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Chapter 1

Background and Significance

1.1 Fundamentals of Diagnostic Ultrasound Imaging

Ultrasound is a medical imaging modality that is widely used in diagnostics and ther-

apeutics. Diagnostic ultrasound can provide 2D or 3D cross-sectional images to visualize

soft tissue structures in brightness mode (B-mode) or observe functional changes, such as

blood flow, using Doppler imaging [1]. Ultrasound can also be used to image mechanical

properties of tissues in elasticity imaging. Ultrasound has advantages over other imaging

modalities, such as magnetic resonance imaging (MRI) and computed tomography (CT),

because it is low-cost, real-time, and does not subject the patient to ionizing radiation [1].

This section will cover the fundamentals of conventional B-mode imaging and introduce

elasticity imaging.

1.1.1 Conventional B-mode Ultrasound Imaging

Conventional brightness (B-mode) ultrasound imaging is used to visualize anatomical

structures of soft tissue. Ultrasound typically uses a handheld transducer placed in contact

with the body. The transducer has an array of piezoelectric elements that are electrically

excited and transmit an acoustic signal into the tissue. The acoustic signal is a broadband

signal that propagates in the tissue at frequencies of typically 1-15 MHz. These signals

can be focused to a region of interest by applying time delays to the elements to create a

converging wavefront [1].

The propagating sound wave is a physical longitudinal wave that travels through the

medium by compression and rarefaction of particles [2]. If we consider the medium as

a continuum, we can define the particles as small volume elements of matter, as shown
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in Figure 1.1(a) [2]. The longitudinal waves can propagate in tissue that have elastic-

ity (compressibility) and inertia (mass density) [3]. The speed of the longitudinal wave,

i.e. the sound speed, depends on the properties of the medium [2]. As the sound wave

propagates, it is attenuated through depth at each incidence by means of absorption and

scattering. Ultrasound imaging relies on the portion of energy that is backscattered to the

transducer. Scattering and reflection occur when the tissue has inhomogeneities in the

acoustic impedance, Z. Z = ρ0c, where ρ0 is the density and c is the sound speed of the

tissue [1]. Scattering occurs when the acoustic particles are smaller than the wavelength of

the sound wave. Reflection occurs when the particles are larger than the wavelength which

includes most tissue structure boundaries within the body [1]. Ultrasound also relies on

the fact that some sound energy is transmitted through an acoustic impedance boundary so

that we can image deeper in tissue [1]. However, if there is a severe acoustic impedance

mismatch, such as between tissue and air, the sound cannot penetrate further, which is why

ultrasound tends to fail in regions such as the lungs or bowels.

The acoustic energy that is backscattered from the tissue is received by the transducer.

The received signal from each element is time-delayed for a certain lateral location and

depth [2]. To create a radiofrequency (RF) line or amplitude line (A-line), the signals from

all delayed elements are summed together [1]. To create an image, the lateral transmit

focus is swept across the field of view to generate RF lines for each lateral focus, forming

a 2D image. The RF amplitude image is then log-compressed to generate a B-mode image.

This delay-and-sum technique is a common method of ultrasound beamforming. B-mode

images can be generated in real-time on a monitor to show a cross-section of the tissue echo

amplitude. B-mode images show tissue structures with variations in acoustic impedance.

The axial dimension is the prominent direction of the longitudinal wave propagation from

the transducer into the body. The lateral direction is orthogonal to the axial direction and is

the second dimension of a 2D cross-sectional image plane. In the 2D image, the elevational

direction is the slice thickness [1].
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Figure 1.1: Particle displacement for waves propagating in an isotropic, solid medium.
(a) Plane longitudinal (compressional) wave, (b) shear (transverse) wave. The particles
are small volume elements of matter with constant properties. Particle displacement in
longitudinal waves is in the same direction as the wave propagation. Particle displacement
in shear waves is in the orthogonal direction.

1.1.2 Ultrasound Elasticity Imaging

Quantifying tissue stiffness is clinically useful in staging or monitoring many diseases

and their treatments. Manual palpation can be the first indicator of a disease that causes

changes in the mechanical properties of tissues, but it can be relatively subjective. Elasticity

imaging evolved to better measure and visualize tissue mechanical properties.

First, a review of soft tissue biomechanics will describe the assumptions and elastic

moduli commonly used to quantify elastic properties. In soft tissue, the stiffness is defined

as the resistance of a material to deflections [4]. Most elasticity imaging methods describe

the material’s elastic moduli by relating stress and strain [5]. Stress represents a force per

unit area that counteracts the applied force and strain represents the change in length per

unit length of a material experiencing deformation [5]. To derive a constitutive equation

relating stress and strain, we have to make some assumptions. We often assume the tissue is

homogeneous, isotropic, linear, and elastic [6]. Under the small deformation approximation
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and ignoring viscous forces, the constitutive equation relating stress and strain is,

σi j = λeδi j +2µεi j (1.1)

where σi j is the stress tensor, e is the dilatation (volume change), δi j is the identity matrix,

εi j is the strain tensor, and λ and µ are Lamé constants [4, 5, 6]. Now we have a relationship

using Lamé constants, but it is also common in elasticity to use engineering constants, such

as Young’s modulus [4]. Under uniaxial stress where only one normal stress component is

nonzero, we can relate Young’s modulus, E, to shear modulus, µ , by,

E = 2(1+ν)µ = 3µ (1.2)

where ν is the Poisson’s ratio. The Poisson’s ratio is the negative ratio of lateral to lon-

gitudinal strain and describes the material’s desire to maintain volume. We often assume

soft tissue, which is dominated by water, to be nearly incompressible tissue and has a Pois-

son’s ratio between 0.495 and 0.4999 [4]. Young’s modulus (E) and shear modulus (µ) are

elastic moduli commonly used in elasticity imaging to describe the tissue’s resistance to

deformation and resistance to shear.

Elasticity imaging involves a source of excitation to deform the tissue and a way to

monitor the tissue response. The mechanical excitations can be static, dynamic, or physi-

ological [4]. Some of the first ultrasound-based elasticity methods used a static excitation

to deform tissue using an external force, such as the transducer, to compress the tissue of

interest (strain imaging) [7, 8]. In strain imaging, the tissue is compressed quasi-statically,

monitored using ultrasound, and the strain field is reconstructed [4]. This method is useful

in the easy implementation of displacement, but it relies heavily on uniform compression

and accurate boundary conditions [4]. Dynamic elasticity imaging uses an internal or exter-

nal applied stress that can be harmonic or impulsive [4]. Some methods use a mechanical

excitation to cyclically displace tissue, such as in sonoelasticity, but the clinical applicabil-
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ity is limited due to the mechanical excitation configurations and the lack of coupling to

deeper tissues [4, 5, 9]. FibroScan® (EchoSens, Paris, France) is a transient elastography

technique that can assess fibrosis in chronic liver disease [10, 11]. FibroScan® vibrates the

tissue mechanically and uses ultrasound to measure the displacement through depth in the

liver tissue [10, 11]. This method works well in the liver fibrosis application. However,

it is difficult in obese patients and it cannot be performed using a clinical scanner. Other

methods employ physiological motion, such as breathing, cardiac motion, or arterial pulsa-

tion, but those methods are limited to the applications of these particular structures and the

distribution of stress is unknown [4, 5, 12]. An impulsive acoustic method, called acoustic

radiation force (ARF), has been developed to generate a targeted force to deform a region

of interest in tissue using a focused ultrasound beam [5, 13]. This dissertation will focus

on impulsive acoustic radiation force excitations being monitored with ultrasound.

1.2 ARF-based Elasticity Imaging

Acoustic radiation force (ARF)-based elasticity imaging can provide stiffness informa-

tion that is less operator dependent and at deeper depths which may be inaccessible by

palpation [5, 13]. Prominent clinically-used ARF-based methods include acoustic radia-

tion force impulse (ARFI) imaging, shear wave elasticity imaging (SWEI), and Supersonic

Shear Imaging (SSI). ARFI imaging uses ultrasonic tracking techniques to measure tis-

sue displacement within a region of excitation following an ARF excitation [14]. SWEI

is a quantitative ARF-based technique that measures the speed of the shear wave speed

produced by the ARF excitation. From the shear wave speed, tissue elastic moduli can

be found using a mechanical model [15]. Other techniques exist using multiple pushing

schemes, such as Supersonic Shear Imaging (SSI) which focuses the acoustic push at mul-

tiple on-axis depths to generate a constructively interfering shear wave that travels across

several centimeters of tissue [16]. While multiple push locations may improve these tech-

niques in certain applications, they will not be covered in this dissertation. The following
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section will provide more detail on the ARF generation, ultrasonic methods to monitor

the deformation response, and the two imaging methods: acoustic radiation force impulse

(ARFI) imaging and shear wave elasticity imaging (SWEI).

1.2.1 Acoustic Radiation Force (ARF)

An acoustic radiation force is created when an acoustic wave transfers momentum into

the propagation medium by absorption and/or reflection [17]. In soft tissues where the

majority of attenuation is caused by absorption [18], the acoustic radiation force magnitude,

~F [kg/(cm2s2)], can be described as,

~F =
2α~I

c
, (1.3)

where~I [W/cm2] is the time-average intensity at a given spatial location, α [dB/cm/MHz]

is the attenuation coefficient, and c [cm/s] is the speed of sound [17, 19]. When the tissue

absorbs the energy from the acoustic radiation force excitation, it induces displacements in

the direction of the longitudinal wave propagation within the focal region of the acoustic

beam. These excitations create mechanical transverse waves called shear waves that prop-

agate laterally away from the region of excitation (See the particle displacement in a shear

wave in Figure 1.1(b)). ARFI imaging measures the displacement induced at the region of

excitation and SWEI measures displacement caused by the shear wave at lateral locations.

1.2.2 Monitoring the Deformation Response

The quality of ARF-based stiffness estimation techniques greatly depends on the ability

to measure tissue displacement induced by the applied force. After the ARF push is applied,

conventional pulse-echo techniques monitor the tissue response. The tissue motion can be

measured using displacement tracking algorithms that estimate displacement between two

signals. Typically, we estimate displacement between a reference signal and a signal from
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the same location after a time delay which is called the tracked signal. Correlation-based

methods, such as normalized cross-correlation, measure the similarity between windowed

lengths of RF data from the reference and tracked signals [20, 21]. The time-shift that

results in the maximum cross-correlation value indicates where the two signals are most

similar and represents the time used to form a displacement estimate [20, 21]. Phase-shift

methods utilizes less memory-intensive in-phase and quadrature (IQ) data [5]. The phase-

based methods use autocorrelation to estimate the displacement between a reference and

tracked signal by measuring the average phase-shift with respect to the central frequency

[21, 22, 23]. Normalized cross-correlation has better performance than phase-based time

delay estimators, but has a higher computational cost [20, 21]. The performance of these

estimators can be affected by a number of factors causing bias and jitter in the displacement

estimates (i.e. noise, bandwidth, kernel size, sampling frequency, and signal decorrelation)

[21]. For unbiased time-delay estimators operating on RF data, a theoretical performance

limit predicting the standard deviation of the jitter is described by the Cramér-Rao lower

bound [24]. Bayesian methods have been employed to reduce variance and perform better

in a mean-square error sense than a Cramér-Rao lower bound-limited estimator by using

a biased estimation scheme [25, 26]. This dissertation will discuss the advantage of using

a Bayesian displacement estimator for this application as compared to normalized cross-

correlation.

1.2.3 Acoustic Radiation Force Impulse (ARFI) Imaging

A typical ARFI image is a displacement image at a given time after the ARF excitation.

To generate an ARF significant enough to displace tissue, the ultrasonic pulse is longer

and higher intensity than a conventional imaging pulse [13]. At a single lateral location, a

typical ARFI sequence consists of a reference pulse, a pushing pulse, and tracking pulses

[4, 13]. The reference pulses are conventional imaging pulses (1 cycle, <1 µs) to establish

a reference for the tissue before the ARF is applied. The pushing pulses are the higher
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intensity, longer duration pulses (100-1000 cycles, <1 ms) to generate an ARF to displace

tissue in the region of excitation. The tracking pulses are conventional imaging pulses, the

same used for the reference pulses, immediately following the pushing pulse to monitor the

tissue deformation response and recovery. Figure 1.2 shows an illustration of the reference,

ARF push, and tracking pulses and the ARF-induced displacement measured over time.

This ensemble of reference, pushing, and tracking pulses can be translated laterally to form

Figure 1.2: Typical acoustic radiation force (ARF) pulse sequence for one location. Con-
ventional imaging reference pulses are taken to monitor tissue before the ARF push. The
ARF push is applied and induces displacement. Then, tracking pulses, same as the refer-
ence pulses, measure the tissue’s response over time.

a 2D image (lateral versus axial) of the deformation response. The typical displacement

in the tissue is around 10-20 µm and is found using methods described in Section 1.2.2.

Images are generated to show displacement at a specific time after the push, the time it

takes to reach maximum displacement, or maximum displacement [5]. Typically, softer

regions take longer to recover and have higher displacement, and stiffer regions recover

more quickly and have smaller displacements [4, 13, 5]. ARFI imaging shows qualitative
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stiffness information relative to the surrounding tissue.

Despite being a qualitative technique, ARFI imaging has been successful in many clin-

ical areas, such as in abdominal imaging, and breast, prostate, and lymph node assessment

[13]. ARFI imaging is also used to monitor the effects of treatment using radiofrequency

(RF) ablations in the liver and cardiovascular tissues [27, 28]. ARFI imaging can also show

mechanical properties of the arterial walls and plaques to help characterize atherosclerosis

[29, 30]. ARFI imaging is useful clinically by giving B-mode images the additional contrast

of elasticity information. However, it lacks the ability to give quantitative measurements of

elasticity.

1.2.4 Shear Wave Elasticity Imaging (SWEI)

SWEI is a quantitative ARF-based elasticity technique that uses a mechanical model

to convert shear wave speed to shear modulus [15, 31]. In SWEI, the tissue at a focused

region of interest is excited and displaced using an ARF [15, 31]. The ARF excitation

creates mechanical transverse waves called shear waves that propagate laterally away from

the region of excitation. The shear waves are a finite train of equivoluminal waves that

displace particles in the axial direction and propagate laterally, or perpendicular to the

displacement (See Figure 1.1(b)) [2, 6]. The shear wave speed provides information about

the tissue that was displaced at the focal region. Assuming the tissue is linearly elastic and

isotropic, the shear wave speed, cT , can be related to the tissues shear modulus, µ , by

cT =

√
µ

ρ
, (1.4)

assuming a constant density, ρ [6]. Common methods to reconstruct shear modulus use

Equation 1.4 to convert the shear wave speed to shear modulus [31, 16]. In these shear

wave elasticity methods, the shear wave is observed as a displacement outside the region

of excitation (i.e. tracking pulses are positioned lateral to the push pulse). To find the shear
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wave speed, time-of-flight-based methods often track the shear wave displacement and find

the velocity based on its spatial and temporal locations [32, 33, 34]. Figure 1.3 shows the

lateral location where the shear wave displacement is typically tracked at the green hori-

zontal box in the third time frame. SWEI measures shear wave speed more accurately in

mostly homogeneous regions where the shear wave is not as disrupted by tissue boundaries

or structures. As one example, ARFI and SWEI have been commercialized on Siemens

ultrasound systems as part of the Virtual Touch tissue quantification tool which provides

qualitative ARFI images with quantitative stiffness information in the SWEI region of in-

terest [35].

Figure 1.3: ARF simulation showing propagation of displacements over time. The green
horizontal box in the third time frame shows where shear wave displacements are measured
to calculate shear wave speed. The blue vertical box in the second time frame shows where
on-axis displacements are measured along the axis of the ARF excitation region.

Clinically, quantifying stiffness is useful in staging diseases where the severity of the

disease is linked to changes in stiffness. For example, shear wave speed can be used as a

quantitative imaging biomarker for staging diseases, such as liver fibrosis [36, 37]. SWEI

has been used to measure stiffness in breast, prostate, thyroid, muscular, lymph nodes and

various abdominal tissue [13, 31, 38, 39].
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1.3 Clinical Problem: Measuring Skin Elasticity

An area of ultrasound elasticity imaging that needs improvement is accurately mea-

suring skin elasticity. Ultrasound elasticity imaging in the skin has been difficult due to

the skin’s thin nature and complicated surrounding structures, including subcutaneous fat,

muscle, and bone [40, 41]. The skin structure also introduces new challenges to the me-

chanical models in elasticity because it is composed of thin layers bounded to the substrate,

or subcutaneous tissue [40, 42]. This dissertation presents an acoustic radiation force-based

elasticity method to quantify skin stiffness. The clinical goal will be to provide an easy way

to document elasticity changes in post-treatment head and neck cancer patients who expe-

rience stiffening of skin and underlying muscles in the treatment areas due to developing

fibrosis.

1.3.1 Lymphedema and Fibrosis in Post-Treatment Head and Neck Cancer Patients

Head and neck cancer (HNC) is the sixth most common cancer worldwide with over

half a million survivors alive in the United States [43, 44]. These cancers affect critical

areas, such as the mouth, tongue, larynx, oral pharynx, upper esophagus, sinus, face, and

facial structures [45]. HNC often requires multi-modality therapy which includes some

combination of surgery, radiation, or chemotherapy to attempt to cure the patient [45].

The epidemic of human papillomavirus-related HNCs along with early detection and better

treatments have increased the number of HNC survivors [46, 47]. Although many patients

are cured of cancer, the treatment leaves survivors with disrupted lymphatic structures and

soft tissue damage. Therefore, HNC survivors are at a high risk for developing secondary

lymphedema and fibrosis [48, 47]. Lymphedema is the swelling of soft tissues due to

an inability to drain lymphatic fluid. Fibrosis can occur from radiation and soft tissue

damage that leads to a local inflammatory response and extracellular matrix deposition

causing stiffening of tissue structures [49]. Lymphedema and fibrosis (LEF) can occur in
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certain areas individually or together. Although they are thought to have different under-

lying mechanisms, LEF can aggravate each other by contributing to soft tissue damage

and the inflammatory response [50]. Without early detection and management of lym-

phedema, the affected tissues can become fibrotic [51, 52]. Developing lymphedema and

fibrosis introduces more burden to the patient by causing new symptoms and worsening

post-treatment symptoms that the patient is already experiencing (i.e. functional impair-

ment, reduced range of motion, pain, difficulty eating, poor nutrition, depression, and an

overall decreased quality of life) [53]. At most institutions, post-treatment HNC patients

are not monitored for secondary lymphedema and fibrosis. Therefore, it is important to

show documentation of this clinical problem and identify a reliable tool to monitor and

diagnose LEF before it progresses.

