
Cascade Networks, Generalized Neural Networks, and Approximation of Functions

By

Diana C. Sordillo

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Mathematics

August 12, 2022

Nashville, Tennessee

Approved:

Marian Neamtu, Ph.D.

Alexander Powell, Ph.D.

Doug Hardin, Ph.D.

Akram Aldroubi, Ph.D.

Don M. Wilkes, Ph.D.

ACKNOWLEDGEMENTS

I would first like thank my advisor, Professor Marian Neamtu, for his guidance. I greatly

appreciate all the time he took to oversee this thesis. It would not have been possible without his

invaluable assistance and knowledge.

I thank my committee members, Professors Akram Aldroubi, Alexander Powell, Doug Hardin,

and Don Wilkes for spending time to review my dissertation and to serve on my committee.

I am also thankful for the close friendships I have made in the math department. In particular,

I thank Frank Wagner for his constant support and treasured help.

Finally, I am most grateful for my family, especially my parents Peter and Ellen Sordillo, my

sister Laura Sordillo, and my brother Vincent Sordillo, for their endless love and encouragement.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . v

LIST OF TABLES . vii

Chapter 1: Introduction . 1

1.1 Overview . 1
1.2 Notation . 2

Chapter 2: ReLU Neural Networks . 4

2.1 Background . 4
2.2 ReLU Neural Network Definition and Properties 8
2.3 Deep vs. Shallow Networks . 15
2.4 Approximation of Polynomials and Smooth Functions by ReLU Networks 17

Chapter 3: Cascade Networks . 31

3.1 Generalized Neural Networks and Cascade Network Motivation 31
3.2 Cascade Network Definition and Properties . 33

Chapter 4: Cascade Networks and Subdivision Schemes 41

4.1 Background on Subdivision Schemes . 41
4.2 Reformulation of Subdivision Schemes as Cascade Networks 48

Chapter 5: Cascade Networks and the Cascade Algorithm 56

Chapter 6: Convergence of Infinite Products of Matrices and Cascade Networks 62

6.1 Joint Spectral Radius . 63
6.2 Infinite Product of Matrices . 65
6.3 Limit Functions of RCP, LCP Sets . 67
6.4 Non-Stationary Cascade Networks . 69

Chapter 7: The Space SW,L . 73

iii

7.1 Definition and Properties . 73
7.2 SW,L and “Periodicity” . 75
7.3 Least Squares Objective Function . 109

Chapter 8: The space SW . 112

8.1 Definition and Properties . 112
8.2 Approximation from Null Spaces of Linear Differential Operators 115

Chapter 9: Approximation Power of Cascade Networks 125

Chapter 10: Numerical Examples . 133

Chapter 11: Discussion . 142

References . 143

iv

LIST OF FIGURES

Page

2.1 Rosenblatt’s Perceptron . 4

2.2 Directed Graph Representation of a Multilayer Perceptron 5

2.3 ReLU Neural Network . 10

2.4 Directed Acyclic Graph Representation of ReLU Neural Networks Φ and Φ̃ 14

2.5 Concatenation and Parallelization of ReLU Neural Networks 15

2.6 Sawtooth Function and Approximating Function 19

4.1 Chaikin Algorithm . 44

4.2 Subdivision Scheme Generating the Exponential Function. 45

4.3 Hermite Cubic Interpolation Subdivision Scheme 48

7.1 Scaling Function . 104

10.1 Analytic Function f(x) = e2x + ex . 133

10.2 CN Approximation to Analytic Function, L2 Objective Function, W = 1 134

10.3 CN Approximation to Analytic Function, L∞ Objective Function, W = 1 134

10.4 CN Approximation to Analytic Function, L2 Objective Function, W = 2 135

10.5 CN Approximation to Analytic Function, L∞ Objective Function, W = 2 136

10.6 Weierstrass Function with a = 0.5, b = 3 . 136

10.7 CN Approximation to Weierstrass Function, L2 Objective Function, W = 1 137

10.8 CN Approximation to Weierstrass Function, L∞ Objective Function, W = 1 137

10.9 CN Approximation to Weierstrass Function, L2 Objective Function, W = 2 138

10.10CN Approximation to Weierstrass Function, L∞ Objective Function, W = 2 138

10.11CN Approximation to Weierstrass Function, L2 Objective Function, W = 3 139

10.12CN Approximation to Weierstrass Function, L∞ Objective Function, W = 3 139

10.13CN Approximation to Weierstrass Function, L2 Objective Function, W = 4 140

v

10.14CN Approximation to Weierstrass Function, L∞ Objective Function, W = 4 141

vi

LIST OF TABLES

10.1 Table of Errors, Analytic Function, W = 1 . 134

10.2 Table of Errors, Analytic Function, W = 2 . 135

10.3 Table of Errors, Weierstrass Function, W = 1 . 137

10.4 Table of Errors, Weierstrass Function, W = 2 . 138

10.5 Table of Errors, Weierstrass Function, W = 3 . 139

10.6 Table of Errors, Weierstrass Function, W = 4 . 140

vii

Chapter 1

Introduction

1.1 Overview

A neural network is a supervised machine learning model based on how the brain acquires

and stores knowledge [1, 2]. Supervised machine learning problems use sample data to make

predictions about the labels of patterns. A neural network receives sets of pairs {xi, yi}ni=1, where

xi ∈ Rd are the inputs of the network and yi ∈ Rm are the corresponding vector of outputs for

i = 1, . . . , n. The given set of input-output pairs is referred to as training data. It is assumed that xi

and yi are related by some unknown function; however, in general the neural network is not able to

compute this function. Instead, a candidate is chosen from a parameterized set of functions, using

the training data to help select parameters. After this “training” (or “learning”) on a large enough

sequence of pairs, the neural network approximately realizes an interpolation of the training data,

and generalizes, as closely as it can, new data points. [2, 3].

Neural networks have been around for more than 70 years, beginning with the work of Mcul-

loch and Pitts in 1943, Hebb in 1949, and the perceptron model of Rosenblatt in 1958 [4, 5, 6]. Due

to the availability of large amounts of training data and improvements in computing power, neural

networks are increasingly used in a wide range of machine learning problems. In particular, deep

neural networks with non-linear activation function have had remarkable success when applied to

computer science and engineering questions related to image recognition, speech recognition, and

other classification problems [7, 8, 9, 10].

While neural networks have produced an abundance of successes in practical applications, the

basis of these successes lacks rigorous mathematical analysis [11]. Even in basic settings, there is

no theory that fully quantifies the approximation power of neural networks. Hence understanding

the approximation properties of neural networks could lead to significant practical improvements

1

[7, 12]. Specifically, an important problem is to understand what are the benefits of using neural

networks over traditional methods of approximation such as polynomials, wavelets, splines etc.

Moreover, it is crucial to learn in what way neural networks are more effective approximation

tools than other methods.

In its most general form, a neural network is a function given by repeatedly applying a fixed

function, in general non-linear, to an affine operator. Thus, it is natural to wonder whether is it

possible to use well-established tools in a framework that mimics the neural network framework,

but where it is possible to understand better the approximation properties.

In this thesis, close analogs to neural networks using the rectified linear unit (ReLU) activa-

tion function are introduced. These analogs, called cascade networks, are also functions given by

repeatedly applying a fixed function to an affine operator. Cascade networks have a close con-

nection with algorithms used in computer aided geometric design and multiresolution analysis.

In particular, the connection between cascade networks, subdivision algorithms, and the cascade

algorithm is discussed. The space of functions obtained by a cascade network with fixed width is

characterized. Cascade networks are compared, in the univariate case,in terms of approximation

power with ReLU networks based on known results for ReLU networks. Using cascade networks

to approximate polynomials and smooth functions, similar results were obtained when compared

to the results for ReLU neural networks.

1.2 Notation

The following notation is used throughout the dissertation.

• Denote by N = {1, 2, . . . } the set of natural numbers, and by N0 = N ∪ {0}. Let R denote

the set of real numbers, R+ the set all positive real numbers, and R− the set all negative

real numbers. Let C denote the set of complex numbers, Z the set of integers, Q the set of

rational numbers.

• For each d ∈ N, let Rd := {x = (x1, . . . , xd)| xj ∈ R, j = 1, 2, . . . , d}. d is called the

2

dimension of Rd and the numbers xj are called the components of x.

• Let Rn×m denote the set of all n × m matrices with real entries. Let In denote the n × n

identity matrix and 0 denote the n ×m matrix with all zero entries. Write AT ∈ Rm×n for

the transpose of a matrix A ∈ Rn×m.

• For a function f : Rd → R, define ‖f‖L∞(Ω) = inf{C ≥ 0 : |f(x)| ≤ C, for a.e x ∈ Ω}.

• Let Πn = {anxn + · · ·+ a1x+ a0 | ai ∈ R for i = 0, . . . , n} denote the space of real valued

polynomials of degree at most n.

• Throughout, “log” stands for the logarithm to base 2 and “ln” stands for the logarithm to

base e.

• The notation g(n, ε) = O(h(n, ε)) will always mean that |g(n, ε)| ≤ C|h(n, ε)|, for all

ε > 0 small enough and for all integer n, and where C is a constant independent of n, ε.

• I represents the closed interval [0, 1].

• For A ⊂ X , define the characteristic function of A by χA =


1, x ∈ A

0, x /∈ A
.

• The binary representation of an integer j ∈ {0, . . . , 2` − 1} is written (j)2 = δ1 · · · δ` =

2`−1δ1 + · · ·+ 20δ`, where δi ∈ {0, 1}, for i = 1, . . . , `.

• For n ≥ 1 and x0, . . . , xn distinct points in R, the divided difference of a function f is

defined as [x0, . . . , xn]f :=

n∑
i=0

f(xi)∏
j 6=i

(xi,xj)
.

3

Chapter 2

ReLU Neural Networks

2.1 Background

The perceptron, first introduced in 1958 by Rosenblatt, is the simplest form of a neural network

[1]. The perceptron computes a function f : Rd → {0, 1} of the form f(x) = σ (w · x+ b), for

a given input x = (x1, . . . , xd) ∈ Rd (Figure 2.1a). Here w = (w1, . . . , wd) ∈ Rd, and b ∈ R

are trainable parameters called weights and bias respectively, and w · x denotes the dot product
d∑
i=1

wixi. The mapping σ is called an activation function. In Rosenblatt’s perceptron the activation

function was the Heaviside function,

σ(t) =


1, t ≥ 0

0, t < 0

.

x1

x2

x3

Σ y

(a) Graph of Rosenblatt’s percep-
tron with three inputs (squares) and
one output (diamond).

2 4 6 8 10

2

4

6

8

10

x

y

(b) Decision boundary in R2 com-
puted by a perceptron with parame-
ters w, b.

Figure 2.1: Rosenblatt’s Perceptron

As the output of f is either 0 or 1, the perceptron model is suitable for pattern classification

4

problems where patterns are to be divided into two classes and whose patterns are “linearly sep-

arable,” i.e which lie on opposing sides of a hyperplane. The boundary between the set of points

classified as 0 and those classified as 1 is called a decision boundary and is defined by the equation

w · x + b = 0 (Figure 2.1b). The vector of weights w determines the orientation of the decision

boundary, and b
‖w‖ , where ‖w‖ =

(
d∑
i=1

w2
i

)1/2

, determines the distance from the origin.

For the classification of patterns that are not linearly separable, multilayer perceptrons (MLP)

were developed. An MLP is associated with a directed acyclic graph, called its architecture (Figure

2.2). In the MLP model there are a finite number of successive layers, and each layer consists of a

finite number of neurons, also referred to as units or nodes. The network is called feedforward as

information flows in one direction, starting from the input layer, through the intermediate layers,

to a last layer where the resulting output is obtained. The intermediate layers are known as hidden

layers and the last layer is called the output layer. The neurons in the hidden layers and the output

layer are sometimes referred to as computation units. A neural network is called fully connected

if each unit of each layer is connected to each unit in the subsequent layer. These connections are

known as links or synapses. There are no connections between any two units in a given layer.

Networks with one hidden layer are known as shallow networks. Networks with more than

one hidden layer are called deep neural networks (DNN). The function of the hidden layers is to

transform the inputs in a nonlinear way so that the classification becomes linearly separable by the

last layer.

x1

x2

x3

x11

x12

x13

x21

x22

x23

y

Figure 2.2: Directed Graph Representation of a Multilayer Perceptron

5

The rules of the MLP model are [3]:

1. Let x1, . . . , xd be the inputs of the model and let xij correspond to the j-th unit in the i-th

layer, where x0j = xj .

2. The units xij are multiplied by weights wijk and these products are summed over j.

3. A bias bik and then an activation function σ are applied to the sum obtained in (2) and the

resulting value represents the output xi+1,k of this k-th unit of the i+ 1-st layer

xi+1,k = σ
(∑

j

wijkxij + bik

)
.

The choice of activation function for the non-linear layers is, in general, fixed beforehand.

Currently, the rectified linear unit (ReLU), σ(x) = max{0, x}, is the most widely used activation

function in practical applications [7]. Other common choices for activation function for include

[1, 3]:

1. the logistic sigmoid:

σ(x) =
1

1 + e−x
,

2. the hyperbolic tangent function:

σ(x) = tanh(x/2),

3. the parametric rectified linear unit (PReLU):

σ(x) =


αx, x ≤ 0

x, x > 0

, for some parameter α,

6

4. The exponential linear unit (ELU):

σ(x) =


α(ex − 1), x ≤ 0

x, x > 0

, for some parameter α,

5. the sigmoid linear unit (SiLU):

σ(x) =
x

1 + e−x
.

The process of determining the weights and biases is called learning, or training. The most

common algorithm for training a neural network is by the backpropagation algorithm. [13]. Back-

propagation is a gradient descent method, which computes the gradient of a loss function E with

respect to the weights and biases for all layers of the network [14]. The weights and biases are ini-

tially chosen so that the network behaves well when analyzing the training data. Let w`, b` denote

the weights and biases of layer `. The weights and biases at layer ` are then updated according to

the rule:

w` = w` − η∇E(w`)

b` = b` − η∇E(b`),

where η is an adjustable parameter, called a learning rate, that determines the step size at each

iteration moving towards the minimum of E [1, 7]. There are many challenges in neural network

optimization, including difficulties in finding a global minimum, a large number of local minima,

and vanishing or exploding gradients [7].

Although shallow networks have been extensively studied for the last thirty years, the interest

in deep networks is rather recent. This is due, in part, to the increased availability of computing

power, large training databases, as well as the ability to train DNNs efficiently. DNNs are also more

efficient at approximating a wide range of function spaces than shallow networks of comparable

size [7].

7

2.2 ReLU Neural Network Definition and Properties

The following gives a mathematical formulation of neural networks as a function resulting from

repeatedly composing an activation function σ with an affine linear transformation. Going forward,

σ is restricted to be the ReLU activation function. σ acts componentwise, thus, σ(x1, . . . , xd) =

(σ(x1), . . . , σ(xd)) = (max{0, x1}, . . . ,max{0, xd}), for x = (x1, . . . , xd) ∈ Rd.

Consider the following general neural network architecture:

Definition 2.1. [15, 16]

Let L,N0, . . . , NL ∈ N, L ≥ 2. A depth L ReLU neural network is a function Φ : RN0 → RNL

given by

Φ(x) = WL(σ(WL−1(σ(. . . σ(W1(x)))))), (2.1)

where W` are affine maps W` : RN`−1 → RN` given by W`(x) := A`x + b`, for weight matrices

A` ∈ RN`×N`−1 , and bias vectors b` ∈ RN` , ` = 1, 2, . . . , L.

Here, N0 is the dimension of the input layer (indexed as the 0th layer), N1, . . . , NL−1 are the

dimensions of the L− 1 hidden layers, and NL is the dimension of the output layer.

Φ is used to denote the ReLU neural network and its architecture, as well as the function it

implements.

The following definitions describe the size and complexity of a ReLU neural network.

Definition 2.2. The depth of Φ is L(Φ) = L. Φ is called a shallow network when L = 2, and a

deep network when L ≥ 3

Remark 2.1. There is no standard definition of network depth. Depth can also be defined as the

input layer plus the number of hidden layers (excluding the output layer), or by the total number of

layers (including the input and output layers). Neural networks can also be characterized by only

the number of hidden layers in the network (without the input and output layers).

Definition 2.3. The total number of computation units of Φ is U (Φ) =
L∑̀
=1

N`.

8

Definition 2.4. The width of the `-th hidden layer of Φ is N`. The width of the Φ is M(Φ) =

max{N0, N1, . . . , NL}.

Definition 2.5. The number of weights of Φ, denoted asW(Φ), is defined to be the total number

of non-zero entries of the matrices A` and the vectors b`. The matrix entry (A`)i,j represents the

weight associated with the j-th unit in the (` − 1)-st layer and the i-th unit in the `-th layer. (b`)i

represents the bias associated with the i-th unit in the `-th layer. The number of weights of the

network satisfies

W(Φ) ≤ L(Φ)M(Φ)(M(Φ) + 1).

Example 2.6. Consider a ReLU neural network, Φ, with L(Φ) = 2,U(Φ) = 5,M(Φ) = 3, and

W(Φ) = 12, given by

Φ(x) = W2(σ(W1(x))), W`(x) = A`(x) + b`, ` = 1, 2,

where

A1 =


(A1)1,1 (A1)1,2 0

0 0 (A1)2,3

0 0 (A1)3,3

 b1 = ((b1)1, (b1)2, (b1)3)T

A2 =

(A2)1,1 (A2)1,2 0

0 0 (A2)2,3

 b2 = ((b2)1, (b2)2)T

Figure 2.3 shows the directed acyclic graph representation of Φ, with N0 = 3 input units

(squares), N1 = 3 neurons in the hidden layer with nonlinear activation function (circles), and

N2 = 2 output units (diamond). The dotted lines correspond to zero matrix entries.

9

σ

(b1)1

σ

(b1)2

σ

(b1)3

(b2)1

(b2)2

(A1)1,1

(A
1
) 1,

2

(A
1
) 2,

3

(A1)3,3

(A
2)1,1

(A2)1,2

(A2)2,3

Figure 2.3: ReLU Neural Network

Neural networks can also be constructed as a composition and linear combination of existing

networks. As σ is the ReLU activation function, the proofs of the following lemmas will make use

of the identity x = σ(x)− σ(−x).

The first lemma describes how to concatenate neural networks.

Lemma 2.7. [16, 17] Let d1, d2, d3 ∈ N. Let Φ1 : Rd1 → Rd2 and Φ2 : Rd2 → Rd3 be ReLU

networks. Then there exists a ReLU neural network Φ : Rd1 → Rd3 , called the concatenation of

Φ1 and Φ2 with

L(Φ) = L(Φ1) + L(Φ2),

W(Φ) ≤ 2W(Φ1) + 2W(Φ2),

M(Φ) ≤ max{2d2,M(Φ1),M(Φ2},

and satisfying Φ(x) = (Φ2 ◦ Φ1)(x) for all x ∈ Rd1

Proof. By Definition 2.1,

Φ1(x) = W 1
L1

(
σ
(
. . . σ

(
W 1

1 (x)
)))

and Φ2(x) = W 2
L2

(
σ
(
. . . σ

(
W 2

1 (x)
)))

.

10

Consider the affine map W̃ (x) = W 2
1

(
(INL1

, −INL1
)x
)
, for x ∈ R2NL1 . Then,

W 2
1 (Φ1(x)) = W̃

σ

 W 1

L1

−W 1
L1

 (σ(. . .W 1
1 (x)))




and the map

Φ(x) = W 2
L2

σ
. . .W 2

2

σ
W̃

σ

 W 1

L1

−W 1
L1

(σ (. . .W 1
1 (x)

))






satisfies Φ(x) = (Φ2 ◦ Φ1)(x) for all x ∈ Rd1 .

The following lemma describes how to construct a network that is the identity map on Rd.

Lemma 2.8. [17] Let d, L ∈ N, L ≥ 2. There exists a network Φ : Rd → Rd with L(Φ) = L, and

such that Φ = IdRd , where IdRd is the identity map on Rd.

Proof. The proof is given for the case L = 2.

Define Φ(x) = W2(σ(W1(x))), with

W1(x) = A1x+ b1, W2(x) = A2x+ b2

where

b1 = 0, A1 =

 Id

−Id

 , b2 = 0, A2 =

(
Id − Id

)
.

Then, Φ = IdRd .

It is also possible to augment depth of an existing neural network without altering the network’s

input-output relationship:

11

Lemma 2.9. [18] Let L,K, d1, d2 ∈ N with K > L. Let Φ : Rd1 → Rd2 be a ReLU network with

L(Φ) = L. Then, there exists a corresponding neural network Ψ : Rd1 → Rd2 with

L(Ψ) = K,

W(Ψ) ≤ W(Φ) + d2W(Φ) + 2d2(K − L(Φ),

M(Ψ) = max{2d2,M(Φ)},

satisfying Ψ(x) = Φ(x) for all x ∈ Rd1 . Moreover, the weights of Ψ consist of the weights of Φ

and {−1, 1}.

Proof. By Definition 2.1, Φ(x) = WL(σ(. . . σ(W1(x)))).

Let W̃j(x) = diag (Id2 Id2)x, for j ∈ {L + 1, . . . , K − 1}, and W̃K(x) = diag (Id2 − Id2)x.

Then the network

Ψ(x) = W̃K

σ
. . . σ

W̃L+1

σ
 WL

−WL

σ
(
W̃L−1 (σ (. . . σ (W1(x))))

)




satisfies the claimed properties.

Next, the concept of parallelization of neural networks of equal depth is formalized.

Lemma 2.10. [17] Let n, L ∈ N. For i = {1, 2, . . . , n}, let di, d′i ∈ N and Φi : Rdi → Rd′i be

ReLU neural networks with L(Φi) = L. Then, there exists a network Φ : R
n∑
i=1

di
→ R

n∑
i=1

di
, with

L(Φ) = L,

M(Φ) =
n∑
i=1

M(Φi),

W(Φ) =
n∑
i=1

W(Φi),

12

and satisfies Φ(x) = (Φ1(x1),Φ2(x2), . . . ,Φn(xn)), for x = (x1, x2, . . . , xn) ∈ R
n∑
i=1

di
, with xi ∈

Rdi , i ∈ N.

Proof. By Definition 2.1,

Φi = W i
L

(
σ
(
. . . σ

(
W i

1

)))
where W i

` (x) = Ai`x + bi`, for ` = 1, . . . , L. Denote the dimensions of the layers of Φi by

N i
0, . . . , N

i
L and set Nl =

n∑
i=1

N i
L, for ` ∈ {0, 1, . . . , L}. For l ∈ {0, 1, . . . , L}, define the block

diagonal matrices A` := diag (A1
` , A

2
` , . . . , A

n
`), the vectors b` = (b1

` , b
2
` , . . . , b

n
`) , and the affine

transformations W`(x) := A`x + b`. Then, Φ = WL(σ(WL−1(σ(. . . (σ(W1)))))) satisfies the

claimed properties.

The general case of Lemma 2.10 follows from Lemma 2.8 and Lemma 2.9. If L(Φi) = Li

for i = 1, . . . , n where Li 6= Lj for i 6= j, the shorter neural networks can be extended by

concatenating with a network that implements the identity and the result follows.

Next the concept of a linear combination of neural networks of equal depth is formalized.

Lemma 2.11. [16] Let N,L, d′ ∈ N. For i ∈ {1, . . . , n} let di ∈ N, ai ∈ R. Let Φi : Rdi → Rd′

be a ReLU neural network with L(Φi) = L. Then, there exists a network Φ : R
n∑
i=1

di
→ Rd′ with

L(Φ) = L,

M(Φ) ≤
n∑
i=1

M(Φi),

W(Φ) ≤
n∑
i=1

W(Φi),

and satisfying

Φ(x) =
n∑
i=1

aiΦi(xi),

for x = (x1, . . . , xn) ∈ R
n∑
i=1

di
,with xi ∈ Rdi , i ∈ {1, . . . , n}.

13

Proof. In the proof of Lemma 2.10, replace AL by (a1A
1
L, a2A

2
L, . . . , anA

n
L), bL by

n∑
i=1

aib
i
L and

note that the resulting network Φ satisfies the claimed properties.

Example 2.12. Consider two ReLU NN’s, Φ : R2 → R and Φ̃ : R→ R, given by

Φ(x) = W2 (σ ((W1(x))) W`(x) = A`x+ b`

where

A1 ∈ R3×2, b1 ∈ R3, A2 ∈ R1×3, b2 ∈ R

and

Φ̃(x) = W̃2

(
σ
(
W̃1(x)

))
W̃`(x) = Ã`x+ b̃`

where

Ã1 ∈ R2×1, b̃1 ∈ R2, Ã2 ∈ R1×2, b̃2 ∈ R.

Figures 2.4a and 2.4b show the directed acyclic graph representations of Φ and Φ̃ respectively.

x1

x2

x11

x12

x13

y

(a) Φ

x̃1

x̃11

x̃12

ỹ

(b) Φ̃

Figure 2.4: Directed Acyclic Graph Representation of ReLU Neural Networks Φ and Φ̃

Then, Ψ1 : R2 → R, given by Ψ1 = Φ̃ ◦ Φ is the concatenation of Φ and Φ̃ (Figure 2.5a), and

Ψ2 : R3 → R2, given by Ψ2 =
(

Φ, Φ̃
)

is the parallelization of Φ and Φ̃ (Figure 2.5b).

14

x1

x2

x11

x12

x13

x21

x31

x32

ŷ

(a) The concatenation of Φ and Φ̃.

x1

x2

x̃1

x11

x12

x13

x̃11

x̃12

y

ỹ

(b) The parallelization of Φ and Φ̃.

Figure 2.5: Concatenation and Parallelization of ReLU Neural Networks

2.3 Deep vs. Shallow Networks

Much of the work on why neural networks work well on machine learning problems has fo-

cused on the expressivity of neural networks, that is, what class of functions do neural networks

approximate well. While this has been extensively studied in shallow networks, only over the

past several years, and after much success in practical applications, have there been attempts to

understand the approximation properties of deep neural networks.

A classical result of neural network approximation is the universal approximation theorem

proved in 1989 by Cybenko. The universal approximation theorem states that every continuous

function on a compact domain can be arbitrarily well approximated by a feedforward neural net-

work with a single hidden layer and continuous, sigmoidal activation function [19]. Hornick,

Stinchcomb and White proved a similar result for Borel measurable functions [20]. In 1991,

Hornick showed that the universal approximation theorem holds when considering an arbritrary

and nonconstant activation function [21]. Later, Pinkus showed that a single hidden layer neural

network can approximate any continuous function if and only if the activation function is not a

polynomial [22]. While these results imply the theoretical possibility to approximate well, they

do not provide a method for finding good approximants. Nor do they provide any information on

15

the required size of a network to achieve a given accuracy. In particular, no constraint is placed on

the width of the hidden layer. DNNs also posses the universal approximation property, as do many

other families of functions, and thus does not fully explain the success of neural networks.

As expressivity is an effect of depth and width, studies shifted to convergence rates of approxi-

mations by neural networks. That is, how many weights and neurons does a neural network need to

have to ε-approximate a function from a given class of functions. Barron investigated the number

of neurons needed to approximate functions with bounded first Fourier moment by a shallow net-

work with sigmoidal activation function [23, 24]. In 1996, Mhaskar showed for shallow networks,

assuming a C∞ activation function, a network with O(ε−d/n) neurons is needed to approximate a

Cn function on a d-dimensional set with error ε [25]. Maiorov and Pinkus proved there exists an

activation function σ which is C∞, strictly increasing, and sigmoidal, such that any f ∈ C([0, 1]d)

can be uniformly approximated to within any error ε > 0 by a two hidden layer neural network

with 2d+ 1 units in the first hidden layer and 4d+ 3 units the second hidden layer [26].

Recently, there have been many results connecting depth to the expressive power of a neu-

ral network. In 2011, Dellaleau and Bengio established that certain classes of polynomials were

more easily represented by deep sum-product networks than shallow ones [27]. Montufar et al

showed that deep networks can partition a space into exponentially more linear regions than shal-

low networks of the same size [28]. Telgarsky constructed a class of functions, called sawtooth

functions, and showed that these sawtooth functions can be well-approximated by a deep ReLU

neural network of width 2, but not by shallow networks with a comparable number of parameters

[29].

Arora et al. showed that every ReLU DNN Φ : Rd → R, represents a piecewise linear function,

and every piecewise linear function f : Rd → R can be represented by a ReLU DNN with depth at

most dlog2(d+ 1)e+ 1 [30]. This result gives an upper bound on the depth of the networks needed

to represent all continuous piecewise linear functions on Rd.

Mhaskar and Poggio also considered the conditions under which deep networks are better at

approximating functions than shallow networks [31, 32]. They showed that for functions with a

16

compositional structure, that is functions composed of hierarchically local functions, deep net-

works avoid the curse of dimensionality. The approximation of compositional functions can be

achieved with the same degree of accuracy by deep and shallow networks. However, the number

of parameters for the deep network are much smaller than for the shallow network with equivalent

approximation accuracy. The authors showed, for an M -Lipschitz continuous function of d vari-

ables, the number of units needed for a shallow ReLU network, ΦS , to provide an approximation

with accuracy ε is

U (ΦS) = O
((ε

M

)−d)
,

whereas for a deep network, ΦD, the number of units needed is

U (ΦD) = O
(

(d− 1)
(ε

M

)−2
)
,

therefore showing that deep compositional networks with ReLU activation function can avoid the

curse of dimensionality.

2.4 Approximation of Polynomials and Smooth Functions by ReLU Networks

Recently, the approximation of polynomials by ReLU networks has been studied using the

“sawtooth” construction described in Telgarsky [29]. Telgarsky defines a function g : R → R to

be t-sawtooth if it is piecewise affine with t pieces, that is, R can be partitioned into t consecutive

intervals and g is affine within each interval.

