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Chapter I  

 

Introduction 

 

All models are wrong, but some are useful. – George Box, Ph.D. 

 

1. Overview 

Elucidating the intricate inner workings of the human body has long been a topic of interest for 

humankind. Over the last century, innovations in medical imaging methods have allowed us to examine 

internal structures in vivo, revolutionizing our understanding of our own biology. This revolution began 

with the discovery of X-ray imaging in 1895 by Wilhelm Röntgen [1]. Since then, the introductions of other 

imaging modalities, such as computed tomography, ultrasound, and magnetic resonance imaging (MRI), 

have increasingly provided researchers and clinicians alike with clearer, more detailed depictions of the 

complex systems and structures which give rise to human life. As this discipline of medical imaging grew, 

the field of medical image analysis emerged alongside. With increasing availability of routine high-

resolution medical imaging, researchers saw an opportunity to extract objective, quantitative information 

from these images [1]. 

Originally, all medical image analysis was performed by trained experts; these clinicians would visually 

assess medical images to identify lesions and diagnose disease. Expert human labor, however, is both time-

consuming and expensive, necessitating a shift toward automated medical image analysis systems. Today, 

those expert clinicians work alongside a multi-disciplinary team of biologists, computer scientists, 

engineers, and mathematicians to develop quantitative and efficient automated image processing methods. 

This collaboration generally begins with the clinician manually annotating a small set of medical images 

for a particular task, such as organ segmentation or disease classification. This dataset of raw images and 

annotations is then given to the non-clinical scientists, whose goal is to design a model that mimics the task 

of the clinician. Manual annotations, also called the ground truth, are considered the be the high-quality 

“gold standard,” and all analysis techniques invented by the non-clinical team are compared to it [2]. 

In the early days of medical image analysis, classic machine learning models were the primary analysis 

tool. Adapted from the field of computer vision [3], [4], these methods consisted of two primary phases: 

feature extraction and analysis. In the first phase, anatomical features, such as the volume or average 

intensity of various structures, were carefully extracted by domain experts. Following this, the feature set 

may be used for several different analyses, including detecting differences between healthy and disease 
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populations and training predictive models. These early models were both accurate and interpretable due to 

their specially curated feature sets and small sample sizes. At the same time, however, generating the 

features for such a model was a laborious undertaking, and these small cohort sizes prohibited these models 

from generalizing to unseen populations [5]. 

Recent advances in computing power and data storage systems have enabled a rapid increase in the 

availability and accessibility of medical imaging and electronic health record (EHR) data, introducing the 

“big data” era of medical research [6]–[8]. This increase in cohort size enables medical image analysis 

researchers to employ deep learning techniques, a subclass of machine learning which is able to perform 

highly complex tasks from sufficiently large datasets [9]. Applications of deep learning for medical imaging 

tasks have boasted incredible performance statistics, rivaling those of human experts [10].  

Yet, challenges remain. Despite the fact that we now have access to more diverse sources of data than 

ever before, most current methods in medical image analysis research focus on a single data source. In 

contrast, clinicians fuse information from many data sources during the process of diagnosis and treatment, 

including multi-modal imaging, patient demographics, medical history, and others. One major area of 

opportunity in medical image analysis involves the development of deep learning models that can combine 

diverse data sources in a similar way. Another crucial research direction is that of interpreting deep learning 

models. Although deep learning models have quickly proven to excel at many medical imaging tasks, they 

function as black-boxes: the complex mapping from input data to output prediction is uninterpretable even 

to the scientists that train them [11]. Regardless of the brilliance of reported accuracy metrics, reliable 

interpretation methods must be developed for these models before we can expect them to be deployed in 

the high-stakes environment of a medical clinic. 

In this dissertation, I outline several methods aimed at addressing specific challenges in performing 

multi-modal medical image analysis via interpretable machine learning techniques. I demonstrate these 

methods on multi-modal MRI and EHR inference in the context of mild traumatic brain injury, 

developmental disorders, and mild cognitive impairment. The remainder of the chapter is dedicated to 

providing context for topics relevant to these experiments including: modern machine learning methods for 

inference in medical image analysis; approaches for multi-modal image analysis with EHR; interpretable 

artificial intelligence techniques; and clinical applications. 

 

2. Machine Learning Inference for Medical Image Analysis 

Machine learning is the art and science of extracting hidden information from sets of data. The field 

may broadly be split into two types of tasks: supervised and unsupervised learning. Supervised learning 
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(Figure I-1) is concerned with finding a mapping 𝑓(𝑥) that captures the relationship between an input 𝑥 

and its corresponding output 𝑦. This is accomplished by learning from sets of paired examples (𝑥, 𝑦).  

Examples of supervised learning in medical image analysis include skin lesion classification [12] and 

organ segmentation [13]. In contrast, unsupervised learning focuses simply on identifying patterns within 

a dataset. These methods first make assumptions about the characteristics (for example, low variance) and 

structure (for example, clusters) of the hidden patterns, and then extract features from the dataset that adhere 

to the assumed structure. Dimensionality reduction, clustering algorithms, and anomaly detection are all 

unsupervised machine learning techniques. 

A second dimension along which the field of machine learning may be examined is model type: classic 

machine learning versus deep learning models. The remainder of this section is dedicated to describing the 

characteristics of and distinctions between these two types of models. For the sake of brevity, this discussion 

will be limited to classification models and will focus on model interpretability, as these concepts 

encompasses the main applications of this dissertation.  

 

2.1. Classic machine learning approaches 

There are many classical machine learning methods that may be employed for disease classification 

and characterization [14], [15]. The logistic regression (Figure I-1-A) is one of the simplest and most 

 

Figure I-1 Supervised learning models for classification 
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popular machine learning models for binary classification tasks; it models the probability of a sample being 

from the positive (disease) class as a logistic function of one or more variables. SVMs (Figure I-1-B) use a 

subset of samples from each class (support vectors) to find a boundary (hyperplane) which optimally 

separates the two classes. Decision trees (Figure I-1-C) learn to separate classes based on hierarchical 

decision making; often, multiple decision trees are combined to make an ensembled classifier called a 

Random Forest. These three methods have been widely used to successfully identify various conditions, 

including cognitive decline [16], diseases of the optic nerve [17], and migraine [18]. Additionally, 

predictions made by these models are fairly explainable. In the logistic regression model, each predictor 

variable has a corresponding constant, β, which describes the increase in the log-odds of the positive class 

for a unit increase in the predictor. SVM predictions may be explained in general by identifying which input 

features most influence the hyperplane and for specific inputs by measuring the distance between a sample 

and the hyperplane [19]. Similarly, predictions from decision trees may be explained by determining which 

input features are involved in the most influential decision nodes [20].  

Despite this, these classical models suffer from several drawbacks. One of the primary challenges for 

classic machine learning approaches is their reliance on hand-crafted features [9]. Consider, for example, 

the task of predicting schizophrenia onset based on structural MRI measurements [21]. In this study, the 

raw data consists of an MRI volume and a label denoting whether or not each patient has schizophrenia. 

Before predictive modeling can occur, however, both the gray and white matter cortical surfaces of each 

patient must be parcellated into 68 regions, either by a domain expert or an automated segmentation 

algorithm. Following this, the cortical thickness must be measured for all 68 regions, along with the volume 

of 6 hand-selected interior brain regions, all before finally training a predictive model to determine the 

relationship between structural brain features and schizophrenia. The success of this pipeline is driven 

largely by both the quality and quantity of extracted features. Based on recent increases in computing power 

and innovations in automated segmentation, one possible solution to the manual feature extraction problem 

is to train a classification model using every possible automatically measured biomarker. This approach, 

however, leads to the curse of dimensionality: the idea that an algorithm becomes increasingly more 

difficult and costly to optimize as the number of input variables (or dimensions) increases [22]. It can be 

seen, then, that while classic approaches strike a decent balance between interpretability and accuracy, they 

are best suited for tasks that involve a small number of carefully constructed features. To overcome these 

challenges, in the next section we will delve into the topic of deep learning. The highly complex models in 

this research area can integrate both feature extraction and inference, allowing researchers to circumvent 

the laborious phase of manual feature extraction. 
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2.2. Deep learning approaches 

To understand the challenges surrounding deep learning in medical image analysis, it is first necessary 

to have a high-level understand of how these models operate. Figure I-2 illustrates several essential concepts 

for the field of deep learning. The most basic building block of a deep learning model is the perceptron 

(Figure I-2-A). The perceptron may have any number of inputs, which are mapped to the output via a 

weighted summation followed by a non-linear activation function. Each input connection has a unique 

associated weight, which may be adjusted through supervised training to produce different patterns of 

output activation. In this way, perceptrons act as flexible feature detectors, with the output becoming active 

only when a particular combination of input features is detected. Though interesting in isolation, 

perceptrons are most powerful when strung together to create an artificial neural network (ANN) (Figure 

I-2-B). These networks consist of one or more layers of perceptrons; each layer in the network has a specific 

 

 

Figure I-2 Essential concepts in deep learning. 
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number of perceptrons (called channels), the outputs of which are connected to all channels in the next 

layer. These are called fully connected layers because all channels from one layer are connected to all 

channels of the next layer. As information flows from the input layer to the output layer, the hidden middle 

layers perform feature detection and pass their activations along to each successive layer deeper in the 

network. The final output layer is then composed of one channel per data class; to perform inference, a 

sample is fed through the network and the output channel with the highest activation determines the 

predicted class.  

With this flexible architecture in place, ANNs may be taught to perform many different types of 

classification through example learning. The training process involves first performing inference: example 

data is fed into the network and the network’s predicted class is recorded. Next, the loss (prediction error) 

is calculated by finding the difference between the predicted class and the true class. That loss is then 

backpropagated through the network, updating the perceptron weights at every layer with the goal of 

pushing the network’s ultimate prediction toward that sample’s true label. This process is then repeated 

many times for many different examples, with each example introducing a small amount of new 

information. In this way, ANNs learn complex non-linear mappings between input and output, allowing 

them to achieve incredible performances on computer vision and medical imaging tasks alike [9], [23].  

Basic ANNs as described above are excellent for processing tabular information, but convolutional 

neural networks (CNNs) are used for analyzing two-dimensional (2D) or three-dimensional (3D) data [24], 

[25]. In CNNs, the perceptron’s weighted-summation step is replaced by convolution (Figure I-2-C) to 

facilitate the capture of spatial information. Convolution involves sliding a small 2D or 3D filter across an 

image in incremental steps. At each step, pixels from the input image that overlap with the filter are 

extracted, multiplied by the filter’s weights, and summed. In this way, convolution performs location-

invariant feature extraction, where the type of extracted feature is determined by the arrangement of the 

filter’s weights. Similar to the basic ANN’s perceptron weights, the convolutional filter’s weights are 

updated via backpropagation, so the network training phase iteratively adjusts what features are extracted 

at each layer of the network in an effort to find features relevant to the output task. 

In the past decade, many methodological advancements have been made in an effort to make these 

models more accurate [26]. While such advancements in accuracy are good, performance is not the most 

pressing challenge associated with deep learning and medical image processing. One issue complicating 

the deployment of deep learning models is overfitting. Deep learning methods have so many trainable 

parameters compared to the relatively small size of training datasets, that they tend to overfit to the training 

data (for example, instead of learning universal discriminative features, they learn noise patterns in the 

training data). As a result, many models cannot generalize to unseen datasets. Methods such as dropout [27] 
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have been developed to reduce this overfitting, but the small size of medical imaging training datasets mean 

that this issue will persist for the near future. 

Another major challenge associated with deep learning methods is that they are not interpretable. In the 

last section, we described several classic machine learning methods that provide easily-dissectible 

predictions. A trained CNN, however, contains thousands of learned parameters and feature maps in its 

hidden layers, reaching such a scale that is impossible for humans to comprehend. This lack of 

interpretability is particularly problematic in the high-stakes world of medicine, as the ultimate goal of 

medical image analysis research is to deploy our models into the clinic [28]. The field of explainable 

artificial intelligence (XAI) has recently emerged in an effort to address this interpretability problem, as we 

will later discuss in Section 4.  

 

3. Multi-Modal Image Processing and Patient Context 

Most medical image analysis is concerned with processing a single type of input data. Abdominal CT 

is used to segment organs [13]; the characteristics of autism spectrum disorder are examined via EHR [29]; 

or the neurological onset of Alzheimer’s Disease is studied in longitudinal MRI [30]. In contrast, clinicians 

performing similar tasks synthesize varying data sources in order to reach a diagnosis, including a patient’s 

demographic information, medical history, medications, lab testing, and different imaging modalities. Each 

of these data sources contains a unique piece of each patient’s story. With this in mind, there has been a 

recent push within the medical image analysis community to design models which are able to capture more 

than one source of medical information [31]. In this section, we will first describe two active areas of 

research on this front (multi-modal image processing and context-aware image processing), after which we 

will discuss the challenges associated with combining techniques from these two research areas. 

 

3.1. Multi-modal image processing 

The various medical imaging modalities capture unique but complementary information; it is natural, 

then, to conceive of a model that attempts to leverage these complementary features for clinical 

applications. In general, multi-modal analysis approaches fall into three categories based on when and how 

the modalities are combined: pixel-level, feature-level, and classifier-level [31], [32]. Pixel-level fusion 

involves merging two different imaging modalities into a single volume; this volume may then be used for 

further image processing or predictive modeling [33]. There is a significant amount of literature dedicated 

to pixel-level medical image fusion, but much of this work is focused solely on generating the fused 

modality volume rather than utilizing it for predictive modeling [34]. One study that did focus on predictive 
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modeling utilized T1-weighted MRI and PET to investigate Alzheimer’s disease [35]. In this analysis, 

researchers used a white matter segmentation map from T1-weighted MRI to remove the white-matter from 

a PET scan; this non-white matter PET scan was then used to train a discriminate model of Alzheimer’s 

disease and mild cognitive impairment. 

Rather than attempting to create a single fused representation of multiple modalities, feature-level 

fusion simultaneously extracts features from each modality; these multi-modality features may then be used 

to train a predictive model. An example of this method is illustrated in a study from Sun et al. that used a 

deep-learning based method to segment brain tumors by simultaneously processing T1-weighted, T2-

weighted, and FLAIR MRI [36]. In another study, parotid gland tumors were segmented and classified 

using a multi-modal “stack” of 2D image slices from T1-weighted, T2-weighted, and diffusion-weighted 

MRI [37]. 

By far the most popular multi-modality fusion method in medical imaging, classifier-level fusion 

independently extracts features from each modality, then uses this set of single-modality features to train a 

multi-modal classifier. For example, one study used gray matter volume (MRI) and intensity (PET) from 

93 regions to train an SVM to identify Alzheimer’s disease subclasses [38]. Other studies have used 

classifier-level fusion approaches to investigate Alzheimer’s disease [39], migraine [18], [40], osteoarthritis 

[41], and prostate cancer [42], [43]. 

 

3.2. Patient context: analyzing electronic health records 

Patient context for medical image analysis is obtained via electronic health records. This multi-faceted 

longitudinal health information is stored by clinics after patient care; it includes demographic information 

(ages, sex, height, etc.), insurance billing codes, procedural codes, lab testing, medications, and any other 

information associated with a patient’s diagnosis and treatment. Recent innovations in electronic record 

handling and big data analysis methods have enabled many successful studies to take advantage of this rich 

information source [6]. For example, Zihni et al. design a predictive model of stroke outcome based on 

demographic and health history EHR features [44]. Many EHR studies have focused on characterizing 

clinical phenotypes for different diseases. Luong et al. developed a probabilistic phenotyping method for 

identifying sub-types of chronic kidney disease based on heterogenous clinical data (age/height/weight/sex, 

lab results, and medications) [45]. In a similar line of research, Lee et al. introduced a clustering method 

for identifying temporal EHR phenotypes which capture disease progression in cystic fibrosis and 

Alzheimer’s disease [46]. Other research directions, such the phenome-wide association study (PheWAS) 
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[47] and phenome-disease association study (PheDAS) [48], use hand-crafted EHR phenotypes to 

investigate phenotypic associations with various diseases. 

Building from this foundational analysis, information from EHRs has increasingly been used to enrich 

medical image processing algorithms. Most models that blend imaging and clinical data perform 

classification-level information fusion. For example, Chaganti et al. combined International Classification 

of Disease (ICD) billing codes [49] with imaging biomarkers in a logistic regression model for the 

classification of diabetes and optic nerve diseases; this analysis found that the combination of EHR and 

imaging features resulted in a more powerful predictive model than using either data source in isolation  

[48], [50]. Another study performed a characterization of breast cancer via a joint analysis of CNN-derived 

histologic image features and genetic features [51]. Other interesting advances have been made towards 

processing raw diagnostic report text instead of tabular EHR features. Zhang et al. have used such raw text 

to guide the training of a neural network to predict bladder cancer based on histologic images [52], [53]. 

 

3.3. Challenges 

Building on the work described in the previous two sections, a major focus of this dissertation deals 

with designing contextual multi-modal imaging models; in other words, models that process both EHR data 

and multi-modal imaging together. Despite the obvious potential of this holistic approach to medical image 

analysis, there are several challenges to grapple with when designing these models. The first hurdle that 

must be considered is the EHR itself. Data obtained from EHR is known to be inherently noisy; errors can 

creep in at many point in the recording process, from patient observation to the influence of billing 

procedures and avoidance of liability [54]. Additionally, EHR data are biased towards sicker populations 

since sick patients naturally require more medical care than relatively healthy patients [6]. A second related 

hurdle for contextual multi-modal model design is simply acquiring the data necessary for such a study. 

Medical image analysis in general is already afflicted by a lack of large datasets, so curating a dataset of 

sufficient size that contains multiple imaging modalities and complete longitudinal EHR data for all 

individuals is not a trivial feat. 

Another set of challenges arise in the design and training phases of contextual multi-modal image 

processing. The first of these is simply how to combine the EHR and imaging data. By far, the easiest level 

of fusion is classification-level; working with a large number of extracted imaging and clinical features, 

however, may invoke the curse of dimensionality. Additionally, extracting features independently from 

each imaging and EHR source risks the loss of complex multi-source patterns in the dataset. Yet feature-

level fusion can also be challenging due simply to hardware limitations; some graphics processing units 
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(GPUs) cannot accommodate a neural network, two or more 3D imaging volumes, and EHR data all at 

once. Here, we may draw inspiration from some innovative patch-based multi-modal imaging studies to 

overcome these hardware limitations [39].  

 

4. Explainable AI in Medical Image Analysis 

As was discussed briefly in Section 2, many machine learning methods produce interpretable 

inferences, while deep learning methods are “black-boxes”: interpreting the reasoning behind a particular 

prediction is far from trivial. To remedy this, the field of explainable AI (XAI) has blossomed in recent 

years. While preparing this manuscript, the author identified 19 review papers on the topic of XAI published 

since just 2018; these reviews included general overviews [55]–[60], method comparisons [61]–[64], user 

and societal impacts [65]–[68], and specific considerations for medical imaging applications [11], [69]–

[71]. Though each review included its own taxonomy for organizing the growing landscape of 

interpretability techniques, the two most transcendental categories were post-hoc explanations and 

intrinsically explainable models. In the remainder of this section, we describe each of these approaches in 

detail, following a brief note on the distinction between explanation and interpretation.  

 

4.1. Explanation vs. Interpretation 

The exact definitions of “interpretation” and “explanation” in the field of XAI are debated [55]. These 

words are so closely related and so often used interchangeably that precise definitions may be impossible 

to obtain (let alone enforce). Consequently, the author believes that a better solution is to simply present 

explicit definitions for how these intertwined concepts are used within this manuscript. The following 

definitions are the result of both careful literature consideration and the desire to emphasize each term’s 

unique function. 

Explanation: A metric, textual description, or visualization that provides insight into what features a 

model extracts and/or which of those features contribute the most to a particular prediction. 

Explainable: The ability of a model (or an external method acting on a trained model) to generate an 

explanation for a given prediction. 

Interpretation: The act of examining explanations in order to gain an understanding of the decision 

process made by a model. 

Interpretable: A model for which the discriminatory process is understandable by humans. 
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4.2. Post-hoc explainability  

Post-hoc explainability techniques aim to elucidate the decision-making processes of naturally 

unexplainable models. These techniques are advantageous as they can be applied to existing state-of-the-

art deep learning architectures. Their explanations typically take the form of saliency maps – heatmaps 

overlaid on an input image for which the mapped intensity represents the relative importance of each pixel. 

There are three typical approaches to producing these explanatory saliency maps. The most popular method, 

activation visualization, involves backpropagating the predicted class activation to find related activations 

within hidden network layers. Sensitivity maps accomplish this by estimating the change in output activation 

with respect to the input values [72]. Grad-CAMs (Figure I-3), on the other hand, propose that the most 

relevant activations for image classification are found in the last convolutional layers of a CNN, since 

features extracted at this level are subsequently used to produce the output classification [73]. Yet another 

method, Deep Taylor Decomposition, departs from these sensitivity-focused methods; instead, this method 

considers the pixel-wise relevance, or connection strength, between particular input and output pairs [74], 

[75]. These techniques are relatively easy to apply, and therefore have been successfully employed in many 

studies, including those examining brain-computer interfacing [76], intracranial hemorrhage [77],  pre-term 

fetus neurological structure [78], Alzheimer’s Disease [79], and COVID-19 [80]. 

In contrast to activation visualization, perturbation explainability methods produce explanations by 

tracking changes in generated predictions as an input image is modified in some way. A popular 

perturbation explainability technique is occlusion sensitivity [81]; this method systematically “grays-out” 

patches of a sample image and measures how the model’s prediction changes as different regions of the 

image are occluded. This method has recently been used to localize regions with ground glad opacities, 

vascular thickening, and other biomarkers in a study of COVID-19 chest X-rays [82]. 

 

Figure I-3 Example of a post-hoc explanation in a deep learning model 
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A final type of post-hoc explainability analysis is termed model distillation. In this approach, rather 

than pull explanations from the opaque ANN itself, the behavior of a trained ANN is distilled into a simpler 

interpretable model, such as an SVM. Because this distilled model has access to the same information as 

the ANN and mimics its behavior, it is reasonable to use the distilled model as a proxy for identifying 

significant features and correlations in the input data. One example of this approach is the local interpretable 

model-agnostic explanations (LIME) method [83]. LIME first generates the distilled model, then performs 

an occlusion sensitivity analysis to estimate the importance of different input features. This method has 

demonstrated successful medical image interpretation capabilities in a study of Parkinson’s Disease [84]. 

 

4.3. Intrinsic explainability  

While post-hoc explainability methods aim to examine a model’s decision-making after training, 

intrinsic explainability methods incorporate explanatory power into the model itself. This can be difficult 

to achieve with neural networks, as their complex non-linear architectures and legion of parameters are 

precisely what makes them so successful. Despite this, researchers have recently been exploring two 

particularly exciting approaches to intrinsically explainable deep learning models: attention mechanisms 

and prototypical networks. Attention mechanisms allow neural networks to build weighted contextual 

vectors which influence the relative importance of different inputs in downstream processing [59]. These 

context vectors may then be examined to visualize which parts of the input the neural network was attending 

to. This framework has been shown to boost neural network performance while simultaneously providing 

explanations for each prediction. In medical image processing applications, attention frameworks have also 

been successfully used for fusing information across imaging modalities and EHR [52]. In contrast, the 

prototypical network approach integrates interpretability by replicating human learning patterns [85], [86]. 

After using a CNN to extract imaging features, these networks learn explicit sets of “typical” examples for 

each class. New samples are then compared to class prototypes, and the predicted class is determined via 

maximizing prototype similarity. 

 

4.4. Challenges 

Despite the urgent need for interpretability in medical image analysis, the application of these described 

methods faces several challenges. Post-hoc explanations can be illuminating for individual examples, but 

there is not yet a consensus regarding which post-hoc methods produce the most relevant saliency maps 

[61], [63], [64], [87]. Intrinsically explainable models offer a potential solution to this issue, but these 

models tend to suffer from decreased classification performance due to the enforced explanatory constraints 
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[11], [71]. Furthermore, most explainability methods have been developed for computer vision applications 

and therefore, have not yet been thoroughly tested in medical imaging applications. This is particularly 

problematic for complex models that integrate more than one type of input data, including multi-modal 

imaging and EHR. 

 

5. Test Bed Applications 

5.1. Mild traumatic brain injury 

Mild traumatic brain injury (mTBI) is a complex syndrome that affects up to 600 per 100,000 

individuals in the United States [88], with a particular concentration among military personnel [89], [90]. 

Approximately half of all affected individuals experience chronic mTBI symptoms that persist long after 

the acute injury phase [91]. Despite this high prevalence, however, mTBI has proved to be a difficult 

condition to study; across many reports even the definition of this condition is disputed [92], and there is a 

large amount of heterogeneity in both symptoms and imaging findings across the mTBI population [93]. 

Due to the prevalence of mTBI and this long-term adverse symptomology, there is an urgent need for 

advanced imaging methods that can localize the effects of mTBI in the brain. Currently, the recommended 

clinical definition of mTBI is a Glasgow Coma Scale score of 13-15 paired with negative structural imaging 

findings [92]. Despite this definition, however, mTBI has previously been linked to abnormalities of the 

cortical surface [94] and disrupted white-matter pathways [95]. This makes mTBI a particularly good 

candidate for contextual multi-modal image analysis, as we expect pathological signals to be subtle patterns 

consisting of multiple neurological and sensory systems. 

 

5.2. Developmental disabilities  

It is estimated that between 2009 and 2017, the prevalence of developmental disabilities in the United 

States for children aged 3-17 was 16.93% [96]. Developmental disabilities encompass a group of conditions 

related to impairments in learning, behaviors, or physical growth. For example, Down syndrome is a genetic 

disorder characterized by the presence of an extra copy of chromosome 21 [97]. Patients with this condition 

are known to carry a heavy burden of comorbid conditions, including hypothyroidism, gastrointestinal 

disorders, congenital heart disease, and sleep apnea [98]. Across the range of developmental disabilities, 

patients tend to have a similarly wide array of comorbidities, requiring supportive care throughout their 

lifetimes [96]. In recent years, EHRs have been leveraged to study clinical patterns of autism spectrum 

disorder [29], [99]. Studying the EHRs and combined neuroanatomy of patients with this and other 

developmental disabilities could improve our understanding of the timing and intensity of these comorbid 
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patterns, enable the characterization of clusters of co-occurring disorders, and reveal currently unmet 

clinical needs of this community. 

 

5.3. Mild cognitive impairment 

A large proportion of medical image analysis literature is devoted to studying Alzheimer’s disease and 

other dementias [16], [39], [108]–[117], [100], [118]–[122], [101]–[107]. This aggressive investigation is 

in large part due to the availability of three publicly available dementia-focused data repositories: the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [123] and the Open Access Series of Imaging Studies 

(OASIS) datasets OASIS-2 [124] and OASIS-3 [125]. Mild cognitive impairment (MCI) is an early phase 

of cognitive decline that precedes dementia in aging adults [126]. Most imaging studies that involve MCI 

only examine it as a secondary condition (with the primary focus of characterizing Alzheimer’s disease) or 

use MCI as the baseline condition against which Alzheimer’s Disease is compared. However, as more 

therapeutic interventions become available, the need for early detection of MCI in aging adults becomes 

more urgent; generally, earlier introduction of preventative treatments for MCI and dementia increase their 

effectiveness [127]. 

 

6. Contributed Work 

The widespread use of deep learning has revolutionized the field of medical image analysis. Increasing 

amounts of available clinical and imaging data allow researchers to train more accurate deep learning 

models that encompass the whole person. Yet simultaneously, interpretability methods for these complex 

neural networks are lagging behind; we cannot hope to translate research models into clinical use until their 

predictions are accompanied by interpretable explanations grounded in anatomy. The work outlined in this 

dissertation lies at the intersection of these issues. We first focus on innovations in interpretability for 

traditional machine learning (Contribution 1), including developing multi-contrast MRI models, 

innovations in EHR analysis, and the introduction of explainability techniques into both. We next translate 

this work in interpretability to deep learning models of MRI and EHR (Contribution 2). Finally, these 

efforts come together to form a framework for interpretable multi-modal analysis of both MRI and EHR 

(Contribution 3). These efforts are essential for the field of medical image analysis, both in moving closer 

to individualized medicine and facilitating model trustworthiness for clinical translation. 
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6.1. Contribution 1: Interpretable Machine Learning with MRI and EHR 

▪ We trained an exploratory multi-modal machine learning model of mild traumatic brain injury that 

demonstrates the utility of structural and diffusion-weighted MRI modalities in discriminating mild 

traumatic brain injury patients from controls. 

▪ We created an interpretable joint model of T1-weighted MRI and diffusion tensor imaging able to 

identify white matter connectivity and cortical surface shape changes in mild traumatic brain injury 

patients relative to controls. 

▪ We deployed pyPheWAS, an open-source python toolkit for conducting phenome-disease 

association studies.  

▪ We designed pyPheWAS Explorer, an interactive visualization built on top of pyPheWAS that 

enables users to design, run, and visualize PheDAS models in real time. This tool was demonstrated 

in a case study of attention-deficit hyperactivity disorder. 

▪ We investigated Down syndrome phenotype associations using pyPheWAS and explainable 

machine learning that revealed several significant phenotypic associations with Down syndrome 

generally and heart surgery in Down syndrome patients with co-morbid congenital heart disease. 

 

6.2. Contribution 2: Interpretable Deep Learning with MRI and EHR 

▪ We characterized the significant impact that batch size has on the interpretability of deep 

autoencoder embeddings of medical data.  

▪ We extended hard case mining to unsupervised neural network training and demonstrated that this 

simple, computationally efficient technique may improve embedding interpretability and accelerate 

network convergence for MRI and EHR autoencoders. 

 

6.3. Contribution 3: Interpretable Multi-Modal Modeling for MRI and EHR 

▪ We developed a novel framework for interpretable joint analysis of longitudinal EHR subtypes and 

region-specific MRI-derived brain characteristics. 
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6.4. Outline of Dissertation 

The remainder of this document proceeds as follows. In Chapter II, we develop a preliminary model 

of multi-modal MRI in the context of classifying mTBI. We establish T1-weighted MRI and diffusion 

tensor imaging as promising modalities for the study of this neurological disorder. Building on this effort, 

Chapter III presents an interpretable joint model of T1-weighted MRI and diffusion tensor imaging, again 

in the context of mTBI. From this study, we identify changes in white matter connectivity and cortical 

surface structure associated with mTBI and its chronic symptoms. Our focus then shifts from medical image 

analysis to EHR processing. Chapter IV describes pyPheWAS, a command line python-based toolkit 

developed for phenome-disease association studies (PheDAS). This toolkit allows users to identify 

phenotypic associations with disease based on diagnostic and procedural EHR codes. Following this, we 

present pyPheWAS Explorer (Chapter V), an interactive visualization of the pyPheWAS analysis pipeline 

that aims to make PheDAS models more transparent, interpretable, and accessible. Chapter VI then 

describes an investigation into the EHRs of Down syndrome patients via the pyPheWAS toolkit and 

interpretable machine learning techniques. This study identifies several significant associations between 

EHR phenotypes and Down syndrome generally, in addition to specific phenotypes that are associated with 

longitudinal surgery risk in Down syndrome patients with co-morbid congenital heart disease. In Chapter 

VII, we turn our attention to autoencoders, a deep learning architecture, and their use as an interpretable 

manifold embedding method for medical data. We investigate the substantial effect that batch size, a 

training hyperparameter, has on the interpretability of the trained autoencoder embedding space. Based on 

this work, Chapter VIII then presents unsupervised hard case mining, a cost-efficient optimization 

technique for training medical autoencoders; we demonstrate in models of MRI and EHR that this method 

may improve the interpretability of encoder embeddings and accelerate training convergence. This work all 

culminates in the development of a novel interpretable framework for joint multi-modal analysis of EHR 

and MRI in a study of autism spectrum disorder (Chapter IX). Finally, Chapter X draws together 

concluding thoughts and outlines future research directions in interpretable artificial intelligence models 

for multi-modal models of MRI and EHR. 
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Chapter II  

 

MRI Correlates of Chronic Symptoms in Mild Traumatic Brain Injury 

 

1. Overview 

Some veterans with a history of mild traumatic brain injury (mTBI) have reported experiencing auditory 

and visual dysfunction that persist beyond the acute phase of the incident. The etiology behind these 

symptoms is difficult to characterize, since mTBI is defined by negative imaging findings on current clinical 

imaging. There are several competing hypotheses that could explain functional deficits; one example is 

shear injury, which may manifest in diffusion-weighted magnetic resonance (MR) imaging (DWI). Herein, 

we explore this alternative hypothesis in a pilot study of multi-parametric MR imaging. Briefly, we consider 

a cohort of 8 mTBI patients relative to 22 control subjects using structural T1-weighted imaging (T1w) and 

connectivity with DWI. 1,344 metrics were extracted per subject from whole brain regions and connectivity 

patterns in sensory networks. For each set of imaging-derived metrics, the control subject metrics were 

embedded in a low-dimensional manifold with principal component analysis, after which mTBI subject 

metrics were projected into the same space. These manifolds were employed to train support vector 

machines (SVM) to classify subjects as controls or mTBI. Two of the SVMs trained achieved near-perfect 

accuracy averaged across four-fold cross-validation. Additionally, we present correlations between 

manifold dimensions and 22 self-reported mTBI symptoms and find that five principal components from 

the manifolds (one component from the T1w manifold and four components from the DWI manifold) are 

significantly correlated with symptoms (p<0.05, uncorrected). The novelty of this chapter is that the DWI 

and T1w imaging metrics seem to contain information critical for distinguishing between mTBI and control 

subjects. This chapter presents an analysis of the pilot phase of data collection of the Quantitative 

Evaluation of Visual and Auditory Dysfunction and Multi-Sensory Integration in Complex TBI Patients 

study and defines specific hypotheses to be tested in the full sample. 

