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Chapter 1 
 

Introduction 
 

1.1 Motivation 
 
The novel coronavirus 2019 (COVID-19) pandemic has put a spotlight on infectious disease 
surveillance systems1. The data produced by these systems contains important information 
regarding who is infected and when they were diagnosed and may additionally include information 
regarding potential risk factors and outcomes. Such data can fuel a wide variety of public health 
research endeavors. For instance, the data can be used to model disease transmissibility and 
simulate potential interventions2–5. It can be used to identify the pandemic’s disproportional impact 
on certain subpopulations and the sources of such disparities6,7. Moreover, it can provide the public 
with situational awareness of outbreaks3,8,9. As such, an effective data-driven pandemic response 
depends on the accessibility of timely infectious disease surveillance data. 

Despite the rapid growth in the volume and diversity of epidemiological resources and the 
significant efforts to advance surveillance infrastructure during the pandemic10,11, public data 
sharing on a wide scale remains limited12. Much of the publicly available data in the United States 
(U.S.) has lacked important demographic information (e.g., race or ethnicity)8. Data that include 
such information are typically limited to aggregate counts at the state level6–8. Moreover, most of 
the initiatives that have formed patient-level COVID-19 data repositories – such as the National 
COVID Cohort Collaborative (N3C) of the U.S. National Institutes of Health13, the Datavant 
COVID-19 Research Database14, the Centers for Disease Control and Prevention’s (CDC) 
COVID-19 Case Surveillance datasets15–17, and the Global.health data science initiative18 – are not 
readily open to the public or do not include data shared in real time10. 

One of the primary factors limiting the public availability of surveillance data is concerns 
about an individual’s right to privacy. In the United States, much of the infectious disease data is 
captured by public health authorities, hospitals, and pharmacies. Such organizations may be 
subject to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) and related 
laws and policies. Under HIPAA, organizations may share patient-level data provided they 
establish certain privacy protections. When sharing identifiable data, for instance, HIPAA requires 
the organization to obtain prior consent from the individuals to which the data correspond. 
Obtaining consent is difficult, however, and may bias representation to those more willing to 
disclose their identifiable health information19. Alternatively, HIPAA permits organizations to 
share a “limited data set” of protected health information without individual authorization if 
“certain specified direct identifiers of individuals … have been removed” and the data recipient 
“enters into a data use agreement promising specified safeguards for the protected health 
information.”20 Since a data use agreement prohibits public access and use of the data, a limited 
data set cannot widely support public health research. Notably, HIPAA includes a public health 
exemption for data dissemination; however, the exemption is restricted to preventing an imminent 
threat to society and does not apply to public health research or hypothesis generation19,21. 
Nevertheless, HIPAA enables an organization to publicly share patient-level data if it is de-
identified, that is, when “there is no reasonable basis to believe that the information can be used to 
identify an individual.”22 Even when organizations are not covered by HIPAA, they may be 
permitted to share data in a de-identified form as well. The California Consumer Protection Act, 
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the Virginia Consumer Data Protection Act, the Colorado Privacy Act, and the Utah Consumer 
Privacy Act also provide exemptions to de-identified data sharing23–26. Still, the process of de-
identifying data is nontrivial. Numerous demonstration attacks have shown that residual 
information (e.g., race, age, ZIP code of residence) can combine to uniquely represent an 
individual in a dataset27–29. With the proper background knowledge, a data recipient can leverage 
this information to re-identify the individuals to whom the data corresponds28,30–32. Concerns over 
such intrusions to anonymity have discouraged various organizations – from schools to public 
health authorities to hospitals – from sharing data33,34, raising the importance of the question: How 
can organizations best comply with regulatory requirements while making surveillance data 
publicly available? 

HIPAA allows de-identification to be satisfied through two alternative implementations. 
The first is Safe Harbor, which requires the suppression of eighteen direct (e.g., patient name) and 
quasi-identifying features (e.g., geocodes with populations smaller than 20,000 residents). 
However, Safe Harbor requires historical data to be shared within an uncertainty period of a year 
– achieved by generalizing date of event to year of event and imposing a delayed publication 
schedule – rendering it ineffective for continuous monitoring of infectious diseases. The alternative 
is Expert Determination, which indicates data is de-identified when “the risk is very small that the 
information could be used to identify an individual who is a subject of the information.”35 Various 
methods for risk assessment have been developed, including those previously developed for 
surveillance data36, but provide limited guidance on adapting policies to the evolving needs of a 
pandemic. Rather, they retrospectively assess the privacy risk, assuming data have already been 
collected and are ready for dissemination. Moreover, most methods further assume the number of 
records in the dataset remains fixed instead of growing on a daily basis at a dynamic rate37. These 
assumptions differ from the requirements of case reporting while in the face of a pandemic. 
Waiting to publish the data hinders the ability to characterize the current state and evolution of an 
outbreak and appropriately respond1,38–40. The dynamic infection rate must also be considered as 
it directly influences the number of records in the dataset and subsequently the re-identification 
risk of each record. Furthermore, the de-identification method must consider other factors affecting 
the privacy risk, including the disease cases’ demographics27,28 as well as the geolocations to which 
the pandemic spreads41,42. These requirements motivate the need for methods that forecast 
surveillance data to design a data-sharing policy that preserves patient privacy. 
 In addition to preserving patient privacy, the data sharing policy must also be able to 
support public health research. One of the major, understudied aspects of the COVID-19 pandemic 
is its disproportional impact on specific subpopulations. Though data have revealed that African 
American, Hispanic/Latino, and Native American communities have suffered higher risks of 
infection43, hospitalization44, and mortality6 than other racial and ethnic groups, the unavailability 
and inaccessibility of person-level data have stifled determinations of the such disparities’ sources. 
Most disparity studies have had to infer disparate effects by comparing aggregated COVID-19 
case counts to ZIP code or state-level demographic information6,7. As such, researchers have been 
unable to properly evaluate how socioeconomic factors and the differential incidence of pre-
existing conditions, among other potential sources, may underlie disparate outcomes. A data-
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sharing policy that shares person-level demographic information in a timely manner is needed to 
support public health research and enable targeted interventions. 
 To support data-driven responses to current and future pandemics, this thesis aims to 
develop a de-identification method that preserves patient privacy while supporting public health 
research with near real-time data sharing. This thesis has two specific aims: 
 
Aim 1: Develop a de-identification approach that enables near real-time person-level data 
publication while preserving patient privacy. 
 
Aim 2: Evaluate how well the approach preserves the evidence of underlying disparities compared 
to traditional data sharing methods. 
 

I address Aim 1 in Chapter 3 and Appendix 2, in which I introduce an approach to 
adaptively generate policies to publicly share de-identified patient-level epidemiological data. The 
approach relies on forecasting the longitudinal privacy risk of sharing the surveillance dataset at 
varying levels of demographic granularity. Such risk estimates allow for preemptive generalization 
policy selection, enabling the data sharer to de-identify new disease case records and update the 
surveillance dataset in near real-time. 

I address Aim 2 in Chapter 4, in which I evaluate how well data shared under the dynamic 
policy approach supports the detection of disproportionately elevated infection rates within a 
specific subpopulation, where detection implies the data sharing policy preserves the evidence of 
underlying disparate trends. I apply an outbreak detection algorithm to measure the accuracy and 
timeliness at which such disparities can be detected from simulated data shared under several data 
sharing policies: three variations of the dynamic policy approach and two policies derived from 
publicly available COVID-19 datasets.  

It should be recognized that this work’s contributions apply to any type of epidemiological 
disease spread. The dynamic policy approach can also be reused to address emerging data sharing 
needs in which the data records continually accumulate, such as for vaccine registries45,46. 
Dynamically adapting data sharing policies can support the data-driven response to a pandemic by 
regularly publishing data with epidemiologically critical features in a timely and privacy-
preserving manner while preserving evidence of disparate trends. 

 
1.2 Thesis Structure 

 
The remainder of this thesis is structured as follows. In Chapter 2, I survey the related work. I then 
address Aim 1 in Chapter 3, introducing a privacy risk estimation framework from which dynamic 
de-identification policies can be designed. I evaluate the privacy protection of such dynamic 
policies against an adversary with strong background knowledge. An extension of the evaluation, 
considering a different type of adversary, is found in Appendix 2. Next, I address Aim 2 in Chapter 
4, evaluating the dynamic policy approach’s ability to support disparity detection. I summarize the 
contributions of this work in Chapter 5 and define several avenues of future research. Finally, I 
specify my role in developing two manuscripts comprising this thesis in Appendix 1.  
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Chapter 2 
 

Related Work 
 

2.1 Privacy legislation in the United States 
 
HIPAA was initially designed to ensure the continuation of individuals’ health insurance coverage 
between jobs. The U.S. law additionally sets standards for the electronic transfer of health 
information. Among those standards is the Privacy Rule, which was finalized in 2002 and 
implemented in April 2003. Intended to strike a balance between preserving patient privacy and 
supporting meaningful research, the Privacy Rule outlines standards to regulate “the use and 
disclosure of individuals’ health information—called ‘protected health information’ by 
organizations subject to the Privacy Rule — called ‘covered entities’”20. The Rule also specifies 
“standards for individuals' privacy rights to understand and control how their health information 
is used.”20 Covered entities include health plans, health care clearing houses, and health care 
providers. Since the passage of the HIPAA Omnibus Rule in 2013, the regulations additionally 
extend to covered entities’ “business associates,” or those who enter a contractual relationship as 
a business associate with a covered entity21. 
 HIPAA provides several methods to share personal health information for research 
purposes. Identifiable health information can be shared if 1) the patients provide authorization to 
use and disclose their information or 2) an institutional review board (IRB) approves a waiver of 
individuals’ authorization. Individual authorization is not required for limited data sets, which, in 
addition to requiring the data recipient to sign a data use agreement, requires the removal of the 
attributes indicated in Table 1. 

HIPAA permits the sharing of individual health information without individual 
authorization or a data use agreement when the data is de-identified. The de-identification standard 
may be achieved by one of two implementations: Safe Harbor and Expert Determination. Safe 
Harbor requires the removal of an expanded set of identifiers, relative to the Limited data set 
standard (Table 1). In addition to removing these fields, for a dataset to meet the Safe Harbor 
standard, “the covered entity [must] not have actual knowledge that the information could be used 
alone or in combination with other information to identify an individual who is a subject of the 
information.”47 Expert Determination affords a more flexible approach to de-identification, where 
instead of a list of fields to be removed, a covered entity may determine health information is not 
individually identifiable if “ [a] person with appropriate knowledge of and experience with 
generally accepted statistical and scientific principles and methods for rendering information not 
individually identifiable: 
 

• Applying such principles and methods, determines that the risk is very small that the 
information could be used, alone or in combination with other reasonably available 
information, by an anticipated recipient to identify an individual who is a subject of the 
information; and  

• Documents the methods and results of the analysis that justify such determination”35 
 

HIPAA’s federal regulation preempts state privacy laws if the state laws require more stringent 
privacy protection. Otherwise, HIPAA’s standards apply48. In the United States, however, few 
states have passed comprehensive privacy laws. As of April 2022, only California, Virginia, Utah, 
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and Colorado have signed such legislation23–26. These laws grant consumers more control of their 
personal information collected by businesses, such as the right to access and delete such data 
maintained by certain businesses49. Notably, all state laws provide exemptions for data covered by 
HIPAA and permit the dissemination of de-identified data. 

 
Table 2.1. Suppressed attributes for Limited data set and Safe Harbor standards47,50 
 

Suppressed Attribute Limited 
data set Safe Harbor 

Names X X 
Telephone number X X 
Fax numbers X X 
E-mail addresses X X 
Social Security numbers X X 
Medical record numbers X X 
Health-plan beneficiary numbers X X 
Account numbers X X 
Certificate and license numbers X X 
Vehicle identifiers and serial numbers, including license plate 
numbers X X 

Device identifiers and serial numbers X X 
Web Universal Resource Locators (URLs) X X 
Internet Protocol (IP) address numbers X X 
Biometric identifiers including fingerprints and voice prints X X 
Full-face photographic images and any comparable image X X 
Postal address information, other than town or city, State, and 
Zip code X  

All geographic subdivisions smaller than a state, including 
street address, city, county, precinct, ZIP code, and their 
equivalent geocodes, except for the initial three digits of the ZIP 
code if, according to the current publicly available data from the 
Bureau of the Census: 

A. The geographic unit formed by combining all ZIP codes 
with the same three initial digits contains more than 
20,000 people; and 

B. The initial three digits of a ZIP code for all such 
geographic units containing 20,000 or fewer people is 
changed to 000 

 X 

All elements of dates (except year) for dates that are directly 
related to an individual, including birth date, admission date, 
discharge date, death date, and all ages over 89 and all elements 
of dates (including year) indicative of such age, except that such 
ages and elements may be aggregated into a single category of 
age 90 or older 

 X 

Any other unique identifying number, characteristic, or code, 
unless:  X 
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A. The code or other means of record identification is not 
derived from or related to information about the 
individual and is not otherwise capable of being 
translated so as to identify the individual; and 

B. The covered entity does not use or disclose the code or 
other means of record identification for any other 
purpose, and does not disclose the mechanism for re-
identification. 

 
2.2 De-identification models 

 
The Safe Harbor method is designed to be a one-size-fits-all de-identification solution for every 
dataset; however, it may produce suboptimal results. Besides its inability to support public health 
research during a pandemic, studies have shown Safe Harbor’s vulnerability to re-identification 
attacks30,51. Moreover, alternative data transformations may achieve the same level of anonymity 
as Safe Harbor (or better) while preserving more data utility52–54. As such, privacy researchers 
have developed more sophisticated anonymization models and methods to meet HIPAA’s Expert 
Determination implementation and support biomedical research.  

De-identification through Expert Determination requires that a risk assessment applying 
“generally accepted statistical and scientific principles” reveals “the risk is very small” an 
individual can be re-identified35. Privacy risk assessments measure the likelihood an adversary can 
successfully re-identify data subjects, with respect to an adversary’s assumed background 
knowledge and how that knowledge can exploit the distinguishability of individual records. 
Researchers use these assessments to develop and tune anonymization models to share data with 
a minimal risk. Though it is often assumed that an adversary has perfect background knowledge 
when designing data sharing policies, several studies have demonstrated the inherent difficulty to 
obtain such information30,55. In fact, Xia et al. showed how such worst-case assumptions 
effectively overestimate the privacy risk56. Thus, de-identification models need not provide perfect 
protection to reasonably mitigate re-identification.  

One of the more well-studied and applied anonymization models is k-anonymity57. The k-
anonymity model is designed to mitigate re-identification of individual records by ensuring that 
each record is indistinguishable, in terms of its combination of quasi-identifying values, from at 
least k – 1 other records. In other words, if we define the quasi-identifier as an individual’s set of 
quasi-identifying feature values (e.g., age, race, county of residence) and define each group of 
records with the same quasi-identifier as an equivalence class, a k-anonymous dataset is one in 
which each equivalence class contains k or more records. It has been shown that the combination 
of only a few quasi-identifying features can uniquely represent the majority of large population 
datasets27–29. As such,  k-anonymity is often achieved by generalizing quasi-identifiers to coarser 
representations and/or suppressing quasi-identifiers corresponding to small equivalence 
classes57,58. 

A k-anonymous dataset guarantees the probability an attacker can re-identify any 
individual in the dataset is less than or equal to 1/k, under a variety of scenarios. For instance, the 
worst-case scenario against a strong attacker assumes 1) the attacker knows a target individual’s 
record is in the dataset, 2) the attacker knows all the target individuals’ quasi-identifying features, 
and 3) the target individual resides in an equivalence class of size k. Since the target individual’s 
quasi-identifier looks like that of k – 1 other records, the probability the adversary re-identifies the 
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individual is 1/k. Alternatively, the adversary could link the quasi-identifiers between the shared 
dataset to an identified population register, such as a voter registration list57,59. Here, each record’s 
probability of being re-identified is one over the size of the equivalence class in the population. As 
the size of each equivalence class inside the dataset must be equal to for larger in size in the 
population, the probability an individual record is correctly re-identified is bounded to 1/k. 

Notwithstanding its intuitive approach to preserving patient privacy while sharing accurate 
information,  k-anonymity has some notable drawbacks. Namely, k-anonymity is susceptible to 
homogeneity attacks and background knowledge attacks60. In such attacks, an adversary can still 
learn potentially sensitive information (e.g., cancer or HIV status) about a target individual without 
correctly re-identifying them. For example, if 1) the adversary knows the target individual’s quasi-
identifying features and 2) each record in the target individual’s equivalence class is reported to 
have cancer, the adversary can infer the target individual must have cancer. The adversary may 
also possess sufficient background knowledge to correctly infer the target individual’s sensitive 
attribute, even when the distribution of sensitive values within the equivalence class is non-
homogenous. To alleviate such inappropriate disclosures, models such as l-diversity are applied in 
conjunction with  k-anonymity60. Even though k-anonymity, by itself, may be vulnerable to 
inappropriate disclosures, the model can protect against patient re-identification as outlined by the 
HIPAA Privacy Rule. It has also been broadly applied in practice, to the extent that federal and 
state legislation has established standard values of k61–63. 