In 2017, Yarotsky used the result of Telgarsky to show that ReLU networks with unconstrained

depth can efficiently approximate the function f(x) = x2 [33].

Proposition 2.13. [33] For any ε > 0, the function f(x) = x2 on I can be realized by a ReLU

neural network, Φε, having depth and number of weights and computation units O(ln(1/ε)) and

such that

‖Φε − f‖L∞(I) ≤ ε. (2.2)

17

Proof. Consider g : I → I , given by

g(x) =


2x, x < 1

2

2(1− x), x ≥ 1
2

(2.3)

and let gs = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
s≥2

, where g0 = 0, g1 = g.

Then, by Telgarsky,

gs(x) =


2s(x− 2k

2s
), x ∈ [2k

2s
, 2k+1

2s
], k = 0, 1, . . . , 2s−1 − 1

2s(2k
2s
− x), x ∈ [2k−1

2s
, 2k

2s
], k = 0, 1, . . . , 2s−1

(2.4)

is a sawtooth function with 2s−1 uniformly distributed “teeth” where each application of g doubles

the number of teeth (Figure 2.6a).

Let fm be the piecewise linear interpolant of f with 2m + 1 uniformly spaced knots (break

points) k
2m
, k = 0, . . . , 2m,

fm

(k

2m

)
=
(k

2m

)2

, k = 0, . . . , 2m.

Then fm approximates f with error εm = 2−2m−2 in the sense

‖fm − f‖L∞(I) ≤ 2−2m−2.

This interpolation can be refined from fm−1 to fm by adjusting it by a function proportional to

a sawtooth function (Figure 2.6b),

fm−1(x)− fm(x) =
gm(x)

22m
. (2.5)

18

Thus,

fm(x) = x−
m∑
s=1

gs(x)

22s
.

Yarotsky’s construction of fm as a neural network uses connections between units in non-

consecutive layers. However, fm can be realized as a fully connected ReLU neural network of

width 4, using the language of Definition 2.1, with the same input-output relationship [16].

(a) The “sawtooth” functions
g, g2, g3.

(b) The approximating functions
fm.

Figure 2.6: Sawtooth Function and Approximating Function

As g can be written as a ReLU neural network of width 3 by

g(x) = 2σ(x)− 4σ(x− 1/2) + 2σ(x− 1),

it follows that

gm(x) = 2σ(gm−1(x))− 4σ(gm−1(x)− 1/2) + 2σ(gm−1(x)− 1). (2.6)

Using fm = σ(fm−1) for all m ∈ N equation (2.5) can be rewritten as

fm(x) = σ(fm−1(x))− 2−2m
(

2σ(gm−1(x))− 4σ(gm−1(x)− 1/2) + 2σ(gm−1(x)− 1)
)
. (2.7)

19

Writing (2.6) and (2.7) in the language of Definition 2.1 gives

gm
fm

 = W1

σ
W2

gm−1

fm−1



 , (2.8)

where

W1(x) =

 2 −4 2 0

−2−2m+1 2−2m+2 −2−2m+1 1




x1

x2

x3

x4


, W2(x) =



1 0

1 0

1 0

0 1


x1

x2

−


0

1/2

1

0


.

Iteratively applying (2.8), starting with g0(x) = x, f0(x) = x gives

gm
fm

 = W1

σ
W2

W1

σ
. . . σ

W2

W1

σ
W2

x
x





 . . .





 .

Therefore, fm can be realized by a width 4 ReLU neural network. Since fm(0) = 0 for all m ∈ N

and εm = 2−2m−2, then ln(1/εm) = 2m+ 2, and the statement of the proposition follows.

Next, the result of Proposition 2.13 and the identity

xy =
1

2
((x+ y)2 − x2 − y2) (2.9)

are used to show how to implement the multiplication operation as a deep ReLU network [16, 33].

Proposition 2.14. [16] There exists a constant M > 0 such that for all D > 0, and ε ∈ (0, 1/2),

there is a ReLU network ΦD,ε : R2 → R, satisfying:

(a) ΦD,ε(0, x) = ΦD,ε(x, 0) = 0, for all x ∈ R

(b) ‖ΦD,ε(x, y)− xy‖L∞([−D,D]2) ≤ ε

20

(c) The depth of ΦD,ε is at most M log(dDe
2

ε
)

Proof. Using Proposition 2.13, let Ψδ(x) be a neural network approximating x2, such that Ψδ(0) =

0 and ∥∥Ψδ(x)− x2
∥∥
L∞([0,1])

≤ δ. (2.10)

Then, ∥∥∥∥4dDe2Ψδ

(
|x|

2dDe

)
− x2

∥∥∥∥
L∞([−D,D])

≤ 4dDe2δ (2.11)

and so, ∥∥∥∥4dDe2Ψδ

(
|x+ y|
2dDe

)
− (x+ y)2

∥∥∥∥
L∞([−D,D]2)

≤ 4dDe2δ. (2.12)

For δ ∈ (0, 1/2), define

Φ∗D,δ(x, y) = 2dDe2
(

Ψδ

(
|x+ y|
2dDe

)
−Ψδ

(
|x|

2dDe

)
−Ψδ

(
|y|

2dDe

))
. (2.13)

Then, property (a) is immediate. Using (2.9) with (2.11) and (2.12) gives

∥∥∥∥Φ∗D,δ(x, y)− 1

2

(
(x+ y)2 − x2 − y2

)∥∥∥∥
L∞([−D,D]2)

≤ 6dDe2δ.

Setting, ΦD,ε = Φ∗D,δD,ε with δD,ε = ε
6dDe2 proves property (b).

To conclude property (c), observe that computation (2.13) consists of three instances of Ψδ and

finitely many linear and ReLU operations. Thus by Proposition 2.13, ΦD,ε can be implemented by

a ReLU network whose depth is at most M log(1/δ), that is, M log(dDe
2

ε
).

Proposition 2.14 can be generalized for any input dimension N0 > 2 [34, 35].

Proposition 2.15. [34] For any D ≥ 1 and ε ∈ (0, 1/2), d ∈ N≥2 there is a deep ReLU network Φ

with inputs (x1, . . . , xd) ∈ [−D,D]d, with depth

L(Φ) = O(d log(d/ε) + d2 log(D))

21

and number of neurons

U (Φ) = O(d log(d/ε) + d2 log(D)),

such that

‖Φ(x1, . . . , xd)− x1 · · ·xd‖L∞([−D,D]d) ≤ ε.

Using Propositions 2.13, 2.14, and 2.15, polynomials can be approximated by ReLU networks

with depth growing logarithmically in the reciprocal of the approximation error [16, 34, 35].

Proposition 2.16. [34] For any D ≥ 1, A ≥ 0, ε ∈ (0, 1/2) and any polynomial pn(x) of degree

n ∈ N≥2, with input x ∈ [−D,D], of the form pn(x) =
n∑
k=0

akx
k, max

0≤k≤n
|ak| ≤ A, there exists a

deep ReLU network Φpn with inputs (x1, . . . , xn) ∈ [−D,D]n, that has depth

L(Φpn) = O
(
n log

(
An

ε

)
+ n2 log(D)

)

and number of neurons

U (Φpn) = O
(
n log

(
An

ε

)
+ n2 log(D)

)
,

such that

‖Φpn − pn‖L∞([−D,D]) ≤ ε.

Proof. Let D ≥ 1, A ≥ 0, ε ∈ (0, 1) and let n ∈ N≥2 and consider the polynomial

pn(x) =
n∑
k=0

akx
k, max

0≤k≤n
|ak| ≤ A.

Construct Φpn as follows:

Φpn(x1, . . . , xn) = a0 + a1x1 +
n∑
k=2

akR(Ψk−1)(x1, . . . , xk),

where Ψk−1(x1, . . . , xk) approximates the product x1 · · ·xk with the network of Proposition 2.15

22

to accuracy ε0 ∈ (0, 1), to be determined later. When the inputs are the same, Ψk−1(x1, . . . , xk)

approximates xk. Then,

|Φpn(x, . . . , x)− pn(x)| ≤ A
n∑
k=2

|Ψk−1(x, . . . , x)− xk|

< nAε0.

Choose ε0 = ε/(An). The network Φpn has depth and number of units

O
(
n log

(
An2Dn

ε

))
= O

(
n log

(
An

ε

)
+ n2 log(D)

)
.

A more general result considering the Sobolev spaceWn,∞(Id) for n ∈ N is given in Yarotsky

[33]. Wn,∞(Id) is the space of functions on Id lying in L∞ along with their weak derivatives

up to order n. Equivalently, Wn,∞(Id) can be described as the functions from Cn−1(Id) whose

derivatives of order (n− 1) are Lipschitz continuous. Define the norm inWn,∞(Id) by

‖f‖Wn,∞([0,1]d) = max
n:|n|≤n

ess sup
x∈Id

|Dnf(x)|,

where n = (n1, . . . , n) ∈ Nd
0, |n| = n1 + · · · + nd and Dnf is the respective weak derivative.

Define Fn,d to be the unit ball inWn,∞(Id),

Fn,d =
{
f ∈ Wn,∞ (Id) : ‖f‖Wn,∞(Id) ≤ 1

}
. (2.14)

In [33], Yarotsky provides bounds on the total number of parameters in a ReLU network needed

to approximate functions in Fn,d.

Theorem 2.17. [33] For any d, n ∈ N, and ε ∈ (0, 1), there is a ReLU neural network Φ capable

23

of expressing any function f ∈ Fn,d with error ε,

‖Φ− f‖L∞(Id) ≤ ε,

has depth at most c(ln(1/ε) + 1), and at most cε
−d
n (ln(1/ε) + 1) weights and computation units,

for some constant c = c(d, n).

Proof. The first step of the proof is to approximate a function f ∈ Fn,d by a combination f1

of local Taylor polynomials and one-dimensional piecewise-linear functions. Then the results of

Propositions 2.13 and 2.14 are used to approximate f1 by a neural network.

Let N be a positive integer, and consider a partition of unity formed by a grid of (N + 1)d

functions φm on Id,
∑

m φm(x) ≡ 1, x ∈ Id, for m = (m1, . . . ,md) ∈ {0, 1, . . . , N}d.

Define φm by

φm(x) =
d∏

k=1

ψ
(

3N(xk −
mk

N
)
)
,

where

ψ(x) =


1, |x| < 1,

0, 2 < |x|

2− |x|, 1 ≤ |x| ≤ 2

.

Note that ‖ψ‖∞ = 1 and ‖φm‖∞ = 1,∀m and supp φm ⊂
{
x :

∣∣∣∣xk − mk
N

∣∣∣∣ ≤ 1
N
, ∀k

}
.

For any m ∈ {0, . . . , N}d, consider the degree-(n − 1) Taylor polynomial for the function f

centered at x = m
N

,

Pm(x) =
∑

n:|n|<n

Dnf

n!

∣∣∣∣
x=m

N

(
x− m

N

)n

,

where n! =
∏d

k=1 nk! and (x− m
N

)n =
∏d

k=1(xk − mk
N

)nk . Define an approximation to f by

f1 =
∑

m∈{0,...,N}d
φmPm. (2.15)

24

Then,

|f(x)− f1(x)| = |
∑
m

φm(x)(f(x)− Pm(x))|

≤
∑

m:|xk−
mk
N
|< 1

N
∀k

|f(x)− Pm(x)|

≤ 2d max
m:|xk−

mk
N
|< 1

N
∀k
|f(x)− Pm(x)|

≤ 2ddn

n!

(1

N

)n
max
n:|n|=n

ess sup
x∈[0,1]d

|Dnf(x)|

≤ 2ddn

n!

(1

N

)n
Now choose

N =
⌈(n!

2ddn
ε

2

)−1/n⌉
(2.16)

so that

‖f − f1‖L∞(Id) ≤
ε

2
.

Note that the coefficients am,n of the polynomials Pm are uniformly bounded for all f ∈ Fd,n,

Pm(x) =
∑

n:|n|<n

am,n

(
x− m

N

)n
, |am,n| ≤ 1. (2.17)

Next, construct a network capable of approximating with uniform error ε
2

any function of the

form (2.15), assuming that N is given by (2.16) and the polynomials Pm are of the form (2.17).

Write f1 as

f1(x) =
∑

m∈{0,...,N}d

∑
n:|n|<n

am,nφm(x)
(
x− m

N

)n
.

This expansion is a linear combination of at most dn(N + 1)d terms φm(x)
(
x − m

N

)n
and each

of these terms is a product of at most d functions ψ(3Nxk − 3mk) and at most (n − 1) linear

expressions (xk − mk
N

).

Consider f̃m,n the approximation of the product φm(x)
(
x − m

N

)n
. By Proposition 2.14,

25

f̃m,n can be implemented by a ReLU network with depth and complexity not greater than (d +

n)c1 ln(1/δ), for some accuracy δ to be chosen later and some constant c1 = c1(d, n). Then,

|f̃m,n(x)− φm(x)
(
x− m

N

)n
| ≤ (d+ n)δ,

and f̃m,n(x) = φm(x)
(
x− m

N

)n
, for x ∈ supp φm. Define the full approximation by

f̃ =
∑

m∈{0,...,N}d

∑
n:|n|<n

am,nf̃m,n.

Then,

|f̃(x)− f1(x)| =
∣∣∣∣ ∑
m∈{0,...,N}d

∑
n:|n|<n

am,n

(
f̃m,n(x)− φm(x)

(
x− m

N

)n)∣∣∣∣
=

∣∣∣∣ ∑
m:x∈supp φm

∑
n:|n|<n

am,n

(
f̃m,n(x)− φm(x)

(
x− m

N

)n)∣∣∣∣
≤ 2d max

m:x∈supp φm

∑
n:|n|<n

∣∣∣∣f̃m,n(x)− φm(x)
(
x− m

N

)n∣∣∣∣
≤ 2ddn(d+ n)δ.

Thus, choosing

δ =
ε

2d+1dn(d+ n)
, (2.18)

then
∥∥∥f̃ − f1

∥∥∥
L∞(Id)

≤ ε
2

and hence

∥∥∥f̃ − f∥∥∥
L∞(Id)

≤
∥∥∥f̃ − f1

∥∥∥
L∞(Id)

+
∥∥∥f1 − f

∥∥∥
L∞(Id)

≤ ε

2
+
ε

2
≤ ε.

f̃ can be implemented by a ReLU network Φ consisting of parallel subnetworks that compute

each f̃m,n, then weighing the outputs of the subnetworks with the weights am,n. Each subnetwork

has at most c1 ln(1/δ) layers, weights and computation units with c1 = c1(d, n). There are at most

dn(N + 1)d subnetworks, thus Φ has at most c1 ln(1/δ) + 1 layers and dn(N + 1)d(c1 ln(1/δ) + 1)

26

weights and computation units. With δ given by (2.18) and N given by (2.16), the claim of the

theorem follows.

Grohs [16] extended the result of Yarotsky in the case d = 1 by considering, for D > 0, the set

SD ⊆ C∞([−D,D],R) given by

SD = {f ∈ C∞([−D,D],R) :
∥∥f (n)

∥∥
L∞([−D,D])

≤ n!, ∀n ∈ N}. (2.19)

Lemma 2.18. [16] There exists a constant C > 0 such that for all D ∈ R+, f ∈ SD and

ε ∈ (0, 1/2), there exists a network Ψf,ε of depth at most CdDe(log(ε−1))2 satisfying

‖Ψf,ε − f‖L∞([−D,D]) ≤ ε.

Proof. The proof of the case D = 1 is provided.

Using Chebyshev interpolation, for all f ∈ S1, n ∈ N there exists a polynomial Pf,n of degree

n such that

‖f − Pf,n‖L∞([−1,1]) ≤
1

2n(n+ 1)!
‖f (n+1)‖L∞([−1,1]) ≤

1

2n
. (2.20)

Writing the polynomials Pf,n as Pf,n =
∑n

j=0 af,n,jx
j , there exists a constant c > 0 such that for

all f ∈ S1, n ∈ N,

Af,n := max
j=0,...,n

|af,n,j| ≤ 2cn.

By Proposition 2.15 there exists a constant C1 > 0 such that for all f ∈ S1, n ∈ N, ε ∈ (0, 1/2),

there is a network ΦPf,n,1,ε/2, with input and output dimension 1, depth at mostC1n(cn+log(2/ε)+

log(n)), and satisfies

‖ΦPf,n,1,ε/2 − Pf,n‖L∞([−1,1]) ≤
ε

2
. (2.21)

Set nε = dlog(2/ε)e and Ψf,ε = ΦPf,n,1,ε/2. Then, by (2.20) and (2.21), for all f ∈ S1, ε ∈ (0, 1/2),

‖Ψf,ε − f‖L∞([−1,1]) ≤ ‖Ψf,ε − Pf,nε‖L∞([−1,1]) + ‖Pf,nε − f‖L∞([−1,1])

27

≤ ε

2
+

1

2nε

≤ ε

2
+
ε

2

= ε.

Using dlog(2/ε)e ≤ 2 log(2/ε) and log(2/ε) ≤ 2 log(1/ε) for all ε ∈ (0, 1/2),then there exists

a constant C2 such that for all f ∈ S1, ε ∈ (0, 1/2), the depth of Ψf,ε is equal to the depth of

ΦPf,n,1,ε/2 and is not more than C2(log(ε−1))2.

Petersen and Voigtlaender [17] further generalized Theorem 2.17 of Yarotsky to hold in Lp, for

any p ∈ (0,∞). In addtion they showed for a given piecewise Cβ function f : [−1/2, 1/2]d →

R and approximation accuracy ε ∈ (0, 1/2) it is possible to construct a ReLU network Φf,ε

with no more than cε−2
(d−1)
β nonzero weights and c′ log2(β + 2)(1 + β

d
) layers such that ‖f −

Φf,ε‖L2([−1/2,1/2]) ≤ ε.

In [36, 37], it is suggested that deep neural networks possess greater approximation power than

traditional methods based on linear approximation. Yarotsky [36] showed that Lipshitz spaces can

be approximated at a slightly better rate by ReLU networks than by classical linear methods. In

[37], Daubechies et al. prove a similar result for Lip(α) spaces, using the following theorem that

fixed width ReLU networks depending on n parameters are at least as expressive as free knot linear

splines [37].

Theorem 2.19. [37] Fix W ≥ 4. For every n ≥ 1, the set Σn of free knot linear splines with n

breakpoints is contained in ΥW,L, the set of functions produced by width W and depth L ReLU

networks.

Theorem 2.20. [37] Let W ≥ 8. Let Υm := Υ
W+2,m ⊂ ΥW+2,m be special ReLU networks with

fixed width W + 2. If X = C([0, 1]) and f ∈ Lip(α), 0 < α ≤ 1, then

inf
S∈Υm

‖f − S‖X ≤
|f |Lipα

(m lnm)α
, m ≥ 2. (2.22)

28

Proof. Without loss of generality, assume |f |Lip(α) = 1. Fix f and m and let T be the piecewise

linear interpolant of f at the equally spaced breakpoints x0, . . . , xm, where xi := i
m
, i = 0, . . . ,m.

As f, T agree at the endpoints of the interval Ji := [xi, xi+1], the slope of T on Ji has absolute

value at most m1−α. Therefore,

|T (x)− T (y)| ≤ m1−α|x− y| ≤ |x− y|α, x, y,∈ Ji,

and T ∈ Lip(α) with semi-norm at most one on each of these intervals. Define g := f − T and

write g =
∑m

i=1 gχJi . Each gi := gχJi is a function in Lip(α) with |gi|Lip(α) ≤ 2. Let k be the

largest integer such that 3kk ≤ m and let P = {S1, . . . , S3k}. For each gi : [0, 1]→ R, defined by

gi := 2−1mαgi((x + i)/m), find a pattern Sji ∈ P , Sji : [0, 1] → R such that ‖gi − Sji‖c([0,1]) ≤

2k−α.

Going back to the interval Ji provides a function Sji ∈ P such that

|gi(x)− 2mαSji(m(x− xi))| ≤ 4(km)−α, x ∈ Ji,

and thus the function T̂ given by

T̂ (x) := T (x) + 2m−α
m∑
i=1

Sji(m(x− xi))χJi(x)

approximates f to accuracy 4(km)−α in the uniform norm.

For each j = 1, . . . , 3k, consider the, possibly empty, set of indices Λj = {i ∈ {1, . . . ,m} :

ji = j}. Then,

T̂ = T +
3k∑
j=1

Tj, where Tj := 2m−α
∑
i∈Λj

Sj(m(x− xi)).

As T ∈ Σm, by Theorem 2.19 T belongs to Υ
W,L0 with either W 2L0 � n(W,L0) ≤ C ′m or

L0 = 2. Thus, each function Tj is in Υ
W,Lj with either W 2Lj � n(W,Lj) ≤ C1(k+mj) +C2W

2

29

or Lj = 2, where mj := |Λj|. Thus, T̂ belongs to Υ
W,L

with L = L0 +
∑3k

j=1 Lj , and

L = L0 +
3k∑
j=1

Lj ≤
1

W 2

C ′m+ C13kk + C1

3k∑
j=1

mj

+ C33k ≤

(
C̃1

W 2
+ C̃2

)
m = c(W)m,

using the fact 3kk ≤ m and
∑3k

j=1mj = m. Therefore,

‖f − T̂‖C([0,1]) ≤
4

(km)α
≤ C̃

(m ln(m))α
, (2.23)

using k ≥ c ln(m) since 3k+1 > m.

30

Chapter 3

Cascade Networks

3.1 Generalized Neural Networks and Cascade Network Motivation

In its most general form, a neural network is a function resulting from repeatedly applying

an activation function, σ, to an affine function, W`. The activation function σ can be viewed as

an operator which maps functions to functions, and W` as a linear operator. This idea can be

generalized by replacing σ with a more general operator.

Definition 3.1. Let V be a space of vector functions. A generalized neural network, ΨL, is given

by

ΨL = PL ◦Q ◦ PL−1 ◦Q · · · ◦ P1,

where P` : V → V , are affine operators, and Q : V → V is fixed operator, in general non-linear.

In the case where ΨL is a neural network as defined in Definition 2.1, P`y = A`y + b`, for

y ∈ V and Qy = σ(y), y ∈ V . When σ is the ReLU function, Q is a non-linear operator and the

output of the network is a continuous, piecewise linear function.

Thus, an essential question is why resort to using neural networks over classical methods of

approximation such as polynomials, wavelets, or splines. In addition, can well-established tools be

used in a framework that mimics the neural network framework? In particular, can the approxima-

tion power of a ReLU network be matched without the non-linearity that comes from σ? Further,

can even simpler operators P`, Q be considered that will still do a good job in approximation?

This generalization of ReLU neural networks as a piecewise linear function resulting from the

repeated application of a fixed operator followed by an affine operator was the motivation for the

development of cascade networks. The terminology comes from identities which arise in multi-

resolution analysis and wavelets to generate functions on a dyadic partition [38].

31

To motivate the definition of cascade networks, consider the following example.

Example 3.2. Consider Π2, the space of polynomials of degree at most two, with basis B =

{1, x, x2}. Let f0(x) = 1, f1(x) = x, f2(x) = x2 and write f 1
i for the linear interpolant of fi on

I at endpoints Ω0 = {0, 1} where i = 0, 1, 2. Hence f 1
0 (x) = 1, f 1

1 (x) = x, and f 1
2 (x) = x, for

x ∈ I .

Define the function α : I → I given by

α(x) =


2x, x ∈

[
0, 1

2

)
2x− 1, x ∈

[
1
2
, 1
] . (3.1)

For i = 0, 1, 2 and j ∈ N define

f j+1
i (x) = ai0(x)f j0 (α(x)) + ai1(x)f j1 (α(x)) + ai2(x)f j2 (α(x)), (3.2)

where

a00(x) =


1, x ∈ [0, 1

2
)

1, x ∈ [1
2
, 1]

; a01(x) =


0, x ∈ [0, 1

2
)

0, x ∈ [1
2
, 1]

; a02(x) =


0, x ∈ [0, 1

2
)

0, x ∈ [1
2
, 1]

;

a10(x) =


0, x ∈ [0, 1

2
)

1
2
, x ∈ [1

2
, 1]

; a11(x) =


1
2
, x ∈ [0, 1

2
)

1
2
, x ∈ [1

2
, 1]

; a12(x) =


0, x ∈ [0, 1

2
)

0, x ∈ [1
2
, 1]

;

a20(x) =


0, x ∈ [0, 1

2
)

1
4
, x ∈ [1

2
, 1]

; a21(x) =


0, x ∈ [0, 1

2
)

1
2
, x ∈ [1

2
, 1]

; a22(x) =


1
4
, x ∈ [0, 1

4
)

1
4
, x ∈ [1

4
, 1]

.

The motivation for identity (3.2) is that the same identity is satisfied by the basis functions in

B as well. Namely, one can show that for i = 0, 1, 2,

fi(x) = ai0(x)f0(α(x)) + ai1(x)f1(α(x)) + ai2(x)f2(α(x)). (3.3)

32

Identities of this type arise in multiresolution analysis and wavelets [38]. Equation (3.2) gives rise

to the so-called cascade algorithm, hence our terminology.

It can be easily shown that f j+1
i is the piecewise linear interpolant of fi on Ωj = {0, 2−j, . . . , 1},

for i = 0, 1, 2 and j ∈ N0.

In a similar manner, this procedure can be generalized to obtain the piecewise linear interpolant

of a degree n polynomial, f ∈ Πn, with basis β = {f0, . . . , fn}. Then for j ∈ N,

f j+1
i (x) =

n∑
k=0

aik(x)f jk(α(x)), (3.4)

for appropriately chosen coefficients aik, where f 1
0 , . . . , f

1
n are the piecewise linear interpolants of

fi on Ω0.

3.2 Cascade Network Definition and Properties

In this section, cascade networks (CN) are formally defined and several properties are dis-

cussed. Throughout let Ωj = {0, 2−j, . . . , 1}, for j ∈ N and α is defined as in (3.1). Write

αk(x) = α ◦ α ◦ · · · ◦ α︸ ︷︷ ︸
k

(x) for the k-fold composition of α, k ≥ 2. Set α1(x) = α(x) and

α0(x) = x.

Definition 3.3. Let N0, N1, . . . , NL, L ∈ N, x ∈ I . A cascade network YL is a vector-valued

function defined recursively as

Y`(x) = A`(x)Y`−1(α(x)) + b`(x), ` = 1, . . . , L, (3.5)

where Y0 ∈ RN0 the input vector function of x, andA` ∈ RN`×N`−1 are two valued weight matrices

A`(x) =


A0
` , x ∈

[
0, 1

2

)
A1
` , x ∈

[
1
2
, 1
] ,

33

and b` ∈ RN` are two -valued bias vectors

b`(x) =


b0
` , x ∈

[
0, 1

2

)
b1
` , x ∈

[
1
2
, 1
] ,

for ` = 1, . . . , L.

This means the entries of A` and b` are piecewise constant on the mesh Ω1, and the functions

Y`(x) = A`(x)Y`−1(α(x)) + b`(x), for ` = 1, . . . , L, are “piecewise affine” maps.

YL is used to denote the cascade network and its architecture, as well as the function it imple-

ments.

Cascade networks are an example of generalized neural networks, as cascade networks are

also functions resulting from repeatedly applying a fixed operator to an affine operator. Viewing

Definition 3.1 in the CN setting, the affine operator P` is given by P`y = A`y + b`, y ∈ V , and

Qy = y ◦ α, y ∈ V . Note in the CN case, as opposed to the ReLU NN case, Q is a linear operator.

Further, if the input vector Y0 is linear in x, the output of a CN is a piecewise linear function.

Remark 3.1. If N` = W for ` = 0, . . . , L− 1, then YL is called a fixed width cascade network.

Without loss of generality, from now on, assume that the bias terms b` are zero for ` = 1, . . . , L.

Indeed, (3.5) can be rewritten as

Ỹ`(x) = Ã`(x)Ỹ`−1(α(x)), (3.6)

where Ỹ`(x) := (1,Y`(x))T and Ã` :=

1 0

b` A`

, ` = 1, . . . , L and Y0 ∈ RN0 .

As with neural networks, the following criteria is used to determine the complexity of a cascade

network.

Definition 3.4. The number of weights of YL, W(YL), is defined as the total number of nonzero

entries of the matrices A` and the vectors b`, for ` = 1, . . . , L.

34

Definition 3.5. The depth of YL is L(YL) = L.

Definition 3.6. The number of units of YL is U (YL) =
L∑̀
=1

N`.

Definition 3.7. The width of YL isM(YL) = max
`=1,...,L

N`.

Example 3.8. Let f ∈ Πn with basis B = {f0, . . . , fn} and set Y0 = (f 1
0 , . . . , f

1
n)
T as the linear

interpolants of (f0, . . . , fn) on Ω0 (note that Y0 can be written in the form A0(x)x+ b0(x)). Then,

for x ∈ I ,

Y1(x) = A1(x)Y0(α(x))

computes the piecewise linear interpolants of f on Ω1, where the entries of A1(x) are the coeffi-

cients (aik(x))ni,k=0 from Example 3.2. By iterating, for L ≥ 2, YL = AL(x)YL−1(α(x)) computes

the piecewise linear interpolant,
(
fL0 , . . . , f

L
n

)T , of f on ΩL.

In terms of complexity, one can see that the number of weights of YL is

W(YL) ≤ (n+ 1)2L+ (n+ 1),

the number of units is U (YL) = L(n+ 1), and widthM(YL) = n+ 1.

Example 3.9. Example 3.8 showed how to generate a vector YL which computes the piecewise

linear interpolant, (fL0 , . . . , f
L
n)T , of f ∈ Πn on ΩL with basis B = {f0, . . . , fn}. Let c0, . . . , cn ∈

R, if YL is the cascade network from Example 3.8, let Y ′L be the cascade network such that Y ′L =

A′L(x)YL−1(α(x)) where A′L = cTAL, and c = (c0, . . . , cn)T is the vector of the coefficients. Then

Y ′L =
n∑
i=0

cif
L
i , with number of weightsW(Y ′L) ≤ 2(n + 1) + (n + 1)2(L − 2), number of units

U (Y ′L) = (n+ 1)(L− 1) + 1 and widthM(Y ′L) = n+ 1.

