
DISSECTING THE EVOLUTION OF HUMAN ENHANCER SEQUENCES

By

Sarah Lihua Fong

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Human Genetics

December 17th, 2022

Nashville, Tennessee

Approved:

Melinda Aldrich, Ph.D.

John A. Capra, Ph.D.

Emily Hodges, Ph.D.

Simon Mallal, M.D.

Nancy Cox, Ph.D.



Copyright © 2022 Sarah Lihua Fong
All Rights Reserved

ii



Dedicated to Mom, Dad, and Bart. You let me lead with my ideas.

iii



ACKNOWLEDGMENTS

I would not be here without the influence and enthusiasm of my colleagues. To them, I am grateful.

My committee: Tony Capra, Emily Hodges, Melinda Aldrich, Nancy Cox, Simon Mallal,

Vanderbilt: Tyler Hansen, Evonne McArthur, Laura Colbran, Mary Lauren Benton, Abin Abraham,
Souhrid Mukharjee, David Rinker, Bian Li, Ling Chen, Keila Velazquez Arcelay, Erin Gilbertson, Colin
Brand, Sebastián Cruz-Gonzalez, Grace Ramey, Albertina Lee, Jay Kang, Beth Bowman

StemCentrx: Erica Anderson, Katheryn Loving, Kristen McKnight, Beth Pysz, Marianne Santaguida,
Robert Stull, Evan Bishop, Laura Saunders, Alex Bankovich, Brian Slingerland, Scott Dylla

UC mentors: Eric Pietras, Emmanuelle Passegue, George Bentley, Nicole Perfito, Luiz Ruffato, Candice
Slater

Friends: Christopher Johnson, Tania Kohal, Michelle Hershey, William Krantz, Katie McPhee, Annie
Takahashi

Girls: Cayetana Arnaiz, Tata Kavlashvilli, Linh Trinh, Sara Ramirez

My family: Lisa Thuesen, Randy Fong, David Fong, and Sam Fong. The Fongs. The Thuesens

Homebase: Bartholomew Roland, Pachuca Roland.

A flock of chickens and pigs: Pepper (the man), Milly, Nugget, Dede, Trudy, Sonia, Tanya (Turkey),
Rhonda, Slugger (Ugg), Little Jerry Seinfeld, Dotty I, Dotty II, Hadia, Daisy, and Gus.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Genomes, their organization, and their differences between species . . . . . . . . . . . . . 1
1.1.1 The genome encodes cellular life . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Genome sequences are organized into units . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 A major driver of species divergence is changes to gene regulation . . . . . . . . . 2

1.2 Enhancers are DNA sequences that regulate gene expression . . . . . . . . . . . . . . . . . 2
1.2.1 Enhancers are genomic elements that regulate transcription . . . . . . . . . . . . . 2

1.2.1.1 A note on the word “enhancer” . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Transcription factors bind gene regulatory sequences to regulate transcription . . . 4
1.2.3 Enhancer gene regulation is cell-type- and context-specific . . . . . . . . . . . . . 4
1.2.4 Enhancers are enriched for human genetic variation, disease-associated variation . . 5

1.3 Annotations and methods for enhancer characterization . . . . . . . . . . . . . . . . . . . 7
1.3.1 Enhancer activity requires open chromatin . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Histone markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Transcription factor binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Transcribed enhancer RNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.5 Gene regulatory reporter assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.5.1 in vivo reporter assays . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.5.2 Massively parallel reporter assays (MPRAs) . . . . . . . . . . . . . . . 11
1.3.5.3 STARR-seq reporter assays . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.5.4 Evaluating effects of human genetic variation on gene regulation using

reporter assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.5.5 SHARPR-MPRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.5.6 ATAC-STARR-seq reporter assays . . . . . . . . . . . . . . . . . . . . . 14

1.4 Methods for estimating enhancer evolution using comparative genomics . . . . . . . . . . 14
1.4.1 Sequence homology, synteny, and multiple sequence alignments . . . . . . . . . . 14
1.4.2 Sequence conservation and measuring substitution rates . . . . . . . . . . . . . . . 16
1.4.3 Human acceleration and positive selection in enhancers . . . . . . . . . . . . . . . 18
1.4.4 Sequence ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.5 Comparative histone modification and chromatin accessibility reveal alignable se-

quences have divergent regulatory annotations . . . . . . . . . . . . . . . . . . . . 19
1.4.6 Comparative reporter assays reveal differences in gene regulatory activity between

species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.6.1 Comparing regulatory activity of evolutionary divergent sequences . . . 20

1.4.7 Chimeric cellular models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.8 Lymphoblastoid cellular models for comparing within and between species gene

regulatory variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Evolution of enhancers drives species divergence . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 Gene expression patterns are largely conserved, despite functional gene regulatory
divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1.1 Populations do not tolerate variation with large effects on phenotype; vari-
ation with small effects on phenotype are more often tolerated . . . . . . 22

v



1.5.1.2 Evolutionary gene regulatory sequence variation can affect TF binding
repertoire without affecting gene regulatory activity . . . . . . . . . . . 23

1.5.1.3 Turnover and rearrangement of gene regulatory sequences can affect tran-
scription factor binding dynamics without altering gene expression . . . 23

1.5.2 How useful is measuring sequence conservation for determining gene regulatory
function? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.3 Conserved enhancer sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.3.1 Ultra-conserved and conserved regulatory sequences . . . . . . . . . . . 25
1.5.3.2 Conservation of TFBS, neutrality of spacing in-between . . . . . . . . . 25

1.5.4 Divergent enhancer activity—rapid turnover between species . . . . . . . . . . . . 26
1.5.5 Mechanisms of functional gene regulatory evolution in humans . . . . . . . . . . . 26
1.5.6 Theory and models of enhancer sequence evolution . . . . . . . . . . . . . . . . . 27

1.5.6.1 Nucleation model of enhancer sequences with multiple ages . . . . . . . 27
1.5.6.2 Transposable element integration may produce gene regulatory elements 28
1.5.6.3 Mechanisms of gene regulatory evolution in cis and trans . . . . . . . . 29

1.6 Chapters Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6.1 Chapter 1—Models of human enhancer sequence evolution . . . . . . . . . . . . . 31
1.6.2 Chapter 2—Enhancers with multiple sequence origins are functional, under evolu-

tionary constraint, and associated with human variability in gene expression . . . . 32
1.6.3 Chapter 3—Genome-wide dissection of the mechanisms of gene regulatory diver-

gence between human and rhesus macaque . . . . . . . . . . . . . . . . . . . . . . 32

2 Modeling the evolutionary architectures of transcribed human enhancer sequences reveals
distinct origins, functions, and associations with human-trait variation . . . . . . . . . . . . 34

2.1 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Estimating enhancer ages using vertebrate multiple species alignments . . . . . . . 37
2.3.2 Enhancers are older, longer, and more conserved than the genomic background . . 37
2.3.3 Enhancers are enriched for simple evolutionary sequence architectures . . . . . . . 38
2.3.4 The oldest sequences occur in the middle of complex enhancers . . . . . . . . . . 39
2.3.5 Complex enhancers are longer and older than simple enhancers . . . . . . . . . . . 39
2.3.6 Complex enhancers are more pleiotropic and more conserved in activity across

species than simple enhancers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.7 Simple and complex enhancers are under similar levels of purifying selection . . . 42
2.3.8 Genetic variants in simple enhancers are more likely to be associated with human

traits and disease than variants in complex enhancers . . . . . . . . . . . . . . . . 43
2.3.9 Genetic variants in simple enhancers are enriched for changes in biochemical regu-

latory activity compared to variants in complex enhancers . . . . . . . . . . . . . . 45
2.3.10 Transposable element sequences can both nucleate and remodel enhancers . . . . . 47
2.3.11 Different TE families are enriched in simple and complex enhancers . . . . . . . . 48
2.3.12 Age architectures of enhancers identified by histone modifications show similar trends 48

2.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 Syntenic block aging strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.2 eRNA enhancer identification, aging, and architecture assignment . . . . . . . . . 55
2.5.3 ChIP-peak enhancer identification, aging, and architecture assignment . . . . . . . 56
2.5.4 Trimming and expansion of ChIP-peak enhancer lengths . . . . . . . . . . . . . . 56
2.5.5 Human syntenic block PhastCons conservation . . . . . . . . . . . . . . . . . . . 56
2.5.6 Background random genome regions and architectures . . . . . . . . . . . . . . . 57
2.5.7 Enhancer pleiotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.8 Cross-species enhancer activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.9 Enhancer sequence constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



2.5.10 GWAS catalog enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.11 ClinVar variant enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.12 eQTL enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.13 Massively parallel reporter assay data . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.14 Transposable element derived sequence enrichment . . . . . . . . . . . . . . . . . 59

2.6 DATA AVAILABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6.1 The following datasets were derived from sources in the public domain: . . . . . . 60

2.7 ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Function and constraint in enhancer sequences with multiple evolutionary origins . . . . . 98

3.1 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.1 Enhancers are commonly composed of older core and younger derived sequences . 100
3.3.2 Derived regions constitute a substantial fraction of complex enhancer sequences . . 101
3.3.3 Both derived and core regions are older than expected from matched background

regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.4 Complex enhancers are enriched for core and derived sequences from consecutive

phylogenetic branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.5 Derived sequences have higher transcription factor binding site density than cores . 105
3.3.6 Core and derived sequences are enriched for distinct TFBS across ages . . . . . . . 107
3.3.7 Core and derived regions have similar activity in MPRAs . . . . . . . . . . . . . . 107
3.3.8 Derived sequences are less evolutionarily constrained than core sequences . . . . . 109
3.3.9 Derived enhancer regions have more genetic variation than core regions . . . . . . 110
3.3.10 Derived enhancer regions are enriched for eQTL . . . . . . . . . . . . . . . . . . . 110

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.4.1 What is the functional importance of derived enhancer sequences to their core regions?112
3.4.2 Are evolutionary modules functional modules? . . . . . . . . . . . . . . . . . . . 113
3.4.3 Can considering enhancer evolutionary architecture aid interpretation of rare and

common genetic non-coding variation? . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.5.1 Assigning ages to sequences based on alignment syntenic blocks . . . . . . . . . . 115
3.5.2 eRNA enhancer data, age assignment, and architecture mapping . . . . . . . . . . 115
3.5.3 cCRE enhancer data, age assignment, and architecture mapping . . . . . . . . . . . 116
3.5.4 MPRA activity data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.5.5 Genome-wide shuffles to determine expected background distributions . . . . . . . 116
3.5.6 TFBS density and enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.7 1000 genomes variant density and minor allele frequency analyses . . . . . . . . . 117
3.5.8 LINSIGHT purifying selection estimates . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.9 TFBS motif sequence specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.5.10 eQTL enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.6 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4 Gene regulatory evolution is driven by divergence in both cis and trans . . . . . . . . . . . 141

4.1 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3.1 Comparative ATAC-STARR-seq produces a multi-omic view of human and macaque
gene regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3.2 Decoupling of cis v. trans regulatory divergence . . . . . . . . . . . . . . . . . . . 145
4.3.3 Trans divergence contributes to gene regulatory divergence as often as cis divergence 147

vii



4.3.4 Most regulatory differences are driven by changes in cis and trans . . . . . . . . . 147
4.3.5 Trans regions are significantly conserved while cis regions are enriched for acceler-

ated evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.3.6 SINE/Alu TEs are enriched in cis & trans divergence . . . . . . . . . . . . . . . . 150
4.3.7 Trans-only sequence ages are older than cis-only and cis & trans . . . . . . . . . . 151
4.3.8 Trans-only elements are enriched for composite sequences with multiple-origins. . 151
4.3.9 Key transcriptional regulators of immune pathways are differentially expressed be-

tween human and macaque cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.3.10 The majority of trans regions are bound by differentially expressed TFs . . . . . . 153
4.3.11 Human accelerated cis-element regulates NLRP1 and impacts human-specific cel-

lular environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.4.1 Why do we observe so many trans effects? . . . . . . . . . . . . . . . . . . . . . . 158
4.4.2 What are cis & trans elements and why are they so abundant? . . . . . . . . . . . . 158
4.4.3 Divergence time may affect the abundance of cis and trans elements observed . . . 159
4.4.4 Why are cis & trans elements less conserved? . . . . . . . . . . . . . . . . . . . . 159
4.4.5 What is the significance of the TEDs enrichment in cis & trans elements? . . . . . 159
4.4.6 Is the LCL cell model relevant for evaluating gene regulatory divergence? . . . . . 160
4.4.7 What is the significance of NLRP1 evolution in humans? . . . . . . . . . . . . . . 160
4.4.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.5 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.5.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.5.2 ATAC-STARR-seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.5.3 Read Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.5.4 Chromatin Accessibility Peak Calling and Filtering . . . . . . . . . . . . . . . . . 163
4.5.5 Differential Accessibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.5.6 TF Footprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.5.7 Genome Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.5.8 Active Region Calling Within Shared Accessible Peaks . . . . . . . . . . . . . . . 164
4.5.9 Active Region Calling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.5.10 Generation of ATAC-STARR-seq activity bigWigs . . . . . . . . . . . . . . . . . . 166
4.5.11 Heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.5.12 Differential Activity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.5.13 Functional Characterization of Cis and Trans Effects . . . . . . . . . . . . . . . . 167
4.5.14 TF Motif Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5.15 Gene Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5.16 Histone modification heatmaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5.17 Distance to ChrAcc peak summits. . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5.18 FANTOM B cell element enrichment . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.5.19 Evolutionary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.5.19.1 Generating expected background datasets from shared accessible, inactive
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.5.19.2 PhastCons enrichment analysis. . . . . . . . . . . . . . . . . . . . . . . 169
4.5.19.3 Human acceleration enrichment analysis. . . . . . . . . . . . . . . . . . 169
4.5.19.4 Repeatmasker transposable element enrichment. . . . . . . . . . . . . . 170
4.5.19.5 Multiple sequence origin enrichment analysis. . . . . . . . . . . . . . . 170
4.5.19.6 Population Genetics Analysis . . . . . . . . . . . . . . . . . . . . . . . 171
4.5.19.7 UKBB GWAS trait enrichment. . . . . . . . . . . . . . . . . . . . . . . 171

4.5.20 RNA-sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.5.21 Gene Expression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.5.21.1 Data Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.5.21.2 Fastq Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.5.21.3 Differential Expression Analysis. . . . . . . . . . . . . . . . . . . . . . 173
4.5.21.4 Correlation Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

viii



4.5.21.5 Principle Component Analysis. . . . . . . . . . . . . . . . . . . . . . . 173
4.5.22 TF Footprint Enrichment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.5.23 Trans only TF footprint enrichment vs. differential expression. . . . . . . . . . . . 173

4.6 Supplemental Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

ix



LIST OF TABLES

Table Page

x



LIST OF FIGURES

Figure Page

1.1 Tissue-specific enhancers bind transcription factors and interact with transcription start sites 3
1.2 Approaches for identifying and testing the activity of candidate enhancer sequences . . . 8
1.3 SHARPR-MPRA design and per base pair analysis strategy . . . . . . . . . . . . . . . . 13
1.4 ATAC-STARR-seq workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Estimating human acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Enhancer sequence nucleation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.7 Proposed model of how transposable element derived sequences may form into species-

specific gene regulatory elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Illustration of the method for mapping enhancer sequence age architecture. . . . . . . . . 38
2.2 Simple and complex enhancers have distinct evolutionary architectures, lengths, and ages. 41
2.3 Complex enhancers are more active across tissues and species and under stronger purifying

selection than simple enhancers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Simple enhancers are enriched for GWAS hits and variants with significant regulatory

activity in massively parallel reporter assays. . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Simple and complex enhancers are enriched for sequences derived from different trans-

posable element families at different ages . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6 Model of enhancer evolutionary architecture change and activity . . . . . . . . . . . . . 52

3.1 Complex enhancers consist of older core and younger derived sequences. . . . . . . . . . 102
3.2 Derived sequences are shorter than cores and older than expected from the non-coding

genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3 Complex enhancers are enriched for core and derived sequences from consecutive phylo-

genetic branches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4 Derived regions have high transcription factor binding site densities and bind different

transcription factors compared to core regions. . . . . . . . . . . . . . . . . . . . . . . . 108
3.5 Both core and derived regions have regulatory activity in massively parallel reporter assays. 109
3.6 Derived regions experience weaker purifying selection, have more genetic variation, and

are enriched for eQTL compared to adjacent core sequences. . . . . . . . . . . . . . . . 111

4.1 ATAC-STARR-seq methods for comparing chromatin accessibility and reporter activity
between human and rhesus LCL lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.2 Widespread Cis and Trans differences in gene regulatory activity for both human-active
and rhesus-active open chromatin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3 Trans effect sequences are conserved, cis effect sequences enriched for human accelera-
tion, and cistrans elements are derived from transposable-element insertions. . . . . . . . 149

4.4 Active ATAC-STARR regions are enriched for older sequence ages, multi-origin enhancer
sequences compared with expectation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.5 Trans-only regions are enriched for TF footprints with differential expression. . . . . . . 154
4.6 Human accelerated cis regulatory elements contribute to trans-regulation of inflammatory

responses in humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.7 ATAC-STARR-seq methods for comparing chromatin accessibility and reporter activity

between human and rhesus LCL lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.8 Support of differential activity calls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.9 Evolutionary sequence features of divergently active regulatory elements. . . . . . . . . . 178
4.10 GM12878 and LCL8664 cells are transcriptionally similar to each other and primary B cells.179

xi



CHAPTER 1

Introduction

Tudo no mundo começou com um sim. Uma

molécula disse sim a outra molécula e nasceu a

vida.

Everything in the world began with a yes. One

molecule said yes to another molecule and life

was born.

Clarice Lispector, A hora da estrela

1.1 Genomes, their organization, and their differences between species

1.1.1 The genome encodes cellular life

At the center of every cell sits a genome—a self-contained set of instructions written in DNA that directs

the developmental and biological processes required for life. From a single fertilized cell to a fully formed

organism made from trillions of cells, each cell inherits a copy of the genome. Cells use the genome to

perform diverse functions, such as digestion, defense from infection, movement, and cognition. All living

organisms have genomes, and similarities between the genomes of living organisms suggest that they have

evolved from a shared ancestor. However, genomes accumulate mutations as they evolve. These mutations

encode unique, species-specific phenotypes and functions. Identifying the evolved features that distinguish

humans from other organisms can aid in understanding the genetic components that make us human.

1.1.2 Genome sequences are organized into units

Since before the completion of sequencing the human genome, it was widely accepted that the genome was

non-randomly organized into functional units. Genomes are organized into chromosomes—DNA-subsets that

carry distinct sets of genetic information. One copy of the human genome contains 23 chromosomes. Within

a chromosome, DNA forms into unique three-dimensional neighborhoods, or topological domains, where

DNA strands preferentially interact. DNA strands within these domains are further organized into “chro-

matin” or structures of DNA wrapped around nucleosomes that bind to RNAs and other proteins. Among the

most well understood genomic units are protein-coding genes, whose transcription and translation produce

functional proteins. Also appreciated, but more difficult to characterize, are the accompanying regulatory

elements that control when and in which cells gene products are created. Protein-coding genes sequences
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represent only 1.5% of the human genome, while gene regulatory sequences constitute 4-8% of the human

genome (Lindblad-Toh et al. (2011); The ENCODE Project Consortium et al. (2020); Gershman et al. (2022)),

highlighting that the repertoire of elements used to regulate protein-coding genes is often more elaborate than

the repertoire of protein-coding genes.

1.1.3 A major driver of species divergence is changes to gene regulation

Changes in genome organization give rise to species-specific features. At the chromosomal level, the number

of chromosomes varies between species; One copy of the human genome contains 23 chromosomes, while

one copy of the mouse genome contains 20 chromosomes. At a molecular level, mutations in gene regula-

tory sequences can change in the timing and context in which individual genes are expressed. The sum of

these molecular differences promotes species’ divergence. The rapid turnover of gene regulatory elements in

species’ genomes is considered a major driver of this divergence (Wray (2007); Villar et al. (2015)). Despite

this, how gene regulatory sequences and functions evolve is poorly understood. Discerning this information

is critical towards understanding how human features have evolved. Further, identifying how variation in

enhancer sequences affects gene regulatory mechanisms is critically important for determining the pathology

of human-disease associated genetic variation.

1.2 Enhancers are DNA sequences that regulate gene expression

1.2.1 Enhancers are genomic elements that regulate transcription

Gene regulatory elements, such as enhancers, are distal DNA sequences that regulate target gene transcrip-

tion in a cell-type and spatiotemporal manner (Shlyueva et al. (2014)). In the latest estimate, gene regulatory

sequences represent 8% of the human genome (The ENCODE Project Consortium et al. (2020); Gershman

et al. (2022)). Transcription factor binding site (TFBS) motifs are sequences patterns found in gene regulatory

elements that preferentially bind transcription factor (TF) proteins (Lambert et al. (2018)). One single gene

regulatory element can have multiple TFBS motifs, conferring the potential to bind one of many TFs. Within

chromatin, nucleosomes—histone octamers wrap around DNA—compacted the genome. Closed chromatin

regions—regions where multiple nucleosomes compact DNA sequence—sterically hinder TF binding and

block gene regulatory function. Chromatin binding factors, including pioneer transcription factors, regu-

late chromatin opening and accessibility by introducing post-translational histone modifications that displace

nucleosomes to enable TF binding and transcriptional regulation (Klemm et al. (2019)).
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Figure 1.1: Tissue-specific enhancers bind transcription factors and interact with transcription start sites
Shlyueva et al. (2014) - (A) Enhancers are distinct genomic regions(or the DNA sequences thereof) that
contain binding site sequences for transcription factors (TFs) and that can upregulate (that is, enhance)
the transcription of a target gene from its transcription start site (TSS). Along the linear genomic DNA
sequence, enhancers can be located at any distance from their target genes, which makes their identi-
fication challenging. (B, C) In a given tissue, active enhancers (Enhancer A in part b or Enhancer B
in part c) are bound by activating TFs and are brought into proximity of their respective target promot-
ers by looping, which is thought to be mediated by cohesin and other protein complexes. Moreover,
active and inactive gene regulatory elements are marked by various biochemical features: active pro-
moters and enhancers are characterized by a depletion of nucleosomes, which is the structural unit of
eukaryotic chromatin. Nucleosomes that flank active enhancers show specific histone modifications, for
example, histone H3 lysine 4 monomethylation (H3K4me1) and H3K27 acetylation (H3K27ac). Inac-
tive enhancers might be silenced by different mechanisms, such as by the Polycomb protein-associated
repressive H3K27me3 mark (part b) or by repressive TF binding (part c). (D-F) — Complex patterns of
gene expression result from the additive action of different enhancers with cell-type- or tissue-specific
activities.
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1.2.1.1 A note on the word “enhancer”

The word “enhancer” was first used to describe the cytomegalovirus SV40 sequence, which, upon infecting

HeLa cells, could increase the expression of a reporter gene regardless of distance or orientation to that gene

(Banerji et al. (1981)). Since this, the word “enhancer” has been used with varying levels of stringency to

describe sequences that modulate gene expression. Although specific examples of sequences that meet the

initial functional or “biological” definition of an enhancer as described from the SV40 experiments, the term

is commonly used “operationally” to annotate candidate sequences that potentially modulate the expression

of a gene at some distance and with some orientation (Gasperini et al. (2020)). Technical factors confound

our ability to measure “biological” enhancer activity, including the lack of appropriate cell models, cellular

contexts, and genomic tools to test whether an enhancer sequence is necessary and sufficient for regulatory

function, and by biological factors, such as the redundancy of enhancer sequences and poor enhancer-to-

gene mappings, that limit our ability to observe measurable effects on function. In this dissertation, the terms

“enhancer” and “gene regulatory element” will largely be used “operationally” to refer to sequences that have

annotations associated with putative regulatory activity. However, when discussing functional regulatory

elements from reporter assays (like ATAC-STARR-seq), candidate enhancers that have in vitro regulatory

activity are one step closer to meeting the “biological” enhancer definition.

1.2.2 Transcription factors bind gene regulatory sequences to regulate transcription

TFs, co-activators, and gene regulatory sequences work together to control gene transcription (Shlyueva

et al. (2014); Gasperini et al. (2020); Zeitlinger (2020)). Specifically, TFs that bind to gene regulatory TFBS

motifs interact with co-activators and gene promoters to engage with transcriptional start sites (TSS). TF

binding turns over as TFs associate and disassociate from regulatory DNA, making transcriptional

regulation a dynamic process. The TF binding depends on many cellular environmental factors, including

TF protein abundance in the nucleus, the accessibility of the DNA sequence, and the affinity a TF has for its

TFBS motif. In enhancer sequences, TF binding sites often cluster together, and the degree of clustering

may reflect the robustness of that regulatory element to mutations in some instances (Preger-Ben Noon et al.

(2016); Spivakov et al. (2012); Li et al. (2019)). Regulatory sequences with multiple TFBS are organized

into units that together create a gene regulatory grammar, which will be discussed below (Zeitlinger (2020);

Jindal and Farley (2021)).

1.2.3 Enhancer gene regulation is cell-type- and context-specific

Reference maps of gene regulatory elements generated from large consortiums, such as ROADMAP,

FANTOM5, and ENCODE (Roadmap Epigenomics Consortium et al. (2015); Andersson et al. (2014); The

4



ENCODE Project Consortium et al. (2020)) indicate that the majority are cell-type-specific. Gene regulation

patterns change as cells differentiate from stem cell into mature cell types. Developmental enhancers are

responsible for specifying cell lineages and identities as embryos progress from a single cell to a

multicellular organism. These developmental enhancers are distinct from differentiated cell enhancers,

whose gene regulatory patterns are cell-type-specific and function to maintain stable cell identity and

respond to acute changes in environment (Song and Ovcharenko (2022)). Defying the notion that all

enhancers are cell-type restricted, a subset of gene regulatory enhancers are pleiotropic across tissues,

meaning that the enhancer element regulates gene expression in more than one tissue context or in more than

one temporal context (Preger-Ben Noon et al. (2018); Laiker and Frankel (2022)). Typically, pleiotropic

enhancers are linked to regulation of housekeeping genes in differentiated cells (Eisenberg and Levanon

(2013)), though pleiotropic enhancers can also regulate ontological genes that are expressed among cell

phylogenies, such as in immune cells (Calderon et al. (2019)). While detection of enhancer pleiotropy is

limited by the number of tissue enhancer annotations and the depth of those annotations, pleiotropic

enhancers are functionally important for regulating multiple gene targets and thus evolutionarily conserved

(Fish et al. (2017)). Together, enhancers are cell-type- and context-specific, though the degree of specificity

depends on the developmental stage and the number of related cell types.

1.2.4 Enhancers are enriched for human genetic variation, disease-associated variation

Mutations in gene regulatory elements are important not only for diversifying gene expression patterns

between divergent species, but for diversifying gene expression among human populations. To this end,

common variants have been linked to expression quantitative trait loci (“eQTL”), loci associated with

variable gene expression patterns among humans (GTEx Consortium (2017); GTEx Consortium et al.

(2020)). eQTL variants likely tag loci relevant for the regulating the expression of the target gene(s) (Nica

and Dermitzakis (2013)). Among the functional types of eQTL are cis-eQTL and trans-eQTL. Cis-eQTL

are variants within a set window size (commonly 1 Mb) that correlate with variable gene expression.

Trans-eQTL are variants outside that set window size (either on the same chromosome or different

chromosome) and are challenging to detect because of power, multiple testing corrections, and

tissue-specificity (Westra et al. (2013); GTEx Consortium et al. (2017b)).

While eQTLs are informative for understanding gene expression variation, the detection of eQTL and

associated genes are limited by the number, sex, and ancestry of individuals used to infer gene expression

variation, the quality of the tissue and cell samples, and the number of genes that have quantifiable

expression variability. Given that one gene can be linked to multiple gene regulatory elements that may have

functional redundancy (commonly referred to as ”shadow enhancers”), it is possible that variation in
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individual gene regulatory elements may not alter the expression of the target gene (Frankel et al. (2010);

Berthelot et al. (2018); Preger-Ben Noon et al. (2016)). More sophisticated methods like PrediXcan

(Gamazon et al. (2015)), joint-tissue imputation (Zhou et al. (2020)) and transcriptome-wide association

methods (Gusev et al. (2016)) link gene regulatory variation with gene expression/trait variation by

modeling the effects of multiple cis-variants on variable target gene expression and traits. Identifying

polymorphic loci associated with variable gene expression in human populations is useful for identifying

and refining candidate gene regulatory loci and their linked gene targets.

Importantly, enhancer sequences are enriched for complex human trait and disease-associated variants

identified from large genome-wide association studies (GWAS) (Cannon and Mohlke (2018); Maurano et al.

(2012)). Interpreting gene regulatory activity at these trait-linked loci can be used to identify molecular

mechanisms of disease and develop new therapeutic targets (Trynka et al. (2013); Finucane et al. (2015)).

However, identifying which regulatory elements are linked to GWAS tag-SNPs, their target genes, and the

cellular context that gene regulation is perturbed in is not straightforward (Cano-Gamez and Trynka (2020)).

A popular method to prioritize disease-linked variants is to ”colocalize” GWAS SNPs and eQTL variants,

which effectively links trait-associations with potential mechanisms (i.e., variable gene expression) that

contribute to disease pathology (Hormozdiari et al. (2016)). However, disease-associated variation is less

likely tolerated than common variants associated with gene expression variation, which are more likely

tolerated. Thus, the interpretation of colocalized variants may be less useful than interpreting of

disease-associated variants that are not eQTL, which filters causal loci based on their tolerance for gene

regulatory variation (Mostafavi et al. (2022)). Nonetheless, mechanistically interpreting disease pathology at

the level of gene regulation has great promise for determining and treating human-diseases.

Similar to coding-sequences where mutations in evolutionarily conserved, loss of function intolerant

genes is correlated with disease severity, it is reasonable to think that variation in evolutionarily conserved

gene regulatory elements is associated with larger and more severe effects on phenotype.

Partitioned-heritability analysis of non-coding gene regulatory variants with disease-and trait-associated

phenotypes shows that variants that fall in conserved annotated regions are more enriched for trait-related

SNP-heritability compared with variant enrichment in annotated enhancers (Finucane et al. (2015)). Overall,

this finding supports that sequence conservation and gene regulatory annotations are relevant when

interpreting potential mechanisms that influence disease. Stratifying by enhancer sequence age, SNP-based

heritability for GWAS traits is enriched in older, more conserved enhancers than younger enhancers (Hujoel

et al. (2019)), which indicates that the evolutionary history of an enhancer sequence is important for

interpreting the impact of human genetic variation. However, whether the evolutionary history of an

enhancer sequence modulates the impact of a variant or cis- or trans-based factors determine that enhancer
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sequence’s activity is unknown. Resolving the connections between the evolution of a sequence and its

function would greatly help to interpret the impact and mechanisms underlying genotypic variation linked to

phenotypic variation.

1.3 Annotations and methods for enhancer characterization
I was always going to the bookcase for another

sip of the divine specific.

Virginia Woolf, The Waves

1.3.1 Enhancer activity requires open chromatin

Active enhancer sequences require nucleosome-depleted, open chromatin conformations to bind

transcription factors. Closed chromatin structures hinder transcription factor binding at enhancers, thus

preventing active gene regulation at that locus (Catarino and Stark (2018)). When mapping enhancer

sequences in the genome, it is useful to identify sequences that fall in open chromatin. Experimental

approaches that isolate open chromatin, such as DNase-seq (Meuleman et al. (2020); Thurman et al. (2012))

and ATAC-seq (Buenrostro et al. (2015)), survey accessible DNA across human tissues and developmental

time points at-scale (Figure 1.2A). While these assays enrich for genomic regions with candidate gene

regulatory activity, few of these sequences are functional in reporter assays (Inoue and Ahituv (2015)).

Thus, chromatin accessibility annotations are necessary for identifying sequences with regulatory potential

but does not sufficiently annotate gene regulatory elements.

1.3.2 Histone markers

Post-translational histone modifications flank open chromatin and can be used to distinguish candidate

enhancers from other genomic annotations. Chromatin remodelers, such as P300/CBP or Mll3/4, produce

the post-translational modifications that destabilize nucleosome-DNA interactions (Tessarz and Kouzarides

(2014)). Chromatin immunoprecipitation and sequencing (ChIP-seq) assays annotate cell-type and

tissue-specific candidate regulatory regions genome-wide (Figure 1.2A). For enhancers, presence of histone

3 lysine 27 acetylation (H3K27ac), which marks active enhancers and promoters (Creyghton et al. (2010))

paired with other markers, such as the presence of monomethylation of histone 3 lysine 4 (H3K4me1) and

absence of H3K4me3a— marker of active promoters—has been used to map enhancer sequences in the

genome. The integration of multiple post-translational histone marks has been used to annotate more

nuanced regulatory activity profiles in coding and non-coding elements (Ernst and Kellis (2017)).

While these annotations are useful, not all histone modifications are not required for gene regulatory
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Figure 1.2: Approaches for identifying and testing the activity of candidate enhancer sequences
(a) Biochemical annotations of candidate enhancers: schematic depiction of an enhancer and a target
gene, marked with the biochemical annotations used to nominate candidate enhancers and other features
of non-coding DNA. (b) Episomal reporter assay: a candidate enhancer and a reporter gene located in
cis on an episomal vector. The candidate enhancer may increase expression of the reporter gene by
recruiting transcriptional machinery. The degree of enhancer-mediated activation is measured by the
abundance of reporter transcripts or the quantity of the reporter-encoded protein. (c) Massively parallel
reporter assays (MPRAs). The relative abundance of barcodes can be used to estimate the relative
activities of the candidate enhancers to which they are linked. From Gasperini et al. (2020)
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activity. For example, inactivation of the catalytic domain for the histone-modification enzyme Tri-

thorax-related (Trr) in Drosophila (orthologous to H3K4 methyltransferases Mll3/Mll4 in mammals)

depletes H3K4me1 marks genome-wide but does not affect gene expression profiles or viability (Dorighi

et al. (2017); Rickels et al. (2017)). Further, substituting H3K27ac for H3K27R in mouse embryonic stem

cells (thus removing the acetylation modification) does not affect open chromatin, other histone markers of

enhancer activity, or widespread changes in gene expression (Zhang et al. (2020)). Thus, acetylation of

H3K27 is dispensable for enhancer activity. Histone post-translational modifications enrich for

cell-type-specific enhancers genome-wide, however they are not required for gene regulatory activity.

1.3.3 Transcription factor binding

Transcription factor (TF) binding to enhancer gene regulatory sequences is necessary for functional gene

regulation. TF proteins have DNA-binding domains with high affinity for specific DNA sequences, or

motifs. ChIP-seq assays (and numerous iterations of the ChIP-seq method) use antibodies raised against TF

proteins to pull down TF-bound DNA sequences (Figure 1.2A). One drawback of this assay is that it can

capture both direct TF:DNA interactions and indirect TF:DNA interactions, such as when a TF is bound to

another TF that directly binds the DNA sequence. Much effort has gone into determining the sequence motif

preferences of bound TFs with ChIP-seq and synthetic systemic evolution of ligands through exponential

enrichment (SELEX) assays, which through successive rounds of panning for TF-binding in a random pool

of DNAs, produces DNA sequences enriched with high affinity for target TFs (Lambert et al. (2018)). While

identifying TFBS motifs are useful for inferring a TF’s binding potential to its target sequence, whether

these interactions are biologically meaningful is a separate question. In situ, many factors determine the

probability that a TF will bind its target motif, including TF abundance in the nucleus, the affinity a TF has

for one specific motif among accessible motifs, sequence information content (Li and Wunderlich (2017)),

competitive binding from other TFs, and dwell-time (Garcia et al. (2021)).

Transcription factor genes and binding motifs are relatively stable between species (Stergachis et al.

(2014); Carroll (2005)). Comparing TF binding in the same tissue across species can reveal differences in

gene regulation. Previous studies have shown that TF binding loci are not conserved between species

(Schmidt et al. (2010)). However, the specific DNA motifs that TFs bind to are stable across species,

suggesting that while binding sites are conserved between species, the location of a binding site nearby a

gene change as species evolve.
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1.3.4 Transcribed enhancer RNAs

Enhancer RNAs (eRNAs) are short, unstable, bidirectional RNAs actively transcribed from enhancer DNA

during gene transcription (Li et al. (2016)). Detection of eRNA transcripts occurs early in the process of

gene transcription and implies an enhancer sequence is actively regulating gene expression (Arnold et al.

(2020)). Cap-analysis of gene expression sequencing (CAGE-seq) has been used to map tissue- and

cell-type-specific eRNAs from the FANTOM5 consortium across 112 human tissue samples (Andersson

et al. (2014)). Similarly, other nascent transcript methods that detect nuclear run-on, such as PRO-seq,

GRO-seq (Danko et al. (2015)) and followed by cap-selection assays (GRO/PRO-cap; Wissink et al. (2019);

Yao et al. (2022)), are sufficiently sensitive to detect eRNAs. These approaches have been applied to

evaluate the sequence structure (Tippens et al. (2020)) and comparative evolution (Danko et al. (2018)) of

gene regulatory activity.

1.3.5 Gene regulatory reporter assays

While biochemical annotations describe loci associated with enhancer activity, reporter assays are a

powerful class of methods that quantitatively evaluate the regulatory potential of DNA sequences. There are

a variety of formats for evaluating gene regulatory reporter activity, each with its own advantages and

disadvantages. Below, I review the variety of reporter assay approaches

1.3.5.1 in vivo reporter assays

One of the most powerful approaches for evaluating developmental gene regulatory activity uses transgenic

in vivo reporter assays. Briefly, these assays randomly integrate plasmids containing the target gene

regulatory sequence and a reporter gene, such as LacZ, into mouse embryo genomes. As cells in the embryo

differentiate, specific tissue or sets of tissues contexts that are sufficient to drive regulatory activity also

drives transcription of the reporter gene and marks the tissues a regulatory sequence is active in. Reporter

activity indicates that trans-elements in the tissue- or cell-specific environment are sufficient to drive gene

regulatory activity. While this approach allows researchers to survey the activity of a regulatory sequence

across all embryonic cell progeny, there are significant drawbacks, including the random integration of the

regulatory element into the genome (which may not reflect the native gene regulatory context of the

sequence), the crude tissue-resolution at which regulatory activity can be evaluated, reporter activity is not

quantitative, but qualitative, the low-throughput and resource intensive nature of the experiment. Taken

together, in vivo reporter assays are suited for testing the breadth of tissue-activity for a few regulatory

sequences, but not for surveying regulatory activity across the genome.
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For example, in vivo reporter assays were applied to evaluate whether non-coding human accelerated

regions (discussed below) had differential reporter activity compared with chimpanzee and rhesus ancestral

sequences when transduced into developmental mouse models (Prabhakar et al. (2008)). While these results

are intriguing, they are confounded by possible differences in species-specific cellular environments that can

produce phenotypic regulatory activity with different sets of transcription factors. Despite these challenge,

in vivo reporter assays have been incredibly informative for determining the basic features of tissue-specific

gene regulatory elements. Widespread efforts to map enhancer activity using developmental mouse models

produced the VISTA catalog of candidate mouse and human regulatory elements (Pennacchio et al. (2006)).

1.3.5.2 Massively parallel reporter assays (MPRAs)

Sequencing-based approaches for quantifying gene regulatory activity have become increasingly popular as

an approach to validate candidate enhancer annotations. Among these, the massively parallel reporter assay

is the most common high-throughput approach for mapping sequence-based gene regulatory activity. In the

original MPRA format, activity profiles for thousands of candidate gene regulatory sequences can be

determined by quantifying the ratio of mRNA transcription to the reporter plasmid DNA input in live cells.

Key to this approach is the design of the episomal vector, which minimally contains the candidate enhancer

sequence, a minimal promoter, a DNA barcode (occasionally), and a reporter gene (Figure 1.2B; Inoue and

Ahituv (2015)). Variations on the MPRA have been used to measure different features of gene regulatory

activity. Saturation mutagenesis assays systematically measured how and where variants affect gene

regulatory activity (Kircher et al. (2019); Patwardhan et al. (2009)). Synthetic enhancer sequences have been

used to explore how TFBS-defined enhancer modularity—the diversity and order of TFBS sites in an

enhancer sequence—affects activity (Smith et al. (2013b)). Lentiviral MPRA strategies (lentiMPRA) have

been applied to massively transduce enhancer sequences into the genomes of cell lines to more closely

model native genomic conditions and other hidden requirements for observing enhancer activity (Inoue et al.

(2019, 2017)).

While MPRAs have greatly expanded our understanding of gene regulatory activity, there are some

drawbacks to their interpretations of gene regulatory activity. Candidate enhancer sequences tested in

MPRAs have limited lengths, which reflects the current limits of oligonucleotide synthesis. Activity

readouts can also be hindered by promoter choice, which itself may not be compatible with the candidate

enhancer sequence. Another major limitation of MPRAs is the limited number of cell models that are

suitable for the MPRA protocol, which narrows which cell-type-specific gene regulatory sequences can be

tested for activity. Other technical limits include the sequencing depth, sequencing and barcode mapping

errors, and the number of replicates needed to produce reliable activity profiles for candidate sequences.
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Biologically, it is unclear whether strong MPRA activity in vitro translates to strong in situ activity. MPRAs

test candidate enhancer sequences for activity in highly synthetic contexts, far from their endogenous

environment, and should be interpreted with caution (Inoue and Ahituv (2015); Ernst et al. (2016); Inoue

et al. (2017); Klein et al. (2019)).

1.3.5.3 STARR-seq reporter assays

One popular variation on MPRA assays is the use of self-transcribing active regulatory regions sequencing

assay (STARR-seq; Arnold et al. (2013, 2014); Muerdter et al. (2015, 2018)). By design, STARR-seq assays

measure how well a candidate enhancer sequence can drive its own transcription. To do achieve this,

STARR-seq plasmids carry candidate enhancer sequences in the 3’UTR of the reporter gene. The

advantages of STARR-seq plasmid format are that the enhancer sequences are the DNA barcode and native

sequences of varying lengths can be inserted into the plasmid vector. Overcoming some challenges related

to oligonucleotide sequencing and barcoding in MPRAs, STARR-seq assays can be applied genome-wide to

survey regulatory potential across sequences (Arnold et al. (2013, 2014); Muerdter et al. (2018)).

Drawbacks of the STARR-seq assay include poor detection of low coverage regulatory sequences, the lack

of barcodes to standardize activity measurements, the size of the genome (which in the case of humans can

be costly to assay), and the questionable relevance of genome-wide gene regulatory activity measurements

to cell-type- and context-specific gene regulation (Inoue and Ahituv (2015)).

1.3.5.4 Evaluating effects of human genetic variation on gene regulation using reporter assays

Beyond measuring intrinsic activity of regulatory sequences, reporter assays can quantify the effects of

genetic variation at candidate enhancer loci. For example, MPRAs designed around putative causal GWAS

and eQTL loci to investigate underlying regulatory changes and provide mechanistic evidence that variants

functionally perturb regulatory activity and may contribute to phenotypic variation (Tewhey et al. (2016);

Abell et al. (2022)). Survey of regulatory elements sequencing (SuRE-seq), a variation on the STARR-seq,

leverages a plasmid without a core promoter to survey endogenous promoter activity across sequence inserts

of various sizes (0.2-2kb) genome-wide (van Arensbergen et al. (2017)) SuRE-seq assays can explore how

genetic variation modulates promoter activity across diverse human populations (van Arensbergen et al.

(2019)). Together, reporter assays are useful tools for measuring the regulatory effects of human variants.

1.3.5.5 SHARPR-MPRA

A major question of gene regulatory function is whether gene regulatory function is sub-localized within

gene regulatory sequences. The observations that transcription factor binding sites cluster within gene
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Figure 1.3: SHARPR-MPRA design and per base pair analysis strategy
(a) Modeling scheme and probabilistic graphical model for the scale-up design. Variables M1, ..., M31
represent the observed values of the reporter measurements for the 31 tiles (each 145 bp long), and
variables A1, ..., A59 represent the unobserved regulatory activity level of each 5-bp interval of the 295
bp covered, which is then normalized into the Sharpr-MPRA regulatory activity score. Probabilistic
graphical model (bottom) used for high-resolution inference of activating and repressive intervals, with
arrows Ak→Mj illustrating the dependencies between variables when tile Mj overlaps interval Ak, and
the direction of information flow in the generative model. Conditional inference allows us to use the ob-
served reporter measurements M1, ..., M31 for the 31 tiles to infer the unobserved activity levels A1, ...,
A59 for the 59 intervals of length 5 bp each, which we interpolated to each nucleotide position i, under
the modeling assumptions specified in Online Methods. (b) Observed reporter expression measurements
for 145-bp segments (top) and inferred regulatory activity for 5-bp segments, interpolated to individual
nucleotides (bottom) for two 295-bp regulatory regions in HepG2 cells. At each offset, the four rows
correspond to four measurements of the same tile, using minP and SV40P, each in two replicates (top).
Measurements for each tile are shown spanning all nucleotide positions the tile covers. White rows
represent missing data for a promoter/replicate combination for a given 145-bp tile. Resulting infer-
ence of regulatory activity at each nucleotide i using all four measurements (black), only the two SV40P
measurements (green), or only the two minP measurements (blue) (bottom). Predicted positions of high-
est activating (positive scores) or repressive (negative scores) activity capture CENTIPEDE5 predicted
binding sites (red boxes) and conserved elements identified by the SiPhy-PI method33 (purple boxes),
even though such information was not used in our inferences. From Ernst et al. (2016)
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regulatory sequences (Levo and Segal (2014)) and that not all genetic variation in gene regulatory sequences

influence regulatory function has created the impression that gene regulatory sequences can be further

categorized into functional submodules. A high-density tiling MRPA approach, SHARPR-MPRA,

quantified gene regulatory activity per base pair across a gene regulatory sequence using a probabilistic

graphical modeling approach has highlighted that local variation in functional activity could be observed

across gene regulatory sequence bases (Figure 1.3; Ernst et al. (2016)).

