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1.0. INTRODUCTION 

 

Congenital heart disease (CHD) is the most common class of birth defects, affecting one percent of live births; CHD 

is approximately sixty times more common than all forms of pediatric cancer combined.1,2 Treatment for CHD 

often involves one or more surgeries, and unfortunately, postoperative infections are a major cause of morbidity 

and mortality.3 Preventive measures are available, but most carry risks, and are best deployed on an individual 

basis, based upon the particular risk of the patient. 

Unfortunately, determining which patients are at highest risk of postoperative infection is not always 

straightforward. As we will discuss in the following chapters, a few risk scores have been proposed, but each have 

weaknesses or limitations, including in the definition of infection, the performance difference in “proven” and 

“unproven” infections, the reliance on only regression without attempting any other machine learning methods, 

and in their ease of automation for deployment. Both models previously proposed used manually curated data, 

and as such could not be easily executed automatically in the electronic health record (EHR). This is a major 

disadvantage, as automatable models can be more accurate, easier to use, can save time, and can help guide 

targeted interventions in real time.4 Because of the weaknesses of existing prediction rules for infection following 

pediatric cardiac surgery, our goal with this thesis was to generate a model or models to overcome the limitations 

of existing models, and support bedside decision making with a practical, accurate prediction tool. 

To achieve this goal, I pursued the following 3 aims: 

1. To create a cohort of pediatric cardiac surgery patients at Monroe Carell Jr. Children’s Hospital with 

labeled & validated infection outcomes. 

2. To compare performance of regression and machine learning models on validated and unvalidated data.  

3. To create and evaluate a bedside prediction rule from the model with the highest performance, as 

measured by area under the receiver operating characteristic curve (AUC).  

 

In the first manuscript (Chapter 2) of this thesis, we describe the methods and results for Aims 1 and 2, in which 

we create and validate the cohort, and compare the performance of regression and machine learning models on 

validated and unvalidated outcomes. This manuscript is submitted and under review for the American Medical 

Informatic Association (AMIA) Annual Symposium precedings and student paper contest. The second manuscript 

(Chapter 3) describes the methods and results for Aim 3, in which we propose a bedside decision rule. We then 

summarize the conclusions learned from completing all three aims. 
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2.1. ABSTRACT 

 

Postoperative infections frequently complicate pediatric cardiac surgery, increasing morbidity and cost. If high risk 

patients could be identified early, preventive measures could mitigate infection risk. In this study, we used 

structured health data to generate a cohort of pediatric cardiac surgery cases from a single center and used billing 

codes to assign outcomes for postoperative sepsis, bacteremia, necrotizing enterocolitis, and a composite 

outcome incorporating all infections. We subsequently validated these outcomes manually using clinical notes and 

microbiology data. Using this cohort of 2080 surgeries, we trained models to classify the risk of postoperative 

infections using logistic regression and several machine learning methods. We compared the performance of the 

models trained on the validated outcomes to those trained on unvalidated outcomes. Manual validation revealed 

low accuracy of diagnosis codes as classifiers of postoperative infections. Despite significant differences in 

outcome assignments, similar model performance was achieved using unvalidated and validated outcomes. 
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2.2. BACKGROUND 

 

Every year in the United States, approximately 40,000 children undergo cardiac surgery, with a postoperative 

fatality rate of approximately 3%.5,6 Healthcare-associated infections, including bacteremia, sepsis, and wound 

infections, are a common postoperative complication which contribute significant morbidity and cost.  

Despite efforts at reduction, infection rates following cardiac surgery are as high as 30% in many series.7 These 

infections are possibly associated with increased mortality7 and cause significant morbidity, extended patient stays 

and increased costs,8 and by driving antibiotic use, may contribute to antibiotic resistance. At Monroe Carell Jr. 

Children's Hospital at Vanderbilt, approximately 300 cardiac surgeries are performed annually, with surgical site 

infections complicating ~2-3%, and other confirmed healthcare-associated infections complicating ~3-5% 

(unpublished data). 

If patients at higher risk of infection could be identified prospectively, they could be targeted for clinical 

interventions that may mitigate infection risk. For example, patients at higher risk of post-operative infectioncould 

receive enhanced antibiotic prophylaxis,9 more aggressive screening for colonization and efforts at 

decolonization,10 tighter perioperative glycemic control,11 earlier central line removal or foley catheter removal,12 

prioritization of earlier sternal closure,13 among other targeted interventions. For the patients at the lowest risk, 

providers could consider decreasing the use of laboratory tests that detect nonspecific inflammation and could 

consider reducing or foregoing prophylactic or empiric antibiotic treatment. 

Multiple studies have evaluated risk factors for infection following cardiovascular surgery in adults.14–16 Fewer 

studies have described risk of infection following cardiac surgery in children. Barker et all used 30,078 records from 

the Society of Thoracic Surgeons Congenital Heart Surgery Database to generate a multivariate logistic regression 

model to classify the risk of a composite outcome of septicemia, mediastinitis, or endocarditis following pediatric 

cardiac surgery.17 Algra et al used single center data from the Netherlands, including 412 procedures, to train a 

multivariable logistic regression model to predict surgical site infection, bloodstream infections, urinary tract 

infections, gastroenteritis, skin infections, and respiratory tract infections.18 Necrotizing enterocolitis (NEC) is an 

important cause of morbidity, mortality and infection following pediatric cardiac surgery, but we did not find any 

published models classifying or predicting the risk of post operative NEC in the pediatric cardiac surgery setting. 

No prediction rules for postoperative infection following pediatric cardiac use regression methodology. While a 

very useful and longstanding method for prediction rules, the utility of regression models may be limited when the 

relationship between features and outcomes is nonlinear. Though the data is somewhat mixed, many recent 

publications have highlighted the potential of machine learning methods for risk classification in areas ranging 

from cardiovascular risk,19 outcomes following neurosurgery,20 survival following traumatic brain injury,21 

development of AKI following liver transplant,22 and delayed graft function following renal transplant,23 to name a 

few. In our literature search, we found fewer examples of the application of machine learning in the pediatric 
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population and were unable to find any examples of applying machine learning methods to prediction of infection 

following cardiac surgery in children. 

In developing prediction models for clinical use, the accuracy of outcome labels is critical. Much recent work has 

explored the difficulty of using structured data elements, including claims data, in generating clinical 

phenotypes.24–27 While using structured billing codes is an efficient and automatable means of phenotyping, 

relying solely on codes can be insufficiently sensitive or specific. One method of improving the accuracy of 

outcome assignment is via manual validation of unstructured data including clinical notes, but such validations can 

be effort intensive. Given the effort required for manual validation, it is worth studying whether such validation 

translates to improved performance of resulting classification models. In this study, our aim was to determine if 

manual validation could improve the performance of postoperative infection risk classification models for pediatric 

cardiac surgery patients. To accomplish this aim, we generated a cohort of pediatric patients undergoing cardiac 

surgery at Monroe Carell Jr. Children’s Hospital. We used structured diagnosis codes to make initial outcome label 

assignments for several postoperative infections. We then followed the initial assignments with manual validation 

and reassignment of outcome labels based upon review of clinical data. We used these datasets to train logistic 

regression and machine learning models and compared the performance of the models trained on the validated 

and unvalidated datasets. 
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2.3. METHODS 

 

Cohort Creation: 

This research was approved by the Institutional Review Board at Vanderbilt University Medical Center. Data for 

this work was obtained via query of the Vanderbilt Research Derivative (RD), a database of clinical and related 

data, derived from VUMC’s clinical enterprise and repurposed for research.28 The clinical cohort was generated 

using structured queries, using patient age, surgery date, and current procedural technology (CPT) codes 

pertaining to pediatric cardiothoracic surgeries of interest. Included CPT codes were derived from standardized 

Centers for Disease Control and Prevention (CDC) code sets.29 Patients were included if their record included a 

procedure code for at least one procedure of interest, performed between January 1, 2015, and November 30, 

2020, on patients up to 6573 days (18.0 years) of age at the time of their surgery. 