An alternative to k-anonymity is the differential privacy model. Instead of generalizing 
quasi-identifiers to make individual records less distinguishable, the model protects patient privacy 
by injecting noise into the data. Initially designed for sharing statistical aggregates, differential 
privacy provides formal privacy guarantees to every individual in a dataset64. Namely, when an 
adversary queries a database, it is guaranteed the adversary cannot learn much more about any 
individual when the individual’s data is included in the query calculation than when the 
individual’s data is not included. The difference in knowledge gained is controlled by a tunable 
parameter, e. Even though differential privacy addresses the weakness of k-anonymity in regard to 
sensitive disclosures, it may not meet the de-identification standard of the HIPAA Privacy Rule in 
every situation65. Injecting noise may not be appropriate for every data sharing scenario either66. 
Moreover, surveillance datasets, such as the CDC’s COVID-19 datasets, have relied on 
generalization and suppression instead of differential privacy techniques17. 
 

2.3 Privacy vs. Utility 
 
There is an inherent tradeoff between patient privacy and data utility. Increasing patient 

indistinguishability requires distorting the raw data, but distortion degrades the retained 
information. As such, there has been a lot of research in developing algorithms to minimize the 
distortion necessary to achieve k-anonymity. The problem of finding the minimal generalization 
is NP-hard67. Therefore, optimization solutions are approximations of the global optimum. Some 
of the most influential algorithms include Sweeney’s original Datafly algorithm68, Sweeney’s 
theoretical MinGen algorithm58, Bayardo and Aggarwal’s heuristic-based search algorithm69, and 
the LeFevre’s Mondrian algorithm70.  

k-anonymity algorithms generally make several assumptions. First, they assume that 
generalization options for each quasi-identifying feature follow a hierarchical pattern, where 
moving up the hierarchy increases privacy at the cost of utility. Second, they often assume that 
increased generalization degrades utility. Optimization then involves an information-theoretic cost 
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function, where generalization increases the information lost. The cost function may consider the 
number of levels up each generalization hierarchy are taken58, or the divergence between the 
original data and the generalized data54. Third, the algorithms assume all data records of a static 
dataset have been accumulated and are ready for dissemination. This assumption is particularly 
problematic for sharing infectious disease surveillance data. Minimizing the generalization of the 
current version of a dataset may limit the data sharer’s ability to share updated information in the 
future. Moreover, waiting to accumulate records before retrospectively designing the data-sharing 
policy delays publishing the updated dataset, limiting the public’s situational awareness. Notably, 
several generalization methods have been developed to de-identify datasets that sequentially add 
data features71 or continuously add new records72. Some of these methods achieve both k-
anonymity and l-diversity in dynamic environments73. However, such methods still rely on 
retrospective, deterministic risk assessments to develop a data-sharing policy. They do not 
consider the inherent uncertainty of an evolving pandemic, nor can they design policies in the 
absence of actual data. 

k-anonymity algorithms search for an optimal generalization by minimizing the distortion 
to the data. However, the utility of that data needs to be evaluated in the context of downstream 
applications. When designing data sharing policies for general use cases, divergence measures and 
information loss metrics, such as the Kullback-Leibler divergence, are often used to measure the 
original information retained in the transformed dataset53,70,73. When downstream applications are 
known, the data utility evaluation can be more specific. For example,  Jeffery et al. measured how 
the statistical power to detect outbreaks in spatial surveillance data varied with the level of 
geographic aggregation applied to disease cases’ geolocation74. The evaluation applied a global 
scan statistic to various types of synthetic data. The results showed that strong outbreak signals 
were detected with the greatest power from the most specific data. On the other hand, the weaker 
outbreak signals were detected with the greatest power when the level of aggregation was similar 
in size to the outbreak. Therefore, depending on the application, data utility can be more nuanced 
than the assumption that the most specific data supports the best performance. When more specific 
utility functions are available, targeted evaluations provide important insights into the utility 
achieved by de-identification methods. 
 

2.4 COVID-19 Disparities 
 
The novel coronavirus 2019 (COVID-19) pandemic has disproportionately affected the 
population. McLaren found racial and ethnic minorities to have disproportionately high COVID-
19 mortality rates in Spring 20206. Rossen et al. found similar results comparing weekly, all-cause 
mortality rates in 2020 to those in 2015-2019. They calculated that the number of deaths of 
Hispanic-Latino individuals increased by 53.6% on average in 2020. American Indian/Alaskan 
Native (AI/AN) persons, Black persons, and Asian persons experienced 28.9%, 32.9%, and 36.6% 
average increases, respectively. They also found notable increases in deaths for age groups 25+, 
with a contrasting decrease (over 2%) in deaths for individuals less than 25 years of age75. Levin 
et al. discovered an exponential relationship between age and the infection fatality rate (IFR), 
where IFR for children under 10 was 0.002%, and 15% for individuals age 85 and older76. Other 
studies found disparities in infection43 and hospitalization rates44,77 as well. 

In several instances, disparities have been identified early enough to enable targeted 
interventions. The most common example is the state of Michigan, which found imbalanced 
infection and mortality rates between racial and ethnic groups early in the pandemic. The state 
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responded by increasing testing resources and access to primary care physicians to minority 
subpopupulations78,79. Thanks in part to these measures, from April to November 2020, the 
percentage of COVID-19 cases in Michigan corresponding to African Americans dropped from 
40.7% to 8%80. 

Yet, the differing impact of COVID-19 remains poorly understood due to data limitations. 
For instance, McLaren’s study revealed that the disproportionate mortality rates in minority groups 
peaked by summer 2020 before dissipating by the end of fall. The study also found that adjusting 
for occupation, education, income, and poverty rates reduced the effect for Asian Americans, but 
not for other minorities. The disparities were evolving over the course of the pandemic; however, 
McLaren could not identify the source of the transient effects. Due to the unavailability of person-
level demographic information, he had to rely on cumulative death counts by county and county-
level demographic information6. The dearth of publicly available COVID-19 data with racial and 
ethnic information is widespread. Gross et al. found that only 28 states, and New York City, broke 
down COVID-19 mortality data by race and ethnicity. Only 8 states provided datasets with <5% 
missingness81. The early detection of disparities by public health researchers, as well as 
retrospective investigations of their sources, requires the publication of more informative person-
level COVID-19 data. 
 

2.5 Outbreak detection algorithms 
 
At the turn of the century, government agencies and researchers became increasingly interested in 
developing methods to detect bioterrorist attacks. It motivated the Defense Advanced Research 
Project Agency (DARPA) to sponsor the Bio-event Advanced Leading Indicator Recognition 
Technology (BioALIRT) project, which began in October 2001. The project funded the 
development of novel biosurveillance methods to detect outbreaks in various types of data. Where 
traditional algorithms solely relied on univariate count data, these new algorithms improved 
detection simultaneously incorporating data from several sources, spatiotemporal information, 
and/or covariate information82. Unique among these algorithms is the What’s Strange About 
Recent Events (WSARE) algorithm83. Designed for multivariate categorical data that includes both 
spatial and temporal information, such as that available in limited data sets, WSARE combines 
association rule mining, hypothesis testing, and randomization to detect significant patterns in 
surveillance data84. The result is an algorithm that both detects subpopulation outbreaks and 
explains the features (e.g., race, ZIP code, etc.) describing the outbreak group. These features are 
unique as most outbreak detection algorithms, even state-of-the-art machine learning algorithms, 
either do not detect significant patterns in multivariate categorical data or do not explain the reason 
an alert was raised82,85,86. As such, WSARE provides the opportunity to detect disparate emerging 
disparities within COVID-19 surveillance data, and, therefore, to evaluate how well data sharing 
policies enable disparity detection. 
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Chapter 3  
 

Dynamically Adjusting Case Reporting Policy to Maximize Privacy and Public Health 
Utility in the Face of a Pandemic 

 
3.1 Introduction 

 
The novel coronavirus 2019 (COVID-19) pandemic has put a spotlight on infectious disease 
surveillance systems1 and the importance of making such information widely accessible38. Sharing 
surveillance data in a timely manner can support a wide variety of public health research endeavors 
(e.g., from modeling disease transmissibility to simulating interventions2–5) and provide the public 
with situational awareness of outbreaks3,8,9. In recognition of such benefits, over the past year and 
a half, various organizations have worked to broaden access to large epidemiological datasets. 
Recent instantiations of COVID-19 initiatives include the National COVID Cohort Collaborative 
(N3C) of the U.S. National Institutes of Health13, the Datavant COVID-19 Research Database14, 
the Centers for Disease Control and Prevention’s (CDC) COVID-19 Case Surveillance datasets15–

17, and the Global.health data science initiative18, among others. 
While advances in surveillance have spurred rapid growth in the volume and diversity of 

epidemiological resources, public data sharing on a wide scale remains limited87. This is due to 
numerous social and political factors, but it is evident that privacy is a core driving factor. In the 
United States, for instance, infectious disease data is captured by a variety of organizations, such 
as public health authorities, hospitals, and pharmacies. In regard to public data dissemination, such 
organizations may be subject to the Health Insurance Portability and Accountability Act of 1996 
(HIPAA) and related laws and policies. Under HIPAA, an organization is permitted to publicly 
share patient-level data only when it is de-identified, that is, when “there is no reasonable basis to 
believe that the information can be used to identify an individual.”22 Even when organizations are 
not covered by HIPAA, they may be permitted to share data in a de-identified form as well. For 
example, the California Consumer Protection Act, the Virginia Consumer Data Protection Act 
(VCDPA), and the Colorado Privacy Act provide exemptions to de-identified data sharing23–25. 
However, transforming data into a de-identified form is a non-trivial endeavor. Numerous 
demonstration attacks have shown that, with the right background knowledge, a data recipient can 
leverage residual information in the records to re-identify the individuals to whom the data 
corresponds27–32. Concerns over such intrusions to anonymity have discouraged organizations 
from sharing data33,34, which raises the importance of the question: How can organizations best 
comply with regulatory requirements while making surveillance data publicly available? 

Under HIPAA, de-identification can be satisfied through two alternative implementations. 
The first is Safe Harbor, which requires the suppression of eighteen direct (e.g., patient name) and 
quasi-identifying features (e.g., geocodes with populations smaller than 20,000 residents). 
However, Safe Harbor requires hiding epidemiologically critical factors, such as reducing the 
granularity of dates of events to their year, which renders such a policy useless for characterizing 
infectious disease transmission. The alternative is Expert Determination, which indicates data is 
de-identified when “the risk is very small that the information could be used to identify an 
individual who is a subject of the information.”35 Various methods for risk assessment have been 
developed, including those previously developed for surveillance data36, but provide limited 
guidance on adapting policies to the needs of the moment. Rather, they are retrospective in nature 
in that they assume data have already been collected and are ready for dissemination. Moreover, 
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most methods further assume the number of records in the dataset remains fixed37. These 
assumptions differ from the requirements of case reporting while in the face of a pandemic. 
Waiting to publish the data will hinder the ability to characterize the current state and evolution of 
an outbreak1,38–40. The infection rate must also be considered in the de-identification approach as 
it directly and dynamically influences the number of records in the dataset. Furthermore, several 
factors affect the privacy risk, including the demographics of the people infected27,28 and the 
geolocations to which the pandemic spreads41,42. These requirements motivate the need for 
methods that forecast surveillance data. 

In this paper, we introduce an approach to adaptively generate policies to publicly share 
de-identified patient-level epidemiological data. The framework simulates disease cases to 
estimate the longitudinal privacy risk of sharing infected individuals’ quasi-identifier information 
at different levels of granularity in the absence of actual patient data. Periodically adjusting the 
policy allows the data sharer to adapt data granularity according to the influx of new patient 
records, while simultaneously allowing periods of consistent quasi-identifier representation. We 
specifically apply the framework to illustrate how policies could be developed to share COVID-
19 patient health information and compare such policies to a more traditional de-identification 
approach relying on retrospective risk assessment. Furthermore, to be consistent with the CDC’s 
current practice of using generalization and suppression for privacy17, we use the framework to 
explore a wide range of data generalization policies. 
It should be recognized the framework applies to any type of epidemiological disease spread, 
adjusts for the demographic diversity of individual US counties, and relies on public data sources. 
The framework can also be reused to address emerging data sharing needs, such as for vaccine 
registries45,46. Dynamically adapting data sharing policies holds the potential to consistently share 
more data with the public in a timely and privacy-preserving manner, fueling our data-driven 
response to infectious disease9. 

 
3.2 Methods 

 
Due to the challenge of predicting exactly who will be infected, prospectively fixing a data sharing 
policy requires probabilistic risk assessment. Our framework provides longitudinal privacy risk 
estimates for a data generalization policy within a specified geographic region. Given the 
appropriate population statistics, the framework can utilize any geographic level of detail (e.g., 
state, county, or ZIP code). In this research, we apply the framework to simulate disease spread on 
a county level to match the format of the COVID-19 surveillance data made accessible by the 
CDC15,16. In this section, we summarize the framework’s features and its application to 
contextualize the results. Specific technical details are provided in Appendix 2. 

 
3.2.1 Privacy risk estimation framework 
Figure 3.1 summarizes the framework. In the first step, we select a data generalization policy, 
which defines the generalization of each quasi-identifying feature considered. In this paper, we 
consider basic demographic features and the date of diagnosis as quasi-identifiers, as they are 
typical features organizations have been requested to share (Table 3.1). The second step generates 
the county-level population across the quasi-identifying features per the selected policy. We use 
population count data from the U.S. Census Bureau to calculate the number of people in the county 
that fall into each demographic group88, where each group is defined by a unique combination of 
quasi-identifier values, excluding date of diagnosis. 
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Figure 3.1. Privacy risk estimation framework. The curved rectangles represent processes, the 
cylinders represent data, and the hexagons represent user-defined parameters. The algorithm that 
performs the processes within the black box is in the core of the proposed framework, employs 
Monte Carlo random sampling, and is presented in greater detail in the Methods section. To obtain 
the privacy risk distributions, the simulation is repeated n times. The circled numbers denote the 
framework steps. 
 

The third step applies a Monte Carlo simulation (represented by the black box in Figure 
3.1) to generate synthetic patient datasets using the county-level population distribution and a time 
series of new disease case counts. The time series’ periodicity defines the frequency at which the 
updated dataset is released (e.g., every day or every week). To simulate the COVID-19 pandemic, 
we input time series derived from the Johns Hopkins COVID-19 tracking data89. The simulation 
algorithm (details of which are in Appendix 2) initially assumes that the no one in the county is 
infected. Then, for each time point, we randomly sample the number of disease cases (without 
replacement) from the uninfected population to form the newly reported patient dataset. The 
framework assumes individuals are not re-infected (for simplicity, considering a potentially 
negligible COVID-19 reinfection rate90) and assumes equal weighting across all individuals when 
sampling (to model the general uncertainty of disease spread, particularly in pandemics91). 

The algorithm computes the re-identification risk on the patient set at each time point, 
according to a specified risk measure. There are various methods for measuring privacy risk37. In 
this work, we measure risk as the proportion of individuals in the dataset that fall into a group of 
size less than k, where each group is defined by a unique set of quasi-identifier values92,93. We 
refer to this measure as the PK risk and evaluate it given a set of k values (as defined below) 
consistent with the standard thresholds used by public health authorities61,63,94–96. The PK risk 
assumes a data recipient knows 1) an individual is a member of the dataset, 2) the individual’s 
name and quasi-identifying information, and 3) the individual’s relative date of diagnosis for the 
disease of interest. In this scenario, the data recipient attempts re-identification to learn the target 
individual’s sensitive information from additional features included in the dataset (e.g., 
comorbidities97,98). The more unique the record’s representation, the more likely the data recipient 
can re-identify the individual27,28. In this research, we focus on this risk measure to follow the 
CDC’s application of k-anonymization99. The PK risk effectively measures the proportion of 
records that fail to achieve k-anonymity. 

In practice, obtaining such patient information is difficult30,55. Thus, evaluating the PK risk 
provides an upper bound of re-identification risk for the dataset. To demonstrate the approach’s 
flexibility and to offer a different perspective on privacy risk, we further analyze the amortized re-
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identification risk59 in Appendix 2. The amortized re-identification risk relaxes assumptions (1) 
and (3) and considers the scenario in which the data recipient is motivated to re-identify as many 
patients as possible to learn who has the infectious disease of interest. 

 
Table 3.1. The quasi-identifiers considered in this study. The middle column describes the 
generalization strategy for each quasi-identifier. The third column provides an example 
generalization for each quasi-identifier. In the case of sex and ethnicity, the information is either 
included or null. AIAN = American Indian/ Alaskan Native, PI = Pacific Islander. *These values 
cannot be generalized since we simulate on a county level. †This definition of a week is consistent 
with the one used by the CDC’s COVID-19 case forecasts100. 
 

Field Generalization Strategy Generalization Example 

State of residence None* NA 

County of residence None* NA 

Date of diagnosis Combine into week ranges 
(Sunday-Saturday†) 

01/05/21 ® 
01/03/21 - 01/09/21 

Year of birth Convert to age ranges 1980 ® 
40-45 years old 

Sex Nullify value Female ® null, 
Male ® null 

Race Combine race groups AIAN ® AIAN or PI, 
PI® AIAN or PI 

Ethnicity Nullify value Hispanic-Latino ® null, 
Non-Hispanic ® null 

 
We highlight that, when applying the PK risk measure, we assume the attacker knows the 

diagnosis occurred within a lagging period of time (e.g., within one, three, or five days prior to the 
documented date). We allow this flexible assumption as it is unlikely a data recipient knows the 
targeted individual’s exact diagnosis date56, particularly when the time from a diagnostic test to 
case report extends beyond one day. The group corresponding to an individual contains all patients 
in the simulated patient set that match the individual on the demographic features, with a diagnosis 
date falling within the lagging period.  