Remark 3.2. If YL is generated by a depth L CN, then Y` are also generated by a CN for all

` = 1, . . . , L− 1.

Cascade networks can be combined to form more complex cascade networks. In fact, Lemmas

2.7-2.10 for ReLU neural networks can be generalized to cascade networks.

35

Definition 3.10. Let L1, L2 ∈ N. Let Y1 be a CN with L(Y1) = L1 and Y2 be a CN with

L(Y2) = L2 such that the dimension of the output of Y1 is equal to the dimension of the input of

Y2. Then there exists a CN Y of depth L(Y) = L1 + L2, called the concatenation of Y1 and Y2,

such that Y(x) = (Y2 ◦ Y1)(x) for all x ∈ I .

Lemma 3.11. Let d, L,W ∈ N. For each L there exists a depth L CN, YL, with input vector Y0

linear in x, such that YL maps x 7→ (x, x, . . . , x)T ∈ Rd.

Proof. The proof for L = 1 is provided. Let Y0(x) = (a1x + b1, . . . , aWx + bW)T , ai, bi ∈ R for

i = 1, . . . ,W . Set

A1(x) =



1
2a1

0 · · · 0

0 1
2a2

· · · 0

... · · ·

0 · · · · · · 0 1
2aW


, x ∈ [0, 1];

b0
1 =

(
−b1

2a1

, . . . ,
−bW
2aW

)T
, b1

1 =

(
−b1 + 1− 2a1

2a1

, . . . ,
−bW + 12aW

2aW

)T
.

Then, Y1(x) = A1(x)Y0(α(x)) + b1(x) = (x, . . . , x)T .

Lemma 3.12. Let L,K ∈ N with K > L. Let YL be CN with linear input vector Y0 ∈ RN0 and

L(YL) = L. Then, there exists a CN YK with L(YK) = K, such that YL(x) = YK(x), for all

x ∈ I .

Proof. Use Definition 3.10 and Lemma 3.11 to concatenate YL and the depth K − L CN that

generates the identity map.

Definition 3.13. Let L ∈ N. Let Y1
L, Y2

L be CN’s of depth L with weight matrices A`, B` re-

spectively for ` = 1, . . . , L. Define a network Ỹ , called the parallelization of Y1
L and Y2

L, such

that

Ỹ(x) :=
(
Y1
L(x),Y2

L(x)
)
,

36

where Ã` :=

A` 0

0 B`

 for l = 1, . . . , L− 1 and ÃL :=

(
AL BL

)
.

Lemma 3.14. Let L,W ∈ N. Let Y1, Y2 be CN’s with L(Y1) = L(Y1) = L and with outputs of

same size W . Then, there exists a CN, Ỹ , with L(Y) = L and satisfying Y = Y1 + Y2.

Proof. By Definition 3.3,

Y1
L(x) = AL(x)Y1

L−1(α(x)),

Y2
L(x) = BL(x)Y2

L−1(α(x)).

Let C =

(
AL BL

)
, then

Ỹ(x) = C

Y1
L−1(α(x))

Y2
L−1(α(x))


= ALY1

L−1(x) +BLY2
L−1(x).

In the following lemmas, another way of combining cascade networks, called “splicing”, is

described.

Definition 3.15. Let g1, g2 be functions on I . Call the function g : I → R given by

g(x) =


g1(2x), x ∈

[
0, 1

2

)
g2(2x− 1), x ∈

[
1
2
, 1
] (3.7)

the splicing of g1, g2.

Lemma 3.16. Let g1, g2 be real-valued functions on I whose values can be generated by cascade

networks Y1
L1
,Y2

L2
of depths L1 and L2 respectively. Let g be the splicing of g1 and g2, then g can

37

be generated by a cascade network YL such that

YL(x) =


Y1
L1

(2x), x ∈
[
0, 1

2

)
Y2
L2

(2x− 1), x ∈
[

1
2
, 1
] . (3.8)

Moreover, YL has depth

L(YL) = max{L1, L2}+ 1;

number of units

U (YL) = U (Y1
L1

) + U (Y2
L2

) + |L2 − L1|+ 1;

number of weights

W(YL) =W(Y1
L1

) +W(Y2
L2

) + |L2 − L1|+ 2;

and width

M(YL) =M(Y1
L1

) +M(Y2
L2

).

Corollary 3.3. Let g be obtained as the splicing of g1, . . . , gN , where N = 2M . Then, g(x) =

gi(Nx − i + 1) for x ∈ [i−1
N
, i
N

], i = 1, . . . , N . If Y1
J , . . . ,YNJ are the cascade networks for

g1, . . . , gN respectively, all with depth J , number of units U (Y1
J) = · · · = U (YNJ), number of

weightsW(Y1
J) = · · · = W(YNJ), and widthM(Y iJ), i = 1, . . . , N , then g can be realized as a

cascade network YL, with depth

L(YL) = J +M ;

number of units

U (YL) = O(NU (Y1
J));

number of weights

W(YL) = O(NW(Y1
J));

38

and width

M(YL) = NM(Y1
J).

Proof. The proof follows directly from Lemma 3.16.

Proposition 3.17. Any piecewise linear function on a binary partition, ΩL = {0, 2−L, . . . , 1}, can

be generated by a cascade network YL of depth L(YL) = L, number of units U (YL) = O(2L),

number of weightsW(YL) = O(2L), and widthM(YL) = O(2L).

Proof. The proof will proceed by induction. First, a cascade network Y1 on Ω1 = {0, 1
2
, 1} that

generates an arbitrary piecewise linear function on Ω1 can be written as

y(x) =


2(u1 − u0)x+ u0, x ∈

[
0, 1

2

)
2(u2 − u′1)(x− 1) + u2, x ∈

[
1
2
, 1
] ,

where u0, u1, u
′
1, u2 are real numbers.

Let Y0(x) = (1, x)T . Then, it can be verified that for

A1(x) =



u0 u1 − u0

0 0

 , x ∈
[
0,

1

2

)
u′1 u2 − u′1

0 0

 , x ∈
[

1

2
, 1

] ,

Y1(x) = A1(x)Y0(α(x)) is a depth 1 cascade network such that y(x) = Y1(x).

The induction step now follows directly from Lemma 3.16.

Remark 3.4. Note that continuity of the piecewise linear function is not required in this proposi-

tion. In addition, the result of Proposition 3.17 implies that all piecewise constant functions on a

binary partition can be generated by a cascade network.

By Proposition 3.17, it is clear that cascade networks also possess the universal approximation

39

property. Indeed, every piecewise linear function on a dyadic mesh can be generated by a CN, and

every continuous function can be approximated arbitrarily well by such piecewise linear functions.

40

Chapter 4

Cascade Networks and Subdivision Schemes

In this chapter the connection between cascade networks and subdivision schemes is discussed.

A large class of CN’s can be obtained by means of subdivision schemes. A subdivision scheme is

an iterative method for constructing a smooth object from discrete data points [39]. Starting with

an initial set of data, subdivision schemes iteratively generate a sequence of denser sets of data by

repeatedly applying a refinement rule. Subdivision schemes are used in computer aided geometric

design (CAGD) and geometric modeling for the design of smooth curves and surfaces, and have

also found applications in multi-resolution analysis and wavelets [40, 41].

4.1 Background on Subdivision Schemes

The most studied subdivision schemes are scalar and stationary. Stationary schemes are char-

acterized by repeatedly applying the same local refinement rule throughout the recursive process.

Given an initial bi-infinite sequence of points (also referred to as a control sequence), c[0] ={
c

[0]
i | c

[0]
i ∈ R, i ∈ Z

}
, and a finitely-supported sequence, called a mask, a = {ai | ai ∈ R, i ∈ Z}

(i.e ai 6= 0 for finitely many i), a scalar, stationary subdivision scheme transforms c[0] into a bi-

infinite sequence of points, c[1] =
{
c

[1]
i | c

[1]
i ∈ R, i ∈ Z

}
, by the subdivision rule

c
[1]
i :=

∑
j∈Z

ai−2jc
[0]
j . (4.1)

The subdivision rule (4.1) can be viewed as two separate rules, one rule for the even indices

and one for the even indices:

c
[1]
2i :=

∑
j∈Z

a2jc
[0]
i−j, c

[1]
2i+1 :=

∑
j∈Z

a2j+1c
[0]
i−j.

41

A subdivision scheme is the repeated application of the refinement rule (4.1) starting from the

initial sequence c[0]. Afterm applications of the subdivision rule, the result is a bi-infinite sequence

of points c[m] =
{
c

[m]
i | c

[m]
i ∈ R, i ∈ Z

}
.

It turns out that c[m] often converges, in the sense defined below to a well-defined function. To

make this precise, a subdivision scheme can be viewed as one application of a linear operator, Sa,

which maps a bi-infinite sequence c into the bi-infinite sequence Sa(c)i :=
∑

j∈Z ai−2jcj .

Definition 4.1. [42] A stationary subdivision scheme is called convergent if for every c[0], there

exists a continuous f on R such that

lim
m→∞

sup
j∈Z

∣∣∣(Sma c)j − f
(
2−mj

)∣∣∣ = 0,

and such that f 6≡ 0 for at least one initial sequence c[0] 6≡ 0. Here Sma denotes the m-fold

application of Sa. The limit function f is denoted by S∞a
(
c[0]
)
.

If c[0] = δ, where δ = {δi,0, i ∈ Z} is the delta sequence, then φa := S∞a (δ) is called the basic

limit function of the subdivision scheme. By the linearity of Sa,

f = S∞a
(
c[0]
)

=
∑
j∈Z

c
[0]
j φa(· − j),

for any initial sequence c[0].

If φa ∈ C`(R), for some ` ≥ 0, then so is any limit function generated by Sa and the scheme is

said to be C`. Thus, the smoothness of the of the scheme is determined by the smoothness of the

basic limit function.

A subdivision scheme is called interpolatory if for all m, c[m] is “contained in” c[m+1] in the

sense that c[m+1]
2i = c

[m]
i . In this case, the limit function f interpolates the input points, f(j) =

c
[0]
j , j ∈ Z. Other types of schemes are called approximating.

Subdivision schemes are connected to wavelets by the so-called refinement equation and the

refinability of the basic limit function. Namely, the basic limit function, φa = S∞a (δ), satisfies the

42

refinement equation

φa =
∑
j∈Z

ajφa(2 · −j), (4.2)

where {ai | ai ∈ R, i ∈ Z} are the coefficients of the mask a. It is well known that if the mask

a = {ai | ai ∈ R, i ∈ Z} is supported on {0, . . . , n}, i.e ai = 0 if i /∈ {0, . . . , n}, then φa is

supported on [0, n].

Example 4.2. [39, 43] An example of a scalar, stationary subdivision scheme is the Chaikin al-

gorithm. The Chaikin algorithm was one of the first “corner cutting algorithms” used to generate

a curve from a set of control points. Corner cutting algorithms iteratively create new, smoother

curves from a set of control points. Starting with initial sequence c[0] =
{
c

[0]
i | c

[0]
i ∈ R, i ∈ Z

}
,

the Chaikin algorithm is based on the rules

c
[m+1]
2i =

1

4
c

[m]
i−1 +

3

4
c

[m]
i , c

[m+1]
2i+1 =

3

4
c

[m]
i +

1

4
c

[m]
i+1, i ∈ Z,

corresponding to the mask a with nonzero entries a0 = 1
4
, a1 = 3

4
, a2 = 3

4
, a3 = 1

4
. The subdivision

algorithm in this case can be interpreted as follows: for a given initial control “polygon” (the

piecewise linear interpolant of a set of points in R2) one generates new points by chopping off

the corners of this polygon. Namely, if A, B are a pair of neighboring points of this polygon,

the Chaikin algorithm finds two points C, D such that C is 1/4 of the way between A and B and

D is 3/4 of the way between A and B. The new points C, D obtained for all linear segments

of the control polygon now form a smoother path. Chaikin’s algorithm converges to a quadratic

spline curve
∑
c

[0]
i B2(· − i), where B2 are quadratic B-splines. Figure 4.1a shows a set of initial

points with a simple initial control polygon. Figures 4.1b, 4.1c, and 4.1d show one, two and three

iterations respectively of Chaikin’s algorithm on the simple initial control polygon.

43

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

Initial Control Polygon
Initial Points

(a) Initial Points and Control Poly-
gon

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

Initial Control Polygon
1 Step Control Polygon

1 Step Points

(b) 1 Step of the Chaikin Algorithm

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

Initial Control Polygon
2 Step Control Polygon

2 Step Points

(c) 2 Steps of the Chaikin Algo-
rithm

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

Initial Control Polygon
3 Step Control Polygon

(d) 3 Steps of the Chaikin Algo-
rithm

Figure 4.1: Chaikin Algorithm

Subdivision schemes can also be implemented in a level-dependent way by using a different

mask at each iteration, giving rise to non-stationary subdivision schemes [39, 44]. Given an initial

sequence of points c[0] and a sequence of masks {a[m]}m≥0, a non-stationary subdivision scheme

gives a new sequence of points

c
[m+1]
i :=

∑
j∈Z

a
[m]
i−2jc

[m]
j . (4.3)

Non-stationary schemes are as easily implemented as stationary ones, as, in practice, few iter-

ations are performed for both non-stationary and stationary subdivision schemes. The definition of

convergence for non-stationary schemes is similar to stationary schemes. However, non-stationary

schemes have a larger class of limit functions. In particular, non-stationary schemes can generate

44

exponential splines and even C∞ functions with compact support [45].

Example 4.3. The exponential function, y = ex, can be obtained as the limit of a scalar, non-

stationary subdivision scheme. Let c[0] = {. . . , 0, e1/2, 0, . . . } be the given the initial sequence.

Then, c[m] =
(
c

[m]
i

)
i∈Z

are associated with the dyadic points {(2i+ 1)2−m−1}i∈Z, and are gener-

ated according to the rule

c
[m+1]
i :=

∑
j∈Z

a
[m]
i−2jc

[m]
j .

The masks at level m of the scheme are given by

a[m] =
{
. . . , 0, a

[m]
0 , a

[m]
1 , 0, . . .

}
m≥0

=
{
. . . , 0, e

−1

2m+2 , e
1

2m+2 , 0, . . .
}
m≥0

.

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

y

ex

Initial Point

(a) Initial point

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

y

ex

1 Step SD

(b) 1 Step of subdivision algorithm

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

y

ex

2 Steps SD

(c) 2 Steps of subdivision algorithm

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

y

ex

3 Steps SD

(d) 3 Steps of subdivision algorithm

Figure 4.2: Subdivision Scheme Generating the Exponential Function.

45

Figure 4.2a shows the graph of the exponential function and the initial point. Figures 4.2b,

4.2c, and 4.2d show the points generated by one, two and three steps respectively of the subdivision

scheme. Clearly, as m→∞, this scheme generates the exponential function.

Given a sequence of masks {a[m]}m≥0, starting with any a[m0], m0 > 0, a non-stationary

scheme yields different results depending on the starting mask a[m0]. Therefore, there is no unique

basic limit function in the non-stationary case, rather there is a sequence of basic limit functions,

{φm0}m0>0, each defined by

φm0 = lim
m→∞

Sa[m+m0] · · ·Sa[m0]δ,

where δ is the delta sequence. This sequence of basic limit functions satisfies a system of general-

ized refinement equations

φm0 =
∑
j∈Z

a
[m0]
j φm0+1(2 · −j), m0 ≥ 0. (4.4)

Similar to scalar subdivision, one can define a vector subdivision scheme starting with an

initial bi-infinite sequence of column vectors c[0] =
{
c

[0]
i | c

[0]
i ∈ Rk, i ∈ Z

}
, and a mask A ={

Ai | Ai ∈ Rk×k, i ∈ Z
}

. A vector, stationary subdivision scheme generates a new bi-infinite se-

quence of (column) vectors, c[1] =
{
c

[1]
i | c

[1]
i ∈ Rk, i ∈ Z

}
, by the refinement rule

c
[1]
i :=

∑
j∈Z

Ai−2jc
[0]
j . (4.5)

Viewing c[0] as a row vector, the subdivision refinement rule is defined by:

c
[1]
i :=

∑
j∈Z

c
[0]
j A

T
i−2j. (4.6)

After m iterations, a new bi-infinite sequence of vectors c[m] =
{
c

[m]
i | c

[m]
i ∈ Rk, i ∈ Z

}
is

46

obtained, where

c
[m]
i :=

∑
j∈Z

Ai−2jc
[m−1]
j . (4.7)

One can also define non-stationary vector subdivision schemes using a different mask A[m] ={
A

[m]
i | A

[m]
i ∈ Rk×k, i ∈ Z

}
at each level m ≥ 0, giving a new sequence of points c[m+1] ={

c
[m+1]
i , i ∈ Z

}
, where

c
[m]
i :=

∑
j∈Z

A
[m−1]
i−2j c

[m−1]
j . (4.8)

Example 4.4. [42, 46] The classical Hermite-cubic interpolation is an example of a vector, non-

stationary subdivision scheme. The scheme produces the Hermite cubic interpolant of the given

initial data, consisting of function values and corresponding derivative values.

Let c[0] =

{
. . . ,0, c

[0]
i =

(
f

[0]
i , g

[0]
i

)T
,0, . . .

}
i∈Z

be an initial sequence, where
{
f

[0]
i

}
repre-

sents function values and
{
g

[0]
i

}
represents derivative data and define the masks at level m by

A[m] =
{
. . . ,0, A

[m]
0 , A

[m]
1 , A

[m]
2 ,0, . . .

}
m≥0

,

where

Am0 =

 1
2

−1
8

2−m

3
2
2m −1

4

 , A
[m]
1 = I2, Am2 =

 1
2

1
8
2−m

−3
2

2m −1
4

 .

Then, c[m] =

{
. . . ,0, c

[m]
i =

(
f

[m]
i , g

[m]
i

)T
0, . . .

}
i∈Z

converges to, as m → ∞, the Hermite

cubic interpolant of the initial sequence c[0]. Associating c[m]
i with the dyadic points i2−m, i ∈ Z

one can show that
(
c

[m]
i

)
→ h (i2−m) , i ∈ Z as m → ∞, where h is the Hermite cubic function

interpolating the initial data. That is, h(i) = f
[0]
i , h

′(i) = g
[0]
i for i ∈ Z.

Consider the initial sequence c[0] =
{
. . . , (0, 0)T , (2, 0)T , (−2, 0)T , (0, 0)T , . . .

}
which gives

the function and derivative values at x = 0 and x = 1 of f(x) = 2 cos(πx). Figure 4.3a shows

the initial sequence of points c[0], the graph of f and the graph of the Hermite cubic polynomial

47

through the initial sequence of points. Figures 4.3b- 4.3d show the points generated by 1, 2, and 3

steps respectively of the subdivision algorithm which generates the Hermite Cubic interpolant of

the initial sequence.

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f
(x

)

f(x) = 2 cos(πx)
Hermite Cubic
Initial Points

(a) Initial Points

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f
(x

)

Hermite Cubic
1 Step SD

(b) 1 Step of Subdivision Algorithm

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f
(x

)

Hermite Cubic
2 Step SD

(c) 2 Steps of Subdivision Algo-
rithm

−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f
(x

)
Hermite Cubic

3 Step SD

(d) 3 Steps of Subdivision Algo-
rithm

Figure 4.3: Hermite Cubic Interpolation Subdivision Scheme

4.2 Reformulation of Subdivision Schemes as Cascade Networks

This section describes how subdivision schemes can be reformulated in terms of cascade net-

works. First, let us revisit Example 4.3 of the exponential function.

Example 4.5. By Example 4.3, the function y = ex can be reproduced by a scalar, non-

stationary subdivision scheme with initial sequence c[0] = {. . . , 0, e1/2, 0, . . . } and masks a[m] ={
. . . , 0, e

−1

2m+2 , e
1

2m+2 , 0, . . .
}
m≥0

.

48

It can also be easily shown that lim
L→∞

YL = ex, where

YL = c
[0]
0 AL(AL−1 ◦ α) · · · (A1 ◦ αL−1)(Y0 ◦ αL)

is a cascade network of widthM(YL) = 1, Y0 = 1, c[0]
0 = e1/2 and

A`(x) =


e
−1

2`+1 , x ∈ [0, 1/2)

e
1

2`+1 , x ∈ [1/2, 1]

, ` = 1, . . . , L.

The above example is generalized in the following results.

Proposition 4.6. Let m ∈ N0. Consider a scalar, non-stationary subdivision scheme with initial

sequence c[0] =
{
. . . , 0, c

[0]
0 , 0, . . .

}
, masks a[m] =

{
. . . , 0, a

[m]
0 , a

[m]
1 , 0, . . .

}
m≥0

supported on I ,

and refinement rule 4.1.

Define g0 := c
[0]
0 . For m ∈ N, x ∈ I , let

gm(x) = c
[0]
0 A0(x)A1(α(x)) · · ·Am−1(αm−1(x))Y0(αm(x)),

where Y0(x) = 1, and

Ak(x) =


a

[k]
0 , x ∈

[
0, 1

2

)
a

[k]
1 , x ∈

[
1
2
, 1
] for k = 0, . . . ,m− 1.

Then, gm is the right-continuous, piecewise constant interpolant of
(
c

[m]
i

)2m−1

i=0
obtained by

subdivision at the mesh points Ωm = {0, . . . , 1−2−m}, i.e gm (i2−m) = c
[m]
i for i = 0, . . . , 2m−1.

Proof. First, we prove that

c
[0]
0 a

[0]
δm
· · · a[m−1]

δ1
= c

[m]
2mxj

= gm(x), (4.9)

49

for x ∈ [xj, xj+1], j = 0, . . . , 2m − 1, where xj = 0.δm . . . δ1. is its binary representation. The

proof proceeds by induction: If m = 1, then by the subdivision algorithm

c
[0]
0 a

[0]
0 = c

[1]
0 c

[0]
0 a

[0]
1 = c

[1]
1

and

g1(x) =


c

[0]
0 a

[0]
0 x ∈ [0, 1

2
)

c
[0]
0 a

[0]
1 x ∈ [1

2
, 1]

is the piecewise constant interpolant of c[0] on Ω1.

Next, suppose equation 4.9 is true for some m > 1. By the induction hypothesis,

c
[0]
0 a

[0]
δm+1
· · · a[m]

δ1
= c

[m]
2mxj

a
[m]
δ1
.

By the subdivision algorithm,

c
[m]
j a

[m]
0 = c

[m+1]
2j c

[m]
j a

[m]
1 = c

[m+1]
2j+1

j = δm+1 · · · δ2 Thus,

c
[0]
0 a

[0]
δm+1
· · · a[m]

δ1
= c

[m+1]

2m+1xj
= c

[m+1]
k ,

where k = 2j + 1. Clearly, gm (i2−m) = c
[m]
i for i = 0, . . . , 2m − 1.

For masks of larger support than [0, 1], consider piecewise linear interpolants of the control

points c[m].

Proposition 4.7. Let n ≥ 2, m ∈ N0. Consider a scalar, non-stationary subdivision scheme with

initial sequence c[0] =
{
. . . , 0, c

[0]
0 , . . . , c

[0]
n−1, 0, . . .

}
, masks a[m] = {. . . , 0, a[m]

0 , . . . , a
[m]
n , 0, . . . }

supported on [0, n].

50

For m ∈ N, x ∈ I , let

gm(x) := (c
[0]
0 , . . . , c

[0]
n−1)A0(x)A1(α(x)) · · ·Am−1(αm−1(x))(Y0(αm(x)),

where Y0(x) := (1− x, x, 0, . . . , 0)T ∈ Rn and Ak ∈ Rn×n such that

Ak(x) =


A0,[k], x ∈

[
0, 1

2

)
A1,[k], x ∈

[
1
2
, 1
]

=


(
a

[k]
j−2i+n−1

)n−1

i,j=0
, x ∈

[
0, 1

2

)
(
a

[k]
j−2i+n

)n−1

i,j=0
, x ∈

[
1
2
, 1
] ,

for k = 0, . . . ,m.

Then, gm is the piecewise linear interpolant of
(
c

[m]
i

)
i
for i = (2m − 1) (n−1), . . . , (2m − 1) (n−

1) + 2m, obtained by the subdivision at mesh points Ωm = {0, 2−m, . . . , 1} = {x0, . . . , x2m}.

Proof. The proof is slightly more general than the proof of Proposition 4.6. We first prove that

(
c

[0]
0 , . . . , c

[0]
n−1

)
Aδm,[0] · · ·Aδ1,[m−1] =

(
c

[m]
(2m−1)(n−1)+2mxj

, . . . , c
[m]
(2m−1)(n−1)+2mxj+n−1

)
(4.10)

if x ∈ [xj, xj+1], j = 0, . . . 2m− 1, where xj = 0.δm · · · δ1, δs ∈ {0, 1}, s = 1, . . . ,m is its binary

representation. The proof now proceeds by induction:

For m = 1, by the definition of A0,[0], and looking at c =
(
c

[0]
0 , . . . , c

[0]
n−1

)
multiplied by the

columns of A0,[0]:

c
(
a

[0]
−2i+n−1

)n−1

i=1
=
(
c

[0]
0 , . . . , c

[0]
n−1

)(
a

[0]
n−1, a

[0]
n−3, . . . , a

[0]
−n+1

)T
= c

[1]
n−1,

51

c(a
[0]
−2i+n)n−1

i=1 =
(
c

[0]
0 , . . . , c

[0]
n−1

)
(a[0]
n , a

[0]
n−2, . . . , a

[0]
−n+2)T

= c[1]
n

Continuing in this manner yields:

cA0,[0] =
(
c

[1]
n−1, c

[1]
n , . . . , c

[1]
2n−2

)
.

Similarly, one can show that

cA1,[0] =
(
c[1]
n , . . . , c

[1]
2n−1

)
.

Next, suppose equation (4.10) is true for some m > 1. By the induction hypothesis,

(
c

[0]
0 , . . . , c

[0]
n−1

)
Aδm+1,[0] · · ·Aδ1,[m] =

(
c

[m]
(2m−1)(n−1)+2mxj

, . . . , c
[m]
(2m−1)(n−1)+2mxj+n−1

)
Aδ1,[m].

Then, by looking at
(
c

[m]
(2m−1)(n−1)+2mxj

, . . . , c
[m]
(2m−1)(n−1)+2mxj+n−1

)
multiplied by the columns

of A0,[m],

(
c

[m]
(2m−1)(n−1)+2mxj

, . . . , c
[m]
(2m−1)(n−1)+2mxj+n−1

)
A0,[m] =

(
c

[m+1]

(2m+1−1)(n−1)+2m+1xj
, . . . ,

c
[m+1]

(2m+1−1)(n−1)+2m+1xj+n−1

)
.

The product
(
c

[m]
(2m−1)(n−1)+2mxj

, . . . , c
[m]
(2m−1)(n−1)+2mxj+n−1

)
A1,[m] can be handled similarly.

Now, it remains to show that gm is the piecewise linear interpolant of
(
c

[m]
i

)
i

where i =

(2m − 1) (n− 1), . . . , (2m − 1) (n− 1) + 2m.

Let j ∈ {0, . . . , 2m− 1} and x ∈ [xj, xj+1], where xj = 0.δm · · · δ1 is its binary representation.

Then, by equation (4.10)

gm(x) =
(
c

[0]
0 , . . . , c

[0]
n−1

)
Aδm,[0] · · ·Aδ1,[m−1]l(αm(x))

52

=
(
c

[m]
(2m−1)(n−1)+2mxj

, . . . , c
[m]
(2m−1)(n−1)+2mxj+n−1

)
Y0(αm(x)), (4.11)

for Y0(αm(x)) = (`0(x), `1(x), 0, . . . , 0)T , where `0(x), `1(x) ∈ Π1 and `0(xj) = 1, `0(xj+1) =

0, `1(xj) = 0, `1(xj+1) = 1.

Thus, gm(xj) = c
[m]
(2m−1)(n−1)+2mxj

and gm(xj+1) = c
[m]
(2m−1)(n−1)+2mxj+1

. Hence, gm is well-

defined because xj is independent of whether the interval [xj−1, xj] or [xj, xj+1] was used.

Based on the above, a general scalar, non-stationary subdivision algorithm with mask support

[0, n], can be viewed as a special case of the CN algorithm. For every such subdivision scheme,

there exists a CN generating a piecewise linear function interpolating the values c[m] obtained by

subdivision.

Example 4.8. The Chaikin algorithm described in Example 4.2 can be reformulated as a CN,

YL(x) =
(
c

[0]
0 , c

[0]
1 , c

[0]
2

)
A0(x)A1(α(x)) · · ·AL−1(αL−1(x))Y0(αL(x))

with Y0 = (1− x, x, 0)T and matrices A` ∈ Rn×n such that

A`(x) =


A0, x ∈

[
0, 1

2

)
A1, x ∈

[
1
2
, 1
]

=




3/4 1/4 0

1/4 3/4 3/4

0 0 1/4

 , x ∈
[
0,

1

2

)


1/4 0 0

3/4 3/4 1/4

0 1/4 3/4

 , x ∈
[

1

2
, 1

]
,

for ` = 1, . . . , L.

53

The next two results deal with vector subdivision schemes. Again, we will see that they can be

cast in the language of CN’s. The cases n = 1 and n ≥ 2 will again be treated separately.

Proposition 4.9. Let k ∈ N and m ∈ N0. Consider a vector, non-stationary subdivision scheme

with initial sequence c[0] =
{
. . . ,0, c

[0]
0 ,0 . . .

}
, where c[0]

0 ∈ Rk is a column vector, and masks

A[m] =
{
. . . ,0, A

[m]
0 , A

[m]
1 ,0, . . .