 

Feature Selection:  

Candidate features were obtained from literature review and discussion with experts in pediatric infectious 

diseases, pediatric cardiology, and pediatric cardiothoracic surgery. All features were obtained from values 

available prior to the end of the calendar day on which the surgery was performed. Candidate predictors included 

patient demographics, vital signs, surgical parameters, drug exposures, and laboratory values. Demographic 

variables were included to identify patients who might intrinsically be at higher risk of complications, including 

those at the extremes of age and body size. Demographics of interest included patient age at surgery, gender of 

record at the time of surgery, weight, and body mass index (BMI).  

Vital signs served as an indicator of physiologic stress during surgery and included only values recorded during the 

operative encounter. Vital signs assessed included minimum and maximum values for heart rate, systolic blood 

pressure, diastolic blood pressure, and body temperature, as well as the range between the minimum and 

maximum intraoperative value of each vital sign. Surgical parameters were included to identify potentially more 

complicated and higher risk procedures, and included the total duration of the procedure, the number of 

procedure codes listed for the surgical encounter, the American Society of Anesthesiologists (ASA) class 

assignment,30 and the case priority level, ranging from elective to emergent. Laboratory values included the 

maximum and minimum values, and the range between the two, collected on the day of surgery and the three 

prior days. Lab features were considered as markers of inflammation or poor hemostasis prior to surgery. 

Candidate lab features included total white blood cell count (WBC), absolute neutrophil count (ANC), hemoglobin 

level (HGB), platelet count (PLT), C-reactive protein (CRP), procalcitonin, albumin, aspartate aminotransferase 

(AST), alanine amino transferase (ALT), and blood glucose (GLUC). Prior drug exposures included the number of 

separate antibiotic prescriptions written in the 30 days prior to surgery, and a binary variable denoting presence or 

absence of systemic steroid exposure in the 30 days prior to surgery. An additional feature collected was the 
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number of distinct diagnoses present on the patient’s problem list on the day of surgery, which was used as a 

marker of patient complexity. 

 

Outcome Assignments Using Diagnosis Codes:  

Outcomes of interest included postoperative bacteremia, postoperative sepsis, postoperative NEC, and a 

composite outcome. Outcomes were assigned using a selection of International Classification of Diseases (ICD)-9 

and ICD-10 codes derived from the CDC National Healthcare Safety Network (NHSN) code sets; each code was 

manually validated to ensure inclusion of pertinent codes for the outcomes of interest.31,32 Cases were assigned an 

infection label if a corresponding code was added to the medical record at least once in the 30 days following 

surgery. Additional outcomes, including ventilator associated pneumonia, urinary tract infection, and surgical site 

infection, were considered, but were ultimately excluded given poor ability to validate reliable outcome 

assignments from available data, including clinical notes. 

 

Manual Validation:  

Following initial outcome assignments, a selection of cases was manually validated via review of clinical notes and 

blood and body fluid culture results obtained from the RD. Manual review was attempted by a senior pediatric 

infectious disease fellow on every case initially assigned an infection label based on ICD codes, and for 50 randomly 

selected cases initially assigned to the negative infection class. A label was confirmed when a clinically relevant 

culture result was obtained within 30 days postoperatively (for the bacteremia outcome), or when clinical notes 

confirmed occurrence of the outcome of interest within 30 days of surgery. For the sepsis outcome, 

documentation of temperature instability (fever or hypothermia) and vital signs changes including tachycardia or 

hypotension was required. Fever with or without laboratory changes, but without changes in other vital signs, was 

not considered to represent true sepsis. When medical records clearly indicated the absence of the outcome of 

interest in the 30 days following surgery, the label was reassigned, and the case was retained in the dataset. 

Likewise, when records revealed evidence of the condition emerging preoperatively, the label was reassigned to 

negative, and the case retained. When the record did not contain sufficient data to confirm or overturn a label, the 

initial outcome label was retained, and the case was retained in the data set. 

 

Data Preprocessing: 

Python scikit-learn was used for data preprocessing. Potential features with greater than 20% missingness were 

excluded; for included features, missing values were imputed to the mean. Scikit-learn’s StandardScaler function33 

was used to standardize the dataset prior to model fitting. Potential features for inclusion were evaluated using 

backward selection, with the top features included in the logistic regression models. 
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Model Training:  

Model fitting was performed using Python Scikit-learn. For each outcome of interest, an eighty-twenty test-train 

split was randomly performed on the full validated and unvalidated datasets. Models of interest included logistic 

regression with Ridge penalization, K-nearest neighbors, support vector machine, decision tree, and random forest 

models. Hyperparameter tuning was performed using Hyperopt with a search grid, as well as with Hyperopt-skl.34 

The best set of hyperparameters was retained for each model, improving the final performance of resultant 

models by over 10% compared to default hyperparameters. For each outcome of interest in the validated and 

unvalidated datasets, each model was fit to the training set using ten-fold cross validation within the 80% training 

set, and subsequently evaluated on the 20% test set. Performance was assessed using the area under the receiver 

operating characteristic curve (AUC), as well as accuracy, precision, and recall. Bootstrap resampling was 

performed 100 times with each model to obtain a mean and 95% confidence interval of each performance metric. 

 

Assessment of Feature Importance:  

Feature importance in the logistic regression models was analyzed by comparing the coefficients of the features in 

each model. For the decision tree models, feature importance was evaluated using Shapley (SHAP) scores from 

each model. 
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2.4. RESULTS 

 

Cohort Features:  

The database query generated a total of 2080 operative encounters. Following validation, 157 cases (7.55%) were 

positive for at least one infection outcome. The most common outcome was sepsis, which complicated 83 

surgeries. 

 

Results of Clinical Outcome Validation: 

Manual validation revealed significant error rates in infection outcome assignments, as shown below (Table 1). 

Overall, a total of 203 outcomes were reassigned, of which 181 were reassigned from a positive label to negative. 

All but one of the cases reassigned from a negative label to positive had been preliminarily identified with at least 

one other positive label. The composite outcome was only reassigned from negative to positive in one case, in 

which the patient met criteria and was treated for culture negative sepsis but was not identified via the code 

query. In general, the use of billing codes for assignment led to overidentification of infection outcomes, as 

diagnostic codes were often applied when a diagnosis was merely possible or suspected, but never confirmed. Less 

frequently, codes were applied postoperatively for a condition that originated preoperatively. 

 

Outcome Labels 
Identified 
by Codes  

Positive 
Labels 
Validated 

Negative 
Labels 
Validated 

True 
Positive 

False 
Positive 

False 
Negative 

True 
Negative 

Labels 
Included 
in Cohort 

Sepsis 78  
(3.75) 

69  
(88.46) 

199  
(9.94) 

58 
(98.31) 

11 
(15.94) 

16  
(8.04) 

183 
(91.96) 

83  
(3.99) 

Bacteremia 116  
(5.58) 

116 
(100.00) 

152 
(7/74) 

73 
(62.93) 

43 
(37.07) 

2  
(1.72) 

150 
(98.68) 

75  
(3.61) 

NEC 90  
(4.33) 

88  
(97.78) 

180  
(9.05) 

34 
(38.64) 

54 
(61.36) 

3  
(3.41) 

177 
(98.33) 

39  
(1.88) 

Composite 229 
(11.01) 

218 
(95.20) 

50  
(2.70) 

145 
(66.51) 

73 
(33.49) 

1  
(2.00) 

49 
(98.00) 

157  
(7.55) 

Table 1: Results of validation of infection outcome assignments. Abbreviations: NEC (necrotizing enterocolitis). 
Values presented as n (%) 
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Feature Importance in Logistic Regression:  

For all outcomes in both the validated and unvalidated datasets, the top two predictors identified via regression 

analysis were the number of diagnoses on the patient problem list at the time of surgery (diagnosis count) and the 

number of antibiotic courses in the 30 days prior to surgery (antibiotic courses). Other features of importance 

differed somewhat by outcome and between the validated and unvalidated datasets, but generally included 

measures of preoperative blood glucose, the patient’s age at the time of surgery, intraoperative temperature and 

heart rate values, and the total duration of surgery. The absolute value of the coefficients for the top predictors for 

the composite outcome in the validated dataset and unvalidated dataset are shown below (Figure 1). 

