
Transcript
[00:00] [background music]

Derek Bruff:  [00:10] Welcome to “Leading Lines,” a podcast from Vanderbilt University. I’m

your host, Derek Bruff, the Director of the Vanderbilt Center for Teaching.

[00:13] In this podcast, we explore creative, intentional, and effective uses of technology to

enhance student learning, uses that we hope point the way to the future of educational

technology in college and university settings.

[00:25] In this episode, we talk with Akos Ledeczi, Professor of Computer Engineering and a

Senior Research Scientist at the Institute for Software Integrated Systems here at Vanderbilt

University.

[00:37] Akos is the lead developer for NetsBlox, a graphical programming language designed

to introduce novice programmers from middle school to college to networked programming.

[00:46] Students can use NetsBlox to create simple multiplayer games and to build apps that

interface with publicly available data sets. Akos is interviewed by Cliff Anderson, Associate

University Librarian for Research and Learning and a member of our Leading Lines team.

[01:01] Cliff and Akos discuss the past, present and future of NetsBlox and explore how

graphical programming languages like NetsBlox, Snap and Scratch are changing computer

science education.

[01:13] One terminology note, Akos uses the term blocks‑based coding to refer to

programming languages like NetsBlox and Scratch, in which graphical interfaces allow users

to drag blocks of instructions together to create relatively complex programs.

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

1 of 13 8/31/2022, 11:28 AM



[01:27] [background music]

Cliff Anderson:  [01:27] Hi, this is Cliff Anderson. I am the Associate University Librarian for

Research and Learning and Professor of Religious Studies at Vanderbilt. I’m here with Akos

Ledeczi, Professor of Computer Engineering, Director of Graduate Studies in Computer

Science and also Senior Research Scientist at the Institute for Software Integrated Systems at

Vanderbilt.

[01:50] Welcome, Akos.

Akos Ledeczi:  [01:51] Thank you.

Cliff:  [01:52] Today, we’re going to be talking broadly about the area of computational

thinking, but in particular about a new tool that Akos and his team had put together, that is

called NetsBlox (https://netsblox.org/).

[02:04] One of the things, before we get into what NetsBlox is, is to talk about how you

became interested in this area of blocks‑based programming and model‑based computer

systems.

Akos:  [02:18] Yes, thank you. I took a really long and roundabout way of getting where I am

right now. When I started with my graduate studies in the early ’90s, our main research area

was this model‑based engineering or what we call model-integrated computing.

[02:35] The idea was that there was very little modeling done in software engineering at the

time and then computer science, so we tried to bring in a more disciplined approach to

creating software systems.

[02:46] The idea was to create domain‑specific modeling languages. These are graphical

modeling languages to software engineering. The reason to do domain‑specific and not one

universal modeling language because software is being used in all kinds of different domains

and to us, it never made sense to just try to create one modeling language to capture all.

[03:08] In different engineering disciplines and different science disciplines, there are all of

the existing modeling formalisms, so why not create an environment and the modeling

language that fits that domain well.

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

2 of 13 8/31/2022, 11:28 AM

https://netsblox.org/
https://netsblox.org/
https://netsblox.org/
https://netsblox.org/
https://netsblox.org/
https://netsblox.org/


[03:22] That was our idea, and we created a series of tools where you can actually define a

modeling language also through graphical means. This environment would configure itself to

support that domain‑specific modeling language.

[03:36] There are actually existing examples of domain‑specific design environments already

being widely used. One example would be LabVIEW (http://www.ni.com/en-us/shop

/labview.html) or Simulink Stateflow (https://www.mathworks.com/products/stateflow.html)

from MathWorks. These are graphical languages helping engineers create signal processing

systems, control algorithms or laboratory experiments.

[03:58] Of course, if you don’t have a big enough market, it will be really expensive to create a

tool just for a small market. Instead, we have this generic tool that was really easy to

configure to create a modeling language, and through tool support and APIs, write code

generators.

[04:14] Part of the system would be modeled with these graphical tools and the code would

be automatically generated. We have actually many successful applications of these

techniques throughout the years.

Cliff:  [04:24] In a way, this connects, if I understand correctly, with your interest in

blocks‑based programming or graphical programming. I’m not sure which term you prefer.