}
m≥0

supported on [0, 1], where A[m]
0 , A

[m]
1 ∈ Rk×k. For m ∈

N, x ∈ I , let

gm(x) :=
(
c

[0]
0

)T
A0(x)A1(α(x)) · · ·Am−1(αm−1(x))(Y0(αm(x)),

where Y0(x) = Ik, and A` ∈ Rk×k such that

A`(x) =


A0,[`], x ∈

[
0, 1

2

)
A1,[`], x ∈

[
1
2
, 1
] =


(
A

[`]
0

)T
, x ∈

[
0, 1

2

)
(
A

[`]
1

)T
, x ∈

[
1
2
, 1
] ,

for ` = 0, . . . ,m.

If x ∈
[
i

2m
, i+1

2m

)
, for i = 0, . . . , 2m − 1, then gm(x) =

(
c

[m]
i

)T
.

Proof. The proof is similar to the proof of Proposition 4.6

Proposition 4.10. Let n, k ∈ N, n ≥ 2, andm ∈ N0. Consider a vector, non-stationary subdivision

scheme with initial sequence c[0] =
{
. . . , 0, c

[0]
0 , . . . , c

[0]
n−1, 0, . . .

}
, where c[0]

i ∈ Rk is a column

vector, and masks a[m] =
{
. . . , 0, A

[m]
0 , . . . , A

[m]
n , 0, . . .

}
supported on [0, n], A[m]

i ∈ Rk×k.

For m ∈ N, x ∈ I , let

gm(x) :=

((
c

[0]
0

)T
, . . . ,

(
c

[0]
n−1

)T)
A0(x)A1(α(x)) · · ·Am−1(αm−1(x))(Y0(αm(x)),

54

where A` ∈ Rkn×kn

A`(x) =


A0,[`], x ∈

[
0, 1

2

)
A1,[`], x ∈

[
1
2
, 1
] =


(
A

[`]
j−2i+n−1

)n−1,n−1

i,j=0
x ∈

[
0, 1

2

)
(
A

[`]
j−2i+n

)n−1,n−1

i,j=0
, x ∈

[
1
2
, 1
]
,

for ` = 0, . . . ,m, and Y0(x) ∈ Rkn×k given by Y0(x) :=


(1− x)Ik

xIk

0(n−2)k×k

.

Then, gm is the piecewise linear row vector function of size k that interpolates
{(

c
[m]
i

)T
i

}
, for

i = (2m − 1)(n − 1), . . . , (2m − 1)(n − 1) + 2m, m ∈ N, obtained from a vector, non-stationary

subdivision scheme at the mesh points Ωm = {0, 2−m, . . . , 1}.

Proof. The proof is similar to the proof of Proposition 4.7.

The above results confirm that sequences of scalars or vectors obtained by subdivision can be

viewed as restrictions of functions generated by CN’s to dyadic meshes.

55

Chapter 5

Cascade Networks and the Cascade Algorithm

In this chapter, the close connection between cascade networks and cascade algorithms associ-

ated with refinement equations commonly used in wavelet theory and multi-resolution analysis is

discussed.

Proposition 5.1. Let n ∈ N. Suppose that φ : R→ R, supported on [0, n], satisfies the refinement

equation

φ(·) =
n∑
i=0

aiφ(2 · −i). (5.1)

Consider f : [0, 1]→ Rn such that

f(·) =
(
φ(·+ n− 1)|[0,1], φ(·+ n− 2)|[0,1], . . . , φ(·+ 1)|[0,1], φ(·)|[0,1]

)T
.

Then f satisfies,

f(x) = A(x)f(α(x)), x ∈ [0, 1], (5.2)

where A : [0, 1]→ Rn×n is a two-valued matrix such that

A(x) =


A0, x ∈

[
0, 1

2

)
A1, x ∈

[
1
2
, 1
] =


(aj−2i+n−1)n−1,n−1

i,j=0 , x ∈
[
0,

1

2

)
(aj−2i+n)n−1,n−1

i,j=0 , x ∈
[

1

2
, 1

] .

Proof. If x ∈ [0, 1
2
), then by (5.1) and the fact that φ vanishes outside [0, n],

f(x) =


φ(x+ n− 1)

...

φ(x)


56

=


n∑
i=0

aiφ(2(x+ n− 1)− i)
...

n∑
i=0

aiφ(2x− i)



=



an−1 an . . . a2n−2

an−3 an−2 . . . a2n−4

...
...

...
...

a−n+1 a−n+2 . . . a0





φ(2x+ n− 1)

φ(2x+ n− 2)

...

φ(2x)



= A0


φ(2x+ n− 1)

...

φ(2x)


= A0f(2x).

If x ∈ [1
2
, 1], then by (5.1),

f(x) =


φ(x+ n− 1)

...

φ(x)



=


n∑
i=0

aiφ(2(x+ n− 1)− i)
...

n∑
i=0

aiφ(2x− i)



57

=



an an+1 . . . a2n−1

an−2 an−1 . . . a2n−3

...
...

...
...

a−n+2 a−n+3 . . . a1





φ(2x+ n− 2)

φ(2x+ n− 3)

...

φ(2x− 1)



= A1


φ(2x+ n− 2)

...

φ(2x− 1)


= A1f(2x− 1).

Therefore, f satisfies (5.2).

Proposition 5.2. Let k, n ∈ N. Suppose that φ : [0, 1] → Rk, supported on [0, n], satisfies the

vector refinement equation

φ(·) =
n∑
i=0

Biφ(2 · −i), (5.3)

where Bi ∈ Rk×k, for i = 0, . . . , n.

Let f : [0, 1]→ Rkn be such that

f(·) =
(
φ1(·+ n− 1)|[0,1], . . . , φk(·+ n− 1)|[0,1], . . . , φ1(·)|[0,1], . . . , φk(·)|[0,1]

)T
.

Then, f satisfies

f(x) = A(x)f(α(x)), x ∈ [0, 1], (5.4)

where A ∈ Rkn×kn such that

A(x) =


A0, x ∈

[
0,

1

2

)
A1, x ∈

[
1

2
, 1

] =


(Bj−2i+n−1)n−1,n−1

i,j=0 , x ∈
[
0,

1

2

)
(Bj−2i+n)n−1,n−1

i,j=0 , x ∈
[

1

2
, 1

] .

58

Proof. If x ∈ [0, 1
2
), then by (5.3),

f(x) = (φ1(x+ n− 1), . . . , φk(x+ n− 1), . . . , φ1(x), . . . , φk(x))T

=


n∑
i=0

Biφ(2(x+ n− 1)− i)
...

n∑
i=0

Biφ(2x− i)



=



Bn−1 Bn . . . B2n−2

Bn−3 Bn−2 . . . B2n−4

...
...

...
...

B−n+1 B−n+2 . . . B0





φ(2x+ n− 1)

φ(2x+ n− 2)

...

φ(2x)



= A0


φ(2x+ n− 1)

...

φ(2x)


= A0f(2x).

If x ∈ [1
2
, 1], then by (5.3),

f(x) = (φ1(x+ n− 1), . . . , φk(x+ n− 1), . . . , φ1(x), . . . , φk(x))T

=


n∑
i=0

Biφ(2(x+ n− 1)− i)
...

n∑
i=0

Biφ(2x− i)



59

=



Bn Bn+1 . . . B2n−1

Bn−2 Bn−1 . . . B2n−3

...
...

...
...

B−n+2 B−n+3 . . . B1





φ(2x+ n− 2)

φ(2x+ n− 3)

...

φ(2x− 1)



= A1


φ(2x+ n− 2)

...

φ(2x− 1)


= A1f(2x− 1).

Therefore, f satisfies (5.4).

Next, consider the refinement function as a matrix function.

Proposition 5.3. Let k, n ∈ N. Suppose that F : [0, 1] → Rk×k supported on [0, n] satisfies the

generalized refinement equation

F (·) =
n∑
i=0

BiF (2 · −i), (5.5)

where Bi ∈ Rk×k, for i = 0, . . . , n.

Let f : [0, 1]→ Rkn×k such that f(·) =


F (·+ n− 1)

...

F (·)

.

Then f satisfies,

f(x) = A(x)f(α(x)), x ∈ [0, 1],

60

where A ∈ Rkn×kn such that

A(x) =


A0, x ∈

[
0,

1

2

)
A1, x ∈

[
1

2
, 1

] =


(Bj−2i+n−1)n−1,n−1

i,j=0 , x ∈
[
0,

1

2

)
(Bj−2i+n)n−1,n−1

i,j=0 , x ∈
[

1

2
, 1

] .

Proof. The proof is similar to the proof of Proposition 5.2.

The above examples show that all refinable functions, including vector and matrix functions,

satisfy an equation of the form f = A(f ◦α). This suggests an iterative generation of f as the limit

of fn, where fn = A(fn−1 ◦α), starting with an initial approximation f0. In the theory of refinable

functions, this is known as the cascade algorithm. Thus, the cascade algorithm is a special case of

cascade networks studied here.

61

Chapter 6

Convergence of Infinite Products of Matrices and Cascade Networks

This chapter discusses convergence of infinite products of matrices. If the input Y0 of a cascade

network is a matrix, a cascade network leads to products of matrices and can be written as

YL = AL(AL−1 ◦ α) · · · (A1 ◦ αL−1)(Y0 ◦ αL),

where A` are two-valued matrices for ` = 1, . . . , L. Using the language of subdivision algorithms,

a CN is called stationary if for all `, A` = A where

A(x) =


A0, x ∈ [0, 1/2)

A1, x ∈ [1/2, 1]

,

and A0, A1 ∈ RW×W are fixed. A CN is called non-stationary if

A`(x) =


A0
` , x ∈ [0, 1/2)

A1
` , x ∈ [1/2, 1]

,

where A0
` , A

1
` ∈ RW×W for ` = 1, . . . , L.

In the stationary case, the convergence of infinite product of matrices has been studied by

Daubechies and Lagarias [47], Berger and Wang [48], and others [49, 50]. Sets of matrices

all infinite products of which converge arise in many different contexts, including constructing

parametrized curves by subdivision algorithms [51, 52, 53] and wavelets and refinement equations

[54, 55].

62

6.1 Joint Spectral Radius

The concept of the joint spectral radius of a set of matrices is essential to the study of infi-

nite products of matrices. First introduced by Rota and Strang in 1960, the joint spectral radius

generalizes the concept of the spectral radius of a matrix to sets of matrices [56].

Definition 6.1. [47, 57] The spectral radius of a r × r matrix M , ρ(M), is defined as the largest

modulus of its eigenvalues:

ρ(M) := max{|λ| : Av = λv}.

The following results are well known [47, 56].

Lemma 6.2. For M ∈ Rr×r,

lim
n→∞

Mk = 0 ⇐⇒ ρ(M) < 1.

Lemma 6.3. If ρ(M) < 1, there exists a matrix norm, ‖ · ‖, such that ‖M‖ < 1.

It can be shown that forM ∈ Rr×r, any matrix norm, ‖·‖, gives an upper bound for the spectral

radius, ρ(M) ≤ ‖M‖. As a consequence, for all k ∈ N, ρ(M) ≤ ‖Mk‖1/k.

Theorem 6.4. Let M ∈ Rr×r. For any matrix norm, ‖ · ‖,

ρ(M) = lim
k→∞
‖Mk‖1/k.

The concept of the spectral radius of a matrix can be generalized to a set of matrices, Σ [56].

Definition 6.5. The joint spectral radius, ρ̂(Σ), of a set of matrices Σ is defined by

ρ̂(Σ) := lim sup
k→∞

(ρ̂k(Σ, ‖ · ‖))1/k, (6.1)

where ‖ · ‖ is any matrix norm and

ρ̂k(Σ, ‖ · ‖) := sup

{∥∥∥∥∥
k∏
i=1

Mi

∥∥∥∥∥ : Mi ∈ Σ for 1 ≤ i ≤ k

}
.

63

Note that the definition (6.1) is independent of the norm used.

Example 6.6. Consider Σ = {A0, A1}, where A0 =

1 1

0 0

 and A1 =

1 0

1 0

.

Clearly, ρ(A0) = ρ(A1) = 1.

Consider k even, (A0A1)
k

=

2k 0

0 0

, then

ρ̂k (Σ, ‖ · ‖∞) = sup

{∥∥∥∥∥
k∏
i=1

Aδi

∥∥∥∥∥
}

≥
{∥∥∥(A0A1

)k/2∥∥∥
∞

}
=

∥∥∥∥∥∥∥
(√2

)k
0

0 0


∥∥∥∥∥∥∥
∞

=
(√

2
)k

and thus ρ̂(Σ) ≥
((√

2
)k)1/k

.

Clearly, ρ̂(Σ) ≥
√

2, in fact, one can show that ρ̂(Σ) =
√

2.

Definition 6.7. The generalized spectral radius, ρ? (Σ), of any set of matrices Σ is

ρ? (Σ) := lim
k→∞

sup (ρk (Σ))1/k ,

where

ρk (Σ) := sup

{
ρ

(
k∏
i=1

Mi

)
|Mi ∈ Σ, for 1 ≤ i ≤ k

}
.

In [48], Berger and Wang showed ρ? (Σ) = ρ̂ (Σ), for for all finite sets Σ.

64

6.2 Infinite Product of Matrices

Cascade networks lead to products of matrices. As the depth of a cascade network increases,

that is as L→∞, we would like to understand under what conditions do the products of the matri-

ces AL converge or converge to a continuous limit. Convergent infinite products of matrices occur

in many areas of mathematics, and has been studied most notably by Daubechies and Lagarias in

[47]. Next, several results from that paper are presented.

In the following, the superscript i denotes the index of the set Σ, and is not an exponent.

Definition 6.8. [47] An infinite product
∞∏
i=1

Ai,Ai ∈ Rn×n for all i, right converges if lim
i→∞

A1 · · ·Ai

exists, in which case define
∞∏
i=1

Ai := lim
i→∞

A1 · · ·Ai.

A set of n× n matrices, Σ, is said to be an RCP set (“right convergent product”) if all infinite

products of matrices of Σ right converge.

Analogously, one can define properties for left convergence. An infinite product
∞∏
i=1

Ai left

converges if lim
i→∞

Ai · · ·A2A1 exists in which case define
∞∏
i=1

Ai := lim
i→∞

Ai · · ·A1.

A set of n × n matrices, Σ, is said to be an LCP set (“left convergent product”) if all infinite

products of matrices in Σ left converge.

Define ΣT = {AT |A ∈ Σ}, then it follows that Σ is an RCP set if and only if ΣT is an LCP set

[47]. Therefore, results for LCP sets are interchangeable with RCP sets by taking the transpose of

all matrices of Σ.

However, there exist RCP sets which are not LCP sets.

Example 6.9. [47] Consider Σ = {A0, A1}, where A0 =

1/2 0

1/2 0

 and A1 =

1 1/2

0 1/2

.

Σ is an RCP set, but not an LCP set.

If Σ = {A0, A1, . . . , Am−1} is a finite set, then any sequence of elements of Σ can be charac-

terized by a sequence d = (dj)j∈N of digits drawn from {0, 1, . . . ,m − 1}. Let Sm denote the set

65

of all such sequences, equipped with metric D(d,d′) = m−r, where r is the first index such that

dr 6= d′r. The induced topology on Sm is called the sequence topology.

For Σ a finite RCP set, the limit function AΣ(·) is defined by AΣ(d) :=
∏∞

j=1A
dj , where

AΣ(d) ∈ Cn×n.

Viewing d as an m-ary expansion of a real number, Sm can be mapped to [0, 1] by x : Sm →

[0, 1], where x(d) =
∞∑
j=1

djm
−j . x is continuous and one to one except at the terminating rationals

`/mj , which have two expansions of the form

d1 · · · dj 0 0 0 · · · ,

d1 · · · dj − 1 m− 1 m− 1 m− 1 · · · .
(6.2)

An RCP set Σ is called real definable if the images under AΣ of any two sequences of the

form (6.2) agree. Then, a real limit function AΣ : [0, 1] → Cn×n is well defined and given by

AΣ(x) := AΣ(d(x)), where d(x) is any m-ary expansion of x.

In [47], Daubechies and Lagarias give necessary conditions for a finite set Σ to be an RCP set,

using the concept of the joint spectral radius.

Theorem 6.10. [47] If Σ is a finite RCP set, then ρ̂ (Σ) ≤ 1.

Elsner and Friedland [49] give a necessary and sufficient norm condition for a set of two ma-

trices to have the LCP property.

Theorem 6.11. [49] The following conditions are equivalent:

(i) The set Σ = {A0, A1} , A0, A1 ∈ Cn×n, is an LCP set.

(ii) There exists a norm ‖ · ‖ on Cn such that

(a) ‖Ai‖ ≤ 1, i = 0, 1

(b) For i = 0, 1, if λ is an eigenvalue of Ai, |λ| = 1, then λ = 1;

(c) ‖A0A1x‖ = ‖x‖ if and only if A0x = A1x = x.

66

6.3 Limit Functions of RCP, LCP Sets

Next, several known results about limit functions of RCP and LCP sets are presented. In

[48, 49] various matrix norm conditions are given for a finite set of matrices Σ to be an LCP set or

an LCP set with continuous limit function. First recall the following definition from [47].

Definition 6.12. [47] A set of matrices Σ is called product bounded if there exists a C = C(Σ)

such that all finite products satisfy

∥∥∥∥∥
k∏
i=1

Ai

∥∥∥∥∥ ≤ C, for all Ai ∈ Σ

The following was proved by Berger and Wang [48].

Theorem 6.13. [48]

a) If Σ is a finite LCP set, then Σ is product bounded.

b) Σ is LCP all of whose infinite products are zero if and only if ρ̂(Σ) < 1.

The next lemma was proved by Beyn and Elsner in [50].

Lemma 6.14. [50] For Σ a finite set of n× n matrices the following are equivalent.

1. The set Σ is product bounded.

2. There exists a vector norm ‖ · ‖ such that ‖Ax‖ ≤ ‖x‖ for all A ∈ Σ, x ∈ Cn.

3. There exists a multiplicative matrix norm ‖ · ‖ such that ‖A‖ ≤ 1 for all A ∈ Σ.

Beyn and Elsner used Lemma 6.14 to show if Σ is an LCP set with a continuous limit function,

then there exists a norm, ‖·‖, such that all for matrices A ∈ Σ, ‖Ax‖ < ‖x‖ if and only if Ax 6= x,

for all x ∈ Cn.

In [47], Daubechies and Lagarias characterize finite RCP sets having continuous or real-continuous

limit functions.

67

Theorem 6.15. [47]

Let Σ be a finite RCP set of n× n matrices. The following are equivalent:

1. Σ is an RCP set whose limit function MΣ is continuous.

2. All matrices Ai in Σ have the same 1-eigenspace E1 = E1(Ai) and this eigenspace is simple

for all Ai. There exists a vector space V with Rn = E1 + V , having the property that if

PV is an oblique projection onto V away from E1, then PV ΣPV is an RCP set whose limit

function is identically zero.

3. All matrices Ai in Σ have the same 1-eigenspace E1 = E1(Ai) and this eigenspace is simple

for all Ai. For all vector spaces V with Rn = E1 + V and dim(V) = n− dim(E1), if PV is

an oblique projection onto V away from E1, then PV ΣPV is an RCP set with limit function

identically zero.

Theorem 6.16. [47] The finite ordered set Σ = {A0, A1, . . . , Am−1} of n× n matrices is an RCP

set with real-continuous limit function AΣ if and only if Σ is an RCP set with a continuous limit

function on Sm, and if

Ai = S

Id 0

Ci Ãi

S−1, 0 ≤ i ≤ m− 1,

with d = dim(E1(Σ)), E1 the left 1-eigenspace of Σ, then

Ci+1 + Ãi+1
(
In−d − Ã0

)−1

C0 = Ci + Ãi
(
In−d − Ãm−1

)−1

Cm−1, 0 ≤ i ≤ m− 2.

The limit functions of an RCP set need not be continuous. Let Σ = {A0, A1, . . . } an RCP set

with continuous limit function, then Σ′ = {I, A0, A1, . . . } has discontinuous limit function.

68

Example 6.17. In [47, 54] the set Σ = {A0, A1} given by

A0 =


1+
√

3
4

0 0

3−
√

3
4

3+
√

3
4

1+
√

3
4

0 1−
√

3
4

3−
√

3
4

 , A1 =


3+
√

3
4

1+
√

3
4

0

1−
√

3
4

3−
√

3
4

3+
√

3
4

0 0 1−
√

3
4


is shown to be an RCP set with E1(Σ) generated by (1, 1, 1), and has real-limit function

AΣ(α) =


f(α) f(α) f(α)

f(α + 1) f(α + 1) f(α + 1)

f(α + 2) f(α + 2) f(α + 2)


for 0 ≤ α ≤ 1, where the function f is continuous and differentiable on [0, 3], except on a set of

points of Hausdorff dimension ≤ 0.25.

6.4 Non-Stationary Cascade Networks

A natural question is what happens if a stationary cascade network is “perturbed” to become

non-stationary. In the following assume Σ = {A0, A1}. Next, a result analogous to Lemma 6.14 is

proved for non-stationary cascade networks, obtained by perturbing stationary CN’s.

Definition 6.18. Matrices A0, A1 ∈ Rr×r are said to satisfy Property B if
n∏
`=1

Aδ` is uniformly

bounded in n and δ, for δ` ∈ {0, 1} and some norm ‖ · ‖.

Proposition 6.19. The following are equivalent:

a) A0, A1 satisfy Property B;

b) There exists a submultiplicative norm, ‖ · ‖0, such that ‖A0‖0 ≤ 1, ‖A1‖0 ≤ 1;

Proof. (b)⇒ (a) ∥∥∥∥∥
n∏
`=1

Aδ`

∥∥∥∥∥
0

≤
n∏
`=1

∥∥Aδ`∥∥
0
≤ 1.

69

Thus, A0, A1 satisfy Property B.

(a)⇒ (b)

Let V be the unit ball in Rr centered at the origin with norm ‖ · ‖2. Let

Un =
⋃

δ1,...,δn∈{0,1}

(
n∏
`=1

Aδ`

)
V.

By (a), Un ⊂ Rn are uniformly bounded, thus ‖un‖2 = sup
u∈Un
‖u‖2 < C for all n,C > 0.

Define U to be the set of all accumulation points of Un. Then,Aju ∈ U , for u ∈ U and j = 0, 1.

U is bounded, balanced, and the relative interior of U is non-empty.

LetW be the convex hull of U . Then,W is balanced and bounded. Assume U is absorbing, then

W is also absorbing. If U is not absorbing, then the degenerate case can be dealt with separately.

Let w ∈ W , then w = t1u1 + · · · + tr+1ur+1, where u1, . . . , ur+1 ∈ U , t1, . . . , tr+1 ≥ 0, and
r+1∑
i=1

ti = 1. Then,

A0w = A0 (t1u1 + · · ·+ tr+1ur+1)

= t1A
0u1 + · · ·+ tr+1A

0ur+1

∈ W.

Thus, A0W ⊂ W . Similarly, one can show that A1W ⊂ W .

Now, there exists a norm ‖ · ‖0 whose unit ball is W . Thus, for w ∈ W , A0w ∈ W if and

only if ‖w‖0 ≤ 1 implies ‖A0w‖ ≤ 1. Similarly, for w ∈ W , A1w ∈ W if and only if ‖w‖0 ≤ 1

implies ‖A1w‖ ≤ 1.

Proposition 6.20. Let A0, A1 satisfy Property B. If {A0
`} → A0, {A1

`} → A1 and

70

∑
`

‖A0
` − A0‖ <∞

∑
`

‖A1
` − A1‖ <∞,

then
k+n∏
`=k+1

Aδ`` are uniformly bounded in n, k and δ, for δ` ∈ {0, 1}

Proof. By Proposition 6.19, we can consider a norm ‖ · ‖0 such that ‖A0‖0 ≤ 1, ‖A1‖0 ≤ 1.

Thus,

∥∥∥∥∥
k+n∏
`=k

Aδ``

∥∥∥∥∥
0

=

∥∥∥∥∥
k+n∏
`=k

(
Aδ`` − A

δ` + Aδ`
)∥∥∥∥∥

0

≤
k+n∏
`=k

∥∥∥(Aδ`` − Aδ` + Aδ`
)∥∥∥

0

≤
k+n∏
`=k

(∥∥∥(Aδ`` − Aδ`)∥∥∥
0

+ 1
)

≤
k+n∏
`=k

exp
(∥∥∥Aδ`` − Aδ`∥∥∥

0

)
≤

k+n∏
`=k

exp
(∥∥A0

` − A0
∥∥

0

)
exp

(∥∥A1
` − A1

∥∥
0

)
≤ exp

(
∞∑
`=1

∥∥A0
` − A0

∥∥
0

+
∞∑
`=1

∥∥A1
` − A1

∥∥
0

)

<∞.

Conjecture 6.1. Let Σ = {A0, A1} be an RCP set with real-continuous limit function. If {A0
`} →

71

A0, {A1
`} → A1 and

∑
`

‖A0
` − A0‖ <∞

∑
`

‖A1
` − A1‖ <∞

then
∞∏
`=1

Aδ`` converges for all δ = (δ1, δ2, . . .), δ` ∈ {0, 1}, and these products give rise to a

continuous real matrix valued function A on [0, 1] in the sense that
∞∏
`=1

Aδ`` = A(x), where (x)2 =

0.δ1δ2 · · · .

72

Chapter 7

The Space SW,L

The aim of this chapter is to characterize the space of functions which can be obtained by a

cascade network with fixed width.

7.1 Definition and Properties

Definition 7.1. For W,L ∈ N, let SW,L = {YL| YL(x) = AL(x)(YL−1(α(x)) + bL(x),YL−1 ∈

SW,L−1} be the space of functions that can be obtained by a cascade network with fixed width

W and of depth L, from all possible choices of weights and biases where SW,0 = {Y0|Y0 =

(a1x+ b1, . . . , aWx+ bW)T ∈ RW} = ΠW
1 ([0, 1]).

Lemma 7.2. Let L ≥ 1. The spaces SW,L are nested. Thus, for L < K, SW,L ⊂ SW,K .

Proof. The proof is given for all bias terms equal to zero. The proof for non-zero biases is similar.

It suffices to show that SW,L ⊂ SW,L+1. Let YL ∈ SW,L, where

YL(x) = AL(x)AL−1(α(x)) · · ·A1(αL−1(x))Y0(αL(x)),

Ai ∈ RW×W , for i = 1 . . . L. Suppose Y0(x) = (a1x + b1, · · · , aWx + bW)T ∈ RW , and that for

all i, j ∈ {1, . . . ,W}, i 6= j, (ai, bi) is not a scalar multiple of (aj, bj), i.e there is no λ ∈ R such

that λaj = a1 and λbj = bi. In particular, this implies that there is no i ∈ {1, . . . ,W} such that

ai = bi = 0.

There exists G : [0, 1]→ RW×W , defined by

G(x) =


G0, x ∈ [0, 1/2),

G1, x ∈ [1/2, 1]

,

73

such that G(x)Y0 (α(x)) = Y0(x), for all x ∈ [0, 1].

First suppose there exists n ∈ {1, . . . ,W} such that an = 0, then bn 6= 0. Without loss of

generality, assume n = 1, then b1 6= 0 and the first component of Y0 is b1 for all x ∈ [0, 1]. Then

G(x) :=





1 0 0 · · · 0

b2
2b1

1
2

0 · · · 0

... · · · . . . · · · 0

bW−1

2b1
0 · · · 1

2
0

bW
2b1

0 · · · 0 1
2


, x ∈ [0, 1/2)



1 0 0 · · · 0

(b2+a2)
2b1

1
2

0 · · · 0

... · · · . . . · · · 0

(bW−1+aW−1)

2b1
0 · · · 1

2
0

(bW+aW)
2b1

0 · · · 0 1
2


, x ∈ [1/2, 1].

One can check that the statement is satisfied. Hence, it suffices to assume that ai 6= 0 for all

i ∈ {1, . . . ,W}. For all i ∈ {1, . . . ,W} pick k(i), `(i) ∈ {1, . . . ,W} such that i, k(i), `(i) are

distinct. For simplicity, fix i and set k(i) = k, `(i) = `. Let G0 = (g0
ij) and G1 = (g1

ij) and set

g0
ij = g1

ij = 0 if j /∈ {i, k, `} and g0
ii = g1

ii = 1/2.

For x ∈ [0, 1/2), letG0Y0(α(x)) = (c1(x), . . . , cW (x))T , and for x ∈ [1/2, 1], letG1Y0(α(x)) =

(d1(x), . . . , dW (x))T .

Then,

ci(x) = ai(x) +
bi
2

+ 2(g0
ikak + g0

i`a`)x+ (g0
ikbk + g0

i`b`).

Thus, ci(x) = (Y0(x))i if g0
ik, g

0
i` ∈ R such that

g0
ikak + g0

i`a` = 0

g0
ikbk + g0

i`b` =
bi
2
.

74

This is true if akb`−a`bk 6= 0. But, if akb` = a`bk, then either bk = b` = 0, which implies ak = λa`

for some λ ∈ R, or a`
b`

= ak
bk

which implies there exists λ ∈ R such that a` = λak and b` = λa`. As

no such λ exists, one can find g0
ik, g

0
i` satisfying this. Similarly,

di(x) = ai(x)− ai
2

+
bi
2

+ 2(g1
ikak + g1

i`a`)x+ (g1
ik(bk − ak) + g1

i`(b` − a`)),

so that di(x) = (Y0)i as long as

g1
ikak + g1

i`a` = 0

g1
ik(bk − ak) + g1

i`(b` − a`) =
bi + ai

2
.

By similar reasoning as above, one can find g1
ik, g

1
i` satisfying this. Therefore, G(x)Y0 (α(x)) =

Y0(x) for all x ∈ [0, 1].