Characterizing the stages of LEF could lead to an improvement in the standard of care

in post-treatment HNC patients by monitoring the stages of the disease and intervening

before it progresses. Currently, methods of staging LEF are not widespread. Deng et al. at

Vanderbilt University has developed a Head and Neck External Lymphedema and Fibro-

sis Assessment Criteria that categorizes the tissue types as having lymphedema, fibrosis,

or both and the level of severity [47, 44, 52]. The grading system relies on visual and

digital inspection of tissue swelling, tightness, and compliance of affected regions in the

face and neck [47, 44]. Deng et al. also developed a Head and Neck Lymphedema and

Fibrosis Symptom Inventory to capture the symptoms and functional loss in this popula-

tion [54]. These studies have been useful in creating an assessment criteria and showing

significant patient burden. However, the criteria are subject to interrater and intrarater vari-

ability. There are efforts currently to validate the patient self-assessments of symptoms and

clinician-reported outcomes with a quantitative imaging modality [54, 50, 44, 55]. Com-

pared to CT and MRI, ultrasonography is favorable for this task because it could be used

more easily in post-treatment check-ups and it is inexpensive and does not use radiation.

Ultrasound can be used to show changes in size (i.e. swelling) in the soft tissue structures
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experiencing lymphedema. For characterizing the level of fibrosis, ultrasound elasticity

methods are being explored.

1.3.2 Challenges in Measuring Skin Elasticity

Currently, it is challenging to quantify the elasticity in skin due to the boundary con-

ditions and complex structure. Some groups use an external vibration or apply a displace-

ment to the surface of the skin and measure the response using ultrasound. Similar to the

FibroScan® system for the liver, a dynamic elastography technique using a vibrator has

been tested in the skin, but the proximity of the skin to the transducer and vibrator make

it difficult to quantify any shear wave propagation in the skin layer [56]. Another method

that has been tested in skin is strain imaging which applies a quasi-static displacement to

the tissue surface using the ultrasound transducer and measures the strain. [57, 58]. Others

have applied a vacuum suction to the tissue and use high frequencies, around 20 MHz, to

measure the strain response [59]. These methods only estimate strain relative to the sur-

rounding tissue and are not quantitative, or able to compare between patients [59, 57, 58].

They can also be subject to operator variability and often require a contralateral control

measurement on the patient which may not be available in all patient populations if the

disease is bilateral. Acoustic radiation forced-based methods can be used to induce a re-

producible displacement. Currently, the most common method being developed to quantify

the elasticity of skin is SWEI [41, 60, 61, 62]. However, shear wave speed is difficult to

measure in heterogeneous and anisotropic regions where there are changes in stiffness and

mechanical behavior based on orientation [31, 4]. Also, lesions or tissue boundaries have

complex shear wave reflections that corrupt the shear wave speed measurements [4]. From

these factors and the thin nature of the skin, SWEI measurements in the skin are biased

based on the skin thickness [41]. Some groups attempt to offset this layer-dependent bias

by normalizing the shear wave speed measurements by the width of the skin layer, but they

still rely on measuring the velocity of a complex shear wave and do not have an analytical

13



model to convert to shear modulus [41, 61, 62]. Table 1.1 shows quantitative skin elasticity

measurements from a few different groups. The suction and indention methods produce

slightly different shear modulus estimates compared to the shear wave speed-derived esti-

mates in healthy skin. The estimated moduli can depend on the applied force to the tissue.

Additionally, Table 1.1 shows results from patients with systemic sclerosis and sclerotic

graft versus host disease (GVHD). The modified Rodnan skin score (mRSS) is used to

access skin thickness and disease involvement of systemic sclerosis with higher numbers

meaning more disease involvement. We see an increase in shear wave speed and shear

modulus with sclerotic diseases. However, the shear wave speed may not be the most ac-

curate when there is a change in skin thickness. Yun Lee et al. showed there is a bias

in shear wave speed based on the skin thickness and computed a normalized shear wave

speed which greatly increases the measured moduli [41]. To get accurate measurements of

elasticity from patient to patient, there needs to be an improved quantitative measurement

technique. This dissertation will develop an ARF-based elasticity technique that measures

on-axis displacement rather than lateral shear wave speed to reduce the effects of a compli-

cated shear wave propagation in the skin. (Figure 1.3 shows the on-axis location in the box

shown on the second time frame.) The impact of this technique would be early detection

of fibrosis that may not be noticed in a physical examination of the skin. This could im-

prove patients’ quality of life, symptom management, and survival by informing the need

for therapy before fibrosis progression.

14



Table 1.1: Quantitative skin elasticity estimates from different groups. Measurement results
are reported in shear wave speed (m/s) or Young’s modulus (kPa) and show the mean value
and/or standard deviation or range. In the right column, the measurements are converted to
shear modulus using Equation 1.4 under the assumptions that the tissue is linearly elastic
and isotropic.

Reference, Method Measurement: Shear Wave
Speed (m/s) or Young’s
Modulus (kPa)

Shear Modulus (kPa)

Pederson et al. 2003 [63],
DermaLab suction cup

Healthy (ventral side of fore-
arm): Youngs Modulus: 5.10
(4.12-6.08) kPa

Healthy: 1.7 (1.37-2.03)
kPa

Pailler-Mattei et al. 2008
[42], Indention with two-layer
model

Healthy (inner forearm):
Youngs Modulus: 4.5-8 kPa

Healthy: 1.5-2.3 kPa

Santiago et al. 2016 [64],
SWS Virtual Touch

Healthy (anterior chest): 2.3
(0.7) m/s,
Systemic Sclerosis (anterior
chest): 2.7 (1.1) m/s,
Healthy (upper arm): 2.2-2.3
(0.4-0.5) m/s,
Systemic Sclerosis (upper
arm): 2.5-2.9 (1.1-1.2) m/s

Healthy (chest): 5.3 (0.5)
kPa,
SSc (chest): 7.3 (1.2)
kPa,
Healthy (arm): 4.8-5.3
(0.2-0.3) kPa,
SSc (arm): 6.3-8.4 (1.2-
1.4) kPa

Hou et al. 2015 [60], SWS Controls: 1.630 (1.420,
1.895) m/s,
mRSS 0: 1.870 (1.505,
2.440) m/s,
mRSS 1: 2.390 (1.800,
2.760) m/s,
mRSS 2: 2.600 (2.220,
2.880) m/s,
mRSS 3: 2.960 (1.750,
3.865) m/s

Controls: 2.66 (2.02,
3.59) kPa,
mRSS 0: 3.50 (2.27,
5.95) kPa,
mRSS 1: 5.71 (3.24,
7.62) kPa,
mRSS 2: 6.76 (4.93,
8.29) kPa,
mRSS 3: 8.76 (3.06,
14.9) kPa

Yun Lee et al. 2015 [41],
Normalized SWS

Healthy (upper arm): 1.9-
2.3 (0.2-0.3) m/s,
Sclerotic GVHD (upper
arm): 4.3-5.1 (0.2-0.6) m/s

Healthy: 3.6-5.3 (0.04-
0.09) kPa,
Sclerotic GVHD: 18.5-
26.0 (0.04-0.4) kPa
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Chapter 2

On-Axis Acoustic Radiation Force-based Elasticity: Preliminary Studies

This work was originally presented at and published in part as a proceedings paper in

[65]: Walsh, Kristy, et al. “On-axis acoustic radiation force-based stiffness estimation in

phantoms ” Proc. IEEE Int. Ultrason. Symp. (IUS) (2016): 1-3. © 2016 IEEE.

2.1 Introduction

To address the issue of complicated shear wave propagation in a thin medium, like

the skin, we present an on-axis stiffness estimation approach that can provide quantitative

shear modulus estimates. To estimate shear modulus, we use a simulated look-up table that

models the time-to-peak on-axis displacement for a certain imaging configuration. Measur-

ing displacement at the location of the push requires an advanced displacement estimator.

Palmeri et al. first performed this technique using normalized cross-correlation to esti-

mate displacement [66]. The results had too high of a variance in displacement estimates

to make feasible shear modulus estimates. This dissertation will apply a more advanced

displacement estimation technique, a Bayesian displacement estimator. This chapter will

describe the two displacement estimators used in this work: normalized cross-correlation

and the Bayesian displacement estimator. Additionally, this chapter will introduce the on-

axis stiffness estimation look-up table and show initial results.

2.2 Displacement Estimation

2.2.1 Bayesian Displacement Estimation

The quality of ARF-based stiffness estimation techniques greatly depends on the abil-

ity to measure displacement. Bayesian methods have been employed to reduce variance
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and perform better in a mean square error sense than a Cramer-Rao Lower Bound (CRLB)

limited estimate by using a biased estimation scheme [24, 25, 26, 67, 68]. We apply the

Bayesian displacement estimator to RF data to calculate displacement and reduce estima-

tion variance. The Bayesian displacement estimator uses the Bayes’ Theorem to estimate

a posterior probability density function (PDF) of a displacement estimate, τk, given the

observed RF data, x, shown here as,

Pk(τk|x) =
Pk(x|τk)Pk(τk)

Pk(x)
, (2.1)

where Pk(x|τk) is the likelihood function, Pk(τk) is the prior PDF, and Pk(x) is the marginal

likelihood PDF [67]. To find the displacements, τk, that maximize the posterior PDF, we

can describe the terms in Equation 2.1 in the log-domain as,

ln(Pk(τk|x)) ∝− 1
4σ2

n

M−1

∑
s=0

(rk[s]− tk[s;−τk])
2− 1

pλ p ∑
k, j∈B

w j|τk− τ j|p, (2.2)

where the log likelihood is the sum-squared difference between the reference RF signal,

rk[s], and the tracked RF signal, tk[s;−τk], delayed by −τk over the kernel length M. The

likelihood term is weighted by an adaptive noise term, σ2
n , to account for the noise and

decorrelation in both RF signals as shown here,

σ
2
n =

PRF

SNRρ +1
, (2.3)

where PRF is the power of the RF signal and SNRρ is derived from the peak correlation-

coefficient estimate of the SNR shown here as,

SNRρ =
ρmax

1−ρmax
, (2.4)
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where ρmax is the peak of the normalized cross-correlation between the two signals over

the kernel k [25, 26]. The prior PDF term is represented in Equation 2.2 as a weighted

prior term where w j weights adjacent displacement estimates, τ j, when calculating the

current displacement estimate, τk, for a neighborhood B [69]. This weighted prior term

also has tuning parameters λ and p which modulate the distribution of the prior PDF. In

the Bayesian displacement estimator, a p of 2 gives the prior PDF a Gaussian distribution

which is computationally faster and tends to more accurately preserve the axial displace-

ment profile in a homogeneous region [67]. We chose λ empirically based on the median

axial SNRρ and the maximum displacement of the prior. This allows the algorithm to scale

the width of the prior without biasing the result away from the true displacement [67]. To

find the displacement estimates, we apply the maximum a posteriori principle to Equation

2.2 for all N kernels in the dataset, shown as,

~̂τ = argmax
N−1

∑
k=0

lnPk(τk|x), (2.5)

which maximizes the global log-posterior probability of displacements given our data. To

solve for the vector of displacement estimates, we used a pre-existing MATLAB program

called minFunc written by Schmidt (2005) that offers a variety of nonlinear unconstrained

minimization solvers [70]. We used the quasi-Newton algorithm. Other methods to solve

the Bayesian displacement estimator and improve computational time will be discussed

later in the dissertation.

2.2.2 Normalized Cross-Correlation

We also computed on-axis displacements using the commonly used unbiased time-

delay estimator, normalized cross-correlation [20, 21]. The normalized cross-correlation

function, c( j), between the reference signal, yr, and the shifted signal, ys, shifted by j
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samples is described as,

c( j) =

M/2
∑

i=−M/2
[yr(i)− ȳr][ys(i+ j)− ȳs( j)]√

M/2
∑

i=−M/2
[yr(i)− ȳr]2

M/2
∑

i=−M/2
[ys(i+ j)− ȳs( j)]2

, (2.6)

where ȳr is the mean of the reference signal in the window M and ȳs( j) is the mean of

the shifted signal in the window shifted by j samples [21]. The peak of the correlation

function is where the two signals are most similar to each other which corresponds to the

displacement estimate.

Due to discrete sampling of signals in time, the true maximum of the normalized cross-

correlation function may be between samples. Upsampling and interpolation techniques

are used to improve accuracy of subsample estimates by reducing false peak errors and

aliasing [21]. Before computing the normalized cross-correlation function, we upsampled

the RF data (typically by a factor of three from 40 MHz to 120 MHz) using cubic splines

[21]. To find the peak of the normalized cross-correlation function in Equation 2.6, we also

performed a parabolic fit of the peak to get subsample displacement estimates [71].

Although normalized cross-correlation performs well in many applications, the Bayesian

displacement estimator helps reduce the jitter caused by thermal noise and shearing-induced

decorrelation. Figure 2.1 shows an example of this which has also been shown previously

[67, 72, 65]. In a homogeneous tissue-mimicking phantom, Figure 2.1 shows on-axis dis-

placement measurements at 1.6 ms after the ARF push and shows that the jitter is reduced

when using the Bayesian algorithm. The Bayesian displacement estimator has also been

shown to provide an improvement in displacement SNR and contrast-to-noise ratio over

normalized cross-correlation in an SNR-limited environment [68].
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Figure 2.1: On-axis displacements through depth for one tissue-mimicking phantom 1.6 ms
after the ARF push. Displacements are calculated using the Bayesian displacement estima-
tor (black) or normalized cross-correlation (gray). The Bayesian displacement estimator
reduces the variance in displacement estimates.

2.3 Preliminary On-Axis Stiffness Estimation Results

2.3.1 On-Axis Stiffness Estimation Approach

In the on-axis stiffness estimation method, we only measure on-axis displacement and

quantify stiffness by using a look-up table based on simulations to reconstruct shear modu-

lus. Like SWEI, we use acoustic radiation force to induce displacement; however, we only

measure displacement along the axis of excitation shown in Figure 1.3 as the blue vertical

box in the second time frame. After the ARF excitation is applied, the focal region reaches

a maximum displacement that decays in magnitude as the shear waves propagate laterally

away from the region of excitation. We measure the on-axis displacement through time

and find the time-to-peak displacement. The time-to-peak displacement depends on depth

and the spatial distribution of the excitation. Because we are not measuring the shear wave

propagation, we cannot use Equation 1.4 to relate the shear wave speed to shear modulus.

Instead, we find the time of peak on-axis displacement and use a lookup table with time-

to-peak displacement as a function of depth for a certain excitation pulse and displacement

sensing sequence [66]. Using a look-up table to relate the displacement to shear modu-
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lus avoids assumptions limited by the analytical Gaussian solution for an ultrasound beam

[16]. Measuring only on-axis displacements can simplify hardware required for a stiffness

estimate. However, the challenge with measuring at the region of excitation is the large

variance in the displacement estimates [66]. Consequently, this technique had a substan-

tially higher variance in shear modulus estimates than traditional lateral shear wave-derived

estimates [66]. To improve this, we apply an advanced displacement estimation technique

using a Bayesian displacement estimator, that has been shown to reduce displacement esti-

mation variance [25, 26, 72, 65].

2.3.2 Finite Element Simulations

Finite element responses to acoustic radiation force were simulated to generate a stiff-

ness look-up table. The simulations mimic the response of tissues of varying stiffness to

a certain transducer ARF push and tracking configuration. We simulated a range of stiff-

nesses in shear moduli from 1-15 kPa. Tissue properties were simulated using a 2,400,000

element, 3D mesh extending 8.0 cm axially, 1.5 cm laterally, and 0.2 cm in elevation. To

ensure the elevation dimension had a sufficient width that did not create first-order effects,

we also simulated meshes of 1, 3, 4, and 8 mm elevation depths. Figure 2.2 shows sim-

ulated on-axis displacements through time at the depth of the maximum displacement for

each model thickness. Between the 2 mm and the 8 mm elevation depth cases, the differ-

ence in maximum displacement was only 0.03%, and there was no change in the location of

time-to-peak displacement for widths of 2 mm and larger. The 1 mm and 8 mm cases had

an 11% difference in peak displacement and a shift in the time-to-peak displacement that

could create errors in this method. The 2 mm elevation depth was chosen to be sufficient

for this study.

The material was modeled as linearly elastic, homogeneous, and isotropic with a con-

stant density of 1.0 g/cm3 and a Poisson’s ratio of 0.495. Field II was used to calculate the

pressure field of the experimental transducer configuration and the parameters are shown in
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Figure 2.2: Mesh thickness comparison showing the on-axis displacement through time at
the depth of maximum displacement. The difference in maximum displacement was 0.03%
or less for 2, 3, 4, and 8 mm models, and there was no change in the location of time-to-
peak displacement in those widths. The 1 mm and 8 mm cases had an 11% difference in
peak displacement and a shift in the time-to-peak displacement that could create errors in
this method. The 2 mm elevation depth (starred) was used for the model mesh in this work.

Table 2.1 [73]. LS-DYNA (Livermore Software Technology Corporation, Livermore, CA)

was used to simulate the displacements induced by the ARF push [19]. An example of the

FEM simulated displacements before tracking are shown in the left column of Figure 2.3.

The 3D volume of displacements was imported into Field II to displace the point scatterers.

The density of scatterers was 150,000 scatterers/cm3 and over 50 scatterers per resolution

cell to ensure fully developed speckle. We also used Field II to simulate on-axis ultrasonic

tracking using the Siemens CH4-1 probe configuration [74].

2.3.3 Stiffness Look-up Table

The stiffness look-up table is based on the time-to-peak displacement at each depth for

a range of stiffnesses. To generate the look-up table, we simulated 20 independent speckle

realizations of each stiffness for shear moduli of 1, 3, 5, 7, 9, 11, 13, and 15 kPa using

the method described in 2.3.2 and the parameters in Table 2.1. After simulating ultrasonic

tracking using Field II to get received RF data, we use either the Bayesian displacement
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Figure 2.3: Overview of the generation of stiffness look-up tables. The first column shows
on-axis displacements of an FEM simulation response to ARF. Then, we track the dis-
placements using Field II to get on-axis RF data. We use either the Bayesian displacement
estimator or normalized cross-correlation (NCC) to estimate the displacements. Next, we
find peak displacement at each depth to get a time-to-peak displacement curve (shown in
green). We simulate 20 realizations for each stiffness (shear modulus of 1-15 kPa) and
average the time-to-peak displacement curves to generate the stiffness look-up table. The
look-up tables perform best near the focal depth at 4.9 cm.