 

  

Figure 1. Top predictors of composite outcome for logistic regression models in validated and unvalidated 
datasets. 

 

Feature Importance in Decision Tree: 

In every outcome in the validated and unvalidated datasets, SHAP values identified the same top two predictors as 

the analyses performed on regression models: the number of diagnoses on the problem list at the time of surgery, 

and the number of antibiotic courses prescribed in the 30 days preceding surgery. Intraoperative temperature was 

of higher importance in the regression models, while albumin and WBC counts were of relatively higher 

importance in the decision trees. The SHAP values for the composite outcome decision trees trained on validated 

and unvalidated data are presented below (Figure 2). 
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Figure 2. SHAP scores for top predictors of comprehensive outcome decision tree models for the validated 
and unvalidated datasets. 

 

Model Performance:  

For each outcome of interest, the logistic regression model achieved the highest AUC in both the validated and 

unvalidated datasets, compared to other model types, with one exception: the random forest model for the NEC 

outcome outperformed logistic regression in the unvalidated dataset only. Despite differences in top features, 

overall performance of the models in the validated and unvalidated datasets was roughly similar, with no 

consistent difference in performance between the validated and unvalidated datasets. A comparison of the 

performance of each model in the unvalidated and validated data sets is presented below (Figure 3). 

 

 

Figure 3. Comparison of AUC of models in validated and unvalidated datasets. LR: logistic 

regression; KNN: k-nearest neighbors, SVM: support vector machine, DT: decision tree, RF: random 

forest. 
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The logistic regression models trained on both the validated and unvalidated datasets achieved an AUC >0.8 for 

the composite outcome. Cross validated receiver operator characteristic (ROC) curves for the logistic regression 

model in the validated and unvalidated datasets is presented below (Figure 4).  

 

  

Figure 4. ROC curves for logistic regression models for the composite outcome in validated and validated 

datasets. 

 

The performance of each model type trained in the validated and unvalidated datasets was evaluated using 

accuracy, precision, and recall. The full performance metrics of all models is presented below (Table 2). 
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Model AUC Accuracy Precision Recall 

 Validated Un-

validated 

Validated Un-

validated 

Validated Un-

Validated 

Validated Un-

validated 

Sepsis  

Regression 0.829 0.810 0.963 0.964 0.963 0.964 1.00 1.00 

KNN 0.804 0.821 1.00 1.00 1.00 1.00 1.00 1.00 

SVM 0.762 0.739 1.00 1.00 1.00 1.00 1.00 1.00 

Decision Tree 0.774 0.719 0.966 0.971 0.967 0.971 0.998 0.999 

Random Forest 0.748 0.749 1.00 1.00 1.00 1.00 1.00 1.00 

Bacteremia  

Regression 0.827 0.789 0.957 0.936 0.960 0.939 0.997 0.997 

KNN 0.786 0.756 1.00 1.00 1.00 1.00 1.00 1.00 

SVM 0.694 0.742 1.00 0.965 1.00 0.965 1.00 1.00 

Decision Tree 0.724 0.708 0.960 0.940 0.960 0.940 1.00 1.00 

Random Forest 0.749 0.744 1.00 1.00 1.00 1.00 1.00 1.00 

NEC  

Regression 0.850 0.843 0.979 0.954 0.979 0.956 1.00 0.998 

KNN 0.814 0.821 1.00 1.00 1.00 1.00 1.00 1.00 

SVM 0.843 0.826 1.00 1.00 0.981 1.00 1.00 1.00 

Decision Tree 0.755 0.797 0.980 0.956 0.980 0.957 1.00 1.00 

Random Forest 0.821 0.853 1.00 1.00 1.00 1.00 1.00 1.00 

Composite  

Regression 0.853 0.824 0.928 0.897 0.928 0.928 1.00 0.991 

KNN 0.788 0.795 1.00 1.00 1.00 1.00 1.00 1.00 

SVM 0.737 0.725 1.00 1.00 1.00 1.00 1.00 1.00 

Decision Tree 0.748 0.764 0.929 0.938 0.929 0.941 1.00 0.996 

Random Forest 0.796 0.778 0.991 0.993 0.992 0.992 1.00 1.00 

Table 2. Full performance metrics of all models in validated and unvalidated datasets. 
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2.5. DISCUSSION 

 

Our models demonstrate fair to good performance in classifying risk of postoperative infections in children 

undergoing cardiac surgery, with several models achieving AUC > 0.8 and markers of accuracy, precision, and recall 

of >0.95. For each outcome of interest that we investigated, logistic regression had the highest AUC, in both the 

unvalidated and validated datasets, except for the NEC outcome in the unvalidated dataset, where the random 

forest model was superior. However, in clinical practice, AUC is not always the most useful indicator of model 

performance. For a potentially preventable complication with significant risks to morbidity and mortality, including 

the postoperative infections classified with these models, it is often desirable to avoid missing high risk cases while 

avoiding excess firing. For this reason, precision and recall may be more clinically useful performance metrics. For 

each outcome, the machine learning models achieved excellent performance in precision and recall, on par with 

logistic regression. Likewise, despite significant differences in the outcome labels in the validated and unvalidated 

datasets, the accuracy, precision, and recall were similar between models trained on the two datasets. 

Though an increasing number of studies attempting to classify postoperative infection risk are being published, this 

current work is unique in several ways. Firstly, most studies in this space are focused on an adult population. 

Children, compared to adults, have different infectious outcomes and risk factors. Studies that do focus on 

infection risk classification in the pediatric population generally involve different surgical populations, including 

orthopedic surgeries and abdominal surgeries. Barker et al have published a model using regression to predict the 

risk of postoperative infection in this population, but their study excludes culture negative sepsis and necrotizing 

enterocolitis, which are important postoperative infectious complications in this population.35 Additionally, their 

study uses only multivariable regression, and does not include other techniques. Lastly, Barker’s study relied on a 

manually curated dataset. In our study, we have contrasted the performance of models in automatically generated 

versus manually validated outcome datasets. As noted above, though the outcomes in the two datasets varied 

significantly, the overall model performance was similar.  

The models trained on validated and unvalidated data all identified the number of diagnosis codes on the problem 

list at the time of surgery as a strong predictor of postoperative infection. While it is perhaps unsurprising that this 

feature would be useful, given its role as a marker of patient complexity, it is novel in several ways. The problem 

list length feature is simple to extract from the medical record and is has not been previously described as a 

marker of infection risk in pediatric postoperative patients. This makes it an enticing candidate feature for models 

run automatically in electronic health record environments. Another useful feature identified by all models was 

the number of antibiotic courses prescribed in the 30 days preceding surgery. This feature shares similar 

advantages: it can be automatically extracted and has not been widely described in other studies. This feature may 

serve as a marker of patient complexity, but also prior antibiotic exposures can lead to microbiome dysbiosis and 

increase risk of later infection. 
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In this study, we used diagnosis codes as an initial method of outcome assignment, followed by manual validation. 