1.3.5.6 ATAC-STARR-seq reporter assays

Developing cell-type relevant maps of functional gene regulatory activity is critical for interpreting variant

effects from sequencing data. Toward this goal, the ATAC-STARR-seq approach couples ATAC-seq and

STARR-seq to survey the gene regulatory activity of all relevant open chromatin regions in a particular cell

type. (Wang et al. (2018); Hansen and Hodges (2022)). By design, ATAC-STARR-seq densely samples open

chromatin sequence for activity in a population of cells and provides high resolution estimates of

accessibility and activity at a gene regulatory region. Further, TF foot printing information can be estimated

from the ATAC-seq cut-sites, which can help to refine the identities of bound transcription factors. One

drawback of TF footprint interpretations is that if multiple different TFs bind the same locus in different

cells, deconvolving which TF is bound can be challenging. Despite this, ATAC-STARR-seq is a powerful

approach for simultaneously quantifying open chromatin, gene regulatory activity and TF foot printing in a

single workflow.

1.4 Methods for estimating enhancer evolution using comparative genomics
The things we see are the same things that are

within us.

Hermann Hesse, Demian

1.4.1 Sequence homology, synteny, and multiple sequence alignments

Sequencing diverse species genomes is critical for understanding and interpreting how genomes have

evolved. Complementary to this, understanding which aspects of species genomes have been conserved over

millions of years can reveal essential and functional genetic components of cellular life. As the sequencing

of diverse species’ genomes became available, questions such as these led to the development of tools that

mapped “synteny” across multiple sequence alignments (Jaillon et al. (2004)). Originally, synteny was used

to describe the conserved order of genes between species’ genomes. Currently, synteny is used to define the

conserved order of genomic blocks with sequence homology, or similarity, between genetic sequences
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Figure 1.4: ATAC-STARR-seq workflow
(A) The experimental design of ATAC-STARR-seq consists of three parts: plasmid library genera-
tion, reporter assay, and data analysis. Open chromatin is isolated from cells with the cut and paste
transposase Tn5. The open chromatin fragments are cloned into a reporter plasmid and the resulting
clones—called an ATAC-STARR-seq plasmid library—are electroporated into cells. 24 hours later,
both reporter RNAs (blue)—which are transcribed directly off the ATAC-STARR-seq plasmid—and
ATAC-STARR-seq plasmid DNA (red) are harvested, and Illumina-sequencing libraries are prepared
and sequenced. The resulting ATAC-STARR-seq sequence data is analyzed to extract regulatory ac-
tivity, chromatin accessibility, and transcription factor footprints. (B) Reporter plasmid design and the
expected outcomes for neutral, active, and silent regulatory elements. Each ATAC-STARR-seq plasmid
within a library contains a truncated GFP (trGFP) coding sequence, a poly-adenylation signal sequence,
an origin of replication (Ori) (which moonlights as a minimal core promoter), and the unique open chro-
matin fragment being assayed. Since the accessible region is contained in the 3’ UTR, the abundance of
itself in the transcript pool reflects its activity. In this way, neutral elements do not affect the system and
reporter RNAs are expressed at a basal expression level dictated by the minimal core promoter, the Ori.
Accessible chromatin fragments that are active express reporter RNAs at a higher level than the basal
expression level, while silent elements repress the Ori and reporter RNAs are expressed at a lower level
than basal expression. From Hansen and Hodges (2022)
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(Margulies and Birney (2008)). In this work, we use the UCSC genome browser’s MultiZ multiple sequence

alignments because of data availability and common-use in the comparative genomics field.

Multiples sequence alignments from the UCSC genome browser can be used to identify syntenic

blocks between human and vertebrate genomes. Synteny mapping is a two-step process. In the first step, a

process called ’reconstructing homologous collinearity’ searches for small groups of sequences have

sequence homology and are collinear between species. The UCSC genome browser uses a

“chains-and-nets” method, which uses the human genome as an anchor to align each of the other genomes

(Kent et al. (2003); Margulies and Birney (2008)). Per region of the human genome, groups of alignments

are chained if they have similar order and orientation to the human genome. After chaining, the closest

chain to humans is selected and used to identify orthologs in other chains at that region. After inferring

chains and nets, the unaligned sequences (that were not used to generate chains) are aligned to construct

orthologs sequence alignment. Correct base pair alignment depends on the quality of the collinear

reconstruction. In MultiZ alignments, pairwise BLASTZ results are used to build local alignment blocks and

joined together by linking pairwise alignments between species. This method produces multiple sequence

alignments that can be used downstream to measure sequence conservation.

At the basis of comparative genomics, researchers have used various approaches to construct and

multiple sequence alignments and measure synteny. They rely on sequencing technologies, reference

genomes, parsimonious assumptions, and computational tools to map sequence alignments between species.

However, technical limitations in sequencing approaches, variations in genome coverage, gaps in reference

alignments, and which alignment strategies used bound our ability to compare sequences that are uniquely

alignable. Often, this means that repeat regions, including centromeres, satellite, and transposable elements

cannot always be confidently mapped within reference genomes and are typically excluded (Amemiya et al.

(2019)). In highly polymorphic regions, such as HLA and KIR, alignment strategies beyond using a

reference genome must be considered. Finally, duplication events that occur during species evolution can

obscure the evolutionary path that produced existing species from extinct ancestors.

1.4.2 Sequence conservation and measuring substitution rates

Multi-way comparisons between species genomes motivated the development of statistical strategies to

compare sequence conservation between genomes. Identifying evolutionary sequence conservation is

valuable both for understanding essential, slowly evolving, and functional features of genomes, as well as

interpreting the impact of variants observed in highly conserved regions. A key expectation in evolutionary

genomics is that functional sequences are likely to be highly similar, or “conserved” across species

(Margulies and Birney (2008)). Purifying selection does not favor mutations in conserved sequences that
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have deleterious effects and reduce the fitness of the organism. Substitution rates are used to measure

sequence conservation or acceleration. In practice, the substitution rate is a statistically derived rate that

describes how quickly or slowly a genomic region gains mutation compared with expectation from neutral

regions. Regarding the detection of conserved sequences, methods generally try to identify regions with

statistically fewer substitutions than would be expected from the neutral model.

Measuring substitution rates between species can be used to identify three types of patterns: (1) regions

that drift neutrally, (2) regions that are conserved and have a slower substitution rate than expected from

neutrality, or (3) regions that are accelerated and have a higher substitution rate than expected (Pollard et al.

(2006, 2010)). In this work, I often use phastCons, a Phylogenetic hidden Markov model that scores the

probability that single- or multi-base regions are evolving under a constrained model or neutral model of

evolution given the neutral species tree (Siepel (2005)), to interpret sequence conservation. Other statistical

approaches, such as BinCons and GERP, also are commonly used to estimate sequence conservation and

produce relatively similar conservation estimates (Pollard et al. (2010)).

Many regions estimated to be conserved do not overlap protein-coding sequences in the genome

(Siepel (2005); Lindblad-Toh et al. (2011)), indicating that these conserved non-coding regions are likely

functional. Recently, new approaches such as LINSIGHT (Huang et al. (2017)) jointly model sequence

conservation and functional annotations to estimate purifying selection pressures more sensitively in

non-coding genomic regions.

Figure 1.5: Estimating human acceleration
Many evolutionary forces can generate human accelerated regions. (a) A neutral phylogeny. Branch
lengths represent expected numbers of substitutions. (b)–(f) Examples of human-specific accelerated
substitutions. (b) Positive selection versus a neutral background. (c) Positive selection versus a back-
ground of constraint. (d) Loss of constraint. (e) GC-biased gene conversion (gBGC) versus a neutral
background. (f) gBGC versus a background of constraint. Black = neutral substitution rate, red = slower
than neutral, green = faster than neutral, W-to-S = weak (A/T) to strong (G/C) biased substitution pat-
tern. From Hubisz and Pollard (2014).
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1.4.3 Human acceleration and positive selection in enhancers

As mentioned above, accelerated substitution rates signify that a region may be evolving more rapidly than

expected at a neutral rate. Human acceleration measures the substitution rate on a lineage, clade, or ancestor

and compares it with a neutral expectation rate (Pollard et al. (2010); Prabhakar et al. (2008)). The neutral

expectation rate can be calculated using either molecular evolution rates (i.e.,a constant rate that mutations

get fixed) or phylogenetic tree-based estimates. Interpreting the mode of evolution from human acceleration

estimates can be challenging as multiple evolutionary processes can produce higher substitution rates,

including positive selection, GC-biased gene conversion, and relaxation of negative selection pressures

(Figure 1.5; Hubisz and Pollard (2014); Franchini and Pollard (2015); Katzman et al. (2010, 2011)).

Experimental evidence is often required to articulate that functional differences are linked to these statistical

estimates of acceleration.

Most studies on the biological and functional significance of human accelerated regions (HARs) have

focused on genomic regions that are highly conserved across non-human species and relationships with

human-specific brain morphology. In a survey of HARs function using in vivo reporter activity, many were

shown to be developmental neural enhancers (Capra et al. (2013a); Pollard et al. (2006); Doan et al. (2016);

Prabhakar et al. (2008)), suggesting that increased substitution rates perturbed gene regulatory activity and

affected human-specific brain development. In MPRA studies performed in neural progenitor cells, HARs

that have human activity have been shown to also have activity in other species (Uebbing et al. (2021);

Whalen et al. (2022)), suggesting that human acceleration in active regions do not always create or destroy

gene regulatory activity.

1.4.4 Sequence ages

Sequence age is an approach that studies the evolutionary history of a region by assigning the age of the

oldest, most recent common ancestor to a sequence that is alignable between extant species. A region’s

sequence age is assigned using multiple sequence alignments between extant species to identify the most

divergent species with sequence homology to the reference species. The method assumes the reference and

most divergent species’ sequences originate from a single, shared common ancestor. Then, age is quantified

as the fixed phylogenetic distance between the reference species and the most recent common ancestor of

the most divergent species using the neutral species tree model, which estimates evolutionary divergence

based on the neutral substitution rate estimates (Lowe et al. (2011)). For example, say we are interested in

assigning an age to a region of the human genome, and we find that the most divergent species with

alignable sequence to that region is in the mouse genome. We would then assign sequence age as the

evolutionary distance between humans and the oldest, most recent common ancestor of humans and mice.
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This aging strategy assumes that the evolutionary origin of a genomic sequence is derived from a common

ancestor and that the ordering of ancestors in the neutral species tree is correct. Most (70%) human

sequences in 100-way MultiZ alignments can be assigned to a single evolutionary origin, while for the rest,

the sequence age reflects a lower-bound age estimate of when that sequence might have emerged (Marnetto

et al. (2018)). In these instances, the sequence age may be even older than the estimates from extant species,

but not alignable with older extant species genomes for technical or biological limitations.

This strategy has more relaxed sequence alignability requirements compared with estimates of

sequence conservation. Specifically, sequence aging strategies do not require that all divergent species

between the reference and most divergent extant species have conserved that sequence in their genomes.

The aging strategy is not sensitive to incomplete lineage sorting, where the divergence pattern of a region

does not match the divergence of species inferred from the neutral species tree. Ideally, sequence age

methods would have genome data from extinct ancestors to confirm the shared origins of a sequence, but

these data are currently not available.

1.4.5 Comparative histone modification and chromatin accessibility reveal alignable sequences have

divergent regulatory annotations

If gene regulatory sequence and function is conserved across species, we would hypothesize that sequences

with functional annotations, such as cell-type-specific chromatin accessibility, are conserved. However,

reports comparing regulatory sequence annotations between humans and closely related species using

DNase-seq (Vierstra et al. (2014); Shibata et al. (2012); Yue et al. (2014)), ATAC-seq (Garcı́a-Pérez et al.

(2021)), PRO-seq (Danko et al. (2018)), or histone-modification ChIP-seq (Villar et al. (2015); Prescott et al.

(2015); Cotney et al. (2013); Castelijns et al. (2020); Cain et al. (2011)) report that many open chromatin

and regulatory annotations in humans and other species do not overlap. Given that human open chromatin

sequences are alignable to other species genomes—thus present in other species’ genomes—they do not

have conserved regulatory annotations in the same tissue or cell type across species. A multitude of

technical and biological factors might explain these differences, including tissue and cell type sampling

methods, the depth and quality of species’ reference genomes, biological age, non-conserved cellular

environment conditions, and cellular heterogeneity underlying tissue samples (Breschi et al. (2017, 2020)).

Nonetheless, the discordance between functional annotations and sequence conservation highlights the need

to evaluate gene regulatory variation more carefully between species.
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1.4.6 Comparative reporter assays reveal differences in gene regulatory activity between species

While evolutionary features and comparative biochemical annotations are useful for identifying candidate

divergent and conserved regulatory regions, functional assays that compare gene regulatory activity between

species can clarify critical questions about regulatory divergence, including: (1) whether evolutionarily

divergent/conserved sequences have divergent/conserved regulatory functions, (2) whether accessible

regions have regulatory activity at all in either species, and (3) whether shared accessible regions have

conserved regulatory activity.

1.4.6.1 Comparing regulatory activity of evolutionary divergent sequences

Comparing the regulatory activity of evolutionary divergent sequences, we might hypothesize that sequence

divergence changes gene regulatory activity, resulting in species-specific phenotypic divergence. Some of

the first experiments used in vivo reporter assays to show that some HARs produced human-specific gains in

regulatory activity compared with primate-relative sequences are linked to developmental brain phenotypes

(Prabhakar et al. (2008); Capra et al. (2013a); Doan et al. (2016)). However, in vivo reporter assays are

costly and bottleneck more comprehensive profiling of thousands of HAR. Recently, MPRAs have been

applied to more widely evaluate molecular HAR traits (Whalen et al. (2022)) and have reported that HARs

do not always produce gains in human-specific enhancer activity. Instead, among the HARs with

biochemical activity, human-specific substitution seems to have small effects on variation in activity

compared with chimpanzee sequences (Uebbing et al. (2021)). Considering this evidence, it is unclear what

specific contributions HAR substitutions make to human-specific gene regulatory activity.

Although HAR-based differences in regulatory function is an attractive hypothesis to explain

human-specific traits, many divergent gene regulatory elements are not HARs. In fact, sequences with

human-specific differences in gene regulatory activity are often alignable between species, such as in

developmental limb enhancers (Cotney et al. (2013)), adult liver enhancers (Klein et al. (2018)), or

human-specific gene regulatory variation compared with Denisovan, and Neanderthal variants (Weiss et al.

(2021)). Together, species’ specific gene regulatory activity is often observed without gross changes in

sequence, suggesting that the turnover of gene regulatory activity between species does not always result

from the sum burden of many mutations. Other factors may drive divergent gene regulatory activity between

species, such as nuclear TF abundance or epigenetic differences in chromatin accessibility (Gershman et al.

(2022)), that do not change the underlying genetic sequence. This is discussed in more detail in another

section below.
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1.4.7 Chimeric cellular models

F1 hybrids and allele-specific RNA-sequencing is an approach for comparing polymorphic gene regulatory

differences between closely related individuals in a population by measuring allele-specific variation in

transcription. The intuition behind these models is to compare the allele-specific transcriptional behavior of

the parental genome with the behavior of an F1 genome (Hill et al. (2021)). This method can identify both

cis- and trans-regulatory variation. Cis-regulatory variation is inferred when the heterozygous F1 and

homozygous F0 alleles produce similar allele-specific expression of target genes. Trans-variation is inferred

when allele-specific expression is different between F0 and F1 target genes. While this approach has been

used to identify cis- and trans-regulatory variation in yeast, flies, and mice, and archaic humans (Hill et al.

(2021); Quach et al. (2016)), it has recently been employed to compared hybridized human and chimp

tetraploid models of neural progenitor stem cells and differentiated cranial neural crest cells (Agoglia et al.

(2021); Gokhman et al. (2021)). These studies indicate that 43% of gene regulatory divergence between

humans and chimps occurs in cis. While this comparative approach measures the transcriptional output

correlative with polymorphic diversity, it does not directly measure the activity of gene regulatory loci, and

it precludes measurements of trans-regulatory activity in monomorphic regions.

1.4.8 Lymphoblastoid cellular models for comparing within and between species gene regulatory

variation

Lymphoblastoid cell lines (LCL) produced from peripheral blood lymphocytes (typically B cells) that are

immortalized by exposure to Epstein-Barr virus (EBV) in vitro. These cell models are genotypically stable

and have few phenotypic perturbations compared with healthy lymphocytes, including a low somatic

mutation rate and no observable aneuploidies (Mohyuddin et al. (2004)). LCL models have been developed

for many uses, including assessing gene regulatory variation. LCLs have many experimental advantages,

including that they are easy to establish from blood samples, provide a consistent source of genetic and

cellular material (Hussain and Mulherkar (2012)), and are robust for transfection and measurement of

episomal reporter activity (Tewhey et al. (2016); Wang et al. (2018); Hansen and Hodges (2022)).

Within humans, LCLs established from diverse human populations have been used to link genetic

haplotype variation with variation in gene expression and assess eQTL sharing between populations

(Tewhey et al. (2016); Stranger et al. (2012); Banovich et al. (2018)). Comparing between humans and other

primates, primate LCL models are established with a similar method, but EBV is not sufficient to

immortalize lymphocytes in all primates including rhesus macaques (Mühe and Wang (2015)). Instead,

lymphocryptovirus, a gamma herpes virus relative of EBV, can be used to infect peripheral blood cells and

produce primate LCL lines. Viruses evolve with their hosts, and the species’ barrier for EBV-based

21



immortalization suggests that EBV has co-evolved with humans, but not with other primates like rhesus

macaques. When interpreting species-specific gene regulatory variation in LCLs immortalized with different

viruses, changes due to species-specific changes in cellular environment maybe explained directly by

differences in virus-specific infection and inflammatory response, or indirectly by more general patterns of

species-specific divergence in inflammatory and viral responses. Indeed, viral responses are some of the

most divergent among and within species (Enard and Petrov (2018); Enard et al. (2014); Hagai et al.

(2018)). Teasing these elements apart requires careful comparison of gene expression patterns in primary

and infected lymphocyte to determine which patterns belong to virus-specific responses and which patterns

belong to natural immune responses.

In this section, I have surveyed a variety of sequence- and functional-based approaches for determining

gene regulatory conservation and divergence between closely related species. In the next section, I will

discuss how these methods have been used to identify and interpret the mechanisms of gene regulatory

evolution between species.

1.5 Evolution of enhancers drives species divergence

Real change, enduring change, happens one

step at a time.

Ruth Bader Ginsburg

1.5.1 Gene expression patterns are largely conserved, despite functional gene regulatory divergence

Despite numerous observations from evolutionary, biochemical, and functional assays describing global

gene regulatory divergence between species (Schmidt et al. (2010); Vierstra et al. (2014); Cotney et al.

(2013); Villar et al. (2015)), divergence in gene expression patterns across species’ cell and tissue samples

are remarkably low (Berthelot et al. (2018); Brawand et al. (2011); Breschi et al. (2017)). The paradox of

divergent gene regulation and conserved gene expression challenges the assumption that divergent

regulatory sequence results in divergent gene expression. How do species diverge given that gene regulatory

sequences and functional inputs differ, but gene expression outputs remain so similar?

1.5.1.1 Populations do not tolerate variation with large effects on phenotype; variation with small

effects on phenotype are more often tolerated

To understand the discrepancy between divergence in gene regulatory sequences and gene expression

patterns, we must calibrate our expectations about novel regulation and novel expression patterns. From
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human population genetics, we understand that rare variants often cause deleterious phenotypes, whose

large effects and impact to phenotypic fitness are not tolerated in the genome (Lappalainen and MacArthur

(2021)). Conversely, small effect sizes and small impacts on phenotypic fitness are common within

populations and likely favored in long-term evolutionary divergence between species. Regarding the

evolution of gene expression, any tolerable, sustained variation between species over evolutionary time must

have gradual effects on gene expression and phenotype. Given this, we would not expect divergence in gene

regulatory sequence between species would commonly produce dramatic changes in gene expression with

large effects on fitness.

1.5.1.2 Evolutionary gene regulatory sequence variation can affect TF binding repertoire without

affecting gene regulatory activity

Changes in gene regulatory sequence and logic may not alter levels of gene expression, but instead affect the

timing, tissue-specificity, or types oftrans-element inputs that control the activity of gene regulatory

sequences (Weirauch and Hughes (2010); Yang et al. (2015)). For example, both chimpanzee and human

accelerated sequences may have regulatory activity, but bind different transcription factors, effectively

substituting one set of inputs for another, but still capable of producing regulatory activity (Whalen et al.

(2022); Krieger et al. (2022); Mattioli et al. (2020)). This so-called ”compensatory” mechanism of gene

regulation preserves gene regulatory activity at a locus while allowing for changes to the specific

transcription factors that regulate the activity of this locus. Overtime, changes in transcription factor binding

inputs can diverge as the upstream abundance of transcription factor proteins changes with environment,

tissue type, or timing of gene regulatory activity.

1.5.1.3 Turnover and rearrangement of gene regulatory sequences can affect transcription factor

binding dynamics without altering gene expression

Turnover—the species-specific gain and loss of enhancer activity—or rearrangement of transcription factor

binding site orientation and number may change the regulation of a gene without affecting species-specific

levels of gene expression. Careful comparison of placental mammal liver H3K27ac histone annotated

enhancer sequences revealed that the ancient, shared enhancer sequences had high turnover and produced

species-specific regulatory activity without much deviation in gene expression patterns (Villar et al. (2015);

Berthelot et al. (2018)). Given that enhancer activity is not limited by distance or orientation to its target

gene, different enhancer sequences from two species can have the same transcription factor binding sites,

but the enhancer sequence may localize at different distances relative to the target gene. For regulatory

elements with conserved activity between humans and zebrafish (Taher et al. (2011)) and conserved active
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enhancers from sea-sponges, zebrafish, humans, and mice (Wong et al. (2020)), conservation of TFBS

content despite enhancer sequence variation produces conserved gene regulatory activity. Further, TFBS

sequences are more conserved than flanking sequences within the gene regulatory landscape (Gotea et al.

(2010)), which suggests that evolutionary pressures act on some regions of enhancer sequences more than

other regions. This evidence supports the ”billboard” model relating enhancer sequence to enhancer activity,

where the number and orientation of TFBS within enhancer genotypically may vary, but the locus maintains

gene regulatory activity. Broadly, maintenance of the gene regulatory output despite changes in gene

regulatory sequence can preserve the gene expression levels of target genes.

Together, these works illustrate the complex association between gene regulatory sequence variation and

transcriptional similarity in the evolution of species-specific gene regulation. Variation in gene expression

levels is not the only outcome of gene regulatory sequence variation. Although transcriptional output levels

happen to be one of the easier features to compare between species, other regulatory changes, such as the

repertoire of TFs that bind a sequence, temporal binding attributes, or adaptation to new cellular contexts

can change gene regulatory sequences and activity without changing gene expression levels. The tension

between the evolution of gene regulation and conservation of downstream gene expression suggests that

gene regulation likely evolves before gene expression patterns change between species (if at all). In the

following sections, I will elaborate on the evidence that support that sequence variation and conservation, in

some instances, alters gene expression patterns.

1.5.2 How useful is measuring sequence conservation for determining gene regulatory function?

Although gene regulatory activity can vary widely in the same cell-type across different species, gene

regulatory sequences are ancient and alignable between species (Nord et al. (2013); Villar et al. (2015)).

Given this evidence, one of the major questions surrounding gene regulatory sequence evolution is— How

useful is measuring enhancer sequence conservation for interpreting enhancer activity? Broadly, gene

regulatory sequences have evolved neutrally and are under weaker purifying selection pressure compared

with coding-gene sequences (Huang et al. (2017); Breschi et al. (2017)). Below, I will discuss instances

when enhancer sequence conservation has informed us on enhancer activity and the widespread implications

of neutrally evolving gene regulatory sequences.

1.5.3 Conserved enhancer sequences

In an analysis of genome-wide sequence conservation, coding genes and gene regulatory sequences were

shown to be more conserved compared to regions without appreciable function (Lindblad-Toh et al. (2011)).

However, the few conserved gene regulatory sequences have conserved gene regulatory function.
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1.5.3.1 Ultra-conserved and conserved regulatory sequences

Some of the first comparative genomic studies reported that “ultraconserved” sequences, or sequences with

100% homology between humans and other vertebrates, were found in coding exons and introns, implying

that some might have gene regulatory function. While intriguing, enhancer activity has been demonstrated

only for a limited number of ultraconserved elements (Visel et al. (2008); Hecker and Hiller (2020)) and in

brain development, variation in ultraconserved elements seem to have little or no effect on developmental

phenotype (Snetkova et al. (2021); Pittman and Pollard (2021)). Relaxing the definition from

ultra-conserved to conserved, enhancers with conserved activity (defined by H3K27ac) across placental

livers indicates that these enhancers are more tissue pleiotropic—these enhancers are active across multiple

tissue—and important for core cellular processes (Fish et al. (2017)). A few examples of human-specific

loss of hundreds of conserved sequences illustrate the possible effects on human-specific traits, including

one example of human-specific loss of conserved sequences nearby the androgen receptor gene that resulted

in human-specific loss of penile spines (McLean et al. (2011)). Finally, it should be noted that promoter

sequences have more strongly conserved activity than enhancer sequences (Villar et al. (2015)), which is

important given a promoter may be active across multiple tissues, thus placing these sequences under higher

evolutionary constraint. These examples suggest that sequence conservation can produce phenotypic

variation, however when and how conserved sequences regulate gene targets can be challenging to uncover.

In species evolution, transcriptional patterns in the early stages of development are more conserved

than later stages in development (Cardoso-Moreira et al. (2019); Domazet-Lošo and Tautz (2010); Zhu et al.

(2018)), which indirectly suggests that the regulation of the gene patterns is more conserved in earlier stages

of development. The conservation of enhancer sequences is associated with the conservation of their gene

targets and related genes, suggesting that conservation can act on entire gene regulatory networks (Berthelot

et al. (2018); Laverré et al. (2022)). Given this, it is important to consider the conservation of gene

regulatory sequences and function in the context of the genes and regulatory networks they act on.

1.5.3.2 Conservation of TFBS, neutrality of spacing in-between

While gene regulatory sequences are variable between sequences, individual TFBS motifs are strongly

conserved across species. This concept was first shown in reports that compared TF ChIP-seq binding and

sequence alignments across multiple species (Schmidt et al. (2010); Stergachis et al. (2014)). The degree of

TFBS motif conservation enables machine learning classifiers trained in on human gene regulatory

sequences to predict active gene regulatory sequences across species with good performance, as gene

regulatory TFBS motifs are strongly conserved, and indicative of gene regulatory activity (Chen et al.

(2018)). Although enhancer TFBS sequence motifs are conserved, the spacing sequences in between TFBS
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are not. Signals of evolutionary selection pressure are stronger at homotypic TFBS clusters than sequence in

between clusters in humans and chimpanzee sequences (Gotea et al. (2010)). This indicates that regions of

enhancer sequences between TFBS can evolve neutrally, while TFBS motifs evolve under constraint.

Maintaining TFBS content may be sufficient to maintain gene regulatory activity in human and zebrafish

syntenic enhancer sequences, even as underlying gene regulatory sequences diverge (Taher et al. (2011)).

Indeed, transcription factor binding site number and orientation can vary, and in Ciona, suboptimal spacing

between TFBS enhancer sequences resulted in weaker, but more cell-type-specific enhancer activity (Farley

et al. (2015)). Finally, enhancer activity at intronic enhancers (i.e., between exons) can be conserved

between species without sequence conservation (Yang et al. (2015)), suggesting that the location of a

regulatory element may influence function more than sequence content. Taken together, these works imply

that both sequence conservation of TFBS motifs and diversification of between-motif sequences can tip the

balance for conservation or divergence of gene regulatory activity.

In conclusion, sequence conservation at a gene regulatory element can indicate that a region has

putative regulatory function. However, the correlation between gene regulatory sequence and gene

regulatory activity is weak considering the sequence variability within gene regulatory sequences. Effective

modeling of gene regulatory sequence evolution must consider both attributes when evaluating effects on

gene regulatory activity.

1.5.4 Divergent enhancer activity—rapid turnover between species

Enhancer activity turns over rapidly between species, and the process of turning over activity is a major

driver of evolutionary divergence between species. (Wray (2007)). This is illustrated by analysis of

H3K27ac histone modifications across 19 placental mammal livers, which reported that 5% of human gene

regulatory activity is conserved compared with other species (Villar et al. (2015)). Complementing this,

comparisons of multiple tissue DHS open chromatin maps have demonstrated the chromatin accessibility is

not conserved between mouse and humans (Vierstra et al. (2014); Yue et al. (2014)). Sequences within

species-specific open chromatin are mappable, but not often found in open chromatin regions of both

species.

1.5.5 Mechanisms of functional gene regulatory evolution in humans

Gene regulatory evolution can arise by several different mechanisms, including chromatin accessibility

changes (Peng et al. (2019); Vierstra et al. (2014)) that reflect gains and losses of regulatory activity, as well

as species-specific re-purposing of gene regulatory elements from one tissue to another. Evolutionarily,

gains of non-coding elements correlate with genes that have evolved during specific periods of cellular
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innovations, including development, extracellular receptor signaling, and post-translational modifications

(Domazet-Lošo and Tautz (2010); Lowe et al. (2011)). Other mechanisms include changes in transcription

factor abundance and binding locations relative to a target gene, (Nowick et al. (2009); Schmidt et al.

(2010); Perdomo-Sabogal and Nowick (2019)), cis-regulatory DNA mutations, and human acceleration at

neurodevelopmental enhancers (Capra et al. (2013a); Pollard et al. (2006)), and genomic rearrangements

(Kronenberg et al. (2018); Warren et al. (2020)).

1.5.6 Theory and models of enhancer sequence evolution

If enhancer activity is species-specific, yet the sequences underlying enhancer elements are ancient and

present across species genomes, then what determines the rapid turnover of gene regulatory sequences?

Below, I will discuss what is known about the evolution of enhancer sequences and its relationship with

species divergent activity.

1.5.6.1 Nucleation model of enhancer sequences with multiple ages

Most enhancer activity extinguishes over long evolutionary periods due to turnover. So then, for regions

with species-specific enhancer activity, what sequence features in ancient enhancers promote species

divergence? Species-specific enhancer sequences identified from comparing human and mouse H2K27ac

developmental neocortex regions first illustrated that enhancer sequences were composites of older core

sequences and younger derived sequences (Emera et al. (2016)). The significance of this finding suggested

that one underappreciated mode of enhancer sequence evolution was sequences produced from genomic

rearrangements that accumulate during species divergence.

The authors proposed the nucleation model of enhancer sequence evolution—that the sequences of

active enhancer that are not extinguished have evolved by adding on new, younger pieces of DNA (Figure

1.6). In this model, a de novo sequence would emerge in the ancestral genome, possibly through repeat

element transposition, and nucleate TFBSs to create a “proto-enhancer”, or minimally active regulatory

sequence. The gain of TFBS motifs would likely place that proto-enhancer sequence under some level of

evolutionary constraint. The authors suggest that a specie’s genome may have many proto-enhancers, which

would allow for mature, species-specific gene regulatory sequences to form at any time. However, it is

unclear whether proto-enhancer sequences perform gene regulatory functions at all. Overtime, many

proto-enhancer sequences may turn over, yet it is unclear if turnover perturbs gene regulation activity. A few

of the sequences that resist turnover presumably go on to gain younger sequences with new TFBS that could

either produce or reinforce existing gene regulatory activity. This model would explain the author’s

observation of divergent developmental neocortical enhancer sequences and their multiple sequence ages,
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but questions remain around the function and relevance proto-enhancers and composite enhancers to gene

regulatory function genome-wide.

Figure 1.6: Enhancer sequence nucleation model
A model of enhancer evolution in the neocortex. Based on characterization of the most recently evolved
enhancers in our dataset, enhancers in the neocortex likely emerge as proto-enhancers, short sequences
with low regulatory information content. These may emerge in situ from unconstrained sequences or
arise from transposable element repeats. Many of these elements are likely lost over time, but some
serve as nucleation points for complex enhancer cores to evolve. Based on characterization of the an-
cient enhancers in our dataset, proto-enhancers that survive undergo substantial modification, becoming
composites of ancient and derived functional segments. From Emera et al. (2016)

1.5.6.2 Transposable element integration may produce gene regulatory elements

Transposable elements (TEs) are repetitive sequences that replicate and insert copies of their genetic

sequence throughout eukaryotic genomes (Chuong et al. (2016)). Retrotransposition of TEs is considered a

primary source of genome expansion, and recently, 53% of the human genome is estimated to have TE

derived-sequence (TEDS) origins (Nurk et al. (2022)). Autonomous classes of TEs, such as long

interspersed nuclear elements (LINEs), contain sequences that encode open reading frames for the

replication machinery that copies L1 repeats, while other non-autonomous classes, such as short

interspersed nuclear elements (SINEs) elements, rely on LINE replication machinery to spread genetic

copies. TEs are typically species-specific, and co-evolve as their host genomes diverge. Three classes of

TEDS—L1, SINE/Alu, and SVA families— have evidence of active retrotransposition in the human

genome, and their random insertions has been previously associated with germline diseases and cancer

(Belancio et al. (2009); Burns (2017); Chen et al. (2005)).

Evidence suggests that TEDS have gene regulatory activity and that random insertions throughout the

genome can gain gene regulatory activity if host factors, such as zinc fingers, do not actively silenced TEDS

insertions (Elbarbary et al. (2016); Chuong et al. (2013, 2016, 2017)). The range of evidence for this

phenomenon varies from specific examples of the necessity and sufficiency of a TED sequence for gene

regulatory activity, such as the role of an L2 LINE element in a stickleback GDF6 enhancer (Indjeian et al.
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(2016)), to broad descriptions about the prevalence of TEDS in putative enhancer and promoter annotated

regions (Chuong et al. (2013); Sundaram and Wysocka (2020)). Enrichment of TEDS in TFBS ChIP-seq

data further reinforces that TEDS sequences have regulatory potential (Marnetto et al. (2018); Schmidt et al.

(2012); Fueyo et al. (2022)). Evaluating the evolutionary history of SINE/Alu subfamilies suggests that

SINE/Alu TEDS may acquire H3K4me1 gene regulatory annotations over time (Su et al. (2014)). However,

cis-regulatory elements are depleted of TEDS compared with the genomic background, suggesting gene

regulatory activity does not favor TEDS insertions. Some have proposed that TEDS are “domesticated” or

“co-opted” to become active gene regulatory regions (Figure 1.7). While this concept provides a facile

interpretation on the observed links between gene regulation and TE origins, it clashes with the widespread

genomic depletion of TEDS-based enhancers. The prevalence of TEDS-associated regulation may be

predicted by whether the gene it regulates has a duplicate or not (Correa et al. (2021)). Together, at specific

loci with specific genomic features, TEDS may provide the raw genetic material for species-specific

enhancer elements, but more work is needed on the genomic contexts that tolerate this type of regulatory

evolution

Figure 1.7: Proposed model of how transposable element derived sequences may form into species-
specific gene regulatory elements
Hierarchy of evidence to consider when determining whether a TE has been co-opted for host functions.
Many TEs have biochemical hallmarks of regulatory activity on the basis of genome-wide assays. How-
ever, additional evidence is required to determine which of these TEs alter the regulation of host genes
and affect organismal phenotypes and fitness. From Chuong et al. (2016)

1.5.6.3 Mechanisms of gene regulatory evolution in cis and trans

A major gap in our understanding of gene regulatory evolution is how often species’ differences in gene

regulation are produced from cis-regulatory mutations that affect local gene regulatory function and activity

at target genes or trans-regulatory changes in the cellular environment (for example TF protein abundance)

29



that drives widespread differences in gene regulatory activity between species. If the environment

completely determined gene regulatory differences between species, we would expect that controlling for

environmental factors would reveal no quantifiable difference in gene regulation between species. However,

testing gene regulatory activity across homologous species’ sequences in a single cellular environment, such

as across the genomes of Drosophila species with STARR-seq (Arnold et al. (2014)), comparative MPRAs

in humans and mouse embryonic stem cells (Mattioli et al. (2020)), and in allele-specific gene expression in

chimeric human and chimp tetraploid neural progenitor stem cells and differentiated cranial neural crest

cells (Agoglia et al. (2021); Gokhman et al. (2021)), support that 30-40% of divergent gene regulation can

be attributed to changes in cis-regulatory DNA.

Some speculate that cis- and trans- regulatory variation have different contributions to gene regulatory

divergence. In theory, trans-regulatory variation may to contribute more to gene regulatory variation within

populations, while cis-regulatory variation might fix heritable gene expression patterns into the genome

(Hill et al. (2021)). Under the omnigenic model, trans-variation is estimated to explain 70% of trait

heritability (Liu et al. (2019)). Indeed, trans-acting variation explains a proportion of variation in some

eQTL studies (Hill et al. (2021); Rotival et al. (2011)) and can affect the expression of many downstream

gene targets. Most recently in large eQTL studies on human population variation in blood gene expression,

trans-eQTL affect gene regulatory variation through transcription factors (Võsa et al. (2021)). Between

yeast species, cis-regulatory variation is thought to contribute more to divergence (Metzger et al. (2017);

Coolon et al. (2014)) via phenotypic variation that becomes fixed in species genomes. Beyond this, the

evolutionary dynamics that fix phenotypic variation into the regulatory genome are not well understood.

1.6 Chapters Outline

Having outlined the key concepts for identifying gene regulatory elements, determining their activity, and

interpreting evolutionary conservation and genetic variation at these loci, in this dissertation my work will

focus on bridging these concepts together to better interpret the links between enhancer sequence

evolutionary history, determining the modes of functional gene regulatory divergence between humans and

rhesus macaques, and how this evolution contributed to human-specific traits.

Broadly, we do not understand how evolutionary history of gene regulatory sequences relates to gene

regulatory function, species divergence, and interpretation of disease associated mutations. It is unclear if

enhancer sequence evolution requires enhancer sequence nucleation. Understanding how human gene

regulatory DNA and function has evolved is necessary for understanding the tenets of transcriptional

regulation, interpreting non-coding mutations and their effects on gene regulation related to human
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speciation, human disease, and for the development of synthetic gene regulatory technologies. In the first

two chapters, I will specifically address how the evolutionary history of enhancer sequences relates to

function by dissecting sequence ages, genomic attributes, and associated functional features across human

enhancer sequences. I will test the proposed “nucleation” model of enhancer sequence evolution and update

this model with new results. In the third chapter, I will explore active cis- and trans-based regulatory

divergence of human and rhesus macaque LCLs and its impact on divergent human phenotypes.

1.6.1 Chapter 1—Models of human enhancer sequence evolution

I explore the broad questions above by evaluating the sequence ages of transcribed enhancer RNAs across

tissues. Using sequence features, functional data, human genetic variation, and transposable element

information, I address the nucleation model of enhancer evolution and expand on the diverse ways that

enhancer sequences can evolve over time.

The research question for this chapter asks—across tissues, do human enhancers have evolutionary and

functional evidence to support the nucleation model? The aim of this chapter is to assess the support for

the enhancer nucleation model and regulatory functions across enhancer by assigning sequences ages

to 112 FANTOM tissue eRNA dataset. First, we aged human transcribed enhancer sequences from

FANTOM5 tissue datasets (Andersson et al. (2014)) by estimating the most recent common ancestor of that

sequence with multiple sequence alignments. We then determine the enrichment of “nucleated”, or

multi-origin enhancer sequences compared with length- and chromosome-matched non-coding genomic

background sequences from 100x shuffles. To bridge evolutionary enhancer history, we compare

multi-origin and “proto-enhancer” single-origin enhancer sequences for function, assessed tissue pleiotropy,

estimated purifying selection pressures (Siepel (2005); Huang et al. (2017)), investigated common genetic

variation affecting biochemical activity (van Arensbergen et al. (2019)), and traced transposable element

origins across evolutionary ages. For many of the statistical analyses, I chose to test for significance using

Fisher’s Exact Test (FET). This allowed me to evaluate whether enhancer sequence ages, TFBS enrichment,

and other regulatory attributes were significantly different in the observed regulatory sequences compared

with the expected non-coding genomic background. Because our sample sizes were small enough, we could

apply FET instead of the chi-squared test. I report the odds-ratio from the FET to convey the enrichment, or

strength of the observation compared with expectation.
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1.6.2 Chapter 2—Enhancers with multiple sequence origins are functional, under evolutionary

constraint, and associated with human variability in gene expression

In this chapter, I focus on enhancer sequence evolution in the subset of enhancers with multiple origins to

ask—when a human enhancer sequence has multiple origins, are all regions of that enhancer functional?

The aim of this chapter seeks to determine whether younger, derived sequences within multi-origin

enhancers are functional, under selective pressures, and associated with human gene regulatory

variation using enhancer sequence ages, transcription factor binding, sequence conservation

estimates, and eQTL enrichment. First, we aged human transcribed enhancer sequences from 112

FANTOM5 tissue datasets and candidate cis-regulatory elements (cCREs) from HepG2 and K562 ENCODE

datasets (The ENCODE Project Consortium et al. (2020)) using the methods in chapter 1. Then, we focus

our analyses on transcribed enhancer sequences with multiple origins and show that these sequences evolve

step-wise. To evaluate function, we analyze 119 HepG2 and 249 K562 ENCODE TF ChIP-seq datasets for

overlap with the oldest “core” and younger “derived” regions of enhancer sequences. We used SHARPR

estimates of per base pair MPRA activity in HepG2 and K562 (Ernst et al. (2016)) to measure the activity of

core and derived sequences. Finally, we evaluated purifying selection pressures (Huang et al. (2017)),

common human genetic variation (The 1000 Genomes Project Consortium (2015)) and eQTL data from

GTEx (GTEx Consortium (2017)) to interpret how evolutionary history relates to modern human variation.

1.6.3 Chapter 3—Genome-wide dissection of the mechanisms of gene regulatory divergence between

human and rhesus macaque

In this chapter, I address how evolutionary history relates to enhancer function in the context of regulatory

activity divergence between human and rhesus macaque open chromatin sequences from LCL models.

There is a major gap in knowledge about how often cis-regulatory mutations at local non-coding DNA

sequences ortrans-regulatory changes in the cellular environment drive gene regulatory divergence between

species. In this chapter, I will ask—what are the mechanisms driving gene regulatory activity divergence

among human and primate enhancers? Is it forces acting on cis-regulatory DNA or on trans-regulatory

cellular environment factors like TF proteins? The aim of this chapter is to use ATAC-STARR-seq to

quantify mechanisms of gene regulatory divergence between humans and rhesus macaques, estimate

positive selection on divergent human gene regulatory elements, and evaluate effects of modern

human variation in positively selected regions to understand human biological traits and

disease-associations in evolving sequences. In collaboration with Tyler Hansen and Emily Hodges, we

used ATAC-STARR-Seq (Hansen and Hodges 2022) to identify human and rhesus gene regulatory

homologs from species’ LCLs and test for gene regulatory activity. First, we compared within and across
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species activity of open-chromatin homologs to label gene regulatory divergence due to trans-cellular

environment differences and cis- sequence differences. Then, we used PhyloP tests to estimate acceleration

on human and rhesus-specific branches. Finally, we leveraged PheWAS data from the UK Biobank to

associate genetic variation with electronic health record traits and determine the biological function of

divergent gene regulatory regions under positive selection.
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CHAPTER 2

Modeling the evolutionary architectures of transcribed human enhancer sequences reveals distinct

origins, functions, and associations with human-trait variation

2.1 ABSTRACT

Motivation: Despite the importance of gene regulatory enhancers in human biology and evolution, we lack a

comprehensive model of enhancer evolution and function. This substantially limits our understanding of the

genetic basis of species divergence and our ability to interpret the effects of non-coding variants on human

traits.

Results: To explore enhancer sequence evolution and its relationship to regulatory function, we traced

the evolutionary origins of transcribed human enhancer sequences with activity across diverse tissues and

cellular contexts from the FANTOM5 consortium. The transcribed enhancers are enriched for sequences of

a single evolutionary age (“simple” evolutionary architectures) compared to enhancers are composites of

sequences of multiple evolutionary ages (“complex” evolutionary architectures), likely indicating constraint

against genomic rearrangements. Complex enhancers are older, more pleiotropic, and more active across

species than simple enhancers. Genetic variants within complex enhancers are also less likely to associate

with human traits and biochemical activity. Transposable-element-derived sequences (TEDS) have made

diverse contributions to enhancers of both architectures; the majority of TEDS are found in enhancers with

simple architectures, while a minority have remodeled older sequences to create complex architectures.

Finally, we compare the evolutionary architectures of transcribed enhancers with histone-mark-defined

enhancers.

Conclusions: Our results reveal that most human transcribed enhancers are ancient sequences of a

single age, and thus the evolution of most human enhancers was not driven by increases in evolutionary

complexity over time. Our analyses further suggest that considering enhancer evolutionary histories

provides context that can aid interpretation of the effects of variants on enhancer function. Based on these

results, we propose a framework for analyzing enhancer evolutionary architecture.