 

2. Introduction 

Mild TBI (mTBI) is a difficult condition to research; across many studies, even the definition of mTBI 

injury is disputed [92]. This is unsurprising, however, since across a population of mTBI subjects there is 

also often a large amount of heterogeneity in both symptoms and imaging findings [93]. Military veterans 

are particularly susceptible to mTBI due to their frequent proximity to blasts [90]. Many such veterans 

report experiencing chronic mTBI symptoms, but current clinical magnetic resonance (MR) imaging and 

computed tomography do not detect any TBI features. The current recommended clinical definition of 
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mTBI, in fact, is a Glasgow Coma Scale score of 13-15 paired with negative imaging findings [92]. Despite 

this, there are several possible explanations for the chronic dysfunction these veterans are experiencing. 

Shear injuries, another possible explanation, may manifest on diffusion-weighted MR images (DWI), where 

they may appear as changes in the geometry, trajectory, and volume of white matter pathways [95]. Based 

on this alternative hypothesis, in this chapter we perform a pilot study focused on distinguishing mTBI 

subjects from healthy controls via multi-parametric MR imaging. 

To this end, a set of 1,344 imaging metrics are extracted from DWI and T1-weighted (T1w) MR 

imaging; these metrics are processed using Principal Component Analysis (PCA) to derive a lower-

dimensional representation of the cohort. The PCA representation of each metric set is employed to train a 

nonlinear mTBI vs control classifier. Additionally, the connection between imaging metrics and patient 

symptoms is explored via computing correlations between the PCA representation and self-reported mTBI 

patient symptoms scores. 

 

3. Methods 

3.1. Data collection and preprocessing 

T1w and DWI scans were acquired for 30 subjects, of whom 22 were controls (no history of TBI nor 

auditory and visual problems) and 8 were subjects with a history of mTBI (prior mTBI diagnosis confirmed 

via Electronic Medical Record with a Glasgow Coma Score in the range 13-15). The T1w scans were 

segmented into 132 brain regions as defined by the BrainCOLOR protocol via multi-atlas labeling as 

described in [128]. These labels were then registered to the DWI volume space for use in deriving region-

based imaging metrics. Both 32 and 64 shell DWI scans were acquired, which were concatenated and 

corrected for eddy-current distortions and patient movement according to [129].  

mTBI subjects filled out a questionnaire including the Neurobehavioral Symptom Inventory, which 

covers 22 TBI symptoms: dizziness, loss of balance, poor coordination, headaches, nausea, vision problems, 

light-sensitivity, hearing difficulty, noise sensitivity, numbness, taste or smell changes, appetite changes, 

poor concentration, forgetfulness, difficulty making decisions, slowed thinking, fatigue, difficulty sleeping, 

anxiety, feeling depressed, irritability, and frustration [130]. These self-reported symptoms were ranked on 

a scale of 1 to 5 with regard to its impact on their life since the injury, where 1 was unaffected and 5 was a 

significant impact on daily life. 
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Figure II-1 An overview of imaging metric generation is presented. Full-brain tractography is 

performed on the preprocessed DWI volume, and four streamline bundles are extracted using the 

BrainCOLOR labels. The number of streamlines, bundle length, and bundle volume are calculated 

for each bundle, resulting in 12 connectivity metrics per subject. Cortical Shape Analysis is 

performed on the T1w volume; for each cortical surface region, curvature, shape index, sulcal depth, 

thickness, shape complexity index, and local gyrification index were calculated both along the 

region’s sulci and averaged across the entire region, yielding 1,332 surface metrics. 

 

3.2. Imaging metric extraction 

An overview of the derivation of imaging metrics for each MR modality is shown in Figure II-1. The 

tractography pipeline was implemented using the MRTrix3 package [131]. The DWI volume was 

segmented into five tissue-type regions; anatomically-constrained full-brain tractography was then 

performed [132], and the resulting 10 million streamlines were sifted down to 1 million anatomically-

probable streamlines [133]. The DWI-registered BrainCOLOR labels were used to extract four distinct 

streamline bundles that are associated with the auditory and visual sensory pathways (Figure II-2). In the 

right hemisphere, one bundle connects the thalamus to the superior temporal gyrus, and a second bundle 

connects the superior temporal gyrus to the calcarine cortex. The third and fourth bundles connect the same 

structures in the left hemisphere. For each bundle, three metrics were recorded: number of streamlines, 

average streamline length, and bundle volume, resulting in 12 total connectivity metrics per subject.  

Structural metrics were acquired by first reconstructing the cortical surface and segmenting it into 111 

regions via the MaCRUISE pipeline [134]. A cortical shape analysis was then performed on the cortical 

surface as described in [135]. For each surface region, the mean curvature, shape index, sulcal depth,  

cortical thickness, shape complexity index, and local gyrification index were calculated both along the 

sulcal fundic region [135] and averaged across the region as a whole. This resulted in 1,332 structural 

imaging metrics. 
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3.3. Imaging metric analysis 

Figure II-3 outlines the analysis of the 1,344 imaging-derived metrics described in section 2.2. The two 

types of imaging metrics were each analyzed individually to evaluate the effect that each had on the final 

subject-wise classification. Within each set, the metrics were normalized by calculating the z-score with 

respect to the mean and standard deviation of the control subjects. PCA was then applied to the z-scores of 

the healthy controls, producing two individual lower-dimensional PCA spaces (one each for DWI and 

T1w), which the z-scores of the mTBI subjects were projected into. 

Next, each metric set’s ability to distinguish between mTBI and control subjects was assessed individually. 

To this end, an SVM classifier [136] was trained on the PCA space of each metric set combined with subject 

age. For all SVMs trained, mTBI was defined as the positive class, and control was defined as the negative 

class. SVMs were trained and validated using four-fold cross validation with a radial basis function kernel. 

The box constraint and kernel scale hyperparameters were optimized on the training set at each fold using 

five-fold Bayesian optimization. The PCA spaces of each metric set were iteratively swept, so that a single 

principal component was added to the SVM training data at each iteration, starting with the first principal 

component. This sweeping procedure was used to determine how the addition of each component impacted 

the performance of the SVM classifier.  

 

Figure II-2 An illustration of the four streamline bundles with the BrainCOLOR regions they 

connect. In both the right and the left hemispheres, bundles connect the thalamus (TH) to the 

superior temporal gyrus (STG) and the superior temporal gyrus to the calcarine cortex (CC). 
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Once the entire PCA space was swept, the number of components, CO, which produced the most 

optimal classifier was determined for each metric set. For the purposes of this analysis, “optimal” was 

defined as the classifier which maximized validation recall (averaged across the four cross-validation folds) 

based on the fewest number of principal components. Finally, the CO components from the DWI and T1w 

metric sets’ PCA spaces were combined, and the iterative SVM training procedure was repeated to analyze 

how the metric sets might work together to distinguish between mTBI and control subjects. It is important 

to note that in this combined sweeping, a principal component from both metric sets was added at each 

iteration, starting with the first principal components from each PCA space. Similar to the individual 

analysis, the optimal number of components for the combined SVM classifier was determined after the 

entire set of CO components from the DWI and T1w metric sets were swept. Additionally, the Spearman 

 

Figure II-3 A schematic overview of the imaging metric analysis. First, the imaging metrics are 

normalized by converting the raw imaging metrics to z-scores using the mean 𝜇controls and 

standard deviation 𝜎controls of the control subjects. PCA is performed using the z-scores of the 

control subjects, resulting in two lower-dimensional PCA spaces (one for each metric set), which the 

mTBI subjects’ z-scores are projected into. Next, to analyze the metric sets individually, the PCA 

components of a single set and the subjects’ ages are used to train a four-fold cross-validated SVM 

to classify subjects as controls or mTBI. Starting with the first principal component, the entire PCA 

space of each metric set is swept, adding a single component to the SVM at each iteration. After all 

components have been swept, CO, the number of principal components that produces the most 

optimal classifier, can be determined for each metric set based on the validation set performance 

(averaged across the four cross-validation folds). Finally, to analyze the metric sets together, the 

iterative SVM training process is repeated on the combined set of CO components from each metric 

set. In this step, the process starts with the first principal component from each metric set then adds 

an additional component from each metric set to the classifier at each iteration. 
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rank correlations were calculated between the 22 mTBI symptoms scores and these CO components from 

the Combined classifier. 

 

4. Results 

4.1. SVM classifier performance 

Figure II-4 shows SVM classifier performance as the PCA components are swept for both the individual 

metric sets and the combined set. This performance is represented by classification accuracy, recall, and 

specificity, all averaged across the four cross-validation folds. CO is denoted for each metric set by a vertical 

bar; for DWI CO = 11, for T1w CO =13, and for the combined set CO = 11. Note that for the combined set, 

CO represents the number of components per metric set (i.e. CO = 11 means that the optimal SVM for the 

combined set included 11 DWI principal components and 11 T1w principal components). SVM classifier 

performance at the operating point CO for each metric set is shown in Table II-1. 

 

Figure II-4 Performance averaged across the 4 folds of individual metric set classifiers and 

combined metric set classifier as PCA components are added. The optimal operating point is 

displayed as a red vertical line. The top two plots show that the classifiers trained on the DWI and 

T1w metric sets individually are able to distinguish between the two classes. The plot in the bottom 

left shows that the SVM trained on DWI and T1w metric sets combined can also distinguish between 

the two classes, but not better than the SVM trained only on the T1w metric set. 
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For both the DWI and T1w metric sets the sweep of the PCA spaces shows that given enough 

components, the SVM is able to distinguish between mTBI and control subjects, with T1w producing a 

near perfect classifier. When DWI and T1w were combined, the SVM was again able to distinguish between 

mTBI and control subjects with performance similar to T1w individually. 

 

4.2. Symptom score correlations 

Out of the 22 symptom scores, 11 DWI principal components, and 11 T1w principal components, five 

statistically significant (p < 0.05, uncorrected) Spearman rank correlations were found. Table II-2 

summarizes these correlations, showing that four of the five significant symptom correlations are related to 

the DWI metric set, and two of the five symptoms listed are appetite change. Due to limited sample size 

and the large number of correlations, these individual tests should be interpreted as exploratory; when false 

discovery rate correction was applied across all correlations, no tests surpassed the corrected 0.05 threshold. 

 

Table II-1 Classifier performance for the optimal operating point of each metric set averaged across 

the four cross-validation folds (values in parentheses are standard deviations) 

Metric Set CO Accuracy Recall Specificity 

DWI 11 0.830 (0.067) 0.500 (0.354) 0.958 (0.072) 

T1w 13 0.964 (0.062) 0.875 (0.217) 1.000 (0.000) 

Combined 11 0.968 (0.054) 0.875 (0.217) 1.000 (0.000) 

 

Table II-2 Significant (p < 0.05, uncorrected) correlations found between mTBI symptoms and the PCA 

components used to train the optimal Combined SVM classifier 

 

Metric Set Symptom 
Principal 

Component 

Correlation 

Coefficient 
p-value 

T1w Appetite Change 5 0.7910 0.0196 

DWI 

Appetite Change 5 -0.8456 0.0178 

Poor Concentration 5 -0.8648 0.0357 

Feeling Depressed 5 -0.8225 0.0083 

Frustration 5 -0.8225 0.0167 
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5. Discussion 

SVM classifiers trained on the DWI, T1w, and Combined PCA components were all able to distinguish 

between mTBI and control subjects. The individual T1w and Combined classifiers were both able to 

achieve near perfect accuracy in this task. It is interesting that the optimal Combined classifier achieved 

this near-perfect performance using only 11 T1w components, whereas the individual T1w classifier 

required 13 components to achieve its optimal performance; however, the performance of the two classifiers 

is too similar to tell whether the T1w or Combined classifier has any true advantage over the other. A 

second interesting observation is that the DWI metric set produced more significant symptom correlations 

than the T1w metric set. This suggests that despite its inferior performance in classification, the DWI metric 

set may still contain some information relevant to mTBI.  

 

6. Conclusion 

The key finding of this chapter was that the DWI and T1w imaging metrics seem to contain information 

critical for distinguishing between mTBI and control subjects. For all metric sets, the PCA dimensionality 

reduction step was performed using data only from controls, yet both the T1w and Combined classifiers 

achieved near-perfect four-fold cross-validation accuracy. The SVM classification performance indicates 

that most of the distinguishing information is in the T1w metrics, but the symptom correlations suggest that 

the DWI metrics may yet prove useful. 

In summary, a novel combination of MRI modalities and imaging-derived metrics are presented in an 

effort to begin characterizing mTBI in MR imaging. Through PCA and SVM, these metrics were leveraged 

to produce two near-perfect classifiers for a condition that is currently identified by the absence of imaging 

findings. We conclude, therefore, that the methods described in this chapter show promise towards 

characterizing mTBI via MR imaging, but a deeper analysis and larger cohort are needed to clearly 

determine which individual imaging metrics are contributing the most to subject classification and symptom 

correlations. As more data is acquired for this study, we intend to improve the image extraction methods 

for DWI by including more streamline bundles and extracting more metrics from each bundle (i.e. fractional 

anisotropy along the bundle, connectivity profile, etc.). Additionally, we plan to deepen the classification 

and symptom correlation analyses by moving from analyzing whole metric sets to analyzing each metric 

individually to pinpoint precisely which metrics provide the distinguishing mTBI information.
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Chapter III  

 

Joint Analysis of Structural Connectivity and Cortical Surface Features: 

Correlated with Mild Traumatic Brain Injury 

 

1. Overview 

Mild traumatic brain injury (mTBI) is a complex syndrome that affects up to 600 per 100,000 

individuals, with a particular concentration among military personnel. About half of all mTBI patients 

experience a diverse array of chronic symptoms which persist long after the acute injury. Hence, there is an 

urgent need for better understanding of the white matter and gray matter pathologies associated with mTBI 

to map which specific brain systems are impacted and identify courses of intervention. Previous works have 

linked mTBI to disruptions in white matter pathways and cortical surface abnormalities. Herein, we 

examine these hypothesized links in an exploratory study of joint structural connectivity and cortical surface 

changes associated with mTBI and its chronic symptoms. Briefly, we consider a cohort of 12 mTBI and 26 

control subjects. A set of 588 cortical surface metrics and 4,753 structural connectivity metrics were 

extracted from cortical surface regions and diffusion weighted magnetic resonance imaging in each subject. 

Principal component analysis (PCA) was used to reduce the dimensionality of each metric set. We then 

applied independent component analysis (ICA) both to each PCA space individually and together in a joint 

ICA approach. We identified a stable independent component across the connectivity-only and joint ICAs 

which presented significant group differences in subject loadings (p<0.05, corrected). Additionally, we 

found that two mTBI symptoms, slowed thinking and forgetfulness, were significantly correlated (p<0.05, 

corrected) with mTBI subject loadings in a surface-only ICA. These surface-only loadings captured an 

increase in bilateral cortical thickness. 

 

2. Introduction 

Mild traumatic brain injury is a disruption of normal brain function caused by any injury to the head. It 

is estimated that in North America, mTBI has an incidence rate of more than 600 per 100,000 inhabitants 

[88]. Military personnel and veterans are particularly burdened by this disorder; 11%-23% of soldiers are 

expected to experience a traumatic brain injury while deployed, with the majority of cases classified as mild 

[89]. Additionally, approximately half of all mTBI patients are left with chronic symptoms that persist long 

after the injury’s acute phase [91]. Due to the prevalence of mTBI and this long-term adverse 

symptomology, there is an urgent need for advanced imaging methods that can localize mTBI effects in the 

brain.  
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mTBI has previously been linked to abnormalities of the cortical surface [94] and disrupted white 

matter pathways [95]. One hypothesis is that mTBI may be classified as a “disconnection syndrome” due 

to the prevalence of these white matter disconnections [137]. In a previous work, we demonstrated the 

potential of combining cortical surface and sensory white matter pathway features in a discriminatory model 

of mTBI [138]. In this article, we build on that work by investigating a joint analysis of magnetic resonance 

imaging (MRI) derived cortical surface and structural connectivity features in mTBI and control subjects. 

This exploratory analysis aims to identify joint cortical surface and structural connectivity changes 

associated with mTBI and related symptoms, which may be tested in a larger sample.  

Briefly, this work involved first extracting a) a set of 588 cortical shape metrics and b) a set 4,753 

structural connectivity metrics from 98 cortical surface regions for each subject. The dimensionality of each 

metric set was reduced via principal component analysis. Independent component analysis was then applied 

to the PCA spaces of the cortical surface metrics, structural connectivity metrics, and a joint metric set (a 

concatenation of cortical surface and structural connectivity PCA spaces). Subjects’ independent 

component (IC) loadings were compared across the mTBI and control groups to assess group differences. 

The correlation between mTBI subjects’ IC loadings and self-reported symptom severity scores was also 

examined. 

 

3. Methods 

3.1. Imaging and symptom data 

This exploratory study considered a cohort of 38 subjects, of whom 12 were mTBI subjects (previous 

mTBI diagnosis confirmed via Electronic Medical Record with a Glasgow Coma Score in the range 13-15) 

and 26 were controls with no history of mTBI or audiovisual problems. All subjects had both T1-weighted 

MRI (T1w) and diffusion weighted MRI (DWI) scans acquired during a single session at the Vanderbilt 

University Institute of Imaging Science. Three DWI volumes were acquired for each subject: a 32-direction 

b=1000 s/mm2, a 64-direction b=2000 s/mm2, and a corresponding b=0 s/mm2 volume. These 32 and 64 

shell DWI volumes were concatenated and corrected for eddy current distortions and patient movement 

following the protocol in [129]. 

For all mTBI subjects, chronic mTBI symptoms were assessed via the Neurobehavioral Symptom 

Inventory [130], a questionnaire that tracks 22 TBI symptoms: dizziness, loss of balance, poor coordination, 

headaches, nausea, vision problems, light sensitivity, hearing difficulty, noise sensitivity, numbness, taste 

or smell changes, appetite changes, poor concentration, forgetfulness, difficulty making decisions, slowed 

thinking, fatigue, difficulty sleeping, anxiety, feeling depressed, irritability, and frustration. The severity of 
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each symptom was ranked by the subject on a scale of 1 to 5, where 1 was unaffected and 5 was a significant 

impact on daily life. 

 

3.2. Metric generation 

The cortical surface and structural connectivity imaging metric generation processes are shown in 

Figure III-1. First, the T1w volume was segmented into 132 BrainColor regions via multi-atlas 

segmentation [128], and MaCRUISE [139] was used to reconstruct cortical surfaces from the volumetric 

segmentation. To define boundaries of regions of interest (ROI) on the cortical surfaces, the cortical 

surfaces were mapped to a unit sphere and then rigidly aligned to the adult template created by [140]. For 

each individual cortical surface, the cortical ROIs were determined via spherical convolutional networks 

[141]. The resulting labels are a subset of BrainColor, which contains 98 regions out of the original 132. A 

cortical surface analysis was then performed, yielding six shape metrics averaged over each cortical surface 

region, including mean curvature, shape index [142], sulcal depth [135], cortical thickness [139], shape 

complexity index [143], and local gyrification index [144], [145]. This resulted in a total of 588 surface 

metrics. 

 
Figure III-1 Surface and connectivity metric generation. The T1w volume is segmented into 132 

BrainColor regions, out of which 98 cortical surface regions are kept. A cortical shape analysis is 

performed on the 98 regions, yielding 6 shape metrics per region: mean curvature, shape index, 

sulcal depth, cortical thickness, shape complexity index, and local gyrification index. Whole brain 

tractography is performed on the DWI volume. This tractogram is used to construct a connectivity 

matrix for the 98 surface regions, where connection strength is equivalent to mean fractional 

anisotropy (FA) along streamlines connecting each pair of regions. 
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To derive the structural connectivity metrics, each subject’s 98-region BrainColor segmentation was 

registered to their DWI volume, so that the same cortical surface regions were used for both the surface and 

connectivity metrics. Next, a whole-brain tractogram was generated for each subject. The response function 

for tracking was estimated via the iterative Tournier algorithm [146], after which the fiber orientation 

distribution was calculated using spherical deconvolution. The iFOD2 algorithm [147] was then used to 

perform probabilistic tractography and construct a one million streamline whole-brain tractogram seeded 

at random within a whole-brain mask. Finally, a connectivity matrix was generated for each subject, where 

the nodes were the 98 cortical surface regions, and the edges were defined as mean fractional anisotropy 

(FA) along the streamlines connecting each pair of regions. This mean FA linking pairs of regions was used 

as our structural connectivity metric. Self-connections were excluded, and streamline direction was ignored, 

yielding 4,753 metrics. All tractography and connectivity matrix operations were performed via the 

MRTrix3 package [148].  

 

3.3. Metric analysis 

An overview of the imaging metric analysis is shown in Figure III-2. Briefly, this analysis pipeline 

includes metric normalization and dimensionality reduction via principal component analysis (PCA) as 

preprocessing steps before applying independent component analysis (ICA). ICA can be sensitive to high 

variance, so PCA was applied prior to the ICA step in order to reduce variance in the dataset. Additionally, 

reconstruction ICA was used; this variant on traditional ICA optimizes on a soft reconstruction constraint 

[149]. Reconstruction ICA is a desirable method for this application, as it was designed to extract stable 

features which are not as sensitive to variance in the underlying data as traditional ICA. The following 

description includes more specific details of our method design. 

The 588 surface and 4,753 connectivity metrics were normalized via conversion to z-score 

representation; z-scores are calculated for each individual metric by subtracting the group’s mean and 

dividing by the group’s standard deviation. Next, the dimensionality of each metric set was reduced via 

PCA. This reduction revealed that principal components (PCs) beyond the top 8 in both the surface and 

connectivity PCA spaces represented negligible explained variance in the data. Based on this and the need 

to balance the metric sets in the joint analysis, the PCs were narrowed down to the top 8 for both the surface 

and connectivity PCA spaces. A joint PCA space was then created by concatenating the surface and 

connectivity PCs, yielding a 16-component joint space. Finally, the reconstruction ICA was applied to the 

three PCA spaces. To fully explore all possible ICA features, X, the number of independent components 

(ICs), was varied from 2 to 7 for all three PCA spaces. To differentiate between these, we will refer to each 

individual ICA in the form of “ICA type – X”, where possible types are S (surface-only ICA), C 
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(connectivity-only ICA), and J (joint ICA); for example, S-6 refers to surface-only ICA with 6 ICs. Note 

that 1 and 8 ICs were excluded because singular reduction (1 IC) and no reduction (8 ICs) were considered 

uninteresting edge cases. 

Each ICA produces two important outputs: ICs and subject loadings. ICs are the set of independent 

features learned from the PCA space; they may be back-projected into the original data space to investigate 

relationships between brain regions. These ICs are related to study subjects according to each subject’s set 

of IC loadings. These loadings are a set of weights (one per IC) that correspond to how strongly each IC is 

represented in an individual subject’s input signal. So, while ICs describe overall patterns in the data, 

subject loadings describe variations of those patterns in individuals. The following sections explain how 

these two outputs are investigated.  

 

3.4. Visualizing independent components 

The many sets of ICs derived in section 2.3 would be largely useless without a means for interpretation. 

To facilitate visual interpretation, all ICs were back-projected into the original cortical surface and/or 

structural connectivity spaces and scaled to the range [0,1]. All ICs were visualized using the 98-region 

 
Figure III-2  Metric analysis pipeline. All metrics are first normalized by converting the raw data to 

z-scores. PCA is then performed separately on the surface and connectivity metrics; the 

dimensionality of both metric sets is reduced to the 8 most principal components from their 

respective PCA spaces. These two PCA spaces are further reduced via ICA to X ICs. The value of X 

is swept across all possible values, from 2 to 7 ICs. To perform a joint analysis of the surface and 

connectivity metrics, their 8-component PCA spaces are concatenated, and ICA is again performed 

on this joint data set for X={2-7} ICs. 
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cortical surface BrainColor segmentation of a single representative T1w volume. Since the surface data 

space contained only six metrics per region, surface ICs were visualized on six individual three-dimensional 

surface renderings, one for each metric. In these renderings, region-wise IC coefficients were mapped to 

each region’s color. 

Due to the high dimensionality of the structural connectivity data space, the connectivity ICs required 

a more specialized visualization approach. In this visualization, the entire connectome was presented on a 

single T1w surface, with region color and transparency denoting region-wise and overall connectivity, 

respectively. To illustrate, consider a single IC back-projected to a connectivity matrix C. First, all self-

connections are set to 1 (fully connected). C is then converted to a dissimilarity matrix D by subtracting all 

elements from 1. Nonmetric multidimensional scaling with Kruskal’s normalized stress1 criterion [150] is 

applied to D, so that each region is mapped to a two-dimensional space D’ in which the Euclidian distance 

between any two points approximates a monotonic transformation of their corresponding dissimilarity in 

D. The two dimensions of D’ are then used as the a* (green-red) and b* (blue-yellow) dimensions in the 

CIELAB colorimetric system [151]. The last dimension, *L (lightness), is calculated by summing a 

region’s edges in C as a percentage of the summed edges of the most connected region. Thus, C is converted 

to a region-wise CIELAB color map. A three-dimensional T1w cortical surface is then generated in which 

each region is colored according to this color map, and each region’s transparency is scaled according to 

its L* dimension. In this way, the IC is visualized on a single surface, such that similarly colored regions 

are more connected to each other, and more opaque regions are more connected overall. 

 

4. Results 

4.1. Group differences 

A primary aim of this analysis was to identify cortical surface and structural connectivity changes 

associated with mTBI. To this end, we investigated group differences by comparing subject IC loadings 

between the mTBI and control groups for each IC within each ICA. This comparison was accomplished via 

a Wilcoxon rank-sum test, with Bonferroni multiple comparisons correction applied to all tests within each 

ICA (e.g. Bonferroni was applied for 6 comparisons in J-6, and for 7 comparisons in J-7). Through this 

method, C-4, C-5, C-6, C-7, J-4, J-5, J-6, and J-7 were all found to have an IC that presented a statistically 

significant group difference in subject loadings (p < 0.01, corrected). These 8 ICs were compared using a 

Pearson correlation and all were found to be highly correlated (p << 0.001, corrected), as shown in Figure 

III-3A. The most correlated IC out of this group (C-5) was selected to demonstrate the significant group 

difference in subject loadings (Figure III-3B) and to visualize this IC’s connectome (Figure III-3C). 
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Figure III-3 An independent component presenting significant group differences. A singular 

independent component was consistently found across both the connectivity-only and joint ICAs. A) 

Extremely high correlation coefficients are seen for this component across connectivity-only and 

joint ICAs with X = {4,5,6,7} ICs. (Rows/columns of this matrix are denoted by “ICA type – X”, with 

C connectivity-only and J = joint; so “C-4” means connectivity-only ICA with X=4.) All correlations 

are statistically significant (p <<< 0.001, corrected). B) The subject loadings for this component 

present a statistically significant (p < 0.05, corrected) difference between the control and mTBI 

populations. C) The independent component back-projected into connectivity data space; the 

component is visualized on a representative T1w volume, where similarly colored regions are 

connected (for a full description of the visualization procedure, see section 2.4). 

 

The stability of this significant IC across the 8 ICAs suggests that the pattern of connectivity seen in 

Figure III-3C is a legitimate feature, not an artifact of ICA’s optimization scheme. Furthermore, the IC’s 

subject loadings show that this connectivity pattern is more prominent in mTBI subjects than in controls, 

implying that the connections may be indicative of mTBI pathology. Table III-1 presents the seven region-

to-region connections with the largest weights in the IC from C-5. The strongest connection involves the 

right parietal operculum, which is believed to be involved with touch and pain perception [152], and the 

left occipital fusiform gyrus, a region involved in high level visual processing [153]. Several other regions 

in this list are associated with visual processing (right occipital fusiform gyrus [154], right calcarine cortex 

[155]), working memory (right/left superior frontal gyrus medial segment [156][157]), and other sensory 

functions (right angular gyrus [158], left opercular part of the inferior frontal gyrus [159]), all cognitive 

functions which have been known to be negatively impacted by mTBI [130].  
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Table III-1 Top seven most highly weighted connections in an IC from C-5 associated with significant 

group differences 

 

Weight Rank ROI 1 ROI 2 

1 Right parietal operculum Left occipital fusiform gyrus 

2 Right occipital fusiform gyrus Left superior frontal gyrus medial segment 

3 Left lateral orbital gyrus Right angular gyrus 

4 Right posterior orbital gyrus Right central operculum 

5 Right calcarine cortex Left anterior orbital gyrus 

6 Right superior frontal gyrus medial segment Left frontal operculum 

7 Left opercular part of the inferior frontal gyrus Right opercular part of the inferior frontal gyrus 

 

4.2. Symptom correlations 

To further explore the relationship between these IC features and mTBI symptomology, Spearman rank 

correlations were calculated between mTBI subject symptom scores and IC loadings for all ICs across all 

ICAs. Out of all tests, a single IC in S-5 was found to be significantly correlated with two symptoms after 

Bonferroni correction: forgetfulness and slowed thinking (p < 0.01, corrected for 110 comparisons). Figure 

III-4 shows these correlations between S-5 subject IC loadings and symptom scores for the two symptoms, 

along with the IC back-projected to the cortical thickness metric. This positive correlation between 

symptom severity scores and subject loadings indicates that the IC presents most in subjects with more 

 

Figure III-4 An independent component presenting significant symptom correlations. Across all 

ICAs performed, only a single IC was found to be significantly correlated to mTBI symptom scores. 

This IC is from the surface-only ICA performed with 5 ICs. The two plots on the left in this figure 

show the statistically significant (p < 0.01, corrected) positive correlations between mTBI subject IC 

loadings and symptom severity scores for forgetfulness and slowed thinking. The IC was back-

projected into the cortical surface metrics dataspace. The cortical thickness metric is visualized here 

on a representative T1w volume; the magnitude of region IC coefficients are encoded via color, with 

blue corresponding to lower absolute thickness and yellow corresponding to increased absolute 

thickness. 
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severe forgetfulness and slowed thinking. Combining this with the IC’s pattern cortical thickness pattern 

suggests that these mTBI symptoms may be related to increased bilateral cortical thickness. This finding is 

promising, since other studies have also found increased prefrontal cortical thickness to be associated with 

poorer outcomes in mTBI subjects one year after the acute injury [94]. 

 

5. Discussion 

We have presented a joint analysis of structural connectivity and cortical surface structure in mTBI via 

ICA. We demonstrated the potential of this framework for hypothesis generation regarding mTBI 

pathologies via two significant IC findings. First, our analysis identified a stable IC that presented 

significant differences in IC loadings between mTBI subjects and controls, in both connectivity-only and 

joint ICA. This finding revealed structural connectivity changes in individual cortical surface regions that 

are potentially linked to mTBI pathologies. Additionally, we found a strong correlation between mTBI IC 

loadings and symptom severity scores for the slowed thinking and forgetfulness symptoms; examining the 

surface metric representation of this IC suggests that the severity of these symptoms is linked to a relative 

increase in cortical thickness among mTBI subjects. 

In summary, the proposed framework was found to be effective for detecting potential structural 

connectivity and cortical surface abnormalities in mTBI. A major advantage of this framework was the 

ability to back-project ICs into data space, allowing for anatomical interpretations of group differences and 

symptom correlations. This explanatory power makes ICA a desirable method for exploring disease 

pathologies compared to “black box” neural networks. 
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Chapter IV  

 

pyPheWAS: A Phenome-Disease Association Tool for Electronic Medical Record Analysis 

 

1. Overview 

Along with the increasing availability of electronic medical record (EMR) data, phenome-wide 

association studies (PheWAS) and phenome-disease association studies (PheDAS) have become a 

prominent, first-line method of analysis for uncovering the secrets of EMR. Despite this recent growth, 

there is a lack of approachable software tools for conducting these analyses on large-scale EMR cohorts. In 

this article, we introduce pyPheWAS, an open-source python package for conducting PheDAS and related 

analyses. This toolkit includes 1) data preparation, such as cohort censoring and age-matching; 2) traditional 

PheDAS analysis of ICD-9 and ICD-10 billing codes; 3) PheDAS analysis applied to a novel EMR 

phenotype mapping: current procedural terminology (CPT) codes; and 4) novelty analysis of significant 

disease-phenotype associations found through PheDAS. The pyPheWAS toolkit is approachable and 

comprehensive, encapsulating data prep through result visualization all within a simple command-line 

interface. The toolkit is designed for the ever-growing scale of available EMR data, with the ability to 

analyze cohorts of 100,000+ patients in less than 2 hours. Through a case study of Down Syndrome and 

other intellectual developmental disabilities, we demonstrate the ability of pyPheWAS to discover both 

known and potentially novel disease-phenotype associations across different experiment designs and 

disease groups. The software and user documentation are available in open source at 

https://github.com/MASILab/pyPheWAS.  