Replacing x by αL(x), G
(
αL(x)

)
Y0

(
αL+1(x)

)
= Y0

(
αL(x)

)
. Then,

YL(x) = AL(x)AL−1(α(x)) · · ·A1(αL−1(x))Y0(αL(x))

= AL(x)AL−1(α(x)) · · ·A1(αL−1(x))G(αL)Y0(αL+1(x))

= BL+1(x)BL(α(x)) · · ·B1(αL(x))Y0(αL+1(x)),

where BL+1 = AL, BL = AL−1, . . . , B2 = A1 and B1 = G. Therefore, YL ∈ SW,L+1.

7.2 SW,L and “Periodicity”

In this section, we will give a characterization of SW,L in terms of what might be called “peri-

odicity”.

Lemma 7.3. Let K ∈ N. Suppose that YK is a piecewise linear function on ΩK such that

(a) YK(·+ 1/2) = CYK(·) + d on [0, 1/2), for some C ∈ RW×W , d ∈ RW ;

(b) YK(2−1·)|[0,1] ∈ SW,K−1.

75

Then YK ∈ SW,K .

Proof. It suffices to show that

YK(·) = A0
KYK−1(2·) + b0

K , on [0, 1/2), (7.1)

and

YK(·) = A1
KYK−1(2 · −1) + b1

K , on [1/2, 1], (7.2)

for some YK−1 ∈ SW,K−1 and some matrices A0
K , A

1
K and vectors b0

K , b
1
K .

To show (7.1), select A0
K = IW , b0

K = 0 ∈ RW and YK−1 := YK(2−1·) on [0, 1]. Then, by part

(b), YK−1 ∈ SW,K−1.

Next, select A1
K , b

1
K such that (7.2) holds. Notice that (7.2) is equivalent to

YK(·+ 1/2) = A1
KYK−1(2·) + b1

K , on [0, 1/2).

However, on [0, 1/2), YK(·+ 1/2) = CYK(·) + d, by assumption (a), and YK(·) = YK−1(2·).

Thus,

YK(·+ 1/2) = CYK−1(2·) + d.

Now, select A1
K = C and b1

K = d. Therefore, YK ∈ SW,K .

Lemma 7.4. Let L ∈ N. Let j ∈ {0, . . . , 2L − 1}, with (j)2 = δ1 · · · δL its binary representation.

If YL is such that

(a) YL|[j2−L,(j+1)2−L) ∈ ΠW
1

(
[0, 2−L)

)
,

(b)

YL
(
·+ δ1 · · · δ`−1

2`−1
+

1− δ`
2`

) ∣∣∣∣
[0,2−`)

= C`
LYL

(
·+ δ1 · · · δ`

2`

) ∣∣∣∣
[0,2−`)

+ d`L,

for ` = 1, . . . , L and some j ∈ {0, . . . , 2` − 1}.

76

Then YL ∈ SW,L.

Proof. Without loss of generality, assume that j = 0. The proof will proceed by induction.

For L = 1, by condition (a), Y1|[0,1/2) is affine, thus Y1(2−1·) ∈ SW,0. By condition (b),

Y1(·+ 1/2) = C1
1Y1(·) + d1

1 on [0, 1/2). Therefore, by Lemma 7.3, Y1 ∈ SW,1.

For L > 1, suppose the statement of Lemma 7.4 is true for L− 1. Now, we will show that the

statement of Lemma 7.4 holds for L.

Let YL be given, and define YL−1 := YL (2−1·), on [0, 1]. As YL−1 satisfies condition (a) of

Lemma 7.4, YL−1|[0,2−L+1) is affine, thus YL−1

(
2−L+1·

)
|[0,1] ∈ SW,0. Then, by the definition of

YL−1, YL
(
2−L·

)
|[0,1] ∈ SW,0. As YL−1 and YL satisfy condition (b) of Lemma 7.4,

YL−1

(
·+ 2−`

)
= C l

L−1YL−1(·) + d`L−1, for ` = 1, . . . , L on [0, 2−`)

and

YL
(
·+ 2−`

)
= C`

LYL(·) + d`L for ` = 1, . . . , L on [0, 2−`).

Thus, for ` = 1, . . . , L− 1,

YL−1

(
·+ 2−`

)
|[0,2−`) = YL

(
2
(
·+ 2−`

))
|[0,2−`)

= YL
(
·+ 2−`−1

)
|[0,2−`−1)

= C`+1
L YL (·) |[0,2−`−1) + d`+1

L

YL
(
·+ 2−`−1

)
|[0,2−`−1) = YL−1

(
2 ·+2−`

)
|[0,2−`)

= C`
L−1YL−1(2·) + d`L−1

= C`
L−1YL(·) + d`L−1

Let −`− 1 = −`′, then C`′
L−1 = C`+1

L , and YL−1 ∈ SW,L−1.

Thus, YL(2−1·) ∈ SW,L−1. Therefore, YL ∈ SW,L, by Lemma 7.3.

77

Proposition 7.5. Let L ∈ N,YL ∈ SW,L, where YL corresponds to matricesA0
1, A

1
1, . . . , A

0
L, A

1
L.

Let j ∈ {0, . . . , 2L − 1}, where (j)2 = δ1 · · · δL is its binary representation. If the matrices

AδLL , . . . , A
δ1
1 are non-singular, then there exists matrices C`

L and vectors d`L such that,

YL
(
·+ δ1 · · · δ`−1

2`−1
+

1− δ`
2`

) ∣∣∣∣
[0,2−`)

= C`
LYL

(
·+ δ1 · · · δ`

2`

) ∣∣∣∣
[0,2−`)

+ d`L, (7.3)

for ` = 1, . . . , L.

Conversely, if (7.3) holds for YL, then YL ∈ SW,L.

Proof. Without loss of generality, assume j = 0. Let YL ∈ SW,L with non-singular matrices

A0
L, . . . , A

0
1. As the input Y0 is an affine vector, YL|[0,2−L] is also affine.

To show YL(·+ 2−`)|[0,2−`) = C`
LYL(·)|[0,2−`) + d`L, for ` = 1, . . . , L, the proof will proceed by

induction.

For L = 1,

Y1(x)) = A1(x)Y0(α(x)) + b1(x)

=


A0

1Y0(2x) + b0
1, x ∈

[
0, 1

2

)
A1

1Y0(2x− 1) + b1
1, x ∈

[
1
2
, 1
] .

On [0, 1/2),

Y1(·+ 1/2)− b1
1 = A1

1Y0(2(·+ 1/2)− 1)

= A1
1Y0(2·)

= (A1
1)(A0

1)−1(A0
1)Y0(2·)

= A1
1(A0

1)−1
(
Y1(·)− b0

1

)
.

Thus, Y1(·+ 1/2) = C1
1Y1(·) + d1

L, where C1
1 = A1

1(A0
1)−1 and d1

1 = A1
1(A0

1)−1(−b0
1) + b1

1.

78

Next, suppose the statement is true for L−1. Then, we show that YL(·+ 2−`) = C`
LYL(·) +d`L

on [0, 2−`) for ` = 1, . . . , L.

For ` = 1 on [0, 1/2),

YL(·+ 1/2)− b1
L = A1

LYL−1(2·)

= A1
L(A0

L)−1
(
YL(·)− b0

L

)
= C1

LYL(·) + d1
L

Thus, YL(·+ 1/2) = C1
LYL(·) + d1

L, where C1
L = A1

L(A0
L)−1 and d1

L = A1
L(A0

L)−1(−b0
L) + b1

L, on

[0, 1/2).

For ` > 1 on [0, 2−`),

YL(·+ 2−`)− b0
L = A0

LYL−1(2 ·+2−`+1)

= A0
L

(
C`−1
L−1YL−1(2·) + d`−1

L−1

)
= A0

LC
`−1
L−1(A0

L)−1(A0
L)YL−1(2·) + A0

Ld
`−1
L−1

= A0
LC

`−1
L−1(A0

L)−1
(
YL(·)− b0

L

)
+ A0

Ld
`−1
L−1

Thus, on [0, 2−`) ,

YL(·+ 2−L) = C`
LYL(·) + d`L, (7.4)

where C`
L = A0

LC
`−1
L−1(A0

L)−1 and d`L = A0
LC

`−1
L−1(A0

L)−1(−b0
L) + A0

Ld
`−1
L−1 + b0

L.

The proof of the converse is similar and simpler. One can setA0
` = IW , A1

` = C`
L, ` = 1, . . . , L,

and show by induction that YL ∈ SW,L, i.e that YL can be generated by the recursion

YL = AL (AL−1 ◦ α) + bL, YL−1 ∈ SW,L,

79

for appropriately chosen bL, where

AL(x) =


A0
L, x ∈ [0, 1/2)

A1
L, x ∈ [1/2, 1]

=


IW , x ∈ [0, 1/2)

CL
L , x ∈ [1/2, 1]

.

It follows from Proposition 7.5 that for YL ∈ SW,L the complexity of the CN representation is

reduced from 2L matrices to L matrices.

Remark 7.1. An element YL of SW,L can be rewritten without the bias terms bi, for i = 1, . . . , L

as

ỸL = ÃL(ÃL−1 ◦ α) · · · (Ã1 ◦ aL−1)(Ỹ0 ◦ αL),

by letting Ỹ0 = (1,Y0)T and setting Ãi =

1 0

bi Ai

 ∈ R(W+1)×(W+1), then ỸL = (1,YL)T .

Thus, in Proposition 7.5, for YL ∈ SW,L, YL
(
·+ 2−k

)
|[0,2−k) = Ck

LYL(·)|[0,2−k) + dkL, where

Ck
L ∈ RW×W and dkL ∈ RW can be rewritten as ỸL

(
·+ 2−k

)
|[0,2−k) = C̃k

LỸL(·)|[0,2−k), where

Ck
L ∈ R(W+1)×(W+1) and ỸL = (1,YL)T ∈ SW+1,L. From now on, all elements of SW,L will be

assumed to be written without the bias term.

Equation (7.4) suggests that one consider the limiting situation YL → f as L → ∞. The next

few results pertain to this question.

Lemma 7.6. Let W ∈ N and let SC1,...,CK be the set of all functions f : [0, 1]→ RW such that

f(·+ 2−k)|[0,2−k) = Ckf(·)|[0,2−k), k = 1, . . . , K. (7.5)

Then,

(a) SC1,...,CK is a linear space.

80

(b) Let j ∈ {0, . . . , 2K − 1}, where (j)2 = δ1 · · · δK is its binary representation. If f |[0,2−K) ∈

LW∞([0, 2−K)), then f ∈ LW∞([0, 1]) and

‖f‖LW∞ ([0,1]) ≤ ‖Cδ1
1 · · ·C

δK
K ‖∞‖f‖LW∞ ([0,2−K)).

Proof. (a) Let f, g ∈ SC1,...,CK and α, β ∈ R, then for k = 1, . . . , K,

(αf + βg)(·+ 2−k)|[0,2−k) = αf(·+ 2−k)|[0,2−k) + βg(·+ 2−k)|[0,2−k)

= αCkf(·)|[0,2−k) + βCkg(·)|[0,2−k)

= Ck(αf + βg)(·)|[0,2−k).

Thus αf + βg ∈ SC1,...,CK .

(b) Identity f(·+ 2−K)|[0,2−K) = CKf(·)|[0,2−K) implies

‖f‖LW∞ ([0,2−K+1]) ≤ max {1, ‖CK‖∞} ‖f‖LW∞ ([0,2−K]).

More generally, for j ∈ {0, . . . , 2K − 1},

‖f‖LW∞ ([j2−K ,(j+1)2−K]) =
∥∥∥Cδ1

1 · · ·C
δK
K f

∥∥∥
LW∞ ([0,2−K])

,

therefore,

‖f‖LW∞ ([0,1]) ≤ max
j∈{0,...,2K−1}

∥∥∥Cδ1
1 · · ·C

δK
K

∥∥∥
∞
‖f‖LW∞ ([0,2−K]). (7.6)

Let f : [0, 1] → RW . Then, f is said to be bounded at the origin if f ∈ LW∞ ([0, t]), for some

t > 0. f is said to be essentially continuous at the origin if there exists a vector f0 ∈ RW such that

lim
h→0+

‖f − f0‖LW∞ ([0,h]) = 0.

81

To establish the next results, we need to formulate an assumption concerning functions f to be

considered in connection with identity (7.5).

For a given f : [0, 1] → RW , f = (f1, . . . , fW)T , it is not difficult to show that (7.5) implies

that

f
∣∣∣
[j2−k,(j+1)2−k)

= Bk,jf
∣∣∣
[0,2−k)

, (7.7)

for all j ∈ {0, . . . , 2k − 1} and all k ∈ N, for some matrices Bk,j ∈ RW×W .

In particular, let Gk,j =
(
f
(
j2−k

)
, f
(
j2−k + h

)
, . . . , f

(
j2−k + (W − 1)h

))T ∈ RW×W ,

where h := 1
W2k

.

Then, (7.7) implies that Gk,j = Bk,jGk,0.

Definition 7.7. A function f : [0, 1] → RW is said to have locally uniformly independent compo-

nents (LUIC) if ∥∥∥Gk,j
(
Gk,0

)−1
∥∥∥
∞
< γ, (7.8)

for all j ∈ {0, . . . , 2k − 1}, k ∈ N, for some γ > 0 independent of j, k.

A few remarks on this definition are in order.

IfW = 1, then LUIC simply means thatGk,0 = f(0) 6= 0, assuming that f is bounded. Clearly,

the condition f(0) 6= 0 is natural if we want f to satisfy (7.5) because otherwise, if f(0) = 0, (7.5)

implies that f(x) = 0 for all dyadic points, an uninteresting case.

ForW > 1 and f ∈
(
CW ([0, 1])

)W , then LUIC is equivalent to the property that the Wronskian

determinant of f at the origin does not vanish, i.e

det

∣∣∣∣∣∣∣∣∣∣
f1(0) f ′1(0) · · · f

(W−1)
1 (0)

...
...

...
...

fW (0) f ′W (0) · · · f
(W−1)
W (0).

∣∣∣∣∣∣∣∣∣∣
6= 0

Thus, the LUIC property means that f should not be “degenerate” at the origin. Again, the condi-

tion that the Wronskian is not zero at the origin is natural because the vanishing of the Wronskian

would imply that the components of f are dependent functions.

82

Example 7.8. Let f(x) = (1, x)T , then Gk,0 = (f(0), f(h))T , h = 2−k/W = 2−k−1 and Gk,j =

(f(x), f(x+ h)), x = j2−k.

Then, Gk,j
(
Gk,0

)−1
=

1 0

x 1

, which is uniformly bounded for all x ∈ [0, 1]. Hence f

satisfies LUIC.

Example 7.9. Let f(x) = (1, x2)T .

Then, Gk,j
(
Gk,0

)−1
=

 1 0

x2 1− 2x
h

, which is not uniformly bounded with respect to k,

given that h = 2−k−1. Also, the Wronskian determinant of f at 0 is det

∣∣∣∣∣∣∣
1 0

0 0

∣∣∣∣∣∣∣ = 0.

In general, pointwise values are not well-defined in L∞. In which case, f should be replaced

by f̄ := lim
ε→0+

‖f‖L∞([x−ε,x+ε]∩[0,1]), which is always well-defined for L∞ functions.

Lemma 7.10. Let W ∈ N and f : [0, 1]→ RW be such that

(a) f has LUIC,

(b) f satisfies

f(·+ 2−k)|[0,2−k) = Ckf(·)|[0,2−k)

for some matrices Ck ∈ RW×W , k ≥ 1.

Then, f ∈ LW∞ ([0, 1]) if and only if f is bounded at the origin and

γ := sup
K

max
j∈{0,...,2K−1}

∥∥∥Cδ1
1 · · ·C

δK
K

∥∥∥
∞
<∞,

where for j ∈ {0, . . . , 2L − 1}, (j)2 = δ1 · · · δK is its binary representation.

Proof. ⇒ Let f ∈ LW∞ ([0, 1]) such that (a), (b) hold. Then, Gk,j = Cδ1
1 · · ·C

δk
k G

k,0 follows from

f(x+ j2−k) = Cδ1
1 · · ·C

δk
k f(x), x ∈ [0, 2−k).

83

Thus,

∥∥∥Cδ1
1 · · ·C

δk
k

∥∥∥
∞

=
∥∥∥Gk,j

(
Gk,0

)−1
∥∥∥
∞
< γ <∞.

for all j, k.

⇐ For j ∈ {0, . . . , 2k − 1}, it follows that

f
(
·+ j2−k

)
|[0,2−k) = Cδ1

1 · · ·C
δk
k f(·)|[0,2−k).

Thus,

‖f‖LW∞([j2−k,(j+1)2−k]) =
∥∥∥Cδ1

1 · · ·C
δk
k f(·)

∥∥∥
LW∞ ([0,2−k]W)

≤ γ‖f‖LW∞([0,2−k])

for all j. Therefore, ‖f‖LW∞ ([0,1]) ≤ γ‖f‖LW∞([0,2−k]), for all k ∈ N, which is bounded by bounded-

ness of f at the origin.

Theorem 7.11. Let f ∈ LW∞ ([0, 1]) be essentially continuous at the origin and have LUIC. Then,

there exists {YL}L∈N, YL ∈ SW,L such that YL → f in L∞ if and only if f satisfies

f(·+ 2−k)|[0,2−k) = Ckf(·)|[0,2−k) (7.9)

for all k ∈ N and some matrices Ck ∈ RW×W .

Proof. ⇒ Fix k ∈ N. Note that by LUIC, the components of f |[0,2−k) are independent, because

Gk,0 = (f(0), f(h), . . . , f((W − 1)h)), h = 1
W2−k

, is invertible. Hence, there exists βk > 0 such

that for all c ∈ RW ,

βk‖c‖∞ ≤ ‖〈c, f〉‖LW∞ ([0,2−k]). (7.10)

84

Let YL → f in LW∞([0, 1]). For all L ≥ k, as YL ∈ SW,L, by Lemma 7.4, YL
(
·+ 2−k

)
|[0,2−k) =

Ck
LYL(·)|[0,2−k), where Ck

L ∈ RW×W .

As L → ∞, YL
(
·+ 2−k

)
|[0,2−k] → f

(
·+ 2−k

)
|[0,2−k] and YL(·)|[0,2−k] → f(·)|[0,2−k] in L∞.

By (7.10) and by selecting L large enough so that ‖YL − f‖LW∞ ([0,1]) =: ε ≤ min{1, βk/2},

‖〈c, f〉‖L∞([0,2−k]) ≤ ‖〈c, f − YL〉‖L∞([0,2−k]) + ‖〈c,YL〉‖L∞([0,2−k])

≤ ‖c‖∞‖f − YL‖LW∞ ([0,2−k]) + ‖〈c,YL〉‖L∞([0,2−k]).

Thus,

‖〈c,YL〉‖L∞([0,2−k]) ≥ ‖〈c, f〉‖L∞([0,2−k]) − ε‖c‖∞

≥ βk‖c‖∞ − ε‖c‖∞

≥ (βk − ε)‖c‖∞

≥ (βk/2)‖c‖∞.

Now, consider YL(x + 2−k) = Ck
LYL(x), for x ∈

[
0, 2−k

)
. Looking at the i-th row of Ck

L,

Y iL
(
x+ 2−k

)
= (Ck

L)iYL(x) = 〈(Ck
L)i,YL(x)〉. Then,

(βk/2)
∥∥(Ck

L)i
∥∥
∞ ≤

∥∥〈(Ck
L)i,YL(x)〉

∥∥
L∞([0,2−k])

= ‖Y iL
(
x+ 2−k

)
‖L∞([0,2−k])

= ‖Y iL(x)‖L∞([2−k,2·2−k])

≤ ε+ ‖f‖LW∞([2−k,2·2−k])

≤ 1 + ‖f‖LW∞ ([0,1]).

Hence, each component of Ck
L is uniformly bounded in L and k, and so

{
Ck
L

}
is uniformly

bounded in L. Therefore, there exists a convergent subsequence
{
Ck
Ln

}
, and let Ck be the limit of{

Ck
Ln

}
.

85

Thus,

∥∥f (·+ 2−k
)
− Ckf (·)

∥∥
LW∞([0,2−k]) = ‖f

(
·+ 2−k

)
− YLn

(
·+ 2−k

)
+ YLn

(
·+ 2−k

)
− Ck

LnYLn + Ck
LnYLn − CkYLn + CkYLn − Ckf‖LW∞([0,2−k])

≤ ‖f
(
·+ 2−k

)
− YLn

(
·+ 2−k

)
‖LW∞([0,2−k])

+ ‖Ck
LnYLn − CkYLn‖LW∞([0,2−k])

+ ‖CkYLn − Ckf‖LW∞([0,2−k])

+ ‖YLn
(
·+ 2−k

)
− Ck

LnYLn‖LW∞([0,2−k]).

By assumption,

∥∥f (·+ 2−k
)
− YLn

(
·+ 2−k

)∥∥
LW∞([0,2−k]) ≤

∥∥f − YLn (·+ 2−k
)∥∥

LW∞ ([0,1])
→ 0

as n→∞.

As Ck is the pointwise limit of Ck
Ln

,
∥∥Ck

Ln
− Ck

∥∥
∞ → 0 as n→∞, and as

‖YLn‖LW∞ ([0,1]) ≤ ε+ ‖f‖LW∞([0,2−k]) ≤ 1 + ‖f‖LW∞([0,2−k]),

it follows that

∥∥Ck
LnYLn − CkYLn

∥∥
LW∞ ([0,2−k])

≤
∥∥Ck

Ln − Ck
∥∥
∞ ‖YLn‖LW∞ ([0,2−k]) → 0 as n→∞.

By assumption, ‖YLn − f‖Lw∞([0,2−k]) → 0 as n→∞, hence

‖CkYLn − Ckf‖LW∞([0,2−k]) ≤ ‖Ck‖∞ ‖YLn − f‖LW∞([0,2−k]) → 0 as n→∞.

Lastly, by Lemma 7.4,
∥∥YLn (·+ 2−k

)
− Ck

Ln
YLn

∥∥
LW∞([0,2−k]) = 0.

Therefore, for n large enough,
∥∥f (·+ 2−k

)
− Ckf (·)

∥∥
LW∞([0,2−k]) can be made arbitrarily

86

small. Thus, f
(
·+ 2−k

)
= Ckf(·) on [0, 2−k).

⇐ Next, assume f satisfies (7.9). Fix L, and let YL = f0 on
[
0, 2−L

)
, where f0 ∈ RW is such

that ‖f − f0‖LW∞ ([0,h]) as h → 0+. The existence of f0 follows from the assumption of essential

continuity of f at the origin. Let j ∈ {0, . . . , 2L−1}where (j)2 = δ1 · · · δL its binary representation

and where δ` in Cδ`
` is understood as an exponent.

Then, use the matrices Ck of f to define YL(x) inductively for all x ∈ [0, 1]:

YL
(
·+ 2−k

) ∣∣∣
[0,2−k)

= CkYL(·)
∣∣∣
[0,2−k)

, k = L,L− 1, . . . , 1.

Thus, by Lemma 7.4, with j = 0 and Ck
L = Ck, k = 1, . . . , L, it follows that YL ∈ SW,L.

This is equivalent to

YL
(
·+ j2−L

) ∣∣∣
[0,2−L)

= Cδ1
1 · · ·C

δL
L YL(·)

∣∣∣
[0,2−L)

.

Hence, by Lemma 7.6 and the identity f
(
·+ j2−L

) ∣∣∣
[0,2−L)

= Cδ1
1 · · ·C

δL
L f(·)

∣∣∣
[0,2−L)

,

‖YL
(
·+ j2−L

)
− f

(
·+ j2−L

)
‖LW∞ ([0,2−L]) ≤ max

j∈{0,...,2L−1}

∥∥∥Cδ1
1 · · ·C

δL
L

∥∥∥
∞
‖YL − f‖LW∞ ([0,2−L])

< γ‖YL − f‖LW∞ ([0,2−L]).

As YL = f0 on
[
0, 2−L

)
, it follows that ‖YL − f‖LW∞ ([0,2−L]) → 0 as L→∞.

Therefore, ‖YL − f‖LW∞ ([0,1]) → 0 as L→∞.

Remark 7.2. Condition (7.10) in Theorem 7.11 cannot be entirely removed. For example, consider

f(x) = χ[1/2,1](x), x ∈ [0, 1], which does not satisfy (7.10). A matrix C1 satisfying (7.9) does not

exist.

Remark 7.3. The matrices Ck in (7.9) are unique. For if Ck and Ĉk are different, then

0 = f
(
·+ 2−k

)
− f

(
·+ 2−k

)
=
(
Ck − Ĉk

)
f (·) ,

87

which contradicts (7.10).

Remark 7.4. In the case of stationary CN, where A` = A, for ` ∈ N, and

A =


A0, x ∈ [0, 1/2)

A1, x ∈ [1/2, 1]

,

C`
L does not depend on L, and C`

L = C` = (A0)`−1A1(A0)−`.

Proposition 7.12. For each vector f0 ∈ RW , there exists f ∈ LW∞ ([0, 1]) satisfying (7.9) and such

that

lim
t→0+
‖f − f0‖LW∞ ([0,t]) = 0

if and only if Cδk
k · · ·Cδm

m → IW as k →∞, i.e ‖Cδk
k · · ·Cδm

m − IW‖∞ → 0.

Proof. ⇐ Suppose Cδk
k · · ·Cδm

m → IW as k → ∞. Let f(0) = f0, define a sequence
{
fk
}

of

piecewise constant vector functions on [0, 1) by

fk(·)|[j2−k,(j+1)2−k) = Cδ1
1 · · ·C

δk
k f(0),

where (j)2 = δ1 · · · δk is the binary representation for j ∈ {0, . . . , 2k − 1}.

Then,
{
fk
}

is a Cauchy sequence. Let m ∈ N, m ≥ k, i ∈ {0, . . . , 2m − 1}, (i)2 = δ1 · · · δm.

Then, (
fm − fk)

∣∣
[i
2m

, i+1
2m) = Cδ1

1 · · ·C
δk
k

(
C
δk+1

k+1 · · ·C
δm
m − IW

)
f(0).

This follows from the fact that for j :=
⌊

i
2m−k

⌋
and (j)2 = δ1 · · · δk, one has [i2−m, (i+ 1)2−m) ⊂[

j2−k, (j + 1)2−k
)

and hence

fk
∣∣∣
[i2−m,(i+1)2−m)

= fk
∣∣∣
[j2−k,(j+1)2−k)

= Cδ1
1 · · ·C

δk
k f(0).

88

Thus, setting γ = sup
k

max
δk+1,...,δm

∥∥∥Cδk+1

k+1 · · ·Cδm
m

∥∥∥
∞

,

∥∥fm − fk∥∥
LW∞ ([0,1])

≤ max
δ1,...,δk

∥∥∥Cδ1
1 · · ·C

δk
k

∥∥∥
∞

max
δk+1,...,δm

∥∥∥Cδk+1

k+1 · · ·C
δm
m − IW

∥∥∥
∞
‖f0‖∞

≤ γ max
δk+1,...,δm

∥∥∥Cδk+1

k+1 · · ·C
δm
m − IW

∥∥∥
∞
‖f0‖∞

goes to 0 as k → ∞. Therefore,
{
fk
}

is a Cauchy sequence and let f be its limit. Note that

γ <∞, because
∥∥∥Cδk+1

k+1 · · ·Cδm
m − IW

∥∥∥
∞
→ 0 as k →∞.

Next, fixK, then it follows from the definition of fm, fm
(
· · ·+ 2−K

)
= CKg

m(·) on
[
0, 2−K

)
,

m ≥ K. Passing to the limit fm → f , f satisfies (7.9) for K, and thus f satisfies (7.9) for all

k ∈ N.

To show that f is essentially continuous at the origin, fix ε > 0, select k such that ‖f −

fk‖LW∞ ([0,2−k]) < ε. Then,

‖f − f0‖LW∞ ([0,2−k]) =
∥∥f − fk + fk − f0

∥∥
LW∞ ([0,2−k])

≤
∥∥f − fk∥∥

LW∞ ([0,2−k])
+
∥∥fk − f0

∥∥
LW∞ ([0,2−k])

< ε+ 0.

Thus, limh→0+ ‖f − f0‖LW∞ ([0,h]) = 0.

⇒ Let m, k ∈ N,m ≥ k, j ∈ {0, . . . , 2m−k+1 − 1}, where (j)2 = δk · · · δm is its binary

representation. As f satisfies (7.9), on [0, 2−m),

f(·+ j2−m) = f(·+ (δk · · · δm) 2−m)

= f(·+ δm2−m + · · ·+ δk2
−k)

= Cδk
k f(·+ δm2−m + · · ·+ δk−12−k−1).

Continuing in this way, f(·+ (δk · · · δm) 2−m) = Cδk
k · · ·Cδm

m f(·) on [0, 2−m).

89

For x ∈ [0, 2−m),

f(x+ j2−m)− f(x) =
(
Cδk
k · · ·C

δm
m − IW

)
f(x). (7.11)

Then for x = 0, f(j2−m)− f(0) =
(
Cδk
k · · ·Cδm

m − IW
)
f(0). Let f 1

0 , . . . , f
W
0 be a basis for RW .

For example, take F (0) := F0 = (f 1
0 , . . . , f

W
0) = IW . Then, (7.11) implies F (j2−m) − F (0) =(

Cδk
k · · ·Cδm

m − IW
)
F (0), where F (x) := (f 1(x), . . . , fW (x)) and where f i is the function satis-

fying the periodicity condition corresponding to f i0, i = 1, . . . ,W . Hence,

Cδk
k · · ·C

δm
m − IW =

(
F
(
j2−m

)
− F0

)
F−1(0)

= F
(
j2−m

)
− IW

→ 0

because f i(j2−m)→ f i(0) = f i0 as k →∞, given that j2−m → 0 as k →∞, j ∈ {0, . . . , 2m−k+1−

1}.