Our assignment criterion, namely a single entry of any relevant diagnosis code in the 30-day period following 

surgery, was an intentionally low threshold, intended to capture the maximum number of potentially positive 

cases by reducing false negatives. Our study demonstrates several patterns of error possible when using diagnosis 

codes for identification of postoperative infections. Some error resulted merely from postoperative coding of a 

condition that originated preoperatively. In other cases, codes were added when a diagnosis was merely 

suspected, but later excluded. Additionally, the negative impacts of hospital acquired condition (HAC) reporting 

may have led to under-use of billing codes associated with certain postoperative infections. Lastly, some 

postoperative infections can be difficult to diagnose definitively. Sepsis can be difficult to distinguish from other 

syndromes of postoperative instability. Mediastinitis (a type of surgical site infection) can be difficult to 

differentiate from a sterile collection of blood or fluid, and ventilator associated pneumonia can be confused with 

postoperative pulmonary edema or endotracheal tube colonization. Occasionally, different physicians or clinicians 

treating the same patient can disagree on whether a postoperative infection is present. Though accepted CDC 

consensus definitions exist, the difficulty in applying these definitions at the bedside contributes imprecision to 

models attempting to classify postoperative infection risk. 

The fairly strong performance of our prediction models even on unvalidated data is an interesting result of this 

study. While the models trained on unvalidated data may not be the most accurate in classifying the risk of true, 

proven infection, they may provide useful risk classification for postoperative instability more generally. 

Additionally, it is encouraging that in validating a subset of cases not labeled as positive by diagnosis codes, only 

2% of initially negative cases represented a false negative. This indicates that while single appearance of a billing 

code pertaining to infection may not be highly specific, the presence of such a code has excellent sensitivity in 

identifying patients with at least one clinically significant postoperative infection. This is an important finding, as 

such codes are easily mined from the health record and can be helpful in identifying higher risk patients who may 

deserve greater consideration by the clinical team. 

Limitations of this study include a relatively small sample size, relatively rare infectious outcomes in the data set, 

the reliance on single center data, missing data, the inability to manually validate all cases, and the lack of an easily 

interpretable and hand-calculable pencil and paper tool. Missingness of structured data led to the exclusion of 

several potential features with strong literature support for predictive ability, including procalcitonin36,37, 

preoperative mechanical ventilation status35, and preoperative colonization status38,39. The exclusion of these 

predictors likely decreased the overall performance of the models we trained. Additionally, missing and 

incomplete documentation limited our ability to definitively confirm or reject every label that we attempted to 

validate. 

Further work is needed to improve the clinical utility of these models. Because these models were trained and 

validated on single center data, external validation using data from other centers will be critical to assess the 
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generalizability of these models. To assess whether these models provide useful decision support that is not 

immediately apparent to human caregivers, it would be valuable to compare the classification performance of the 

models to that of human clinicians presented with the same preoperative and interoperative data. Finally, prior to 

deployment, it would be critical to prospectively validate the performance of these models by silently 

implementing in the electronic health record and evaluating performance over time. 
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2.6. CONCLUSIONS 

 

Postoperative infections are an important source of morbidity and cost in pediatric cardiac surgery patients; 

identifying higher risk patients could allow targeted interventions to mitigate risk. In this work, we have generated 

a pediatric cardiac surgery patient cohort using structured data from a clinical data warehouse. Manual validation 

of outcome assignments revealed inaccuracies of using diagnosis codes for automatic detection of postoperative 

infections. However, overall model performance was similar for models trained on validated and unvalidated data 

sets. Most models achieved good performance, with many achieving AUC >0.8 and accuracy, precision, and recall 

>0.95, in both validated and unvalidated datasets. While logistic regression achieved the best AUC for each 

outcome apart from the NEC outcome in the unvalidated dataset, the accuracy, precision, and recall of the 

machine learning models was comparable to logistic regression. The performance of these models is promising. If 

successful in further validation, the models could be clinically useful in classifying postoperative infection risk in 

pediatric cardiac surgery patients, allowing targeted interventions to improve patient outcomes. 
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3.1. ABSTRACT 

 

Objective:  

To create an easily interpretable bedside prediction rule to classify the risk of infection following pediatric cardiac 

surgery, using data points automatically retrievable from the electronic health record. 

 

Design:  

Retrospective chart review. 

 

Setting:  

Patient records were abstracted from clinical data from Monroe Carell Junior Children’s Hospital at Vanderbilt 

University Medical Center. 

 

Patients:  

Our cohort included 2080 patients from birth to 18.0 years of age, who underwent cardiac surgery between 

January 1, 2015 and November 30, 2020. 

 

Interventions:  

None. 

 

Measurements and Main Results:  

We used structured queries of a warehouse of clinical data repurposed for research to generate a cohort of 

pediatric cardiac surgery patients. We retrieved possible infection predictors. We used diagnosis codes and manual 

review of clinical notes to assign infection outcomes. We used logistic regression to create a prediction model from 

which we derived the risk score. Our bedside prediction rule achieved fair performance in classifying post 

operative infection risk, with an area under the Receiver Operating Characteristic curve of 0.753. The predictors in 

the final rule included the number of diagnoses on the problem list, minimum preoperative albumin level, the 

range between minimum and maximum preoperative white blood cell count, maximum platelet count, maximum 

hemoglobin, and minimum pulse. 

 

Conclusions:  

Our bedside prediction rule achieved fair performance in classifying the risk of infection following pediatric cardiac 

surgery. A pediatric cardiac surgery postoperative infection risk score could allow for targeted infection prevention 

interventions, improving resource utilization and potentially improving outcomes. 
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3.2. BACKGROUND 

 

Congenital heart diseases are the most common birth defects, accounting for a third of major congenital 

anomalies.1 Every year in the United States, approximately 40,000 children undergo cardiac surgery.2 

Postoperative infections, including surgical site infections, bacteremia, culture-negative sepsis, and abdominal 

infections, complicate up to 30% of surgeries.2 Infections cause a substantial burden to patients in the form of 

excess morbidity,3 increased length of stay,4 and mortality.5 

If patients at higher risk of infection could be identified early, targeted interventions could protect those at highest 

risk, while reducing unnecessary interventions in those at lower risk. Patients at high risk for subsequent infection 

could receive tighter glycemic control,7 enhanced efforts at decolonization,8 changes in isolation precautions or 

care clustering, lower risk central lines and earlier removal,9,10 earlier sternal closure,11 and changes in skin care 

and wound care.12 For patients at lower risk, providers could consider decreasing the use of laboratory tests for 

nonspecific inflammation and could consider delaying or foregoing empiric antibiotics in situations unlikely to 

represent true post-operative infection. 

Several previous studies have attempted to predict postoperative infection risk following pediatric cardiac surgery. 

Hatachi et al used 526 surgeries, with 81 cases of healthcare-associated infections, to identify risk factors for 

pediatric postoperative infection following cardiac surgery.2 Their regression analysis identified mechanical 

ventilation greater than or equal to 3 days, dopamine use, genetic abnormality, and delayed sternal closure as risk 

factors, but did not convert these factors to a calculable score.2 

Barker et al utilized the Society of Thoracic Surgeons (STS) Congenital Heart Surgery Database to establish a model 

using data from 30,078 children from 48 centers.13 Their model was designed for pre-operative application to 

predict “major infections” which included strict criteria for septicemia, mediastinitis, and endocarditis.13 Young 

age, high surgical complexity, previous cardiothoracic operation, preoperative length of stay greater than one day, 

preoperative requirement for ventilator support, and presence of a genetic abnormality were included in the final 

risk score. The model was applied using pre-operative variables; performance was good with area under the 

receiver operating curve (AUC) 0.79 for the final model.13 Limitations of the model included the strict definition of 

“serious infection” which likely led to under-identification of clinically significant infections. Necrotizing 

enterocolitis (NEC) and abdominal infection were also excluded from the infection end point. Additionally, the 

model used a manually curated dataset, and was not designed or intended for automatic, background use within 

the electronic health record (EHR). 