Akos:  [04:35] That early part of my career was really based on modeling, so we didn’t try to

model the software. We tried to model the system, and then generate the software from

there.

[04:45] When I started teaching introductory programming with MATLAB to freshmen ‑‑

non‑major freshmen actually, non‑Computer Science majors ‑‑ I noticed that coming with

zero programming background and learning text‑based programming language was a pretty

big job for many of the students.

[05:05] That’s when I started to introduce one of the block‑based programming languages,

Scratch (https://scratch.mit.edu/), just for the first two weeks of the semester. The students

actually liked it and it helped them with the initial learning curve, then we switched to

MATLAB. That’s how my interest in block‑based programming grew and this model‑based

approach and the block‑based came together.

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

3 of 13 8/31/2022, 11:28 AM

http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://scratch.mit.edu/
https://scratch.mit.edu/
https://scratch.mit.edu/
https://scratch.mit.edu/
https://scratch.mit.edu/
https://scratch.mit.edu/


Cliff:  [05:31] We were talking before we got started, that graphical‑based computing

languages have actually been around for a while now. In fact, Logo

(https://people.eecs.berkeley.edu/~bh/logo.html), which was created in 1967, when paired

with Turtle graphics (https://en.wikipedia.org/wiki/Turtle_graphics), has been used for a long

time as a tool to teach computational thinking in classrooms. I remember using that in the

1980s.

[05:49] What’s fun is that my son is now using it when he’s reading Gene Luen Yang’s and

Mike Holmes’ series, Secret Coders (http://www.worldcat.org/title/secret-coders

/oclc/930298871), that uses Logo programming to teach basic computer science concepts.

[05:59] Especially fun is the fact that at the end of the book, there’s a program listing that he

has to type in to get a secret code. I remember doing the exact same thing in the 1980s when

I’d get magazines.

[06:09] To learn a game, I’d type in the code listing at the end of the magazine and then see

how it worked, which was a great way to learn about computer programming. In any case,

you mentioned Scratch. Can you talk a little bit about how you used Scratch in that course

and what you found its limitations to be?

Akos:  [06:27] As I said, I started teaching MATLAB (https://www.mathworks.com/products

/matlab.html) and it took us, basically, a month to get to loops and then the statements,

because it’s more complicated, the syntax is harder. I started looking for ways of easing this

transition from no background to programming. And then I found Scratch, and it was really

amazing because it was so intuitive.

[06:51] It was a great way of trying to hide a syntax or not get bogged down with the syntax,

but think about the algorithms, the computational thinking and not worry about what you

have to type, why does the compiler complain, and stuff like that. I really liked Scratch, it was

really intuitive. Basically, when I started doing it, we were able to, together, write our first

program with loops and if‑statements during the very first class.

[07:20] It didn’t take us a month to go there. It takes us half an hour to go through some of

the most important concepts in programming. That was really great, and my philosophy is to

learn programming, you have to do it. If you just come to a lecture and listen to what I’m

saying, you’re not going to learn programming.

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

4 of 13 8/31/2022, 11:28 AM

https://people.eecs.berkeley.edu/~bh/logo.html
https://people.eecs.berkeley.edu/~bh/logo.html
https://people.eecs.berkeley.edu/~bh/logo.html
https://people.eecs.berkeley.edu/~bh/logo.html
https://people.eecs.berkeley.edu/~bh/logo.html
https://people.eecs.berkeley.edu/~bh/logo.html
https://people.eecs.berkeley.edu/~bh/logo.html
https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics
http://www.worldcat.org/title/secret-coders/oclc/930298871
http://www.worldcat.org/title/secret-coders/oclc/930298871
http://www.worldcat.org/title/secret-coders/oclc/930298871
http://www.worldcat.org/title/secret-coders/oclc/930298871
http://www.worldcat.org/title/secret-coders/oclc/930298871
http://www.worldcat.org/title/secret-coders/oclc/930298871
http://www.worldcat.org/title/secret-coders/oclc/930298871
http://www.worldcat.org/title/secret-coders/oclc/930298871
http://www.worldcat.org/title/secret-coders/oclc/930298871
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


[07:39] So immediately the first week, I assigned them a sizable project. They had to do it in

Scratch. Basically, the first week, they have to do programming, and it turned out very well.