Corollary 7.5. Let W,k ∈ N and Ck ∈ RW×W . Suppose that for each vector f0 ∈ RW , there

exists f ∈ LW∞ ([0, 1]) satisfying (7.9) and such that

lim
t→0+
‖f − f0‖LW∞ ([0,t]) = 0

Let SW (C), C = {C1, C2, . . . } be the set such that

f(·+ 2−k)|[0,2−k) = Ckf(·)|[0,2−k), for all k ∈ N.

Then,

(a) SW (C) is a linear space.

(b) f ∈ SW (C) is uniquely determined by its essential value f0 at 0.

90

(c) dim(SW (C)) = W .

Proof. (a) is straightforward.

(b) Suppose that f, g ∈ SW (C) are such that f0 = g0. Then, h = f − g ∈ SW (C) is such that

h0 = 0. Let ε > 0 and k ∈ N be such that

‖h‖LW∞ ([0,2−k]) = ‖h− 0‖LW∞ ([0,2−k]) < ε.

Thus,

‖h‖LW∞ ([j2−k,(j+1)2−k]) =
∥∥∥Cδ1

1 · · ·C
δk
k h
∥∥∥
LW∞ ([0,2−k])

≤
∥∥∥Cδ1

1 · · ·C
δk
k

∥∥∥
∞
‖h‖LW∞ ([0,2−k])

≤ γε,

where (j)2 = δ1 · · · δk and γ < ∞ follows from the proof of Proposition 7.12. Thus,

‖h‖LW∞ ([0,2−k]) < ε and ε can be made arbitrarily small so that h is 0.

(c) For a ∈ RW , let fa denote the unique function in SW (C) such that (fa)0 = a. Let {a1, . . . , aW}

form a basis of RW . We will show that {fa1 , . . . , faW } forms a basis for SW (C).

Clearly, dim(SW (C)) ≤ W . For if faw+1 ∈ SW (C), then (faW+1
)0 ∈ span{(fa1)0, . . . , (faw)0}.

Then, aw+1 = faW+1
(0) = c1fa1(0)+· · ·+cwfaW (0) implies that faW+1

(x) = c1fa1(x)+· · ·+

cwfaW (x) for almost every x because a = f(0) uniquely determines f(x). dim(SW (C)) 6<

W , as it cannot happen that c1fa1+· · ·+cwfaW = 0 because then c1(fa1)0+· · ·+cW (faW)0 =

c1a1 + · · ·+ cWaW = 0 which would imply c1 = · · · = cW = 0.

Example 7.13. Consider f(x) = (1, x)T . f can be generated by a stationary CN,

YL = AL (AL−1 ◦ α) · · ·
(
A1 ◦ αL−1

) (
Y0 ◦ αL

)
,

91

where Y0 = (1, x)T , A` = A, for l = 1, . . . , L, and

A(x) =


A0, x ∈

[
0, 1

2

)
A1, x ∈

[
1
2
, 1
] =



1 0

0 1/2

 , x ∈
[
0, 1

2

)
 1 0

1/2 1/2

 , x ∈
[

1
2
, 1
]
.

Clearly, f satisfies the conditions of Theorem 7.11. Then, by Theorem 7.11 and Remark 7.4,

f satisfies (7.9), with Ck =

 1 0

2−k 1

, k ∈ N. These matrices are consistent with f . Indeed, let

k ∈ N and j ∈ {0, . . . , 2k − 1}, (j)2 = δ1 · · · δk, then, for x = j2−k ∈ [0, 1),

f(x) = f
(
j2−k

)
= Cδ1

1 · · ·C
δk
k f0

=

 1 0

δ1
2

1

 · · ·
 1 0

δk
2

1


1

0


=

 1 0

δ1···δk
2m

1


1

0


=

 1

j2−m


=

1

x

 .

Note also that for m ≥ k and δk, . . . , δm ∈ {0, 1},

Cδk
k · · ·C

δm
m =

 1 0

δk
2k

1


 1 0

δk+1

2k+1 1

 · · ·
 1 0

δm
2m

1


92

=

 1 0

δk
2k

+ · · ·+ δm
2m

1


=

 1 0

δk···δm
2m+k−1 1


approaches I2 as k goes to infinity.

Example 7.14. Consider f(x) = (1, φ(x))T , where φ(x) =


2x, if x ∈ [0, 1/2)

2− 2x, if x ∈ [1/2, 1]

.

f satisfies (7.9), with C1 =

1 0

1 −1

 and Ck =

 1 0

2−k+1 1

, for k ≥ 2. One can verify that

for j ∈ {0, . . . , 2k−1 − 1} and (j)2 = δ1 · · · δk = 0δ2 · · · δk, x = j2−k ∈ [0, 1/2), it follows that

f(x) = f
(
j2−k

)
= Cδk

2 · · ·C
δk
2 f(0) =

 1

2x


and, for j ∈ {2k−1, . . . , 2k − 1},

f(x) = C1C
δk
2 · · ·C

δk
2 f(0) =

 1

2− 2x

 .

Also, for m ≥ k > 1, the product

Cδk
k · · ·C

δm
m =

 1 0

δk
2k−1 1


 1 0

δk+1

2k
1

 · · ·
 1 0

δm
2m−1 1


=

 1 0

δk
2k−1 + · · ·+ δm

2m−1 1


=

 1 0

δk···δm
2m−1 1


93

approaches I2 as k goes to infinity.

Example 7.15. Consider f(x) = χ[0,1/2). f can be generated by a CN,

YL = AL (AL−1 ◦ α) · · ·
(
A1 ◦ αL−1

)
,

where Y0 = 1, A`(x) = 1 for ` = 1, . . . , L− 1 and all x ∈ [0, 1], and

AL(x) =


A0
L, x ∈

[
0, 1

2

)
A1
L, x ∈

[
1
2
, 1
] =


1, x ∈

[
0, 1

2

)
0, x ∈

[
1
2
, 1
] .

Then, by Theorem 7.11, f satisfies (7.9), with C1 = 0 and Ck = 1, for k > 1. Hence,

Cδk
k · · ·Cδm

m → 1 as k →∞ is trivially true.

Theorem 7.16. Suppose that f ∈ LW∞ ([0, 1]) has the LUIC property, f is essentially continuous

at the origin with lim
t→0+
‖f − f0‖LW∞ ([0,t]) = 0, f0 ∈ RW . Moreover, f is such that (7.9) holds for

matrices Ck, k ∈ N. Then, f ∈ (C([0, 1]))W if and only if Ckf0 = C2
k+1f0, for all k ∈ N.

Proof. ⇒ Assume f ∈ (C ([0, 1]))W . Then f0 = f(0) and by (7.9),

f

(
1

2k

)
= f

(
0 +

1

2k

)
= Ckf(0),

and

f

(
1

2k

)
= f

(
1

2k+1
+

1

2k+1

)
= Ck+1f

(
1

2k+1

)
= Ck+1f

(
0 +

1

2k+1

)
= C2

k+1f(0).

Therefore, Ckf(0) = C2
k+1f(0) for all k.

⇐ Consider a sequence
{
pk
}

of the piecewise linear interpolants to the values pk
(
j

2k

)
=

Cδ1
1 · · ·C

δk
k f0, for (j)2 = δ1 · · · δk, where j ∈ {0, . . . , 2k − 1}. For j = 2k, pk(1) = C2

1f0 = C4
2f0

by the condition on Ck.

94

Let m ∈ N, m ≥ k, then

(
pm − pk

)
|[j

2m
, j+1
2m] = Cδ1

1 · · ·C
δk
k

(
C
δk+1

k+1 · · ·C
δm
m − IW

)
f0.

Thus,

∥∥pm − pk∥∥
LW∞ ([0,1])

≤ max
δ1,...,δk

∥∥∥Cδ1
1 · · ·C

δk
k

∥∥∥
∞

max
δk+1,...,δm

∥∥∥(Cδk+1

k+1 · · ·C
δm
m − IW

)
fo

∥∥∥
∞

≤ γ max
δk+1,...,δm

∥∥f(·+ (δk+1 · · · δm) 2−m)− f(·)
∥∥
LW∞ ([0,2−m])

by Lemma 7.10. However,

∥∥f(·+ (δk+1 · · · δm) 2−m)− f(·)
∥∥
LW∞ ([0,2−m])

≤
∥∥f(·+ (δk+1 · · · δm) 2−m)− f0

∥∥
LW∞ ([0,2−m])

+ ‖f(·)− f0‖LW∞ ([0,2−m])

≤ ‖f(·)− f0‖LW∞ ([0,2−k]) + ‖f(·)− f0‖LW∞ ([0,2−k]) ,

which goes to 0 as k →∞. Hence,
{
pk
}

is a Cauchy sequence and converges to g ∈ (C([0, 1]))W

such that g(0) = f0. As pk satisfies equation (7.9), it follows that g also satisfies equation (7.9).

As f, g satisfy equation (7.9), (f − g)
(
·+ 2−k

)
= Ck(f − g)(·), thus h = f − g also satisfies

equation (7.9) and h0 = f0 − g0 = f0 − f0 = 0. Hence h = 0 by Corollary 7.5 (b), or f = g ∈

(C([0, 1]))W

Corollary 7.6. SW (C) ⊂ (C ([0, 1]))W if and only if Ck = C2
k+1 for all k ∈ N.

Proof. Let {f1, . . . , fW} be a basis of SW (C), then by Corollary 7.5 {(f1)0, . . . , (fW)0} is a basis

for RW . Hence the conditions Ck(fi)0 = C2
k+1(fi)0 for all i implies Ck = C2

k+1.

Next, recall the following about the principal square root of a matrix.

Proposition 7.17. [58] Let A ∈ Cn×n have no eigenvalues on R−. There is a unique square root

95

X of A, i.e such that X2 = A, all of whose eigenvalues lie in the open right half-plane H+ of C.

X is called the principal square root of A and write X = A1/2. If A is real, then A1/2 is real.

Proposition 7.18. [58] Let A ∈ Cn×n have no eigenvalues on R−. There is a unique pth root X ,

p > 2, of A all of whose eigenvalues lie in the segment {z| − π/p < arg(z) < π/p} ⊂ C. X is

called the principal pth root of A and write X = A1/p. If A is real, then A1/p is real.

The notation A2−k :=
(
A2−k+1

)1/2

, k ∈ N, is used for the iterates of the principal square root

of a matrix. It is understood that A20 = A.

Example 7.19. A matrix can have no square roots, finitely many square roots, or infinitely many

square roots:

1. The matrix A =

0 1

0 0

 does not have a square root.

2. The matrix A =

1 0

0 2

 has four square roots,

1 0

0
√

2

 ,

−1 0

0
√

2

 ,

1 0

0 −
√

2

 ,

−1 0

0 −
√

2

 .

The principal square root is A1/2 =

1 0

0
√

2

.

3. All square roots of I2 are 1 0

0 1

 and

a b

c −a

 ,

whenever a, b, c ∈ R are such that a2 + bc = 1. However, the only principal square root of

I2 in this case is I1/2
2 = I2.

Next, we present several useful facts pertaining to principal square roots.

96

Proposition 7.20. Let A ∈ Rn×n be a nonsingular square matrix whose eigenvalues are not on the

negative real axis including the origin. Then

(a) A has a unique principal square root, A1/2.

(b) If λ1, . . . , λn ∈ C are eigenvalues of A (counting multiplicities), then the eigenvalues of

A1/2 are λ1/2
1 , . . . , λ

1/2
n , the principal square roots of λ1, . . . , λn.

(c) limk→∞A
2−k = In.

(d) limk→∞ 2k(A2−k − In) = B, for some matrix B ∈ Cn×n.

(e) Matrix B above is real if all eigenvalues of A are in H+.

Proof. Properties (a) and (b) are well known [58]. Property (c) follows from (d).

For (d), write A in Jordan canonical form as A = PJP−1, where P ∈ Rn×n is nonsingular,

and J is the Jordan matrix of the form

J =



J1 0 · · · 0 0

0 J2 · · · 0 0

0 0
. . . 0 0

...
... Jm−1

...

0 0 · · · 0 Jm


,

where J` ∈ Rn`×n` , ` = 1, . . . ,m, n1 + · · · + nm = n, are the usual Jordan block matrices of the

form

J` =



µ` 1 0 · · · 0

0 µ` 1 · · · 0

0 0
. . . 1 0

...
... µ` 1

0 0 · · · 0 µ`


.

97

where the eigenvalues λi are ordered such that µ1 = λ1 = · · · = λn1 , µ2 = λn1+1 = · · · =

λn1+n2 , . . . , µm = λn−n`+1 = · · · = λn.

With this notation, one can show that A2−k = PJ2−kP−1, with

J2−k =



J2−k
1 0 · · · 0 0

0 J2−k
2 · · · 0 0

0 0
. . . 0 0

...
... J2−k

m−1

...

0 0 · · · 0 J2−k
m


,

where

J2−k

` =



a
(`)
0 a

(`)
1 a

(`)
2 · · · · · · · · · a

(`)
n`−1

0 a
(`)
0 a

(`)
1

. . . · · · · · · a
(`)
n`−2

0 0
. . . a

(`)
1

. . . · · · a
(`)
n`−3

...
... · · ·

...
... · · · · · · a

(`)
0 a

(`)
1 a

(`)
2

...
... · · · · · · · · · a

(`)
0 a

(`)
1

0 0 · · · · · · · · · 0 a
(`)
0



, k ∈ N,

with a(`)
0 = µ2−k

` , and a(`)
i =

(
2−k

i

)
µ−i` µ

2−k

` , i = 1, . . . , n`−1 and
(
s
j

)
:= s(s−1) · · · (s− j+1)/i!,

s ∈ R, j ∈ N.

The above facts mean that to show that limk→∞ 2k(A2−k − In) exists, we must prove that

(1) limk→∞ 2k(a
(`)
0 − 1) exists for all `, and

(2) limk→∞ 2ka
(`)
i exists for all ` and all i = 1, . . . , n` − 1.

As for (1), setting µ` = |µ`|eiφ` , for some φ` ∈ [0, 2π), and noting that µ` ∈ H+, and hence

|µ`| > 0, we have

lim
k→∞

2k(a
(`)
0 − 1) = lim

t→0+

|µ`|teitφ` − 1

t
= ln |µ`|+ iφ`.

98

As for (2), it follows by direct computation that

lim
k→∞

2ka
(`)
i = lim

k→∞
2k
(

2−k

i

)
lim
k→∞

µ−i` µ
2−k

` =
(−1)i+1

i
µ−i` .

Consequently, this proves the existence of a matrix B referred to in part (d).

Part (e) follows for Proposition 7.18.

The next result expands on Corollary 7.6.

Theorem 7.21. Suppose that matrices C = {C1, C2, . . .} ⊂ RW×W are given such that for all

f0 ∈ RW there exists a vector function f = f(C, f0) ∈ SW (C) satisfying (7.9) and whose essential

value at 0 is f0. The following are equivalent:

(a) For all f0 ∈ RW , f(C, f0) ∈ (C ([0, 1]))W ;

(b) Ck = C2
k+1, k ∈ N;

(c) Ck = C2
k+1, k ∈ N, and there exists a K ∈ N such that Ck+1 = C

1/2
k , for all k ≥ K;

(d) For all f0 ∈ RW , f(C, f0) ∈ (C1([0, 1]))
W .

Proof. By Corollary 7.6 (a)⇒ (b).

To show that (b)⇒ (c), note that the matrices Ck are eventually such that all their eigenvalues

are close to 1 given that Ck → IW as k → ∞ by Proposition 7.12. Thus, in particular, those

eigenvalues are all contained in H+ for k ≥ K, for K large enough. This means that for k ≥ K,

Ck = C2
k+1 is equivalent to Ck+1 = C

1/2
k since such matrices C1/2

k , whose eigenvalues are in H+,

are unique by Proposition 7.17.

As for the implication (c)⇒ (d), first note that by Ck = C2
k+1 for k ∈ N implies commutativity

CiCj = CjCi, for i, j ∈ N. Then, (Ci − IW)Cj = Cj (Ci − IW).

Define F : [0, 1]→ RW×W , a matrix function whose columns are individual f ’s and such that

F (0) = F0 is invertible. For ` ∈ N, consider the sequence
{
F
(
j+1
2`

)
− F

(
j
2`

)}2`−1

j=0
. Because of

99

(7.9) applied to the columns of F , F satisfies F
(
j
2`

+ 1
2`

)
= C`F

(
j
2`

)
. As F

(
j
2`

)
can be written

as a product of Ci’s, which then commute with C` − IW , then

{
F

(
j + 1

2`

)
− F

(
j

2`

)}2`−1

j=0

=

{
(C` − IW)F

(
j

2`

)}2`−1

j=0

=

{
F

(
j

2`

)}2`−1

j=0

F−1(0) (C` − IW)F (0) (7.12)

For ` ∈ N, let G` : [0, 1]→ RW×W be the piecewise constant function defined as

G`(x) = 2`
(
F

(
j + 1

2`

)
− F

(
j

2`

))
, if x ∈

[
j

2`
,
j + 1

2`

)
.

To show that G` → G, where G is continuous, let G := FD, where

D := lim
`→∞

F−1(0)2` (C` − IW)F (0)

= F−1(0)
(

lim
`→∞

2` (C` − IW)
)
F (0),

which exists by Proposition 7.20 . By equation (7.12), G`(x) = F
(
j
2`

)
F−1(0)2` (C` − IW)F (0)

if x ∈
[
j
2`
, j+1

2`

)
. Fix x ∈ [0, 1) and let x = 0.δ1δ2 · · · be its binary expansion and j` be such that

x ∈
[
j`
2`
, j`+1

2`

)
. Then,

lim
`→∞

∣∣G`(x)−G(x)
∣∣ = lim

`→∞

∣∣∣∣F (j`2`
)
F−1(0)2` (C` − IW)F (0)− F (x)D

∣∣∣∣
= lim

`→∞

∣∣∣∣F (j`2`
)
F−1(0)2` (C` − IW)F (0)− F

(
j`
2`

)
D

+ F

(
j`
2`

)
D − F (x)D

∣∣∣∣
≤ lim

`→∞

∣∣∣∣F (j`2`
)
F−1(0)2` (C` − IW)F (0)− F

(
j`
2`

)
D

∣∣∣∣
+ lim

`→∞

∣∣∣∣F (j`2`
)
D − F (x)D

∣∣∣∣
≤ ‖F‖∞ lim

`→∞

∣∣F−1(0)2` (C` − IW)F (0)−D
∣∣

100

+ lim
`→∞

∣∣∣∣F (j`2`
)
− F (x)

∣∣∣∣ ‖D‖∞,
where lim

`→∞

∣∣F−1(0)2` (C` − IW)F (0)−D
∣∣ = 0 by the definition of D, and by continuity of F ,

lim
`→∞

∣∣F (j`
2`

)
− F (x)

∣∣ = 0. Hence G` converges to G and G is continuous as G = FD.

Next, define H(x) :=
∫ x

0
G(t)dt + F (0), x ∈ [0, 1]. As {G`} is uniformly bounded and G`

converges pointwise to G, it follows
∫ x

0
G(t)dt = lim

`→∞

∫ x
0
G`(t)dt by the Dominated Convergence

Theorem [59].

Let x = j
2`

be a dyadic point in [0, 1), j ∈ {0, . . . , 2` − 1}, ` ∈ N. Then

H(x) = H

(
j

2`

)
=

j−1∑
k=0

∫ k+1

2`

k

2`

G(t)dt+ F (0)

= lim
m→∞

j−1∑
k=0

∫ k+1

2`

k

2`

G`+m(t)dt+ F (0)

= lim
m→∞

2mj−1∑
i=0

∫ i+1

2`+m

i

2`+m

G`+m(t)dt+ F (0)

= lim
m→∞

2mj−1∑
i=0

2−(l+m)Gl+m

(
i

2l+m

)
+ F (0)

= lim
m→∞

2mj−1∑
i=0

2−(l+m)

(
2(l+m)

(
F

(
i+ 1

2`+m

)
− F

(
i

2`+m

)))
+ F (0)

= lim
m→∞

F

(
2mj

2`+m

)
= F

(
j

2`

)
= F (x).

Hence, H(x) = F (x) for all dyadic points in [0, 1), so they are equal on [0, 1] by continuity of

F and H . Therefore, F ′ = H ′ = G, or F ∈ (C1[0, 1]))
W×W . Consequently, all columns of F are

also C1 vector functions.

101

Example 7.22. Recall Example 3.2 and set

A0 =


1 0 0

0 1/2 0

0 0 1/4

 , A1 =


1 0 0

1/2 1/2 0

1/4 1/2 1/4

 .

Then,

C1 = A1(A0)−1 =


1 0 0

1/2 1 0

1/4 1 1

 , C2 = C
1/2
1 =


1 0 0

1/4 1 0

1/16 1/2 1

 , Ck =


1 0 0

1
2k

1 0

1
4k

1
2k−1 1

 .

The Jordan form for C1 is C1 = PJP−1, where

P =


0 0 1

0 1/2 0

1/2 1/4 0

 , J =


1 1 0

0 1 1

0 0 1

 .

Note thatC1 has a triple eigenvalue of 1, and J consists of a single Jordan block. Using Proposition

7.20, with µ1 = 1, we obtain

J1/2 =


1
(

1/2
1

) (
1/2
2

)
0 1

(
1/2
1

)
0 0 1

 =


1 1/2 −1/8

0 1 1/2

0 0 1

 ,

and hence

C2 = C
1/2
1 = PJ1/2P−1 =


1 0 0

1/4 1 0

1/16 1/2 1

 .

102

In general, we get

Ck = C2−k+1

1 = PJ2−k+1

P−1 =


1 0 0

1
2k

1 0

1
4k

1
2k−1 1

 .

One can verify that C2A
0 = A0C1 = A0C2

2 and that Ck+1 = C
1/2
k , k ∈ N. Hence all cor-

responding functions f(C, f0) are not only continuous, but also smooth by Theorem 7.21. This

is consistent with what is already known about the “stationary” cascade network corresponding to

matricesA0, A1 in this example since we know that such network generates quadratic polynomials.

However, Theorem 7.21 should not be construed as saying C0 for a single f implies C1. For

example, the vector function in Example 7.14 is clearly C0 function, but is not C1 on [0, 1].

Example 7.23. Let f be the scaling function with mask coefficients a0 = 1+
√

3
4
, a1 = 3+

√
3

4
, a2 =

3−
√

3
4
, a3 = 1−

√
3

4
. f can be generated by a “stationary” cascade network

YL = A(A ◦ α) . . . (A ◦ αL−1)(Y0 ◦ αL)

where

A =


A0, x ∈

[
0, 1

2

)
A1, x ∈

[
1
2
, 1
] =




a2 a3 0

a0 a1 a2

0 0 a0

 , x ∈
[
0,

1

2

)

a3 0 0

a1 a2 a3

0 a0 a1

 , x ∈
[

1

2
, 1

] .

f satisfies conditions of Theorem 7.21 with matrices Ck = (A0)k−1A1(A0)−k+1. For f0 =(
a3
a0
, 1, 0

)T
, the matrices Ck satisfy C2

k+1f0 = Ckf0 (Figure 7.1a). However, choosing a differ-

103

ent f0, say f0 = (1, 1, 0)T yields f that is not continuous, and the matrices Ck do not satisfy

C2
k+1 = Ck (Figure 7.1b).

(a) f0 = (a3a0 , 1, 0)T (b) f0 = (1, 1, 0)T

Figure 7.1: Scaling Function

The above results are concerned with conditions for general CN’s, guaranteeing convergence

to C0 functions. Motivated by Example 7.22 and in light of the results of Daubechies and Lagarias

[47], discussed in Chapter 6, which are concerned with the “stationary” case, it would be interesting

to see the implications of Theorem 7.21 in the special case where the CN is stationary. Recall a

CN is referred to as stationary if A` = A, ` ∈ N, where

A(x) =


A0, if x ∈ [0, 1/2)

A1, if x ∈ [1/2, 1],

and where A0, A1 are fixed matrices in RW×W . Thus, a stationary (matrix-valued) CN is given by

YL = A(A ◦ α) · · · (A ◦ αL−1)(Y0 ◦ αL), L ∈ N,

where Y0 is a W × W matrix function, whose components are linear functions. For simplicity,

we will assume below that Y0 is a constant matrix, so that Y0 ◦ αL = Y0. It should be noted that

although for a stationary CN’s, matrix functions A` do not depend on `, matrix Y0 that is used to

generate YL may in fact depend on L. In the considerations below, it will be convenient to assume

104

that A0 is invertible and to set Y0 = YL0 = (A0)−LF0 = ((A0)L)−1F0, where F0 ∈ RW×W is a

given matrix.

Lemma 7.24. Suppose that a stationary CN corresponding to matrices A0, A1, where A0 is in-

vertible, converges to a matrix-valued function F ∈ LW×W∞ ([0, 1]). Then F satisfies (7.9), with

matrices Ck given by

Ck = (A0)k−1A1(A0)−k, k ∈ N. (7.13)

Moreover, if YL0 = (A0)−LF0, F0 ∈ RW×W , then lim
h→0+

‖F (·) − F0‖LW×W∞ [0,h] = 0, i.e. F is

essentially continuous at 0, with essential value F0.

Proof. With the above assumption that Y0 = YL0 is a constant matrix, it follows that YL is the

piecewise constant matrix-valued function given by

YL(x) = Aδ1 · · ·AδLYL0 , x ∈
[
j

2L
,
(j + 1)

2L

)
, j ∈ {0, . . . , 2L − 1}, (7.14)

where δ1, . . . , δL ∈ {0, 1} are the binary digits of j, i.e., (j)2 = δ1 · · · δL. That is, values of YL are

obtained as products of A0 and A1, multiplied by YL0 . The statement of the lemma is proved for

k = 1. The proof for k > 1 is similar.

We first show that yL(x+ 1/2) = C1yL(x), x ∈ [0, 1/2), where, consistently with (7.13), C1 =

A1(A0)−1. Thus, let x ∈
[
j

2L
, (j+1)

2L

)
, where j ∈ {0, . . . , 2L−1 − 1}, which guarantees that x ∈

[0, 1/2). Clearly, (j)2 =: δ1 · · · δL = 0δ2 · · · δL, i.e. δ1 = 0, on account of j ∈ {0, . . . , 2L−1 − 1}.

Similarly, x+1/2 ∈
[
j′

2L
, (j′+1)

2L

)
=
[

(j+2L−1)
2L

, (j+2L−1+1)
2L

)
, hence (j′)2 = (j+2L−1)2 = 1δ2 · · · δL.

Therefore,

YL(x+ 1/2) = A1Aδ2 · · ·AδLYL0 and YL(x) = A0Aδ2 · · ·AδLYL0 ,

or

YL(x+ 1/2) = A1Aδ2 · · ·AδLYL0 = A1(A0)−1A0Aδ2 · · ·AδLYL0 = C1YL(x).

Thus, since this is true for all j ∈ {0, . . . , 2L−1 − 1}, it follows that YL(x + 1/2) = C1YL(x), for

105

all x ∈ [0, 1/2). By assumption, YL → F ∈ LW×W∞ ([0, 1]), hence, we also have F (x + 1/2) =

C1F (x), x ∈ [0, 1/2).

As for the essential continuity of F at 0, note first that YL(0) = (A0)LYL0 = F0, L ∈ N.

Therefore, the convergence YL → F implies

‖F − F0‖LW×W∞ ([0,2−L]) ≤ ‖F − YL‖LW×W∞ ([0,2−L]) + ‖YL − F0‖LW×W∞ ([0,2−L])

= ‖F − YL‖LW×W∞ ([0,2−L]) + ‖YL(0)− F0‖∞

= ‖F − YL‖LW×W∞ ([0,2−L])

≤ ‖F − YL‖LW×W∞ ([0,1]) → 0, as L→∞.

Thus, the hypothesis of a stationary CN results in constraints (7.13). On the other hand, as

we have seen in Theorem 7.21, the requirement of continuity of F implies yet another set of

constraints, namely

Ck = C2
k+1, k ∈ N. (7.15)

Combining the two families of constraints, (7.13) and (7.15), leads to the following necessary and

sufficient condition for a stationary CN to converge to a continuous matrix-valued function F .

Theorem 7.25. Suppose that a stationary CN is associated with matrices A0, A1 ∈ RW×W , where

A0 is nonsingular, and with initial matrix YL0 = (A0)−LF0, where F0 ∈ RW×W is nonsingular.

Then the CN converges to a continuous matrix function F if an only if A0, A1 are such that

A1(A0)−1A1(A0)−1 = (A0)−1A1 (7.16)

and such that all eigenvalues of A1(A0)−1 are 1.

Proof. Let C1 := A1(A0)−1 and, more generally, Ck := (A0)k−1A1(A0)−k, k ∈ N, which is

106

consistent with (7.13). With this notation, (7.16) is equivalent to

C2
1 = (A0)−1C1A

0. (7.17)

To prove necessity, a stationary CN implies, by the Lemma 7.24, that F satisfies

F (x+ 1/2) = C1F (x), x ∈ [0, 1/2), F (x+ 1/4) = C2F (x), x ∈ [0, 1/4),

with C2 = A0A1(A0)−2 = A0C1(A0)−1. By Theorem 7.21, since F0, the essential value of F at 0,

is nonsingular, continuity of F implies C2
2 = C1 or

C1 = C2
2 = A0C1(A0)−1A0C1(A0)−1 = A0C2

1(A0)−1,

which implies (7.17).

As for the eigenvalues of A1A
−1
0 or C1, note first that (7.13) along with (7.15) imply

Ck+1 = Ak0A1A
−k−1
0 = A0A

k−1
0 A1A

−k
0 A−1

0 = A0CkA
−1
0 , k ∈ N.