Algra et. al developed a model using 412 procedures with 102 subsequent infections, with procedures performed 

between April 2006 and May 2009 at a single center in the Netherlands.14 They utilized three predictors (age less 

than six months, postoperative pediatric intensive care unit (PICU) stay greater than 48 hours, and postoperative 
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open sternum greater than 48 hours) to generate a model intended for application 48 hours following surgery. This 

model achieved an AUC of 0.78, or 0.72 when using only proven infections, defined as those confirmed by either 

culture or polymerase chain reaction.14 This model did not investigate any laboratory values, which have shown 

utility in other analyses. Like Barker, this model did not use structured data amenable for automatic extraction 

from the EHR. 

Any risk score will have limitations. An ideal score is accurate, interpretable, actionable, and easy to use. Many 

proposed scores lack sufficient accuracy to discriminate between cases with infection and cases without. Others 

use advanced machine learning methods, but subsequently are less interpretable; the “black box” problem of 

machine learning models obscures why a patient received a high or low score.15 Others yield less actionable 

results; a score applied well after surgery might be less useful than a score available on the day of surgery, when 

immediate postoperative care can still be impacted. Additionally, a score trained on a very strict and rigid 

definition of infection may fail to predict many other clinically important cases that fail to meet the strict outcome 

definition. Lastly, many scores, such as Barker’s and Algra’s, require manually curated data, and are not designed 

to run autonomously within the EHR. A score using structured, retrievable data could run automatically in the EHR, 

reducing the burden on busy health workers. An automatic score can run in the background, generating an alert 

only when prompted or if a patient’s score exceeds a certain threshold. 

Our aims in this study were to address some of the limitations of past risk scores, by generating a risk score using 

predictors that could be automatically extracted from an EHR on the day of surgery, to classify the risk of clinically 

relevant postoperative infections following pediatric cardiac surgery. 
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3.3. METHODS 

 

Cohort Creation 

This research was approved by the Vanderbilt University Medical Center (VUMC) Institutional Review Board, with 

waiver of consent. In this retrospective study, we included all cardiac surgery procedures performed at VUMC 

between January 1, 2015, and November 30, 2020, on patients under 18 years of age. We obtained the data for 

this study via query of the Vanderbilt Research Derivative (RD),28 a structured data warehouse, abstracted from the 

EHR, and repurposed for research. The RD contains data on patient demographics, encounters, diagnoses, 

laboratory values, and physician and ancillary notes. We included any record containing a current procedural 

technology (CPT) code for a cardiac surgery, derived from Centers for Disease Control and Prevention (CDC) code 

sets.50 We excluded codes that would not require a surgical incision in the chest (such as transcutaneous 

catheterization procedures).  

 

Clinical Predictor Selection and Retrieval 

Candidate predictors of interest were selected via literature review. Only predictors that would be available on or 

before the day of surgery, and  retrievable via automated queries of the structured data warehouse, were 

considered.  

Possible predictors included patient demographics, intraoperative vital signs, surgical parameters, preoperative 

and intraoperative drug exposures, and preoperative and intraoperative laboratory values. Demographics of 

interest included patient age at surgery, biological sex of record at the time of surgery, weight, and body mass 

index (BMI).  

Vital signs served as an indicator of physiologic stress and included only values recorded during the operative 

encounter. Vital signs included minimum and maximum intraoperative values for heart rate, systolic blood 

pressure, diastolic blood pressure, and body temperature. We hypothesized that vital sign lability, independent of 

extreme values, might be an important predictor of subsequent infection. For this reason, in addition to maximum 

and minimum values, we also calculated a range value, defined as the difference between the highest and lowest 

recorded value for each vital sign parameter within the operative encounter.  

Surgical parameters included total duration of the surgery, the number of procedure codes listed for the surgical 

encounter, the American Society of Anesthesiologists (ASA) class assignment,18 and the case priority level, ranging 

from elective to emergent. An additional binary feature was captured, reflecting whether the patient had 

undergone a previous surgical procedure in the 30 days preceding the surgery of interest.  

Laboratory parameters included the maximum and minimum values, and the range between the two, of all values 

collected on the day of surgery and the three prior days. Candidate lab features included total white blood cell 

count, absolute neutrophil count (ANC), absolute lymphocyte count, hemoglobin level, platelet count, c-reactive 

protein (CRP), procalcitonin, albumin, aspartate aminotransferase, alanine amino transferase, and blood glucose. 
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Prior drug exposures included the total number of separate antibiotic prescriptions prescribed inpatient or 

outpatient in the Vanderbilt medical system in the 30 days prior to surgery, and two binary variables denoting 

presence or absence of any systemic steroid exposure, or insulin exposure, in the 30 days prior to surgery. An 

additional feature was the number of distinct diagnoses present on the patient’s problem list on the day of 

surgery. 

 

Preliminary Outcome Assignment 

The primary outcome of this study consisted of a composite metric of any infection occurring from one day to 30 

days postoperatively. Infections included in the composite outcome were bacteremia, fungemia, endocarditis, 

clinical (including culture negative or viral) sepsis, NEC, superficial and deep surgical site infections. A preliminary 

outcome assignment was made using a set of International Classification of Diseases (ICD)-9 and ICD-10 codes, 

derived from the CDC National Healthcare Safety Network (NHSN) code sets.29 Each code in the target code set 

was individually reviewed for inclusion or exclusion based on relevance. Codes that were not adequately specific or 

accurate (i.e., hypotension) were excluded, and additional codes were added via keyword queries of the Athena 

Database.31 For each procedure record included in the cohort, a query for any of the diagnosis codes in the code 

set was performed. If the clinical record included one or more entries of any code in the infection code set 

between 1 and 30 days postoperatively, the case was preliminarily labeled as “infection present.” If no entry of any 

diagnosis code in the infection code set was created between one and 30 days postoperatively, the case was 

preliminarily labeled as “infection absent.”  

 

Manual Validation of Outcomes 

Following preliminary outcome assignments, a selection of cases was manually validated via review of clinical 

notes and blood and body fluid culture results. All data used for manual review was obtained from the RD data 

warehouse, and the review was performed by Dr. Williamson. Manual review was attempted for every case 

preliminarily labeled as “infection present”, and for 51 randomly selected cases initially labeled as “infection 

absent”. Multiple notes and culture results were reviewed for each case, including progress notes, operative notes, 

consultation notes, and discharge summaries. A detailed description of infection definitions is included in the 

supplemental material. An assignment to the “infection present” label was confirmed when clinical notes indicated 

diagnosis of, and treatment for, one of the infection types included in the composite. The case was reassigned to 

the “infection absent” label when medical records clearly indicated the absence of the outcome of interest in the 

30 days following surgery, such as a discharge summary 30 or more days following surgery noting “no infectious 

concerns” supported by absence of mention of infection on prior daily progress notes, or b) notes indicating, 

“sepsis rule out performed, but sepsis excluded” coupled with lack of mention of true infection in any other clinical 

notes. Likewise, when records revealed evidence of the condition emerging preoperatively, the label was 

reassigned to “infection absent” unless evidence was found of a separate infection meeting the above criteria, 
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arising postoperatively. When the record did not contain sufficient data to definitively confirm or overturn the 

preliminary outcome label per the above criteria, the preliminary outcome label was retained, and the case was 

retained in the data set. 

 

Statistical Analysis 

All analyses were performed using Python, including the sckit-learn and statsmodel packages. 

Before performing logistic regression, all possible predictors with greater than 20% missing data were excluded 

from further analysis. For the remaining predictors, missing data points were imputed to the mean. Because the 

risk score assigns points for a value above (or below) a given threshold, continuous variables were dichotomized to 

binary variables prior to further analysis. This was achieved by finding an optimal threshold value for each 

continuous variable, defined as the cut point that maximized the explained variance in the composite outcome.  