The final step of the framework uses the privacy risk distributions to estimate when the 
policy meets a privacy risk threshold. Computing the longitudinal privacy risk estimates under 
several data sharing policies for the same county identifies which policies likely meet the threshold 
at each point in the time series. The data sharer can then choose which policy to apply according 
to information priorities (e.g., prioritizing age granularity over sex granularity).  
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3.2.2 Dynamic policy search 
To dynamically adapt policies according to an expected infection rate, we identify policies that are 
likely to satisfy a specific PK risk threshold at varying volumes of new case records. For this policy 
search, we choose a k of 11, which is as a typical group size incorporated into guidance issued at 
the state61,63,95,96 and federal94 level. It is also the group size applied to CDC’s COVID-19 Public 
Use Data with Geography15. We henceforth refer to the PK risk when k equal to 11 as the PK11 
risk. In this paper, we search for policies that meet a PK11 threshold of 0.01; i.e., the percentage 
of records falling into a demographic group of size 10 or smaller should be less than or equal to 
1%. Similar investigations for k of 5 and 20 (other common group size thresholds) are provided in 
Appendix 2. 
 

 
 
Figure 3.2. The generalization hierarchies for age, race, sex, and ethnicity used in this paper, 
adapted from those of Wan et al53. Each horizontal level is a potential generalization state for the 
data generalization policy. For example, the policy could specify generalizing age to 5-year age 
intervals to 15-year age intervals, or broader ranges. We represent year of birth as 1-year age at 
the bottom of the Age hierarchy. Moving up the hierarchies, the data becomes more generalized 
to increase privacy. An asterisk indicates the feature is generalized to a null value for all 
individuals, which is equivalent to suppression or non-release of the corresponding field. 
 

The search uses the privacy risk estimation framework to evaluate 96 alternative data 
sharing policies for each U.S. county (with available census tract information) across a range of 
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case count values. The policies include six potential generalizations of age, four generalizations of 
race, two generalizations of sex, and two generalizations of ethnicity. The generalization options 
follow a hierarchical structure (see Figure 3.2), where moving up the hierarchy generalizes the 
information to increase privacy at the cost of utility58. For each policy, county, and case number 
combination, the framework generates 1,000 PK11 estimates. A policy meets the threshold when 
the upper bound of the estimates’ 95% quantile range is less than or equal to 0.01. We choose to 
evaluate a policy in this manner to increase the likelihood supported policies meet the privacy risk 
threshold in application. Note, the data sharer can adjust the size of the quantile range to modify 
the confidence a policy will meet a specific privacy risk threshold. 
 
3.2.3 Dynamic policy evaluation 
We use the summarized policy search results and forecasted COVID-19 disease case counts to 
evaluate dynamic policy selection in the context of the COVID-19 pandemic. In this experiment, 
we measure the proportion of data releases in which the PK11 likely remains below the policy 
search threshold of 0.01. The dynamic policy is evaluated for two distinct alternative data sharing 
scenarios: 1) a daily release schedule with a 1-day lagging period assumption and 2) a weekly 
release schedule. The daily release schedule shares the actual date of diagnosis, prioritizing date 
granularity at the potential cost of demographic granularity. The weekly release schedule 
generalizes the date to week of diagnosis. 

For each county, the dynamic policy method selects the generalization policy from the 
search results at the beginning of each week according to the forecasted COVID-19 case volumes. 
We use the CDC COVID-19 ensemble model’s county-specific, one-week forecasts for its superior 
accuracy over other models100–102. For the evaluation, we collected all model predictions from 
August 2020 through April 2021. We obtain daily increase predictions by uniformly distributing 
the weekly increase point estimate. In selecting policies for the daily release schedule, we use the 
minimum number of predicted cases in the week. This applies the most privacy preserving policy 
to all new cases reported in the week. For the weekly release schedule, we use the forecasted one-
week increase. 

After selecting the sequence of policies for each county, we estimate the privacy risk of 
sharing the actual reported number of records via the privacy risk estimation framework. We define 
the actual number of disease cases per day or week by the Johns Hopkins COVID-19 tracking data. 
The PK11 risk value for each time point in each county is calculated as the upper bound of the 
95% quantile range of 1,000 simulations. The evaluation measures the proportion of releases the 
upper bound remains below 0.01.  

We additionally evaluate the static application of a policy designed with current, 
retrospective de-identification techniques, akin to those applied to the CDC’s COVID-19 Public 
Use Data with Geography15. The policy, hereafter referred to as the k-anonymous policy, shares 
age intervals in the form (0-17, 18-49, 50-64, and 65+); nearly fully specified race; fully specified 
ethnicity, sex, and state and county of residence; and date or week of diagnosis. We note the CDC’s 
policy, from which the k-anonymous policy derives, was developed to meet regulatory 
requirements and public health standards under a different release schedule (once every two weeks 
to once every month) and in a retrospective manner (the actual patient records are collected, de-
identified and released in a batch). The CDC’s policy is designed to achieve 11-anonymity (i.e., 
PK11 = 0) by generalizing the date of diagnosis to month and by nulling out quasi-identifier 
information for small groups15,17,57. Thus, the k-anonymous policy resembles a policy developed 
with traditional de-identification, but notably differs in its treatment of dates of events and in its 
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assumption of no suppression. We further note this last feature is another unique factor to sharing 
surveillance data in near-real time. Suppression cannot be applied with confidence because it is 
almost impossible to forecast exactly which records will fall into small demographic groups. 
 
3.2.4 Case studies 
To provide a specific illustration of the dynamic policy approach to daily releasing updated, 
record-level disease surveillance data, we consider two Tennessee counties. The first, Davidson 
County, is a relatively large metropolitan region with a population of approximately 630,000 
residents. The second, Perry County, is a relatively rural area with around 8,000 residents. 

In each case study, we select a policy on a weekly basis in the same manner as the 
evaluation. However, to demonstrate how the framework incorporates the data recipient’s potential 
knowledge of diagnosis date, and accounting for the general turnaround time of COVID-19 
diagnostic tests results103–105, we set a 5-day lagging period. Under these constraints, weekly 
dynamic policy selection first calculates a 5-day rolling sum of new disease case numbers through 
the coming week. The minimum value of the rolling sum is used to select the policy. We again 
estimate the privacy risk of sharing the actual number of records under the sequence of selected 
policies with the privacy risk estimation framework and the Johns Hopkins COVID-19 tracking 
data. To evaluate the dynamic policy under optimal case load forecasting, we repeat the process 
by replacing the forecasted case counts with the actual case numbers in policy selection. 
 
3.2.5 Code 
All experiments are performed using Python (version 3.8). The code, and walkthroughs 
corresponding to each experiment, can be found at: 
https://github.com/vanderbiltheads/PandemicDataPrivacy  
 

3.3 Results 
 
3.3.1 Dynamic policy search 
We summarize the policy search results in Figure 3.3. To aid in readability, we represent the 
generalization of each quasi-identifier in a policy with a four-character alphanumeric code. From 
left to right, the characters represent the age, race, sex, and ethnicity generalizations. We further 
summarize the results by categorizing US counties by population size. 

Once a generalization policy meets the PK11 threshold for a given number of cases, it is 
unlikely records fall into a demographic group of size 10 or less. Further increasing the case 
volume increases the number of records in each group and decreases the PK11 value. As such, a 
policy is listed under the smallest case quantity at which the policy meets the PK11 threshold for 
every county in the category. It should also be noted there exists a parent-child relationship 
between policies. For example, policy 2*** is the parent of policy 3***, where the former only 
differs from the latter by generalizing age to a lesser degree. When a parent policy meets the PK11 
threshold, all its child policies also meet the threshold.  

As Figure 3.3 displays, the number of acceptable policies increases with the number of new 
cases. In most cases, larger counties achieve more acceptable policies than smaller counties at a 
given case quantity. The maximum number of acceptable policies is 73. The most granular policies 
across all county categories are 1C*e, 2Bse, and 3Ase. Each of these policies prioritizes different 
types of information. Policy 1C*e offers the most granular age information at the cost of race and 
sex information, while Policy 3Ase reduces age granularity to increase race and sex specificity. 
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Figure 3.3. Generalization policies with a PK11 upper bound (calculated as the upper bound of 
the 95% quantile range of 1,000 framework simulations) less than or equal to 0.01 at varying 
disease case volume thresholds. A four-character alphanumeric code indicates the policy’s 
generalization levels. All policies additionally include state and county of residence and some 
generalization of diagnosis date. A policy is eligible to be listed under the minimum number of 
new cases (table column) at which it meets the PK11 threshold for every county in the category 
(table row). A maximum of two policies are listed in each cell among the actual number of policies 
supported. The number in the bottom right-hand corner of each cell indicates how many of the 96 
searched policies meet the risk threshold at the case volume.  
 
The case number values are window-size agnostic, such that the policy search results hold 
regardless of the time period considered. For example, assume a county with fewer than 1,000 
residents updates its disease surveillance dataset daily. Further, assume the county adjusts for sets 
a 5-day lagging period assumption. When the expected number of new cases from the current day 
and the previous two days sum to 50, the current day’s records should be generalized according to 
either policy **** or **s*. The same policies are supported if, instead, the dataset is updated 
weekly (and diagnosis date is generalized to week of diagnosis) and 50 new cases are expected for 
the current week. 
 
3.3.2 Dynamic policy evaluation 
We summarize the evaluation results, categorizing counties in the same manner as the policy 
search, in Table 3.2. There are several major findings. First, dynamically adapting the 
generalization policy meets the PK11 threshold more frequently than statically applying the k-
anonymous policy. On average, the dynamic policy meets the threshold for at least 92.8% of the 
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448 daily releases and 96.0% of the 64 weekly releases. The k-anonymous policy meets the 
threshold as few as 11.8% of the daily releases and 0.4% of the weekly releases. Second, we find 
that new cases do not occur every day or every week, particularly in counties with fewer residents. 
As such, there are fewer days the PK11 upper bound can potentially exceed the threshold, inflating 
proportions in smaller counties. 
 
Table 3.2. Average proportion of time periods where the upper bound of the 95% quantile range 
of the PK11 risk is less than or equal to 0.01 in the COVID-19 pandemic (August 2, 2020 to 
October 23, 2021). The average and 95% quantile range in each cell are taken across all counties 
in the corresponding population size category. The k-anonymous policy shares age intervals (0-
17, 18-49, 50-64, and 65+), race (Black or African American, White, Asian, American Indian or 
Alaskan Native, Native Hawaiian or Pacific Islander, Multiple/Other), ethnicity (Hispanic-Latino 
and Non-Hispanic), sex (Female and Male), and state and county of residency. The k-anonymous 
policy is statically applied to each release. The daily release PK11 estimates apply a 1-day lagging 
period, while the weekly release estimates assume the actual date of diagnosis is generalized to 
week of diagnosis. 
 

 

Average proportion of daily  
releases that meet the PK11 
threshold in the COVID-19 

pandemic 
[95% Quantile Range] 

(n = 448) 

 

Average proportion of weekly 
releases that meet the PK11 
threshold in the COVID-19 

pandemic 
[95% Quantile Range] 

(n = 64) 
County 

Population 
Size 

k-anonymous 
Policy Dynamic Policy  k-anonymous 

Policy Dynamic Policy 

< 1,000 
(n = 35) 

0.900 
[0.790, 0.998] 

1 
[1, 1]  0.605 

[0.266, 0.987] 
0.999 

[0.984, 1] 

1,000 - 
50,000 

(n = 2,129) 

0.389 
[0.118, 0.815] 

0.971 
[0.902, 1]  0.072 

[0, 0.406] 
0.960 

[0.906, 1] 

50,000 - 
100,000 
(n = 398) 

0.181 
[0.042, 0.532] 

0.928 
[0.868, 0.987]  0.004 

[0, 0.031] 
0.974 

[0.922, 1] 

100,000 - 
1,000,000 
(n = 538) 

0.145 
[0.009, 0.521] 

0.947 
[0.882, 0.998]  0.008 

[0, 0.026] 
0.982 

[0.938, 1] 

> 1,000,000 
(n = 39) 

0.118 
[0.007, 0.304] 

0.961 
[0.874, 0.998]  0.057 

[0, 0.288] 
0.962 

[0.906, 1] 
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3.3.3 Case Study: Davidson County, TN 
Figure 3.4 shows how the forecasted case volumes do not match the weekly seasonality of the 
actual reported cases in Davidson County. Consequently, the CDC ensemble model tends to 
overestimate case loads, leading to the selection of more granular policies. Despite the rippling 
effects of the overestimation, the 95% quantile range of the forecast-driven PK11 remains below 
0.01 throughout most of the time frame. Several days exceed the threshold, most of which occur 
when the selected policies disagree whether to share record-level data under the **** policy or to 
not share. When sharing fewer than 11 new case records in a 5-day window under the forecast-
driven dynamic policy, all new records fall into a demographic group smaller than size 11, 
resulting in a PK11 of 1.0. Notably, the PK11 never exceeds the threshold when selecting policies 
according to the actual case counts. Adapting the policy according to perfect forecasts provides 
optimal privacy protection. 
 
3.3.4 Case Study: Perry County, TN 
Figure 3.5 shows that case counts remain relatively small before, as well as after, infection spikes 
in October 2020 and August 2021. Throughout most of these intervals of low-infection rates, the 
selected policies from each data source indicate that record-level data should not be shared on a 
daily basis. However, when the 5-day rolling sums oscillate around 11 cases, the forecasted values 
again overestimate the weekly minimum case loads, resulting in a PK11 of 1.0. Despite the privacy 
leaks in the forecast-driven dynamic policy, the dynamic policy guided by the actual disease case 
counts again maintains the PK11 values below the threshold throughout the time frame. 
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Figure 3.4. Dynamic policy selection applied to Davidson County, TN in the COVID-19 pandemic 
(August 2, 2020 to October 23, 2021). (Top) The 5-day rolling sum of the forecasted and actual 
case counts reported in Davidson County. The forecasted counts are from the CDC’s COVID-19 
ensemble model and the actual counts are from the Johns Hopkins surveillance data. The blue 
triangles and red squares denote the minimum value within each week (defined as Sunday-
Saturday per the CDC model’s definition). The minimum values are used to select a policy from 
policy search results. (Middle) The selected policy at the beginning of each week in the pandemic. 
Each policy is represented by a 4-character alphanumeric code following the key in Figure 3. The 
policies are ordered by increasing case count thresholds from bottom to top. Green circles indicate 
agreement between the policies selected from the forecasted and actual case counts. (Bottom) The 
PK11 from sharing the actual number of records under the two sequences of policies detailed in 
the middle graph. The expectation and 95% quantile range are calculated from 1,000 independent 
framework simulations, while applying a 5-day lagging period assumption. The horizontal dashed 
line marks the PK11 threshold of 0.01. 
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Figure 3.5. Dynamic policy selection applied to Perry County, TN in the COVID-19 pandemic 
(August 2, 2020 to October 23, 2021). (Top) The 5-day rolling sum of the forecasted and actual 
case counts reported in Davidson County. The forecasted counts are from the CDC’s COVID-19 
ensemble model and the actual counts are from the Johns Hopkins surveillance data. The blue 
triangles and red squares denote the minimum value within each week (defined as Sunday-
Saturday per the CDC model’s definition). The minimum values are used to select a policy from 
policy search results. (Middle) The selected policy at the beginning of each week in the pandemic. 
Each policy is represented by a 4-character alphanumeric code following the key in Figure 3. The 
policies are ordered by increasing case count thresholds from bottom to top. Green circles indicate 
agreement between the policies selected from the forecasted and actual case counts. (Bottom) The 
PK11 from sharing the actual number of records under the two sequences of policies detailed in 
the middle graph. The expectation and 95% quantile range are calculated from 1,000 independent 
framework simulations, while applying a 5-day lagging period assumption. The quantile ranges 
are too narrow to be seen outside the mean. The horizontal dashed line marks the PK11 threshold 
of 0.01. 
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3.4 Discussion 
 
This paper introduces a framework to dynamically adjust data sharing policies to publicly share 
infectious disease surveillance data. The framework forecasts privacy risk according to the 
expected volume of new cases, enabling data sharers to prospectively adapt policies before seeing 
case loads. We demonstrate how dynamically changing the policy per the framework’s 
recommendations maintains the privacy risk below the specified privacy risk threshold more 
frequently than statically applying a policy developed through retrospective de-identification 
methods, for both the PK and marketer risk-based approaches. The dynamic policy also enhances 
surveillance utility by fluctuating data generalization with the infection rate, allowing the data 
sharer to prioritize sharing certain patient information; bypassing the delay of accumulating patient 
records before performing a risk assessment; and sharing dates of events. These last two features 
are crucial for characterizing disease transmission38,39. Forecasting also enables greater 
consistency in quasi-identifier representation, as the policy can be maintained throughout the 
forecasted interval of time. Moreover, predicting which policies provide sufficient privacy 
protection could potentially automate patient de-identification. 
 We demonstrate two approaches to dynamic policy adaptation. In the PK risk-based 
approach, we fix county of residence and date of diagnosis granularity while varying  the 
demographic granularity. We make this tradeoff to support consistent data updates but 
acknowledge that it may induce certain data utility constraints. For instance, if an application 
requires uniform demographic granularity, the demographic values may need to be further 
generalized. An alternative dynamic policy approach could preserve the demographic granularity 
over time by using the privacy risk estimation framework’s predictions to generalize the date of 
diagnosis into variably sized time windows. Still, this would impose a utility constraint on date 
information and cause the data publication schedule to vary. In the marketer risk-based approach 
(see Appendix 2), we show that when the potential attacker has less background knowledge, the 
dynamic policy can preserve date of diagnosis granularity while monotonically increasing the 
demographic granularity of the entire dataset over time.  