 

2. Introduction 

Since the early 2000s, the introduction of computers in healthcare has led to the adoption of Electronic 

Medical Records (EMR) in healthcare systems across the globe. Initiatives such as the National Institutes 

of Health’s Clinical and Translational Science Awards have advanced this electronic healthcare landscape 

by providing funding for institutions to generate, store, and share healthcare information with the ultimate 

goal of improving patient care [160]. Many institutions, such as Intermountain Healthcare and Vanderbilt 

University Medical Center (VUMC), have risen to the challenge, building large EMR repositories that 

encompass patient demographics, insurance billing data, genetic sequences, medication records, laboratory 

testing, and more [161], [162]. These rich EMR repositories create opportunities for “secondary use” of 

health data, meaning the utilization of health data outside of direct patient care. In medical research, this 

translates to opportunities for investigators to study disease progression and comorbidities, treatment 
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efficacy, genetic factors, systemic problems, and biases in the medical system, among other goals [163]. 

Yet, taking advantage of these complex databases is not a simple task; the EMR is often biased, incomplete, 

and inaccurate [54]. Consequently, rapid increases in the size and availability of EMR resources have led 

to a surge in the development of EMR analysis methods, particularly in the area of deriving and studying 

EMR phenotypes [54], [164], [165].  

A particularly successful type of EMR phenotype analysis is the phenome-wide association study 

(PheWAS). This analysis is closely related to the genome-wide association study (GWAS), a framework in 

which a single phenotype is tested for associations with many genotypes [166]. In contrast, a PheWAS tests 

the association between a single genotype and many EMR-derived phenotypes. This method was pioneered 

by Denny et al [47] with a proof of concept study that examined the associations between five single 

nucleotide polymorphisms (SNPs) and 776 EMR phenotypes; this PheWAS both replicated five previously 

reported SNP-disease associations and identified nineteen potentially novel associations, presenting 

PheWAS’ potential for supporting often-underpowered GWAS investigations. Three years later, the same 

group performed a large-scale trans-institutional validation of PheWAS, confirming its use as an unbiased 

phenotype interrogation technique and hypothesis generation tool [167]. The 776 phenotypes used in the 

proof-of-concept study were derived from International Classification of Disease (ICD) version 9 billing 

codes; these phenotypes were designated PheWAS Codes, or PheCodes, and have since been publicly 

released and expanded to a cover a total of 1,866 EMR phenotypes [167], [168]. 

Since its conception, this groundbreaking technique has inspired many investigations of different 

sections in the genome. In a similar vein as its initial proof-of-concept, PheWAS has been used to examine 

the phenotype signature of the HLA-DRB1*1501 haplotype (a genetic variant linked with Multiple 

Sclerosis) [169], the major histocompatibility complex region of chromosome 6 [170], 31 SNPs associated 

with serum uric acid [171], and other genome regions of interest revealed via GWAS [172]. Other 

interesting applications of this technique include examining the contribution of Neanderthal genetic variants 

to the phenotypes of modern humans [173], and evaluating self-reported ICD-9 records in a large-scale 

23andMe database for the purpose of genetic drug targeting [174]. 

Inspired by PheWAS, an alternative approach has emerged which scans the phenome for associations 

with non-genetic targets. This extension of PheWAS is advantageous due to the costly nature of genotyping, 

and therefore, the huge amount of EMR data available when linked genetic data are no longer necessary 

[175]. This framework has been used to examine linked dental and medical records to identify ICD-9 

phenotypes related to periodontitis [176]. In a federated query task, it was used to retrieve records of patients 

who had a rare condition (multiple myeloma) across multiple institutions, and then further delineate specific 

subgroups that experienced serious complications [177]. Other examples include scans of ICD-9 phenotype 
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associations with white blood cell count [178] and non-Hodgkin lymphoma in Medicare claims [179]. 

Recently, we observed the potential for confusion of study designs with genetic and non-genetic phenome 

association studies. After consultation with the PheWAS team, we now refer to studies that do not include 

genetic markers but still use mass univariate regression as Phenome-Disease Association Studies (PheDAS) 

[48], an example of which is shown in Figure IV-1. 

In light of the pervasiveness of this EMR analysis technique, we present pyPheWAS: a comprehensive 

toolkit for performing PheWAS and PheDAS analyses. The original PheWAS software, written by the team 

that developed the PheWAS method, is implemented in R and includes core PheWAS functions [180]. The 

pyPheWAS package reimplements that core functionality in Python, a language that has become more 

widespread in the machine learning community and adds a collection of easy-to-use command line tools 

that covers everything from preprocessing EMR data to visualizing results. It includes analysis of ICD-9 

and ICD-10 phenotypes, as well as a novel analysis for Current Procedural Terminology (CPT) code 

phenotypes. It is important to note that pyPheWAS is not a neuro-centric toolkit, although its methods allow 

investigators to explore the clinical progression of many neurological conditions. Additionally, pyPheWAS 

is agnostic to the dependent variable, and therefore can be used to implement either PheWAS or PheDAS; 

for the remainder of this article, we will focus specifically on PheDAS analyses. 

 

Figure IV-1 Overview of PheDAS. In the background, a Manhattan plot shows the statistical 

significance of many phenotypes in relation to a single target variable (target). Phenotypes are sorted 

into and colored by category, and the significance threshold for multiple comparisons correction is 

marked with a dashed horizontal line. These relationships were estimated by individually modeling 

the target variable as a function of each phenotype using a logistic regression. For a closer look, the 

significant phenotype Sleep Apnea is highlighted. The distribution of subjects from each target group 

that do (not) present the Sleep Apnea phenotype is shown, along with the ICD-9 codes that map to 

this this phenotype. 
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In the following sections, we first describe the technical details of the pyPheWAS toolkit, including 

installation instructions, EMR data acquisition, data preprocessing, and analysis methods. Following this, 

we demonstrate the toolkit in action by performing a PheDAS analysis on a custom synthetic EMR dataset. 

We then perform a case study on real EMR data, comparing the EMR of Down Syndrome patients to patient 

with other Intellectual and Developmental Disabilities. Finally, we discuss PheDAS result interpretation 

and several limitations of the pyPheWAS package. 

 

3. Methods 

The overall workflow of a PheDAS analysis is shown in Figure IV-2. EMR events and group 

demographic data are preprocessed, mapped to meaningful phenotypes, used to model a target variable 

(such as a disease group), and then visualized for interpretation. Figure IV-3 presents the pyPheWAS 

toolkit, a collection of command line scripts that aims to make PheDAS-style analysis highly approachable, 

as this process can quickly become intractable given the sheer scale of EMR data coupled with a lack of 

easy-to-use software. This section describes the form and function of each tool in detail. Source code for 

pyPheWAS may be found on GitHub (https://github.com/MASILab/pyPheWAS). The full user 

documentation may be found at https://pyphewas.readthedocs.io/en/latest/.  

 

3.1. Requirements and installation 

pyPheWAS is a Python (version 3.6+) package hosted on pypi.org, making installation quick and easy. 

On any computer which has Python 3 and the popular package manager pip already installed, the user must 

simply enter pip install pyPheWAS in a terminal or command line to install the software. All tools are accessed 

 

Figure IV-2 PheDAS analysis pipeline. Inputs to the pipeline include EMR data (ICD-9, ICD-10, or 

CPT codes) and group data (disease group, sex, race, etc.). The data is first prepared for analysis via 

case-control matching and censoring. Next, the EMR data is mapped to a set of predefined 

phenotypes (PheWAS or ProWAS Codes) and aggregated across each subject’s record. Mass 

univariate regression is then performed across all phenotypes, where a target variable is modeled as 

a function of the phenotype plus any relevant covariates (such as sex or race) to determine the 

relationship between the target variable and each phenotype. Finally, the results are visualized to 

facilitate interpretation of target variable-phenotype relationship significance and effect size. 

 

https://pyphewas.readthedocs.io/en/latest/
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via command line. Note that there are no explicit hardware requirements for the pyPheWAS package, but 

the amount of memory available on the user’s system will limit the size of experiment that can be 

performed.  

Beyond software, the only requirements for using pyPheWAS is the format of the input data. Two 

primary files are expected by pyPheWAS tools: the phenotype file (EMR data) and the group file 

(demographic data). The phenotype file contains EMR events for all subjects in the group file, with a single 

line for each event. Events include an ICD or CPT code and the subject’s age at the event. The group file 

contains demographic information, such as sex, and the target response variable which will be used in the 

logistic regression. The response variable may be pre-defined (such as a diagnosis), or it may be determined 

based on EMR data using the pyPheWAS data preparation tools. The phenotype and group files are linked 

by a column labeled ‘id’ which contains a unique identifier for each subject in the cohort. 

 

3.1.1. EMR data acquisition   

Many institutions have spent large amounts of time and resources to build multi-faceted data 

repositories that include genetic data, clinical records, and demographic information across large swaths of 

patient populations. A few prominent repositories include the Healthcare Cost and Utilization Project’s 

(HCUP) National Inpatient Sample [181], the eMERGE Network [182], VUMC’s Synthetic Derivative 

 

Figure IV-3 pyPheWAS package tools. The package is composed of three main tool sets: data 

preparation, ICD analysis, and CPT analysis. Data preparation tools focus on preprocessing EMR 

data, e.g., case/control matching (maximizeControls) and censoring events (censorData). The ICD 

analysis tools run PheDAS on ICD code data, while the CPT analysis tools run PheDAS on CPT 

code data. The function and usage of all tools are described in the Methods section. 
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(VUMC-SD) [161], Intermountain Healthcare’s Enterprise Data Warehouse [162], the Utah Population 

Database [183], and the Rochester Epidemiology Project [184]. Due to the sensitive nature of EMR and 

protections set forth by the Health Insurance Portability and Accountability Act (HIPAA), an approval 

process is generally required to obtain access to these repositories. For example, in order to obtain the ICD 

and CPT records used for this article’s Down Syndrome case study from VUMC-SD, we first were required 

to obtain study approval from Vanderbilt University’s Institutional Review Board, sign a data use 

agreement, and pay a fee for repository use. We then worked with analysts at VUMC-SD to identify our 

target population using specific ICD codes and other diagnosis information. With our population identified, 

the VUMC-SD then pulled the requested ICD, CPT, and demographic records. Such processes are common 

across many EMR repositories. Though these procedures were designed to protect patient information, they 

also present steep entry barriers for aspiring EMR researchers. Therefore, we have made the synthetic 

dataset developed for this article publicly available through pyPheWAS’s GitHub repository, allowing users 

to familiarize themselves more quickly with both EMR data and PheDAS methods (see the Results section 

for details). We hope that this resource will inspire similar accessibility efforts and enthusiasm for large-

scale EMR analysis.  

 

3.2. Data preparation 

The pyPheWAS package provides several useful data preparation functions so that users do not have 

to directly manipulate the very large data files often used for PheDAS studies.   

 

3.2.1. Defining case and control groups 

The first step in a PheDAS study is defining which subjects are cases and which are controls. In the 

absence of externally defined group assignments (such as genetic markers [172] or white blood cell count 

[178]), ICD codes themselves may be used as a proxy for diagnosis [168], [185] (although sources of error 

for this are well known [49]). The ICD-9 code 758.0 – Down’s syndrome, for example, may be used as a 

proxy for the actual clinical diagnosis of Down Syndrome. Due to the noisy nature of EMR, however, a 

minimum frequency threshold is applied to codes used for this proxy diagnosis based on the notion that the 

more frequently a subject is assigned a certain ICD code, the more likely it is that they legitimately have 

the target condition.  

To address this need, the createPhenotypeFile function sorts subjects into case and control groups based 

on the presence or absence of ICD codes in subjects’ records. At a minimum, createPhenotypeFile requires 

a phenotype file, a list of ICD-9 and ICD-10 codes that define the case group, and the minimum frequency 
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of those codes in a subject’s record to be considered part of the case group. Users may specify whether this 

frequency threshold is a daily threshold (code frequency is calculated based on the number of unique days 

over which a code is recorded; ignores multiple records of a code within a single day) or an absolute 

threshold (code frequency is calculated based on the absolute number of code events; includes multiple 

records of a code within a single day). All subjects listed in the phenotype file who have at least the 

minimum frequency of provided codes in their record are assigned to the case group (target=1). Subjects 

who have the provided codes in their record but fall below the specified frequency are considered 

ambiguous and, consequently, excluded. All remaining subjects are assigned to the control group (target=0). 

These group assignments are saved to a comma-separated values (CSV) file containing A) only subject IDs 

and target variable assignments, or B) the target variable assignment added to an existing group file 

specified by the user. 

In the basic configuration described above, the control group is comprised of all non-case and non-

ambiguous subjects. In some experiments, however, it may be desirable to enforce stricter control group 

inclusion criteria; createPhenotypeFile provides two commonly used practices for narrowing the scope of 

PheDAS control groups. The first method excludes subjects from the control group based on both the 

provided case codes and codes related to those case codes; this prevents the control group from becoming 

contaminated by conditions similar to the target condition. The list of related codes may be supplied by the 

user or pulled from the ICD phenotype map (see the pyPhewasLookup section for details on the ICD 

phenotype map used by pyPheWAS). The second method allows users to target a specific condition for the 

control group. For example, a PheDAS could be performed comparing Alzheimer’s disease patients (case) 

to Vascular Dementia patients (controls). In this case, the user would supply createPhenotypeFile with lists 

of ICD-9 and ICD-10 codes for both the case group and the control group. The control group is then 

composed of subjects not in the case group that have at least the minimum frequency of provided control 

group codes in their record. Optionally, a second argument may be provided to the code frequency input; 

if this is specified, the second frequency value is applied to the control group.  

 

3.2.2. Converting dates to ages 

EMR event data is usually tagged with dates. In certain cases, a researcher may choose to study EMR 

records only within a specific period of time, or they may want to use age as a covariate. For convenience, 

the convertEventToAge script allows users to quickly convert dates associated with CPT and ICD events to 

subject ages at the events. This function requires the phenotype file for which event dates are to be converted 

and a corresponding group file that contains each subjects’ date of birth. Optionally, the user may specify 

the level of precision with which ages are saved in the output phenotype file.  
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3.2.3. Censoring event data 

A common aim of medical studies is to examine specific periods of time in patients’ lives. For example, 

one may be interested in the EMR signature for the five years leading up to an Alzheimer’s Disease 

diagnosis or for children ages 10 to 18 who have Autism/Autism Spectrum Disorder. Data censoring such 

as this is incorporated into the pyPheWAS toolkit with the censorData function. Similar to other tools, this 

function requires a phenotype file containing the events to be censored and a group file containing subject 

information, along with user-specified censoring start and/or end years. Censoring can be applied to the 

data in two distinct ways. The first method censors the absolute value of event ages (e.g. the age at CPT or 

ICD code events) to only those that fall within the user-defined start and end years, such that all preserved 

events fulfill the equation  

 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑣𝑒𝑛𝑡𝐴𝑔𝑒 ≤ 𝑒𝑛𝑑 (1) 

The second method instead censors event ages relative to an external event, such as subject age at diagnosis 

or surgery. In this case, the interval between the events is considered such that all preserved events fulfill 

the equation 

 𝑠𝑡𝑎𝑟𝑡 ≤ (𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐸𝑣𝑒𝑛𝑡𝐴𝑔𝑒 −  𝑒𝑣𝑒𝑛𝑡𝐴𝑔𝑒)  ≤ 𝑒𝑛𝑑 (2) 

The censored events are saved to a new phenotype file, and all subjects with event data remaining after 

censoring are written to a new group file. 

 

3.2.4. Case-control matching 

Another common practice in case-control studies such as PheDAS is matching a certain number of 

control subjects to each case subject based on specified group variables. The pyPheWAS toolkit includes 

case-control mapping through its maximizeControls tool. This tool requires a group file containing group 

variables and case/control assignments, a list of variables to match on, tolerance intervals for each of those 

matching variables, and the desired ratio of controls to cases. It constructs a bipartite graph from the cohort 

in which subjects are the vertices, matching variables are edges, and the case and control groups are two 

disjoint independent vertex sets. To find a first set of matches, it uses the Hopcroft-Karp algorithm [186] 

to find a mapping between the case and control sets that results in maximal cardinality (i.e., matches). If 

the desired matching ratio is larger than 1:1, the first set of matched controls are removed from the graph, 

and the Hopcroft-Karp algorithm is applied again to find a second set; this repeats until either the desired 

matching ratio is satisfied or there are no more possible matches. A new group file is saved containing all 

matched subjects, along with a separate matched pairs file containing the explicit mapping between each 

individual case and its control(s). 
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3.3. Scanning the ICD phenome 

 As outlined in Figure IV-2, the core of PheDAS analysis may be broken up into three distinct phases: 

1) mapping EMR data to phenotypes, 2) mass univariate regression of phenotypes, and 3) result 

visualization. The ICD analysis tools in the pyPheWAS package focuses on processing ICD-9-CM and 

ICD-10 codes, with individual functions devoted to each of the three phases: pyPhewasLookup, 

pyPhewasModel, and pyPhewasPlot, respectively. This section describes each of those functions in detail. 

 

3.3.1. pyPhewasLookup 

The pyPhewasLookup function transforms individual ICD code records into feature matrices ready to 

be processed by the pyPhewasModel function; Figure IV-4 provides a detailed view of this function. It 

requires as input a phenotype file containing the ICD records of each subject and a group file containing 

the target and covariate variables. The feature matrices are constructed in two phases: 1) mapping and 2) 

aggregation. In the mapping phase, each ICD code in the phenotype file is mapped to its corresponding 

phenotype. The phenotype mapping used by pyPhewasLookup includes 1,866 hierarchical phenotype codes 

(PheCodes); it was originally constructed solely for ICD-9 codes by Denny et al [167], with later 

improvements to the ICD-9 mapping [168] and the addition of an ICD-10 code mapping [187]. It should 

be noted that these mappings are not complete. They do not cover the full range of ICD-9 and ICD-10 

codes, so ICD events in a subject’s record which are not included in the mapping are removed from the 

study. When these removals occur, pyPhewasLookup notifies the user regarding the number of removed 

events; optionally, the user may choose to export the list of removed events for further inspection. 

The aggregation phase next reformats the mapped data from longitudinal events to subject-by-PheCode 

feature matrices. Three types of feature matrices are created, in which the columns are PheCodes and the 

rows are subjects from the group file. The first matrix is the core of the PheWAS analysis; denoted the 

aggregate measure matrix, it contains a single aggregate measure for each PheCode across all subjects. To 

allow researchers to investigate different aspects of the EMR, three distinct types of aggregation may be 

performed: binary, count, and duration. Binary aggregation investigates the relationship between the target 

variable and the presence or absence of a PheCode. Its feature matrix contains only zeros (the PheCode was 

absent in the subject’s record) and ones (the PheCode was present in the subject’s record). Count 

aggregation investigates the relationship between the target variable and the number of occurrences of a 

PheCode. Its feature matrix contains positive integers that correspond to the total number of times each 

PheCode occurred in a subject’s record. Duration aggregation investigates the relationship between the 
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target variable and the interval of time over which a PheCode is experienced. Its feature matrix contains the 

time in years between the first and last occurrences of each PheCode in a subject’s record. 

The second and third feature matrices are independent of aggregation type and are created as optional 

covariates for pyPhewasModel. The ICD age feature matrix contains the maximum age recorded for each 

PheCode in a subject’s record; if the subject has no records of that PheCode, the subject’s overall maximum 

recorded age is reported. The PheWAS covariate matrix allows researchers to use the presence/absence of 

a specified PheCode as a covariate in the regression. Across all columns, it records a one if the specified 

PheCode is present in a subject’s record or zero if the specified PheCode is absent. All three feature matrices 

are saved as CSV files in preparation for the pyPhewasModel step.  

3.3.2. pyPhewasModel 

The pyPhewasModel function performs the mass logistic regression which is the focal point of PheDAS 

analyses. It requires the feature matrix files generated by pyPhewasLookup in addition to the group file. For 

each PheCode, pyPhewasModel computes a univariate logistic regression of the form 

 𝑃𝑟(𝑡𝑎𝑟𝑔𝑒𝑡) ~ 𝑙𝑜𝑔𝑖𝑡(𝐴𝑝ℎ𝑒 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) (3) 

where the target variable and covariates are specified by the user, and 𝐴𝑝ℎ𝑒 is the aggregate measure vector 

for a particular PheCode phe taken from the aggregate measure matrix. 

 

Figure IV-4 Detailed look at phenotype mapping, aggregation, and regression in pyPhewasLookup. 

On the far left, excerpts from input phenotype and group files containing data from subjects A26 

and A38 are shown. ICD codes from the phenotype file are mapped to corresponding PheCodes. 

These codes are then aggregated via one of three possible methods for each subject; binary, count, 

and duration aggregations for subject A26 are shown. Finally, the aggregated EMR data is combined 

with group data (in this case, the target variable Target, and covariates Sex and MaxAgeAtICD), 

and univariate regressions are computed for each PheCode. 
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These regressions are only computed on PheCodes for which 𝐴𝑝ℎ𝑒is non-zero in at least X subjects, 

where X is a user-defined threshold that defaults to 5. This requirement cuts out PheCodes which lack 

sufficient statistical power. The model is fit to the data via regularized maximum likelihood optimization. 

The Python library statsmodels is used to generate and fit the logit model to the PheCode data [188]. 

Regression results are again saved in a CSV file for the user to review and visualize. This file reports the 

log odds ratio, confidence interval, standard error, and uncorrected p-value estimated from 𝐴𝑝ℎ𝑒 for each 

PheCode phe. 

 

3.3.3. pyPhewasPlot 

Visualization of the PheDAS mass regression is performed by the pyPhewasPlot function. It requires 

the regression file produced by pyPhewasModel and the user’s desired multiple comparisons correction 

method; both False Discovery Rate (FDR) and Bonferroni are available. From these inputs, it creates three 

complementary views of the PheDAS analysis using the Python matplotlib library [189]. The first is a 

Manhattan plot, a classic GWAS plot which compares statistical significance across PheCodes. This view 

presents PheCodes across the horizontal axis, with negative log10(p-value) along the vertical axis; PheCode 

markers on the plot are colored and sorted according to 18 general categories (mostly organ systems and 

disease groups, e.g. “circulatory system” and “mental disorders”), allowing users to distinguish related 

PheCodes. To enhance legibility, the plot only labels PheCodes which are significant after the chosen 

multiple comparisons correction is applied.  

The second view is a Log Odds plot, which compares effect size across PheCodes. In this plot, the log 

odds of each PheCode and its confidence interval are plotted on the horizontal axis, with PheCodes plotted 

along the vertical axis. Similar to the Manhattan plot, PheCode markers are sorted and colored by category; 

only PheCodes which are significant after multiple comparisons correction are shown. 

The final view is a Volcano plot. This view combines the previous two, presenting an overview of the 

entire experiment. In the Volcano plot, significance, negative log10(p-value), is represented by the vertical 

axis, and effect size, log odds, is represented by the horizontal. All PheCodes in the regression file are 

included on this plot, with marker color corresponding to each PheCodes’s level of significance (none, 

FDR, Bonferroni). To ensure legibility, only PheCodes that are significant after FDR or Bonferroni 

correction are labeled. 

These three views together provide a comprehensive visualization of the PheWAS analysis. The 

Volcano plot allows the user to see an overview of the entire experiment, with the Manhattan and Log Odds 
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plots then providing a detailed view for closer examination of significant results. The user has the option 

of either opening the plots in an interactive window or immediately saving them as image files. 

 

3.3.4. pyPhewasPipeline 

pyPhewasPipeline is a streamlined combination of pyPhewasLookup, pyPhewasModel, and 

pyPhewasPlot created for convenience. Its required inputs are the phenotype file, group file, and the 

regression type. All intermediate results (feature matrices, regressions) are saved. In addition to the Volcano 

plot, Manhattan and Log Odds plots are created for both FDR and Bonferroni corrections by default. 

Optional arguments allow users to modify every step of the pipeline (adding covariates, specifying 

significance level, etc.).  

 

3.4. Scanning the CPT phenome 

Procedure wide association studies (ProWAS) are nearly identical to PheDAS, with one critical 

difference: the EMR data. While PheDAS investigates ICD code phenotypes, ProWAS investigates CPT 

code phenotypes. Examining ICD codes may provide insight into patient diagnoses; in a similar vein, 

examining CPT codes may reveal patterns in how patients are treated. As such, these tools are identical to 

their PheDAS counterparts, with the exception of the EMR-phenotype mapping. As with PheDAS, 

ProWAS consists of three main stages: 1) mapping EMR data to phenotypes, 2) mass univariate regression 

of phenotypes, and 3) result visualization. The CPT analysis tools for each of these stages are analogous to 

the ICD analysis tools: pyProwasLookup, pyProwasModel, and pyProwasPlot.  

 ProWAS employs a custom procedural phenotype map, linking 10,396 CPT codes to 1,681 

ProWAS Codes (ProCodes) [50]. This map is based on the Clinical Classification System for CPT codes 

provided by the Healthcare Cost and Utilization Project (HCUP) Agency for Healthcare Research and 

Quality [190]. Starting with 236 of the HCUP clinically meaningful CPT categories, additional granularity 

was added to the mapping with guidance from medical experts, until 1,681 ProCodes were defined. For 

example, the HCUP category 66 (Procedures on spleen) was split into ProCodes 66.1 (Splenectomy), 66.2 

(Splenorrhaphy), and 66.3 (Laparoscopy). The full CPT-ProCode map may be found at 

https://github.com/MASILab/pyPheWAS. 
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4. Results 

In this section, we demonstrate the utility of the pyPheWAS package via two example PheDAS 

experiments. In Experiment 1, we evaluate the package by analyzing a synthetic EMR dataset which 

contains several hand-crafted PheCode associations. In Experiment 2, we perform a case study on real EMR 

data, in which we compare subjects with Down Syndrome (DS) to controls with other Intellectual or 

Developmental Disabilities (IDD). 

 

4.1. Experiment 1: Synthetic dataset 

4.1.1. Dataset construction 

Our synthetic dataset consists of 10,000 individuals, split evenly into 5,000 case (Dx=1) and 5,000 

control (Dx=0) subjects, where Dx is the target variable. Other demographic variables include biological 

sex and maximum age at visit (MAV). Sex was intentionally made a confounding variable by skewing the 

female:male ratios between the case and control groups. MAV was calculated as the maximum age recorded 

from ICD records generated for each individual. These synthetic demographic variables are summarized in 

Table IV-1. 

Table IV-1 Synthetic dataset demographic summary 

 

 Subjects 
Sex 

[% Female] 

Max Age At Visit 

[mean (std.)] 

Case 

(Dx=1) 
5,000 70% 59.946 (9.563) 

Control 

(Dx=0) 
5,000 40% 60.802 (9.448) 

 

While curating ICD code events for each individual, three types of PheCode associations were created. 

Primary PheCode associations were true associations between Dx and the PheCode. ICD events were 

generated such that each of these PheCodes would have a unique pre-specified effect size (log odds ratio) 

across the full cohort; individuals’ ages for each event were randomly generated using a uniform 

distribution over the range [30, 50]. pyPheWAS should accurately estimate each primary association’s 

effect size and determine that the association is statistically significant. We generated nine primary PheCode 

associations, including six positive associations and three negative associations (Table IV-2). In contrast, 

background PheCode associations were insignificant associations between Dx and the PheCode. ICD 

events were generated such that each background PheCode would have a small pre-specified effect size, 

randomly generated via a uniform distribution over the range [-0.1, 0.1]; again, individuals’ ages for each 
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event were randomly generated using a uniform distribution over the range [30, 50]. pyPheWAS should 

accurately estimate each background association’s effect size but determine that the association is 

insignificant. Twenty background PheCode associations were generated for the synthetic dataset. 

Finally, confounded PheCode associations were false positives caused by the confounding effect of 

either sex or age. Without controlling for the confounding variable, pyPheWAS should identify a significant 

association with these confounded PheCodes; including the confounding variable as a covariate, however, 

should reduce (or eliminate) the confounded association. PheCode 174.1 (Breast cancer [female]) was used 

as a sex-confounded PheCode (Table IV-2). To produce the confounding effect, ICD events were generated 

such that all females in the dataset had equal odds of having PheCode 174.1 in their record; event ages were 

generated in the same way as primary PheCodes. Because females were disproportionally represented 

across the case and control groups, however, the PheCode’s cohort-wide effect size is positively skewed to 

a 0.6 log odds ratio. Additionally, PheCode 292.2 (Mild cognitive impairment) was used as an age-

confounded PheCode (Table IV-2). ICD events were generated such that PheCode 292.2 would have a -0.2 

log odds ratio; however, event ages were randomly generated using a uniform distribution over the higher 

age range [65,70]. This resulted in PheCode 292.2 being highly associated with larger values of MAV. This 

synthetic EMR dataset has been made freely available on pyPheWAS’s GitHub. 

 

4.1.2. PheDAS analysis 

The synthetic EMR dataset was analyzed in a single command via pyPhewasPipeline. We first ran Reg 

A, a minimal PheDAS with no covariates (Figure IV-5a, Table IV-2). Reg A successfully estimated the log 

odds ratios of all nine primary PheCodes and determined that they were statistically significant after 

Bonferroni multiple comparisons correction. The twenty background codes were accurately identified as 

insignificant. Reg A also correctly estimated the apparent effect sizes and significance of the two 

confounded PheCodes, 174.1 and 292.2; this was expected since Reg A did not properly control for the 

confounding variables. To remedy this, we next ran Reg B, a PheDAS that included both sex and MAV as 

covariates (Figure IV-5b, Table IV-2). With this modification, pyPheWAS recognizes the confounded 

PheCodes and now correctly determines that they are insignificant. 
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Table IV-2 PheDAS regression results for the primary and confounded PheCodes in the synthetic 

dataset. 
    Reg A Reg B 

 PheCode Phenotype Actual LORa LORa p-valb LORa p-valb 

Primary 

338.2 Chronic pain 1.50 1.500 ** 1.490 ** 

340 Migraine 1.10 1.099 ** 1.128 ** 

1011 
Complications of surgical 

and medical procedures 
0.70 0.700 ** 0.700 ** 

296.22 Major depressive disorder 0.60 0.600 ** 0.579 ** 

530.11 GERD 0.30 0.300 ** 0.302 ** 

401 Hypertension 0.25 0.249 ** 0.257 ** 

041 Bacterial infection NOS -0.20 -0.200 ** -0.194 ** 

1009 Injury, NOS -0.60 -0.599 ** -0.604 ** 

495 Asthma -1.00 -1.000 ** -0.991 ** 

Confounded 
174.1 Breast cancer [female] 0.66 / 0.00c 0.662 ** 0.004 - 

292.2 Mild cognitive impairment -0.2 -0.199 ** -0.500 - 
a log odds ratio; b significant after Bonferroni correction (**), insignificant (-); c male+female log odds ratio / female-only log odds ratio 

 

4.2. Experiment 2: Down syndrome case study 

4.2.1. Dataset acquisition 

This case study and its procedures were carried out in accordance with the Institutional Review Board 

of Vanderbilt University and VUMC. Our EMR dataset was obtained from the Synthetic Derivative at 

Vanderbilt University Medical Center as a fully deidentified collection of clinical data via the Vanderbilt 

Institute for Clinical and Translational Research. All researchers working with this data received proper 

Human Subjects training. Our initial cohort consisted of 901,883 subjects, each having records of sex, race, 

and date of birth. Collectively, these subjects had 20,519,770 ICD event records and 19,555,593 CPT event 

records.   

 

4.2.2. Cohort preparation 

We first identified all DS cases and IDD controls in our cohort using the createPhenotypeFile tool. For 

this case study, we defined DS and IDD subjects based on ICD-9 and ICD-10 codes, which are listed in 

Appendix A. For both the DS and IDD groups, we required that a subject have at least 2 records of the 

codes listed in this Appendix to be included. From these criteria, we found 2,315 DS subjects and 106,059 

IDD subjects. This control group was intentionally designed to cover a broad range of IDDs in order to 

elucidate phenotypic patterns that are unique to DS. Future investigations with more specific hypotheses, 

however, may benefit from curating a more targeted comparison group; for example, using PheDAS to 
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compare autism spectrum disorder with DS could reveal more about the absence of psychiatric comorbid 

conditions in DS.  

After obtaining subject event ages via the convertEventToAge tool, we next used the censorData tool 

to restrict both the ICD and CPT data to only those events occurring previous to age 10. After this censoring, 

we were left with 1,830 DS and 52,138 IDD subjects that had both ICD and CPT events previous to age 

10. Finally, due to the highly unbalanced nature of our cohort, we used the maximizeControls tool to match 

our DS cases to IDD controls with a 1:2 ratio. Matching was performed based on sex (exact match), race 

(exact match), and minimum ICD/CPT event age ( 0.3 years). One DS subject was dropped at this point, 

as there did not exist a single suitable match in the IDD cohort (even after varying the tolerance for the 

minimum age matching criterion), leaving us with 1,829 DS subjects and 3,658 IDD subjects.  