After all candidate predictors were converted to binary variables, univariate logistic regression was performed for 

each binary predictor variable, and those with p value <0.05 in univariate analysis were included as candidates for 

the multivariate logistic regression model. Stepwise backward logistic regression was performed to reduce the 

number of predictors to six, resulting in a reduced logistic regression model. This reduced model was trained on 

80% of the full data set (the training set), repeating the analysis across 100 bootraps. Following training, the 

reduced logistic regression model was validated on the remaining 20% (the test set).  

The reduced multivariate logistic regression model was then translated into a risk prediction rule. For each 

predictor in the model, risk score point values were determined by obtaining the coefficients for each predictor in 

the reduced multivariate logistic regression model, multiplying the coefficient by 10, and rounding the result to the 

nearest whole number. A score was calculated for every case in the cohort, by summing the points assigned (or not 

assigned) for each score criterion. The sensitivity, specificity, positive and negative predictive values, and overall 

rate of infection were calculated for different score thresholds and ranges. Balancing sensitivity and specificity at 

different total score thresholds, score ranges for high, medium, and low risk were determined. 
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3.4. RESULTS 

 

An overview of full methods and abridged results is presented in Figure 5. 

 

Figure 5. Overview of study methods. Description of methods and brief results from cohort creation to 

predictor retrieval, to preliminary and outcome assignment, conversion to binary predictors, logistic regression 

modeling, and rounding of coefficients to generate a calculable risk score. 

 

A total of 2080 procedures were included, performed on a total of 1681 unique patients. Prior to outcome 

validation, 284 cases were preliminary labeled as “infection present”; after outcome validation, 229 (11%) were 

labeled as “infection present.” The most common category of validated postoperative infection was surgical site 

infection, which occurred following 104 cases. Additionally, there were 83 cases of sepsis, 77 cases of bacteremia, 

candidemia, or endocarditis, and 39 cases of NEC. Some procedures were followed by infections from multiple 

classes.  

Originally, 59 predictors were considered; following the elimination of predictors with more than 20% missing 

data, 38 candidate predictors were considered for inclusion in the final model. Table A in the supplement presents 

these 38 candidate predictors, along with the identified optimal threshold cutoff, and the odds ratio for the binary 

variable between cases with and without infection. After analyzing p values in univariate regression, 37 of the 38 

variables remained as candidate predictors for the risk score. The only binary predictor with p value >0.05 on 

univariate regression was maximum diastolic blood pressure <52. 

The six binary predictors remaining after backward selection, and thus included as components in the final risk 

score, are presented in Table 3. For each component, the number and percentage of cases with and without 

infection that met the score criteria, as well as the odds ratio and p value for the association, are presented as 

well. The reduced model (the logistic regression model using these six predictors) achieved an AUC of 0.762, an 

accuracy of 0.898, precision of 0.903 and recall of 0.991 in the test set, averaged across 100 bootstraps. 
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Predictor Procedures 

without 

Infection 

n =1851 (%) 

Procedures with 

Infection n=229 

(%) 

Odds Ratio  

(95% CI) 

P value 

Diagnosis Count >54 83 (4.5) 68 (29.7) 9.00 (6.28 - 12.8) <0.001 

Minimum Albumin <2.7 467 (25.2) 135 (59.0) 4.26 (3.21 -5.65) <0.001 

White Blood Cell Range > 11.1 114 (6.2) 49 (21.4) 4.15 (2.87 -5.99) <0.001 

Maximum Hemoglobin > 17.27 177 (9.6) 59 (25.8) 3.28 (2.35 -4.58) <0.001 

Maximum Platelet Count < 216 532 (28.7) 110 (48.0) 2.29 (1.74 -3.03) <0.001 

Minimum Pulse >32 1140 (61.6) 167 (72.9) 1.68 (1.24 – 2.28) <0.001 

Table 3. Dichotomized predictors included in reduced model and risk score. Procedures exceeding 

the threshold in the “infection present” and “infection absent” groups are presented as n (%).  

 

In Table 4, we present the coefficient of each predictor in the reduced, six-predictor logistic regression model, as 

well as the point values assigned in the risk score to cases meeting the condition. Having greater than 54 diagnoses 

on the problem list had the largest coefficient in the reduced model, and thus the most points assigned in the risk 

prediction score. Having a minimum pulse greater than 32 beats per minute had the smallest coefficient in the 

reduced logistic regression model, and thus had the fewest points awarded in the risk prediction score. 

 

Predictor Multivariate Model 

Coefficient 

Risk Score Point 

Value 

Diagnosis Count >54 1.12 11 

Minimum Albumin <2.7 0.788 8 

White Blood Cell Range > 11.1 0.611 6 

Maximum Hemoglobin > 17.27 0.545 5 

Maximum Platelet Count < 216 0.502 5 

Minimum Pulse >32 0.498 5 

Table 4. Multivariate model coefficients and resulting risk score point values. 
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The risk prediction score had an AUC of 0.753, accuracy of 0.897, precision of 0.901, and recall of 0.993 in the test 

set, averaged across 100 bootstraps. The receiver operating characteristic curve of the risk prediction score is 

presented in Figure 6. 

 

 

Figure 6. ROC curve for the risk prediction score. 

 

The average score result in the dataset was 9.4, with a minimum value of 0 and a maximum value of 40. The 

average score with infection present was 16.34 (95% confidence interval 15.09-17.60), compared to 7.94 (95% 

confidence interval 7.65-8.22) with infection absent; p value <0.001. The distribution of scores in the infection 

present group and infection absent group are presented in Figure 7. 
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Figure 7. Distribution of score values for cases with infection present compared to infection absent. 

 

Different total score thresholds yielded differences in sensitivity, specificity, positive predictive value, and negative 

predictive value for postoperative infection. The performance of the prediction rule for classifying infection risk, at 

various score thresholds is presented in Table 5. 
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Cutoff Value Cases Above 

Threshold 

Sensitivity Positive 

Predictive 

Value 

Specificity Negative 

Predictive 

Value 

>=5 1749 96.5% 12.6% 17.5% 97.5% 

>=6 1584 93.4% 13.5% 26.0% 96.7% 

>=7 933 74.7% 18.3% 58.8% 94.9% 

>=9 847 72.5% 19.5% 63.2% 94.9% 

>=11 834 71.6% 19.7% 63.8% 94.8% 

>=12 572 63.3% 25.3% 76.9% 94.5% 

>=14 487 58.5% 27.5% 80.9% 94.0% 

>=15 383 53.7% 32.5% 86.0% 93.5% 

>=17 353 51.1% 33.1% 87.3% 93.2% 

>=20 168 34.9% 48.2% 90.1% 92.7% 

>=25 88 23.1% 60.2% 98.1% 91.2% 

>=30 60 15.7% 60.0% 98.7% 90.4% 

>=31 22 5.68% 59.1% 99.5% 89.5% 

>=35 12 2.62% 66.7% 99.8% 89.2% 

>=36 5 1.75% 80.0% 99.9% 89.2% 

Table 5. Performance of the infection risk score when total score exceeds different thresholds. 

 

Based upon the performance of the model, score cutoff ranges of 0-4, 5-24, and 25 and above were selected to 

define low, moderate, and high-risk groups respectively. With these groupings, the rate of infection ranged from 

2.41% in the lowest group, to 60.2% in the highest group. The number of total cases and positive cases, and the 

probability of infection in each risk group, are presented in Table 6. 

 

Score Range Total Cases Positive Cases Rate of Infection (%) 

0-4 331 8 2.41 

5-24 1661 168 10.1 

25+ 88  53 60.2 

Table 6. Probability of infection in different risk score ranges. 
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3.5. DISCUSSION 

 

In this study, we propose a risk score to classify the risk of infection following pediatric cardiac surgery, capable of 

running autonomously in an EHR. Our model uses six predictors: the number of problems on the problem list, the 

minimum preoperative albumin value, the range between minimum and maximum white blood cell count, the 

maximum hemoglobin concentration, the maximum platelet count, and the minimum pulse. This risk score 

achieved fair performance, with an AUC of 0.753. In the past decade, Algra and colleagues and Barker and 

colleagues created predictive scores for postoperative infection following pediatric cardiac surgery.13 Though these 

score rules performed well, the risk score we propose here is unique in several ways and offers distinct 

advantages. 