2.2 INTRODUCTION

Shlyueva et al. (2014) Enhancers are non-coding DNA sequences bound by transcription factors that

regulate gene transcription and establish tissue- and cell-specific gene expression patterns (Shlyueva et al.

(2014)). Rapid turnover of sequences with enhancer activity is a common evolutionary process that

contributes to species-specific gene regulation and phenotypic diversity (Wittkopp and Kalay (2012)).
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Despite the importance of gene regulatory enhancers in human biology and evolution, we lack a

comprehensive model of their evolutionary and functional dynamics.

Comparative genomic studies have demonstrated that gene regulatory activity turns over rapidly

between species. For example, active liver enhancers defined by histone modifications are rarely shared

among 20 placental mammals, though most liver enhancer sequences are alignable across diverse species

(Villar et al. (2015)). Similarly, the majority of liver transcription factor (TF) DNA binding events among

five vertebrates are private to a single species, and DNA binding site divergence between species is largely

explained by lineage-specific mutations that activate and inactivate binding sites (Schmidt et al. (2010)).

Although enhancer activity is often species-specific, DNA sequences underlying active enhancers are often

alignable across species and originate from a common ancestor. For example, 80% of mouse DNase I

hypersensitive site (DHS) sequences originate from the last common ancestor of mice and humans, yet only

36% of DHS sites have shared open-chromatin activity between humans and mice (Vierstra et al. (2014)).

Similarly, a comparison of human, rhesus, and mouse enhancers involved in embryonic limb development

showed that most human-specific gains in enhancer activity occurred in ancient mammalian sequences, most

often due to a small number of substitutions (Cotney et al. (2013)). These studies indicate that most

enhancer sequences do not maintain consistent activity over evolutionary distances and suggest that a

common mode of enhancer evolution has relied on the evolution of new functions in DNA sequences with

ancient origins (sometimes referred to as exaptation). Thus, it is important to distinguish the evolutionary

history of enhancer activity, which is often species-specific, from the history of the underlying DNA

sequence, which is often ancient. For brevity, we use the term “enhancer” when discussing sequence with

enhancer activity in a context of interest. Species-specific patterns of enhancer activity can arise from a

range of genomic changes. Human-specific adaptive nucleotide substitutions in conserved developmental

enhancers have been shown to drive robust in vivo reporter activity in mouse compared with chimpanzee

and rhesus orthologs (Prabhakar et al. (2008); Capra et al. (2013a)). Despite this, most gains of enhancer

activity are not under strong positive selection (Pollard et al. (2006); Moon et al. (2019); Thurman et al.

(2012)). Repetitive sequences derived from transposable elements (TEs) also contribute to species-specific

enhancer activity (Chuong et al. (2017)). Though important, TE derived sequences (TEDS) are depleted in

sequences with enhancer activity compared to the rest of the genome (Emera et al. (2016); Simonti et al.

(2017)). Together, these results illustrate that enhancer sequence evolution is dynamic and can proceed

through different evolutionary trajectories.

Determining evolutionary origins by estimating sequence age—i.e., the common ancestor in which a

homologous sequence first appeared—has expanded knowledge of enhancer sequence evolution, biological

functions, and associations with complex human diseases. Most sequences with human liver enhancer
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activity are ancient, even though their activity turns over rapidly between species (Villar et al. (2015)).

Furthermore, regulatory elements of different ages have different gene targets and cross-species analyses

have revealed three periods of regulatory sequence innovation during vertebrate evolution (Lowe et al.

(2011)), suggesting sequences from distinct periods have been co-opted to regulate specific gene pathways.

Specific TE insertions provided new TF binding motifs through these evolutionary epochs, expanding gene

regulatory regions and, in some cases, driving shifts in nearby gene expression (Marnetto et al. (2018)).

Enhancer evolutionary origins may also be relevant to their roles in disease, as human enhancers with older

sequence ages are more enriched for heritability of complex traits than enhancers in younger sequences,

independent of the conservation of enhancer function across species (Hujoel et al. (2019)). When

interpreting these and our results, we emphasize that estimating the age of sequences with human enhancer

activity is not necessarily the age when the sequence first gained enhancer activity. Further complicating

these analyses, regulatory regions can contain sequences of multiple ages, suggesting that the juxtaposition

of sequences of different origins may benefit or change enhancer function over time. A pioneering analysis

of conserved mammalian neocortical enhancers found that many had composite sequences of multiple ages

and origins (Emera et al. (2016)). A two-step life cycle model was proposed to explain enhancer sequence

evolution. In the first step, short proto-enhancer sequences of a single evolutionary origin gain weak

enhancer activity, and most are inactivated over time. In the second step, a fraction of proto-enhancers

acquires more stable activity through the integration of younger sequences carrying relevant TF binding

sites (TFBSs) that could create or modify TF-complex interactions. It is unclear whether the juxtaposition of

sequences of different origins represents the common mode of enhancer sequence evolution across contexts.

Further, how these evolutionary histories influence human enhancer function has not been explored.

Previous work has largely overlooked the evolutionary architecture of enhancers—i.e., the evolutionary

age(s) of sequences with enhancer activity—which more precisely reflects the evolutionary events that

produced them. Thus, there is a gap in our understanding of the evolutionary dynamics that result in

sequences with enhancer activity and how these histories relate to gene regulatory function. Here, we build

on previous work (Emera et al. (2016); Hujoel et al. (2019); Lowe et al. (2011); Marnetto et al. (2018)) to

quantify enhancer sequence age architecture—the age of every base pair within a sequence with enhancer

activity—across human transcribed enhancers. We then evaluate how sequence age architecture relates to

enhancer function, evolutionary stability, and tolerance to human variation. We find that transcribed

enhancer sequences have simpler age architectures than expected, with the majority consisting of sequence

of a single age and a minority with multi-age evolutionary architectures. Surprisingly, given recent work

(Emera et al. (2016)), enhancers of both architectures have similar evolutionary conservation after

accounting for age differences, suggesting that increasing complexity over time is not required for stable
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gene regulatory function. Nonetheless, enhancers with different architectures differ in their associated

functional features. Pleiotropy and cross-species activity are higher in enhancers with multi-age

architectures, while functional differences in enhancer activity due to natural human variation occur slightly

more frequently in enhancer sequences of a single age. Based on these observations, we present a model of

enhancer sequence evolution and provide a framework for dissecting the evolution and function of human

enhancer sequences.

2.3 RESULTS

2.3.1 Estimating enhancer ages using vertebrate multiple species alignments

In this study, our goal is to characterize the evolutionary architecture of human enhancer sequences and

associations with regulatory function. In this section, we describe the datasets and strategies we used to

define enhancer sequence ages and provide context necessary for interpreting our results. We analyzed

30,439 transcribed human autosomal enhancers identified in 112 cell and tissues based on enhancer RNA

(eRNA) datasets from the FANTOM5 consortium (Andersson et al. (2014)). We focused on transcribed

enhancers because, eRNA are enriched for sequences with functional activity in massively parallel reporter

assays and mark sequence boundaries sufficient for enhancer function with high specificity (Andersson et al.

(2014); Benton et al. (2019); Tippens et al. (2020)). We also analyze the architectures of enhancers

identified based on histone modification patterns from the Roadmap Epigenomics Consortium to

complement the main eRNA results. We assigned sequence ages to enhancers based on the evolutionary

histories of the overlapping syntenic blocks from the UCSC 46-way alignment of diverse vertebrate species

spanning 600 million years of evolution (Figure 2.1; Methods). For simplicity, we grouped most recent

common ancestor (MRCA) nodes into 10 age categories and report sequence age as the oldest ancestral

branch on which the sequence first appeared (Methods). We generated random sets of

enhancer-length-matched, chromosome-matched, non-coding genomic sequences throughout to create null

distributions for interpreting enhancer attributes (Methods and Figure S1).

2.3.2 Enhancers are older, longer, and more conserved than the genomic background

As expected from previous observations (Emera et al. (2016); Lowe et al. (2011); Marnetto et al. (2018);

Villar et al. (2015)), we find that sequences with human enhancer activity are older, longer, and more

conserved than expected from the non-coding genomic background, supporting that they have been

maintained due to their regulatory functions. Among human enhancer sequences, 54% originate from the

common ancestors of Eutherians, while 35% can be traced to older ancestors, and 11% can trace their

origins to younger ancestors. Human enhancers are significantly older than matched sets of random
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sequences from across the human genome (Figure S2A, D). Old enhancer sequences (origins before the

Eutherian ancestor) are significantly longer than younger enhancer sequences and longer than expected from

age-matched regions from the random genomic background sets (Methods; Figure S2B, E). Conversely,

younger enhancers are shorter than expected. Similarly, older enhancers are more conserved than younger

enhancers and more conserved than expected from the genomic background (Figure S2C). This highlights

that sequence age and conservation provide complementary information; age estimates the origin of the

sequence, while conservation estimates constraint on sequence variation.
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Figure 2.1: Illustration of the method for mapping enhancer sequence age architecture.
We quantify the age of a sequence with human enhancer activity based on the oldest most recent com-
mon ancestor (MRCA) in overlapping syntenic blocks from the MultiZ multiple sequence alignments
of 46 vertebrates (inset). Enhancer age is assigned as the oldest, overlapping syntenic block age. Mil-
lions of years ago (MYA) divergence estimates from TimeTree (Hedges et al., 2015) are annotated in
parenthesis in the color key. As expected from previous work, we find that enhancers are older, longer,
and more conserved than expected from the genomic background (Figure S2).

2.3.3 Enhancers are enriched for simple evolutionary sequence architectures

The majority (65%, N = 19,857) of human transcribed enhancers are found within a single syntenic block

(i.e. they are of a single age). The median enhancer length is 292 bp, and the median syntenic block

genome-wide is 54 bp (Figure S3). Thus, it was surprising that only 35% (N = 10,581) of enhancers mapped

to more than one syntenic age (Figure 2.2B). To evaluate whether the sequence age architectures of

transcribed enhancers differ from what would be expected given the length distributions of enhancers and

syntenic blocks, we compared the number of syntenic bocks with distinct ages in enhancers versus matched

non-exonic regions from the genomic background (Methods). Human enhancers are enriched for simpler

architectures compared with the non-coding genomic background (Figure 2.2C; 1.3-fold enrichment for a

single age; p= 7.6e-107 Fisher’s Exact Test; 0.1–0.5-fold depletion for multiple age segments; p= 7.1e-12).

This suggests constraint against insertions and deletions among sequences with gene regulatory potential.

These differences were greatest among enhancer architectures with Therian and Eutherian sequence origins

38



(Figure S5B), and complex architectures are depleted among enhancers of most ages (Figure S6B). This

further supports that enhancer architecture is constrained across ages and does not favor complex

architectures. For simplicity, we refer to enhancer sequences with greater than or equal to the median

segments of different ages across enhancers as having complex sequence age architectures (“complex”

enhancers). Enhancers with fewer than the median age segments have simple sequence age architectures

(“simple” enhancers, Figure 2.2A). Given that the majority (65%) of transcribed enhancers consist of a

single age segment, all enhancer sequences of two or more ages are classified as complex (35%). We

assigned complex enhancer ages according to its oldest sequence age, and note that human-specific

enhancers can only be classified as simple enhancers because the oldest sequence age maps to the human

branch (Methods).

2.3.4 The oldest sequences occur in the middle of complex enhancers

Among complex enhancer sequences, we define the oldest sequence as the “core” and younger sequences as

“derived” segments (Figure 2.2A). The core is generally at the center of the enhancer, while younger

sequences are generally flank core sequences in complex enhancers (Figure 2.2D; Methods). This

organization is specific to enhancer sequences; we do not observe similar organization in matched regions

from the genomic background with complex architectures. Stratifying complex enhancers by core age

revealed that this pattern was driven by enhancers with older sequence origins (Figure S7). Enhancers with

three or more age segments also are enriched for the oldest sequence in the middle, further supporting the

prevalence of this organization across complex enhancer sequences (Figure S8). In younger complex

enhancers, core sequences are slightly more likely towards sequence edges. This may reflect the fact that

most young complex enhancers consist of only two ages, one older and one younger (Figure S5). This

suggests that older core sequences and younger flanking sequences are non-randomly arranged within

complex enhancer architectures.

2.3.5 Complex enhancers are longer and older than simple enhancers

Complex enhancers are significantly longer than simple enhancers (Figure 2.2E and Figure S9; median 347

versus 259 bp; p ¡ 2.2e-308, Mann Whitney U test). Some length difference is expected based on the

definition of complex enhancers, since longer regions are more likely to overlap multiple syntenic blocks by

chance. To evaluate whether the length difference between simple and complex enhancers was greater than

expected, we shuffled non-coding genomic regions matched on enhancer length and assessed architectures

(simple or complex) and ages in the resulting random regions (Methods; Figure S1). We observed that

complex enhancer sequences are slightly, but significantly, longer than expected (median 347 bp versus 339
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bp; p = 2.5e-06, Mann Whitney U test) and that complex enhancers have a stronger positive correlation

between length and age than expected (Figure S9B; 10.6 bp/100 million years (MY); p= 1.1e-17 versus 4.3

bp/100 MY; p= 3.7e-251, linear regression). In contrast, simple enhancers retain similar lengths over time

(-0.7 bp/100 MY; p= 0.5 versus -5.5 bp/100 MY, p¡ 2.2e-308) and are also slightly longer than expected

(Figure S9A, median 259 bp versus 255 bp; p = 7.3e-05). We note that complex enhancer length plateaus

among sequences older than the Mammalian ancestor (Figure S9A). This pattern also holds when broken

down by syntenic block, though complex syntenic blocks are consistently shorter than simple syntenic

blocks (Figure S10). Next, we compared the sequence age distribution for simple and complex architectures

(Figure 2.2F). Complex enhancers are generally older than simple enhancers. Sixty-eight percent of simple

enhancer sequences are derived from the Eutherian ancestor, while 12% are younger and 19% are older.

Simple enhancers are enriched for Eutherian sequences and are older than expected overall (Figure S6A; p¡

2.2e-308). Conversely, 30% of complex enhancers are derived from the Eutherian ancestor, 9% are younger

than the Eutherian ancestor and 61% of complex enhancers are older. Complex enhancers are enriched for

sequences older than Eutherian ancestor and are also older than expected (p ¡ 2.2e-308). Consistent with the

overall depletion for complex architectures reported in the previous section, enhancers stratified by age are

also depleted of complex architectures and this trend does not appear time-linear (Figure S6B). The

presence of many simple enhancers with old sequence ages suggests that complex evolutionary architecture

is not necessary for survival over long periods.

2.3.6 Complex enhancers are more pleiotropic and more conserved in activity across species than

simple enhancers

In this section, we evaluate whether simple and complex enhancers have different patterns and breadth of

activity across tissues and species. Among tissues and cell types, the enrichment for simple enhancers

versus complex varies. Most contexts are enriched for simple enhancers, including many blood cell, brain,

and pregnancy-related cell types, while the contexts with complex architecture enrichment include smooth

muscle and digestive tissues (Figure S11). Enhancers with ancient origins and conserved activity across

diverse mammals are known to be more pleiotropic—i.e. they have activity across multiple human tissues

(Fish et al. (2017)). Thus, we hypothesized that complex enhancers would be more pleiotropic than simple

enhancers given their older age distribution. To test this, we quantified the overlap of enhancer activity

across 112 tissue and cell enhancer datasets and stratified by architecture (Methods). To control for length

differences between simple and complex enhancers in this and subsequent analyses, we trimmed or

expanded enhancers around their midpoints to match the dataset-wide mean length (310 bp). Complex

enhancers have activity across significantly more biological contexts than simple enhancers (Figure 2.3A;

40



A Simple Architecture Complex Architecture

B

Human 
Genome

Enhancer

OldestYounger Younger
Derived DerivedCore

Normalized Bins
N = 331 enhancers

Homo
Prim
Euar
Bore
Euth

Ther
Mam
Amni
Tetr
Vert

Normalized Bins
N = 583 enhancers

Syntenic
Blocks

Enhancer

-50 -25 0 +25 +50-50 -25 0 +25 +50

C

F
ol

d 
E

n
ric

hm
en

t v
 B

kg
d

(lo
g2

 s
ca

le
d)

1 2 3 4 5

Number of Age Segments

0.5

0.7

1

1.4

M
ea

n 
S

eq
ue

nc
e

 A
ge

Normalized Bin
N = 10581 enhancers

-50 -25 0 +25 +50

0.22

0.24

0.26

0.28
Enhancer Shuffle

19857 6561 2767 842 268

D

E
E

nh
an

ce
r 

Le
ng

th
 b

p

H
om

o
P

rim
E

ua
r

B
or

e
E

ut
h

T
he

r
M

am
A

m
ni

Te
tr

V
er

t
Sequence age

%
 o

f A
rc

hi
te

ct
ur

e

0.0

H
om

o
P

rim
E

ua
r

B
or

e
E

ut
h

T
he

r
M

am
A

m
ni

Te
tr

V
er

t

Sequence age

0.6

0.4

0.2

200

250

300

350

400
ComplexSimple

Simple N = 19857
Complex N = 10581

Homo
46

0

Prim
1051

280

Euar
149

99

Bore
1250

541

Euth
13476

2968

Ther
1577
2251

Mam
1081
2100

Amni
473
945

Tetr
133
483

Vert
621
914

Age
Simple N

Complex N

F

Figure 2.2: Simple and complex enhancers have distinct evolutionary architectures, lengths, and ages.
(A) Schematic of simple and complex enhancer architectures based on overlapping syntenic block ages.
Simple FANTOM enhancers are composed of sequence of one evolutionary age, while complex FAN-
TOM enhancers contain sequence of multiple ages. Within complex enhancers, the oldest segment is
the “core” and younger segments are “derived.” (B) Example simple and complex enhancer architec-
tures from 921 random autosomal FANTOM enhancers. The majority (65%, N =19,857) have simple
architectures. For illustration, the age of each enhancer sequence is summarized across 100 equally
spaced bins; color indicates the age of each sequence in each bin. (C) Enhancers have significantly
fewer segments of different ages than expected by chance; simple FANTOM enhancers are 1.3-fold
enriched versus 100 length-matched random shuffled sets; p = 7.6e-107, Fisher’s Exact Test). (D)
Complex enhancers are older at their centers on average. Dividing complex enhancers and length- and
architecture-matched genomic background into 100 equally spaced bins, mean complex enhancer se-
quence age from 10,581 complex enhancers and 17,277 complex genomic background sequences from
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(0.275 versus 0.265 substitutions per site; p = 4.9e-166, Mann Whitney U). This pattern is mainly driven
by older enhancers (Figure S7, S8). (E) Complex enhancers are longer than simple enhancers (median
347 bp versus 259 bp; p¡ 2.2e-308, error bars give 95% bootstrapped confidence intervals). The number
of enhancers of each type in each age bin are given below the panel. (F) Complex enhancers are signif-
icantly older than simple enhancers (61% complex versus 19% simple enhancers older than Eutherian).
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7.4 versus 4.8 contexts; p = 5.9e-199, Mann Whitney U). Enhancer pleiotropy overall increases with age,

and complex enhancers are consistently more pleiotropic than age-matched simple enhancers (Figure 2.3A).

Considering the full length of enhancers, we find that length is similarly correlated with pleiotropy in

age-matched simple and complex enhancers (Figure S12). These results suggest that complex enhancers are

more likely to have activity across biological contexts than simple enhancers, and increased length

associates with increased pleiotropy in both simple and complex enhancers. We next asked if simple and

complex architectures differed in the conservation of enhancer activity across species. This analysis required

enhancer maps from the same tissue across species; thus, we assigned age architectures to H3K27ac+

H3K4me3- enhancers identified across liver samples from nine placental mammals (Villar et al. (2015)). In

this analysis, we used the same median age segment strategy for defining simple and complex enhancers as

we used for the FANTOM enhancers (Methods). To control for differences in length, we matched the length

distribution of complex enhancers to simple enhancers (n = 11,799 simple enhancers and n = 12,357

matched-length complex enhancers) and evaluated cross-species activity. As expected from previous

studies, human liver enhancers are largely species-specific, but complex liver enhancers are active across

significantly more species than simple liver enhancers (Figure 2.3B left; 1.8 versus 1.2 mean species; p =

5.2e-88, Mann Whitney U). In general, older enhancers are more active across species than younger

enhancers. Given that younger sequences have fewer opportunities to overlap multiple species than older

sequences, we compared cross-species overlap between age-matched sequences (Figure 2.3B right). We

observe consistent activity differences between age-matched enhancers, indicating that complex enhancer

sequence histories are associated with higher cross-species activity compared with simple enhancers from

the same age. We also found that human developmental neocortex enhancers with complex architectures

(Figure S13) have more cross-species activity among rhesus macaque and mouse enhancers than simple

human neocortex enhancers, though the difference is smaller than for liver enhancers (Figure S14; 1.29 v.

1.26 species in complex, simple enhancers; p= 7.9e-13), perhaps due to the shallower sampling of these

enhancers across species or differences between developmental and adult tissues. These analyses support the

conclusion that complex enhancer architecture is associated with more stable activity across species than

simple enhancers at each age.

2.3.7 Simple and complex enhancers are under similar levels of purifying selection

Given the older ages, greater pleiotropy, and greater cross-species activity observed in complex enhancers,

we hypothesized that complex enhancers would be under stronger purifying selection than simple

enhancers. To evaluate this, we compared LINSIGHT scores between simple and complex enhancers.

Briefly, LINSIGHT estimates the probability of purifying selection on sites in the human genome at a
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base-pair level using both functional genomics annotations and evolutionary conservation metrics; higher

scores indicate stronger purifying selection (Huang et al. (2017)). Complex enhancers have slightly higher

LINSIGHT scores than simple enhancers overall, suggesting slightly stronger purifying selection in

complex enhancers (Figure 2.3C left; 0.16 versus 0.14 mean LINSIGHT score; p ¡ 2.2e-308). Given that

simple and complex enhancer sequences have different age distributions, we stratified by age to evaluate

whether simple enhancers had lower scores than complex enhancers of the same age (Figure 2.3C right).

This revealed that per age, simple and complex enhancers do not show a consistent pattern and generally

have similar LINSIGHT scores. Similarly, analysis of PhastCons conserved element overlap supports that

complex enhancers are overall more conserved than simple enhancers and that the majority of both simple

and complex enhancers are highly conserved at older ages (Figure S15). These results suggest that simple

and complex enhancers of similar age experience similar purifying selection pressures.

2.3.8 Genetic variants in simple enhancers are more likely to be associated with human traits and

disease than variants in complex enhancers

The majority of genetic variants associated with human complex traits and disease are located in functional,

non-coding regulatory regions (Corradin and Scacheri (2014); Maurano et al. (2012)). Based on the

differences in pleiotropy and constraint observed between architectures, we hypothesized that enhancer

evolutionary architecture could provide context for interpreting the effects of enhancer variants on traits. To

test this, we evaluated enrichment of 55,480 significant (p ¡ 5e-8, linkage disequilibrium expanded at r2=1)

GWAS Catalog single-nucleotide variants from 2,619 genome-wide association studies (Buniello et al.

(2019)) in simple and complex enhancer architectures against length- and architecture-matched background

regions. We observed GWAS enrichment in both simple enhancers and complex enhancers compared with

expected levels (Figure 2.4A; 1.17-fold-change for simple versus 1.14-fold-change complex; p = 0.01,

two-tailed permutation test). Stratifying by age, we observe GWAS variant enrichment across ages and

architectures. Simple enhancer GWAS enrichment is greater at Primate, Eutherian, and Tetrapod origins,

while complex enhancer enrichment is greater in Boreotherian, Mammalian, and Vertebrate origins. This

demonstrates that enhancer sequences across different ages and architectures have variant enrichment and

association with human traits (Figure S17). More work is needed to evaluate variation in simple and

complex enhancer enrichment across tissues, for example by matching the GWAS considered to the

different tissue contexts or evaluating variant effect sizes. To explore the patterns of clinically relevant

variants in different enhancer architectures, we evaluated ClinVar disease-associated variant enrichment in

simple and complex enhancers (Landrum et al. (2018)). While GWAS associations reflect variant effects on

common, complex diseases, ClinVar pathogenic variants are often the cause of rare Mendelian disorders.
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Figure 2.3: Complex enhancers are more active across tissues and species and under stronger purifying
selection than simple enhancers.
(A) Complex enhancers are more pleiotropic than simple enhancers. Simple and complex enhancer ac-
tivity was evaluated across 112 FANTOM enhancer contexts. Overall, simple enhancers are active in 4.8
contexts on average and complex enhancers are active in 7.4 contexts (left,; p = 5.9e-199, Mann Whit-
ney U test). Activity across tissues increases with sequence age, but the effect is stronger for complex
enhancers overall and stratified by enhancer age (right). (B) Complex human liver enhancers are active
across significantly more species than simple liver enhancers (left, 1.8 versus 1.2 mean species; p =
5.2e-88). To enable cross-species comparison, this analysis is based on simple enhancers and matched-
length complex human liver enhancers defined by H3K27ac+ H3K4me3- ChIP-peaks from Villar 2015
(Methods, N =11,799 and 12,357) that were evaluated for enhancer activity across nine placental (Eu-
therian) mammals. Stratifying by enhancer age reveals that older complex enhancers are active across
more species than age-matched simple enhancers (right). (C) Complex enhancers are under slightly
stronger purifying selection on the human lineage than simple enhancers (left, 0.16 versus 0.14 mean
LINSIGHT score per bp; p¡ 2.2e-308). However, estimates stratified by age generally showed similar
levels among complex and simple enhancers (right). To account for length differences between archi-
tectures, all enhancers were trimmed or expanded to the mean enhancer length of 310 bp. In all panels,
error bars represent 95% confidence intervals based on 10,000 bootstraps. Sample size for each age is
annotated beneath the x-axis.
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Simple enhancer variants overlapped more “pathogenic” annotations while complex enhancers overlapped

more “benign” annotations than expected, though these differences were not statistically significant (Figure

S18). Together, these results confirm enrichment for trait and rare disease variants in both complex and

simple enhancer architectures compared to regions without enhancer activity; however, known complex

trait-associated variation occurs more frequently in simple enhancer architectures. To complement these

findings, we evaluated the enrichment of known expression quantitative trait loci (eQTL). Simple and

complex enhancers were similarly enriched for GTEx eQTL across 46 tissues (GTEx Consortium et al.

(2017b)) at 1.1x fold-change (Figure S19; median 1.09x and 1.11x for simple and complex, respectively; p

=0.38, Mann Whitney U). This indicates that both architecture types are similarly likely to contain variants

associated with gene expression variation across individuals.

2.3.9 Genetic variants in simple enhancers are enriched for changes in biochemical regulatory

activity compared to variants in complex enhancers

Given the differences in constraint and complex trait associated variants between simple versus complex

enhancers, we hypothesized that there would be architecture-related differences in the effects of variants on

gene regulatory biochemical activity. We tested for enrichment of variants that significantly affect

biochemical regulatory activity among trimmed simple and complex architectures. We considered ¿110,000

common human variants shown to affect regulatory activity in recent massively parallel reporter assays

(MPRA) performed in K562 and HepG2 cells (van Arensbergen et al. (2019)). For both cell lines, variants

in annotated enhancers are significantly more likely to have regulatory effects than all background variants

tested in the assay (Figure 2.4B; simple odds ratio (OR) = 1.9; p= 2.1e-35 in K562 and OR = 2.3; p= 1.6e-66

in HepG2; complex OR = 1.6; p = 1.7e-10 in K562 and OR =2.1; p= 3.8e-29 in HepG2, Fisher’s exact test).

Simple architectures are more enriched than complex architectures for variants that significantly affect

regulatory activity in both K562 (OR = 1.2; p = 0.04) and in HepG2 cells, although the enrichment is

smaller (OR = 1.1; p= 0.26). We repeated this analysis using only granulocyte and liver FANTOM

enhancers to match the cellular contexts tested and found even stronger enrichment among simple enhancers

in these datasets (Figure S20; liver OR = 1.8; p = 0.08 and granulocyte OR = 1.3; p = 0.13, Fisher’s exact

test). These findings indicate that common human variants in simple enhancers are more likely to

significantly affect enhancer biochemical regulatory activity than common variants in complex enhancers.

Simple enhancers overlap transposable element derived sequences more often than complex enhancers

TE-derived sequences (TEDS) have enhancer activity across many cellular contexts (Chuong et al. (2017);

Marnetto et al. (2018); Simonti et al. (2017); Su et al. (2014); Sundaram et al. (2014); Trizzino et al. (2017)).

A previous study identified that TE insertions occur nearby sequence age breaks (Marnetto et al. (2018)).
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Figure 2.4: Simple enhancers are enriched for GWAS hits and variants with significant regulatory activ-
ity in massively parallel reporter assays.
(A) Simple and complex enhancers are both enriched for GWAS catalog variant overlap compared to
random matched regions (1.17-fold enrichment in simple enhancers (N = 690 SNPs), and 1.14-fold
enrichment in complex (N = 591 SNPs)). Simple enhancers are more enriched for GWAS variants
than complex enhancers (p = 0.01, two-tailed permutation test). Error bars represent 95% confidence
intervals based on 10,000 bootstraps. (B) Common genetic variants in simple enhancers are enriched for
significant changes in regulatory activity compared to complex enhancers in massively parallel reporter
assays (MPRAs). In K562 cells (left), 3.3% of variants in simple enhancers (N = 12523 variants) and
2.8% of variants in complex enhancers (N = 9054 variants) exhibit significant changes in MPRA activity
compared to 1.7% of all variants tested (simple odds ratio (OR) = 1.9; p = 2.1e-35, and complex OR =
1.6; p = 1.7e-10). This difference in enrichment over background for simple vs. complex is significant
(OR = 1.2; p = 0.04, Fisher’s Exact Test). In HepG2 cell (right), 4.1% of variants in simple enhancers
(N = 568 variants) and 3.8% of variants in complex enhancers (N= 289 variants) produce significant
changes in MPRA activity compared to 1.8% of background variants (simple OR = 2.3; p= 1.6e-66
and complex OR =2.1; p = 3.8e-29). The enrichment over background is modestly higher in simple
enhancers (OR = 1.1; p = 0.26). The dashed horizontal lines represent the fraction of all variants tested
with significant activity per cell line. Error bars represent 95% confidence intervals based on 1,000
bootstraps. Number of overlapping variants are annotated in white.
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We hypothesized that TEDS might have different influences on simple and complex enhancer architectures,

and that TEDS integration might contribute to sequence patterns observed in complex architectures. To

explore this, we tested TEDS enrichment in simple and complex enhancers against the genomic background.

To control for length differences, we evaluated both 310 bp and 1 kb trimmed/expanded enhancers. Both

length-control strategies yielded similar results, and we present the 310 bp results below. We intersected the

enhancers with genome-wide maps of TEDS (Methods). We find that 48% of simple enhancers and 42% of

complex enhancers contain TEDS. As expected from previous reports (Emera et al. (2016); Simonti et al.

(2017)), both simple and complex enhancers are depleted of TEDS compared to architecture-matched

genomic backgrounds. However, we find that complex enhancers are substantially more depleted (Figure

2.5A; OR = 0.50 versus 0.25; p ¡ 2.2e-308, Fisher’s Exact Test). The majority of enhancer sequences

younger than the Eutherian ancestor contain TEDs (Figure 2.5C). Complex enhancers younger than the

Therian ancestor and simple enhancers younger than the Eutherian ancestor highly overlap TEDS. This

establishes that patterns in both simple and complex enhancers are consistent with previous observations

that the majority of young human/primate cis-regulatory elements contain TEDS (Simonti et al. (2017),

Trizzino et al. (2017)).

2.3.10 Transposable element sequences can both nucleate and remodel enhancers

Sequences with regulatory potential have been hypothesized to nucleate enhancer activity, which can then be

expanded and remodeled by the addition of younger sequences (Emera et al. (2016)). To explore the role of

TEDS in this process, we tested for TEDS enrichment in complex enhancer core sequences versus younger

derived sequences. Overall, complex enhancer cores are depleted of TEDS compared with derived

sequences (Figure 2.5A and Figure S21; OR = 0.56; p = 9.7e-89). We also found strong depletion for TEDS

at the centers of complex enhancers and enrichment at their edges (Figure 2.5B, green; median z-score =

-0.73 versus 0.17, inner vs. outer 50% bins; p = 6.4e-18, Mann Whitney U). These results are consistent

with our finding that younger sequences flank older core sequences in general (Figure 2.2D), and suggest

that TEDS often contribute younger sequences to complex enhancer architectures. However, this general

trend is largely driven by old complex enhancers; young complex enhancers (younger than the Therian

ancestor) are enriched for TEDS in their cores (Figure S22). By comparison, TEDS are also enriched at the

edges of simple enhancers, though the central regions of simple enhancers do not show strong TEDS

depletion (Figure 2.5B right panel and Figure S21). These results support a model where TEDS can both

nucleate and remodel enhancer sequences.
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2.3.11 Different TE families are enriched in simple and complex enhancers

As discussed above, TE insertions can disrupt functional elements and lead to genome instability. Thus, the

probability of TE insertions gaining gene regulatory activity is influenced by their genomic sequence

context. We hypothesized that enhancers with different architectures and origins would be enriched for

TEDS from specific TE families. Several TE families show biases for simple or complex enhancer

architectures at different evolutionary ages (Figure 2.5D). Complex enhancers are consistently enriched

across ages for SINE/Alu, DNA/TcMar-Tigger, and LTR/ERVL-MaLR elements. SINE/Alu elements are

abundant in the Primate lineage (Batzer and Deininger (2002)), but are also frequently observed in complex

enhancers with origins before the Primate ancestor. Integrating young SINE/Alu TEDS with these older

sequences may have altered ancient regulatory activity or created new regulatory activity. Simple enhancers

are consistently enriched across ages for LINE/CR1, LINE1/L1, and LTR/ERVL elements (Figure 2.5D).

LTR/ERV1 elements are significantly enriched in both older complex and younger simple enhancers, while

LINE/L2, DNA/hAT-Charlie, and DNA/hAT-Tip100 are enriched for younger complex enhancers and older

simple enhancers. This suggests that these families have contributed sequence to both architectures during

different evolutionary phases. Together, these data suggest differences in the contribution of TE families to

enhancer sequences of different origins and evolutionary architectures, and that some more often nucleate

simple enhancers, while others integrate into complex enhancer architectures.

2.3.12 Age architectures of enhancers identified by histone modifications show similar trends

Differences in assays commonly used to identify enhancers influence the sequence resolution,

spatiotemporal variability, and many other attributes of the identified enhancers. Both eRNA and histone

modification patterns provide imperfect operational definitions for enhancer activity and often disagree with

one another (Benton et al. (2019); Gasperini et al. (2020)). Given the sequence and temporal specificity of

transcribed eRNA enhancers (Tippens et al. (2020)), we focused on them throughout the main text.

However, we also evaluated our main findings with additional analysis of 2,827,573 autosomal enhancers

identified by histone-modification chromatin immunoprecipitation sequencing (ChIP-seq) in 98 cell and

tissue contexts from the Roadmap Epigenomics Mapping Consortium (Roadmap Epigenomics Consortium

et al. (2015)). Histone-mark-identified sequences are more likely to capture an entire regulatory locus, while

eRNA-identified sequences capture specific sub-regions with high transcriptional activity (Andersson and

Sandelin (2020)). Whether the entire length of a putative enhancer sequence is necessary and sufficient for

endogenous enhancer function and how this activity is modified by nearby regulatory elements is an area of

active research (Gasperini et al. (2020)). In this section, we summarize results on Roadmap enhancers and

report details in Supplementary Material. Many, but not all, of our findings are consistent between eRNA
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Figure 2.5: Simple and complex enhancers are enriched for sequences derived from different transpos-
able element families at different ages
(A) Simple and complex enhancers are significantly depleted of transposable element derived sequences
(TEDS) compared to 100 architecture-matched random controls ( 2-fold depleted for simple and 4-fold
depleted for complex; p ¡2.2e-308, Fisher’s Exact Test). The number of TE overlapping elements is
annotated in each bar. Within complex enhancers, older core sequences are 2 fold-depleted of TEDS
compared with the younger, derived sequences (OR = 0.56; p = 9.72e-89). Number of TEDS overlap-
ping elements are annotated per bar. (B) TEDS are enriched in the outer 50% of complex enhancer
sequences. TEDS enrichment is quantified as the z-score of TE overlap counts in each normalized en-
hancer bin across complex enhancers (green, median z-score = 0.17 versus -0.73, outer v inner 50%
bins; p = 6.38e-18, Mann Whitney U) and simple enhancers (yellow, median z-score = -0.43 versus -
0.43, outer v inner 50% bins; p = 0.47). (C) Percent of simple and complex enhancers overlapping TEDS
at each age. Number of TEDS overlapping elements are annotated beneath each bar. (D) Simple and
complex enhancers are significantly enriched for sequences derived from different TE families across
ages. TEDS enrichment in enhancer architectures was calculated among TEDS-overlapping enhancers
of each age using Fisher’s Exact Test. Positive values (green) represent TEDS enrichment in complex
enhancers, while negative values represent enrichment in simple enhancers (yellow, * indicates FDR ¡
0.10). Non-significant families are not shown.
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and Roadmap enhancers identified based on ChIP-seq for histone modifications (Supplemental Table 1).

Roadmap enhancers are substantially longer than FANTOM enhancers (Figure S23C; median 2.4 kb

vs. 292 bp) and many times the average length of a syntenic block (54 bp). Thus, Roadmap enhancers

overlap a median four syntenic blocks (Figure S24; range 2-8 syntenic blocks per enhancer dataset), and

enhancers made up of a single syntenic block are rare (2%). To compare Roadmap enhancer architectures to

FANTOM enhancers accounting for these differences, we took two complementary approaches. First, we

quantified the evolutionary architecture of Roadmap enhancers trimmed to the median FANTOM enhancer

length (310 bp centered on the middle of the ChIP-peak). Second, we considered the entire Roadmap

enhancer sequence using the same “relative” simple vs. complex architecture criterion as we had applied to

the FANTOM enhancer; enhancers with fewer syntenic blocks than the median over all enhancers in the

context were considered simple (Methods). As with the FANTOM enhancers, the trimmed Roadmap

enhancers exhibit enrichment for simple architectures compared to random regions (Supplemental Figure

30A; 58% simple). Under both approaches for analyzing Roadmap enhancers, relative enrichment for

simple vs. complex enhancer architectures varies across contexts (Figure S26; Figure S29). Roadmap

enhancers also recapitulate our main findings that complex enhancers exhibit older sequence ages in their

centers (Figure S28 Figure S29; Figure S30), and are more pleiotropic across tissues (Figure S31A). This

relationship between complex enhancers and increased pleiotropy was consistent in both adult and

developmental tissues (Figure S31B). They also support that purifying selection pressures are similar

between simple and complex architectures (Figure S32), while GWAS variant (Figure S33), ClinVar

pathogenic annotations (Figure S34) and variants affecting biochemical activity (Figure S20) more often

occur in simple enhancers. Thus, evolutionary architecture patterns in histone-mark-defined enhancers

largely reflect the findings in transcribed enhancers; however, due to their greater length histone

mark-defined enhancers are rarely of a single evolutionary origin.

2.4 DISCUSSION

Here, we evaluate the genomic, evolutionary, and functional features associated with human enhancers with

different evolutionary age architectures. Human transcribed enhancers have many distinct age

architectures—they can consist of sequence of a single origin or complex composites of sequences of many

different ages. We demonstrate that simple architectures are favored over complex architectures; however,

these patterns vary by cellular context. Functionally, simple and complex architectures show differences in

tissue-specific and cross-species activity profiles, but both architectures experience similar selective

constraints by age. Simple architectures are slightly more enriched for variants associated with complex

traits in GWAS studies, rare pathogenic variants in ClinVar, and variants that significantly alter biochemical
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activity. Sequences derived from TEs are depleted among all enhancers, but they are more depleted in

complex architectures than simple. Nonetheless, these TEDS provided genomic material for many younger

enhancers of both architectures and many modified older sequences into complex architectures with

enhancer activity. Distinct TE families are enriched in different architectural contexts. Thus, TEDS have

made important contributions to the evolution of human enhancers with both simple and complex sequence

age architectures. Finally, the consistency of many of these architecture observations across enhancer

sequences identified from both eRNA and histone modification patterns (Supplementary Table 1) supports

their generality.

Our work expands current understanding of enhancer sequence evolution in several dimensions. We

show that aspects of the two-step proto-enhancer life-cycle model proposed by Emera et al. are present in

enhancers across diverse tissues and many of our results hold in their original dataset (Figure S13, 14).

However, the depletion for complex architectures among transcribed enhancer sequences suggests that

evolving complex architectures is not necessary for their function and that the juxtaposition of sequences of

different origins was not the most common evolutionary history for human transcribed enhancer sequences.

Furthermore, several lines of evidence suggest that simple enhancers are not simply a snapshot of

proto-enhancers in the first step of the enhancer life cycle: (1) Simple enhancer sequences are often as old as

complex enhancers. (2) Simple and complex enhancers of similar ages are under similar levels of purifying

selection pressure. (3) Simple enhancers are enriched for tissue-specific functions. (4) Simple enhancers are

enriched for GWAS variants, pathogenic ClinVar variants, and variants modifying biochemical activity,

implying that simple enhancer variation contributes to human trait variation and changes in molecular

function. Together, these results suggest that enhancers with simple evolutionary architectures play

important roles in human gene regulatory biology. However, simple enhancer sequences may be less

evolutionarily stable, as fewer older simple enhancers are observed. In contrast, complex enhancers may be

more functionally robust to mutations and evolutionary turnover given their older ages, increased

cross-species activity, and trait-associated variant patterns. We speculate that younger derived sequences

may protect complex enhancers from inactivating mutations. Future biochemical work could address

whether architectural features of complex enhancers may make them more robust to mutations and resistant

to evolutionary turnover. Our analyses consider sequences with human enhancer activity, but enhancer

activity often turns over between closely related species (Villar et al. (2015)). Thus, we cannot assume that

these sequences have maintained enhancer activity since their origin. Highly expressed genes and genes

with more evolutionary stable expression patterns are associated with enhancers that have conserved activity

across species (Berthelot et al. (2018)). When enhancers have evidence of shared activity across species, we

show that they are more often complex than simple, even when accounting for age. Many factors likely
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contribute to this finding. We speculate that older enhancers (whether simple or complex) are more likely to

regulate genes with more important and evolutionarily stable expression patterns, and thus experience

stronger purifying selection. Determining how relationships between pleiotropy, cross-species activity,

sequence length, and purifying selection pressures shape these enhancer age and architecture observations is

challenging. We observed that length is positively correlated with pleiotropy in both simple and complex

enhancers (Figure S12). Thus, we tested whether enhancers with higher pleiotropy are under stronger

purifying selection, but found that pleiotropy only weakly correlates with purifying selection in both

architectures and fluctuates with age (Figure S16). This suggests that pleiotropy is not the main driver of

enhancer constraint and survival. Dissection of these relationships while controlling for other functional

variables must be pursued in future work.

Simple

Inactive 

Act
iva
tion

Remodeling

Complex

Interaction

Figure 2.6: Model of enhancer evolutionary architecture change and activity
Sequences with the potential to be enhancers (rectangles) can occupy active or inactive states and have
either simple or complex evolutionary architectures. Sequences transition between these states as a
result of large- and small-scale genomic variants. Inactive sequences can become simple enhancers
through small-scale genomic changes, such as substitutions that increase activity or nearby chromatin
changes that increase accessibility. Complex enhancers sequences of different evolutionary origins are
brought together by genomic rearrangements. In some cases, the integration of these sequences and
subsequent substitutions produce activity. In others, already active simple enhancers are remodeled into
active complex enhancers with presumably different activity patterns. Sequences regularly transition
between these states over evolutionary time.

To integrate our findings and provide a framework for future work, we propose a general model for

enhancer evolutionary architecture and activity (Figure 2.6). In our model, inspired by Markov models,
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sequences occupy either simple or complex architecture states and either active or inactive states. Genomic

events (e.g., substitutions and rearrangements) drive transitions between these states over time. Based on our

results, we propose that certain paths through the model are common in the enhancer life cycle. Most

sequences that ultimately obtain enhancer activity likely begin as inactive or weakly active sequence

segments (Figure 2.6, left). Small-scale genomic events, like point mutations, can strengthen regulatory

activity and create simple enhancers (Figure 2.6, top right). Examples include human accelerated regions,

such as HACNS1/HAR2, where human-specific substitutions have created human-specific enhancer activity

in limb bud formation (Cotney et al. (2013); Prabhakar et al. (2008)). TE insertions also give rise to simple

enhancers by integrating sequence with regulatory potential into genomes (Chuong et al. (2017)); for

example, the mouse-specific RLTR13 endogenous retrovirus sequence is sufficient to drive gene expression

in rat placental cells (Chuong et al. (2013)). Complex enhancers can emerge from multiple different

evolutionary paths. For example, large-scale (greater than a few nucleotides) genomic insertions or

rearrangements combined with small-scale substitutions may remodel active simple enhancers into complex

enhancers with stronger or different activity patterns (Figure 2.6 right). Work in Drosophila has

demonstrated that small-scale substitutions in complex cross-vein and wing spot enhancers “co-opt”

ancestral enhancer activity to develop lineage-specific wing pigmentation patterns (Koshikawa et al. (2015);

Prud’homme et al. (2006)). Isolated derived segments in these complex enhancers were not sufficient to

drive enhancer activity during development, but may function to support lineage-specific enhancer activity

in other ways, such as facilitating cooperative or co-activator binding (Long et al. (2016)). Complex

enhancers can also be created when genomic rearrangements place weakly active sequences of different

origins adjacent to each other in such a way that these sequences interact and/or accumulate additional

substitutions to create a new active complex enhancer (Figure 2.6 bottom right). TE insertions can facilitate

such interactive effects. For example, the interaction of a LINE/L2 insertion and flanking sequence formed a

new enhancer that was both necessary and sufficient for driving increased, lineage-specific GDF6 expression

and evolutionary changes in armor-plate size in freshwater stickleback (Indjeian et al. (2016)). Older active

regulatory sequences may protect TEDS from inactivation by the host genome, creating substrates for

complex enhancers to form (Elbarbary et al. (2016); Levin and Moran (2011); Varshney et al. (2015)).