 

4.2.3. ICD record analysis 

To analyze the ICD signature of DS subjects compared to IDD controls, we performed a binary 

pyPheWAS analysis. We constructed a binary feature matrix via pyPhewasLookup, then performed mass 

logistic regression across all PheCodes with the maximum ICD age feature matrix as a covariate using 

pyPhewasModel. Applying Bonferroni multiple comparisons correction resulted in 177 PheCodes that were 

statistically significant; the top five most significant PheCodes in this experiment were found to be Cardiac 

shunt/heart septal defect (747.11), Muscle weakness (772.30), Hypothyroidism NOS (244.40), Cardiac 

 

Figure IV-5 PheDAS applied to a synthetic dataset. a) Volcano plot resulting from a PheDAS without 

covariates. pyPheWAS successfully identified the nine primary PheCode associations in the 

synthetic dataset and ignored the twenty background associations. The confounded PheCodes 

(Breast cancer [female] and Mild cognitive impairment) were also identified as significant. b) Volcano 

plot resulting from a PheDAS with the Sex and MaxAgeAtVisit covariates. Controlling for sex and 

age effects successfully repressed findings from confounded PheCodes (Breast cancer [female] and 

Mild cognitive impairment). 
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congenital anomalies (747.10), and Obstructive sleep apnea (327.32). All regression results were plotted 

via pyPhewasPlot with the Bonferroni threshold. This analysis and the resulting Manhattan plot are 

presented in Figure IV-6.  

 

4.2.4. CPT record analysis 

The CPT signature of DS subjects compared to IDD controls was analyzed in a similar manner. 

We first constructed a binary ProWAS feature matrix via pyProwasLookup. We then performed mass 

logistic regression across all ProCodes with the maximum CPT age feature matrix as a covariate using 

pyProwasModel. Applying Bonferroni multiple comparisons correction resulted in 109 ProCodes that were 

statistically significant, of which Spine radiology exam (226.4), Doppler echocardiography (193.5), 

Clinical nutrition (237.4), Transthoracic echocardiography (193.3), and Occupational therapy (212.4) were 

found to be the most significant. Due to the large number of significant ProCodes, the results were plotted 

via pyProwasPlot with a much stricter custom threshold (puncorrected < 1e-30) in order to pare down results 

for discussion. This ProWAS analysis and its Log Odds plot of significant results are shown in Figure IV-7.  

 

Figure IV-6 Sample PheDAS of ICD records in DS vs. IDD subjects. (a) A binary feature matrix with 

PheCodes as columns and subjects as rows was constructed from the ICD event records mapped to 

PheCodes in pyPhewasLookup. (b) Mass univariate logistic regression was performed across 

PheCodes in the feature matrix using pyPhewasModel; regression results are listed for the top 5 most 

significant PheCodes (p <<< 0.001 after Bonferroni multiple comparisons correction). (c) Manhattan 

plot of all results is shown, with the top 14 most significant PheCodes labeled (p <<< 0.001 after 

Bonferroni multiple comparisons correction). The Bonferroni threshold is shown as a dotted red 

line. 
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5. Discussion 

This article presents the pyPheWAS comprehensive toolkit for performing PheDAS analyses on 

EMR data. We have described the PheDAS process, wherein EMR data, specifically ICD or CPT codes, 

are first mapped to meaningful phenotypes and aggregated across each patient’s record. These aggregate 

measures are then used along with specified covariates to perform mass univariate regression of a target 

variable on each phenotype. The results of this mass univariate regression are visualized in several ways to 

facilitate interpretation. We verified the pyPheWAS package by analyzing a synthetic dataset and then 

further illustrated its function in a real-world setting via a case study comparing DS subjects with non-DS 

IDD controls. With the analysis complete, our final consideration focuses on how to interpret PheDAS 

experiments. 

The first question we must ask of a PheDAS is how do we verify its correctness? Since PheDAS is 

primarily a hypothesis generation method, there is no “correct” set of values we can test the strength, 

significance, or number of associations against. Despite this, PheDAS has a built-in verification test: 

expected associations. For practically any disease being tested via PheDAS, there are several previously 

known phenotype associations. These expected associations may be used as reassuring results in a study; a 

sanity check that establishes baseline credibility for all regression results [191]. Several such reassuring 

results are present in the ICD and CPT analyses of our case study. The Manhattan plot in Figure IV-6 shows 

that the PheCodes for Cardiac Congenital Anomalies, Hypothyroidism, and Obstructive Sleep Apnea were 

 

Figure IV-7 Sample PheDAS of CPT records in DS vs. IDD subjects. (a) A binary feature matrix 

with ProCodes as columns and subjects as rows was constructed from the CPT event records 

mapped to ProCodes in pyProwasLookup. (b) Mass univariate logistic regression was performed 

across ProCodes in the feature matrix using pyProwasModel; regression results are listed for the top 

5 most significant ProCodes (p <<< 0.001 after Bonferroni multiple comparisons correction). (c) The 

Log Odds plot of top 18 most significant PheCodes (p <<< 0.001 after Bonferroni multiple 

comparisons correction) is shown, created via pyProwasPlot. 
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found to have positive associations with DS, all of which are known co-morbidities of DS [192] [193]. 

Similarly, the Log Odds plot in Figure IV-7 shows that the ProCodes for Echocardiography (ECG), Clinical 

Nutrition, Sleep Studies, and Physical Therapy were found to be significantly positively associated with 

DS; again, these ProCodes would be expected as they are procedures which could be used to diagnose and 

treat known co-morbidities of Down Syndrome [192]. 

With our expected associations established, the next task is identifying unknown or interesting 

associations in the PheDAS. The volcano plot may serve as a helpful guide in this step, since it provides an 

overview of all results and directly links statistical significance with effect size. When viewed via 

pyPhewasPlot and pyProwasPlot, zooming and panning functions allow users interactively identify results 

of interest. Figure IV-8 shows the volcano plots for both the ICD and CPT analyses described in the Results 

section; it should be noted that phenotype labels have been removed in this figure for legibility.  

An alternative approach for interpreting PheDAS results is assessing the novelty of disease-phenotype 

associations in terms of existing literature. Previous work has presented a formal method for assessing this 

type of novelty in PheDAS [99]. In brief, a novelty score is calculated for each disease-phenotype 

 

Figure IV-8 Sample volcano plots. Phenotype labels have been removed for legibility. Users may 

directly interact with these plots via pyPhewasPlot and pyProwasPlot. Zooming and panning across 

the plot enable users to explore phenotypes with regard to both significance and effect size. 

Thresholds for multiple comparisons correction are presented visually via color (Bonferroni in 

yellow, FDR in dark blue, and no significance in gray).  
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association in a PheDAS that measures the degree to which it is already known based on data mined from 

PubMed abstracts. If a disease-phenotype pairing is present in a large number of PubMed abstracts, the 

association is assigned a low novelty score and considered well known. In contrast, if a disease-phenotype 

pairing is present in only a few PubMed abstracts, the association is assigned a high novelty score and 

considered unknown. This framework is advantageous for exploratory studies in particular, as it does not 

require a clinical expert to manually review all results and filters the number of potentially novel or 

interesting PheDAS results down to a manageable amount. This novelty score framework is also available 

as part of the pyPheWAS package, though not covered in depth here.  

We have shown that PheDAS methods are powerful in isolation, but several studies have also 

demonstrated their utility as support for other types of analyses. Warner et al performed a proof-of-concept 

study which employed the PheDAS framework in order to identify subjects for a trans-institutional cohort 

of multiple myeloma patients [177]. Li et al used PheWAS for hypothesis generation in the context of 

phenotypes related to the genetic components that drive serum uric acid level, then performed a 

conventional analysis to investigate causal relevance for the identified phenotypes [171]. In the realm of 

medical imaging, PheDAS has been used successfully to study diseases of the eye and optic nerve. In one 

such study, PheCode and ProCode feature matrices were used alongside imaging-derived features in a 

model of visual function for subjects with glaucoma and thyroid eye disease; inclusion of the EMR data 

was found to improve the explained variance of disease outcomes [50]. Another study used PheDAS to 

identify PheCodes associated with several optic nerve diseases, then used the identified phenotypes 

combined with optic nerve imaging features to classify disease subjects and controls. Again, combining the 

PheCode feature vectors with imaging-derived features produced the most accurate classifiers [48]. This 

framework could be extended to the domain of neuroimaging, allowing researchers to support their models 

of neurological disease with EMR context. 

There are several limitations to keep in mind when working with EMR data and the pyPheWAS 

package. Inherent variability in EMR data is well documented [49]. For example, the ICD coding system’s 

primary function is to bill insurance companies, not to serve as a proxy for diagnosis. ICD codes are 

generated by a coding specialist who translates clinician notes into insurance billing codes; this process has 

many opportunities for noise to enter the system, including at the patient-physician interface (patient-

physician communication, physician training, expertise, and attention to detail), at the physician-coder 

interface (variations in clinical practices, coder training and expertise, facility quality assurance), and from 

simple human errors [49]. Additionally, EMRs suffer from broader issues of record fragmentation (such as 

when a patient moves between institutions) and a bias toward sicker populations (EMR events are usually 

recorded during illness) [54]. Some of this error may be mitigated while creating case and control groups 
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with the createPhenotypeFile tool. Users may specify a code frequency threshold which must be met for a 

subject to be considered a “true” case or control; enforcing higher temporal thresholds on ICD code events 

reduces the possibility that mis-coded subjects are mistakenly included in the case or control groups. 

Additionally, the mapping from ICD codes to PheCodes further reduces EMR variability by consolidating 

large groups of highly-related ICD codes into a single PheCode [168]. 

Another common challenge with large-scale association methods such as GWAS and PheDAS is 

confounding. Users have several options for addressing this issue within the pyPheWAS toolkit. The case-

control matching tool, maximizeControls, allows users to match the distributions of potentially confounding 

variables, such as sex or age, between the case and control populations. Confounding variables may also be 

added as covariates in the mass univariate regression step; users may specify both primary variables (height 

or weight) and combined terms (height divided by weight) via the group file to control for various 

confounding effects. Furthermore, after completing a PheDAS experiment, users should carefully consider 

the verification of their results by identifying plausible biological links for identified associations and 

replicating their analysis in an independent population [194]. 

These strategies may be used to control for common confounding factors, but investigators should also 

carefully consider more subtle confounders that might influence their group composition. Individuals 

suffering from chronic diseases, for example, tend to have more hospital visits and therefore higher numbers 

of secondary medical diagnoses than individuals with acute ailments; because of this, comparing a chronic 

disease case group to an acute disease control group may result in false positive phenotype associations 

unrelated to the chronic disease of interest. This common but challenging scenario could be mitigated in 

several ways, such as including visit frequency as a matching criterion or redefining the control as a 

comparable chronic disease. Ultimately, it falls to the investigators using pyPheWAS to precisely select 

case and control group populations so that their study design properly addresses their specific research 

question. 

A few additional limitations are related directly to the pyPheWAS toolkit. As was previously stated, 

the ICD-phenotype maps do not cover the full range of possible ICD codes; specifically, the map includes 

15,558 ICD-9 codes and 9,505 ICD-10 codes [167], [168], [187]. Users are notified when their datasets 

contain ICD-9 and ICD-10 codes which are not in the mapping and may choose to save the excluded ICD 

events for inspection. Relatedly, the pyPheWAS map is limited to processing only ICD-9 and ICD-10 

codes; newer coding systems such as ICD-11 are not yet supported. To work with an expanded set of ICD-

9 and ICD-10 codes or to incorporate ICD-11, users may wish to use a custom phenotype map with 

pyPheWAS. Though this feature is currently not supported, pyPheWAS is an open source tool, allowing 

researchers to customize its functionality. To incorporate a custom phenotype map, users may clone the 
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pyPheWAS project from GitHub and replace the default map within the source code. This modification 

would require that the user first edit their custom map’s headings to match the default map’s headings, and 

then point the map loading function in the source code to their local custom map. In a similar vein, the 

pyPheWAS package currently performs only mass logistic regression. Other regression methods have 

proven interesting in PheDAS analyses, however; for example, one study used of a linear regression to 

study phenotypic associations with white blood cell count [178]. Again, though this feature is not currently 

supported, the open source nature of the pyPheWAS toolkit provides the opportunity for other researchers 

to build in new capabilities. The key modification required for a custom regression type would involve 

replacing the logistic regression in pyPhewasModel with an alternate regression model from the statsmodels 

python package [188] and specifying which output values to pull from the fitted model. An alternative 

statistical python package such as scikit-learn [195] may also be used, but would require more modifications 

to the modeling input and output structure. The pyPheWAS website contains more detailed directions for 

users wishing to implement either a custom phenotype map or regression modifications. 

In this work, we have presented pyPheWAS, a command line toolkit for implementing PheDAS 

analyses. We have demonstrated a typical PheDAS analysis of children with Down Syndrome compared to 

children with other intellectual and developmental disorders, complete with suggestions for verifying and 

interpreting the large amount of statistically significant results. Whether on its own or in combination with 

other analyses, the pyPheWAS toolkit provides an approachable method for taking advantage of the EMR 

and integrating this rich resource into our studies of neurological disease. 
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Chapter V  

 

pyPheWAS Explorer:  

A Visualization Tool for Exploratory Analysis of Phenome-Disease Associations 

 

1. Overview 

To enable interactive visualization of phenome-disease association studies (PheDAS) on electronic 

health records (EHR). Current PheDAS technologies require familiarity with command-line interfaces and 

programming. pyPheWAS Explorer allows users to examine group variables, test assumptions, design 

PheDAS models, and evaluate results in a streamlined graphical interface. A cohort of attention deficit 

hyperactivity disorder (ADHD) subjects and matched non-ADHD controls is examined. pyPheWAS 

Explorer is used to build a PheDAS model including sex and deprivation index as covariates, and the 

Explorer’s result visualization for this model reveals known ADHD comorbidities. pyPheWAS Explorer 

may be used to rapidly investigate potentially novel EHR associations with conditions such as ADHD. 

Broader applications include deployment for clinical experts and preliminary exploration tools for 

institutional EHR repositories. pyPheWAS Explorer provides a seamless graphical interface for designing, 

executing, and analyzing PheDAS experiments, emphasizing exploratory analysis of regression types and 

covariate selection. 

 

2. Introduction 

The past few decades have seen a surge in the availability of EHR data [196] and, unsurprisingly, 

numerous methods for making sense of this rich data source [197], [198]. When genetic data is available, 

phenome-wide association studies (PheWAS) are often used to identify associations between a genotype 

and many EHR phenotypes, often derived from ICD billing codes [47]. This technique has discovered novel 

associations between EHR phenotypes and HLA-DRB1*1501 [169] and determined the contribution of 

Neanderthal genetic variants to phenotypes of modern humans [173]. Inspired by PheWAS, PheDAS 

emerged to investigate associations between non-genetic targets and EHR-derived phenotypes. Such studies 

include a characterization of co-occurring phenotypes in autism spectrum disorder [29] and a scan for 

phenotype associations with white blood cell count in an intensive care unit cohort [178]. 

Currently, several tools exist for running these PheWAS and PheDAS experiments, including R 

PheWAS [180], pyPheWAS [199], and PHESANT [200]. All of these tools obscure the study data-flow, 

requiring the user to navigate several command-line-style tools (or write their own code) and only providing 
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visualizations for the final output. These conditions can make verification of model inputs and designs 

difficult, especially considering the unwieldy file sizes of larger cohorts. These factors present unnecessary 

barriers for researchers, especially those who are experimenting with PheWAS or PheDAS for the first 

time. 

To bridge this accessibility gap, we present pyPheWAS Explorer, an interactive visualization tool for 

the analysis of ICD-derived phenotypes. Inspired by RegressionExplorer [201], pyPheWAS Explorer 

provides visual inspection of model inputs, real-time model building, and multi-faceted result visualization. 

The Explorer may be used for both PheWAS and PheDAS experiments, as the primary difference is whether 

or not the target variable is genetic. Given the limited availability of genetic data, however, we focus on 

PheDAS for the remainder of this article to avoid confusion and encourage more researchers to leverage 

this method even in the absence of genetic data.  

 

3. Materials and Methods 

The pyPheWAS Explorer workflow (Figure V-1) is composed of three phases: input and preprocessing, 

model building, and model evaluation. In the following sections, we describe each of these phases in detail, 

after briefly outlining PheDAS experiments in general. 

 

3.1. A brief description of PheDAS 

A PheDAS aims to identify associations between a non-genetic binary target and ICD-derived 

phenotype codes (PheCodes). These associations are found via the following procedure: 1) ICD data are 

mapped to PheCodes, 2) PheCodes are aggregated across each patient’s record, 3) mass univariate logistic 

regression [202] is performed on each PheCode, and 4) the regression results are visualized for 

interpretation [199]. pyPheWAS Explorer performs steps 1 and 2 of this procedure in the background during 

the input and preprocessing phase, after which the user may interactively build and run the PheDAS logistic 

model (step 3). Finally, the user may interpret target-PheCode associations by directly interacting with both 

tabular and visual representations of the PheDAS model results (step 4).  

 

3.2. Input and preprocessing 

The first phase of the Explorer workflow involves transforming the longitudinal EHR into PheCode 

feature matrices. Two data files are required: an EHR file and a group demographics file. The EHR file 

contains ICD records, while the group file contains the target variable (disease status) and other group 
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variables (in this example, Body Mass Index (BMI) and sex) (Figure V-1). pyPheWAS Explorer first maps 

all ICD-9 and ICD-10 codes to a set of 1,866 PheCodes [168], [187]. It is important to note that while these 

tables are extensive, they are incomplete; any ICD-9 or ICD-10 codes not included in the mapping are 

removed from the study. The Explorer then uses three different aggregation methods to summarize the 

existence of each PheCode across each patient’s EHR. The binary aggregation method considers the 

relationship between the target variable and the presence of each PheCode; this feature matrix contains only 

zeros (the PheCode was absent in the patient’s record) and ones (the PheCode was present in the patient’s 

record). The count aggregation method considers the relationship between the target variable and the 

number of occurrences of each PheCode; this feature matrix contains positive integers corresponding to the  

 

Figure V-1 pyPheWAS Explorer Workflow. All data preprocessing is done automatically in the 

background; feature matrices are saved for faster startup in subsequent sessions. In the model 

building phase, the user may examine group variables and compare them to each other before 

adding them to the PheDAS model. Additionally, users may specify the type of PheCode aggregation 

(binary, count, or duration). In the model evaluation phase, the user examines mass univariate 

regression results at configurable significance levels. Based on these results, the user may move back 

into the model building phase to re-evaluate their model design. 
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total number of instances of each PheCode in each patient’s record. The duration aggregation method 

considers the relationship between the target variable and the span of time over which a PheCode was 

present; this feature matrix contains the time in years between the first and last occurrences of each PheCode 

in each patient’s record.  

 

3.3. Building a PheDAS model 

Model building in pyPheWAS Explorer is facilitated by the interactive panel (Figure V-2). For each 

group variable γ, the individual view presents the correlation coefficient between γ and the target variable 

(represented by a colored block) and a histogram of γ values (separated by target group). The overlapping 

histogram allows the user to check case/control matching for each potential covariate, while the correlation 

coefficient allows the user to identify potential covariate biases.  

 

Figure V-2 pyPheWAS Explorer Regression Builder Panel. For demonstration, a cohort of ADHD 

cases (Target 1) and non-ADHD controls (Target 0) is shown. Group variables in this dataset 

included minimum/maximum age at visit (MinAgeAtVisit/MaxAgeAtVisit), biological sex, body 

mass index (BMI), and deprivation index (DEP_INDEX). The right side of this panel shows the 

variables sex and deprivation index loaded into the variable comparison view, while the model 

selection view shows both variables added to a binary PheDAS model. Color encodings for the case 

and control groups, correlations, and regression coefficients are shown along the top bar. 
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The variable comparison view allows the user to test the independence assumption for a pair of 

covariates before adding them to the logistic model. Variables are added to the comparison by selecting the 

Comp button from the individual variable panels. For a qualitative independence assessment, the joint 

distribution of these variables is provided, again separated by target group; this includes a grid that captures 

the overlap of selected variable distributions, along with the individual histograms for each variable at the 

top and right of the grid. Hovering over the joint distribution grid allows the user to query the value of each 

bin. A quantitative assessment is also provided via two statistical tests. The first of these is the correlation 

coefficient between the selected variables. The second is a multicollinearity test, wherein the target variable 

is regressed as a function of each variable individually and by both variables together. The coefficients 

calculated from the correlation and regressions are all overlaid on colored blocks, where the color indicates 

statistical significance. In general, if the two variables are not correlated and their regression coefficients 

remain constant across the individual and combined multicollinearity models, the independence assumption 

holds, and they may be safely included in the PheDAS model together [203]. 

The model selection view allows users to build their PheDAS model. A list of buttons in this panel 

allows the user to select a PheCode aggregation type, while the Cov button in the individual group variable 

view allows the user to add covariates. 

 

3.4. Evaluating a PheDAS model 

Selecting the Run button in the model building panel triggers a real-time estimation of the user’s model; 

the results of this estimation are automatically displayed on the evaluation panel in three linked views 

(Figure V-3). Selecting a data point in any of these views highlights the corresponding data point in the 

other two views.  

The volcano plot presents an overview of the entire experiment. PheCode-target association 

significance, represented by -log(p-value), is shown on the y-axis, and association effect size, represented 

by log(odds ratio), is shown on the x-axis. Marker color in this plot corresponds to which multiple 

comparisons correction threshold a PheCode exceeds (Bonferroni [204], FDR [205], or insignificant). This 

view serves as a starting point for deeper investigations, as users can see interesting PheCode relationships 

in a single glance. 

The effect size plot presents PheCode-target association effect size (with confidence interval) on the x-

axis, with PheCodes listed down the y-axis. Only PheCodes that exceed the user-selected multiple 

comparisons correction significance threshold (either FDR [205] or Bonferroni [204]) are included in this 

plot. Marker color and shape in the effect size plot corresponds to 18 unique PheCode categories.  
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Finally, the data table provides the most detailed view, listing each PheCode’s category, odds ratio, p-

value, and the number of subjects that have at least one record of that PheCode. These tabular results are 

sorted so that the most significant results are at the top of the table. This data table is automatically saved 

so that users may reference it after closing pyPheWAS Explorer. 

3.5. Installation and Use 

pyPheWAS Explorer is available in open source as part of the pyPheWAS Python package [199], 

available at https://github.com/MASILab/pyPheWAS. An installation and usage video is included in the 

online documentation. 

 

Figure V-3 pyPheWAS Explorer Regression Evaluation Panel. PheDAS results from the binary 

ADHD model are shown in three linked views: an effect size plot, volcano plot, and data table. 

Selecting a PheCode in any view highlights it in the other two views; PheCode 300.3, Obsessive-

compulsive disorders, is selected for demonstration. The significance threshold for the effect size 

plot may be toggled between FDR and Bonferroni multiple comparisons correction by selecting the 

corresponding buttons at the top of the panel; here, Bonferroni is applied. Color legends for the 

effect size plot (PheCode categories) and volcano plot (significance thresholds) are shown along the 

top bar. 

https://github.com/MASILab/pyPheWAS
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3.6. Software evaluation 

To evaluate the Explorer software, we conduct an exploratory analysis of attention deficit hyperactivity 

disorder (ADHD) subjects compared to matched controls. A de-identified EHR dataset was acquired from 

the Synthetic Derivative at Vanderbilt University Medical Center [161]. 3,487 ADHD subjects were 

identified as those with at least 3 records of ICD-9 code 314.01 or ICD-10 codes F90, F90.0, F90.1, F90.2, 

F90.8, or F90.9. ADHD subjects were matched one-to-one with non-ADHD controls based on biological 

sex and minimum age at visit (± 0.1 years). 

 

 

 

Figure V-4 pyPheWAS Explorer Regression Evaluation panel without a selected PheCode. PheDAS 

results from the binary ADHD model (Figure V-2) are shown without any PheCodes highlighted and 

with Bonferroni multiple comparisons correction applied to the effect size plot. There are many 

significant ADHD-PheCode associations, a large portion of which fall into the “mental disorders” 

category. This is clear as well from the data table; the top seven most significant associations are 

listed, all of which are categorized as “mental disorders”. 
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4. Results 

Figure V-2 shows the ADHD cohort loaded into pyPheWAS Explorer’s regression builder interface. 

From the individual variable views, we confirm that the case and control groups were matched on sex and 

minimum visit age due to their histograms’ perfect overlap, while the other group variables show diverging 

distributions. Additionally, we see that most variables are uncorrelated with ADHD, but interestingly, 

deprivation index (DEP_INDEX), a measure of socio-economic status where a higher value corresponds to 

higher deprivation [206], has a slightly negative correlation (i.e. ADHD subjects tend to be less deprived 

than controls). Based on this, we are interested in building a PheDAS model that includes both deprivation 

index and sex as covariates. To ensure that these covariates may be used together safely, we first examine 

them using the variable comparison view. The two variables are not highly correlated, and their regression 

coefficients remain constant across the individual and combined multicollinearity tests; so we conclude that 

they are sufficiently independent and add them to our model. Finally, we select the binary model type and 

compute our PheDAS model. 

We use the volcano plot (Figure V-3, Figure V-4) to examine PheCode associations with the highest 

combined effect and significance; these include anxiety disorder, mood disorders, learning disorder, and 

obsessive-compulsive disorders, all of which are known comorbidities of ADHD [207]–[209]. We select 

Bonferroni correction for the effect size plot and find that all significant results had positive effects, with 

many in the “mental disorders” category.  

 

5. Discussion 

 As shown by the ADHD case study, PheDAS studies typically excel in confirming known 

comorbidities; more interesting, however, are the less prominent PheCode associations that a PheDAS can 

reveal: “dermatologic” (acne; rash and other nonspecific skin eruption), “endocrine/metabolic” (abnormal 

weight gain), and “respiratory” (bronchitis; acute sinusitis). To investigate these further, we change the 

PheCode aggregation type to duration and re-compute our PheDAS model (Figure V-5); each of these 

“interesting” PheCodes remain in the effect size plot. This re-evaluation suggests that these three PheCode 

categories may be candidates for deeper study, as they presented significant effects in both EHR presence 

and duration and are potentially less known to be associated with ADHD.  

pyPheWAS Explorer is a straightforward visual interface that captures a comprehensive summary of 

the entire PheDAS experiment, making rapid prototyping and interpretation of PheDAS models possible. 

The Explorer does currently have several limitations. Preparing EHR for the Explorer is not trivial. The full 

pyPheWAS package contains some data preparation tools, but these require familiarity with a command-



64 

line, as does installing and launching pyPheWAS Explorer. Though the presented ADHD use case 

demonstrates the functionality of pyPheWAS Explorer, the efficacy of the tool in practice should be further 

tested via a user-centered evaluation, though this is out of scope for the current article.  

Despite these limitations, several areas of opportunity exist for the Explorer to enhance EHR analysis. 

If packaged into a standard application, pyPheWAS Explorer could enable non-technical clinical experts to 

easily interact with PheDAS models and identify potentially novel disease associations. Similarly, 

institutional EHR repositories may benefit from deploying pyPheWAS Explorer as a data exploration and 

hypothesis generation tool for researchers building EHR analysis cohorts.  

 

 

Figure V-5 PheDAS results from the duration ADHD model are shown in the pyPheWAS Explorer 

Regression Evaluation panel with Bonferroni multiple comparisons correction applied to the effect 

size plot. Compared to the binary model, there are overall fewer significant PheCode associations. 

Again, the “mental disorders” category is the most prominent. Many of the PheCode associations 

from the “interesting” categories in the binary model (“dermatologic”, “endocrine/metabolic”, and 

“respiratory”) are also significant in this model. 
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6. Conclusion 

pyPheWAS Explorer is a comprehensive tool for exploratory analyses of new EHR datasets. The 

interactive workflow enables users to quickly answer questions about a dataset’s demographic space and 

potential for novel phenotypic signatures. We hope that pyPheWAS Explorer’s approachable interface and 

comprehensive visualizations will empower a broader range of users to delve into the intriguing domain of 

EHR data.
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Chapter VI  

 

Phenotyping Down Syndrome:  

Discovery and Predictive Modeling with Electronic Medical Records 

 

1. Overview 

Individuals with Down syndrome (DS) are reported to have a heightened risk for various co-occurring 

health conditions, including congenital heart disease (CHD). In this two-part study, electronic medical 

records (EMRs) were leveraged in Study 1 to examine as-yet unidentified co-occurring health conditions 

among individuals with DS; and in Study 2, to investigate health conditions liked to surgical intervention 

among DS cases with CHD.  

De-identified EMRs were acquired from the Synthetic Derivative at Vanderbilt University and 

facilitated creating a cohort of N = 2,282 DS cases (55% females), along with comparison groups for each 

study. In Study 1, DS cases were one-by-two sex- and age-matched with samples of case-controls and of 

individuals with other intellectual and developmental differences (IDDs). The phenome-wide association 

study (PheDAS) strategy was employed to reveal co-occurring health conditions in DS versus comparison 

groups, which were then ranked for how often they are discussed, or as-yet unidentified, in relation to DS 

using the PubMed database and Novelty Finding Index.  In Study 2, a subset of DS individuals with CHD 

(N = 1098 [48%]) were identified to create longitudinal data for N = 204 cases with surgical intervention 

[19%] versus 204 case-controls. Data were included in predictive models and assessing which model-based 

health conditions, when enriched, would increase the likelihood of surgical intervention. 

In Study 1, relative to case-controls and those with other IDDs, co-occurring health conditions among 

individuals with DS were confirmed to include, e.g., hypertension, atrioventricular block, and heart failure 

(circulatory); hypothyroidism (endocrine/metabolic); and sleep apnea and Alzheimer’s 

(neurological/mental). Findings with high Novelty Finding Index were pacemaker in situ, atrioventricular 

block, and valve stenosis (circulatory); gastritis (digestive); and elevated C-reactive protein (symptoms). In 

Study 2, among individuals with DS and CHD, model-based explanatory health conditions revealed, e.g., 

congestive heart failure (circulatory), valvular heart disease and cardiac shunt (congenital), and pleural 

effusion and pulmonary collapse (respiratory) linked to the likelihood of surgical intervention. Research 

efforts using EMRs and rigorous methods, including our study, could shed lights on the complexity in 

health profile among individuals with DS and other IDDs and motivate precision-care development. 
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2. Background 

Down syndrome (DS; or trisomy 21) is a genetic condition characterized by the presence of an extra 

copy of chromosome 21 [97]. Individuals with DS are reported to have a heightened risk for various co-

occurring intellectual, developmental, and health differences, including congenital heart disease [98], [210]. 

Greater and more in-depth understanding of this range of co-occurring health conditions could facilitate 

promising opportunities for both precision-medicine development as well as characterization of unmet 

clinical needs among individuals with DS. This two-part study leveraged an extant dataset of EMRs, in 

Study 1, to investigate as-yet unidentified co-occurring health conditions among individuals with DS; and 

in Study 2, to evaluate longitudinal predictors of known clinical outcomes in a subset of individuals with 

DS and CHD (see Table VI-1 for a list of terms and respective acronyms used repeatedly throughout this 

study). 

 

Table VI-1 List of acronyms and terms used repeatedly throughout this study 

 

Acronym Term 

DS Down syndrome 

IDD Intellectual and developmental difficulties 

CHD Congenital heart disease 

EMR Electronic medical record 

PheDAS Phenome-disease association study 

Phecode Phenotype (or diagnostic) code 

NFI Novelty Finding Index  

ICD International Classification of Diseases 

 

Aside from its substantial association with CHD and other circulatory and congenital (cardiac) 

differences, DS has been linked to a range of co-occurring health conditions in, e.g., metabolic and 

endocrine, neurological and sensory, as well as respiratory systems. For example, hypothyroidism is among 

the most common co-occurring endocrine conditions among individuals with DS [211]. A malfunctioning 

thyroid gland reportedly leads to hypothyroidism because it complicates a number of metabolic activities 

(e.g., protein synthesis, energy conservation, hormone regulation) as seen among many individuals with 

DS [212]. In terms of neurological and sensory conditions, increased prevalence of hearing difficulties and 

sleep apnea have been observed in DS [213]. Similar to their typically developing counterparts, increased 

hearing difficulties among individuals with DS have been linked to lower proficiency in understanding 

spoken language and auditory (phonological) memory [214], [215]. Sleep apnea has been similarly shown 

as highly prevalent in DS, as it also relates to cardiac (e.g., hypertension), respiratory (breathing failure), 

and other mental and neurological conditions (depression, ADHD) [216]. Scant evidence, however, reports 
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these various health conditions in concert, as it is rare to obtain large cohorts and comprehensively study 

associated clinical features among individuals with DS. The current study leveraged an extant EMR dataset 

to address this issue and, at the same, reveal co-occurring health conditions potentially unrecognized in 

limited sample sizes of individuals with DS. 

Research efforts using de-identified EMR are gaining traction, given that such an approach enables 

large sample sizes and sufficient creation of comparison groups to evaluate co-occurring health conditions 

among individuals with intellectual and developmental difficulties (IDD) (e.g., in autism [29]). Particularly 

relevant to the current study, Alexander and colleagues [211] employed this strategy of analyzing 

retrospective EMRs which contain de-identified clinical features (e.g., diagnostic codes) among 6,430 

individuals with DS from the United Kingdom Clinical Practice Research Datalink. Recently, Valentini and 

colleagues [217] gathered a one-year subset of EMRs from 763 individuals with DS after carefully matching 

for age and sex. In addition to corroborating previous findings in small sample sizes, these candidate EMR 

studies in DS offer a nuanced examination into the prevalence and incidence rates across a range of co-

occurring health conditions concertedly. For instance, individuals with DS were shown to exhibit 

heightened prevalence for, e.g., CHD (cardiac), dementia (mental), and hypothyroidism 

(metabolic/endocrine) conditions, along with interesting results on lower incidence of anxiety and 

depression (mental) in DS relative to case-controls. While promising, the repertoire of methodologically 

sound tools is in its infancy as to comprehensively analyze these data and capture what health conditions 

may have been unrecognized in smaller samples. Such tools, when combined with and interrogating the 

complexity of EMRs, could underscore individual differences across multiple clinical features. 