Table 2.1: CH4-1 simulation parameters

Transducer CH4-1

Attenuation 0.7 dB/cm/MHz

Speed of Sound 1540 m/s

Excitation Focal Depth 4.9 cm

Excitation F/# 2.0

Receive F/# 0.5

Push Center Freq. 2.22 MHz

Track Center Freq. 3.08 MHz

Sampling Freq. (Simulation) 1 GHz

Sampling Freq. (Down-Sampled) 40 MHz

Tracking Pulse Repetition Freq. (PRF) 10 kHz
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estimator or normalized cross-correlation to compute on-axis displacements described in

Section 2.2. Then, we find the peak displacement at each depth. The third column of Fig-

ure 2.3 shows the peak displacement curve for a single realization for each estimator. Next,

we average the time-to-peak displacement curves for 20 simulated speckle realizations for

each of the stiffnesses. This gives the look-up tables shown in the last column of Figure 2.3.

The shear modulus of an experimental case can be found by interpolating the look-up tables

based on the time-to-peak displacement at each depth.

2.3.4 Phantom Experiment

We performed a preliminary experiment of the on-axis stiffness estimation in a tissue-

mimicking phantom. We acquired 15 sets of RF data in response to an acoustic radiation

force. We used a rotation platform to image 15 different speckle regions in the phantom

using a CH4-1 probe. The imaging parameters are consistent with the parameters in Table

2.1 except we had a sampling frequency of 40 MHz and a tracking pulse repetition fre-

quency (PRF) of 4.8 kHz. The ARF push had 400 cycles and a duration of 180 µs. We

found on-axis displacements using the Bayesian displacement estimator and normalized

cross-correlation described in Section 2.2.

Time-to-peak displacement estimates are sensitive to changes in the peak displacement.

Because the peak changes as a function of motion, we need to filter out motion that is not

due to the acoustic radiation force. We evaluated the performance of motion filters using

linear, quadratic, and cubic fits and varied the number of displacement points used in the fit

equations [75]. The quadratic filter had the lowest error in stiffness estimation results and

those results are shown. The quadratic motion filter was applied to the on-axis displacement

data at each depth. Figure 2.4 shows an example of a displacement curve before and after

motion filtering at a single depth of 4.9 cm. To filter out the motion not due to the acoustic

radiation force, we used displacement points outside of the time of the ARF motion to

input into the quadratic fit equation. We used two points before the ARF push was applied
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Figure 2.4: Phantom ARF displacement curves at a depth of 4.9 cm before and after a
quadratic motion filter. The gray curve is the displacement before motion correction. The
stars are the points used in a quadratic fit equation, including 2 points before the ARF push
and all the points after most of the tissue has recovered from the displacement. The dotted
line is the curve fit which we subtract from the gray displacement curve. The black line is
the resulting fit after removing motion.

and all the points after most of the material recovered from displacement. The quadratic

fit is shown in Figure 2.4 as the dotted curve. The pre-filtered curve is shown in gray.

We subtracted the fitted dotted curve from the pre-filtered displacement curve to remove

the motion which resulted in the black post-filtered curve. We performed the fitting and

motion filtering at each depth.

After motion filtering, we found the time-to-peak displacement at each depth. Then,

we used each look-up table to find a stiffness estimate based on time-to-peak on-axis dis-

placement at each depth. Because we did not know the absolute stiffness of the phantoms,

we computed a robust, lateral time-of-flight-based shear wave speed and converted to shear

modulus [32]. The shear wave speed was measured three times for each location and we

took the median estimate for each case. The error was computed between stiffness esti-

mates using the lateral shear wave speed method and the on-axis method using the look-up

table.
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Figure 2.5: Phantom time-to-peak displacement estimates for each acquisition in one phan-
tom (dotted lines) plotted on the Bayesian displacement-derived stiffness look-up table
(solid lines) (a) before and (b) after the quadratic motion filter was applied. Using a lateral
time-of-flight shear wave speed, the phantom acquisitions had a shear modulus of 2.07 +/-
0.12 kPa. After motion filtering, the phantom curves are between the 1 and 3 kPa look-up
table lines at the focal depth of 4.9 cm where the method performs best.

2.3.5 Phantom Results

Figure 2.5 shows the time-to-peak displacement curves for the phantom results (a) be-

fore and (b) after applying a quadratic motion filter. The solid lines show the Bayesian

displacement estimator-derived look-up table. The dotted lines are time-to-peak displace-

ment curves for the 15 tissue-mimicking phantom cases. To find the stiffness of the phan-

tom, we computed a shear wave speed using the lateral time-of-flight-based method. The

phantom cases had a mean shear modulus of 2.07 kPa and a standard deviation of 0.12

kPa. Without motion filtering, some time-to-peak displacement curves are outside of the

simulated look-up table and shear modulus estimates are unrealizable. After the motion fil-

ter, the phantom results more closely match the look-up table and generate expected shear

modulus estimates especially within the depth of field of the ARF excitation.

Figure 2.6 shows the shear modulus results for the 15 tissue-mimicking phantom cases.

The normalized cross-correlation stiffness results in gray are found using the normalized

cross-correlation-derived look-up table and the Bayesian stiffness results in black are found
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Figure 2.6: Root mean square (RMS) error of shear modulus in 15 tissue-mimicking phan-
toms. RMS error results using a Bayesian (Bayes) displacement estimator are shown in
black and results using a normalized cross-correlation (NCC) displacement estimator are
shown in gray. Bayes results have a lower RMS error at all depths within the focus’ depth
of field.

using the Bayesian displacement-derived look-up table. We computed the error between

our results and the lateral shear wave speed-derived results. There is less variability and

lower error in the Bayesian shear modulus results compared to normalized cross-correlation

results.

Figure 2.7 is a Bland-Altman plot to compare the phantom shear modulus estimates

using the lateral time-of-flight shear wave speed method and our on-axis method. The y-

axis of the plots is the difference between the two estimates and the x-axis is the average

of the two estimates. The gray lines show +/- 2 standard deviations away from the mean

difference which is shown in the black line. Figure 2.7(a) shows the on-axis results using

the Bayesian displacement estimator and Figure 2.7(b) shows the on-axis results using nor-

malized cross-correlation. The Bayesian results show more agreement with the shear wave

speed-derived results than normalized cross-correlation because there is a lower standard

deviation in the mean difference between the estimates. We performed a t-test and found
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Figure 2.7: Bland-Altman plots comparing the phantom data shear modulus estimates using
two methods: the on-axis method using (a) Bayesian displacement estimator or (b) normal-
ized cross-correlation compared to the lateral shear wave speed-derived stiffness estimate.
The y-axis is the difference in shear moduli between the two methods (on axis or lateral
shear wave speed-derived estimate) and the x-axis is the average of the two estimates. The
gray lines show +/- 2 standard deviations from the mean difference shown as the black line.
On-axis Bayesian results agree more closely to shear wave speed-derived results. A t-test
showed no significant bias in the means at a 5% significance level.

there was not a significant bias in the means at a 5% significance level. These phantom re-

sults show that on-axis methods coupled with a Bayesian displacement estimator produce

stiffness estimates comparable to laterally offset shear wave methods [34].

2.3.6 Discussion and Conclusion

We have presented an acoustic radiation force-based method of quantifying shear mod-

ulus at the region of excitation. These preliminary results show that an advanced displace-

ment estimator is needed to measure displacements on-axis of the acoustic radiation force

push to generate stiffness estimates comparable to shear wave speed-derived stiffness esti-

mates. It shows we can apply a simulated look-up table to real experimental phantom data.

The method performs best within the focus’ depth of field. The motion filtering also im-

proves accuracy in the phantom data at the focus’ depth of field as shown in Figure 2.5(b).
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However, there could be some bias or simulation mismatch affecting the near-field time-to-

peak displacements. The next chapter will discuss changes in attenuation or sound speed

that could contribute to model mismatch.

Like SWEI, the error of our measurements increases when the tissue is stiffer due to

higher variance in displacement estimates and the declining ability to track faster propa-

gation of displacements. The stiffness estimation quality depends on how accurately we

capture the on-axis displacement profile and the location of the maximum displacement.

We may be able to improve estimating stiffer tissues by increasing the tracking pulse rep-

etition frequency (PRF) to capture faster time-to-peak displacements with more sampling.

This study used a PRF of 4.8 kHz and demonstrated initial feasbility in relatively soft phan-

toms (shear modulus of ∼2 kPa). We tested this same imaging sequence to measure stiffer

phantoms, but the peak displacements occurred faster and were difficult to capture with

this PRF. The next chapters will further study the on-axis stiffness estimation method in

simulations and in phantoms of different elasticities while imaging with a higher PRF.
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Chapter 3

On-Axis Acoustic Radiation Force-based Elasticity in Homogeneous Simulations

This work is currently in review for publication in Ultrasonic Imaging: Walsh, Kristy,

et al. “On-Axis Acoustic Radiation Force-based Quantitative Elasticity using a Bayesian

Displacement Estimator ” Ultrasonic Imaging.

3.1 Introduction

The preliminary studies in Chapter 2 show initial feasibility of the on-axis elasticity

method in soft homogeneous phantoms. The Bayesian displacement estimator also im-

proves displacement estimates which leads to more accurate elasticity estimates. To eval-

uate the performance of the on-axis elasticity method in different tissue types, we perform

a series of simulation studies. Many tissues can slightly vary from our assumptions of a

constant sound speed and attenuation. This becomes especially important clinically when

imaging tissues to detect diseases. Diseases can physiologically change tissue structures

which results in a change of sound speed. For example, this is prevalent in the liver where

fatty liver disease tends to lower sound speed, and livers with fibrosis and cirrhosis tend to

have higher sound speeds [76, 77]. Livers with fatty liver disease have also been shown

to have higher attenuations [78]. We have to model these parameters in our finite element

simulations to make the elasticity look-up table. Therefore, choosing realistic parameters

is important for this method.

Most imaging parameters in this chapter are similar to the settings in Section 2.3.2.

However, we chose a different transducer which we can implement on our Verasonics Van-

tage System (Verasonics, Inc., Kirkland, WA) which we do in the following chapter. We

also use a higher pulse repetition frequency to capture faster time-to-peak displacements.
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The methods in this chapter describe the simulations used to make a look-up table to derive

stiffness estimates. We test the on-axis stiffness estimation approach in simulations. We

compare the performance of the Bayesian displacement estimator to the commonly used

displacement estimator, normalized cross-correlation. We also test the performance of the

on-axis method during changes of attenuation, signal-to-noise ratio, and sound speed.

3.2 Methods

3.2.1 Overview

Simulated data were used to make look-up tables to estimate stiffness using time-to-

peak displacement as a function of depth for a known excitation configuration because

stiffness changes the time-to-peak displacement behavior. Figure 3.1 shows the steps used

to generate a stiffness look-up table from simulated ARF displacement data. We created

two look-up tables using either the Bayesian displacement estimator or normalized cross-

correlation. We can use the look-up table to extract stiffness information given a time-to-

peak displacement value at a certain depth.

3.2.2 Finite Element Simulations

Finite element responses to acoustic radiation force were simulated to generate a stiff-

ness look-up table. The simulations mimic the response of tissues of varying stiffness to a

certain transducer ARF excitation push and tracking configuration. We simulated a range

of stiffnesses in shear moduli from 0.33-15 kPa. Tissue properties were simulated using

a 3,660,000 element, 3D mesh extending 6.1 cm axially, 2.0 cm laterally, and 0.3 cm in

elevation. The material was modeled as linearly elastic, homogeneous, and isotropic with

a constant density of 1.0 g/cm3 and a Poisson’s ratio of 0.495. Field II was used to calcu-

late the pressure field of the experimental transducer configuration and the parameters are

shown in Table 3.1 [73]. LS-DYNA (Livermore Software Technology Corporation, Liv-
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Figure 3.1: Overview of the generation of stiffness look-up tables. The first column shows
on-axis displacements of an FEM simulation response to ARF. Then, we track the dis-
placements using Field II to get on-axis RF data. We use either the Bayesian displacement
estimator or normalized cross-correlation (NCC) to estimate the displacements. Next, we
find peak displacement at each depth to get a time-to-peak displacement curve (shown in
green). We simulate 20 realizations for each stiffness (shear modulus of 0.33-15 kPa) and
average the time-to-peak displacement curves to generate the stiffness look-up table. The
look-up tables perform best near the focal depth at 4.98 cm.

ermore, CA) was used to simulate the displacements induced by the ARF push [19]. An

example of the FEM simulated displacements before tracking are shown in the left column

of Figure 3.1. The 3D volume of displacements was imported into Field II to displace the

point scatterers. The density of scatterers was 50,000 scatterers/cm3 and over 15 scatterers

per resolution cell to ensure fully developed speckle. We also used Field II to simulate

on-axis ultrasonic tracking using the C5-2 probe configuration [74]. The simulated RF data

were filtered using a 4th-order, high-pass Butterworth filter with a cutoff frequency of 2.5

kHz to account for a simulation artifact.

3.2.3 Stiffness Look-up Table

The stiffness look-up table is based on the time-to-peak displacement at each depth for

a range of stiffnesses. To generate the look-up table, we simulated 20 independent speckle
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Table 3.1: C5-2 simulation parameters

Option Parameter Value

Transducer C5-2
Attenuation 0.7 dB/cm/MHz
Speed of Sound 1540 m/s
Push Center Freq. 2.3585 MHz
Excitation F/# 1.5
Excitation Focal Depth 4.98 cm
Push Duration 128 µs
Tracking Center Freq. ( fc) 3.125 MHz
Tracking Pulse Repetition Freq. (PRF) 10 kHz
Receive F/# 0.5
Sampling Freq. (Field-II Simulation) 160 MHz
Sampling Freq. (RF Down-Sampled) 40 MHz
Sampling Freq. fs (Disp. Est.) 120 MHz
NCC Kernel Length 3 fs/ fc

Bayesian Likelihood Kernel Length 3 fs/ fc

realizations of each stiffness for shear moduli of 0.33, 1, 3, 5, 7, 9, 11, 13, and 15 kPa

using the method described in Section 3.2.2 and the parameters in Table 3.1. Often, a lower

push frequency is used to broaden the push beam width compared to the track beam width

to reduce effects of speckle shearing that lead to underestimation of the tracked tissue dis-

placement [74, 79]. After simulating ultrasonic tracking using Field II to get received RF

data, we use either the Bayesian displacement estimator or normalized cross-correlation to

compute on-axis displacements described in Section 2.2. In both the Bayesian displace-

ment estimator and normalized cross-correlation, we used a progressive reference so that

the displacement was computed between each consecutive RF line. Then, we find the peak

displacement at each depth. The third column of Figure 3.1 shows the peak displacement

curve for a single realization for each estimator. Next, we average the time-to-peak dis-

placement curves for 20 simulated speckle realizations for each of the nine stiffnesses.

This gives the look-up tables shown in the last column of Figure 3.1. Figure 3.2 shows

both the Bayesian displacement-derived and normalized cross-correlation-derived stiffness

look-up tables on the same plot to show comparison between the displacement estimators.
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Figure 3.2: Comparison of stiffness look-up tables. The normalized cross-correlation
(NCC) look-up table is shown by the solid colored lines and the Bayesian displacement es-
timator look-up table is plotted over each stiffness curve in black dotted lines. The Bayesian
displacement estimated look-up table has less variance in time-to-peak displacement curves
compared to the normalized cross-correlation look-up table.

The shear modulus of an experimental case can be found by interpolating the look-up tables

based on the time-to-peak displacement at each depth.

3.2.4 Simulation Experiments

The simulation experiments used the method described in Section 3.2.2 and the pa-

rameters in Table 3.1. We simulated 20 independent realizations of a linearly elastic, ho-

mogeneous, and isotropic medium with a shear modulus of 2 kPa. We applied both the

Bayesian displacement estimator and normalized cross-correlation to each realization. We

found time-to-peak displacement at each depth and used the corresponding look-up table

(Bayesian or normalized cross-correlation) to extract a stiffness estimate. The error was

calculated based on the known shear moduli of the simulations.
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3.2.5 Attenuation Mismatch Analysis

An assumption of the look-up table is that the tissue attenuation is constant at 0.7

dB/cm/MHz. To test the performance of our method in the presence of attenuation changes

in tissues, we simulated media with attenuations different from the simulated look-up table

attenuation. We used the look-up table derived from simulations with parameters shown

in Table 3.1 that had an attenuation of 0.7 dB/cm/MHz. The experimental simulations had

attenuations of 0.5, 0.7, and 0.9 dB/cm/MHz. These cases used the Bayesian displace-

ment estimator and the Bayesian displacement estimator-derived look-up table to get shear

modulus estimates.

3.2.6 Signal-to-Noise Ratio Analysis

To test the performance of the on-axis method at different signal-to-noise ratios (SNRs),

we varied the noise level in the RF data of our simulations. Along with the simulations at

2 kPa, we also studied the performance of two stiffer experimental simulations at shear

moduli of 6 and 10 kPa. We added white Gaussian noise to our experimentally simulated

RF data before calculating the displacements using the Bayesian displacement method. We

varied the SNR to 0, 10, 20, 30, 40, and 50 dB by adding the respective amount of noise

based on the signal power to reach the desired SNR. We used the Bayesian displacement

estimator and the Bayesian displacement estimator-derived look-up table to get shear mod-

ulus estimates. A shear modulus estimate is found for each case by taking the mean shear

modulus in the focus’ depth of field. The root mean square (RMS) error is found based on

the known shear modulus (2, 6, or 10 kPa) of the simulations and is computed over the 20

realizations for each stiffness and SNR.
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3.2.7 Sound Speed Error Analysis

We varied the sound speed in our experimental simulations to show the performance

of the on-axis stiffness estimation when the tissue has different sound speeds as compared

to the look-up table. Many tissues can slightly vary from our assumption of a constant

sound speed of 1540 m/s. This becomes especially important clinically when imaging

tissues to detect diseases. Diseases can physiologically change tissue structures which

results in a change of sound speed. This is prevalent in the liver where fatty liver disease

tends to lower sound speed, and livers with fibrosis and cirrhosis tend to have higher sound

speeds [76, 77]. In this study, we changed the sound speed in the experimental simulations

while assuming the sound speed was constant at 1540 m/s. This created errors in our

FEM simulations and the transmit and receive focusing delays during pushing and tracking.