Finally, deletions can change or inactivate complex and simple sequences with enhancer function. For

example, human-specific conserved deletion of a complex enhancer sequence reduces expression of the

androgen receptor and is correlated with loss of penile spine and sensory vibrissae anatomy in humans

(McLean et al. (2011)). Whether complex enhancers undergo deletions to become simple enhancers is not

known, and we speculate this rarely occurs. Without experimental dissection, it is currently challenging to

trace the history of functional activity, especially for complex enhancer sequences. We emphasize that most
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enhancer sequences do not reach a final stable state; sequences continue to change and activity turns over

rapidly (Villar et al. (2015)). Thus, we constructed our model (Figure 2.6) to emphasize that sequences

regularly transition between these states over evolutionary time. Large comparative regulatory genomics

datasets across species and tissues are needed to estimate these transition probabilities. Previous

comparisons of both conserved non-coding sequences and transposable elements suggests that these

transition probabilities are not stable over evolutionary time. Instead, there were likely different period of

regulatory innovation driven by waves of TE insertions and new cell-signaling modalities (Lowe et al.

(2011); Chuong et al. (2013); Lynch et al. (2015)). The prevalence of simple architectures indicates many

enhancers emerge from a single age, while transitions from simple to complex architecture challenges the

idea that enhancers maintain a single function. We hope that future work will enable estimation of rates of

simple and complex enhancer emergence, decay, and turnover across other species and over time.

Several limitations must be considered when interpreting our results. First, sequence age estimates are

influenced by the accuracy of sequence alignment methods, genome quality, and different rates of sequence

divergence across the genome over evolutionary time (Capra et al. (2013b); Margulies and Birney (2008);

Cooper and Brown (2008)). Assembling and aligning repetitive elements is particularly challenging and

may limit TEDS detection (Ewing (2015)). Thus, our estimates should be viewed as lower bounds on the

actual sequence age. Second, our analyses are limited by the availability and concordance of enhancer

datasets. Histone-modification-based ChIP-seq measurements and quantification of eRNA transcription

produce enhancer boundary estimates with different resolution and expected functional properties

(Andersson et al. (2014); Benton et al. (2019); Tippens et al. (2020)) Whether eRNA transcripts represent

local enhancer units within larger, multi-cluster chromatin regions, or even sub-regions within “super

enhancers” is not resolved (Hay et al. (2016); Moorthy et al. (2017)). Further, current enhancer definitions in

tissue-level datasets do not capture underlying cellular heterogeneity in epigenetics and expression (Carter

and Zhao (2021)). Similarly, our cross-species activity analysis is limited by the number of tissues and

species assayed, which reduces our power to detect conserved activity. Third, we are limited in our

knowledge of human-trait and disease-associated variants. GWAS-variant enrichment reflects tag SNPs and

LD-linked loci associated with measurable common human traits; whether the mechanisms underlying their

associations to disease pathology or trait variation are mediated by enhancer activity is not clear. The

ClinVar variant enrichment analyses are limited by the small number of known pathogenic non-coding

variants. As a result, these analyses were underpowered, and the trends for associations between simple

architectures and pathogenic variants in both datasets did not reach common thresholds for statistical

significance. Finally, we do not explore sequence-level features that distinguish simple and complex

architectures. We envision that a thorough analysis of sequence features (e.g., binding site motifs) will
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reveal distinct sequence patterns between evolutionary periods and evolutionary architectures. In

conclusion, we defined evolutionary architectures of human enhancers and related them to function and

genetic variation. Evaluating these architectures revealed different evolutionary origins and evolutionary

trajectories among human enhancer sequences. Based on these results, we present a model of enhancer

sequence evolution that encompasses the multiple possible evolutionary trajectories. Our work provides a

foundation for future studies that dissect the relationships between enhancer evolutionary architecture,

sequence patterns, and the consequences on function and non-coding variation in the human genome.

2.5 METHODS

2.5.1 Syntenic block aging strategy

The genome-wide hg19 46-way vertebrate multiz multiple species alignment was downloaded from the

UCSC genome browser. Each syntenic block was assigned an age based on the most recent common

ancestor (MRCA) of the species present in the alignment block in the UCSC all species tree model (Figure

2.1A). For most analyses, we focus on the MRCA-based age, but when a continuous estimate is needed we

use evolutionary distances from humans to the MRCA node in the fixed 46-way neutral species phylogenetic

tree. Estimates of the divergence times of species pairs in millions of years ago (MYA) were downloaded

from TimeTree (Hedges et al. (2015)). Sequence age provides a lower-bound on the evolutionary age of the

sequence block. Sequence ages could be estimated for 93% of the base pairs (bp) in the human genome.

2.5.2 eRNA enhancer identification, aging, and architecture assignment

We considered enhancers called from enhancer RNAs (eRNAs) identified across 112 tissue and cell lines by

high-resolution cap analysis of gene expression sequencing (CAGE-seq) carried out by the FANTOM5

consortium (Andersson et al. (2014)). This yielded a single set of 30,439 autosomal enhancer coordinates.

We assigned enhancer ages by intersecting their genomic coordinates with aged syntenic blocks using

Bedtools v2.27.1 (Quinlan and Hall (2010)). Syntenic blocks that overlapped at least 6 bp of an enhancer

sequence (reflecting the minimum size of a TF binding site (Lambert et al. (2018))) were considered when

assigning the enhancer’s age and architecture. We considered enhancers with one syntenic age as “simple”

enhancer architectures and enhancers overlapping more than one syntenic age as “complex” enhancer

architectures. Given that some enhancers are composed of multiple sequence ages, we assigned complex

enhancer age according to the oldest age. Sequences without an assigned age were excluded from this

analysis. From the human syntenic blocks that could be assigned ages, the plurality (44%) are derived from

the placental (Eutherian) ancestor, while 40% are younger than the placental ancestor, and 16% are older

(Figure S3A). This result was consistent with syntenic age estimates using hg38 and 100-way species

55



alignments (Marnetto et al. (2018)). Younger syntenic blocks are generally longer than older syntenic blocks

(median 128 bp for Primate-specific blocks versus 42–66 bp for older syntenic blocks) (Figure S3B).

2.5.3 ChIP-peak enhancer identification, aging, and architecture assignment

We explored the architectures of enhancers identified by the Roadmap Epigenomics Mapping Consortium

(Roadmap Epigenomics Consortium et al. (2015)) across 98 cellular contexts. Roadmap defined enhancers

from histone modification chromatin immunoprecipitation (ChIP-seq) peaks by subtracting H3K4me3+

peaks from H3K27ac+ peaks to exclude active promoters. This resulted in 2,827,573 predicted autosomal

enhancers. Enhancers ¡10 kb in length were considered. Roadmap enhancers were assigned ages as

described above for the FANTOM enhancers. Because of increased ChIP-peak lengths, most absolute simple

enhancers (i.e. enhancers of a syntenic age) are rare (2%). To account for the differences in the number of

possible underlying syntenic blocks, we considered enhancers with less than the median number of syntenic

blocks per enhancer (typically one or several syntenic blocks) as “simple” enhancer architectures, while

enhancers overlapping equal to or more than the median number of syntenic blocks of different ages have

“complex” enhancer architectures. Four age segments per enhancer was the median for multiple Roadmap

datasets (Figure S24), though there was some variation in the median number of age segments per dataset.

2.5.4 Trimming and expansion of ChIP-peak enhancer lengths

For some analyses, we trimmed or expanded Roadmap enhancers to 310 bp to equalize enhancer lengths

between ChIP-seq and eRNA sets. However, trimming ChIP peak sequences has limitations. First, it

assumes peak centers represent the most stable segment of the enhancer sequence. Second, we exclude

flanking sequences that may be important for opening chromatin or recruiting transcriptional machinery.

Third, it may bias analysis of complex enhancers towards older sequences, as older sequence ages tend to

occur at enhancer centers. Finally, multiple active enhancer sub-regions might be dispersed throughout a

peak or constitute super-enhancers.

2.5.5 Human syntenic block PhastCons conservation

PhastCons vertebrate hg19 conserved elements were downloaded from the UCSC genome browser (Siepel

(2005)). PhastCons elements were assigned ages using the same MRCA-based strategy described for

enhancers. As expected, sequence age is correlated with sequence conservation (R2 = 0.82; p= 0.009), since

sequence homology is the basis for estimating both sequence age and sequence conservation. However,

these metrics capture complementary information about regions of interest. Sequence conservation

summarizes the evidence that purifying selection has acted on the region, and conserved sequences have
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high similarity across species. Sequence age estimates a lower bound on the evolutionary origin of a

sequence and can be assigned both to conserved sequences and neutrally evolving sequences with lower

sequence identity among species. For example, only 35% of the oldest syntenic blocks have significant

evidence of evolutionarily conservation (Vertebrate PhastCons overlap, Figure S3C). In other words, not all

old sequences have evidence of significant conservation. Thus, even though neutrally evolving sequences

become more difficult to accurately age with time (such that age reflects a lower bound estimate of sequence

origin), sequence age provides complementary information about sequences shared among vertebrates.

2.5.6 Background random genome regions and architectures

For FANTOM enhancers, 100 random shuffles of the genomic regions in each dataset of interest (e.g.,

cellular context) were performed using BEDTools. For Roadmap enhancers, each of the 98 tissue datasets

was shuffled 10 times, resulting in 980 shuffled datasets total. The shuffled sets were matched on

chromosome number and enhancer length, and they excluded both Ensembl exon coordinates (Figure S28)

and ENCODE blacklist regions and genomic gaps as defined by the hg19 UCSC gaps track (Amemiya et al.,

2019). Random genomic regions were then assigned ages and architectures with the same strategy used for

enhancers described above (Figure S1). We calculated enrichments by comparing the observed enhancer age

and architecture distribution with the expectation from the appropriate sets of shuffled regions.

2.5.7 Enhancer pleiotropy

To account for the effects of enhancer architecture length differences in quantification of enhancer activity

across biological contexts, FANTOM enhancers were trimmed around their midpoints to the mean length of

all enhancers in the dataset (310 bp). Roadmap enhancers were similarly trimmed to the mean length per

dataset. Trimmed enhancer datasets were intersected with 112 FANTOM eRNA tissue facets and cell line

datasets or with 97 Roadmap ChIP-seq datasets using BEDTools multi-intersect command. We considered

an enhancer pleiotropic when at least 50% of the enhancer length overlapped enhancers in other contexts.

2.5.8 Cross-species enhancer activity

Human liver enhancers from a cross-species analysis of vertebrate livers (Villar et al. (2015)) were assigned

ages and architectures. Briefly, the authors used pairwise lastZ alignments to determine the sequence

conservation of H3K27ac+ H3K4me3- peaks from nine placental mammal livers. Sequence conservation

was required to map peak accessibility in both species. The authors then evaluated whether sequences were

found in active chromatin of either or both species in order to call cross-species activity. In other words,

sequence must be sufficiently conserved to identify cross-species activity. Simple architecture was assigned
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to enhancers with fewer than five age segments, as five was the median number of age segments in this

dataset. To account for length differences, complex enhancer lengths were matched to the simple enhancer

lengths (N = 11,799 and N = 12,357 matched-length complex and simple enhancers). Further, we leveraged

a H3K27ac ChIP-seq dataset assayed in developmental mouse, rhesus macaque, and human neocortex

samples from Reilly et al (Reilly et al. (2015)). The Emera et al dataset is derived from the Reilly et al

dataset and filtered on human-mouse active enhancer overlap and alignment. Sequence conservation was

required to determine if ChIP-peaks were active across species. Enhancer sequences were assigned ages and

architectures. Simple architectures were defined as enhancers with fewer than 5 age segments per element

(dataset-wide median number of age segments). Enhancer architectures were matched on length for analysis

of cross-species activity (N= 17,670 simple and N= 22,506 complex enhancers).

2.5.9 Enhancer sequence constraint

LINSIGHT scores were downloaded from http://compgen.cshl.edu/ yihuang/LINSIGHT/. LINSIGHT

provides per base pair estimates of negative selection (Huang et al. (2017)). Enhancers were intersected with

LINSIGHT base pair estimates. 46-way hg19 vertebrate PhastCons elements were downloaded from the

UCSC genome browser. Enhancers overlapping any PhastCons element by at least 6 bp were considered

conserved.

2.5.10 GWAS catalog enrichment

Enrichment for overlap with 55,480 GWAS Catalog variants (p¡5e-8) from 2601 traits (last downloaded

September 24rd, 2019) (Buniello et al., 2019) were linkage disequilibrium expanded (r2 =1.0) using

European 1000 Genome phase reference panels (The 1000 Genomes Project Consortium (2015)).

Enrichment was tested by comparing the observed overlap for a set of regions of interest with overlaps

observed across 100 shuffled sets matched on length, sequence age architecture, and chromosome. Median

fold-change was calculated based on the GWAS Catalog variants overlapping enhancer architectures

compared with these random genomic sets. Confidence intervals (CI = 95%) were generated by

bootstrapping the 1000 random genomic fold-change values 10,000 times. P-values were corrected for

multiple hypothesis testing by controlling the false discovery rate (FDR) at 5% using the

Benjamini-Hochberg procedure.

2.5.11 ClinVar variant enrichment

ClinVar variants in VCF format were downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/ (last

downloaded 2019-12-02). Trimmed FANTOM and Roadmap enhancers were intersected with ClinVar
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variants. FANTOM enhancers overlapped 21 annotated variants total (n=9 simple, n=12 complex). Among

98 Roadmap tissue enhancer sets, non-exonic enhancers overlapped 34 annotated ClinVar variants (n=7

simple, n=17 complex). ClinVar variants were considered pathogenic if annotated with the term

“pathogenic” and excluded if annotated with the term “conflicting”. Similar inclusion and exclusion criteria

were used for “benign” and “protective.” The fraction of annotated variants per architecture was estimated as

the number of “pathogenic,” “benign,” or “protective” annotations versus all ClinVar variants overlapping

that architecture.

2.5.12 eQTL enrichment

Enrichment for GTEx v6 eQTL from 46 tissues (last downloaded July 23rd, 2019) (GTEx Consortium et al.

(2017a)) in enhancers with simple and complex architectures was tested against a null distribution

determined by shuffling observed enhancers using the same strategy as described for GWAS variant

enrichment.

2.5.13 Massively parallel reporter assay data

Results from recent MPRAs (van Arensbergen et al. (2019)) were downloaded. Significant changes in

MPRA activity and p-values were calculated by the authors using a Wilcoxon rank-sum test with a 5% FDR

separately identified in K562 and HepG2 cell lines. Trimmed enhancers were intersected with alleles tested

in MPRA. Ninety-five percent confidence intervals were estimated with 1000 bootstraps. Fisher’s Exact Test

was used to estimate the odds an allele with significant changes in MPRA activity occurred in a specific

architecture compared with the background set of alleles that do not overlap enhancers. Significant allele

overlap was also compared between simple and complex enhancer architectures to estimate an odds ratio of

enrichment.

2.5.14 Transposable element derived sequence enrichment

Transposable element derived sequences identified by RepeatMasker were downloaded from the UCSC

genome browser and liftedOver to hg19 from hg38 (last downloaded April 14th, 2018). Trimmed enhancers

(310 bp) were intersected with TEDS coordinates. TEDS overlapping enhancers ¿= 6 bp were evaluated

further for enrichment in FANTOM enhancers of different ages. Enrichment was estimated as the number of

TEDS in enhancer architectures compared with random-shuffled regions matched on both length and

architecture using Fisher’s Exact Test. We compared enrichment between core and derived segments of

complex enhancers by using Fisher’s Exact Test on TEDS overlap counts in core and derived syntenic

blocks. To estimate TEDS family enrichment in enhancers with different sequence age architectures, we
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compared the number of simple/complex enhancers overlapping a TEDS family with the number of

simple/complex architectures overlapping any other TEDS family of that age. Enrichment significance was

evaluated using Fisher’s Exact Test and FDR controlled at 10%.

2.6 DATA AVAILABILITY

The syntenic age data underlying this article are available in Zenodo, at

https://doi.org/10.5281/zenodo.4734606.

2.6.1 The following datasets were derived from sources in the public domain:

• FANTOM5 (Andersson et al. (2014)) - http://slidebase.binf.ku.dk/human enhancers/

• ROADMAP (Roadmap Epigenomics Consortium et al. (2015)) -

https://egg2.wustl.edu/roadmap/web portal/processed data.html#ChipSeq DNaseSeq

• Villar (Villar et al. (2015)) - https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2633/

• Reilly (Reilly et al. (2015)) - GSE63649

• Hg19 46-way vertebrate species multiz alignment -

https://hgdownload.soe.ucsc.edu/gbdb/hg19/multiz46way/

• LINSIGHT (Huang et al. (2017)) - http://compgen.cshl.edu/LINSIGHT/LINSIGHT.bw

• Phastcons (Siepel (2005))- https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=cons46way

• Van Arensbergen (van Arensbergen et al. (2019)) - GSE128325

• GWAS (Buniello et al. (2019)) - https://www.ebi.ac.uk/gwas/api/search/downloads/full

• ClinVar (Landrum et al. (2018)) - https://ncbi.nlm.nih.gov/pub/clinvar/vcf GRCh37/

• Repeatmasker - http://genome.ucsc.edu/cgi-bin/hgTrackUi?g=rmsk

All data analysis scripts are available at: https://github.com/slifong08/enh ages/tree/master/age arch

2.7 ACKNOWLEDGEMENTS

We thank members of the Capra Lab, Emily Hodges, and Tyler Hansen for helpful discussions. This work

was supported by the National Institutes of Health (R35GM127087 to JAC and T32GM080178 to SF).

60

https://doi.org/10.5281/zenodo.4734606
http://slidebase.binf.ku.dk/human_enhancers/
https://egg2.wustl.edu/roadmap/web_portal/processed_data.html#ChipSeq_DNaseSeq
https://hgdownload.soe.ucsc.edu/gbdb/hg19/multiz46way/
http://compgen.cshl.edu/LINSIGHT/LINSIGHT.bw
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=cons46way
https://www.ebi.ac.uk/gwas/api/search/downloads/full
https://ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/
http://genome.ucsc.edu/cgi-bin/hgTrackUi?g=rmsk
https://github.com/slifong08/enh_ages/tree/master/age_arch


 1 

Supplemental Material 
Table of Contents 
Supplemental Figures 
1 – Strategy for generating architecture matched genomic background coordinates.  
2 – Transcribed enhancer sequence ages are enriched for older sequences ages, deplete of younger 
sequence ages. 
3 – Hg19 genome syntenic block age distribution.  
4 – Masking exons, simple repeats, transposable elements from transcribed enhancer dataset, genomic 
background does not change interpretations of simple and complex enhancer architectures.  
5 – Complex enhancers have fewer age segments than expected. 
6 – Both simple and complex transcribed enhancers are enriched for older sequences, depleted of younger 
sequences compared to expectation. Odds of complex architecture is depleted or random across ages. 
7 – Complex age architecture landscapes in transcribed enhancers.  
8 – Complex age architecture landscapes for transcribed enhancer with 3+ breaks.  
9 – Simple and complex transcribed enhancer lengths versus architecture-matched expectation, per age.  
10 – Simple transcribed enhancer syntenic blocks are longer than complex syntenic blocks across ages. 
11 – Transcribed simple and complex enhancer architecture enrichment across FANTOM tissue and cell line 
datasets.  
12 – Tissue pleiotropy is correlated with transcribed enhancer length per age.  
13 – Developmental human neocortical enhancers from Reilly et al., Emera et al. dataset is enriched for simple 
architectures.  
14 – Complex developmental human neocortical enhancers overlap more mouse and rhesus neocortical active 
enhancers than simple enhancers. 
15 – PhastCons estimates for complex and simple transcribed enhancers.  
16 – Tissue pleiotropy is weakly correlated with purifying selection in simple and complex enhancers per age. 
17– Simple transcribed enhancers are more enriched than complex enhancers for GWAS variants across 
ages.  
18 – ClinVar annotations in transcribed enhancer architectures.  
19 – eQTL variants are similarly enriched in simple and complex transcribed enhancers  
20 – Variants in simple transcribed and histone enhancers are enriched for significantly affect regulatory 
activity in massively parallel reporter assay.  
21 – TEDS enrichment in simple and complex transcribed enhancer sequences. 
22 – TEDS are enriched in cores of younger complex transcribed enhancers, depleted from cores of older 
complex enhancers. 
23 – Histone-defined enhancers are enriched for older sequence ages. 
24 – Distribution of median number of age segments for 98 ROADMAP histone enhancer datasets. 
25 – Simple and complex histone enhancer age architectures. 
26 – Removing exons overlapping Roadmap histone enhancers increases enrichment of simple enhancers 
across tissues. 
27 – Exon overlap flanking regions in complex histone enhancers 
28 – Complex histone enhancer age architecture landscapes.  
29 – Histone (non-exon) simple and complex enhancer age architectures. 
30 – Trimmed histone (non-exon, 310 bp) simple and complex enhancer age architectures. 
31 – Tissue pleiotropy across 98 tissue and developmental samples is higher complex histone enhancers 
versus simple.  
32 – LINSIGHT purifying selection estimates in histone brain, blood, and developmental datasets.  
33 – Histone simple and complex enhancer GWAS tag-SNP enrichment in 98 tissue and cell datasets.  
34 – ClinVar annotations in histone enhancer architectures.  
 
Supplemental Tables 
1 – Summary of key FANTOM and ROADMAP findings.  
 
 
 

61



 2 

 
Supplemental Figure 1. Strategy for generating architecture matched genomic background 
coordinates. Shuffled, non-exonic genomic background coordinates were matched on enhancer-length and 
chromosome number (Methods). Syntenic sequence age was then assigned to matched-background datasets 
and simple/complex architecture was determined from the median number of age segments per enhancer in 
the corresponding enhancer dataset. On the right, kernel density estimates of simple and complex genomic 
background sequence lengths are comparable to matched simple and complex FANTOM sequence lengths.  
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 3 

 

 
 
Supplemental Figure 2. Transcribed enhancer sequence ages are enriched for older sequences ages, 
deplete of younger sequence ages. (A) The distribution of enhancer sequence ages across 30,474 FANTOM 
transcribed enhancers compared to 100 sets of length-matched random genomic regions (N = 2,700,459 
shuffled regions, gray). Enhancers are significantly older than expected compared to length-matched random 
genomic regions (p < 2.2e-308, Mann Whitney U test). Sample sizes for FANTOM (black) and shuffled (grey) 
bars are annotated below. (B) Enhancer lengths by age versus 100 sets of length-matched random genomic 
background sets. Older enhancers are longer than expected (median 321 bp versus 310 bp, enhancers versus 
random regions older than placental mammals; p < 2.2e-308), younger enhancers are shorter than expected 
(median 277 bp versus 286 bp random regions; p = 3e-15). (C) Enhancers are more conserved than younger 
enhancers and more conserved than expected (28% enhancers versus 12% random regions overlap a 
PhastCons element). Sample sizes for FANTOM (black) and shuffled (grey) bars are annotated below. (D) 
Enhancers are enriched for older sequence ages compared with length-matched random 100x genomic shuffle 
regions. Fold-change is log2-scaled. Numbers in parenthesis represent estimated MYA since the last common 
ancestor. (E) Younger enhancers are shorter than expectation. Linear regression fit to enhancer and shuffled 
lengths over ages.  
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 4 

 
 
Supplemental Figure 3. Hg19 human genome age distribution. (A) Most human syntenic bases (N = 
2,877,464,452) are derived from the placental (Eutherian) ancestor. Sequence age for each base pair from 
hg19 UCSC 46-way MultiZ sequence alignments. Sequence age are assigned to each syntenic block based on 
the oldest most recent common ancestor (MRCA) of extant species alignable with humans. Number of bases 
per age is annotated. (B) Younger syntenic blocks are longer than older syntenic blocks. Median syntenic block 
length per age is shown. Syntenic block sample sizes are annotated per bar. (C) A minority of syntenic blocks 
per age overlap phastCons elements. Percent of syntenic blocks overlapping phastCons elements within each 
age. Number of syntenic blocks overlapping PhastCons elements annotated in black.  
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 6 

 
Supplemental Figure 4. Masking exons, simple repeats, transposable elements from transcribed 
enhancer dataset, genomic background does not change interpretations of simple and complex 
enhancer architectures. Hg19 Ensembl exon coordinates (downloaded from UCSC genome browser on 
2020-09-25), tandem repeats, and TEs (RepeatMasker hg19 open-4.0.5 - Repeat Library 20140131) were 
masked from both the FANTOM enhancer datasets and 100x enhancer length- and chromosome-matched 
shuffle datasets (which had been previously masked from blacklisted ENCODE regions) using the BEDTools 
subtract function. 
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 7 

 

 
Supplemental Figure 5. Complex enhancers have fewer age segments than expected based on length-
matched regions from the genomic background (overall mean 2.54 complex (N = 10,581) v. 2.68 complex 
shuffle (N = 1,123,232) total age segments, p = 9.9e-42, Mann Whitney U). Complex transcribed enhancers 
have significantly different numbers of age segments per MRCA (p = 1.9e-88, Kruskal Wallis) and compared 
with genomic background. Number of segments of different ages in complex enhancers of different ages 
(green) compared to length-matched complex regions selected randomly from the genomic background (gray). 
At every age, the random segments have greater than or equal numbers of segments of different ages 
compared to complex enhancers. The largest differences are observed in Eutheria and Theria enhancers. 
Error bars are estimated from bootstrapped 95% confidence intervals. Sample sizes are annotated per bar.  
 
 

 
 
Supplemental Figure 6. Both simple and complex transcribed enhancers are enriched for older 
sequences, depleted of younger sequences compared to expectation. Odds of complex architecture is 
depleted or random across ages. (A) Fold-ratio was estimated from simple (left, N = 19857) and complex 
enhancers (right, N = 10581) against 100x permuted architecture-matched background genome regions. 
Sample size is annotated for each bar. (B) Odds ratio of observing complex enhancer architecture versus 
simple enhancer architecture per age was estimated using Fisher’s Exact Test and FDR correction < 5%. Error 
bars represent 95th confidence intervals. Sample size is annotated for each bar.  
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Supplemental Figure 7. Complex transcribed enhancer age architecture landscapes. Enhancer 
sequence age landscapes were quantified across 100 bins and stratified by oldest sequence age. Sequence 
age architecture sampled from 10,956 complex autosomal FANTOM enhancers and 17,277 autosomal non-
exonic background regions matched on complex architecture, enhancer-length and chromosome number. 
Mean age distribution across complex enhancer sequences are shown, one panel per age. Middle 50% versus 
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outer 50% Mann-Whitney U values were calculated for each age classification. Shaded area represents 1000 
bootstrapped 95% confidence intervals. 
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 11 

Supplemental Figure 8. Complex enhancer age architecture landscapes with 3+ ages in FANTOM are 
distinct from matched background. Enhancer sequence age landscapes were quantified across 100 bins 
and stratified by oldest sequence age. Sequence age architecture sampled from 1,338 complex autosomal 
FANTOM enhancers and 7,674 non-exonic genomic background matched on length, chromosome, and 
complex architecture. Grey lines represent complex shuffled architectures with 3+ ages are shown, one panel 
per age. Grey numbers represent mean ages in inner 50% and outer 25% quadrants. Middle 50% versus outer 
50% Mann-Whitney U values were calculated for each age classification. Shaded area represents 1000 
bootstrapped 95% confidence intervals. 
 

 
 

Supplemental Figure 9 – Simple and complex transcribed enhancer lengths versus architecture-
matched expectation per age. (A) Median ages for transcribed enhancer and shuffled genome architectures 
stratified by age. Complex enhancer sequences are slightly, but significantly, longer than expected (median 
347 bp versus 339 bp; p = 2.5e-06, Mann Whitney U test). Simple enhancers are slightly longer than expected 
(median 259 bp simple versus 255 bp simple genomic background; p = 7.3e-05). Per bar sample sizes are 
annotated below. (B) Linear regression models fit to simple and complex transcribed enhancer lengths and 
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 12 

architecture-matched genomic background per millions of years (MYA) estimates from TimeTree (Hedges et 
al., 2015). Complex enhancers have a steeper slope than matched genomic background (10.6 bp/100 million 
years (MY) complex enhancer slope; p= 1.1e-17 versus 4.3 bp/100 MY complex genomic region slope; p= 
3.7e-251, linear regression). In contrast, simple enhancers maintain a flat slope over time (-0.7 bp/100 MY 
simple enhancer slope; p= 0.5, versus -5.5 bp/100 MY simple genomic region slope; p< 2.2e-308).  

72
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Supplemental Figure 10. Simple transcribed enhancer syntenic blocks are longer than complex 
syntenic blocks across ages. Shown is the mean syntenic length per enhancer age. Syntenic blocks in 
simple enhancers range between 216-279 bp long (median), while complex syntenic blocks range between 
122-168 bp (median) across ages. Random non-exonic genomic shuffles matched on age and architecture are 
shown. Confidence intervals were estimated with 1000 bootstraps. Sample sizes for each bar are reported in 
Fig S9.  
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 14 

 
Supplemental Figure 11. Simple enhancers are significantly enriched across FANTOM tissue and cell 
line datasets. Simple enhancer enrichment for each tissue dataset was evaluated versus 100 non-exonic, 
length-matched, chromosome-matched random genomic datasets. Fold enrichment was measured using 
Fisher’s Exact Test and odds ratio confidence intervals are plotted. All datasets with significant enrichment 
(*p<0.05) are annotated with an asterisk.  
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Supplemental Figure 12. Pleiotropy is correlated with transcribed enhancer length per age. Tissue 
pleiotropy was measured using trimmed FANTOM enhancers (310 bp long) to control for random overlap 
between longer enhancer and multiple tissue datasets. We stratified simple and complex enhancers into 20 
equally-sized tissue pleiotropy bins (points) and evaluated the correlation between pleiotropy and raw, original 
enhancer lengths. Bootstrapped confidence intervals are shown for each data point. Linear regression lines 
were fit to the data and correlation coefficients are shown in the legend. 
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Supplemental Figure 13 – Developmental human neocortical enhancers from Reilly et al., Emera et al. 
dataset is enriched for simple architectures. Developmental neocortical enhancers from Reilly 2015 (n = 
40,176) and Emera 2016 (n = 29,706) were aged, masked for exon overlap, and evaluated for enhancer 
architecture enrichment. Enhancers from Emera et al. were previously filtered for homologous mouse 
developmental neocortex H3K27ac+ peaks, thus excluding human-specific and primate-specific sequences. 
(A) Enrichment in the number of enhancer age segments (top) was calculated against a matched-genomic 
background dataset using Fisher’s Exact Test. Error bars represent 95th percentile confidence intervals. (B) 
Cumulative distribution of enhancer age segments. Blue line represents the relative simple definition (less than 
median number of age segments in dataset) for Reilly (median 5 age segments) and Emera (median 6 age 
segments). (C) Enhancer and genomic background age frequency. (D) Frequency of architecture stratified 
across ages. Sample sizes are annotated per bar and over the entire architecture dataset. (E) fold-change 
measured as the ratio of enhancer to genomic background frequency per age. Error bars represent 
bootstrapped 95th percentile confidence intervals.   
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Supplemental Figure 14. Complex enhancers in human developmental neocortical tissues overlap 
more mouse and rhesus developmental neocortical active enhancers than simple enhancers. (A) Reilly 
et al 2015 mouse and rhesus non-exon neocortical enhancers were lifted over using liftOver and intersected 
with simple and complex human neocortical enhancers. Simple architecture was defined as enhancers with 
less than 5 age segments. Length-matched complex enhancers (n = 17,061) significantly overlap more species 
than simple enhancers (n = 17,155), though the difference is slight (1.29 v. 1.26 species overlaps for complex 
and simple enhancers, p = 7.9e-13, Mann-Whitney U). (B) Emera et al 2016 human enhancers intersected with 
mouse and rhesus non-exon neocortical enhancers. Simple architecture was defined as enhancers with less 
than 6 age segments. Length-matched complex enhancers (n = 12,707) significantly overlap more species 
than simple enhancers (n = 11,481), though the difference is slight (2.40 v. 2.36 species overlaps for complex 
and simple enhancers, p = 1.1e-4, Mann-Whitney U). Error bars represent 95% bootstrapped confidence 
intervals for both. Sample size for each bar is annotated in white.  
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Supplemental Figure 15. PhastCons estimates for complex and simple transcribed enhancers. (A) 
Complex enhancers are more frequently conserved than simple enhancers. Overall frequency of enhancers 
overlapping PhastCons elements among simple or complex enhancer datasets (N = 4766 simple and N = 3703 
complex enhancers overlap PhastCons elements). (B) Frequency of enhancers overlapping PhastCons 
elements within each age. 
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Supplemental Figure 16. Tissue pleiotropy is weakly correlated with purifying selection in simple and 
complex enhancers per age. We stratified simple and complex enhancers into 10 equally-sized tissue 
pleiotropy bins (points) and evaluated the correlation between pleiotropy and purifying selection. Bootstrapped 
confidence intervals are shown for each data point. Linear regression lines were fit to the data and correlation 
coefficients are shown in the legend.  
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Supplemental Figure 17. FANTOM simple enhancers are more enriched than complex enhancers for 
GWAS variants across ages. Simple and complex FANTOM enhancers were stratified by age and tested for 
GWAS variant enrichment compared with 100 length-matched and architecture-matched permuted 
background. Error bars represent 95% confidence intervals bootstrapped 10000 times. The number of 
overlapping GWAS variants is annotated for each bar.  
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Supplemental Figure 18. ClinVar annotations in transcribed architectures. Simple FANTOM enhancers 
overlap pathogenic ClinVar variants (0.33 simple (N =3/9) v. 0.00 (N = 0/12) complex enhancer variants 
overlapping pathogenic annotations, p = 0.06 Fisher’s Exact Test). Pathogenic annotations include 
“Pathogenic/Likely_pathogenic” and “Pathogenic_risk_factor”. Complex FANTOM enhancers are enriched for 
benign variants (N simple = 4/9 and N complex = 9/12 enhancer variants overlapping benign annotations). 
Benign annotations include “benign” and “Likely_benign”. Conflicting annotations were excluded. ClinVar 
variants were intersected with FANTOM simple and complex enhancers and variant enrichment per annotation 
was calculated using Fisher’s Exact test. Annotations (x-axis) and the fraction of overlapping variants assigned 
with that annotation (y-axis) are shown.  
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Supplemental Figure 19. eQTL variants are similarly enriched in simple and complex enhancers 
(median 1.09 and 1.11 simple and complex enhancer fold change, p = 0.38, Mann Whitney U). Fold-change 
enrichment was estimated against a 100x permuted background in 46 eQTL tissue datasets from GTEx. Each 
dot represents the enhancer architectures eQTL fold-change enrichment per tissue dataset.  
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Supplemental Figure 20. Variants in simple transcribed and histone enhancers are enriched for 
significantly affect regulatory activity in massively parallel reporter assay. Fraction of tissue/cell-type-
specific simple and complex enhancers with significant allelic MPRA activity from FANTOM eRNAand 310 bp 
trimmed ROADMAP H3K27ac+ H3K4me3- ChIP-seq datasets. Tissue and cell-type-specific datasets were 
intersected with alleles tested in K562 and HepG2 MPRA assays. The fraction of significant alleles was 
calculated from all alleles overlapping simple or complex enhancer architectures and is plotted on the y-axis. 
Enhancer datasets with FDR< 5% significant enrichment are shown in red text. None of the results were 
statistically significant (p <0.05). Significant allelic MPRA activity was estimated by the authors using a 5% 
FDR. Sample size for SNP overlaps is annotated for each bar.  
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Supplemental Figure 21. TEDS enrichment in simple and complex transcribed enhancer sequences. 
TEDS enrichment is measured as the z-score of TEDS overlap counts in normalized enhancer bins and 
calculated across simple enhancers (yellow) and complex enhancers (green). 
 

n = 22

1.0

0.5

0.0

0.5

1.0

1.5
Homo sapiens (0)

n = 76

1

0

1

2

3
Mammalia (177)

n = 13

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

Amniota (312)

n = 943

3

2

1

0

1

Primate (74)

n = 111

2

1

0

1

2 Euarchontoglires (90)

normalized enhancer bins
n = 863

2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

TE
 e

nr
ic

hm
en

t

Boreoeutheria (96)
n = 6266

1

0

1

2

3

Eutheria (105)

n = 133

2

1

0

1

2

Theria (159)
n = 11

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5 Tetrapoda (352)

-50 -25 0 +25 +50
n = 65

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

Vertebrata (615)

-50 -25 0 +25 +50 -50 -25 0 +25 +50

-50 -25 0 +25 +50 -50 -25 0 +25 +50 -50 -25 0 +25 +50

-50 -25 0 +25 +50 -50 -25 0 +25 +50 -50 -25 0 +25 +50 -50 -25 0 +25 +50

normalized enhancer bins

TE
 e

nr
ic

hm
en

t

-50 -25 0 +25 +50

-50 -25 0 +25 +50 -50 -25 0 +25 +50 -50 -25 0 +25 +50

n = 489
-50 -25 0 +25 +50

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Mammalia (177)

n = 267

6

5

4

3

2

1

0

1
Primate (74)

n = 89

4

3

2

1

0

1

Euarchontoglires (90)

n = 500

4

3

2

1

0

1

Boreoeutheria (96)
n = 2447

2

1

0

1

2

Eutheria (105)

n = 709

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5 Theria (159)

-50 -25 0 +25 +50
n = 207

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Vertebrata (615)

-50 -25 0 +25 +50
n = 78

1

0

1

Tetrapoda (352)

2

n = 151
-50 -25 0 +25 +50

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Amniota (312)

1.0

-50 -25 0 +25 +50

84



 25 

 
Supplemental Figure 22. TEDS are enriched in cores of younger complex transcribed enhancers, 
depleted from cores of older complex enhancers. Log2 odds enrichment of TEDS overlapping complex 
cores in age versus all cores overlapping and not overlapping TEDS outside of age. Negative log10(p-value) 
with a 5% FDR correction is plotted in red dots on the right y-axis.  
  

Supplemental Figure 5.1 – TEs are enriched in cores of younger complex enhancers, depleted from cores of older 
complex enhancers. Log2 odds enrichment of TE overlapping cores in age versus all cores overlapping and not overlapping TEs 
outside of age. Negative log10(pvalue) with a 5% FDR correction is plotted in red dots on the right y-axis. 

Complex FANTOM 
enhancer

TE No TE

Core in MRCA
Core not in MRCA

Supplemental Figure 5.1 – TEs are enriched in cores of complex enhancers from 
placental MRCA and younger, depleted from cores of older complex enhancers. 
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Supplemental Figure 23. Histone-defined enhancers are enriched for older sequence ages. (A) 
Frequency and (B) fold change of ROADMAP enhancer sequence ages (dark grey) across 98 H3K27ac+ 
H3K4me- ChIP-seq enhancer datasets versus expected from the genome background (light grey) (mean 0.217 
v.0.185 substitutions per site; N = 2,827,573 enhancers; p =2.4e-39, Mann Whitney U).  (C) Enhancer length 
versus genomic background length per age (p < 2.2e-308, Kruskal-Wallis). Sample sizes are annotated in (A). 
 

 
Supplemental Figure 24. Distribution of median number of age segments for 98 ROADMAP histone 
(H3K27ac+ H3K4me3- ChIP-seq) datasets. Per non-exonic enhancer dataset, the median number of age 
segments per enhancer was calculated. The median number of age segments for each of the 98 datasets are 
shown in this histogram. More than 40% of the datasets have a median of 4 age segments per enhancer. 
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Supplemental Figure 25. Simple and complex histone enhancer age architectures in ROADMAP. Simple 
architectures (left) and complex architectures (right) sequence age architecture sampled from 1,057 non-
exonic autosomal ROADMAP enhancers from dataset E072, brain inferior temporal lobe. Simple enhancers 
are defined as enhancers with less than 5 age segments (i.e. less than the median number of age segments 
among all enhancers in dataset E072). Enhancer sequence age landscapes were divided into 100 equal-size 
bins. Age is indicated by color. 
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Supplemental Figure 26. Removing exons overlapping Roadmap enhancers increases enrichment of 
simple enhancers across tissues, has little effect on lengths of simple and complex enhancers across ages, 
and reduces the frequency of complex vertebrate enhancers. Three columns represent the Roadmap datasets 
including enhancers overlapping exons (left), Roadmap datasets excluding exons (middle) and Roadmap 
datasets excluding exons and trimmed to 310bp in length. Shown above in each column is the log2 fold 
enrichments of simple enhancers across 98 Roadmap tissue datasets (above, waterfall plots). Datasets with 
significant enrichment (p < 0.05) are marked with an asterisk. Below in boxplots bottom left-most), a summary 
of significantly enriched datasets for either architecture is shown. Enhancer lengths for simple and complex 
enhancers are similar across ages for Roadmap enhancers including or excluding exons (bottom middle-most). 
Enhancer trimmed to center 310bp of enhancer peaks have the same length between architectures. Enhancer 
architecture frequencies across ages are similar (bottom right-most), though including exons increases the 
frequency of vertebrate complex enhancers.   
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Supplemental Figure 27. Exon overlap the flanking regions of complex histone enhancers. Complex 
enhancers from Roadmap inferior brain temporal lobe overlapping Ensembl exon coordinates are shown. (A) 
Complex enhancers (N = 6,218) were divided into 100 equal-length bins and coding exons overlaps per bin 
were quantified as a Z-score. Vertical lines represent the 25% and 75% quartile bins, and numbers represent 
the mean z-score for the two outer quartiles and interquartile. Outer flanking quartiles of complex enhancer 
landscapes are enriched for exons compared to interquartiles (p < 2.2e-238, Mann Whitney U test). (B) 
Complex enhancers overlap multiple exons. Cumulative distribution of exon overlaps among 6,218 complex 
enhancers is shown. The median exon overlap per complex enhancer is two. (C) The number of overlapping 
exons is positively correlated with the Roadmap enhancer length. Five equally sized bins were plotted for exon 
overlap and enhancer length. (D) Exon overlap in complex enhancers stratified by age. Eighty-five percent of 
exon-overlapping complex enhancers are from Vertebrate ages. Vertical lines represent the 25% and 75% 
quartile bins, and numbers represent the mean z-score for the two outer quartiles and interquartile. 
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Supplemental Figure 28. Complex enhancer age architecture landscapes in ROADMAP. Composite 
landscape of complex sequence age architecture was randomly sampled from 6041 non-exonic autosomal 
ROADMAP brain inferior temporal lobe complex enhancers and 6832 matched non-exonic genomic 
background, and stratified by age. Enhancer sequence age landscapes were binned into 100 bins and 
stratified by oldest sequence age. Inner 50% versus outer 50% Mann-Whitney U values were calculated for 
each age classification. Mean sequence age in substitutions per site for outer quartiles and inner 50% are 
annotated in black for enhancers and in grey for matched genomic background. Shaded area represents 1000 
bootstrapped 95% confidence intervals. 
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Supplemental Figure 29. ROADMAP Simple and complex enhancer age architecture features. (A) Per 
ROADMAP dataset enrichment for simple enhancers. Among datasets with significant architecture enrichment 
(n=78), one-half (n=39) of datasets were significantly enriched for simple architectures (p < 0.05, Fisher’s 
Exact Test). Per dataset, simple architecture was assigned to enhancers with less than the median number of 
age segments. Simple architecture fold enrichment was calculated against non-exonic length- and 
chromosome-matched genomic background architectures using Fisher’s Exact Test. Error bars represent 95% 
confidence intervals. (B) Complex enhancers are oldest at center of the sequence (0.215 inner 50% v. 0.207 
outer 50% mean MRCA ages in substitutions per site, p <2.2e-308, Mann Whitney U). Complex genomic 
background architectures are slightly older at the center of the sequence (0.185 inner 50% v. 0.184 outer 50% 
mean MRCA ages in substitutions per site, p <2.2e-308, Mann Whitney U). Shaded areas represent 
bootstrapped 95% confidence intervals. Brain inferior temporal lobe complex ROADMAP enhancer data 
shown. (C) Complex enhancers are longer than simple enhancers (1960 bp complex v. 796 bp simple median 
length, p = 3.1e-33, Mann Whitney U). Enhancer length was stratified by age complex and simple enhancers 
versus genomic background. Sample sizes per bar are annotated. (D) Complex enhancers are older than 
simple enhancers. Frequency of complex and simple enhancer architectures per age (overall architecture 
median 0.308 v. 0.175 sequence age in substitutions per site, p = 5.8e-34, Mann Whitney U). Sample sizes per 
bar are annotated in (C). 
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Supplemental Figure 30. Trimmed histone simple and complex enhancer age architectures. (A) 
ROADMAP enhancers are enriched for lower numbers of age segments than expected (odd ratio of 1 age 
segment = 1.02; p = 2.3e-63, Fisher’s exact test). (B) Complex enhancers are oldest at center of enhancer 
(mean 0.222 inner 50% v. 0.215 outer 50% sequence age in substitutions per site, p <2.2e-308, Mann Whitney 
U). (C) Complex enhancer lengths and simple enhancer lengths are equal after trimming, and enhancer length 
is stratified by age complex and simple enhancers versus genomic background. Sample sizes per bar are 
annotated. (D) Complex enhancers are older than simple enhancers, Frequency of complex and simple 
enhancer architectures per age (overall architecture mean 0.28 v. 0.20 sequence age (in substitutions per 
site), p = 8.8e-05, Mann Whitney U). Sample sizes are annotated in (C). 
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Supplemental Figure 31 – Complex ROADMAP enhancers are more pleiotropic than simple enhancers 
in fetal tissues. Non-genic Roadmap tissue sample H3K27ac+ H3K4me3- ChIP-seq datasets were trimmed to 
mean overall dataset lengths and intersected with 97 other ROADMAP datasets. Simple enhancer 
architectures were defined as enhancers fewer than the median number of age breaks per dataset 
(untrimmed). (A) Complex enhancers are active across more tissues than simple enhancers. Summary of 
tissue overlap in 98 Roadmap tissue datasets. Summary tissue overlap and architecture is stratified by age 
(right). (B) Six fetal tissue datasets and six adult tissue datasets from blood and brain. Mean cross-dataset 
activities are shown with 95% confidence intervals estimated from 1000 bootstraps. Below, cross-dataset 
activities are shown stratified by enhancer age for each dataset evaluated. Sample sizes are annotated for 
each bar in white.  
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Supplemental Figure 32 - LINSIGHT purifying selection estimates in ROADMAP brain, blood, and fetal 
H3K27ac+ H3K4me3- ChIP-seq datasets. (A) Mean LINSIGHT estimates for representative ROADMAP 
brain, blood, and cell line datasets are plotted on the x-axis stratified by architecture (mean 0.29 complex v. 
0.27 simple LINSIGHT score across datasets; Mann Whitney-U p = 2.26e-9). (B) Mean LINSIGHT score per 
architecture and MRCA age combined across ROADMAP brain, blood, and fetal samples. Error bars represent 
95% bootstrapped confidence intervals for both. Per bar sample sizes are annotated.  
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Supplemental Figure 33 – Histone simple and complex enhancer GWAS tag-SNP enrichment in 98 
tissue and cell datasets. (A) In 310bp trimmed Roadmap H3K27ac+ H3K4me3- ChIP-seq enhancers among 
all 98 tissue contexts, simple architectures are more enriched for GWAS variants than complex architectures in 
56/98 contexts, while complex enhancers are more enriched for GWAS variants in 42/98 contexts (left panel, 
median 1.16 simple vs. 1.17 complex fold-enrichment; p = 0.46, Mann Whitney U). Per dataset comparisons of 
simple and complex enhancers is shown (right panel). (B) Significant differences in enhancer architecture 
GWAS enrichment for seventy tissue contexts (p < 0.05, two-tailed permutation test) compared with 100x 
length-matched, architecture-matched, chromosome-matched background random regions (left panel, median 
1.18 simple v. 1.20 complex fold-enrichment; p = 0.43). Among these contexts, 37/70 datasets had higher 
simple enhancer enrichment, while 33/70 datasets had higher complex enhancer enrichment. Per dataset 
comparisons of simple and complex enhancers is shown (right panel). 
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Supplemental Figure 34 – ClinVar annotations in histone architectures. Roadmap enhancer architectures 
have a similar fraction of benign annotations (0.18 for both enhancers; Fisher’s Exact Test p = 1). Simple 
ROADMAP enhancers overlap a higher fraction of pathogenic variants (0.18 simple v. 0.12 complex 
enhancers, p = 1). Simple architectures overlap protective variants (0.06 simple v. 0 complex enhancers; p = 
1). Pathogenic annotations include “Pathogenic/Likely_pathogenic” and “Pathogenic_risk_factor”. Benign 
annotations include “benign” and “Likely_benign”. Conflicting annotations were excluded Ninety-eight trimmed 
310bp ROADMAP H3K27ac+ H3K4me3- ChIP-seq datasets were intersected with ClinVar variants and variant 
enrichment per annotation was calculated using Fisher’s Exact Test. Annotations (x-axis) and the fraction of 
overlapping variants assigned with that annotation (y-axis) are shown. Number of variant overlaps per bar is 
annotated.  
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Supplemental Table 1 – Summary of key FANTOM and ROADMAP findings.

