used and/or 

assembled purely for their convenience, and not the product of iterative rounds of 

optimization, as was the case in the SCLC cell line library construction.  Moving forward, 

I think the most beneficial area of molecular biological research in regards to the SCLC 

cell line library would be to expand the current modular cloning library that was created 

during this process to include a wider range of preassembled TUs to make the iterative 

testing of ideal genetic components more facile and streamlined in the future. 

5.1.3 Future directions in utilizing the SCLC CRISPR cell line library 

 Now that the SCLC CRISPR cell line library exists, the next step would be to 

utilize it as a tool in mechanistic studies.  As a starting point, the top 10 most associated 

transcription factors from each subtype described in Wooten et al. could be knocked out 

in an effort to destabilize the subtype they are associated with, or they could be 

activated via CRISPRa in an effort to destabilize a subtype they are not associated with.  

In practice, for the CRISPRko experiments this would involve the design and ordering of 

a minimum of 160 sgRNAs (4 sgRNAs per gene) followed by 40 multiplexed sgRNA 

electroporations per cell line being investigated (ideally 2 per subtype).  From there 

each individual knockout line would need to be verified by ICE analysis of sanger 

sequencing, to confirm the knockout of each individual genes.  Once the knockout lines 
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were established, scRNAseq and cyTOF could be done on each line to compare the 

wild-type transcriptomic and proteomic profiles to those of the knockouts.  The knockout 

data could then be re-clustered alongside the wild types to see if the perturbations led to 

any difference in subtype classification.  Furthermore, differential drug response studies 

could be done to look for increased or decreased sensitivity to certain drug classes as 

the result of these genetic perturbations.  For the CRISPRa experiments, a completely 

different set of 80 sgRNAs (2 per gene and 10 per subtype) would need to be designed 

targeting the promoter and early exon regions.  This sgRNA library would then need to 

be cloned into PiggyBac destination vectors under an RNA Pol II promoter system, and 

randomly integrated into each respective cell lines genome.  Once integrated, 

successful incorporation would need to be quantified by qPCR initially, followed by 

analogous characterization experiments to the CRISPRko lines such as scRNAseq, 

cyTOF, and differential drug response studies.  Overall, the results of these studies 

could help indicate novel TF network pathways for use in combination therapy design.  

Perhaps combining a specific TF inhibitor with a chemotherapeutic drug to sensitize the 

cells to its mechanism of action.  It is also of particular importance to note that the 

experiments described above already take into account the massive degree of 

uncertainty and influence among genes between the genomic, transcriptomic, and 

proteomic levels.  When probing any gene network it is important to conceptualize 

potential pitfalls and hurdles in designing experiments.  Particularly with TFs, where a 

single TF can interact with multiple genes, it is important to build an experiment from its 

most basic principles.  In this case, when trying to perturb the TF network from a genetic 

level, it is first important to know that both the gene exists in the cell line being edited 
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(done through genomic sequencing), and that gene also persists at downstream levels 

such as transcriptomically (checked by scRNAseq abundance), or proteomically 

(checked by Western blot, or cyTOF mass spectrometry).  Absence at downstream 

levels could indicate silencing at the genomic levels through methylation, or perhaps 

epigenetic inactivation by another transcription factor.  If neither of those are found to be 

the cause (perhaps tested by ChIP or Infinium methylation assay), the loss could be at 

the transcriptomic level as part of RNA degradation, or similarly at the proteomic level 

as well.  However, the experimental directions described above can largely avoid the 

likelihood of such troubleshooting events by rigorously characterizing the cellular 

abundance of the targeted transcription factors gleaned from clustering by an additional 

cyTOF screen to confirm their presence at the protein level, subsequently confirming 

their presence at the levels above as well (DNA and RNA) prior to CRISPR 

experimentation.  This same level of rigor should then also be applied after CRISPR 

editing (a/i/ko) of lines to quantify abundance and presence at the genomic (qPCR), 

transcriptomic (scRNAseq), and proteomic (cyTOF mass spectrometry) again.  

However, with the extreme complexity and interconnectedness of gene networks, it is 

also probable that single gene perturbations lead to no measurable difference in 

phenotypic behavior.  This is to say that as the network being perturbed becomes more 

complex, the likelihood of it being resistant to small changes increases exponentially.  

Contrastingly, perturbing a single gene within a relatively non-redundant and 

interdependent network could also quickly lead to lethality if the gene being perturbed’s 

function cannot be substituted or ignored.  Overall, this SCLC cell line library has 

enormous potential to interrogate a variety of gene networks related to SCLC disease 
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progression and drug response, but in order to do so, an extremely rigorous approach 

to experimental design is absolutely necessary.    

5.1.4 Summary of SCLC culture condition optimization processes 

In regards to the large amount of culture condition optimization that had to be 

done for each individual cell line, I would like to see a broader cultural shift within cell 

line based research.  When biologists request cell lines from commercial sources like 

Sigma, or academic sources like the ATCC, they tend to treat the published cell culture 

conditions and notes as immutable, rather than think in a broader sense what those 

culture conditions represent.  Each of those culture conditions is purely the result of 

what a researcher was able to get cells originally isolated from a whole organism to 

grow in.  By no means are these the absolute only conditions in which those cells can 

thrive, nor should those conditions be presumed optimal.  Culture conditions should be 

regarded as a starting point, and based on the specific needs of the research, be 

adjusted accordingly. 

5.1.5 Summary of quantification of drug-response by real-time luminescence 

Moving on to the real-time luminescence portion of my work, overall it was an 

amazing success.  Despite the initial obstacles of optimizing the reagent protocol to suit 

a single-addition continuous workflow, the data generated and subsequent analysis 

pipeline now allow for a highly efficient way of characterizing drug response in cell lines 

without the need for a label.  Moreover, because the protocol utilizes microplates and 

commonly available luminometer instrumentation, it is easily scalable and integrated in 

to larger screening endeavors than what were attempted in the proof of concept 

experiments. 
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5.1.6 Future directions in real-time luminescence 

There are three main directions that I see the real-time luminescence method 

improving on from here.  One, testing of the method on 3-Dimensional cultures and 

organoids to see if it remains suitable to drug-response quantitation.  Two, expanding 

the real-time analysis past 100 hours by exchanging media components after a given 

time, potentially opening the door for experiments that last days, weeks, or months.  