We set the sound speeds between -10% and +10% error of the assumed sound speed of

1540 m/s. We used the Bayesian displacement estimator and the Bayesian displacement

estimator-derived look-up table to get shear modulus estimates. A shear modulus estimate

is found for each case by taking the mean shear modulus in the focus’ depth of field. The

RMS error is found based on the known shear modulus of 2 kPa for these simulations and

is computed over the 20 simulations for each sound speed error.

3.3 Simulation Results

Figure 3.3 shows the shear modulus results for 20 simulated experimental realizations

at a shear modulus of 2 kPa. Figure 3.3 is plotting the root mean square (RMS) error of the

shear modulus. The reference value used to compute the error was the shear modulus value

of the FEM simulations. The normalized cross-correlation stiffness results are found us-

ing the normalized cross-correlation-derived look-up table, whereas the Bayesian stiffness

results are found using the Bayesian displacement-derived look-up table. The normalized

cross-correlation RMS error shown in red is higher at nearly all depths as compared to the
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Figure 3.3: Root mean square (RMS) error of shear modulus of 20 simulated stiffnesses
at a shear modulus of 2 kPa. RMS error results using a Bayesian (Bayes) displacement
estimator are shown in blue and results using a common motion estimator, normalized
cross-correlation (NCC), are shown in red. Bayesian results have a lower RMS error at
almost all depths.

Bayesian results shown in blue. There is also higher variability in the normalized cross-

correlation results as compared to the Bayesian results. The simulations had a RMS error

between 0.22-0.39 kPa using the Bayesian displacement estimator and 0.40-2.1 kPa us-

ing normalized cross-correlation 1cm around the focal depth. The average percent bias

around the focal depth was -11% and -54% for the Bayesian displacement estimator and

normalized cross-correlation, respectively.

Figure 3.4 shows the results of the attenuation mismatch study using a Bayesian dis-

placement estimator. All shear modulus estimates are found from a look-up table using sim-

ulations with an attenuation of 0.7 dB/cm/MHz. Figure 3.4 shows the RMS error in shear

modulus for simulations at 0.5, 0.7, and 0.9 dB/cm/MHz attenuations. The 0.7 dB/cm/MHz

attenuation simulations are the same results shown in Figure 3.3. Figure 3.4 shows that at-

tenuation mismatches between the look-up table simulations and experimental cases can

create errors in the stiffness results. Changing the attenuation to 0.5 or 0.9 dB/cm/MHz

results in an increase in RMS error in shear modulus estimates, but the error is lower closer
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Figure 3.4: Root mean square (RMS) error of shear modulus of 20 simulated stiffnesses
at a shear modulus of 2 kPa for each attenuation. The simulations had attenuations, α , of
0.5, 0.7, and 0.9 dB/cm/MHz and all used a look-up table simulated at an attenuation of 0.7
dB/cm/MHz.

to the focus and at deeper depths. For our phantom experiments in the following chapter,

we use the data near the focal depth between 4.5 and 5.5 cm to compute a stiffness estimate

using the look-up table.

Figure 3.5 shows the RMS error in shear modulus for the on-axis method using the

Bayesian displacement estimator under different levels of signal-to-noise. At very low

levels of SNR, the shear modulus estimate is unreliable. As the SNR increases, the RMS

error approaches the RMS error of our noise-free simulation results. The percent error in

each phantom is consistent, especially at higher levels of SNR. There is higher error in

stiffer media due to the higher velocities and the nature of the look-up table; however, this

could be improved by increasing the PRF in tracking.

Figure 3.6 shows the RMS error in shear modulus for the on-axis method using the

Bayesian displacement estimator when there are sound speed errors. We introduced errors

from -10% to +10% of 1540 m/s. As the sound speed of the simulations gets further away

from 1540 m/s, there is an increase in stiffness estimate error. The lowest error occurs at
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Figure 3.5: Root mean square (RMS) error of shear modulus of 20 simulated stiffnesses
at shear moduli of 2, 6, and 10 kPa for each signal-to-noise ratio (SNR). Each stiffness
estimate was found by taking the mean shear modulus in the focus’ depth of field. The best
performance is at or above an SNR of 20 dB.

the sound speed of 1540 m/s. Between sound speeds of 1501.5-1578.5 m/s, the error is less

than 16.5%.

3.4 Discussion and Conclusion

Assumptions about the tissue being interrogated need to be considered when generating

the stiffness look-up table. In our simulation results and analyses, we show that the quality

of this method can depend on signal-to-noise ratio of the RF data. Our best performance oc-

curs at SNRs at or above 20 dB (Figure 3.5). Assumptions about the tissue properties, such

as attenuation coefficient and sound speed, can cause errors in the look-up table and affect

the estimation performance (Figures 3.4 and 3.6). Also, physiological changes in tissue,

such as disease progression, can cause changes in tissue mechanical properties. A major

application of SWEI is staging liver fibrosis. The tissues in different stages of this disease

can exhibit a change in sound speed and attenuation [76, 77, 78]. These assumptions about

the tissue properties suggest the need to add additional dimensions to the look-up table to
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Figure 3.6: Root mean square (RMS) error of shear modulus of 20 simulated stiffnesses
at a shear modulus of 2 kPa for each sound speed error from -10% to +10% of 1540 m/s.
Each stiffness estimate was found by taking the mean shear modulus in the focus’ depth of
field. As sound speed of the simulations deviates further away from the assumed 1540 m/s,
we see an increase in estimation error.

account for attenuation, sound speed, and perhaps viscosity in these applications.

We tested the on-axis elasticity estimation approach in simulations. We compared the

performance of the Bayesian displacement estimator to the commonly used displacement

estimator, normalized cross-correlation. We also tested the performance of the on-axis

method during changes of attenuation, signal-to-noise ratio, and sound speed. The simula-

tion results provide insight into the importance of an advanced displacement estimator and

selection of realistic parameters for the simulation model, such as sound speed and atten-

uation. We have also shown the performance of the on-axis elasticity method in different

simulated elasticities and signal-to-noise ratios.
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Chapter 4

On-Axis Acoustic Radiation Force-based Elasticity in Homogeneous Phantoms

This work is currently in review for publication in Ultrasonic Imaging: Walsh, Kristy,

et al. “On-Axis Acoustic Radiation Force-based Quantitative Elasticity using a Bayesian

Displacement Estimator ” Ultrasonic Imaging.

4.1 Introduction

Quantifying tissue stiffness is clinically useful in staging or monitoring many diseases

and their treatments. Manual palpation can be the first indicator of a disease that causes

changes in the mechanical properties of tissues, but it can be relatively subjective. Acous-

tic radiation force (ARF)-based elasticity imaging can provide stiffness information that is

less operator dependent and at deeper, inaccessible depths [13, 5]. Elasticity imaging meth-

ods have been successful in detecting diseased tissue where mechanical changes can be an

indication of the severity. ARF-based techniques are used for abdominal imaging [80],

cardiac imaging [81], biopsy guidance in prostate, lymph node, and breast exams [82, 83],

monitoring radiofrequency (RF) ablations in the liver and cardiovascular tissues [27, 28],

and characterizing atherosclerosis [29, 30]. Elasticity imaging is useful in clinical ultra-

sound, especially when it can provide quantitative stiffness measurements. For example,

shear wave speed can be used as a quantitative imaging biomarker for staging liver fibrosis

[36, 37, 84].

As discussed in Section 1.2.4, shear wave elasticity imaging (SWEI) is a quantitative

ARF-based technique that can estimate tissue elastic properties using a mechanical model.

In traditional SWEI, shear waves are generated within tissue by the acoustic radiation force

of a focused ultrasound beam [15]. Acoustic radiation force is created when an acoustic
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wave transfers momentum into the propagation medium by absorption and/or reflection

[17]. In soft tissues where the majority of attenuation is caused by absorption [18], the

acoustic radiation force magnitude, ~F [kg/(cm2s2)], can be described as,

~F =
2α~I

c
, (4.1)

where~I [W/cm2] is the time-average intensity at a given spatial location, α [dB/cm/MHz]

is the attenuation coefficient, and c [cm/s] is the speed of sound [17, 19]. This acoustic

radiation force excitation induces displacements in the direction of the longitudinal wave

propagation within the focal region of the acoustic beam. These excitations create mechan-

ical transverse waves called shear waves that propagate laterally away from the region of

excitation. The shear waves are a finite train of equivoluminal waves that displace particles

in the axial direction and propagate laterally or perpendicular to the displacement [6]. The

shear wave speed provides information about the tissue that was displaced at the focal re-

gion. Assuming the tissue is linearly elastic and isotropic, the shear wave speed, cT , can be

related to the tissue’s shear modulus, µ , by

cT =

√
µ

ρ
, (4.2)

assuming a constant density, ρ [6]. Common methods to reconstruct shear modulus use

Equation 4.2 to convert the shear wave speed to shear modulus [31, 16]. In these shear

wave elasticity methods, the shear wave is observed as a displacement at a lateral location

outside the region of excitation. To estimate the shear wave speed, time-of-flight-based

methods often track the shear wave displacement and find the velocity based on its spatial

and temporal locations [32, 33].

In this work, we only measure on-axis displacement and quantify stiffness by using a

look-up table based on simulations to reconstruct shear modulus. Like SWEI, we use an

acoustic radiation force to induce displacement; however, we only measure displacement
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along the axis of excitation. After the ARF excitation is applied, the focal region reaches

a maximum displacement that decays in magnitude as the shear waves propagate laterally

away from the region of excitation. We measure the on-axis displacement through time

and find the time-to-peak displacement. The time-to-peak displacement depends on depth

and the spatial distribution of the excitation. Because we are not measuring the shear

wave propagation, we cannot use Equation 4.2 to relate the shear wave speed to shear

modulus. Instead, we find the time of peak on-axis displacement and use a lookup table

with time-to-peak displacement as a function of depth for a certain excitation pulse and

displacement sensing sequence [66]. Using a look-up table avoids assumptions limited

by the analytical Gaussian solution [15, 16]. Measuring only on-axis displacements can

simplify hardware required for a stiffness estimate. However, the challenge with measuring

displacements at the region of excitation is the large variance in displacement estimates

[66]. Consequently, this technique had a substantially higher variance in shear modulus

estimates than traditional lateral shear wave speed-derived estimates [66]. To improve this,

we apply an advanced displacement estimation technique using a Bayesian displacement

estimator, that has been shown to reduce displacement estimation variance [25, 26, 72, 65,

85].

The methods in this chapter use the same simulated look-up table as described in Chap-

ter 3. We create on-axis acoustic radiation force imaging sequences on a programmable

research scanner, Verasonics Vantage 128 System (Verasonics Inc., Kirkland, WA), and

describe our gelatin phantom making procedure. We test the on-axis stiffness estimation

approach in four tissue-mimicking gelatin phantoms of different elasticity. We compare the

performance of the Bayesian displacement estimator to the commonly used displacement

estimator, normalized cross-correlation. We also compute a lateral time-of-flight-based

shear wave speed and convert to shear modulus to compare on-axis to lateral shear modu-

lus estimates [32, 79].
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4.2 Methods

4.2.1 Gelatin Phantom Construction

We tested our on-axis stiffness estimation method in four tissue-mimicking phantoms

made of different concentrations of gelatin to vary the stiffness [86, 87, 88]. We mixed

gelatin powder (Gelatin from porcine skin, 300 Bloom strength, Sigma-Aldrich, St. Louis,

MO) with degassed, deionized water and isopropyl alcohol to increase the sound speed.

We stirred and heated the solution until the gelatin powder was dissolved and the solution

turned clear. We also degassed the solution to further remove air bubbles. While it was

still in liquid form, we stirred in 6% concentration by weight of graphite (General Pencil

Company, Inc., Jersey City, NJ) for scattering properties. The solution was poured into

phantom molds, securely sealed, and slowly rotated for about four hours until it cooled and

congealed. We rotated the phantoms so that the graphite did not settle to bottom while con-

gealing. The gels were then refrigerated overnight. By increasing the gelatin concentration,

it increases the stiffness. We created phantoms with 2, 3, 4, and 5% gelatin concentrations.

4.2.2 Acquisition Sequences

In each gelatin phantom, we imaged 15 sets of acquisitions using the Verasonics Van-

tage 128 System (Verasonics Inc., Kirkland, WA) and a C5-2 curvilinear transducer. We

rotated the phantoms to image 15 different speckle regions in each. At each location, we

ran two imaging sequences to acquire on-axis data as well as a shear wave speed. The

shear wave speed sequence is described by Deng et al. (2017) for the C5-2 transducer and

posted on a Github repository [79]. The on-axis imaging sequence parameters were con-

sistent with the look-up table’s simulation parameters described in Chapter 3 and shown in

Table 3.1 except we used an axial sampling frequency of 12.5 MHz. The phantom imaging

parameters are shown in Table 4.1 using a C5-2 curvilinear array and a focused push and

focused tracking sequence.
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Table 4.1: C5-2 gelatin phantom imaging parameters

Option Parameter Value

Transducer C5-2
Push Center Freq. 2.3585 MHz
Excitation F/# 1.5
Excitation Focal Depth 4.98 cm
Push Duration 128 µs
Tracking Center Freq. ( fc) 3.125 MHz
Tracking Pulse Repetition Freq. (PRF) 10 kHz
Receive F/# 0.5
Sampling Freq. (Acquired) 12.5 MHz
Sampling Freq. (Up-Sampled) 37.5 MHz
Sampling Freq. ( fs) (Disp. Est.) 112.5 MHz
NCC Kernel Length 3 fs/ fc

Bayesian Likelihood Kernel Length 3 fs/ fc

4.2.3 Post-Processing

4.2.3.1 Displacement Estimation

We found on-axis displacements using the Bayesian displacement estimator and nor-

malized cross-correlation as described in Section 2.2. We also upsampled the acquired RF

data by a factor of three from 12.5 MHz to 37.5 MHz. Due to discrete sampling of signals

in time, the true maximum of the normalized cross-correlation function may be between

samples. Upsampling and interpolation techniques are used to improve accuracy of sub-

sample estimates by reducing false peak errors and aliasing. We further upsampled the

RF data by another factor of three for both displacement estimators using cubic splines

[21]. The normalized cross-correlation and Bayesian likelihood kernel lengths in samples

are described in Table 4.1 in terms of the sampling frequency, fs, and tracking center fre-

quency, fc, which are approximately 0.76 mm. Kernel lengths of 3λ are typically used in

small deformation elastography to preserve the accuracy in the average displacement over

the kernel length and also still be able to resolve changes in displacement [21]. To find

the peak of the normalized cross-correlation function in Equation 2.6, we also performed
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a parabolic fit of the peak to get subsample displacement estimates [71]. In the Bayesian

displacement estimator, we used a neighborhood, B, of 3, which includes the two adjacent

axial kernels on either side of the current estimate, with a uniform weighting, w j, of 0.5. We

also used a p of 2 for a Gaussian shaped prior. In both the Bayesian displacement estimator

and normalized cross-correlation, we used a progressive reference so that the displacement

was computed between each consecutive RF line.

4.2.3.2 Motion Filtering

Time-to-peak displacement estimates are sensitive to changes in the peak displacement.

Because the peak changes as a function of motion, we filtered out motion that is not due to

the acoustic radiation force. We evaluated the performance of motion filters using linear,

quadratic, and cubic fits and varied the number of displacement points used in the fit equa-

tions [75]. A quadratic filter is commonly used for removing physiological motion and also

has been helpful to reduce non-ARF-induced motion in phantoms [75]. The quadratic filter

performed the best and we used those results for this work. The quadratic motion filter was

applied to the on-axis displacement data at each depth. Figure 4.1 shows an example of a

displacement curve before and after motion filtering at a single depth of 4.98 cm. To filter

out the motion not due to the acoustic radiation force, we used displacement points outside

of the time of the ARF-induced motion to input into the quadratic fit equation. We used one

point before the ARF push was applied (0 ms) and all the points after most of the material

recovered from displacement (4.8 to 7.8 ms). The quadratic fit is shown in Figure 4.1 as

the dotted curve. The pre-filtered curve is shown in gray. We subtracted the fitted dotted

curve from the pre-filtered displacement curve to remove the motion which resulted in the

black post-filtered curve. We performed the fitting and motion filtering at each depth.

46



Figure 4.1: Phantom ARF displacement curves at a depth of 4.98 cm before and after a
quadratic motion filter. The gray curve is the displacement before motion correction. The
stars are the points fit to a quadratic equation, including one point before the ARF push and
all the points after most of the tissue has recovered from the displacement. The dotted line
is the curve fit which we subtract from the gray displacement curve. The black line is the
resulting fit after removing motion.

4.2.3.3 Stiffness Estimation

After motion filtering, we found the time-to-peak displacement at each depth by per-

forming a quadratic subsample peak estimation to find the time of maximum displacements.

Then, we used each look-up table to find a stiffness estimate based on time-to-peak on-axis

displacement at each depth. We also computed a robust, lateral time-of-flight-based shear

wave speed and converted to shear modulus [32, 79]. The error was computed between

stiffness estimates using the lateral shear wave speed method and the on-axis method using

the look-up table.

4.3 Homogeneous Phantom Results

Figure 4.2 shows an example of a 2% gelatin phantom result. The top row (a-c) shows

the results using a Bayesian displacement estimator and the bottom row (d-f) shows the

normalized cross-correlation results for the same acquisition. Subplots a) and d) show the

on-axis displacements after motion filtering with the peak displacements at each depth in
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Figure 4.2: 2% gelatin phantom results using the Bayesian displacement estimator on the
top row (a-c) and normalized cross-correlation on the bottom row (d-f). (a, d) On-axis dis-
placements with the time-to-peak displacement in green. (b, e) Time-to-peak displacement
curves for each phantom result (black) plotted on each look-up table. (c, f) Shear modulus
results using the lateral time-of-flight based method as the gold standard (black dashed line)
and the on-axis estimates (blue). The Bayesian displacement can produce a more accurate
stiffness estimate than normalized cross-correlation by reducing error and variance in the
on-axis displacement estimates.

green. Subplots b) and e) show each look-up table in the colored lines and the black lines

show the time-to-peak displacements of the phantom. Subplots c) and f) show each shear

modulus result. To find the stiffness of the phantoms, we computed a shear wave speed

using the lateral time-of-flight-based method. This phantom case had a shear modulus of

1.5 kPa shown in the black dotted line. The Bayesian displacement estimator reduces the

error and variance in the displacement estimates which results in a more accurate shear

modulus estimate.
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Figure 4.3: Phantom time-to-peak displacement curves (dotted lines) plotted on the
Bayesian (Bayes) displacement-derived stiffness look-up table (top row, a-d) and the nor-
malized cross-correlation (NCC)-derived look-up table (bottom row, e-h). Each subplot
shows one acquisition from each phantom (2, 3, 4, 5% gelatin) with the same acquisition
in each column to compare each displacement estimator.