 
 

FANTOM ROADMAP
Relative simple* Trimmed peaks (310bp)

Age architecture 64% simple
36% complex
Oldest sequence in center

~50% simple,
~50% complex
Oldest sequence in center

57% simple
43% complex
Oldest sequence in center

Ages Eutherian Eutherian Eutherian

Length ~292 bp median ~2.4 kb median 310 bp

Complex architecture organization
(inner v. outer 50% sequence age)

0.275 v 0.265 
p = 4.9e-166 

0.215 v. 0.206
p < 2.2e-308

0.271 v. 0.268
p < 2.2e-308

Simple architecture enrichment 
(odds ratio)

1.3x 
p = 7.6e-107 

1.1x
39/78 datasets with p < 0.05

1.02x
p = 2.3e-63 

Tissue-specific/ pleiotropic activity
Mean contexts

Simple = 4.8
Complex = 7.4
p = 5.8e-199

Simple = 7.2
Complex = 9.5
p < 2.2e-308

Simple = 8.4
Complex = 10.7
p < 2.2e-308

Purifying selection

Mean LINSIGHT score

Complex = 0.16
Simple = 0.14
p < 2.2e-308

Complex = 0.29
Simple = 0.27
p = 2.2e-9

GWAS Catalog Variant
(odds ratio)

Simple = 1.17
Complex = 1.14
p = 0.01

Simple = 1.16 (mean)
Complex = 1.17 (mean)
p = 0.46
56/98 tissues simple > complex
42/98 tissues complex > simple

Allele-specific MPRA biochemical 
activity
(Simple v. complex odds ratio)

K562 = 1.18x;  p = 0.04
HepG2 OR = 1.08x;  p = 0.26

K562 = 1.35x;  p = 0.08
HepG2 = 1.29x; p = 0.11

*Relative simple is defined as enhancers with age segments <= median enhancer age segments per dataset
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CHAPTER 3

Function and constraint in enhancer sequences with multiple evolutionary origins

3.1 ABSTRACT

Motivation: Thousands of human gene regulatory enhancers are composed of sequences with multiple

evolutionary origins. These evolutionarily “complex” enhancers consist of older “core” sequences and

younger “derived” sequences. However, the functional relationship between the sequences of different

evolutionary origins within complex enhancers is poorly understood.

Results: We evaluated the function, selective pressures, and sequence variation across core and derived

components of human complex enhancers. We find that both components are older than expected from the

genomic background, and complex enhancers are enriched for core and derived sequences of similar

evolutionary ages. Both components show strong evidence of biochemical activity in massively parallel

report assays (MPRAs). However, core and derived sequences have distinct transcription factor (TF) binding

preferences that are largely similar across evolutionary origins. As expected, given these signatures of

function, both core and derived sequences have substantial evidence of purifying selection. Nonetheless,

derived sequences exhibit weaker purifying selection than adjacent cores. Derived sequences also tolerate

more common genetic variation and are enriched compared to cores for eQTL associated with gene

expression variability in human populations.

Conclusions: Both core and derived sequences have strong evidence of gene regulatory function, but

derived sequences have distinct constraint profiles, TF binding preferences, and tolerance to variation

compared with cores. We propose that the step-wise integration of younger derived with older core

sequences has generated regulatory substrates with robust activity and the potential for functional variation.

Our analyses demonstrate that synthesizing study of enhancer evolution and function can aid interpretation

of regulatory sequence activity and functional variation across human populations.

3.2 Introduction

Enhancers are distal gene regulatory DNA sequences that modulate target gene expression in cell-type- and

spatio-temporal-specific contexts (Shlyueva et al. (2014)). Enhancer function is mediated by the binding of

transcription factors (TFs) that recognize DNA sequence motifs and interact with promoters. Changes in

enhancer function are major drivers of species divergence and variation within species (Wray (2007); Sholtis

and Noonan (2010); Wittkopp and Kalay (2012); Franchini and Pollard (2015); Rebeiz and Tsiantis (2017)),

yet the evolutionary events underlying the creation and functional evolution of sequences with enhancer
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activity are less understood.

Studying enhancer sequence evolution poses several challenges. First, enhancer activity turns over

rapidly between mammalian species, but most sequences with current enhancer activity have ancient origins

(Villar et al. (2015)). Furthermore, the conservation of enhancer activity can be maintained without

detectable sequence conservation, as has been proposed in the developmental systems drift hypothesis (True

and Haag (2001)). Nonetheless, several connections have been discovered between the evolutionary

sequence origins and current gene regulatory functions. The age of a regulatory sequence is predictive of the

genes that it likely targets, and different periods of regulatory sequence innovation have contributed to

vertebrate evolution (Lowe et al. (2011)). Moreover, younger mammalian neocortical enhancers are more

weakly constrained, and many neocortical enhancers consist of sequences of multiple evolutionary origins

(Emera et al. (2016)). Underscoring the functional relevance of these evolutionary events, older sequences

with gene regulatory activity are more enriched for heritability in a range of human complex traits than

younger sequences with regulatory activity (Hujoel et al. (2019)). These waves of regulatory change have

been driven in large part by the integration of transposable elements (TEs) carrying different TF binding

sites into the genome at different times (Marnetto et al. (2018)).

Mammalian enhancer sequences are often composed of functional units, or modules, that bind different

combinations of transcription factors (Long et al. (2016); Jindal and Farley (2021)). Recent work has begun

to reveal the nature of the modular organization of enhancer functions (Gotea et al. (2010); Farley et al.

(2015); Tippens et al. (2020); Long et al. (2020); Wong et al. (2020)). Enhancer sequences often result from

the integration of different combinations of sequence over time (Emera et al. (2016); Fong and Capra

(2021)). However, models that synthesize the evolutionary origins of enhancer sequences with an

understanding of functional modules are needed.

The potential value of integrating evolution and function to human enhancer sequences is illustrated by

the utility of models of protein-coding sequence evolution. Over evolutionary time, protein-coding

sequences often generate novel protein functions by integrating functional modules in different

combinations. Knowledge of the evolutionary origins of different proteins and domains provides valuable

context for interpreting the evolution and function of protein families (Capra et al. (2013b)). As a result,

many statistical frameworks exist for modeling protein domain and family evolution (Stolzer et al. (2015);

Forslund et al. (2019)). While enhancer functional domains evolve via mechanisms distinct from those of

protein domains, we anticipate that expanding knowledge of the relationship between enhancer sequence

evolution and function will improve our ability to determine whether changes to specific gene regulatory

sequence features produce changes in regulatory function. Thus, deeper understanding of enhancer sequence

evolution will contribute valuable context for resolving gene regulatory functions of candidate disease
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variants of unknown significance, understanding the molecular basis for differences between species, and

developing synthetic gene regulatory elements.

We recently explored how the evolutionary origins of an enhancer sequence are reflected in its

functional and regulatory features, such as pleiotropy and robustness to perturbation of its biochemical

activity by genetic variants (Fong and Capra (2021)). We discovered that a significant fraction of enhancer

sequences in diverse tissues consist of DNA from multiple evolutionary origins. These “complex” enhancers

are the result of genomic integration and rearrangement events over evolutionary time. Complex enhancers

are more likely to be active across multiple tissues than their more tissue-specific evolutionarily simpler

counterparts. Yet, we emphasize that the term “complex” only refers to the evolutionary origins of the

enhancer and not necessarily its function or architecture. Indeed, the relationship between the sequences of

different evolutionary origins in these enhancers and the gene regulatory functions they produce is poorly

understood. For example, whether the sequences from different evolutionary periods have independent gene

regulatory functions is unclear in most complex enhancers.

Here, we address this gap by contrasting the evolutionary origins, functional characteristics, TF

binding, selection pressures, and human genetic diversity of the oldest “core” regions and younger “derived”

regions of complex enhancer sequences. We find that both core and derived regions have strong evidence of

gene regulatory function, but derived regions have distinct properties in terms of their constraint profiles, TF

binding preferences, and tolerance to variation compared with cores. In addition, complex enhancers show a

strong enrichment for sequences of similar evolutionary ages. Overall, our results illustrate that the

combination of core and derived regions in enhancer sequences often promotes robust gene regulatory

activity while providing a substrate for functional variation in humans.

3.3 Results

3.3.1 Enhancers are commonly composed of older core and younger derived sequences

Thousands of human gene regulatory enhancers are composed of sequences with multiple evolutionary

origins. Previous work classified the components of these “complex” enhancers into two classes—core and

derived sequences (Figure 3.1A; Emera et al. (2016); Fong and Capra (2021)). The “core” sequence(s) are

the oldest sequences in an enhancer, and the younger sequence regions are “derived”. Our goal is to evaluate

the function, selective pressures on, and sequence variation across these components of complex human

gene regulatory enhancers genome-wide (Figure 3.1A).

To illustrate the components of a complex enhancer, we dissected evolutionary origins of the zone of

polarizing activity regulatory sequence (ZRS), a long-range enhancer of SHH involved in developmental

limb bud formation (Lettice et al. (2017)). The ZRS sequence achieves its regulatory function via multiple
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distinct regulatory domains (Lettice (2003), Lettice et al. (2012), Long et al. (2016)). The core sequence has

origins before the last common ancestor of all vertebrates, and it is flanked on both sides by multiple derived

regions with origins in the ancestors of tetrapods, amniotes, and mammals. This enhancer sequence is both

strongly conserved and involved in evolutionary variation in limb morphology. Loss of function variants at

this locus contributed to limbless evolution in snakes (Kvon et al. (2016)), while variants in vertebrate and

tetrapod sequences are associated with preaxial polydactyly 2 (PPD2) (Hill and Lettice (2013); Ushiki et al.

(2021)). In humans, eight of the eleven PPD2-causing variants annotated in the Online Mendelian

Inheritance in Man (OMIM) catalog are located in the Vertebrate core of the ZRS enhancer sequence, while

three are located in Tetrapod derived regions (Figure 3.1C). Common variants (minor allele frequency > 1%

in 1000 Genomes Projects from dbSNPv153) are observed in the younger derived amniote and mammal

sequences, but not in older tetrapod and vertebrate sequences. This example illustrates that variants in both

older core sequences and younger derived regions can cause human disease.

3.3.2 Derived regions constitute a substantial fraction of complex enhancer sequences

We first evaluated basic features of core and derived sequences in non-coding autosomal transcribed

enhancers from 112 diverse tissues and cell samples from the FANTOM5 consortium (N = 10,686;

Figure 3.1B). Derived regions represent 46% of the base pairs (bp) in a typical complex enhancer sequence

(Figure 3.2A, left; median total length of 310 bp), and complex enhancers have a median of one derived

region per core region (Figure S1). However, derived regions are shorter than core regions (Figure 3.2A,

right; median bp 136 derived v. 174 core). To evaluate whether these patterns are specific to complex

enhancer sequences or are generally true for adjacent sequences of different ages, we generated 100

non-coding region sets matched to the length and chromosome distributions of observed enhancers

(Methods). We identified “core” and “derived” segments of these regions and used them to establish null

distributions for comparison with the observed enhancers’ attributes. We will refer to these as “null”,

“background”, or “expected” distributions.

Derived eRNA sequences are shorter than expected from background regions with multiple sequence

ages (Figure S2; median bp 136 observed v. 157 expected; Mann-Whitney U (MWU) p = 1.4e-46).

Conversely, core regions are longer than expected (median bp 174 observed v. 143 expected; MWU p =

2.4e-73; Figure S2). Stratifying enhancers and background regions by their core ages and repeating these

comparisons yielded similar results (Figure S3). Thus, derived sequences make up less of enhancer

sequences than expected, but still contribute a substantial fraction of complex enhancer sequence and are

sufficiently long to bind multiple TFs.
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Figure 3.1: Complex enhancers consist of older core and younger derived sequences.
(A) Illustration of the approach for mapping enhancer sequence ages and architectures. We quantify
the age of a sequence with human enhancer activity based on the oldest most recent common ancestor
(MRCA) in overlapping syntenic blocks from the MultiZ multiple sequence alignments of 46 verte-
brates (color key). Enhancer age is assigned as the oldest, overlapping syntenic block age. Estimates
of divergence time in millions of years ago (MY) from TimeTree (Hedges et al., 2015) are annotated
in the color key. (B) Autosomal transcribed enhancers from the FANTOM5 consortium (N = 30,434)
were classified as having complex (multi-age) or simple (single-age) architectures. Complex enhancers
were further dissected into the oldest “core” and younger “derived” sequence regions. (C) A complex
developing limb bud enhancer (NC 000007.13) of SSH is located ∼1 Mb away in an intron of LMBR1
and has multiple evolutionary origins. Among 11 variants in OMIM that cause preaxial polydactyly 2
(PPD2), eight variants are in the Vertebrate core region, and three are in the Tetrapod derived region.
Common variants (minor allele frequency >1% in 1000 Genomes Project phase 3) from dbSNP (version
153) are observed only in derived regions. H3K27ac ChIP-seq peaks in H1-ESC and DNase I hypersen-
sitive clusters from 125 cell lines in ENCODE3 are shown for context.
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3.3.3 Both derived and core regions are older than expected from matched background regions

Enhancer sequences are generally older than expected from the non-coding genomic background,

suggesting that many have been maintained due to their function (Lowe et al. (2011); Villar et al. (2015);

Emera et al. (2016); Marnetto et al. (2018); The ENCODE Project Consortium et al. (2020); Fong and Capra

(2021)). We expanded previous analyses of enhancer ages to consider the multiple evolutionary origins of

complex enhancers. We compared the distributions of core and derived sequence ages to background

regions. Core sequences are enriched for older ages (Therian ancestor and older) compared with expected

core sequence ages (Figure 3.2B left; median age 0.30 observed v. 0.175 expected; MWU p < 2.2e-238).

Derived sequences are also enriched for older ages compared to derived regions of background sequences

with matched core ages. The enrichment extends through sequences with Eutherian origins (Figure 3.2B

right; median derived sequence age 0.175 observed v. 0.152 expected; MWU p < 2.2e-238). These results

indicate that both core and derived sequences are older than expected and suggest that both components

often have constrained regulatory function.

3.3.4 Complex enhancers are enriched for core and derived sequences from consecutive phylogenetic

branches

To explore whether core and derived sequences in the same complex enhancer have temporal relationships,

we evaluated enrichment for sequence age combinations among observed derived and core sequence pairs.

We hypothesized that derived sequence origins would likely occur soon after the origins of the

corresponding core sequences.

Overall, enhancers are enriched for core and derived sequences from the consecutive phylogenetic

branches compared to background complex regions (Figure 3.3). This suggests a preference for integration

of derived sequences into older core enhancer sequences on contiguous branches, and that integration of

much younger derived sequences was less tolerated by old cores. In addition, Mammalian core sequences

and older are enriched for Therian derived sequences and older, but depleted of derived sequences from

younger ages. The oldest complex enhancers (from the Mammalian ancestor and earlier) are enriched for

derived sequences of several ancient origins (from the Therian ancestor and earlier), likely due to their very

old ages. Core and derived segments of each age have sequence identities to their most distant homologs

similar to background regions of the same age; this suggests that differences in sequence divergence across

enhancers are unlikely to systematically bias the assignment of ages or produce these phylogenetic patterns

(Figure S4).

These results indicate that the pairing of core and derived sequences within complex enhancers is not

random with respect to their origins and that evolution favors the step-wise addition of derived sequences
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Figure 3.2: Derived sequences are shorter than cores and older than expected from the non-coding
genome
(A) Derived regions constitute 44% of complex enhancer sequences (left), but are shorter than core
regions (right, median 136 bp derived v. 174 bp core, Mann Whitney U p = 4.9e-57). Both core and
derived regions are shorter than simple enhancers (dashed line, median 260 bp simple, p < 2.2e-308).
(B) Both core and derived sequences are enriched for older sequence ages and depleted of younger
sequence ages. Per age, the log2 of the fold change of the observed core (left) and derived (right)
sequence ages versus the expected proportion estimated from 100x sets of length-, chromosome-, and
architecture-matched non-coding sequences. Sample size is annotated per bar.
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that are near in age to the core sequence.

V
er

t

Te
tr

A
m

ni

M
am

T
he

r

E
ut

h

B
or

e

E
ua

r

P
rim

H
om

o

Core age

Vert

Tetr

Amni

Mam

Ther

Euth

Bore

Euar

Prim

Homo

D
er

iv
e

d 
ag

e

1.2

1.5

2 2.3 1.7

1.2 1.3 1.4 1.4

0.7 0.6 0.9 5

0.7 0.6 0.5 0.6 0.3 1.5

0.4 0.3 0.3 0.2 0.2 0.7

0.3 0.2 0.2 0.2 0.2 0.5

0.2 0.4

FANTOM core-derived age pair

0.25

0.5

1.0

2.0

4.0

O
R

 (
lo

g2
-s

ca
le

d)

Figure 3.3: Complex enhancers are enriched for core and derived sequences from consecutive phyloge-
netic branches.
For each enhancer core age, the enrichment for derived sequences of each age was measured against
the expectation from core-age-matched shuffled sequences using Fisher’s exact test. The boxes are
colored according to the log2 of the corresponding odds ratios (OR). Text in a box indicates significant
enrichment (red) or depletion (blue) after controlling the false discovery rate at 0.05 with the Benjamini-
Hochberg procedure. The oldest complex enhancers (pre-placental mammals) are enriched for older
derived sequences. Outside of the oldest enhancers, there is consistent significant depletion for complex
enhancers with core and derived segments with origins on non-consecutive phylogenetic branches.

3.3.5 Derived sequences have higher transcription factor binding site density than cores

Transcription factor (TF) binding at enhancer sequences is required for gene regulation, but the relative

contributions of core and derived sequences to TF recruitment in complex enhancer sequences is not known.

Some derived regions may be non-functional sequences flanking functional enhancer cores that are

identified due to the limited resolution of enhancer assays. Alternatively, derived sequences could bind TFs

essential for the proper function of the enhancer in specific contexts.
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To evaluate the role of derived sequences in binding TFs, we leveraged the ENCODE project’s deep

characterization of TF binding sites and enhancers in HepG2 and K562 cells: 119 and 249 TF chromatin

immuno-precipitation sequencing (ChIP-seq) assays and previously identified candidate cis-regulatory

elements (cCREs) with enhancer-like signatures based on DNase I hypersensitivity, CTCF, and histone mark

ChIP-seq assays (The ENCODE Project Consortium et al. (2020)). We first confirmed that our findings on

complex HepG2 and K562 enhancer architectures are consistent with those in FANTOM5 (Figure S6, S9).

We then quantified TF binding site (TFBS) density and enrichment patterns in core and derived regions of

these enhancers. In complex HepG2 enhancers, we observe that 46% of derived regions bind TFs compared

to 67% of core regions and 87% of simple HepG2 enhancers (Figure S20). A similar trend was observed in

K562 complex enhancers, where 59% of derived, 79% of core, and 93% of simple regions bind TFs. We

note that we have better power to detect TFBS in K562 cells because more ChIP-seq assays have been

performed in that cell model (249 K562 v. 119 HepG2 ChIP-seq assays). Complex enhancer regions with no

evidence of TF binding occur at similar frequencies across ages for both HepG2 and K562 cells, suggesting

that TF binding evidence is independent of enhancer sequence age (Figure S7).

In complex HepG2 enhancers with bound TFs, derived regions have higher TFBS densities compared

to core regions and simple enhancers (Figure 3.4A; median 4.3 binding sites/100 bp in derived regions

versus 3.6 binding sites/100 bp in core regions, MWU p = 1.1e-68). We observed a similar trend in complex

K562 enhancers (Figure S10A; median 7.4 binding sites/100 bp in derived regions versus 6.4 binding

sites/100 bp in core regions, MWU p = 3.5e-52). This trend of higher derived region TFBS density is

consistent across enhancers of different ages (Figure S??), suggesting that derived sequences bind TFs and

have higher TFBS densities than core sequences across evolutionary ages. Thus, derived sequences have a

higher density of assayed TF binding sites when a binding site is present, but they are less likely to be bound

by a TF than core segments overall.

Next, we quantified the relationship of TFBS density within core and derived segments of the same

complex enhancer. Among HepG2 enhancer sequences with bound TFs in both core and derived sequences

(N = 11899), TFBS density is positively correlated between the core and derived regions (Figure 3.4B;

linear regression slope=0.23, intercept=0.04, r=0.24, p=5.1e-140). We observed a similar positive

correlation in K562 cells (Figure S10; linear regression slope=0.39, intercept=0.056, r=0.39, p = 0.0,

stderr=0.008). Relaxing our criteria to include core and derived sequences with no evidence of TF binding,

we still observe that core and derived density within a single enhancer sequence is positively correlated

(Figure S11). These results show that TFBS density is overall positively correlated in adjacent core and

derived regions, and that when bound, derived sequences have a higher TFBS density.
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3.3.6 Core and derived sequences are enriched for distinct TFBS across ages

Given the differences in TF binding probability and density between core and derived regions, we

hypothesized that regions might also exhibit different TF preferences. Indeed, we found that derived and

core HepG2 enhancer regions are enriched for binding of distinct TFs (Figure 3.4C). Core regions are

enriched for the binding of 23 different TFs in at least one age, and derived regions are enriched for the

binding of 36 TFs in at least one age. Furthermore, many these TFs are consistently enriched in derived or

core regions across multiple sequence ages, suggesting that specific TFs have a preference for binding core

or derived sequence contexts.

We tested these conclusions in another deeply characterized ENCODE cell line, K562, and found

similar patterns (Figure S9), including higher TFBS density in derived sequences and TF-DNA binding

biases in core and derived sequences (Figure S10). TFs specific to core and derived sequences were unique

among HepG2 and K562 enhancers, suggesting that core and derived sequence evolution is

cell-type-specific. Overall, these results indicate that many derived regions have distinct TF binding partners

from their associated cores.

GO annotation enrichment analyses did not identify strong specific functional enrichment among TFs

with binding preferences for core or derived regions. No GO annotations were enriched among TFs with a

preference for binding derived sequences at any age. However, core sequence TFs with preferences for the

Amniota and Eutherian ancestors are enriched for “regulation of transcription by RNA polymerase II“

(GO:0006357, derived v. core odds ratio (OR) = 0.13, p = 0.03 for Eutherian and OR = 0.08 p = 0.04 for

Amniota sequences, FDR < 10%). This suggests that core TFs are enriched for factors that recruit the RNA

polymerase II machinery needed to initiate transcription, while derived TFs are depleted and may instead

diversify transcriptional activity.

TFBSs vary in their sequence specificity and robustness to mutation. Thus, we explored whether

differences in the TFs enriched in core vs. derived regions could lead to differences in constraint. We

compared the sequence specificity of each TF’s motif (as measured by the relative entropy from the genomic

background) between those with enrichment for core vs. derived segments. Binding motifs for TFs

significantly enriched in derived sequences have higher sequence specificity than TFs enriched in cores in

both HepG2 and K562 cell lines (Figure S13). Thus, differences in the sequence preferences of specific TFs

is unlikely to produce substantial differences in constraint on core vs. derived sequences.

3.3.7 Core and derived regions have similar activity in MPRAs

Given the TF binding patterns in derived sequences, we hypothesized that these regions often have

functional gene regulatory activity. To evaluate this, we compared the estimated activity of core and derived
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Figure 3.4: Derived regions have high transcription factor binding site densities and bind different tran-
scription factors compared to core regions.
(A) Derived regions in HepG2 complex enhancers have higher TFBS densities (defined from ENCODE
ChIP-seq data) than core regions (mean 0.043 derived v. 0.036 core TFBS/bp; Mann Whitney U p =
1.1e-68). However, derived regions are more likely to have no TFs bound than core regions (Figure
S??). Core and derived regions both have higher TFBS density than simple enhancers (dashed line;
0.026 TFBS/bp). This analysis includes complex enhancers with evidence of TF binding in either core
or derived regions (n = 20263 total, n = 20210 derived, and n = 19957 core). (B) TFBS density is
positively correlated between core-derived sequence pairs within complex enhancers with evidence of
TF binding in both regions (N = 11899). Color intensity represents the density of core-derived pairs,
and the black line is a linear regression fit (slope=0.23, intercept=0.04, r=0.24, p = 5.1e-140); outliers
(>95th percentile) are not plotted for ease of visualization. (C) Derived and core regions of the same
age are enriched for binding of different TFs. Enrichment patterns for TFs are generally consistent
across ages. TFBS enrichment for each age was tested using Fisher’s exact test; only TFs with at least
one significant enrichment (FDR < 0.1) are shown. Vertebrate, Sarcopterygii, and Tetrapod enhancer
ancestors were grouped into “Vert+”. Boreotherian, Euarchontoglires, and Primate enhancer ancestors
were grouped into “Bore+”.
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enhancer sequences from previously published SHARPR massively parallel reporter assays (MPRAs) (Ernst

et al. (2016). Briefly, SHARPR uses probabilistic graphical models to estimate base-pair-level biochemical

activity from the levels of transcribed mRNA and corresponding episomal DNA plasmids for 4,000 HepG2

and K562 enhancers. We assigned ages and architectures to the sequences with per bp regulatory activity in

SHARPR-MPRA assays (>1:1 ratio of mRNA transcripts to DNA plasmids). Among active bases, Derived

and core sequences have similar activity per bp in both K562 and HepG2 cells, though core regions are

slightly higher (Figure 3.5; HepG2: median per bp activity 1.58 derived v. 1.65 core, MWU p = 2.0e-6;

K562: 1.50 derived v. 1.63 core, p = 6.6e-32). Stratified by age, we do not observe any consistent trends in

core v. derived activity across evolutionary periods in HepG2 or K562 cells (Figure S14). Simple enhancers

(i.e., enhancers of a single age) show slightly higher activity per bp (median 1.69) than both core and

derived segments of complex enhancers. Nonetheless, these data suggest that many derived sequences are

biochemically active, have similar levels of activity compared with their adjacent cores, and contribute to

gene regulatory function.
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Figure 3.5: Both core and derived regions have regulatory activity in massively parallel reporter assays.
Derived sequences had enhancer activity in a previous HepG2 MPRA analysis (activity score ≥ 1 for
entire enhancer; N = 2000 enhancers for HepG2 and N = 2000 for K562; Ernst et al. 2016). However,
derived activity was modestly, but significantly lower than core sequences (median 1.58 derived v. 1.65
core activity per bp; N = 9076 bps tested; Mann Whitney U p = 2.0e-6) Patterns were similar in K562
cells (mean 1.50 derived v. 1.64 core; p = 6.6e-32). Both core and derived segments of complex
enhancers had lower activity per base pair than simple enhancers (dashed lines, median 1.69). For
HepG2, N = 6498 derived and N = 9076 core active bp were tested, while for K562, N= 7568 derived
and N = 9846 core bp were tested.

3.3.8 Derived sequences are less evolutionarily constrained than core sequences

We next evaluated evolutionary constraints on core and derived sequences. To do this, we compared

LINSIGHT per bp estimates of purifying selection (Huang et al. (2017)) for derived sequences and
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associated cores in the FANTOM dataset. Overall, derived sequences have slightly, but significantly lower

LINSIGHT scores than adjacent cores (Figure 3.6A; median 0.07 derived v. 0.08 core LINSIGHT score;

derived v. core MWU p <2.2e-238), suggesting that derived regions experience weaker purifying selection

than adjacent enhancer cores. This pattern also holds when stratifying complex enhancers by sequence age

(Figure S15). As older enhancer sequences are generally under stronger evolutionary constraint, we also

compared core and derived sequences of the same age and found that derived regions also have consistently

lower LINSIGHT scores than age-matched core sequences (Figure S16).

To evaluate the strength of sequence constraint across enhancer sequences, we binned each enhancer

sequence into 10 equal-size bins (median 37 bp per bin) and computed the LINSIGHT scores in each bin.

Sequence constraint is significantly lower in the six bins on the edges compared to the central four bins for

complex enhancer sequences (Figure S18; median weighted LINSIGHT score of 0.80 for outer v. 0.86,

Welch’s p = 3.4e-24). However, these patterns were similar in simple enhancers (0.081 v. 0.89; Welch’s p =

3.4e-24) suggesting that they do not drive the distinction between these regions.

Together, these results indicate that derived sequences are under slightly weaker purifying selection

than neighboring core regions in the same complex enhancer and than core regions of the same age.

3.3.9 Derived enhancer regions have more genetic variation than core regions

Given the modest differences in purifying selection between core and derived sequences, we compared their

variant densities using genetic variants segregating in diverse human populations from the 1000 Genomes

Project. As expected, derived sequences have modestly higher variant densities than complex core regions

(Figure 3.6B; median 0.020 v. 0.018 variants per bp; MWU p = 1.4e-202) and than simple enhancers

(median 0.017 variants per bp). Consistent with this, global minor allele frequencies are also slightly higher

in derived sequences compared to core and simple sequences (Figure S17). This implies that derived

sequences accumulate more genetic variants than core sequences, consistent with our observation that

derived regions are under weaker purifying selection than adjacent cores.

3.3.10 Derived enhancer regions are enriched for eQTL

To explore whether variation in derived regions is associated with changes in their effects on gene

regulation, we quantified enrichment of expression quantitative trait loci (eQTL) in derived and core regions

using eQTL from GTEx for 46 tissues (GTEx Consortium (2017)). As expected, all enhancer architecture

components are enriched for eQTL compared to the genomic background (Figure 3.6C; median OR 1.20

derived, 1.05 core, 1.10 simple; MWU core v. derived, p = 1.3e-11). However, derived regions have the

strongest enrichment. This is consistent with the higher minor allele frequencies (Figure S17) and lower
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purifying selection pressure (Figure 3.6A) in derived regions. Nonetheless, eQTL enrichment in derived

sequences indicates that variation in these regions of complex enhancers contributes to gene expression

variability in human populations.
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Figure 3.6: Derived regions experience weaker purifying selection, have more genetic variation, and are
enriched for eQTL compared to adjacent core sequences.
(A) Derived regions have significantly lower LINSIGHT purifying selection scores than adjacent core
regions (median 0.08 core v. 0.07 derived per bp LINSIGHT score; n = 2,271,279 bp and 2,021,098
bp, respectively; MWU p <2.2e-308). The dashed line represents median simple enhancer LINSIGHT
score (0.07, n = 5,398,405 bp). (B) Derived regions have higher genetic variant densities than associated
core regions (median 0.020 derived v. 0.018 core variants per bp; n = 26,451 and 27,691 variants,
respectively; MWU p = 1.4e-202). Variant densities were calculated as the number of variants from
the 1000 Genomes Project in each enhancer region divided by its length. The dashed line represents
median density in simple enhancers (n = 71,415 variants). (C) Derived regions are significantly more
enriched for expression quantitative trait loci (eQTL) than core regions (Kruskal-Wallis p = 9.4e-12).
eQTL from the GTEx consortium v6 from 46 tissues were intersected with enhancers. Enrichment
for eQTL from each tissue in core and derived components was estimated from 1000 length-matched,
chromosome-matched permutations, and confidence intervals were estimated from 10,000 bootstraps.
Each dot represents enrichment for eQTL of a tissue in core or derived enhancer regions. Derived, core,
and simple enhancers have significantly different eQTL enrichments (MWU p = 1.3e-11). The dashed
line represents the median simple enhancer eQTL enrichment across 46 tissues.

3.4 Discussion

Our analyses of human transcribed enhancers reveals that a substantial fraction (∼35%) is composed of

sequences that originate from multiple evolutionary periods. We demonstrate that both the older core and

younger derived sequences in these evolutionarily complex enhancers often show evidence of biochemical

function and evolutionary constraint. Complex enhancers are enriched for core and derived sequences of

similar ages. This suggests that the evolution of complex enhancer sequences proceeded in a step-wise and

temporally-constrained manner. However, we observe important differences in core v. derived regions,

including the density and identity of TFs that bind, evolutionary constraint, and genetic variation. We
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confirm previous results from neocortical enhancers that derived regions are generally under less constraint

( Emera et al. (2016)). We also find that they are more likely to harbor genetic variation in human

populations and variants that are associated with gene expression levels. Thus, both core and derived

sequences appear to often be functional, but they also exhibit different evolutionary and functional attributes.

These results motivate further investigation of how the evolutionary origins of enhancer sequences

relate to their functions and suggest that, as for proteins, sequences of independent origins are often

juxtaposed in functional enhancers. However, many fundamental questions remain to be resolved about the

modularity of enhancer evolution and function:

3.4.1 What is the functional importance of derived enhancer sequences to their core regions?

Our results suggest that core and derived sequences often both have gene regulatory functions. However, we

do not know how often core and derived sequences alone are sufficient for stand-alone regulatory activity.

Previous work has proposed that promoters and enhancers have many similar features, including

transcription start sites, bidirectional transcription, and GC-rich sequences (Andersson and Sandelin

(2020)), even though promoters require enhancer sequences to increase gene expression. Derived regions

have slightly higher GC content than cores (Figure S21), have higher activity, and are less evolutionarily

conserved than core sequences. Thus, it is possible that derived regions may function to enhance the

promoter-like activity of core enhancer regions. In other words, derived sequences may enhance core

enhancer activity.

We previously observed that human liver enhancers with multi-aged sequences are more often active in

other placental mammal livers than simple enhancer sequences (Fong and Capra (2021)), suggesting that

younger derived sequences can be found at loci with conserved gene regulatory activity. In these cases,

derived sequences may serve to reinforce or modulate existing gene regulatory function over evolutionary

time, rather produce species-specific activity. We also observe sequence conservation in older, derived

sequences (Figure S15, suggesting derived sequences may drift for only relatively short periods before

becoming conserved. Future work is needed to determine when derived sequences reinforce or diversify

gene regulatory function across species.

Future studies should assess how often core enhancer sequences are sufficient for gene regulatory

activity without flanking derived regions, and when core and derived regions cooperate to specify regulatory

function. We anticipate that both scenarios may be common among complex enhancers. Further, the

molecular mechanisms by which the core and derived regions contribute to regulatory function (e.g.,

changing chromatin accessibility, binding different TFs) must be determined. Many of these questions can

be answered with evolution-aware reporter assays and gene editing strategies that disrupt core or derived
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sequences while preserving other sequence properties.

3.4.2 Are evolutionary modules functional modules?

Functional dissection of enhancer sequences suggests the modular organization of many enhancers (Dukler

et al. (2017); Long et al. (2016); Sabarı́s et al. (2019)). Previous work has focused on this modularity in the

context of TFs and other functional genomic markers. These have revealed the importance of transcriptional

units (Tippens et al. (2020)), the organization of its TFBS into clusters (Gotea et al. (2010)), and the spatial

distribution between TFBS (Farley et al. (2015); Grossman et al. (2018)) to enhancer sequence modularity.

Taking an evolutionary perspective, we demonstrate that many enhancers consist of distinct evolutionary

modules. Yet, how these evolutionary modules relate to functional modules must be further clarified. For

example, different evolutionary modules could have distinct modular regulatory functions that are

combined. The independent biochemical activity for many derived enhancer sequences suggests that this

scenario occurs. Further, core and derived sequences may develop synergistic regulatory functions. A recent

analysis of SOX9 gene regulation has demonstrated that two sub-regions of the EC1.45 enhancer (from

Therian and Vertebrate common ancestors, respectively) synergistically activate human SOX9 expression

(Long et al. (2020)). The extent to which synergy is observed between core and derived regions of complex

enhancer sequences should be explored further. We speculate that the combination of sequences from

different evolutionary origins often enables gene regulatory innovation while conserving core regulatory

functions. As suggested in the previous section, future work should combine evolutionary analysis with

high-resolution assays of regulatory function to assess the relationship between evolutionary sequence

modules and function.

3.4.3 Can considering enhancer evolutionary architecture aid interpretation of rare and common

genetic non-coding variation?

Our work suggests that considering the evolutionary history of core and derived regions may provide

valuable context for interpreting the function and disease relevance of human variation. The SHH

enhancer (Lettice et al. (2017)) provides an example where rare variants causing PPD2 are more prevalent in

the core region and common variants are only present in the derived segments. Whether deleterious rare

variation is generally concentrated in enhancer cores must be explored further. However, the small number

of known non-coding Mendelian variants makes enrichment analyses challenging. With regard to common

variation and associations with complex traits, we observed that eQTL are enriched in derived sequences.

Derived regions also have higher variant density and slightly higher minor allele frequency than core

regions; thus, we have greater power to detect effects on gene expression. Given the presence of linkage
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disequilibrium, whether variants in derived sequences directly affect gene expression variation must be

tested to estimate their true contribution. Recent work has reported that the heritability of common variants

is overrepresented in older gene regulatory elements (Hujoel et al. (2019)), but whether this signal is due to

variation in older complex enhancers and more specifically in cores, derived regions, or both remains to be

explored. In general, more work is needed to understand the implications of common and rare variation in

enhancer cores, derived regions, and their association with human traits.

3.4.4 Limitations

Our work has several limitations. The available sequence, TF, and functional data limit the scope and

resolution of some analyses. First, the sampling of species with available genome sequences, the depth of

sequencing, and the quality of available genome assemblies all influence estimates of sequence age (Sholtis

and Noonan (2010); Margulies and Birney (2008)). It also possible that some enhancers classified as simple

actually contain components that arose at different times along the same branch, especially for long

branches. Moreover, varying levels of constraint over time also influence sequence age estimates. It is also

possible that very different rates of evolution within the same enhancer could produce differences in

alignability that appear to indicate different ages. However, we show that there are not systematic

differences in the sequence divergence levels in core and derived segments compared to the expectation for

regions of similar age (Figure S4). Nonetheless, the age estimates should be considered a lower bound.

Second, we emphasize that the estimated age of sequences with human enhancer activity is not necessarily

the age when the sequence first gained enhancer activity. It is also possible that some enhancers have

maintained conserved activity without detectable sequence similarity as in the developmental drift model

(True and Haag (2001)). Third, we leveraged previously published MPRA data; however, these only covered

a few thousand enhancer regions in two cellular contexts. Without further biochemical assays, we cannot

test whether most core and derived sequences have regulatory activity when separated. This is an important

avenue for future work to determine whether derived sequences enhance pre-existing enhancer activity or if

they work with core sequences to nucleate enhancer activity. Fourth, due to the challenges of linking

regulatory elements to genes, we do not evaluate the gene targets associated with complex enhancers. Given

their age and persistence over long evolutionary time, we speculate that complex enhancers often regulate

genes involved in essential processes (Berthelot et al. (2018)). Finally, in the TFBS analyses, we are limited

to TFs with binding data in the relevant contexts. Some enhancers lacking TFBS in core or derived regions,

may be misclassified simple enhancers, but given that the majority of TFs do not have available binding

data, we anticipate that most such enhancers bind TFs, or spatial combinations of TFs, that have not been

characterized. Given that we focus on comparisons of TFs with binding data between core and derived
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regions, we do not anticipate that this should influence our main conclusions.

3.4.5 Conclusion

Variation in gene regulatory sequences underlies much of the phenotypic variation between individuals and

species. However, unlike protein sequences, we do not understand how enhancer sequence origin and

evolution relate to functional activity. Here, we show that enhancers commonly consist of sequences from

multiple evolutionary epochs and that both core and derived segments exhibit hallmarks of gene regulatory

function. Thus, our results support and extend previous models of modular enhancer evolution by sequence

accretion (Emera et al. (2016), Fong and Capra (2021)) and suggest that enhancers composed of sequences

of distinct evolutionary origins may promote gene regulatory function and variability in gene expression.

Our work motivates the further study of the evolution of gene regulatory elements and the functional

interaction of sequences of different origins over evolutionary time.

3.5 Methods

3.5.1 Assigning ages to sequences based on alignment syntenic blocks

The genome-wide hg19 46-way and hg38 100-way vertebrate multiz multiple species alignment was

downloaded from the UCSC genome browser. Each syntenic block was assigned an age based on the most

recent common ancestor (MRCA) of the species present in the alignment block in the UCSC all species tree

model (Figure 3.1A). For most analyses, we focus on the MRCA-based age, but when a continuous estimate

is needed we use evolutionary distances from humans to the MRCA node in the fixed 46-way or 100-way

neutral species phylogenetic tree. Estimates of the divergence times of species pairs in millions of years ago

(MYA) were downloaded from TimeTree (Hedges et al. (2015)). Sequence age provides a lower-bound on

the evolutionary age of the sequence block. Sequence ages could be estimated for 93% of the autosomal

base pairs (bp) in the hg19 human genome and 94% of the autosomal bp in the hg38 human genome.