We do not advocate for which measure provides the best privacy protection, nor do we 
specify which applications each approach best supports; rather, this investigation shows how the 
privacy risk estimation framework’s flexibility can inform different approaches to dynamic policy 
adjustment.  

Despite the merits of this work, we wish to highlight several limitations to guide future 
extensions and transition into application. First, the dynamic, forecast-driven approach did not 
always meet the privacy risk threshold in the PK risk-based scenario. However, the framework’s 
policy search results remain relatively robust. Policies chosen from forecasted counts are typically 
similar or close to those chosen from actual case counts. And when overestimating the number of 
new cases, the privacy risk does not always dramatically exceed the threshold. That is, except 
when the overestimates indicate there will be marginally sufficient records to share under the **** 
policy, which sometimes to dramatic spikes in the PK11. This finding is informative for dynamic 
policy implementation, where the data sharer can protect against such unintended privacy risks by 
increasing the case count threshold at which the **** policy should be applied. Furthermore, we 
selected policies in our implementation according to a 95% empirical confidence interval, but the 
policy search can readily incorporate larger confidence intervals as organizations deem desirable. 
Expanding the intervals further increases the likelihood the dynamic policy will meet the threshold 
in application. Moreover, when adjusting policies according to the actual case counts, the privacy 
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risk never exceeded the threshold. Thus, the dynamic policy approach could be improved through 
more accurate forecasts and a model that accounts for potential case load overestimation.  

Second, our approach does not incorporate suppression to protect the most unique patient 
records in the dataset. This is because it is nearly impossible to accurately forecast the exact records 
which will fall into small demographic groups. It is possible, however, during the enforcement of 
a selected policy (using the framework) to suppress actual patient records that need to be published 
and fall into population demographic bins corresponding to very few individuals, such as patient 
records that are population uniques, or patient records that correspond to population groups with 
fewer than k individuals (for PK risk). Such records with certainty would not meet the k-anonymity 
requirement. Additional risk analysis can be performed to estimate the risk of actual records in not 
meeting the k-anonymity requirement in a data release and suppress fields in records that are 
associated with a high estimated risk. Still, the framework’s policy search and the policy selection 
approach depend on many adjustable parameters (e.g., the number of performed simulations, the 
expected number of new disease cases, the specific bins randomly selected to simulate new cases, 
the size of the quantile range used for the confidence a policy will meet a given risk threshold), 
which can be adjusted to mitigate the need for suppression.  

Third, the k-anonymous policy in our evaluation does not fully incorporate the privacy 
protection mechanisms of retrospective de-identification. Without suppression, a static 
generalization policy is unlikely to meet the PK11 threshold. It is even less likely to do so when 
we increase date granularity from the original design. Though our evaluation makes assumptions 
that hinder the k-anonymous policy’s privacy protections, where such assumptions are made to 
standardize the policies in our comparison, our evaluation still illustrates the weaknesses of a static 
policy applied to a dynamic dataset. A constant generalization may provide sufficient privacy 
during some periods (often those of higher infection rates), but not others. Thus, the generalization 
must be flexible or more information must be suppressed with the influx of fewer disease cases. 
We show how not adapting the generalization can produce periods of increased privacy risk, but 
future work should compare the amount of information preserved by a static generalization policy 
that meets the privacy threshold via suppression to that of a dynamically adjusting generalization 
policy without suppression. 

Fourth, as we aim to generally support public data sharing, we focus on privacy risk without 
measuring the utility of a data generalization policy. Though we provide the data sharer with policy 
options, from which they can choose how to prioritize sharing quasi-identifier information, and 
our approach generally supports surveillance utility in terms of providing granular date 
information and timely updates, we do not address the more complex problem of policy planning. 
For instance, maximizing the granularity of one quasi-identifier early in the time series could 
hinder policy flexibility in the future. In the scenario where another quasi-identifier becomes 
important to public health research later, the data sharer may want to change the generalization of 
previously released data to complement the new priority. However, if the earlier policy has already 
consumed the available privacy risk, the policy may not be altered without potentially exposing 
patients’ identities. Previously released data may be shared again with more detail, but not less. 
Future work should quantitatively measure data utility to inform data sharers in policy planning.  

Fifth, the privacy risk estimation framework depends on random sampling methods that 
may not realistically simulate the pandemic spread of disease. We assign an equal likelihood of 
infection to all uninfected county residents at any given time in the simulations, and do not allow 
reinfections. In reality, the actual likelihood varies according to contact patterns of infectious 
individuals (i.e., through households or at work)106,107, and reinfections are possible, though not 
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likely in the case of COVID-1990. Still, we believe that Monte Carlo simulations, constrained to 
run within the relatively contained geographic region of a county, provide a reasonable range and 
estimate of infection outcomes, as they have shown to be adept at simulating complex, high-
dimensional patterns108. Further framework refinement should address the possibility of 
reinfection for diseases for which reinfection is more likely. 

Sixth, the framework does not compute the re-identification risk of sharing a specific 
record. Rather, it estimates the range and expectation of privacy risk for a population. Future work 
should evaluate how well the framework’s estimates compare to the re-identification risk of 
sharing actual disease surveillance data. 

Finally, while this paper focuses on de-identification through generalization, an alternative 
approach would rely on the principle of differential privacy. Differential privacy offers formal 
privacy guarantees64; but as has been recently noted66, realizing this definition in practice requires 
injecting noise into the data, a strategy that is not appropriate for every data sharing scenario. 
Moreover, the CDC’s COVID-19 datasets apply generalization and suppression17. Therefore, to 
be consistent with the CDC’s current practice, we focused our framework’s application on data 
generalization policies 
 

3.5 Conclusion 
 
Disease surveillance data is variable, between geographic areas and over time. As such, data must 
be consistently updated in a timely manner. To support public health research and the public’s 
situational awareness during a pandemic, the data must also contain granular date information. The 
privacy risk estimation framework we propose enables a prospective approach to surveillance data 
de-identification. In contrast to traditional methods, prospective policy selection offers increased 
flexibility, with intermittent consistency, to support near-real time data dissemination. Moreover, 
we show that forecast-driven de-identification offers better privacy protection than the static data 
sharing policy application. 
 

3.6 Availability of data and material 
 
All data used herein are publicly available. The datasets include: the United States Census PCT12 
Tables88, the Johns Hopkins COVID-19 tracking data89, and the CDC COVID-19 Ensemble 
Forecasts100,109. 
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Chapter 4 
 

Supporting COVID-19 Disparity Investigations with Dynamically Adjusting Case 
Reporting Policies 

 
4.1 Introduction 

 
The novel coronavirus disease 2019 (COVID-19) pandemic has disproportionately affected 
segments of society in the United States (U.S.). African American, Hispanic/Latino, and Native 
American communities have suffered higher risks of infection43, hospitalization44, and mortality6 
than other racial and ethnic groups, and the infection fatality rate has exhibited a direct correlation 
with age76. In recognition of these differential outcomes, researchers and policy makers have 
sought to quickly identify disparities to inform timely interventions amid an evolving pandemic. 
For instance, after discovering imbalanced infection and mortality rates between racial and ethnic 
groups, the state of Michigan increased testing resources and access to primary care physicians for 
minority subpopupulations78. Due in part to these and other policy decisions, from April to 
November 2020, the percentage of COVID-19 cases in Michigan corresponding to African 
Americans dropped from 41% to 8%80. 

Despite such efforts, the differential impact of COVID-19 remains poorly understood. 
Attempts to determine potential sources of disparities, including socioeconomic factors and the 
differential incidence of pre-existing conditions, have been hindered by limitations in access to 
data6. Notwithstanding informaticians’ significant efforts to develop infrastructure and tools to 
monitor the spread of COVID-1910,11, fewer resources have been allocated to publicly disseminate 
robust person-level information. Much of the publicly available data in the U.S. have not included 
racial or ethnic information, and data that do include this information are typically limited to 
aggregated counts at the state level6–8. Though several initiatives have formed patient-level 
COVID-19 data repositories, such as the National COVID Cohort Collaborative (N3C) of the U.S. 
National Institutes of Health13 and the COVID-19 Case Surveillance datasets from the Centers for 
Disease Control and Prevention (CDC)15,16, most of the repositories are not readily open to the 
public or include data shared in real time10. 

Patient privacy is one of the primary factors limiting person-level COVID-19 data 
sharing34. When publicly disseminating data, many organizations capturing COVID-19 data may 
be subject to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy 
Rule20 and related laws. Though HIPAA, and state laws such as the California Consumer 
Protection Act23, permit sharing de-identified data, the process of de-identifying pandemic data is 
nontrivial. It has been shown that a data recipient can exploit prior knowledge to re-identify 
individual records from the shared quasi-identifying features (i.e., attributes such as age and race 
that can, in combination, uniquely represent individuals28). As such, HIPAA provides two 
alternative methods to achieve de-identification and minimize the re-identification risk. The first, 
Safe Harbor, specifies 18 direct (e.g., name and residential address) and quasi-identifying features 
(e.g., geocodes corresponding to fewer than 20,000 residents) that must be removed. However, the 
Safe Harbor method requires historical data to be shared with an uncertainty period of a year – 
achieved by generalizing date of event to year of event and imposing a delayed publication 
schedule – rendering it ineffective to detect disparate trends in a timely manner20. The second 
method, Expert Determination, allows data to be de-identified by the application of “generally 



26 

accepted statistical and scientific principles”20 so that “the risk is very small that the information 
could be used to identify an individual who is a subject of the information.”110  

Following Expert Determination, a method was recently proposed to publicly share de-
identified patient-level epidemiological data in near-real time111. Relying on a framework to 
forecast the privacy risk of sharing the data at different levels of granularity, the approach 
adaptively generates data generalization strategies according to the influx of new records. In 
comparison to traditional de-identification methods, the dynamic policy approach maintains the 
re-identification risk below a threshold based on state and federal standards more frequently, under 
several adversarial scenarios, when sharing granular date information with consistent updates (e.g., 
daily or weekly). Though the dynamic policy approach was designed to support pandemic data 
sharing, its ability to support disparity investigations has yet to be systematically evaluated. 

In this paper, we determine how well data shared under the dynamic policy approach 
enables the detection of disproportionately elevated infection rates within a specific subpopulation. 
Such COVID-19 disparities have fluctuated longitudinally, emerging and dissipating as 
subpopulation outbreaks6,44. As such, our evaluation applies an outbreak detection algorithm to 
measure the timeliness and accuracy at which disparities can be detected. We also evaluate the 
fairness of detection performance, in terms of enabling similar disparity detection times and 
accuracy between regions and subpopulations. We compare several versions of the dynamic policy 
to policies resembling those applied to two current, publicly available COVID-19 datasets: 1) the 
CDC’s COVID-19 Case Surveillance Public Use Data with Geography15 and 2) the aggregated 
case counts that have been used in several disparity investigations81.  
 

4.2 Methods 
 

This section begins with a description of the different types of de-identification methods 
considered in our evaluation. Next, we describe how we simulate disparities in infectious disease 
surveillance data. We then provide details regarding how we detect disparities with an outbreak 
detection algorithm for each de-identification method. Finally, we review our experimental design 
and performance evaluation measures. 
 
4.2.1 Data sharing policies and assumptions 
Our analysis focuses on five different data sharing policies and the extent to which they support 
the timely, accurate, and fair identification of disparities within two Tennessee counties with very 
different demographic compositions: 1) Davidson County, a relatively large metropolitan region, 
and 2) Perry County, a relatively rural region. Table 1 displays the counties’ population 
demographics according to recent estimates from U.S. Census Bureau88.  

A data sharing policy describes the format of the shared dataset, including the granularity 
at which each quasi-identifier is transformed and the schedule by which the dataset is updated. The 
quasi-identifiers considered in this study are race, ethnicity, age, sex, county of residence 
(following the format of the CDC’s surveillance datasets), and date of diagnosis. Each policy is 
designed to minimize the privacy risk against a potential adversary; i.e., a recipient with certain 
background knowledge who may attempt to re-identify individual records28. To mitigate re-
identification risk, the quasi-identifiers can be converted into a more generalized form (e.g., 
converting year of birth to 5-year age intervals) to increase the number of records that correspond 
to each unique combination of quasi-identifier values, or equivalence class112. Adversarial 
modeling is critical for policy selection. Assuming too strong an adversary could overestimate the 
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privacy risk and unnecessarily coarsen the data, while assuming too weak an adversary could 
expose patient identities.56 Here, we consider adversaries who vary in terms of their background 
knowledge and their motivation to attempt re-identification. We define dynamic policies according 
to one of two standard privacy risk measures, each designed to measure the re-identification risk 
against a different type of adversary. The first measure is referred to as the PK11 risk, which is the 
proportion of records in the dataset that reside in an equivalence class of size less than 11111. The 
equivalence class size of 11 is typically incorporated into federal94 and state-level23 guidance. The 
PK11 risk measures the privacy risk against an adversary who knows an individual is in the dataset 
and a subset of the individual’s quasi-identifier information. In this setting, an adversary attempts 
re-identification to learn additional sensitive information included in the patient dataset (e.g., 
comorbidities97) corresponding to the target individual with identity. The second measure is the 
marketer risk, which measures the average risk of each record in patient the dataset in the context 
of the underlying population59. A record’s risk is computed as one over the size of the 
corresponding equivalence class in the population. The marketer risk assesses the privacy risk 
against an adversary who attempts to re-identify each record in the patient dataset by matching the 
quasi-identifiers in the shared dataset to those in a separate, identified dataset. A common example 
of the latter is a voter registration list28,59. 
 
Table 4.1. County demographics 

To evaluate how disparity detection performance varies when protecting against 
adversaries of differing strength, we develop a distinct dynamic policy for each of three different 
adversaries. All three dynamic policies include date of diagnosis and county of residence and are 

  Davidson County, TN 
n = 626,681 

Perry County, TN 
n = 7,915 

Race White 385,039  (61.4%) 7,584 (95.8%) 
Black  173,730  (27.7%) 119  (1.5%) 
Asian 19,027  (3.0%) 14  (0.2%) 
AIAN 2,091  (0.3%) 48  (0.6%) 
NHPI 394  (0.06%) 0  (0%) 
Other 30,757  (4.9%) 30  (0.4%) 
Mixed 15,643  (2.5%) 120  (1.5%) 

Ethnicity Hispanic/Latino 61,086  (9.7%) 117  (1.5%) 
Non-Hispanic 565,595  (90.3%) 7,798  (98.5%) 

Age group [0, 10) 82,304  (13.1%) 927  (11.7%) 
[10, 20) 72,903  (11.6%) 1,041  (13.2%) 
[20, 30) 115,876  (18.5%) 819  (10.3%) 
[30, 40) 97,154  (15.5%) 887  (11.2%) 
[40, 50) 83,472  (13.3%) 980  (12.4%) 
[50, 60) 79,768  (12.7%) 1,192  (15.1%) 
[60, 70) 49,803  (7.9%) 1,096  (13.8%) 
[70, 80) 26,901  (4.3%) 645  (8.1%) 
[80, +] 18,500  (3.0%) 328  (4.1%) 

Sex Female 323,141  (51.6%) 3,941  (49.8%) 
Male 303,540  (48.4%) 3,974  (50.2%) 

*number of individuals (% of population) 
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updated on a daily basis. The first dynamic policy, hereafter referred to as the strong adversary 
policy (SAP), follows the PK11 policy proposed by Brown, et al111. This policy assumes the 
adversary knows a target individual’s demographic information and relative COVID-19 date of 
diagnosis. Under this assumption, the data sharer fixes the quasi-identifier generalization strategy 
at the beginning of each week, according to the privacy risk estimation framework's forecasted 
PK11 risk, where the strategy defines the granularity of each quasi-identifier’s representation. This 
allows quasi-identifier granularity to fluctuate with the infection rate while maintaining weekly 
consistency. In this paper, we assume the adversary knows the date of diagnosis within a five-day 
period, accounting for the separation between diagnostic test date and date of confirmed diagnosis, 
and search for generalization strategies that are likely to meet a PK11 risk threshold of 0.01. To 
evaluate the optimal SAP implementation111, we also assume the data sharer can estimate the 
number of daily cases that will accrue in the coming week within ± 5 cases.  

 

 
Figure 4.1. Dynamic policy search results for SAP, RAP, and MAP. The SAP and RAP strategies 
meet a PK11 threshold of 0.01, and the MAP strategies meet a marketer risk threshold of 0.01. 

 
The reasonable adversary policy (RAP) protects against an adversary who knows a target 

individual’s demographic information, but not their diagnosis date. This is likely a more reasonable 
assumption due to the difficulty of ascertaining a patient’s exact date of diagnosis56,111. In this 
scenario, the data sharer updates the generalization strategy of all records in the dataset at the end 
of each week, according to the cumulative number of records. This method constrains successive 
generalization strategies to represent demographic quasi-identifiers with equal or greater 
granularity than previous strategies determine.  