Figure 4.3 shows the time-to-peak displacement curves for one acquisition from each

gelatin phantom using either the Bayesian displacement estimator (top row) or normalized

cross-correlation (bottom row) to estimate displacements in the phantoms and the corre-

sponding look-up tables. In the stiffer phantoms with higher concentrations of gelatin, the

time-to-peak displacement occurs faster as shown in the black dotted lines. The shear wave

speed-derived shear moduli for these acquisitions were 1.5, 3.2, 7.5, and 11 kPa for the 2,

3, 4, and 5% gelatin phantoms, respectively. The stiffest phantom with 5% gelatin may be

approaching the limit of how stiff this acquisition set-up can estimate stiffness.

Figure 4.4 is a Bland-Altman plot to compare the phantom shear modulus estimates

using the lateral time-of-flight shear wave speed method and our on-axis method. Each

acquisition was paired to its subsequent shear wave speed-derived estimate at the same

location in the phantom. The y-axis of the Bland-Altman plots is the difference between

the two estimates and the x-axis is the average of the two estimates. The red lines show

+/- 2 standard deviations away from the mean difference which is shown in the black line.
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Table 4.2: Phantom shear wave speed-derived shear moduli

Mean (kPa) St. Deviation (kPa)

2% Gelatin 1.5 0.05
3% Gelatin 3.0 0.15
4% Gelatin 7.4 0.39
5% Gelatin 12.3 1.7

The left column shows the normalized cross-correlation results and the right column shows

the Bayesian displacement estimator results. The x and y axis ranges were kept constant

in each row to compare the bias and performance of each displacement estimator in each

phantom. In the softest phantom, the Bayesian displacement estimator had lower error

and less variance in the mean difference between the estimates, but slightly more bias

than normalized cross-correlation. In the three stiffer phantoms, the Bayesian displace-

ment estimator had lower error and was less biased in the shear modulus estimates than

normalized cross-correlation. Table 4.2 shows the shear wave speed-derived shear mod-

uli for each phantom which was used as the gold standard. Table 4.3 shows the on-axis

shear modulus estimates and error statistics for each phantom. The Bayesian displacement

estimator results show more agreement with the shear wave speed-derived results than nor-

malized cross-correlation. These phantom results show that on-axis methods coupled with

a Bayesian displacement estimator can produce stiffness estimates comparable to laterally

offset shear wave methods.

4.4 Discussion

We have presented an acoustic radiation force-based method of quantifying shear mod-

ulus at the region of excitation. The results show that an advanced displacement estimator

is needed to measure displacements on-axis of the acoustic radiation force push to gener-

ate stiffness estimates comparable to shear wave speed-derived stiffness estimates. When

tracking displacements on-axis at the push location, there is high signal decorrelation and
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Figure 4.4: Bland-Altman plots comparing the phantom data shear modulus estimates using
two methods: the on-axis method using (left column) normalized cross-correlation (NCC)
or (right column) Bayesian (Bayes) displacement estimator compared to the lateral shear
wave speed-derived stiffness estimate. The y-axis is the difference in shear moduli between
the two methods (on-axis or lateral shear wave speed-derived estimate) and the x-axis is the
average of the two estimates. The red lines show +/- 2 standard deviations from the mean
difference shown as the black line. Compared to NCC, the on-axis Bayesian displacement
estimator results show more agreement in all of the phantoms.
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Table 4.3: Phantom shear modulus results using the on-axis method. Mean, standard devia-
tion (st. dev.), root mean square error (RMSE), and bias. The error and bias were calculated
using the shear wave speed-derived shear moduli as the gold standard.

Mean (kPa) St. Dev. (kPa) RMSE (kPa) Bias (kPa)

2% Gelatin

Bayesian 1.1 0.26 0.41 -0.33
NCC 1.7 0.47 0.49 0.24

3% Gelatin

Bayesian 3.0 0.84 0.86 0.003
NCC 4.4 0.87 1.7 1.5

4% Gelatin

Bayesian 8.6 1.5 1.8 1.2
NCC 8.9 1.7 2.2 1.5

5% Gelatin

Bayesian 9.8 2.3 3.8 -2.6
NCC 6.3 1.8 6.6 -6.1

shearing within the point spread function that causes commonly used displacement esti-

mators, such as normalized cross-correlation, to fail. We applied a Bayesian displacement

estimator, which lowered the variance in the displacement estimates, allowing us to cap-

ture more accurate time-to-peak displacements. The simulation and phantom results show

that the error in shear modulus estimates is reduced when using the Bayesian displacement

estimator over normalized cross-correlation. The phantom results show we can apply the

simulated look-up tables to experimental data and there is good performance of the on-axis

method at the focal depth. The error in our shear modulus estimates is on the order of

traditional shear wave speed measurement errors [34].

Like SWEI, the error of our measurements increases when the tissue is stiffer due to

the declining ability to track faster propagation of displacements. The stiffness estimation

quality depends on how accurately we capture the on-axis displacement profile and the

location of the maximum displacement. We can improve the stiffness estimation quality

by increasing the tracking PRF to better identify the location of the peak. This can also
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improve our stiffness estimates in stiffer tissues. However, we capture less samples in our

displacement profile when the peak on-axis displacement occurs faster which contributes

to lower estimation accuracy in stiffer phantoms. For example, we have better stiffness es-

timates in the softer gelatin phantoms, but the 5% gelatin phantom has worse performance

due to this aspect of the look-up table (Figure 4.3). Also, the method would fail when you

cannot accurately capture the peak, so it is necessary to acquire a sample before the tissue

reaches the maximum displacement to ensure you are not sampling after the peak on-axis

displacement has occurred.

The look-up table is modeled using assumptions about the acoustic radiation force ap-

plied to the tissue. When the ARF is applied, the transfer of momentum into the tissue

medium is not rigorously modeled in the FEM framework, which could introduce errors

in our algorithm. Because this method relies on the time-to-peak displacement, any addi-

tional time for the transfer of momentum to occur in tissue could introduce bias. Also, the

acoustic radiation force is modeled using Equation 4.1 which is based on the assumption

that other sources of attenuation are negligible compared to absorption. If there are other

sources of attenuation, this could introduce errors.

Compared to traditional SWEI, we could reduce the transducer hardware because we

only use on-axis data. We could provide an elasticity point measurement that could be im-

plemented in a single element probe rather than a typical array-based system. This method

also differs from SWEI in the use of a stiffness look-up table. The relationship between

stiffness and time-to-peak displacement is formed in simulations based on our transducer

configuration. Our look-up table approach does not use Equation 4.2 to get a stiffness es-

timate. Therefore, we may be able to better estimate different types of tissue structure,

such as anisotropic tissues, by measuring on-axis to reduce the effects of complicated wave

propagation as a shear wave propagates in anisotropic media. Future work includes apply-

ing the on-axis stiffness elasticity method to non-homogeneous phantoms and tissues and

in vivo data.
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4.5 Conclusion

We have demonstrated a method to use a simulated stiffness look-up table for on-axis

acoustic radiation force-based elasticity estimation. The phantom results show the on-

axis method coupled with a Bayesian displacement estimator produce stiffness estimates

comparable to laterally offset shear wave methods and we can apply a simulated look-up

table to real experimental data. We have shown that we can produce quantitative stiffness

estimates at the acoustic radiation force location in phantoms of different elasticities.
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Chapter 5

Improving Speed of Advanced Bayesian Displacement Estimation Algorithm with

Analytical Derivatives and Newton’s Method

This work is currently in preparation for publication: Walsh, Kristy, et al. “Improving

Speed of Advanced Bayesian Displacement Estimation Algorithm with Analytical Deriva-

tives and Newton’s Method ”.

5.1 Introduction

The quality of acoustic radiation force-based elastography greatly depends on the abil-

ity to measure tissue displacement, especially in high shear, noisy environments, or mea-

suring displacement directly at the push location. The previous chapters have shown the

importance of using an advanced displacement estimator at the push location. However, the

downside is a higher computational cost. The Bayesian displacement estimator described

in Section 2.2.1 is solved as a recursive, nonlinear optimization problem. The original pub-

lications used quasi-Newton, line-search methods to implement the minimization [67, 68].

These methods did not use analytical derivatives to reach the solution, but approximated the

derivatives using finite differences. To reach a solution faster and reduce the computational

cost, we have solved for the gradient and Hessian of the Bayesian displacement estimator

equation and implemented Newton’s method.

5.2 Methods

5.2.1 Bayesian Displacement Estimation

As described in Section 2.2.1, Bayesian methods have been employed to reduce vari-

ance and perform better in a mean square error sense than a Cramer-Rao lower bound
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(CRLB) limited estimate by using a biased estimation scheme [24, 25, 26, 67, 68]. We

apply the Bayesian displacement estimator to RF data to calculate displacement and reduce

estimation variance. The Bayesian displacement estimator uses the Bayes’ Theorem to es-

timate a posterior probability density function (PDF) of a displacement estimate, τk, given

the observed RF data, x, shown here as,

Pk(τk|x) =
Pk(x|τk)Pk(τk)

Pk(x)
, (5.1)

where Pk(x|τk) is the likelihood function, Pk(τk) is the prior PDF, and Pk(x) is the marginal

likelihood PDF [25, 26, 67]. In short, the Bayesian displacement estimator finds the dis-

placements, τk, that maximize the posterior PDF of a set of displacement estimates and the

observed RF data. We can describe the terms in Equation 5.1 in the log-domain as,

ln(Pk(τk|x)) ∝− 1
4σ2

n

M−1

∑
s=0

(rk[s]− tk[s;−τk])
2− 1

pλ p ∑
k, j∈B

w j|τk− τ j|p, (5.2)

which is advantageous and allows us to separate the likelihood term and prior term. The

first term in Equation 5.2, the log likelihood, represents the quality of the current estimate

kernel. The likelihood term is the sum-squared difference between the reference RF signal,

rk[s], and the tracked RF signal, tk[s;−τk], delayed by −τk. The second term in Equation

5.2, the prior PDF term, incorporates the additional information into the posterior PDF and

is modeled as a generalized Gaussian Markov Random Field (GGMRF) prior that assumes

displacement estimates, τ j, that are spatially adjacent from the current displacement esti-

mate, τk, are a reasonable source of knowledge for describing the prior information [89, 67].

The likelihood and prior terms will be described in more detail in the next sections.

To find the displacement estimates, we apply the maximum a posteriori principle to

Equation 5.2 for all N kernels in the dataset, shown as,

~̂τ = argmax
N−1

∑
k=0

lnPk(τk|x), (5.3)
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which maximizes the global log-posterior probability of displacements given our data. To

solve for the vector of displacement estimates, optimization routines can be used to find the

minimum of the negative global log-posterior probability. The original publications used

quasi-Newton, line-search methods to implement the minimization [67, 68]. These meth-

ods did not use analytical derivatives to reach the solution, but approximated the derivatives

using finite differences which was computationally expensive. In the next sections, we de-

rive analytical derivatives of the two terms of the Bayesian displacement estimator: the

likelihood function and the prior function. Then, we describe the optimization methods

used to find the displacement estimates with and without the analytical derivatives and

evaluate the execution times.

5.2.2 Likelihood Function

As described in Section 2.2.1, the likelihood function of the Bayesian displacement esti-

mator is derived from a minimum mean square error estimator, the sum squared difference.

The log likelihood function fL(τk) is described as,

fL(τk) =−
1

4σ2
n

M−1

∑
s=0

(rk[s]− tk[s;−τk])
2, (5.4)

which includes the sum-squared difference between the reference RF signal, rk[s], and the

tracked RF signal, tk[s;−τk], delayed by−τk over the kernel length M. The likelihood term

is weighted by an adaptive noise term, σ2
n , to account for the noise and decorrelation in

both RF signals shown as,

σ
2
n =

PRF

SNRρ +1
, (5.5)

where PRF is the power of the RF signal. SNRρ is derived from the peak correlation-

coefficient estimate of the SNR shown as,

SNRρ =
ρmax

1−ρmax
, (5.6)
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where ρmax is the peak of the normalized cross-correlation between the two signals over

the kernel k [25, 26].

5.2.2.1 Gradient of Likelihood Function

The gradient of a function is a vector of first partial derivatives of the function at points

k. It can be interpreted as the direction and rate of fastest increase or decrease. In opti-

mization, you can maximize or minimize the function to find where the derivative is zero

and solve for an optimal set of values for a certain parameter. The gradient of the Bayesian

displacement estimator in Equation 5.2 can be described as,

O f (τk) =



∂ f
∂τ1

∂ f
∂τ2

∂ f
∂τ3
...

∂ f
∂τN


(5.7)

which is a vector of derivatives with respect to the displacement τk at the axial location k

[90]. The gradient of the likelihood function in Equation 5.4 is evaluated as,

O fL(τk) =
∂ fL

∂τk
=

1
2σ2

n

M−1

∑
s=0

(rk[s]− tk[s;−τk])

(
∂ tk[s;−τk]

∂τk

)
. (5.8)

To analytically solve for
(

∂ tk[s;−τk]
∂τk

)
, the derivative of the tracked signal, we first upsample

the delayed RF signal and model it as a polynomial. This is calculated only on the first

iteration and updated with the new displacements, τk, on each iteration. We also compute a

forward and backward difference at the edges to approximate the gradient at the boundaries.
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5.2.2.2 Hessian of Likelihood Function

The Hessian is an N-by-N matrix of partial derivatives of a function [91]. It is inter-

preted as the local curvature of a function and like the gradient, it can be used in optimiza-

tion to find a local minima or maxima. We describe it here and use it later in Newton’s

method. The Hessian of the Bayesian displacement estimator can be described as,

H f =



∂ 2 f
∂τ2

1

∂ 2 f
∂τ1∂τ2

∂ 2 f
∂τ1∂τ3

· · · ∂ 2 f
∂τ1∂τN

∂ 2 f
∂τ2∂τ1

∂ 2 f
∂τ2

2

∂ 2 f
∂τ2∂τ3

· · · ∂ 2 f
∂τ2∂τN

∂ 2 f
∂τ3∂τ1

∂ 2 f
∂τ3∂τ2

∂ 2 f
∂τ2

3
· · · ∂ 2 f

∂τ3∂τN

...
...

... . . . ...

∂ 2 f
∂τN∂τ1

∂ 2 f
∂τN∂τ2

∂ 2 f
∂τN∂τ3

· · · ∂ 2 f
∂τ2

N


. (5.9)

In terms of the partial derivatives in the Hessian, the likelihood function only has depen-

dence on τk which is the displacement estimate at the current axial location. Therefore,

the likelihood function only contributes to the diagonal of the Hessian matrix and all other

terms are zero. The Hessian of the likelihood function is,

H fL =



∂ 2 fL
∂τ2

1
0 0 · · · 0

0 ∂ 2 fL
∂τ2

2
0 · · · 0

0 0 ∂ 2 fL
∂τ2

3
· · · 0

...
...

... . . . ...

0 0 0 · · · ∂ 2 fL
∂τ2

N


. (5.10)

The diagonal terms in the Hessian matrix are found by taking the derivative of Equation

5.8 (the gradient of the likelihood function) with respect to τk. Using the product rule, we

evaluated the second derivative of the likelihood function as,

∂ 2 fL

∂τ2
k

=
1

2σ2
n

M−1

∑
s=0

[
(rk[s]− tk[s;−τk])

(
∂ t2

k [s;−τk]

∂τ2
k

)
−
(

∂ tk[s;−τk]

∂τk

)2
]
. (5.11)
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Similar to
(

∂ tk[s;−τk]
∂τk

)
, we can find

(
∂ t2

k [s;−τk]

∂τ2
k

)
analytically on the first iteration using the

second order central difference equation on the delayed RF signal that has been upsampled

and modeled as a polynomial. We also approximate the second derivatives at the edges

using forward and backward second differences.

5.2.3 Prior Function

The second term of the Bayesian displacement estimator is the prior probability func-

tion. As described in Section 2.2.1, the prior probability function includes the additional

information from the surrounding axial displacement estimates, τ j, and is written as,

fPrior(τk) =−
1

pλ p ∑
k, j∈B

w j|τk− τ j|p, (5.12)

where τk is the current displacement estimate, w j weights the adjacent displacement esti-

mates in the neighborhood B [69]. In this work, we chose a neighborhood B of 3 which

means j = k− 1,k,k + 1. The weighted prior term also has tuning parameters λ and p

which modulate the distribution of the prior PDF. In the Bayesian displacement estimator,

a p of 2 gives the prior PDF a Gaussian distribution which is computationally faster and

tends to more accurately preserve the axial displacement profile in a homogeneous region

[67]. We chose λ empirically based on the median axial SNRρ and the maximum displace-

ment of the prior. This allows the algorithm to scale the width of the prior without biasing

the result away from the true displacement [67]. In practice, the absolute value |τk− τ j|p

is approximated by a smooth function
(√

((τk− τ j)2 + ε)
)p

where ε is a small number

(ε = 10−6) [67, 92].
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5.2.3.1 Gradient of Prior Function

The gradient from Equation 5.7 can be applied to the prior function and solved as,

∂ fPrior

∂τk
=
(
−

w j

λ p

)
∑

k, j∈B

[
(τk− τ j)

(
(τk− τ j)

2 + ε
)( p

2−1)
]
, (5.13)

where (τk− τ j) is the difference between the current displacement estimate and adjacent

displacement estimates and is summed over a neighborhood B ( j = k−1,k,k+1). When

computing (τk−τ j) and (τk−τ j)
2, it is also necessary to include boundary conditions at the

edge locations where the neighborhood is undefined. We approximated the displacements

at the boundaries using finite differences.