The top predictors proposed in our model include novel additions, likely representing structured data fields that 

represent previously described associations. The number of diagnoses on the problem list may function similarly to 

the presence of genetic abnormality used by Barker et al, as a marker of patient complexity. Low albumin has been 

associated with postoperative infection following pediatric surgery21 It may serve as an indicator of poor 

preoperative nutrition, or protein losing enteropathy, either of which may increase the risk of postoperative 

infection.21–26 White blood cell count range could be a marker of physiologic stress, manifested by rapid 

demarginalization of leukocytes, or of an early infection not yet clinically apparent at the time of surgery. 

Thrombocytopenia after cardiopulmonary bypass has been associated with postoperative infection and mortality 

in adults,27 and has been associated with early mortality in children receiving post-cardiotomy veno-arterial 

extracorporeal membrane oxygenation.28 Interestingly, minimum operative pulse greater than 32 beats per minute 

may indicate the absence of cardiopulmonary bypass. It is surprising, based on prior literature, that the absence of 

bypass would be a predictor of postoperative infection, but this appears to be the case in our cohort.  

Another unique feature of our risk score is the comprehensive outcome, with the inclusion of NEC and clinical 

sepsis in the predicted endpoint. NEC is an important complication of pediatric cardiac surgery, occurring in as 

many as 1.8% of children with congenital heart disease.29–34 NEC involves bacterial translocation, is treated with 

antimicrobials, and can progress to sepsis or bloodstream infection if not detected early.29 Despite the importance 

of this endpoint, it has been excluded from previous models in this space. Barker et al utilized an even more strict 

definition of infection, potentially missing many clinically important cases. Likewise, culture negative sepsis is an 

important endpoint; relying on a strict definition of culture positivity can miss relevant cases where cultures may 

be negative due to fastidious organisms, small culture volumes, or antibiotic pretreatment.  

Additionally, our model is intended for application at a unique timepoint, which is at the completion of the 

operative encounter. Models intended for preoperative use, such as that proposed by Barker et al,13 exclude 

intraoperative events which can serve as strong predictors. However, models such as that proposed by Algra et al 

for implementation 48 hours after surgery,14 risk missing a critical window where perioperative intervention may 
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improve outcomes. In this study, we propose a time point that maximizes useful intraoperative predictors, but still 

allows a window of opportunity for intervention. 

Finally, our model is unique in that the predictors, and thus the model itself, can be automatically abstracted from 

EHR data, without requiring manual implementation by human operators, reducing required clinician effort and 

potential errors. However, the model is simple enough to be implemented manually if preferred and is easily 

interpretable.  

The risk score we propose here does have several limitations. First, our use of single center data may limit 

generalizability, due to institutional practice patterns and local patient demographics. Additionally, potentially 

important features were eliminated due to missing or inconsistent data. Finally, the final months of our study 

period occurred after the start of the COVID-19 pandemic, which significantly changed patterns of pediatric cardiac 

surgery as well as hospital staffing and infection control efforts. It is possible that this had unmeasured effects on 

the performance of our model. 

Because our data was extracted from structured EHR fields and structured into an interpretable score, there are 

unique opportunities for clinical application of our risk score. The model is easily interpretable, which should 

increase confidence in the score compared to machine learning models subject to the “black box” phenomenon. 

However, unlike the risk scores previously published for this application, this model is designed to make use of 

structured data that could be automatically extracted from the EHR in real time. For this reason, this model could 

run automatically in the EHR, allowing for a best practice alert to be displayed to clinicians. Such an alert could be 

displayed to pediatric cardiac critical care physicians upon a patient’s transfer to the intensive care unit following 

surgery and could prompt a risk stratified intensive care unit order set. Orders for high-risk patients could include 

tight glycemic control,7 careful management of enteral feeds,35,36 enhanced decolonization efforts,8 early sternal 

closure,37 early line removal, or inflammatory laboratory monitoring. Limiting these interventions to the children at 

highest risk could reduce the risks of antibiotic resistance, hemodynamic instability,11 false positive lab results and 

excess cost in lower risk patients. 

Prior to deploying this risk score for clinical use, the generalizability and performance of this model will need to be 

confirmed via validation in different patient populations and different surgical centers. The model should also be 

validated using data from 2021 and later, to assess the impact of the COVID-19 pandemic and its aftermath, as well 

as evolving surgical practice, on model performance. 
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3.6. CONCLUSIONS 

 

In this study, we have created an interpretable risk score intended to be applied at the conclusion of surgery, and 

automated within the EHR, which can classify children as low, moderate or high risk of infection following pediatric 

cardiac surgery. The score achieved an AUC of 0.753 in internal validation. Our model contributes new potential 

predictors for postoperative infection following pediatric surgery, including the number of problems on the 

problem list, the minimum preoperative albumin value, the range between minimum and maximum white blood 

cell count, the maximum hemoglobin concentration, the maximum platelet count, and the minimum pulse. Our 

model uses structured clinical data, and as such could be automatically run within the EHR. Should the model 

perform well in external validation, this risk score could be a clinically useful tool to individualize infection 

prevention efforts to the risk of the individual child. 
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4.0. SUMARRY 

 

We successfully completed all three aims of this thesis. In our first manuscript we addressed aims 1 and 2; we 

created a cohort of pediatric cardiac surgery patients at Monroe Carell Jr. Children’s hospital, and manually 

validated a selection of the infection outcomes assigned via diagnosis code queries. Results of this first section 

demonstrated significant inaccuracies in the code-based infection outcome assignments, with both false positive 

and false negative labels being relatively common. Codes were most accurate for assignment of the sepsis 

outcome, and least accurate for the assignment of the NEC outcome. Often available clinical data was insufficient 

for manual review of the infection outcome, most notably in the case of surgical site infections.  

In aim 2 of our study, we compared the performance of logistic regression and machine learning models trained on 

data with validated and unvalidated infection outcomes. This was a critical goal of this work, as validation via 

manual review is time intensive, but often is linked to improved model performance.4,25,67 While our models 

trained on validated data trended toward improved classification performance, the difference was non-significant; 

for the logistic regression models predicting the composite outcome in aim 2, the mean (95% confidence interval) 

AUC in validated data was 0.853 (0-843-0.863), compared to 0.824 (0.802 -0.845) in unvalidated data. The lack of 

clinical significance of the performance difference is an interesting result of this study. Unvalidated data is much 

more straightforward to obtain and use; and our study shows that even data with unvalidated labels can be used 

to models with good performance in classifying the risk of infection follow pediatric cardiac surgery. Furather, it is 

possible that the “inaccurate” labels could even be clinically useful. Our false positive labels almost always 

identified a patient that was clinically unstable, with enough signs of infection to warrant a brief clinical “rule out” 

with blood cultures and empiric antibiotics. Though these patients did not ultimately meet the strict definition of 

infection we established, a model that predicts such cases could still be of clinical utility. This possibility warrants 

future study. 

In the second manuscript, we addressed aim 3, by creating and internally validating an interpretable risk score to 

classify the risk of postoperative infection following pediatric cardiac surgery. This interpretable risk score differed 

from the models generated in the first manuscript in several ways. First, the top features differed between aim 2 

and 3. In aim 2, the number of preoperative antibiotic courses, as well as the age of the patient, were very strong 

predictors of later infection. For the bedside decision rule, neither of these features were selected for inclusion in 

the final model. Likely this difference pertains to variable information loss from dichotomizing these continuous 

variables. In addition, there may also be differences introduced by the re-inclusion of the surgical site infection 

outcome in the composite outcome.  