And three, testing the real-time luminescence method on drugs and compounds that do 

not exhibit a single-phase linear response.  For example, Triton-X 100 which, due to its 

mechanism of action (membrane destabilization), would be predicted to show an 

exponentially increasing drug-response, or long-term treatment with cisplatin/etoposide 

which would likely be a bi-phasic response wherein there is an initial single-phase linear 

response followed by subsequent resistance and loss of response altogether.  In each 

case, it would be very interesting to adjust the algorithmic method wherein the 

continuous response is distilled down into a single value.  One can imagine that for an 

exponentially increasing drug effect a derivative analysis could be used, and for a 

biphasic response, perhaps the data could be fit to an nth term polynomial function.  

Regardless, the initial experiments and results from this work lay the foundation for a 

variety of extended applications in the future, without the immediate need for 

implementation protocol adjustment. 

5.1.7 Summary of modelling the relationship between real-time luminescence and 

cell count 

For the dynamic modelling of the relationship between real-time luminescence 

and cell count, as it currently stands the model works roughly as intended.  From raw 
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luminescence values, simulated cell counts can be generated and compared to actual 

direct counting.  These current results are mixed in results of prediction success, but it 

represents a strong start to a much longer endeavor than the scope of my thesis.  In 

general, the most promising data is for drugs that do not reach the “minimum 

luminescence threshold” during the experiment, as the fitting data is not flooded with 

zeroes.  Additionally, because of the clear differences in cell imaging efficiency among 

the lines tested, it is difficult to comment on whether the differences between 

experimental and simulated results are due to poor parameter set optimization, or low-

quality data being fed in to the model.  One key observation is that the relationship 

between luminescence and cell count is clearly cell line dependent as the optimal 

parameter sets for each individual line were markedly different.  This was the expected 

result however as each line exhibits completely different cell growth mechanics (as 

evidenced by doubling time and morphology of culture) as well as different reductive 

capacities for converting pro-substrate to substrate.  Overall, the cell line with the most 

accurate modelling behavior compared to the experimental data was clearly DMS53.  

However, this can only be said for the first 50 hours used in the analysis as constrained 

by the luminescence rate algorithm.  Most peculiarly, after the 50 hour mark, DMS53 

seems to decouple the relationship between luminescence and cell count, even in 

cases where there was no drug effect.  This is most explicitly evidenced in the 

Hygromycin B condition where the cells continue to grow exponentially by cell counting, 

but luminescence rapidly begins to decrease.  This decoupling and luminescence 

decrease could be due to a variety of factors with the most likely two being either a 

“metabolic shift” in the cell population leading to a decrease in reductive capacity after a 
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50 hour latency period, or a total consumption of the available pro-substrate reagents 

(i.e. lack of available substrate is causing the decrease).  Prior to testing the metabolic 

shift theory, the consumption theory would need to be tested to see if either adding a 

portion or multiple of pro-substrate at the beginning of the assay shifted the decoupling 

time earlier or later respectively.  If no shift is seen in the decoupling observation, further 

interrogation of the metabolic pathways of the cells before and after the decoupling 

would need to be done to hone in on a proposed molecular mechanism. 

 

5.1.8 Future directions of modelling the relationship between real-time 

luminescence and cell count 

In order to further optimize the parameter values and applicability of the model, 

multiple experiments will need to be repeated utilizing higher quality imaging that gives 

a more accurate and less varied estimate of the cellular growth over time.  Furthermore, 

as the analysis pipeline of the real-time luminescence is also extended into 3-

Dimensional culture and multi-phase drug response, the computational model can 

similarly be expanded.  Prior to any adjustment on the computational side, higher quality 

experimental data is an absolute necessity in order to accurately tune the cost function.  

However, as evidenced by the entirety of Chapter 3, linking cell count and luminescence 

is not a requirement for using continuous luminescence to gather drug response data.  

The utility of linking luminescence and cell count lies solely within interrogating the 

cellular relationship between cancer metabolism and cell growth.  Lastly, the decoupling 

of luminescence and cell count could be re-confirmed through experiments containing 

varied levels of pro-substrate as mentioned in section 5.1.8, as well as in conjunction 
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with standard continuous metabolic assays such as Seahorse XF.  If it is found that this 

metabolic shift is consistently occurring, it would pave the way for a multitude of 

experiments exploring the cancer utility of this mechanism, especially since it was only 

initially observed in cell lines that were part of the generally drug-resistant NEv2 

subtype.  

5.1.9 Closing 

In closing, the work accomplished over the duration of my graduate studies has 

morphed and changed as the years have gone by.  My initial expectations and goals at 

the outset were lofty, and quickly tempered by the realities of modern biomedical 

research.  However, what I was able to accomplish in regards to constructing a labelled 

and genetically tunable SCLC cell line library, development of a label-free continuous 

method of drug-response analysis, and establishment of an initial computational model 

linking real-time luminescence to cell count, have laid a strong groundwork for future 

researchers to continue to improve upon and apply to a variety of biological questions. 
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Appendix 1.1 Python code for luminescence rate algorithm 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Sat Jul 31 14:06:51 2021 
 
@author: claytonwandishin 
""" 
import os 
import pandas as pd 
from itertools import repeat 
import datetime 
import math 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn import preprocessing 
from scipy import stats 
import scipy.optimize as opt 
 
#this script is for determing the slope of the luminescence or direct count 
data when accounting for minimum luminescence being reached, since if you 
don't it slopes up after the first total potency concentration 
  
def ll4(x,b,c,d,e): 
    '''This function is basically a copy of the LL.4 function from the R drc 
package with 
     - b: hill slope 
     - c: min response 
     - d: max response 
     - e: EC50''' 
    return(c+(d-c)/(1+np.exp(b*(np.log(x)-np.log(e))))) 
def ll3u(x,b,c,e): 
    '''This function is basically a copy of the LL.3u function from the R drc 
package with 
     - b: hill slope 
     - c: min response 
     - e: EC50''' 
    #return(c+((1-c)/(1+(np.log(x/e)**b)))) 
    return(c+((1-c)/(1+np.exp(b*(np.log(x)-np.log(e)))))) 
def pDose(x): 
    '''This is just a helper function, to compute easily log transformed 
concentrations used in drug discovery''' 
    return(np.log10(x)) 
 
def IC50(EC50,hill,maxv,minv): 
    return(np.exp(np.log(EC50)+(1/hill)*np.log(maxv/(maxv-(2*minv))))) 
debugdf = pd.read_csv('/Users/claytonwandishin/December 14 RT glow 
run/20201216_Lum_CellCounts_TOTAL.csv') 
data = pd.read_csv('/Users/claytonwandishin/December 14 RT glow 
run/050819_RTGlowDF.csv') 
#data =data.rename(columns={'cell.line':'Cell_Line','well':'Well', 
'drug1':'Drug','drug1.conc':'Drug_Conc'}) 
 