3.5.2 eRNA enhancer data, age assignment, and architecture mapping

We considered enhancer RNAs (eRNAs) identified across 112 tissues and cell lines by high-resolution cap

analysis of gene expression sequencing (CAGE-seq) carried out by the FANTOM5 consortium (Andersson

et al. (2014)). This yielded a single set of 30,439 autosomal enhancer coordinates. We assigned ages to

enhancer sequences by intersecting their genomic coordinates with aged syntenic blocks using Bedtools

v2.27.1 (Quinlan and Hall (2010)). Syntenic blocks that overlapped at least 6 bp of an enhancer sequence

(reflecting the minimum size of a TF binding site (Lambert et al. (2018)) were considered when assigning

the enhancer’s age and architecture. We considered enhancers with one age observed across its syntenic
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block(s) as “simple” enhancer architectures and enhancers overlapping syntenic blocks with different ages

as “complex” enhancer architectures. We assigned complex enhancers ages according to the oldest block.

Sequences without an assigned age were excluded from this analysis.

3.5.3 cCRE enhancer data, age assignment, and architecture mapping

We considered HepG2 and K562 ENCODE3 candidate cis-regulatory elements (cCRE) enhancer loci

annotated with proximal or distal enhancer-like signatures (pELS or dELS, with and without CTCF binding)

(The ENCODE Project Consortium et al. (2020)). This yielded 53,864 HepG2 and 46,188 K562 cCREs

coordinates. As for eRNA, we assigned ages and architectures to enhancer sequences by intersecting their

locations with hg38 syntenic blocks and evaluating the diversity of syntenic ages. Syntenic blocks that

overlapped at least 6 bp of an enhancer sequence were considered when assigning the enhancer’s age and

architecture. Complex enhancer architectures were defined as sequences with more than one age.

3.5.4 MPRA activity data

MPRA activity data and tile coordinates as assayed by the SHARPR-MPRA approach (Ernst et al. (2016))

were downloaded and filtered for “Enh”, “EnhF”, “EnhW”, and “EnhWF” ChromHMM annotations. All

tiles were 295 base pairs in length. We intersected autosomal MPRA tile coordinates with syntenic blocks

and assigned ages and architectures as described above for other enhancers.

3.5.5 Genome-wide shuffles to determine expected background distributions

To generate null distributions for expected properties of FANTOM and cCRE complex enhancers, we

shuffled each set 100x in the background non-coding genome (hg19 or hg38, respectively) using Bedtools.

These shuffled sets were matched to the chromosome and length distribution of the observed regions in each

dataset. Coding sequences and ENCODE blacklist regions were excluded (Amemiya et al. (2019),

https://www.encodeproject.org/annotations/ENCSR636HFF/). Each set of shuffled non-coding

“background” genomic regions was then assigned ages and architectures with the same strategy used for the

observed enhancers.

For example, applying this procedure to the FANTOM dataset, we assigned ages to 2,567,773 shuffled

regions from the genomic background (across all 100 matched sets). We identified 1,129,917 multi-aged

shuffled regions, and further classified their components as “core” and “derived.” These shuffled “complex”

(i.e., multi-aged) sequences provided context for inferring whether the attributes of complex enhancer

sequences differ from multi-aged sequences in the non-coding genomic background. When noted, we

matched the ages of the core or derived background regions to those of the enhancers analyzed.
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3.5.6 TFBS density and enrichment

Coordinates for ENCODE3 ChIP-seq peaks for 119 and 249 transcription factors assayed in HepG2 and

K562, respectively, were downloaded from the ENCODE project’s SCREEN interface

(https://screen.encodeproject.org, last downloaded Feb. 14th, 2021). To assign TFBS to enhancer

components, we intersected the 30 bp around the peak midpoint with simple and complex enhancer

coordinates from the matching cell line. ChIP-seq peaks overlapping enhancers by ≥6 bp were counted as

overlapping and peak overlap counts were normalized by syntenic length to estimate the density of TFBS

per base pair for each enhancer component.

For TFBS density and binding site enrichment, we only considered complex enhancers where TFBS

overlapped enhancers. To correlate core and derived TFBS density, some complex enhancers have multiple

derived sequences, which complicates the comparison of core and derived TFBS density. Thus, for this

analysis, we calculated TFBS density as the sum of TFBS sites divided by the sum of the length of derived

or core regions. We observed similar result when considering pair-wise syntenic TFBS densities and

summed core-derived TFBS densities (Fig S11, S12). For TFBS enrichment, we used regions matched on

core and derived sequence ages to compare TFBS enrichment among sequences that emerged in the same

evolutionary period. Per age TFBS enrichment in derived v. core regions was calculated as the number of

TFBS peaks that bind these regulatory regions versus all other TFBS loci that bind regulatory regions in that

evolutionary period. Fisher’s exact test was used to compute P-values for the observed odds ratios, and the

P-values were corrected for multiple hypothesis testing to control the false discovery rate at 5% using the

Benjamini-Hochberg procedure

3.5.7 1000 genomes variant density and minor allele frequency analyses

Genetic variants from 2504 diverse humans were downloaded from the 1000G project phase3 (shapeit2

mvncall integrated v5a release 20130502). We intersected all variants with FANTOM enhancers and

stratified by core and derived regions. Variant density was estimated as the number of SNPs overlapping a

syntenic block divided by the length of the syntenic block. Singletons, i.e. alleles observed only once in a

single individual, were removed from this analysis.

3.5.8 LINSIGHT purifying selection estimates

Pre-computed LINSIGHT scores were downloaded from http://compgen.cshl.edu/∼yihuang/LINSIGHT/.

LINSIGHT provides per base pair estimates of the probability of negative selection (Huang et al. (2017)).

We intersected FANTOM enhancers with LINSIGHT bp scores to determine the levels of constraint on

bases within core and derived sequences.
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3.5.9 TFBS motif sequence specificity

We evaluated the sequence specificity of JASPAR core vertebrate non-redundant sequences with significant

ChIP-seq TFBS enrichment in core or derived HepG2 or K562 enhancers. Specifically, we calculate the

Kullback-Leibler divergence of the motif from genomic background nucleotide frequencies for A/T (0.3)

and GC(0.2), similar to the previously described procedure (Li and Wunderlich (2017)). For all ChIP-seq

TFBS motifs (regardless of significant enrichment), we assigned these motifs to core or derived regions if

they were more often enriched in core over derived sequences and vice versa.

3.5.10 eQTL enrichment

The enrichment for GTEx eQTL from 46 tissues (last downloaded July 23rd, 2019) in core and derived

enhancer sequences was tested against matched background sets. In this analysis we considered 500

matched sets. Median fold-change was calculated as the number of eQTLs overlapping enhancer sequence

components (i.e., core or derived) compared with the appropriate random sets. Confidence intervals (CI =

95%) were generated by 10,000 bootstraps. P-values were corrected for multiple hypothesis testing by

controlling the false discovery rate (FDR) at 5% using the Benjamini-Hochberg procedure.

3.6 Data availability

Sequence age datasets

• Hg19 syntenic age data (including aged FANTOM eRNAs) underlying this article are available in

Zenodo, at https://dx.doi.org/10.5281/zenodo.4618495

• Hg38 syntenic age data underlying this article are available in Zenodo, at

https://doi.org/10.5281/zenodo.5809634

• HepG2 and K562 aged cCRE sequences underlying this article are available in Zenodo, at

https://doi.org/10.5281/zenodo.5809629

Datasets derived from sources in the public domain

• FANTOM5 eRNAs (Andersson et al. (2014)) - http://slidebase.binf.ku.dk/human enhancers/

• ENCODE cCREs and TFBS ChIP-seq (The ENCODE Project Consortium et al. (2020)) -

https://screen.encodeproject.org

• HepG2 and K562 MPRAs (Ernst et al. (2016)) - GSE71279
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• Hg19 46-way vertebrate species multiz alignment -

https://hgdownload.soe.ucsc.edu/gbdb/hg19/multiz46way/

• Hg38 100-way vertebrate species multiz alignment -

https://hgdownload.soe.ucsc.edu/gbdb/hg38/multiz100way/

• LINSIGHT (Huang et al. (2017)) - http://compgen.cshl.edu/LINSIGHT/LINSIGHT.bw

Source code is freely available at:

https://github.com/slifong08/enh ages
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Figure S1: Number of derived regions per complex enhancer

Most complex enhancers have one derived region. Cumulative distribution plots show the number
of derived regions as proportion of the total complex enhancer sequences for FANTOM5 eRNA (left, N =
10851), HepG2 cCREs from ENCODE (middle, N = 27289) and K562 cCREs from ENCODE (right, N =
24415). Complex enhancers have a median of one derived region across datasets.
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Figure S2: Sequence lengths of derived, core, and simple transcribed enhancers

Derived regions are also shorter than expected from 100 sets of length-, chromosome-, and architecture-
matched random non-coding regions (left; median 136 bp derived v. 157 bp shuffled, p = 1.4e-46). Core
sequences in complex enhancers are longer than 100x non-coding, chromosome-matched shuffled back-
ground cores (right; median 173 bp core v. 143 bp shuffle core, p = 2.4e-75). Sample size is annotated for
each bar
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Figure S3: Lengths of derived, core, and simple enhancers versus expectation, stratified by core
age

Derived, core and simple sequence lengths stratified by core age (x-axis) and compared with 100x
shuffled sequences matched on core sequence age and architecture. Derived sequences are shorter than
expected at every age except those with Vertebrate cores. Core sequences from the Eutherian ancestor
and older are longer than expected.
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Figure S4: Sequence identity of core and derived regions is consistent with sequence identity of
shuffled core and derived sequences

Core and derived sequence identities to their most distant detectable homolog are not significantly dif-
ferent from expected. Core (left) and derived (right) FANTOM sequence identity was quantified as the
number of nucleotide mismatches between hg19 and the most distant aligned species (Methods). Stratified
by sequence age (x-axis) and compared with their expected sequence identities based on 100x shuffled
sequences matched on sequence age and architecture, derived and core sequences do not show signif-
icantly different sequence identities (Welch’s p-value ¿0.05). Therian and Eutherian cores have slightly
lower sequence identity compared with the expectation (median 0.51 Therian core v. 0.52 expected The-
rian core and 0.64 Eutherian core v. 0.65 expected Eutherian core, Welch’s p-value ¡ 0.05). Moreover,
the sequence identities are well above the range at which detecting homology becomes challenging for all
branches except Amniota, which only contains a very small number of derived regions on it (69) or adjacent
branches (36 and 209). These results do not show any evidence of systematic mis-classification of the age
of enhancer segments due to varying rates of sequence divergence. The number of elements in each cat-
egory is annotated below the boxplot. Boxes show the median and interquartile range of sequence identity
values. Whiskers reflect 1.5x the interquartile range.
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Figure S5: Frequency and count of core-derived sequence age pairs in FANTOM

Frequency (left) and count (right) of core-derived age pairs across complex FANTOM enhancers. Shad-
ing in the frequency plot (left) reflects the percentage of age-pairs within a single core age. Cores may have
more than one derived sequence of a different age, thus the sum of the columns can be greater than one.
Shading in the count plot (right) reflects the enrichment of the core-derived age pair compared with shuffled
expectation shown in Figure 3.
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Figure S6: Core and derived evolutionary features in complex HepG2 cCREs recapitulate
evolutionary features in FANTOM eRNAs

Derived regions constitute a sizeable portion of complex HepG2 cCREs (N = 27,789 cCREs), are shorter
(top left) and older (top right) than expected compared to shuffled complex enhancer architectures (N =
1,047,557). Core sequences from the Mammalian ancestor and older are enriched for derived sequences
from the Therian ancestor and older compared with shuffled expectation of core-derived age pairs. These
core sequences are also depleted of sequences younger than the Therian ancestor. Core sequences are
enriched for the nearest, younger phylogenetic neighbor. Odds ratio of significantly enriched age-pairs
(FDR< 0.05) are annotated.
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Figure S7: Regions with no TFBS ChIP-seq binding are observed across ages

Similar proportions of derived, core, and simple enhancer sequences have no evidence of TFBS binding
within sequence ages in HepG2 and K562 cCREs. K562 cell models generally have fewer elements that
do not overlap TFBS, likely because more TFBS ChIP-seq assays have been performed in K562 cells
compared with HepG2 cells (249 v. 119 assays, respectively). Enhancer regions are binned according to
their syntenic sequence ages. Frequency is calculated as the percent of regions that do not overlap TFBS
ChIP-seq peaks within each sequence age and region category. HepG2 is shown above and K562 is shown
below. Number of regions with zero TFBS overlap is annotated for each bar.
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Simple, core, and derived sequences are stratified by core age on the x-axis. TFBS density per archi-
tecture and age was measured and plotted on the y-axis.
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Figure S9: Core and derived evolutionary features in complex K562 cCREs recapitulate
evolutionary features in FANTOM eRNAs

Derived regions constitute a sizeable portion of complex K562 cCREs (N = 24,415 cCREs), are shorter
(top left) and older (top right) than expected compared to shuffled complex enhancer architectures (N
= 473,387 cCREs). Core sequences from the Amniota ancestor and older are enriched for derived se-
quences from the Mammalian ancestor and older compared with shuffled expectation of core-derived age
pairs. These core sequences are also depleted of sequences younger than the Mammalian ancestor. Core
sequences are enriched for the nearest, younger phylogenetic neighbor. Odds ratio of significantly enriched
age-pairs (FDR< 0.05) are annotated.

10 129



0.5 1.0 2.0

C

B
or

eo
eu

th
er

ia
E

ut
he

ria
Th

er
ia

M
am

m
al

ia
A

m
ni

ot
a

Ve
rte

br
at

a

A

SAP30
SUZ12

WHSC1
PCBP1
PTBP1
SIN3A
BRD4

ZBTB11
FIP1L1

SP1
UBTF

KDM5B
ETS1

SMAD1
ZSCAN29

XRCC5
ZNF282
ZBTB7A
ZBTB40

ELK1
POLR2G
HNRNPK

MLLT1

**
*
*

*
*
**
*
*

*
*

*
*
*
*
**
*
*

*
*
*

*
*

*
EGR1 *
IRF1

PRDM10
*

*
ZNF184
ZMYM3

*
*

SMARCA4 *
MAFF *
MAFK

TAF9B
TBL1XR1

BRD9
ZNF316

*
*

*
*
*

JUN
GATA1
HDAC3

TAL1
SOX6

TRIM24
ARID1B

CBFA2T2
NCOR1
TCF12
MTA2

EP300
CBFA2T3

EHMT2
ZNF384

ZBTB5
ZNF407
NCOA2

ZBTB8A

*
*
*

*
**
*
*
**
*
*
*
**
*
*
*
*
*
*
*

RBM14 *

B
or

eo
eu

th
er

ia
E

ut
he

ria
Th

er
ia

M
am

m
al

ia
A

m
ni

ot
a

Ve
rte

br
at

a

K562 TFBS
Core v. Derived

DerivedCore
Odds Ratio (log2-scaled)

Core Derived
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

TF
B

S
 p

er
 b

p

K562

*

B

��� ��� ��� ���
FRPSOH[BFRUH

���

���

���

���

FR
P
SO
H[
BG
HU
LY
HG

�

����

� ����

Figure S10: Derived regions have high transcription factor binding site densities and bind different
transcription factors compared to core regions in K562 cells

(A) Derived regions (N = 23868) have higher TFBS densities than core regions (N = 20997) (0.074
derived v. 0.062 core TFBS per base pair, Mann Whitney-U p = 3.5e-52). Simple enhancer TFBS density
is lower than core and derived regions (0.05 TFBS per base pair) (B) TFBS density is positively correlated
between core-derived sequence pairs within complex enhancers with evidence of TF binding in both core
and derived regions (N = 14142). Color intensity represents the density of core-derived pairs, and the
black line is a linear regression fit (slope=0.39, intercept=0.056, r=0.39, p <2.2e-238, stderr=0.008; outliers
(>95th percentile) are not plotted for ease of visualization. (C) Derived and core regions of the same age
are enriched for binding of different TFs and enrichment patterns are generally consistent across ages.
TFBS enrichment for each age was tested using Fisher’s exact test; only TFs with at least one significant
enrichment (FDR < 0.1) are shown. Vertebrate, Sarcopterygii, and Tetrapod enhancer ancestors were
grouped into “Vertebrata”. Boreotherian, Euarchontoglires, and Primate enhancer ancestors were grouped
into “Boreoeutheria”.
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Figure S11: High TFBS density in core regions correlates with high TFBS density in derived
regions within the same HepG2 enhancer sequence

We evaluated TFBS density correlations between core and derived sequences of the same enhancer
in HepG2 cCREs. TFBS density of core and matched-derived regions per enhancer are plotted on the X-
and Y-axis, respectively. Actual enhancers can have more than one core or derived region, so we evaluated
our data using two different approaches. In the first (upper) we summarized TFBS density across multiple
core and derived regions by summing TFBS density and syntenic length into core and derived groups and
quantifying TFBS density in summarized core and derived regions per enhancer sequence. In the second
(lower), we quantified TFBS density for every core and derived syntenic region and compared all possible
pairs of core and derived syntenic TFBS densities per enhancer. We applied two different thresholds for
evaluating TFBS density in core versus matched derived regions; one threshold allowed for regions with no
evidence of TFBS in core or derived sequence, but not both (left, “zeros included”), while the other threshold
required that TFBS binding was detected in both core and derived sequences within an enhancer (right,
“zeros excluded”). Linear regression models were fit for each dataset and model features are annotated
for each analysis. Histograms (right and above) display distributions of core and derived TFBS density per
analysis.
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Figure S12: High TFBS density in core regions correlates with high TFBS density in derived
regions within the same K562 enhancer sequence

We evaluated TFBS density correlations between core and derived sequences of the same enhancer in
K562 cCREs. TFBS density of core and matched-derived regions per enhancer are plotted on the X- and
Y-axis, respectively. Actual enhancers can have more than one core or derived region, so we evaluated
our data using two different approaches. In the first (upper) we summarized TFBS density across multiple
core and derived regions by summing TFBS density and syntenic length into core and derived groups and
quantifying TFBS density in summarized core and derived regions per enhancer sequence. In the second
(lower), we quantified TFBS density for every core and derived syntenic region and compared all possible
pairs of core and derived syntenic TFBS densities per enhancer. We applied two different thresholds for
evaluating TFBS density in core versus matched derived regions; one threshold allowed for regions with no
evidence of TFBS in core or derived sequence, but not both (left, “zeros included”), while the other threshold
required that TFBS binding was detected in both core and derived sequences within an enhancer (right,
“zeros excluded”). Linear regression models were fit for each dataset and model features are annotated
for each analysis. Histograms (right and above) display distributions of core and derived TFBS density per
analysis.
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Figure S13: Information content of TFBS motifs in derived sequences is comparable with motifs in
core sequences in HepG2 and K562 enhancers

We quantified the information content (IC) of JASPAR core vertebrate non-redundant TF motifs corre-
sponding to significantly enriched HepG2 ChIP-seq signal in core or derived regions. We observed higher
IC in derived motifs than in core motifs (upper left panel; median 14.9 derived v. 12.6 core IC, Welch’s
test p-value = 0.03). We performed a similar analysis in K562 ChIP-seq datasets and found derived TF
motifs have higher information content than cores, but this was not significant (lower left panel; median 15.6
derived v. 15.2 core IC, Welch’s test p-value = 0.26). Relaxing our criteria, we also evaluated IC for all TF
motifs with any enrichment for ChIP-seq binding in core/derived sequences. IC was similar for TF motifs in
HepG2 elements (upper right; median 13.8 core and 14.6 derived information content, Welch’s test p-value
= 0.18) and K562 elements (lower right; median 14.6 core and 15.4 derived information content, Welch’s
test p-value = 0.35). Together, these data support that derived TF motifs are just as robust to mutations as
core motifs.
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Figure S14: MPRA activity is similar across sequence ages and simple, core, or derived contexts

MPRA predicted activity per bp from Ernst 2016 is similar across ages in K562 and HepG2 cells. Here,
predicted activity per bp scores are stratified by core sequence age and simple, core, or derived category.
Cell line models and N bp are annotated per bar.
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Figure S15: Derived regions experienced weaker purifying selection than cores and simple
enhancers of the same age.

Stratified by sequence age, derived regions of complex FANTOM enhancers have lower LINSIGHT
scores than core regions of the same age for all sequences older than the Eutherian branch. Number of
measurements is annotated per bar.

16 135



Ho
m

o

Pr
im

Eu
ar

Bo
re

Eu
th

Th
er

M
am

Am
ni

Te
tr

Ve
rt

Core sequence age

0.0

0.2

0.4

0.6

0.8

1.0
lin

sig
ht

_s
co

re
LINSIGHT per bp

simple
derived
complex_core

Figure S16: Derived regions experienced weaker purifying selection than cores and simple
enhancers with the same age as their corresponding core region.

Stratified by core sequence age, derived regions of FANTOM enhancers have lower LINSIGHT scores
than adjacent core regions for all core regions older than Boreotherian. Number of measurements is anno-
tated per bar.
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Figure S17: Derived regions have higher minor allele frequencies than core regions across human
populations.

Global minor allele frequencies from 1000 Genomes were intersected with FANTOM enhancer com-
ponents. Singletons were removed. Derived region minor allele frequencies are slightly higher than core
region minor allele frequencies (right, mean 0.053 derived v. 0.048 core, derived v. core p = 4.9e-12). Minor
allele frequencies stratified by core age and architecture show that derived regions have consistently higher
minor allele frequencies compared to core regions at every ancestral origin except Boreotherian. Number
of SNPs is annotated per bar.

18 137



2 4 6 8 10
relative bin order

0.070

0.075

0.080

0.085

0.090

0.095

0.100

LI
N

SI
G

H
T 

w
ei

gh
te

d 
av

er
ag

e 
pe

r b
in

simple n=2065
complex n=1104

2 4 6 8 10
bin order

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

LI
N

SI
G

H
T 

(w
ei

gh
te

d 
av

er
ag

e 
pe

r b
in

)

Vertebrata (615)
simple n=79
complex n=180

2 4 6 8 10
bin order

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

LI
N

SI
G

H
T 

(w
ei

gh
te

d 
av

er
ag

e 
pe

r b
in

)

Tetrapoda (352)
simple n=12
complex n=91

2 4 6 8 10
bin order

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

LI
N

SI
G

H
T 

(w
ei

gh
te

d 
av

er
ag

e 
pe

r b
in

)

Amniota (312)
simple n=37
complex n=126

2 4 6 8 10
bin order

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

LI
N

SI
G

H
T 

(w
ei

gh
te

d 
av

er
ag

e 
pe

r b
in

)

Mammalia (177)
simple n=109
complex n=228

2 4 6 8 10
bin order

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

LI
N

SI
G

H
T 

(w
ei

gh
te

d 
av

er
ag

e 
pe

r b
in

)

Theria (159)
simple n=139
complex n=90

2 4 6 8 10
bin order

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

LI
N

SI
G

H
T 

(w
ei

gh
te

d 
av

er
ag

e 
pe

r b
in

)

Eutheria (105)
simple n=1486
complex n=327

2 4 6 8 10
bin order

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

LI
N

SI
G

H
T 

(w
ei

gh
te

d 
av

er
ag

e 
pe

r b
in

)

Boreoeutheria (96)
simple n=98
complex n=57

2 4 6 8 10
bin order

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

LI
N

SI
G

H
T 

(w
ei

gh
te

d 
av

er
ag

e 
pe

r b
in

)

Euarchontoglires (90)
simple n=11
complex n=6

Figure S18: Both complex enhancers with three or more sequence ages and simple enhancers
have less purifying selection pressures at sequence edges across ages.

Purifying selection pressures are highest in center of simple, complex enhancer sequences with
three or more sequence age regions. LINSIGHT scores in both center four bins of simple (Upper Figure;
area in between dashed lines; median weighted average 0.081 outer bins v. 0.89 inner bins, Welch’s p-
value = 3.4e-24) and complex enhancers (median weighted average 0.80 outer v. 0.86 inner bins, Welch’s
p-value = 3.4e-24) are significantly higher than outer flank bins (three per side). Selection pressures are
higher in the centers of simple enhancers versus complex enhancers (Upper Figure; median 0.089 simple
v. 0.086 complex, Welch’s p-value = 2.7e-26). Briefly, simple (n = 2065) and complex (n=1104) FANTOM
enhancer sequences were matched on sequence length and binned into 10 equally sized bins (median
37 bp per bin). The weighted average LINSIGHT score across bases per bin was calculated and plotted
on the y-axis, ordered by bin across the enhancer sequence on the x-axis. Higher selection pressure at
the center of sequences is consistent across ages (Lower Figure), multi-age enhancers with three or more
age segments and simple enhancers were divided into 10 equally sized bins and the average weighted
LINSIGHT score per bin was computed. The centers of both multi-aged and simple enhancer sequences
(inner four bins between dashed lines) are more conserved than the flanking edges (outer six bins). Shaded
area reflects the 95% confidence interval estimated from 1000 bootstraps.
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Figure S19: Derived regions have higher SNP densities than adjacent core regions

SNP densities from 1000G were calculated as the number of SNPs in a region divided by the syntenic
length. Densities were then stratified by architecture and core age. Number of SNP is annotated per bar.
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Cell line arch Count zero TF overlap Total counts freq zero TF overlap freq TF overlap

HepG2 derived 23955 44222 0.54 0.46
HepG2 core 9859 29832 0.33 0.67
HepG2 simple 3390 26624 0.13 0.87
K562 derived 16572 40110 0.41 0.59
K562 core 5731 26728 0.21 0.79
K562 simple 1587 22768 0.07 0.93

Figure S20: ChIP-seq TFBS binding frequency in core and derived regions of HepG2 and K562
complex enhancers from ENCODE
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Figure S21: GC density in FANTOM enhancer and promoter regions

GC density was calculated across FANTOM enhancers and promoters as the number of G or C bases
divided by the length. Non-exonic enhancers have lower GC density than promoters (N =13781). Derived
regions (N = 15357) have slightly higher GC density than core regions (N = 11489) (median 0.49 derived
v. 0.47 core GC density; MWU p = 1.7e-12). Simple enhancers (N= 20087) have similar GC density to
enhancer cores (median 0.47 GC density)

21 140



CHAPTER 4

Gene regulatory evolution is driven by divergence in both cis and trans

1

4.1 ABSTRACT

Gene regulation can evolve either by local changes in cis to regulatory element DNA sequence or by global

changes to the trans-acting regulatory environment; however, the modes were favored during recent human

evolution is unknown. To date, studies investigating gene regulatory divergence between closely-related

species have produced limited estimates on the relative contributions of cis and trans effects on gene

expression at a global-scale. By leveraging a comparative ATAC-STARR-seq framework, we identified

13,000 regulatory regions with divergent activity in cis and 12,000 regulatory regions with divergent

activity in trans between human and rhesus macaque lymphoblastoid cell lines (LCLs). We discover that the

majority of species-specific gene regulatory activity (71%) diverges in both cis and trans, suggesting these

two mechanisms jointly drive divergent regulatory activity in a single sequence. In addition, we find that

cis-evolved elements are enriched for human acceleration and human immune trait associations, while trans

effects are enriched for footprints of differentially expressed transcription factors. This work highlights a

critical and widespread role for trans-regulatory divergence between closely related species. We propose a

new model of gene regulatory divergence where global trans-regulatory changes evolved in concert with

local cis-regulatory changes to DNA regulatory element sequence to produce human and macaque-specific

traits.

4.2 INTRODUCTION

Phenotypic divergence between closely-related primates is driven primarily by evolutionary changes in gene

expression, particularly via changes to cis-regulatory DNA element activity (King and Wilson (1975)).

There are two modes through which gene regulatory activity can evolve. First, a cis change can occur in the

DNA sequence of a regulatory element that can alter its own function by, for example, affecting the binding

of a transcription factor (TF). These local changes to individual regulatory element activity, which we call

“cis effects”, target only one DNA regulatory element at a time. Alternatively, cis regulatory elements can

evolve via global changes to the trans-regulatory cellular environment, such as species-specific changes to

the abundance and activity of TFs. One of these changes, which we call a “trans effect”, can target multiple

1This is a draft manuscript done in collaboration for Tyler Hansen and Emily Hodges, who have contributed to the conceptualization,
experimental execution, and writing of this draft. We expect this work will be submitted at the end of 2022.
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regulatory elements. Trans effects can have broader impacts on gene regulation than cis effects (Hill et al.

(2021); Vande Zande et al. (2022)), however when and which modes have been favored across genomes

during species divergence is unknown. Because these two mechanisms display very different modes of

action, understanding the respective roles of cis and trans effects in the evolution of closely-related species is

a key goal toward understanding evolutionary principles of gene regulation and the functional mechanisms

of human evolution. Cis and trans effects are difficult to study independently because cellular environment

and genomic sequence are inherently linked within an endogenous setting. For this reason, many studies

have focused on methods that identify cis effects while controlling for trans-effects by measuring

allele-specific expression within hybrid cellular environments (Agoglia et al. (2021); Gokhman et al. (2021);

Osada et al. (2017); McManus et al. (2010)). Others have tested the regulatory activity of multiple species’

genomes in a single species cell environment to control for cell environment variation between species

(Arnold et al. (2014)). While these approaches have provided insight into gene regulatory divergence in cis,

they lack identification of trans effects and an understanding of their relative contributions to regulatory

divergence. More recent efforts to understand the relative contribution of cis and trans effects on gene

regulation have focused on characterizing expression quantitative trait loci (eQTLs) as cis or trans-acting

based on the genomic distance to the genes they regulate; this revealed the presence of many trans-acting

regulatory elements and the theoretical development of the “omnigenic” model proposed by Pritchard and

colleagues (Liu et al. (2019); Võsa et al. (2021)). However, these eQTL studies explain gene expression

variation within humans, not between species. To date, only a handful of studies investigating a limited

number of elements have explicitly tested the contributions of cis and trans effects on regulatory element

activity divergence between species (Whalen et al. (2022); Mattioli et al. (2020); Gordon and Ruvinsky

(2012)). Collectively, these studies have concluded that, trans effects are rare and evolution appears to have

favored cis-variation to drive regulatory divergence between closely-related species (Romero and Lea

(2022)). While the observations made from these studies have led to the critical assumption that

trans-regulatory environments between species are highly conserved, they were relatively small-scale

(¡2,000 regulatory elements) and inherently biased because the tested regions were predetermined.

Therefore, the critical assumption that trans-regulatory environments are conserved across species lacks a

complete and unbiased view of cis and trans effect contributions to gene regulatory divergence on a global

scale. We recently developed an ATAC-STARR-seq workflow that simultaneously profiles regulatory

activity, chromatin accessibility, and transcription factor footprinting from a single dataset (Hansen and

Hodges (2022)). ATAC-STARR-seq permits a library of DNA sequences captured from one species to be

tested within a chosen cellular environment. In addition, ATAC-STARR-seq assays the activity of the entire

accessible genome, which dramatically expands the number of regulatory regions assayed in previous
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studies. Furthermore, ATAC-STARR-seq does not require a priori knowledge of DNA sequences and is

therefore unbiased in its assessment of cis and trans effects in the genome. For these reasons,

ATAC-STARR-seq is uniquely tailored to investigate cis and trans effects on a global scale. We apply

ATAC-STARR-seq to human and rhesus macaque lymphoblastoid cell lines (LCLs) to systematically

identify cis and trans effects on gene regulatory divergence genome-wide. We compare the regulatory

activity of homologous DNA sequences for accessible cis-regulatory DNA elements both within and across

species’ cellular environments, which allows us to systematically measure the effect of homologous

sequence differences while controlling the cellular environment and vice versa. We discover that cis and

trans effects occur at similar frequencies, which strongly contrasts with the current presumption that the

majority of regulatory divergence between closely-related species occurs in cis. Furthermore, we find that

cis and trans effects commonly overlap, meaning the activity of most regulatory elements diverged in both

cis and trans between human and macaque LCLs. We find that cis effects are enriched for human

acceleration and human immune trait associations, while trans effects are enriched for footprints of

differentially expressed transcription factors. Together, this investigation reveals a critical and

underappreciated role for trans-regulatory divergence in driving gene regulatory evolution of humans and

the evolutionary mechanisms that drive trans effects . Our data support a model where global

trans-regulatory changes to cellular environment evolved in concert with local cis-regulatory changes to

DNA regulatory element sequence to establish human and macaque-specific molecular phenotypes.

4.3 RESULTS

4.3.1 Comparative ATAC-STARR-seq produces a multi-omic view of human and macaque gene

regulation

We applied ATAC-STARR-seq (Hansen and Hodges (2022)) to quantify the regulatory landscape of

lymphoblastoid cell lines (LCLs) between humans and macaques (GM12878 and LCL8664; Figure 4.1A).

ATAC-STARR-seq simultaneously measures chromatin accessibility, regulatory activity, and TF occupancy

genome-wide (Figure 4.1B,C). We identified 62,552 and 55,654 chromatin accessible peaks in the human

and macaque genomes, respectively (Figure 4.1C). Intersection of the peak sets revealed 29,531 shared

accessible regions (i.e. open chromatin peaks present in both human and rhesus LCLs), 33,021

human-active accessible regions, and 26,123 macaque-active accessible regions (Figure 4.1D). Previous

studies have investigated regions of differential accessibility in primate LCLs (Cain et al. (2011);

Garcı́a-Pérez et al. (2021); Shibata et al. (2012)), and consistent with these results we find that divergent

accessibility peaks are enriched for enhancer-like contexts and immune functions (Figure 4.7C). Here, we

focus on regions with shared accessibility in both species and differences in the regulatory activity.
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Figure 4.1: ATAC-STARR-seq methods for comparing chromatin accessibility and reporter activity
between human and rhesus LCL lines.
(A) Overview for generating ATAC-STARR-seq reporter plasmids. Tn5 transposase cleaves open
chromatin. Accessible DNA fragments are inserted into the 3’ UTR of a STARR-seq plasmid. (B)
Comparative ATAC-STARR-seq strategy. Accessible DNA genome-wide is harvest from human LCLs
(GM12878) and rhesus macaque LCLs (LCL8664), inserted into STARR-seq episomal plasmids, and
transfected into human or rhesus macaque LCLs. After 24h, RNA and DNA sequencing from cells and
recaptured plasmids are sequenced to measure transcriptional reporter activity, chromatin accessibility,
and TF footprinting. HH, HM, MH, and MM are four different experiments testing for activity of the
ATAC-seq library of human DNA tested in human cells (HH), human DNA test in rhesus macaque cells
(HM), rhesus macaque DNA test in human cells and rhesus macaque DNA tested in rhesus macaque
cells. (C) An example genome browser tracks of chr12:6422474-6435059 (left) and chr19:35709503-
35713899 (right) comparing human and rhesus macaque accessibility peaks and activity peaks. In
chr12:6422474-6435059 (left), human and rhesus macaques have shared chromatin accessibility (top
tracks) and conserved activity (bottom tracks) across all four activity contexts. In chr19:35709503-
35713899 ZBTB32 promoter (right), shared accessible peaks have context-specific differences in regu-
latory activity where the activity for both human and rhesus macaque sequences (HH and MH) occurs
only in human cells, but activity for both sequences does not occur in rhesus macaque cells (HM and
MM). (D) number of overlapping accessibility peaks from the ATAC step of the assay. (E) Feature dis-
tribution from differentially and shared accessible peaks.
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ATAC-STARR-seq enables us to quantify the regulatory activity of all accessible human and macaque

DNA sequences. To identify active regions, we called activity in 2,028,304 50-bp bins tiled with a 10 bp

step across shared accessible regions with 1:1 orthologs between human and macaque. We then defined

regions by collapsing overlapping active bins to yield a set of active regions for each species (Methods). We

found substantial differences in the regulatory activity of shared accessible sequences. Of the top 10,000

regions with regulatory activity in each species, 2,397 regions have conserved activity, and 15,207 regions

have divergent regulatory activity, with 7,606 regions active only in human and 7,601 active only in

macaque (Figure 4.1E). These calls are supported by clear differences in ATAC-STARR-seq regulatory

activity (Figure 4.2B), and results were similar when using different activity thresholds (Figure 4.8D). For

each of these regulatory differences, the change may be the result of sequence differences between the

human and macaque homologs (i.e., change in cis) or due to differences in the cellular environment (i.e.,

change in trans) or both. Previous work suggests that most divergence in gene regulatory activity is due to

cis changes; however, it has not been possible to resolve these causes on a large scale.

4.3.2 Decoupling of cis v. trans regulatory divergence

We decouple a species’ candidate regulatory DNA from its native cellular environment to interpret

differences in regulatory activity. Our strategy tests gene regulatory activity within and across species to

determine (1) whether human and rhesus regulatory homologs have cis- activity differences when tested in a

single human or rhesus cellular environment, and (2) whether a human (or rhesus) regulatory sequence has

trans- activity differences when tested in both human and rhesus cellular environments. By controlling for

either sequence or cellular environment differences, we can systematically parse cis and trans-activity

differences to identify the modes of gene regulatory divergence across humans and rhesus elements (Figure

4.2A). To determine activity in cross-species experiments, we quantified regulatory activity in four

experiments: human DNA in human cells (HH), human DNA in macaque cells (HM), macaque DNA in

human cells (MH), and macaque DNA in macaque cells (MM) (Figure 4.1B, 4.2A). In each experiment,

reporter RNA and plasmid DNA sequencing data were reproducible across three replicates (Pearson r2:

0.97-0.99) and libraries were highly complex with estimated sizes ranging between 9 million and 54 million

DNA sequences (Figure 4.7G). Further, activity signal across replicates was significantly higher for the bins

labelled as active, supporting the reproducibility of our approach (Figure 4.7H). Many of these active

regions were enriched for EBV-transformed B cell FANTOM enhancers, indicating that our approach for

identifying active regulatory elements is consistent with previously reported elements (Figure 4.8E).
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Figure 4.2: Widespread Cis and Trans differences in gene regulatory activity for both human-active and
rhesus-active open chromatin.
(A) Cartoon describing native human rhesus macaque activity. (B) Majority of active, open chromatin
regions shared between humans and rhesus macaques are species-specific, while activity is conserved in
both species for a minority of elements (N=2397). Number of elements annotated. (C) Heat maps com-
paring the relative activity of conserved active, human active, or rhesus macaque active sequences. (D)
Rhesus macaque homologs are largely inactive when tested for activity in a human cellular environment
compared with active human sequences tested in the human environment. We term these cis-effects
because human DNA is sufficient for activity and rhesus macaque DNA is insufficient for activity in
the human cellular environment. (E) Human homologs are largely inactive when tested for activity in a
rhesus macaque cellular environment compared with active rhesus macaque sequences tested in the rhe-
sus macaque environment. These are also considered cis-effects. (F) Human sequences that are active
in the human environment, but are not active when placed in a rhesus macaque cellular environment.
We term these trans-effects because the cellular environment is sufficient for the activity of a sequence.
(G) Rhesus macaque sequences that are active in the rhesus macaque environment, but are not active
when placed in a human cellular environment. (H) Overlap of human active sequences whose activity
is determined by DNA in cis, the cellular in trans, or both—cis trans. (I) Same as H, expect for rhesus
macaque active sequences. (J) Pie chart of cis, trans, and cis trans activity across all human active and
rhesus macaque active regions. (K) Same information as in K, but with the number of regions annotated.
(L) Annotation distribution of cis-only, trans-only, and cis trans regions relative to nearest gene.
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4.3.3 Trans divergence contributes to gene regulatory divergence as often as cis divergence

Gene regulatory divergence between species has been attributed to cis-effects (Arnold et al. (2014); Agoglia

et al. (2021); Mattioli et al. (2020)), and we expected cis effects would contribute more to differential

regulatory activity than from trans effects. Our strategy enables us to independently test cis- and trans-

effects across shared open chromatin sequences. Below, we discuss our independent observations on cis-

and trans- for each sequence.

Human and macaque differentially active elements showed widespread cis-effects on activity. Among

human active regions (N=7606), 85.6% (N=6,509 regions) showed evidence of cis activity differences; i.e.,

the human, but not the macaque homolog was active in the human cellular environment (Figure 4.2D).

Similarly, macaque active regions had many cis-effects; 75.3% (N=5,725 of 7,601 regions) were active

when the macaque, but not the human homolog was tested in the macaque environment (Figure 4.2E).

Collectively, our analysis support widespread cis effects in 80% (N=12,234) of all differentially active

homologs tested in human or macaque environments and is consistent with previous evidence that regulatory

divergence between species is driven primarily in cis.

Given that transcription factor sequences and gene expression is largely conserved between species

(cite), we expected to find few trans differences in gene regulatory activity. However, comparing human

sequence activity between human and macaque environments, we found 81.9% (6,226 regions) of human

active regions had trans effects—human DNA was active in the human, but not the macaque cellular

environment (Figure 4.2F). Macaque active sequences showed a similar trans-effect prevalence; 78.9%

(5,997 regions) of active sequences were active in the macaque, but not the human cellular environment

(Figure 4.2G). Collectively, we observe 12,223 regions (80.4%) with regulatory divergence specifically in

trans. These data suggest that species-specific differences in the trans regulatory environment have a large

impact on gene regulatory activity and suggests that changes to the cellular environment play a much greater

role in regulatory evolution than previously appreciated.

4.3.4 Most regulatory differences are driven by changes in cis and trans

A large proportion of sequences had activity differences when we independently evaluated cis- and

trans-effects, yet it is possible a sequence has both cis- and trans- differences. Integrating the cis and trans

analyses, we found that 5,435 human active regions and 4,741 macaque active regions were divergent in

both cis and trans (Figure 4.2H-I). We will refer to these as cis trans regions. This cis & trans class

represents about 71% of all divergent active regions, whereas regulatory elements divergent only in cis and

only in trans represent about 14% each (Figure 4.2J-K). Therefore, the majority of regulatory element

activity divergence in our system is explained by changes to both the regulatory element sequence and
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cellular environment, suggesting that cis and trans mechanisms both drive substantial differential gene

regulation between human and macaque elements.

4.3.5 Trans regions are significantly conserved while cis regions are enriched for accelerated

evolution

Since cis divergence results from sequence differences within a region while trans divergence results from

changes to the cellular environment, we hypothesized that sequences in trans regions would have greater

evolutionary constraint, while sequences in cis regions would have higher substitution rates. To test this, we

first evaluated sequence conservation at regulatory regions using PhastCons conserved elements

(Lindblad-Toh et al. (2011); Siepel (2005)) computed from a multiple sequence alignment of human with 29

species, including 27 primates. For each activity category, we quantified the number of regions with

significant sequence constraint as quantified by PhastCons. For context, we also computed constraint in sets

of 10x length-matched random elements from the shared accessible, inactive genomic background, which

we refer to as “expectation” (Methods). Both trans-only and cis-only elements are enriched for phastCons

overlap compared to inactive shared accessible regions (Figure 4.3A; 2.1x trans Fisher’s Exact Test (FET)

odds ratio (OR), 5% FDR p = 1.4e-37 and 1.6x cis OR, 5% FDR p = 4.6e-15). However, consistent with the

proposed mechanisms of divergence, trans-only elements are under substantially stronger sequence

constraint. cis & trans elements, which represent most activity differences, have no significant enrichment

for sequence conservation (Figure 4.3A; 0.98x FET OR, 5% FDR p = 0.6). As expected, regulatory

sequences with conserved activity between human and macaque had the strongest enrichment for phastCons

elements compared to inactive shared accessible regions (Figure 4.3A, dashed-line; 3.4x FET OR, 5% FDR

p = 1.3e-141).

To complement the conservation analyses, we evaluated evidence for elevated substitution rates, which

can be indicative of positive selection (Capra et al. (2013a); Hubisz and Pollard (2014); Pollard et al.

(2010)), in the sequences from different activity categories. We hypothesized that cis regions would be

enriched for accelerated substitution rates. We estimated the substitution rates since the divergence of

humans and macaques from their last common ancestor (Methods). Cis-only and cis & trans elements are

significantly enriched for accelerated sequence evolution on the human branch (Figure 4.3B; 1.49x cis-only

FET OR, p=3.2e-3 and 1.21x cis & trans FET OR, p=0.01), while trans-only sequences are not (1.29x, FET

OR, p= 0.09). Conserved active elements were significantly enriched for signals of acceleration (dashed

line, 1.74x FET OR, p = 8.9e-07), and consistent with reports that accelerated substitution rates may alter

gene regulatory inputs without creating or destroying activity (Krieger et al. (2022); Whalen et al. (2022)).

Analysis of sequence identity in these activity categories showed no significant differences between groups,
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Figure 4.3: Trans effect sequences are conserved, cis effect sequences enriched for human acceleration,
and cistrans elements are derived from transposable-element insertions.
(A) Trans-only and cis-only sequences are enriched for PhastCons 30-way overlap compared with
length-matched expected regions (Methods). Enrichment was computed independently in differentially
active subsets versus expectation using the odds ratio (OR) estimated from Fisher’s Exact Test (FET).
Conserved active elements (dashed line) are significantly enriched for PhastCons element overlap com-
pared with expectation (3.4x FET OR, 5% FDR p=1.3e-141). (B) Cis-only, cistrans, and conserved
active elements (dashed line) are significantly enriched for human acceleration signals compared with
expectation using FET. Trans-only elements are not enriched (p = X). (C) differentially active subsets
are significantly depleted of transposable element derived sequences (TEDSs) compared with expecta-
tion.(D) Cistrans elements are significantly enriched for SINE/Alu, MIR, and L2 transposable element
derived-sequences (FET, 5%FDR p-value¡0.05) compared with cis-only and trans-only elements. (E)
SINE/Alu elements in cistrans and trans-only divergent are significantly enriched for multiple TF foot-
prints. All plotted ORs are log2-scaled. Asterisks reflects FDR p-value ¡ 0.05 and error bars reflect the
95% confidence intervals. Sample size and N are annotated.
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ruling out the possibility that gross differences in sequence identity are linked to differences in activity

(Figure 4.9D). Together, this indicates that human accelerated substitution rates are significantly associated

with sequence-based cis-activity differences, and not environment-based trans-activity differences between

humans and rhesus.