Cliff:  [07:48] Probably, there’s fear when you’re facing a blank page, like any writer has, when

you don’t even know where to start. Scratch gives you that palette and lets you drag things

on and experiment. It’s just much easier to begin.

Akos:  [08:02] Exactly. Now that I’m teaching in various schools in Nashville — not just at

Vanderbilt, but various middle schools and high schools — some of the feedback I get is

exactly this. “It’s so much easier to do it because I can just see what’s available and start using

it like Lego blocks, and don’t have to start with a blank…” [laughs]

[08:24] [crosstalk]

Cliff:  [08:24] If I understand correctly, your project builds on Snap

(https://snap.berkeley.edu/), which is a variant of Scratch, that introduces more powerful

computer science constructs. Can you talk a little bit about how Snap advances the

block‑based programing paradigm from Scratch?

Akos:  [08:42] I think Scratch is great. The best demographic is elementary school and middle

school. Once you get to high school — and of course college freshmen, like I did — some of

the students would consider it too childish or too limiting and things like that. Snap is

actually great because it added some important, more advanced concepts to what Scratch

supports.

[09:11] For example, recursion or full‑fledged functions called custom blocks and some

higher order functions. There are some features of Snap that I have never used even now.

Cliff:  [09:22] I see it allows you to do continuations (https://en.wikipedia.org

/wiki/Continuation), which is a unique feature in Scheme (https://en.wikipedia.org

/wiki/Scheme_(programming_language)). It is pretty advanced.

Akos:  [09:29] Right. I think what they call it is a graphical version of Scheme. That’s exactly

what they tried to do. That is great. Of course, there was one huge advantage over Scratch,

which is its open source and it’s implemented in Java Suite. We were able to take that open

source code base and add blocks on top of it.

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

5 of 13 8/31/2022, 11:28 AM

https://snap.berkeley.edu/
https://snap.berkeley.edu/
https://snap.berkeley.edu/
https://snap.berkeley.edu/
https://snap.berkeley.edu/
https://snap.berkeley.edu/
https://snap.berkeley.edu/
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Continuation
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)


Cliff:  [09:48] Let’s come to NetsBlox. NetsBlox, as I understand, it has two major innovations.

One is message passing and the other is distributive programming. Can you talk about why

you added those two features in particular as your innovations on Snap?

Akos:  [10:01] If you go back one decade…Two decades ago I was working with model

integrated computing. A decade ago, I started working with distributive programming,

specifically wireless sensor networks. I really like these two areas.

[10:19] When I started using Scratch and then Snap, I realized that even though Snap is much

more advanced, it’s still limiting because it still puts you in a sandbox, which is the stage

where your turtle graphics objects can move around and whatnot. You are still limited to that

sandbox.

[10:38] The idea was, these days, almost any application used on your phone or your laptop is

network. You go to Google Maps. You listen to Pandora. You go to Netflix, Facebook.

Everything is networked. I thought that was a really big missing piece from these block‑based

languages to open up the Internet. How can you do that?

[11:02] We started brainstorming with my team. They came up with these two abstractions on

this message passing so that actually you can pass messages between two computers.

[11:15] Our goal was basically to enable multiplayer games. Kids play multiplayer games all

the time. How about making it easy for them to create multiplayer games? That should spike

their interest. That was one reason we introduced message passing.

[11:30] The other main concept we introduced, what we call remote procedure calls, which

allows you to call some kind of function, some kind of procedure in the remote machine. That

remote machine, in our case, is our own server.

[11:44] There, we basically interfaced to a set of public domain databases or data sources on

the Internet such as Google Maps, Weather, USGS Earth Screen Data, or the Sloan Digital

SkyServer for Astrodome Images to open movie database and a bunch of others. Now, kids

can write programs which can access these data sources.

[12:09] For example, in a five‑minute video, I show how you can create an interactive weather

map where you have the entire world show up as a Google Map background. You can click

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

6 of 13 8/31/2022, 11:28 AM



anywhere and it shows you the current conditions anywhere on the world. It literally takes

five minutes to create that application with NetsBlox.