#df.rename(columns={"A": "a", "B": "c"}) 
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data = data.rename(columns={'TotHour':'TotHour_Lum', 'well':'Well', 
'drug1':'Drug','cell.line':'Cell_Line', 'drug1.conc':'Drug_Conc'}) 
debugdf = debugdf.rename(columns={'TotHour':'TotHour_Lum', 'well':'Well', 
'drug1':'Drug','cell.line':'Cell_Line', 'drug1.conc':'Drug_Conc'}) 
 
drugLL = data['Drug'].unique() 
 
 
#####used during debug 
 
 
 
#data = data[data.Well != 'J12'] 
#data = data[data.Well != 'K12'] 
#data = data[data.Well != 'K10'] 
#data = data[data.Well != 'K11'] 
 
 
 
 
 
 
 
 
 
 
 
##### THIS IS WHERE THE LUM RATES ARE STORED 
dimrate = 
pd.DataFrame(columns=['Well','DIMr','Cell_Line','Drug','R2_DIM_Slice','DIM_Sl
ice']) 
 
IC50df = pd.DataFrame(columns=['Cell_Line','Drug','IC50_Lum']) 
cline = ['H1930'] 
drug = ['SNS-314'] 
druglistref = list(data.Drug.unique()) 
#conc = [0, 9.96e-06,2.49e-06,6.23e-07] 
#conc = [0,9.96e-06] 
rrLIST = [] 
conc = list(data.Drug_Conc.unique()) 
conc.sort() 
#cldata = data.loc[data['Cell_Line'] == 'CORL279'] 
#cldrugdata = cldata.loc[cldata['Drug'] == 'barasertib'] 
#for d in conc: 
    #sns.lineplot(data=cldrugdata.loc[cldrugdata['Drug_Conc'] == d], 
x='TotHour_Lum', y='RLU') 
    #plt.show() 
dcrr = [] 
dcrrslice =[] 
dcrrlabel =[] 
dcrrwell=[] 
for CL in cline: 
    for dd in drug: 
        for cc in conc: 
            cldata = data.loc[data['Cell_Line'] == CL] 
            cldrugdata = cldata.loc[cldata['Drug'] == dd] 
            cldrugdata11c = cldrugdata.loc[cldrugdata['Drug_Conc'] == cc] 
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            welly = list(cldrugdata11c.Well.unique()) 
            for w in welly: 
                cldrugdata1c = cldrugdata11c.loc[cldrugdata11c['Well'] == w] 
                if cc == 0.0: 
                    maxlum0 = cldrugdata1c['RLU'].max() 
                    #maxlum0 = 120 
                    #the addition of iloc at the end specifies it as a single 
value instead of what would be a series object but make sure this works 
otherwise you need to manually put in the maxtime to generate slopes from 
                    #maxtime0 = cldrugdata1c.query('RLU == 
'+str(maxlum0))['TotHour_Lum'].iloc[0] 
                    #maxtime CORL279 AMG900 
                    #maxtime0=100 
                    #maxtime for H1930 SCH1473759 
                    maxtime0 = 93 
                    #maxtime0 for H841 AZD1152 (barasertib) 
                    #maxtime0= 117.82805555555555 
                    #maxtime0 for CORL279 SCH1473759 
                    #maxtime0 = 47.5536 
                    #H1048 adjustment for TAK901 
                    #maxtime0 = 70 
                    #H1048 Barasertib adjustment 
                    #maxtime0=120 
                    #maxtime0=85 
 
                    cldrugdata1c = 
cldrugdata1c.loc[cldrugdata1c['TotHour_Lum'] <= maxtime0] 
                    cldrugdata1c=cldrugdata1c.loc[cldrugdata1c['Well'] == w] 
                    ''' 
                    slope, intercept, r_value, pv, se = 
stats.linregress(cldrugdata1c['TotHour_Lum'],cldrugdata1c['RLU']) 
                    rr = r_value**2 
                    rrLIST.append(rr) 
                    dimrate = dimrate.append({'Well':w,'DIMr':slope}, 
ignore_index=True) 
                    ''' 
                    sns.set(style='darkgrid')  
                    sns.regplot(data=cldrugdata1c, 
x=cldrugdata1c['TotHour_Lum'],    y=cldrugdata1c['RLU'], ci=95, 
fit_reg=False) 
 ############################# 
 