Thus, for all k, matrices Ck and Ck+1 are similar and have the same eigenvalues. Let Λ :=

{λ1, . . . , λW} be the (multi)set of the eigenvalues of C1, and therefore by the above, Λ are also

eigenvalues of Ck, k > 1. By assumption, F is continuous, F0 invertible, and thus by Theorem

7.21, we also know that Ck = C
1/2
k−1 = · · · = C2K−k

K , k > K, for some K ∈ N. This means that

the eigenvalues of Ck are equal to Λk := {λ2K−k
1 , . . . , λ2K−k

W }, k > K. However, at the same time,

Λk = Λ because of the similarity of Ck and C1. Consequently, Λ = limk→∞ Λk = {1, . . . , 1}

because Ck → IW by Proposition 7.12, i.e. Λ is the multiset of size W consisting of eigenvalues 1.

Conversely, suppose that A0, C1 are two matrices satisfying C2
1 = (A0)−1C1A

0, and such that

all eigenvalues of C1 are equal to 1. We will show that the stationary CN corresponding to matrices

A0 and A1 := C1A
0 converges to a continuous matrix function F ∈ (C([0, 1])W×W . To this end,

107

define Ck := (A0)k−1A1(A0)−k = (A0)k−1C1(A0)−k+1, k ≥ 2. These matrices satisfy identity

Ck = C2
k+1, k ∈ N, because this is equivalent to

(A0)k−1C1(A0)−k+1 = ((A0)kC1(A0)−k)2 = (A0)kC2
1(A0)−k,

which in turn is equivalent to assumption (7.17).

Given the identities Ck = C
1/2
k−1 = · · · = C2K−k

K , k ≥ K, it is not difficult to show that products

of Ck are bounded in the sense that

γ := sup
m∈N

sup
δ1,...,δm∈{0,1}

∥∥Cδ1
1 · · ·Cδm

m

∥∥
∞ <∞, (7.18)

and also that

sup
m≥k

sup
δk,...,δm∈{0,1}

∥∥∥Cδk
k · · ·C

δm
m − IW

∥∥∥
∞
→ 0 as k →∞. (7.19)

In fact, the boundedness (7.18) readily follows from (7.19). To prove (7.19), it will be enough to

consider Cδk
k · · ·Cδm

m , where m ≥ k ≥ K. It follows that

Cδk
k · · ·C

δm
m = Cδk2K−k+···+δm2K−m

K → IW

since δk2K−k + · · ·+ δm2K−m ≤ 2K−k+1 → 0 as k →∞, and since the eigenvalues of CK are all

equal to 1, and hence in H+.

It now follows from the above that there exists a matrix-valued function F ∈ (C([0, 1]))W×W ,

satisfying conditions (7.9), and such that its essential value if F0. The proof proceeds along similar

lines as the proof of Theorem 7.16, where one defines a Cauchy sequence of continuous piecewise

linear functions
{
F k
}
k∈N on [0, 1], with F k(0) = F0. More precisely, functions F k are piecewise

linear interpolants such that F k
(
j2−k

)
= Cδ1

1 · · ·C
δk
k F0, where j ∈ {0, . . . , 2k − 1} and (j)2 =

δ1 · · · δk, and where F k(1) = C2k

k = C2
1 . In this case, the proof that the sequence is Cauchy relies

on the above-mentioned properties (7.18) and (7.19) of products of matrices Ck.

We now show that the stationary CN corresponding to matrices A0, A1 generates the above

108

continuous matrix function F . Note first that convergence of the CN for matrices A0, A1 means

that the piecewise constant function YL, defined in (7.14), is convergent. We show that YL → F

as L→∞. Observe the identity

YL(x) = Aδ1 · · ·AδLYL0 = Cδ1
1 · · ·C

δL
1 F0, x ∈

[
j

2L
,
(j + 1)

2L

)
, j ∈ {0, . . . , 2L − 1}, L ∈ N,

where, as before, (j)2 =: δ1 · · · δL. However, at the same time, by the definition of
{
F k
}

, one has

FL
(
j2−L

)
= Cδ1

1 · · ·C
δL
1 F0 = YL(j2−L), x ∈

[
j

2L
,
(j + 1)

2L

)
.

In fact, it is not difficult to show that FL+m
(
j2−L

)
= FL

(
j2−L

)
,m ∈ N, hence

F
(
j2−L

)
= lim

m→∞
FL+m

(
j2−L

)
= lim

m→∞
FL
(
j2−L

)
= FL

(
j2−L

)
= YL

(
j2−L

)
,

hence F and YL agree on the mesh ΩL\{1}. Since F is continuous on [0, 1], this implies that YL

converges to F uniformly. This completes the proof.

The above result can be compared with the results of Daubechies and Lagarias [47], Theorems

6.15 and 6.16 with Σ = {A0, A1}, presented in Chapter 6. In particular, their result Theorem 6.16

is less explicit than Theorem 7.25.

7.3 Least Squares Objective Function

The following result shows that the least squares objective function has a unique global mini-

mum.

Theorem 7.26. Let f ∈ LW2 ([0, 1]) be such that f satisfies

f(·+ 2−k)|[0,2−k) = Ckf(·)|[0,2−k),

109

for all k ∈ N. Then, for all L ∈ N, there exists a unique YL ∈ SW,L such that

‖f − YL‖LW2 ([0,1]) = inf
g∈SW,L

‖f − g‖LW2 ([0,1]).

Moreover, YL satisfies

YL(·+ 2−k)|[0,2−k) = CkYL(·)|[0,2−k), k = 1, . . . , L.

Proof. Fix L ∈ N and construct YL as follows. DefineYL|[0,2−L] ∈ ΠW
1 ([0, 2−L]) to be the the best

L2 approximation of f on [0, 2−L). Next, define YL on [0, 2−L+1) by

YL(·+ 2−L)|[0,2−L+1) = CLYL(·)|[0,2−L+1).

Since f satisfies the same equation, it is not difficult to show that YL is the best L2 approximation

of f on [0, 2−L+1). Now proceed inductively to find YL on [0, 1] using

YL(·+ 2−k)|[0,2−k) = CkYL(·)|[0,2−k), k = L− 1, . . . , 1.

Such a function YL will be the best L2 approximation of f on [0, 1].

Corollary 7.7. Let YL+1 ∈ SW,L+1 such that

YL+1(·+ 2−`)|[0,2−`) = C`
L+1YL(·)|[0,2−`), ` = 1, . . . , L+ 1.

Let YL ∈ SW,L be the best L2 approximation of YL+1 from SW,L. Then YL satisfies

YL(·+ 2−`)|[0,2−`) = C`
LYL(·)|[0,2−`), ` = 1, . . . , L,

where C`
L = C`

L+1 for ` = 1, . . . , L.

110

Proof. Set f = YL+1 in Theorem 7.26.

Conjecture 7.8. Theorem 7.26 is true for all f ∈ LW2 ([0, 1]) without the “periodicity” conditions

(7.9).

111

Chapter 8

The space SW

8.1 Definition and Properties

Definition 8.1. Define SW =
∞⋃
L=1

SW,L
L∞

.

This is equivalent to f ∈ SW if YL → f in L∞ for YL ∈ SW,L.

Theorem 8.2. f ∈ SW and satisfies (7.10) if and only if f satisfies (7.9).

Note that this is a restatement of Theorem 7.11.

Conjecture 8.1. For Y , Ỹ ∈ SW , Y + Ỹ ∈ SW 2

Conjecture 8.2. SW is the set of all functions f such that for all fixed ` = 1, 2, . . . ,

span{f |[0,2−`]} = span{f(·+ j2−`)|[0,2−`]}

for all j = 1, . . . , 2−` − 1.

As seen in Chapter 4, f ∈ SW can be generated by a non-stationary subdivision scheme.

In the following, exponential functions are shown to be generated by cascade networks. More

generally, solutions of linear systems of differential equations belong to SW .

Proposition 8.3. Consider the linear system of differential equations, F ′ = DF , for F ∈

C([0, 1])W×W and D ∈ RW×W . Then,

a) The solution of the system F ′ = DF can be generated by a CN,

YL(x) = B0(x)B1(α(x)) · · ·BL(αL−1(x))Y0, (8.1)

112

in the sense that ‖F − YL‖∞ → 0. Here, Y0 = IW , B0 = e
D
2 , and

B`(x) =


e
−D
2`+1 , x ∈

[
0, 1

2

)
e

D

2`+1 , x ∈
[

1
2
, 1
]
,

for ` = 1, . . . , L.

b) If f(x) = eDxu, for x ∈ [0, 1], u ∈ RW , then f can be generated by setting Y0 = u in (8.1).

Proof. Only the proof of part (a) is presented, the proof of part (b) is straightforward.

(a) As is well known, a general solution of the differential system F ′ = DF is F (x) =

eDxF (0) for initial condition F (0).

For x = m
2L+1 ,m ∈ {1, . . . , 2L+1 − 1} odd, we will show that

YL(x) = B0(x)B1(α(x)) · · ·BL(αL−1(x))Y0 = eDx

is a piecewise constant function, constant on the intervals
[
m−1
2L+1 ,

m+1
2L+1

)
interpolating eDx at the

midpoints of those intervals. The proof will proceed by induction.

For L = 1,m = {1, 3}, and

Y1(x) = B0B1(x)

=


e
D
2 e
−D
4 , x ∈

[
0, 1

2

)
e
D
2 e

3D
4 , x ∈

[
1
2
, 1
]

=


e
D
4 , x ∈

[
0, 1

2

)
e

3D
4 , x ∈

[
1
2
, 1
] .

Suppose the induction hypothesis is true for L, or

YL(x) = B0(x)B1(α(x)) · · ·BL(αL−1(x))Y0 = e
Dm

2L+1 ,

113

for x ∈
[
m−1
2L+1 ,

m+1
2L+1

)
and m ∈ {1, . . . , 2L+1 − 1} odd. Then,

YL+1(x) = B0(x)B1(α(x)) · · ·BL(αL−1(x))BL+1(αL(x))Y0

= YL(x)BL+1

(
αL(x)

)
=


e
Dm

2L+1 e
−D

2L+2 , x ∈
[

2m−1−1
2L+2 , 2m−1+1

2L+2

)
e
Dm

2L+1 e
D

2L+2 , x ∈
[

2m−1+1
2L+2 , 2m−1+3

2L+2

]
=


e

Dk

2L+2 , x ∈
[
k−1
2L+2 ,

k+1
2L+2

)
, k = 2m− 1

e
Dk

2L+2 , x ∈
[
k−1
2L+2 ,

k+1
2L+2

]
, k = 2m+ 1

is piecewise constant, and interpolates eDx at the midpoints of those intervals.

Note that in the proof the identity, eAeB = eA+B, was repeatedly used. In general, this identity

is not true. However, it is true if A,B are scalar multiples of the same matrix D.

Instead of piecewise constant approximation used in Proposition 8.3, one could also use piece-

wise linear approximation, by using an appropriate linear matrix function Y0 instead of IW . The

end result would be a linear spline YL interpolating eDx at ΩL.

By Proposition 8.3, solutions of differential equations are elements of SW , and in some sense,

these are the only smooth vector functions belonging to SW .

Proposition 8.4. Let F : [0, 1]→ RW×W be a continuous matrix function satisfying F (x+ 2k) =

CkF (x), x ∈ [0, 2−k], k ∈ N, where F (0) is invertible. Then, F ′ = FD for some D ∈ RW×W .

Proof. This follows from the Theorem 7.21.

Remark 8.3. The condition F (0) is invertible is not prohibiting, in the sense that Proposition 8.4

is still true if F (0) not invertible.

Remark 8.4. Proposition 8.4 implies that SW is closed under differentiation.

114

Example 8.5. By Example 3.2 and Example 7.22,

Ck =


1 0 0

1
2k

1 0

1
4k

1
2k−1 1

 , k ∈ N.

Then

D = lim
k→∞

2k (Ck − IW) = lim
k→∞


0 0 0

1 0 0

1
2k

2 0

 =


0 0 0

1 0 0

0 2 0

 .

If f ′ = Df , for f = (f1, f2, f3)T . Then f ′1 = 0, f ′2 = f1 and f ′3 = 2f2. Thus, f ′′′3 = 2f ′′2 = 2f1 = 0

and so f3 is quadratic, f2 is linear and f1 is constant. Thus, a cascade network corresponding to

matrices Ck can generate quadratic polynomials, as seen in Chapter 3, Example 3.2.

8.2 Approximation from Null Spaces of Linear Differential Operators

Results from the previous section suggest that solutions of systems of constant coefficient dif-

ferential equations play an important role in the analysis of CN’s. In this section, the question of

how well such functions approximate smooth functions is considered. This question was also con-

sidered by Vatchev [60] and we will provide a comparison with our results. First, a few auxiliary

results are presented.

A vector function f : [0, 1]→ Rn satisfies a linear, homogeneous, system of differential equa-

tions if and only if a linear combination of the components of f satisfy a homogeneous, constant

coefficient differential equation of order n. Therefore, one can consider a constant coefficient

differential operator of order n, instead of a system of first order differential equations.

Lemma 8.6. Let L be a constant coefficient differential operator of order 1, Lf = a1f
′ +

a0f, a0, a1 ∈ R, a1 6= 0. Let h ∈ C1(R) be such that h(x0) = h(x1) = 0, x0 ≤ x1, where

115

if x0 = x1 the equality is understood such that h(x0) = h′(x0) = 0. Then, (Lh)(ξ) = 0, for some

ξ ∈ [x0, x1].

Proof. If x0 < x1, let λ = a0
a1

. Then, a1

(
eλxf(x)

)′
= eλx(Lf)(x), for all f ∈ C1(R) and all x. Let

g = eλ·h. Then, g(x0) = g(x1) = 0. Thus, by Rolle’s Theorem, g′(ξ) = 0, for some ξ ∈ (x0, x1).

Therefore, Lh(ξ) = e−λξa1g
′(ξ) = 0.

If x0 = x1, then h(x0) = h′(x0) = 0. Thus, for ξ = x0, Lh(ξ) = Lh(x0) = 0.

A similar result holds for second order equations.

Lemma 8.7. Let L be the constant coefficient differential operator Lf = a1f
′′+λ2f, λ ≥ 0, a1 =

1. Let h ∈ C1(R) be such that h(x0) = h(x1) = h(x2) = 0, x0 ≤ x1 ≤ x2, where an equality

means derivatives are set to zero (e.g if x0 = x1 < x2, then h(x0) = h′(x0) = 0 or if x0 = x1 = x2,

then h(x0) = h′(x0) = h′′(x0) = 0). Then, (Lh)(ξ) = 0, for some ξ ∈ [x0, x2].

Proof. Assume first x0 < x1 < x2, then h(x0) = h(x1) = h(x2) = 0.

Lh =
1

cos(λx+ c)

(
cos2(λx+ c)

(
h(x)

cos(λx+ c)

)′)′
= h′′(x) + λ2h.

As h(x0) = h(x1) = h(x2) = 0,
(

h(x)
cos(λx+c)

)′ ∣∣∣∣
x=ξ1

= 0, for some ξ1 ∈ (x0, x1) and
(

h(x)
cos(λx+c)

)′ ∣∣∣∣
x=ξ2

=

0, for some ξ2 ∈ (x1, x2). Thus,
(

cos2(λx+ c)
(

h(x)
cos(λx+c)

)′)′ ∣∣∣∣
x=ξ

= 0, for some ξ ∈ (ξ1, ξ2).

If x0 = x1 = x2, then h(x0) = h′(x0) = h′′(x0). Thus, for ξ = x0, Lh(ξ) = Lh(x0) = 0.

If x0 ≤ x1 ≤ x2 and at least one of the inequalities is an equality. Fix x0, and consider

sequences {xn1}, {xn2} such that xn1 → x1, x
n
2 → x2, x0, x

n
1 < xn2 . Define a sequence {hn}

by hn(x) := h(x) + an(x − x0) + bn(x − x0)2, where bn = 1
`n1−`n2

[
1
`n2
h(xn2)− 1

`n1
h(xn1)

]
and

an = 1
`n1−`n2

[
`n2
`n−
h(xn1)− `n1

`n2
h(xn2)

]
, for `n1 = xn1 − x0 and `n2 = xn2 − x0. Then, {hn} satisfies

hn(xn1) = hn(xn2) = hn(x0) = 0 and {hn} is such that hn → h in C2 [x0 − ε, x0 + ε], where ε

independent of n. Thus, Lhn → Lh on [x0 − ε, x0 + ε].

116

The above two lemmas can be generalized to n-th order equations.

Lemma 8.8. Let L be a constant coefficient differential operator of order n, Lf = anf
(n) + · · ·+

a0f, a0, . . . , an ∈ R, an 6= 0. Let x0, . . . , xn, not necessarily distinct, and let h ∈ Cn(R) be such

that h(x0) = · · · = h(xn) = 0, with the corresponding modification if some of the nodes coalesce.

Then, Lh(ξ) = 0, for some ξ ∈ conv{x0, . . . , xn}, the convex hull of the points x0, . . . , xn.

Proof. L can be written as L = L1 · · ·Lk, where Lif = f ′′ + λ2
i f or Lif = f + λi for i =

1, . . . , k, and the order of L adds up to n. Without loss of generality, assume x0 < · · · < xn, then

conv{x0, . . . , xn} = [x0, xn]. By Lemma 8.6 and 8.7, Lkh(x′1) = · · · = Lkh(x′n) = 0, for some

x′1 ∈ (x0, x1), . . . , x′n ∈ (xn−1, xn). The proof now proceeds by induction. The case of coalescent

nodes can be handled similarly.

The following result gives an error formula for approximating smooth functions by elements

of null spaces of the differential operators considered above.

Theorem 8.9. Let L be a constant coefficient differential operator of order n, Lf = anf
(n) + · · ·+

a0f, a0, . . . , an ∈ R, an 6= 0. Let f ∈ Cn(R), x0, . . . , xn−1 ∈ R, not necessarily distinct, N(L)

be the null space of L and Inf ∈ N(L) a function such that Inf(xi) = f(xi), for i = 0, . . . , n− 1.

Also, let g be a function such that Lg = 1 and g(x0) = · · · = g(xn−1) = 0. Then for all x ∈ R,

there exists a ξ = ξ(x) ∈ conv{x, x0, . . . , xn−1} such that

f(x)− Inf(x) = g(x)Lf(ξ). (8.2)

Proof. Suppose first that the nodes are distinct and without loss of generality, assume x0 < · · · <

xn−1, and that x /∈ {x0, . . . , xn−1} (if x ∈ {x0, . . . , xn−1}, then equation 8.2 holds trivially for all

ξ). Define

h(t) := (f(t)− Inf(t)) g(x)− (f(x)− Inf(x)) g(t).

Then, h(xi) = 0 for i = 0, . . . , n − 1, because f(xi) − Inf(xi) = 0 and g(xi) = 0 for

i = 0, . . . , n− 1, by definition. Also, h(x) = 0.

117

Thus, by Lemma 8.8, there exists a ξ ∈ conv{x, x0, . . . , xn−1} such that Lh(ξ) = 0. Therefore,

0 = L (f(t)− Inf(t)) |t=ξg(x)− (f(x)− Inf(x))Lg(ξ)

= (Lf(ξ)− L(Inf)(ξ)) g(x)− (f(x)− Inf(x))

= Lf(ξ)g(x)− (f(x)− Inf(x)) ,

which implies (8.2).

The case where some of the nodes coalesce can be dealt with analogously. For example, if

x0 = x, the interpretation of Inf and g is such that Inf(x0) = f(x0), (Inf(x0))′ = (f(x0))′, and

g(x0) = g′(x0) = 0. The definition of h remains the same. However, the equations h(x0) =

h(x1) = 0 are replaced with h(x0) = h′(x0) = 0.

Concerning functions Inf and g in the above theorem, note that such functions are not always

guaranteed to exist. For example, if Lf = f ′′ + f or N(L) = span{sin, cos}, and x0 = 0, x1 = π,

there is no g such that Lg = 1 and g(0) = g(π) = 0. Similarly, there is no function I2f ∈ N(L)

such that I2f(0) = f(0), I2f(π) = f(π) unless f(0) + f(π) = 0. On the other hand, it is a

well-known property of N(L) that Inf, g are guaranteed to exist, and uniquely so, provided that

the interval [x0, xn−1] is sufficiently small. For the above example, the unique existence of Inf, g

is guaranteed whenever x1 − x0 < π.

In the following, consider the special case of Theorem 8.9 where x0 = x1 = · · · = xn−1, which

will be needed later.

Corollary 8.5. Let L be a constant coefficient differential operator of order n, Lf = anf
(n) +

· · · + a0f, a0, . . . , an ∈ R, an 6= 0. Let f ∈ Cn(R), N(L) be the null space of L, and Inf be the

unique function in N(L) such that Inf (i)(x0) = f (i)(x0), for i = 1, . . . , n − 1. Also, let g be the

unique function such that Lg = 1 and g(x0) = g(1)(x0) · · · = g(n−1)(x0) = 0. Then for all x ∈ R,

there exists a ξ = ξ(x) ∈ conv{x0, x} such that

f(x)− Inf(x) = g(x)Lf(ξ). (8.3)

118

Example 8.10. Consider the operator Lf = f (n). Let xi = cos
(

2i+1
2n
π
)
, for i = 0, . . . , n − 1, be

the Chebyshev nodes for [−1, 1]. By Theorem 8.9, f(x) − Inf(x) = g(x)f (n)(ξ), for some ξ ∈

−1, 1. Here, g is the renormalized Chebyshev polynomial, g(x) = 1
2n−1n!

Tn(x), where Tn(x) =

cos(n cos−1 x) is the standard Chebyshev polynomial. In this case, g(n)(x) = 1, g(xi) = 0 and

Tn(xi) = 0, for i = 0, . . . , n− 1. Moreover, by (8.2),

‖f − Inf‖L∞([−1,1]) ≤ ‖g‖L∞([−1,1])‖f (n)‖L∞([−1,1])

=
1

2n−1n!
‖f (n)‖L∞([−1,1]).

Thus, the classical estimate for polynomial interpolation and Chebyshev nodes is recovered.

Let f be a function defined on a finite interval A. Consider the problem of approximating f

from the null space of a differential operator of the form Lnf =
n∑
k=0

akf
(k), ak ∈ R, an 6= 0. It

is known that N(Ln) = span
{
eλkx|k = 1, . . . , n

}
, where λk are the roots of the corresponding

characteristic polynomial Pn(λ) =
n∑
k=0

akλ
k and where λk are assumed to be distinct.

The following result of Vatchev [60] establishes Jackson type estimates for the error of approx-

imation from N(Ln).

Theorem 8.11. [60] Let Lnf = anf
(n) + · · · + a0f, ak ∈ R, for k = 0, . . . , n and an 6= 0

with N(Ln) = span
{
eλkx|k = 1, . . . , n

}
, λi complex, distinct. Then, for each f ∈ Cn(A), A a

finite interval, there is a selection of coefficients b1, . . . , bn and corresponding linear combination

Snf(x) =
n∑
k=1

bke
λkx of functions in N(Ln) which satisfy

‖f (m) − (Snf(x))(m)‖L∞(A) ≤
|A|1/qe|λn||A|

|an|2n−m−1/p|λn|n−m−1
‖Lnf‖Lp(A), (8.4)

where |λn| = max
k
|λk|, 0 ≤ m ≤ n− 1, p, q ≥ 1, and 1

p
+ 1

q
= 1.

Theorem 8.12. Let Ln be a constant coefficient differential operator of order n, Lnf = anf
(n) +

· · · + a0f , where an = 1, a0 6= 0 with N(Ln) = span
{
eλkx|k = 1, . . . , n

}
, where λi’s are real,

119

distinct, and ordered λ1 ≤ · · · ≤ λn. For Snf(x) ∈ N(Ln),

‖f − Snf(x)‖L∞(I) ≤ ‖g‖L∞(I)‖Lnf‖L∞(I), (8.5)

where

‖g‖∞ ≤
1

(n− 1)!
×


min

{
2−neλ̄/2, e−λ1 , eλn

}
, if λ1 ≤ n, λn ≥ −n

e−n (n/λ1)n , if λ1 > n

e−n (−n/λn)n , if λn < −n

,

and λ̄ := max{|λ1|, . . . , |λn|} = max{|λ1|, |λn|}.

Proof. Let Ln be a constant coefficient differential operator of order n, Lnf = anf
(n) + · · ·+ a0f ,

where an = 1, a0 6= 0. The characteristic polynomial is λn+an−1λ
n−1+· · ·+a0 = (λ−λ1) · · · (λ−

λn), hence a0 = (−1)nλ1 · · ·λn 6= 0. As the λi’s are real, distinct, and ordered λ1 ≤ · · · ≤ λn, the

convex hull of the λi’s is [λ1, λn]. Set λ̄ := max{|λ1|, . . . , |λn|} = max{|λ1|, |λn|}.

For x0 ∈ [0, 1], let g be such that Lg = 1 and g(i)(x0) = 0 for i = 0, . . . , n− 1. Since a0 6= 0,

it follows that g(x) = 1
a0

+
n∑
j=1

dje
λjx. For i ≥ 1, g(i)(x0) =

∑n
j=1 djλ

i
je
λjx0 , and we would like to

find the coefficients di such that g(i)(x0) = 0. This can be written as a system



1 · · · · · · 1

λ1 · · · · · · λn
... · · · · · · ...

λn−1
1 · · · · · · λn−1

n


︸ ︷︷ ︸

V



eλ1x0 0 · · · 0

0 eλ2x0 · · · 0

... · · · . . . 0

0 · · · · · · eλnx0


︸ ︷︷ ︸

D



d1

d2

...

dn


︸ ︷︷ ︸

d

=



−1
a0

0

...

0


︸ ︷︷ ︸

a

. (8.6)

Note that V is a Vandermonde matrix and is nonsingular for λi distinct. Thus, the system (8.6)

has a unique solution d = D−1V −1a. Due to the special structure of a, V −1a = −1
a0
v, where v is

the first column of V −1. Let v = (v1, . . . , vn)T , then by [61, 62] and noting that a0 can be written

120

as a0 = (−1)n
n∏
j=1

λj , it follows that

vi =

n∏
j=1
j 6=i

λj

n∏
j=1
j 6=i

(λj − λi)
= (−1)na0

1

λi
n∏
j=1
j 6=i

(λj − λi)
, i = 1, . . . , n.

Thus

V −1a = (−1)n+1



1

λ1
n∏
j=1
j 6=i

(λj−λi)

...

1

λn
n∏
j=1
j 6=i

(λj−λi)


=



1

λ1
n∏
j=1
j 6=i

(λi−λj)

...

1

λn
n∏
j=1
j 6=i

(λi−λj)


, and d =



eλ1x0

λ1
n∏
j=1
j 6=i

(λi−λj)

...

eλnx0

λn
n∏
j=1
j 6=i

(λi−λj)


Therefore,

g(x) =
1

λ1 · · ·λn
+ (−1)n

n∑
i=1

eλi(x−x0)

λi
n∏
j=1
j 6=i

(λi − λj)
. (8.7)

Thus,

g′(x) = (−1)n
n∑
i=1

eλi(x−x0)

n∏
j=1
j 6=i

(λi − λj)

= (−1)n[λ1, . . . , λn]eλ(x−x0)

= (−1)n
dn−1

dλn−1 e
λ(x−x0)

∣∣∣
λ=t

(n− 1)!

= (−1)n
et(x−x0)(x− x0)n−1

(n− 1)!
,

for some t ∈ [λ1, λn]. The notation [λ1, . . . , λn]eλ(x−x0) stands for the divided difference of func-

tion h(λ) = eλ(x−x0), corresponding to nodes λ1, . . . , λn. It is a well known fact that[λ1, . . . , λn]h =

121

hn−1(t)
(n−1)!

, for some t ∈ [λ, . . . , λn]. Thus, noting that

g(x) = g(x0) + g′(ξ(x))(x− x0) = g′(ξ(x))(x− x0),

for some ξ(x) ∈ [0, 1], we obtain

‖g‖L∞(I) ≤ ‖g′(·)(· − x0)‖∞ ≤ sup
x∈[0,1]

{
sup

t∈[λ1,λn]

{sn(t, x− x0)}
}
,

where sn(t, x) := etx|x|n/(n− 1)!.

To obtain a bound for the right-hand side, note first that if t, x ∈ R, then max{sn(t, x), sn(t,−x)} =

sn(|t|, |x|). Setting x0 = 1/2 and observing that supx∈[0,1]

{
supt∈[λ1,λn] |t(x− x0)|

}
= λ̄/2, we

thus obtain

‖g‖L∞(I) ≤ sup
x∈[0,1]

{
sup

t∈[λ1,λn]

{sn(|t|, |x− x0|)}
}

≤ sn(λ̄, 1/2)

=
eλ̄/2

2n(n− 1)!
.

Next, set x0 = 1. Using elementary calculus it can be shown that

sup
x∈[0,1]

{
sup

t∈[λ1,λn]

{et(x−x0)|x− x0|n)}
}

= sup
x∈[0,1]

{
sup

t∈[λ1,λn]

{et(x−1)(1− x)n)}
}

=


e−λ1 , if λ1 ≤ n

e−n
(
n
λ1

)n
, if λ1 > n,

and a similar result holds in the case x0 = 0:

sup
x∈[0,1]

{
sup

t∈[λ1,λn]

{et(x−x0)|x− x0|n)}
}

= sup
x∈[0,1]

{
sup

t∈[λ1,λn]

{etxxn)}
}

122

=


eλn , if λn ≥ −n

e−n
(
−n
λn

)n
, if λn < −n,

Combining these inequalities yields

‖g‖L∞(I) ≤
1

(n− 1)!
×


min

{
2−neλ̄/2, e−λ1 , eλn

}
, if λ1 ≤ n, λn ≥ −n

min
{

2−neλ̄/2, e−n (n/λ1)n , eλn
}
, if λn ≥ λ1 > n

min
{

2−neλ̄/2, e−λ1 , e−n (−n/λn)n
}
, if λ1 ≤ λn < −n

=
1

(n− 1)!
×


min

{
2−neλ̄/2, e−λ1 , eλn

}
, if λ1 ≤ n, λn ≥ −n

e−n (n/λ1)n , if λ1 > n

e−n (−n/λn)n , if λn < −n

Further, one can show that the condition that the λi’s be distinct can be dispensed with by

considering a sequence of distinct real exponents (λ
(k)
i)∞k=1, converging to λi, i = 1, . . . , n, and

then obtain the above bounds by passing to the limit as k →∞. The details of the straightforward

proof are omitted except for pointing out that one can also apply this limit argument to the case

where a0 = 0, i.e. when one or more of the λi’s is zero. For this, one needs to observe that

if gk corresponds to exponents λ(k)
1 , . . . , λ

(k)
n , and hence is such that Lgk = 1 and g

(i)
k (x0) =

0, i = 0, . . . , n − 1, then the pointwise limit g := limk→∞ gk exists and is such that Lg = 1 and

g(i)(x0) = 0, j = 0, . . . , n− 1. This follows from the easy-to-verify fact that

g(x) = lim
k→∞

gk(x) = lim
k→∞

[0, λ
(k)
1 , . . . , λ(k)

n]eλ(x−x0) = [0, λ1, . . . , λn]eλ(x−x0).