5.2.3.2 Hessian of Prior Function

In the gradient of the prior function in Equation 5.13, there is dependence on variables at

the current location k and at locations j that surround k. The partial derivatives with respect

to the j location can also be found analytically and used to create a Hessian matrix of

second partial derivatives. The neighborhood of j = k−1,k,k+1 will give us a tridiagonal

Hessian matrix. We constructed a Hessian matrix of the prior function shown as,

H fPrior =



∂ 2 fPrior
∂τ2

1

∂ 2 fPrior
∂τ1∂τ2

0 · · · 0

∂ 2 fPrior
∂τ2∂τ1

∂ 2 fPrior
∂τ2

2

∂ 2 f
∂τ2∂τ3

· · · 0

0 ∂ 2 fPrior
∂τ3∂τ2

∂ 2 fPrior
∂τ2

3
· · · 0

...
...

... . . . ...

0 0 0 · · · ∂ 2 fPrior
∂τ2

N


. (5.14)

The diagonal of the Hessian matrix of the prior is the second partial derivative with
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respect to τk which is,

∂ 2 fPrior

∂τ2
k

=
(
−

w j

λ p

)
∑

k, j∈B

[
(τk− τ j)

2(2−P)
(
(τk− τ j)

2 + ε
)( p

2−2)

+
(
(τk− τ j)

2 + ε
)( p

2−1)
]
.

(5.15)

The second partial cross derivative terms in Equation 5.14 at the j locations are,

∂ 2 fPrior

∂τk∂τ j
=
(
−

w j

λ p

)
∑

k, j∈B

[
(τk− τ j)

2(2−P)
(
(τk− τ j)

2 + ε
)( p

2−2)

−
(
(τk− τ j)

2 + ε
)( p

2−1)
]
,

(5.16)

which will constitute the upper and lower diagonals of the Hessian matrix. Each term is

still summed over the neighborhood B.

5.2.4 Run Time Experiments

The run time was evaluated in simulations modeling the response of homogeneous

tissue to an acoustic radiation force-induced displacement. The simulation method is de-

scribed in Section 3.2.2 and the parameters are listed in Table 3.1 [19]. We simulated a

linearly elastic, isotropic phantom with a shear modulus of 6 kPa. Field II was used to

calculate the pressure field of the experimental transducer configuration [73]. LS-DYNA

(Livermore Software Technology Corporation, Livermore, CA) was used to simulate the

displacements induced by the ARF push [19]. The 3D mesh extended 6.1 cm axially, 2.0

cm laterally, and 0.3 cm in elevation. The transducer was a C5-2 and the ARF push used an

F/1.5, center frequency of 2.3585 MHz, duration of 128 µs, and focus of 4.98 cm in depth.

The ultrasonic tracking used a center frequency of 3.125 MHz. After Field II simulated the

tracked response, additive white Gaussian noise was added to the RF signals to achieve an

SNR of 10 or 30 dB. We simulated 100 independent speckle realizations for each SNR and
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tested the run time for the displacement estimation algorithms using two RF lines of the

acoustic radiation force-based displacement data.

5.2.5 Optimization Routines

The Bayesian displacement estimator in Equation 5.2 is solved as a minimization prob-

lem. Equation 5.3 is summed axially over the region-of-interest to solve for a vector of

displacements, τk, that maximize the global log-posterior probability (i.e., minimizes the

negative global log-posterior probability) given our data and the adjacent displacement es-

timates. We implemented the minimization routines described in the following sections in

MATLAB (The Mathworks Inc., Natick, MA, USA) on a Dell Precision T5600 Intel Xeon

3.1 GHz computer with 16 GB memory.

5.2.5.1 Unconstrained Minimization Solvers

We tested two pre-existing nonlinear unconstrained minimization solvers. The first

was a MATLAB function, fminunc. The second optimizer was a program called minFunc

written by Schmidt (2005) that offers a variety of nonlinear unconstrained minimization

solvers, similar to MATLAB’s fminunc [70]. We used a quasi-Newton method with a

low-memory BFGS and line search algorithm for each solver. First, we supplied the full

Bayesian displacement estimator in Equation 5.2. The solvers use finite differences to

estimate the gradient. Then, they use the estimated gradients to approximate a Hessian

which is why it is not a full Newton’s method. We tested the run time and observed the

displacement estimation output and compared it to normalized cross-correlation described

in Section 2.2.2.

The solvers can also be supplied with the analytical gradient of the function to be op-

timized. This will save computation time because it will not have to use finite differences

to solve for the gradient or approximate the Hessian. The gradient of the Bayesian dis-

placement estimator is the sum of the gradient of the likelihood and prior functions from
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Equations 5.8 and 5.13, respectively, and shown as,

O fi =
∂ ln(Pk(τk|x))

∂τk
=

∂ fL

∂τk
+

∂ fPrior

∂τk
. (5.17)

We tested the performance of the solvers using a quasi-Newton algorithm with the analyti-

cal gradient in Equation 5.17 included.

We also tested inputting the analytical Hessian matrix into each solver. The Hessian

of the Bayesian displacement estimator includes the second partial derivatives of the like-

lihood function and the prior function from Equations 5.10 and 5.14, respectively, and is

shown as,

Hi = Hln(Pk(τk|x)) = H fL +H fPrior . (5.18)

In MATLAB’s fminunc, we used the trust-region algorithm which uses the gradient and

Hessian to approximate the search region that is being minimized. In minFunc, we used

the full Newton’s method algorithm (described more in the next section) with the gradient

and Hessian inputs. We tested the run time of each solver.

5.2.5.2 Newton’s Method

In this section, we describe using Newton’s method that we manually coded in MAT-

LAB without using a pre-existing solver. Newton’s method is used in optimization to find

a minimum of a function that has multiple variables and is twice differentiable. It uses

the gradient and Hessian described in the previous section. Newton’s method requires the

function to have an invertible Hessian matrix. In the Bayesian displacement estimator, we

have an analytically solvable gradient and Hessian and a defined number of axial locations

that determine the size of our Hessian matrix that is not too costly to compute. In this

Newton’s method, we find the vector of displacements, ~̂τi+1, by iterating the equation,

~̂τi+1 = τi− γ[Hi]
−1(O fi) (5.19)
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where τi is the displacement estimate vector for the current iteration, γ is the relaxation step

size, Hi is the Hessian matrix from Equation 5.18, and O fi is the gradient from Equation

5.17. This is iterated until it reaches below a tolerance in the change of overall probability

or a specified number of iterations. We ran Newton’s method using the full analytical

gradient and Hessian for various relaxation step sizes and showed the performance.

The Bayesian displacement estimator is supplied with an initial guess of the displace-

ment estimates before minimization. In Newton’s method, we can also set an initial guess

for the displacement estimates at the first iteration for τi=0. Typically when solving the

Bayesian displacement estimator, the initial guess is set to the normalized cross-correlation

solution. To test an uninformed guess, we can supply the estimator with initial displace-

ments of zero. We compare the performance of the estimator with the informed (normalized

cross-correlation displacements) and uninformed (zero) initial guesses.

The two terms of the Bayesian displacement estimator, the likelihood and the prior,

are separable. Therefore, we can also solve the equation using either term. We can solve

for the likelihood function solution by turning the prior weights to zero and implementing

Newton’s method. This implementation would only include the gradient of the likelihood

term in Equation 5.8 and the Hessian of the likelihood term from Equation 5.10 which only

includes the center diagonal. We tested the likelihood function solution using Newton’s

method without the prior information and reported the run time and result.

5.3 Results

5.3.1 Unconstrained Minimization Solvers

The two pre-existing optimization solvers used were MATLAB’s fminunc and Schmidt’s

minFunc [70]. The Bayesian displacement estimator equation is solved first without using

analytical derivatives. Two examples of simulated phantoms with SNRs of 10 and 30 dB

are shown in Figure 5.1. We timed the solvers to compute the displacement estimate be-
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Figure 5.1: Bayesian displacement estimator results for the pre-existing minimization
solvers, fminunc and minFunc, without using analytical derivatives in one example for
each SNR a) 10 dB and b) 30 dB. Also, normalized cross-correlation is shown in red. The
Bayesian displacement estimator was initialized with normalized cross-correlation and ran
until it reached a convergence tolerance (10e−6) or a maximum of 1000 iterations.

tween two RF lines for 100 cases for each SNR. The execution time results are shown in

Table 5.1. For an SNR of 30 dB, normalized cross-correlation took 0.092±0.03 seconds

(s), and for reaching a Bayesian displacement estimator solution, fminunc took 90.86±0.96

s, and minFunc took 228.1±77.2 s. To reach a regularized Bayesian solution, this method

has a high computational cost for estimating the displacement of only one RF line.

Including the analytical gradient into the solvers greatly reduces the computational

time. Figure 5.2 show the results of each solver with the analytical gradient included.

Both fminunc and minFunc are using a quasi-Newton algorithm and line search methods.

The execution time results are shown in Table 5.1. For an SNR of 30 dB, fminunc took

1.07±0.19 s, and minFunc took 0.83±0.21 s. Both solvers perform similarly well, but

minFunc has faster convergence.

Additionally, the full Hessian matrix can be used as an input to these solvers. In fmi-

nunc, it uses the trust-region algorithm to solve the equation when the full Hessian is an

input. In minFunc, we used full Newton’s algorithm. The displacement results are shown in

Figure 5.3. Both solvers actually took longer when the Hessian was included, so it does not
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Figure 5.2: Bayesian displacement estimator results for the pre-existing minimization
solvers, fminunc and minFunc, using analytical derivatives as inputs in one example for
each SNR a) 10 dB and b) 30 dB. Also, normalized cross-correlation is shown in red. The
Bayesian displacement estimator was initialized with normalized cross-correlation and ran
until it reached a convergence tolerance (10e−6) or a maximum of 1000 iterations.

provide a computational benefit for these methods. For the 30 dB SNR cases, MATLAB’s

fminunc took 20.4±4.33 s and minFunc took 74.4±54.1 s. The additional time is due to

computational checks that the optimizing algorithms perform on the inputted Hessian prior

to starting the optimization.

5.3.2 Newton’s Method

To eliminate any extra computations in the pre-existing solvers, we coded our own

Newton’s method to solve the Bayesian displacement estimator using Equation 5.19 and

the analytical gradient and Hessian matrix. Using the full Hessian matrix from Equation

5.18, we solved the Bayesian displacement equation with the cross derivatives incorporat-

ing the neighboring displacement estimate information into the prior terms. We started with

the normalized cross-correlation solution for the initial guess of the displacement estimates

to show the performance of an informed initial guess. Figure 5.3 shows the displacement

results for our Newton’s method using the gradient and full Hessian matrix after 1000 itera-

tions with a dotted magenta line. The method is able to converge to a solution using a large
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Figure 5.3: Bayesian displacement estimator results for the pre-existing minimization
solvers, fminunc and minFunc, using analytical gradient and Hessian as inputs in one ex-
ample for each SNR a) 10 dB and b) 30 dB. Also, normalized cross-correlation is shown in
red. The Bayesian displacement estimator was initialized with normalized cross-correlation
and ran until it reached a convergence tolerance or a maximum of 1000 iterations.

relaxation step size of 1. Figure 5.4a) shows the negative global log-posterior probability

that is being minimized at each iteration for this 30 dB SNR example. Figure 5.4b) also

shows the displacement estimate at iterations 50, 200, and 1000 as it is converging. For

1000 iterations over 100 simulations at an SNR of 30 dB and a relaxation step size of 1,

the coded Newton’s method takes 3.75±0.12 s. The maximum number of iterations can be

reduced (or tolerance can be increased) to provide less regularization, but still give a more

favorable displacement estimate over normalized cross-correlation. At 200 iterations, the

method takes 0.99±0.04 s at SNRs of 30 dB. These run time results are reported in Table

5.1.

The chosen relaxation step size, γ , can also affect the rate of convergence. If the Hessian

matrix is set up incorrectly or becomes ill-conditioned, the method may only work for

smaller relaxation step sizes and the optimization will take too long to reach a solution to

provide a computational benefit. In Figure 5.5, we can see that the method works for larger

relaxation step sizes up to 1 and even 1.5. Figure 5.5a) shows the negative global log-

posterior probability that is being minimized at each iteration for this 30 dB SNR example
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Figure 5.4: a) Negative global log-posterior probability being minimized at each iteration
of Newton’s method with a relaxation step size of 1. b) Displacement estimation results for
normalized cross-correlation and the Bayesian displacement estimator solved with New-
ton’s method at iteration 50, 200, and 1000. The Bayesian displacement estimator was
initialized with normalized cross-correlation.

and Figure 5.5b) shows the displacement outputs at relaxation step sizes of 0.1, 0.5, 1,

and 1.5 after 200 iterations of Newton’s method and initialized with normalized cross-

correlation. The run time for each of the relaxation step sizes 0.1, 0.5, 1, and 1.5 that

are shown in Figure 5.5 are 1.02±0.04 s, 1.01±0.05 s, 0.99±0.04 s, and 1.01±0.04 s,

respectively, for 200 iterations.

Next, we tested the performance of the Bayesian displacement estimator solved with

Newton’s method using an uninformed initial guess for the displacement estimates. We

used the full Hessian matrix and started with initial displacement estimates of zeros. Figure

5.6 shows that we can minimize the global log-posterior probability with a zero initial guess

and still converge to a regularized Bayesian displacement estimate. Figure 5.6a) shows the

negative global log-posterior probability that is being minimized at each iteration for the

30 dB SNR example for the initial guess of zero with relaxation step sizes 1 and 1.5. For

comparison, the minimization with normalized cross-correlation as an initial guess is also

shown. Figure 5.6b) shows the displacement outputs for the uninformed initial guesses and

informed guess after 1000 iterations of Newton’s method. The uninformed initial guesses
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Figure 5.5: a) Negative global log-posterior probability being minimized at each iteration
of Newton’s method with relaxation step sizes of 0.1, 0.5, 1 and 1.5. b) Displacement es-
timation results for normalized cross-correlation and the Bayesian displacement estimator
solved with Newton’s method after 200 iterations using relaxation step sizes of 0.1, 0.5,
1, and 1.5. The Bayesian displacement estimator was initialized with normalized cross-
correlation.

are also shown at iteration 200 for both relaxation step sizes and are converging from zero.

The run time to reach 1000 iterations of Newton’s method with an initial guess of zero is

3.60±0.12 s for a relaxation step size of 1 at 30 dB SNR.

To get a displacement estimate even faster, we can use Newton’s method without the

prior terms. This will only include the gradient of the likelihood term shown in Equation

5.8 and the Hessian of the likelihood term shown in Equation 5.10. The Hessian will now

be only the diagonal of the matrix and the prior weights will be zero. The initial guess can

be zero and we can reach a solution similar to normalized cross-correlation in only a few

iterations. The five iterations shown in Figure 5.7 only take 0.087±0.006 s for SNRs of 30

dB. These run time results are shown in Table 5.1.

5.4 Discussion

In this section, we have shown methods for optimizing the Bayesian displacement esti-

mator. Without solving for the analytical derivatives, it is computationally costly and can
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Figure 5.6: a) Negative global log-posterior probability being minimized at each iteration
of Newton’s method with an initial guess of zeros and relaxation step sizes of 1 and 1.5. The
probability for the initial guess of normalized cross-correlation is also shown. b) Displace-
ment estimation results for normalized cross-correlation and the Bayesian displacement
estimator solved with Newton’s method after 200 and 1000 iterations for the uninformed
guess for relaxation step sizes of 1 and 1.5. The displacement estimate results for an initial
guess of normalized cross-correlation are also shown.

Figure 5.7: a) Negative global log-posterior probability being minimized at each itera-
tion of Newton’s method using only the gradient and Hessian of the likelihood function
and the prior function is zero. b) Displacement estimation results for normalized cross-
correlation and the Bayesian displacement estimator’s likelihood function solved with
Newton’s method after 1, 2, and 5 iterations with an uninformed guess of zeros and a
relaxation step sizes of 0.5.
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Table 5.1: Simulation Run Time Results

Execution Time (s) Iterations

SNR = 10 dB (n = 100)

NCC 0.093±0.04 ––
fminunc, no gradient 90.50±1.55 ––
minFunc, no gradient 320.0±83.8 ––
fminunc, gradient 1.45±0.21 227.9±42.4
minFunc, gradient 1.08±0.22 159.6±30.4
fminunc, Hessian 15.9±5.57 1000
minFunc, Hessian 73.6±57.5 1000
Coded Newton’s Method (Full Eqn, Init=NCC) 3.75±0.17 1000
Coded Newton’s Method (Full Eqn, Init=NCC) 0.99±0.05 200
Coded Newton’s Method (Likelihood, Init=0) 0.092±0.03 5

SNR = 30 dB (n = 100)

NCC 0.092±0.03 ––
fminunc, no gradient 90.86±0.96 ––
minFunc, no gradient 228.1±77.2 ––
fminunc, gradient 1.07±0.19 149.4±42.2
minFunc, gradient 0.83±0.21 106.1±19.8
fminunc, Hessian 20.4±4.33 1000
minFunc, Hessian 74.4±54.1 1000
Coded Newton’s Method (Full Eqn, Init=NCC) 3.75±0.12 1000
Coded Newton’s Method (Full Eqn, Init=NCC) 0.99±0.04 200
Coded Newton’s Method (Likelihood, Init=0) 0.087±0.006 5
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take over three orders of magnitude longer than normalized cross-correlation to compute

Bayesian displacement estimates. Using the analytical gradient as an input to optimization

functions can greatly reduce computational time and allow the Bayesian displacement es-

timator to be solved two orders of magnitude faster. Inputting the Hessian matrix did not

provide much computational benefit using the pre-existing optimization solvers discussed

in this chapter.

We have shown that Newton’s method is stable with the derived analytical gradient and

Hessian of the Bayesian displacement equation. In ultrasonic displacement estimation, the

axial range and sampling is such that it is not too costly to construct a Hessian matrix for

the range of axial locations. Depending on how much data is included in the Hessian, the

method could get more costly or the Hessian could become ill-conditioned. However, in

our applications, the Hessian of the Bayesian displacement estimator is invertible. Addi-

tionally, the method requires correct boundary conditions to maintain stability.

The fastest method to compute a full, regularized Bayesian displacement solution was

to use the analytical gradient and minFunc’s quasi-Newton algorithm. This method may be

reducing computations by approximating the Hessian rather than computing the full Hes-

sian at each iteration in Newton’s method. Coding Newton’s method manually was faster

than using the pre-existing solvers when using the full Hessian matrix. The optimization

programs described also have more checks on the Hessian’s properties that slow it down.

Our problem is well-behaved, so we did not include additional modifications.

There is a trade off between the regularization included with the prior term and run

time. If not as much regularization is needed, the method can be run for fewer iterations or

an increased tolerance, but still have the benefits of the Bayesian displacement estimator.