                    maxtime=maxtime0 
                    cldrugdata3c = 
cldrugdata1c.loc[cldrugdata1c['TotHour_Lum'] <= maxtime] 
                        #here a loop needs to be written to take the unique 
time points that are left and put them in a list, then from that list take 
increasing slices as ilocs from the end stored as a new dataframe until the 
R2 value reaches >.90, then store that time as an object mintime and slice 
the original dataframe from that mintime >= 
                    timepoints = cldrugdata3c['TotHour_Lum'].unique() 
                    numtp = len(timepoints)-3 
                    #something gets messed up here sometimes but what needs 
to be accomlished is not allowing the algo to take a slope of a 3 point line 
                    intloclisttp = [*range(0,numtp)] 
                    rrlist2=[] 
                    ltp = len(timepoints) 
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                    for t in intloclisttp: 
                        slic=timepoints[t] 
                        slicesize=ltp-t 
                        mintime = slic 
                        #print(str(mintime)) 
                        cldrugdata2c = 
cldrugdata3c.loc[cldrugdata3c['TotHour_Lum'] >= mintime] 
                        slope, intercept, r_value, pv, se = 
stats.linregress(cldrugdata2c['TotHour_Lum'],cldrugdata2c['RLU']) 
                        rr=r_value**2 
                        dcrr.append(rr) 
                        dcrrslice.append(slicesize) 
                        dcrrlabel.append(cc) 
                        dcrrwell.append(w) 
                        rrlist2.append(rr) 
                        #print(str(rr)) 
                    #CONVERT THIS TO A SERIES 
                    rrlist3=pd.Series(rrlist2) 
                    rrmax = rrlist3[rrlist3 == rrlist3.max()].index[0] 
                    mintime=timepoints[rrmax] 
                    cldrugdata1c = 
cldrugdata1c.loc[cldrugdata1c['TotHour_Lum'] >= mintime] 
                    SlicePoints = list(cldrugdata1c['TotHour_Lum']) 
                    slope, intercept, r_value, pv, se = 
stats.linregress(cldrugdata1c['TotHour_Lum'],cldrugdata1c['RLU']) 
                    rr=r_value**2 
                    dimrate = 
dimrate.append({'Well':w,'DIMr':slope,'Cell_Line':CL,'Drug':dd,'R2_DIM_Slice'
:rr,'DIM_Slice':SlicePoints}, ignore_index=True) 
                    print('Maximum R2 for '+CL+' treated with '+dd+' at 
'+str(cc)+'in well '+w+'is '+str(rr)) 
                    sns.regplot(data=cldrugdata1c, 
x=cldrugdata1c['TotHour_Lum'],    y=cldrugdata1c['RLU'], ci=95) 
                    #sns.regplot(data=indivdrugdata, 
x=indivdrugdata['TotHour'],    y=indivdrugdata['RLU']) 
                    sns.set(style='darkgrid')             
                    #plt.xlim(0, 100) 
                    plt.ylabel('') 
                    plt.xlabel('') 
                    plt.xlim(0,maxtime) 
                    plt.legend(title=None, loc='upper left', 
labels=[r'$R^2:{0:.3f}$  CI:95%'.format(r_value**2)]) 
                    #plt.rcParams.update({'font.size': 25}) 
                    plt.title(CL+' treated with '+str(cc)+'M '+dd+' in well 
'+w) 
                    plt.savefig('/Users/claytonwandishin/December 14 RT glow 
run/plots/PaperFigs/DRC_Lum/H1048/AlgoV2/'+CL+'_'+dd+'/IndivRegLines/'+w+'at'
+str(cc)+'Reg'+'.png', dpi=300, bbox_inches='tight') 
                    plt.show() 
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  ########                  
                    if rr <.90: 
                        print('Regression model for '+CL+' treated with 
'+dd+' at '+str(cc)+'M is <.95 MODEL DOES NOT FIT R value ='+str(r_value**2)) 
                        sns.regplot(data=cldrugdata1c, 
x=cldrugdata1c['TotHour_Lum'],    y=cldrugdata1c['RLU'], ci=95) 
                        #sns.regplot(data=indivdrugdata, 
x=indivdrugdata['TotHour'],    y=indivdrugdata['RLU']) 
                        sns.set(style='darkgrid')             
    #plt.xlim(0, 100) 
                        plt.ylabel('') 
                        plt.xlabel('') 
                        plt.xlim(0,maxtime0) 
                        plt.legend(title=None, loc='upper left', 
labels=[r'$R^2:{0:.3f}$  CI:95%'.format(r_value**2)]) 
                        #plt.rcParams.update({'font.size': 25}) 
                        plt.title(CL+' treated with '+str(cc)+'M '+dd+' in 
'+w) 
                        #plt.savefig('/Users/claytonwandishin/December 14 RT 
glow 
run/plots/PaperFigs/DRC_Lum/H1048/AlgoV2/H1048_Barasertib/'+w+'at'+str(cc)+'.
png', dpi=300, bbox_inches='tight') 
                        plt.show() 
                    elif rr>.90: 
                        print('Regression model for '+CL+' treated with 
'+dd+' at '+str(cc)+' is >.95 PASS') 
                        sns.regplot(data=cldrugdata1c, 
x=cldrugdata1c['TotHour_Lum'],    y=cldrugdata1c['RLU'], ci=95) 
                        #sns.regplot(data=indivdrugdata, 
x=indivdrugdata['TotHour'],    y=indivdrugdata['RLU']) 
                        sns.set(style='darkgrid')             
    #plt.xlim(0, 100) 
                        plt.ylabel('') 
                        plt.xlabel('') 
                        plt.xlim(0,maxtime0) 
                        plt.legend(title=None, loc='upper left', 
labels=[r'$R^2:{0:.3f}$  CI:95%'.format(r_value**2)]) 
                        #plt.rcParams.update({'font.size': 25}) 
                        plt.title(CL+' treated with '+str(cc)+'M '+dd+' in 
'+w) 
                        #plt.savefig('/Users/claytonwandishin/December 14 RT 
glow 
run/plots/PaperFigs/DRC_Lum/H1048/AlgoV2/H1048_Barasertib/'+w+'at'+str(cc)+'.
png', dpi=300, bbox_inches='tight') 
                        plt.show() 
                         
                elif cc != 0: 
                    #this minimun value may be cell line and or drug depndent 
and this code should be edited to reflect that 
                    minlum=1000 
                    cldrugdata1c =      
cldrugdata1c.loc[cldrugdata1c['TotHour_Lum'] <= maxtime0] 
                    cldrugdata1c=cldrugdata1c.loc[cldrugdata1c['Well'] == w] 
                    mincheckRLUcol = cldrugdata1c['RLU'].min() 
                    maxldrug = cldrugdata1c['RLU'].max() 
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                    #max time needs to first check if the minimum value is 
reached for that drug concentration, then if not it needs to use the maxtime 
value from the zero concentration and use that as the maxtime 
                    #This plotting function shows ALL of the points without a 
regression which is necessary for pretty figures, by adding to the regplot 
below we get the orange regression line 
                    sns.regplot(data=cldrugdata1c, 
x=cldrugdata1c['TotHour_Lum'],    y=cldrugdata1c['RLU'], ci=95, 
fit_reg=False) 
                    #This should be adjusted to loop through like the else 
function below 
                    if mincheckRLUcol <= minlum:                
                        maxtime = cldrugdata1c.query('RLU <= 
'+str(minlum))['TotHour_Lum'].iloc[0] 
                        cldrugdata1c = 
cldrugdata1c.loc[cldrugdata1c['TotHour_Lum'] <= maxtime] 
                        slope, intercept, r_value, pv, se = 
stats.linregress(cldrugdata1c['TotHour_Lum'],cldrugdata1c['RLU']) 
                        rr=r_value**2 
                        SlicePoints = list(cldrugdata1c['TotHour_Lum']) 
                        dimrate = 
dimrate.append({'Well':w,'DIMr':slope,'Cell_Line':CL,'Drug':dd,'R2_DIM_Slice'
:rr,'DIM_Slice':SlicePoints}, ignore_index=True) 
                        sns.regplot(data=cldrugdata1c, 
x=cldrugdata1c['TotHour_Lum'],    y=cldrugdata1c['RLU'], ci=95, 
fit_reg=False) 
                        #sns.regplot(data=indivdrugdata, 
x=indivdrugdata['TotHour'],    y=indivdrugdata['RLU']) 
                        sns.set(style='darkgrid')             
                        #plt.xlim(0, 100) 
                        plt.ylabel('') 
                        plt.xlabel('') 
                        plt.xlim(0,maxtime) 
                        plt.legend(title=None, loc='upper left', 
labels=[r'$R^2:{0:.3f}$  CI:95%'.format(r_value**2)]) 
                        #plt.rcParams.update({'font.size': 25}) 
                        plt.title(CL+' treated with '+str(cc)+'M '+dd+' in 
well '+w) 
                        plt.savefig('/Users/claytonwandishin/December 14 RT 
glow 
run/plots/PaperFigs/DRC_Lum/H1048/AlgoV2/'+CL+'_'+dd+'/IndivRegLines/'+w+'at'
+str(cc)+'.png', dpi=300, bbox_inches='tight') 
                        plt.show() 
                    else: 
                        maxtime = maxtime0 
                        mintime = 0 
                        cldrugdata3c = 
cldrugdata1c.loc[cldrugdata1c['TotHour_Lum'] <= maxtime] 
                        #here a loop needs to be written to take the unique 
time points that are left and put them in a list, then from that list take 
increasing slices as ilocs from the end stored as a new dataframe until the 
R2 value reaches >.90, then store that time as an object mintime and slice 
the original dataframe from that mintime >= 
                        timepoints = cldrugdata3c['TotHour_Lum'].unique() 
                        numtp = len(timepoints)-3 
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                        #something gets messed up here sometimes but what 
needs to be accomlished is not allowing the algo to take a slope of a 2 point 
line 
                        intloclisttp = [*range(0,numtp)] 
                        rrlist2=[] 
                        ltp = len(timepoints) 
                        