Capitalizing on the rich EMR dataset, in Study 1, two nuanced strategies were used to comprehensively 

analyze clinical features and capture as-yet unidentified co-occurring health conditions among individuals 

with DS. First, the phenome-disease association study, or PheDAS, strategy was employed to investigate 

phenotypic differences between individuals with and without DS. Derived from phenome-wide association 

study (PheWAS) and the long-standing genome-wide association study (GWAS), PheDAS has been 

demonstrated to have the propensity of assess the “whole phenome” [48], [218]. The application of PheDAS 

enabled a method of revealing a range of co-occurring health conditions in DS using “phenotype” codes, 

or Phecodes, derived from EMRs [47], [48], [219]. Findings from this approach were confirmatory with 

previous works using EMRs that aimed to evaluate clinical features in DS and contribute to precision-

medicine development. Departing from other similar analyses, our study aimed to characterize within these 

PheDAS findings which co-occurring health conditions were either not yet identified among individuals 

with DS or less discussed in the relevant literature. For this second goal, the Novelty Finding Index (NFI) 

strategy was employed since it was developed to assess the level of statistical and clinical significance 
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among health conditions found in PheDAS and other EMR studies [99]. NFI ranked the co-occurring health 

conditions found in relation to DS by how “well studied” they were in the PubMed database. Less “well 

studied” (or more novel) co-occurring health conditions could provide insights into potentially unmet health 

needs among individuals with DS. 

Knowing the likelihood of various co-occurring health conditions in DS presents an incomplete story; 

some health conditions may drive the severity of medical needs in other clinical features. For instance, 

cardiac malformations both predispose individuals with DS to CHD, which affects over 40% of these 

individuals, and are a major cause of mortality in DS [210], [220]. CHD in DS has been shown to be 

pervasive as it could relate to the accelerated severity of other cardiac and circulatory conditions (e.g., 

pulmonary arterial hypertension [221]). More than 20% of individuals with DS and CHD have been 

reported to undergo surgical intervention to correct these cardiac malformations [222], [223]. Because of 

this, it remains crucial to achieve a greater understanding of which health conditions may co-occur with 

CHD and DS, and how those conditions may increase the likelihood of surgical intervention. In Study 2, 

two specific steps were taken to evaluate longitudinal predictors, or health conditions, of known outcomes 

associated with DS and CHD. First, diagnostic codes drawn from EMRs were used to build a predictive 

model which estimated the likelihood of surgical intervention among individuals with DS and CHD. 

Second, the predictive model was used to characterize the relative importance of different diagnostic codes 

in the predicted likelihood of surgical intervention. These findings and methodological strategies could be 

crucial to precision-care development as well as maximization of treatment effectiveness for individuals 

with DS. 

In this two-part study, EMRs were leveraged to investigate (Study 1) as-yet unidentified co-occurring 

health conditions and (Study 2) explanatory health conditions in a known outcome among individuals with 

DS. Specific goals and strategies are as follows. Extant EMR data facilitated creating comparison groups 

of sufficient sizes, including a cohort of individuals with DS who were then one-by-two sex- and age-

matched with a sample of case-controls. To carefully assess the clinical features that may uniquely associate 

with DS versus other IDDs (e.g., autism, ADHD, dyslexia), a matched group of individuals with other IDDs 

was also created for comparison of co-occurring health conditions in relation to DS cases. In Study 1, the 

PheDAS approach was applied to reveal co-occurring health conditions in DS versus case-controls to 

confirm previous findings, and then in DS versus other IDDs. Then, the found co-occurring health 

conditions were ranked for their clinical relevance and how often they are discussed in relation to DS using 

the PubMed database and NFI; these steps highlighted which clinical features were as-yet unidentified. In 

Study 2, individuals with CHD were identified from the initial cohort of DS cases. EMR data were used to 
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build predictive models and evaluate the extent to which different health conditions longitudinally 

contribute to the likelihood of receiving heart-related surgical intervention. 

3. Methods 

The schematic overview of this two-part study design can be found in Figure VI-1. Specific steps 

included data acquisition and cleaning, sampling and creating comparison groups, and converting clinical 

features from EMRs to analyzable data (e.g., phecodes). These exhaustive steps mined and prepared 

analyzable data from the rich EMRs, which enabled this study to then pursue nuanced strategies proposed 

in Studies 1 and 2 and evaluate our specific questions. 

This study was approved by and its procedures were carried out in accordance with the Internal Review 

Board of Vanderbilt University and Vanderbilt University Medical Center. N = 1,025,321 de-identified 

EMRs were acquired from the Synthetic Derivative at Vanderbilt University Medical Center. From the 

initial repository, EMRs were excluded based on the following criteria: (a) containing no information on 

International Classification of Diseases (Ninth and Tenth Revisions [ICD-9 and ICD-10]); (b) invalid age, 

date-shifting and anonymization errors; and (c) invalid or unknown biological sex. 

 

3.1. Study 1: Characterizing as-yet unidentified co-occurring health conditions in DS 

In Study 1, we aimed to characterize as-yet identified health conditions that co-occur with DS. This 

was done by first identifying DS patients in the EMRs, along with suitable control groups. A PheDAS was 

then performed on the EMRs, revealing which health conditions co-occur with DS. Finally, the PheDAS 

output was examined via a novelty analysis to identify which co-occurring conditions were not well-

characterized yet. The following sections explain each of these steps in detail.  

 

3.1.1. Cohort selection 

Individuals with DS were identified as those who had at least two instances of an ICD-9 or ICD-10 

code for DS: 758.0, Q90.0 (meiotic nondisjunction), Q90.1 (miotic nondisjunction), Q90.2 (translocation), 

and/or Q90.9 (others/unspecified). This process yielded N = 2,282 DS cases. Extant data were also 

leveraged in the creation of comparison groups, which consisted of case-controls and of individuals with 

other IDDs. The case-control (or “typically developing”) group was composed of individuals without any 

records of DS or other IDD ICD codes; this group was intended to replicate and confirm previous findings 

in our sample. Of particular and unique interest to this study is the comparison of co-occurring health 

conditions in DS cases versus individuals with other IDDs; this group was composed of individuals with at 
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least two records of a given ICD code for other IDDs (see Appendix A). Both the case-control and IDD 

groups were matched two-to-one with the DS individuals based on biological sex, minimum age at visit (± 

0.5 years), and maximum age at visit (± 1.9 years). This process resulted in N = 4,565 subjects in the case-

control group, and N = 4,565 subjects in the other IDD group. 

 

3.1.2. Phenome-disease association study (PheDAS) 

PheDAS was performed to compare both the DS group to the case-control and the IDD groups. Briefly, 

this analysis (as shown in Figure VI-1) involved first mapping ICD-9 and ICD-10 codes to a set of 1,866 

phecodes [168], [187]. Next, phecode instances were aggregated across each subject’s record, resulting in 

 

Figure VI-1 Overall two-part study design and flow charts for Studies 1 and 2. 
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a 1x1,866 binary vector for each subject; phecodes present in the record were represented by a 1, while 

phecodes not present in the record were represented by a 0. A mass univariate logistic regression was then 

performed for each phecode such that the DS status (whether/not a subject was in the DS group) was 

modeled as a function of the aggregated phecode, biological sex and race. Bonferroni correction was applied 

to the regression results to adjust for multiple comparisons. All PheDAS functions were performed via the 

pyPheWAS Python package [224]. 

 

3.1.3. Novelty analysis 

We next determined which DS-phecode associations were as-yet identified by calculating the Novelty 

Finding Index (NFI) for each PheDAS result. Introduced by Chaganti and colleagues [99], the NFI aims to 

assist researchers in evaluating the extent to which empirical relationships are both clinically meaningful 

and well-studied in scientific literature. It incorporates second generation p-values to identify phecode 

associations that are both clinically and statistically meaningful [225], positive predictive value (PPV) to 

estimate phecode association reliability, and PubMed search results to evaluate phecode associations’ 

literary novelty.  

Briefly, the NFI is computed by first calculating the second-generation p-value for each phecode; in 

this study, second generation p-values were calculated using an odds ratio null interval of [0.3, 1.5]. 

Phecodes with a second-generation p-value of 0 are considered clinically interesting and statistically 

significant, while all others are removed from the analysis. Next, the PPV is estimated for each phecode 

using an empirical Bayes approach. The PubMed proportion, or proportion of published articles that 

mention the phecode-disease pairing out of all PubMed articles that mention the disease, is then calculated 

for each phecode. From this proportion, a novelty score, NS, is calculated as 𝑁𝑆 = 1 − 𝐹̂(𝑥), where 𝐹̂(𝑥) 

is the empirical cumulative distribution function estimated from all phecode PubMed proportions. Finally, 

the NFI may be computed: 𝑁𝐹𝐼 = (𝑃𝑃𝑉 ∙ 𝑁𝑆) ∙ 10. This index provides a ranking that accounts for both 

the reliability of phecode-disease associations and their relative novelty. Again, all novelty analyses were 

performed via the pyPheWAS [Python] package [224]. 

 

3.2. Study 2: Congenital heart disease and surgical needs in DS 

Study 2 aimed to determine longitudinal EMR predictors of surgical interventions for DS subjects 

diagnosed with CHD. To this end, we first identified which DS subjects from Study 1 also had CHD, and 

from the CHD subset, which subjects did or did not receive heart surgery. The EMRs of these subjects were 

then censored to seven days before the first heart surgery record to isolate only events that occurred before 
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surgery. Three classifiers, including Support Vector Machine, Random Forest, and Multi-layer Perceptron, 

were subsequently trained to predict whether or not a subject would receive surgery based only on the pre-

surgical records. Finally, a black-box explainability technique was used on the best-performing trained 

classifier to determine the importance of each phecode toward surgery predictions. This process is described 

more fully in the following sections. 

 

3.2.1. Cohort selection 

Out of the 2,282 DS subjects from Study 1, subjects with the additional diagnosis of CHD were 

identified as those who had at least one instance of a phecode for CHD: 747, 747.1, 747.13, and 747.2. This 

resulted in 1,098 subjects in the combined DS+CHD group. From this group, 204 surgery subjects were 

identified as those with at least one record of the phecode for heart transplant/surgery (429.1). Surgery 

subjects were matched one-to-one with non-surgery DS+CHD controls based on three matching criteria. 

The first two included biological sex and minimum age at visit (± 2 years). The last criterion matched 

surgery subjects’ age at surgery to control subjects’ median visit age (± 3 years); this final criterion ensured 

that matched controls had EMR events around the same time as their match’s surgery, forcing their EMRs 

to be approximately the same length up until the point of surgery. Finally, the EMRs of all subjects were 

censored to only records before seven days prior to surgery (control EMRs were censored to their matched 

surgery subject’s age at surgery). The seven-day buffer was added leading up to surgery to prevent EMR 

contamination around the time of surgery due to reporting delays. This selection process yielded a final 

cohort of 408 DS+CHD subjects, evenly split between surgery and non-surgery. 

 

3.2.2. Longitudinal predictive modeling 

In the same way as Study 1, the first step in analyzing the EMRs was converting ICD-9 and ICD-10 

codes to phecodes and aggregating those phecode instances across each subject’s record. This resulted in a 

1x1,866 binary vector for each subject, where again, phecodes present in the record were represented by a 

1, while phecodes not present in the record were represented by a 0. Finally, the phecode for heart 

transplant/surgery (429.1) was removed, yielding a 1x1,865 binary phecode vector describing the EMR 

fingerprint leading up to surgery for each subject in the DS+CHD group. 

Three different classifier models were next trained to predict whether or not a given subject would 

receive heart surgery based only on the subject’s 1x1,865 binary phecode vector; these models included 

Support Vector Machine, Random Forest, and Multi-layer Perceptron. Four-fold cross validation was used 

to optimize model and training parameters for all model types. The optimal Support Vector Machine model 
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used a sigmoid kernel and class weightings (0.45 for the non-surgery class, 0.55 for the surgery class). The 

optimal Random Forest model included 60 estimators, employed minimal cost-complexity pruning with α 

= 0.007, and used entropy as the split criterion. Finally, the optimal Multi-layer Perceptron model employed 

rectified linear unit activation, a stochastic gradient decent optimizer, and two hidden network layers (a 

100-neuron layer followed by a 50-neuron layer). All models were trained using the scikit-learn [Python] 

package; any model parameters not explicitly mentioned in this article were set to the scikit-learn default 

values [83]. 

These optimized parameters were next used to train secondary models of each type, now on the full 

dataset; 80% of the DS+CHD cohort (326 subjects) were used for training, and the remaining 20% (82 

subjects) were used for testing. These secondary models were trained using the full dataset in order to 

leverage as much information as possible in the subsequent explanatory phecode analysis.  

 

3.2.3. Model-based feature importance and explanatory variables 

We next used LIME, an explainability technique for machine learning models, to investigate which 

phecodes were most important in predictions of surgery. LIME stands for local interpretable model-

agnostic explanations; in short, it is a method of generating human-interpretable explanations for the 

predictions of any machine learning model [68]. For a given input X, LIME perturbs the input data and 

monitors how the perturbations modify the model’s prediction. LIME then generates an explanation for the 

model’s prediction based on X, consisting of a weight for each input feature. For the purposes of this study, 

LIME perturbs the binary phecode vector for an individual subject and monitors how this modifies the 

surgery prediction. It then generates an explanation for that subject, consisting of a weight for each phecode. 

The weight, wphe, for a phecode, phe, may be interpreted in the following way: on average, the presence of 

phe in the subject’s record increases the probability of a surgery prediction by wphe. Such explanations were 

generated for all 408 subjects in the DS+CHD cohort. Explanatory weights were then averaged across 

subjects, yielding a single average explanatory weight for each phecode. This procedure was repeated for 

each classification model type, resulting in three separate sets of explanatory phecode weights. Finally, 

these weights were considered in relation their prevalence in the surgery cohort; findings were reported 

only for health conditions that appear in at least 40% of the subjects who received surgery. 

 

4. Results 

Extant EMR data enabled a large sample of N = 2,282 individuals with DS, as well as the creation of 

comparison groups (as specified below) with stringent criteria, to be included in this two-part study. Study 
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1 comprehensively analyzed a range of co-occurring health conditions and captured as-yet unidentified 

ones among individuals in DS. Study 2 evaluated health conditions that longitudinally predict known 

clinical outcomes by looking at surgical intervention for CHD in a subset of individuals with DS. 

 

4.1. Characterizing as-yet unidentified co-occurring health conditions in DS 

Previous studies have compared clinical features among individuals with DS relative to typically 

developing case-controls. No studies to date in DS, though, have employed innovative tools such as 

PheDAS to comprehensively identify co-occurring health conditions across individuals with this diagnosis, 

or had ample EMRs to include other IDDs as a comparison group to account for their co-morbidities in DS 

(see Appendix A). To address these matters and extend the current literature, N = 2,282 DS cases in our 

study were sex- and age-matched with N = 4,564 individuals with other IDDs and with N = 4,564 case-

controls without DS or any other IDDs.  

 

4.1.1. Compared to individuals with other IDDs 

Findings from the PheDAS strategy revealed that a range of co-occurring health conditions (145 

phecodes) were found to be more prevalent in individuals with DS than those with other IDDs (p < 0.05 

after multiple-comparison [Bonferroni] correction) (Figure VI-2). Among the top findings from each health 

category, co-occurring health conditions that were significantly more prevalent, or phecodes that were 

enriched, among DS than other IDD cases included: atrioventricular block (circulatory; b = 2.950, se = 

0.294), hidradenitis (dermatologic; b = 2.087, se = 0.427), celiac disease (digestive; b = 2.232, se = 0.237), 

congenital hypothyroidism (endocrine/metabolism; b = 2.815, se = 0.175), acute renal failure 

(genitourinary; b = 0.799, se  = 0.107), primary thrombocytopenia (hematopoietic; b = 1.336, se = 0.305), 

Alzheimer’s disease (mental; b = 3.917, se = 0.722), laxity of ligament or hypermobility syndrome 

(musculoskeletal; b = 1.217, se = 0.162), myeloid leukemia [cute] (neoplasms; b = 2.883, se = 0.528), 

obstructive sleep apnea (neurological; b = 1.776, se = 0.074), respiratory conditions of fetus and newborn 

(pregnancy complications; b = 0.489, se = 0.075), pulmonary insufficiency or respiratory failure following 

trauma (respiratory; b = 1.706, se = 0.123), epiphora (sensory; b = 2.761, se = 0.614), and muscle weakness 

(symptoms; b = 1.881, se = 0.073) (all corrected p-values < 0.05). Using the PheDAS strategy, these co-

occurring health conditions found in heightened prevalence among individuals with DS are consistent with 

previous studies, including recent ones using EMR datasets. Though, unique to our current study is that 

these health conditions remain as prevalent in DS cases even when compared to other IDDs, highlighting 

some unique or specific clinical features.  
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Figure VI-2 Plot of summary PheDAS findings (Log odds ratio) for co-occurring health conditions 

revealed to be more prevalent in individuals with DS than those with other IDDs (positive values 

[right panel]; p < 0.05 after multiple comparison [Bonferroni] correction). 

 

4.1.2. As-yet unidentified health conditions in DS 

Findings on the co-occurring health conditions among individuals with DS were further interrogated to 

reveal which ones are as-yet unidentified or less discussed within the relevant literature. With this step, a 

recently innovated Novel Finding Index (NFI) approach was employed to rank these health conditions (i.e., 

phecodes found enriched among DS cases) based on how frequently they appear in titles and abstracts 

containing relevant terms (e.g. “Down syndrome”) using PubMed search. Here, main NFI results were 

central to the analyses between individuals with DS versus individuals with other IDDs. 33 phecodes were 

revealed with NFI > 6 (relative to m = 3.782, sd = 2.508, range = [0.090, 8.201], for the 145 phecodes 

found in confirmatory analyses), which suggests that these particular co-occurring health conditions are 

less “well studied” or discussed in the DS literature. To refine the clinical scope when interpreting our 

findings, clinicians with DS specialty were invited to affirm the novelty of these 33 phecodes. In doing so, 

phecodes from each health category included: cardiac pacemaker in situ, first- and second-degree 

atrioventricular blocks, mitral valve stenosis and aortic valve stenosis, and right bundle branch block 

(circulatory); duodenitis, atrophic gastritis, and other specific gastritis (digestive); Nonsenile cataract and 



 

77 

eustachian tube disorders (sensory); and elevated C-reactive protein (CRP) (symptoms). These findings 

could be considered to be as-yet unidentified co-occurring health conditions in DS, as these clinical features 

appear to be less discussed in this literature. Moreover, these results would motivate future investigations 

into potentially unmet health needs among individuals with DS. 

 

4.2. Study 2: Longitudinal predictors of surgical intervention among DS cases with CHD 

A further step to investigate the relative importance of various co-occurring health conditions is to 

evaluate among these, which would longitudinally predict known outcomes such as surgical intervention 

among some DS cases with CHD. Within our sample, N = 1,098 (or 48% of 2,282) DS cases were reported 

to have CHD diagnoses. Of these cases, N = 220 (or 20%) were found to have a diagnostic code of heart 

transplant or surgery, whereas N = 878 did not and were utilized in the creation of a 1:1 comparison [case-

control] group. The mined set of longitudinal data for N = 204 DS cases with CHD and surgical intervention 

(versus 204 case-controls) was included in building three predictive models, including Support Vector 

Machine, Random Forest, and Multi-layer Perceptron, with co-occurring health conditions as the 

explanatory variables. Then, the best-performing model was evaluated for its precision in predicting the 

likelihood of having surgical intervention in DS cases with CHD; and the model-based explanatory 

variables were ranked for relative importance to reveal which health conditions, when enriched, would 

increase the likelihood of receiving heart-related surgery.  

 

4.2.1. Model-based predictors of surgery in DS cases with CHD 

Across the three predictive models, Random Forest was the best-performing model based on its 

precision-recall ratio (Figure VI-3; Table VI-2), meaning that this model provided the best balance between 

maximizing the true positive rate while simultaneously minimizing the false positive rate. As such, model-

based explanatory variables, or health conditions, were characterized using the Random Forest classifier to 

evaluate their relative importance. Results suggested that the presence of congestive heart failure 

(circulatory; weight = 0.048), valvular heart disease or heart chambers (congenital anomalies; weight = 

0.041), pleurisy or pleural effusion (respiratory; weight = 0.022), cardiac shunt or heart septal defect 

(congenital; weight = 0.020), pulmonary collapse or interstitial and compensatory emphysema (respiratory; 

weight = 0.017), cardiomegaly (circulatory; weight = 0.017), pulmonary congestion and hypostasis 

(respiratory; weight = 0.014), respiratory failure (respiratory; weight = 0.011), cardiac congenital anomalies 

(congenital; weight = 0.009), fever or unknown origin (symptoms; weight = 0.009), and congenital 

anomalies of great vessels (congenital; weight = 0.005) each positively predicts the likelihood of surgical 



 

78 

intervention among DS cases with CHD (Figure VI-4; Table VI-3). Findings on these co-occurring 

circulatory and congenital (cardiac) conditions are expected as they have been shown to exacerbate the 

severity of CHD in individuals with and without DS [220], [221], [226]. Other health conditions within the 

respiratory system may relate to (post-)surgical intervention to address medical concerns in or the severity 

of CHD [227]–[229].  

 

Table VI-2 Performance statistics for predictive models 

 

  Support Vector Machine Random Forest Multi-layer Perceptron 

a) Mean Precision/Recall Curve Samples       

  Recall Precision Recall Precision Recall Precision 

  0.01 1.00 0.01 1.00 0.01 1.00 

  0.05 1.00 0.05 1.00 0.05 1.00 

  0.10 0.89 0.10 0.89 0.10 0.82 

b) Training Data 
     

  Predicted label Predicted label Predicted label 

True label 
118 35 144 9 119 34 

43 110 14 139 41 112 

c) Testing Data 
     

  Predicted label Predicted label Predicted label 

True label 
36 15 36 15 36 15 

11 40 12 39 12 39 

 

5. Discussion 

Genetic circumstances in DS have been linked to various intellectual, developmental, and health 

differences. Using extant EMR data, our study first comprehensively confirmed this range of co-occurring 

health conditions in DS, as well as demonstrated those that are less discussed in the relevant literature or 

potentially as-yet unidentified. A substantial number of co-occurring health conditions among individuals 

with DS as revealed by our results fell within the circulatory category, followed by endocrine/metabolic, 

respiratory, and other findings. Given the high prevalence of circulatory differences that include and could 

exacerbate CHD among individuals with DS, the rich EMR data were further interrogated to reveal 

longitudinal predictors, or co-occurring health conditions, of surgical intervention. Model-based findings 

revealed several circulatory, congenital, and respiratory conditions that longitudinally predict the likelihood 

of surgical needs among individuals with DS and CHD. Put together, while evidence clearly indicates the 



 

79 

range of differences in health conditions associated with DS, the combination of clinical data (EMRs), 

planned methods, and thorough findings could provide crucial insights into precision-medicine 

development and determination of unmet medical support for individuals with DS. 

 

 

Table VI-3 Health conditions related to the likelihood of surgical intervention among DS cases with 

CHD based on model-based explanatory predictors from best-performing Random Forest classifier. 

Code Phecode Weight Category 

428.1 Congestive heart failure (CHF) NOS 0.048 circulatory system 

747.12 Valvular heart disease/ heart chambers 0.041 congenital anomalies 

507 Pleurisy /  pleural effusion 0.022 respiratory 

747.11 Cardiac shunt/ heart septal defect 0.020 congenital anomalies 

508 Pulmonary collapse /  interstitial and compensatory emphysema 0.017 respiratory 

416 Cardiomegaly 0.017 circulatory system 

503 Pulmonary congestion and hypostasis 0.014 respiratory 

509.1 Respiratory failure 0.011 respiratory 

747.1 Cardiac congenital anomalies 0.009 congenital anomalies 

783 Fever of unknown origin 0.009 symptoms 

747.13 Congenital anomalies of great vessels 0.005 congenital anomalies 

 

 

 

 

Figure VI-3 Precision-Recall Characteristic plots for predictive models. 
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Figure VI-4 Health conditions related to the likelihood of surgical intervention among DS cases with 

CHD based on model-based explanatory predictors from best-performing Random Forest classifier. 

 

5.1. Known versus as-yet unidentified co-occurring health conditions in DS 

Consistent with prior studies in large EMR datasets, our findings using the PheDAS approach revealed 

a range of co-occurring health conditions among individuals with DS relative to case-controls and those 

with other IDDs (e.g., [211], [217]). Circulatory conditions were found as highly prevalent among DS 

cases, as differences in heart formation at birth among many individuals with DS have been linked to 

various cardiac complications, including (pulmonary) hypertension, atrioventricular block, and heart 

failure, aside from CHD [230]. Our results also confirmed other previously shown clinical features to co-

occur in DS such as hypothyroidism [212], sleep apnea [213], [231], and Alzheimer’s disease [232]. Many 

of these health conditions among individuals with DS have been linked to differences and severity in some 

circulatory complications (e.g., hypertension, CHD [232], [233]). Other co-occurring conditions with vision 

and hearing, digestion and respiratory, as well as leukemia have previously been found in DS [213], [234]. 

Notably, our study carefully assessed and replicated these clinical findings associated with DS cases versus 

case-controls and those with other IDDs (e.g., autism, ADHD, dyslexia). Put together, findings on this 

range of co-occurring conditions highlight the complexity in heath profile among DS cases and, at the same 

time, emphasize the needs to comprehensively consider multiple clinical features and health outcomes 
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within the EMRs to better serve individuals with DS. Future studies may consider extending the utilization 

of EMR datasets and nuanced tools like PheDAS to delineate some imperative clinical features that are 

potentially unrecognized in smaller samples.  

Building on the range of co-occurring health conditions in DS as revealed from the PheDAS approach, 

these findings were subjected to comparison with what is more versus less well studied in the relevant 

literature – that is, using “Down syndrome” search term on PubMed [99]. In highlighting which clinical 

features are likely as-yet unidentified among individuals with DS, this step revealed a number of co-

occurring circulatory conditions that are less well studied or discussed in the literature (with NFI > 6; and 

after consulting with clinicians/co-authors). Some of these circulatory conditions included pacemaker in 

situ, first- and second-degree atrioventricular blocks, mitral valve stenosis and aortic valve stenosis, and 

right bundle branch block. Atrioventricular block is a known complication linked to surgical intervention 

on septal defects and CHD [235], which in terms of our study are particularly prevalent to DS [236]. Some 

studies have further teased out the links between atrioventricular block and DS to pacemaker placement, 

post-operative complication, and heart valve stenosis [220], [223], [237]. Some other co-occurring 

conditions among DS cases that were found to be less discussed were: gastritis that could be linked to 

hypothyroidism [238]; Nonsenile cataract and eustachian tube disorders that could tie to demonstrated 

visual and hearing differences [239]; and elevated C-reactive protein that could associate with Alzheimer’s 

disease [240], [241]. Further studies may consider confirming our current findings; reports, like ours, on 

as-yet unidentified co-occurring health features in DS could help researchers and clinicians pinpoint unmet 

support among individuals with this genetic condition.  

 

5.2. Health conditions in the likelihood of surgery among DS cases with CHD 

Across various co-occurring circulatory and other differences in DS, the prevalence of CHD reportedly 

accounts over 40% of individuals with this genetic condition, more than 20% of whom require surgical 

intervention to correct the underlying cardiac malformations [222], [223]. Different types of heart defects, 

such as atrioventricular or tetralogy of Fallot, have been posited to explain the varying degree of severity 

in CHD, and in turn surgical needs, among some individuals with DS [222]. Congestive heart failure is 

another circulatory condition that is known to associate with CHD [242], whereby this relation is likely 

linked to decision for surgical intervention and correction of the underlying cardiac differences in DS [222]. 

Indeed, our model-based findings confirmed the presence of congestive heart failure in the predicted 

likelihood of surgical needs among individuals with DS and CHD. Additionally, such likelihood of surgical 

needs was explained by cardiomegaly, a heart enlargement condition that has been previously demonstrated 

as attributable to congestive heart failure in CHD (e.g., [243]). Our results found other congenital conditions 
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related to the heart, including valvular, septal, and vessel issues, a combination of which could relate to the 

severity of CHD among individuals with DS and lead to needed surgical correction [222], [244]. Finally, 

respiratory failure and other pulmonary difficulties (e.g., congestion, hypostasis, pleural effusion, 

emphysema) were observed in relation to the likelihood of surgical intervention among DS cases with CHD 

in our sample. Previous studies have reported that the prevalence of these different respiratory and 

pulmonary conditions may surround hospitalization and surgical intervention among individuals with DS 

and CHD, and that have an impact on their post-operative recovery and life expectancy after correction of 

cardiac malformations[213], [245]. While promising, further investigation is needed into health conditions 

that play a role in surgical and medical care among DS cases CHD, as such findings could shed insights 

onto the effectiveness of interventions and long-term clinical outcomes for individuals with genetic 

differences. 

 

5.3. Limitations and future directions 

While offering promising evidence on health conditions in DS using extant EMR data and 

methodologically rigorous tools, there are several limitations to our analysis that future studies may 

consider tackling. First, differences in co-occurring health conditions among individuals with DS have been 

linked to access to care, health insurance, and socioeconomic differences [246]. Future studies may consider 

applying tools to derive these metrics from the EMRs [247]–[250], as well as to examine the extent to which 

environmental and malleable factors relate to clinical features in DS—a genetic condition. Second, an 

important consideration is the health association between individuals with DS and their immediate 

caregivers (e.g., parents). Relative to caregivers of individuals without DS (or some other IDDs), caregivers 

of individuals with DS have reported varied levels of physical, emotional, and clinical profile of well-being 

[251], [252]. By applying “dyadic pairing”, studies have characterized areas of support (e.g., geographical, 

social, financial, educational) discussed from the caregivers’ perspective [253], or could reveal differences 

in health conditions between individuals with DS and their caregivers. Third, PheDAS was utilized in the 

current study given its propensity to evaluate “whole phenome” and to reveal various co-occurring health 

conditions among individuals with DS. Future studies may consider innovated and streamlined tools such 

as PheGWAS, a combination of phenotype- and genome-wide association studies [254], and interrogate 

the phenotypic-genetic underpinnings of co-occurring health conditions in DS. Overall, research efforts 

using EMRs and rigorous methods, including our current study, could shed crucial light on the complexity 

in health profile among individuals with DS and other IDDs and further motivate precision-care 

development.
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Chapter VII  

 

Batch Size: Go Big or Go Home?  

Counterintuitive Improvement in Medical Autoencoders with Smaller Batch Size 

 

1. Overview 

Batch size is a key hyperparameter in training deep learning models. Conventional wisdom suggests 

larger batches produce improved model performance. Here we present evidence to the contrary, particularly 

when using autoencoders to derive meaningful latent spaces from data with spatially global similarities and 

local differences, such as electronic health records (EHR) and medical imaging. We investigate batch size 

effects in both EHR data from the Baltimore Longitudinal Study of Aging and medical imaging data from 

the multimodal brain tumor segmentation (BraTS) challenge. We train fully connected and convolutional 

autoencoders to compress the EHR and imaging input spaces, respectively, into 32-dimensional latent 

spaces via reconstruction losses for various batch sizes between 1 and 100. Under the same hyperparameter 

configurations, smaller batches improve loss performance for both datasets. Additionally, latent spaces 

derived by autoencoders with smaller batches capture more biologically meaningful information. 

Qualitatively, we visualize 2-dimensional projections of the latent spaces and find that with smaller batches 

the EHR network better separates the sex of the individuals, and the imaging network better captures the 

right-left laterality of tumors. Quantitatively, the analogous sex classification and laterality regressions 

using the latent spaces demonstrate statistically significant improvements in performance at smaller batch 

sizes. Finally, we find improved individual variation locally in visualizations of representative data 

reconstructions at lower batch sizes. Taken together, these results suggest that smaller batch sizes should 

be considered when designing autoencoders to extract meaningful latent spaces among EHR and medical 

imaging data driven by global similarities and local variation. 

 

2. Introduction 

Autoencoders are a class of deep learning models that seek to construct compressed latent 

representations of input populations by constraining that the latent representations be able to reconstruct 

the inputs. In practice, they have gained popularity in dimensionality reduction, clustering, denoising, and 

anomaly detection applications [255]–[258]. Additionally, in the medical domain, ideal autoencoders are 

not only able to reconstruct inputs but are also able to uncover latent representations that capture meaningful 

information about the population without supervision (Figure VII-1) [259], [260].  
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Figure VII-1 Medical autoencoders seek to derive latent spaces that capture clinically or biologically 

meaningful information about the cohort. Batch size is a key hyperparameter for training these 

models, but it is unclear how batch size impacts their performance. 