Figure 5.5 shows a result that has not reached full convergence, but still has an improved

estimate over normalized cross-correlation. Because the Bayesian displacement estimator

terms are separable, we can also remove the prior terms to reach an unregularized solution

even faster. The likelihood-only solution can be solved in only a few iterations starting at
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the initial guess of zero.

The analytical gradient and Hessian solutions to the Bayesian displacement estimator

improve computational cost and run time. The run times may change based on the device

or CPU used to run the code. We have observed changes in run time on different systems,

but the trends have been the consistent. There is also potential to code these methods faster

in different programming languages. Other ways to reduce computational cost and make

the method more robust could be applying an adaptive step size. This method could be

improved by automatically choosing a step size for stability.

5.5 Conclusion

We have made improvements in optimizing the advanced Bayesian displacement esti-

mator. We have shown a large improvement in the run time by supplying an optimizing

solver function with the analytical gradient. There is also improvement in reducing com-

putational cost by solving for a Hessian matrix and implementing Newton’s method. The

Bayesian displacement estimator can be solved using full Newton’s method with the gradi-

ent and Hessian. Additionally, a Bayesian likelihood solution can be reached faster than a

normalized cross-correlation solution using Newton’s method.
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Chapter 6

On-Axis Acoustic Radiation Force-based Elasticity in Layered, Skin-Mimicking

Phantoms

Parts of this work were originally presented at and published as a proceedings paper in

[93]: Walsh, Kristy, et al. “On-axis acoustic radiation force-based elasticity measurement

in homogeneous and layered, skin-mimicking phantoms ” Proc. IEEE Int. Ultrason. Symp.

(IUS) (2018): 1-3. © 2018 IEEE.

6.1 Introduction

An area of ultrasound elasticity imaging that needs improvement is quantitatively mea-

suring skin elasticity. Currently, it is challenging to quantify the elasticity in skin due to the

boundary conditions and complex structure. As described in Section 1.3.2, elasticity imag-

ing in the skin has been difficult due to the skin’s thin nature and complicated surrounding

structures, including subcutaneous fat, muscle, and bone [40, 41]. The skin structure also

introduces new challenges to the mechanical models in elasticity because it is composed

of thin layers bounded to the substrate, or subcutaneous tissue [40, 42]. Some groups use

an external vibration or apply a displacement to the surface of the skin and measure the

response using ultrasound. Similar to the FibroScan® system for the liver, a dynamic elas-

tography technique using a vibrator has been tested in the skin, but the proximity of the

skin to the transducer and vibrator make it difficult to quantify any shear wave propagation

in the skin layer [56]. Another method that has been tested in skin is strain imaging which

applies a quasi-static displacement to the tissue surface using the ultrasound transducer and

measures the strain. [57, 58]. Others have applied a vacuum suction to the tissue and use

high frequencies, around 20 MHz, to measure the strain response [59]. These methods only
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estimate relative strain measurements and are not quantitative [59, 57, 58]. They can also

be subject to operator variability and often require a contralateral control measurement on

the patient which may not be available in all patient populations if the disease is bilateral.

Acoustic radiation forced-based methods can be used to induce a reproducible displace-

ment. Currently, the most common method being developed to quantify the elasticity of

skin is shear wave elasticity imaging (SWEI) [41, 60, 61, 62]. SWEI can estimate tis-

sue elastic properties by monitoring displacement induced by shear waves following an

acoustic radiation force (ARF) excitation [15]. Assuming the tissue is linearly elastic and

isotropic, shear wave speed, cT , can be related to shear modulus, µ , by cT =
√

µ/ρ at a

constant density, ρ . [6]. Common SWEI methods use this equation to reconstruct shear

modulus from shear wave speed which can be measured as displacement arriving at lateral

locations [31], [16].

Shear wave speed is difficult to measure in heterogeneous and anisotropic regions where

there are changes in stiffness and mechanical behavior based on orientation [31, 4]. Also,

lesions or tissue boundaries have complex shear wave reflections that corrupt the shear

wave speed measurements [4]. From these factors and the thin nature of the skin, SWEI

measurements in the skin are biased based on the skin thickness [41]. Some groups attempt

to offset this layer-dependent bias by normalizing the shear wave speed measurements by

the width of the skin layer, but they still rely on measuring the velocity of a complex shear

wave and do not have an analytical model to convert to shear modulus [41, 61, 62]. To get

accurate measurements of elasticity from patient to patient, there needs to be an improved

quantitative measurement technique. This chapter applies the ARF-based elasticity tech-

nique that measures on-axis displacement rather than lateral shear wave speed to reduce

the effects of a complicated shear wave propagation in the skin.

We use a finite element method (FEM)-based look-up table to estimate shear modu-

lus at the on-axis location rather than at lateral locations. We estimate the time-to-peak

on-axis displacement at each depth in the focal region and use a look-up table to esti-

76



mate shear modulus. We have shown that measuring on-axis displacements requires an

advanced displacement estimator, such as a Bayesian displacement estimator, which we

have demonstrated in homogeneous simulations and phantoms [66], [72], [65]. Here, we

test the ability to quantify elasticity in layered phantoms using the on-axis method with an

FEM look-up table and compare the results to shear wave speed-derived shear modulus es-

timates in the layers. To quantify the elasticity of the layers, we first measure a robust shear

wave speed in a homogeneous region of a phantom. Then, we slice the phantoms into thin

layers where the shear wave speed estimate was measured and acquire another matched

shear wave speed and on-axis estimate in the layers. We construct layered phantoms using

two materials: Polyvinyl alcohol (PVA), which changes elasticity after freeze/thaw cycles

and gelatin, which changes elasticity by varying the concentration of gelatin powder. We

analyzed both materials because the freeze/thaw cycles of polyvinyl alcohol cause large

changes in stiffness and we can observe more elasticities by creating phantoms using dif-

ferent concentrations of gelatin. This chapter shows a method of validating the elasticity in

each of the thin, layered phantoms and the preliminary shear modulus estimates.

6.2 Methods

6.2.1 FEM Simulation-based Stiffness Look-up Table

We generated a stiffness look-up table using a 3D FEM model coupled to Field-II sim-

ulations [73, 19]. We simulated the response of tissues with shear moduli of 0.33-13kPa

using the parameters listed in Table 6.1. The ARF excitation was modeled in Field II with

a CL15-7 transducer, 1.1 cm axial push focus, 8.9286 MHz push center frequency, push

F/3, and elevational focus of 1.5 cm. We also tested changing the location of the modeled

transducer’s elevational focus to 1.1 cm to correspond to the focus of the push and the lay-

ered phantom location. We simulated isotropic, linearly elastic, and homogeneous tissue

with an attenuation of 0.5 dB/cm/MHz, constant density of 1.0 g/cm3 and a Poisson’s ratio
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Table 6.1: CL15-7 simulation parameters

Option Parameter Value

Transducer CL15-7
Attenuation 0.5 dB/cm/MHz
Speed of Sound 1540 m/s
Push Center Freq. 8.9286 MHz
Excitation F/# 3
Excitation Focal Depth 1.1 cm
Push Duration 180 µs
Tracking Center Freq. ( fc) 10.4167 MHz
Tracking Pulse Repetition Freq. (PRF) 20 kHz
Receive F/# 1
Sampling Freq. (Field-II Simulation) 160 MHz
Sampling Freq. (RF Down-Sampled) 40 MHz
Sampling Freq. fs (Disp. Est.) 120 MHz
Bayesian Likelihood Kernel Length 3 fs/ fc

of 0.495 in a 3D mesh extending 3.0 cm axially, 0.8 cm laterally, and 0.2 cm in elevation

using LS-DYNA (Livermore Software Technology Corporation, Livermore, CA) [19]. The

tracking was performed in Field II with a 10.4167 MHz tracking center frequency, pulse

repetition frequency (PRF) of 20 kHz, and plane wave tracking [73, 74]. To ensure fully

developed speckle, there were 1,300,000 scatterers/cm3 and over 12 scatterers per resolu-

tion cell. The simulated RF data were filtered using a 4th-order, high-pass Butterworth filter

with a cutoff frequency of 8 kHz to account for a simulation artifact. The displacements

were estimated using the Bayesian displacement estimator described in Section 2.2 [25],

[26], [67], [68]. For each shear moduli simulated in the look-up table, we simulated 20

independent speckle realizations and averaged the time-to-peak displacement for each.

6.2.2 Homogeneous PVA Phantoms

Polyvinyl alcohol (PVA) is a material that has shown to be well suited for imaging

applications, such as modeling vasculature, and is attractive for phantoms because it is

nontoxic and the mechanical properties can be adjusted during construction [94]. PVA
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is mixed as a cryogel and then frozen to maintain its form. By subjecting the PVA to

additional freeze-thaw cycles, the PVA cross-links and becomes increasingly stiffer [94].

The PVA mixture was created by dissolving 17.5 g (7% weight) of PVA (molecular

weight 89,000-98,000, 99% hydrolyzed, Sigma-Aldrich Inc., St. Louis, MO) into 250

mL of water and heated to 85◦C. Then, 8% concentration by weight of graphite powder

(General Pencil Company, Inc., Jersey City, NJ) was added for scattering. The mixture

was poured into eight phantom molds and frozen for about 12 hours. After the phantoms

were completely frozen, they were completely thawed at room temperature. This freeze-

thaw cycle can be repeated to further stiffen the phantom. The phantoms underwent one

freeze-thaw cycle.

We estimated the shear modulus in these homogeneous phantoms using a shear wave

speed-derived estimate and the on-axis look-up table. We used a Verasonics Vantage 128

System (Verasonics Inc., Kirkland, WA) and the same push and tracking configurations as

the simulated look-up table and the parameters are shown in Table 6.2. The displacements

were estimated using the Bayesian displacement estimator and then motion filtered at each

depth by subtracting a quadratic fitted to data outside of the ARF motion [75]. To mea-

sure the shear wave speed, we used a time-of-flight-based method and the random sample

consensus (RANSAC) algorithm, which is robust in homogeneous tissue, and converted to

shear modulus [33]. Before these homogeneous phantoms were sliced into thin layers, we

computed five independent shear wave speeds at the depth that would be sliced and took the

median. We also found the time-to-peak displacement at each depth and used the look-up

table to estimate shear modulus.

6.2.3 Layered PVA Phantoms

We constructed layered phantom models by thinly slicing the homogeneous phantoms

and laying them on top of a stiffer PVA phantom that underwent two freeze-thaw cycles.

We cut the PVA using a mandoline food slicer and used slices of the phantoms from the
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Table 6.2: CL15-7 phantom imaging parameters

Option Parameter Value

Transducer CL15-7
Push Center Freq. 8.9286 MHz
Excitation F/# 3
Excitation Focal Depth 1.1 cm
Push Duration 180 µs
Tracking Center Freq. ( fc) 10.4167 MHz
Tracking Pulse Repetition Freq. (PRF) 20 kHz
Receive F/# 1
Sampling Freq. (Acquired) 41.67 MHz
Sampling Freq. ( fs) (Disp. Est.) 125 MHz
Bayesian Likelihood Kernel Length 3 fs/ fc

focal depth location (1.1 cm). The layered phantoms had a top layer between 2.5-4 mm

thick (1 freeze/thaw cycle) and a thicker, stiffer bottom layer (2 freeze/thaw cycles, shear

moduli of 14.2±0.75 kPa). Figure 6.1 shows the experimental set-up using the CL15-

7 transducer imaging through a 1 cm stand-off pad into the thin layer on top of a thicker,

stiffer bottom phantom. A B-mode image of a layered phantom is shown on the right. After

slicing and layering the phantoms, we imaged them using the parameters listed in Table 6.2

and plane wave tracking. The same acquisition sequence was used to generate the shear

wave speed-derived estimate and the on-axis estimate for a direct comparison at the specific

location and time. We estimated displacements using the Bayesian displacement estimator.

We tested the on-axis method using the look-up table and compared it to shear wave speed-

derived shear modulus estimates using the RANSAC algorithm. We took three acquisitions

at slightly different locations in each of the eight phantoms and took the median to get

our estimates. Two phantoms were omitted because the error was over 200% using both

estimation methods. This may have been due to the imperfect slicing of the layers.
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Figure 6.1: a) Layered PVA phantom with the top layer of PVA 1 freeze/thaw cycle and
the bottom phantom of 2 freeze/thaw cycles. The layer was coupled with ultrasound gel.
b) Experimental imaging set-up using a CL15-7 transducer. We used a 1 cm stand-off pad
on top of the thin layered phantom and the thicker, stiffer phantom. We focused the ARF
push at a 1.1 cm depth in the thin layer. c) B-mode image of a layered phantom. The layer
is between 1-1.4 cm in depth.

6.2.4 Homogeneous Gelatin Phantoms

We also constructed layered tissue-mimicking phantoms made of different concentra-

tions of gelatin to more finely vary the elasticity [86, 87, 88]. We mixed gelatin powder

(Gelatin from porcine skin, 300 Bloom strength, Sigma-Aldrich Inc., St. Louis, MO) with

degassed, deionized water and isopropyl alcohol to increase the sound speed. We stirred

and heated the solution until the gelatin powder was dissolved and the solution turned clear.

We also degassed the solution to further remove air bubbles. While it was still in liquid

form, we stirred in 6% concentration by weight of graphite (General Pencil Company, Inc.,

Jersey City, NJ) for scattering properties. The solution was poured into phantom molds,

securely sealed, and slowly rotated for about four hours until it cooled and congealed. We

rotated the phantoms so that the graphite did not settle to bottom while congealing. The

gels were then refrigerated overnight. By increasing the gelatin concentration, it increases

the stiffness. We made three 6% gelatin, three 8% gelatin, and two 10% gelatin phantoms.
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Figure 6.2: a) Experimental imaging set-up using a CL15-7 transducer and gelatin phan-
toms. We used a 1 cm stand-off pad on top of the thin layered gelatin phantom and the
thicker, stiffer gelatin phantom. We focused the ARF push at a 1.1 cm depth in the thin
layer. a) B-mode image of a layered gelatin phantom. The layer is between 1-1.25 cm in
depth.

To quantify the elasticity of the material before slicing into layers, we measured the

shear wave speed in the homogeneous phantoms using the random sample consensus (RANSAC)

algorithm and converted to shear modulus [33]. We computed three independent shear

wave speeds at the approximate depth that would be sliced and took the median to get that

phantom’s gold standard elasticity.

6.2.5 Layered Gelatin Phantoms

Layered gelatin phantoms were constructed similar to method of the PVA layered phan-

toms. In each of the eight homogeneous phantoms, we sliced two or three thin layers at a

central location where the shear wave speed was captured. We cut the layers with a sharp

knife using one continuous motion to reduce jagged edges. The gelatin layered phantoms

had thicknesses of about 1-3.5 mm, which is slightly thinner than the PVA layers. We

placed the layers on top of a larger homogeneous phantom (10% gelatin) and coupled them

with ultrasound gel. Figure 6.2 shows the experimental set-up using the CL15-7 trans-
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ducer imaging through a 1 cm stand-off pad into the thin layer on top of a thicker, stiffer

homogeneous phantom. After slicing and layering the phantoms, we imaged them using

the same push and tracking configurations modeled in the FEM simulations and described

in Table 6.2. The same focused push and plane wave tracking sequence was used to gen-

erate the shear wave speed-derived estimate and the on-axis estimate simultaneously for

a direct comparison at the specific location. Each homogeneous phantom resulted in two

or three sliced layers and each layer had three acquisitions to acquire median shear wave

speeds and on-axis measurements simultaneously. We estimated displacements using the

Bayesian displacement estimator. We tested the on-axis method using the look-up table

and compared it to shear wave speed-derived shear modulus estimates using the RANSAC

algorithm. For the shear wave speed time-of-flight estimates, we cropped the data so that

the axial range was between 0.99-1.2 cm and within the depth of the layer. We took three

acquisitions at slightly different speckle regions in each of the 20 layered phantoms and

took the median to get our estimates. The error was computed between the shear modulus

estimates in the layers and the gold standard, the shear wave speed-derived shear modulus

estimates taken from the pre-sliced, homogeneous region of the phantom.

6.3 Results

6.3.1 PVA Phantom Results

The pre-sliced homogeneous PVA phantoms had a mean shear wave speed-derived

shear modulus of 5.46±1.06 kPa. The time-to-peak displacement results are shown in

Figure 6.3 for all of the eight phantoms with three different speckle realizations for each

in the dotted lines. The solid lines show the simulated look-up table described in Section

6.2.1 using an elevational focus of 1.5 cm. The on-axis time-to-peak displacement results

are most accurate at the focal depth of 1.1 cm which is where we estimate a shear moduli

from the look-up table. The on-axis method estimated the phantoms to have a mean shear

83



Figure 6.3: Homogeneous PVA phantom time-to-peak displacement curves (dotted lines)
plotted on the Bayesian displacement-derived stiffness look-up table (solid lines). Using
the RANSAC algorithm, they had a shear modulus of 5.46±1.06 kPa. The on-axis shear
moduli are estimated at the focal depth of 1.1 cm.

moduli of 5.56±0.76 kPa.

Figure 6.4 shows the time-to-peak displacements for the layered phantoms. The dotted

sections show the general locations of the stand-off pad, thin layer, and bottom layer. The

time-to-peak displacement in the layer is consistent between the simulated look-up table

and the gold standard shear modulus using the RANSAC algorithm that was measured be-

fore the phantom was sliced. The mean shear moduli for the on-axis method and shear wave

speed-derived estimates in the layer were 5.92±1.15 kPa and 6.50±0.31 kPa, respectively.

Figure 6.5 shows the error in both methods compared to the gold standard using the

RANSAC algorithm before the phantoms were sliced into layers (mean of 5.46±1.06 kPa).

The shear wave speed-derived estimates had a bias of -1.04 kPa and the on-axis method

had a bias of -0.46 kPa. This shows that the shear wave speed-derived estimates tend to

overestimate the shear wave speed and stiffness in the thin layer more than the on-axis

method.
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Figure 6.4: Layered PVA phantom time-to-peak displacement curves (dotted lines) plot-
ted on the Bayesian displacement-derived stiffness look-up table (solid lines). Using
the RANSAC algorithm before the phantoms were sliced, they had a shear modulus of
5.46±1.06 kPa. The on-axis shear moduli are estimated at the focal depth of 1.1 cm.