                        for t in intloclisttp: 
                            slicesize=ltp-t 
                            slic=timepoints[t] 
                            mintime = slic 
                            #print(str(mintime)) 
                            cldrugdata2c = 
cldrugdata3c.loc[cldrugdata3c['TotHour_Lum'] >= mintime] 
                            slope, intercept, r_value, pv, se = 
stats.linregress(cldrugdata2c['TotHour_Lum'],cldrugdata2c['RLU']) 
                            rr=r_value**2 
                            dcrr.append(rr) 
                            dcrrslice.append(slicesize) 
                            dcrrlabel.append(cc) 
                            dcrrwell.append(w) 
                            rrlist2.append(rr) 
                            #print(str(rr)) 
                        #CONVERT THIS TO A SERIES 
                        rrlist3=pd.Series(rrlist2) 
                        rrmax = rrlist3[rrlist3 == rrlist3.max()].index[0] 
                        mintime=timepoints[rrmax] 
                        cldrugdata1c = 
cldrugdata1c.loc[cldrugdata1c['TotHour_Lum'] >= mintime] 
                        SlicePoints = list(cldrugdata1c['TotHour_Lum']) 
                        slope, intercept, r_value, pv, se = 
stats.linregress(cldrugdata1c['TotHour_Lum'],cldrugdata1c['RLU']) 
                        rr=r_value**2 
                        dimrate = 
dimrate.append({'Well':w,'DIMr':slope,'Cell_Line':CL,'Drug':dd,'R2_DIM_Slice'
:rr,'DIM_Slice':SlicePoints}, ignore_index=True) 
                        print('Maximum R2 for '+CL+' treated with '+dd+' at 
'+str(cc)+'in well '+w+'is '+str(rr)) 
                        sns.regplot(data=cldrugdata1c, 
x=cldrugdata1c['TotHour_Lum'],    y=cldrugdata1c['RLU'], ci=95) 
                        #sns.regplot(data=indivdrugdata, 
x=indivdrugdata['TotHour'],    y=indivdrugdata['RLU']) 
                        sns.set(style='darkgrid')             
                        #plt.xlim(0, 100) 
                        plt.ylabel('') 
                        plt.xlabel('') 
                        plt.xlim(0,maxtime) 
                        plt.legend(title=None, loc='upper left', 
labels=[r'$R^2:{0:.3f}$  CI:95%'.format(r_value**2)]) 
                        #plt.rcParams.update({'font.size': 32}) 
                        plt.title(CL+' treated with '+str(cc)+'M '+dd+' in 
well '+w) 
                        plt.savefig('/Users/claytonwandishin/December 14 RT 
glow 
run/plots/PaperFigs/DRC_Lum/H1048/AlgoV2/'+CL+'_'+dd+'/IndivRegLines/'+w+'at'
+str(cc)+'.png', dpi=300, bbox_inches='tight') 
                        plt.show() 
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#dimrate = dimrate.fillna() 
full_df = cldrugdata.copy() 
full_df = full_df.merge(dimrate) 
dimratezero = full_df.loc[full_df['Drug_Conc'] == 0] 
dimratezeromean = pd.Series(dimratezero['DIMr'].unique()).mean() 
dzmean = dimratezeromean 
full_df['DIMrNorm'] = full_df['DIMr']/dzmean 
#double check to make sure that plotting a datapoint for zero is the best way 
to do this if the data has already been normalized 
#something is weird with the scaling 
full_df['DClog']= np.log10(full_df['Drug_Conc']+.000000000001) 
#full_df['DIMrNormal'] = 
#sns.lmplot(x='DClog',y='DIMrNorm',data=full_df,fit_reg=False) 
#removes erroneous points for the H1048 YM-155 data 
#full_df = full_df[full_df.Drug_Conc != 9.340000000000001e-09] 
#full_df = full_df[full_df.Drug_Conc != 3.89e-08] 
#removes errod in H841 TAK901 dataset 
#full_df = full_df[full_df.Drug_Conc != 9.96e-06] 
#removes error in the H841trametinib dataset 
#full_df = full_df[full_df.Drug_Conc != 7.779999999999999e-11] 
#removes error in the H841 SNS314 dataset 
#full_df = full_df[full_df.Drug_Conc != 7.779999999999999e-11] 
#this well error could also be fixed by forcing the slope 
#full_df = full_df[full_df.Well != 'D22'] 
#this well error could also be fixed by forcing slope H526 with barasertib 
#full_df = full_df[full_df.Well != 'H11'] 
#this is well errors for DMS114 with barasertib 
#full_df = full_df[full_df.Well != 'F11'] 
#full_df = full_df[full_df.Well != 'G11'] 
#full_df = full_df[full_df.Well != 'H11'] 
#full_df = full_df[full_df.Well != 'F07'] 
#full_df = full_df[full_df.Well != 'G07'] 
#full_df = full_df[full_df.Well != 'H07'] 
#DMS114 with AMG900 
#full_df = full_df[full_df.Well != 'C12'] 
#fixes well error for DMS114TAK901 
#full_df = full_df[full_df.Well != 'D20'] 
#fixes well error for H1048 with barasertib 
#full_df = full_df[full_df.Well != 'K23'] 
#full_df = full_df[full_df.Well != 'K16'] 
#fixes H1048 YM-155 errors 
#full_df = full_df[full_df.Well != 'E08'] 
#full_df = full_df[full_df.Well != 'I08'] 
#full_df = full_df[full_df.Well != 'M08'] 
#fixes h1048 trametinib 
#full_df = full_df[full_df.Well != 'I22'] 
#fixes h1048 SNS314 
#full_df = full_df[full_df.Well != 'L13'] 
#full_df = full_df[full_df.Well != 'D14'] 
#fixes H841 barasertib 
#full_df = full_df[full_df.Well != 'K13'] 
#fixes H841 hygromycin 
#full_df = full_df[full_df.Well != 'N23'] 
#fixes H841 SNS314 
#full_df = full_df[full_df.Well != 'H22'] 
#before applying this, the entire dataframe needs to be truncated so that the 
residuals make more sense 
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#DMS1114 TAK901 
#full_df = full_df[full_df.Well != 'E20'] 
#full_df = full_df[full_df.Well != 'E19'] 
#DMS114 YM155 
#full_df = full_df[full_df.DIMrNorm < 1.24] 
#full_df = full_df[full_df.Well != 'F18'] 
#full_df = full_df[full_df.Well != 'G18'] 
#full_df = full_df[full_df.Well != 'H18'] 
#CORL279 SCH1473759 fix 
#full_df = full_df[full_df.Well != 'K10'] 
#full_df = full_df[full_df.Well != 'K11'] 
#full_df = full_df[full_df.Well != 'K12'] 
#H1930 SCH1473759 
#full_df = full_df[full_df.DIMrNorm > -1.0] 
#H1930 etoposide 
''' 
full_df = full_df[full_df.Well != 'J22'] 
full_df = full_df[full_df.Well != 'K22'] 
full_df = full_df[full_df.Well != 'J21'] 
full_df = full_df[full_df.Well != 'K21'] 
full_df = full_df[full_df.Well != 'J20'] 
full_df = full_df[full_df.Well != 'K20'] 
full_df = full_df[full_df.Well != 'I19'] 
full_df = full_df[full_df.Well != 'I18'] 
full_df = full_df[full_df.Well != 'K18'] 
full_df = full_df[full_df.Well != 'K14'] 
full_df = full_df[full_df.Well != 'K15'] 
full_df = full_df[full_df.Well != 'I15'] 
full_df = full_df[full_df.Well != 'K16'] 
full_df = full_df[full_df.Well != 'I16'] 
full_df = full_df[full_df.Well != 'J17'] 
''' 
#H1930 SNS-314 data does not look good 
''' 
full_df = full_df[full_df.Well != 'L12'] 
full_df = full_df[full_df.Well != 'M12'] 
full_df = full_df[full_df.Well != 'N12'] 
full_df = full_df[full_df.Well != 'L11'] 
full_df = full_df[full_df.Well != 'M11'] 
full_df = full_df[full_df.Well != 'N11'] 
full_df = full_df[full_df.Well != 'M10'] 
full_df = full_df[full_df.Well != 'N10'] 
full_df = full_df[full_df.Well != 'N07'] 
full_df = full_df[full_df.Well != 'N03'] 
''' 
compoundData = full_df.groupby(['Drug']) 
fitData = [] 
for name,group in compoundData: 
    fitCoefs, covMatrix = opt.curve_fit(ll4, group.Drug_Conc,         
group.DIMrNorm) 
    resids = group.DIMrNorm-group.Drug_Conc.apply(lambda x: ll4(x,*fitCoefs)) 
    curFit = dict(zip(['b','c','d','e'],fitCoefs)) 
    curFit['Drug']=name 
    curFit['residuals']=sum(resids**2) 
    fitData.append(curFit) 
    fitCompound = [ item['Drug'] for item in fitData] 
    fitTable = pd.DataFrame(fitData).set_index('Drug') 
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    #Export this fit table into a physical file 
     