Cliff:  [12:29] I think it’s wonderful, especially that you provided so many different examples

so that people can get started, sort of see how the code works and then see what the code is

exactly, what the blocks are and then take it from there.

Akos:  [12:37] Right. The whole thing is obviously iterative in the sense that these kinds of

applications, these network applications that get data from the server start out easy just like

this weather application. Of course, you can get more and more complicated when you get to

the message passing.

[12:52] Again, you can do some relatively simple applications like implement a quick chat

room, or text messages, or something like that. But once you get to the multiplayer games,

now that’s a relatively big jump because now you have to think about distributed algorithms.

[13:06] It’s much more complicated than just a simple algorithm. Now two machines running

in parallel has to coordinate and communicate with each other. That’s where the ceiling is

really raised for learning more advanced concepts.

Cliff:  [13:24] Yeah, I would say that a large majority of computer programmers in the

professional world have difficulty with those concepts.

Akos:  [13:30] Right. Except, NetsBlox makes them a whole lot simpler than you would have

to do it in Java or anything else. These are the kinds of games we support, more like either

board games or games where there is some limited amount of animation.

[13:48] Of course, you’re not going to implement a first‑person shooter game. That’s just not

what it was designed for.

Cliff:  [13:55] Another area that’s caught the attention of the educational technology

community are microcontrollers. I know there have been people developing blocks‑based

programming languages for controllers like the Arduino (https://www.arduino.cc/). For

example, ArduBlock (https://github.com/taweili/ardublock), mBlock (http://www.mblock.cc/),

or S4A (http://s4a.cat/). Have you thought about developing a version of NetsBlox to use on

the Arduino?

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

7 of 13 8/31/2022, 11:28 AM

https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://github.com/taweili/ardublock
https://github.com/taweili/ardublock
https://github.com/taweili/ardublock
https://github.com/taweili/ardublock
https://github.com/taweili/ardublock
https://github.com/taweili/ardublock
http://www.mblock.cc/
http://www.mblock.cc/
http://www.mblock.cc/
http://www.mblock.cc/
http://www.mblock.cc/
http://www.mblock.cc/
http://s4a.cat/
http://s4a.cat/
http://s4a.cat/
http://s4a.cat/
http://s4a.cat/
http://s4a.cat/


Akos:  [14:15] Yes, definitely. Actually, there is a version of Snap called Snap4Arduino

(http://snap4arduino.rocks/). The developer of that version and the Snap developers are

working relatively closely. By the way, we are also working with that same team closely

because they like what we are doing. So yes, definitely, that’s an interesting topic.

[14:38] What we actually would like to do is even better, which is we want to introduce

robotics. There are of course already existing robots that you can program with these

block‑based languages.

[14:48] What NetsBlox can bring to the table is using multiplayer blocks. Now, the robots can

communicate with each other. You can implement the robot team‑based applications, not

just programming the same robots.

Cliff:  [15:07] Boy, that sounds fantastic, great plan.

Akos:  [15:10] Yes. That’s our next plan.

Cliff:  [15:13] Well, I guess you’re just leading me into my next question, which is where do

you plan to go next with NetsBlox? I know you’ve received some grant funding at this point,

but I also get the sense that this is just the beginning for you. Can you talk about some of

your plans for the future apart from robotics?

Akos:  [15:28] Yes, that’s right. First of all, I’d like to thank the TIPs program

(https://www.vanderbilt.edu/strategicplan/trans-institutional-programs/tipshome.php) of

Vanderbilt that kickstarted the whole thing. Once we had that going and we had an early

prototype, we were able to convince the National Science Foundation to give us some more

funding to develop NetsBlox into a full‑fledged environment. Yes, robotics is definitely one

area we would like to look into.

[15:49] The other one is porting NetsBlox applications to iPhones and Android phones and

then give access to the sensors there. Now, the students will be able to write the applications

that use the motion sensor [inaudible] or camera even on the phone. That will be another

interesting extension.