Figure 6.5: Error in shear modulus estimates of thin layered PVA phantoms. The error is
computed between the shear wave speed-derived estimate before the phantom was sliced
and after they were sliced by either the on-axis look-up table method or the shear wave
speed-derived method using the RANSAC algorithm. The on-axis method has a larger
variance, but a smaller bias than the shear wave speed-derived estimates.
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Table 6.3: Homogeneous gelatin phantom shear wave speed-derived shear moduli

Mean (kPa) St. Deviation (kPa)

6% Gelatin

1 4.66 0.06
2 2.77 0.02
3 5.55 0.03

8% Gelatin

4 6.83 0.44
5 7.03 0.02
6 13.7 0.19

10% Gelatin

7 8.37 0.09
8 21.8 0.24

6.3.2 Gelatin Phantom Results

The pre-sliced homogeneous gelatin phantoms each had robust shear wave speed mea-

surements using the RANSAC algorithm. Within each gelatin concentration batch, the

phantoms had a larger range of elasticity, possibly due to warming or lacking a preserva-

tive. The shear wave speed-derived shear moduli are shown in Table 6.3.

For the layered gelatin phantom shear modulus estimates, we first used the look-up ta-

ble described in Section 6.2.1 that modeled the elevational focus of the CL15-7 transducer

as 1.5 mm. This look-up table was also used in the PVA phantom experiments. Figure

6.6 shows the time-to-peak displacements through depth for each layered gelatin phantom

acquisition. Each of the eight plots represent results from the layers sliced from corre-

sponding homogeneous phantom listed in Table 6.3 and described above each plot with the

gold standard elasticity estimate derived from the shear wave speed in the homogeneous re-

gion. The solid lines show the simulated look-up table and the dotted lines are each layered

phantom’s on-axis time-to-peak displacement. Each subplot of Figure 6.6 shows results for

two or three sliced layers with three acquisitions each.
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Figure 6.6: Layered gelatin phantom time-to-peak displacement curves (dotted lines) plot-
ted on the Bayesian displacement-derived stiffness look-up table (solid lines) modeling a
CL15-7 with an elevational focus of 1.5 cm. The elasticity of each pre-sliced homogeneous
phantom that the layers are cut from is in the title of each subplot. The ARF focal depth is
1.1 cm and the layers are approximately located between 1-1.3 mm. The on-axis estimates
are taken at 0.99-1.2 cm in depth.
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In the results shown in Figure 6.6 using a 1.5 cm elevational focus for the transducer,

we observed a large bias and a simulation mismatch. The on-axis elasticity measurements

are taken around the focal depth location of 1.1 cm. Many of these time-to-peak displace-

ments fall outside of the simulated look-up table resulting in elasticity estimates that are

over 100% error in the soft phantoms. We simulated another look-up table changing the

elevational focus of the CL15-7 to 1.1 cm, the location of the push focus. The same time-

to-peak displacement results are shown in Figure 6.7 with the new look-up table with the

transducer’s elevational focus modeled as 1.1 cm. This look-up table has a more consistent

time-to-peak displacement across the focal depth that is observed in the experiments. The

experimental time-to-peak displacement results match better with the 1.1 cm elevational

focus look-up table and there is a large reduction in bias. These results are shown next in

the error analysis.

Figure 6.8 shows the layered gelatin phantom shear modulus estimates. Each subplot

represents the eight homogeneous phantoms labeled in the top left corner. The black solid

line represents the shear wave speed-derived elasticity measured in the pre-sliced homo-

geneous region. The blue dotted lines represent the on-axis simulated look-up table shear

modulus estimates for each layered phantom acquisition. The red dashed lines represent

the shear wave speed-derived shear modulus estimates in the layered phantoms. The shear

wave speed is measured at lateral locations within the axial range of 0.99-1.2 cm and we

show it here as a constant value to compare to the on-axis results. The y-axis was limited

to 25 kPa, but some shear wave speed (SWS)-derived estimates had high error and are not

seen below 25 kPa. Phantom #4 had a SWS-derived shear modulus estimate of 145 kPa,

phantom #5 had six SWS-derived estimates between 80-420 kPa and phantom #7 had one

SWS-derived estimate of 52 kPa. The on-axis shear modulus estimates of this particular

imaging set-up and parameters have a fundamental limit of the elasticity that can be mea-

sured based the time of the first tracking acquisition. This limit can be seen around 10-15

kPa where we do not resolve time-to-peak estimates because the peak occurred at or before
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Figure 6.7: Layered gelatin phantom time-to-peak displacement curves (dotted lines) plot-
ted on the Bayesian displacement-derived stiffness look-up table (solid lines) modeling a
CL15-7 with an elevational focus of 1.1 cm (changed from 1.5 cm previously). The elas-
ticity of each pre-sliced homogeneous phantom that the layers are cut from is in the title
of each subplot. The ARF focal depth is 1.1 cm and the layers are approximately located
between 1-1.3 cm. The on-axis estimates are taken at 0.99-1.2 cm in depth.
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Figure 6.8: Layered gelatin phantom shear modulus estimates. The black lines show the
gold standard shear moduli for each phantom measured in the pre-sliced homogeneous
regions. The blue dotted lines show the on-axis look-up table derived shear modulus esti-
mates for each acquisition in the layered phantoms and the red dashed lines show the shear
wave speed-derived shear modulus estimates in each layer.

the first time step.

Table 6.4 show the shear modulus estimate results for the layered gelatin phantoms

using the on-axis method or the shear wave speed-derived method. The shear modulus

results were taken as a median of three shear modulus estimates in each method for each

20 layered phantoms, then reported as a mean and standard deviation for each batch of

layers numbered 1-8. In both the on-axis method and in shear wave speed-derived shear

moduli, the root mean square error (RMSE) tends to increase with increasing stiffness. The

shear wave speed-derived estimates have lower RMS error than the on-axis method in the
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Table 6.4: Layered gelatin phantom shear modulus estimates and errors for both on-axis
estimates and shear wave speed-derived estimates measured within the gelatin layers (all
shown in kPa). Error in both methods are measured against the shear wave speed-derived
estimates from the homogeneous phantoms.

On-Axis FEM-based Results SWS-derived Results

Mean St. Dev. RMSE Bias Mean St. Dev. RMSE Bias

6% Gel.

1 4.0 2.5 1.9 0.62 4.9 0.63 0.52 -0.28
2 5.4 1.0 2.7 -2.6 3.4 0.41 0.74 -0.68
3 4.6 1.7 1.6 0.80 4.3 0.32 1.3 1.3

8% Gel.

4 3.2 1.1 3.7 3.7 3.6 0.35 3.3 3.3
5 4.6 2.3 3.1 2.5 120 110 145 -114
6 5.6 0.8 8.2 8.1 5.8 2.2 8.1 7.9

10% Gel.

7 4.8 2.3 4.0 3.6 4.9 3.3 4.4 3.5
8 3.1 2.2 19 19 4.2 0.32 18 18

successfully measured softer phantoms, but has potential to fail badly as seen in phantom

batch #5. The on-axis method and the shear wave speed-derived estimates have similar

amounts of bias across the phantoms. These results are also shown in Figure 6.9 using a

boxplot for each phantom.

6.4 Discussion

The on-axis stiffness estimation technique using a simulated stiffness look-up table

was applied to estimate shear modulus in thin, layered phantoms. We compared the on-

axis look-up table method to shear wave speed-derived shear moduli. The two elasticity

methods had similar performance in the layered phantoms. The on-axis method had a larger

variance in shear modulus estimates than shear wave speed-derived estimates. The layered

PVA phantoms showed a reduced bias using the on-axis method. In the layered gelatin

phantoms, the shear wave speed-derived estimates had lower root mean square error, but
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Figure 6.9: Each layered gelatin phantom on-axis and shear wave speed (SWS)-derived
shear modulus estimate error. Error in both methods are measured against the shear wave
speed-derived estimates from the homogeneous phantoms.
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had more outliers that persisted in the results even after taking the median of three shear

modulus estimates. The two methods had similar bias results across the gelatin layered

phantoms. Both the shear wave speed and the on-axis method failed in the stiffer phantoms

#6 and #8. These results show potential to quantify skin elasticity at the acoustic radiation

force push location and comparable performance as shear wave speed-derived methods.

The on-axis method using this particular transducer and imaging sequence for the look-

up table had a fundamental limit around 10 kPa at the focal depth. This can be limited by

several parameters, including the imaging depth and the highest achievable pulse repetition

frequency to capture consecutive RF lines. The acoustic radiation force also causes high

signal decorrelation after it is applied that can corrupt the signals captured closely after

the push. A shorter push pulse may be better suited for this task rather than a longer

pulse typically used to increase SNR. The parameters selected to model the transducer’s

imaging configuration can affect this as well. We have observed changes in the time-to-

peak on-axis displacement profiles when changing acquisition parameters, such as F/# and

elevational focus. We saw better performance when matching the location of the modeled

elevational focus in the look-up table to the focal depth of the push. However, further

work could be done to evaluate the true elevational focus of the transducer. Also, pushing

at the manufactured elevational focus may give a higher displacement SNR that could be

advantageous.

The phantom materials and construction can also be a source of variation. The PVA and

gelatin may have different acoustic properties that can lead to model mismatch. There could

be changes in attenuation, sound speed, or inhomogeneities. Also, the gelatin phantoms

were not constructed using a hardener or added preservative. Therefore, the phantoms

may have been warming if they were not fully at room temperature which could lead to

elasticity differences and bias in consecutive acquisitions of the layer. Some of the gelatin

phantom may have had longer refrigeration time that can also increase the stiffness within

the batch of the same gelatin concentration. However, the gold standard acquisitions in the
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homogeneous phantoms were imaged immediately before slicing and imaging the layers.

Additionally, the thickness of the layers varied between slices. This could affect the range

that both measurements average across, as well as lead to bias. Also, the act of slicing the

material could lead to softening or fractures that can contribute to error.

The mechanical validation of quantitative skin measurements is difficult ex vivo. Ex-

cised tissue can have structural changes and dehydration that change the mechanical prop-

erties. The method in this chapter can be used to validate elasticity methods by providing a

way of capturing a gold standard in a homogeneous region. This could help validate elastic-

ity methods used in the skin instead of relying on a shear wave speed to compare between

patient to patient that could have different bias behavior in different tissues. We were able

to get quantitative on-axis stiffness estimates in thin layered soft phantoms similar to shear

wave speed-derived estimates. Both shear wave speed and on-axis methods failed in stiffer

layered phantoms, but further work can be done to optimize imaging parameter to image

stiffer tissues using the on-axis method.

6.5 Conclusion

The methods used to create skin-mimicking PVA and gelatin phantoms can be used to

validate quantitative elasticity imaging in thin layers. The results show that we can get shear

modulus estimates close to the value of the pre-sliced shear wave speed-derived estimates

in soft phantoms. The on-axis method performs similarly to the shear wave speed derived

stiffness estimate. The on-axis method has a larger variance, but a smaller bias than the

shear wave speed-derived estimates in the PVA layered phantoms and similar bias in the

gelatin phantoms. These preliminary results show ability to quantify on-axis elasticity in

layered media.
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Chapter 7

Conclusions and Future Work

This dissertation developed an ARF-based elasticity technique that measures on-axis

displacement rather than lateral shear wave speed to attempt to reduce the effects of a com-

plicated shear wave propagation in the skin. The clinical motivation of this work is to

improve quantitative elasticity in post-treatment head and neck cancer patients developing

secondary lymphedema and fibrosis. As previously described, elasticity imaging in the skin

has been difficult due to the skin’s thin nature and complicated surrounding structures, in-

cluding subcutaneous fat, muscle, and bone [40, 41]. Acoustic radiation force (ARF)-based

elasticity imaging can provide stiffness information that is less operator dependent and also

allows us to image deeper muscle regions that may be affected by fibrosis and lymphedema

that could not as easily be quantified using a surface technique or palpitation [5, 13]. Shear

wave speed methods in the skin have shown to be biased based on the skin thickness and

can corrupt the shear wave speed measurements [41]. Some groups attempt to offset this

layer-dependent bias by normalizing the shear wave speed measurements by the width of

the skin layer, but they still rely on measuring the velocity of a complex shear wave and do

not have an analytical model to convert to shear modulus [41, 61, 62]. There is still a sig-

nificant gap in the field for validating ultrasound elastography in skin [95]. To get accurate

measurements of elasticity from patient to patient, there needs to be an improved quanti-

tative measurement technique. The impact of improving skin elasticity imaging would be

early detection of fibrosis that may not be noticed in a physical examination of the skin

and ability to compare quantitative stiffness across different patients. This could improve

patients’ quality of life, symptom management, and survival by informing the need for

therapy before fibrosis progression.

We demonstrated a method to use a simulated stiffness look-up table for on-axis acous-
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tic radiation force-based elasticity estimation. We have shown the on-axis method coupled

with a Bayesian displacement estimator produces stiffness estimates comparable to later-

ally offset shear wave methods and we can apply a simulated look-up table to real exper-

imental data. We have shown that we can produce quantitative stiffness estimates at the

acoustic radiation force location in phantoms of different elasticities and have validated

the technique in homogeneous simulations and phantoms. We have also tested the on-axis

method in simulations of different attenuation, signal-to-noise ratio, and sound speed to

show the importance of selection of realistic parameters for the simulation model.

In addition to the development of the on-axis elasticity method, we have made improve-

ments in optimizing the advanced Bayesian displacement estimator to greatly improve run

time. This dissertation work shows the importance of an advanced displacement estimator,

such as the Bayesian displacement estimator, when measuring displacement at the acous-

tic radiation force location. The addition of Bayesian displacement estimator allows us

to reduce displacement estimation variance enough to achieve on-axis elasticity estimates

comparable to shear wave speed-derived estimates. Therefore, the Bayesian displacement

estimator is an important aspect of this work. We made large improvements in reduc-

ing the run time by two orders of magnitude by supplying an optimizing solver function

with the analytical gradient. There is also improvement in reducing computational cost by

solving for a Hessian matrix and implementing Newton’s method. The Bayesian displace-

ment estimator can be solved using full Newton’s method with the gradient and Hessian.

Additionally, a Bayesian likelihood solution can be reached faster than a normalized cross-

correlation solution using Newton’s method.

The faster solution of the Bayesian displacement equation can be applied broadly in the

field of elasticity imaging in ultrasound and is more likely to be adopted for displacement

estimation. We plan to publish the code to make it available for other groups to easily

implement our method. Additionally, there is the ability to tailor the Bayesian equation to

solve for the only the likelihood function to achieve fast, high quality displacement imag-
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ing. In this work, we mainly show displacement at the region of excitation which is quite

challenging to estimate already. However, normalized cross-correlation is commonly used

as one of the best unbiased displacement estimators and reaching a likelihood solution in

less time than normalized cross-correlation is an exciting result. This method also allows us

to tailor the amount of regularization of the prior function to reduce the computational time

of a regularized solution. There is potential to code these methods faster in different pro-

gramming languages and further optimize the code. Also, this method could be improved

by automatically choosing a step size. Further exploration into other optimization routines

has not been explored, but the first and second-order derivative solutions of the Bayesian

displacement equation that we have solved for can be applied to many other optimization

algorithms.

This dissertation also presented a method to create skin-mimicking polyvinyl alcohol

(PVA) and gelatin phantoms that can be used to validate quantitative elasticity imaging in

thin layers. The results show that we can get shear modulus estimates close to the value of

the pre-sliced shear wave speed-derived estimates in soft phantoms and the on-axis method

performs similarly to the shear wave speed-derived stiffness estimate. The on-axis method

has a larger variance, but a smaller bias than the shear wave speed-derived estimates in

the PVA layered phantoms and similar bias in the gelatin phantoms. In the future, using a

preservative in the gelatin phantoms could help improve the structural stability and reduce

variance. These preliminary results show ability to quantify on-axis elasticity in layered

media, but there is a lot of future work to be done to further validate elasticity in thin

layers.

We have demonstrated results in layered phantoms using two types of simulated look-up

tables. Future work includes optimizing the simulation and imaging parameters to increase

the stiffness it can measure, or measure faster time-to-peak displacement. This has been

optimized for the homogeneous phantoms set-ups in this dissertation, but further analysis

needs to be done to characterize the changes in measureable time-to-peak displacement
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in the layered phantoms. Next, we can model the look-up tables and perform imaging

studies in layers to determine the model we want to use. The look-up tables and imaging

sequences used in this work were optimized to achieve the highest displacement SNR in

homogeneous material, but this may not be the best approach for layered phantoms. We

can achieve good displacements at low SNRs with the Bayesian displacement estimator

[68]. Instead, we should optimize for a sequence that has the lowest push decorrelation

and highest measureable time-to-peak displacement for a particular pushing configuration.

In the homogeneous phantoms, we performed F/# studies to have a larger axial region

of displacement to average over. Then, we observed displacements in the layers using

these pushing sequences, but another F/# study should be performed to determine the best

simulation model to match thin layers. A tighter axial focus could be better in the layers.

Other future studies in the layered phantoms include testing the receive F/#, comparing

plane wave and focused tracking schemes, further increasing pulse repetition frequency by

limiting depth, and changing the elevational focus. Then, this method should be further

validated in stiffer layered phantoms to reach a range of elasticity found in human skin.

The simulated look-up table also makes some assumptions about how the acoustic radi-

ation force (Equation 1.3) generates displacements. This could be further studied because

we do not model the entire complex process of momentum transfer of the acoustic radiation

force into the tissue. We typically subtract the push duration time being applied and start

tracking at time zero to mimic the simulation. However, this could be studied further to

determine if there are changes in how the force transfers into tissue of different properties.

Other assumptions about the tissue being imaged need to be considered when generating

the stiffness look-up table such as attenuation, sound speed, and perhaps viscosity. Addi-

tionally, because we are imaging thin layers, we can test modeling the layers into the finite

element models or making a layered look-up table model. This presents another variable

of measuring and modeling the skin thickness, but it could provide more insight in the best

parameter selection or be an improvement to the look-up table. We could also segment the
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B-mode images to determine the thickness for the model.

The on-axis elasticity method was developed with the goal of improving quantitative

skin elasticity imaging. This method has potential to be applied in other areas of elasticity

imaging as well, such as cervical elastography in pregnancy, determatology applications,

muscular imaging, or anywhere a quantitative elasticity estimate could be clinically useful.

This on-axis method could also be implemented in the future on a single element probe

rather than a typical array-based transducer which could allow cheaper elasticity measure-

ments without needing a more expensive clinical scanner.
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