     
     
     
    IC50valLum =       
IC50(fitTable['e'],fitTable['b'],fitTable['d'],fitTable['c']).copy() 
    IC50valLum=IC50valLum.reset_index() 
    #This is the variable containing the IC50 Value for the cell line and 
drug combo 
    IC50valLum2=IC50valLum.iat[0,1] 
    IC50df = IC50df.append({'Cell_Line':CL,'Drug':dd,'IC50_Lum':IC50valLum2}, 
ignore_index=True) 
    IC50lum =r'IC50 : {:0.3e}'.format(IC50valLum2)+' M' 
    refDose = -
np.linspace(min(full_df['DClog'])*1.2,max(full_df['DClog'])*0.8,256) 
    refDose = (10**-refDose) 
    sns.lmplot(x='DClog',y='DIMrNorm',data=full_df,fit_reg=False)         
    for fit in fitData: 
        plt.plot([pDose(i) for i in refDose],[ll4(i,*[fit[i] for i in 
['b','c','d','e']]) for i in refDose]) 
    sns.set(style='darkgrid')             
    plt.ylabel('Normalized Luminescence Rate') 
    plt.xlabel('log Drug Concentration (M)') 
    plt.title(CL+' treated with '+dd) 
    plt.legend(title=None, loc='upper right', labels=[IC50lum]) 
    plt.savefig('/Users/claytonwandishin/December 14 RT glow 
run/plots/PaperFigs/DRC_Lum/H1048/AlgoV2/DRC/'+CL+'_'+dd+'.png', dpi=300, 
bbox_inches='tight') 
    plt.show() 
full_df = full_df.merge(IC50df) 
#####THIS GENERATES THE R2 vs. Slice size dataframe 
r2df = pd.DataFrame() 
r2df['DrugCon'] = dcrrlabel 
r2df['Well'] = dcrrwell 
r2df['SliceSize'] = dcrrslice 
r2df['R2_Value'] = dcrr 
 
well_list_r2df = r2df['Well'].unique() 
 
def set_custom_palette(series, max_color = 'tab:orange', other_color = 
'tab:blue'): 
    max_val = pd.Series(series).max() 
    print(max_val) 
    pal = [] 
     