 

The reconstruction loss is the lone constraint on an autoencoder, and thus the performance of the model 

depends solely on its reconstruction capacity. In practice, model training occurs on the batch (or “mini-

batch”) level, meaning backpropagation and model weight updates occur after a group of individuals in the 

training cohort is passed through the network and the reconstruction loss is computed by averaging the 

reconstructions across the batch. Thus, it is logical that batch size might be an important hyperparameter 

when designing autoencoder training protocols.  

Conventional wisdom suggests larger batch sizes in medical deep learning offer improved performance. 

However, in reality, the literature surrounding ideal batch size selection remains unclear. For instance, one 

study suggests that increased batch sizes during training may achieve the same effect as decaying the 

learning rate, a common practice in deep learning used to improve performance [261]. Others suggest the 

primary impact of larger batch sizes is a change in training time  [262], [263] and yet others still conclude 

that performance may indeed be impacted by batch size via a so-called “generalization gap” [264], [265]. 

As such, despite conventional wisdom, there is a gap in the literature regarding the effects of batch size on 

deep learning training paradigms. Additionally, these studies have primarily been conducted in the natural 

data domain, but fundamental differences between many natural and medical domain datasets may affect 

the application of these studies to medical autoencoders, further widening this gap. 

Specifically, in medical domains, spatially global similarities between individuals can dominate inputs 

whereas individual variability can be relegated to the local level. For instance, consider brain MRI, 

especially those that are co-registered and intensity normalized. While the shape of different gyri and sulci 

and the presence of lesions may differentiate images locally, the prior probability that any given brain MRI 
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appears globally as a centered, blurred, gray-scale ellipsoid with ventricles in the middle is high. Thus, one 

logical solution for autoencoders constrained with a reconstruction loss averaged over individuals in the 

batch is to simply ignore local individual variability during reconstruction in favor of producing a global 

average regardless of the input. While this minimum satisfies an averaged reconstruction criterion, this 

theoretically destroys the network’s ability to capture meaningful individual variation on the local level and 

thus cannot produce a useful latent space.  

It follows then that reducing the amount of averaging across a batch during backpropagation might 

place more emphasis on individual variability on the local level. Thus, in medical domains where global 

similarities between individuals dominate local differences, we hypothesize, against conventional wisdom, 

that reducing batch size will not only improve autoencoder reconstruction ability but also the utility of the 

associated latent spaces by allowing the models to better capture individual variability. 

We investigate this hypothesis in both EHR and brain tumor imaging data by training an autoencoder 

for each dataset at different batch sizes while keeping all other hyperparameters the same. We then inspect 

the latent spaces of these autoencoders as a function of batch size for their ability to preserve key individual 

characteristics, such as the sex of the participants and the right-left location of the tumors, respectively, as 

well as the reconstructions for their ability to capture individual variation beyond a global average. 

 

3. Methods 

3.1. Data overview and preparation 

To study the effect of batch size on EHR autoencoders, we use International Classifications of Disease 

version 9 (ICD-9) codes from 3127 participants in the Baltimore Longitudinal Study of Aging [111], [266]. 

In this study, participants checked in with the data collection team every 1-4 years depending on their age; 

during these visits, ICD-9 codes were collected via self-report, physical examinations, and medical record 

history. This yielded a dataset of 321,265 unique ICD-9 events occurring between the ages of 17 and 104 

across all 3127 participants. To reduce noise and dimensionality in this data, we mapped all ICD-9 codes 

to a set of 1866 Phenotype codes (PheCodes) [167], a hierarchical set of meaningful codes that group similar 

ICD-9 codes together. Each PheCode was then aggregated across each participant’s record, such that the 

PheCode was assigned a 1 if it was present in the participant’s record and 0 otherwise. Together, this 

mapping and aggregation resulted in a binary 1x1866 feature vector for each participant that captured the 

presence/absence of EHR phenotypes across the participant’s lifetime. All PheCode processing was done 

using the pyPheWAS package [199]. 
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To study the effect of batch size on convolutional autoencoders in brain tumor imaging, we utilized 

FLAIR MRI from 1251 participants in the BraTS 2021 cohort [267], [268]. These images were made 

available in 1mm isotropic resolution in Montreal Neurological Institute (MNI) space [269]. For this study, 

we preprocessed the images by first normalizing the images by the 99th percentile intensity within the brain 

to rescale them between 0 and 1 and then zero-padded and downsampled them to 3mm isotropic resolution. 

This produced images of size 81x81x54 voxels in the sagittal, coronal, and axial dimensions respectively. 

For both datasets, we followed a random 70/10/20% split on the participant level for both datasets to 

obtain training, validation, and testing cohorts, respectively. We trained all autoencoder models on these 

same cohorts. 

 

3.2. Autoencoder training protocols 

For the EHR data, we designed a fully connected autoencoder to generate a 32-dimensional latent space 

(Figure VII-2). For the encoder, we used two blocks, each consisting of a fully connected layer followed 

by a ReLU activation function, reducing the feature space from 1866 dimensions to 256 to 64. These blocks 

were followed by a fully connected layer to produce the 32-dimensional latent space. Similarly, the decoder 

 

Figure VII-2 Autoencoder architectures. We utilized a fully connected autoencoder for the EHR 

data, compressing the 1,866-dimensional PheCode feature vectors to 32-dimensions and 

subsequently reconstructing them. We utilized a convolutional autoencoder for the brain tumor MRI 

data, compressing images of size 81x81x54 voxels to 32 dimensions before reconstructing them. All 

convolutional and transpose convolutional layers in the MRI autoencoder utilized a stride of 3 

voxels. The derived latent spaces were subsequently evaluated in secondary tasks: sex classification 

for the EHR data and tumor laterality regression for the MRI data. 
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consisted of two blocks (a fully connected layer followed by ReLU activation), expanding the 32 

dimensions of the latent space to 64 and then 256 dimensions. Finally, another fully connected layer 

followed by a sigmoid activation function expanded the model output back to the original 1866-dimension 

feature space. To assess the reconstruction, we used binary cross entropy (BCE) loss optimized via 

Stochastic Gradient Descent with a learning rate of 0.01 over 5000 epochs on either a NVIDIA Titan Xp or 

Quadro RTX 5000 GPU. We performed ten different batch size trials, including batch sizes of 1, 2, 3, 4, 5, 

7, 10, 25, 50, and 100, maintaining the same training protocol and hyperparameters otherwise. After 

training, we selected the model with the lowest validation loss as the “best” model for comparison against 

other batch sizes. 

 For the brain tumor FLAIR MRI dataset, we designed a convolutional autoencoder to generate a 32-

dimensional latent space (Figure VII-2). For the encoder, we utilized three convolutional blocks, each 

consisting of a convolutional layer, an instance normalization layer, and a LeakyReLU activation with 0.1 

slope. The first layer utilized an isotropic kernel of size 5 and stride 3 and the remaining two used an 

isotropic kernel of size 3 and stride 3. At each of the three layers, the images were encoded to 512, 256, and 

128 features, respectively. This resulted in a convolutional encoder output of size 3x3x2 with 128 features. 

To construct the latent space, the encoder output was flattened and passed through a single fully connected 

layer. The latent space was then projected and reshaped to match the convolutional encoder output with 

another fully connected layer and subsequently passed through a convolutional decoder. For the decoder, 

the encoder was mirrored with three transpose convolutional blocks, each consisting of a transpose 

convolutional layer, an instance normalization layer, and an activation function. The first and second blocks 

each used an isotropic kernel and stride of size 3 as well as LeakyReLU activations with 0.1 slope. The 

third block utilized an isotropic kernel of size 5 and stride of 3 with a ReLU activation. For the 

reconstruction loss, we utilized a negative log likelihood (𝑁𝐿𝐿) loss (Eq. 1). We define this loss as the 

negative log likelihood that the input image, 𝑥̅, of size 𝐷 = 81 × 81 × 54 voxels was sampled from a 

Gaussian, 𝒩𝑦̅,𝐼̿, centered at the reconstruction, 𝑦, with identity covariance, 𝐼,̿ averaged across the 𝐷 voxels: 

 
𝑁𝐿𝐿(𝑦̅, 𝑥̅) = −

1

𝐷
∑ log 𝒩𝑦̅,𝐼̿(𝑥̅) 

(1) 

We trained the convolutional autoencoder with batch sizes of 1, 20, 50, and 100, maintaining the same 

training protocol and hyperparameters otherwise. We used the Adam optimizer with a learning rate of 

0.00001 without decay for 1000 epochs on either a NVIDIA Quadro RTX 5000 or A6000 GPU. As with 

the EHR autoencoder, we selected the model with best validation performance for subsequent testing. 
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3.3. Latent space evaluation 

We examined the utility of each trained autoencoder by leveraging the latent space to perform a 

secondary task. The EHR latent space was evaluated via classifying participant sex. For each of the 10 

batch sizes, we trained a support vector machine (SVM) to predict sex based on the latent space embeddings 

of the training cohort in 10-fold cross validation. We then projected the EHR testing cohort into the latent 

space and used the SVMs to generate sex predictions; we evaluated the SVM’s classification performance 

on this test cohort via the area under the receiver operating curve (AUROC) across all folds. Finally, we 

compare model performances by plotting the testing cohort’s AUROC across all batch sizes. As the 

predictions between folds are not independently sampled, we do not perform statistical testing on AUROCs 

between batch sizes. 

The MRI latent space was evaluated by predicting tumor laterality; for this task, we trained a random 

forest (RF) regression model on the training cohort to predict the laterality of the tumor centroid, where a 

laterality of 0 indicated a centroid on the left-most edge of the image and a laterality of 1 indicated a centroid 

on the right-most edge. We then projected the MRI testing cohort into the latent space and generated tumor 

laterality predictions from the RF. We plotted the residuals as absolute percent difference across samples 

as a function of batch size. We evaluated for statistically significant differences between batch sizes with 

the Wilcoxon sign-rank test at 0.05 significance with Bonferroni correction. 

Additionally, we qualitatively examined each latent space by projecting the testing cohort into each 

latent space and computing a 2-dimensional t-distributed stochastic neighborhood embedding (tSNE) 

representation [270]. We plotted this 2-dimensional tSNE projection for all batch sizes, coloring each 

sample by sex for the EHR spaces, or tumor laterality for the MRI spaces. 

 

4. Results 

4.1. Training performance 

We summarize autoencoder training performance in Table VII-1 as a function of batch size. We observe 

lower testing and validation losses at lower batch sizes for both datasets. We also observe this improved 

performance with fewer iterations through the entire dataset (epochs) with decreasing batch size. 
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Table VII-1 Reconstruction loss performance at best validation epoch across batch sizes for validation 

and testing cohorts. Best loss performance in bold. 

 

 Batch Size 

Best 

Validation 

Epoch 

Best 

Validation 

Loss 

Best 

Testing Loss 

EHR* 

 100 4978/5000 0.03706 0.03575 

 50 4999/5000 0.03643 0.03520 

 25 4990/5000 0.03498 0.03390 

 10 3372/5000 0.03446 0.03337 

 7 2430/5000 0.03445 0.03333 

 5 2270/5000 0.03437 0.03324 

 4 1850/5000 0.03433 0.03320 

 3 1395/5000 0.03419 0.03309 

 2 922/5000 0.03397 0.03287 

 1 470/5000 0.03378 0.03274 

Brain MRI** 

 100 989/1000 0.92161 0.92181 

 50 963/1000 0.92148 0.92155 

 20 986/1000 0.92126 0.92135 

 1 241/1000 0.92121 0.92120 

* BCE loss = 0 for a perfect reconstruction 

** 𝑁𝐿𝐿 loss = − log
1

√2𝜋
 ≈ 0.91894 for a perfect reconstruction 

 

4.2. Qualitative analysis of latent space separability and data reconstruction 

In Figure VII-3, we visualize the effect of different batch sizes on the EHR dataset reconstructions and 

find improved reconstruction of individual variation with smaller batch sizes. We observe a globally 

uniform signal across subjects with little to no individual variation at a batch size of 100 and steadily 

improved variation as the batch size decreases to 50 and finally 25 and 10. At batch sizes of 5 and 1, we 

observed further improved capture of individual variation, though the increases are not as dramatic. 

Additionally, in Figure VII-3 we present tSNE visualizations of the latent space as a function of batch size 

for the EHR data. We observe improved separability of the sexes with decreasing batch size, especially as 

the batch size decreases from 100 and 50 to 25. For batch sizes less than 10, we observe similar separability. 

We observe similar trends in the brain MRI autoencoder. We observe the best separability of right-left 

tumor laterality in the latent space with a batch size of 1 (Figure VII-4C). At a batch size of 20 and 50 we 

observe some separation but a large amount of mixing. At a batch size of 100 we observe almost total 
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mixing of right and left. Additionally, in Figure VII-4A and B, we observe improved reconstruction quality 

at lower batch sizes. Specifically, we find in one representative case that the shape of tumor boundaries and 

the affected ventricles sharpens from a batch size of 20 to 1 (Figure VII-4A). We find in another 

representative case that at batch sizes larger than 1, the tumor presence is difficult to detect, whereas a batch 

size of 1 better identifies the expected hyperintensity (Figure VII-4B). 

 

 

 

 

Figure VII-3 EHR autoencoder ground truth, reconstruction, and latent space visualizations for the 

withheld test set (n = 626) across six batch sizes (1, 5, 10, 25, 50, and 100). The ground truth and 

reconstructions consisted of a 626 x 28 grid, with individuals on the y-axis and the 28 most 

representative PheCodes on the x-axis; individuals were sorted so that those with the most PheCode 

events are at the top of the grid. The reconstructed PheCode value was indicated via color; note that 

while the ground truth contained only binary values, reconstructions were the output of a sigmoid 

function and therefore contained intermediate values. Latent space visualizations consisted of a 2-

dimensional tSNE projection of the 32-dimensional latent space embeddings of the test cohort; color 

in this visualization denoted individual sex. 
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4.3. Latent space performance on secondary tasks 

In Figure VII-5A, we plotted the AUROC for sex classification across folds for different batch sizes. 

We find dramatic improvements in AUROC from batch sizes of 100, 50, 25, to 10. In Figure VII-5B, we 

plot the absolute percent difference in tumor laterality regression and identify statistically significant 

improvements under Wilcoxon sign-rank tests with Bonferroni correction from a batch size of 100 to 20 or 

1 and a batch size of 50 or 20 to 1.  

 

5. Discussion 

In this work, we found qualitatively that (1) reconstructions from larger batch sizes tended to converge 

toward a global average, whereas smaller batch sizes better preserved individual variation in EHR codes 

and tumor characteristics and (2) latent spaces from smaller batches better preserved individual sex and 

tumor laterality. These visual findings were supported quantitatively via smaller reconstruction losses in 

 

Figure VII-4 MRI autoencoder ground truth, reconstruction, and latent space visualizations across 

4 batch sizes (1, 20, 50, and 100). [A, B] Ground truth and reconstructed axial slices were shown for 

two representative individuals in the withheld test set. [C] Latent space visualizations consisted of a 

2-dimensional tSNE projection of the 32-dimensional latent space embeddings of the full withheld 

test cohort (n = 250); color in this visualization denoted tumor laterality with 0 being the left-most 

edge of the image and 1 being the right-most edge. 
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fewer epochs and improved latent space performance on sex classification and tumor laterality regression 

at smaller batch sizes. These results support our hypothesis that reducing batch size not only improves 

autoencoder reconstruction ability but also the utility of the associated latent spaces.  

We do not robustly explore the theoretical underpinnings for this finding presently, but we offer a 

potential explanation for this phenomenon. During each batch, model weights are updated following the 

gradients with respect to the loss, which is averaged across the batch. We posit that though one individual’s 

data may push the gradients to move in one direction, another individual in the batch may push them in a 

different direction. If both individuals share global features but differ locally, the gradients corresponding 

to the local features may cancel out when averaged across a batch whereas those corresponding to the global 

features may compound. Thus, this would effectively cancel out the model’s ability to capture individual 

variation in favor of capturing similar, global features.  

Additionally, we posit that this problem may not be present for all deep learning models, such as those 

with residual connections as they would allow for local context in the input to inform the output. For 

instance, a U-net can be conceptualized as an autoencoder with skip connections [271]. Since features of 

the input at multiple scales inform the decoding process, the network would not need to encode local 

variability, instead relying on the data to do so implicitly during the reconstruction process and would thus 

not suffer from this problem. That being said, because of the skip connections, a U-net would not be a good 

replacement for autoencoder applications, as information in the input inherently would not be encoded in 

the latent, or bottleneck, layer. Thus, the ability to improve the capture of local variability in autoencoders 

remains an open problem, as addressed presently. 

 

Figure VII-5 Batch size effect on test cohort sub-task performance. (A) AUROC for SVM test cohort 

sex predictions across 10 cross-validation folds for all EHR autoencoder batch size trials. (B) Percent 

difference in tumor laterality predictions compared to ground truth for the MRI test cohort across 

all MRI autoencoder batch size trials. (* p <0.05 with Wilcoxon sign-rank tests after Bonferroni 

multiple comparisons correction) 
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This work is not without its limitations. First, we do not consider the effect of other parameters in 

conjunction with batch size. For instance, prior studies have looked at the effects of learning rate in 

conjunction with batch size on model performance [272]. Second, we investigate these effects in small 

datasets. Thus, it is unknown whether the same phenomena would occur with densely sampled medical 

datasets of tens or hundreds of thousands or even millions of individuals. Third, we do not investigate the 

effects of batch size on other tasks like in supervised classification or regression where reconstruction is 

not the primarily constraint, though there is some literature suggesting a similar phenomenon in 

histopathological image classification [273]. 

Based on this work, there are many directions to pursue. One is the use of additional latent constraints, 

such as those used in variational autoencoders [274], to regularize the network, which may offer improved 

performance. Further investigation into the theoretical underpinnings of this phenomenon would also be 

beneficial in advancing the field toward the use of autoencoders to develop robust and meaningful latent 

spaces. Last, considering each batch as a homogeneous group of individuals with a few divergent samples 

canceling out the gradient directions that capture individual variability, one potentially can view this 

problem as a case of multi-instance learning, a class of deep learning approaches which may offer additional 

solutions.



 

94 

Chapter VIII  

 

Unsupervised Hard Case Mining for Medical Autoencoders 

 

1. Overview 

Autoencoders are commonly used for unsupervised dimensionality reduction in medical datasets. One 

of the most influential hyperparameters in autoencoder training is batch size; choosing an appropriate batch 

size for a given dataset is imperative for producing a model with high reconstruction accuracy and a rich, 

interpretable latent space. Previous work has suggested that smaller batch sizes may produce better models, 

but the longer training time often required for small batches can make this solution impractical for large 

datasets. In this work, we propose that the primary drawback of large batch sizes is that batch averaging 

ignores important local variation in favor of dominant global similarities often seen in medical data. This 

effectively creates a pseudo-class imbalance, with global similarities being the over-represented class and 

local variations the under-represented class. Therefore, to approximate smaller batch performance while 

maintaining large batch training time, we propose unsupervised hard case mining, a computationally 

efficient extension of supervised hard positive/negative mining for unlabeled data. During training, this 

method considers only the hardest subset of training data within each batch, where “hardest” cases are 

defined as those with the highest reconstruction loss. We test the proposed method on autoencoders trained 

for three different datasets: the canonical MNIST digits dataset, an electronic health record dataset, and a 

whole-brain magnetic resonance imaging dataset. We demonstrate that across these applications, 

unsupervised hard case mining may reduce reconstruction loss, accelerate network convergence, and 

improve latent space interpretability.  

 

2. Introduction 

Autoencoders have increasingly been used to solve complex problems in medical contexts [275]. This 

unsupervised deep neural network architecture learns to compress its input data and then reconstruct that 

input data from the compressed representation [31]. Though seemingly learning a useless task, this 

architecture is useful primarily due to the latent space, the learned low-dimensional representation of the 

input data located at the heart of the network. A well-trained autoencoder’s latent space can provide an 

interpretable and compact representation of complex medical datasets [70], [86]. This interpretability makes 

the autoencoder a promising candidate model for anomaly detection [276], phenotype discovery [197], 

[277], [278], and disease classification [115]. 
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Typically, autoencoders (and other deep neural networks) are trained via batch-wise (or “mini-batch”) 

learning; this involves iterating over subsets of the training dataset, called batches, and updating model 

weights incrementally at each iteration according to the prediction accuracy averaged across samples in the 

batch. Choosing an appropriate batch size is imperative for producing a high-performing model but work 

in this area has resulted in varying recommendations [261]–[265]. In a previous study, we found that smaller 

batch sizes tend to produce higher quality medical autoencoders than larger batch sizes [279]. There is a 

tradeoff, however: large batches often train significantly faster than small batch sizes [262], [263]. Herein, 

we explore a central question arising from this work: how can we achieve small batch model performance 

while maintaining the fast training times of large batch models? 

We propose that the degraded model performance of large batch medical autoencoders is driven by 

imbalances inherent in medical data. Typically, medical datasets contain a high degree of global feature 

similarity, with important variations between individuals occurring at the local feature level. Consider, for 

example, a typical dataset of whole-brain magnetic resonance imaging (MRI) volumes that have been co-

registered and intensity-normalized. Globally, all samples in such a dataset would appear to be centered, 

grayscale, squiggly ellipsoids with dark cavities in the middle, while important local features, such as 

individual cortical shapes or lesion characteristics, would vary widely across volumes. During large batch 

training, where the reconstruction loss is averaged across many individuals, this redundancy in global 

information between volumes effectively creates a pseudo-class imbalance, with global similarities being 

the over-represented class and local variations the under-represented class. Therefore, a logical solution for 

the large-batch autoencoder would be to ignore these important individual variations in favor of the fuzzy 

global average brain. 

 Class imbalance is a popular ongoing area of research in supervised machine learning [280]. Hard 

negative mining refers to a collection of techniques which compensate for class imbalance by over-training 

on difficult examples. Here, hard negatives are typically defined as true negative samples which the model 

mis-classifies as positives [281]. In computer vision, this class of techniques has been effective in multi-

class classification [281], re-ID [282], and object detection [283]. Seeing this success, medical researchers 

have also applied hard negative mining to boost learning in breast cancer [284], [285], lesion [286], [287], 

tooth decay [287], and symptom detection [288]. However, this method requires labeled data, and therefore 

cannot be directly implemented for unsupervised frameworks like autoencoders. 

In this paper, we present a batch-wise unsupervised hard case mining technique for training medical 

autoencoders. Our proposed method is a computationally efficient extension of supervised hard negative 

mining for unlabeled medical data. In the following sections, we describe the proposed hard case mining 
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method and demonstrate its utility for training autoencoders on the canonical MNIST digits, electronic 

health records (EHR), and whole-brain MRI. 

 

3. Methods 

3.1. Unsupervised Hard Case Mining 

In this work, we aim to train unsupervised medical autoencoder models with interpretable latent spaces. 

Previous work has found that this may be achieved with small batch sizes [279], but as training time 

typically increases exponentially with decreasing batch size, the small batch size approach is impractical 

for large datasets. To maintain these small batch size results while leveraging the faster training times of a 

large batch size, we propose an unsupervised batch-wise hard case mining method for training 

autoencoders. Within a given training batch, we consider hard cases to be the top K samples with the largest 

reconstruction loss values, and we calculate a hard case loss by averaging the individual losses across the 

hard cases. We then update model weights based only on the hard case loss. The number of hard cases 

being considered, K, is calculated according to 

 𝐾 = 𝜂 ∗ 𝛽 (1) 

where 𝛽 is the batch size and 𝜂 is the hard case proportion. The hard case proportion is a decimal value 

(0.0, 1.0] which controls the number of samples within each batch that are identified as hard cases. Setting 

𝜂 = 1.0 is equivalent to traditional batch-wise learning where all samples within the batch are considered. 

Setting 0.0 < 𝜂 < 1.0 implements unsupervised hard case mining, where only the most lossy subset of each 

batch is considered. 

Focusing on only the hard cases should allow the model to more quickly refine reconstructions of 

difficult features while ignoring well-known features. This approach may appear to throw out a large 

proportion of the training data, but since this subsampling is performed independently within every batch, 

the randomization of batch construction over the course of many training epochs incorporates these 

seemingly ignored samples into the model. Additionally, medical datasets tend to be dominated by high 

levels of global similarity with important inter-subject variation occurring at the local level. Therefore, even 

as the model focuses on the hard cases, it learns global feature representations which may apply to all 

samples in the dataset. In these ways, learning from the most difficult samples allows the network to refine 

harder representations without sacrificing reconstruction accuracy for the easier samples.  
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3.2. Autoencoder Experiments 

To explore the efficacy of the proposed unsupervised hard case mining method, we demonstrate its 

application to autoencoders trained on three experimental datasets: the canonical MNIST digits dataset, a 

tabular EHR dataset, and a whole-brain MRI dataset. All autoencoders were constructed and trained using 

PyTorch [289]. MNIST and EHR autoencoders were trained on either an NVIDIA Titan Xp or Quadro 

RTX 5000 GPU, while the MRI autoencoders were trained on an NVIDIA A6000 GPU.  

 

3.2.1. MNIST 

The MNIST dataset is a collection of 2-dimensional 28x28 grayscale images depicting handwritten 

numeric digits 0-9 [290]. To simulate the common pattern of global similarity with local variation seen in 

medical data, we only used MNIST digits 4 and 9 for our experiments, yielding 11,791 and 1,991 samples 

from the standard train and test splits, respectively. This subset of the standard MNIST training dataset was 

further randomly split 80:20 into training and validation sets for autoencoder training. All MNIST images 

were linearly scaled to the intensity range [0.0, 1.0] and flattened into a 1x784 vector prior to training. 

We used the fully connected autoencoder architecture shown in Figure VIII-1 for the MNIST 

experiment. Over a series of three fully connected layers with ReLU activation, the encoder compressed 

the 784-dimension input feature space to a 32-dimension latent space. Three mirrored decoder layers then 

 

Figure VIII-1 Network architectures for fully connected and convolutional autoencoders. The 32-

dimension latent spaces from the fully connected networks were used for classification tasks, while 

the 32-dimension latent spaces from the convolutional networks were used for regression tasks. 

Figure adapted with permission from (Kerley et al. SPIE Medical Imaging: Image Processing 2023) 
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expanded the latent space back to 784-dimensions. Sigmoid activation was used for the output layer only, 

followed by L1 loss to assess reconstruction accuracy. This network was trained over 5,000 epochs on the 

training data split and optimized via Stochastic Gradient Descent with learning rate 0.01 and momentum 

0.9. Model performance was evaluated at every epoch via reconstruction loss averaged across the validation 

split. We tested 18 different hard case mining configurations with this MNIST autoencoder design, 

including all possible combinations of 𝛽 = {25, 50, 100} and 𝜂 = {1.0, 0.5, 0.4, 0.3, 0.2, 0.1}. 

 

3.2.2. EHR 

The EHR dataset used for this study covered 3,127 individuals between the ages of 17 and 104 in the 

Baltimore Longitudinal Study of Aging [291]. Participants were visited at least once every 1-4 years, during 

which researchers gathered health information and evaluated the participant for various cognitive 

impairments (mild cognitive impairment, dementia, etc.). Available data included biological sex, cognitive 

impairment diagnoses, and International Classifications of Disease version 9 (ICD9) codes. Participants 

were randomly split 70:10:20% into training, validation, and withheld test datasets, respectively. 

The pyPheWAS package [199] was used to transform each individual’s longitudinal ICD9 record into 

a compact vector of clinical phenotypes. Briefly, this involved first mapping each ICD9 code to one of 

1,866 clinical phenotype codes (PheCodes). PheCodes were then aggregated across each participant’s 

record, yielding a 1x1,866 binary vector representing the presence (1) or absence (0) of each PheCode in 

the participant’s health history. This PheCode vector was used as the input data for the EHR experiment.  

We used an almost identical fully connected autoencoder architecture (Figure VIII-1) and training 

procedure for the EHR experiment as was used for the MNIST experiment. The only modifications made 

for the EHR models were 1) the autoencoder’s input and output layers each contained 1,866 features; 2) 

binary cross entropy (BCE) loss was used to assess reconstruction accuracy; and 3) the EHR models were 

trained for 40,000 epochs each. We again tested 18 different hard case mining configurations for the EHR 

experiment, including all possible combinations of 𝛽 = {25, 50, 100} and 𝜂 = {1.0, 0.5, 0.4, 0.3, 0.2, 0.1}. 

 

3.2.3. MRI  

For our MRI experiment, we used 3-dimensional FLAIR MRI volumes from the 1,251 participants in 

the 2021 BraTS cohort [268], a study focused on high-grade glioma imaging. Each participant in this dataset 

had a high-grade brain tumor at the time of MRI acquisition. As with the EHR dataset, participants were 

randomly split 70:10:20% into training, validation, and withheld test datasets, respectively. 
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The BraTS MRI were available registered to the standard Montreal Neurological Institute reference 

space in 1mm isotropic resolution [292]. For the current study, all image intensities were rescaled to the 

range [0,1] by normalizing in reference to the 99th percentile intensity within the brain; volumes were then 

zero-padded and down-sampled to 3mm isotropic resolution. The preprocessed images were of size 

81x81x54 voxels in the sagittal, coronal, and axial dimensions respectively. 

The MRI experiment used the convolutional autoencoder architecture seen in Figure VIII-1. An encoder 

consisting of three convolutional layers followed by a single fully connected layer reduced the input 

81x81x54 volume to a 32-dimension latent space; a mirrored decoder expanded the 32-dimension latent 

space back to the 81x81x54 input space. Instance normalization and the Leaky ReLU activation function 

with 0.1 slope were used throughout the network’s hidden layers. The output convolutional layer was 

followed by instance normalization and ReLU activation. Reconstruction was evaluated via negative log 

likelihood (NLL) loss (Eq. 2). NLL loss was defined as the negative log likelihood that the input image 𝑥̅ 

of size 𝐷 = 81 × 81 × 54 voxels was sampled from the Gaussian distribution 𝒩𝑦̅,𝐼̿ centered at the 

reconstruction 𝑦 with identity covariance 𝐼 ̿averaged across the 𝐷 voxels: 

 
𝑁𝐿𝐿(𝑦̅, 𝑥̅) = −

1

𝐷
∑ log 𝒩𝑦̅,𝐼̿(𝑥̅) (2) 

The MRI network was trained on the training data split for 5,000 epochs using the Adams optimizer 

with learning rate 0.00001 and no decay. As with the MNIST and EHR experiments, model performance 

was evaluated at every epoch via reconstruction loss averaged across the validation data. We tested 2 

different hard case mining configurations with this MRI autoencoder design: 𝛽 = 20 and 𝜂 = {1.0, 0.1}. 

 

3.2.4. Model Evaluation 

After training was complete, the “best epoch” was found for each autoencoder by determining which 

epoch had the lowest validation loss; the model weights for this best epoch were used for all subsequent 

model evaluations. The reconstruction accuracy of all autoencoders was evaluated by examining the 

reconstruction loss for the withheld test data splits. 

The interpretability of each model’s latent space was evaluated quantitatively by using the 32-

dimension latent space projection for a secondary classification or regression task. The MNIST models 

were evaluated by training a digit classifier (classes 4/9), and the EHR models were evaluated by training 

both a biological sex classifier (classes male/female) and a cognitive impairment classifier (classes yes/no). 

Both the digit and sex classifiers were intended as relatively easy benchmarks due to class balance and the 

presence of class-specific signals in the original data space. Meanwhile, the cognitive impairment classifier 



 

100 

was intended to be a more difficult task due to class imbalance and the weak label resulting from collapsing 

varying cognitive impairment diagnoses into a single “yes” class. All three classifiers were multi-layer 

perceptron models (MLPs) trained with 10-fold cross-validation on the latent space projection of the 

training data. Each MLP had with a 32-dimension input layer, a 100-dimension hidden layer with ReLU 

activation, and a 1-dimensional output layer with sigmoid activation; they were trained for 200 epochs and 

optimized via stochastic gradient descent with learning rate 0.001 and momentum 0.9. Classifier 

performance was assessed via area under the receiver operating curve (AUROC) for predictions generated 

from the latent space projection of the withheld data across all 10 cross-validation folds. 

The MRI autoencoder latent spaces were evaluated by regressing a tumor laterality score. The tumor 

laterality score was a decimal in the range (0,1) representing how far to the left (0) or right (1) the brain 

tumor centroid was in the axial plane of the MRI volume. A random forest (RF) regressor was trained for 

this task on the 32-dimension latent space projection of the training data split. Regressor performance was 

evaluated via the absolute percent difference between predicted and actual tumor laterality score for 

predictions generated from the latent space projection of the withheld test data. Additionally, we looked for  

statistically significant differences in regressor performance across 𝜂 values by computing a Wilcoxon 

sign-rank test between the percent difference distributions. 

Finally, all models were evaluated qualitatively by visualizing the latent space projection of the 

withheld data split in a 2-dimensional t-distributed stochastic neighborhood embedding (t-SNE)[270]. The 

t-SNE representation of each model’s latent space was colored according to each dataset’s respective class 

or regression label to show variation in qualitative interpretability across hard case mining configurations. 