The marketer adversary policy (MAP) protects against an adversary with an identified 
dataset about a population that does not include diagnosis dates. In this setting, the data sharer 
updates the generalization strategy applied to all records on a weekly basis, similar to RAP, but 
they use the privacy risk estimation framework to choose policies according to a marketer risk 
threshold of 0.01. We estimate the marketer risk under the assumption the adversary has an 
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identified dataset that covers every population resident - a worst-case scenario. Figure 1 displays 
the dynamic policy search results guiding the three dynamic policies for both Davidson and Perry 
counties. For Davidson county, we rely upon generalization strategies that prioritize race and 
ethnicity granularity. For Perry county, we rely upon strategies that prioritize age and sex 
granularity.  

The k-anonymous policy resembles that applied to the CDC’s COVID-19 Case 
Surveillance Public Use Data with Geography15. This policy shares age group (0-17, 18-49, 50-
64, and 65+), race (Black or African American, White, Asian, American Indian or Alaskan Native 
(AIAN), Native Hawaiian or Pacific Islander (NHPI), Multiple/Other), ethnicity (Hispanic-Latino 
and Non-Hispanic), sex (Female and Male), state and county of residency, and month of diagnosis 
(as date of diagnosis is considered a quasi-identifier). Due to the generalized month of diagnosis, 
we assume the dataset is updated on the first day of each month. For simplicity and to match the 
dynamic policy implementation, the k-anonymous policy defined for this investigation differs from 
the CDC’s policy only in that it does not strategically suppress quasi-identifiers to ensure each 
equivalence class holds at least 11 records (11-anonymity112). Notably, the CDC’s policy 
suppresses around 3% of each quasi-identifier to achieve 11-anonymity99. 

The Marginal Counts policy resembles the non-person-level data displayed in state 
COVID-19 dashboards11 that have been used in several disparity investigations81. Though most 
racial data have been shared at the state level, for consistency with the other policies, we assume 
it shares county-level marginal counts for each race, ethnicity, age, and sex value, without 
preserving joint statistics. For example, the marginal counts for African Americans would be the 
daily counts of all African American cases, independent of ethnicity, age, and sex variation. We 
assume the dataset shared under this policy is updated on a daily basis. Table 4.2 summarizes the 
five de-identification policies’ details. 
 
Table 4.2. Details of the de-identification policy assessed in this study. 

 
Strong 

Adversary 
Policy (SAP) 

Reasonable 
Adversary 

Policy (RAP) 

Marketer 
Adversary 

Policy (MAP) 
k-anonymous Marginal 

Counts 

Diagnosis date 
granularity Date Date Date Month Date 

Publication 
schedule Daily Daily Daily Monthly Daily 

Demographic 
generalization 

Varies 
between time 

periods 

Updated over 
time 

Updated over 
time Fixed Fixed, single 

feature 

Format Row-level Row-level Row-level Row-level 
Daily counts 

by feature 
value 

Includes 
comorbidity 
information 

Yes Yes Optional Yes No 

Assumed 
worst-case 
adversarial 
knowledge 

Target 
individual’s 

demographics 
and date of 
diagnosis 

Target 
individual’s 

demographics 

Identified 
dataset of 
population 
residents 

Target 
individual’s 

demographics 
and date of 
diagnosis 

NA 
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4.2.2 Simulating surveillance data 
Labelling real world surveillance data for disparities can be both time consuming and arbitrary, 
such that outbreak detection is normally evaluated on simulated data113. For our evaluation, we 
generate partially synthetic data through constrained random sampling. It is partially synthetic in 
that the number of daily case records is informed by the Johns Hopkins University COVID-19 
county-level tracking data89, but how the records distribute across demographic subpopulations is 
simulated. Since a disparity manifests as an anomalous increase in the number of cases 
corresponding to a specific demographic subpopulation relative to the subpopulation’s size6,44, the 
baseline distribution is generated by randomly sampling individuals from the population, without 
replacement. To simulate a disparity, we disproportionately sample from the affected 
subpopulation. 
 

 
 

Figure 4.2. The pipeline for simulating disparity data in this study. 
 

Figure 4.2 depicts the complete simulation process. A disparity is defined by a start date, 
peak date, duration, and subpopulation affected. In the simulation, all records are randomly 
sampled without replacement from a representative county population generated from U.S. Census 
population count data88. We generate the baseline demographic distribution by randomly assigning 
which county residents are infected on each day leading up to (step 1) and throughout the disparity 
period (2). To simulate a disparity in the specified subpopulation, we first calculate the standard 
deviation of the subpopulation’s baseline infection rate during the disparity period (3). We then 
generate a log-normal shaped epidemic curve114 (4), whose values define the additional proportion 
of daily cases that need to correspond to the disparity subpopulation. For example, if the curve has 
a value of 0.2 on a given day, then an additional 20% of the day’s records need to correspond to 
the disparity subpopulation. We rely upon a log-normal shaped curve, following the standard 
practice in the literature, to approximate real world epidemic curves113,115. The curve reaches its 
apex on the peak date, at a value set to four times the standard deviation of the baseline infection 
rate. This induces a disparity proportional to the subpopulations’ baseline rate, peaking at a 99.9% 
significance level. In scenarios where no baseline cases correspond to the disparity subpopulation, 
and the standard deviation is zero, the peak value is set to a proportion value of 0.5. We then 
randomly replace records within the disparity period that do not belong to the disparity 
subpopulation with those that do, according to the proportion values defined by the epidemic curve 
(5). Finally, we continue baseline sampling for the remainder of the time series (6). 

All simulated disparities are 45 days in duration, as the evaluation emphasizes early 
disparity detection, with an epidemic curve increasing rapidly to a peak on day 10 before 
decreasing slowly114. The affected subpopulation is defined as a combination of demographic 
values the Census provides for race, ethnicity, sex, and age. The definition includes up to one value 
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for each of these four features. Since a disparity typically affects a range of ages instead of an exact 
age, we transform age into age groups ([0, 10), [10, 20), [20, 30), [30, 40), [40, 50), [50, 60), [60, 
70), [70, 80), [80, +]) when simulating and detecting disparities. 
 
4.2.3 Disparity detection 
We apply the What’s Strange About Recent Events (WSARE)83 algorithm to detect disparate 
infection rates. We utilize WSARE because it detects and explains anomalous patterns within 
categorical, person-level data without requiring large amounts of historical data for hypothesis 
testing. Moreover, WSARE has been implemented in several real world settings, including 
American and Israeli outbreak detection monitoring systems83. 

For each time period in the dataset, WSARE searches for the most statistically significant 
increase in case records using a set of rules. The rule can consist of a single value for one or more 
covariates. For instance, WSARE may return an alert indicating an unusually high number of 
records from October 10, 2020, that correspond to 20-30-year-old males. WSARE uses a greedy 
search to identify the most anomalous rule through a series of Fisher Exact Tests116, comparing 
the current time period’s records to baseline records at a user-defined statistical significance 
threshold. False positives due to multiple hypothesis testing are mitigated via randomization tests. 
Variations of the WSARE algorithm (namely, 2.0, 2.5, 3.0) apply different methods for defining 
baseline records83. In this study, we employ WSARE 2.0 because it does not require extensive 
historical data (which are likely unavailable in novel pandemics). WSARE 2.0 generates a baseline 
from dataset records 35, 42, 49, and 56 days prior to the date of evaluation. We apply WSARE 2.0 
to each de-identification policy. To further evaluate SAP, where the quasi-identifier generalization 
varies within the dataset, we additionally apply a variation of WSARE 3.0. Our variation generates 
a baseline by randomly sampling up to 10,000 county residents from the U.S. Census population 
statistics. 

We apply WSARE to the de-identification policies in the following manner. On each day 
in the WSARE 2.0 application to SAP, referred to as SAP 2.0, the quasi-identifiers in the current 
day’s records and the baseline days’ records are transformed to the most coarse version specified 
by the set of generalization strategies applied to those records. In the WSARE 3.0 application to 
SAP, referred to as SAP 3.0, the current day’s generalized records are compared to the census-
derived baseline. For both RAP and MAP, the records in the full dataset are transformed according 
to the current day’s generalization strategy. To standardize our comparison between policies, we 
convert the k-anonymous policy’s month of diagnosis to date of diagnosis by randomly assigning 
a date within the month to each record. We generate assignments by randomly sampling the date 
with replacement, where each date within the month is equally weighted. For the Marginal Counts 
policy, we consider a single covariate that includes all race, ethnicity, age group, and sex values. 
Finally, for comparison, we apply WSARE 2.0 to the raw data. 
 
4.2.4 Experimental design 
We repeat each experiment for both Davidson and Perry county, to evaluate performance in 
counties of varying size and diversity. The first, which we call the Broad experiment, evaluates 
how well each of the de-identification policies enables disparity detection at different significance 
thresholds. We simulate 50 datasets, each with the same two-component disparity starting on a 
different day – every 10 days from 5/10/2020 to 9/12/2021. For Davidson county, the two 
components are Black or African American race and age group [30, 40). Likely due to the racial 
and ethnic homogeneity of the county residents and the constraints of our simulation method, we 
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were unable to simulate detectable disparities with a racial or ethnic component in Perry county. 
Therefore, for Perry county, the disparity components are Female sex and age group [30, 40). We 
apply WSARE at five different statistical significance thresholds (0.1, 0.05, 0.01, 0.005, 0.001) to 
each dataset, under each de-identification policy. We then measure the proportion of the datasets 
in which the disparity is detected. We consider the disparity detected if WSARE raises an alert 
within the disparity period, and the alert’s feature value exactly matches or contains the true value. 
For instance, if the simulated disparity occurs in the [30, 40) age group and the data is shared under 
the k-anonymous policy, an alert for age group [18, 50) raised within the disparity period is 
considered an accurate detection. We also measure the time to detection, defined as the number of 
days since the start of the simulated disparity to the first date an alert is raised with correct 
demographic features. Note, the detection time considers the date at which the data is made 
available by the data sharing policy. If the disparity is not detected, we assign a detection time of 
90 days, or twice the disparity duration. Finally, we measure how many false positives are 
generated. False positives are defined as an alert raised during the disparity period that does not 
have any of the correct features and any alert raised outside the period. Since WSARE 2.0 
generates a baseline from records occurring up to 56 days prior to the evaluation date, we do not 
count false positives (for any WSARE implementation) prior to day 56 or during the first 56 days 
following the simulated disparity. This is done because a representative baseline cannot be 
acquired. 
 Next, the Fairness experiment evaluates how the de-identification policies may bias 
detection between subpopulations. In this context, the smaller the difference between the 
proportion of disparities detected and the smaller the difference between the disparity detection 
times, the fairer we consider the performance. We simulate 10 datasets with a single-component 
disparity for each of the race, ethnicity, age group, and sex values. There is one dataset for each of 
10 dates spread across COVID-19’s multiple waves. We apply WSARE to search for the best 
single component increase at a significance threshold of 0.05. We measure bias, or the lack of 
fairness, between subpopulations by calculating the standard deviation across subpopulations’ 
average proportion of disparities detected and average detection times. A smaller standard 
deviation indicates more fair disparity detection. We calculate both feature-specific standard 
deviations (e.g., race-specific deviations to measure racial bias) and standard deviations across all 
subpopulations. Additionally, we test for statistically significant differences in the detection 
performance, across all subpopulations, when sharing the data under the de-identification policies 
vs sharing the raw data. We do so with McNemar test and two-sided paired t-tests for the 
proportion of disparities detected and the average detection time, respectively. In each case, the 
null hypothesis is that the detection performance supported by the de-identification policies and 
the raw data is the same. 
 
4.2.5 Code availability 
All experiments are performed using Python (version 3.10). The code for our experiments can be 
found at https://github.com/vanderbiltheads/PandemicDataPrivacy.    
 

4.3 Results 
 

4.3.1 Broad Experiment 
Our first experiment broadly evaluates how well the de-identification policies enable disparity 
detection, for both Davidson and Perry County. We first measure the proportion of the 50 
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experiment datasets in which the disparity is accurately detected, at each statistical significance 
threshold. Figures 4.3 and 4.4 present the results for Davidson and Perry County, respectively.  
 

 
Figure 4.3. Proportion of detected disparities for Davidson County, TN, in which at least one of 
the simulated disparity features (left) and both features (right) are detected. The proportion is out 
of 50 different experiment datasets. 
 

In Davidson County, RAP and MAP detect the greatest proportion of the simulated 
disparities. In some cases, RAP and MAP detect more disparities than the raw data. When detecting 
at least one of the features defining the demographic subpopulation within which the disparate 
infection rate occurs (30–39-year-old African Americans), the k-anonymous and Marginal Counts 
policies also detect a large proportion of the disparities across the significance thresholds. 
However, the k-anonymous policy detects both demographic features only 20% of the time at a 
0.1 significance level, and the Marginal Counts policy’s lack of joint statistics prevents the 
detection of both features entirely. The SAP 3.0 implementation detects one of the disparity 
features more often than the SAP 2.0. Yet, both implementations detect fewer disparities than the 
other policies, and neither detect both features. 
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Figure 4.4. Proportion of detected disparities for Perry County, TN, in which at least one of the 
simulated disparity features (left) and both features (right) are detected. The proportion is out of 
50 different experiment datasets. 
 

In Perry County, MAP detects one of the disparity features (either Female or 30-39 years 
old) nearly as often as the raw data. The k-anonymous policy detects one of the features more often 
than RAP at statistical significance thresholds of 0.1 and 0.05 and less often at the other thresholds. 
SAP 2.0 did not detect any disparities, where SAP 3.0 detected one feature of less than 10% of the 
disparities at thresholds of 0.1 and 0.05. None of the de-identification policies, nor the raw data, 
enabled both disparity features to be detected in Perry County.  

We next consider the detection times and false positives generated by each data sharing 
policy. We create Activity Monitoring Operating Characteristic (AMOC) curves by averaging the 
detection times and false positives for each policy at each significance threshold. A larger p-value 
threshold tends to decrease the detection time while increasing the false positive rate. A more 
significant threshold has the opposite effect. Thus, the results generate curves where the optimal 
value is a detection time of 1 day (1 day after the disparate infection rate began) with no false 
positives. Figures 4.5 and 4.6 present the AMOC curves for Davidson and Perry County, 
respectively.  
 

 
Figure 4.5. AMOC curves for Davidson County, TN, for detecting at least one of the simulated 
disparity features (left) and both features (right). Each point is the average of 50 different 
experiment datasets. 
 

For Davidson County, the RAP and MAP policies enable the shortest times to detect at 
least one and both simulated disparity features. The Marginal Counts policy provides comparable 
detection times for detecting only one disparity feature. The SAP 2.0 and SAP 3.0 implementations 
do not support detection of both features either. However, SAP 2.0 and SAP 3.0 enable, on average, 
similar detection times to the k-anonymous policy while generating fewer false positives. This is 
because the k-anonymous policy’s monthly publication schedule delays the time to detection, even 
though the k-anonymous policy detects more disparities than either SAP implementation. 
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Figure 4.6. AMOC curves for Perry County, TN, for detecting at least one of the simulated 
disparity features (left) and both features (right). Each point is the average of 50 different 
experiment datasets. 

 
 For Perry County, MAP enables the earliest detection of at least one disparity feature, 
followed by RAP and the k-anonymous policy. Again, no policy enabled the detection of both 
disparity features, producing average detection times of 90 days. 
 
4.3.2 Fairness Experiment 
To ensure a de-identification policy supports the detection of disparities in different 
subpopulations to a similar degree, we evaluate each de-identification policy’s ability to support 
the detection of disparities in different subpopulations. We first test for any statistically significant 
differences between the de-identification policies and the raw data. Then, we measure the variation 
in performance across groups, where a larger variation suggests less fair performance. The 
hypothesis test results are presented in Tables 4.3 and 4.5. The fairness results are presented in 
Tables 4.4 and 4.6.  
 
Table 4.3. McNemar test results for the proportion disparities detected (p-values). 
 

 Davidson Perry 
SAP 2.0 5.16 x 10-32 3.31 x 10-24 
SAP 3.0 3.02 x 10-6 1.32 x 10-23 

RAP 1 3.81 x 10-6 
MAP 1 0.774 

k-anonymous 1.52 x 10-5 0.0755 
Marginal Counts 3.05 x 10-5 1.53 x 10-5 

* Compared to raw data. Across all 200 simulated datasets. 
  



36 

Table 4.4. Proportion of disparities detected in each single-feature subpopulation. 

 
 
* Proportion is out of 10 experiment datasets 

 
In Davidson County, RAP, MAP, and the raw data enable detection of 90% of all the 

disparities. The k-anonymous and Marginal Counts enable the detection of 80% of all disparities. 
The SAP 3.0 implementation outperforms the SAP 2.0 implementation, detecting 70% of the 
disparities to SAP 2.0’s 30%. The McNemar tests suggest there is insufficient evidence to reject 
the null hypothesis that the proportion of disparities detected under the RAP and MAP policies are 
similar to that of the raw data. Regarding the other de-identification policies, however, there is 
sufficient evidence to reject the null hypothesis, where the SAP 2.0 implementation produces the 
most significant p-value. In terms of supporting relatively similar detection rates across racial 
groups in Davidson County, SAP is the fairest with a standard deviation of the proportion of 
disparities detected across racial groups of 0.1. However, SAP does not detect as many age group 
disparities. The SAP implementations’ differential performance between race and age group 
disparities reflects the dynamic policies’ prioritization of racial and ethnic granularity in Davidson 
County. Across all subpopulations, SAP 3.0, RAP, MAP, and the k-anonymous are the fairest, 
with a standard deviation of 0.2. 