    for item in series: 
        if item == max_val: 
            pal.append(max_color) 
        else: 
            pal.append(other_color) 
        print(pal) 
    return pal 
 
def set_custom_markers(series, max_mark = '^', other_mark = 'o'): 
    max_val = series.max() 
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    mar = [] 
     
    for item in series: 
        if item == max_val: 
            mar.append(max_mark) 
        else: 
            mar.append(other_mark) 
    return mar 
 
def set_custom_marker_size(series, max_mar_size = 200, other_mar_size = 50): 
    max_val = series.max() 
    marsize = [] 
     
    for item in series: 
        if item == max_val: 
            marsize.append(max_mar_size) 
        else: 
            marsize.append(other_mar_size) 
    return marsize 
 
for uw in well_list_r2df: 
    r2dfplot = r2df.loc[r2df['Well'] == uw] 
    cuspal=set_custom_palette(r2dfplot['R2_Value']) 
    cusmar=set_custom_markers(r2dfplot['R2_Value']) 
    cussize=set_custom_marker_size(r2dfplot['R2_Value']) 
    r2dfplot['cpallette']=cuspal 
    sns.set(style='darkgrid') 
    sns.scatterplot(data=r2dfplot, x=r2dfplot['SliceSize'], 
y=r2dfplot['R2_Value'], 
hue=r2dfplot['R2_Value'],hue_order=r2dfplot['R2_Value'], 
palette=cuspal,style=r2dfplot['R2_Value'],markers=cusmar, 
style_order=r2dfplot['R2_Value'], size = r2dfplot['R2_Value'], 
sizes=cussize,size_order=r2dfplot['R2_Value'], legend=False) 
    plt.ylabel('') 
    plt.xlabel('') 
    plt.xlim(19,3) 
    #plt.title(CL+' well '+uw) 
    #plt.savefig('/Users/claytonwandishin/December 14 RT glow 
run/plots/PaperFigs/DRC_Lum/H1048/AlgoV2/'+CL+'_'+dd+'/'+CL+'_well_'+uw+'R2pl
ot.png', dpi=300, bbox_inches='tight') 
    plt.show() 
#pmdf = pd.read_csv('/Users/claytonwandishin/December 14 RT glow 
run/20201216_Lum_CellCounts_TOTAL_DIPcomp.csv') 
#full_df = full_df.merge(pmdf) 
 
 
#full_df.to_csv('/Users/claytonwandishin/December 14 RT glow 
run/20201216_Lum_CellCounts_TOTAL_DIM_33.csv') 
''' 
dclist_r2df = r2df['DrugCon'].unique() 
for d in dclist_r2df: 
    r2dfplot = r2df.loc[r2df['DrugCon'] == d] 
    sns.set(style='darkgrid') 
    sns.scatterplot(data=r2dfplot, x=r2dfplot['SliceSize'], 
y=r2dfplot['R2_Value']) 
    plt.xlim(19,3) 
    plt.ylabel('$R^2 Value') 



 

 104 

    plt.xlabel('Timepoint Slice Size (points)') 
    plt.title(CL+' with '+str(d)+' Barasertib') 
    plt.show() 
''' 
 
###################################################### 
###################################################### 
####################################################### 
####################################################### 
 
# This part creates rate-based DataFrames so that the DRC generated from Lum 
and Direct Counting can be compared 
''' 
NoDrugLumandCounts = full_df.loc[full_df['Drug_Conc'] == 0] 
NDLCC = NoDrugLumandCounts 
NDLCC['CC+1']=NDLCC['Live_Dead']+1 
NDLCC['log2_Live_Dead+1']=np.log2(NDLCC['CC+1']) 
 
Lnorm = NDLCC.loc[:,'log2_Live_Dead+1'] 
Lnorm = pd.DataFrame(Lnorm) 
Lnorm['TotHour_Image']= NDLCC.loc[:,'TotHour_Image'] 
 
DrugCon = 
['0','0.00000996','0.00000249','0.000000623','0.000000156','0.0000000389','0.
00000000934','0.00000000233','0.000000000623','0.000000000156','0.00000000007
78'] 
 
DrugConfloat = [float(x) for x in DrugCon] 
 
cell_line_list = ['H1048'] 
#drug_list_fig = ['AZD-1152','SNS-314','trametinib'] 
drug_list_fig = ['barasertib'] 
#drug_list_fig = completeDF['Drug'].unique() 
#etoposide and DMSO fail 
#remove 0 in Lum for SCH 
#remove 0 for vemurafinib 
#remove 7.78e-11 Lum and 9.96 e-06 for direct 
#remove 2.49e-6 and 7.78e-11 for azd1152 
DrugConfloat.sort() 
DrugConfloatDIRECT = DrugConfloat.copy() 
#DrugConfloatDIRECT.remove(0) 
#DrugConfloatDIRECT.remove(2.33e-09) 
#DrugConfloat.remove(2.49e-06) 
#DrugConfloat.remove(0) 
#DrugConfloatDIRECT.remove(1.56e-7) 
#DrugConfloat.remove(9.96e-06) 
#DrugConfloat.remove(7.78e-11) 
DrugConfloatDIRECT.sort() 
DipDF = pd.DataFrame() 
DipDF['Drug_Con']=[] 
DipDF['DIP_Rate']=[] 
DipDF['Count_Type']=[] 
DipDF['DIP_Rate_Norm']=[] 
DipDF['Response_Ratio']=[] 
DipDFw = [] 
count_type = ['Direct','Lum'] 
for CLL in cell_line_list: 
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    for DD in drug_list_fig: 
        oneCLdf = full_df.loc[full_df['Cell_Line'] == CLL] 
        OCLDF = oneCLdf 
        onedrugdf = OCLDF.loc[OCLDF['Drug'] == DD] 
        ODDF = onedrugdf 
        ODDFt100 = ODDF.loc[ODDF['TotHour_Image']<maxtime0] 
        ODDftLum = ODDF.loc[ODDF['TotHour_Lum']<maxtime0] 
        
 
        #DrugConfloat = completeDF['Drug_Conc'].unique() 
         
        for c in DrugConfloatDIRECT: 
            indivdrugcondip = ODDFt100.loc[ODDFt100['Drug_Conc'] == c] 
            slope, intercept, r_value, pv, se =     
stats.linregress(indivdrugcondip['TotHour_Image'],indivdrugcondip['log2_Live_
Dead']) 
            DipDF=DipDF.append([{'Drug_Con':c, 'DIP_Rate':slope, 
'Count_Type':'Direct'}], ignore_index=True) 
            print(str(c)+" "+str(slope)+"Direct")  
             