[16:11] Another, probably longer term, is creating a more advanced version of NetsBlox that,

instead of a visual programming language, uses Python. Again, the networking part is still

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

8 of 13 8/31/2022, 11:28 AM

http://snap4arduino.rocks/
http://snap4arduino.rocks/
http://snap4arduino.rocks/
http://snap4arduino.rocks/
http://snap4arduino.rocks/
http://snap4arduino.rocks/
http://snap4arduino.rocks/
https://www.vanderbilt.edu/strategicplan/trans-institutional-programs/tipshome.php
https://www.vanderbilt.edu/strategicplan/trans-institutional-programs/tipshome.php
https://www.vanderbilt.edu/strategicplan/trans-institutional-programs/tipshome.php
https://www.vanderbilt.edu/strategicplan/trans-institutional-programs/tipshome.php
https://www.vanderbilt.edu/strategicplan/trans-institutional-programs/tipshome.php
https://www.vanderbilt.edu/strategicplan/trans-institutional-programs/tipshome.php
https://www.vanderbilt.edu/strategicplan/trans-institutional-programs/tipshome.php


fairly problematic. It’s only taught in computer science in college‑level classes and not even

freshmen college level of classes. Probably junior level.

[16:37] So what if we could have a Python‑based environment that exposes high school

students to networking, so the more advanced students who find the block‑based approach

limiting still, they could actually graduate to Python and still use these data sources and the

message passing abstractions so that they can write this to the applications.

Cliff:  [16:59] That actually leads me to another question. You mentioned that there are

limitations to block‑based programming languages and that to accomplish certain tasks, you

have to step outside of them to text‑based languages, say Python, in order to get things

done.

[17:12] But could you foresee a future in which, for a certain subclass of students,

block‑based paradigms meet all their computing needs so that they could stay entirely within

a block‑based language and still get significant computational tasks accomplished?

Akos:  [17:28] I think that again, maybe, it will bring together that whole model‑based idea

that I was talking about at the beginning and the block‑based programming. I can certainly

see a domain‑specific environment that are not necessarily a general‑purpose programming

language.

[17:47] These kinds of languages, you can write small programs, few hundred blocks, maybe

1,000 blocks. Beyond that, it becomes unmanageable. Just like today, for example, I teach

MATLAB, as I mentioned.

[17:59] That’s a full‑fetched programming language and it’s text‑based programming

language, yet it’s not the general purpose in the sense that nobody’s writing operating

systems or word processors in MATLAB. That’s for very specific scientific computing,

numerical computing, sigma processing, and those kinds of applications, and it’s great. You

can write a few thousand‑line codes in MATLAB.

[18:19] It’s really a wonderful tool, but it’s not a general purpose programming language, so I

can imagine these domain‑specific environments that will speak to block‑based

programming because it’s simply easier to learn.

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

9 of 13 8/31/2022, 11:28 AM



[18:34] If your main job is not to write programs, but to do something else, work in the

sciences or whatnot, and you find it difficult to learn a general purpose programming

language, these domain‑specific environments specifically tailored for your domain could be

way of the future.

Cliff:  [18:50] I guess you might look at a product like Tableau (https://www.tableau.com/), for

example, which allows you to do data visualization with a wonderful palette of features, and

doesn’t require you to step into programming languages, like R or Python, when all you want

to do is output an interactive visualization.

[19:05] I could imagine that there’d be tools like that in other domains that will allow you to

stay within a block‑based language, and to get your work done. There are also tools like

Blockly from Google, for example, that allow you to program in a visual style, and then

output textual programs in standard languages like JavaScript.

[19:23] Do you see a role for outputting textual programs from NetsBlox in a similar manner?

Akos:  [19:28] I see Blockly (https://developers.google.com/blockly/) as somewhat different

than the what Snap, Scratch and NetsBlox is trying to do. Blockly is more for people who

want to create tools like NetsBlox, so we could have used Blockly instead of Snap, but Snap

was much closer to what we wanted.

[19:51] Actually, in one of our projects that we created, a molecular dynamic simulation

front‑end tool for chemical engineers, and one of the aspects of that tool was based on

Blockly, so they could drive this simulation script in a Blockly‑based visual programming

language. I think for those kinds of things, Blockly is great.

[20:14] For what we’re trying to do, I think Snap was much better as a starting point.