4.3.6 SINE/Alu TEs are enriched in cis & trans divergence

Transposable element-derived sequence (TEDS) insertions expand genomes and have been proposed to

provide raw sequence for developing novel, species-specific regulatory functions (sometimes referred to as

“co-option”; (Chuong et al. (2013); Elbarbary et al. (2016); Lynch et al. (2015); Sundaram and Wysocka

(2020); Trizzino et al. (2017)). Thus, we explored the contribution of TEDSs to species-specific gene

regulatory elements. Given that cis & trans elements and TEDS are under weak evolutionary constraint, we

hypothesized that TEDSs might provide the raw genomic material for developing cis & trans elements.

We quantified human genome TEDs enrichment in differentially active regions compared with shared

accessible, inactive sequences. Overall, active regions are depleted of TEDSs compared with expectation

(Figure 4.3C), consistent with previous reports that gene regulatory elements genome-wide are depleted of

TEDS (Fong and Capra (2021); Simonti et al. (2017)). However, cis & trans elements were less depleted for

TEDS compared to other activity categories (Figure 4.3C; 0.57x FET OR cis & trans versus 0.46x, 0.47x,

0.48x for conserved, trans-, and cis-effect elements).

Although regions with differential activity are overall depleted of transposable elements, we evaluated

whether specific TE subfamilies were more enriched in specific activity categories. SINE/Alu, MIR, and L2

derived sequences were significantly enriched in cis & trans elements compared with other activity

categories (Figure 4.3D; 1.76x Alu OR in cis & trans, 5% FDR p = 3.2e-8, 1.35x L2 OR in cis & trans, 5%

FDR p = 4.5e-4, 1.22x MIR OR, FDR p =1.2e-6). Further, SINE/Alu element were enriched in

human-active, but not rhesus-active sequences (Figure 4.9F), suggesting that SINE/Alu derived sequences

have gene regulatory activity on the human branch. All other activity categories were depleted of TEDS

families.

SINE/Alu elements have been identified as a source for emerging cis-regulatory elements and underlie

sequences with TF-bound and histone-based enhancer signatures (Su et al. (2014); Sundaram and Wysocka

(2020); Sundaram et al. (2014). To identify divergent TF binding sites at SINE/Alu sequences, we evaluated

the enrichment of TF footprints in cis & trans sequences overlapping SINE/Alu elements compared with

other active regulatory elements (Methods). We observed significant enrichments of zinc-finger transcription

factors, ZNF135, ZNF460, ZNF384, as well as PITX2, FOXD2, OTX2, RARG, and MEF2A (Figure 4.3E,

left) footprints in SINE/Alu cis & trans sequences. Evaluating SINE/Alu TF footprint enrichment in other
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categories, we observed that trans-only SINE/Alu elements were not enriched for the TF footprints enriched

in cis & trans, but rather for IRF1, IRF3, and STAT2 TF footprints, suggesting that footprinting in SINE/Alu

sequences may be determined by the mode of regulatory activity and TF regulators, but not by TED

sequence origin (Figure 4.3E, right). All enriched footprint genes are similarly expressed between humans

and rhesus (log2 fold change expression difference < 1; data not shown), ruling out the possibility that

differentially expressed TF footprint genes drive species-specific SINE/Alu footprinting. Instead, it is likely

that the mode of regulatory activity and standing TF availability drives gene regulatory function at SINE/Alu

sequences. This demonstrates that SINE/Alu insertions in the last common ancestor of humans and rhesus

macaques have developed into human-active gene regulatory sequences that produce lineage-specific

function by binding key transcription factors.

4.3.7 Trans-only sequence ages are older than cis-only and cis & trans

Species-specific regulatory activity arises from sequences with ancient origins (Fong and Capra (2021);

Lowe et al. (2011); Marnetto et al. (2018); Villar et al. (2015)) yet how sequence origins affect regulatory

activity and species divergence is less clear. One hypothesis is that species-specific sequences are younger

than conserved sequences (Cardoso-Moreira et al. (2019); Domazet-Lošo and Tautz (2010)). Tracing the

evolutionary sequences origins of cis-only, trans-only, and cis & trans elements, we find that active

sequences are older than shared accessible, inactive regions (Figure 4.4A). On average, trans-only elements

and conserved active elements have older sequence ages compared with cis-only and cis & trans, which is

consistent with the PhastCons element enrichment above. Further, trans-only variation largely emerged from

the mammalian most recent common ancestor, which is after the development of the lymph nodes and B cell

lymphocytes in the Amniota common ancestor (Boehm and Swann (2014)).

4.3.8 Trans-only elements are enriched for composite sequences with multiple-origins.

Previously, we characterized the evolutionary history of enhancer sequences with multiple ancestral origins

and their association with regulatory function (Fong and Capra (2021)). Regulatory elements with multiple

ancestral origins reflect genomic rearrangements that developed gene regulatory function, are often

tissue-pleiotropic, and have more stable activity across species than single-origin sequences. All active

elements are enriched for multiple ancestral origin sequences compared with matched shuffles, where

trans-only elements are the most significantly enriched (Figure 4.4C; FET OR = 1.44x p = 2.3e-14) and

conserved/ cis-only elements are the least significantly enriched (FET OR = 1.27x , FDR p =5.8e-8 for

conserved active and OR = 1.24x , FDR p =1.4e-5 for cis-only) . cis & trans elements are more enriched for

multiple sequence origins compared with cis-only and conserved, implying their sequences emerge from
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Figure 4.4: Active ATAC-STARR regions are enriched for older sequence ages, multi-origin enhancer
sequences compared with expectation.
(A) Sequence age distributions of conserved active, cis-only, trans-only, and cistrans elements com-
pared with 10x length-matched shuffled expectations in shared accessible, inactive regions. All active
categories are significantly older than expected (Mann Whitney-U p ¡ 0.05). The number of elements
for each category is annotated. (B) Across ages and categories, more active elements are older than
expected. All categories have fewer younger sequences (Boreoeutherian and younger) than expected
from expected datasets. (C) Trans only and cistrans elements are most enriched for sequences with
multiple-origins compared with expectation. Cis-only and conserved active elements are enriched for
multi-origin sequences, but less than trans-only and conserved. All categories are significantly enriched
compared with expectation (FET OR p¡0.05).
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genomic rearrangements. Although conserved and trans-only elements are older than cis-only and cis &

trans, trans-only elements are more enriched for sequences with multiple-origins, which suggests that these

elements undergo more genomic rearrangements compared to conserved-active elements. This suggests that

genomic rearrangements are strongly associated with regulatory activity and linked with divergent activity.

4.3.9 Key transcriptional regulators of immune pathways are differentially expressed between

human and macaque cells

Trans effects result from differences in the cellular environment, so to investigate the origins of the trans

effects in our system, we performed RNA sequencing (RNA-seq) on both GM12878 and LCL8664 cell

lines. As expected, gene expression between the human and macaque cells exhibited strong global

similarities in gene expression (Spearman’s = 0.85; Figure 4.10A); however, we identified 2,975

differentially expressed genes with 1,505 expressed more in human and 1,470 expressed more in macaque

(Figure 4.5A). Key transcriptional regulators of immune pathways, such as IRF7, PAX5, and NFKB1,

among the human-specific differentially expressed genes. Furthermore, the human-specific genes are

enriched for immune pathways, like interferon signaling and interleukin-10 signaling (Figure 4.5B).

Macaque-specific genes, on the other hand, were enriched for extracellular matrix pathways, like collagen

formation (Figure 4.5B). Therefore, these cell lines have broadly similar expression profiles, but display

expression differences in TFs and immune response and the extracellular matrix pathways that could drive

the trans-regulatory differences we observed.

4.3.10 The majority of trans regions are bound by differentially expressed TFs

To test for direct functional links from differentially expressed genes to observed trans effects, we performed

TF footprinting (Figure 4.5C; Fornes et al. (2019)). ATAC-STARR-seq provides high signal-to-noise

measure of chromatin accessibility, so we were able to identify TF-bound sites in both cell lines for 746

transcription factors. The called binding sites are corroborated by differences in cut-count signal profiles for

bound motifs compared to their respective unbound motifs (Hansen and Hodges (2022)). TF footprinting

provides a significant advantage over TF motif enrichment analyses since it enables determination of

whether motifs are bound or unbound in both species.

Using the TF footprints, we tested for enrichment of TF binding in the human active trans and macaque

active trans regions. In both cases, we found significant enrichment for a variety of TF footprints (Figure

4.5C). Stratifying the footprint enrichment by differential gene expression revealed immune regulators,

including IRF7, that are differentially expressed in human and are enriched for binding in human active

trans-only regions (Figure 4.5D).
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To evaluate the contribution of the identified differentially expressed transcription factors to differential

regulatory activity, we quantified how many trans only regions contained at least one differential footprint

for a differentially expressed TF. We found that 53% of human active trans only regions contained a

footprint for a differentially expressed TF. Together, this reveals that differential expression of transcription

factors between these two cell lines drives the majority of trans effects we observe. The remaining 47% of

trans only regions are likely driven by TFs that have not been assayed or other mechanisms, such as

differences in post-transcriptional and post-translational regulation of transcription factors. Such

differences, which have been previously reported between human and non-human primate LCLs, would not

be observed by RNA-seq (Lin et al. (2010); Mittleman et al. (2021)).

4.3.11 Human accelerated cis-element regulates NLRP1 and impacts human-specific cellular

environment

How a few, heritable, divergently active cis-regulatory elements regulate gene expression changes that

broadly affect the trans- cellular environment and produce trait variation is a major question (4.6A). Given

that divergently active cis-elements are enriched for human acceleration, we hypothesized that some of these

elements could impact the human-specific cellular environment to produce traits favored during

human-specific evolution. Thus, we investigated positively-selected cis-only elements whose activity could

contribute to species-specific trans-effects on the cellular environment and trait variation. For example, we

identified a cis-regulatory element on chromosome 17 (Figure 4.6B) with a strong phyloP human

acceleration signal in the 99th percentile of human acceleration scores (Figure 4.6C; phyloP = -2.89). This

element resides in the MIS12 promoter and is polymorphic in modern human populations. In GTEx, an

eQTL (rs1825462, 17 5486808 A G ) decreases DERL2 target gene expression and increases MIS12,

SCIMP, RABEP1, RPAIN, NLRP1 expression in multiple tissues (Figure 4.6D; GTEx Consortium et al.

(2017b)). Human and rhesus genes expression variation supports that human NLRP1 gene expression is

significantly higher ( 2x) compared with rhesus macaques (Figure 4.6E). Other eGenes linked to this

accelerated locus show modestly higher gene expression in humans compared with rhesus. The alternative

allele is also the ancestral allele, G (Ensembl MAF = 47%), and has higher expression among human

populations than the derived/reference allele, A. The locus is linked to human phenotypic variation in UK

biobank, GWAS catalog and FinnGEN pheWAS analyses (Mountjoy et al. (2021); Vuckovic et al. (2020)),

where the ancestral allele is associated with higher platelet count and lymphocyte blood counts (Figure

4.6F). This supports that the cis-only regulatory locus is relevant for human blood biology and positive

selection in this region may have contributed to increased platelet and lymphocyte blood counts in humans.

The NLRP1 locus previously has been shown to be under positive selection (Chavarrı́a-Smith et al. (2016);
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George et al. (2011); Mitchell et al. (2019)), suggesting both the gene body and its candidate regulatory

elements may both be under positive selection.

NLRP1 is a core component of the NOD-like receptor signaling pathway and forms the inflammasome

in response to intracellular detection of double-stranded RNA (Bauernfried et al. (2021); Bauernfried and

Hornung (2022); Liu et al. (2017)). NLPR1-inflammasome signaling causes downstream activation of

caspase-1, cleavage of pro-IL-1B into mature IL-1B, which then promotes pro-inflammatory and apoptotic

response pathways. Further, pro-inflammatory IL-1B signaling activates NF-kB signaling, a transcription

factor with TF footprint enrichment in trans-only elements (Figure 4.5C). IL-1B signaling may promote

NF-kB signaling to regulate divergent trans-elements (Figure 4.6G). Together, this illustrates a mechanism

by which human-accelerated cis-regulation of NLRP1 expression can modulate the cellular environment in

trans- to produce widespread effects on gene regulation and inflammatory responses.

4.4 DISCUSSION

Here we report that widespread trans mechanisms modulate divergent activity across human and rhesus gene

regulatory sequences in cis, and that many divergently active elements have both cis- and trans- activity

features. Leveraging the multi-omic capabilities of ATAC-STARR-seq, our dataset provides a highly

detailed, functional genomic view of gene regulation in human and macaque immortalized B cells. This

work expands on the current understanding of gene regulatory divergence by systematically testing all open

chromatin sequences within a cell type for activity differences across homologs and cellular environments.

With this strategy, we catalog the mechanisms of phenotypic divergence for every active regulatory element

within a cell type.

Conceptually, we provide strong evidence that species-specific trans-environments impact gene

regulatory activity. Like others, we have shown that cis-regulatory divergence is widespread when

comparing homolog activity within a single species’ cellular environment. The novelty of our work shows

that many elements with cis-regulatory differences also have trans-regulatory differences; that is, active

elements in the native cellular environment are not active when transfected into a non-native environment.

The vast majority of divergently active gene regulatory elements have both cis- and trans- divergent

attributes, suggesting that species-specific gene regulatory evolution is sensitive to both DNA mutations and

cellular environment variation. Further, a proportion of strongly conserved regulatory elements show

trans-only sensitivity, indicating these constrained elements are critical for responding to cellular

environment stimuli. Indeed, many of the TF footprints enriched in trans-only elements correspond to

inflammatory-response transcription factors, including NF-kB and a number of IRFs. Future work is needed

to dissect the networks that regulate trans-only elements, as these regulatory networks likely reflect

156



Figure 4.6: Human accelerated cis regulatory elements contribute to trans-regulation of inflammatory
responses in humans
(A) Network schematic illustrating how cis-regulatory elements regulate transcription factor gene ex-
pression and broader networks of trans-regulatory elements controlled by that transcription factor. (B)
Distribution of human acceleration estimates from cis-only regions (N= 1447) and length-matched ex-
pectation elements (N=13988) from phyloP. Negative phyloP indicate acceleration (x-axis) between the
human and chimpanzee branches. PhyloP scores ¡ -1.3 correspond to nominally significant p-values ¡
0.05. One element, chr17:5486721-5486861, falls in the 99th ranked percentile of accelerated cis-only
scores (dashed red line). (C) Genome browser of 300kb and 100 base pairs around chr17:5486721-
5486861, an accelerated cis-only element in the promoter of MIS12. Chimpanzee, rhesus, and mouse
alignments show that this region has many human-specific substitutions, supporting the human acceler-
ation signal. Four common SNPs from 1000 Genomes v3 with a minor allele frequency (MAF) ¿= 1%
are annotated in black boxes. This region was previously identified as a MIS12 promoter in ENCODE.
(D) rs1825462 is an eQTL linked to gene expression variation across multiple gene targets and multiple
tissues in GTEx v8. (E) Differential gene expression (x-axis, log2 fold change rhesus macaque/hu-
man expression) shows that NLRP1 is highly significantly more expressed in humans than in rhesus
macaques. Note – we were not able to call MIS12 expression in humans and rhesus macaques. (F) UK
Bio Bank, GWAS catalog and FinnGen PheWAS show that rs1825462 alternative allele (ancestral) is
linked to significantly increased platelet counts and white blood cell counts. (G) Synthesis of genetic
and phenotypic evidence supporting that human accelerated element chr17:5486721-5486861 is linked
to variation in gene expression that can affect the pro-inflammatory cellular environment to regulate
multiple trans-elements and can contribute to human phenotypic variation.
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conserved molecular signaling pathways that respond to common environmental stimuli during

inflammatory responses.

4.4.1 Why do we observe so many trans effects?

Our ATAC-STARR-seq strategy directly tests differences in gene regulatory activity due to the environment.

In other works, one cellular environment is typically used to control for the species-specific environmental

effects on gene regulation (Agoglia et al. (2021); Arnold et al. (2014)). Mattioli et al. directly evaluated the

impact of the cellular environment on gene regulatory activity in human and mouse embryonic stem cells

and reported that cis effects were more abundant ( 40%) than trans effects ( 18%) when comparing MPRA

regulatory activity (Mattioli et al. (2020)). Our findings differ from this report for a number of reasons,

including number of regulatory elements tested (all open chromatin v. hand-selected regulatory elements),

the assay format (ATAC-STARR-seq v. MPRA), cell model differences (matured v. developmental), and the

species (human and rhesus v. human and mouse). It would be interesting to revisit this experiment with an

ATAC-STARR-seq strategy, expanding on the number of species and embryonic stem cell models used.

Such a comparison could inform us on how activity interpretations vary between technical strategies (i.e.

MPRA and ATAC-STARR-seq) as well as biological differences that may be associated with evolutionary

divergence and developmental differences in activity proposed by others (Cardoso-Moreira et al., 2019;

Domazet-LošoTautz, 2010).

4.4.2 What are cis & trans elements and why are they so abundant?

The abundance of elements with both cis and trans effects indicates that many cis-regulatory elements are

influenced by the cell environment. It is widely accepted that the cellular environment and TF binding

determines cis-regulatory active. However, the abundance of cis & trans activity differences between species

suggests that species-specific regulatory evolution is tightly coordinated between sequence and cellular

environment. Examples of cis-only or trans-only gene regulatory divergence are less common our data,

suggesting that these modes of gene regulatory divergence are less favored for B lymphocytes. This cis &

trans pattern may be more widespread in modern human populations; the GTEx consortium reported that

trans-eQTL and cis-eQTL signals colocalize, and mediation analysis shows that 77% of trans e-Variants are

also cis e-Variants (GTEx Consortium, 2020). Thus, the co-occurrence of trans- and cis- regulatory signals

are likely underappreciated because so few experiments directly measure gene regulatory activity in cis- and

trans-.
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4.4.3 Divergence time may affect the abundance of cis and trans elements observed

Work from others suggests that gene regulatory divergence may be a dynamic process. The beginning of

gene regulatory divergence may begin with in trans, which allows a phenotype to varying before becoming

fixed in the genome. Trans variation has been proposed to be wide-spread within a population, according to

the omnigenic model (Liu et al. (2019)). Following an initial phase of trans variation, gene regulatory

divergence may then become fixed in cis as species diverge. The abundance of cis & trans elements may

reflect an evolutionary transition in the mechanism gene regulatory divergence between humans and rhesus

macaques from predominantly trans- to predominantly cis-. Comparing abundances of cis & trans elements

between species with even longer and shorter evolutionary distances could reveal whether cis & trans

elements are still favored in ancient or recent divergence. Future work would evaluate the mechanisms of

gene regulatory divergence across evolutionary distances.

4.4.4 Why are cis & trans elements less conserved?

cis & trans sequences are not significantly conserved compared with active, trans-only, and cis-only regions

(Figure 4.3A). The lack of sequence conservation in cis & trans elements indicates that despite both

sequence and cellular environment differences in activity, cis & trans sequences are not under the same

evolutionary constraint as cis-only sequences or trans-only sequences. Like the evolutionary origins of most

sequences, both cis & trans and cis-only sequences largely originate from Eutherian most recent common

ancestor and older (Figure 4.4B). Therian regulatory sequences have previously been linked to regulatory

innovation nearby receptor binding genes, suggesting that cis- and cis & trans sequences may have emerged

historically to regulate receptor abundance and modulate cell sensitivity to signaling ligands in the cellular

environment (Lowe et al. (2011)).

4.4.5 What is the significance of the TEDs enrichment in cis & trans elements?

cis & trans elements are enriched for SINE/Alu TEDS in the human lineage. Given that these SINE/Alu

elements are alignable between humans and rhesus, this results suggests that the TE insertions were present

in the ancestor of humans and macaques. Our observations preclude species-specific SINE/Alu insertions.

Interestingly, SINE/Alus acquired gene regulatory activity in the human genome, but not in the rhesus

genome. Further, when SINE/Alu TEDS acquired gene regulatory activity on the human lineage, these

regulatory elements had bivalent cis & trans regulatory properties—either sequence or environment can

modulate regulatory activity. Genetic drift at these SINE/Alu elements may explain how human SINE/Alus

acquired regulatory activity, but rhesus homologs did not. Differences in species’ cellular environments,

such as human-specific C2H2 zinc fingers, may control trans-attributes of SINE/Alu regulatory activity.
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Interestingly, cis & trans and trans-only SINE/Alu sequences are significantly enriched for different TF

footprints (Figure 4.3E), suggesting that despite having common sequence origins, TF binding and divergent

regulation of SINE/Alu elements may be determined by other factors, such as the genomic neighborhood

and nearby regulatory elements. More work is needed to confirm the TFs that bind cis & trans TEDs

elements and to compare SINE/Alu sequence identity between cis & trans and trans-only elements.

4.4.6 Is the LCL cell model relevant for evaluating gene regulatory divergence?

We compare human and rhesus LCL cell models to investigate cis- and trans- differences between species.

However, our observations on gene regulatory divergence may be confounded by the viruses used to

immortalize these cell lines. Specifically, Epstein-Barr virus (EBV) can immortalize human lymphocytes,

but cannot immortalize rhesus lymphocytes (Mühe and Wang (2015)). Instead, an EBV-related

lymphocryptovirus (LCV) is used to immortalize rhesus cells. The immortalization process has negligible

effects on genetic stability (Mohyuddin et al. (2004)) but does induce the expression of viral-genes that

change the transcriptional regulation of many genes (Mrozek-Gorska et al. (2019)). While some of our gene

regulatory observations might be an artifact of the infection process, the inflammatory responses to viral

infection may reflect the co-evolution of viruses and their species-specific hosts. In other words, host-viral

evolution is a meaningful aspect of species evolution. EBV infections are common ( 90%) in humans, just as

LCV infections are prevalent among captive rhesus macaque populations ( 90%; Kaul et al. (2019)).

Similarly, the modes of infection, acute and latent phases of infection, and many of the viral genes involved

in the acute and latent phases are relatively conserved (Wang et al. (2001)). EBV and LCV-infected LCL

models clustered close to primary B lymphocytes in RNA-seq compared with other lymphocytes, suggesting

immortalization-perturbations on gene expression does not significantly disrupt B-cell gene expression

profiles. Together, immortalization artifacts may confound our interpretation of divergent gene regulation,

but these artifacts likely reflect the natural history of host and virus divergence encompassed within our

interpretations of species divergence.

4.4.7 What is the significance of NLRP1 evolution in humans?

Divergence in inflammatory responses is well documented within human populations and across species

(Brawand et al. (2011); Dannemann and Kelso (2017); Nédélec et al. (2016); Quach et al. (2016)). Here, we

provide NLRP1 as an example of how human-accelerated cis-regulatory divergence may broadly influence

the cellular environment and downstream trans-elements. Higher human expression of NLRP1 might have

been evolutionary advantageous for promoting pro-inflammatory responses against double-stranded RNA

viruses in humans. Despite the strong association of this cis-only regulatory element, one limit of our work
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is that we do not demonstrate that this accelerated region is necessary or sufficient for human-specific

regulation of NLRP1. Further, we do not believe that NLRP1 is affected by transfection of our plasmid, as

our plasmid is double-stranded DNA and we have designed the read-out of the STARR-seq reporter plasmid

for after the transfection-driven inflammatory response subsides (Figure 4.10 D-E). The NLRP1

inflammasome is a pathogen sensor that functions in keratinocytes (Mitchell et al. (2019)) and lung

epithelial cells (Planès et al. (2022)), but its function in human B cells has yet to be explored. As B cells

have both innate and adaptive roles in human immunity, it is likely that the NLRP1-sensor serves an

innate-like function in B cells. Future work will have to dissect the function of NLRP1 in humans B cells.

4.4.8 Limitations

In this work we focus on divergent regulatory activity in regions that have shared chromatin accessibility,

but do not consider regions with differential chromatin accessibility. We expect that these regions are largely

impacted by trans-environment effects, such as the abundance of pioneer factors and chromatin remodeling

enzymes, which determine the accessibility of a region. Here, we compare the activity of shared open

chromatin across homologs and cellular contexts because those regions are independently sampled in the

ATAC-seq step of the assay as inputs for the STARR-seq step. To evaluate activity differences in open and

closed chromatin sequences between species, we would need to develop a separate strategy for collecting

closed-chromatin sequences (i.e. not using a Tn5 transposase) to use as comparative inputs for the

STARR-seq step. Our work is limited by a lack of redundancy and controls in our design. While

ATAC-STARR-seq provides global characterization, it lacks certain characteristics of MPRAs, like

assessment of a single DNA sequence with different barcodes that provides robustness and a better

quantitative assessment of the DNA sequence being tested (InoueAhituv, 2015). Therefore, we cannot

compare effect sizes as a method to identify differentially active regulatory regions and rely on a binary

classification—active or not active. This prevents us from evaluating quantitatively whether cis and trans

effects compensate one another, a concept that has been reported by others (Krieger et al. (2022); Whalen

et al. (2022)).

We use immortalized cell lines as our model (discussed above). While this may not reflect endogenous

regulatory activity, there are other technical advantages for using these models. These advantages include

the availability of cell lines and the feasibility of performing ATAC-STARR-seq in these models. Another

limitation is that we only consider a representative cell model for each species and have no understanding of

cis- or trans-variation within populations. However, given the nature of the assay, we expect that pooling

strategies may be a way to evaluate regulatory activity across more individuals in a population (Romero

et al. (2012)). Finally, we are limited in our TF footprint analysis to orthologous TFs and conserved TF
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binding sites. We cannot definitively determine which TFs bind a sequence, given the promiscuity of TFs for

motifs (Lambert et al. (2018); Vierstra et al. (2020)).

Together, our work presents a broad assessment of gene regulatory variation and divergence between

humans and rhesus macaques in cis and trans. We highlight the importance of cellular environment effects

on gene regulatory activity and how the combination of cis and trans attributes promote the divergence of

humans and rhesus macaques.

4.5 METHODS

4.5.1 Cell Culture

GM12878 (human) and LCL8664 (rhesus macaque) cells were obtained from Coriell and ATCC,

respectively, and cultured with RPMI 1640 Media containing 15% fetal bovine serum, 2mM GlutaMAX,

100 units/mL penicillin and 100 g/mL streptomycin. Cells were cultured at 37°C, 80% relative humidity,

and 5% CO2. Cell density was maintained between 0.2×106 and 1.5×106 cells/mL with a 50% media

change every 2-4 days. All cell lines were regularly screened for mycoplasma contamination using the

MycoAlert kit (Lonza).

4.5.2 ATAC-STARR-seq

We performed four ATAC-STARR-seq experiments following the method as described in HansenHodges

2022. We created two ATAC-STARR-seq plasmid libraries, one for the GM12878 accessible genome and

another for the LCL8664 accessible genome. For a total of four experiments, we electroporated each

ATAC-STARR-seq plasmid library into both GM12878 and LCL8664 cells, resulting in the following

conditions: GM12878 Library in GM12878 Cells (referred to as HH in text), GM12878 Library in LCL8664

Cells (HM), LCL8664 Library in GM12878 Cells (MH), and LCL8664 Library in LCL8664 Cells (MM).

For HH and MH, we used Buffer R, whereas, for HM and MM, we used Buffer T from the Neon™

Transfection System 100 µL Kit (Invitrogen, MPK10025). Both plasmid DNA and reporter RNAs were

harvested from the same flask of cells and processed into illumina sequencing libraries. We repeated the

electroporation, harvest, and sequencing library prep steps for a total for three replicates; replicates were

performed on separate days. The plasmid DNA and reporter RNA sequencing libraries for each replicate of

each condition was sequenced on an Illumina NovaSeq 6000 machine, PE150, at a requested read depth of

50 or 75 million reads, for DNA and RNA samples, respectively, through the Vanderbilt Technology for

Advanced Genomics (VANTAGE) sequencing core. The GM12878 Library in GM12878 Cells was

previously analyzed in HansenHodges, 2022, but in a different manner (GEO accession: GSE181317).
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4.5.3 Read Processing

FASTQ files were trimmed and analyzed for quality with Trim Galore!

(https://www.bioinformatics.babraham.ac.uk/projects/trim galore) using the -fastqc and -paired parameters.

Trimmed reads were mapped to hg38 with bowtie2 using the following parameters: -X 500 -sensitive

-no-discordant -no-mixed (cite bowtie). Mapped reads were filtered to remove reads with MAPQ < 30,

reads mapping to mitochondrial DNA, and reads mapping to ENCODE blacklist regions using a variety of

functions from the Samtools software package (cite samtools). When desired, duplicates were removed with

the markDuplicates function from Picard (https://broadinstitute.github.io/picard/). Read count was

determined using the flagstat function from Samtools. Library complexity was measured using the

EstimateLibraryComplexity function from Picard and plotted with ggplot2 in R (cite ggplot and R).

Correlation plots were generated with the deepTools package (site deeptools). Read counts for 1kb genomic

windows were compared between the filtered, with-duplicates bam files using the multiBamSummary bins

function and the following parameters: -e and -binSize 1000. Plots were generated using the plotCorrelation

function and the following parameters: -skipZeros -corMethod pearson.

4.5.4 Chromatin Accessibility Peak Calling and Filtering

Accessible chromatin (ChrAcc) peaks were called in all four conditions (GM12878inGM12878,

LCL8664inLCL8664, GM12878inLCL8664, LCL8664inGM12878) using Genrich with the -j parameter,

which specifies ATAC-seq mode; for each condition, three replicate de-duplicated bam files for the plasmid

DNA samples only were provided to the peak caller. Peaks were filtered by genomic coverage and by

q-value; we adjusted q-values until the genomic coverage of the entire peak set for an experiment was 1.8%.

We determined 1.8% best reflected “peaks” when looking at read pileup in a genome browser. After, we

removed XY chromosomes since LCL8664 is male and GM12878 is female. Together, this yielded between

58,000-63,000 peaks for each of the four experiments. Peaks called in rheMac10 coordinates

(LCL8664inGM12878 and LCL8664inLCL8664) were converted to hg38 coordinates using liftOver with

-minMatch set to 0.9.

4.5.5 Differential Accessibility Analysis

We intersected the filtered ChrAcc peaks from each experiment using the default parameters of BEDTools

intersect (Quinlan 2010) to isolate ChrAcc regions shared across all four contexts—this resulted in 29,531

shared ChrAcc peaks (Figure 4.1D). To obtain specific-specific accessible regions, we intersected only the

GM12878inGM12878 and LCL8664inLCL8664 ChrAcc peaksets and wrote non-overlaps using the -v

parameter. We performed motif enrichment using the findMotiftsGenome.pl script from the HOMER
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package (http://homer.ucsd.edu/) (Duttke et al. 2019) using the following parameters: -size given -mset

vertebrates. We used ChIPSeeker to annotate differential accessible regions based on their distance to the

nearest TSS (annotatePeak, level = genetssRegion = -2000/+1000), assign nearest neighbor genes, and

perform Reactome pathway enrichment analysis using the assigned genes (cite ChIPSeeker and Reactome).

4.5.6 TF Footprinting

Transcription factor footprinting was performed using the TOBIAS software package (Bentsen et al. 2020).

For both the GM12878inGM12878 and LCL8664inLCL8664 samples, we used ATACorrect to generate

Tn5-bias corrected cut count signal files from deduplicated bam files. We then used the corrected cut-counts

files to calculate TF binding in the respective genomes using the ScoreBigWig function. We then paired all

core non-redundant vertebrate JASPAR motifs (Fornes et al. 2020) with the GM12878 and LCL8664 TF

binding profiles to call individual transcription factor footprints in the two genomes using the BINDetect

function and the -bound-pvalue parameter set to 0.05 . Motifs with a footprint were classified as “bound”,

while motifs without a footprint were classified as “unbound”. Aggregate plots were generated using the

deepTools package. Tn5-corrected signal was measured at bound and unbound sites for each respective TF

using the computeMatrix reference-point function with the following key parameters: -a 75 -b 75

-referencePoint center -missingDataAsZero -bs 1. The resulting matrix was plotted using the plotProfile

function. To determine differential footprinting at specific loci, we compared the TF motifs that footprinted

in human and rhesus. We mapped the position of rhesus TF footprints in hg38 by lifting those footprint

coordinates from rheMac10 using LiftOver software from UC Santa Cruz.

4.5.7 Genome Browser

The respective genome browser tracks in Figures 1 and 6 were viewed in the hg38 build using the UCSC

genome browser and a combination of custom and public tracks. A pdf of these views were downloaded and

further annotated in illustrator; positions of the tracks did not change during illustrator editing.

4.5.8 Active Region Calling Within Shared Accessible Peaks

Generation of Sliding Window Bins. We first merged all four ChrAcc peak sets (hg38 coordinates) into a

single file with the UNIX cat function followed by BEDTools merge to generate a merged set of all peaks.

Since ChrAcc peaks contain both active and silencing regulatory elements, it is important to divide peaks

into smaller windows to best identify the element driving activity (HansenHodges 2022). To do this, we tiled

the merged peak set with sliding windows usingBEDTools makewindows and the -s 10 -w 50 parameters;

bins smaller than 50 bp were removed. This generated 7.65 million bins for analysis. Filtering Bins for
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Alignability and Shared Accessibility. To perform comparative analyses between human and macaque

genomes, we required that all bins were mapable between hg38 and rheMac10 in a 1:1 orthologous fashion

and with at least 90% alignability. To do this, we used liftOver with -minMatch=0.9 to convert our bins from

hg38 coordinates to rheMac10 and bins that did not map from hg38 to rheMac10 were removed from the

hg38 file. Furthermore, bins that changed size by more than +/- 2bp in the liftOver were excluded from the

analysis. Altogether, this resulted in the removal of 552,000 bins ( 7.3%). Because differentially accessible

regions would be only assayed in one ATAC-STARR-seq plasmid library, they would confound differential

activity measures when comparing the respective genomes. For this reason, we also required that our bins

overlap charred ChrAcc accessible peaks by intersecting the alignability-filtered bins with the 29,531 shared

ChrAcc peaks described above; we used BEDTools intersect with the -u option set. This resulted in

2,028,304 (26.5%) sliding window bins for further analysis.

4.5.9 Active Region Calling

. We called active regions for each of the four experimental conditions using the 2,028,304 filtered sliding

window bins as input. To control against sample-to-sample variability, we called the top 10,000 most

significantly active regulatory regions in each condition. By comparing the same number of DNA regulatory

elements across conditions, we assume that a similar number of regions are active in each of the four

experiments. We reasoned this assumption is safer than comparing regions called with the same q-value

threshold across experiments, which can be greatly influenced by data quality differences and may not

accurately reflect biology in a comparative analysis. To call active regulatory regions, we first assigned reads

to the filtered sliding window bins using the featureCounts function from the Subread package with the

following parameters: -p -B -O -minOverlap 1 (cite Subread); for rheMac10 mapping reads, we used bins in

rheMac10 coordinates (linked to hg38 coordinates by a unique bin ID). To avoid negative data

interpretations, we next removed bins with a count of zero for any RNA or DNA replicate; between 8,775

and 70,819 bins were removed in each condition. We then quantified the activity of each bin by comparing

RNA and DNA counts using DESeq2 (fitType=”local”). To obtain the top 10,000 most significantly active

regions in each condition, we adjusted Benjamini-Hochberg adjusted (alpha = 0.05) p-value thresholds to

yield “active bins” that when merged resulted in about 10,000 ”active regions” for each condition–padj

thresholds ranged between 0.026 and 0.11 (Figure 4.8C). To ensure our active regions were robust

regulatory elements, we required that each region be made up of at least 5 bins by using BEDTools merge

with the -c option and a custom awk script. For the supplemental analysis investigating threshold effects on

cis and trans effects calls, we followed the same process of adjusted padj thresholds to yield the desired

active region count and then performed the same methods as described above to identify cis and trans
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effects. We used ChIPSeeker to annotate the active regions in each condition based on their distance to the

nearest TSS (annotatePeak, level = genetssRegion = -2000/+1000).

4.5.10 Generation of ATAC-STARR-seq activity bigWigs

We generated ATAC-STARR-seq activity signal files with the deepTools package; to streamline this, we

created a custom python script (github link; generate ATAC-STARR bigwig.py). We compared the log2

ratio of cpm-normalized RNA and cpm-normalized files using the bigwigCompare function and the

following parameters: -operation log2 -pseudocount 1 –skipZeroOverZero; the cpm-normalized bedGraph

files for RNA and DNA were generated using the bamCoverage function and the following parameters: -bs

10 -normalizeUsing CPM. MH and MM activity signal files were converted from bigwig to bedGraph (with

the bigWigToBedGraph function from UCSC), lifted over to hg38 coordinates from rheMac10 coordinates

with Crossmap (cite crossmap), and then converted back to bigwig files using the bedGraphToBigWig

function from UCSC. We generated bigwigs for individual replicates, as well as for merged replicate bam

files.

4.5.11 Heatmaps

We first subsampled the inactive bins for each condition using the Unix shuf command (-n 150000) to

reduce the number of regions plotted. ATAC-STARR-seq activity signal files for each replicate were plotted

at their respective active and randomly subsampled inactive bins using the computeMatrix function

(parameters: -a 500 -b 500 -referencePoint center -bs 25 -missingDataAsZero) and the plotHeatmap

function (parameters: -sortRegions no -zMin -0.5 -zMax 0.5), both from deepTools.

4.5.12 Differential Activity Analysis

HH vs MM Activity Comparison. To identify conserved and species-specific active regions, we intersected

the GM12878inGM12878 active regions with the LCL8664inLCL8664 active regions using BEDTools

intersect. We called regions with at least a 50% reciprocal overlap as “conserved active regions”, whereas

GM12878inGM12878 active regions that did not reciprocally overlap by at least 50% were classified as

“human-specific active regions” and LCL8664inLCL8664 active regions that did not reciprocally overlap by

at least 50% were classified as “macaque-specific active regions”. For all intersections, we used the

following parameters: -f 0.5 -F 0.5 -e. This turns the 50% reciprocal into an “or” operation where either

regions AB are considered “conserved active” if either A or B overlaps the other by greater than 50%. This

avoids mislabeling nested overlaps as differentially active where A could overlap B with 100% but B could

be two times larger than A and therefore not overlap A by 50%. For the “conserved active regions”, we
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wrote the entire interval of the two regions that overlap using a combination of BEDTools intersect and

merge in a custom script. We used the -v option in addition to the parameters listed above to write

differentially active. Identification of Cis and Trans Effects. We determined if divergent active regions were

a result of a change in the DNA sequence (cis) or a change in the cellular environment (trans) by intersecting

species-specific active regions with the active region set from the relevant condition. For example,

human-specific cis effects were determined by intersecting the human-specific active regions with the MH

active region set using BEDTools intersect. Human-specific active regions that did not reciprocally overlap

by at least 50% were determined to be Human-specific cis effects (parameters: -v -f 0.5 -F 0.5 -e). The other

comparisons are indicated in Figure 4.2 and were performed in the same way as described above. To identify

regions that were divergent in both “cis & trans”, we asked if the exact same region was contained in both

the cis and trans effects region sets using BEDTools intersect and the -f 1.0 -r parameters; we maintained

species-specificity by only comparing human-specific cis with human-specific trans and macaque-specific

cis with macaque-specific trans. Regions that were unique to the cis region set were classified as “cis only”,

while regions that were unique to the trans region set were classified as “trans only”. Observed vs. Expected

Overlap analysis. We calculated the expected overlap assuming random distribution in shared accessible

chromatin for all differential activity comparisons. To do this, we first randomly shuffled the MM, HM, and

MH active region sets within shared accessible chromatin with BEDTools shuffle (1000 iterations with the

-noOverlapping parameter). This yielded 1000 sets of randomly positioned active region sets for MM, HM,

and MH within the analytical space of shared accessible chromatin. For each of the 1000 shuffled region

sets per condition, we determined the expected number overlaps by intersecting them with either the HH

active, the human-specific active, or the macaque-specific active regions using BEDTools intersect in the

same manner done for the observed value. We then compared the expected overlap distribution with the

observed value and performed Grubb’s Test to ask if the observed value was a statistical outlier. Heatmaps.

ATAC-STARR-seq activity signal files were plotted at the respective regions using the computeMatrix

function (parameters: -a 1000 -b 1000 -referencePoint center -bs 10 -missingDataAsZero) and the

plotHeatmap function (parameters: -sortRegions no -zMin -0.5 -zMax 0.5), both from deepTools.

4.5.13 Functional Characterization of Cis and Trans Effects

Annotation. We used ChIPSeeker to annotate cis only, trans only, cis & trans, and conserved active regions

based on their distance to the nearest TSS (annotatePeak, level = genetssRegion = -2000/+1000).
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4.5.14 TF Motif Enrichment

We first generated background regions for each region set by shuffling the respective regions within shared

accessible chromatin 10 times using bedtools shuffle and the -chrom -noOverlapping -maxTries 5000

parameters. We then performed motif enrichment using the findMotiftsGenome.pl script from the HOMER

package (http://homer.ucsd.edu/) (Duttke et al. 2019) using the respective background and the -size given

and -mset vertebrates parameters. The top 15 motifs for each region set were selected for plotting using

pheatmap and the following parameters: scale=”row”, cluster cols = FALSE, cluster rows = TRUE,

cutree rows = 7, cellheight = 15, cellwidth = 30, method = ”ward.D2. Motifs within the same motif

archetype (Vierstra et al., 2020) were collapsed so that only one motif of that archetype was displayed on the

heatmap in the main figure.

4.5.15 Gene Ontology

We performed gene ontology on the putative target genes for cis only, trans only, cis & trans, and conserved

active regions using GREAT (McLean et al., 2010) (http://great.stanford.edu/public/html/). We used the

whole genome as background and assigned genes with the default “Basal plus extension” option.

4.5.16 Histone modification heatmaps.

GM12878 ChIP-seq bigwig files for H3K27ac (ENCFF469WVA), H3K4me3 (ENCFF564KBE), and

H3k4me1 (ENCFF280PUF) were downloaded from the ENCODE consortium (Moore et al., 2020) and

plotted at conserved active, human-specific cis only, human-specific trans only, and human-specific cis &

trans regions with deepTools. Specifically, we used the computeMatrix function, with the following

parameters: -a 2000 -b 2000 -referencePoint center -bs 10 –missingDataAsZero and the plotHeatmap

function with the following key parameters: -sortUsing mean –sortUsingSamples 1 (the H3K27ac file).

4.5.17 Distance to ChrAcc peak summits.

We first extracted region centers in R using the following operation: center = ((End-Start)/2)+start; decimals

were rounded up to integers. The ChrAcc peak summits are provided in the original narrowPeak file for

GM12878 ChrAcc peaks, so we obtained peak summits for the shared accessible peaks by intersecting

shared peaks with the human-active peak file. The distance between region center and peak summit was

calculated using the bedtools closest function and the -D ref parameter. This distance was then plotted as a

density plot with ggplot2 in R. To generate the H3K27ac profile plot, we plotted the GM12878 H3K27ac

bigwig from ENCODE at ChrAcc peak summits using deepTools with the computeMatrix function

(parameters: -a 500 -b 500 -referencePoint center -bs 10 –missingDataAsZero) and the plotProfile function.
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We repeated for the 17-way PhyloP bigwig after downloading from the UCSC genome browser

(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP17way/hg38.phyloP17way.bw).

4.5.18 FANTOM B cell element enrichment

B cell eRNA from the FANTOM5 consortium (Andersson 2014) were intersected with HH, HM, MM, and

MH bins. FANTOM eRNA overlap counts with HH, HM, MH, or MM, were compared with overlap counts

in shared accessible, inactive bins and enrichment was quantified using Fisher’s Exact Test with a 5% FDR

corrected p-value (Figure 4.8E, dark dots). HH, HM, MH, and MM labels were then empirically shuffled

100x times, and eRNA enrichment was quantified by comparing eRNA overlap in label-shuffled HH, HM,

MH, or MM bins with eRNA overlap in label-shuffled inactive, shared inaccessible bins (Figure 4.8E, light

dots).

4.5.19 Evolutionary Analysis

4.5.19.1 Generating expected background datasets from shared accessible, inactive regions.

We identified all inactive, shared accessible peaks with no activity in any of our four (HH, HM, MH, MM)

experiments. We then used BEDTools to subtract all peaks with an overlapping any inactive elements. Then,

we shuffled active regions with BEDTools (-noOverlapping -maxTries 5000) in this shared accessible,

inactive genomic background, 10x to produce length-matched expectation datasets. We used these elements

as our background to interpret features of active and divergent elements.

4.5.19.2 PhastCons enrichment analysis.

We intersected regions in shared accessible peaks with human activity (N = 16310 bins) with 30-way MultiZ

PhastCons elements (last downloaded September 22nd, 2021 from

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons30way/). A region was considered conserved

when overlapped > = 1 bp of a PhastCons element. For each category with activity differences between

humans and rhesus macaques, we quantified PhastCons element enrichment in that category versus 10x

expectation sets using Fisher’s Exact Test with a BH adjusted p-value< 0.05.