             
             
        for c in DrugConfloat: 
            indivdrugcondip = ODDftLum.loc[ODDftLum['Drug_Conc'] == c] 
            slope, intercept, r_value, pv, se =     
stats.linregress(indivdrugcondip['TotHour_Lum'],indivdrugcondip['RLU']) 
            DipDF=DipDF.append([{'Drug_Con':c, 'DIP_Rate':slope, 
'Count_Type':'Lum'}], ignore_index=True) 
            print(str(c)+" "+str(slope)+"Lum")  
 
 
 
 
#This needs to be fixed to reflect the different scales of lum and direct 
counting 
            LumDip = DipDF.loc[DipDF['Count_Type'] == 'Lum'] 
         
             
            DirectDip = DipDF.loc[DipDF['Count_Type'] == 'Direct'] 
         
            LumDipMax = LumDip['DIP_Rate'].max() 
            DirectDipMax = DirectDip['DIP_Rate'].max() 
            for i, row in DipDF.iterrows(): 
                if DipDF.at[i,'Count_Type'] == 'Lum': 
                    DipNorm = DipDF.at[i,'DIP_Rate']/LumDipMax 
                    DipDF.at[i,'DIP_Rate_Norm'] = DipNorm 
                     
                     
            for i, row in DipDF.iterrows(): 
                if DipDF.at[i,'Count_Type'] == 'Direct': 
                    DipNorm = DipDF.at[i, 'DIP_Rate']/DirectDipMax 
                    DipDF.at[i,'DIP_Rate_Norm'] = DipNorm 
             
            LumDipNormMin = LumDip['DIP_Rate_Norm'].min() 
            LumDipNormMax = LumDip['DIP_Rate_Norm'].max()  
            DirectDipNormMin = DirectDip['DIP_Rate_Norm'].min() 
            DirectDipNormMax = DirectDip['DIP_Rate_Norm'].max()   
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            for i, row in DipDF.iterrows(): 
                if DipDF.at[i,'Count_Type'] == 'Lum': 
                    DipRR = (DipDF.at[i,'DIP_Rate_Norm']- 
LumDipNormMin)/(LumDipNormMax - LumDipNormMin) 
                    DipDF.at[i,'Response_Ratio'] = DipRR 
                     
                     
            for i, row in DipDF.iterrows(): 
                if DipDF.at[i,'Count_Type'] == 'Direct': 
                    DipRR = (DipDF.at[i,'DIP_Rate_Norm']- 
DirectDipNormMin)/(DirectDipNormMax - DirectDipNormMin) 
                    DipDF.at[i,'Response_Ratio'] = DipRR 
             
             
        DipDF['DClog']=pDose(DipDF['Drug_Con']+.0000000001) 
         
        #DipDF['Response_Ratio']= 
DipDF.groupby(['Count_Type']).transform(lambda x: (DIP_Rate_Norm - 
DIP_Rate_Norm.min())/ LumDipDIP_Rate_Norm.max() - DIP_Rate_Norm.min())) 
#DipDF['DClog']=np.log(DipDF['Drug_Con']+.0000000001) 
 
 
#FITTING FUNCTION NEEDS TO BE SPLIT INTO TWO 
            #DipDFw=DipDF.loc[DipDF['Count_Type'] == f] 
        compoundData = DipDF.groupby(['Count_Type']) 
        fitData = [] 
        for name,group in compoundData: 
            fitCoefs, covMatrix = opt.curve_fit(ll4, group.Drug_Con,         
group.Response_Ratio) 
            resids = group.Response_Ratio-group.Drug_Con.apply(lambda x: 
ll4(x,*fitCoefs)) 
            curFit = dict(zip(['b','c','d','e'],fitCoefs)) 
            curFit['Count_Type']=name 
            curFit['residuals']=sum(resids**2) 
            fitData.append(curFit) 
            fitCompound = [ item['Count_Type'] for item in fitData] 
            fitTable = pd.DataFrame(fitData).set_index('Count_Type') 
             
            if name == 'Direct': 
                IC50valDirect =       
IC50(fitTable['e'],fitTable['b'],fitTable['d'],fitTable['c']).copy() 
                IC50valDirect=IC50valDirect.reset_index() 
                IC50valDirect2=IC50valDirect.at[0,0] 
                IC50direct = r'IC50 : {:0.3e}'.format(IC50valDirect2)+' M' 
            if name == 'Lum': 
                IC50valLum =       
IC50(fitTable['e'],fitTable['b'],fitTable['d'],fitTable['c']).copy() 
                IC50valLum=IC50valLum.reset_index() 
                IC50valLum2=IC50valLum.at[1,0] 
                IC50lum =r'IC50 : {:0.3e}'.format(IC50valLum2)+' M' 
            refDose = -
np.linspace(min(DipDF['DClog'])*0.6,max(DipDF['DClog'])*1.5,256) 
            refDose = (10**-refDose)*1e6 
            
sns.lmplot(x='DClog',y='Response_Ratio',data=DipDF,hue='Count_Type',fit_reg=F
alse)         
            for fit in fitData: 
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                plt.plot([pDose(i) for i in refDose],[ll4(i,*[fit[i] for i in 
['b','c','d','e']]) for i in refDose]) 
 
 
 
                 
#IC50lum =r'IC50 : {:0.3e}'.format(IC50valLum2.iloc[0])+' M' 
#IC50direct = r'IC50 : {:0.3e}'.format(IC50valDirect2.iloc[0])+' M' 
sns.set(style='darkgrid')             
plt.ylabel('Response Ratio') 
plt.xlabel('log Drug Concentration (M)') 
plt.title(CL+" treated with "+DD) 
plt.legend(title=None, loc='upper right', labels=[IC50direct,IC50lum]) 
#plt.show() 
#plt.savefig('/Users/claytonwandishin/December 14 RT glow 
run/plots/PaperFigs/DRC_Lum/'+CL+'/'+CL+'DirectandLumCOMPARISON_DRC_RESPONSER
ATIO_RAWlum'+DD+'DECrun.png', dpi=300, bbox_inches='tight') 
#ODDF.to_csv('/Users/claytonwandishin/December 14 RT glow 
run/plots/PaperFigs/DRC_Lum/'+CL+'/'+CL+'YM155_OneDrugDF.csv') 
''' 
 