In addition to differing in top features, the interpretable model in aim 3 had lower overall performance than the 

best performing models in the first manuscript. A portion of the performance loss came from dichotomization of 

the continuous variables, and the resultant information loss; however, even a full model with all candidate 

predictors, prior to dichotomization, had lower performance when the surgical site infection was reentered into 
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the composite outcome (AUC = 0.766). This performance difference may partially be explained by differences in 

features predictive of surgical site infection compared to other infectious outcomes. Additionally, as surgical site 

infection was subject to the highest rate of failed validation, it is possible that this outcome remained particularly 

inaccurate even after attempted manual validation. 

In aim 3, we created a hand calculable risk score, as this is a type of risk metric frequently used and accepted by 

most physicians and healthcare providers. However, because even our bedside model is optimized for automatic 

use by the electronic health record, it would likely be more valuable for later clinical deployment to utilize a logistic 

regression model that preserves continuous variables, eliminating information loss. A logistic model could still be 

largely interpretable to bedside providers, as features and coefficients yield insight into how a score is calculated. 

Future work will be needed prior to clinical implementation of these classification models. As our models were 

trained on single center data, the models will need to be validated on data from other centers with different 

practice patterns and patient demographics, prior to considering real-time clinical implementation. Additionally, it 

will be important to evaluate these models over time, to ensure that evolving medical practice or changes to 

infection epidemiology do not impact the accuracy of the model over time. The performance of the model could 

be assessed by running it as a silent best practice alert (BPA) within the EHR, using unvalidated data, and 

comparing performance in classification to the results presented here. Should the model perform well, it could be 

unmasked to provide a visible best practice alert, or order set recommendation, to clinicians caring for 

postoperative patients. 

This body of works adds significant value to the field. First, we evaluated the performance of models trained on 

validated and unvalidated data, and found the difference to not be statistically significant. This result raises the 

possibility of running a model on unvalidated outcomes obtained via diagnosis code criteria. A model with good 

performance on unvalidated outcomes would save time and allow automatic implementation within the EHR. 

Likewise, we expanded the definition of postoperative infection to include NEC and culture negative sepsis, which 

are important post operative infections. Lastly, and perhaps most importantly, previously proposed models for this 

purpose do not use structured EHR data. By using structured data, our models may be run automatically within the 

EHR.  

By addressing these limitations of past models, namely the reliance on manually validated outcomes, the limitation 

in the definition of infection that could miss clinically important cases, and the reliance on manual implementation, 

we open the door for a comprehensive model that could be automatically implemented by the EHR without 

manual calculation by clinicians. This benefit is significant, allowing the model to be integrated seamlessly and 

effortlessly into clinicians’ workflow, and potentially fueling clinical decision support to clinicians at the bedside. 

Providing such timely support could help providers individualize care based upon patient risk, with the hope of 

reducing postoperative infections, and improving patient outcomes. 
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APPENDIX 1: SUPPLEMENTAL MATERIAL 
 
 
Infection definitions: The infection definitions included: bacteremia (requiring documentation of a positive blood 

culture following surgery and treatment of at least 5 days with antimicrobials for same; a single peripheral culture 

positive for coagulase negative Staphylococcus or diphtheroids was excluded), fungemia (requiring documentation 

of a positive blood culture for fungal or yeast species), endocarditis (requiring documentation of fulfillment of 

modified Duke criteria and of treatment initiation for endocarditis), sepsis (requiring a) temperature instability plus 

b)  vital sign instability such as tachycardia or hypotension beyond baseline, plus c) treatment with antimicrobials 

at least 5 days with antimicrobials, unless a documented viral source was identified), surgical site infection 

(requiring a) description of erythema, purulent drainage, or positive wound culture, plus b) mention of treatment 

for surgical site infection, pocket site infection or mediastinitis, plus c) documentation of improvement following 

treatment initiation), and NEC (requiring a) a clinical assessment of NEC in the clinical notes plus b) documentation 

of antibiotic treatment of at least 5 days duration, plus c) documentation of at least one of: bloody stool, 

pneumatosis on imaging, or drained purulent abdominal collection). 
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Predictor Infection Present Infection Absent OR LL UL P Value 

Diagnosis Count Binary >54 83 68 9.00 6.28 12.88 <0.001 

Minimum Platelet Count <43 75 42 5.32 3.54 7.99 <0.001 

Platelet Count Range >449 7 4 4.68 1.36 16.12 0.014 

CRP Range >26 69 33 4.35 2.80 6.75 <0.001 

Minimum Albumin <2.7 467 135 4.26 3.21 5.65 <0.001 

Age <67 days 277 97 4.18 3.12 5.59 <0.001 

WBC Range >11.1 114 49 4.15 2.87 5.99 <0.001 

Minimum WBC >3.15 169 65 3.94 2.84 5.48 <0.001 

Minimum CRP <17.47 195 72 3.89 2.84 5.34 <0.001 

Maximum WBC >29.46 218 73 3.51 2.57 4.79 <0.001 

Glucose Range >181 244 79 3.47 2.56 4.70 <0.001 

Maximum Hemoglobin >17.3 177 59 3.28 2.35 4.58 <0.001 

ANC Range >3.41 354 100 3.28 2.46 4.36 <0.001 

Albumin Range >0.6 298 88 3.25 2.42 4.36 <0.001 

Maximum CRP >45 201 63 3.12 2.25 4.31 <0.001 

Maximum Glucose >236 332 92 3.07 2.30 4.10 <0.001 

Maximum Pulse >191 106 36 3.07 2.05 4.61 <0.001 

Minimum Diastolic BP <27 1183 193 3.03 2.09 4.37 <0.001 

Hemoglobin Range >6.3 447 112 3.01 2.27 3.98 <0.001 

Maximum ANC >7.97 425 108 2.99 2.26 3.97 <0.001 

Minimum Systolic BP <50 1159 190 2.91 2.04 4.16 <0.001 

Minimum Hemoglobin <6.5 47 16 2.88 1.61 5.17 <0.001 

Procedure Count >8 27 9 2.76 1.28 5.95 0.009 

Minimum Temperature <31.0 653 135 2.63 1.99 3.49 <0.001 

Surgery Duration >502 123 35 2.53 1.69 3.80 <0.001 

Maximum Albumin <3.2 418 95 2.43 1.83 3.23 <0.001 

Maximum Systolic BP <97 140 37 2.36 1.59 3.48 <0.001 

Steroid Exposed 134 35 2.31 1.55 3.45 <0.001 

Antibiotic Courses >4 537 111 2.30 1.74 3.04 <0.001 

Maximum Platelet Count <215 532 110 2.29 1.74 3.03 <0.001 

Minimum ANC >4.67 389 86 2.26 1.69 3.02 <0.001 

Minimum Glucose <57 202 47 2.11 1.48 3.00 <0.001 

Maximum Diastolic BP <52 1819 221 2.06 0.94 4.52 0.072 

Previous Surgery 113 26 1.97 1.26 3.09 0.003 

ASA Class >3 949 148 1.74 1.30 2.31 <0.001 

Minimum Pulse >32 1140 167 1.68 1.24 2.28 0.001 

Maximum Temperature <37.2 581 98 1.64 1.24 2.16 0.001 

Male Gender 961 138 1.40 1.06 1.86 0.017 

Table A: Full list of candidate binary predictors. Infection absent and present note the number of cases in each 
category meeting the condition. OR: odds ratio, LL: lower limit of odds ratio confidence interval, UL upper limit of 
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odds ratio confidence interval, CRP: C reactive protein, WBC: white blood cell count in blood, ANC: absolute 
neutrophil count, ASA: American Society of Anesthesiologists, BP: blood pressure. 
 
 