In Perry County, only the MAP and k-anonymous policies produced p-values greater than 
0.05 in the McNemar tests. The SAP implementations produced the most significant p-values. In 
fact, the SAP policy does not support disparity detection for almost any group. This is because 
SAP does not share many records due to excessively high privacy risks in the context of a strong 
adversary. The RAP and MAP’s differential performance between racial disparities and age group 
disparities reflect the dynamic policies’ prioritization for age group and sex granularity in Perry 
County. Though it detects fewer disparities overall, the k-anonymous policy enables the fairest 
detection rate across all subpopulations, with a standard deviation of 0.2  
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Table 4.5. Paired t-test results for average detection times (p-values). 
 

 Davidson Perry 
SAP 2.0 1.33 x 10-43 2.43 x 10-23 
SAP 3.0 4.07 x 10-9 5.68 x 10-23 

RAP 0.350 2.39 x 10-6 
MAP 0.271 0.666 

k-anonymous 5.57 x 10-27 1.17 x 10-8 
Marginal Counts 1.46 x 10-5 2.63 x 10-6 

† Compared to raw data. Across all 200 simulated datasets. 
 
Table 4.6. Average time to detect, in days, disparities in each single-feature subpopulation. 

 
 
†Mean [95% quantile range] 

 
In Davidson County, RAP and MAP enable the most similar detection times to the raw 

data. The paired t-tests comparing detection times between the de-identification policies and the 
raw data, produced p-values of 0.350 and 0.271 for RAP and MAP, respectively. All the other 
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policies generated p-values < 0.0001.  In terms of supporting relatively similar detection times 
across subpopulations, the k-anonymous policy is, on average, the fairest, with a standard deviation 
of 14.2 days. However, the detection times are longer than those for RAP and MAP. It should be 
noted that RAP and MAP are relatively fair across groups, except for AIAN and NHPI, the two 
smallest subpopulations in Davidson County. 

In Perry County, the SAP implementations have the smallest standard deviations in average 
detection times. However, that is due to SAP broadly preventing disparity detection. Of the policies 
that generally detect disparities, MAP produces the most similar results to the raw data, with a p-
value of 0.666, while the k-anonymous policy is the fairest. Across all subpopulations, the k-
anonymous policy’s standard deviation in detection time is 11.2 days. Regarding age group 
disparities, specifically, RAP and MAP support the fairest detection. 

 
4.4 Discussion and Conclusions 

 
To support COVID-19 disparity investigations, we evaluate how accurately, timely, and fairly 
disparate subpopulation outbreaks can be detected from data shared under three different dynamic 
policies and two policies derived from current public datasets. The results suggest that in larger, 
more heterogenous populations like Davidson County, TN, the RAP and MAP enable better 
disparity detection performance, for single and double-feature disparities, than the other policies. 
The k-anonymous policy's generalization of date of diagnosis hinders the ability to detect more 
specific, multi-feature disparities whilst generating more false positives. Though the policy can 
support accurate detection of large single-feature disparities, its monthly data publication schedule 
significantly delays time to detection. The Marginal Counts policy’s lack of joint statistics prevents 
the detection of more than one demographic feature defining the disparity. In smaller, more 
homogenous populations like Perry County, TN, disparity detection is generally more challenging. 
Though RAP and MAP enable higher disparity detection rates and faster detection times than the 
other policies, they do not enable simultaneous detection of multiple disparity features. 

The fairness in detection performance supported by each de-identification policy is more 
nuanced. In terms of producing similar detection times between racial groups in Davidson County, 
the SAP implementations outperform the other policies, including the raw data. Note, SAP’s 
detection times are not shorter than those of other policies; they are more similar between racial 
groups. In fact, RAP and MAP support the detection of a greater proportion of disparities than 
SAP, and at earlier times, across all racial groups except for disparities occurring in the NH/PI 
subpopulation. This result, and the variation in time to detection between racial groups using the 
raw data, highlight the difficulty of detecting disparities in super-minority populations. Yet, 
fairness in terms of racial disparity detection is only part of the picture. SAP produces the fairest 
disparity detection in terms of race in Davidson County, but not in terms of age group. SAP 2.0 
fails to detect nearly all age group disparities, where SAP 3.0 detects such disparities with a greater 
standard deviation in detection time than RAP and MAP. This is because SAP, after prioritizing 
racial granularity over age granularity, shares less granular information overall to mitigate the 
privacy risk of sharing data with a stronger adversary. Finally, when evaluating fairness with 
respect to all demographic subpopulations, the k-anonymous policy supports the fairest detection 
times in both Davidson and Perry counties. Nevertheless, the average detection time in Davidson 
County is nearly 3 times that of RAP and MAP, and MAP enables the detection of more disparities 
overall in both counties.  
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We would like to note that, in some cases, the de-identification policies outperform the raw 
data in detecting disparities. This finding seems counter-intuitive, but it follows similar findings 
in previous studies in which generalization dampened the noise in the data to improve downstream 
application performance. For instance, Deleger et al. measured medication extraction performance 
on clinical notes that had been de-identified (PHI removed) through various NLP and manual 
review methods. Compared to the raw data, several de-identification methods enabled marginally 
improved sensitivity and precision in extracting medication information117. 
 In this study, we evaluate several dynamic policies, each designed to meet a privacy risk 
threshold against adversaries with different types of background knowledge. We do not, however, 
advocate for which policy should be implemented. Rather, our results highlight the importance of 
adversarial modelling in data sharing policy development and selection. If the adversary does not 
know (or cannot know) the COVID-19 diagnosis date of a target individual, the data sharer has 
the potential to share more granular information under RAP or MAP. If the adversary can 
reasonably obtain such information, SAP and the k-anonymous policies provide better privacy 
protection. The difference in disparity detection performance between these two groups highlights 
the need to investigate the likelihood an adversary can know the date if diagnosis, if they even 
know the complete demographic information56. 
 Despite the merits of this investigation, we wish to highlight several limitations that can 
guide future extensions of our work. First, our evaluation measures the ability to detect a disparity 
without quantifying how accurately the disparity is represented by the data sharing policy. Though 
data representation may be sufficient for accurate detection, it is likely the data sharing policies 
distort disparity features (e.g., severity or duration). Moreover, our simulated data does not 
consider potential simultaneous disparities in multiple subpopulations. Future work should 
consider more complex disparities and quantify how well data sharing policies preserve their 
features. 
 Second, our experiments using simulated data do not consider the effect of suppressing 
values (to achieve k-anonymity privacy guarantees112) and missing data on disparity detection. We 
illustrate their potential impact in the Case Studies, but do not quantify the results. Future work 
should quantify the robustness the policies’ performance under suppression and varying levels of 
missingness. 
 Third, our evaluation relies on a single outbreak detection algorithm. It is possible that 
other outbreak detection algorithms improved disparity detection performance and fairness. 
Notably, however, most outbreak detection algorithms were not designed to detect disparities in 
categorical data. Anomaly detection algorithms, from the statistical process control-based methods 
commonly applied by public health agencies to the state-of-the-art deep learning methods, often 
rely on univariate count data. Of the outbreak detection algorithms that take advantage of 
multivariate count data, most focus on monitoring disease spread in time and space with granular 
geolocation information86,118. Outbreak detection algorithms designed to detect changes in 
demographic subpopulations within categorical data are few, and even fewer are those that indicate 
which subpopulation experiences the outbreak85. In fact, to the extent of the authors’ knowledge, 
the only algorithm, other than WSARE, that combines association rule mining, hypothesis testing, 
and explainable disease surveillance is Neill and Kumar’s Multidimensional Subset Scan (MD-
Scan)119. Alternatively, different statistical methods, such as regression6, could be used to identify 
temporal disparities. Future work should apply alternative algorithms and methods to more broadly 
evaluate the data share policies’ ability to preserve underlying disparities. 
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Finally, we focus our evaluation on disparities within counties while only briefly 
comparing performance between two counties. The difference in Davidson and Perry county 
performance suggests all five data sharing policies are unfair in terms of providing similar disparity 
detection performance between counties. Future work should extend our fairness to analyze 
performance differences between all counties in a state or country. 
 In conclusion, we show that when protecting against a potential adversary of reasonable 
strength – an adversary who, at most, knows a target individual’s demographic information – 
dynamic policy de-identification enables timely publication of person-level data that preserves 
evidence of underlying disparities better than current public datasets. As such, dynamic policy de-
identification has the potential to support the detection and characterization of disparities, and the 
investigation of their sources, in current and future pandemics. 
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Chapter 5 
 

Summary 
 

5.1 Discussion 
 
In this thesis, I introduce a framework to dynamically adjust data sharing policies to publicly share 
infectious disease surveillance data in a timely manner. The framework forecasts privacy risk 
according to the expected volume of new cases, enabling data sharers to prospectively adapt 
policies before seeing case loads while incorporating the uncertainty of who will be infected in the 
future. In Chapter 3 and Appendix 2, I demonstrate how dynamically changing the policy per the 
framework’s recommendations maintains the privacy risk below the specified privacy risk 
threshold more frequently than statically applying a policy developed through retrospective de-
identification methods, for both the PK and marketer risk-based approaches. In Chapter 4, I show 
how dynamic policies designed with reasonable adversaries enable more timely and accurate 
detection of underlying disparities than data sharing policies derived from current, published 
COVID-19 datasets. 

The dynamic policy approach is designed to enhance surveillance utility. It does so by 
fluctuating data generalization with the infection rate to avoid the potential identity exposures or 
the loss of utility inevitably imposed by fixed data sharing policies applied to dynamic datasets. 
The dynamic policy approach also bypasses the delay of accumulating patient records before 
performing a risk assessment and shares dates of events. I show how these last two features are 
crucial for effective disease monitoring38,39, as they reduce the time to disparity detection. 
Furthermore, forecasting the privacy risk from population estimates enables greater consistency in 
quasi-identifier representation, as the policy can be maintained throughout the forecasted interval 
of time, and enables the data sharer to design a data sharing policy in the absence of the actual 
data. Moreover, predicting which policies provide sufficient privacy protection could potentially 
automate patient de-identification. 
 I demonstrate three approaches to dynamic policy adaptation. In the PK risk-based 
approach where it is assumed a strong adversary knows the target individual’s diagnosis date 
within a window of time (referred to as SAP in Chapter 4), I fix county of residence and date of 
diagnosis granularity while increasing or decreasing the demographic granularity with the influx 
of new disease case records. I make this tradeoff to support consistent data updates but 
acknowledge that it may induce certain data utility constraints. For instance, if an application 
requires uniform demographic granularity, the demographic values may need to be further 
generalized. An alternative dynamic policy approach could preserve the demographic granularity 
over time by using the privacy risk estimation framework’s predictions to generalize the date of 
diagnosis into variably sized time windows. Still, this would impose a utility constraint on date 
information and cause the data publication schedule to vary. In the PK-risk based approach where 
it is assumed a reasonable adversary does not know the target individual’s diagnosis date (RAP) 
and in the marketer risk-based approach (MAP), I show how the dynamic policy can preserve date 
of diagnosis granularity while monotonically increasing the demographic granularity of the entire 
dataset over time. The weaker adversary increases the data sharer’s ability to share more granular 
information over time.  

The disparity detection evaluation’s results suggest that both in large, urban populations 
and small, rural populations, RAP and MAP enable better disparity detection performance than the 



42 

data sharing policies derived from current, publicly available COVID-19 datasets. RAP and MAP 
detected a larger proportion of both single and double-feature disparities than the other policies, 
and with lower detection times. The k-anonymous policy’s (in Chapter 4) generalization of date of 
diagnosis induces uncertainty with respect to intramonth demographic variation in the dataset, 
broadly preventing the detection of more specific, multi-feature disparities. Its monthly data 
publication schedule also increases detection times. The Marginal Counts policy can detect 
disparities in a timely manner, but its removal of joint distributions prevents the complete 
characterization of multi-feature disparities. Though SAP 3.0 outperforms SAP 2.0, it still provides 
suboptimal detection performance for both counties.  

The fairness in detection performance supported by each de-identification policy is more 
nuanced. In terms of producing similar detection times between racial groups in Davidson County, 
the SAP implementations outperform the other policies, including the raw data. Note, SAP’s 
detection times are not shorter than those of other policies; they are more similar between racial 
groups. In fact, RAP and MAP support the detection of a greater proportion of disparities than 
SAP, and at earlier times, across all racial groups except for disparities occurring in the NH/PI 
subpopulation. This result, and the variation in time to detection between racial groups using the 
raw data, highlight the difficulty of detecting disparities in super-minority populations. Yet, 
fairness in terms of racial disparity detection is only part of the picture. SAP produces the fairest 
disparity detection in terms of race in Davidson County, but not in terms of age group. SAP 2.0 
fails to detect nearly all age group disparities, where SAP 3.0 detects such disparities with a greater 
standard deviation in detection time than RAP and MAP. This is because SAP, after prioritizing 
racial granularity over age granularity, shares less granular information overall to mitigate the 
privacy risk of sharing data with a stronger adversary. Finally, when evaluating fairness with 
respect to all demographic subpopulations, the k-anonymous policy supports the fairest detection 
times in both Davidson and Perry counties. Nevertheless, the average detection time in Davidson 
County is nearly 3 times that of RAP and MAP, and MAP enables the detection of more disparities 
overall in both counties.  
 In this thesis, I evaluate several dynamic policies, each designed to meet a privacy risk 
threshold against adversaries with different types of background knowledge. I do not, however, 
advocate for which policy should be implemented. This investigation shows how the privacy risk 
estimation framework’s flexibility can inform different approaches to dynamic policy adjustment. 
Furthermore, the results highlight the importance of adversarial modelling in data sharing policy 
development and selection. If the adversary does not know (or cannot know) the COVID-19 
diagnosis date of a target individual, the data sharer has the potential to share more granular 
information under RAP or MAP. If the adversary can reasonably obtain such information, SAP 
and the k-anonymous policies provide better privacy protection. The difference in disparity 
detection performance between these two groups highlights the need to investigate the likelihood 
an adversary can know the date if diagnosis, if they even know the complete demographic 
information55,56. 
 

5.2 Limitations and future directions 
 

Despite the merits of this work, I wish to highlight several limitations to guide future 
extensions and transition into application. First, the dynamic, forecast-driven approach did not 
always meet the privacy risk threshold in the SAP, PK risk-based scenario. However, the 
framework’s policy search results remain relatively robust. Policies chosen from forecasted counts 
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are typically similar or close to those chosen from actual case counts. And when overestimating 
the number of cases, the privacy risk does not always dramatically exceed the threshold. 
Furthermore, I selected policies according to a 95% empirical confidence interval, but the policy 
search can readily incorporate larger confidence intervals as organizations deem desirable. 
Expanding the intervals further increases the likelihood the dynamic policy will meet the threshold 
in application. Moreover, when adjusting policies according to the actual case counts, the privacy 
risk never exceeds the threshold. Thus, the dynamic policy approach can be improved through 
more accurate forecasts and a model that accounts for potential case load overestimation.  

Second, my approach does not incorporate suppression to protect the most unique patient 
records in the dataset. This is because it is nearly impossible to accurately forecast the exact records 
which will fall into small demographic groups. It is possible, however, during the enforcement of 
a selected policy (using the framework) to suppress actual patient records that need to be published 
and fall into population demographic bins corresponding to very few individuals, such as patient 
records that are population uniques, or patient records that correspond to population groups with 
fewer than k individuals (for PK risk). Such records with certainty would not meet the k-anonymity 
requirement. Additional risk analysis can be performed to estimate the risk of actual records in not 
meeting the k-anonymity requirement in a data release and suppress fields in records that are 
associated with a high estimated risk. Still, the framework’s policy search and the policy selection 
approach depend on many adjustable parameters (e.g., the number of performed simulations, the 
expected number of new disease cases, the specific bins randomly selected to simulate new cases, 
the size of the quantile range used for the confidence a policy will meet a given risk threshold), 
which can be adjusted to mitigate the need for suppression.  

Third, the privacy risk estimation framework depends on random sampling methods that 
may not realistically simulate the pandemic spread of disease. I assign an equal likelihood of 
infection to all uninfected county residents at any given time in the simulations, and do not allow 
reinfections. In reality, the actual likelihood varies according to contact patterns of infectious 
individuals (i.e., through households or at work)106,107, and reinfections are possible, though not 
likely in the case of COVID-1990. Still, I believe that Monte Carlo simulations, constrained to run 
within the relatively contained geographic region of a county, provide a reasonable range and 
estimate of infection outcomes, as they have shown to be adept at simulating complex, high-
dimensional patterns108. Further framework refinement should address the possibility of 
reinfection for diseases for which reinfection is more likely. 

Fourth, the framework does not compute the re-identification risk of sharing a specific 
record. Rather, it estimates the range and expectation of privacy risk for a population. Future work 
should evaluate how well the framework’s estimates compare to the re-identification risk of 
sharing actual disease surveillance data. 