4.5.19.3 Human acceleration enrichment analysis.

We estimated human acceleration from ATAC-STARR-seq bins using the phyloP function from the Phast

tools suite (http://compgen.cshl.edu/phast/). Short term estimates of human acceleration and conservation

(-mode CONACC) were calculated between the human and chimp branches against the 30-way neutral tree

model (-g hg38.phastCons30way.mod) using the likelihood ratio test (-method LRT). For long term

estimates of human acceleration, we first trimmed the model tree to remove any species on the human
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branch that emerged after the most recent common ancestor between humans and rhesus macaques and used

this trimmed neutral tree model to quantify acceleration and conservation (described above). Bins with a

phyloP score cutoff < -1 were considered accelerated. We removed any bins from the acceleration analysis

that overlapped human duplicated regions (hg38 SELF-CHAIN) with > = 1 bp overlap using BEDTools.

Human acceleration enrichment was estimated as the number of human accelerated regions (phylop< -1.3,

corresponding to a p-value ¡0.05) overlapping an activity category among all active human bins. We

assigned each region in the observed and expected dataset with the lowest phylop bin value (i.e. the most

accelerated value). We downloaded hg38 repeatmasker coordinates from the UCSC genome browser (last

downloaded August 21st, 2021). Active regions and matched expectation sets were intersected with TE

coordinates and active regions were assigned TE if a TE overlapped > =10bp of a region. To test for

enrichment, we used Fisher’s Exact Test with a BH adjusted p-value< 0.05 to compute the enrichment of

TEs overlapping active elements versus matched expectation datasets. For family-specific analysis, we

stratified by TE family overlap and quantified TE enrichment as the number of elements overlapping a TE

family per activity category (e.g. cis only) and all other activity category datasets using Fisher’s Exact Test

with a BH adjusted p-value< 0.05.

4.5.19.4 Repeatmasker transposable element enrichment.

Assigning sequence ages. The genome-wide hg38 100-way vertebrate multiz multiple species alignment

was downloaded from the UCSC genome browser. Each syntenic block was assigned an age based on the

most recent common ancestor (MRCA) of the species present in the alignment block in the UCSC all

species tree model. Regions and matched shuffles were intersected with syntenic blocks and the maximum

age for each region was selected as the representative age. For most analyses, we focus on the MRCA-based

age, but when a continuous estimate is needed we use evolutionary distances from humans to the MRCA

node in the fixed 100-way neutral species phylogenetic tree. Estimates of the divergence times of species

pairs in millions of years ago (MYA) were downloaded from TimeTree (Hedges et al., 2015). Sequence age

provides a lower-bound on the evolutionary age of the sequence block. Sequence ages could be estimated

for 94% of the autosomal bp in the hg38 human genome.

4.5.19.5 Multiple sequence origin enrichment analysis.

After assigning sequence ages to regions above, we quantified how often regions overlapped multiple

sequence ages (referred to as “multi-origin sequences”) with > =6 base pairs in length per age. We

compared the number of multi-origin sequences in cis-, trans- and cis & trans categories with their

length-matched expectation sets (see above section Generating genomic background - shared accessible,
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inactive expectation datasets) and computed enrichment using Fisher’s Exact Test.

4.5.19.6 Population Genetics Analysis

eQTL enrichment. We intersected each divergent activity category with eQTL from GTEx (version 8; last

downloaded April 30th 2018) using Bedtools. To measure whether the observed number of eQTL variants

was more than expected, we shuffled each divergent set of regulatory elements 1000x in a background set of

length-matched shared accessible, inactive regions and quantified the fold-changes as the number of

observed eQTL variants divided by the median number of expected eQTL variants. We calculated the

empirical p-values from the number of eQTL overlaps in the expected sets that were equal to or more

extreme than the observed number of eQTL overlaps. We bootstrapped the 95% confidence intervals by

estimating the distribution of fold-changes from the observed count with each of the 1000 expected overlaps.

4.5.19.7 UKBB GWAS trait enrichment.

We selected a set of immune, inflammatory, and B cell related traits from the UKBB pan-GWAS. For each

trait, we included only the tag-SNPs with genome-wide significance (p<5.5-e8) and LD-expanded those

tag-SNPs to include variants in perfect LD (R2=1.0) in European populations from 1000 genomes (1000

genomes consortium). We removed any active regions that overlapped the HLA locus in hg38

(chr6:2889875133807669), including 4 cis only elements, 1 cis & trans, 1 trans only, and 0 conserved active.

We then intersected the accessible peaks containing divergently active regions with LD-expanded,

significant GWAS SNPs using Bedtools. To measure whether the observed number of eQTL variants was

more than expected, we shuffled each divergent set of regulatory elements 1000x in a background set of

length-matched shared accessible, inactive regions and quantified the fold-changes as the number of

observed GWAS variants divided by the median number of expected GWAS variants. We calculated the

empirical p-values from the number of GWAS overlaps in the expected sets that were equal to or more

extreme than the observed number of GWAS overlaps. We bootstrapped the 95% confidence intervals by

estimating the distribution of fold-changes from the observed count with each of the 1000 expected overlaps.

4.5.20 RNA-sequencing

Prior to RNA isolation, we electroporated hSTARRseq ORI plasmid (Addgene 99296) into GM12878 and

LCL8664 and matched the experimental conditions performed for the ATAC-STARR-seq plasmid library

transfections, but on a smaller scale. Instead of twenty 100L electroporation reactions, we performed a

single 100L reaction for each replicate and kept the cell count:DNA ratio (3x106 cells and 3g plasmid DNA

per reaction) and electroporation conditions the same. We performed two replicates each for GM12878 and
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LCL8664 cell lines. 24 hours later, we harvested total RNA using the TRIzol™ Reagent and Phasemaker™

Tubes Complete System (Invitrogen™, A33251) and prepared Illumina-ready RNA-sequencing libraries

using the SMARTer® Stranded Total RNA Sample Prep Kit - HI Mammalian (Takara Bio, 634874).

Libraries were analyzed for quality and submitted for sequencing on an Illumina NovaSeq 6000 machine,

PE150, at a requested read depth of 50 million reads through the Vanderbilt Technology for Advanced

Genomics (VANTAGE) sequencing core.

4.5.21 Gene Expression Analysis

4.5.21.1 Data Collection.

In addition to the RNA-seq experiments described above, we downloaded and analyzed FASTQ files from

the following publications: Cain et al. (2011) - GSE24111 (SRR066745-7, SRR066751-3); Blake et al.,

2020 - GSE112356 (SRR6900782-SRR6900812); Calderon et al. (2019) - GSE118165 (SRR11007061,

071, 082, 090, 092, 094, 096, 113, 121, 124, 126, 127, 137, 147, 156, 158, 160, 170, 183, 186, 188, 190;

SRR7647654, 656, 658, 696, 698, 700, 731, 767, 768, 769, 807, 808), and the ENCODE GM12878 Wold

(total RNA-seq: ENCFF248MER, ENCFF006YWA, ENCFF294LGZ, ENCFF995BLA) and Gingeras

(polyA plus RNA-seq: ENCFF001REH - ENCFF001REK) GM12878 datasets. The FASTQ files from these

datasets and our GM12878 and LCL8664 data were processed in the same way.

4.5.21.2 Fastq Processing.

Raw reads were trimmed and analyzed for quality with Trim Galore! using the -fastqc and -paired

parameters. To avoid bias arising from duplicated genes, we restricted our analysis to 1:1 orthologous exons

that we obtained from XSAnno (cite XSAnno)

(https://hbatlas.org/xsanno/files/Ensembl-v64-Human-Macaque:

Ensembl.v64.fullTransExon.hg19TorheMac2.hg19.bed and

Ensembl.v64.fullTransExon.hg19TorheMac2.rheMac2.bed). The hg19 file was converted to hg38

coordinates using liftOver. Because no rheMac2 to rheMac10 map chain file existed, we first converted

rheMac2 coordinates to rheMac8 and then to rheMac10. We then mapped trimmed reads to the 1:1

orthologous exons in the respective genome using the STAR aligner (alignReads function); we built a STAR

index for each genome for each illumina read length type (150nt, 50nt, 35nt, and 100nt) and applied it to the

respective sample. We next counted reads in each 1:1 orthologous exon using the featureCounts function

from subread (cite Subread); for our samples, we set the -s parameter to 1 because they were stranded

RNA-seq datasets, while all others were set to 0 (unstranded). For paired datasets, we also specified the -p

and -B options. We applied the -O option to all datasets.
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4.5.21.3 Differential Expression Analysis.

For all pairwise comparisons presented, we performed differential expression analysis with DESeq2

(fitType=”local”) and extracted results using the lfcShrink function and apeglm shrinkage algorithm, which

shrinks the effect size of low count data (cite deseq and apeglm). Prior to comparing GM12878 and

LCL8664, we removed sex chromosomes. We defined human-specific expressed genes as those with a

log2FC > 2 and a padj < 0.001, while macaque-specific expressed genes had a log2FC < -2 and a padj <

0.001. We used ChIPSeeker and ClusterProfiler to perform Reactome pathway enrichment analysis using the

differentially expressed gene sets (cite ClusterProfiler); we plotted the top five to six categories in each case.

4.5.21.4 Correlation Plot.

For each of our GM12878 and LCL8664 replicates, we normalized read counts so they represented

transcripts per million (TPM). We then calculated the mean TPM for each gene between the two replicates,

added a pseudo count of 1, and log10 normalized the values. We then plotted the GM12878 and LCL8664

values on a 2D bin plot; both Pearson and Spearman’s correlation coefficients were calculated using the

mean TPM values.

4.5.21.5 Principle Component Analysis.

For each of the samples plotted in each PCA, we first extracted variance stabilizing transformed (VST)

count values from the DESeq Dataset (dds) with the vst function (blind=TRUE) and then plotted principle

components 1 and 2 using the plotPCA function (both functions from the DESeq2 package).

4.5.22 TF Footprint Enrichment Analysis

TF footprint enrichment for SINE/Alu cis & trans regions. We evaluated the footprints for each TF for

enrichment in cis & trans regions that overlapped SINE/Alu transposable elements compared to 10x

length-matched expected regions. Enrichment scores were computed using Fisher’s Exact Test with a BH

adjusted p-value< 0.05.

4.5.23 Trans only TF footprint enrichment vs. differential expression.

We evaluated footprints for each TF for enrichment in human-specific and macaque-specific trans only

regions compared to 10x length-matched expected regions. Enrichment scores were computed using

Fisher’s Exact Test with a BH adjusted p-value< 0.05. We intersected enrichment score with the differential

expression values of the specified TF. We removed footprints associated with TF multimers, for example the

”SMAD2-SMAD3-SMAD4”, so that only individual TFs, such as SMAD3, were assigned differential

expression values. We also removed TFs that were not analyzed in the differential expression analysis, likely
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because they did not meet the 1:1 orthology requirement. Altogether, this left 386 TFs for plotting.

Scatterplots were made with ggplot2 and text was plotted for TFs with a footprint enrichment log2OR > 0,

footprint enrichment padj < 1x10-10, differential expression log2FC > 0 (log2FC < 0 for

macaque-specific), and a differential expression padj < 1x10-50 (padj < 1x10-20 for macaque-specific). For

the TFs that met this criteria, we intersected their footprints (BEDTools intersect: default parameters) with

the respective trans only regions to determine the percentage with the given footprint. In a few cases we

merged TF footprints, because some of the TFs shared the same motif archetype (Vierstra et al. (2020)), for

example IRF4, IRF7, and IRF8.

174



4.6 Supplemental Figures

175



Hansen/Fong et al. 2022, Figure 1 Supplement

A

B

C E

F

H

G

D

DNA1

0
50

00
10

00
0

pearson >0.99

0

2500

5000

7500

10000

12500
pearson=0.99

DNA2

0
50

00
10

00
0

15
00

0
0

2000

4000

6000

8000

10000pearson=0.99

DNA3

GM12878inGM12878

DNA1

DNA2

DNA3

0
25

00
50

00
75

00

pearson >0.99

0

2000

4000

6000

8000pearson >0.99

0
50

00
10

00
0

15
00

0
0

2000

4000

6000

8000pearson >0.99

GM12878inLCL8664

DNA1

DNA2

DNA3

0
20

00
0

pearson >0.99

0

10000

20000

30000

pearson=0.99

0
25

00
0

50
00

0
75

00
0

0

10000

20000

30000

pearson >0.99

LCL8664inGM12878

DNA1

DNA2

DNA3

0
20

00
0

40
00

0

pearson >0.99

0

20000

40000

60000pearson >0.99

0
20

00
0

40
00

0
60

00
0

0

20000

40000

pearson >0.99

LCL8664inLCL8664

RNA1

0
10

00
0

20
00

0

pearson=0.99

0

5000

10000

15000

20000pearson=0.98

RNA2

0
50

00
10

00
0

15
00

0
0

5000

10000

15000

20000
pearson=0.98

RNA3

RNA1

RNA2

RNA3

0
50

00
10

00
0

15
00

0

pearson >0.99

0

5000

10000

15000

20000

25000pearson >0.99

0
10

00
0

20
00

0
0

5000

10000

15000pearson=0.99

RNA1

RNA2

RNA3

0
50

00
0

pearson=0.98

0

10000

20000

30000

40000

50000pearson=0.97

0
20

00
0

40
00

0
0

20000

40000

60000

80000

pearson=0.98

RNA1

RNA2

RNA3

0
20

00
0

40
00

0
60

00
0

pearson=0.99

0

20000

40000

60000
pearson=0.98

0
50

00
0

10
00

00

15
00

00
0

20000

40000

60000
pearson=0.97

GM12878inGM12878 GM12878inLCL8664 LCL8664inGM12878 LCL8664inLCL8664

Mappable & 1:1 ortholog

50bp Sliding Window Bins - 10bp step

Merged ChrAcc Peaks

HH ChrAcc Peaks HM ChrAcc Peaks MH ChrAcc Peaks MM ChrAcc Peaks

Unmappable

Diff Accessible Bins within shared 
accessible peaks

HH Active Bins HM Active Bins

(7,647,996)

(6,548,753)

(2,028,304)

(148,200) (157,210) (146,880) (158,750)
MH Active Bins MM Active Bins

MMMHHMHH

HH Active Regions HM Active Regions MH Active Regions MM Active Regions

1. Create bins

2. Filter bins

3. Call active regions 
for each experiment

D
N

A
R

N
A

0

20

40

60

0

20

40

60

condition

Es
tim

at
ed

 L
ib

ra
ry

 C
om

pl
ex

ity
 (i

n 
m

ill
io

ns
)

replicate
Rep1
Rep2
Rep3

TF Footprinting Examples
only 5 shown out of 746 total cases

GM12878 (human LCL)
 cut-counts

LCL8664 (macaque LCL)
 cut-counts

bound motif
unbound motif

SPI1/PU.1

0.00
0.05
0.10
0.15
0.20
0.25

-0.1 center 0.1Kb -0.1 center 0.1Kb
0.00
0.05
0.10
0.15
0.20
0.25

NFKB1

0.0
0.1
0.2
0.3
0.4

-0.1 center 0.1Kb -0.1 center 0.1Kb

0.0
0.1
0.2
0.3
0.4

IRF4

-0.1 center 0.1Kb -0.1 center 0.1Kb
0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Jun-AP1

REST-NRSF

Fosl2
Lhx2

p73
Dlx3

Pax7

p53
p53

Pax7

Lhx1

Pax7Phox2b

Fra2

JunB

OCT:OCT
LXH9
Lhx3

0.4

0.6

0.8

1.0

1.2

1.4

0 25 50 75 100

0 2 4 6 8

TF Motif Enrchment

IRF8
PU.1:IRF8

IRF3
IRF2

IRF1
ISRE

NFkB-p50,p52
NFkB-p65-Rel

T1ISRE

LXRE
SpiB

IRF4
ETS:RUNX

ZFP3
EBNA1

IRF:BATF
bZIP:IRF
PU.1

0.6

0.8

1.0

1.2

-log10 p-value

fo
ld

-c
ha

ng
e 

en
ric

hm
en

t

-log10 p-value

fo
ld

-c
ha

ng
e 

en
ric

hm
en

t
human-biased accessible regions

macaque-biased accessible regions

Reactome Pathway Enrichment of Nearest Neighbor Genes

Heme signaling

Interferon alpha/beta
signaling

Toll Like Receptor 3 (TLR3)
Cascade

Fcgamma receptor (FCGR)
dependent phagocytosis

VEGFA-VEGFR2 Pathway

Signaling by VEGF

Leishmania infection

RHO GTPase cycle

0.01 0.02 0.03 0.04 0.05
GeneRatio

Count

50
100
150

200

250

4e-04

6e-04

8e-04

1e-03

p.adjust

Other semaphorin interactions

Non-integrin membrane-ECM
interactions

Collagen degradation

ECM proteoglycans

Integrin cell surface
interactions

Degradation of the
extracellular matrix

Extracellular matrix
organization

GPCR downstream signalling

0.02 0.04 0.06
GeneRatio

Count

100

200

1e-04

2e-04

3e-04
p.adjust

human-biased accessible regions

macaque-biased accessible regions

ETS1

-0.1 center 0.1Kb -0.1 center 0.1Kb

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5
0.6

PRDM1

-0.1 center 0.1Kb -0.1 center 0.1Kb
0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Figure 4.7: ATAC-STARR-seq methods for comparing chromatin accessibility and reporter activity
between human and rhesus LCL lines.
Differential accessibility analysis, TF footprinting, and ATAC-STARR-seq quality control. (A-B) TF
motif enrichment analysis results for either (A) human-specific or (B) macaque-specific accessible re-
gions. (C) 5 representative examples of TF footprinting in human and macaque LCLs from ATAC-
STARR-seq data. A total of 746 JASPAR motifs were analyzed to identify bound (black line) and
unbound (grey line) motifs classified by Tn5 cut-count distributions at the motifs. Bound motifs are also
called footprints. (D,E) Reactome pathway enrichment analysis of nearest neighbor genes for either (D)
human-specific or (E) macaque-specific accessible regions. Only the top 8 terms are displayed. (F) Es-
timated sequence library complexities from Picard for each replicate of each condition. This represents
the total number of non-redundant sequences contained within the library. (G) Pearson correlation plots
between replicates for both RNA and DNA samples for each condition.
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replicate of each condition for both all bins called active and for a random subsample of inactive bins.
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H. Red line represents the observed, while blue density plot represents the expected distribution of
overlaps for 1000 random shuffles within shared accessible chromatin. (D) Lollipop chart representing
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Figure 4.9: Evolutionary sequence features of divergently active regulatory elements.
(A) Active regions are enriched for PhastCons element overlap in divergently active categories compared
with 10x expectation dataset (Log2 FET OR shown, *p¡0.05). Lines represent 95% confidence intervals.
The percent of phastCons overlapping regions and number of regions is annotated. (B) Divergently
active elements from Amniota, Mammalia, Therian, and Eutherian most recent common ancestors (x-
axis) are older than expected, ruling out that regulatory divergence comes from evolutionarily recent
sequences (i.e. younger than Eutherian). Sequence ages stratified by most recent common ancestor (x-
axis) and the fraction of the activity category (left) or observed versus expected fraction of sequences of
that age (y-axis) from 10x shuffles (right). (C) Human acceleration enrichment compared to the human-
rhesus. All great ape branches were trimmed in the analysis of the human-rhesus acceleration analysis.
Heatmap shows odds ratio enrichment of human acceleration versus matched 10x expectation sets from
shared accessible, inactive regions, computed using FET. Various acceleration cutoffs were used to
assess enrichment of acceleration in each dataset versus expectation (x-axis). Boxes with asterisks are
significantly enriched (p¡0.05). Darker colors signify stronger enrichment. Cis-only and conserved
active elements are significantly enriched for human acceleration. (D) Sequence identity is similar
between divergent activity categories, ruling out that sequence identity alone can explain divergence
in regulatory activity. Sequence identity was estimated as the percent of bases that match between
human hg38 and rhesus macaque rheMac10 alignments. Across all activity categories, human and
rhesus sequences have similar sequence identity. Median sequence identity is annotated in each boxplot.
(E) TEDS family enrichment in conserved active sequences versus all other divergently active elements
(FET OR; x-axis). Significantly enriched elements are annotated (FDR p¡ 0.05; y-axis). Size of dot
reflects number of conserved active elements that overlap that TED family. (F) Same as (E), but stratified
by cis+trans from HH-active (upper) or MM-active (lower) datasets.
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CHAPTER 5

Discussion

Get your facts first, then you can distort them as

you please.

Mark Twain

This work contributes to bridging the gap between evolutionary history and function of enhancer

sequences in humans. Broadly, it supports that most enhancer sequence evolution emerge from discrete

origins during species divergence and that “nucleation” of multi-origin enhancer sequences is not common.

Instead, both single-origins and multi-origin evolutionary trajectories are under similar evolutionary

constraint and are functional, however single-origin sequences are more tissue-specific and sensitive to

variation than multi-origins sequences. GWAS variants are enriched in both types of enhancer sequence

history compared with the non-coding genomic background, suggesting that human trait-associated

variation occurs in both types of sequences.

A minority of enhancer sequences have multiple origins, which likely arise from genomic

rearrangements that occur during species evolution. These multi-origin elements are often older, and we

estimate that addition of younger sequences proceeds step-wise, where a sequence from the previous age

and the next youngest age are placed next to one another. Typically, multi-origin sequences have two

segments—one older sequence and one younger sequence. Both bind TFs, but have different sensitivities to

human genetic variation. Together, these data suggest that all components of multi-origin sequences can

regulate gene expression, ruling out the hypothesis that gene regulatory function is driven solely from core

sequences.

The work comparing activity of human and rhesus across open chromatin sequences makes many major

contributions to our knowledge of gene regulatory evolution and species-specific divergence. The work

elucidates how cellular environment differences in trans influences species-specific gene regulatory activity

throughout human and rhesus macaque LCL open chromatin, genome-wide. Another major contribution is

that this work dispels the assumption that many shared open chromatin sequences have conserved activity;

despite shared open chromatin, these elements often have species-specific activity. Further, both cis- and

trans- variation impacts gene regulatory divergence between species. This work expands beyond the

understanding that gene regulatory divergence is driven in cis- and realizes the joint contributions of cis- and

trans- differences that promote species evolution. For all of this work, my collaborators and I have made the

data and scripts used to analyze this work publicly available in hopes that it will be useful to the scientific
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community at large. Below, I discuss the limitations and implications and future directions of this work.

Limitations

Genome evolution studies, though powerful, have several limitations that must be considered. Evolutionary

studies compare the genomic features of extant species, but often lack the extinct common ancestor genome.

This limits our ability to measure which features were truly once shared, but now diverged between species,

or which features are convergent, but appear to have descended from the common ancestor. For example,

given that the common ancestor of humans and chimpanzees is estimated to diverge over six million years

ago, it is unlikely that the common ancestor, or their genome, will ever be recovered. Thus, the field of

evolutionary genomics must depends on simulations and inference to model extinct common ancestors.

The duration of evolutionary selection pressures limits our ability to estimate conservation and

acceleration substitution rates throughout the genome. Brief evolutionary selection pressures may diversify

or constrain phenotypes as species evolve. Some sustained pressures will become encoded in a specie’s

genome, but when, which, and for how long such pressures get ”stored” as genotype is unknown. Further,

species may adapt differently to the same evolutionary pressure. In other words, we cannot fully infer

evolutionary selection pressures and can only partially infer evolutionary history from contemporaneous

species and their genomes. More experiments that artificially place selection pressures on model species,

such as selecting mouse populations for long-shank bone length over generations (Castro et al. (2019)) must

be used

Finally, the cell models, biochemical, and DNA sequencing technologies used to measure species’

genomes and patterns of variation limit our ability to measure regulatory conservation and divergence. For

example, the lymphoblastoid cell models used to compare regulatory activity between human and rhesus

macaque B cells are immortalized using different viruses. Epstein-barr virus infection can immortalize

human lymphocytes, but not rhesus macaque lymphocytes (Mühe and Wang (2015)), which indicates that

species-specific regulatory activity we detect with ATAC-STARR-seq is likely attributed to the co-evolution

of EBV and human hosts. Though this biases our estimates of gene regulatory evolution, it candidly

acknowledges that the human genome co-evolves with the viruses and broader environmental pressures that

are different from those pressures placed on rhesus macaque genomes. Experiments comparing gene

regulatory activity without immortalization, such as building accessible chromatin libraries and transfecting

purified populations of human and rhesus macaque B cells to measure regulatory reporter activity can be

used to confirm divergence patterns identified in lymphoblastoid cell models.

Biochemical technologies limit our ability to characterize the identities of transcription factors that

bind regulatory DNA and produce activity (Lambert et al. (2018)). CRISPR-QTL screens (Gasperini et al.
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(2020)) that knockdown the expression of key transcription factors across species’ cell models may help to

identify the effectors responsible for divergent gene regulatory activity.

Sequencing technologies and the design of genotyping chips may bias detection of genetic variants and

our abilities to infer relevant human variants that impact gene regulatory activity. Depth of sequencing

coverage and the size of DNA sequencing reads can limit our ability to align species genomes to one

another, impacting the measures of sequence age and comparisons of active sequences between genomes. In

the future, long-read sequencing technologies and broad whole-genome sequencing across human and

primate populations can help to fill gaps related to low-powered sequencing approaches. There are many

technical and biological limitations that bias our conclusions on gene regulatory evolution, however, the

conclusions made from this work are relevant to expanding our knowledge in the comparable regions of the

genomes and highlight the need for more experimentation to resolve these gaps.

Estimating the emergence and decay of enhancer sequences across species

In modeling enhancer sequence evolution, we proposed a model of how single-origins and multi-origin

enhancer sequences emerge and transition over time. In this model, we suggest two possible ways inactive

sequences transition to gain gene regulatory activity. One possible way is through genome expansion and

repeat element insertions that become single-origin enhancers. A second way is that genomic

rearrangements place inactive sequences of different ancestral origins next to one another and gain gene

regulatory activity. It would be interesting to estimate the rates of single-origin and multi-origin enhancer

gain across species. This is feasible given the alignability of these sequences, but must be complemented

with gene regulatory surveys across multiple tissues in multiple species. A simple analysis could compare

the single- and multi-origin enhancer sequence frequencies across vertebrates. Another approach would be

to model the transition probabilities between single- and multi-origin sequences. That type of analysis

would ask—when multi-origin enhancer activity is conserved, does that human multi-origin enhancer

sequence function as a single- or multi-origin sequence in related species? Hidden Markov models could be

applied to estimate the transition probabilities between single- and multi-origin states given sequence and

activity of an enhancer across species. One limitation of this model is that it cannot tell us when an enhancer

sequence gained activity; it can only tell us how that sequence evolved.

Further, understanding how and when regulatory sequences decay is equally important as

understanding how they emerge. An analysis investigating how sequences lose activity can inform how gene

regulatory sequences turnover between species and what the effect might be, if any, on the regulation of a

gene target. A thoughtful analysis of enhancer decay would likely combine multiple, high resolution gene

regulatory landscapes across species, robust TFBS binding data, and careful inspection of variation in
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homologous sequences. Given the rapid turnover of regulatory elements, it is possible that, like

pseudogenes, decayed, pseudo-regulatory elements that may be found throughout the genome. Machine

learning classifiers jointly trained to predict active and inactive enhancers across multiple species from

homologous sequences could be used to predict the sensitivity of human gene regulatory elements to

mutation, or used to predict inactive regions of the human genome that could develop enhancer activity with

few mutational events. Together, more high resolution and refined enhancer maps are needed across species

and cell types to estimate the rate of birth and decay in sequences with gene regulatory activity.

Linking gene regulatory and genes to jointly model transcriptional divergence

Divergence of gene regulation is more interpretable when considering its effects on gene expression

patterns. Underlying this is a major question—why does divergence in some gene regulatory elements

produce changes in expression while others do not? Some work has been done to study the robustness of

gene expression patterns between species and the conservation of its regulatory elements (Berthelot et al.

(2018); Laverré et al. (2022)). However, how these patterns of robustness relate to the number and

conservation of their gene regulatory elements is often confounded by enhancer-gene mappings. Proximity

ligation assays, like PLAC-seq (Nott et al. (2019)), could be applied to clarify how enhancers and promoters

interact with their target genes in a cell type of interest across species. This type of data, paired with

high-resolution RNA-seq, would allow comparative analyses anchored on gene orthologs and definitive sets

of enhancers and promoters that regulate that gene’s expression. With this information, layering the TF

content and evolutionary sequence history information onto these regulatory-gene connections would allow

us to model gene regulatory landscapes and interrogate when regulatory sequence variation and divergence

perturbs gene expression.

One epistemological point that ought to be raised about linking perturbations in gene regulatory

sequences to gene expression level is that the field tends to focus narrowly on examples of gene regulatory

sequence variation that leads to changes in gene expression level. eQTLs are a great embodiment of this

focus. However, perturbations to gene regulatory sequences can occur without changing gene regulatory

activity or without perturbing gene expression levels. For example, changes in gene regulatory sequence and

binding site motif content may change the identity of TFs bound to the regulatory element without changing

the expression level of the target gene. In HARs MPRA studies, human-specific substitutions have been

shown to change in TFBS motif content without changing the overall activity of the sequence (Uebbing

et al. (2021); Whalen et al. (2022)). Hypothetically, a TF that has stronger affinity for a mutated sequence

might not affect levels of gene expression, but instead might affect its clearance, thus warping the temporal

regulation of a target without affecting homeostatic gene expression levels. Another hypothetical would be
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that substitutions that change TFBS motif content may allow for that regulatory element to become active in

another cellular context, which requires that more species’ cellular contexts and regulatory maps are

evaluated to observe this effect. With this said, more experimental work is needed to evaluate the effects of

gene regulatory perturbation beyond changes in gene expression level.

Interpretations from sequence age analyses will be limited, though, because we cannot observe

regulatory sequences lost, or gained and lost, over time to produce the patterns we observe in the present

day. Nonetheless, mapping when tissue- and cell-type-specific enhancers are gained in the genome is

valuable for understanding innovation (or conservation) of tissue-specific gene regulatory patterns.

Interpreting rare and common regulatory variants in the context of enhancer evolution

Our work suggests that considering the evolutionary history of core and derived regions may provide

valuable context for interpreting the function and disease relevance of human variation. We show that

younger derived sequences accumulate more common variants and variants associated with gene expression

variation than cores because derived sequences are under less evolutionary constraint than their cores. The

pairing of core and derived sequences into a single, functional regulatory substrate may allow for derived

sequences to tolerate more genetic variation, while conserving gene regulatory activity from the core

sequence. Variation in derived sequences may also contribute to the tissue-pleiotropy associated with

multi-origin enhancer sequences by increasing the number of TFBS, thus increasing the number of

opportunities that any TF can bind across cellular contexts. In this case, variation in derived sequences may

allow for multi-origin enhancer sequences to adapt their functions to new cellular contexts overtime. It

would be interesting to evaluate whether more tissue-specific disease-variation is linked to variation in

derived regions, and or rarer, more severe, multi-organ-specific disease variation is linked to variation in

regulatory cores.

Whether deleterious rare variation is generally concentrated in enhancer cores must be explored further.

Currently, the small number of known non-coding Mendelian variants makes enrichment analyses

challenging. With regard to common variation and associations with complex traits, we observed that eQTL

are enriched in derived sequences. Derived regions also have higher variant density and slightly higher

minor allele frequency than core regions; thus, we have greater power to detect effects on gene expression.

Given the presence of linkage disequilibrium, whether variants in derived sequences directly affect gene

expression variation must be tested to estimate their true contribution. Recent work has reported that the

heritability of common variants is over-represented in older gene regulatory elements (Hujoel et al. (2019)),

but whether this signal is due to variation in older complex enhancers and more specifically in cores, derived

regions, or both remains to be explored. In general, more work is needed to understand the implications of
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common and rare variation in enhancer cores, derived regions, and their association with human traits.

Decoding gene regulatory modules, grammar, and evolution

This evolutionary evidence provokes the question—Do gene regulatory sequences have evolutionary

modules like they have functional modules? In other words, do these sequences evolve to create a grammar

that promotes environment and species adaptations? In this sense, a module would a TFBS defined by its

evolutionary origin, and the grammar is the coherent arrangement of these modules that produce

species-specific activity. The concept of gene regulatory grammar implies that enhancer activity requires an

enhancer sequence to have a specific set of TFBS motifs that may occur in any arrangement, known as the

“billboard” model, or in a specific arrangement, known as the “enhanceosome model”. Evidence in limited

studies, such as heart development (Luna-Zurita et al. (2016)) and lymphocyte differentiation (Martinez and

Rao (2012)), supports that regulatory grammars exist, however the extent of this pattern is not clear. Models

for identifying gene regulatory syntax, such as TF-MoDISco (Avsec et al. (2021)) could be applied to

evaluate whether multi-origin sequence modules combine coherent TFBS sets to produce regulatory activity.

Further, it could be powerful to compare single-origin and multi-origin sequences to test whether different

evolutionary trajectories produce common gene regulatory grammars. Such comparisons could also be used

to ask whether specific periods of regulatory innovation favored specific regulatory grammars.

Among enhancer sequences with multiple evolutionary origins, whether core and derived regions

produce gene regulatory activity in an additive or synergistic manner is a major question. A recent analysis

of SOX9 gene regulation showed that two sub-regions of the EC1.45 enhancer (from Therian and Vertebrate

common ancestors, respectively) synergistically activate human SOX9 expression(Long et al. (2020)). The

extent to which synergy is observed between core and derived regions of complex enhancer sequences

should be explored further. I speculate that the combination of sequences from different evolutionary origins

often enables gene regulatory innovation while conserving core regulatory functions. Future work should

combine evolutionary analysis with high-resolution assays of regulatory function to assess the relationship

between evolutionary sequence modules and function.

Along these lines, more work is needed to thoroughly determine the additivity or synergy of TFBS

modules and sequence modules that fall between TFBS. Previous work from others indicates that gene

regulatory activity can be optimized by including specific nucleotide combinations, rearranging the TFBS

motif order (Smith et al. (2013a)), and optimizing the spacing between TFBSs (Farley et al. (2015)).

Understanding how modules work together in enhancer sequences has the potential to define a gene

regulatory code, similar to the codon table, that determines which sequences produce activity where, when,

and with what strength. Likely, a table of the gene regulatory code will be far more complex than the codon
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table and would have to be modeled with consideration to cell context, but it is exciting to imagine that gene

regulatory function and strength could be decoded by the sequence composition.

Related to this, understanding how enhancer sequences first emerge and gain function over

evolutionary time may be key to creating synthetic regulatory elements. In the MBE publication, we

speculate that single-origin elements might transition to multi-origin elements in active enhancers. From the

GBE publication, we show that derived regions of enhancer sequences are functional. It is tempting to

speculate that flanking either single-origin enhancer sequences or inactive sequences with derived-sequences

may potentiate (or enhance) enhancer activity. Similarly, SINE/Alu transposable elements are thought to

gain gene regulatory activity over evolutionary time (Su et al. (2014)), and although SINE/Alu insertions are

generally not favored in gene regulatory sequences (Simonti et al. (2017); Fong and Capra (2021)), we have

found that multi-aged enhancer sequences with placental origins and younger appear to tolerate SINE/Alu

insertions. Whether SINE/Alu insertions create or modify regulatory activity at these loci must be evaluated

experimentally. Knowing such information could help to model which sequences tolerate transposable

element insertion and predict whether insertions could induce ectopic regulatory activity at inactive loci.

Reporter assays could be used to compare the activity of elements when derived or random sequences are

”tacked onto” single-origin enhancers (or even inactive sequences) to mimic genomic rearrangement events.

Identifying the evolutionary features that produce gene regulatory activity could be exploited to create

synthetic regulatory elements that reprogram gene regulatory networks and produce desired gene expression

patterns.

Determining dynamics of cis- and trans- gene regulatory evolution

Our observations on widespread trans-effects on gene regulatory function surprised us, given that previous

works attributed gene regulatory divergence to changes in cis-regulatory activity. Our comparative

ATAC-STARR-seq framework directly tests differences in gene regulatory activity due to the environment

and contrasts other works that use one cellular environment to control for the species-specific environmental

effects on gene regulation (Agoglia et al. (2021); Arnold et al. (2014)). Mattioli et al. directly evaluated the

impact of the cellular environment on gene regulatory activity and reported that cis effects were more

abundant (40%) than trans effects (18%) when comparing MPRA regulatory activity between human and

mouse embryonic stem cell models (Mattioli et al. (2020)). Our findings differ from this report for a number

of reasons, including the number of regulatory elements tested (all open chromatin v. hand-selected

regulatory elements), the assay format (ATAC-STARR-seq v. MPRA), cell model differences (matured v.

developmental), and the species (human v. rhesus instead of human v. mouse). It would be interesting to

revisit this type of experiment with an ATAC-STARR-seq strategy, expanding on the number of species and
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embryonic stem cell models used. Such a comparison could inform us on how activity interpretations vary

between technical strategies (i.e. MPRA and ATAC-STARR-seq) as well as biological differences associated

with evolutionary divergence in embryonic development, as has been proposed by others (Domazet-Lošo

and Tautz (2010); Cárdenas et al. (2018); Zhu et al. (2018)).

The abundance of elements with both cis and trans effects indicates that many cis-regulatory elements

are influenced by the cell environment. It is widely accepted that the cellular environment and TF binding

determines cis-regulatory. However, the abundance of cis+trans activity differences suggests that

species-specific regulatory evolution is tightly coordinated between sequence and cellular environment.

Examples of cis-only or trans-only gene regulatory divergence are less common in human and rhesus active

elements, suggesting that these modes of gene regulatory divergence are less favored. This pattern may be

more widespread in modern human populations; the GTEx consortium reported that trans-eQTL and

cis-eQTL signals colocalize, and mediation analysis shows that 77% of trans e-Variants are also cis

e-Variants (GTEx Consortium et al. (2020)). Thus, the co-occurrence of trans- and cis- regulatory signals

are likely underappreciated because we have lacked the methods to directly measure gene regulatory activity

in cis- and trans-.

Work from others suggests that gene regulatory divergence may be a dynamic process. The beginning

of gene regulatory divergence may begin with in trans, where the environment drives phenotypic variability

in a population before it becomes fixed in the genome. In the omnigenic model, trans variation has been

proposed to be widespread within a population, as more gene targets are affected as a result of trans variation

(Hill et al. (2021); Liu et al. (2019)). Following this, divergent phenotypes and their gene regulatory

programs may become fixed in cis as species diverge. The abundance of cis+trans elements may reflect the

evolutionary delta; a transition of gene regulatory divergence between humans and rhesus macaques from

predominantly trans- to predominantly cis- and trans- differences in regulation. Comparing abundances of

cis+trans elements between species with even longer and shorter evolutionary distances could reveal

whether cis+trans elements are still favored in older or more recent divergence. Future work would evaluate

the genetic mechanisms of gene regulatory divergence across evolutionary distances. It would be exciting to

apply ATAC-STARR-seq across LCLs from different human populations to determine how abundant cis-

and trans- activity varies between individuals. If the omnigenic model holds, I would expect that the

majority of gene regulatory differences between individuals occurs in trans. Conversely, I would expect that

cis-regulatory differences in activity would be rare given the genetic similarity between individuals.
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Expanding our knowledge of regulatory divergence across more species and cell types

As we have shown, ATAC-STARR-seq can be used to identify differences in activity between species in an

LCL context. But this assay could be applied to investigate the extent to which species divergence manifests

in different cell types. Including more species and more cell models in the ATAC-STARR-seq platform

could be used to investigate how regulatory elements in species’ brains or livers have evolved and by which

mechanisms. The human brain is particularly interesting, as many have long sought to show that regulatory

variation has produced differences in brain phenotypes between humans and other species (Reilly and

Noonan (2016); Zhu et al. (2018)).

Beyond species evolution, ATAC-STARR-seq could be applied to interpret how the trans-environment

regulates cell-type identity and differentiation. Like species, cell-types are derived from a common ancestor

(the embryonic stem cell) and how gene regulatory elements evolve cell identity is an important question

(Arendt et al. (2016)). Testing for trans-differences in gene regulatory activity across shared open chromatin

from different cell types would reveal how trans-effects direct cell differentiation and identity. Further, work

like this could be used to target and reprogram cells by targeting the regulation of specific trans-factors with

CRISPR-activating or inhibiting constructs.

Targeting gene regulation as a novel therapeutic modality

Understanding the basic structure-function relationships between gene regulatory elements and their gene

targets has great implications for therapeutic intervention. For example, genetic diseases caused by

haploinsufficiency—where a heterozygous variant in the coding gene or gene regulatory element produces

suboptimal transcription of one gene copy and promotes disease pathology—could be addressed by

developing therapeutics that modulate the regulation of the normal gene copy. In a proof-of-concept study,

targeting CRISPR-activating guide RNAs to promoters or tissue-specific enhancers in Sim1 or Mc4r

haploinsufficient male mice rescued obesity phenotypes (Matharu et al. (2019)). cis-regulatory therapies that

use CRISPR technologies to target enhancers, instead of promoters or the gene itself, can potentially rescue

pathological gene expression in genetic disease more precisely with fewer off-target toxicities (Matharu and

Ahituv (2020)). Before this can be achieved, a strong understanding of cell-type-specific gene regulatory

elements, of their TF inputs and regulatory activity, of their gene targets, and of methods to safely engineer

the genomes of target cell types is needed to build these technologies.

Finally, a better understanding of the key regulatory elements that distinguish cell identities or transient

cell states hold great promise for cell-based therapy interventions. Reprogramming closely related cell types

from one identity to another with precise and accurate knowledge about the gene regulatory determinants of

cell identity could be manipulated with CRISPR-activating and CRISPR-inhibiting technologies or by
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engineering cell-type specific genomes with synthetic, “bespoke” enhancers that rewire regulatory networks.

Designing cell-type specific regulatory elements with desired functional properties will likely be realized

using generative neural networks, such as variational autoencoders and generative adversarial models, which

are capable of learning and producing ”copies” of the information it learns. Reprogramming lymphocyte

identity might have practical therapeutic applications for expanding the number of T, NK, or B cells ex vivo

for cell-based therapies. In the context of cancer, cis-regulatory therapies that revive exhausted

tumor-related T-lymphocytes could be applied to specifically and effectively kill tumor cells without

breaking tolerance elsewhere in the human body. The extent to which cis-regulatory therapies can be applied

is limited only by our understanding of disease-pathologies, gene regulatory sequence-structure and

function, genome editing technologies, and the boundaries of the imagination.
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Breschi, A., Gingeras, T. R., and Guigó, R. (2017). Comparative transcriptomics in human and mouse.
Nature Reviews Genetics, 18(7):425–440.
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A., Blancher, A., Di Croce, L., Gómez-Skarmeta, J. L., Juan, D., and Marquès-Bonet, T. (2021).
Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic
activities in gene regulatory architectures. Nature Communications, 12(1):3116.

Gasperini, M., Tome, J. M., and Shendure, J. (2020). Towards a comprehensive catalogue of validated and
target-linked human enhancers. Nature Reviews Genetics, 21(5):292–310.

194



George, R. D., McVicker, G., Diederich, R., Ng, S. B., MacKenzie, A. P., Swanson, W. J., Shendure, J., and
Thomas, J. H. (2011). Trans genomic capture and sequencing of primate exomes reveals new targets of
positive selection. Genome Research, 21(10):1686–1694.

Gershman, A., Sauria, M. E. G., Guitart, X., Vollger, M. R., Hook, P. W., Hoyt, S. J., Jain, M., Shumate, A.,
Razaghi, R., Koren, S., Altemose, N., Caldas, G. V., Logsdon, G. A., Rhie, A., Eichler, E. E., Schatz,
M. C., O’Neill, R. J., Phillippy, A. M., Miga, K. H., and Timp, W. (2022). Epigenetic patterns in a
complete human genome. Science, 376(6588):eabj5089.

Gokhman, D., Agoglia, R. M., Kinnebrew, M., Gordon, W., Sun, D., Bajpai, V. K., Naqvi, S., Chen, C.,
Chan, A., Chen, C., Petrov, D. A., Ahituv, N., Zhang, H., Mishina, Y., Wysocka, J., Rohatgi, R., and
Fraser, H. B. (2021). Human–chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal
evolution. Nature Genetics, 53(4):467–476.

Gordon, K. L. and Ruvinsky, I. (2012). Tempo and mode in evolution of transcriptional regulation. PLoS
genetics, 8(1):e1002432.

Gotea, V., Visel, A., Westlund, J. M., Nobrega, M. A., Pennacchio, L. A., and Ovcharenko, I. (2010).
Homotypic clusters of transcription factor binding sites are a key component of human promoters and
enhancers. Genome Research, 20(5):565–577.

Grossman, S. R., Engreitz, J., Ray, J. P., Nguyen, T. H., Hacohen, N., and Lander, E. S. (2018). Positional
specificity of different transcription factor classes within enhancers. Proceedings of the National
Academy of Sciences, 115(30):E7222–E7230.

GTEx Consortium (2017). Genetic effects on gene expression across human tissues. Nature,
550(7675):204–213.

GTEx Consortium, Aguet François, Anand Shankara, Ardlie Kristin G., Gabriel Stacey, Getz Gad A.,
Graubert Aaron, Hadley Kane, Handsaker Robert E., Huang Katherine H., Kashin Seva, Li Xiao,
MacArthur Daniel G., Meier Samuel R., Nedzel Jared L., Nguyen Duyen T., Segrè Ayellet V., Todres
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Muerdter, F., Boryń, M., Woodfin, A. R., Neumayr, C., Rath, M., Zabidi, M. A., Pagani, M., Haberle, V.,
Kazmar, T., Catarino, R. R., Schernhuber, K., Arnold, C. D., and Stark, A. (2018). Resolving systematic
errors in widely used enhancer activity assays in human cells. Nature Methods, 15(2):141–149.
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