The advantage of this divided difference identity for g is that, unlike identity (8.7), the divided

difference formula for g is well defined also in the case where the nodes are not distinct and, in

123

particular, when some of the nodes are equal to 0. Note that divided differences with coalescent

nodes are well defined for smooth functions, including exponential functions. Based on these facts,

the proof then follows along the same lines as the proof for distinct nonzero λi’s.

Note that the above estimates are not optimal since an optimal value of x0 may be different

from the values 0, 1/2, 1 used above. However, it is clear that the estimates in Theorem 8.12 are

generally better than those of Vatchev. With the conventions an = 1, m = 0, p = ∞, and where

it was assumed that the interval under consideration has length 1, Vatchev’s inequality in Theorem

8.4 becomes

‖f − Sn(f)‖L∞(I) ≤
eλ̄

2n−1λ̄n−1
‖Lf‖L∞(I),

In particular, Vatchev’s estimate does not contain the factor (n− 1)!. Moreover, the bounds in

Theorem 8.12 are smaller for “large” values of λ̄. For example, for |λ1| << λ̄, the value e−λ1 will

be much smaller than eλ̄/λ̄n. The same is also true for positive λ1. Also, if λ1 ≥ n, then the bound

in Theorem 8.12 is not larger than e−n

(n−1)!
‖Lf‖L∞(I) whereas Vatchev’s is at least en

2n−1nn
‖Lf‖L∞(I).

By Stirling’s formula, the ratio of the two expressions, en

2n−1nn
/ e−n

(n−1)!
∼ en

√
2πn

2n−1n
→∞, as n→∞.

124

Chapter 9

Approximation Power of Cascade Networks

The goal of this chapter is to approximate univariate polynomials and smooth functions on

I = [0, 1] using cascade networks and investigate the complexity of the representation of these

functions relative to ReLU neural networks.

First, an analogous result to the result of Proposition 2.13 of Yarotsky [33] is given. If f ∈ Π2,

then f can be approximated by a cascade network YL described in Definition 3.3 having depth,

number of weights, and units equal to O (ln(1/ε)).

Proposition 9.1. Let f ∈ Π2, and ‖f‖L∞(I) = 1. Let ε > 0 and ΩL = {0, hL, . . . , 1}, hL = 2−L+1.

There exists a cascade network YL such that

‖f − YL‖L∞(I) < ε,

with depth

L(YL) = O(ln(1/ε)),

number of weights

W(YL) = O(ln(1/ε)),

number of units

U (YL) = O(ln(1/ε)),

and width

M(YL) = 3.

Proof. Set YL to be the piecewise linear interpolant of f on ΩL.

125

It is known, that for smooth f [63],

‖f − YL‖L∞(I) ≤ (1/4)h2
L‖f (2)‖L∞(I)

≤ (1/4)(2−2L+2)(4/3)(n2)(n2 − 1)‖f‖L∞(I),

where the second inequality follows from Markov’s Inequality [64].

If n = 2, then

‖f − YL‖L∞(I) ≤ (16)(2−2L)‖f‖L∞(I).

Let L be the smallest integer such that (16)(2−2L) ≤ ε. Then L = d2 + (1/2) log(1/ε)e and

thus L(YL) = O(ln(1/ε)) for ε sufficiently small.

AsW(YL) ≤ 9L − 12,W(YL) = O(ln(1/ε)). As U (YL) = 3L − 2, U (YL) = O(ln(1/ε)).

M(YL) = 3.

Proposition 9.1 can be extended to hold for polynomials of degree n > 2.

Proposition 9.2. Let f ∈ Πn, n ≥ 2 and ‖f‖L∞(I) = 1. Let ε > 0 and ΩL = {0, hL, . . . , 1},

(hL = 2−L+1). There exists a cascade network YL such that

‖f − YL‖L∞(I) < ε

with depth

L(YL) = O(ln(n) + ln(1/ε)),

number of weights

W(YL) = O(n2 ln(n) + n2 ln(1/ε)),

number of units

U (YL) = O(n ln(n) + n ln(1/ε)),

126

and width

M(YL) = n+ 1.

Proof. Set YL to be the piecewise linear interpolant of f on ΩL.

Then,

‖f − YL‖L∞(I) ≤ (1/4)h2
L

∥∥f (2)
∥∥
L∞(I)

(9.1)

≤ (1/4)h2
L(4/3)n2(n2 − 1)‖f‖L∞(I) (9.2)

≤ (1/3)(2−2L+2)n4‖f‖L∞(I) (9.3)

Let L be the smallest integer such that (1/3)(n4)(2−2L+2) ≤ ε. Then L = 1
2

log
(

4n4

3ε

)
and, thus,

L(YL) = O(ln(n) + ln(1/ε)) for ε sufficiently small.

AsW(YL) ≤ 2(n+ 1) + (n+ 1)2(L− 2), it follows thatW(YL) = O(n2 ln(n) +n2(ln(1/ε)).

As U (YL) = (n + 1)(L − 1) + 1, it follows that U (YL) = O(n ln(n) + n ln(1/ε)). In addition,

M(YL) = n+ 1.

Remark 9.1. The result of Proposition 9.2 is similar to that of Proposition 2.16 with D = 1.

However, the requirement ‖f‖L∞(I) = 1 is stronger than the condition max
0≤k≤n

ak ≤ A in Propo-

sition 2.16 for a fixed A. Also note that for the Chebyshev polynomials Tn(x), x ∈ [−1, 1], then

‖Tn‖L∞(I) = 1, and Tn satisfies the results of Proposition 9.2. However, the constant A grows

exponentially with n, which would negatively impact the complexity estimates of Proposition 2.16

Remark 9.2. If the condition of Proposition 9.2 is strengthened to consider f ∈ Πn and f ∈

Fn,1 for n ≥ 2 (Fn,d defined as in equation (2.14)), the dependency on n will disappear. As∥∥f (2)
∥∥
L∞(I)

≤ 1, it follows that

‖f − YL‖L∞(I) ≤ (1/4)h2
L

∥∥f (2)
∥∥
L∞(I)

127

≤ (1/4)(2−2L+2).

Thus there exists a cascade network YL such that

‖f − YL‖L∞(I) < ε,

with depth

L(YL) = O(ln(1/ε)),

number of weights

W(YL) = O(ln(1/ε)),

number of units

U (YL) = O(ln(1/ε)),

and width

M(YL) = n+ 1.

The following is an analog of Theorem 2.17.

Theorem 9.3. Let f ∈ Fn,1 for some n ∈ N. Let ε > 0 and ΩL = {0, 2−L+1, . . . }, then there

exists a cascade network YL such that

‖f − YL‖L∞(I) < ε (9.4)

with depth

L(YL) = O(ln(1/ε)),

number of weights

W(YL) = O(nε−1/n(ln(n) + ln(1/ε)),

128

number of units

U (YL) = O(ε−1/n(ln(n) + ln(1/ε)),

and width

M(YL) = N(n+ 1).

Proof. The proof will follow a similar outline as the proof of Theorem 2.17 in [33]. First f is

approximated by combination f1 of piecewise linear functions and local Taylor polynomials. Then,

Corollary 3.3 and the remark after Proposition 9.2, is used to approximate f1 by a cascade network.

Let N = 2M ,M ∈ N to be selected later, and let Ik = [k/N, (k+ 1)/N] for k = 0, . . . , N − 1.

Write

f1(x) =
N∑
k=0

Bk/N(x)P n−1
k/N (x), (9.5)

where P n−1
k/N (x) are the (n− 1) degree Taylor polynomials of f centered at x = k/N and Bk/N are

piecewise linear hat functions with knots k−1
N
, k
N
, k+1
N

, normalized to form a partition of unity over

I . Then, f1 is a piecewise polynomial of degree n and, for x ∈ I ,

|f(x)− f1(x)| =

∣∣∣∣∣f(x)−
N∑
k=0

Bk/N(x)P n−1
k/N (x)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
k=0

Bk/N(x)(f(x)− P n−1
k/N (x)

∣∣∣∣∣
≤ 2 max

{x∈I:‖x−k/N‖<1/N}

∣∣∣f(x)− P n−1
k/N (x)

∣∣∣
≤ 2(1/n!)

∥∥f (n)
∥∥
L∞(I)

(
1

N

)n
≤ 2

n!

(
1

N

)n

since for a fixed k and x ∈ Ik,

|f(x)− f1(x)| =
∣∣∣Bk/N(x)

(
f(x)− P n−1

k/N (x)
)

+B(k+1)/N(x)
(
f(x)− P n−1

(k+1)/N(x)
)∣∣∣

≤
∣∣∣f(x)− P n−1

k/N (x)
∣∣∣+
∣∣∣f(x)− P n−1

(k+1)/N(x)
∣∣∣ .

129

Now, choose N such that 2
n!

(
1
N

)n ≤ ε/2, or N = d
(

4
εn!

)1/ne.

Next, approximate f1 by f2, which is the piecewise linear interpolant of f1 on ΩM+K+1, for

some K to be chosen later. By Corollary 3.3, f2 can be realized by a cascade network YL, with

L = M +K + 1, where YL is the splicing of Y1
K , . . . ,YNK .

Therefore,

‖YL − f1‖L∞(I) ≤ (1/4)

(
1

2M+K

)2 ∥∥∥f (2)
1

∥∥∥
L∞(I)

.

To find
∥∥∥f (2)

1

∥∥∥
L∞(I)

, fix x in the interior of Ik, then

f
(2)
1 (x) = N(P n−1

k/N)′(x)+N(P n−1
(k+1)/N)′(x)+(Bk/n)(x))(P n−1

k/N)(2)(x)+(B(k+1)/n)(x))(P n−1
(k+1)/N)(2)(x)

and

∣∣∣(P n−1
k/N)′(x)

∣∣∣ =

∣∣∣∣f ′(k/N)(x− k/N)0

1!
+ (2)

f (2)(k/N)(x− k/N)1

2!

+ · · ·+ f (n−1)(k/N)(x− k/N)(n−2)

(n− 2)!

∣∣∣∣
≤ e1/N

< e.

Similarly, |(P n−1
k/N)(2)(x)| < e. Therefore,

∥∥∥f (2)
1 (x)

∥∥∥
L∞(I)

≤ 2e(N + 1) ≤ 11N .

Choose K such that (11
4

) 1
N22K

≤ ε/2, where N has already been selected.

Therefore,

‖f − YL‖L∞(I) ≤ ‖f − f1‖L∞(I) + ‖f1 − YL‖L∞(I)

≤ ε/2 + ε/2

= ε.

130

The depth of YL is L = M +K + 1, where

M = log(N) =

(
1

n

)
log

(
4

εn!

)
, K =

1

2
log

(
11

2εN

)
.

gives

L =

(
1

2

)
log

(
11

2

)
+ 1 +

(
1

2

)
(1 +

1

n
) log

(
1

ε

)
+

1

2n
log

(
4

n!

)
.

Thus,

L(YL) = O(ln(1/ε)).

Then, by Proposition 9.2 and Corollary 3.3, YL has number of units

U (YL) = O(NU (Y1
k))

= O

(
n

((
4

n!

)1/n

ε−1/n(ln(n) + ln(2/ε)

))

= O(ε−1/n(ln(n) + ln(1/ε)),

number of weights

W(YL) = O(NW(Y1
K))

= O

(
n2

(
4

n!

)1/n

ε−1/n(ln(n) + ln(2/ε)

)

= O(nε−1/n(ln(n) + ln(1/ε)),

and width

M(YL) = O(n+ 1).

Remark 9.3. For any fixed n and for d = 1, the result of Theorem 9.3 is consistent with that

of Yarotsky. However, in Theorem 2.17 the constant is not explicit, whereas in Theorem 9.3 the

131

dependency on n is explicit. In addition, it is not clear how fast Yarotsky’s constant grows with n.

Remark 9.4. In the proof of Theorem 9.3, equal contribution from the approximation of f by f1

and the approximation of f1 by YL was assumed. However, an alternate approach would be to

minimize L = M +K + 1 subject to the constraint 2
n!

(
1
N

)n
+ (11

4
) 1
N22K

≤ ε, where N = 2M . The

details are omitted, as the results were not significantly better and the rates were essentially the

same as found in Theorem 9.3 .

Remark 9.5. Just as is the case for neural networks, shallow cascade networks do not do as well as

deep cascade networks. In Theorem 9.3, the case where each of the N intervals of I is divided into

2 subintervals (i.e the case K = 1), then f1 can be approximated by a cascade network YL where

YL is the “splicing” of the cascade networks Y1
2 , . . . ,YN2 all with depth 2. Then, by Corollary

3.3, for shallow cascade networks U (YL) = O(NU (Y1
2)) = O(N) = O(ε−1/2), whereas for deep

networks U (YL) = O(ln(1/ε)).

132

Chapter 10

Numerical Examples

In the following, the approximation power of cascade networks is illustrated with some numer-

ical examples. Several univariate functions were chosen to investigate how well they are approx-

imated by a CN of the form YL = AL (AL−1 ◦ α) · · ·
(
A1 ◦ αL−1

) (
Y0 ◦ αL

)
, for different values

of L (depth) and W (width).

All test were preformed with the software Matlab R2022a. The matrices A`, ` = 1, . . . L, were

initialized using the Matlab function “randn(n,m)”, which returns an n × m matrix of normally

distributed random numbers. The minimum of the objective function (L2 or L∞) was computed

using the Matlab function “fmincon”, which find the minimum of a constrained nonlinear function.

Example 10.1. Consider the analytic function f(x) = e2x + ex (Figure 10.1).

Figure 10.1: Analytic Function f(x) = e2x + ex

133

L no of Parameters Error L2 Ratio Error L∞ Ratio

1 10 1.44949e-01 3.21215e-01

2 14 3.78217e-02 3.83 9.99248e-02 3.21

3 18 9.87025e-03 3.83 2.80104e-02 3.57

4 22 3.47667e-03 2.84 7.42489e-03 3.77

5 26 2.58779e-03 1.34 5.20243e-03 1.43

6 30 2.52067e-03 1.03 1.28274e-01 0.04

Table 10.1: Table of Errors, Analytic Function, W = 1

(a) L = 2 (b) L=4

Figure 10.2: CN Approximation to Analytic Function, L2 Objective Function, W = 1

(a) L=2 (b) L=4

Figure 10.3: CN Approximation to Analytic Function, L∞ Objective Function, W = 1

134

L no of Parameters Error L2 Ratio Error L∞ Ratio

1 22 1.44949e-01 3.21220e-01

2 34 3.77421e-02 3.84 9.99348e-02 3.21

3 46 9.53972e-03 3.96 2.80118e-02 3.57

4 58 2.39943e-03 3.98 7.42501e-03 3.77

5 70 5.98639e-04 4.01 1.88198e-03 3.95

6 82 1.57408e-04 3.80 9.46322e-04 1.99

7 94 7.59855e-05 2.07 1.39021e-03 0.68

8 106 5.15284e-05 1.47 6.33918e-02 0.02

Table 10.2: Table of Errors, Analytic Function, W = 2

(a) L=1 (b) L=2

(c) L=4 (d) L=8

Figure 10.4: CN Approximation to Analytic Function, L2 Objective Function, W = 2

135

(a) L=1 (b) L=2

(c) L=4 (d) L=8

Figure 10.5: CN Approximation to Analytic Function, L∞ Objective Function, W = 2

Example 10.2. Consider the Weierstrass function f(x) =
∞∑
n=0

an cos (bnπx), where 0 < a < 1,

b a positive real number, and ab > 1 (Figure 10.6). The Weierstrass function is continuous and

nowhere differentiable on [0, 1].

Figure 10.6: Weierstrass Function with a = 0.5, b = 3

136

L no of Parameters Error L2 Ratio Error L∞ Ratio

1 10 2.75487e-01 6.46546e-01

2 14 2.42169e-01 1.14 5.48770e-01 1.18

3 18 2.33813e-01 1.04 4.92697e-01 1.11

4 22 2.33558e-01 1.00 5.02062e-01 0.98

Table 10.3: Table of Errors, Weierstrass Function, W = 1

(a) L=1 (b) L=2

Figure 10.7: CN Approximation to Weierstrass Function, L2 Objective Function, W = 1

(a) L=1 (b) L=2

Figure 10.8: CN Approximation to Weierstrass Function, L∞ Objective Function, W = 1

137

L no of Parameters Error L2 Ratio Error L∞ Ratio

1 22 2.75487e-01 6.83599e-01

2 34 1.84684e-01 1.49 4.64780e-01 1.47

3 46 1.34510e-01 1.37 3.69778e-01 1.26

4 58 1.28606e-01 1.05 3.28335e-01 1.13

5 70 1.26367e-01 1.02 3.54893e-01 0.93

6 82 1.26191e-01 1.00 3.04675e-01 1.16

Table 10.4: Table of Errors, Weierstrass Function, W = 2

(a) L=2 (b) L=4

Figure 10.9: CN Approximation to Weierstrass Function, L2 Objective Function, W = 2

(a) L=2 (b) L=4

Figure 10.10: CN Approximation to Weierstrass Function, L∞ Objective Function, W = 2

138

L no of Parameters Error L2 Ratio Error L∞ Ratio

1 38 2.75487e-01 6.46551e-01

2 62 1.84684e-01 1.49 4.64780e-01 1.39

3 86 1.21636e-01 1.52 3.26181e-01 1.42

4 110 8.88133e-02 1.37 2.92459e-01 1.12

5 134 8.31038e-02 1.07 1.90689e-01 1.53

6 158 8.18399e-02 1.02 1.77913e-01 1.07

Table 10.5: Table of Errors, Weierstrass Function, W = 3

(a) L=4 (b) L=6

Figure 10.11: CN Approximation to Weierstrass Function, L2 Objective Function, W = 3

(a) L=4 (b) L=6

Figure 10.12: CN Approximation to Weierstrass Function, L∞ Objective Function, W = 3

139

L no of Parameters Error L2 Ratio Error L∞ Ratio

1 58 2.75487e-01 6.46548e-01

2 98 1.84684e-01 1.49 4.64782e-01 1.39

3 138 1.21636e-01 1.52 3.26181e-01 1.42

4 178 8.24624e-02 1.48 2.12589e-01 1.53

5 218 5.50145e-02 1.50 1.50539e-01 1.41

6 258 4.97521e-02 1.11 1.16694e-01 1.29

7 298 4.90660e-02 1.01 1.45062e-01 0.80

8 338 4.85139e-02 1.01 1.15275e-01 1.26

Table 10.6: Table of Errors, Weierstrass Function, W = 4

(a) L=6 (b) L=8

Figure 10.13: CN Approximation to Weierstrass Function, L2 Objective Function, W = 4

140

(a) L=6 (b) L=8

Figure 10.14: CN Approximation to Weierstrass Function, L∞ Objective Function, W = 4

141

Chapter 11

Discussion

Generalized neural networks are functions resulting from repeatedly applying a fixed operator,

in general nonlinear, to an affine operator. Cascade networks are generalized neural networks.

The connection between cascade networks, subdivison algorithms, and the cascade algorithm was

investigated. Sequences of scalars or vectors obtained by subdivision can be viewed as restrictions

of functions generated by CN’s to dyadic meshes. Moreover, the cascade algorithm is a special

case of cascade networks.

The space of functions obtained by a CN of fixed width and linear input, SW,L, was character-

ized. Further, conditions for elements of SW,L to converge to aC0 function were established. It was

shown that the only smooth functions in SW , the closure of
⋃
L∈N SW,L, are combinations of expo-

nential functions, or more generally, elements of the null space of constant coefficient differential

operators.

In terms of complexity, cascade networks were shown to approximate univariate polynomials

and smooth functions at similar rates when compared to known results for ReLU neural networks.

It is currently being investigated whether the recent results of Daubechies et al. [37] and Yarotsky

[36] hold for cascade networks. We conjecture that cascade networks are also able to approximate

Lipschitz functions with error O
(

1
N log(N)

)
, instead of O

(
1
N

)
, which is the error obtainable by

linear splines with N knots.

The study of cascade networks has lead to many interesting questions and possible areas of

further investigation. One such area is studying the numerical aspects of cascade networks. In

particular, investigating whether it is possible to find the weights of the network in an appropriate

manner. A major challenge with ReLU networks is finding an optimal solution to the minimization

problem.

Moreover, given the piecewise affine nature of the cascade network, another possible direction

142

for future study includes obtaining explicit approximation schemes. One question is whether the

weights of the network can be expressed by appropriately defined “dual functionals” resembling

the dual functionals employed in quasi-interpolation spline methods. In addition, investigating

whether it is possible to move away from the uniform setting, and consider non-uniform and adap-

tive meshes.

143

References

[1] S.O. Haykin. Neural Networks and Learning Machines. Pearson Education, 2011.

[2] M. Anthony and P.L. Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 2009.

[3] Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta numerica,
8:143–195, 1999.

[4] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[5] Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychol-
ogy Press, 2005.

[6] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386, 1958.

[7] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436,
2015.

[8] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep neural
networks for acoustic modeling in speech recognition. IEEE Signal processing magazine,
29, 2012.

[9] Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, and Jan Černockỳ. Strategies
for training large scale neural network language models. In 2011 IEEE Workshop on Auto-
matic Speech Recognition & Understanding, pages 196–201. IEEE, 2011.

[10] Junshui Ma, Robert P Sheridan, Andy Liaw, George E Dahl, and Vladimir Svetnik. Deep
neural nets as a method for quantitative structure–activity relationships. Journal of chemical
information and modeling, 55(2):263–274, 2015.

[11] Ronald DeVore, Boris Hanin, and Guergana Petrova. Neural network approximation. Acta
Numerica, 30:327–444, 2021.

[12] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

[13] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations
by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[14] David E Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin. Backpropagation:
The basic theory. Backpropagation: Theory, architectures and applications, pages 1–34,
1995.

144

[15] J Opschoor, P Petersen, and Christoph Schwab. Deep ReLU networks and high-order finite
element methods. SAM, ETH Zürich, 2019.

[16] Philipp Grohs, Dmytro Perekrestenko, Dennis Elbrächter, and Helmut Bölcskei. Deep neural
network approximation theory. arXiv preprint arXiv:1901.02220, 2019.

[17] Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth func-
tions using deep ReLU neural networks. Neural Networks, 108:296–330, 2018.

[18] Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei. Deep neural
network approximation theory. IEEE Transactions on Information Theory, 67(5):2581–2623,
2021.

[19] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[20] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

[21] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural net-
works, 4(2):251–257, 1991.

[22] Allan Pinkus. Approximating by ridge functions. Surface fitting and multiresolution methods,
pages 279–292, 1997.

[23] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal func-
tion. IEEE Transactions on Information theory, 39(3):930–945, 1993.

[24] Andrew R Barron. Approximation and estimation bounds for artificial neural networks. Ma-
chine learning, 14(1):115–133, 1994.

[25] Hrushikesh N Mhaskar. Neural networks for optimal approximation of smooth and analytic
functions. Neural computation, 8(1):164–177, 1996.

[26] Vitaly Maiorov and Allan Pinkus. Lower bounds for approximation by MLP neural networks.
Neurocomputing, 25(1-3):81–91, 1999.

[27] Yoshua Bengio and Olivier Delalleau. On the expressive power of deep architectures. In
International Conference on Algorithmic Learning Theory, pages 18–36. Springer, 2011.

[28] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number
of linear regions of deep neural networks. In Advances in neural information processing
systems, pages 2924–2932, 2014.

[29] Matus Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101, 2015.

[30] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep
neural networks with rectified linear units. arXiv preprint arXiv:1611.01491, 2016.

145

[31] Hrushikesh N Mhaskar and Tomaso Poggio. Deep vs. shallow networks: An approximation
theory perspective. Analysis and Applications, 14(06):829–848, 2016.

[32] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao.
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a re-
view. International Journal of Automation and Computing, 14(5):503–519, 2017.

[33] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Net-
works, 94:103–114, 2017.

[34] Hadrien Montanelli, Haizhao Yang, and Qiang Du. Deep ReLU networks overcome the curse
of dimensionality for bandlimited functions. arXiv preprint arXiv:1903.00735, 2019.

[35] Shiyu Liang and Rayadurgam Srikant. Why deep neural networks for function approxima-
tion? arXiv preprint arXiv:1610.04161, 2016.

[36] Dmitry Yarotsky. Quantified advantage of discontinuous weight selection in approximations
with deep neural networks. arXiv preprint arXiv:1705.01365, 2017.

[37] Ingrid Daubechies, Ronald DeVore, Simon Foucart, Boris Hanin, and Guergana Petrova.
Nonlinear approximation and (deep) ReLU networks. arXiv preprint arXiv:1905.02199,
2019.

[38] Ingrid Daubechies. Ten lectures on wavelets, volume 61. Siam, 1992.

[39] Costanza Conti and Nira Dyn. Non-stationary subdivision schemes: State of the art and
perspectives. In International Conference Approximation Theory, pages 39–71. Springer,
2019.

[40] Nira Dyn and David Levin. Subdivision schemes in geometric modelling. Acta Numerica,
11(0):73–144, 2002.

[41] Nira Dyn. Subdivision schemes in CAGD. Advances in numerical analysis, 2:36–104, 1992.

[42] Nira Dyn and David Levin. Analysis of hermite-type subdivision schemes. Series in Approx-
imations and Decompositions, 6:117–124, 1995.

[43] George Merrill Chaikin. An algorithm for high-speed curve generation. Computer graphics
and image processing, 3(4):346–349, 1974.

[44] Charles A Micchelli and Thomas Sauer. On vector subdivision. Mathematische Zeitschrift,
229(4):621–674, 1998.

[45] Maria Charina, Costanza Conti, Nicola Guglielmi, and Vladimir Protasov. Regularity of
non-stationary subdivision: a matrix approach. Numerische mathematik, 135(3):639–678,
2017.

[46] Nira Dyn and David Levin. Analysis of hermite-interpolatory subdivision schemes. Spline
functions and the theory of wavelets, 18:105–113, 1999.

146

[47] Ingrid Daubechies and Jeffrey C Lagarias. Sets of matrices all infinite products of which
converge. Linear algebra and its applications, 161:227–263, 1992.

[48] Marc A Berger and Yang Wang. Bounded semigroups of matrices. Linear Algebra and its
Applications, 166:21–27, 1992.

[49] Ludwig Elsner and Shmuel Friedland. Norm conditions for convergence of infinite products.
Linear algebra and its applications, 250:133–142, 1997.

[50] Wolf-Jurgen Beyn and Ludwig Elsner. Infinite products and paracontracting matrices. The
Electronic Journal of Linear Algebra, 2:1–8, 1997.

[51] Hartmut Prautzsch and Charles A Micchelli. Computing curves invariant under halving.
Computer Aided Geometric Design, 4(1-2):133–140, 1987.

[52] A Micchelli and Hartmut Prautzsch. Refinement and subdivision for spaces of integer trans-
lates of a compactly supported function. In Numerical analysis 1987, pages 192–222. 1989.

[53] Charles A Micchelli and Hartmut Prautzsch. Uniform refinement of curves. Linear Algebra
and its Applications, 114:841–870, 1989.

[54] Ingrid Daubechies and Jeffrey C Lagarias. Two-scale difference equations. I. existence and
global regularity of solutions. SIAM Journal on Mathematical Analysis, 22(5):1388–1410,
1991.

[55] Ingrid Daubechies and Jeffrey C Lagarias. Two-scale difference equations II. local regu-
larity, infinite products of matrices and fractals. SIAM Journal on Mathematical Analysis,
23(4):1031–1079, 1992.

[56] Gian-Carlo Rota and Gilbert Strang. A note on the joint spectral radius. Indag. Math,
22(4):379–381, 1960.

[57] Ingrid Daubechies and Jeffrey C Lagarias. Corrigendum/addendum to: Sets of matrices all
infinite products of which converge. Linear Algebra and its Applications, 327(1-3):69–83,
2001.

[58] Nicholas J Higham. Functions of matrices: theory and computation. SIAM, 2008.

[59] G.B. Folland and G.B.A. FOLLAND. Real Analysis: Modern Techniques and Their Appli-
cations. A Wiley-Interscience publication. Wiley, 1999.

[60] Vesselin Vatchev. On approximation of smooth functions from null spaces of optimal lin-
ear differential operators with constant coefficients. Analysis in Theory and Applications,
27(2):187–200, 2011.

[61] W Gautschi. On the inverses of vandermonde and confluent vandermonde matrices. i, ii.
Numer. Math, 4:117–123, 1962.

[62] Nathaniel Macon and Abraham Spitzbart. Inverses of vandermonde matrices. The American
Mathematical Monthly, 65(2):95–100, 1958.

147

[63] Philippe G Ciarlet. The finite element method for elliptic problems, volume 40. Siam, 2002.

[64] N.I. Achieser. Theory of Approximation. Dover Books on Mathematics. Dover Publications,
2013.

148