Fifth, the utility evaluation in Chapter 4 measures the ability to detect a disparity without 
quantifying how accurately the disparity is represented by the data sharing policy. Though data 
representation may be sufficient for accurate detection, implying the data sharing policy 
sufficiently preserves the representation of the underlying disparate trends, it is likely the data 
sharing policies still distort disparity features (e.g., severity or duration). Moreover, the simulated 
surveillance data does not consider potential simultaneous disparities in multiple subpopulations. 
Future work should consider more complex disparities and quantify how well data sharing policies 
preserve their features. 
 Sixth, my experiments using simulated data do not consider the effect of suppressing values 
and missing data on disparity detection. As k-anonymity is often achieved in practice through 
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suppression112 and real-world data is rarely complete, future work should quantify the robustness 
the policies’ performance under suppression and varying levels of missingness. 
 Seventh, the data utility evaluation in Chapter 4 relies on a single outbreak detection 
algorithm. It is possible that other outbreak detection algorithms improve performance and 
fairness. Notably, however, as discussed in Section 2.5, most outbreak detection algorithms were 
not designed to detect disparities in categorical data. Anomaly detection algorithms, from the 
statistical process control-based methods commonly applied by public health agencies to the state-
of-the-art deep learning methods, often rely on univariate count data. Of the outbreak detection 
algorithms that take advantage of multivariate count data, most focus on monitoring disease spread 
in time and space with granular geolocation information86,118. Outbreak detection algorithms 
designed to detect changes in demographic subpopulations within categorical data are few, and 
even fewer are those that indicate which subpopulation experiences the outbreak85. In fact, to the 
extent of my knowledge, the only algorithm, other than WSARE, that combines association rule 
mining, hypothesis testing, and explainable disease surveillance is Neill and Kumar’s 
Multidimensional Subset Scan (MD-Scan)119. Alternatively, different statistical methods, such as 
regression6, could be used to identify temporal disparities. Future work should apply alternative 
algorithms and methods to more broadly evaluate the data share policies’ ability to preserve 
underlying disparities. 

Finally, I focus my evaluation on disparities within counties while only briefly comparing 
performance between two counties. The difference in Davidson and Perry county performance 
suggests all five data sharing policies are unfair in terms of providing similar disparity detection 
performance between counties. Future work should analyze performance differences between all 
counties in a state or country. 
 

5.3 Conclusion 
 
 Disease surveillance data is variable, between geographic areas and over time. As such, 
data must be regularly updated in a timely manner. To support disease monitoring and disparity 
investigations by public health researchers and the general public, the data must also contain 
granular date information. The privacy risk estimation framework I introduce enables a prospective 
approach to surveillance data de-identification. In contrast to traditional methods, prospective 
policy selection offers increased flexibility to support near-real time data dissemination. I show 
that forecast-driven de-identification offers better privacy protection than the static data sharing 
policy application. Moreover, I show that when protecting against a potential adversary of 
reasonable strength – an adversary who, at most, knows a target individual’s complete 
demographic information – dynamic policy de-identification enables timely publication of person-
level data that preserves evidence of underlying disparities better than current public datasets. As 
such, dynamic policy de-identification has the potential to support the detection and 
characterization of disparities, and the investigation of their sources, in current and future 
pandemics. 
 

5.4 Acknowledgements 
 
This research was sponsored in part by grants from the National Science Foundation (CNS2029651 
and CNS2029661) and National Institutes of Health (T15LM007450). 
 



45 

Appendix 1 
 

My role in manuscript development 
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privacy model, writing the computer code, performing the experiments, analyzing the results, 
and preparing the manuscript. Regarding the second manuscript, comprising Chapter 4, I 
designed the analysis, including the de-identification policies, the synthetic data generation 
method, and the experimental approach; wrote the computer code; executed the experiments; 
analyzed the results, and prepared the manuscript. 
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Appendix 2 
 

Supplementary Information for Chapter 3 
 

A2.1. Framework algorithm inputs 
 

The Monte Carlo privacy risk estimation framework’s core algorithm (denoted by the black box 
in Figure 3.1) calculates the privacy risk estimates from four inputs: 1) the county’s demographic 
distribution, transformed according to the data generalization policy; 2) the time series of the 
number of new cases reported in the county, adjusted to match the generalization of date of 
diagnosis in the policy; 3) the size of the lagging period; and 4) the privacy risk measure. 

The first input is the demographic distribution. The distribution defines the number of 
county residents that fall into each demographic group, where each group is defined by a unique 
set of quasi-identifier values (excluding the date of diagnosis). For example, assume a policy 
designates sharing state and county of residence, date of diagnosis, and 30-year age ranges. The 
input distribution is the number of people living in the county that fall into each 30-year age 
interval. We obtain the county distributions for the quasi-identifiers listed in Table 1 from the U.S. 
Census PCT12 tables88. 

Each PCT12 table contains joint statistics on age, sex, and county for a given Census-
defined race88. An additional table (PCT12H) provides joints statistics for Hispanic-Latino 
residents without race, while another (PCT12I) provides the joint statistics of non-Hispanic white 
residents. We calculate joint statistics for age, race, sex, ethnicity, and county of residence by first 
subtracting the PCT12I table from the white race table (PCT12A). The remainder is the number of 
white, Hispanic-Latino residents per race, sex, and county combination. We then subtract these 
statistics from the PCT12H table. The new remainder is the number of non-white, Hispanic-Latino 
residents. We distribute the non-white, Hispanic-Latino individuals among the remaining races 
proportional to the size of each racial group per age, sex, and county combination. For example, 
assume 15 people in Davidson County are non-white, 35 years old, and female. Further, assume 5 
of the 15 residents are Asian and the other 10 are black or African American. Now, if there are 9 
non-white, Hispanic, 35-year-old female residents in Davidson, we assign 3 of the 5 Asian 
residents and 6 of the 10 black or African American residents as Hispanic-Latino. Though this 
method may not accurately capture the true joint statistics of age, race, sex, and ethnicity per U.S. 
county, it provides a reasonable estimate for the framework. Distributing the Hispanic-Latino 
residents across all races spreads the county’s demographic distribution more equally among 
demographic groups. Randomly sampling from a more uniform distribution produces more 
conservative risk estimates as individuals are more likely to be uniquely represented in the 
simulated dataset120. The final joint statistics for age, race, sex, ethnicity, and county are used to 
define the demographic distributions for each county, where the counts are aggregated according 
to the data sharing policy’s generalization specifications. 

The second input is the time series, which defines the number of new disease cases 
reported, or the number of new records added to the dataset, per time period. The algorithm 
calculates the privacy risk at each time point in the time series. The time series periodicity defines 
the date of diagnosis generalization (e.g., date or week) and the dataset release schedule. We use 
the Johns Hopkins COVID-19 tracking data for COVID-19 disease case times series89. The Johns 
Hopkins data provides the cumulative number of COVID-19 cases diagnosed in each U.S. county 
on each day. Data preprocessing includes converting from cumulative counts to daily increases, 
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and then setting all negative values to zero. To simulate the weekly release schedule, the 
preprocessed data is resampled into weekly periods (Sunday – Saturday). 

The third input is the length of the lagging period. This value is a positive number that 
adjusts the privacy risk calculation according to the assumed knowledge of a data recipient 
regarding the date of diagnosis. For example, if new disease cases are not reported until five to 
seven days after obtaining the test sample, it is unlikely that the data recipient can know the exact 
date of diagnosis of an individual in the dataset. It would be more reasonable in such a case to set 
a 5-day lagging period, which suggests the data recipient knows at best the 5-day range in which 
the patient was diagnosed. A 1-day lagging period (equivalent to no lag) in this scenario would 
overestimate the data recipient’s capabilities, inflate the privacy risk estimate, and potentially lead 
to unnecessary generalization of the data. 

The final input is the privacy risk measure. Different measures consider different types of 
re-identification attacks. We show the PK risk in Chapter 3, which is evaluated on a window of 
disease case records throughout the time series. Here, we show the marketer risk measure, which 
is evaluated on the cumulative dataset at each time point. 
 

A2.2 Framework algorithm – PK risk 
 
The algorithm follows the process described in Figure E1 to evaluate the privacy risk. The 
algorithm first creates the uninfected population from the input demographic distribution, where 
each county resident is uniquely represented by their demographic group (step 1). It then sums 
each value in Cases to obtain the total number of disease cases that will occur in the time series 
(2). The algorithm then applies Monte Carlo sampling to choose who gets “infected” from 
UninfectedPop and returns the list of individuals in random order (3). The sampling selects 
individuals without replacement, assuming equal weights across the entire uninfected population. 
Sampling one time without replacement prevents individual reinfection in the simulation. After 
initializing two lists (4 and 5), the algorithm enters a loop, which iterates for each value in the 
input time series (6). The first step within the loop removes the first c individuals from InfectedPop, 
counts how many of the individuals fall into each demographic group, and returns a vector of the 
results (7). The NewCases vector is added to a list of vectors from previous iterations, whose 
maximum size is the user-defined 𝑙𝑎𝑔 (8-11). To evaluate the PK risk under the lagging period 
assumption, the algorithm calculates the cell-wise sum of the vectors in RecentCases (12). The 
resulting vector, CasesInPeriod, represents the number of records for each unique combination of 
quasi-identifier values in the dataset, whose date of diagnosis falls within the lagging period. The 
PK risk is then calculated on this final vector (13) and appended to the results (14) before 
proceeding to the next loop iteration. 

The PK risk calculation is based on a formulation posed by Skinner and Elliott93. In the 
equation, let 𝐽 denote the number of unique demographic groups allowed by the data generalization 
policy. Let 𝑓! denote the number of records in demographic group 𝑗, for 𝑗 = 1,… , 𝐽. Let 𝐼(⋅) denote 
the indicator function, where 𝐼(𝐴) = 1 when 𝐴 is true and 𝐼(𝐴) = 0 otherwise. The PK risk is 
therefore 

 ∑ ∑ 𝐼2𝑓! = 𝑘4 ⋅ 𝑘"
!#$

%&$
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𝑛  (E1) 
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where 𝑛 is the total number of records shared in the lagging period and 𝐾 is the user-defined k 
value. The result is the proportion of the records shared in the lagging period that fall into a 
demographic group of size less than 𝐾. 
Repeating the algorithm produces a distribution of risk outcomes at each point in the time series. 
The distribution can be analyzed for the expectation, the range, and confidence intervals of the 
privacy risk measure.  
 

 
 

Figure E1. PK risk estimation algorithm. 
 

A2.3. PK risk algorithm complexity 
 
We walk through the algorithm’s worst-case time complexity. When each county citizen falls into 
their own demographic group, step 1 makes 𝑛 executions, where 𝑛 is the size of the county’s 
population. Similarly, if every citizen is infected at some point in the time series, there are 𝑛 Monte 
Carlo random sampling executions. Within the loop, when all the cases occur on the same time 
point, step 7 makes 𝑛 executions. The remaining steps execute in constant time until the PK risk 
calculation in step 13. The PK risk calculation executes 𝑙 times, where 𝑙 equals 𝐾 − 1 in Eqn. E1, 
for each non-empty demographic group. The value of 𝑙 typically remains between 1 and 20. When 
the number of groups equals the number of citizens, there are 𝑙𝑛 executions made. The complexity 

Algorithm 1: PK Risk Estimation

Input : Demographics, a list of the number of people per
demographic bin in the county, where the bins are defined by
the data generalization policy;
Cases, a list of the new daily or weekly disease case counts in
the county;
lag, the length of the lagging period;
k, the specified k value for the PK risk calculation.

Output: PKrisk, a list of the PK risk values at each time point in
Cases.

1 UninfectedPop createPopulation(Demographics)
2 nSick  sum(Cases)
3 InfectedPop chooseInfected(nSick, UninfectedPop) // This

function Monte Carlo samples nSick individuals from

UninfectedPop without replacement.

4 RecentCases [ ]
5 PKrisk  [ ]
6 for c in Cases do

7 NewCases countPerBin(c,InfectedPop) // This function

removes the first c individuals from InfectedPop, and returns

a vector of the number those individuals that fall into each

demographic bin.

8 if length(RecentCases) = lag then

9 remove first vector from RecentCases
10 end if

11 RecentCases.append(NewCases)
12 CasesInPeriod cell-wise sum of the vectors in RecentCases
13 NewPKrisk  calculatePKrisk(CasesInPeriod,k)
14 PKrisk.append(NewPKrisk)
15 end for

16 return PKrisk

1
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for the loop, and subsequently the algorithm, is therefore 𝑂(𝑙𝑛). Repeating the algorithm for 𝑚 
simulations increases the complexity to 𝑂(𝑚𝑙𝑛). The number of simulations, 𝑚, is typically on 
the order of 1,000. Since most US counties possess more than 1,000 residents (and may exceed 
1,000,000), 𝑛 dominates the time complexity.  
 

A2.4. Policy search 
 

The policy search, whose results are summarized in Figure 3.3, applies the framework to calculate 
the PK11 estimates for combinations of data generalization policy, case count number, and county 
in a brute force manner. The feature generalization options for the policies follow the 
generalization hierarchy presented in Figure 3.2. The PK11 risk is calculated on 1,000 simulations, 
for each policy, case count, and county combination. We then compare the upper bound of the 
95% quantile range of the simulations to the PK11 threshold. We choose to represent the PK11 
distribution by the empirical confidence interval’s upper bound to increase the likelihood the 
outcome remains below the threshold in practice. If the upper bound is less than or equal to 0.01 
for every county in the size category, the policy is marked as an acceptable policy. When a policy 
does not meet the threshold, the policy and its parent policies are removed from the list of potential 
policies for the remainder of counties in the county size category, at the case count value. We 
acknowledge that previously developed policy search strategies53,54 could be applied to the 
framework’s output, but this type of policy search is not a focus of this paper nor necessary to 
search the limited number of policies presented here. 

Sampling without replacement requires the total county population to equal or exceed the 
case number . Therefore, policy search combinations are restricted to the county sets meeting this 
requirement. For example, the results for the (0, 1k) county size category at 300 cases were 
generated from the US counties with a total population in the interval [300, 1000).  

We choose to summarize the policy results into tables to aid in readability and facilitate 
downstream applications. Summarization first groups results by population size to broadly 
incorporate its effect on the underlying entropy in each county’s demographic distribution, which 
influences the privacy risk121. Summarization also involves limiting the policies listed in each cell 
to two or less. Policies listed in each cell are those in the search results that avoid suppressing 
quasi-identifier fields, prioritize age granularity, and are not child policies of any that meet the 
threshold. 

 
A2.5. Estimating the risk of the dynamic policy 

 
The data generalization policy can be chosen according to the expected number of new cases based 
on the results of the policy search. We use the CDC ensemble prediction model’s one week 
estimates for policy selection in the evaluation (Table 3.2) and case studies (Figures 3.4 and 3.5). 
We specifically used the model’s point estimates, calculated as the median of the point estimates 
of the various prediction models.  

We calculate each county’s PK11 estimates under the dynamic policy selection in the 
following manner. For a given county, we simulate the first policy listed in each cell of the 
summarized policy search results (Figure 3.3) for the corresponding county size. For example, if 
the county had less than 1,000 residents per the U.S. Census, we run 1,000 simulations for each 
****, **s*, 4***, and 4*s*. 
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Each simulation uses the Johns Hopkins surveillance data to define the disease case time 
series from January 23, 2020 through October 23, 2021. This simulates sharing the actual number 
of disease records throughout the COVID-19 pandemic.  

After calculating the county’s privacy risk estimates under each policy, we use the 
forecasted counts to select which of the policies to apply at the beginning of each week. For the 
daily release schedule, we select the policy according to the minimum forecasted rolling sum 
within the upcoming week. For the weekly release schedule, we use the forecasted weekly 
increase. We then concatenate the PK11 estimates from each policy’s simulations by weekly 
increments, following the sequence of selected policies. The concatenated list of privacy risk 
estimates represents the county’s PK11 risk of sharing the actual number of disease records per 
day or per week when dynamically selecting the data generalization policy. 

We estimate the privacy risk of the dynamically adapting policy in this manner for is all 
counties in the evaluation in Table 3.2, under two release schedules, and for the case studies. The 
case studies include an additional variation, where each week’s policy is selected from the actual 
case numbers (from the Johns Hopkins data) instead of the forecasted case quantities. We add this 
variation to evaluate how well the dynamic policy meets the PK11 threshold when perfectly 
predicting future case loads. 
 

A2.6. Additional PK risk policy search results 
 

We repeat our policy search for two additional k values: k = 5 and k = 20, while maintaining a 
threshold of 0.01 in both cases. We summarize the results in Supplemental Figures E2 and E3, 
which are formatted in the same manner as Figure 3.3. 
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Figure E2. Generalization policies with a PK5 upper bound (calculated as the upper bound of the 
95% quantile range of 1,000 framework simulations) less than or equal to 0.01 at varying disease 
case volume thresholds. A four-character alphanumeric code indicates the policy’s generalization 
levels. All policies additionally include state and county of residence and some generalization of 
diagnosis date. A policy is eligible to be listed under the minimum number of new cases (table 
column) at which it meets the PK5 threshold for every county in the category (table row). A 
maximum of two policies are listed in each cell among the actual number of policies supported. 
The number in the bottom right-hand corner of each cell indicates how many of the 96 searched 
policies meet the risk threshold at the case volume. 