 

Figure VIII-2 Per-image and per-participant reconstruction loss box plots for the withheld data split 

evaluated at the best epoch for all MNIST and EHR hard case mining configurations. Points marked 

above boxes denote outliers.  
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4. Results 

For both the MNIST and EHR datasets, we tested 18 unsupervised hard case mining configurations 

across 6 hard case proportions and 3 batch sizes; for the MRI dataset, we tested 2 hard case proportion 

values across a single batch size. For the remainder of this article, we referred to models using the shorthand 

notation 𝜂𝑋 ∗ 𝛽𝑌, where the subscripts X and Y denoted the values for hard case proportion and batch size, 

respectively. 

 

4.1. MNIST 

Figure VIII-2 summarizes the per-image reconstruction loss for the withheld MNIST dataset across 

each of the 18 hard case mining configurations. Smaller 𝛽 values generally produced better reconstruction 

performance. Within each 𝛽 value, however, 𝜂 values less than 1.0 tended to produce better reconstructions 

with fewer high-loss outliers. Interestingly, there appeared to be an inflection point in this performance 

improvement at 𝜂0.3 for each value of 𝛽; reconstruction loss was higher for 𝜂 values both greater than and 

less than 0.3.  

To examine these effects more closely, we identified the 5 MNIST images with the worst reconstruction 

losses from the 𝜂1.0 ∗ 𝛽100 model and compared the reconstructions of those 5 images across 𝜂 values for 

all 𝛽100 MNIST models. The same comparison was made for the 5 MNIST images with the best 

reconstruction losses from the 𝜂1.0 ∗ 𝛽100 model. Reconstructions of the “hardest” images (Figure VIII-3)  

 

Figure VIII-3 Top 5 worst MNIST reconstructions from the 𝜼𝟏.𝟎 ∗ 𝜷𝟏𝟎𝟎 model compared to 

reconstructions from all other 𝜷𝟏𝟎𝟎 MNIST models and the image ground truth (GT). Comparisons 

shown as the absolute difference between GT and the reconstruction. 
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showed substantial improvement with decreasing 𝜂. Conversely, reconstructions of the “easiest” images 

(Figure VIII-4) showed minor deterioration with decreasing 𝜂.  

Examining the latent space projections of the 𝛽100 MNIST models revealed similar, though less 

dramatic, improvement with unsupervised hard case mining (Figure VIII-5). The t-SNE latent space 

representations mirrored the effects seen in the reconstruction loss plots from Figure VIII-2: the 𝜂1.0 ∗ 𝛽100 

latent space showed some mixing between digits; all 𝜂 < 1.0 models showed more separability than the 

𝜂1.0 ∗ 𝛽100 model; and there was an inflection point in latent space improvement at the 𝜂0.3 ∗ 𝛽100 model. 

As expected, classifying MNIST digits was an easy task; all classifiers achieved near perfect AUCROC on 

the withheld dataset (Table VIII.1). 

 

4.2. EHR 

The per-participant reconstruction loss for the withheld EHR dataset across all 18 unsupervised hard 

case mining configurations was shown in Figure VIII-2. Unlike the MNIST experiment, reconstruction 

 
Figure VIII-4 Top 5 best MNIST reconstructions from the 𝜼𝟏.𝟎 ∗ 𝜷𝟏𝟎𝟎 model compared to 

reconstructions from all other 𝜷𝟏𝟎𝟎 MNIST models and the image ground truth (GT). Comparisons 

shown as the absolute difference between GT and the reconstruction. 

 
Figure VIII-5 Latent space projections of the withheld dataset for all MNIST 𝜷𝟏𝟎𝟎 autoencoders 

represented in 2-dimensional t-SNE space. Each point represented an individual image. Points are 

colored according to their digit label. 
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performance was similar across all 𝛽 values and this performance worsened with decreasing 𝜂. However, 

there were substantial differences in training time required for each of these models. Figure VIII-6 shows 

the validation loss curves for the 𝛽100 models over the full 40,000 epoch training period. Lower 𝜂 models 

converged significantly earlier in training than higher 𝜂 models, with the most extreme difference between 

the 𝜂0.1 ∗ 𝛽100 (epoch 9,386) and 𝜂1.0 ∗ 𝛽100 (epoch 34,093) models. Similar convergence patterns were 

also seen across 𝜂 values in the 𝛽50 and 𝛽25 models. Examining the latent space projections of the 𝛽100 

models (Figure VIII-7) showed that the EHR autoencoders had similar latent space separation for both the 

sex and cognitive impairment classes across 𝜂 values, despite the decrease in reconstruction losses for lower 

𝜂 models seen in Figure VIII-2.  

Finally, the EHR experiment’s latent space classifier performances are shown in Figure VIII-8. As 

expected, sex classification was a relatively easy task; all 18 unsupervised hard case mining configurations 

achieve greater that 0.92 AUROC averaged across the 10 cross-validation folds. Cognitive impairment, 

however, was a more difficult task with AUROC values ranging from 0.64 to 0.81. Interestingly, classifier 

performance for both tasks was similar for corresponding 𝜂 values regardless of 𝛽. This pattern was only 

broken for the  𝜂0.1 models in the cognitive impairment task where classifier performance across batch sizes 

diverged, with the 𝛽25 and 𝛽100 models having the best and worst performances, respectively. Across both 

tasks, classifier performance for the 𝜂1.0, 𝜂0.5, and 𝜂0.4 models was largely equivalent; classifier 

performance then decreased for lower 𝜂 values. 

 

 

 

 

 

Figure VIII-6 Validation loss curves during training for all 𝜷𝟏𝟎𝟎 EHR autoencoders. The best epoch 

(lowest validation loss) is marked for each model. 
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Table VIII.1 Reconstruction Loss and Latent Space Classifier Performance for MNIST Withheld 

Dataset 

𝜷 𝜼 
Best Epoch L1 Loss Classifier AUROC 

25 

1.0 4991 0.0353 (0.0111) 0.9992 (0.0000) 

0.5 4999 0.0314 (0.0099) 0.9995 (0.0000) 

0.4 4981 0.0305 (0.0092) 0.9991 (0.0000) 

0.3 4981 0.0314 (0.0093) 0.9992 (0.0000) 

0.2 4992 0.0340 (0.0099) 0.9988 (0.0000) 

0.1 4993 0.0315 (0.0094) 0.9988 (0.0000) 

50 

1.0 4999 0.0415 (0.0132) 0.9987 (0.0001) 

0.5 4994 0.0374 (0.0115) 0.9993 (0.0000) 

0.4 4996 0.0372 (0.0107) 0.9992 (0.0000) 

0.3 4999 0.0361 (0.0103) 0.9989 (0.0000) 

0.2 4994 0.0395 (0.0102) 0.9991 (0.0000) 

0.1 4993 0.0367 (0.0097) 0.9990 (0.0001) 

100 

1.0 4997 0.0535 (0.0185) 0.9952 (0.0001) 

0.5 4996 0.0489 (0.0149) 0.9979 (0.0001) 

0.4 4989 0.0464 (0.0140) 0.9979 (0.0001) 

0.3 4999 0.0443 (0.0131) 0.9975 (0.0001) 

0.2 4999 0.0455 (0.0119) 0.9973 (0.0001) 

0.1 4988 0.0442 (0.0110) 0.9972 (0.0001) 

 

 

4.3. MRI 

For the MRI experiment, we trained one unsupervised hard case mining autoencoder at 𝜂0.1 and a 

baseline at 𝜂1.0, both with a batch size of 20. According to validation loss, the best 𝜂0.1 ∗ 𝛽20 model was at 

epoch 2955, while the best 𝜂1.0 ∗ 𝛽20 model was at epoch 1283. The per-participant reconstruction losses 

for the withheld MRI dataset across both models are shown in Figure VIII-9A. Similar to the EHR 

experiment, reconstruction loss was worse for the 𝜂0.1 model compared to the 𝜂1.0 model. Despite this 

decrease in reconstruction accuracy, however, the latent space for the 𝜂0.1 model showed a more 

interpretable structure than the 𝜂1.0 model in terms of tumor laterality (Figure VIII-9B). This improved 

separation in the latent space was reflected in the latent space-trained tumor laterality regression models 

(Figure VIII-9C). A modest, yet  statistically significant (p<0.05), improvement was observed in the 

absolute percent difference between predicted and actual tumor laterality score for the 𝜂0.1 regression model 

compared to the 𝜂1.0 model. 
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5. Discussion 

In this article, we presented unsupervised hard case mining, a batch-wise approach for optimizing 

medical autoencoder models. We tested this method in experiments on natural image data (MNIST), EHR, 

and whole-brain MRI. Taken together, the results from these experiments demonstrated the varied benefits 

of the proposed method. In the MNIST experiment, we saw that unsupervised hard case mining improved 

the mean reconstruction accuracy of the autoencoder models; in the EHR experiment, we saw that 

unsupervised hard case mining significantly accelerated model convergence; and in the MRI experiment, 

we saw that unsupervised hard case mining improved the interpretability of the autoencoder’s latent space 

both qualitatively and quantitatively. These benefits were not uniformly applied, however. In contrast to 

MNIST, both the EHR and MRI experiments suffered a decrease in reconstruction accuracy because of 

hard case mining; neither the MNIST nor MRI experiments showed accelerated model convergence like 

 

Figure VIII-7 Latent space projections of the withheld dataset for all EHR 𝜷𝟏𝟎𝟎 autoencoders 

represented in 2-dimensional t-SNE space. Each point represented an individual participant. Points 

are colored according to biological sex (top row) and cognitive impairment (bottom row). 

 

Figure VIII-8  Sex and cognitive impairment classifier performance as a function of η. Performance 

is expressed as the mean classifier AUROC evaluated on the withheld EHR dataset across 10 cross-

validation folds. 
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the EHR experiment; and counter to the improvement seen in MRI, the MNIST and EHR latent spaces 

remained largely consistent with hard case mining. 

These varied effects may partially be due to variation in the underlying characteristics and distributions 

of these disparate datasets. After all, each experiment focused on a fundamentally different data type, and 

each dataset contained varying levels of feature and class imbalances. Another contributor to the varied 

effects, however, may be related to how unsupervised hard case mining affects model convergence. Given 

identical batch size, we saw in the EHR experiment that unsupervised hard case mining accelerated the 

convergence of models with smaller hard case proportion values; but all models, regardless of hard case 

proportion, eventually converged to a similar solution. Consider the EHR experiment’s  𝛽100 validation 

loss curves from Figure VIII-6; if training had ended after 20,000 epochs, the 𝜂1.0, 𝜂0.5, and 𝜂0.4 models 

would not have converged. At this point in training, both reconstruction accuracy and latent space 

interpretability for these three higher 𝜂 models would likely have been poor compared to the fully converged 

lower 𝜂 models. This effect may have contributed to the differences in reconstruction loss and latent space 

interpretability seen in the MNIST and MRI experiments as well. Given sufficiently long training times, 

the MNIST and MRI models may also have converged to similar solutions regardless of 𝜂 value. Exhaustive 

training such as this is often not feasible, though. The EHR models were intentionally trained for an 

atypically long time; based on the obvious validation loss divergence at lower 𝜂 values seen in Figure 

VIII-6, we were convinced that if trained for long enough, the high 𝜂 models would eventually converge. 

 

Figure VIII-9 MRI experiment results in unsupervised hard case mining. (A) Per-participant 

reconstruction loss violin plots for the withheld data split evaluated at the best epoch for both MRI 

models. (B) Latent space projections of the withheld dataset represented in 2-dimensional t-SNE 

space. Each point represents an individual participant; color denotes tumor laterality score. (C) 

Absolute percent differences between predicted and actual tumor laterality score for regression 

models trained on the latent spaces of both MRI models. 
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We allowed them extensive training time, but this was only possible because of the EHR model’s relatively 

fast per-epoch wall time. Given the consistency in latent space interpretability and classification accuracy 

seen at the lower η values, though, this extra training time amounted only to wasted time and resources. 

Besides the heterogeneity seen in experimental results, the proposed unsupervised hard case mining 

method has several areas which require further investigation. First, it is currently unclear how to select 

values for 𝛽 and 𝜂 given an arbitrary dataset, though the results of this study tend towards smaller 𝜂 values, 

regardless of 𝛽. Second, the simple definition of “hard cases” as those samples within a batch having the 

largest reconstruction losses has not been tested against other alternatives. It is possible that a more optimal 

unsupervised hard case mining method could include other information in this definition, such as gradient 

information or similarity between samples. Finally, a key assumption throughout this article has been that 

the data being encoded is characterized by a high degree of global similarity paired with important local-

level variation; the generalization of this method to datasets with more global heterogeneity, such as the 

full MNIST dataset or an MRI dataset including multiple body parts, should be explored. 

Regardless, the potential application areas for unsupervised hard case mining as proposed are quite 

broad. This method has both a low computational cost and simple implementation (in our PyTorch 

implementation, it required only two additional lines of code); additionally, it is both dataset and 

architecture agnostic. As such, it may easily be incorporated into existing training protocols. This 

unsupervised framework could also be implemented in supervised network training. As discussed 

previously, supervised networks have benefited from label-specific hard positive and hard negative mining 

[281], [284], [285], [288], so it is reasonable to assume that an unsupervised approach could boost learning 

without the extra computational cost of comparable supervised methods.  

 

6. Conclusion 

In this paper, we presented a batch-wise unsupervised hard case mining approach for training medical 

autoencoders. In experiments on MNIST digits, EHR, and brain MRI, we demonstrated that the proposed 

method increased reconstruction accuracy, accelerated model convergence, and improved the latent space 

both qualitatively and quantitatively. This simple and computationally inexpensive approach to optimizing 

autoencoders provides small-batch model performance while maintaining large-batch training times and is 

particularly useful for medical datasets with combined high global similarity and local variation. Many 

potential applications may benefit from this method, such as large-scale medical image retrieval algorithms 

that must be trained on large amounts of data. Such optimization efforts will become increasingly more 
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relevant as larger medical projects are funded and more robust GPU systems that can accommodate large 

batch sizes are employed in research settings.
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Chapter IX  

 

EHR-Defined Subtypes of Autism in Children and their Associations with Structural MRI 

 

1. Overview 

Autism is a developmental disorder characterized by social communication deficits, repetitive and 

restrictive behaviors, and a heterogeneous presentation of both severity and co-occurring conditions. Many 

studies have investigated patterns of symptoms and co-occurring conditions or differences in brain 

morphometry, but few studies have attempted to connect findings of clinical heterogeneity with specific 

structural brain differences. In this study, we analyzed joint electronic health record (EHR) and structural 

brain features in 124 autistic individuals who each had a clinical T1-weighted magnetic resonance image 

(T1w MRI) acquired between the ages of 2 and 10. From each patient’s EHR, we extracted 1865 

“diagnostic” phenotypes from International Classification of Diseases records and 1681 “procedural” 

phenotypes from Current Procedural Terminology records. After dimensionality reduction, we 

concatenated these sets of phenotypes and ran a clustering analysis. Each T1w MRI was segmented into 

132 anatomical regions, and the volume of each region was modeled as a function of MRI age, biological 

sex, and cluster membership. Using this framework, we identified four clinical autism sub-types primarily 

characterized by (1) cognitive delays and auditory dysfunction; (2) physiological development delays; (3) 

convulsions; and (4) epilepsy with high prevalence of other co-occurring conditions. Six brain regions were 

found to be weakly associated (p<0.05, uncorrected) with the identified EHR subtypes: three in the left 

basal ganglia, two in the left temporal lobe, and one in the cerebellum. Across all regions the epilepsy 

cluster had the lowest region volumes. This work is the first study to our knowledge that jointly examines 

EHR subtypes and MRI-derived brain region volumes in autism.  

 

2. Introduction 

Approximately 1 in 44 children are diagnosed with autism by age 8 according to the most recent CDC 

estimate [293]. This condition is typically identified in early childhood, with primary characteristics 

including developmental delays, social and communication deficits, and repetitive or restrictive behaviors 

[294]. Despite its high prevalence, the underlying causes of autism are not yet well-understood [294]. In 

some respects, the most certain feature of autism is the heterogeneity of its symptoms and co-occurring 

conditions [294]. Developing a better understanding of sub-types within the autism spectrum and the 
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underlying neuroanatomy that contributes to those sub-types could lead to improved patient care and 

individualized support for autistic individuals. 

The big data era ushered in many opportunities and tools necessary for leveraging clinical EHR systems 

to study complex patterns of co-occurring conditions in psychiatric disorders, including autism [295]–[298]. 

Two large-scale EHR cohort studies (n=14,000 and n=47,000) in autistic individuals found abnormally 

high levels of co-occurring conditions in autism patients compared to non-autism patients [299], [300]; 

though each study also found varying levels of these conditions within the autism groups, particularly with 

respect to age and sex. Other studies have used EHR clustering to better elucidate potential sub-types within 

the autism population. For example, a study of time-series EHR phenotypes uncovered three distinct clinical 

trajectories for autistic children under age 15: seizures, psychiatric disorders, and a mixture of 

gastrointestinal/infections/auditory disorders [301]. In another study, a clustering analysis identified 

different gradients of autism symptom severity corresponding to whether patients were primarily 

characterized by social communication deficits or by fixated interests and repetitive behaviors [302]. 

Given the cognitive dysfunction seen in autism and its many co-occurring conditions, another area of 

research focuses on identifying variations in brain anatomy in autism, typically via structural magnetic 

resonance imaging (MRI) [303]. Consistently, many such studies find that autistics exhibit increased gray 

matter volume compared to both typically developing controls [304], [305] and patients with attention-

deficit hyperactivity disorder, which commonly co-occurs with autism [306], [307]. A recent study aimed 

to separate the contributions of gray matter volume and density to these findings; ultimately, their results 

showed no associations with density, but further confirmed this trend of increased volume in several gray 

matter regions for autism patients [308]. To further investigate whether brain differences correspond with 

symptomatic heterogeneity, one recent study compared brain region volumes of autistic people with high 

vs. low support needs; they found that while both groups tended to have increased gray matter volumes in 

the temporal lobe, people with higher support needs exhibited this increase in more widespread regions 

than those with lower support needs [221]. 

Despite the significant effort being poured into both the phenotypic comorbidity and brain structures 

of autism, these two areas do not often overlap. Studies using the EHR have the advantage of large sample 

sizes to capture a wide range of autism presentations but cannot assess the underlying brain anatomy which 

might contribute to any identified patterns. Conversely, studies focused on cortical structure in autism often 

link their findings with intelligence quotient scores [308], [309], or a small set of clinical assessments [310], 

[311], but these measures are limited; such brain structure comparisons cannot capture the full heterogeneity 

of autism. 
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In this study, we aimed to bridge this gap by performing a joint analysis of EHR and brain MRI for 

autistic children. We examined a cohort of 124 children, each with EHRs and a clinical structural whole-

brain MRI between the ages of 2 and 10. In the EHR, we identified four unique sub-types of autism 

symptoms and co-occurring conditions. We then examined differences in brain volume for 132 anatomical 

regions across EHR sub-types, while accounting for age and sex effects. To our knowledge, this was the 

first cross-modality analysis of cortical structure and longitudinal EHR patterns in autism. 

 

3. Material and Methods 

This study and its procedures were carried out in accordance with the Institutional Review Board of 

Vanderbilt University and Vanderbilt University Medical Center (VUMC). Clinical EHR and MRI data 

were obtained in fully deidentified form from the Synthetic Derivative and ImageVU at VUMC via the 

Vanderbilt Institute for Clinical and Translational Research. All researchers working with this data received 

proper Human Subjects training. The initial cohort included 1016 individuals with clinical MRI sessions, 

International Classification of Diseases (ICD) records, and Current Procedural Terminology (CPT) records.  

From this cohort, we selected autistic patients who had a 3D T1w turbo field echo MRI performed 

between the ages of 2 and 10; T1w MRIs with obviously abnormal pathology (tumors, resections, etc) were 

excluded. We additionally specified that each MRI session had to occur within  1 year of at least one ICD 

code for autism: [ICD-9] 299, 299.0, 299.00, 299.01, 299.1, 299.10, 299.11, 299.8, 299.80, 299.81, 299.9, 

299.90, 299.91, [ICD-10] F84, F84.0, F84.1, F84.3, F84.5, F84.8, or F84.9. For individuals with multiple 

T1w MRIs meeting these criteria, the session in closest proximity to an ICD code for autism was chosen. 

For all patients, any ICD and CPT records prior to age 2 and after age 10 were removed. This selection 

procedure resulted in a final cohort of 124 children with autism (Table IX-1), having a collective 9748 CPT 

records and 13928 ICD records. 

Figure IX-1 presents the joint EHR and MRI analysis pipeline. The pipeline was divided into four main 

phases: EHR Processing, MRI Processing, Clustering, and Brain Volume Models. Each of these steps is 

described in detail in the following sections. 
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Table IX-1 Autism Cohort Demographics 

N 124 

Male (%) 95 (76.6%) 

Race (%)  

     White 98 (79.0%) 

     Black 10 (8.1%) 

     Asian 3 (2.4%) 

     Unknown/Not Specified 13 (10.5%) 

Mean MRI age (std) 5.44 (2.26) 

Mean first autism code age (std) 4.64 (2.06) 

Mean length of EHR in years (std) 3.08 (2.15) 

Median N EHR codes 69 

 

3.1. EHR processing  

The first step in the EHR processing phase was extracting “diagnostic” phenotypes from the ICD 

records and “procedural” phenotypes from the CPT records using the pyPheWAS package [199]. Briefly, 

this involved mapping related groups of ICD or CPT codes to a single phenotype code. For example, ICD-

9 codes 493.0 (Extrinsic asthma), 493.1 (Intrinsic asthma), and 493.82 (Cough variant asthma) all map to 

the single diagnostic phenotype 495 (Asthma). pyPheWAS maps ICD-9 and ICD-10 codes to a set of 1866 

“diagnostic” phenotype codes (PheCodes), and CPT codes to a set of 1681 “procedural” phenotype codes 

(ProCodes).  

The mapping step was then followed by record aggregation. PheCodes were aggregated across each 

patient’s record, such that a 1x1866 binary PheCode vector was created for each patient, representing the 

presence (1) or absence (0) of each PheCode in the patient’s record. All patient vectors were then stacked, 

and the PheCode for Autism (313.3) was removed, yielding a 124x1865 binary PheCode feature matrix. 

This same aggregation procedure was also applied to the ProCode data, yielding a 124x1681 binary feature 

matrix of ProCode presence/absence across all patient records. 

Next, dimensionality reduction via principal component analysis (PCA) was performed on both the 

PheCode and ProCode feature matrices using the scikit-learn package [195]. The final EHR clustering 

dataspace was then created by trimming both PCA spaces to an equal number of PCA components and 

concatenating the trimmed spaces. The number of components chosen, 𝑀, was determined according to  

 𝑀 = max (𝑚𝑝ℎ𝑒 , 𝑚𝑝𝑟𝑜) (1) 

where 𝑚𝑝ℎ𝑒and 𝑚𝑝𝑟𝑜were the number of components required to explain at least 70% of the overall 

variance in the PheCode and ProCode PCA spaces, respectively. For this experiment, 𝑚𝑝ℎ𝑒 = 29 and 
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𝑚𝑝𝑟𝑜 = 20, so 𝑀 = 𝑚𝑝ℎ𝑒 = 29, yielding a unified EHR dataspace of size 124 patients x 58 PCA 

components. This PCA procedure was used to reduce noise inherent in the EHR [49] and to balance the 

contributions of the PheCode and ProCode data for the subsequent clustering analysis. 

 

3.2.  MRI processing 

 The SLANT pipeline [139] was used to segment each T1w MRI into 132 anatomical regions from the 

BrainColor atlas [312]. Briefly, for each target T1w MRI, this deep learning pipeline registered the target 

MRI volume to the common Montreal Neurological Institute (MNI) reference space and divided the 

registered volume into 27 small overlapping patches. Each patch was individually segmented using a 

separate convolutional neural network. The overlapping segmentation patches were then combined via 

 

Figure IX-1 Overview of autism subtype analysis. ICD and CPT data from all patient EHRs were 

mapped to clinically relevant phenotypes (PheCodes and ProCodes, respectively) and aggregated 

across each patient's record. PCA was then performed, and M components from both the PheCode 

and ProCode PCA spaces were concatenated to form a unified EHR dataspace. A clustering analysis 

was performed on this unified space to identify subtypes within the EHR of autistic patients. 

Separately, a T1w MRI from each autistic patient was processed via SLANT, which segmented the 

volume into 132 anatomical regions and calculated the volume of each region. Finally, these region 

volumes were modeled as a function of age, sex, and EHR cluster via a general linear model. 



 

114 

majority vote label fusion to attain the whole-brain 132-region segmentation. The segmentation was then 

transformed back to the original target volume space, and the volume of each region was calculated in mm3. 

3.3. Clustering and brain volume models 

With the EHR and MRI processing phases both complete, a clustering analysis was performed on the 

concatenated PCA spaces. Though many EHR clustering studies use hierarchical clustering with a 

Euclidean distance measure [278], [301], [313], we chose the spectral clustering algorithm [314] as we did 

not expect Euclidean distance to be a useful measure of similarity in the concatenated EHR PCA spaces. 

Our implementation of spectral clustering searched for 4 clusters using a nearest neighbors affinity matrix 

and discrete labels assignment. The scikit-learn python package [195] was again employed for the clustering 

analysis. Each patient was successfully assigned to a unique cluster.  

After clustering, a general linear model (GLM) was estimated for each of the 132 brain regions found 

in section 3.2. Each GLM took the form  

 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽0𝑎𝑔𝑒 + 𝛽1𝑓𝑒𝑚𝑎𝑙𝑒 + 𝛽2(𝑎𝑔𝑒 ∗ 𝑓𝑒𝑚𝑎𝑙𝑒) + 𝛽3𝐶1 + 𝛽4𝐶2 + 𝛽5𝐶3 (2) 

where 𝑣𝑜𝑙𝑢𝑚𝑒 was the region volume in mm3, 𝑎𝑔𝑒 was the patient’s age in years at the time of their MRI 

scan, 𝑓𝑒𝑚𝑎𝑙𝑒 was a binary variable indicating whether or not the patient’s biological sex was female, and 

{𝐶1, 𝐶2, 𝐶3} were one-hot encoded binary variables indicating which cluster the patient belonged to. For 

modeling purposes, 𝐶0 was assumed to be the reference state (𝐶1 = 𝐶2 = 𝐶3 = 0), and thus was not 

explicitly included as a predictor. After fitting the GLM for each region, an F-test was performed to 

determine if 𝛽3, 𝛽4, and 𝛽5, were all jointly significantly not equal to zero; in other words, this tested 

whether or not including the EHR cluster assignments in the GLM improved the model of brain region 

volume. Both the GLM estimation and the F-test were performed using the statsmodels package [188]. 

 

4. Results 

4.1. EHR clustering 

As described in section 3.2, four unique clusters were found in the EHR data for our autism cohort 

(Figure IX-2); these clusters will be referred to as C0, C1, C2, and C3 throughout the rest of this article. The 

clusters had slightly unbalanced sizes with 22 patients in C0, 35 patients in C1, 37 patients in C2, and 30 

patients in C3. Despite this size imbalance, the clusters had fairly equal sex distributions. The MRI ages for 

all clusters spanned nearly the entire 2 to 10 year-old range; however, C0 and C1 tended to have younger 

MRI ages and C2 tended to have older MRI ages, while C3 had a more even distribution. Figure IX-2 
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includes a 2-dimensional UMAP embedding [315] of the unified EHR space to qualitatively examine 

cluster separability. This embedding shows that the identified clusters were mostly well-separated in the 

EHR dataspace, though there was some noticeable mixing between C0, C1, and C2 in the bottom right, in 

addition to some overlap between C1 and C3. 

To investigate the underlying characteristics of the EHR clusters, we next examined the prevalence of 

PheCodes and ProCodes within them. Codes with a prevalence greater than or equal to 0.5 were considered 

primary cluster conditions, while codes with prevalence between 0.25 and 0.5 were considered secondary 

conditions. All clusters contained the ProCodes MRI and Medical Service with prevalence higher than 0.8; 

these codes were therefore deemed uninformative and ignored for the remainder of the analysis.  

 Figure IX-3 depicts prevalence for all PheCode and ProCode categories which contained at least one 

primary or secondary condition in any cluster. Clusters C0, C1, and C2 all contained well-defined patterns 

of co-occuring categories with four to six primary conditions each. C0 focused primarily on mental 

disorders, ophthalmologic/otologic services, and psychiatric evaluation/therapy. C1 focused primarily 

on the endocrine/metabolic, pathology, therapeutic procedures, and mental disorders categories. C2 

focused primarily on neurological, EEG, and chemistry/hematology labs. In contrast, C3 had both a more 

varied (18 primary conditions) and more severe (higher prevalence values) EHR structure. This cluster had 

prevalence values exceeding 0.75 in ophthalmologic/otologic services, mental disorders, 

chemistry/hematology labs, EEG, and therapeutic procedures. Other primary categories for C3 included 

endocrine/metabolic, neurological, psychiatric evaluation/therapy, pathology, diagnostic procedures, 

and physical therapy/rehabilitation. 

 

 

Figure IX-2 Demographics and UMAP embedding for the four EHR clusters found in the autism 

cohort. 
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Figure IX-3 Prevalence of PheCode and ProCode categories across EHR clusters. Each point in this 

figure represents a unique PheCode/ProCode. Primary codes are those with prevalence  0.5. 

Secondary codes are those with prevalence between 0.25 and 0.5. All categories shown contain at 

least one primary or secondary code in any cluster. 

 

For more detail, Table IX-2 presents all primary ProCodes and PheCodes for each cluster; a full listing 

of all secondary codes is included in Appendix B. All four clusters included the mental disorder PheCodes 

speech/language disorder and developmental delays/disorders, though at varying prevalence levels. 

Auditory codes (otologic tests, audiometry, hearing loss, etc.) were prevalent in both C0 and C3 as primary 

conditions, and several otologic ProCodes were secondary in C1. Both C0 and C3 had secondary auditory 

codes not seen in other clusters: tympanostomy (C0), suppurative and unspecified otitis media (C3), and 

Eustachian tube disorders (C3). Codes concerning physiological development were prevalent in both C1 

and C3 (delayed milestones, lack of normal physiological development, symptoms concerning 

nutrition/metabolism/development, etc). The PheCode convulsions and ProCode EEG were joint primary 

codes in C2 and C3, and joint secondary codes in C0. Additionally, epilepsy/recurrent seizures/convulsions 
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was a primary code for C3 and a secondary code for C2; C3 included several more epilepsy-related secondary 

codes. Unique from other clusters, C3 had both primary and secondary codes for speech and physical 

therapies, and several secondary codes related to digestive disorders. 

 

Table IX-2 Primary conditions and procedures associated with each EHR cluster (C) 
C Prevalence ProCode Category Prevalence PheCode Category 

0 

0.682 audiometry 
Ophthalmologic and otologic 

diagnosis and treatment 
0.682 Speech and language disorder 

mental 

disorders 

0.682 
Psychiatric 

evaluation 

Psychological and 

psychiatric evaluation and 

therapy 

0.591 
Developmental delays and 

disorders 

mental 

disorders 

0.636 otologic test 
Ophthalmologic and otologic 

diagnosis and treatment 
   

1 

0.657 genetic testing Pathology 0.686 Delayed milestones 
endocrine/ 

metabolic 

0.600 venipuncture Other therapeutic procedures 0.543 Speech and language disorder 
mental 

disorders 

2 

0.703 EEG Electroencephalogram (EEG) 0.568 Convulsions neurological 

0.595 hematologic tests 
Laboratory - Chemistry and 

Hematology 
0.514 Other headache syndromes neurological 

0.568 
compound 

specific blood test 

Laboratory - Chemistry and 

Hematology 
   

0.514 basic blood tests 
Laboratory - Chemistry and 

Hematology 
   

3 

0.967 otologic test 
Ophthalmologic and otologic 

diagnosis and treatment 
0.900 Speech and language disorder 

mental 

disorders 

0.933 audiometry 
Ophthalmologic and otologic 

diagnosis and treatment 
0.767 

Developmental delays and 

disorders 

mental 

disorders 

0.933 acoustic test 
Ophthalmologic and otologic 

diagnosis and treatment 
0.733 Delayed milestones 

endocrine/ 

metabolic 

0.867 
compound 

specific blood test 

Laboratory - Chemistry and 

Hematology 
0.600 Convulsions neurological 

0.867 venipuncture Other therapeutic procedures 0.567 
Lack of normal physiological 

development, unspecified 

endocrine/ 

metabolic 

0.767 EEG Electroencephalogram (EEG) 0.533 
Epilepsy, recurrent seizures, 

convulsions 
neurological 

0.767 hematologic tests 
Laboratory - Chemistry and 

Hematology 
   

0.700 basic blood tests 
Laboratory - Chemistry and 

Hematology 
   

0.667 
Psychiatric 

evaluation 

Psychological and 

psychiatric evaluation and 

therapy 

   

0.533 Speech Therapy 

Other diagnostic procedures 

(interview, evaluation, 

consultation) 

   

0.533 genetic testing Pathology    

0.500 speech treatment 
Other physical therapy and 

rehabilitation 
   

 

4.2. Brain volume models 

As described in Section 3.3, we used a general linear model framework to estimate region volume for 

all 132 brain regions, followed by an F-test to gauge the usefulness of including the EHR-derived clusters 

in that model. This framework identified six brain regions with weakly significant (p<0.05, uncorrected) 
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associations between region volume and the EHR clusters; none of these associations survived multiple 

comparisons correction. Five of these six regions were in the left hemisphere. Three of the regions were in 

the basal ganglia (Figure IX-4): left accumbens area, left pallidum, and left putamen. The remaining three 

regions included the cerebellar vermal lobules (CVL) VI-VII, left temporal pole, and left transverse 

temporal gyrus (TTG) (Figure IX-5).  