Cliff:  [20:21] Let’s come back around to this theme of computational thinking, because if

we’re seeing greater adoption of these tools in the K‑12 arena, how do you think that’ll affect

students coming into Vanderbilt?

[20:35] I think one of the things that you and I have talked about in other contexts is the

unevenness of people’s background in computational thinking, and in experiential

programming languages when they arrive on campus and how that maybe shapes their

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

10 of 13 8/31/2022, 11:28 AM

https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://developers.google.com/blockly/
https://developers.google.com/blockly/
https://developers.google.com/blockly/
https://developers.google.com/blockly/
https://developers.google.com/blockly/
https://developers.google.com/blockly/


trajectories here. Can you talk a little bit about what you’d like to see?

[20:50] You mentioned you’re volunteering in middle schools, I think, or elementary schools.

How will this shape the kinds of students that we’re going to see, do you think?

Akos:  [20:59] That’s a great question. There is actually a nationwide movement to introduce

more computer science into all kinds of schools, and I think that’s great. It’s great not

because we want everybody to become a computer science major, but basically, most kinds

of job these days, be it in sciences, STEM, or even humanities, or anywhere else…

[21:26] A lot of those jobs require some basic knowledge of programming. That’s definitely

an important consideration. On the other hand, these text‑based languages kind of still act as

a barrier, in the sense that many kids find it really scary to even take a class that’s based on

computer science and whatnot.

[21:53] I think one other big advantage of this block‑based language is that they lower the

barrier and make it more appealing to students, who would otherwise not consider computer

science or even just taking a computing course, in general.

Cliff:  [22:12] As we wind up, we always ask our guests, because this is an educational

podcast, what’s their favorite analog educational technology?

Akos:  [22:21] [laughs] Analog educational technology, never heard that expression in my life.

[22:28] [laughter]

Akos:  [22:30] I was closer in saying drawing in general, but yeah, it’s a tool. The calendar,

[laughs] [inaudible] , it’s probably still…

Cliff:  [22:36] If we did a poll, that would be way out on top. Thank you, Akos. This has been

terrific, and we really appreciate your time.

[22:49] [background music]

Akos:  [22:49] Thank you so much for having me.

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

11 of 13 8/31/2022, 11:28 AM



Derek:  [22:50] That was Akos Ledeczi, Professor of Computer Engineering, here at Vanderbilt

University, and Lead Developer of the graphical network programming language, NetsBlox.

See the show notes for more information on NetsBlox, including information on how to get

started using it.

[23:01] I’m really interested in one of the questions Cliff asked near the end of the interview

about the growing emphasis on computer programming in K‑12 settings.

[23:08] My younger daughter started learning to code in Scratch last year, in third grade, and

she’s really loving her after school robotics club this year, in fourth grade.

[23:16] Now, she’s choosing for more programming experiences by doing this after school

stuff, but I know that Scratch is a standard part of the curriculum at her elementary school,

and in others as well.

[23:26] I keep trying to imagine what she’ll know about coding, as a college freshman eight

years from now, compared to what I knew at the end of my college career, as a computer

science major.

[23:36] With more and more programming experiences in K12 settings, it’s likely that

students will arrive on our campuses in the coming years with some, perhaps, significant skills

in computer programming.

[23:46] How might that change the computer science curriculum? How might that change the

curriculum in other disciplines? I’d love to hear your thoughts on these questions.

[23:53] You can find this on Twitter @leadinglinespod, and we’re going to try this for the first

time. You can send us a voicemail via email to leadinglinespod@vanderbilt.edu. I’d love to

hear your thoughts on how a K12 programming experiences might change the curriculum at

the college level.

[24:12] Leading Lines is produced by the Center for Teaching, the Vanderbilt Institute for

Digital Learning, the Office of Scholarly Communications, and the Associate Provost for

Digital Learning. This episode was edited by Rhett McDaniel. Look for new episodes the first

and third Monday of each month and you can find past episodes on our website,

leadinglinespod.com.

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

12 of 13 8/31/2022, 11:28 AM



[24:28] [background music]

Derek:  [24:28] I’m your host, Derek Bruff. Thanks for listening.

Firefox https://leadinglinespod.com/episodes/episode-028-akos-ledeczi/

13 of 13 8/31/2022, 11:28 AM