 
Figure E3. Policies with a PK20 upper bound (calculated as the upper bound of the 95% quantile 
range of 1,000 framework simulations) less than or equal to 0.01 at varying disease case volume 
thresholds. A four-character alphanumeric code indicates the policy’s generalization levels. All 
policies additionally include state and county of residence and some generalization of diagnosis 
date. A policy is eligible to be listed under the minimum number of new cases (table column) at 
which it meets the PK20 threshold for every county in the category (table row). A maximum of 
two policies are listed in each cell among the actual number of policies supported. The number in 
the bottom right-hand corner of each cell indicates how many of the 96 searched policies meet the 
risk threshold at the case volume. 
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A2.7. Framework algorithm – marketer risk 
 
A variety of privacy risk measures have been developed to account for different portions of the 
privacy risk distribution and different types of re-identification scenarios37. In the main body of 
the manuscript, we apply the Monte Carlo framework to estimate the PK risk, an upper bound of 
the re-identification risk. Here, we use the framework to estimate the amortized re-identification 
risk, also known as the marketer risk59. These two measures are not necessarily mutually exclusive. 
The PK risk considers the most unique records in the dataset, while the marketer risk measures the 
average uniqueness of each record in the context of the surrounding population. We do not suggest 
which measure dictates the best privacy protection; rather, we provide an illustration of how to 
apply the framework under another privacy perspective. We leave the decision of how to use the 
measures to the data sharer.  

The marketer risk considers a different attack scenario, where the data recipient attempts 
to re-identify as many individuals in the shared dataset as possible by matching the quasi-identifier 
values in the shared dataset to those in a separate, identified dataset. A common example of the 
latter is a voter registration list28,30. Not every county resident registers to vote, but for simplicity, 
we assume in our analysis the data recipient possesses an identified dataset containing every 
county resident. This assumption models the worst-case scenario when considering the marketer 
risk. We further assume the dataset contains all demographic information listed in Table 1, except 
for the date of diagnosis. Excluding the date of diagnosis better approximates the information 
provided by a voter registration list.  

Estimating the marketer risk requires a few adjustments to the PK risk estimation 
algorithm. First, the marketer risk is evaluated on the cumulative dataset at each time point as date 
of diagnosis is no longer considered a quasi-identifier, and therefore no longer separates records 
into quasi-identifying windows of time. Without the date of diagnosis, the user does not specify a 
lagging period size. Neither does the user specify a k value, as the marketer risk measure 
incorporates all k values. Supplemental Figure E4 describes the complete marketer risk estimation 
algorithm. 

The first three steps of the marketer risk estimation algorithm are identical to the first three 
steps step in the PK risk estimation algorithm. The algorithm first creates uninfected population 
from the input demographic distribution (step 1), obtains the total number of disease cases in the 
time series (2), and applies Monte Carlo random sampling to select who gets “infected” and returns 
the list of individuals in random order (3). The sampling is performed without replacement 
assuming equal weights across the entire uninfected population. Individual reinfection is again 
prevented. The algorithm maintains the total number of disease cases, or records, per demographic 
group in AllCases. The vector is initialized to all zeros (4). After initializing the marketer risk 
results list (5), the algorithm enters a loop, which iterates for each value in the input time series 
(6). The first step in the loop removes the first c individuals from InfectedPop and returns of vector 
of the new cases’ distribution across the demographic groups (7). The order of the NewCases 
vector matches the order of AllCases. To evaluate the marketer risk on the cumulative dataset up 
to the time point corresponding to c, the algorithm adds the new cases to vector of previously 
reported cases (8). The resulting vector represents the number of records for each unique 
combination of quasi-identifier values in the cumulative dataset. The algorithm calculates the 
marketer risk on the updated AllCases vector (9). 
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Figure E4. Marketer risk estimation algorithm. 
 
The marketer risk is calculated following the formulation from Dankar and El Emam59. In Eqn. 
E2, 𝐽 represents the number of unique demographic groups allowed by the data sharing policy. 𝑓! 
represents the number of records in demographic group 𝑗 in the shared dataset, for 𝑗 = 1,… , 𝐽.  𝐹! 
represents the number of records in demographic group 𝑗 in the identified dataset, for 𝑗 = 1,… , 𝐽. 
It follows that (!

)!
 represents the expected proportion of correct matches between records in the 

shared and the identified datasets for demographic group j. 𝑛 represents the total number of records 
in the shared dataset. 
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The result is the expected proportion of the records in the shared dataset correctly matched to 
records in the identified dataset. The marketer risk value is appended to the list of marketer risk 
values at the end of each loop (13). 

The marketer risk algorithm’s worst case time complexity follows that of the PK risk 
algorithm until the marketer risk calculation in step 9. The calculation executes one time for each 
non-empty demographic group. When the number of groups equals the number of citizens, there 
are 𝑛 executions made. Therefore, the complexity for 𝑚 simulations of the algorithm is to 𝑂(𝑚𝑛), 
where 𝑛 is the size of the county’s population. 

 
 
 

Algorithm 1: Marketer Risk Estimation

Input : Demographics, a list of the number of people per
demographic bin in the county, where the bins are defined by
the data generalization policy;
Cases, a list of the new daily or weekly disease case counts in
the county.

Output: MarketerRisk, a list of the marketer risk values at each time
point in Cases.

1 UninfectedPop createPopulation(Demographics)
2 nSick  sum(Cases)
3 InfectedPop chooseInfected(nSick, UninfectedPop) // This

function Monte Carlo samples nSick individuals from

UninfectedPop without replacement.

4 AllCases zero vector of the same dimension as Demographics
5 MarketerRisk  [ ]
6 for c in Cases do

7 NewCases countPerBin(c,InfectedPop) // This function

removes the first c individuals from InfectedPop, and returns

a vector of the number those individuals that fall into each

demographic bin.

8 AllCases AllCases+NewCases
9 NewMarketerRisk  calculateMarketerRisk(AllCases)

10 MarketerRisk.append(NewMarketerRisk)
11 end for

12 return MarketerRisk

1
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A2.8. Marketer risk-based policy search 
 

We apply the framework to search the same policy space as before (described in Figure 3.2) and 
identify data sharing policies that likely meet a marketer risk threshold at various dataset sizes. 
The search follows the same approach as the PK risk scenario. For each combination of U.S. 
county, case number, and policy we calculate the marketer risk on 1,000 independent simulations. 
From the 1,000 simulations, we calculate the upper bound of the 95% quantile range and compare 
the upper bound to a threshold of 0.01. The results indicate the minimum cumulative number of 
disease case records in the dataset at which a data sharing policy is supported for all counties in 
the population size category. We summarize the results in Supplemental Figure E5. 

Selecting a policy according to the cumulative number of records notably affects dynamic 
policy application. First, selecting a policy now means applying the same set of quasi-identifier 
generalizations to the entire dataset, including previously released records. Second, changing the 
generalization scheme of previously released records creates a dependency between successively 
applied data sharing policies. The new policy must be a parent of the current policy. If it is not, the 
combined information across dataset releases could expose patient identities. These differences 
prompt the data sharer to choose a path according to information priorities. To demonstrate, in 
Supplemental Figure E5, we select a single path for each county population category and generate 
a corresponding results table. 

Supplemental Figure E5 shows the number of acceptable policies increases with the 
cumulative number of records. For counties with more than one million residents, all 96 policies 
are supported when the dataset includes at least 100 records. The smallest counties achieve the 
fewest number of acceptable policies, with 19 equally feasible policies. There larger counties’ 
results display a pattern where the number of supported policies at 1,000 case records remains 
relatively constant as the size of the dataset increases. This pattern arises from an underlying 
difference between the marketer risk and the PK. For a given county and policy, the PK risk 
fluctuates with the number of case records shared in a time window. Conversely, the marketer risk 
for a given county and policy converges toward a specific value as more records are accumulated. 
The table also displays a different pattern for the two smallest categories, because the search 
removes counties with a total population less than the case number threshold of interest. 
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Figure E5. (Top) Policies with a marketer risk upper bound (calculated as the upper bound of the 
95% quantile range of 1,000 framework simulations) less than or equal to 0.01 at varying disease 
case volume thresholds. A four-character alphanumeric code indicates the policy’s generalization 
levels. All policies additionally include state and county of residence and some generalization of 
diagnosis date. A policy is eligible to be listed under the minimum number of new cases (table 
column) at which it meets the marketer risk threshold for every county in the category (table row). 
A maximum of two policies are listed in each cell among the actual number of policies supported. 
The number in the bottom right-hand corner of each cell indicates how many of the 96 searched 
policies meet the risk threshold at the case volume. The purple circles indicate the starting policy 
for each county population category, from which the generalization paths are generated in the table 
below. (Bottom) The child-parent generalization path for each category. Moving from left to right 
in a row, each new policy listed is a parent of those previously listed.  
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To further illustrate the relationship between the marketer risk and the size of the dataset, 
we apply the framework to a single data sharing policy throughout the COVID-19 pandemic in 
Davidson County, TN. The 1Ase policy (see the key in Supplemental Figure E5) is applied to a 
daily release schedule and allows for 532 potential demographic groups. Supplemental Figure E6 
shows that as the size of the disease surveillance dataset increases, the expected (mean) marketer 
risk remains relatively constant, and the range of risk converges toward the expectation. We note 
that the expected marketer risk represents the expected proportion of records correctly matched 
to the identified dataset. Though the proportion remains constant, the number of individuals at 
risk increases with the size of the dataset. 
 

 
Figure E6. Marketer risk estimation of 1Ase policy applied to daily releases of COVID-19 disease 
case surveillance data in Davidson County, TN. The expectation and quantile ranges were 
calculated from 1,000 independent simulations. The marketer risk is evaluated each day (Top) on 
the cumulative number of cases (Bottom). The orange dotted line represents the marketer risk 
when the size of the shared dataset is equal to the size of the population. The height of the dotted 
line was calculated according to Eqn. E4.   
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The relatively constant value for the marketer risk expectation is intuitive. Since the date 
of diagnosis is not considered a quasi-identifier in the attack scenario, the demographic groups 
increase in size as more records are added to the dataset. As the number of records in group 𝑗 in 
the shared dataset approaches the number of records in group 𝑗 in the identified dataset, the 
marketer risk (Eqn. E2) moves toward its limit, as shown in Eqn. E3: 

 ∑ 1"
!#$

𝑁 =	
𝐽
𝑁 (E3) 

where 𝑁 is the size of the identified dataset/total population. Eqn. E3 approximates the expected 
marketer risk estimated by the framework’s algorithm. The orange dotted line in Supplemental 
Figure E6 was calculated using Eqn. E4: 

 ∑ 1"*
!#$

𝑁 =	
𝐽=
𝑁 (E4) 

where 𝐽= is the number of demographic groups defined by the policy for which at least one person 
in the population corresponds. The value of 𝐽= is obtained from the U.S. Census data. Thus, the 
expected marketer risk can be mathematically approximated from the framework inputs without 
the complete Monte Carlo simulation. 
 

A2.9. Dynamic policy evaluation – marketer risk 
 

We repeat the evaluation from the main text of the paper, this time for the marketer risk-based 
policy search results. The succession of policies applied follows the generalization paths displayed 
in the bottom table in Supplemental Figure E5. Again, we consider a daily and a weekly release 
schedule in the context of the COVID-19 pandemic. Since date of diagnosis is not a quasi-identifier 
in this scenario, no date generalization is specified. We again compare the results of the 
framework-informed dynamic policy selection to statically applying the k-anonymous policy 
described in the main text. 

In the marketer risk scenario, we do not use the CDC’s COVID-19 ensemble prediction 
model to inform dynamic policy selection. Since the size of the dataset monotonically increases, 
the minimum number of case records will always occur on the first day of the week, regardless of 
the predicted weekly increase in case numbers. Therefore, at the beginning of each week (Sunday, 
to be consistent with the prior week definition) we use the current total number of disease case 
records in the dataset to select the policy for the upcoming week. This applies the most private 
policy to the week’s new cases while allowing the policy to potentially change on a weekly basis. 
The policy for the weekly release schedule is chosen according to the size of the cumulative dataset 
at the end of each week (Saturday). The privacy risk of sharing the actual number of case records 
is again estimated by inputting the Johns Hopkins COVID-19 tracking data into the framework. 
We restrict the results to the same time period as before for consistency. Supplementary Table E1 
presents the results. 
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Table E1. Average proportion of time periods where the upper bound of the 95% quantile range 
of the marketer risk is less than or equal to 0.01 in the COVID-19 pandemic (August 2, 2020 to 
October 23, 2021). The average and 95% quantile range in each cell are taken across all counties 
in the corresponding population size category. The k-anonymous policy shares age intervals (0-
17, 18-49, 50-64, and 65+), race (Black or African American, White, Asian, American Indian or 
Alaskan Native, Native Hawaiian or Pacific Islander, Multiple/Other), ethnicity (Hispanic-Latino 
and Non-Hispanic), sex (Female and Male), and state and county of residency. The k-anonymous 
policy is statically applied to each release. The daily release estimates assume the dataset is updated 
on a daily basis, while the weekly releases estimates assume the dataset is updated on a weekly 
basis.  
 

 

Average proportion of daily 
releases that meet the marketer 
risk threshold in the COVID-19 

pandemic 
[95% Quantile Range] 

(n = 161) 

 

Average proportion of weekly 
releases that meet the marketer 
risk threshold in the COVID-19 

pandemic 
[95% Quantile Range] 

(n = 23) 

County 
Population 

k-anonymous 
Policy Dynamic Policy  k-anonymous 

Policy 
Dynamic 

Policy 

< 1,000 
(n = 35) 

0.074 
[0, 0.345] 

1 
[1, 1]  0.072 

[0, 0.336] 
1 

[1, 1] 

1,000 - 50,000 
(n = 2,129) 

0.689 
[0, 1] 

1 
[1, 1]  0.691 

[0, 1] 
1 

[1, 1] 

50,000 - 
100,000 
(n = 398) 

1 
[1, 1] 

1 
[1, 1]  1 

[1, 1] 
1 

[1, 1] 

100,000 - 
1,000,000 
(n = 538) 

1 
[1, 1] 

1 
[1, 1]  1 

[1, 1] 
1 

[1, 1] 

> 1,000,000 
(n = 39) 

1 
[1, 1] 

1 
[1, 1]  1 

[1, 1] 
1 

[1, 1] 

 
Dynamic policy selection, guided by the framework’s results, never exceeds the marketer 

risk threshold of 0.01. For the smallest county size category, the total case number never reaches 
100 and no data is shared. Data is shared for all other county size categories. For county’s with at 
least 50,000 residents, the k-anonymous policy meets the marketer risk threshold as frequently as 
the dynamic policy, but with lesser data utility in terms of available demographic groups. The k-
anonymous policy allows for 112 unique combinations of age, race, sex, and ethnicity. Under the 
dynamic policy selection and the case loads beginning in August 2020, counties with a population 
between 50,000 and 100,000 residents tend to share data with at least the 2Bse policy, which also 
designate 112 unique demographic groups. Counties with a population between 100,000 and 
1,000,000 tend to share data with at least the 2Ase policy, which allows 196 groups. And the 
counties with at least 1 million residents apply the 0Ase policy that allows for 2,884 groups. The 
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dynamic policy selection tailors the data sharing policy to both case load and county population to 
balance privacy and utility better than the k-anonymous policy at the marketer risk threshold of 
0.01. 

 
A2.10. Marketer risk case studies 

 
In this section, we demonstrate how to apply the marketer risk-based guidance, revisiting Davidson 
and Perry counties. The case studies select the data sharing policy on a weekly basis for a daily 
release schedule, in the same manner as the evaluation above. The actual marketer risk is estimated 
from the Monte Carlo framework, using the Johns Hopkins tracking data as input. We restrict the 
results to the same time interval as the case studies in the main paper. The results for Davidson 
County are presented in Supplemental Figure E7, and the results for Perry County are presented 
in Supplemental Figure E8. 

As the generalization path in Supplemental Figure E5 instructs, the 1Ase policy is applied 
to each data release, as the size of the dataset remains above 250 throughout the time interval. The 
mean and 95% quantile range of the marketer risk remain below the threshold of 0.01 at each time 
point. The 95% quantile range, in this case, is too narrow to be seen outside the expectation. 
The data sharing policy in Perry County, TN changes from 4*s* to 4Cs* the week after the number 
of disease case records in the dataset surpasses 500. The expectation and 95% quantile range of 
the marketer risk stay below the 0.01 marketer risk threshold throughout the time interval. 
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Figure E7. Dynamic policy selection applied to Davidson County, TN in the COVID-19 pandemic 
(August 2, 2020 to October 23, 2021). (Top) The cumulative sum of the case counts reported in 
Davidson County, according to the Johns Hopkins COVID-19 tracking data. The red squares 
represent the case record number value and the end of the previous week (through Saturday) used 
in selecting the next week’s policy from Supplementary Figure E5. (Middle) The selected policy 
at the beginning of each week in the pandemic. Each policy is represented by a 4-character 
alphanumeric code following the key in Supplementary Figure E5. (Bottom) The marketer risk 
from sharing the actual number of records under the sequence of policies detailed in the middle 
graph. The expectation and 95% quantile range are calculated from 1,000 independent simulations. 
The horizontal dashed line marks the marketer risk threshold of 0.01. 
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Figure E8. Dynamic policy selection applied to Perry County, TN in the COVID-19 pandemic 
(August 2, 2020 to October 23, 2021). (Top) The cumulative sum of the case counts reported in 
Davidson County, according to the Johns Hopkins COVID-19 tracking data. The red squares 
represent the case record number value and the end of the previous week (through Saturday) used 
in selecting the next week’s policy from Supplementary Figure E5. (Middle) The selected policy 
at the beginning of each week in the pandemic. Each policy is represented by a 4-character 
alphanumeric code following the key in Supplementary Figure E5. (Bottom) The marketer risk 
from sharing the actual number of records under the sequence of policies detailed in the middle 
graph. The expectation and 95% quantile range are calculated from 1,000 independent simulations. 
The horizontal dashed line marks the marketer risk threshold of 0.01. 
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