The left accumbens exhibited a diverging slope based on sex, with male region volumes increasing with 

age and female volumes decreasing; all other regions show similar trends of increasing or no change in 

volume with age, regardless of sex. Regions in the basal ganglia showed more dramatic associations with 

age compared to the other three regions.  For all regions except the left temporal pole, C3 had the lowest 

intercept and C1 had the highest intercept. In the left temporal pole, C1 and C3 had nearly equivalent 

intercepts, lower than both C0 and C2.  

 

Figure IX-4 General linear models of basal ganglia region volumes as a function of age, sex, and 

EHR-derived clusters. All three regions shown had weakly significant (p<0.05) associations with 

EHR clusters. Models are shown split by sex (right: Male, left: Female) for clarity. 



 

119 

 

Figure IX-5 General linear models of temporal lobe and cerebellum region volumes as a function of 

age, sex, and EHR-derived clusters. All three regions shown had weakly significant (p<0.05) 

associations with EHR clusters. Models are shown split by sex (right: Male, left: Female) for clarity. 

 

5. Discussion 

In this work, we identified four unique EHR sub-types in autistic children aged 2-10 and examined 

differences in brain region volumes across the identified sub-types. Three of these sub-types (C0, C1, C2) 

had well-defined EHR signatures, while the fourth (C3) had a more complex EHR structure. C0 contained 

patients with cognitive delays and auditory dysfunction; C1 contained patients primarily with physiological 

development delays; C2 contained patients with convulsions and perhaps mild epilepsy; and C3 contained 

patients with both epilepsy and a constellation of other conditions that overlapped with the other three 

clusters in specific ways.  

Though statistically weak, the brain region associations found in our analysis were still intriguing given 

the characteristics of the identified EHR clusters. One distinguishing factor across clusters was the 

prevalence of convulsions and epilepsy, with clusters varying from no prevalence (C1) to high prevalence 

(C3). The accumbens, pallidum, putamen, and CBV VI-VII are all regions involved in movement regulation 
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[316], [317]; for all four regions, C1 had the highest region volumes while C3 had the lowest (Figure IX-4, 

Figure IX-5). This suggests that decreased volume in these regions may contribute to the presentation of 

convulsions/epilepsy experienced by autism patients. Similarly, another distinguishing characteristic across 

clusters was the prevalence of auditory dysfunction, which was elevated for clusters C0 and C3. The left 

TTG is believed to be part of the early auditory processing pathway [318]; Figure IX-5 showed that, again, 

C3 tended to have lower volumes in this region compared to all other clusters, but C0 had higher volumes 

than both C3 and C2. This suggests that C0 and C3 may represent varied subtypes of hearing loss, with 

patients in C3 linking to decreased volume in the left TTG and patients in C0 linking to other auditory system 

dysfunction outside of the brain. Other EHR patterns potentially support these diverging causes, with higher 

prevalence of speech and language therapies seen in C3 compared to interventions such as tympanastomy 

in C0. 

Despite these points of interest, none of the identified brain regions passed multiple comparisons 

correction, indicating that these may have been spurious associations occurring by chance. This potential 

lack of brain associations may be surprising given the cognitive focus of the identified autism sub-types 

and the high incidence of significant associations between brain volume and autism in the literature [303], 

[306], [308], [309]. Perhaps these weak findings should not be surprising, however, given the small size of 

many autism studies which report region-specific differences [304], [319]. Larger studies of autism brain 

morphology tend to find fewer brain abnormalities [320]. Alternatively, it could be that region volume was 

not an appropriate measure for this application; many other anatomical features affect cognitive function, 

including gray matter thickness, gyrification, and white matter connectivity. Other studies have begun to 

investigate the potential associations between these alternative measures of brain structure and autism 

[321]–[323].   

This article presented a novel analysis framework for combining information from EHR and MRI in a 

clinical setting. As such, it could be used in other cognitive disorders to uncover sub-types of EHR 

progression and corresponding brain phenotypes. The potential for this framework is not, however, 

limitless. Acquiring sufficiently sized joint EHR and MRI datasets is challenging and expensive. Such 

datasets are naturally biased towards “sicker” populations; to be included, patients must have sufficient 

EHR data and a clinical T1w MRI, both of which indicate acute or chronic medical problems. In addition, 

EHR data is typically sourced from a single medical system; any events occurring outside of that medical 

system are unknowable, potentially leading to noisy and unreliable EHR clusters. Many disorders, including 

autism, are also influenced by socio-economic and environmental factors; though the current framework 

does not account for such factors, it could potentially be extended to include more demographic information 

in the EHR clustering stage. 
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6. Conclusions 

In this study, we examined differences in the EHR of autistic children aged 2-10. We identified four 

unique clusters of EHR progression in this cohort, including a cognitive delay/auditory dysfunction group, 

a physiological developmental delays group, a convulsions groups, and an epilepsy group with complex 

patterns of co-occurring conditions. We next investigated the relationship between MRI-derived brain 

region volumes and these clusters, accounting for age and sex effects. This analysis revealed six brain 

regions weakly associated with the identified clusters; these regions were primarily involved in movement 

regulation, a finding that corresponds with the epilepsy group having the lowest region volumes.  

There is a large amount of heterogeneity in the literature regarding both co-occurring conditions and 

brain phenotypes in autism. Studies such as this one which combine longitudinal EHR and clinical MRI 

could help resolve some of these discrepancies by accounting for the varied presentation of autism across 

individuals. With the ability to link specific brain phenotypes to specific patterns of autism expression, this 

approach could enable researchers to tease apart the cognitive effects of autism and its many co-occurring 

conditions. 
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Chapter X  

 

Conclusions & Future Work 

 

1. Introduction 

Medical image processing is the art and science of extracting clinically meaningful information from 

medical images. One exciting facet of this field is multi-modal modeling: combining various sources of 

medical data into a singular model of a disease. These different data sources, from imaging MRI to EHR, 

each contain a unique piece of the patient story; fusing these heterogeneous sources allows imaging models 

to consider the whole person when creating predictions. As discussed in this dissertation, this growing area 

of research has many possible clinical applications but currently faces several challenges. Limited data 

availability in medical imaging produces models that are biased and difficult to generalize; accumulating 

multiple data sources for multi-modal modeling further restricts data availability and may heighten these 

biases. Additionally, many modeling techniques currently being employed suffer from the “black-box” 

problem: though models generate highly accurate predictions, the complex decision-making process that 

precedes the prediction is difficult or sometimes impossible to translate for human understanding.  

The work presented in this dissertation investigated model interpretability as an important component 

for addressing limited data settings and providing explanations for predictions. We first introduced several 

innovations in interpretable traditional machine learning for both neuroimaging and EHR, including 

adapting big data analysis methods to limited multi-modal data settings (Chapter II), translating a visually 

interpretable machine learning framework to multi-modal analysis (Chapter III), innovating in big EHR 

data performance and scalability (Chapter IV), and extending the interpretability of EHR models (Chapters 

V and VI). Next, we investigated deep learning models as an interpretable manifold embedding method for 

medical data (Chapters VII and VIII). We proposed a computationally efficient unsupervised optimization 

technique and demonstrated that it produces interpretable manifold embeddings of both brain MRI and 

EHR, which may be used for secondary classification and regression tasks. Finally, this work culminated 

in the development of an interpretable framework for multi-modal modeling of brain MRI and EHR 

(Chapter IX). The proposed pipeline identified clusters in clinical EHR and explored how those clusters are 

related to differences in brain structure via MRI. Together, this work expands upon the growing field of 

model interpretability and contributes novel methodologies for multi-modal limited-data medical inference. 
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2. Interpretable Machine Learning with MRI and EHR 

2.1. Summary 

Multi-modal modeling is an exciting and innovative area of research, but it faces several challenges, 

including limited data and the “black box” nature of most machine learning models. In this work, we 

propose that model interpretability is a key factor in tackling these challenges. Our initial investigations 

into interpretability focused on traditional machine learning in extremely limited MRI datasets. Through a 

combined model of structural and diffusion-weighted MRI in mild traumatic brain injury patients, we 

extended traditional machine learning methods to a small data setting (Chapter II). Even in this limited 

dataset, we demonstrated the ability to detect novel multi-contrast MRI biomarkers and interpret those 

findings through the lens of symptom information. Building on this work, we refined our multi-contrast 

MRI model to propose the first visually interpretable joint model of structural and diffusion MRI (Chapter 

III). This joint model revealed coinciding anomalies in white matter connectivity and cortical structure 

associated with mild traumatic brain injury in a small data setting. 

We next focused on innovating in traditional machine learning models for EHR data. Due to its 

relatively inexpensive nature, EHR tends to be available in larger datasets than MRI, so our first efforts in 

this modality were dedicated to improving the scalability and accessibility of PheWAS, an interpretable 

EHR model (Chapter IV). Using these new tools, we then demonstrated their ability to discover potentially 

novel EHR phenotypes in a study of children with down syndrome (Chapter VI). While working with these 

models, we discovered several sources of interpretability error due primarily to model accessibility. Our 

final contribution to this area aimed to close this accessibility gap by developing an interactive PheWAS 

modeling tool (Chapter V). This tool enables clinicians and other non-technical experts to more readily 

interpret PheWAS models by incorporating explainable machine learning principles and making model 

assumptions explicit. 

 

2.2. Technical Innovations 

I. We developed first of kind methods to predict individual changes in mild traumatic brain injury on 

small datasets. 

II. We translated advances from joint functional MRI and electroencephalogram (EEG) analysis to 

propose the first visually interpretable joint model of structural and diffusion MRI. Our approach 

provides a visually interpretable model of the factors driving group differences. 
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III. We dramatically improved big data performance of mass univariate regression and innovated in 

the human-computer interface for PheWAS interpretability. 

IV. We extended the interpretability of PheWAS models and integrated explainable machine learning 

principles into this core big data technology. 

 

2.3. Clinical Impacts 

I. We detected first evidence of combined structural and diffusion biomarkers on small data in mild 

traumatic brain injury. 

II. Group differences between control and mild traumatic brain injury patients were substantively 

improved on small datasets. 

III. We enabled new studies of down syndrome, revealing several significant associations between 

EHR phenotypes and down syndrome generally, in addition to specific phenotypes that are 

associated with longitudinal surgery risk in down syndrome patients with co-morbid congenital 

heart disease. 

IV. We increased the accessibility of PheWAS studies for clinicians and other users who may not be 

comfortable with typical command-line interfaces, allowing them to focus solely on designing, 

understanding, and interpreting PheWAS models. This streamlined approach will enable EHR 

analysis of under-characterized populations. 

 

2.4. Future Directions 

Though we have made measurable progress in interpretable small data machine learning for multi-

contrast MRI, there are still open questions to be explored. Small data modeling is primarily useful for 

hypothesis generation, a preliminary step on the way to designing larger studies of a medical condition. The 

interpretable methods introduced in this work are advantageous because they allow researchers to form 

more specific hypotheses about the link between chronic symptom severity and brain structure. The 

generalization of hypotheses generated by these methods should be more rigorously characterized in larger 

cohorts. Additionally, the efficacy of the proposed methods should be tested in medical conditions outside 

of our testbed of mild traumatic brain injury.  

Our innovations in machine learning for EHR analysis have increased both the interpretability and 

accessibility of PheWAS. However, these studies still suffer from limitations inherent to EHR itself. The 

generation of EHR includes many sources of noise, including administrative mistakes, physician burnout, 
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and hospital-specific practices. Additionally, EHR analysis samples are typically biases towards sicker 

populations, since subjects must have sufficiently sized EHR records for analysis and a larger EHR tends 

to mean more chronic medical conditions. Future work in these interpretable EHR models should focus on 

methods for teasing apart these sources of bias and noise from the main medical conditions or diseases 

being studied.  

 

3. Interpretable Deep Learning with MRI and EHR 

3.1. Summary 

Deep neural networks having rapidly become a state-of-the-art method for feature extraction and 

predictive analysis in medical research. With thousands of interconnected learnable parameters, these 

networks may be trained to accomplish tasks such as breast cancer detection or abdominal segmentation 

with high accuracy. Predictions made by these networks, however, are notoriously difficult to interpret; this 

lack of explainability significantly restricts the potential real-world usage of these models. Autoencoders 

are an unsupervised deep neural network architecture often used for dimensionality reduction in medical 

datasets. By learning to compress and then reconstruct medical data, these models create a latent 

embedding: a condensed representation of the input which captures hidden patterns not obvious in the 

original dataspace without requiring input from clinical experts. Our next set of investigations concentrated 

on boosting autoencoder training to produce models with more interpretable latent embeddings of MRI and 

EHR data.  

We first focused on batch size, a hyperparameter that controls the number of individual samples a 

network learns from at one time. In experiments on both MRI and EHR datasets, we determined that this 

parameter alone contributes significantly to the quality of the latent embedding, and that counter to 

conventional wisdom, smaller batch sizes produce better autoencoder models than larger batch sizes 

(Chapter VII). Despite these positive findings, small batch sizes require substantially longer training times, 

making them impractical for many applications. Building on our observations from this batch size study, 

we next investigated a method for achieving small batch performance while maintaining large batch training 

times (Chapter VIII). We proposed that large batches produced poor networks due to the high level of global 

similarity present in medical data; when averaged across the many individuals in a large training batch, 

these global similarities dominated the loss landscape. To remedy this, we developed unsupervised hard 

case mining, an extension of hard negative/positive mining used for unbalanced training in supervised 

networks. This method used large batch sizes during training, but within each batch focused the network’s 

attention on only the hardest training examples. In experiments on both EHR and MRI autoencoders, we 
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demonstrated that unsupervised hard case mining may accelerate autoencoder convergence and improve 

the interpretability of the latent space, even at larger batch sizes. 

 

3.2. Technical Innovations 

I. We characterized the significant impact that batch size has on the interpretability of deep neural 

network embeddings of medical data.  

II. We extended hard case mining to unsupervised neural network training and demonstrated that this 

simple, computationally efficient technique may improve embedding interpretability and accelerate 

network convergence. 

 

3.3. Clinical Impact 

I. By improving the interpretability of unsupervised deep learning models, we have enhanced their 

potential for novel abnormality detection and phenotype discovery in EHR and MRI datasets. 

 

3.4. Future Directions 

Despite the encouraging results seen in this work, there are still many areas of opportunity to explore 

in creating interpretable deep learning models for MRI and EHR. Generally, we saw that small batch sizes 

produced more interpretable autoencoder models than large batch sizes, but for very small batch sizes there 

was not much difference in model quality. Based on these experiments, we suspect that the ideal batch size 

may be related to the amount of inter-subject variability in a dataset, but future studies should investigate 

this more rigorously. Our proposed unsupervised hard case mining framework showed positive results in 

accelerating model convergence and improving latent embedding interpretability, but these effects were not 

seen uniformly across both EHR and MRI. Further study is required to fully characterize these differences 

and close this gap in performance. 

 

4. Interpretable Multi-Modal Modeling for MRI and EHR 

4.1. Summary 

The previous two contributions focused on interpretability innovations in artificial intelligence for both 

MRI and EHR. We have taken strides towards more interpretable EHR models, but without incorporating 

anatomical context from medical imaging, these models cannot assess the underlying anatomy which might 
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contribute to identified health patterns. Similarly, we have demonstrated improvements in limited-data MRI 

analysis with interpretability via symptom scores or anatomical features, but comparisons with such limited 

one-time clinical assessments cannot capture the full depth of clinical phenotypes seen in EHR.  

Our final contribution pulled together these innovations to propose an interpretable framework for the 

joint analysis of MRI and EHR in a limited-data cohort of children with autism spectrum disorder (Chapter 

IX). This framework involved synthesizing different EHR data sources to identify subtypes of autism 

spectrum disorder. We then connected these subtypes with MRI-derived structural brain measures and 

found associations between the EHR-derived subtypes and six specific brain regions. This framework was 

demonstrated to be interpretable end-to-end via longitudinal EHR phenotype characteristics and previous 

studies of brain function for the six identified brain regions. 

 

4.2. Technical Innovations 

I. We developed a novel framework for interpretable joint analysis of longitudinal EHR subtypes and 

region-specific MRI-derived brain characteristics. 

 

4.3. Clinical Impact 

I. We identified novel EHR subtypes within a cohort of autism spectrum disorder patients and 

detected significant associations between those subtypes and six brain regions. 

 

4.4. Future Directions 

There are still many areas of opportunity in interpretable multi-modal modeling of MRI and EHR. Our 

proposed framework is flexible by nature, leaving room for dataset and disease specific adjustments. Future 

studies could expand upon our EHR subtyping method by drawing from different sources of EHR data and 

incorporating important demographics and socioeconomic factors that the current design does not account 

for. Additional work should be done to test the generalization of this framework to other MRI-derived 

anatomical measurements and to other medical conditions.
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Appendix 

 

A. ICD codes for defining down syndrome and intellectual and developmental disability groups 

Down Syndrome 

ICD Version ICD Code ICD Name 

9 758.0 Down’s syndrome 

10 

Q90.0 Trisomy 21; nonmosaicism (meiotic nondisjunction) 

Q90.1 Trisomy 21, mosaicism (mitotic nondisjunction) 

Q90.2 Trisomy 21, translocation 

Q90.9 Down syndrome, unspecified 

 

Other Intellectual and Developmental Disabilities Group 

ICD Version ICD Code ICD Name 

9 

314.00 Attention deficit disorder without mention of hyperactivity 

314.01 Attention deficit disorder with hyperactivity 

314.2 Hyperkinetic conduct disorder 

317 Mild intellectual disabilities 

318 Other specified intellectual disabilities 

318.0 Moderate intellectual disabilities 

318.1 Severe intellectual disabilities 

318.2 Profound intellectual disabilities 

319 Unspecified intellectual disabilities 

315.39 Other developmental speech or language disorder 

315.31 Expressive language disorder 

315.32 Mixed receptive-expressive language disorder 

315.34 Speech and language developmental delay due to hearing loss 

315.35 Childhood onset fluency disorder 

315.02 Developmental dyslexia 

315 Specific delays in development 

315.0 Developmental reading disorder 

315.00 Developmental reading disorder; unspecified 

315.09 Other specific developmental reading disorder 

315.2 Other specific developmental learning difficulties 

315.4 Developmental coordination disorder 

315.8 Other specified delays in development 

315.9 Unspecified delay in development 

299 Pervasive developmental disorders 

299.0 Autistic disorder 

299.00 Autistic disorder; current or active state 

299.01 Autistic disorder; residual state 

299.1 Childhood disintegrative disorder 

299.10 Childhood disintegrative disorder; current or active state 

299.8 Other specified pervasive developmental disorders 

299.80 Other specified pervasive developmental disorders; current or active state 

299.81 Other specified pervasive developmental disorders; residual state 

299.9 Unspecified pervasive developmental disorder 

299.90 Unspecified pervasive developmental disorder; current or active state 

330.8 Other specified cerebral degenerations in childhood 

307.21 Transient tic disorder 

307.22 Chronic motor or vocal tic disorder 

307.23 Tourette's disorder 

307.2 Tics 

307.3 Stereotypic movement disorder 

333.71 Athetoid cerebral palsy 
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ICD Version ICD Code ICD Name 

9 

343.8 Other specified infantile cerebral palsy 

343.9 Infantile cerebral palsy; unspecified 

759.83 Fragile X syndrome 

759.81 Prader-Willi syndrome 

799.51 Attention or concentration deficit 

799.52 Cognitive communication deficit 

799.53 Visuospatial deficit 

799.54 Psychomotor deficit 

799.55 Frontal lobe and executive function deficit 

784.52 Fluency disorder in conditions classified elsewhere 

784.59 Other speech disturbance 

784.61 Alexia and dyslexia 

315.01 Alexia 

784.69 Other symbolic dysfunction 

784.6 Other symbolic dysfunction 

784.60 Symbolic dysfunction; unspecified 

F70 Mild intellectual disabilities 

F71 Moderate intellectual disabilities 

F72 Severe intellectual disabilities 

F73 Profound intellectual disabilities 

10 

F78 Other intellectual disabilities 

F79 Unspecified intellectual disabilities 

F80.0 Phonological disorder 

F80.1 Expressive language disorder 

F80.2 Mixed receptive-expressive language disorder 

F80.4 Speech and language development delay due to hearing loss 

F80.81 Childhood onset fluency disorder 

F80.82 Social pragmatic communication disorder 

F80.89 Other developmental disorders of speech and language 

F80.9 Developmental disorder of speech and language; unspecified 

F81.0 Specific reading disorder 

F81.2 Mathematics disorder 

F81.81 Disorder of written expression 

F81.89 Other developmental disorders of scholastic skills 

F82 Specific developmental disorder of motor function 

F84.0 Autistic disorder 

F84.2 Rett's syndrome 

F84.3 Other childhood disintegrative disorder 

F84.5 Asperger's syndrome 

F84.8 Other pervasive developmental disorders 

F84.9 Pervasive developmental disorder; unspecified 

F88 Other disorders of psychological development 

F89 Unspecified disorder of psychological development 

F90.0 Attention-deficit hyperactivity disorder; predominantly inattentive type 

F90.1 Attention-deficit hyperactivity disorder; predominantly hyperactive type 

F90.2 Attention-deficit hyperactivity disorder; combined type 

F90.8 Attention-deficit hyperactivity disorder; other type 

F90.9 Attention-deficit hyperactivity disorder; unspecified type 

F94.0 Selective mutism 

F94.1 Reactive attachment disorder of childhood 

F94.2 Disinhibited attachment disorder of childhood 

F94.8 Other childhood disorders of social functioning 

F94.9 Childhood disorder of social functioning; unspecified 

F95.0 Transient tic disorder 

F95.1 Chronic motor or vocal tic disorder 

F95.2 Tourette's disorder 

F95.8 Other tic disorders 

F95.9 Tic disorder; unspecified 

F98.4 Stereotyped movement disorders 

F98.8 Other specified behavioral and emotional disorders with onset usually occurring in childhood and 

adolescence 

G11.0 Congenital nonprogressive ataxia 
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ICD Version ICD Code ICD Name 

10 

F98.9 Unspecified behavioral and emotional disorders with onset usually occurring in childhood and 

adolescence 

G11.1 Early-onset cerebellar ataxia 

G11.2 Late-onset cerebellar ataxia 

G11.3 Cerebellar ataxia with defective DNA repair 

G11.4 Hereditary spastic paraplegia 

G11.8 Other hereditary ataxias 

G11.9 Hereditary ataxia; unspecified 

G80.0 Spastic quadriplegic cerebral palsy 

G80.1 Spastic diplegic cerebral palsy 

G80.3 Athetoid cerebral palsy 

G80.4 Ataxic cerebral palsy 

G80.8 Other cerebral palsy 

G80.9 Cerebral palsy; unspecified 

G93.0 Cerebral cysts 

Q99.2 Fragile X chromosome 

Q86.0 Fetal alcohol syndrome (dysmorphic) 

Q86.8 Other congenital malformation syndromes due to known exogenous causes 

Q87.1 Congenital malformation syndromes predominantly associated with short stature 

Q93.81 Velo-cardio-facial syndrome 

Q93.88 Other microdeletions 

Q93.89 Other deletions from the autosomes 

H53.10 Unspecified subjective visual disturbances 

H53.121 Transient visual loss; right eye 

H53.122 Transient visual loss; left eye 

H53.123 Transient visual loss; bilateral 

H53.129 Transient visual loss; unspecified eye 

H53.131 Sudden visual loss; right eye 

H53.132 Sudden visual loss; left eye 

H53.133 Sudden visual loss; bilateral 

H53.139 Sudden visual loss; unspecified eye 

H53.141 Visual discomfort; right eye 

H53.142 Visual discomfort; left eye 

H53.143 Visual discomfort; bilateral 

H53.149 Visual discomfort; unspecified 

H53.15 Visual distortions of shape and size 

H53.16 Psychophysical visual disturbances 

H53.19 Other subjective visual disturbances 

H53.30 Unspecified disorder of binocular vision 

H53.31 Abnormal retinal correspondence 

H53.32 Fusion with defective stereopsis 

H53.33 Simultaneous visual perception without fusion 

H53.34 Suppression of binocular vision 

H53.40 Unspecified visual field defects 

H53.451 Other localized visual field defect; right eye 

H53.452 Other localized visual field defect; left eye 

H53.459 Other localized visual field defect; unspecified eye 

H53.453 Other localized visual field defect; bilateral 

H53.461 Homonymous bilateral field defects; right side 

H53.462 Homonymous bilateral field defects; left side 

H53.469 Homonymous bilateral field defects; unspecified side 

H53.47 Heteronymous bilateral field defects 

H53.481 Generalized contraction of visual field; right eye 

H53.482 Generalized contraction of visual field; left eye 

H53.483 Generalized contraction of visual field; bilateral 

H53.489 Generalized contraction of visual field; unspecified eye 

H53.50 Unspecified color vision deficiencies 

H53.59 Other color vision deficiencies 

H53.8 Other visual disturbances 

H53.9 Unspecified visual disturbance 
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H90.0 Conductive hearing loss; bilateral 

H90.2 Conductive hearing loss; unspecified 

H90.3 Sensorineural hearing loss; bilateral 

H90.41 Sensorineural hearing loss; unilateral; right ear; with unrestricted hearing on the contralateral side 

H90.42 Sensorineural hearing loss; unilateral; left ear; with unrestricted hearing on the contralateral side 

H90.5 Unspecified sensorineural hearing loss 

H90.6 Mixed conductive and sensorineural hearing loss; bilateral 

H90.71 Mixed conductive and sensorineural hearing loss; unilateral; right ear; with unrestricted hearing on 

the contralateral side 

H90.72 Mixed conductive and sensorineural hearing loss; unilateral; left ear; with unrestricted hearing on 

the contralateral side 

H90.8 Mixed conductive and sensorineural hearing loss; unspecified 

H90.A11 Conductive hearing loss; unilateral; right ear with restricted hearing on the contralateral side 

H90.A12 Conductive hearing loss; unilateral; left ear with restricted hearing on the contralateral side 

H90.A21 Sensorineural hearing loss; unilateral; right ear; with restricted hearing on the contralateral side 

H90.A22 Sensorineural hearing loss; unilateral; left ear; with restricted hearing on the contralateral side 

H90.A31 Mixed conductive and sensorineural hearing loss; unilateral; right ear with restricted hearing on the 

contralateral side 

H90.A32 Mixed conductive and sensorineural hearing loss; unilateral; left ear with restricted hearing on the 

contralateral side 

H93.25 Central auditory processing disorder 

F99 Mental disorder; not otherwise specified 

R13.0 Aphagia 

R13.1 Dysphagia 

R13.11 Dysphagia; oral phase 

R13.12 Dysphagia; oropharyngeal phase 

R13.13 Dysphagia; pharyngeal phase 

R13.14 Dysphagia; pharyngoesophageal phase 

R13.19 Other dysphagia 

R41.9 Unspecified symptoms and signs involving cognitive functions and awareness 

R41.1 Anterograde amnesia 

R41.2 Retrograde amnesia 

R41.3 Other amnesia 

R41.81 Age-related cognitive decline 

R41.82 Altered mental status; unspecified 

R41.83 Borderline intellectual functioning 

R41.840 Attention and concentration deficit 

R41.841 Cognitive communication deficit 

R41.842 Visuospatial deficit 

R41.843 Psychomotor deficit 

R41.844 Frontal lobe and executive function deficit 

R41.89 Other symptoms and signs involving cognitive functions and awareness 

R44.0 Auditory hallucinations 

R44.1 Visual hallucinations 

R44.2 Other hallucinations 

R44.8 Other symptoms and signs involving general sensations and perceptions 

R44.9 Unspecified symptoms and signs involving general sensations and perceptions 

R47.82 Fluency disorder in conditions classified elsewhere 

R47.89 Other speech disturbances 

R47.9 Unspecified speech disturbances 

R48.0 Dyslexia and alexia 

R48.1 Agnosia 

R48.2 Apraxia 

R48.8 Other symbolic dysfunctions 

R48.9 Unspecified symbolic dysfunctions 

R62.0 Delayed milestone in childhood 

R62.50 Unspecified lack of expected normal physiological development in childhood 

R62.51 Failure to thrive (child) 

R62.52 Short stature (child) 

R62.59 Other lack of expected normal physiological development in childhood 
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B. Secondary conditions and procedures associated with autism subtypes 

C Prevalence ProCode Category Prevalence PheCode Category 

0 

0.455 acoustic test 
Ophthalmologic and otologic 

diagnosis and treatment 
0.318 

Chronic tonsillitis and 

adenoiditis 
respiratory 

0.409 EEG Electroencephalogram (EEG) 0.318 Hearing loss sense organs 

0.273 tympanostomy Myringotomy 0.273 Convulsions neurological 

   0.273 
Chronic pharyngitis and 

nasopharyngitis 
respiratory 

1 

0.457 
compound 

specific blood test 

Laboratory - Chemistry and 

Hematology 
0.429 

Lack of normal physiological 

development, unspecified 

endocrine/ 

metabolic 

0.343 basic blood tests 
Laboratory - Chemistry and 

Hematology 
0.429 

Developmental delays and 

disorders 

mental 

disorders 

0.314 hematologic tests 
Laboratory - Chemistry and 

Hematology 
0.314 

Symptoms concerning 

nutrition, metabolism, and 

development 

other 

0.314 
Psychiatric 

evaluation 

Psychological and 

psychiatric evaluation and 

therapy 

0.257 Sleep disorders neurological 

0.286 otologic test 
Ophthalmologic and otologic 

diagnosis and treatment 
0.257 

Symptoms involving nervous 

and musculoskeletal systems 
symptoms 

0.257 
Ophthalmological 

service 

Ophthalmologic and otologic 

diagnosis and treatment 
   

0.257 audiometry 
Ophthalmologic and otologic 

diagnosis and treatment 
   

2 

0.432 monitoring Electroencephalogram (EEG) 0.378 
Attention deficit 

hyperactivity disorder 

mental 

disorders 

0.351 venipuncture Other therapeutic procedures 0.351 
Lack of normal physiological 

development, unspecified 

endocrine/ 

metabolic 

0.324 hematologic labs Other Laboratory 0.324 
Developmental delays and 

disorders 

mental 

disorders 

0.324 genetic testing Pathology 0.324 
Transient alteration of 

awareness 

mental 

disorders 

   0.324 
Epilepsy, recurrent seizures, 

convulsions 
neurological 

   0.297 Delayed milestones 
endocrine/ 

metabolic 

   0.297 Speech and language disorder 
mental 

disorders 

3 

0.467 bacterial culture 

Microscopic examination 

(bacterial smear, culture, 

toxicology) 

0.467 

Acute upper respiratory 

infections of multiple or 

unspecified sites 

respiratory 

0.467 
Therapeutic 

procedure 

Physical therapy exercises, 

manipulation, and other 

procedures 

0.433 Hearing loss sense organs 

0.433 monitoring Electroencephalogram (EEG) 0.400 Viral infection 
infectious 

diseases 

0.400 non-invasive 
Other diagnostic nervous 

system procedures 
0.367 Sleep disorders neurological 

0.400 
perioperative 

management 
Other therapeutic procedures 0.367 Partial epilepsy neurological 

0.400 histopathology Pathology 0.367 
Chronic tonsillitis and 

adenoiditis 
respiratory 

0.367 
occupational 

therapy 
Diagnostic physical therapy 0.367 Fever of unknown origin symptoms 

0.367 

Infectious agent 

antigen detection 

by immunoassay 

Microscopic examination 

(bacterial smear, culture, 

toxicology) 

0.333 Constipation digestive 

0.367 eye exam 
Ophthalmologic and otologic 

diagnosis and treatment 
0.333 Lack of coordination neurological 

0.333 other culture 

Microscopic examination 

(bacterial smear, culture, 

toxicology) 

0.333 

Symptoms concerning 

nutrition, metabolism, and 

development 

other 
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3 

0.333 hematologic labs Other Laboratory 0.333 
Suppurative and unspecified 

otitis media 
sense organs 

0.333 
abdomen 

radiologic exam 

Other diagnostic radiology 

and related techniques 
0.300 

Other ill-defined and 

unknown causes of morbidity 

and mortality 

other 

0.333 
Radiologic exam, 

chest 
Routine chest X-ray 0.267 GERD digestive 

0.300 Urinalysis 

Microscopic examination 

(bacterial smear, culture, 

toxicology) 

0.267 Dysphagia digestive 

0.300 
other microscopic 

examination 

Microscopic examination 

(bacterial smear, culture, 

toxicology) 

0.267 
Abnormal involuntary 

movements 
neurological 

0.300 sleep study 

Other diagnostic procedures 

(interview, evaluation, 

consultation) 

0.267 Other tests other 

0.267 speech test 
Ophthalmologic and otologic 

diagnosis and treatment 
0.267 Eustachian tube disorders sense organs 
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